ERIC Educational Resources Information Center
Bozovic, L. I.
This document is an English-language abstract (approximately 1,500 words) of a three-part volume on the psychology of child personality development. In part one, the author shows that psychology is one of the most important scientific disciplines on which education is based, particularly because of its contribution to the scientific planning of…
Standards for electron probe microanalysis of silicates prepared by convenient method
NASA Technical Reports Server (NTRS)
Walter, L. S.
1966-01-01
Standard compositions suitable for electron probe microanalysis of various silicates are prepared by coprecipitation of specified salts with colloidal silica to form a gel which is decomposed into a powdered oxide mixture and compressed into thin pellets. These pellets of predetermined standard are compared with a silicate sample to determine its composition.
Today's and Tomorrow's Instruments.
Conty, Claude
2001-03-01
This article will discuss the importance of Raimond Castaing's thesis on the genesis of a nondestructive and truly quantitative microanalytical method that assisted the scientific community in moving forward in the development of microanalytical instruments. I will also share with you my recollection of the decades of improvement in the electron probe microanalyzer (EPMA), that has allowed us to reach our present level of instrument sophistication, and I will explore with you my thoughts on the future evolution of this technique. To conclude, I will present the current status of related microanalysis techniques developed under Castaing in Orsay in the 1960s, as Castaing's interest in microanalysis was not limited to electron probe microanalysis alone.
Standardless quantification by parameter optimization in electron probe microanalysis
NASA Astrophysics Data System (ADS)
Limandri, Silvina P.; Bonetto, Rita D.; Josa, Víctor Galván; Carreras, Alejo C.; Trincavelli, Jorge C.
2012-11-01
A method for standardless quantification by parameter optimization in electron probe microanalysis is presented. The method consists in minimizing the quadratic differences between an experimental spectrum and an analytical function proposed to describe it, by optimizing the parameters involved in the analytical prediction. This algorithm, implemented in the software POEMA (Parameter Optimization in Electron Probe Microanalysis), allows the determination of the elemental concentrations, along with their uncertainties. The method was tested in a set of 159 elemental constituents corresponding to 36 spectra of standards (mostly minerals) that include trace elements. The results were compared with those obtained with the commercial software GENESIS Spectrum® for standardless quantification. The quantifications performed with the method proposed here are better in the 74% of the cases studied. In addition, the performance of the method proposed is compared with the first principles standardless analysis procedure DTSA for a different data set, which excludes trace elements. The relative deviations with respect to the nominal concentrations are lower than 0.04, 0.08 and 0.35 for the 66% of the cases for POEMA, GENESIS and DTSA, respectively.
Electron microscopy methods in studies of cultural heritage sites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasiliev, A. L., E-mail: a.vasiliev56@gmail.com; Kovalchuk, M. V.; Yatsishina, E. B.
The history of the development and application of scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray microanalysis (EDXMA) in studies of cultural heritage sites is considered. In fact, investigations based on these methods began when electron microscopes became a commercial product. Currently, these methods, being developed and improved, help solve many historical enigmas. To date, electron microscopy combined with microanalysis makes it possible to investigate any object, from parchment and wooden articles to pigments, tools, and objects of art. Studies by these methods have revealed that some articles were made by ancient masters using ancient “nanotechnologies”; hence,more » their comprehensive analysis calls for the latest achievements in the corresponding instrumental methods and sample preparation techniques.« less
Electron microscopy methods in studies of cultural heritage sites
NASA Astrophysics Data System (ADS)
Vasiliev, A. L.; Kovalchuk, M. V.; Yatsishina, E. B.
2016-11-01
The history of the development and application of scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray microanalysis (EDXMA) in studies of cultural heritage sites is considered. In fact, investigations based on these methods began when electron microscopes became a commercial product. Currently, these methods, being developed and improved, help solve many historical enigmas. To date, electron microscopy combined with microanalysis makes it possible to investigate any object, from parchment and wooden articles to pigments, tools, and objects of art. Studies by these methods have revealed that some articles were made by ancient masters using ancient "nanotechnologies"; hence, their comprehensive analysis calls for the latest achievements in the corresponding instrumental methods and sample preparation techniques.
Farkas, I; Szerdahelyi, P; Kása, P
1988-01-01
The absolute concentration of zinc in the Purkinje cells of the rat cerebellum was determined by means of energy dispersive X-ray microanalysis (EDAX). Gelatine blocks with known zinc concentrations were stained by Timm's sulphide-silver method, and their silver concentrations were measured by EDAX. A linear correlation was found between the zinc and silver concentrations and this linear function was used as a quantitative calibration for evaluation of sulphide-silver staining, after perfusion with sodium-sulphide solution, fixation with glutaraldehyde, cryostat sectioning and staining of cerebellar samples in Timm's reagent.
[Progress in the application of laser ablation ICP-MS to surface microanalysis in material science].
Zhang, Yong; Jia, Yun-hai; Chen, Ji-wen; Shen, Xue-jing; Liu, Ying; Zhao, Leiz; Li, Dong-ling; Hang, Peng-cheng; Zhao, Zhen; Fan, Wan-lun; Wang, Hai-zhou
2014-08-01
In the present paper, apparatus and theory of surface analysis is introduced, and the progress in the application of laser ablation ICP-MS to microanalysis in ferrous, nonferrous and semiconductor field is reviewed in detail. Compared with traditional surface analytical tools, such as SEM/EDS (scanning electron microscopy/energy dispersive spectrum), EPMA (electron probe microanalysis analysis), AES (auger energy spectrum), etc. the advantage is little or no sample preparation, adjustable spatial resolution according to analytical demand, multi-element analysis and high sensitivity. It is now a powerful complementary method to traditional surface analytical tool. With the development of LA-ICP-MS technology maturing, more and more analytical workers will use this powerful tool in the future, and LA-ICP-MS will be a super star in elemental analysis field just like LIBS (Laser-induced breakdown spectroscopy).
Microscopy and microanalysis 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bailey, G.W.; Corbett, J.M.; Dimlich, R.V.W.
1996-12-31
The Proceedings of this Annual Meeting contain paper of members from the three societies. These proceedings emphasizes the common research interests and attempts to eliminate some unwanted overlap. Topics covered are: microscopic analysis of animals with altered gene expression and in-situ gene and antibody localizations, high-resolution elemental mapping of nucleoprofein interactions, plant biology and pathology, quantitative HREM analysis of perfect and defected materials, computational methods for TEM image analysis, high-resolution FESM in materials research, frontiers in polymer microscopy and microanalysis, oxidation and corrosion, micro XRD and XRF, molecular microspectroscopy and spectral imaging, advances in confocal and multidimensional light microscopy, analyticalmore » electron microscopy in biology, correlative microscopy in biological sciences, grain-boundary microengineering, surfaces and interfaces, telepresence microscopy in education and research, MSA educational outreach, quantitative electron probe microanalysis, frontiers of analytical electron microscopy, critical issues in ceramic microstructures, dynamic organization of the cell, pathology, microbiology, high-resolution biological and cryo SEM, and scanning-probe microscopy.« less
NASA Technical Reports Server (NTRS)
Carpenter, Paul; Armstrong, John
2004-01-01
Improvement in the accuracy of electron-probe microanalysis (EPMA) has been accomplished by critical assessment of standards, correction algorithms, and mass absorption coefficient data sets. Experimental measurement of relative x-ray intensities at multiple accelerating potential highlights errors in the absorption coefficient. The factor method has been applied to the evaluation of systematic errors in the analysis of semiconductor and silicate minds. Accurate EPMA of Martian soil stimulant is necessary in studies that build on Martian rover data in anticipation of missions to Mars.
Bassi, Daniela; Cappa, Fabrizio; Cocconcelli, Pier Sandro
2009-06-01
Clostridium tyrobutyricum is an anaerobic bacterium responsible for late blowing defects during cheese ripening and it is of scientific interest for biological hydrogen production. A scanning electron microscopy (SEM) coating technique and X-ray microanalysis were developed to analyze the architecture and chemical composition of spores upon germination in response to environmental changes. In addition, we investigated the effects of different compounds on this process. Agents and environmental conditions inducing germination were characterized monitoring changes in optical density (OD). Among all tested conditions, the greatest drop in OD(625) (57.4%) was obtained when spores were incubated in l-alanine/l-lactate buffer, pH 4.6. In addition, a carbon-coating SEM technique and X-ray microanalysis were used to observe the architecture of spores and to examine calcium dipicolinate release. Conditions inducing C. tyrobutyricum spore germination were identified and SEM X-ray microanalysis clearly distinguished germinating from dormant spores. We confirmed that calcium dipicolinate release is one of the first events occurring. These microscopy methods could be considered sensitive tools for evaluating morphological and chemical changes in spores of C. tyrobutyricum during the initial phase of germination. Information gathered from this work may provide new data for further research on germination.
Microscopy & microanalysis 2016 in Columbus, Ohio
Michael, Joseph R.
2016-01-08
The article provides information about an upcoming conference from the program chair. The Microscopy Society of America (MSA), the Microanalysis Society (MAS), and the International Metallographic Society (IMS) invite participation in Microscopy & Microanalysis 2016 in Columbus, Ohio, July 24 through July 28, 2016.
X-ray microanalysis of porous materials using Monte Carlo simulations.
Poirier, Dominique; Gauvin, Raynald
2011-01-01
Quantitative X-ray microanalysis models, such as ZAF or φ(ρz) methods, are normally based on solid, flat-polished specimens. This limits their use in various domains where porous materials are studied, such as powder metallurgy, catalysts, foams, etc. Previous experimental studies have shown that an increase in porosity leads to a deficit in X-ray emission for various materials, such as graphite, Cr(2) O(3) , CuO, ZnS (Ichinokawa et al., '69), Al(2) O(3) , and Ag (Lakis et al., '92). However, the mechanisms responsible for this decrease are unclear. The porosity by itself does not explain the loss in intensity, other mechanisms have therefore been proposed, such as extra energy loss by the diffusion of electrons by surface plasmons generated at the pores-solid interfaces, surface roughness, extra charging at the pores-solid interface, or carbon diffusion in the pores. However, the exact mechanism is still unclear. In order to better understand the effects of porosity on quantitative microanalysis, a new approach using Monte Carlo simulations was developed by Gauvin (2005) using a constant pore size. In this new study, the X-ray emissions model was modified to include a random log normal distribution of pores size in the simulated materials. This article presents, after a literature review of the previous works performed about X-ray microanalysis of porous materials, some of the results obtained with Gauvin's modified model. They are then compared with experimental results. Copyright © 2011 Wiley Periodicals, Inc.
Urban, Pawel L; Goodall, David M; Bergström, Edmund T; Bruce, Neil C
2007-08-31
An electrophoretically mediated microanalysis (EMMA) method has been developed for yeast alcohol dehydrogenase and quantification of reactant and product cofactors, NAD and NADH. The enzyme substrate ethanol (1% (v/v)) was added to the buffer (50 mM borate, pH 8.8). Results are presented for parallel capillary electrophoresis with a novel miniature UV area detector, with an active pixel sensor imaging an array of two or six parallel capillaries connected via a manifold to a single output capillary in a commercial CE instrument, allowing conversions with five different yeast alcohol dehydrogenase concentrations to be quantified in a single experiment.
NASA Astrophysics Data System (ADS)
Wright, K. E.; Popa, K.; Pöml, P.
2018-01-01
Transmutation nuclear fuels contain weight percentage quantities of actinide elements, including Pu, Am and Np. Because of the complex spectra presented by actinide elements using electron probe microanalysis (EPMA), it is necessary to have relatively pure actinide element standards to facilitate overlap correction and accurate quantitation. Synthesis of actinide oxide standards is complicated by their multiple oxidation states, which can result in inhomogeneous standards or standards that are not stable at atmospheric conditions. Synthesis of PuP4 results in a specimen that exhibits stable oxidation-reduction chemistry and is sufficiently homogenous to serve as an EPMA standard. This approach shows promise as a method for producing viable actinide standards for microanalysis.
NASA Technical Reports Server (NTRS)
Carpenter, Paul
2003-01-01
Electron-probe microanalysis standards and issues related to measurement and accuracy of microanalysis will be discussed. Critical evaluation of standards based on homogeneity and comparison with wet-chemical analysis will be made. Measurement problems such as spectrometer dead-time will be discussed. Analytical accuracy issues will be evaluated for systems by alpha-factor analysis and comparison with experimental k-ratio databases.
Tylko, G; Karasiński, J; Wróblewski, R; Roomans, G M; Kilarski, W M
2000-01-01
Heterogeneity of the elemental content of myogenic C2C12 cultured cells was studied by electron probe X-ray microanalysis (EPXMA) with scanning (SEM EPXMA) and scanning transmission electron microscopy (STEM EPXMA). The best plastic substrate for growing cells was Thermanox. For STEM EPXMA, a Formvar film coated with carbon was found to be suitable substrate. The cells examined by scanning transmission electron microscopy showed great heterogeneity in their elemental content in comparison with the cells examined in the scanning electron microscope despite of an almost identical preparation procedure for EPXMA. Nevertheless the K/Na ratios obtained from both methods of EPXMA were very close (4.1 and 4.3). We conclude that the observed discrepancy in the elemental content obtained by the two methods may be due to differences in instrumentation and this must be taken into account when planning a comparative study.
Application of the laser to the study of pathogenic fungi.
Thibaut, M
1979-05-15
Laser microanalysis has been applied to the study of pathogenic fungi. Such a method allows chemical information to be obtained and permits the detection of 74 elements in the periodic system of Mendeleev from lithium (3) to uranium (92).
Beebe, Beatrice; Steele, Miriam
2013-01-01
Microanalysis research on 4-month mother-infant face-to-face communication operates like a “social microscope” and identifies aspects of maternal sensitivity and the origins of attachment with a more detailed lens. We hope to enhance a dialogue between these two paradigms, microanalysis of mother-infant communication and maternal sensitivity and emerging working models of attachment. The prediction of infant attachment from microanalytic approaches and their contribution to concepts of maternal sensitivity are described. We summarize aspects of one microanalytic study by Beebe and colleagues (2010) that documents new communication patterns between mothers and infants at 4 months that predict future disorganized (vs. secure) attachment. The microanalysis approach opens up a new window on the details of the micro-processes of face-to-face communication. It provides a new, rich set of behaviors with which to extend our understanding of the origins of infant attachment and of maternal sensitivity. PMID:24299136
Beebe, Beatrice; Steele, Miriam
2013-01-01
Microanalysis research on 4-month infant-mother face-to-face communication operates like a "social microscope" and identifies aspects of maternal sensitivity and the origins of attachment with a more detailed lens. We hope to enhance a dialogue between these two paradigms, microanalysis of mother-infant communication and maternal sensitivity and emerging working models of attachment. The prediction of infant attachment from microanalytic approaches and their contribution to concepts of maternal sensitivity are described. We summarize aspects of one microanalytic study by Beebe and colleagues published in 2010 that documents new communication patterns between mothers and infants at 4 months that predict future disorganized (vs. secure) attachment. The microanalysis approach opens up a new window on the details of the micro-processes of face-to-face communication. It provides a new, rich set of behaviors with which to extend our understanding of the origins of infant attachment and of maternal sensitivity.
Armigliato, Aldo; Frabboni, Stefano; Gazzadi, Gian Carlo; Rosa, Rodolfo
2013-02-01
A method for the fabrication of a wedge-shaped thin NiO lamella by focused ion beam is reported. The starting sample is an oxidized bulk single crystalline, <100> oriented, Ni commercial standard. The lamella is employed for the determination, by analytical electron microscopy at 200 kV of the experimental k(O-Ni) Cliff-Lorimer (G. Cliff & G.W. Lorimer, J Microsc 103, 203-207, 1975) coefficient, according to the extrapolation method by Van Cappellen (E. Van Cappellen, Microsc Microstruct Microanal 1, 1-22, 1990). The result thus obtained is compared to the theoretical k(O-Ni) values either implemented into the commercial software for X-ray microanalysis quantification of the scanning transmission electron microscopy/energy dispersive spectrometry equipment or calculated by the Monte Carlo method. Significant differences among the three values are found. This confirms that for a reliable quantification of binary alloys containing light elements, the choice of the Cliff-Lorimer coefficients is crucial and experimental values are recommended.
Titanium pigmentation. An electron probe microanalysis study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dupre, A.; Touron, P.; Daste, J.
1985-05-01
A patient had an unusual pigmentary disease induced by titanium dioxide. The use of a topical cream containing titanium dioxide caused a xanthomalike appearance on the patient's penis. Electron probe microanalysis was valuable in establishing the cause of this balanitis.
Energy Dispersive X-ray (EDX) microanalysis: A powerful tool in biomedical research and diagnosis
Scimeca, Manuel; Bischetti, Simone; Lamsira, Harpreet Kaur; Bonfiglio, Rita; Bonanno, Elena
2018-01-01
The Energy Dispersive X-ray (EDX) microanalysis is a technique of elemental analysis associated to electron microscopy based on the generation of characteristic Xrays that reveals the presence of elements present in the specimens. The EDX microanalysis is used in different biomedical fields by many researchers and clinicians. Nevertheless, most of the scientific community is not fully aware of its possible applications. The spectrum of EDX microanalysis contains both semi-qualitative and semi-quantitative information. EDX technique is made useful in the study of drugs, such as in the study of drugs delivery in which the EDX is an important tool to detect nanoparticles (generally, used to improve the therapeutic performance of some chemotherapeutic agents). EDX is also used in the study of environmental pollution and in the characterization of mineral bioaccumulated in the tissues. In conclusion, the EDX can be considered as a useful tool in all works that require element determination, endogenous or exogenous, in the tissue, cell or any other sample. PMID:29569878
Investigation and Development of Advanced Surface Microanalysis Techniques and Methods
1983-04-01
descriminates against isobars since each of the isobaric species will have a different atomic number or Z and, therefore, will be stripped of its...allow descrimination between two elements at the same mass but which have different atomic numbers. Multiply-charged ions are not produced during the
NASA Astrophysics Data System (ADS)
Gattacceca, J.; Rochette, P.; Folco, L.; Perchiazzi, N.
2005-03-01
Thousands of micrometeorites were collected in aeolian deposits in Antarctica during the XIX PNRA expedition. Such large and well preserved population offers a good opportunity to test and develop a magnetic classification procedure, in parallel to mineralogical and geochemical characterization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Figueroa, C.; Brizuela, H.; Heluani, S. P.
2014-05-21
The backscattering coefficient is a magnitude whose measurement is fundamental for the characterization of materials with techniques that make use of particle beams and particularly when performing microanalysis. In this work, we report the results of an analytic method to calculate the backscattering and absorption coefficients of electrons in similar conditions to those of electron probe microanalysis. Starting on a five level states ladder model in 3D, we deduced a set of integro-differential coupled equations of the coefficients with a method know as invariant embedding. By means of a procedure proposed by authors, called method of convergence, two types ofmore » approximate solutions for the set of equations, namely complete and simple solutions, can be obtained. Although the simple solutions were initially proposed as auxiliary forms to solve higher rank equations, they turned out to be also useful for the estimation of the aforementioned coefficients. In previous reports, we have presented results obtained with the complete solutions. In this paper, we present results obtained with the simple solutions of the coefficients, which exhibit a good degree of fit with the experimental data. Both the model and the calculation method presented here can be generalized to other techniques that make use of different sorts of particle beams.« less
Apparatus enables automatic microanalysis of body fluids
NASA Technical Reports Server (NTRS)
Soffen, G. A.; Stuart, J. L.
1966-01-01
Apparatus will automatically and quantitatively determine body fluid constituents which are amenable to analysis by fluorometry or colorimetry. The results of the tests are displayed as percentages of full scale deflection on a strip-chart recorder. The apparatus can also be adapted for microanalysis of various other fluids.
Application of electron probe X-ray microanalysis to calcification studies of bone and cartilage.
Landis, W J
1979-01-01
The use of electron probe x-ray microanalysis in previous studies of bone and cartilage has been reviewed with emphasis on the results which have contributed to some of the current concepts of the mechanism of mineralization in these tissues. A number of investigations continuing in the author's laboratory utilizing high spatial resolution x-ray microanalysis and anhydrous methods of specimen preparation are described, including aspects concerning the derivation of calibration curves from synthetic calcium phosphate solids, qualitative and quantitative analyses of calcium and phosphorus in bone from embryonic chicks and in growth plate cartilage from rats, and the role of organically-bound phosphorus in mineralizing tissues. The data obtained have helped identify brushite, CaHPO4-2H2O, as the major crystalline solid phase of calcium phosphate in the earliest mineral deposits of bone tissue, brushite and poorly crystalline hydroxyapatite in bone mineral of increasing age, and poorly crystalline hydroxyapatite in the most mature mineral portions of the tissue. Growth plate cartilage examination has revealed calcium and phosphorus in single mitochondrial granules within chondrocytes and in certain extracellular particles distinct from matrix vesicles. These results have provided important information about the possible roles of cells, extracellular components, and the organic matrix in the regulation of mineralization and about the composition, structure, and organization of the mineral phase as a function of progressively increasing age and maturation of the tissues studied.
Fujii, Syuji; Okada, Masahiro; Nishimura, Taiki; Maeda, Hayata; Sugimoto, Tatsuya; Hamasaki, Hiroyuki; Furuzono, Tsutomu; Nakamura, Yoshinobu
2012-05-15
Hydroxyapatite (HAp) nanoparticle-armored poly(ε-caprolactone) (PCL) microspheres were fabricated via a "Pickering-type" emulsion solvent evaporation method in the absence of any molecular surfactants. It was clarified that the interaction between carbonyl/carboxylic acid groups of PCL and the HAp nanoparticles at an oil-water interface played a crucial role in the preparation of the stable Pickering-type emulsions and the HAp nanoparticle-armored microspheres. The HAp nanoparticle-armored PCL microspheres were characterized in terms of size, size distribution, morphology, and chemical compositions using scanning electron microscopy, laser diffraction, energy dispersive X-ray microanalysis, and thermogravimetric analysis. The presence of HAp nanoparticles at the surface of the microspheres was confirmed by scanning electron microscopy and energy dispersive X-ray microanalysis. Pyrolysis of the PCL cores led to the formation of the corresponding HAp hollow microcapsules. Copyright © 2012 Elsevier Inc. All rights reserved.
A Method for the Microanalysis of Pre-Algebra Transfer
ERIC Educational Resources Information Center
Pavlik, Philip I., Jr.; Yudelson, Michael; Koedinger, Kenneth R.
2011-01-01
The objective of this research was to better understand the transfer of learning between different variations of pre-algebra problems. While the authors could have addressed a specific variation that might address transfer, they were interested in developing a general model of transfer, so we gathered data from multiple problem types and their…
ERIC Educational Resources Information Center
Scull, Janet
2013-01-01
This paper examines the oral language resources that enhance children's reading and comprehension processes. Using data from a study of 16 children, the microanalysis of the three more successful readers, identified salient factors from the individual children's learning profiles that were observed as associated with their positive comprehension…
ERIC Educational Resources Information Center
Thorpe, Mary; Kubiak, Chris
2005-01-01
The interaction of agency and context in workplace learning is explored through a micro-analysis of the implementation of networked learning communities in schools in England. Interviews with local activists show evidence of co-participation between individuals' responses and their workplace roles and experience as they take up the opportunity to…
X-ray microprobe analysis of platelets. Principles, methods and review of the literature.
Yarom, R
1983-01-01
Platelets are well suited to X-ray microanalysis as there is no need for chemical fixation or sectioning, and the concentrations of calcium and phosphorus are above 10(-3). The principles of the technique, the methods of specimen preparation, instrumental conditions during analysis and ways of quantitation are described. This is followed by a review of published reports and a brief summary of the author's own work in the field.
plant extracts gradually increases. This is evidently explained by a conversion of the insecticide into a compound possessing high anticholinesterase activity . (Author)...possible to determine from 1 to 100 micrograms of insecticide per 1 ml. It was established that the anticholinesterase activity of chlorphos when...inherent anticholinesterase action, was developed. In order to realize this method a portable kit was constructed which contains a rack for the storage
Kinetics and mechanism of the oxidation process of two-component Fe-Al alloys
NASA Technical Reports Server (NTRS)
Przewlocka, H.; Siedlecka, J.
1982-01-01
The oxidation process of two-component Fe-Al alloys containing up to 7.2% Al and from 18 to 30% Al was studied. Kinetic measurements were conducted using the isothermal gravimetric method in the range of 1073-1223 K and 1073-1373 K for 50 hours. The methods used in studies of the mechanism of oxidation included: X-ray microanalysis, X-ray structural analysis, metallographic analysis and marker tests.
ERIC Educational Resources Information Center
Paul, Rhea; Miles, Stephanie; Cicchetti, Domenic; Sparrow, Sara; Klin, Ami; Volkmar, Fred; Coflin, Megan; Booker, Shelley
2004-01-01
The purpose of this study is to provide a microanalysis of differences in adaptive functioning seen between well-matched groups of school-aged children with autism and those diagnosed as having Pervasive Developmental Disorder-Not Otherwise Specified, all of whom functioned in the mild to moderate range of intellectual impairment. Findings…
Cotte, Marine; Fabris, Tiphaine; Langlois, Juliette; Bellot-Gurlet, Ludovic; Ploye, Françoise; Coural, Natalie; Boust, Clotilde; Gandolfo, Jean-Paul; Galifot, Thomas; Susini, Jean
2018-06-18
Louis Ducos du Huron (1837-1920) dedicated his entire life to the elaboration of physical-chemical processes for color photography. This study aimed at highlighting his unique contribution to three-color printing through 1) an in-depth review of the many protocols he published and 2) the synchrotron-based IR and X-ray microanalysis of fragments sampled in three artworks. Ducos du Hauron's method relied on the preparation and assembly of three monochromes (red, blue, yellow). This study brings to light complex multistep recipes based on photochemistry (carbon print), organic, and inorganic chemistry. The various ingredients involved (e.g., pigments, dichromate gelatin, collodion, resin) were identified and localized through their spectroscopic signature, confirming the relevance of synchrotron spectromicroscopy for the characterization of historical photographs. The impressive correlation between texts and chemical analyses calls for a wider application to the history of photography. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Non-fibrous inorganic particles in bronchoalveolar lavage fluid of pottery workers.
Falchi, M; Paoletti, L; Mariotta, S; Giosue, S; Guidi, L; Biondo, L; Scavalli, P; Bisetti, A
1996-01-01
AIM: To study the actual exposure of pottery workers to silica particles, as their risk of silicosis is potentially high because of the presence of inhalable crystalline silica particles in the workplace. METHODS: Nine pottery workers underwent bronchoalveolar lavage. The recovered fluid was analysed for cytological and mineralogical content by analytical transmission electron microscopy. The data were compared with those obtained from a control group composed of seven patients with sarcoidosis and six patients with haemoptysis. RESULTS: Cytological results showed a similar profile in exposed workers and controls, whereas in patients with sarcoidosis a lymphocytic alveolitis was found. Microanalysis of the particulate identified the presence of silicates, CRSs, and metals. Pottery workers had higher numbers of total particles and CRSs, and had a higher silicate/metal ratio. In five workers, the presence of zirconium silicate was also detected. Patients with sarcoidosis had the lowest number of particles, and an inverted silicate/metal ratio. CONCLUSION: Microanalysis by transmission electron microscope can provide useful information to assess occupational exposure to dusts. PMID:9038801
Subcellular distribution of an inhalational anesthetic in situ
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eckenhoff, R.G.; Shuman, H.
1990-01-01
To better understand the mechanisms and sites of anesthetic action, we determined the subcellular partitioning of halothane in a tissue model. A method was found to fix the in vivo distribution of halothane in rat atrial tissue for subsequent electron microscopy and x-ray microanalysis. Atrial strips were exposed to various concentrations of halothane, rapidly frozen, cryo-sectioned, and cryo-transferred into an electron microscope. Irradiation of the hydrated cryosections with the electron beam caused halothane radiolysis, which allowed retention of the halogen-containing fragments after dehydration of the sections. The bromine from halothane was detected and quantified with x-ray microanalysis in various microregionsmore » of atrial myocytes. Halothane (bromine) partitioned largely to mitochondria, with progressively lower concentrations in sarcolemma, nuclear membrane, cytoplasm, sarcomere, and nucleus. Partitioning could not be explained solely by distribution of cellular lipid, suggesting significant and differential physicochemical solubility in protein. However, we found no saturable compartment in atrial myocytes within the clinical concentration range, which implies little specific protein binding.« less
Surface plasmon resonance near-infrared spectroscopy.
Ikehata, Akifumi; Itoh, Tamitake; Ozaki, Yukihiro
2004-11-01
Near-infrared (NIR) spectroscopy is ill-suited to microanalysis because of its low absorptivity. We have developed a highly sensitive detection method for NIR spectroscopy based on absorption-sensitive surface plasmon resonance (SPR). The newly named SPR-NIR spectroscopy, which may open the way for NIR spectroscopy in microanalysis and surface science, is realized by an attachment of the Kretschmann configuration equipped with a mechanism for fine angular adjustment of incident light. The angular sweep of incident light enables us to make a tuning of a SPR peak for an absorption band of sample medium. From the dependences of wavelength, incident angle, and thickness of a gold film on the intensity of the SPR peak, it has been found that the absorbance can be enhanced by approximately 100 times compared with the absorbance obtained without the gold film under optimum conditions. This article reports the details of the experimental setup and the characteristics of absorption-sensitive SPR in the NIR region, together with some experimental results obtained by using it.
Clinimetrics and clinical psychometrics: macro- and micro-analysis.
Tomba, Elena; Bech, Per
2012-01-01
Clinimetrics was introduced three decades ago to specify the domain of clinical markers in clinical medicine (indexes or rating scales). In this perspective, clinical validity is the platform for selecting the various indexes or rating scales (macro-analysis). Psychometric validation of these indexes or rating scales is the measuring aspect (micro-analysis). Clinical judgment analysis by experienced psychiatrists is included in the macro-analysis and the item response theory models are especially preferred in the micro-analysis when using the total score as a sufficient statistic. Clinical assessment tools covering severity of illness scales, prognostic measures, issues of co-morbidity, longitudinal assessments, recovery, stressors, lifestyle, psychological well-being, and illness behavior have been identified. The constructive dialogue in clinimetrics between clinical judgment and psychometric validation procedures is outlined for generating developments of clinical practice in psychiatry. Copyright © 2012 S. Karger AG, Basel.
Accurate Cross Sections for Microanalysis.
Rez, Peter
2002-01-01
To calculate the intensity of x-ray emission in electron beam microanalysis requires a knowledge of the energy distribution of the electrons in the solid, the energy variation of the ionization cross section of the relevant subshell, the fraction of ionizations events producing x rays of interest and the absorption coefficient of the x rays on the path to the detector. The theoretical predictions and experimental data available for ionization cross sections are limited mainly to K shells of a few elements. Results of systematic plane wave Born approximation calculations with exchange for K, L, and M shell ionization cross sections over the range of electron energies used in microanalysis are presented. Comparisons are made with experimental measurement for selected K shells and it is shown that the plane wave theory is not appropriate for overvoltages less than 2.5 V.
Exploring Clinical Reasoning in Novices: A Self-Regulated Learning Microanalytic Approach
2013-07-05
important medical school performance outcomes. Self-Regulated Learning Microanalysis Social-cognitive researchers have defined SRL as “the...It is important to note at the outset, however, that our plan was not to use SRL microanalysis to comprehensively assess students’ reasoning skills...2.97 1.31 .29* 1.39 .51 .32 † 22 Discussion This study was important because it represents an initial attempt to examine SRL
Implications of Polishing Techniques in Quantitative X-Ray Microanalysis
Rémond, Guy; Nockolds, Clive; Phillips, Matthew; Roques-Carmes, Claude
2002-01-01
Specimen preparation using abrasives results in surface and subsurface mechanical (stresses, strains), geometrical (roughness), chemical (contaminants, reaction products) and physical modifications (structure, texture, lattice defects). The mechanisms involved in polishing with abrasives are presented to illustrate the effects of surface topography, surface and subsurface composition and induced lattice defects on the accuracy of quantitative x-ray microanalysis of mineral materials with the electron probe microanalyzer (EPMA). PMID:27446758
Carcinogenic N-Nitrosamines. Formation, Properties, and Analysis
NASA Astrophysics Data System (ADS)
Kostyukovskii, Ya L.; Melamed, D. B.
1988-04-01
Literature data on the formation of carcinogenic N-nitrosamines in the environment, their physicochemical properties, their action on the human organism, the methods for their microanalysis, and also their content in the atmosphere, water sources, soil, and industrial agricultural and food products are described systematically and surveyed. The principal features of this comparatively new class of powerful chemical carcinogens are indicated. The bibliography includes 284 references.
ERIC Educational Resources Information Center
Binli, Chen
2010-01-01
This article is a study of secondary schools in W. County from the perspective of the stratification of teachers' status. It provides a microanalysis of the institutional dynamics of the examination-oriented educational system. In an effort to increase the matriculation rate of the students, the body of teachers has become stratified through…
A microanalysis approach to investigate problems encountered in mycology.
Thibaut, M.; Ansel, M.; de Azevedo Carneiro, J.
1978-01-01
X-ray microanalysis has been applied to the study of pathogenic fungi for the acquisition of chemical information. The technique of combined scanning electron microscopy and wavelength dispersive spectrometry is described. The chemical analysis depends on the characteristic x-ray spectrum excited by the electrons passing through the sample. This spectrum is analyzed by x-ray wavelength dispersion using crystal spectrometers. All the elements of the periodic system above beryllium can be detected with good sensitivity. PMID:619693
ERIC Educational Resources Information Center
Van Booven, Christopher D.
2017-01-01
This dissertation research aims to better specify the role of context in the development of second language interactional competence. Drawing on conversation-analytic methods and Wong and Waring's (2010) model of interactional practices, I described and compared the opportunities that two study abroad contexts--the homestay and the language…
Focussed ion beam thin sample microanalysis using a field emission gun electron probe microanalyser
NASA Astrophysics Data System (ADS)
Kubo, Y.
2018-01-01
Field emission gun electron probe microanalysis (FEG-EPMA) in conjunction with wavelength-dispersive X-ray spectrometry using a low acceleration voltage (V acc) allows elemental analysis with sub-micrometre lateral spatial resolution (SR). However, this degree of SR does not necessarily meet the requirements associated with increasingly miniaturised devices. Another challenge related to performing FEG-EPMA with a low V acc is that the accuracy of quantitative analyses is adversely affected, primarily because low energy X-ray lines such as the L- and M-lines must be employed and due to the potential of line interference. One promising means of obtaining high SR with FEG-EPMA is to use thin samples together with high V acc values. This mini-review covers the basic principles of thin-sample FEG-EPMA and describes an application of this technique to the analysis of optical fibres. Outstanding issues related to this technique that must be addressed are also discussed, which include the potential for electron beam damage during analysis of insulating materials and the development of methods to use thin samples for quantitative analysis.
Study of Solid-State Diffusion of Bi in Polycrystalline Sn Using Electron Probe Microanalysis
NASA Astrophysics Data System (ADS)
Delhaise, André M.; Perovic, Doug D.
2018-03-01
Current lead-free solders such as SAC305 exhibit degradation in microstructure, properties, and reliability. Current third-generation alloys containing bismuth (Bi) demonstrate preservation of strength after aging; this is accompanied by homogenization of the Bi precipitates in the tin (Sn) matrix, driven via solid-state diffusion. This study quantifies the diffusion of Bi in Sn. Diffusion couples were prepared by mating together polished samples of pure Sn and Bi. Couples were annealed at one of three temperatures, viz. 85°C for 7 days, 100°C for 2 days, or 125°C for 1 day. After cross-sectioning the couples to examine the diffusion microstructure and grain size, elemental analysis was performed using electron probe microanalysis. For this study, it was assumed that the diffusivity of Bi in Sn is concentration dependent, therefore inverse methods were used to solve Fick's non-steady-state diffusion equation. In addition, Darken analysis was used to extract the impurity diffusivity of Bi in Sn at each temperature, allowing estimation of the Arrhenius parameters D 0 and k A.
Hearns, Nigel G R; Laflèche, Denis N; Sandercock, Mark L
2015-05-01
Preparation of a ytterbium-tagged gunshot residue (GSR) reference standard for scanning electron microscopy and energy dispersive X-ray spectroscopic (SEM-EDS) microanalysis is reported. Two different chemical markers, ytterbium and neodymium, were evaluated by spiking the primers of 38 Special ammunition cartridges (no propellant, no projectile) and discharging them onto 12.7 mm diameter aluminum SEM pin stubs. Following SEM-EDS microanalysis, the majority of tri-component particles containing lead, barium, and antimony (PbBaSb) were successfully tagged with the chemical marker. Results demonstrate a primer spiked with 0.75% weight percent of ytterbium nitrate affords PbBaSb particles characteristic of GSR with a ytterbium inclusion efficiency of between 77% and 100%. Reproducibility of the method was verified, and durability of the ytterbium-tagged tri-component particles under repeated SEM-EDS analysis was also tested. The ytterbium-tagged PbBaSb particles impart synthetic traceability to a GSR reference standard and are suitable for analysis alongside case work samples, as a positive control for quality assurance purposes. © 2015 American Academy of Forensic Sciences.
Evolution of self-reporting methods for identifying discrete emotions in science classrooms
NASA Astrophysics Data System (ADS)
Ritchie, Stephen M.; Hudson, Peter; Bellocchi, Alberto; Henderson, Senka; King, Donna; Tobin, Kenneth
2016-09-01
Emotion researchers have grappled with challenging methodological issues in capturing emotions of participants in naturalistic settings such as school or university classrooms. Self-reporting methods have been used frequently, yet these methods are inadequate when used alone. We argue that the self-reporting methods of emotion diaries and cogenerative dialogues can be helpful in identifying in-the-moment emotions when used in conjunction with the microanalysis of video recordings of classroom events. We trace the evolution of our use of innovative self-reporting methods through three cases from our research projects, and propose new directions for our ongoing development and application of these methods in both school and university classrooms.
NASA Technical Reports Server (NTRS)
Goldstein, J. I.; Williams, D. B.
1992-01-01
This paper reviews and discusses future directions in analytical electron microscopy for microchemical analysis using X-ray and Electron Energy Loss Spectroscopy (EELS). The technique of X-ray microanalysis, using the ratio method and k(sub AB) factors, is outlined. The X-ray absorption correction is the major barrier to the objective of obtaining I% accuracy and precision in analysis. Spatial resolution and Minimum Detectability Limits (MDL) are considered with present limitations of spatial resolution in the 2 to 3 microns range and of MDL in the 0.1 to 0.2 wt. % range when a Field Emission Gun (FEG) system is used. Future directions of X-ray analysis include improvement in X-ray spatial resolution to the I to 2 microns range and MDL as low as 0.01 wt. %. With these improvements the detection of single atoms in the analysis volume will be possible. Other future improvements include the use of clean room techniques for thin specimen preparation, quantification available at the I% accuracy and precision level with light element analysis quantification available at better than the 10% accuracy and precision level, the incorporation of a compact wavelength dispersive spectrometer to improve X-ray spectral resolution, light element analysis and MDL, and instrument improvements including source stability, on-line probe current measurements, stage stability, and computerized stage control. The paper reviews the EELS technique, recognizing that it has been slow to develop and still remains firmly in research laboratories rather than in applications laboratories. Consideration of microanalysis with core-loss edges is given along with a discussion of the limitations such as specimen thickness. Spatial resolution and MDL are considered, recognizing that single atom detection is already possible. Plasmon loss analysis is discussed as well as fine structure analysis. New techniques for energy-loss imaging are also summarized. Future directions in the EELS technique will be the development of new spectrometers and improvements in thin specimen preparation. The microanalysis technique needs to be simplified and software developed so that the EELS technique approaches the relative simplicity of the X-ray technique. Finally, one can expect major improvements in EELS imaging as data storage and processing improvements occur.
Ordered arrays of Ni magnetic nanowires: Synthesis and investigation
NASA Astrophysics Data System (ADS)
Napolskii, K. S.; Eliseev, A. A.; Yesin, N. V.; Lukashin, A. V.; Tretyakov, Yu. D.; Grigorieva, N. A.; Grigoriev, S. V.; Eckerlebe, H.
2007-03-01
The present study is focused on the synthesis and investigation of anodic aluminum oxide (AAO) films and magnetic nanocomposites Ni/AAO obtained by Ni electrodeposition into porous matrix. AAO membranes and magnetic nanocomposites were investigated by HRSEM, EDX microanalysis, XRD, nitrogen capillary adsorption method, SQUID magnetometry, and polarized small-angle neutron scattering (SANS). The influence of synthesis conditions and form factor effect on the magnetic properties of nanowire arrays is reported.
Investigation and Development of Advanced Surface Microanalysis Techniques and Methods
1983-04-01
California 94402 and Stephen L. Grube Watkins-Johnson 440 Kings Village Road Scotts Valley, California 95066 as published in Analytical Chemistry , 1985, 57...34 E. Silberg , T. Y. Chang, E. A. Caridi, C. A. Evans Jr. and C. J. Hitzman in Gallium Arsenide and Related Compounds 1982, 10th International Symposium...Spectrometry," P. K. Chu and S. L. Grube, Analytical Chemistry . 13. "Direct Lateral and In-Depth Distributional Analysis for Ionic - Contaminants in
NASA Astrophysics Data System (ADS)
Hillyer, Julián F.; Albrecht, Ralph M.
1998-10-01
: Colloidal gold, conjugated to ligands or antibodies, is routinely used as a label for the detection of cell structures by light (LM) and electron microscopy (EM). To date, several methods to count the number of colloidal gold labels have been employed with limited success. Instrumental neutron activation analysis (INAA), a physical method for the analysis of the elemental composition of materials, can be used to provide a quantitative index of gold accumulation in bulk specimens. Given that gold is not naturally found in biological specimens in any substantial amount and that colloidal gold and ligand conjugates can be prepared to yield uniform bead sizes, the amount of label can be calculated in bulk biological samples by INAA. Here we describe the use of INAA, LM, transmission EM, and X-ray microanalysis (EDX) in a model to determine both distribution (localization) and amount of colloidal gold at the organ, tissue, cellular, and ultrastructural levels in whole animal systems following administration. In addition, the sensitivity for gold in biological specimens by INAA is compared with that of inductively coupled plasma mass spectrometry (ICP-MS). The correlative use of INAA, LM, TEM, and EDX can be useful, for example, in the quantitative and qualitative tracking of various labeled molecular species following administration in vivo.
Application of micro-Fourier transform infrared spectroscopy to the examination of paint samples
NASA Astrophysics Data System (ADS)
Zięba-Palus, J.
1999-11-01
The examination and identification of automobile paints is an important problem in road accidents investigations. Since the real sample available is very small, only sensitive microtechniques can be applied. The methods of optical microscopy and micro-Fourier transform infrared spectroscopy (MK-FTIR) supported by scanning electron microscopy together with X-ray microanalysis (SEM-EDX) allow one to carry out the examination of each paint layer without any separation procedure. In this paper an attempt is made to discriminate between different automobile paints of the same colour by the use of these methods for criminalistic investigations.
El-Mufleh, Amelène; Béchet, Béatrice; Basile-Doelsch, Isabelle; Geffroy-Rodier, Claude; Gaudin, Anne; Ruban, Véronique
2014-01-01
Sediment management from stormwater infiltration basins represents a real environmental and economic issue for stakeholders due to the pollution load and important tonnages of these by-products. To reduce the sediment volumes to treat, organic and metal micropollutant-bearing phases should be identified. A combination of density fractionation procedure and microanalysis techniques was used to evaluate the distribution of polycyclic aromatic hydrocarbons (PAHs) and trace metals (Cd, Cr, Cu, Ni, Pb, and Zn) within variable density fractions for three urban stormwater basin sediments. The results confirm that PAHs are found in the lightest fractions (d < 1.9, 1.9 < d < 2.3 g cm(-3)) whereas trace metals are equally distributed within the light, intermediary, and highest fractions (d < 1.9, 1.9 < d < 2.3, 2.3 < d < 2.6, and d > 2.8 g cm(-3)) and are mostly in the 2.3 < d < 2.6 g cm(-3) fraction. The characterization of the five fractions by global analyses and microanalysis techniques (XRD and MEB-EDX) allowed us to identify pollutant-bearing phases. PAHs are bound to the organic matter (OM) and trace metals to OM, clays, carbonates and dense particles. Moreover, the microanalysis study underlines that OM is the main constituent responsible for the aggregation, particularly for microaggregation. In terms of sediment management, it was shown that density fractionation is not suitable for trace metals but could be adapted to separate PAH-enriched phases.
Bower, Janeen; Catroppa, Cathy; Grocke, Denise; Shoemark, Helen
2014-10-01
The primary aim of this case study was to explore the behavioural changes of a paediatric patient in post-traumatic amnesia (PTA) during a music therapy session. A secondary objective was to measure the effect of the music therapy intervention on agitation. Video data from pre, during and post-music therapy sessions were collected and analysed using video micro-analysis and the Agitated Behaviour Scale. The participant displayed four discrete categories of behaviours: Neutral, Acceptance, Recruitment and Rejection. Further analysis revealed brief but consistent and repeated periods of awareness and responsiveness to the live singing of familiar songs, which were classified as Islands of Awareness. Song offered an Environment of Potential to maximise these periods of emerging consciousness. The quantitative data analysis yielded inconclusive results in determining if music therapy was effective in reducing agitation during and immediately post the music therapy sessions. The process of micro-analysis illuminated four discrete participant behaviours not apparent in the immediate clinical setting. The results of this case suggest that the use of familiar song as a music therapy intervention may harness early patient responsiveness to foster cognitive rehabilitation in the early acute phase post-TBI.
NASA Astrophysics Data System (ADS)
Zhang, Wenjing; Sun, Delin; Zhao, Xia; Jin, Weihua; Wang, Jing; Zhang, Quanbin
2016-01-01
A rapid, sensitive and reproducible high performance liquid chromatography (HPLC) method with post-column fluorescence derivatization has been developed to determine the amount of low-molecular-weight sulfated polysaccharide (GFS) in vivo. The metabolism of GFS has been shown to fit a two component model following its administration by intravenous injection, and its pharmacokinetic parameters were determined to be as follows: half-time of distribution phase ( t 1/2α)=11.24±2.93 min, half-time of elimination phase ( t 1/2β)=98.20±25.78 min, maximum concentration ( C max)=110.53 μg/mL and peak time ( T max)=5 min. The pharmacokinetic behavior of GFS was also investigated following intragastric administration. However, the concentration of GFS found in serum was too low for detection, and GFS could only be detected for up to 2 h after intragastric administration (200 mg/kg body weight). Thus, the bioavailability of GFS was low following intragastric administration because of the metabolism of GFS. In conclusion, HPLC with postcolumn derivatization could be used for quantitative microanalysis and pharmacokinetic studies to determine the presence of polysaccharides in the serum following intravenous injection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kenik, E.A.
X-ray microanalysis in an analytical electron microscope is a proven technique for the measurement of solute segregation in alloys. Solute segregation under equilibrium or nonequilibrium conditions can strongly influence material performance. X-ray microanalysis in an analytical electron microscope provides an alternative technique to measure grain boundary segregation, as well as segregation to other defects not accessible to Auger analysis. The utility of the technique is demonstrated by measurements of equilibrium segregation to boundaries in an antimony containing stainless steel, including the variation of segregation with boundary character and by measurements of nonequilibrium segregation to boundaries and dislocations in an ion-irradiatedmore » stainless steel.« less
Normal incidence x-ray mirror for chemical microanalysis
Carr, M.J.; Romig, A.D. Jr.
1987-08-05
An x-ray mirror for both electron column instruments and micro x-ray fluorescence instruments for making chemical, microanalysis comprises a non-planar mirror having, for example, a spherical reflecting surface for x-rays comprised of a predetermined number of alternating layers of high atomic number material and low atomic number material contiguously formed on a substrate and whose layers have a thickness which is a multiple of the wavelength being reflected. For electron column instruments, the wavelengths of interest lie above 1.5nm, while for x-ray fluorescence instruments, the range of interest is below 0.2nm. 4 figs.
Ir'ianov, Iu M; Ir'ianova, T Iu
2012-01-01
In the experiment conducted on 30 Wistar rats, the peculiarities of tibial bone defect replacement under conditions of transosseous osteosynthesis and implantation of titanium nickelide mesh structures were studied using the methods of scanning electron microscopy and x-ray electron probe microanalysis. It was demonstrated that implant osseointegration occured 7 days after surgery, and after 30 days the defect was replaced with bone tissue by the type of primary bone wound healing, thus the organotypical remodeling of regenerated bone took place.
Modified APHA closed-tube reflux colorimetric method for TOC determination in water and wastewater.
Salihu, Simon Olonkwoh; Bakar, Nor Kartini Abu
2018-05-30
The analysis of total organic carbon (TOC) by the American Public Health Association (APHA) closed-tube reflux colorimetric method requires potassium dichromate (K 2 Cr 2 O 7 ), silver sulfate (AgSO 4 ), and mercury (HgSO 4 ) sulfate in addition to large volumes of both reagents and samples. The method relies on the release of oxygen from dichromate on heating which is consumed by carbon associated with organic compounds. The method risks environmental pollution by discharging large amounts of chromium (VI) and silver and mercury sulfates. The present method used potassium monochromate (K 2 CrO 4 ) to generate the K 2 Cr 2 O 7 on demand in the first phase. In addition, miniaturizing the procedure to semi microanalysis decreased the consumption of reagents and samples. In the second phase, mercury sulfate was eliminated as part of the digestion mixture through the introduction of sodium bismuthate (NaBiO 3 ) for the removal of chlorides from the sample. The modified method, the potassium monochromate closed-tube colorimetry with sodium bismuthate chloride removal (KMCC-Bi), generates the potassium dichromate on demand and eliminates mercury sulfate. The semi microanalysis procedure leads to a 60% reduction in sample volume and ≈ 33.33 and 60% reduction in monochromate and silver sulfate consumption respectively. The LOD and LOQ were 10.17 and 33.90 mg L -1 for APHA, and 4.95 and 16.95 mg L -1 for KMCC-Bi. Recovery was between 83 to 98% APHA and 92 to 104% KMCC-Bi, while the RSD (%) ranged between 0.8 to 5.0% APHA and 0.00 to 0.62% KMCC-Bi. The method was applied for the UV-Vis spectrometry determination of COD in water and wastewater. Statistics was done by MINITAB 17 or MS Excel 2016. ᅟ Graphical abstract.
Filling of single-walled carbon nanotubes by CuI nanocrystals via capillary technique
NASA Astrophysics Data System (ADS)
Chernysheva, M. V.; Eliseev, A. A.; Lukashin, A. V.; Tretyakov, Yu. D.; Savilov, S. V.; Kiselev, N. A.; Zhigalina, O. M.; Kumskov, A. S.; Krestinin, A. V.; Hutchison, J. L.
2007-03-01
The present study is focused on the synthesis and investigation of the nanocomposite CuI@SWNT obtained by the filling of metallic single-walled carbon nanotubes (SWNTs) (inner diameter 1-1.4 nm) by wide-gap semiconducting CuI nanocrystals using so-called capillary technique. The method is based on the impregnation of pre-opened SWNTs by molten CuI in vacuum with subsequent slow cooling to room temperature. SWNTs and CuI@SWNT nanocomposites were studied by nitrogen capillary adsorption method, EDX microanalysis, HRTEM microscopy and Raman spectroscopy. The changing of electronic properties of CuI@SWNT as compare to row nanotubes was observed.
Scanning Electron Microscopy and X-Ray Microanalysis
NASA Astrophysics Data System (ADS)
Albee, Arden L.
This outstanding volume has managed the nearly impossible task of combining the expertise of all six authors in a lucid and homogeneous style of writing. Subtitled ‘A Text for Biologists, Material Scientists and Geologists,’ the book has evolved from a short course taught each summer at Lehigh University.The book provides a basic knowledge of (1) the electron optics for these instruments a nd their controls, (2) the characteristics of the electron beam-sample interactions, (3) image formation and interpretation, (4) X ray spectrometry and quantitative X ray microanalysis with separate detailed sections on wavelength dispersive and energy dispersive techniques, and (5) specimen preparation, especially for biological materials.
Miyagi, Michiko; Yokoyama, Hirokazu; Hibi, Toshifumi
2007-07-01
An HPLC protocol for sugar microanalysis based on the formation of ultraviolet-absorbing benzoyl chloride derivatives was improved. Here, samples were prepared with a C-8 cartridge and analyzed with a high efficiency ODS column, in which porous spherical silica particles 3 microm in diameter were packed. These devices allowed us to simultaneously quantify multiple sugars and sugar alcohols up to 10 ng/ml and to provide satisfactory separations of some sugars, such as fructose and myo-inositol and sorbitol and mannitol. This protocol, which does not require special apparatuses, should become a powerful tool in sugar research.
Microanalysis of Hypervelocity Impact Residues of Possible Interstellar Origin
NASA Technical Reports Server (NTRS)
Stroud, Rhonda M.; Achilles, Cheri; Allen, Carlton; Anasari, Asna; Bajt, Sasa; Bassim, Nabil; Bastien, Ron S.; Bechtel, H. A.; Borg, Janet; Brenker, Frank E.;
2012-01-01
The NASA Stardust spacecraft deployed two collector trays, one dedicated to the collection of dust from Comet Wild 2, and the other for the capture of interstellar dust (ISD). The samples were returned successfully to Earth in 2006, and now provide an unprecedented opportunity for laboratory-based microanalysis of materials from the outer solar system and beyond. Results from the cometary sample studies have demonstrated that Wild 2 contains much more refractory condensate material and much less pristine extra-solar material than expected, which further indicates that there was significant transport of inner solar system materials to the Kuiper Belt in the early solar system [1]. The analysis of the interstellar samples is still in the preliminary examination (PE) phase, due to the level of difficulty in the definitive identification of the ISD features, the overall low abundance, and its irreplaceable nature, which necessitates minimally invasive measurements [2]. We present here coordinated microanalysis of the impact features on the Al foils, which have led to the identification of four impacts that are possibly attributable to interstellar dust. Results from the study of four ISD candidates captured in aerogel are presented elsewhere [2].
Kolker, A.; Finkelman, R.B.
1998-01-01
Mode-of-occurrence data are summarized for 13 potentially hazardous elements (Be, Cr, Mn, Co, Ni, As, Se, Cd, Sb, Hg, Pb, Th, U) in coal. Recent work has refined mode-of-occurrence data for Ni, Cr, and As, as compared to previous summaries. For Cr, dominant modes of occurrence include the clay mineral illite, an amorphous CrO(OH) phase, and Cr-bearing spinels. Nickel is present in Fe-sulfides (pyrite and marcasite) and is also organically bound. Arsenic-bearing pyrite may be the dominant host of As in bituminous coals. Concentration data for the 13 HAPs, obtained primarily by quantitative microanalysis techniques, are compiled for mineral and organic portions of coal. HAPs element concentrations are greatest in Fe-sulfides, and include maxima of 2,300 ppm (Co), 4,500 ppm (Ni), 4.9wt.% (As), 2,000 ppm (Se), 171 ppm (Hg), and 5,500 ppm (Pb). Trace-element microanalysis is a significant refinement over bulk methods, and shows that there is considerable trace-element variation on a fine scale for a given coal, and from one coal to another. ?? 1998 OPA (Overseas Publishers Association) N.V. Published by license under the Gordon and Breach Science Publishers imprint.
Ro, Chul-Un; Kim, HyeKyeong; Van Grieken, René
2004-03-01
An electron probe X-ray microanalysis (EPMA) technique, using an energy-dispersive X-ray detector with an ultrathin window, designated a low-Z particle EPMA, has been developed. The low-Z particle EPMA allows the quantitative determination of concentrations of low-Z elements, such as C, N, and O, as well as chemical elements that can be analyzed by conventional energy-dispersive EPMA, in individual particles. Since a data set is usually composed of data for several thousands of particles in order to make environmentally meaningful observations of real atmospheric aerosol samples, the development of a method that fully extracts chemical information contained in the low-Z particle EPMA data is important. An expert system that can rapidly and reliably perform chemical speciation from the low-Z particle EPMA data is presented. This expert system tries to mimic the logic used by experts and is implemented by applying macroprogramming available in MS Excel software. Its feasibility is confirmed by applying the expert system to data for various types of standard particles and a real atmospheric aerosol sample. By applying the expert system, the time necessary for chemical speciation becomes shortened very much and detailed information on particle data can be saved and extracted later if more information is needed for further analysis.
A deterministic model of electron transport for electron probe microanalysis
NASA Astrophysics Data System (ADS)
Bünger, J.; Richter, S.; Torrilhon, M.
2018-01-01
Within the last decades significant improvements in the spatial resolution of electron probe microanalysis (EPMA) were obtained by instrumental enhancements. In contrast, the quantification procedures essentially remained unchanged. As the classical procedures assume either homogeneity or a multi-layered structure of the material, they limit the spatial resolution of EPMA. The possibilities of improving the spatial resolution through more sophisticated quantification procedures are therefore almost untouched. We investigate a new analytical model (M 1-model) for the quantification procedure based on fast and accurate modelling of electron-X-ray-matter interactions in complex materials using a deterministic approach to solve the electron transport equations. We outline the derivation of the model from the Boltzmann equation for electron transport using the method of moments with a minimum entropy closure and present first numerical results for three different test cases (homogeneous, thin film and interface). Taking Monte Carlo as a reference, the results for the three test cases show that the M 1-model is able to reproduce the electron dynamics in EPMA applications very well. Compared to classical analytical models like XPP and PAP, the M 1-model is more accurate and far more flexible, which indicates the potential of deterministic models of electron transport to further increase the spatial resolution of EPMA.
Effect of PbO on optical properties of tellurite glass
NASA Astrophysics Data System (ADS)
Elazoumi, S. H.; Sidek, H. A. A.; Rammah, Y. S.; El-Mallawany, R.; Halimah, M. K.; Matori, K. A.; Zaid, M. H. M.
2018-03-01
Binary (1 - x)(TeO2) - x(PbO), x = 0, 0.10, 0.15, 0.20, 0.25, 0.30 mol% glass system was fabricated using melt quenching method. X-ray diffraction (XRD) technique was employed to confirm the amorphous nature. The microanalysis of the major components was performed using energy dispersive EDX and X-ray spectrometry. Both the molar volume and the density were measured. FTIR and UV spectra were recorded at 400-4000 cm-1 and 220-800 nm, respectively. The optical band gap (Eopt), Urbach's energy (Eu), index of refraction (n) were calculated using absorption spectrum fitting (ASF) and derivation of absorption spectrum fitting (DASF) methods. Molar refraction Rm and molecular polarizability αm have been calculated according to (ASF) method.
NASA Astrophysics Data System (ADS)
Goudarzi, Mojgan; Mir, Noshin; Mousavi-Kamazani, Mehdi; Bagheri, Samira; Salavati-Niasari, Masoud
2016-09-01
In this work, two natural sources, including pomegranate peel extract and cochineal dye were employed for the synthesis of silver nanoparticles. The natural silver complex from pomegranate peel extract resulted in nano-sized structures through solution-phase method, but this method was not efficient for cochineal dye-silver precursor and the as-formed products were highly agglomerated. Therefore, an alternative facile solid-state approach was investigated as for both natural precursors and the results showed successful production of well-dispersed nanoparticles with narrow size distribution for cochineal dye-silver precursor. The products were characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Energy dispersive X-ray microanalysis (EDX), and Transmission Electron Microscopy (TEM).
A Comparison of Experimental EPMA Data and Monte Carlo Simulations
NASA Technical Reports Server (NTRS)
Carpenter, P. K.
2004-01-01
Monte Carlo (MC) modeling shows excellent prospects for simulating electron scattering and x-ray emission from complex geometries, and can be compared to experimental measurements using electron-probe microanalysis (EPMA) and phi(rho z) correction algorithms. Experimental EPMA measurements made on NIST SRM 481 (AgAu) and 482 (CuAu) alloys, at a range of accelerating potential and instrument take-off angles, represent a formal microanalysis data set that has been used to develop phi(rho z) correction algorithms. The accuracy of MC calculations obtained using the NIST, WinCasino, WinXray, and Penelope MC packages will be evaluated relative to these experimental data. There is additional information contained in the extended abstract.
Zugel, S A; Burke, B J; Regnier, F E; Lytle, F E
2000-11-15
Two-photon excited fluorescence detection was performed on a microfabricated electrophoresis chip. A calibration curve of the fluorescent tag beta-naphthylamine was performed, resulting in a sensitivity of 2.5 x 10(9) counts M(-1) corresponding to a detection limit of 60 nM. Additionally, leucine aminopeptidase was assayed on the chip using electrophoretically mediated microanalysis. The differential electroosmotic mobilities of the enzyme and substrate, L-leucine beta-naphthylamide, allowed for efficient mixing in an open channel, resulting in the detection of a 30 nM enzyme solution under constant potential. A zero potential incubation for 1 min yielded a calculated detection limit of 4 nM enzyme.
Cysticercosis of the fallopian tube: histology and microanalysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abraham, J.L.; Spore, W.W.; Benirschke, K.
1982-07-01
The authors identified a degenerated, focally calcified cestode larva (cysticercus) in the fallopian tube of a 50-year-old woman with endometriosis. The physiologic reaction to the larva was minimal, with some focal granulomatous salpingitis. No other focus of infection was detected. The differential diagnosis included trophoblastic tissue, foreign material, and parasites. Scanning electron microscopy and x-ray microanalysis of the organism revealed concentration of iodine in the subcuticular connective tissue of the larva and confirmed the calcium phosphate composition of the calcareous corpuscles. The presumed source of the iodine was the continued exposure of the larva to an environment rich in iodidemore » secreted by the epithelium of the fallopian tube.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, S.R.; Wilkinson, E.J.
Deposits found on intrauterine contraceptive devices (IUDs) were studied by scanning electron microscopy, x-ray diffraction, and energy dispersive x-ray microanalysis. All seven devices, including five plastic and two copper IUDs, were coated with a crust containing cellular, acellular, and fibrillar material. The cellular material was composed of erythrocytes, leukocytes, cells of epithelial origin, sperm, and bacteria. Some of the bacteria were filamentous, with acute-angle branching. The fibrillar material appeared to be fibrin. Most of the acellular material was amorphous; calcite was identified by x-ray diffraction, and x-ray microanalysis showed only calcium. Some of the acellular material, particularly that on themore » IUD side of the crust, was organized in spherulitic crystals and was identified as calcium phosphate by x-ray microanalysis. The crust was joined to the IUD surface by a layer of fibrillar and amorphous material. It is suggested that the initial event in the formation of calcific deposits on IUD surfaces is the deposition of an amorphous and fibrillar layer. Various types of cells present in the endometrial environment adhere to this layer and then calcify. Thus, the deposition of calcific material on the IUDs is a calcification phenomenon, not unlike the formation of plaque on teeth.« less
NASA Astrophysics Data System (ADS)
Moro, D.; Valdre, G.
2016-02-01
Quantitative microanalysis of tiny asbestos mineral fibres by scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy (SEM-EDS) still represents a complex analytical issue. This complexity arises from the variable fibre shape and small thickness (< 5 μm) compared with the penetration of the incident electron beam. Here, we present the results of Monte Carlo simulations of chrysotile, crocidolite and amosite fibres (and bundles of fibres) of circular and square section and thicknesses from 0.1 μm to 10 μm, to investigate the effect of shape and thickness on SEM-EDS microanalysis. The influence of shape and thickness on the simulated spectrum was investigated for electron beam energies of 5, 15 and 25 keV, respectively. A strong influence of the asbestos bundles and fibres shape and thickness on the detected EDS X-ray intensity was observed. The X-ray intensity trends as a function of fibre thickness showed a non-linear dependence for all the elements and minerals. In general, the X-ray intensities showed a considerable reduction for thicknesses below about 5 μm at 5 keV, 2 μm at 15 keV, and 5 μm at 25 keV. Correction parameters, k-ratios, for the asbestos fibre thickness effect, are reported.
Calcium transport mechanism in molting crayfish revealed by microanalysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mizuhira, V.; Ueno, M.
1983-01-01
Crayfish provide a good model in which to study the transport mechanism of Ca ions. During the molting stage, decalcified Ca ions are transferred into the blood and accumulate in the gastrolith epithelium, after which a gastrolith is formed on the surface of the epithelium. The gastrolith is dissolved in the stomach after molting, and the Ca is reabsorbed and redistributed throughout the newly formed exoskeleton. We studied the mechanism of Ca transport by cytochemical precipitation of Ca ions and by electron microanalysis, including X-ray microanalysis (EDX) and electron energy-loss spectroscopy (EELS), with a computer. In EDX analysis, the finemore » precipitates of K-antimonate in the gastrolith mitochondria clearly defined Ca with antimony; we also observed a large amount of Ca-oxalate in the mitochondria, and Ca-K X-ray pulses were clearly defined. Ca-K X-rays were also detected from fresh freeze-substituted mitochondria. Finally, we succeeded in taking a Ca-L EELS image from the mitochondria of fresh freeze-substituted thin sections. Only a very small amount of Ca was detected from the cell membrane and other organelles. Ca-adenosine triphosphatase (ATPase) and Mg-ATPase activity was also very clearly demonstrated in the mitochondria. These enzymes may play an important role in Ca metabolism.« less
da Cruz, Gabriela Alessandra; de Toledo, Sérgio; Sallum, Enilson Antonio; de Lima, Antonio Fernando Martorelli
2007-01-01
This study evaluated the morphological and chemical composition of the following bone substitutes: cancellous and cortical organic bovine bone with macro and microparticle size ranging from 1.0 to 2.0 mm and 0.25 to 1.0 mm, respectively; inorganic bovine bone with particle size ranging from 0.25 to 1.0 mm; hydroxyapatite with particle size ranging from 0.75 to 1.0 mm; and demineralized freeze-dried bone allograft with particle size ranging from 0.25 to 0.5 mm. The samples were sputter-coated with gold in an ion coater, the morphology was observed and particle size was measured under vacuum by scanning electron microscopy (SEM). The chemical composition was evaluated by spectroscopy of dispersion energy (EDS) microanalysis using samples without coating. SEM analysis provided visual evidence that all examined materials have irregular shape and particle sizes larger than those informed by the manufacturer. EDS microanalysis detected the presence of sodium, calcium and phosphorus that are usual elements of the bone tissue. However, mineral elements were detected in all analyzed particles of organic bovine bone except for macro cancellous organic bovine bone. These results suggest that the examined organic bovine bone cannot be considered as a pure organic material.
The uses of synchrotron radiation sources for elemental and chemical microanalysis
Chen, J.R.; Chao, E.C.T.; Minkin, J.A.; Back, J.M.; Jones, K.W.; Rivers, M.L.; Sutton, S.R.
1990-01-01
Synchrotron radiation sources offer important features for the analysis of a material. Among these features is the ability to determine both the elemental composition of the material and the chemical state of its elements. For microscopic analysis synchrotron X-ray fluorescence (SXRF) microprobes now offer spatial resolutions of 10 ??m with minimum detection limits in the 1-10 ppm range depending on the nature of the sample and the synchrotron source used. This paper describes the properties of synchrotron radiation and their importance for elemental analysis, existing synchrotron facilities and those under construction that are optimum for SXRF microanalysis, and a number of applications including the high energy excitation of the K lines of heavy elements, microtomography, and XANES and EXAFS spectroscopies. ?? 1990.
X-ray microanalysis of the fingernails in term and preterm infants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sirota, L.; Straussberg, R.; Fishman, P.
1988-08-01
The element content of the fingernails of 10 term and 14 preterm infants, clipped for the first time after delivery, was determined by x-ray microanalysis. The results showed a decrease in sulfur and aluminum, and a higher chlorine content in term infants in comparison with preterm ones, the difference being statistically significant. Sodium, potassium, calcium, and zinc content did not differ in the two groups. Copper, iron, magnesium, aluminum, and phosphorus were detected in trace amounts only. Cobalt was not detected in the fingernails of newborns in either group. The elevated content of aluminum in the fingernails of preterm infantsmore » may be a clue to the osteopenia observed in these infants.« less
Electrodeposition of thin yttria-stabilized zirconia layers using glow-discharge plasma
NASA Astrophysics Data System (ADS)
Ogumi, Zempachi; Uchimoto, Yoshiharu; Tsuji, Yoichiro; Takehara, Zen-ichiro
1992-08-01
A novel process for preparation of thin yttria-stabilized zirconia (YSZ) layers was developed. This process differs from other vapor-phase deposition methods in that a dc bias circuit, separate from the plasma-generation circuit, is used for the electrodeposition process. The YSZ layer was electrodeposited from ZrCl4 and YCl3 on a nonporous calcia-stabilized zirconia substrate. Scanning electron microscopy, electron probe microanalysis, electron spectroscopy for chemical analysis, and x-ray-diffraction measurements confirmed the electrodeposition of a smooth, pinhole-free yttria-stabilized zirconia film of about 3 μm thickness.
Calculated X-ray Intensities Using Monte Carlo Algorithms: A Comparison to Experimental EPMA Data
NASA Technical Reports Server (NTRS)
Carpenter, P. K.
2005-01-01
Monte Carlo (MC) modeling has been used extensively to simulate electron scattering and x-ray emission from complex geometries. Here are presented comparisons between MC results and experimental electron-probe microanalysis (EPMA) measurements as well as phi(rhoz) correction algorithms. Experimental EPMA measurements made on NIST SRM 481 (AgAu) and 482 (CuAu) alloys, at a range of accelerating potential and instrument take-off angles, represent a formal microanalysis data set that has been widely used to develop phi(rhoz) correction algorithms. X-ray intensity data produced by MC simulations represents an independent test of both experimental and phi(rhoz) correction algorithms. The alpha-factor method has previously been used to evaluate systematic errors in the analysis of semiconductor and silicate minerals, and is used here to compare the accuracy of experimental and MC-calculated x-ray data. X-ray intensities calculated by MC are used to generate a-factors using the certificated compositions in the CuAu binary relative to pure Cu and Au standards. MC simulations are obtained using the NIST, WinCasino, and WinXray algorithms; derived x-ray intensities have a built-in atomic number correction, and are further corrected for absorption and characteristic fluorescence using the PAP phi(rhoz) correction algorithm. The Penelope code additionally simulates both characteristic and continuum x-ray fluorescence and thus requires no further correction for use in calculating alpha-factors.
Uchida, Hiroshi; Yoshinaga, Tokuji; Mori, Hirotoshi; Otsuka, Makoto
2010-11-01
This study aimed to apply a currently available chemometric near-infrared spectroscopy technique to the characterization of the polymorphic properties of drug candidates. The technique requires only small quantities of samples and is therefore applicable to drugs in the early stages of development. The combination of near-infrared spectroscopy and a patented 96-well plate divided into 32 individual, humidity-controlled, three-well compartments was used in the characterization of a hygroscopic drug, imidafenacin, which has two polymorphs and one pseudo-polymorph. Characterization was also conducted with powder X-ray diffraction and thermal analysis. The results were compared with those from routinely used conventional analyses. Both the microanalysis and conventional analysis successfully characterised the substance (transformation and relative stability among the two polymorphs and a pseudo-polymorph) depending on the storage conditions. Near-infrared spectroscopic analyses utilizing a humidity-controlled 96-well plate required only small amounts of the sample for characterization under the various conditions of relative humidity. Near-infrared microanalysis can be applied to polymorphic studies of small quantities of a drug candidate. The results also suggest that the method will predict the behaviors of a hygroscopic candidate in solid pharmaceutical preparations at the early stages of drug development. © 2010 The Authors. JPP © 2010 Royal Pharmaceutical Society of Great Britain.
Copper Oxide Precipitates in NBS Standard Reference Material 482
Windsor, Eric S.; Carlton, Robert A.; Gillen, Greg; Wight, Scott A.; Bright, David S.
2002-01-01
Copper oxide has been detected in the copper containing alloys of NBS Standard Reference Material (SRM) 482. This occurrence is significant because it represents heterogeneity within a standard reference material that was certified to be homogeneous on a micrometer scale. Oxide occurs as elliptically to spherically shaped precipitates whose size differs with alloy composition. The largest precipitates occur in the Au20-Cu80 alloy and range in size from submicrometer up to 2 μm in diameter. Precipitates are observed using light microscopy, electron microscopy, and secondary ion mass spectrometry (SIMS). SIMS has demonstrated that the precipitates are present within all the SRM 482 wires that contain copper. Only the pure gold wire is precipitate free. Initial results from the analysis of the Au20-Cu80 alloy indicate that the percentage of precipitates is less than 1 % by area. Electron probe microanalysis (EPMA) of large (2 μm) precipitates in this same alloy indicates that precipitates are detectable by EPMA and that their composition differs significantly from the certified alloy composition. The small size and low percentage of these oxide precipitates minimizes the impact that they have upon the intended use of this standard for electron probe microanalysis. Heterogeneity caused by these oxide precipitates may however preclude the use of this standard for automated EPMA analyses and other microanalysis techniques. PMID:27446759
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caiazza, S.; Falcinelli, G.; Pintucci, S.
1990-01-01
This article reports the findings of investigations on an osteo-odonto-keratoprosthesis in an eye that was enucleated owing to severe complications 12 years after implantation. Scanning electron microscopy and electron probe X-ray microanalysis showed extensive resorption of the bone that was used as a supporting element in the kind of transcorneal prosthesis developed by Strampelli. The destructive process, in addition to surgical trauma, has been associated with the early and recurrent bacterial infections relating to the presence of Staphylococcus epidermidis. The need to control the occurrence of primary bacterial infections in traumatized tissues during operations as well as further infectious situations,more » given the enhanced antibiotic-resistence of bacteria, is emphasized.« less
Characterization of Si p-i-n diode for scanning transmission ion microanalysis of biological samples
NASA Astrophysics Data System (ADS)
Devès, G.; Matsuyama, S.; Barbotteau, Y.; Ishii, K.; Ortega, R.
2006-05-01
The performance of a silicon p-i-n diode (Hamamatsu S1223-01) for the detection of charged particles was investigated and compared with the response of a standard passivated implanted planar silicon (PIPS) detector. The photodiode was characterized by ion beam induced charge collection with a micrometer spatial resolution using proton and alpha particle beams in the 1-3MeV energy range. Results indicate that homogeneity, energy resolution, and reproducibility of detection of charged particles enable the use of the low cost silicon p-i-n device as a replacement of conventional PIPS detector during scanning transmission ion microanalysis experiments. The Si p-i-n diode detection setup was successfully applied to scanning transmission ion microscopy determination of subcellular compartments on human cancer cultured cells.
Newbury, Dale E; Ritchie, Nicholas W M
2016-06-01
Electron-excited X-ray microanalysis performed with scanning electron microscopy and energy-dispersive spectrometry (EDS) has been used to measure trace elemental constituents of complex multielement materials, where "trace" refers to constituents present at concentrations below 0.01 (mass fraction). High count spectra measured with silicon drift detector EDS were quantified using the standards/matrix correction protocol embedded in the NIST DTSA-II software engine. Robust quantitative analytical results for trace constituents were obtained from concentrations as low as 0.000500 (mass fraction), even in the presence of significant peak interferences from minor (concentration 0.01≤C≤0.1) and major (C>0.1) constituents. Limits of detection as low as 0.000200 were achieved in the absence of peak interference.
Quantitative Electron Probe Microanalysis: State of the Art
NASA Technical Reports Server (NTRS)
Carpernter, P. K.
2005-01-01
Quantitative electron-probe microanalysis (EPMA) has improved due to better instrument design and X-ray correction methods. Design improvement of the electron column and X-ray spectrometer has resulted in measurement precision that exceeds analytical accuracy. Wavelength-dispersive spectrometer (WDS) have layered-dispersive diffraction crystals with improved light-element sensitivity. Newer energy-dispersive spectrometers (EDS) have Si-drift detector elements, thin window designs, and digital processing electronics with X-ray throughput approaching that of WDS Systems. Using these systems, digital X-ray mapping coupled with spectrum imaging is a powerful compositional mapping tool. Improvements in analytical accuracy are due to better X-ray correction algorithms, mass absorption coefficient data sets,and analysis method for complex geometries. ZAF algorithms have ban superceded by Phi(pz) algorithms that better model the depth distribution of primary X-ray production. Complex thin film and particle geometries are treated using Phi(pz) algorithms, end results agree well with Monte Carlo simulations. For geological materials, X-ray absorption dominates the corretions end depends on the accuracy of mass absorption coefficient (MAC) data sets. However, few MACs have been experimentally measured, and the use of fitted coefficients continues due to general success of the analytical technique. A polynomial formulation of the Bence-Albec alpha-factor technique, calibrated using Phi(pz) algorithms, is used to critically evaluate accuracy issues and can be also be used for high 2% relative and is limited by measurement precision for ideal cases, but for many elements the analytical accuracy is unproven. The EPMA technique has improved to the point where it is frequently used instead of the petrogaphic microscope for reconnaissance work. Examples of stagnant research areas are: WDS detector design characterization of calibration standards, and the need for more complete treatment of the continuum X-ray fluorescence correction.
Fabrication of luminescent SrWO{sub 4} thin films by a novel electrochemical method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Lianping; Gao Yuanhong
2007-10-02
Highly crystallized SrWO{sub 4} thin films with single scheelite structure were prepared within 60 min by a cell electrochemical method. X-ray diffraction analysis shows that SrWO{sub 4} thin films have a tetragonal structure. Scanning electron microscopy examinations reveal that SrWO{sub 4} grains grow well in tetragonal tapers and grains like flowers or bunches, which can usually form by using the electrolysis electrochemical method, have disappeared under cell electrochemical conditions. X-ray photoelectron spectra and energy dispersive X-ray microanalysis examinations demonstrate that the composition of the film is consistent with its stoichiometry. These SrWO{sub 4} films show a single blue emission peakmore » (located at 460 nm) using an excitation wave of 230 nm. The speed of cell electrochemical method can be controlled by changing temperature. The optimum treatment temperature is about 50-60 deg. C.« less
Scanning Electron Microscopy | Materials Science | NREL
platform. The electron microprobe JEOL 8900L is the preference when quantitative composition of specimens , electroluminescence, lateral transport measurements, NFCL JEOL JXA-8900L Electron probe microanalysis Quantitative
NASA Astrophysics Data System (ADS)
Naumova, I. I.; Evlanova, N. F.; Blokhin, S. A.; Lavrishchev, S. V.
1998-04-01
Using selective chemical etching, scanning electron microscope (SEM) and wave dispersive X-ray (WDX) microanalysis we showed that the ferroelectric domain walls coincide with the maxima and minima Nd-impurity modulation in a periodically poled Nd : Mg : LiNbO 3 crystal grown by the Czochralski method along the normal to the (0 1 1¯ 2) face. Asymmetric form of the Nd-modulation produces nonequal positive and negative domains for one period. Variations of instantaneous rate of growth were estimated for facet and nonfacet crystal region in the framework of Burton-Prim-Slichter theory.
Flux growth of high-quality CoFe 2O 4 single crystals and their characterization
NASA Astrophysics Data System (ADS)
Wang, W. H.; Ren, X.
2006-04-01
We report the growth of high-quality CoFe 2O 4 single crystals using a borax flux method. The crystals were characterized by powder X-ray diffraction, electron probe microanalysis and Raman spectroscopy. We found the crystals are flux-free and highly homogeneous in composition. X-ray rocking curves of the CoFe 2O 4 single crystals showed a full-width at half-maximum of 0.15°. The saturation magnetization of the CoFe 2O 4 single crystals was measured to be 90 emu/g or equivalently 3.65 μ B/f.u. at 5 K.
Electron Probe Microanalysis | Materials Science | NREL
surveys of the area of interest before performing a more accurate quantitative analysis with WDS. WDS - Four spectrometers with ten diffracting crystals. The use of a single-channel analyzer allows much
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sato, S.; Murphy, G.F.; Bernhard, J.D.
1981-09-01
In order to elucidate the nature and distribution of the pigment responsible for the circumscribed blue-black cutaneous hyperpigmentation occurring after administration of minocycline hydrochloride, transmission electron microscopy and energy-dispersive electron x-ray microanalysis were performed on lesional skin. Ultrastructural observations demonstrated electron-dense iron-containing particles either incorporated into a variety of siderosomes, within dermal histiocytes, free within the cytoplasm, or, rarely, scattered among dermal collagen fibers. Electron x-ray microanalysis confirmed iron content present within these particles. Although siderosomal inclusions contained occasional melanosome complexes, the degree of deposition of electron-dense iron-containing particles in dermal histiocytes seemed to be primarily responsible for the blue-blackmore » discoloration of the skin. The present study is an investigation of the structure and composition of the pigment responsible for minocycline-related cutaneous hyperpigmentation.« less
Kasada, R; Ha, Y; Higuchi, T; Sakamoto, K
2016-05-10
B4C is widely used as control rods in light water reactors, such as the Fukushima Daiichi nuclear power plant, because it shows excellent neutron absorption and has a high melting point. However, B4C can melt at lower temperatures owing to eutectic interactions with stainless steel and can even evaporate by reacting with high-temperature steam under severe accident conditions. To reduce the risk of recriticality, a precise understanding of the location and chemical state of B in the melt core is necessary. Here we show that a novel soft X-ray emission spectrometer in electron probe microanalysis can help to obtain a chemical state map of B in a modeled control rod after a high-temperature steam oxidation test.
X-ray microanalysis of black piedra.
Figueras, M J; Guarro, J
1997-11-01
The elements present in the fungal structures produced by Piedraia hortae in vivo and in vitro have been investigated using electron microscopy X-ray microanalysis. Phosphorus, sulphur and calcium were detected in the nodules which developed on hair and on colonies on culture. These elements belong to the extracellular material that compacts the pseudoparenchymatous organization of the fungus. They may be present due to the capacity of melanin-like pigments to sequester ions and/or they may form part of the sulphates and phosphates of the polyanionic mucopolysaccharides that constitute the extracellular material. Environmental contaminants such as aluminium, silicon and iron were detected exclusively on the surface of the nodule. They were deposited or linked to the residual molecules produced during the breakdown of the cuticular keratin. The advantages of these techniques for elucidating the chemical nature of fungal structures are discussed.
X-ray microanalysis in the scanning electron microscope.
Roomans, Godfried M; Dragomir, Anca
2014-01-01
X-ray microanalysis conducted using the scanning electron microscope is a technique that allows the determination of chemical elements in bulk or semi-thick specimens. The lowest concentration of an element that can be detected is in the order of a few mmol/kg or a few hundred parts per million, and the smallest amount is in the order of 10(-18) g. The spatial resolution of the analysis depends on the thickness of the specimen. For biological specimen analysis, care must be taken to prevent displacement/loss of the element of interest (usually ions). Protocols are presented for the processing of frozen-hydrated and freeze-dried specimens, as well as for the analysis of small volumes of fluid, cell cultures, and other specimens. Aspects of qualitative and quantitative analysis are covered, including limitations of the technique.
X-ray microanalysis in the scanning electron microscope.
Roomans, Godfried M; Dragomir, Anca
2007-01-01
X-ray microanalysis conducted using the scanning electron microscope is a technique that allows the determination of chemical elements in bulk or semithick specimens. The lowest concentration of an element that can be detected is in the order of a few mmol/kg or a few hundred parts per million, and the smallest amount is in the order of 10(-18) g. The spatial resolution of the analysis depends on the thickness of the specimen. For biological specimen analysis, care must be taken to prevent displacement/loss of the element of interest (usually ions). Protocols are presented for the processing of frozen-hydrated and freeze-dried specimens, as well as for the analysis of small volumes of fluid, cell cultures and other specimens. Aspects of qualitative and quantitative analysis are covered, including limitations of the technique.
NASA Astrophysics Data System (ADS)
Malecki, Grzegorz; Nycz, Jacek E.; Ryrych, Ewa; Ponikiewski, Lukasz; Nowak, Maria; Kusz, Joachim; Pikies, Jerzy
2010-04-01
A series crystalline compounds of methyl and phosphinyl derivatives of 2-methylquinolin-8-ol ( 1a) and related 5,7-dichloro-2-methylquinolin-8-ol ( 1b) were quantitatively prepared and characterized by microanalysis, IR, UV-vis and multinuclear NMR spectroscopy. Five of them have been characterized by single crystal X-ray diffraction method. The known compounds, 8-methoxy-2-methylquinoline ( 2a) and 8-methoxyquinoline ( 2d), were synthesised by a new route. NMR solution spectra at ambient temperature, showed readily diagnostic H-1 and C-13 signals from methyl groups. The geometries of the studied compounds were optimized in singlet states using the density functional theory (DFT) method with B3LYP functional. In general, the predicted bond lengths and angles are in a good agreement with the values based on the X-ray crystal structure data. Electronic spectra were calculated by TDDFT method.
Gupta, B L
1991-06-01
This review surveys the emergence of electron probe X-ray microanalysis as a quantitative method for measuring the chemical elements in situ. The extension of the method to the biological sciences under the influence of Ted Hall is reviewed. Some classical experiments by Hall and his colleagues in Cambridge, UK, previously unpublished, are described; as are some of the earliest quantitative results from the cryo-sections obtained in Cambridge and elsewhere. The progress of the methodology is critically evaluated from the earliest starts to the present state of the art. Particular attention has been focused on the application of the method in providing fresh insights into the role of ions in cell and tissue physiology and pathology. A comprehensive list of references is included for a further pursuit of the topics by the interested reader.
The Molecular Structure of Penicillin
ERIC Educational Resources Information Center
Bentley, Ronald
2004-01-01
Overviews of the observations that constitute a structure proof for penicillin, specifically aimed at the general student population, are presented. Melting points and boiling points were criteria of purity and a crucial tool was microanalysis leading to empirical formulas.
Definition of the Spatial Resolution of X-Ray Microanalysis in Thin Foils
NASA Technical Reports Server (NTRS)
Williams, D. B.; Michael, J. R.; Goldstein, J. I.; Romig, A. D., Jr.
1992-01-01
The spatial resolution of X-ray microanalysis in thin foils is defined in terms of the incident electron beam diameter and the average beam broadening. The beam diameter is defined as the full width tenth maximum of a Gaussian intensity distribution. The spatial resolution is calculated by a convolution of the beam diameter and the average beam broadening. This definition of the spatial resolution can be related simply to experimental measurements of composition profiles across interphase interfaces. Monte Carlo calculations using a high-speed parallel supercomputer show good agreement with this definition of the spatial resolution and calculations based on this definition. The agreement is good over a range of specimen thicknesses and atomic number, but is poor when excessive beam tailing distorts the assumed Gaussian electron intensity distributions. Beam tailing occurs in low-Z materials because of fast secondary electrons and in high-Z materials because of plural scattering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baumann, O.; Walz, B.; Somlyo, A.V.
Honey bee photoreceptors contain large sacs of endoplasmic reticulum (ER) that can be located unequivocally in freeze-dried cryosections. The elemental compositon of the ER was determined by electron probe x-ray microanalysis and was visualized in high-resolution x-ray maps. In the ER of dark-adapted photoreceptors, the Ca concentration was 47.5 {plus minus} 1.1 mmol/kg (dry weight). During a 3-sec nonsaturating light stimulus, {approximately}50% of the Ca content was released from the ER. Light stimulation also caused a highly significant increase in the Mg content of the ER; the ratio of Mg uptake to Ca released was {approximately}0.7. Our results show unambiguouslymore » that the ER is the source of Ca{sup 2+} release during cell stimulation and suggest the Mg{sup 2+} can nearly balance the charge movement of Ca{sup 2+}.« less
Microbeam X-ray analysis in Poland - past and future
NASA Astrophysics Data System (ADS)
Kusinski, J.
2010-02-01
The article provides an overview of the development of electron beam X-ray microanalysis (EPMA) in Poland. Since the introduction by Prof. Bojarski of EMPA over 45 years ago, tremendous advances in methodologies and in instrumentation have been made in order to improve the precision of quantitative compositional analysis, spatial resolution and analytical sensitivity. This was possible due to the activity of Applied Crystallography Committee at the Polish Academy of Sciences, as well as the groups of researches working in the Institute for Ferrous Metallurgy (Gliwice), the Technical University of Warsaw, the Silesian Technical University (Katowice), the AGH-University of Sciences and Technology (Krakow), and the Institute of Materials Science and Metallurgy Polish Academy of Sciences (Krakow). Based on the research examples realized by these teams, conferences, seminars and congresses organized, as well as books and academic textbooks issued, the evolution of electron beam X-ray microanalysis in Poland is demonstrated.
Efforts to identify Te-rich nano-islands in ZnSe
NASA Astrophysics Data System (ADS)
Lau, June W.; Volkov, Vyacheslav V.; Zhu, Yimei; Kuskovsky, Igor L.; Neumark, Gertrude F.; Lin, W.; Maksimov, Oleg; Tamargo, Maria C.
2002-03-01
Much work has been done on the study of nano-island formation (“dopants”) in various systems by use of electron microscopy, often complemented by x-ray microanalysis [1]. This works well for systems involving one or more monolayers of dopants. Our system consists of Te and N dopants incorporated into ZnSe in sub-monolayer quantities [2]. This presents a challenge; our calculations show that this case is probably below the detection limit of x-ray microanalysis. Our samples do show strain contrasts but we were unable to obtain direct confirmation of nano-islands’ existence. As an alternative, dark field images from chemically sensitively reflections were used in volumetric defect density studies. The defect density in the doped samples was higher than that of the undoped samples. 1. Dorin C., U of Mich. Poster presentation at Fall MRS meeting 2001 2. Lin et al., Apple. Phys. Let., 76, 2205 (2000).
Scattered electrons in microscopy and microanalysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ottensmeyer, F.P.
The use of scattered electrons alone for direct imaging of biological specimens makes it possible to obtain structural information at atomic and near-atomic spatial resolutions of 0.3 to 0.5 nanometer. While this is not as good as the resolution possible with x-ray crystallography, such an approach provides structural information rapidly on individual macromolecules that have not been, and possibly cannot be, crystallized. Analysis of the spectrum of energies of scattered electrons and imaging of the latter with characteristic energy bands within the spectrum produces a powerful new technique of atomic microanalysis. This technique, which has a spatial resolution of aboutmore » 0.5 nanometer and a minimum detection sensitivity of about 50 atoms of phosphorus, is especially useful for light atom analysis and appears to have applications in molecular biology, cell biology, histology, pathology, botany, and many other fields.« less
Scattered electrons in microscopy and microanalysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ottensmeyer, F.P.
The use of scattered electrons alone for direct imaging of biological specimens makes it possible to obtain structural information at atomic and near-atomic spatial resolutions of 0.3 to 0.5 nanometer. While this is not as good as the resolution possible with x-ray crystallography, such an approach provides structural information rapidly on individual macromolecules that have not been, and possibly cannot be, crystallized. Analysis of the spectrum of energies of scattered electrons and imaging of the latter with characteristic energy bands within the spectrum produce a powerful new technique of atomic microanalysis. This technique, which has a spatial resolution of aboutmore » 0.5 nanometer and a minimum detection sensitivity of about 50 atoms of phosphorus, is especially useful for light atom analysis and appears to have applications in molecular biology, cell biology, histology, pathology, botany, and many other fields.« less
NASA Astrophysics Data System (ADS)
Moretto, P.; Ortega, R.; Llabador, Y.; Simonoff, M.; Bénard, J.; Moretto, Ph.
1995-09-01
Macro-and Micro-PIXE analysis were applied to study the mechanisms of cellular resistance to cisplatin, a chemotherapeutic agent, widely used nowadays for the treatment of ovarian cancer. Two cultured cell lines, a cisplatin-sensitive and a resistant one, were compared for their trace elements content and platinum accumulation following in vitro exposure to the drug. Bulk analysis revealed significant differences in copper and iron content between the two lines. Subsequent individual cell microanalysis permitted us to characterize the response of the different morphological cell types of the resistant line. This study showed that the metabolism of some trace metals in cisplatin-resistant cells could be affected but the exact relationship with the resistant phenotype remains to be determined. From a technical point of view, this experiment demonstrated that an accurate measurement of trace elements could be derived from nuclear microprobe analysis of individual cell.
NASA Astrophysics Data System (ADS)
Valdrè, G.; Moro, D.; Ulian, G.
2018-01-01
Asbestos is a generic term used for six types of silicate minerals that are found in fibres or bundles of fibres, which can be easily cleaved into thinner ones. Scanning electron microscopy energy-dispersive X-ray spectrometry (SEM-EDS) quantitative microanalysis of asbestos mineral fibres still represents a complex analytical issue because of the variable fibre shape and small thickness (< 5 μm) compared with the penetration depth of the incident electron beam. Following previous work on chrysotile, crocidolite and amosite, here we present a study by means of Monte Carlo simulations of the thickness and shape effect on SEM-EDS microanalysis of anthophyllite, tremolite and actinolite asbestos. Realistic experimental conditions, such as sample geometry, SEM set-up and detector physics were taken into account. We report the results obtained on 100 μm long fibres and bundles of circular and square section and thicknesses from to 0.1 μm to 10 μm, for electron beam energies of 5, 15 and 25 keV. A strong influence of the asbestos mineral fibres and bundles shape and thickness on the detected EDS X-ray intensity was observed. In general, the X-ray intensities as a function of fibre thickness showed a considerable reduction below about 0.5 μm at 5 keV, 2 μm at 15 keV, and 5 μm at 25 keV for all the elements and minerals, with a non-linear dependence. Correction parameters, k-ratio, for the thickness effect were calculated and proposed.
Evaluation of UV-fs-LA-MC-ICP-MS for precise in situ copper isotopic microanalysis of cubanite.
Ikehata, Kei; Hirata, Takafumi
2013-01-01
We evaluated the capabilities of an in situ method for measuring copper isotopes of cubanite using UV-fs-LA-MC-ICP-MS. A comparison of the UV-fs laser results with those obtained from the NIR-fs laser system shows that there is obviously an improvement in the precision (<0.10‰, 2SE) when using the UV-fs laser. In both wavelength modes, matrix-matched standards are required for reliable in situ copper isotope analysis of cubanite. This method was applied to determinations for copper isotopes of minute cubanite grains in a skarn ore. Copper isotopic ratios of cubanite grains near a weathered surface of the sample are lower than those of intact cubanite grains within the sample, suggesting that selective leaching of heavier copper isotope in primary minerals occurred during weathering.
Matsagar, Babasaheb M; Hossain, Shahriar A; Islam, Tofazzal; Alamri, Hatem R; Alothman, Zeid A; Yamauchi, Yusuke; Dhepe, Paresh L; Wu, Kevin C-W
2017-10-18
The conversion of raw biomass into C5-sugars and furfural was demonstrated with the one-pot method using Brønsted acidic ionic liquids (BAILs) without any mineral acids or metal halides. Various BAILs were synthesized and characterized using NMR, FT-IR, TGA, and CHNS microanalysis and were used as the catalyst for raw biomass conversion. The remarkably high yield (i.e. 88%) of C5 sugars from bagasse can be obtained using 1-methyl-3(3-sulfopropyl)-imidazolium hydrogen sulfate ([C 3 SO 3 HMIM][HSO 4 ]) BAIL catalyst in a water medium. Similarly, the [C 3 SO 3 HMIM][HSO 4 ] BAIL also converts the bagasse into furfural with very high yield (73%) in one-pot method using a water/toluene biphasic solvent system.
Finite Element Analysis of Surface Residual Stress in Functionally Gradient Cemented Carbide Tool
NASA Astrophysics Data System (ADS)
Su, Chuangnan; Liu, Deshun; Tang, Siwen; Li, Pengnan; Qiu, Xinyi
2018-03-01
A component distribution model is proposed for three-component functionally gradient cemented carbide (FGCC) based on electron probe microanalysis results obtained for gradient layer thickness, microstructure, and elemental distribution. The residual surface stress of FGCC-T5 tools occurring during the fabrication process is analyzed using an ANSYS-implemented finite element method (FEM) and X-ray diffraction. A comparison of the experimental and calculated values verifies the feasibility of using FEM to analyze the residual surface stress in FGCC-T5 tools. The effects of the distribution index, geometrical shape, substrate thickness, gradient layer thickness, and position of the cobalt-rich layer on residual surface stress are studied in detail.
PREFACE: EMAS 2011: 12th European Workshop on Modern Developments in Microbeam Analysis
NASA Astrophysics Data System (ADS)
Brisset, François; Dugne, Olivier; Robaut, Florence; Lábár, János L.; Walker, Clive T.
2012-03-01
This volume of IOP Conference Series: Materials Science and Engineering contains papers from the 12th Workshop of the European Microbeam Analysis Society (EMAS) on Modern Developments and Applications in Microbeam Analysis, which took place from the 15-19 May 2011 in the Angers Congress Centre, Angers, France. The primary aim of this series of workshops is to assess the state-of-the-art and reliability of microbeam analysis techniques. The workshops also provide a forum where students and young scientists starting out on a career in microbeam analysis can meet and discuss with the established experts. The workshops have a very specific format comprising invited plenary lectures by internationally recognized experts, poster presentations by the participants and round table discussions on the key topics led by specialists in the field. This workshop was organized in collaboration with GN-MEBA - Groupement National de Microscopie Electronique à Balayage et de microAnalysis, France. The technical programme included the following topics: the limits of EPMA, new techniques, developments and concepts in microanalysis, microanalysis in the SEM, and new and less common applications of micro- and nanoanalysis. As at previous workshops there was also a special oral session for young scientists. The best presentation by a young scientist was awarded with an invitation to attend the 2012 Microscopy and Microanalysis meeting at Phoenix, Arizona. The prize went to Pierre Burdet, of the Federal Institute of Technology of Lausanne (EPFL), for his talk entitled '3D EDS microanalysis by FIB-SEM: enhancement of elemental quantification'. The continuing relevance of the EMAS workshops and the high regard in which they are held internationally can be seen from the fact that 74 posters from 18 countries were on display at the meeting, and that the participants came from as far away as Japan, Canada and the USA. A selection of participants with posters were invited to give a short oral presentation of their work in three dedicated sessions. The prize for the best poster was an invitation to participate in the 22nd Australian Conference on Microscopy and Microanalysis (ACMM 22) at Perth, Western Australia. The prize was awarded to G Samardzija of the Jozef Stefan Institute, Ljubljana, for the poster entitled: 'EPMA-WDS quantitative compositional analysis of barium titanate ceramics doped with cerium'. This proceedings volume contains the full texts of 5 of the invited plenary lectures and of 23 papers on related topics originating from the posters presented at the workshop. All the papers have been subjected to peer review by a least two referees. January 2012 Acknowledgements On behalf of the European Microbeam Analysis Society I would like to thank all the invited speakers, session chairs and members of the discussion panels for making the meeting such a great success. Special thanks go to François Brisset and Luc Van't dack who directed the organisation of the workshop giving freely of their time and talents. As was the case for previous workshops, the EMAS board in corpore was responsible for the scientific programme. The technical exhibition, which occupied 130 sq.m of floor space, was outstanding. It was very encouraging to see new instruments on display, including a FEG electron microprobe as a first worldwide presentation. Moreover, almost all the companies that exhibited provided financial support, either by sponsoring an event or by advertising. Below, in alphabetical order, is a list of exhibiting companies and sponsors of the workshop: Ametek GmbH, Edax Business UnitGN-MEBA Bruker Nano GmbHJeol (Europe) SAS CamecaL'Oréal, Direction Générale Recherche et Innovation Carl Zeiss NTSNanoMEGAS sprl Commissariat à l'Energie AtomiqueOxford Instruments SAS European Institute for Transuranium Elements (Germany)Probe Software, Inc. ElexienceSAMx FEI CompanyTarget-Messtechnik Fondis Electronic SAThermo Fisher Scientific Gatan (France) Clive T. Walker EMAS President
Emerging surface characterization techniques for carbon steel corrosion: a critical brief review.
Dwivedi, D; Lepkova, K; Becker, T
2017-03-01
Carbon steel is a preferred construction material in many industrial and domestic applications, including oil and gas pipelines, where corrosion mitigation using film-forming corrosion inhibitor formulations is a widely accepted method. This review identifies surface analytical techniques that are considered suitable for analysis of thin films at metallic substrates, but are yet to be applied to analysis of carbon steel surfaces in corrosive media or treated with corrosion inhibitors. The reviewed methods include time of flight-secondary ion mass spectrometry, X-ray absorption spectroscopy methods, particle-induced X-ray emission, Rutherford backscatter spectroscopy, Auger electron spectroscopy, electron probe microanalysis, near-edge X-ray absorption fine structure spectroscopy, X-ray photoemission electron microscopy, low-energy electron diffraction, small-angle neutron scattering and neutron reflectometry, and conversion electron Moessbauer spectrometry. Advantages and limitations of the analytical methods in thin-film surface investigations are discussed. Technical parameters of nominated analytical methods are provided to assist in the selection of suitable methods for analysis of metallic substrates deposited with surface films. The challenges associated with the applications of the emerging analytical methods in corrosion science are also addressed.
Emerging surface characterization techniques for carbon steel corrosion: a critical brief review
NASA Astrophysics Data System (ADS)
Dwivedi, D.; Lepkova, K.; Becker, T.
2017-03-01
Carbon steel is a preferred construction material in many industrial and domestic applications, including oil and gas pipelines, where corrosion mitigation using film-forming corrosion inhibitor formulations is a widely accepted method. This review identifies surface analytical techniques that are considered suitable for analysis of thin films at metallic substrates, but are yet to be applied to analysis of carbon steel surfaces in corrosive media or treated with corrosion inhibitors. The reviewed methods include time of flight-secondary ion mass spectrometry, X-ray absorption spectroscopy methods, particle-induced X-ray emission, Rutherford backscatter spectroscopy, Auger electron spectroscopy, electron probe microanalysis, near-edge X-ray absorption fine structure spectroscopy, X-ray photoemission electron microscopy, low-energy electron diffraction, small-angle neutron scattering and neutron reflectometry, and conversion electron Moessbauer spectrometry. Advantages and limitations of the analytical methods in thin-film surface investigations are discussed. Technical parameters of nominated analytical methods are provided to assist in the selection of suitable methods for analysis of metallic substrates deposited with surface films. The challenges associated with the applications of the emerging analytical methods in corrosion science are also addressed.
Emerging surface characterization techniques for carbon steel corrosion: a critical brief review
Dwivedi, D.; Becker, T.
2017-01-01
Carbon steel is a preferred construction material in many industrial and domestic applications, including oil and gas pipelines, where corrosion mitigation using film-forming corrosion inhibitor formulations is a widely accepted method. This review identifies surface analytical techniques that are considered suitable for analysis of thin films at metallic substrates, but are yet to be applied to analysis of carbon steel surfaces in corrosive media or treated with corrosion inhibitors. The reviewed methods include time of flight-secondary ion mass spectrometry, X-ray absorption spectroscopy methods, particle-induced X-ray emission, Rutherford backscatter spectroscopy, Auger electron spectroscopy, electron probe microanalysis, near-edge X-ray absorption fine structure spectroscopy, X-ray photoemission electron microscopy, low-energy electron diffraction, small-angle neutron scattering and neutron reflectometry, and conversion electron Moessbauer spectrometry. Advantages and limitations of the analytical methods in thin-film surface investigations are discussed. Technical parameters of nominated analytical methods are provided to assist in the selection of suitable methods for analysis of metallic substrates deposited with surface films. The challenges associated with the applications of the emerging analytical methods in corrosion science are also addressed. PMID:28413351
Procurement of novel microanalysis equipment for construction materials.
DOT National Transportation Integrated Search
2012-02-01
The equipment procured (i.e. an Orbis micro X-ray Fluorescence (MXRF) and an APSEX personal Scanning Electron Microscope (PSEM)) is part of the next generation of micro analytical equipment. These tools have the ability to make large volumes of...
NASA Astrophysics Data System (ADS)
Schalm, O.; Janssens, K.
2003-04-01
Quantitative analysis by means of electron probe X-ray microanalysis (EPXMA) of low Z materials such as silicate glasses can be hampered by the fact that ice or other contaminants build up on the Si(Li) detector beryllium window or (in the case of a windowless detector) on the Si(Li) crystal itself. These layers act as an additional absorber in front of the detector crystal, decreasing the detection efficiency at low energies (<5 keV). Since the layer thickness gradually changes with time, also the detector efficiency in the low energy region is not constant. Using the normal ZAF approach to quantification of EPXMA data is cumbersome in these conditions, because spectra from reference materials and from unknown samples must be acquired within a fairly short period of time in order to avoid the effect of the change in efficiency. To avoid this problem, an alternative approach to quantification of EPXMA data is proposed, following a philosophy often employed in quantitative analysis of X-ray fluorescence (XRF) and proton-induced X-ray emission (PIXE) data. This approach is based on the (experimental) determination of thin-film element yields, rather than starting from infinitely thick and single element calibration standards. These thin-film sensitivity coefficients can also be interpolated to allow quantification of elements for which no suitable standards are available. The change in detector efficiency can be monitored by collecting an X-ray spectrum of one multi-element glass standard. This information is used to adapt the previously determined thin-film sensitivity coefficients to the actual detector efficiency conditions valid on the day that the experiments were carried out. The main advantage of this method is that spectra collected from the standards and from the unknown samples should not be acquired within a short period of time. This new approach is evaluated for glass and metal matrices and is compared with a standard ZAF method.
Choël, Marie; Deboudt, Karine; Osán, János; Flament, Pascal; Van Grieken, René
2005-09-01
Atmospheric aerosols consist of a complex heterogeneous mixture of particles. Single-particle analysis techniques are known to provide unique information on the size-resolved chemical composition of aerosols. A scanning electron microscope (SEM) combined with a thin-window energy-dispersive X-ray (EDX) detector enables the morphological and elemental analysis of single particles down to 0.1 microm with a detection limit of 1-10 wt %, low-Z elements included. To obtain data statistically representative of the air masses sampled, a computer-controlled procedure can be implemented in order to run hundreds of single-particle analyses (typically 1000-2000) automatically in a relatively short period of time (generally 4-8 h, depending on the setup and on the particle loading). However, automated particle analysis by SEM-EDX raises two practical challenges: the accuracy of the particle recognition and the reliability of the quantitative analysis, especially for micrometer-sized particles with low atomic number contents. Since low-Z analysis is hampered by the use of traditional polycarbonate membranes, an alternate choice of substrate is a prerequisite. In this work, boron is being studied as a promising material for particle microanalysis. As EDX is generally said to probe a volume of approximately 1 microm3, geometry effects arise from the finite size of microparticles. These particle geometry effects must be corrected by means of a robust concentration calculation procedure. Conventional quantitative methods developed for bulk samples generate elemental concentrations considerably in error when applied to microparticles. A new methodology for particle microanalysis, combining the use of boron as the substrate material and a reverse Monte Carlo quantitative program, was tested on standard particles ranging from 0.25 to 10 microm. We demonstrate that the quantitative determination of low-Z elements in microparticles is achievable and that highly accurate results can be obtained using the automatic data processing described here compared to conventional methods.
Skucha-Nowak, Małgorzata
2015-01-01
The resin infiltration technique, a minimally invasive method, involves the saturation, strengthening, and stabilization of demineralized enamel by a mixture of polymer resins without the need to use rotary tools or the risk of losing healthy tooth structures. To design and synthesize an experimental infiltrant with potential bacteriostatic properties.To compare the depth of infiltration of the designed experimental preparation with the infiltrant available in the market using a scanning electron microscope. Composition of the experimental infiltrant was established after analysis of 1H NMR spectra of the commercially available compounds that can penetrate pores of demineralized enamel. As the infiltrant should have bacteriostatic features by definition, an addition of 1% of monomer containing metronidazole was made. Thirty extracted human teeth were soaked in an acidic solution, which was to provide appropriate conditions for demineralization of enamel. Afterward, each tooth was divided along the coronal-root axis into two zones. One zone had experimental preparation applied to it (the test group), while the other had commercially available Icon (the control group). The teeth were dissected along the long axis and described above underwent initial observation with use of a Hitachi S-4200 scanning electron microscope. It was found that all samples contained only oxygen and carbon, regardless of the concentration of additions introduced into them. The occurrence of carbon is partially because it is a component of the preparation in question and partially because of sputtering of the sample with it. Hydrogen is also a component of the preparation, as a result of its phase composition; however, it cannot be detected by the EDS method. SEM, in combination with X-ray microanalysis, does not allow one to explicitly assess the depth of penetration of infiltration preparations into enamel.In order to assess the depth of penetration of infiltration preparations with use of X-ray microanalysis, it is recommended to introduce a contrast agent that is approved for use in dental materials, such as ytterbium III fluoride.
From HeLa cell division to infectious diarrhoea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephen, J.; Osborne, M.P.; Spencer, A.J.
1990-09-01
Hela S3 cells were grown in suspension both randomly and, synchronously using hydroxyurea which blocks cells at the G1/S interface. Cryosections were prepared, freeze-dried and analyzed by X-ray microanalysis. As cells moved into S and through M phases (Na) and (Cl) increased; both returned to normal levels upon re-entering G1 phase. The Na/K ratio was 1:1 in G1 phase. Infection of HeLa S3 cells in G1 phase with vaccinia virus resulted in no change in intracellular (Na). Infection of neonatal mice with murine rotavirus was localized to villus tip enterocytes and gave rise to diarrhoea which was maximal at 72hmore » post-infection (p.i.). Diarrhoea was preceded by ischemia of villi (18-42h p.i.) and villus shortening (maximal at 42h p.i.), and was also coincident with a dramatic regrowth of villi. At 48h p.i. a proliferative zone of electron lucent cells was observed in villus base regions. Cryosections of infected gut, taken before, during, and after infection, together with corresponding age-matched controls, were freeze-dried and analysed by X-ray microanalysis. At 48h p.i. electron lucent villus base cells were shown to be more hydrated, and, to contain higher levels of both Na and Cl and lower levels of P, S, K and Mg than corresponding control cells. These studies increase confidence in the use of X-ray microanalysis in studying biological systems, provide some insight into the process of cell division, and constitute the basis of a new concept of diarrhoeal secretion.27 references.« less
Torjussen, W; Haug, F M; Olsen, A; Andersen, I
1978-01-01
Histochemical methods and energy dispersive X-ray micro-analysis (EDX-analysis) were evaluated in model experiments and on tissue sections for their usefulness in detecting traces of metals in biological tissue. The goal for this study was to establish a method for localization of nickel deposits in the nasal mucosa, where it has been found in concentrations between 1 and 40 microgram/g in nickel exposed individuals. The histochemical methods tested were staining with dimethylglyoxime, rubeanic acid and dithizone, the Turnbull and Prussian blue methods and TIMM'S sulphide silver procedure. In model experiments nickel-, cobalt-, copper-, zinc- and ironsalts were applied to thin-layer chromatography sheets (TLC-sheets) and stained by the histochemical methods. Spots containing 500 and 50 ng of these metals represented the smallest amounts that could consistently be detected in these experiments, except for the sulphide silver method which seemed a little more sensitive. With the latter method, moreover, zinc was detected in 40 micrometer thick cryostat sections of gelatine made up with 1 microgram/g of the metal. For nickel the corresponding figure was 10 to 50 microgram/g. On specimens of nasal mucosa from nickel-exposed workers, a faint colour was obtained in 40 micron thick cryostat sections from specimens that had been immersed in dithizone, but the colour was too weak for histological analysis. None of the other coloured chelating agents caused noticeable staining when applied to blocks or to cryostat sections. TIMM'S sulphide silver method caused strong staining of the basal layers of the surface epithelium and of fibroblast-like cells in the underlying connective tissue. This staining pattern is described in more detail in a separate report. Rat liver tissue was analyzed by atomic absorption before and after araldite embedding. Blocks of gelatine made up with nickel, copper, zinc and iron were embedded in epoxy resin and analyzed by atomic absorption. Large changes in the metal concentrations, usually an increase, were found after embedding. Ultrathin sections from this material were used to test the sensitivity of the EDX-equipment. Referring to the concentrations determined by atomic absorption in the embedded material, iron was detected at 1215 microgram/g and 362 microgram/g (gelatine standards) but not at 167 microgram/g (rat liver). Similar values could not be determined for nickel, copper or zinc, because of background radiation resulting from the presence of these metals in the instrument. We did not succeed in establishing a procedure for detecting nickel deposits in nasal mucosa with any of the methods which were tested. The most sensitive but least specific of the tested methods for visualizing heavy metals in the nasal mucosa, was TIMM'S sulphide silver procedure. The preparation of tissue for this method is discussed.
Thermoelectric properties of Ge 1-xSn xTe crystals grown by vertical Bridgman method
NASA Astrophysics Data System (ADS)
Wu, C. C.; Ferng, N. J.; Gau, H. J.
2007-06-01
Single crystals of Ge 1-xSn xTe compounds with x=0, 0.8, 0.9 and 1.0 were grown by vertical Bridgman method. The crystalline phase and stochiometry for these crystals were investigated by X-ray diffraction, metallographic microscope as well as electron-probe microanalysis (EPMA). Electrical property of the as-grown samples was characterized using room temperature resistivity and Hall measurements. The thermoelectric behaviors for the Ge 1-xSn xTe crystals were studied by means of thermal and carrier transport measurements. Temperature dependences of resistivity, Seebeck coefficient and thermal conductivity for the various compositions of Ge 1-xSn xTe were analyzed. A two-valence band model was proposed to describe the temperature dependence of thermoelectric property of the Ge 1-xSn xTe crystals. The dimensionless thermoelectric figure of merit ZT for the alloys was evaluated and discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Read, Douglas; Sillerud, Colin Halliday
The overarching goal of this project is to integrate Sandia's microfabricated gas-chromatography ( GC) columns with a stationary phase material that is capable of retaining high-volatility chemicals and permanent gases. The successful integration of such a material with GCs would dramatically expand the repertoire of detectable compounds for Sandia's various microanalysis systems. One such promising class of candidate materials is metal-organic frameworks (MOFs). In this report we detail our methods for controlled deposition of HKUST-1 MOF stationary phases within GC columns. We demonstrate: the chromatographic separation of natural gas; a method for determining MOF film thickness from chromatography alone; andmore » the first-reported GC x GC separation of natural gas -- in general -- let alone for two disparate MOF stationary phases. In addition we determine the fundamental thermodynamic constant for mass sorption, the partition coefficient, for HKUST-1 and several light hydrocarbons and select toxic industrial chemicals.« less
Elemental mapping with energy-dispersive X-ray spectroscopy (EDX) associated with scanning electron microscopy is highly useful for studying internally mixed atmospheric particles. Presented is a study of individual particles from urban airsheds and the analytical challenges in q...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, S.R.; Wilkinson, E.J.
Within the endometrial cavity intrauterine contraceptive devices (IUDs) become encrusted with cellular, acellular, and fibrillar substances. Scanning electron microscopy was used to study the crust. Cellular material consisted mainly of blood cells and various types of bacteria. The fibrillar material appeared to be fibrin which was omnipresent in the crust and formed a thin layer immediately over the IUD surface. X-ray microanalysis of the acellular component of the crust revealed the presence of calcium. No other major peaks were identified. Near the IUD surface characteristic calcium phosphate crystals were present. Their microanalysis showed peaks for calcium and phosphorus. X-ray diffractionmore » of the crust however, showed it to contain only calcite. It is through the use of scanning electron microscopy that calcium phosphate has been detected in the IUD crust and a fibrillar layer has been visualized on the IUD surface. This study further demonstrates the effectiveness of SEM analytical techniques in the area of biomedical research.« less
NASA Technical Reports Server (NTRS)
Kearsley, A. T.; Ross, D. K.; Anz-Meador, P.; Liou, J. C.; Opiela, J.; Grime, G. W.; Webb, R. P.; Jeynes, C.; Palitsin, V. V.; Colaux, J. L.;
2014-01-01
Postflight surveys of the Wide Field and Planetary Camera 2 (WFPC2) on the Hubble Space Telescope have located hundreds of features on the 2.2 by 0.8 m curved plate, evidence of hypervelocity impact by small particles during 16 years of exposure to space in low Earth orbit (LEO). The radiator has a 100 - 200 micron surface layer of white paint, overlying 4 mm thick Al alloy, which was not fully penetrated by any impact. Over 460 WFPC2 samples were extracted by coring at JSC. About half were sent to NHM in a collaborative program with NASA, ESA and IBC. The structural and compositional heterogeneity at micrometer scale required microanalysis by electron and ion beam microscopes to determine the nature of the impactors (artificial orbital debris, or natural micrometeoroids, MM). Examples of MM impacts are described elsewhere. Here we describe the development of novel electron beam analysis protocols, required to recognize the subtle traces of MM residues.
Correlated Microanalysis of Cometary Organic Grains Returned by Stardust
NASA Technical Reports Server (NTRS)
DeGregorio, B. T.; Stroud, R. M.; Nittler, L. R.; Cody, G. D,; Kilcoyne, A. L. D.
2011-01-01
Preliminary examination (PE) of samples returned from Comet 81P/Wild 2 by the NASA Stardust mission revealed a wide variety of carbonaceous samples [e.g. 1]. Carbonaceous matter is present as inclusions, rinds, and films in polyminerallic terminal particles [2-4], as carbon-rich particles along track walls [2, 5, 6], and as organic matter in aerogel around tracks [7, 8]. The organic chemistry of these samples ranges from purely aliphatic hydrocarbons to highly-aromatic material, often modified by various organic functional groups [2, 4, 5, 9-11]. Difficulty arises when interpreting the genesis of these carbonaceous samples, since contaminants could be introduced from the spacecraft [12], aerogel [1, 8], or during sample preparation. In addition, hypervelocity capture into aerogel may have heated cometary material in excess of 1000 C, which could have significantly altered the structure and chemistry of carbonaceous matter. Fortunately, much of this contamination or alteration can be identified through correlated microanalysis with transmission electron microscopy (TEM), scanning-transmission X-ray microscopy (STXM), and nanoscale secondary ion mass spectroscopy (SIMS).
Evaluating the Performance of a Commercial Silicon Drift Detector for X-ray Microanalysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kenik, Edward A
2011-01-01
Silicon drift detectors (SDDs) are rapidly becoming the energy dispersive spectrometer (EDS) of choice, especially for scanning electron microscopy x-ray microanalysis. The complementary features of large active areas (i.e., high collection angle) and high count rate capability of these detector contribute to their popularity, as well as the absence of liquid nitrogen cooling and good energy resolution of these detectors. The performance of an EDAX Apollo 40 SDD on a JEOL 6500F SEM is discussed. The larger detector resulted in an significant increase (~3.5x) in geometric collection efficiency compared to the original 10mm2 Si(Li) detector that it replaced. The SEMmore » can provide high beam currents (up to 200nA in some conditions) at small probe diameters. The high count rate capability of the SDD and the high current capability of the SEM compliment each other and provide excellent EDS analytical capabilities for both single point and spectrum imaging applications.« less
Ahn, Kang-Ho; Kim, Sun-Man; Jung, Hae-Jin; Lee, Mi-Jung; Eom, Hyo-Jin; Maskey, Shila; Ro, Chul-Un
2010-10-01
In this work, an analytical method for the characterization of the hygroscopic property, chemical composition, and morphology of individual aerosol particles is introduced. The method, which is based on the combined use of optical and electron microscopic techniques, is simple and easy to apply. An optical microscopic technique was used to perform the visual observation of the phase transformation and hygroscopic growth of aerosol particles on a single particle level. A quantitative energy-dispersive electron probe X-ray microanalysis, named low-Z particle EPMA, was used to perform a quantitative chemical speciation of the same individual particles after the measurement of the hygroscopic property. To validate the analytical methodology, the hygroscopic properties of artificially generated NaCl, KCl, (NH(4))(2)SO(4), and Na(2)SO(4) aerosol particles of micrometer size were investigated. The practical applicability of the analytical method for studying the hygroscopic property, chemical composition, and morphology of ambient aerosol particles is demonstrated.
NASA Astrophysics Data System (ADS)
Li, Pengli; Li, Chunxia; Xue, Yiting; Zhang, Yang; Liu, Hongbing; Zhao, Xia; Yu, Guangli; Guan, Huashi
2014-08-01
A rapid and sensitive fluorescence labeling method was developed and validated for the microanalysis of a sulfated polysaccharide drug,namely propylene glycol alginate sodium sulfate (PSS), in rat plasma. Fluorescein isothiocyanate (FITC) was selected to label PSS, and 1, 6-diaminohexane was used to link PSS and FITC in order to prepare FITC-labeled PSS (F-PSS) through a reductive amination reaction. F-PSS was identified by UV-Vis, FT-IR and 1H-NMR spectrum. The cell stability and cytotoxicity of F-PSS were tested in Madin-Darby canine kidney (MDCK) cells. The results indicated that the labeling efficiency of F-PSS was 0.522% ± 0.0248% and the absolute bioavailability was 8.39%. F-PSS was stable in MDCK cells without obvious cytotoxicity. The method was sensitive and reliable; it showed a good linearity, precision, recovery and stability. The FITC labeling method can be applied to investigating the absorption and metabolism of PSS and other polysaccharides in biological samples.
The uniformity study of non-oxide thin film at device level using electron energy loss spectroscopy
NASA Astrophysics Data System (ADS)
Li, Zhi-Peng; Zheng, Yuankai; Li, Shaoping; Wang, Haifeng
2018-05-01
Electron energy loss spectroscopy (EELS) has been widely used as a chemical analysis technique to characterize materials chemical properties, such as element valence states, atoms/ions bonding environment. This study provides a new method to characterize physical properties (i.e., film uniformity, grain orientations) of non-oxide thin films in the magnetic device by using EELS microanalysis on scanning transmission electron microscope. This method is based on analyzing white line ratio of spectra and related extended energy loss fine structures so as to correlate it with thin film uniformity. This new approach can provide an effective and sensitive method to monitor/characterize thin film quality (i.e., uniformity) at atomic level for thin film development, which is especially useful for examining ultra-thin films (i.e., several nanometers) or embedded films in devices for industry applications. More importantly, this technique enables development of quantitative characterization of thin film uniformity and it would be a remarkably useful technique for examining various types of devices for industrial applications.
Visonà, S D; Chen, Y; Bernardi, P; Andrello, L; Osculati, A
2018-03-01
Deaths from electricity, generally, do not have specific findings at the autopsy. The diagnosis is commonly based on the circumstances of the death and the morphologic findings, above all the current mark. Yet, the skin injury due to an electrocution and other kinds of thermal injuries often cannot be differentiated with certainty. Therefore, there is a great interest in finding specific markers of electrocution. The search for the metallization of the skin through Scanning Electron Microscope equipped with Energy Dispersive X-Ray Spectroscopy (EDS) probe is of special importance in order to achieve a definite diagnosis in case of suspected electrocution. We selected five cases in which the electrocution was extremely likely considering the circumstances of the death. In each case a forensic autopsy was performed. Then, the skin specimens were stained with Hematoxylin Eosin and Perls. On the other hand, the skin lesions were examined with a scanning electron microscope equipped with EDS probe in order to evaluate the morphological ultrastructural features and the presence of deposits on the surface of the skin. The typical skin injury of the electrocution (current mark) were macroscopically detected in all of the cases. The microscopic examination of the skin lesions revealed the typical spherical vacuoles in the horny layer and, in the epidermis, the elongation of the cell nuclei as well as necrosis. Perls staining was negative in 4 out 6 cases. Ultrastructural morphology revealed the evident vacuolization of the horny layer, elongation of epidermic cells, coagulation of the elastic fibers. In the specimens collected from the site of contact with the conductor of case 1 and 2, the presence of the Kα peaks of iron was detected. In the corresponding specimens taken from cases 2, 4, 5 the microanalysis showed the Kα peaks of titanium. In case 3, titanium and carbon were found. In the suspicion of electrocution, the integrated use of different tools is recommended, including macroscopic observation, H&E staining, iron-specific staining, scanning electron microscopy and EDS microanalysis. Only the careful interpretation of the results provided by all these methods can allow the pathologist to correctly identify the cause of the death. Particularly, the present study suggests that the microanalysis (SEM-EDS) represents a very useful tool for the diagnosis of electrocution, allowing the detection and the identification of the metals embedded in the skin and their evaluation in the context of the ultrastructural morphology. Copyright © 2018. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Ammar, Abdelaziz; Cros, Christian; Pouchard, Michel; Jaussaud, Nicolas; Bassat, Jean-Marc; Villeneuve, Gérard; Duttine, Mathieu; Ménétrier, Michel; Reny, Edouard
2004-05-01
The clathrate form of silicon, Si 136 (otherwise known as Si 34), having a residual sodium content as low as 35 ppm (i.e., x˜0.0058 in Na xSi 136), has been prepared by thermal decomposition of NaSi under high vacuum, followed by several other treatments under vacuum, and completed by repeated reactions with iodine. The residual amount of sodium has been determined by a combination of analytic and spectroscopic methods involving XRD, electron probe microanalysis, atomic absorption, NMR and EPR. This latter technique proved to be very appropriate to the characterisation of very diluted sodium atoms in such clathrate structure and to the quantitative determination of its residual concentration.
Microanalysis study on ancient Wiangkalong Pottery
NASA Astrophysics Data System (ADS)
Won-in, K.; Tancharakorn, S.; Dararutana, P.
2017-09-01
Wiangkalong is one of major ceramic production cities in northern of Thailand, once colonized by the ancient Lanna Kingdom (1290 A.D.). Ancient Wiangkalong potteries were produced with shapes and designs as similar as those of the Chinese Yuan and Ming Dynasties. Due to the complex nature of materials and objects, extremely sensitive, spatially resolved, multi-elemental and versatile analytical instruments using non-destructive and non-sampling methods to analyze theirs composition are need. In this work, micro-beam X-ray fluorescence spectroscopy based on synchrotron radiation was firstly used to characterize the elemental composition of the ancient Wiangkalong pottery. The results showed the variations in elemental composition of the body matrix, the glaze and the underglaze painting, such as K, Ca, Ti, V, Cr, Mn and Fe.
Novelmetal-organic photocatalysts: Synthesis, characterization and decomposition of organic dyes
NASA Astrophysics Data System (ADS)
Gopal Reddy, N. B.; Murali Krishna, P.; Kottam, Nagaraju
2015-02-01
An efficient method for the photocatalytic degradation of methylene blue in an aqueous medium was developed using metal-organic complexes. Two novel complexes were synthesized using, Schiff base ligand, N‧-[(E)-(4-ethylphenyl)methylidene]-4-hydroxybenzohydrazide (HL) and Ni(II) (Complex 1)/Co(II) (Complex 2) chloride respectively. These complexes were characterized using microanalysis, various spectral techniques. Spectral studies reveal that the complexes exhibit square planar geometry with ligand coordination through azomethine nitrogen and enolic oxygen. The effects of catalyst dosage, irradiation time and aqueous pH on the photocatalytic activity were studied systematically. The photocatalytic activity was found to be more efficient in the presence of Ni(II) complexes than the Co(II) complex. Possible mechanistic aspects were discussed.
Kolmas, Joanna; Oledzka, Ewa; Sobczak, Marcin; Nałęcz-Jawecki, Grzegorz
2014-06-01
Selenium-substituted hydroxyapatites containing selenate SeO4(2-) or selenite SeO3(2-) ions were synthesized using a wet precipitation method. The selenium content was determined by atomic absorbance spectrometry. The raw, unsintered powders were also characterized using powder X-ray diffraction, middle-range FT-IR spectroscopy and transmission electron microscopy with energy-dispersive X-ray spectroscopic microanalysis. The synthesized apatites were found to be pure and nanocrystalline with a crystal size similar to that in bone mineral. The incorporation of selenium oxyanions into the crystal lattice was confirmed. The toxicity of hydroxyapatites containing selenite or selenate ions was evaluated with a protozoan assay and bacterial luminescence test. Copyright © 2014 Elsevier B.V. All rights reserved.
Contextualizing Community in Teacher Bible Talk
ERIC Educational Resources Information Center
Avni, Sharon
2013-01-01
This paper explores the interactions surrounding Bible teaching as a means of understanding how Jewish youth are discursively implicated within ideologies of community. Drawing on theoretical frameworks from linguistic anthropology and interactional sociolinguistics, I present a micro-analysis of a classroom lesson on the book of Leviticus to…
NASA Astrophysics Data System (ADS)
McInnes, B.; Danišík, M.; Evans, N.; McDonald, B.; Becker, T.; Vermeesch, P.
2015-12-01
We present a new laser-based technique for rapid, quantitative and automated in situ microanalysis of U, Th, Sm, Pb and He for applications in geochronology, thermochronometry and geochemistry (Evans et al., 2015). This novel capability permits a detailed interrogation of the time-temperature history of rocks containing apatite, zircon and other accessory phases by providing both (U-Th-Sm)/He and U-Pb ages (+trace element analysis) on single crystals. In situ laser microanalysis offers several advantages over conventional bulk crystal methods in terms of safety, cost, productivity and spatial resolution. We developed and integrated a suite of analytical instruments including a 193 nm ArF excimer laser system (RESOlution M-50A-LR), a quadrupole ICP-MS (Agilent 7700s), an Alphachron helium mass spectrometry system and swappable flow-through and ultra-high vacuum analytical chambers. The analytical protocols include the following steps: mounting/polishing in PFA Teflon using methods similar to those adopted for fission track etching; laser He extraction and analysis using a 2 s ablation at 5 Hz and 2-3 J/cm2fluence; He pit volume measurement using atomic force microscopy, and U-Th-Sm-Pb (plus optional trace element) analysis using traditional laser ablation methods. The major analytical challenges for apatite include the low U, Th and He contents relative to zircon and the elevated common Pb content. On the other hand, apatite typically has less extreme and less complex zoning of parent isotopes (primarily U and Th). A freeware application has been developed for determining (U-Th-Sm)/He ages from the raw analytical data and Iolite software was used for U-Pb age and trace element determination. In situ double-dating has successfully replicated conventional U-Pb and (U-Th)/He age variations in xenocrystic zircon from the diamondiferous Ellendale lamproite pipe, Western Australia and increased zircon analytical throughput by a factor of 50 over conventional methods.Reference: Evans NJ, McInnes BIA, McDonald B, Becker T, Vermeesch P, Danisik M, Shelley M, Marillo-Sialer E and Patterson D. An in situ technique for (U-Th-Sm)/He and U-Pb double dating. J Analytical Atomic Spectrometry, 30, 1636 - 1645.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takemura, T.; Sato, F.; Saga, K.
Methacholine (MCh)-induced changes in intracellular concentrations of Na, K, and Cl (( Na)i, (K)i, and (Cl)i, respectively) and in cellular dry mass (a measure of cell shrinkage) were examined in isolated monkey eccrine sweat secretory coils by electron probe X-ray microanalysis using the peripheral standard method. To further confirm the occurrence of cell shrinkage during MCh stimulation, the change in cell volume of dissociated clear and dark cells were directly determined under a light microscope equipped with differential interference contrast (DIC) optics. X-ray microanalysis revealed a biphasic increase in cellular dry mass in clear cells during continuous MCh stimulation; anmore » initial increase of dry mass to 158% (of control) followed by a plateau at 140%, which correspond to the decrease in cell volume of 37 and 29%, respectively. The latter agrees with the MCh-induced cell shrinkage of 29% in dissociated clear cells. The MCh-induced increase in dry mass in myoepithelial cells was less than half that of clear cells. During the steady state of MCh stimulation, both (K+)i and (Cl)i of clear cells decreased by about 45%, whereas (Na)i increased in such a way to maintain the sum of (Na) i + (K)i constant. There was a small (12-15 mM) increase in (Na)i and a decrease in (K)i in myoepithelial cells during stimulation with MCh. Dissociated dark cells failed to significantly shrink during MCh stimulation. The decrease in (Cl)i in the face of constant (Na)i + (K)i suggests the accumulation of unknown anion(s) inside the clear cell during MCh stimulation.« less
Calibration Issues and Operating System Requirements for Electron-Probe Microanalysis
NASA Technical Reports Server (NTRS)
Carpenter, P.
2006-01-01
Instrument purchase requirements and dialogue with manufacturers have established hardware parameters for alignment, stability, and reproducibility, which have helped improve the precision and accuracy of electron microprobe analysis (EPMA). The development of correction algorithms and the accurate solution to quantitative analysis problems requires the minimization of systematic errors and relies on internally consistent data sets. Improved hardware and computer systems have resulted in better automation of vacuum systems, stage and wavelength-dispersive spectrometer (WDS) mechanisms, and x-ray detector systems which have improved instrument stability and precision. Improved software now allows extended automated runs involving diverse setups and better integrates digital imaging and quantitative analysis. However, instrumental performance is not regularly maintained, as WDS are aligned and calibrated during installation but few laboratories appear to check and maintain this calibration. In particular, detector deadtime (DT) data is typically assumed rather than measured, due primarily to the difficulty and inconvenience of the measurement process. This is a source of fundamental systematic error in many microprobe laboratories and is unknown to the analyst, as the magnitude of DT correction is not listed in output by microprobe operating systems. The analyst must remain vigilant to deviations in instrumental alignment and calibration, and microprobe system software must conveniently verify the necessary parameters. Microanalysis of mission critical materials requires an ongoing demonstration of instrumental calibration. Possible approaches to improvements in instrument calibration, quality control, and accuracy will be discussed. Development of a set of core requirements based on discussions with users, researchers, and manufacturers can yield documents that improve and unify the methods by which instruments can be calibrated. These results can be used to continue improvements of EPMA.
NASA Astrophysics Data System (ADS)
Herrera-Basurto, R.; Mercader-Trejo, F.; Muñoz-Madrigal, N.; Juárez-García, J. M.; Rodriguez-López, A.; Manzano-Ramírez, A.
2016-07-01
The main goal of method validation is to demonstrate that the method is suitable for its intended purpose. One of the advantages of analytical method validation is translated into a level of confidence about the measurement results reported to satisfy a specific objective. Elemental composition determination by wavelength dispersive spectrometer (WDS) microanalysis has been used over extremely wide areas, mainly in the field of materials science, impurity determinations in geological, biological and food samples. However, little information is reported about the validation of the applied methods. Herein, results of the in-house method validation for elemental composition determination by WDS are shown. SRM 482, a binary alloy Cu-Au of different compositions, was used during the validation protocol following the recommendations for method validation proposed by Eurachem. This paper can be taken as a reference for the evaluation of the validation parameters more frequently requested to get the accreditation under the requirements of the ISO/IEC 17025 standard: selectivity, limit of detection, linear interval, sensitivity, precision, trueness and uncertainty. A model for uncertainty estimation was proposed including systematic and random errors. In addition, parameters evaluated during the validation process were also considered as part of the uncertainty model.
DOT National Transportation Integrated Search
2013-01-01
The Florida Department of Transportation (FDOT) is responsible for the maintenance of thousands of concrete structures that are exposed to or situated in salt water. Considering the significant cost of each of these structures, FDOT would like a 75-y...
DOT National Transportation Integrated Search
2013-02-01
Standard sample sets of cement and mortar formulations with known levels of Cl as well as concrete samples subject to Cl diffusion were all prepared for and analyzed with scanning electron microscopy (SEM) and electron microprobe (EPMA). Using x-ray ...
Student Sensemaking with Science Diagrams in a Computer-Based Setting
ERIC Educational Resources Information Center
Furberg, Anniken; Kluge, Anders; Ludvigsen, Sten
2013-01-01
This paper reports on a study of students' conceptual sensemaking with science diagrams within a computer-based learning environment aimed at supporting collaborative learning. Through the microanalysis of students' interactions in a project about energy and heat transfer, we demonstrate "how" representations become productive social and cognitive…
ERIC Educational Resources Information Center
Moore, Ekaterina Leonidovna
2012-01-01
Grounded in discourse analytic and language socialization paradigms, this dissertation examines issues of language and social identity construction in children attending a Russian Heritage Language Orthodox Christian Saturday School in California. By conducting micro-analysis of naturally-occurring talk-in-interaction combined with longitudinal…
Provoking Reflective Thinking in Post Observation Conversations
ERIC Educational Resources Information Center
Kim, Younhee; Silver, Rita Elaine
2016-01-01
We present a micro-analysis of post observation conversations between classroom teachers and mentors. Using the approach of conversation analysis, we show how the sequential organization of an episode (i.e., who initiates the interaction, question format used by mentors) could potentially serve to provoke or hinder teacher reflection. Our analysis…
Microfabricated ion trap array
Blain, Matthew G [Albuquerque, NM; Fleming, James G [Albuquerque, NM
2006-12-26
A microfabricated ion trap array, comprising a plurality of ion traps having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale ion traps to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The reduced electrode voltage enables integration of the microfabricated ion trap array with on-chip circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of the microfabricated ion trap array can be realized in truly field portable, handheld microanalysis systems.
Narita, H; Takeda, Y; Takagaki, K; Nakamura, T; Harata, S; Endo, M
1995-11-20
Glycosaminoglycans (heparin, heparan sulfate, dermatan sulfate, chondroitin sulfate, and hyaluronic acid) were labeled with a fluorescent reagent, 2-aminopyridine. The fluoro-labeled glycosaminoglycans were subjected to high-performance liquid chromatography on a hydroxyapatite column. The binding property of each glycosaminoglycan to hydroxyapatite was different. The structural properties of glycosaminoglycans bound to hydroxyapatite were then investigated using chemical desulfated or enzymic depolymerized glycosaminoglycans. This revealed that the sulfate content and molecular weight of the glycosaminoglycans correlated with their binding properties to hydroxyapatite. Desulfated dermatan sulfate but not desulfated chondroitin 6-sulfate bound to the hydroxyapatite. These data indicate that iduronic acid residues of glycosaminoglycans are important for the binding property. The method described which uses hydroxyapatite columns facilitates rapid separation and microanalysis of the glycosaminoglycans, especially dermatan sulfate and chondroitin sulfate.
Archaeometric study of black-coated pottery from Pompeii by different analytical techniques.
Scarpelli, Roberta; Clark, Robin J H; De Francesco, Anna Maria
2014-01-01
Complementary spectroscopic methods were used to characterize ceramic body and black coating of fine pottery found at Pompeii (Italy). This has enabled us to investigate local productions and to clarify the technological changes over the 4th-1st centuries BC. Two different groups of ceramics were originally distinguished on the basis of macroscopic observations. Optical microscopy (OM), X-ray diffraction (XRD) and X-ray fluorescence (XRF) seem to indicate the usage of the same raw materials for the production of black-coated ceramics at Pompeii for about three centuries. Raman microscopy (RM) and micro-analysis (SEM/EDS) suggest different production treatments for both raw material processing and firing practice (duration of the reducing step and the cooling rate). Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gasanly, S. A.; Tomaev, V. V.; Stoyanova, T. V.
2017-11-01
The method of vacuum deposition on substrates of glass marks the C-29 series PbSe deposited film and the film In the area 3x3 mm2 and a thickness of ˜1 μm. Films are oxidized in dry air at a temperature of 550 °C. Based on studies by X-ray microanalysis and scanning electron microscopy shows the principal possibility of formation of nanowires xInSe-(1-x)In2O3 on the PbSe/In structure. The results allowed to formulate the concept of the control of phases ratio in the forming nanowires xInSe-(1-x)In2O3 on glass substrates.
Multiple response to sound in dysfunctional children.
Condon, W S
1975-03-01
Methods and findings derived from over a decade of linguistic-kinesic microanalysis of sound films of human behavior were appled to the analysis of sound films of 25 dysfunctional children. Of the children, 17 were markedly dysfunctional (autistic-like) while 8 had milder reading problems. All of these children appeared to respond to sound more than once: when it actually occurred and again after a delay ranging from a fraction of a second up to a full second, depending on the child. Most of the children did not seem to actually hear the sound more than once; however, there is some indication that a few children may have done so. Evidence was also found suggesting a continuum from the longer delay of autistic-like children to the briefer delay of children with reading problems.
ERIC Educational Resources Information Center
Jocius, Robin
2017-01-01
This study situates young adolescents' multimodal composing practices within two figured worlds--school and creative multimodal production. In a microanalysis of two focal students' multimodal processes and products, I trace how pedagogical, interactional, and semiotic resources both reified and challenged students' developing identities as…
Using Sociolinguistics for Exploring Gender and Culture Issues in Educational Administration.
ERIC Educational Resources Information Center
Marshall, Catherine
This paper focuses on the role of language in understanding the inequality of male and female access to positions in educational administration. By applying techniques of sociolinguistics, the paper seeks to demonstrate the potential of the microanalysis of language for identifying the assumptions, norms, and values in the culture of school…
Understanding Accountability from a Microanalysis of Power Dynamics in a Specialized STEM School
ERIC Educational Resources Information Center
Teo, Tang Wee; Osborne, Margery
2014-01-01
The central thesis of this article is that conceptualizations of accountability systems need to be more encompassing to accommodate the current diversity of school choice. This article examines an emerging type of school that specializes in advanced STEM (science, technology, engineering, and mathematics) curriculum for gifted and academically…
Early Adopters: Playing New Literacies and Pretending New Technologies in Print-Centric Classrooms
ERIC Educational Resources Information Center
Wohlwend, Karen E.
2009-01-01
In this article, semiotic analysis of children's practices and designs with video game conventions considers how children use play and drawing as spatializing literacies that make room to import imagined technologies and user identities. Microanalysis of video data of classroom interactions collected during a three year ethnographic study of…
ERIC Educational Resources Information Center
Visu-Petra, Laura; Miclea, Mircea; Cheie, Lavinia; Benga, Oana
2009-01-01
In self-paced auditory memory span tasks, the microanalysis of response timing measures represents a developmentally sensitive measure, providing insights into the development of distinct processing rates during recall performance. The current study first examined the effects of age and trait anxiety on span accuracy (effectiveness) and response…
ERIC Educational Resources Information Center
Cleary, Timothy J.; Dong, Ting; Artino, Anthony R., Jr.
2015-01-01
This study examined within-group shifts in the motivation beliefs and regulatory processes of second-year medical students as they engaged in a diagnostic reasoning activity. Using a contextualized assessment methodology called self-regulated learning microanalysis, the authors found that the 71 medical student participants showed statistically…
Using Video for Microanalysis of Teachers' Embodied Pedagogical Practices
ERIC Educational Resources Information Center
Tobin, Joseph; Hayashi, Akiko
2015-01-01
This paper briefly reviews theories of embodiment and then provides an example from our recent work on how we use video in our comparative studies of preschools to highlight embodied and implicit cultural pedagogies. The example we present focuses on how Japanese preschool teachers use the Japanese cultural practice of "mimamoru"…
Less Is More: Teachers' Influence during Peer Collaboration
ERIC Educational Resources Information Center
Lin, Tzu-Jung; Jadallah, May; Anderson, Richard C.; Baker, Amanda R.; Nguyen-Jahiel, Kim; Kim, Il-Hee; Kuo, Li-Jen; Miller, Brian W.; Dong, Ting; Wu, Xiaoying
2015-01-01
This study examined the influence of teachers' instructional moves on students' relational thinking during small-group collaborative discussions. One hundred and twenty 4th grade students and 6 teachers participated in a series of 10 discussions, generating a video-recorded corpus containing 32,511 turns for speaking. A microanalysis of a subset…
ERIC Educational Resources Information Center
Teo, Tang Wee; Osborne, Margery
2012-01-01
In this paper, we present a microanalysis of a specialized STEM (science, technology, engineering, and mathematics) high school teacher's experience of self-initiated science inquiry curriculum reform. We examine the meanings of these two constructs: "inquiry curriculum" and "curriculum change" through the process lens of interactions, actions,…
Analytical Microscopy and Imaging Science | Materials Science | NREL
Microanalysis (EPMA) for quantitative compositional analysis. It relies on wavelength-dispersive spectroscopy to Science group in NREL's Materials Science Center. Mowafak Al-Jassim Group Manager Dr. Al-Jassim manages the Analytical Microscopy and Imaging Science group with the Materials Science Center. Email | 303-384
Using Micro-Analysis in Interviewer Training: "Continuers" and Interviewer Positioning
ERIC Educational Resources Information Center
Richards, Keith
2011-01-01
Despite the recent growth of interest in the interactional construction of research interviews and advances made in our understanding of the nature of such encounters, relatively little attention has been paid to the implications of this for interviewer training, with the result that advice on interviewing techniques tends to be very general.…
Literary Translation as a Tool for Critical Language Planning
ERIC Educational Resources Information Center
Mooneeram, Roshni
2013-01-01
This paper argues that Dev Virahsawmy, an author who manipulates literary translation for the purposes of linguistic prestige formation and re-negotiation, is a critical language-policy practitioner, as his work fills an important gap in language planning scholarship. A micro-analysis of the translation of a Shakespearean sonnet into Mauritian…
NASA Astrophysics Data System (ADS)
Newbury, Dale E.; Ritchie, Nicholas W. M.
2014-09-01
Quantitative electron-excited x-ray microanalysis by scanning electron microscopy/silicon drift detector energy dispersive x-ray spectrometry (SEM/SDD-EDS) is capable of achieving high accuracy and high precision equivalent to that of the high spectral resolution wavelength dispersive x-ray spectrometer even when severe peak interference occurs. The throughput of the SDD-EDS enables high count spectra to be measured that are stable in calibration and resolution (peak shape) across the full deadtime range. With this high spectral stability, multiple linear least squares peak fitting is successful for separating overlapping peaks and spectral background. Careful specimen preparation is necessary to remove topography on unknowns and standards. The standards-based matrix correction procedure embedded in the NIST DTSA-II software engine returns quantitative results supported by a complete error budget, including estimates of the uncertainties from measurement statistics and from the physical basis of the matrix corrections. NIST DTSA-II is available free for Java-platforms at: http://www.cstl.nist.gov/div837/837.02/epq/dtsa2/index.html).
Jung, Hae-Jin; Malek, Md Abdul; Ryu, JiYeon; Kim, BoWha; Song, Young-Chul; Kim, HyeKyeong; Ro, Chul-Un
2010-07-15
Our previous work demonstrated for the first time the potential of the combined use of two techniques, attenuated total reflectance FT-IR (ATR-FT-IR) imaging and a quantitative energy-dispersive electron probe X-ray microanalysis, low-Z particle EPMA, for the characterization of individual aerosol particles. In this work, the speciation of mineral particles was performed on a single particle level for 24 mineral samples, including kaolinite, montmorillonite, vermiculite, talc, quartz, feldspar, calcite, gypsum, and apatite, by the combined use of ATR-FT-IR imaging and low-Z particle EPMA techniques. These two single particle analytical techniques provide complementary information, the ATR-FT-IR imaging on mineral types and low-Z particle EPMA on the morphology and elemental concentrations, on the same individual particles. This work demonstrates that the combined use of the two single particle analytical techniques can powerfully characterize externally heterogeneous mineral particle samples in detail and has great potential for the characterization of airborne mineral dust particles.
Ryu, JiYeon; Ro, Chul-Un
2009-08-15
This work demonstrates the practical applicability of the combined use of attenuated total reflectance (ATR) FT-IR imaging and low-Z particle electron probe X-ray microanalysis (EPMA) techniques for the characterization of individual aerosol particles. These two single particle analytical techniques provide complementary information on the physicochemical characteristics of the same individual particles, that is, the low-Z particle EPMA for the information on the morphology and elemental concentration and the ATR-FT-IR imaging on the functional group, molecular species, and crystal structure. It was confirmed that the ATR-FT-IR imaging technique can provide sufficient FT-IR absorption signals to perform molecular speciation of individual particles of micrometer size when applied to artificially generated aerosol particles such as ascorbic acid and NaNO(3) aerosols. An exemplar indoor atmospheric aerosol sample was investigated to demonstrate the practical feasibility of the combined application of ATR-FT-IR imaging and low-Z particle EPMA techniques for the characterization of individual airborne particles.
Otang, Wilfred M.; Grierson, Donald S.; Ndip, Roland N.
2011-01-01
In this study, the effect of the acetone extract of Arctotis arctotoides (L.f.) O. Hoffm. (Asteraceae) on the growth and ultrastructure of some opportunistic fungi associated with HIV/AIDS was analyzed by means of scanning electron microscope (SEM). Remarkable morphological alterations in the fungal mycelia which were attributed to the loss of cell wall strength ranged from loss of turgidity and uniformity, collapse of entire hyphae to evident destruction of the hyphae. The elements responsible for giving the fungi their characteristic virulence were detected and quantified by energy dispersive X-ray microanalysis techniques. X-ray microanalysis showed the specific spectra of sodium, potassium and sulfur as the principal intersection of the four pathogenic fungi studied. Since these ions have the potential of fostering fungal invasion by altering the permeability of hosts’ membranes, their presence was considered inherent to the pathogenicity of the opportunistic fungi. Hence, these findings indicate the potential of the crude extract of A. arctotoides in preventing fungal invasion and subsequent infection of host’s membranes. PMID:22272130
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roomans, G.M.; Wei, X.; Ceder, O.
The chronically reserpinized rat has been suggested as an animal model for cystic fibrosis. X-ray microanalysis of thick and thin cryosections was carried out to assess elemental redistribution in the submandibular glands and the pancreas of reserpinized rats at the cellular and subcellular level. In the submandibular gland of reserpinized rats, calcium and magnesium concentrations were significantly elevated. Mucus globules, secretory granules, and endoplasmic reticulum were the primary sites of the localization of excess calcium and magnesium. A significant potassium loss from the gland had occurred, particularly from the serous cells. Electron microscopy of conventionally prepared tissue showed marked swellingmore » of the endoplasmic reticulum, especially in mucous cells. The elemental changes in the pancreatic acinar cells of reserpinized rats were reminiscent of elemental redistribution connected with cell death: increased levels of sodium, chlorine, and calcium and decreased levels of magnesium and potassium. Ultrastructural changes included swelling of the endoplasmic reticulum and obstruction of the acinar lumen. It is concluded tha elemental redistribution in chronically reserpinized rats presents interesting parallels with cystic fibrosis.« less
Lukács, G L; Zs-Nagy, I; Steiber, J; Györi, F; Balázs, G
1996-01-01
Energy dispersive X-ray microanalysis was performed on altogether 42 surgically removed tissue specimens of 32 patients, which were taken either from intact thyroid parts or various histopathologically verified tumors of the thyroid gland. The tissue specimens were processed with the freeze-fracture-freeze-drying technique and then analyzed in the so-called bulk specimen form. The studies were carried out during the years 1980-81, when intranuclear monovalent ionic composition was studied in detail. From the retained total elemental peak list, it was possible to calculate retrospectively the relative intranuclear Mg and P contents. The data processed by nested (hierarchical) analysis of variance show that the intranuclear Mg content of the 5 diagnostic groups (normal thyroid tissue, thyroiditis, benign adenomas, differentiated carcinomas and undifferentiated thyroid tumors) increases significantly, in parallel with the increasing malignancy, but the P content remains unchanged. One can conclude that the elevated intranuclear Mg content in the tumors of high malignancy may be of diagnostic importance, and a warning signal for the therapeutic approaches based on Mg-supplementations.
Humplik, Thomas; Stirrup, Emily K.; Grillet, Anne M.; ...
2016-04-30
The transient transport of electrolytes in thermally-activated batteries is studied in this paper using electron probe micro-analysis (EPMA), demonstrating the robust capability of EPMA as a useful tool for studying and quantifying mass transport within porous materials, particularly in difficult environments where classical flow measurements are challenging. By tracking the mobility of bromine and potassium ions from the electrolyte stored within the separator into the lithium silicon anode and iron disulfide cathode, we are able to quantify the transport mechanisms and physical properties of the electrodes including permeability and tortuosity. Due to the micron to submicron scale porous structure ofmore » the initially dry anode, a fast capillary pressure driven flow is observed into the anode from which we are able to set a lower bound on the permeability of 10 -1 mDarcy. The transport into the cathode is diffusion-limited because the cathode originally contained some electrolyte before activation. Finally, using a transient one-dimensional diffusion model, we estimate the tortuosity of the cathode electrode to be 2.8 ± 0.8.« less
Application of Quantitative Analytical Electron Microscopy to the Mineral Content of Insect Cuticle
NASA Astrophysics Data System (ADS)
Rasch, Ron; Cribb, Bronwen W.; Barry, John; Palmer, Christopher M.
2003-04-01
Quantification of calcium in the cuticle of the fly larva Exeretonevra angustifrons was undertaken at the micron scale using wavelength dispersive X-ray microanalysis, analytical standards, and a full matrix correction. Calcium and phosphorus were found to be present in the exoskeleton in a ratio that indicates amorphous calcium phosphate. This was confirmed through electron diffraction of the calcium-containing tissue. Due to the pragmatic difficulties of measuring light elements, it is not uncommon in the field of entomology to neglect the use of matrix corrections when performing microanalysis of bulk insect specimens. To determine, firstly, whether such a strategy affects the outcome and secondly, which matrix correction is preferable, phi-rho (z) and ZAF matrix corrections were contrasted with each other and without matrix correction. The best estimate of the mineral phase was found to be given by using the phi-rho (z) correction. When no correction was made, the ratio of Ca to P fell outside the range for amorphous calcium phosphate, possibly leading to flawed interpretation of the mineral form when used on its own.
NASA Astrophysics Data System (ADS)
Llovet, Xavier; Matthews, Michael B.; Čeh, Miran; Langer, Enrico; Žagar, Kristina
2016-02-01
This volume of the IOP Conference Series: Materials Science and Engineering contains papers from the 14th Workshop of the European Microbeam Analysis Society (EMAS) on Modern Developments and Applications in Microbeam Analysis which took place from the 3rd to the 7th of May 2015 in the Grand Hotel Bernardin, Portorož, Slovenia. The primary aim of this series of workshops is to assess the state-of-the-art and reliability of microbeam analysis techniques. The workshops also provide a forum where students and young scientists starting out on a career in microbeam analysis can meet and discuss with the established experts. The workshops have a unique format comprising invited plenary lectures by internationally recognized experts, poster presentations by the participants and round table discussions on the key topics led by specialists in the field.This workshop was organized in collaboration with the Jožef Stefan Institute and SDM - Slovene Society for Microscopy. The technical programme included the following topics: electron probe microanalysis, STEM and EELS, materials applications, cathodoluminescence and electron backscatter diffraction (EBSD), and their applications. As at previous workshops there was also a special oral session for young scientists. The best presentation by a young scientist was awarded with an invitation to attend the 2016 Microscopy and Microanalysis meeting at Columbus, Ohio. The prize went to Shirin Kaboli, of the Department of Metals and Materials Engineering of McGill University (Montréal, Canada), for her talk entitled "Electron channelling contrast reconstruction with electron backscattered diffraction". The continuing relevance of the EMAS workshops and the high regard in which they are held internationally can be seen from the fact that 71 posters from 16 countries were on display at the meeting and that the participants came from as far away as Japan, Canada, USA, and Australia. A selection of participants with posters was invited to give a short oral presentation of their work in three dedicated sessions. The prize for the best poster was an invitation to participate in the 24th Australian Conference on Microscopy and Microanalysis (ACMM 24) in Melbourne, Australia. The prize was awarded to Aurélien Moy of the University of Montpellier (France) for his poster entitled: "Standardless quantification of heavy metals by electron probe microanalysis". This proceedings volume contains the full texts of 9 of the invited plenary lectures and of 12 papers on related topics originating from the posters presented at the workshop. All the papers have been subjected to peer review by a least two referees.
Photothermal method for in situ microanalysis of the chemical composition of coal samples
Amer, Nabil M.
1986-01-01
Successive minute regions (13) along a scan path on a coal sample (11) are individually analyzed, at a series of different depths if desired, to determine chemical composition including the locations, sizes and distributions of different maceral inclusions (12). A sequence of infrared light pulses (17) of progressively changing wavelengths is directed into each minute region (13) and a probe light beam (22) is directed along the sample surface (21) adjacent the region (13). Infrared wavelengths at which strong absorption occurs in the region (13) are identified by detecting the resulting deflections (.phi.) of the probe beam (22) caused by thermally induced index of refraction changes in the air or other medium (19) adjacent the region (13). The detected peak absorption wavelengths are correlated with known characteristic peak absorption wavelengths of specific coal constituents to identify the composition of each such minute region (13) of the sample (11). The method enables rapid, convenient and non-destructive analyses of coal specimens to facilitate mining, processing and utilization of coals.
Photothermal method for in situ microanalysis of the chemical composition of coal samples
Amer, N.M.
1983-10-25
Successive minute regions along a scan path on a coal sample are individually analyzed, at a series of different depths if desired, to determine chemical composition including the locations, sizes and distributions of different maceral inclusions. A sequence of infrared light pulses of progressively changing wavelengths is directed into each minute region and a probe light beam is directed along the sample surface adjacent the region. Infrared wavelengths at which strong absorption occurs in the region are identified by detecting the resulting deflections of the probe beam caused by thermally induced index of refraction changes in the air or other medium adjacent the region. The detected peak absorption wavelengths are correlated with known characteristic peak absorption wavelengths of specific coal constituents to identify the composition of each such minute region of the sample. The method enables rapid, convenient and non-destructive analyses of coal specimens to facilitate mining, processing and utilization of coals. 2 figures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ifka, Tomáš, E-mail: tomas.ifka@savba.sk; Palou, Martin; Baraček, Jan
2014-05-01
The formation of Portland clinker phases has taken place in thermodynamically non-equilibrium state between macro-oxides CaO, SiO{sub 2}, Al{sub 2}O{sub 3}, Fe{sub 2}O{sub 3} and MgO from raw meal and P{sub 2}O{sub 5} from bone meal. The paper deals with the study of clinker minerals as solid solutions with P{sub 2}O{sub 5} during the clinkerization of raw mixture containing bone meal (BM). The ash of BM has contributed as a raw material to the formation of different clinker phases. Electron probe microanalysis (EPMA) method was used to determine the preferential distribution of P{sub 2}O{sub 5} inside calcium silicate phases andmore » its influence upon C{sub 2}S/C{sub 3}S ratio. Basing on these results, composition of solid solution of C{sub 2}S and C{sub 3}S was established.« less
Preparation of nanostructured and nanosheets of MoS2 oxide using oxidation method.
Amini, Majed; Ramazani S A, Ahmad; Faghihi, Morteza; Fattahpour, Seyyedfaridoddin
2017-11-01
Molybdenum disulfide (MoS 2 ), a two-dimensional transition metal has a 2D layered structure and has recently attracted attention due to its novel catalytic properties. In this study, MoS 2 has been successfully intercalated using chemical and physical intercalation techniques, while enhancing its surface properties. The final intercalated MoS 2 is of many interests because of its low-dimensional and potential properties in in-situ catalysis. In this research, we report different methods to intercalate the layers of MoS 2 successfully using acid-treatment, ultrasonication, oxidation and thermal shocking. The other goal of this study is to form SO bonds mainly because of expected enhanced in-situ catalytic operations. The intercalated MoS 2 is further characterized using analyses such as Fourier Transform Infrared Spectroscopy (FTIR), Raman, Contact Angle, X-ray diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM), Energy Dispersive X-Ray Microanalysis (EDAX), Transmission electron microscopy (TEM), and BET. Copyright © 2017. Published by Elsevier B.V.
Operando analysis of lithium profiles in Li-ion batteries using nuclear microanalysis
NASA Astrophysics Data System (ADS)
Surblé, S.; Paireau, C.; Martin, J.-F.; Tarnopolskiy, V.; Gauthier, M.; Khodja, H.; Daniel, L.; Patoux, S.
2018-07-01
A wide variety of analytical methods are used for studying the behavior of lithium-ion batteries and particularly the lithium ion distribution in the electrodes. However, the development of in situ/operando techniques proved powerful to understand the mechanisms responsible for the lithium trapping and then the aging phenomenon. Herein, we report the design of an electrochemical cell to profile operando lithium concentration in LiFePO4 electrodes using Ion Beam Analysis techniques. The specificity of the cell resides in its ability to not only provide qualitative information about the elements present but above all to measure quantitatively their content in the electrode at different states of charge of the battery. The nuclear methods give direct information about the degradation of the electrolyte and particularly reveal inhomogeneous distributions of lithium and fluorine along the entire thickness of the electrode. Higher concentrations of fluorine is detected near the electrode/electrolyte interface while a depletion of lithium is observed near the current collector at high states of charge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Odom, R.W.
1991-06-04
The objective of the research was to develop quantitative microanalysis methods for dielectric thin films using the laser ionization mass spectrometry (LIMS) technique. The research involved preparation of thin (5,000 A) films of SiO2, Al2O3, MgF2, TiO2, Cr2O3, Ta2O5, Si3N4, and ZrO2, and doping these films with ion implant impurities of 11B, 40Ca, 56Fe, 68Zn, 81Br, and 121Sb. Laser ionization mass spectrometry (LIMS), secondary ion mass spectrometry (SIMS) and Rutherford backscattering spectrometry (RBS) were performed on these films. The research demonstrated quantitative LIMS analysis down to detection levels of 10-100 ppm, and led to the development of (1) a compoundmore » thin film standards product line for the performing organization, (2) routine LIMS analytical methods, and (3) the manufacture of high speed preamplifiers for time-of-flight mass spectrometry (TOF-MS) techniques.« less
To Jump the Wave or Not: Teachers' Perceptions of Research Evidence in Education
ERIC Educational Resources Information Center
Mausethagen, Sølvi; Raaen, Finn Daniel
2017-01-01
This article presents a microanalysis of how a group of primary school teachers deals with research evidence in their work. Based on analysis of a group of Norwegian teachers' interactions over issues of educational research and research-based knowledge, we find that teachers' representations of educational research particularly center on the…
"The Proper Way To Pray"; Description of a Korean-American Youth Service Prayer.
ERIC Educational Resources Information Center
Stone, Holly
1992-01-01
A youth pastor's prayer was analyzed using techniques of microanalysis to reveal sociocompetencies required of Korean American teenagers in a youth church service. It was found that the markers of context within a service included changes in discourse, prosody, posture, and body movements. The teenagers, who with the youth pastor responded to and…
D. L. Johnson; D. J. Nowak; V. A. Jouraeva
1999-01-01
Leaves from twenty-three deciduous tree species and five conifer species were collected within a limited geographic range (1 km radius) and evaluated for possible application of scanning electron microscopy and X-ray microanalysis techniques of individual particle analysis (IPA). The goal was to identify tree species with leaves suitable for the automated...
ERIC Educational Resources Information Center
Wise, Alyssa Friend; Perera, Nishan; Hsiao, Ying-Ting; Speer, Jennifer; Marbouti, Farshid
2012-01-01
This study presents three case studies of students' participation patterns in an online discussion to address the gap in our current understanding of how "individuals" experience asynchronous learning environments. Cases were constructed via microanalysis of log-file data, post contents, and the evolving discussion structure. The first student was…
Cyber Intelligence Research Consortium (Poster)
2014-10-24
OCT 2014 2. REPORT TYPE N/A 3. DATES COVERED 4. TITLE AND SUBTITLE Cyber Intelligence Research Consortium Poster 5a. CONTRACT NUMBER 5b...nontechnical audiences Environmental Context Provides scope for the analytical effort • Highlights the importance of context - technical and nontechnical... Environmental Context Reporting & Feedback Macroanalysis Microanalysis Data Gathering Steering Committee: Guide Consortium activities and plan for future
ERIC Educational Resources Information Center
Moore-Russo, Deborah; Conner, AnnaMarie; Rugg, Kristina I.
2011-01-01
Developing deep conceptual understanding of what Ma (1999) calls fundamental mathematics is a well-accepted goal of teacher education. This paper presents a microanalysis of an intriguing episode within a course designed to encourage such understanding. An adaptation of Krummheuer's (1995) elaboration of Toulmin's (1958/2003) diagrams is used to…
NASA Astrophysics Data System (ADS)
Latypov, R. A.; Ageev, E. V.; Latypova, G. R.; Altukhov, A. Yu.; Ageeva, E. V.
2017-12-01
The powder fabricated by electric discharge dispersion of the wastes of a VK8 hard alloy is studied by electron-probe microanalysis. This powder formed by electric discharge dispersion in kerosene mainly contains tungsten and carbon and has low contents of oxygen, cobalt, and iron.
ERIC Educational Resources Information Center
Bohn, Mariko T.
2004-01-01
This article examines the influence of Japanese cultural values, beliefs, and educational style on Japanese students learning English as a second language in an American classroom. In contrast to the Japanese students' high motivation to learn English, their classroom behavior and roles reflect their own cultural perspectives rather than the…
Planning an Information System for a Small College. AIR Forum Paper 1978.
ERIC Educational Resources Information Center
Toombs, William; Sagaria, Mary Ann
Data collection and analyses of college records and interviewing provided a cross-sectional view of data flow and information transmission in a small college. The micro-analysis of interview data, forms, and reports yielded a picture of functional relationships, clarified loci of decision making, and stipulated functions served by data items.…
KF addition to Cu2SnS3 thin films prepared by sulfurization process
NASA Astrophysics Data System (ADS)
Nakashima, Mitsuki; Fujimoto, Junya; Yamaguchi, Toshiyuki; Sasano, Junji; Izaki, Masanobu
2017-04-01
Cu2SnS3 thin films were fabricated by sulfurization with KF addition and applied to photovoltaic devices. Two methods, two-stage annealing and the use of four-layer precursors, were employed, and the quantity of NaF and KF and the annealing temperature were changed. By electron probe microanalysis (EPMA), the Cu/Sn mole ratio was found to range from 0.81 to 1.51. The X-ray diffraction (XRD) patterns and Raman spectra indicated that the fabricated thin films had a monoclinic Cu2SnS3 structure. The Cu2SnS3 thin films fabricated by two-stage annealing had a close-packed structure and a pinhole-free surface morphology. The best solar cell in this study showed V oc of 293 mV, which surpassed the previously reported value.
ERIC Educational Resources Information Center
de Barbaro, Kaya; Chiba, Andrea; Deak, Gedeon O.
2011-01-01
A current theory of attention posits that several micro-indices of attentional vigilance are dependent on activation of the locus coeruleus, a brainstem nucleus that regulates cortical norepinephrine activity (Aston-Jones et al., 1999). This theory may account for many findings in the infant literature, while highlighting important new areas for…
ERIC Educational Resources Information Center
Peters-Burton, Erin E.; Botov, Ivan S.
2017-01-01
Elementary teachers in the United States are tasked with teaching all core subject matter and have training that involves many topics, which may limit the depth of their subject matter knowledge. Since they have low content knowledge, they often feel less confident about teaching technical subject matter, such as science (Bleicher "Journal of…
Understanding Thermal Transport in Graded, Layered and Hybrid Materials
2014-04-01
interfacial chemistries, including metallic and carbide layers, and; (iv) mimic the observed interface structure on a TDTR specimen by manipulating the...surface carbides , which were extracted from several different composites via acid dissolution of Cu, continued throughout the last 12 months of the...effort. The previously-reported electron probe microanalysis (EPMA) based techniques were employed to estimate the interfacial carbide layer thickness
Energy-Dispersive Spectrometry from Then until Now: A Chronology of Innovation
NASA Astrophysics Data System (ADS)
Friel, John J.; Mott, Richard B.
1998-11-01
: As part of the Microbeam Analysis Society (MAS) symposium marking 30 years of energy-dispersive spectrometry (EDS), this article reviews many innovations in the field over those years. Innovations that added a capability previously not available to the microanalyst are chosen for further description. Included are innovations in both X-ray microanalysis and digital imaging using the EDS analyzer.
ERIC Educational Resources Information Center
Hooper, Barbara R.; Greene, David; Sample, Pat L.
2014-01-01
The interconnected nature of knowledge in the health sciences is not always reflected in how curricula, courses, and learning activities are designed. Thus have scholars advocated for more explicit attention to connection-making, or integration, in teaching and learning. However, conceptual and empirical work to guide such efforts is limited. This…
ERIC Educational Resources Information Center
Valentovich, Valentina; Goldberg, Wendy A.; Garfin, Dana Rose; Guo, Yuqing
2018-01-01
A dyadic microanalysis approach was used to examine emotion coregulation processes in mother-child interactions in relation to children's maladaptive behaviors. Seventy-two mother-child dyads (46 children with Autism Spectrum Disorder (ASD); 26 neurotypical children) were previously videotaped in a semi-structured play procedure at home and…
NASA Astrophysics Data System (ADS)
Shih, T. I.; Lin, Y. C.; Duh, J. G.; Hsu, Tom
2006-10-01
Lead-free solder bumps have been widely used in current flip-chip technology (FCT) due to environmental issues. Solder joints after temperature cycling tests were employed to investigate the interfacial reaction between the Ti/Ni/Cu under-bump metallization and Sn-Ag-Cu solders. The interfacial morphology and quantitative analysis of the intermetallic compounds (IMCs) were obtained by electron probe microanalysis (EPMA) and field emission electron probe microanalysis (FE-EPMA). Various types of IMCs such as (Cu1-x,Agx)6Sn5, (Cu1-y,Agy)3Sn, and (Ag1-z,Cuz)3Sn were observed. In addition to conventional I-V measurements by a special sample preparation technique, a scanning electron microscope (SEM) internal probing system was introduced to evaluate the electrical characteristics in the IMCs after various test conditions. The electrical data would be correlated to microstructural evolution due to the interfacial reaction between the solder and under-bump metallurgy (UBM). This study demonstrated the successful employment of an internal nanoprobing approach, which would help further understanding of the electrical behavior within an IMC layer in the solder/UBM assembly.
Ghorai, Suman; Wang, Bingbing; Tivanski, Alexei; Laskin, Alexander
2014-02-18
Atmospheric aging of naturally emitted marine aerosol often leads to formation of internally mixed particles composed of sea salts and water-soluble organic compounds of anthropogenic origin. Mixing of sea salt and organic components has profound effects on the evolving chemical composition and hygroscopic properties of the resulted particles, which are poorly understood. Here, we have studied chemical composition and hygroscopic properties of laboratory generated NaCl particles mixed with malonic acid (MA) and glutaric acid (GA) at different molar ratios using micro-FTIR spectroscopy, atomic force microscopy, and X-ray elemental microanalysis. Hygroscopic properties of internally mixed NaCl and organic acid particles were distinctly different from pure components and varied significantly with the type and amount of organic compound present. Experimental results were in a good agreement with the AIM modeling calculations of gas/liquid/solid partitioning in studied systems. X-ray elemental microanalysis of particles showed that Cl/Na ratio decreased with increasing organic acid component in the particles with MA yielding lower ratios relative to GA. We attribute the depletion of chloride to the formation of sodium malonate and sodium glutarate salts resulted by HCl evaporation from dehydrating particles.
Resistance in mango against infection by Ceratocystis fimbriata.
Araujo, Leonardo; Bispo, Wilka Messner Silva; Cacique, Isaías Severino; Moreira, Wiler Ribas; Rodrigues, Fabrício Ávila
2014-08-01
This study was designed to characterize and describe host cell responses of stem tissue to mango wilt disease caused by the fungus Ceratocystis fimbriata in Brazil. Disease progress was followed, through time, in inoculated stems for two cultivars, 'Ubá' (field resistant) and 'Haden' (field susceptible). Stem sections from inoculated areas were examined using fluorescence light microscopy and transmission and scanning electron microscopy, coupled with energy-dispersive X-ray microanalysis. Tissues from Ubá colonized by C. fimbriata had stronger autofluorescence than those from Haden. The X-ray microanalysis revealed that the tissues of Ubá had higher levels of insoluble sulfur and calcium than those of Haden. Scanning electron microscopy revealed that fungal hyphae, chlamydospores (aleurioconidia), and perithecia-like structures of C. fimbriata were more abundant in Haden relative to Ubá. At the ultrastructural level, pathogen hyphae had grown into the degraded walls of parenchyma, fiber cells, and xylem vessels in the tissue of Haden. However, in Ubá, plant cell walls were rarely degraded and hyphae were often surrounded by dense, amorphous granular materials and hyphae appeared to have died. Taken together, the results of this study characterize the susceptible and resistant basal cell responses of mango stem tissue to infection by C. fimbriata.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghorai, Suman; Wang, Bingbing; Tivanski, Alexei V.
Atmospheric aging of naturally emitted marine aerosol often leads to formation of internally mixed particles composed of sea salts and water soluble organic compounds of anthropogenic origin. Mixing of sea salt and organic components has profound effects on the evolving chemical composition and hygroscopic properties of the resulted particles, which are poorly understood. Here, we have studied chemical composition and hygroscopic properties of laboratory generated NaCl particles mixed with malonic acid (MA) and glutaric acid (GA) at different molar ratios using micro-FTIR spectroscopy and X-ray elemental microanalysis.Hygroscopic properties of inte rnally mixed NaCl and organic acid particles were distinctly differentmore » from pure components and varied significantly with the type and amount of organic compound present. Experimental results were in a good agreement with the AIM modeling calculations of gas/liquid/solid partitioning in studied systems. X-ray elemental microanalysis of particles showed that Cl/Na ratio decreased with increasing organic acid component in the particles with MA yielding lower ratios relative to GA. We attribute the depletion of chloride to the formation of Na-malonate and Na-glutarate salts resulted by HCl evaporation from dehydrating particles.« less
Electron-Excited X-Ray Microanalysis at Low Beam Energy: Almost Always an Adventure!
Newbury, Dale E; Ritchie, Nicholas W M
2016-08-01
Scanning electron microscopy with energy-dispersive spectrometry has been applied to the analysis of various materials at low-incident beam energies, E 0≤5 keV, using peak fitting and following the measured standards/matrix corrections protocol embedded in the National Institute of Standards and Technology Desktop Spectrum Analyzer-II analytical software engine. Low beam energy analysis provides improved spatial resolution laterally and in-depth. The lower beam energy restricts the atomic shells that can be ionized, reducing the number of X-ray peak families available to the analyst. At E 0=5 keV, all elements of the periodic table except H and He can be measured. As the beam energy is reduced below 5 keV, elements become inaccessible due to lack of excitation of useful characteristic X-ray peaks. The shallow sampling depth of low beam energy microanalysis makes the technique more sensitive to surface compositional modification due to formation of oxides and other reaction layers. Accurate and precise analysis is possible with the use of appropriate standards and by accumulating high count spectra of unknowns and standards (>1 million counts integrated from 0.1 keV to E 0).
Toplisek, Tea; Drazic, Goran; Novak, Sasa; Kobe, Spomenka
2008-01-01
A composite material made from continuous monolithic silicone carbide (SiC) fibers and a SiC-based matrix (SiC(f)/SiC), was prepared using a novel technique, i.e. adapted dip coating and infiltration of SiC fibers with a water suspension containing SiC particles and a sintering additive. This kind of material could be used in the first-wall blanket of a future fusion reactor. Using magnetron sputtering, the SiC fibers were coated with various thin layers (TiC, CrN, CrC, WC, DLC-diamond-like carbon) of the interface material by physical vapor deposition (PVD). Using scanning and transmission electron microscopy and microanalysis, detailed microstructural studies of the fiber-matrix interface were performed. Both samples, with coated and uncoated fibers, were examined under a load. The microcracks introduced by the Vickers indenter continued their path through the fibers, and thus caused the failure of the composite material, in the case of the uncoated fibers or deviated from their primary direction at the fiber-matrix interface in the case of the coated fibers.
NASA Technical Reports Server (NTRS)
Prakash, OM, II
1991-01-01
Three linear controllers are desiged to regulate the end effector of the Space Shuttle Remote Manipulator System (SRMS) operating in Position Hold Mode. In this mode of operation, jet firings of the Orbiter can be treated as disturbances while the controller tries to keep the end effector stationary in an orbiter-fixed reference frame. The three design techniques used include: the Linear Quadratic Regulator (LQR), H2 optimization, and H-infinity optimization. The nonlinear SRMS is linearized by modelling the effects of the significant nonlinearities as uncertain parameters. Each regulator design is evaluated for robust stability in light of the parametric uncertanties using both the small gain theorem with an H-infinity norm and the less conservative micro-analysis test. All three regulator designs offer significant improvement over the current system on the nominal plant. Unfortunately, even after dropping performance requirements and designing exclusively for robust stability, robust stability cannot be achieved. The SRMS suffers from lightly damped poles with real parametric uncertainties. Such a system renders the micro-analysis test, which allows for complex peturbations, too conservative.
NASA Technical Reports Server (NTRS)
Hassan, Razi A.
1991-01-01
The Solid Rocket Booster Range Safety System (SRBRSS) uses a lithium/poly-carbon monofluoride primary battery as a source of electrical power. After cell fabrication and activation, some battery cells have shown self discharge. One possible source of this cell discharge has been suggested to be the formation and growth of a conducting crystallized chemical compound across the glass bead insulator, electrically shorting the glass bead to the casing. This laboratory has begun an analysis of this compound, the glass seal holding the cathode into place, and the cell electrolyte, using Fast Fourier Transform Infrared (FFTIR) Analysis, Rutherford Backscattering Spectroscopy (RBS), and Nuclear Reaction Microanalysis. Preliminary measurements have confirmed the existence of lithium, nitrogen, fluorine, and oxygen on a reddish-brown deposit covering parts of the glass seal holding the positive electrode in place. Cells using Li metal electrodes, have many advantages over conventional primary batteries. One principal disadvantage of using Li batteries on a commercial basis would be the environmental impact of the fluorocarbon material. Another would be the relatively high expense of (CF)n.
Selective binding of Ca2+, Zn2+, Cu2+ and K+ by the physodes of the green alga Mougeotia scalaris.
Tretyn, A; Grolig, F; Magdowski, G; Wagner, G
1996-01-01
Cells of the zygnematophycean green alga Mougeotia contain numerous globules with polyphenolic matrix, which resemble physodes. In order to analyse the capability of this compartment to sequester various ions, trichomes of Mougeotia scalaris were either fixed for X-ray microanalysis simultaneously in 2% glutardialdehyde/1% OsO4 in phosphate buffers of different K+/Na(+)-ratios, or embedded directly (fresh material) in Nanoplast resin. In addition, fixed material was treated with potassium antimonate and Ca2+ localization was examined by electron microscopic cytochemistry. A Ca(2+)-depletion upon fixation at different K+/Na(+)-ratios resulted in selective uptake of potassium, but not sodium. Consistent with earlier findings, calcium-binding by the polyphenolic physode matrix does not depend merely on electric charge but also on the presence of protonated/deprotonated phenolic groups, together with ester-linked carbonyl oxygen, which seem to be good candidates for a co-ordinate type of calcium-binding. Nanoplast embedding turned out to be the most adequate and fastest preparation for X-ray microanalysis and, apart from retaining calcium, allowed the detection of zinc and copper inside the physodes.
Hunsche, Mauricio; Noga, Georg
2009-12-01
In the present study the principle of energy dispersive X-ray microanalysis (EDX), i.e. the detection of elements based on their characteristic X-rays, was used to localise and quantify organic and inorganic pesticides on enzymatically isolated fruit cuticles. Pesticides could be discriminated from the plant surface because of their distinctive elemental composition. Findings confirm the close relation between net intensity (NI) and area covered by the active ingredient (AI area). Using wide and narrow concentration ranges of glyphosate and glufosinate, respectively, results showed that quantification of AI requires the selection of appropriate regression equations while considering NI, peak-to-background (P/B) ratio, and AI area. The use of selected internal standards (ISs) such as Ca(NO(3))(2) improved the accuracy of the quantification slightly but led to the formation of particular, non-typical microstructured deposits. The suitability of SEM-EDX as a general technique to quantify pesticides was evaluated additionally on 14 agrochemicals applied at diluted or regular concentration. Among the pesticides tested, spatial localisation and quantification of AI amount could be done for inorganic copper and sulfur as well for the organic agrochemicals glyphosate, glufosinate, bromoxynil and mancozeb. (c) 2009 Society of Chemical Industry.
Micro and bulk analysis of prostate tissues classified as hyperplasia
NASA Astrophysics Data System (ADS)
Kwiatek, W. M.; Banaś, A.; Banaś, K.; Cinque, G.; Dyduch, G.; Falkenberg, G.; Kisiel, A.; Marcelli, A.; Podgórczyk, M.
2007-07-01
BPH (Benign Prostatic Hyperplasia) is the most common benign neoplasm (non cancerous enlargement of the prostate gland), whose prevalence increases with age. The gland, when increased in size, exerts pressure on the urethra, causing obstruction to urine flow. The latter may result in severe urinary tract and kidney conditions. In this work prostate samples from patients diagnosed with BPH were analyzed using synchrotron radiation. Micro-analysis of the hyperplastic samples was carried out on the L-beam line at HASYLAB, DESY (Germany), while bulk analysis on selected samples was performed at the DRX2 beamline at LNF, Frascati (Italy). Microanalysis with a mono-energetic beam 15 μm in diameter confirmed that concentrations of certain elements, such as S, Mn, Cu, Fe and Zn, are good indicators of pathological disorders in prostate tissue that may be considered effective tracers of developing compliant. The concentrations of Mn, Cu, Fe and Zn are higher in hyperplastic tissues, as compared to normal ones, while for sulphur the opposite is observed. Additionally, Fe and S K-edge XANES (X-ray Absorption Near Edge Structure) spectroscopy experiments were carried out in order to determine the chemical speciation of these elements in our samples.
Introduction: A Symposium in Honor of Professor Sir John Meurig Thomas
NASA Astrophysics Data System (ADS)
Gai, P. L.; Saka, H.; Tomokiyo, Y.; Boyes, E. D.
2002-02-01
This issue is dedicated to Professor Sir John Meurig Thomas for his renowned contributions to electron microscopy in the chemical sciences. It is a collection of peer-reviewed leading articles in electron microscopy, based on the presentations at the Microscopy and Microanalysis (M&M) 2000 symposium, which was held to honor Professor Thomas's exceptional scientific leadership and wide-ranging fundamental contributions in the chemical applications of electron microscopy.The issue contains key papers by leading international researchers on the recent developments and applications of electron microscopy in the solid state and liquid state sciences. They include synthesis and characterization of silicon nitride nanorods, nanostructures of amorphous silica, electron microscopy studies of nanoscale structure and chemistry of Pt-Ru electrocatalysts of interest in direct methanol fuel cells, development of in situ wet-environmental transmission electron microscopy for the first nanoscale studies of dynamic liquid-catalyst reactions, strain analysis of silicon by finite element method and energy filtering convergent beam electron diffraction, applications of chemistry with electron microscopy, bismuth nanowires for applications in nanoelectronics technology, synthesis and characterization of quantum dots for superlattices and in situ electron microscopy at very high temperatures to study the motion of W5Si3 on [alpha][beta]-SiN3 substrates.We thank all the participants, including the invited speakers, contributors, and session chairs, who made the symposium successful. We also thank the authors and reviewers of the papers who worked assiduously towards the publication of this issue.We are very grateful to the Microscopy Society of America (MSA) for providing the opportunity to honor Professor Sir John Meurig Thomas. Organizational support from the MSA is also gratefully acknowledged.We thank Charles E. Lyman, editor in chief of Microscopy and Microanalysis for coordinating the publication of this issue and the entire journal staff for their efforts.
Measurement of Total Calcium in Neurons by Electron Probe X-ray Microanalysis
Pivovarova, Natalia B.; Andrews, S. Brian
2013-01-01
In this article the tools, techniques, and instruments appropriate for quantitative measurements of intracellular elemental content using the technique known as electron probe microanalysis (EPMA) are described. Intramitochondrial calcium is a particular focus because of the critical role that mitochondrial calcium overload plays in neurodegenerative diseases. The method is based on the analysis of X-rays generated in an electron microscope (EM) by interaction of an electron beam with the specimen. In order to maintain the native distribution of diffusible elements in electron microscopy specimens, EPMA requires "cryofixation" of tissue followed by the preparation of ultrathin cryosections. Rapid freezing of cultured cells or organotypic slice cultures is carried out by plunge freezing in liquid ethane or by slam freezing against a cold metal block, respectively. Cryosections nominally 80 nm thick are cut dry with a diamond knife at ca. -160 °C, mounted on carbon/pioloform-coated copper grids, and cryotransferred into a cryo-EM using a specialized cryospecimen holder. After visual survey and location mapping at ≤-160 °C and low electron dose, frozen-hydrated cryosections are freeze-dried at -100 °C for ~30 min. Organelle-level images of dried cryosections are recorded, also at low dose, by means of a slow-scan CCD camera and subcellular regions of interest selected for analysis. X-rays emitted from ROIs by a stationary, focused, high-intensity electron probe are collected by an energy-dispersive X-ray (EDX) spectrometer, processed by associated electronics, and presented as an X-ray spectrum, that is, a plot of X-ray intensity vs. energy. Additional software facilitates: 1) identification of elemental components by their "characteristic" peak energies and fingerprint; and 2) quantitative analysis by extraction of peak areas/background. This paper concludes with two examples that illustrate typical EPMA applications, one in which mitochondrial calcium analysis provided critical insight into mechanisms of excitotoxic injury and another that revealed the basis of ischemia resistance. PMID:24300079
Computer templates in chronic disease management: ethnographic case study in general practice
Swinglehurst, Deborah; Greenhalgh, Trisha; Roberts, Celia
2012-01-01
Objective To investigate how electronic templates shape, enable and constrain consultations about chronic diseases. Design Ethnographic case study, combining field notes, video-recording, screen capture with a microanalysis of talk, body language and data entry—an approach called linguistic ethnography. Setting Two general practices in England. Participants and methods Ethnographic observation of administrative areas and 36 nurse-led consultations was done. Twenty-four consultations were directly observed and 12 consultations were video-recorded alongside computer screen capture. Consultations were transcribed using conversation analysis conventions, with notes on body language and the electronic record. The analysis involved repeated rounds of viewing video, annotating field notes, transcription and microanalysis to identify themes. The data was interpreted using discourse analysis, with attention to the sociotechnical theory. Results Consultations centred explicitly or implicitly on evidence-based protocols inscribed in templates. Templates did not simply identify tasks for completion, but contributed to defining what chronic diseases were, how care was being delivered and what it meant to be a patient or professional in this context. Patients’ stories morphed into data bytes; the particular became generalised; the complex was made discrete, simple and manageable; and uncertainty became categorised and contained. Many consultations resembled bureaucratic encounters, primarily oriented to completing data fields. We identified a tension, sharpened by the template, between different framings of the patient—as ‘individual’ or as ‘one of a population’. Some clinicians overcame this tension, responding creatively to prompts within a dialogue constructed around the patient's narrative. Conclusions Despite their widespread implementation, little previous research has examined how templates are actually used in practice. Templates do not simply document the tasks of chronic disease management but profoundly change the nature of this work. Designed to assure standards of ‘quality’ care they contribute to bureaucratisation of care and may marginalise aspects of quality care which lie beyond their focus. Creative work is required to avoid privileging ‘institution-centred’ care over patient-centred care. PMID:23192245
Contamination mitigation strategies for scanning transmission electron microscopy.
Mitchell, D R G
2015-06-01
Modern scanning transmission electron microscopy (STEM) enables imaging and microanalysis at very high magnification. In the case of aberration-corrected STEM, atomic resolution is readily achieved. However, the electron fluxes used may be up to three orders of magnitude greater than those typically employed in conventional STEM. Since specimen contamination often increases with electron flux, specimen cleanliness is a critical factor in obtaining meaningful data when carrying out high magnification STEM. A range of different specimen cleaning methods have been applied to a variety of specimen types. The contamination rate has been measured quantitatively to assess the effectiveness of cleaning. The methods studied include: baking, cooling, plasma cleaning, beam showering and UV/ozone exposure. Of the methods tested, beam showering is rapid, experimentally convenient and very effective on a wide range of specimens. Oxidative plasma cleaning is also very effective and can be applied to specimens on carbon support films, albeit with some care. For electron beam-sensitive materials, cooling may be the method of choice. In most cases, preliminary removal of the bulk of the contamination by methods such as baking or plasma cleaning, followed by beam showering, where necessary, can result in a contamination-free specimen suitable for extended atomic scale imaging and analysis. Copyright © 2015 Elsevier Ltd. All rights reserved.
Bio/Nano Electronic Devices and Sensors
2008-10-01
Microscopy and Microanalysis 2006 Meeting, Chicago, IL, July 30 - August 3, 2006 4) S. Khizroev, "Three-dimensional Magnetic Memory," presented at US Air...ABSTRACT This effort consists of five research thrusts: (1) Dense Memory Devices-(1)3-D magnetic recording was enhanced using patterned soft underlayers...and interlayer, (2) Cold cathode microwave generator and ceramic electron multiplier-ceramic multiplier using a novel secondary electron yield
ERIC Educational Resources Information Center
Barbera, Elena; Garcia, Iolanda; Fuertes-Alpiste, Marc
2017-01-01
This paper presents a case study of the co-design process for an online course on Sustainable Development (Degree in Tourism) involving the teacher, two students, and the project researchers. The co-design process was founded on an inquiry-based and technology-enhanced model that takes shape in a set of design principles. The research had two main…
NASA Astrophysics Data System (ADS)
Gorokh, G. G.; Zakhlebayeva, A. I.; Metla, A. I.; Zhilinskiy, V. V.; Murashkevich, A. N.; Bogomazova, N. V.
2017-11-01
The metal oxide films of SnxZnyOz and SnxMoyOz systems deposited onto anodic alumina matrixes by chemical and ion layering from an aqueous solutions were characterized by scanning electron microscopy, Raman spectroscopy, electron probe X-ray microanalysis and IR spectroscopy. The obtained matrix films had reproducible composition and structure and possessed certain morphological characteristics and properties.
Studies on the cellular and subcellular reactions in epidermis at irritant and allergic dermatitis.
Lindberg, M
1982-01-01
To determine the cellular and subcellular reactions of keratinocytes at contact dermatitis, transmission electron microscopy was used in combination with energy dispersive X-ray microanalysis. Stereology and optical diffraction were used as complements to electron microscopy for studies of the effects of variations in the preparation technique on the ultrastructure of epidermis. The morphological effects of an increased hydration of epidermis were assessed by the use of occlusive patch tests. It was found that the relative volume of the epidermal intercellular space and the ultrastructure of the epidermal cells (keratinocytes and Langerhans' cells) were directly dependent on the osmolality of the fixative vehicle if glutaraldehyde was used as fixative. Cellular volume and morphology did also depend on the fixative used. Variations in the volume of the intercellular space were also detected when the water transport through epidermis was impaired by occlusive treatment. In normal epidermis prolonged fixation times (4 weeks) did not affect the morphology of the keratinocytes. However, if the structure and function of the keratinocytes were affected by the application of a irritant substance (DNCB), a loss of electron dense material from the cells was detected within 3 weeks. The ultrastructural changes in the keratinocytes at the irritant chromate and DNCB reactions were of a non-specific nature and are in accordance with the changes described for other irritant agents in the literature. A few cells with the features of apoptosis were recorded. The allergic chromate reaction was found to be a combination of the irritant reaction and a marked inflammatory response. To correlate the ultrastructural alterations in the keratinocytes with the functional state of the cells, X-ray microanalysis was used to determine the elemental redistribution occurring at the irritant DNCB reaction. The results of the X-ray microanalysis showed a good correlation between dose and time dependent effects and with the ultrastructural changes. Cell injury in the keratinocytes lead to decreases in the cellular content of phosphorous, potassium and magnesium and an increase of cellular calcium. Sodium, chloride, and sulphur were only moderately changed. A stimulation of the basal keratinocytes was detectable when a weak DNCB dose was applied to the skin.
NASA Astrophysics Data System (ADS)
Mazloom, Fatemeh; Masjedi-Arani, Maryam; Salavati-Niasari, Masoud
2017-08-01
Zinc vanadate (Zn3V2O8) nanostructures have been successfully synthesized via simple, rapid and solvent-free solid-state method by using different complex precursors of Zn and NH4VO3 as novel starting materials. Effects of various zinc (II) Schiff base complex precursors and calcination temperatures were investigated to reach optimum condition. It was found that particle size and optical property of the as-prepared products could be greatly influenced via these parameters. The products were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectra, energy dispersive X-ray microanalysis (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Photoluminescence and ultraviolet-visible (UV-Vis) spectroscopy. The photocatalytic activity of zinc vanadate nano and bulk structures were compared by degradation of phenol red aqueous solution.
Application of SEM and EDX in studying biomineralization in plant tissues.
He, Honghua; Kirilak, Yaowanuj
2014-01-01
This chapter describes protocols using formalin-acetic acid-alcohol (FAA) to fix plant tissues for studying biomineralization by means of scanning electron microscopy (SEM) and qualitative energy-dispersive X-ray microanalysis (EDX). Specimen preparation protocols for SEM and EDX mainly include fixation, dehydration, critical point drying (CPD), mounting, and coating. Gold-coated specimens are used for SEM imaging, while gold- and carbon-coated specimens are prepared for qualitative X-ray microanalyses separately to obtain complementary information on the elemental compositions of biominerals. During the specimen preparation procedure for SEM, some biominerals may be dislodged or scattered, making it difficult to determine their accurate locations, and light microscopy is used to complement SEM studies. Specimen preparation protocols for light microscopy generally include fixation, dehydration, infiltration and embedding with resin, microtome sectioning, and staining. In addition, microwave processing methods are adopted here to speed up the specimen preparation process for both SEM and light microscopy.
Segregation Phenomena on the Crystal Surface of Chemical Compounds
NASA Astrophysics Data System (ADS)
Tomashpol'skii, Yu. Ya.
2018-06-01
The current state of the theoretical and experimental studies of changes in the chemical structure and composition caused by segregation phenomena on the surface of chemical compounds was reviewed. The review considers the experimental data obtained exclusively on single crystals, which were studied by modern instrumental methods, including in situ Auger electron spectrometry, X-ray spectral microanalysis, high-resolution scanning and transmission electron microscopy, secondary electron emission, and atomic force microscopy. The models that suggest the crystal-chemical diffusion and liquid-phase mechanisms of segregation were described. The parameters of the theory include the type of chemical bond, elastic constants, and crystal-chemical characteristics of substances. The models make it possible to predict the nature of changes in the surface composition: segregation tendency, segregant type, and degree of nonstoichiometry. A new direction in surface segregation was considered, which is promising for nanoelectronics and emission electronics.
Determination of element affinities by density fractionation of bulk coal samples
Querol, X.; Klika, Z.; Weiss, Z.; Finkelman, R.B.; Alastuey, A.; Juan, R.; Lopez-Soler, A.; Plana, F.; Kolker, A.; Chenery, S.R.N.
2001-01-01
A review has been made of the various methods of determining major and trace element affinities for different phases, both mineral and organic in coals, citing their various strengths and weaknesses. These include mathematical deconvolution of chemical analyses, direct microanalysis, sequential extraction procedures and density fractionation. A new methodology combining density fractionation with mathematical deconvolution of chemical analyses of whole coals and their density fractions has been evaluated. These coals formed part of the IEA-Coal Research project on the Modes of Occurrence of Trace Elements in Coal. Results were compared to a previously reported sequential extraction methodology and showed good agreement for most elements. For particular elements (Be, Mo, Cu, Se and REEs) in specific coals where disagreement was found, it was concluded that the occurrence of rare trace element bearing phases may account for the discrepancy, and modifications to the general procedure must be made to account for these.
Effect of substrate nature on the electrochemical deposition of calcium-deficient hydroxyapatites
NASA Astrophysics Data System (ADS)
Gualdrón-Reyes, A. F.; Domínguez-Vélez, V.; Morales-Morales, J. A.; Cabanzo, R.; Meléndez, A. M.
2017-01-01
Calcium phosphates were obtained by reducing nitrate ions to produce hydroxide ions on TiO2/stainless steel and TiO2/titanium electrodes. TiO2 coatings on metallic substrates were prepared by sol-gel dip-coating method. The morphology of deposits was observed by FESEM. Chemical nature of calcium phosphate deposits was identified by Raman micro-spectroscopy and FESEM/EDS microanalysis. Electrochemical behavior of nitrate and nitrite reduction on stainless steel and titanium electrodes was studied by linear sweep voltammetry. In addition, voltammetric study of the calcium phosphate electrodeposition on both electrodes was performed. From these measurements was selected the potential to form a calcium phosphate. A catalytic current associated to nitrate reduction reaction was obtained for stainless steel electrode, leading to significant deposition of calcium phosphate. Ca/P ratio for both substrates was less than 1.67. The formation of calcium deficient hydroxyapatite was confirmed by Raman spectroscopy.
Mechanism of Pinhole Formation in Membrane Electrode Assemblies for PEM Fuel Cells
NASA Technical Reports Server (NTRS)
Stanic, Vesna; Hoberecht, Mark
2004-01-01
The pinhole formation mechanism was studied with a variety of MEAs using ex-situ and in-situ methods. The ex-situ tests included the MEA aging in oxygen and MEA heat of ignition. In-situ durability tests were performed in fuel cells at different operating conditions with hydrogen and oxygen. After the in-situ failure, MEAs were analyzed with an Olympus BX 60 optical microscope and Cambridge 120 scanning electron microscope. MEA chemical analysis was performed with an IXRF EDS microanalysis system. The MEA failure analyses showed that pinholes and tears were the MEA failure modes. The pinholes appeared in MEA areas where the membrane thickness was drastically reduced. Their location coincided with the stress concentration points, indicating that membrane creep was responsible for their formation. Some of the pinholes detected had contaminant particles precipitated within the membrane. This mechanism of pinhole formation was correlated to the polymer blistering.
Local Anodic Oxidation of Thin GeO Films and Formation of Nanostructures Based on Them
NASA Astrophysics Data System (ADS)
Astankova, K. N.; Kozhukhov, A. S.; Azarov, I. A.; Gorokhov, E. B.; Sheglov, D. V.; Latyshev, A. V.
2018-04-01
The process of local anodic oxidation of thin GeO films has been studied using an atomic force microscope. The electron-probe microanalysis showed that oxidized areas of a GeO film were germanium dioxide. The effect of the voltage pulse duration applied to the probe-substrate system and the atmospheric humidity on the height of the oxide structures has been studied. The kinetics of the local anodic oxidation (LAO) in a semi-contact mode obeys the Cabrera-Mott model for large times. The initial growth rate of the oxide ( R 0) significantly increases and the time of starting the oxidation ( t 0) decreases as the atmospheric humidity increases by 20%, which is related to an increase in the concentration of oxygen-containing ions at the surface of the oxidized GeO film. It was shown that nanostructures in thin GeO layers can be formed by the LAO method.
Robustness Analysis of Integrated LPV-FDI Filters and LTI-FTC System for a Transport Aircraft
NASA Technical Reports Server (NTRS)
Khong, Thuan H.; Shin, Jong-Yeob
2007-01-01
This paper proposes an analysis framework for robustness analysis of a nonlinear dynamics system that can be represented by a polynomial linear parameter varying (PLPV) system with constant bounded uncertainty. The proposed analysis framework contains three key tools: 1) a function substitution method which can convert a nonlinear system in polynomial form into a PLPV system, 2) a matrix-based linear fractional transformation (LFT) modeling approach, which can convert a PLPV system into an LFT system with the delta block that includes key uncertainty and scheduling parameters, 3) micro-analysis, which is a well known robust analysis tool for linear systems. The proposed analysis framework is applied to evaluating the performance of the LPV-fault detection and isolation (FDI) filters of the closed-loop system of a transport aircraft in the presence of unmodeled actuator dynamics and sensor gain uncertainty. The robustness analysis results are compared with nonlinear time simulations.
Macaskie, L E; Creamer, N J; Essa, A M M; Brown, N L
2007-03-01
A new approach is described for the recovery of precious metals (PMs: Au, Pd and Ag) with >99% efficiency from aqueous solution utilising biogas produced during the aerobic growth of Klebsiella pneumoniae. Gold was recovered from electronic scrap leachate ( approximately 95%) by this method, with some selectivity against Cu. The recovered PM solids all contained metal and sulphur as determined by energy dispersive X-ray microanalysis (EDX). X-ray powder diffraction analysis (XRD) showed no crystalline metal sulphur compounds but a crystalline palladium amine was recorded. Silver was recovered as a sulphide (found by EDX), carbonate and oxide (found by XRD). EDX analysis of the Au-precipitate showed mainly gold and sulphur, with some metallic Au(0) detected by XRD. The gold compound was shock-sensitive; upon grinding it detonated to leave a sooty black deposit.
Pala, Eva M; Dey, Sudip
2016-02-01
Conventional and highly sophisticated analytical methods (Cyria et al., 1989; Massar et al., 2012a) were used to analyze micro-structural and micro-analytical aspects of the blood of snake head fish, Channa gachua, exposed to municipal wastes and city garbage. Red (RBC) and white blood cell (WBC) counts and hemhemoglobin content were found to be higher in pollution affected fish as compared with control. Scanning electron microscopy revealed the occurrence of abnormal erythrocytes such as crenated cells, echinocytes, lobopodial projections, membrane internalization, spherocytes, ruptured cells, contracted cells, depression, and uneven elongation of erythrocyte membranes in fish inhabiting the polluted sites. Energy-dispersive X-ray spectroscopy (EDS) revealed the presence of silicon and lead in the RBCs of pollution affected fish. Significance of the study includes the highly sophisticated analytical approach, which revealed the aforementioned micro-structural abnormalities.
NASA Astrophysics Data System (ADS)
Pradhan, Sangita R.; Dash, Barsha; Sanjay, Kali; Subbaiah, T.
2013-04-01
The extraction of nickel (II) from a spent hydro-desulfurization catalyst containing 11.6 pct Ni was carried out through sulfuric acid leaching. Variations of parameters such as the concentration of acid, temperature, and time, were studied and optimized. Nickel hydroxide was precipitated from the leach liquor via neutralization with 1 M sodium hydroxide up to pH 12 in three different methods: normal neutralization precipitation, and then neutralization precipitation followed by aging at 353 K (80 °C) for 4 hours and neutralization of the leach liquor with 10 pct (v/v) of 0.1 N sodium lauryl sulfate. X-ray diffraction (XRD) and transmission electron microscopy (TEM) microanalysis shows a difference in crystallinity with the method of precipitation. The nickel hydroxide contains Cu(II), Co(II), Zn(II), and Mn(II) as trace impurities. The discharge capacities of the precipitated nickel hydroxides were 120 mAhg-1, 140.72 mAhg-1, and 145.2 mAhg-1 for aged sample, sample without surfactant, and with surfactant respectively.
Lichtenberger, O; Neumann, D
1997-08-01
Energy filtering transmission electron microscopy in combination with energy dispersive X-ray analysis (EDX) and quantumchemical calculations opens new possibilities for elemental and bone analysis at the ultrastructural level. The possibilities and limitations of these methods, applied to botanical samples, are discussed and some examples are given. Ca-oxalate crystals in plant cell vacuoles show a specific C K-edge in the electron energy loss spectrum (EELS), which allows a more reliable identification than light microscopical or cytochemical methods. In some dicots crystalline inclusions can be observed in different cell compartments, which are identified as silicon dioxide or calcium silicate by the fine structure of the Si L2,3-edge. Their formation is discussed on the basis of EEL-spectra and quantumchemical calculations. Examples concerning heavy metal detoxification are given for some tolerant plants. In Minuartia Zn is bound as Zn-silicate in cell walls; Armeria accumulates Cu in leaf idioblasts by chelation with phenolic compounds and Cd is precipitated as CdS/phytochelatin-complexes in tomato.
NASA Astrophysics Data System (ADS)
Murzakov, M. A.; Chirikov, S. N.; Markushov, Y. V.
2016-09-01
The paper is aimed at research of coatings, which are achieved by means of laser cladding with additives of nanoparticles of high-melting compounds in form of tungsten carbide and tantalum (WC and TaC). In the course of experiment, various ceramic powder concentrations were tested. Main technological characteristics were determined. Power density amounted to 0.68-0.98 MW/cm2. During the coating wear resistance measurement, it was discovered that increase in nanopowder concentration extended wear resistance of coating 2-6 times. Wear resistance measurement and wear coefficient calculation were performed using Brinell-Howarth method. The load was 15 N, load time was 10 minutes. Optical metallographic microscope Neophot-30 was used to study microstructure of the deposited coatings. To reveal microstructure of the deposited coatings, the samples were exposed to chemical etching. Elemental composition of the samples was determined by the methods of X- ray microanalysis in testing solution using electron microscope EVO-50 under acceleration voltage 10-20 kV (probe current 5-50 nA) using energy- and wavelength-dispersive spectrometers.
Komersová, Alena; Lochař, Václav; Myslíková, Kateřina; Mužíková, Jitka; Bartoš, Martin
2016-12-01
The aim of this study is to present the possibility of using of co-processed dry binders for formulation of matrix tablets with drug controlled release. Hydrophilic matrix tablets with tramadol hydrochloride, hypromellose and different co-processed dry binders were prepared by direct compression method. Hypromelloses Methocel™ K4M Premium CR or Methocel™ K100M Premium CR were used as controlled release agents and Prosolv® SMCC 90 or Disintequik™ MCC 25 were used as co-processed dry binders. Homogeneity of the tablets was evaluated using scanning electron microscopy and energy dispersive X-ray microanalysis. The release of tramadol hydrochloride from prepared formulations was studied by dissolution test method. The dissolution profiles obtained were evaluated by non-linear regression analysis, release rate constants and other kinetic parameters were determined. It was found that matrix tablets based on Prosolv® SMCC 90 and Methocel™ Premium CR cannot control the tramadol release effectively for >12h and tablets containing Disintequik™ MCC 25 and Methocel™ Premium CR >8h. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
van Borm, Werner August
Electron probe X-ray microanalysis (EPXMA) in combination with an automation system and an energy-dispersive X-ray detection system was used to analyse thousands of microscopical particles, originating from the ambient atmosphere. The huge amount of data was processed by a newly developed X-ray correction method and a number of data reduction procedures. A standardless ZAF procedure for EPXMA was developed for quick semi-quantitative analysis of particles starting from simple corrections, valid for bulk samples and modified taking into account the particle finit diameter, assuming a spherical shape. Tested on a limited database of bulk and particulate samples, the compromise between calculation speed and accuracy yielded for elements with Z > 14 accuracies on concentrations less than 10% while absolute deviations remained below 4 weight%, thus being only important for low concentrations. Next, the possibilities for the use of supervised and unsupervised multivariate particle classification were investigated for source apportionment of individual particles. In a detailed study of the unsupervised cluster analysis technique several aspects were considered, that have a severe influence on the final cluster analysis results, i.e. data acquisition, X-ray peak identification, data normalization, scaling, variable selection, similarity measure, cluster strategy, cluster significance and error propagation. A supervised approach was developed using an expert system-like approach in which identification rules are builded to describe the particle classes in a unique manner. Applications are presented for particles sampled (1) near a zinc smelter (Vieille-Montagne, Balen, Belgium), analyzed for heavy metals, (2) in an urban aerosol (Antwerp, Belgium), analyzed for over 20 elements and (3) in a rural aerosol originating from a swiss mountain area (Bern). Thus is was possible to pinpoint a number of known and unknown sources and characterize their emissions in terms of particles abundance and particle composition. Alternatively, the bulk analysis of filters (total, fine and coarse mode) using Particle Induced X -Ray Emission (PIXE) and the application of a receptor modeling approach provided for complementary information on a macroscopical level. A computer program was developed incorporating an absolute factor analysis based receptor modeling procedure. Source profiles and contributions are described by elemental concentrations and an atmospheric mass balance is put forward. The latter method was applied in a two year study of the Antwerp urban aerosol and for the swiss aerosol, revealing a number of previously known and unknown sources. Both methods were successfully combined to increase the source resolution.
A Robust Analysis Method For Δ13c Signal Of Bulk Organic Matter In Speleothems
NASA Astrophysics Data System (ADS)
Bian, F.; Blyth, A. J.; Smith, C.; Baker, A.
2017-12-01
Speleothems preserve organic matter that is derived from both the surface soil and cave environments. This organic matter can be used to understand paleoclimate and paleoenvironments. However, a stable and quick micro-analysis method to measure the δ13C signals from speleothem organic matter separate from the total δ13C remains absent. And speleothem organic geochemistry is still relatively unexplored compared to inorganic geochemistry. In this research, for the organic matter analysis, bulk homogeneous power samples were obtained from one large stalagmite. These were dissolved by phosphoric acid to produce the aqueous solution. Then, the processed solution was degassed through a rotational vacuum concentrator. A liquid chromatograph was coupled to IRMS to control the oxidization and the measurement of analytes. This method is demonstrated to be robust for the analysis of speleothem d13C organic matter analysis under different preparation and instrumental settings, with the low standard deviation ( 0.2‰), and low sample consumption (<25 mg). Considering the complexity of cave environments, this method will be useful in further investigations the δ13C of entrapped organic matter and environmental controls in other climatic and ecological contexts, including the determination of whether vegetation or soil microbial activity is the dominant control on speleothem d13C of organic matter.
ERIC Educational Resources Information Center
Walton, Katherine M.; Ingersoll, Brooke R.
2015-01-01
Adult responsiveness is related to language development both in young typically developing children and in children with autism spectrum disorders, such that parents who use more responsive language with their children have children who develop better language skills over time. This study used a micro-analytic technique to examine how two facets…
The Nanocrystalline State of Narrow Gap Semiconducting Chalcogenides
2010-08-23
using a 1 nm scanning probe and the EDS microanalysis . For Annealing studies nanocrystal powder samples were placed in ceramic crucibles and annealed...nanocrystals are homogenous single phase EDS spectral images were collected in scanning transmission electron microcopy using a 1 nm electron probe...explorations with alio-valent elements (e.g. Sb3+, Ag+ doping in PbTe). • Perform chemical and physical characterization to demonstrate that nanocrystals are
Salvador, Cátia; Martins, M Rosário; Caldeira, A Teresa
2015-02-01
Different compounds of edible mushrooms are responsible for their bioactivity. The ability to synthesize polysaccharides, namely protein-polysaccharide (PPS) complexes, is related to the antioxidant capacity of these compounds and present great interest in preventing a number of diseases, including cancer, cardiovascular and auto-immune diseases, and accelerated aging. Amanita ponderosa are wild edible mushrooms that grow in Mediterranean "montado" areas [Portuguese name given to cork oak (Quercus suber) and holm oak (Quercus ilex) forests]. The aim of this study was to evaluate the production of PPS complexes obtained from A. ponderosa cultures using a new microanalytical approach to quickly and easily monitor the production process. Microanalysis using Fourier-transform infrared using attenuated total reflection and Raman spectroscopy of PPS samples showed spectra compatible with identification of this type of compound in culture extracts. PPS separated by size-exclusion chromatography showed seven main complexes. Molecular weights of the main PPS complexes isolated from cultures ranged between 1.5 and 20 kDa and did not present toxicity against Artemia salina, demonstrating the potential of A. ponderosa as a source of biologically active compounds with nutraceutical value. Application of this microanalytical approach to monitoring the production of PPS compounds can be successfully applied in biotechnological processes.
Role of phi cells and the endodermis under salt stress in Brassica oleracea.
Fernandez-Garcia, N; Lopez-Perez, L; Hernandez, M; Olmos, E
2009-01-01
Phi cell layers were discovered in the 19th century in a small number of species, including members of the Brassicaceae family. A mechanical role was first suggested for this structure; however, this has never been demonstrated. The main objective of the present work was to analyse the ultrastructure of phi cells, their influence on ion movement from the cortex to the stele, and their contribution to salt stress tolerance in Brassica oleracea. Transmission electron microscopy and X-ray microanalysis studies were used to analyse the subcellular structure and distribution of ions in phi cells and the endodermis under salt stress. Ion movement was analysed using lanthanum as an apoplastic tracer. The ultrastructural results confirm that phi cells are specialized cells showing cell wall ingrowths in the inner tangential cell walls. X-ray microanalysis confirmed a build-up of sodium. Phi thickenings were lignified and lanthanum moved periplasmically at this level. To the best of our knowledge, this is the first study reporting the possible role of the phi cells as a barrier controlling the movement of ions from the cortex to the stele. Therefore, the phi cell layer and endodermis seem to be regulating ion transport in Brassica oleracea under salt stress.
NASA Astrophysics Data System (ADS)
Chen, Xiang; Haasch, Rick; Stubbins, James F.
2012-12-01
The corrosion behavior of FeCrAl alloy in Lead-Bismuth Eutectic (LBE) saturated with oxygen at 550 °C was investigated. Impedance Spectroscopy (IS) measurement was made continuously on one specimen during the entire LBE exposure test to characterize the corrosion kinetics. Various microanalysis techniques, including SEM, EDS, XRD, AES, and XPS were used to analyze the corrosion products of post-exposure specimens. It was found that a very thin, adherent alumina oxide layer formed on the specimen surface and was able to protect the alloy from the corrosion attack in LBE. The thickness of the alumina surface layer increased very slowly with time reaching about 837 nm in average thickness after exposure for 3600-h in LBE. The IS measurements match the microanalysis results in three respects: first, a non-zero impedance measurement agrees with the existence of a continuous surface oxide layer; second, a general increase of the impedance was observed during the real-time IS measurement which means that the IS measurements reflect the growth rate of the oxide layer; and third, the oxide film thickness derived from the IS data compares favorably with the SEM film thickness measurements which establishes the validity of using IS to monitor the real-time corrosion kinetics of alloys in LBE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Haihan; Grassian, Vicki H.; Saraf, Laxmikant V.
2012-11-08
Airborne fly ash from coal combustion may represent a source of bioavailable iron (Fe) in the open ocean. However, few studies have been made focusing on Fe speciation and distribution in coal fly ash. In this study, chemical imaging of fly ash has been performed using a dual-beam FIB/SEM (focused ion beam/scanning electron microscope) system for a better understanding of how simulated atmospheric processing modify the morphology, chemical compositions and element distributions of individual particles. A novel approach has been applied for cross-sectioning of fly ash specimen with a FIB in order to explore element distribution within the interior ofmore » individual particles. Our results indicate that simulated atmospheric processing causes disintegration of aluminosilicate glass, a dominant material in fly ash particles. Aluminosilicate-phase Fe in the inner core of fly ash particles is more easily mobilized compared with oxide-phase Fe present as surface aggregates on fly ash spheres. Fe release behavior depends strongly on Fe speciation in aerosol particles. The approach for preparation of cross-sectioned specimen described here opens new opportunities for particle microanalysis, particular with respect to inorganic refractive materials like fly ash and mineral dust.« less
Effect of Gold on the Microstructural Evolution and Integrity of a Sintered Silver Joint
NASA Astrophysics Data System (ADS)
Muralidharan, Govindarajan; Leonard, Donovan N.; Meyer, Harry M.
2017-07-01
There is a need for next-generation, high-performance power electronic packages and systems employing wide-bandgap devices to operate at high temperatures in automotive and electric grid applications. Sintered silver joints are currently being evaluated as an alternative to Pb-free solder joints. Of particular interest is the development of joints based on silver paste consisting of nano- or micron-scale particles that can be processed without application of external pressure. The microstructural evolution at the interface of a pressureless-sintered silver joint formed between a SiC die with Ti/Ni/Au metallization and an active metal brazed (AMB) substrate with Ag metallization at 250°C has been evaluated using scanning electron microscopy (SEM), x-ray microanalysis, and x-ray photoelectron spectroscopy (XPS). Results from focused ion beam (FIB) cross-sections show that, during sintering, pores in the sintered region near to the Au layer tend to be narrow and elongated with long axis oriented parallel to the interface. Further densification results in formation of many small, relatively equiaxed pores aligned parallel to the interface, creating a path for easy crack propagation. X-ray microanalysis results confirm interdiffusion between Au and Ag and that a region with poor mechanical strength is formed at the edge of this region of interdiffusion.
NASA Astrophysics Data System (ADS)
Schofield, Robert; Lefevre, Harlan; Shaffer, Michael
1989-04-01
Energy-loss scanning transmission ion microscopy (ELSTIM or just STIM), PIXE and electron microprobe techniques are used to investigate certain minor element accumulations in a few spiders and scorpions. STIM and PIXE are used to survey the unsectioned specimens, while electron microprobe techniques are used for higher resolution investigations of several sections of the specimens. Concentration values measured using STIM and PIXE are found to be in satisfactory agreement with those measured using electron probe microanalysis. A garden spider Araneus diadematus is found to contain high concentrations of zinc in a thin layer near the surface of its fangs (reaching 23% of dry weight), and manganese in its marginal teeth (about 5% of dry weight). A wolf spider Alopecosa kochi is found to have similar concentrations of zinc in a layer near the surface of it's fang, and concentrations of manganese reaching 1.5% in a layer beneath the zinc containing layer. A scorpion Centruroides sp. is found to contain high concentrations of iron (reaching 8%) and zinc (reaching 24%) in the tips of teeth on the cheliceral fingers, and manganese (about 5%) in the stinger. The hypothesis that these elements simply harden the cuticle does not appear to explain their segregation patterns.
Multidimensional assessment of self-regulated learning with middle school math students.
Callan, Gregory L; Cleary, Timothy J
2018-03-01
This study examined the convergent and predictive validity of self-regulated learning (SRL) measures situated in mathematics. The sample included 100 eighth graders from a diverse, urban school district. Four measurement formats were examined including, 2 broad-based (i.e., self-report questionnaire and teacher ratings) and 2 task-specific measures (i.e., SRL microanalysis and behavioral traces). Convergent validity was examined across task-difficulty, and the predictive validity was examined across 3 mathematics outcomes: 2 measures of mathematical problem solving skill (i.e., practice session math problems, posttest math problems) and a global measure of mathematical skill (i.e., standardized math test). Correlation analyses were used to examine convergent validity and revealed medium correlations between measures within the same category (i.e., broad-based or task-specific). Relations between measurement classes were not statistically significant. Separate regressions examined the predictive validity of the SRL measures. While controlling all other predictors, a SRL microanalysis metacognitive-monitoring measure emerged as a significant predictor of all 3 outcomes and teacher ratings accounted for unique variance on 2 of the outcomes (i.e., posttest math problems and standardized math test). Results suggest that a multidimensional assessment approach should be considered by school psychologists interested in measuring SRL. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Vanthanouvong, V; Kozlova, I; Johannesson, M; Nääs, E; Nordvall, S L; Dragomir, A; Roomans, G M
2006-04-01
The ionic composition of the airway surface liquid (ASL) in healthy individuals and in patients with cystic fibrosis (CF) has been debated. Ion transport properties of the upper airway epithelium are similar to those of the lower airways and it is easier to collect nasal ASL from the nose. ASL was collected with ion exchange beads, and the elemental composition of nasal fluid was determined by X-ray microanalysis in healthy subjects, CF patients, CF heterozygotes, patients with rhinitis, and with primary ciliary dyskinesia (PCD). In healthy subjects, the ionic concentrations were approximately isotonic. In CF patients, CF heterozygotes, rhinitis, and PCD patients, [Na] and [Cl] were significantly higher compared when compared with those in controls. [K] was significantly higher in CF and PCD patients compared with that in controls. Severely affected CF patients had higher ionic concentrations in their nasal ASL than in patients with mild or moderate symptoms. Female CF patients had higher levels of Na, Cl, and K than male patients. As higher salt concentrations in the ASL are also found in other patients with airway diseases involving chronic inflammation, it appears likely that inflammation-induced epithelial damage is important in determining the ionic composition of the ASL. Copyright (c) 2006 Wiley-Liss, Inc.
Improved electron probe microanalysis of trace elements in quartz
Donovan, John J.; Lowers, Heather; Rusk, Brian G.
2011-01-01
Quartz occurs in a wide range of geologic environments throughout the Earth's crust. The concentration and distribution of trace elements in quartz provide information such as temperature and other physical conditions of formation. Trace element analyses with modern electron-probe microanalysis (EPMA) instruments can achieve 99% confidence detection of ~100 ppm with fairly minimal effort for many elements in samples of low to moderate average atomic number such as many common oxides and silicates. However, trace element measurements below 100 ppm in many materials are limited, not only by the precision of the background measurement, but also by the accuracy with which background levels are determined. A new "blank" correction algorithm has been developed and tested on both Cameca and JEOL instruments, which applies a quantitative correction to the emitted X-ray intensities during the iteration of the sample matrix correction based on a zero level (or known trace) abundance calibration standard. This iterated blank correction, when combined with improved background fit models, and an "aggregate" intensity calculation utilizing multiple spectrometer intensities in software for greater geometric efficiency, yields a detection limit of 2 to 3 ppm for Ti and 6 to 7 ppm for Al in quartz at 99% t-test confidence with similar levels for absolute accuracy.
Platek, S Frank; Keisler, Mark A; Ranieri, Nicola; Reynolds, Todd W; Crowe, John B
2002-09-01
The ability to accurately determine the number of syringe needle penetration holes through the rubber stoppers in pharmaceutical vials and rubber septa in intravenous (i.v.) line and bag ports has been a critical factor in a number of forensic cases involving the thefts of controlled substances or suspected homicide by lethal injection. In the early 1990s, the microscopy and microanalysis group of the U.S. Food and Drug Administration's Forensic Chemistry Center (FCC) developed and implemented a method (unpublished) to locate needle punctures in rubber pharmaceutical vial stoppers. In 1996, as part of a multiple homicide investigation, the Indiana State Police Laboratory (ISPL) contacted the FCC for information on a method to identify and count syringe needle punctures through rubber stoppers in pharmaceutical vials. In a joint project and investigation using the FCC's needle hole location method and applying a method of puncture site mapping developed by the ISPL, a systematic method was developed to locate, identify, count, and map syringe punctures in rubber bottle stoppers or i.v. bag ports using microscopic analysis. The method requires documentation of punctures on both sides of the rubber stoppers and microscopic analysis of each suspect puncture site. The final result of an analysis using the method is a detailed diagram of puncture holes on both sides of a questioned stopper and a record of the minimum number of puncture holes through a stopper.
[Bioinorganic chemical composition of the lens and methods of its investigation].
Avetisov, S E; Novikov, I A; Pakhomova, N A; Motalov, V G
2018-01-01
Bioinorganic chemical composition of the lens of human and experimental animals (cows, dogs, rats, rabbits) have been analyzed in various studies. In most cases, the studies employed different methods to determine the gross (total) composition of chemical elements and their concentrations in the examined samples. Less frequently, they included an assessment of the distribution of chemical elements in the lens and correlation of their concentration with its morphological changes. Chemical elements from all groups (series) of the periodic classification system were discovered in the lens substance. Despite similar investigation methods, different authors obtained contradicting results on the chemical composition of the lens. This article presents data suggesting possible correlation between inorganic chemical elements in the lens substance with the development and formation of lenticular opacities. All currently employed methods are known to only analyze limited number of select chemical elements in the tissues and do not consider the whole range of elements that can be analyzed with existing technology; furthermore, the majority of studies are conducted on the animal model lens. Therefore, it is feasible to continue the development of the chemical microanalysis method by increasing the sensitivity of Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM/EDS) with the purpose of assessing the gross chemical composition and distribution of the elements in the lens substance, as well as revealing possible correlation between element concentration and morphological changes in the lens.
SD46 Facilities and Capabilities
NASA Technical Reports Server (NTRS)
Ramachandran, N.; Curreri, Peter A. (Technical Monitor)
2002-01-01
The displays for the Materials Conference presents some of the facilities and capabilities in SD46 that can be useful to a prospective researcher from University, Academia or other government labs. Several of these already have associated personnel as principal and co-investigators on NASA peer reviewed science investigations. 1. SCN purification facility 2. ESL facility 3. Static and Dynamic magnetic field facility 4. Microanalysis facility 5. MSG Investigation - PFMI 6. Thermo physical Properties Measurement Capabilities.
ERIC Educational Resources Information Center
Anderson, Richard C.; And Others
A study sought to replicate and extend previous research which found that an emphasis on meaning in reading leads to better recall of lesson material than does an emphasis on accurate oral reading, and that the child who is taking an active turn recalls more of the lesson material than do the children who are following along. Six third-grade…
Performance of a Commercial Silicon Drift Detector for X-ray Microanalysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kenik, Edward A
2008-01-01
Silicon drift detectors (SDDs) are rapidly becoming the energy dispersive spectrometer of choice especially for scanning electron microscopy applications. The complementary features of large active areas (i.e., collection angle) and high count rate capability of these detector contribute to their popularity, as well as the absence of liquid nitrogen cooling of the detector. The performance of an EDAX Apollo 40 SDD on a JEOL 6500F SEM will be discussed.
Slezak, J.; Tribulova, N.; Pristacova, J.; Uhrik, B.; Thomas, T.; Khaper, N.; Kaul, N.; Singal, P. K.
1995-01-01
Active oxygen species including hydrogen peroxide (H2O2) play a major role in ischemia-reperfusion injury. In the present study, changes in myocardial H2O2 content as well as its subcellular distribution were examined in rat hearts subjected to ischemia-reperfusion. Isolated perfused rat hearts were made globally ischemic for 20 or 30 minutes and were reperfused for different durations. H2O2 content in these hearts was studied biochemically and changes were correlated with the recovery of function. These hearts were also analyzed for subcellular distribution of H2O2. Optimal conditions of tissue processing as well as incubation medium were established for reacting cerium chloride with H2O2 to form cerium perhydroxide, an insoluble electron-dense product. The chemical composition of these deposits was confirmed by x-ray micro-analysis. Global ischemia caused complete contractile failure in minutes and after 30 minutes of ischemia, these was a > 250% increase in the myocardial H2O2 content. Depressed contractile function recovery in the early phase of reperfusion was accompanied by approximately a 600% increase in the myocardial H2O2 content. Brief pre-fixation with low concentrations of glutaraldehyde, inhibition of alkaline phosphatase, glutathione peroxidase, and catalase, post-fixation but no post-osmication, and no counterstaining yielded the best cytochemical definition of H2O2. In normal hearts, extremely small amounts of cerium hydroperoxide precipitates were located on the endothelial cells. X-ray microanalysis confirmed the presence of cerium in the reaction product. Ischemia resulted in a stronger reaction, particularly on the sarcolemma as well as abluminal side of the endothelial cells; and upon reperfusion, cerium precipitate reaction at these sites was more intense. In the reperfused hearts, the reaction product also appeared within mitochondria between the cristae as well as on the myofibrils, but Z-lines were devoid of any precipitate. The data support a significant increase in myocardial H2O2 during both the phase of ischemia and the first few minutes of reperfusion. A stronger reaction on the sarcolemma and abluminal side of endothelial cells may also indicate enhanced H2O2 accumulation as well as vulnerability of these sites to oxidative stress injury. Images Figure 1 Figure 2 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 PMID:7677188
Optimization of SEM-EDS to determine the C–A–S–H composition in matured cement paste samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rossen, J.E., E-mail: john.rossen@alumni.epfl.ch
Microanalysis of characteristic X-rays in the SEM is a powerful method to assess the chemical composition of phases in cement pastes, in particular the calcium silicate hydrate containing aluminium (C–A–S–H). Nevertheless, many variables may influence the results obtained, due mainly to the intimate mixing of C–A–S–H with other hydrate phases and the susceptibility of this phase to damage by the electron beam. In this study the effect of various acquisition parameters was examined, along with methods to determine an “average” C–A–S–H composition. The results acquired in the SEM were compared with the analysis of the same samples in the TEM,more » where phases can be analyzed without intermixing. A simple method was used to obtain compositions from SEM based analysis that are very close to those which can be obtained in the TEM. - Highlights: •The intermixing of phases is the limiting factor in the analysis of C–A–S–H composition by SEM-EDS •Guidelines to limit beam damage and properly analyze C–A–S–H composition by SEM-EDS are given •SEM-EDS and TEM-EDS give similar results when proper data treatment is made.« less
III-Nitride Based Optoelectronics
2010-01-01
carrier gas67 is known to affect the atomic composition of etched ZnO surface. In our research, we have used x- ray microanalysis to gather...Project (0704-0188.) Washington, DC 20503. 1. AGENCY USE ONLY ( Leave Blank) 2. REPORT DATE 03/2010 3. REPORT TYPE AND DATES COVERED Final...Introduction 2 2.2 Experiment 3 2.2.1 Growth and Material Characterization 3 2.2.2 Preparation of high quality LEO GaN 3 2.2.3 Blue and green active
NASA Technical Reports Server (NTRS)
Sutton, S. R.; Delaney, J.; Bajt, S.; Rivers, M. L.; Smith, J. V.
1993-01-01
An exploratory application of x ray absorption near edge structure (XANES) analysis using the synchrotron x ray microprobe was undertaken to obtain Fe XANES spectra on individual sub-millimeter grains in conventional polished sections. The experiments concentrated on determinations of Fe valence in a suite of iron oxide minerals for which independent estimates of the iron speciation could be made by electron microprobe analysis and x ray diffraction.
A Semiconductor Microlaser for Intracavity Flow Cytometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akhil, O.; Copeland, G.C.; Dunne, J.L.
1999-01-20
Semiconductor microlasers are attractive components for micro-analysis systems because of their ability to emit coherent intense light from a small aperture. By using a surface-emitting semiconductor geometry, we were able to incorporate fluid flow inside a laser microcavity for the first time. This confers significant advantages for high throughput screening of cells, particulates and fluid analytes in a sensitive microdevice. In this paper we discuss the intracavity microfluidics and present preliminary results with flowing blood and brain cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Sandeep, E-mail: sandeep0078monu@gmail.com; Singh, Sukhpal, E-mail: sukhpal-78@rediffmail.com
2016-05-06
The Bismuth-ground granulated blastfurnace slang (Bi-GGBFS) concrete samples were prepared. The weight percentage of different elements present in Bi-GGBFS Shielding concretewas evaluated by Energy Dispersive X-ray Microanalysis (EDX). The exposure rate and absorbed dose rate characteristics were calculated theoretically for radioactive sources namely {sup 241}Am and {sup 137}Cs. Our calculations reveal that the Bi-GGBFS concretes are effective in shielding material for gamma radiations.
NASA Astrophysics Data System (ADS)
Golubev, Ye A.; Isaenko, S. I.
2017-10-01
We have studied different mineralogical objects: natural glasses of impact (tektites, impactites) and volcanic (obsidians) origin, using atomic force microscopy, X-ray microanalysis, infrared and Raman spectroscopy. The spectroscopy showed the difference in the structure and chemical composition of the glasses of different origin. The analysis of the dependence of nanoscale heterogeneity of the glasses, revealed by the atomic force microscopy, on their structural and chemical features was carried out.
Crystallization of the glassy phase of grain boundaries in silicon nitride
NASA Technical Reports Server (NTRS)
Jefferson, D. A.; Thomas, J. M.; Wen, S.
1984-01-01
Three types of hot-pressed silicon nitride specimens (containing 5wt% Y2O3 and 2wt% Al2O3 additives) which were subjected to different temperature heat treatments were studied by X-ray diffraction, X-ray microanalysis and high resolution electron microscopy. The results indicated that there were phase changes in the grain boundaries after heat treatment and the glassy phase at the grain boundaries was crystallized by heat treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vilches, J.; Lopez, A.; Martinez, M.C.
This paper discusses the value of scanning electron microscopy (SEM) and x-ray microanalysis in the classification of craniopharyngiomas. This neoplasm shows epithelial nest, cords of cuboid cells, foci of squamous metaplasia, and microcystic degeneration. SEM reveals that the epithelial cysts are lined with elongated cells that possess numerous microvilli and blebs and that some cysts are lined with polyhedral cells. The microvilli are interpreted as characteristic of the fast growing craniopharyngiomas. A microanalytical study of the calcified areas reveals the presence of magnesium, phosphorus, and calcium.
Ro, Chul-Un; Kim, HyeKyeong; Oh, Keun-Young; Yea, Sun Kyung; Lee, Chong Bum; Jang, Meongdo; Van Grieken, René
2002-11-15
A recently developed single-particle analytical technique, called low-Z electron probe X-ray microanalysis (low-Z EPMA), was applied to characterize urban aerosol particles collected in three cities of Korea (Seoul, CheongJu, and ChunCheon) on single days in the winter of 1999. In this study, it is clearly demonstrated that the low-Z EPMA technique can provide detailed and quantitative information on the chemical composition of particles in the urban atmosphere. The collected aerosol particles were analyzed and classified on the basis of their chemical species. Various types of particles were identified, such as soil-derived, carbonaceous, marine-originated, and anthropogenic particles. In the sample collected in Seoul, carbonaceous, aluminosilicates, silicon dioxide, and calcium carbonate aerosol particles were abundantly encountered. In the CheongJu and ChunCheon samples, carbonaceous, aluminosilicates, reacted sea salts, and ammonium sulfate aerosol particles were often seen. However, in the CheongJu sample, ammonium sulfate particles were the most abundant in the fine fraction. Also, calcium sulfate and nitrate particles were significantly observed. In the ChunCheon sample, organic particles were the most abundant in the fine fraction. Also, sodium nitrate particles were seen at high levels. The ChunCheon sample seemed to be strongly influenced by sea-salt aerosols originating from the Yellow Sea, which is located about 115 km away from the city.
Malek, Md Abdul; Kim, Bowha; Jung, Hae-Jin; Song, Young-Chul; Ro, Chul-Un
2011-10-15
Our previous work on the speciation of individual mineral particles of micrometer size by the combined use of attenuated total reflectance FT-IR (ATR-FT-IR) imaging and a quantitative energy-dispersive electron probe X-ray microanalysis technique (EPMA), low-Z particle EPMA, demonstrated that the combined use of these two techniques is a powerful approach for looking at the single-particle mineralogy of externally heterogeneous minerals. In this work, this analytical methodology was applied to characterize six soil samples collected at arid areas in China, in order to identify mineral types present in the samples. The six soil samples were collected from two types of soil, i.e., loess and desert soils, for which overall 665 particles were analyzed on a single particle basis. The six soil samples have different mineralogical characteristics, which were clearly differentiated in this work. As this analytical methodology provides complementary information, the ATR-FT-IR imaging on mineral types, and low-Z particle EPMA on the morphology and elemental concentrations, on the same individual particles, more detailed information can be obtained using this approach than when either low-Z particle EPMA or ATR-FT-IR imaging techniques are used alone, which has a great potential for the characterization of Asian dust and mineral dust particles. © 2011 American Chemical Society
Abandoned mine slags analysis by EPMA WDS X-ray mapping
NASA Astrophysics Data System (ADS)
Guimarães, F.; Rosado, L.; Morais, C.; Candeias, A. E.; Pinto, A. P.; Mirão, J.
2010-02-01
Mining activity on the Iberian Pyritic Belt (Portugal and Spain) started before Phoenician times, became particularly intense during the Roman occupation of the Iberian Peninsula (for gold), and after the industrial revolution (for gold, copper, zinc, lead and sulphur). The commonest ore of this region is a massive polymetalic sulphide accumulation, where pyrite (FeS2) is the main mineral, with variable concentrations of chalcopyrite (CuFeS2), sphalerite (ZnS), galena (PbS), arsenopyrite (FeAsS2), other sulphides and sulfosalts which include minor elements like Mn, Co, Ni, Se, Cd, Sb, Te, Hg and Bi. Some of the main and minor elements of these ores are hazardous and the drainage basins of pollutant source areas often induce health concerns in the resident population. Electron probe microanalysis study followed previous optical and XRD analysis of the slags. The study focused on the identification of phases how sulphide and metallic phases are distributed within the material and infer about leachable elements during weathering. Electron probe X-ray maps show evidences of different behaviour between the elements: Ca and Zn are completely leached; iron is retained in oxyhydroxides, lead and arsenic precipitate as sulphates. Electron probe microanalysis studies are essential to understand complex materials as earth materials. Nevertheless, care is required to a correct interpretation of data and most quantitative compositional data are not trustworthy.
Beebe, Beatrice; Lachmann, Frank; Markese, Sara; Buck, Karen A.; Bahrick, Lorraine E.; Chen, Henian; Cohen, Patricia; Andrews, Howard; Feldstein, Stanley; Jaffe, Joseph
2012-01-01
A microanalysis of 4-month mother-infant face-to-face communication predicted 12-month infant disorganized (vs. secure) attachment outcomes in an urban community sample. We documented a dyadic systems view of the roles of both partners, the roles of both self- and interactive contingency, and the importance of attention, orientation and touch, and as well as facial and vocal affect, in the co-construction of attachment disorganization. The analysis of different communication modalities identified striking intrapersonal and interpersonal intermodal discordance or conflict, in the context of intensely distressed infants, as the central feature of future disorganized dyads at 4 months. Lowered maternal contingent coordination, and failures of maternal affective correspondence, constituted maternal emotional withdrawal from distressed infants. This maternal withdrawal compromises infant interactive agency and emotional coherence. We characterize of the nature of emerging internal working models of future disorganized infants as follows: Future disorganized infants represent states of not being sensed and known by their mothers, particularly in moments of distress; they represent confusion about both their own and their mothers’ basic emotional organization, and about their mothers’ response to their distress. This internal working model sets a trajectory in development which may disturb the fundamental integration of the person. The remarkable specificity of our findings has the potential to lead to more finely-focused clinical interventions. PMID:23066334
Parisini, Andrea; Frabboni, Stefano; Gazzadi, Gian Carlo; Rosa, Rodolfo; Armigliato, Aldo
2018-06-01
In this work, we compare the results of different Cliff-Lorimer (Cliff & Lorimer 1975) based methods in the case of a quantitative energy dispersive spectrometry investigation of light elements in ternary C-O-Si thin films. To determine the Cliff-Lorimer (C-L) k-factors, we fabricated, by focused ion beam, a standard consisting of a wedge lamella with a truncated tip, composed of two parallel SiO2 and 4H-SiC stripes. In 4H-SiC, it was not possible to obtain reliable k-factors from standard extrapolation methods owing to the strong CK-photon absorption. To overcome this problem, an extrapolation method exploiting the shape of the truncated tip of the lamella is proposed herein. The k-factors thus determined, were then used in an application of the C-L quantification procedure to a defect found at the SiO2/4H-SiC interface in the channel region of a metal-oxide field-effect-transistor device. As in this procedure, the sample thickness is required, a method to determine this quantity from the averaged and normalized scanning transmission electron microscopy intensity is also detailed. Monte Carlo simulations were used to investigate the discrepancy between experimental and theoretical k-factors and to bridge the gap between the k-factor and the Watanabe and Williams ζ-factor methods (Watanabe & Williams, 2006).
Electron-probe microanalysis of light elements in coal and other kerogen
Bustin, R.M.; Mastalerz, Maria; Raudsepp, M.
1996-01-01
Recent advances in electron microprobe technology including development of layered synthetic microstructures, more stable electronics and better matrix-correction programs facilitated routine microanalysis of the light elements in coal. Utilizing an appropriately equipped electron microprobe with suitable standards, it is now possible to analyze directly the light elements (C, O and N, if abundant) in coal macerals and other kerogen. The analytical results are both accurate compared to ASTM methods and highly precise, and provide an opportunity to access the variation in coal chemistry at the micrometre scale. Our experiments show that analyses using a 10 kV accelerating voltage and 10 nA beam current yield the most reliable data and result in minimum sample damage and contamination. High sample counts were obtained for C, O and N using a bi-elemental nickel-carbon pseudo-crystal (2d = 9.5 nm) as an analyzing crystal. Vitrinite isolated from anthracite rank coal proves the best carbon standard and is more desirable than graphite which has higher porosity, whereas lower rank vitrinite is too heterogeneous to use routinely as a standard. Other standards utilized were magnesite for oxygen and BN for nitrogen. No significant carbon, oxygen or nitrogen X-ray peak shifts or peak-shape changes occur between standards and the kerogen analyzed. Counting rates for carbon and oxygen were found to be constant over a range of beam sizes and currents for counting times up to 160 s. Probe-determined carbon and oxygen contents agree closely with those reported from ASTM analyses. Nitrogen analyses compare poorly to ASTM values which probably is in response to overlap between the nitrogen Ka peak with the carbon K-adsorption edge and the overall low nitrogen content of most of our samples. Our results show that the electron microprobe technique provides accurate compositional data for both minor and major elements in coal without the necessity and inherent problems associated with mechanically isolating macerals. Studies to date have demonstrated the level of compositional variability within and between macerals in suites of Canadian coals.
Calcium measurements with electron probe X-ray and electron energy loss analysis.
LeFurgey, A; Ingram, P
1990-03-01
This paper presents a broad survey of the rationale for electron probe X-ray microanalysis (EPXMA) and the various methods for obtaining qualitative and quantitative information on the distribution and amount of elements, particularly calcium, in cryopreserved cells and tissues. Essential in an introductory consideration of microanalysis in biological cryosections is the physical basis for the instrumentation, fundamentals of X-ray spectrometry, and various analytical modes such as static probing and X-ray imaging. Some common artifacts are beam damage and contamination. Inherent pitfalls of energy dispersive X-ray systems include Si escape peaks, doublets, background, and detector calibration shifts. Quantitative calcium analysis of thin cryosections is carried out in real time using a multiple least squares fitting program on filtered X-ray spectra and normalizing the calcium peak to a portion of the continuum. Recent work includes the development of an X-ray imaging system where quantitative data can be retrieved off-line. The minimum detectable concentration of calcium in biological cryosections is approximately 300 mumole kg dry weight with a spatial resolution of approximately 100 A. The application of electron energy loss (EELS) techniques to the detection of calcium offers the potential for greater sensitivity and spatial resolution in measurement and imaging. Determination of mass thickness with EELS can facilitate accurate calculation of wet weight concentrations from frozen hydrated and freeze-dried specimens. Calcium has multiple effects on cell metabolism, membrane transport and permeability and, thus, on overall cell physiology or pathophysiology. Cells can be rapidly frozen for EPXMA during basal or altered functional conditions to delineate the location and amount of calcium within cells and the changes in location and concentration of cations or anions accompanying calcium redistribution. Recent experiments in our laboratory document that EPXMA in combination with other biochemical and electrophysiological techniques can be used to study, for example, sodium and calcium compartmentation in cultured cardiac cells. Such analyses can also be used to clarify the role of calcium in anoxic renal cell injury and to evaluate proposed ionic defects in cells of individuals with cystic fibrosis.
Smartphones and Programmable Shunts: Are These Indispensable Phones Safe and Smart?
Ozturk, Sait; Cakin, Hakan; Kurtuldu, Huseyin; Kocak, Onur; Erol, Fatih S; Kaplan, Metin
2017-06-01
This study aimed to determine whether smartphones affect programmable shunts. iPhone 5S (Apple Inc., Cupertino, CA, USA) and Samsung Galaxy S5 (Samsung Electronics, Gumi, South Korea) smartphones were chosen for this study. For both phones, magnetic field mapping was performed with 3-dimensional magnetic scanning systems constructed with high-precision motorized stages, and a Hall effect sensor was used to measure the flux density on the smartphone surface. The distance (h) between the distal outlet of the reservoir and the rugby ball of the Strata valve (Medtronic Inc., Minneapolis, MN, USA) was measured using highly sensitive microanalysis optical method. During optical microanalysis, while keeping a 3-cm distance between the valve and the magnetic generator, the h value (μm) was recorded for different magnetic flux densities (MFDs). Then, direct x-ray radiography was performed for radiologic assessment after each process under different magnetic fields. For analysis of the Codman Certas valve (Codman Neuro, Raynham, MA, USA), the magnet orientation and the angle between the magnet with the tantalum ball were measured with the same optical analysis. Maximum MFDs found 62 G for iPhone 5S and 61 G for Samsung Galaxy S5. When the magnetic generator formed a current at 0, 30, 60, and 90 G, the h values of the Strata valve adjusted to 100 mm H 2 O opening pressure were 320, 280, 190, and 175 μm, respectively. When the magnetic generator was removed from the environment, the h value returned to 320 μm. In direct graphs taken after each optical analysis at different Gauss values, substitution was not observed at the indicator. The angle in the Codman Certas valve was 123.9°, 112.5°, and 103.6° at the magnetic flux densities of 0, 60, and 90 G, respectively. When the magnetic field was removed (0 G), the angle was still 103.6°, suggesting an irreversible effect in the shunt construct. Smartphones exert reversible effects on Strata programmable valves without producing remarkable radiologic findings and irreversible effects on Codman Certas valves. Copyright © 2017 Elsevier Inc. All rights reserved.
Microfabricated cylindrical ion trap
Blain, Matthew G.
2005-03-22
A microscale cylindrical ion trap, having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale cylindrical ion trap to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The microscale CIT has a reduced ion mean free path, allowing operation at higher pressures with less expensive and less bulky vacuum pumping system, and with lower battery power than conventional- and miniature-sized ion traps. The reduced electrode voltage enables integration of the microscale cylindrical ion trap with on-chip integrated circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of microscale cylindrical ion traps can be realized in truly field portable, handheld microanalysis systems.
Chen, Zhifan; Zhao, Ye; Fan, Lidong; Xing, Liteng; Yang, Yujie
2015-12-01
Phytoremediation using economically valuable, large biomass, non-edible plants is a promising method for metal-contaminated soils. This study investigated cotton's tolerance for Cd and remediation potential through analyzing Cd bioaccumulation and localization in plant organs under different soil Cd levels. Results showed cotton presents good tolerance when soil Cd concentration ≤20.26 mg kg(-1). Cotton had good Cd accumulation ability under low soil Cd levels (<1.26 mg kg(-1)), with a TF value (the ratio of Cd concentration in stem to root) above 1. Energy dispersive X-ray microanalysis indicated cotton leaf transpiration played a key role in extracting soil Cd, while roots and stems were the main compartments of Cd storage. Cd complexation to other organic constituents in root and stem cell sap could be a primary detoxifying strategy. Therefore, cotton is a potential candidate for phytoremediation of Cd-contaminated soils.
Growth and structural, optical, and electrical properties of zincite crystals
NASA Astrophysics Data System (ADS)
Kaurova, I. A.; Kuz'micheva, G. M.; Rybakov, V. B.
2013-03-01
An X-ray diffraction study of ZnO crystals grown by the hydrothermal method has revealed reflections that give grounds to assign them to the sp. gr. P3 rather than to P63 mc. The distribution of Zn1, Zn2, O1, and O2 over structural positions, along with vacancies and incorporated zinc atoms, explains the dissymmetrization observed in terms of the kinetic (growth) phase transition of the order-disorder type, which is caused by ordering Zn and O atoms over structural positions. The color of crystals of refined compositions (Zn0.975□0.025)Zn i(0.015)(O0.990□0.010) (green) and (Zn0.965□0.035)Zn i(0.035)O (bright green) is related to different oxygen contents, which is confirmed by the results of electron probe X-ray microanalysis and absorption spectroscopy. The degree of the structural quality of crystals, their resistivity, and activation energy are also related to oxygen vacancies.
NASA Astrophysics Data System (ADS)
Sorbier, L.; Trichard, F.; Moncayo, S.; Lienemann, C. P.; Motto-Ros, V.
2018-01-01
We propose a methodology to compute the crust thickness of an element in an egg-shell catalyst from a two-dimensional elemental map. The methodology handles two important catalyst shapes: infinite extrudates of arbitrary section and spheres. The methodology is validated with synthetic analytical profiles on simple shapes (cylinder and sphere). Its relative accuracy is shown close to few percent with a decrease inversely proportional to the square root of the number of sampled pixels. The crust thickness obtained by this method from quantitative Pd maps acquired by laser-induced breakdown spectroscopy are comparable with values obtained from electron-probe microanalysis profiles. Some discrepancies are found and are explained by the heterogeneity of the crust thickness within a grain. As a full map is more representative than a single profile, fast mapping and the methodology exposed in this paper are expected to become valuable tools for the development of new generations of egg-shell deposited catalysts.
Miranda, Kildare; Rodrigues, Claudia O; Hentchel, Joachim; Vercesi, Anibal; Plattner, Helmut; de Souza, Wanderley; Docampo, Roberto
2004-10-01
Acidocalcisomes are acidic calcium storage compartments described initially in trypanosomatid and apicomplexan parasites, and recently found in other unicellular eukaryotes. The aim of this study was to identify the presence of acidocalcisomes in the plant trypanosomatid Phytomonas françai. Electron-dense organelles of P. françai were shown to contain large amounts of oxygen, sodium, magnesium, phosphorus, potassium, calcium, iron, and zinc as determined by X-ray microanalysis, either in situ or when purified using iodixanol gradient centrifugation or by elemental mapping. The presence of iron is not common in other acidocalcisomes. In situ, but not when purified, these organelles showed an elongated shape differing from previously described acidocalcisomes. However, these organelles also possessed a vacuolar H+-pyrophosphatase (V-H+-PPase) as determined by biochemical methods and by immunofluorescence microscopy using antibodies against the enzyme. Together, these results suggest that the electron-dense organelles of P. françai are homologous to the acidocalcisomes described in other trypanosomatids, although with distinct morphology and elemental content.
Ning, Yu; Li, Jihui; Cai, Wensheng; Shao, Xueguang
2012-10-01
A method for simultaneous determination of metal ions in river water was developed by using preconcentration and near-infrared diffuse reflectance spectroscopy (NIRDRS). An inorganic biomaterial, nano-hydroxyapatite (HAP) was used as a high-efficient adsorbent for gathering the ions from water samples. After adsorbing the analytes onto the adsorbent, NIRDRS was measured and partial least squares (PLS) models were established for fast and simultaneous quantitative prediction. With the samples prepared by river water, determination of Pb(2+), Zn(2+), Cu(2+), Cd(2+) and Cr(3+) was investigated. The calibration models of Cu(2+), Cr(3+) and total content were proven to be efficient enough for precise prediction. The determination coefficients (R(2)) of the independent validation were found as high as 0.9924, 0.9869 and 0.9273 for Cu(2+), Cr(3+) and total content, respectively. Therefore, the feasibility of NIRDRS for microanalysis of heavy metal ions in waste water was demonstrated. Copyright © 2012 Elsevier B.V. All rights reserved.
Formation of Porous Germanium Layers by Silver-Ion Implantation
NASA Astrophysics Data System (ADS)
Stepanov, A. L.; Vorob'ev, V. V.; Nuzhdin, V. I.; Valeev, V. F.; Osin, Yu. N.
2018-04-01
We propose a method for the formation of porous germanium ( P-Ge) layers containing silver nanoparticles by means of high-dose implantation of low-energy Ag+ ions into single-crystalline germanium ( c-Ge). This is demonstrated by implantation of 30-keV Ag+ ions into a polished c-Ge plate to a dose of 1.5 × 1017 ion/cm2 at an ion beam-current density of 5 μA/cm2. Examination by high-resolution scanning electron microscopy (SEM), atomic-force microscopy (AFM), X-ray diffraction (XRD), energy-dispersive X-ray (EDX) microanalysis, and reflection high-energy electron diffraction (RHEED) showed that the implantation of silver ions into c-Ge surface led to the formation of a P-Ge layer with spongy structure comprising a network of interwoven nanofibers with an average diameter of ˜10-20 nm Ag nanoparticles on the ends of fibers. It is also established that the formation of pores during Ag+ ion implantation is accompanied by effective sputtering of the Ge surface.
High-strength bioresorbable Fe-Ag nanocomposite scaffolds: Processing and properties
NASA Astrophysics Data System (ADS)
Sharipova, Aliya; Psakhie, Sergey G.; Swain, Sanjaya K.; Gutmanas, Elazar Y.; Gotman, Irena
2015-10-01
High strength ductile iron-silver nanocomposite scaffolds were fabricated employing high energy attrition milling of micron-submicron powders, followed by cold sintering/high pressure consolidation. Particulate leaching method with soluble Na2SO4 and K2CO3 salts as porogens was used to create scaffolds with 50, 55, 60 and 73% volume fraction of pores. Part of specimens was annealed at 600, 800 and 900°C. Specimens were characterized employing X-ray diffraction, scanning electron microscopy (SEM) with electron probe microanalysis (EDS) and high resolution SEM. Mechanical properties were measured in compression and permeability was measured in permeameter based on Darcy's law. Scaffolds with 50% and 55% porosity exhibited high compressive strength (18-22 MPa), compressive strength of 8-12 MPa was observed for scaffolds with 73% porosity. Treatments at 800 and 900°C result in increase of strength and ductility with some coarsening of microstructure. Best combination of compressive strength (15 MPa) and permeability (0.6-6 cm2) is close to the range of trabecular bone.
NASA Astrophysics Data System (ADS)
Eghbali-Arani, Mohammad; Sobhani-Nasab, Ali; Rahimi-Nasrabadi, Mehdi; Pourmasoud, Saeid
2018-03-01
SmVO4 nanoparticles were synthesized through a fast and simple procedure (green method). The effects of three parameters including temperature, type of capping agent, and concentration on the size and morphology behavior of SmVO4 nanoparticles were explored. The analysis of SmVO4 nanoparticles was performed through some techniques including, Fourier transform infrared spectroscopy, x-ray diffraction, energy dispersive x-ray microanalysis, scanning electron microscopy, transmission electron microscopy, thermogravimetry, differential thermal analysis, ultraviolet-visible spectroscopy, and vibrating sample magnetometers. The study of photocatalytic behaviour of the SmVO4 nanoparticles in various conditions has been carried out. The impacts of different factors such as dosage, grain size, and kind of pollutant (methylene blue = MB and methyl orange = MO) on the photocatalytic property of SmVO4 nanoparticles were assessed. The photocatalytic activities of SmVO4 catalysts were studied for the degradation of dye under visible light (λ > 400 nm).
NASA Astrophysics Data System (ADS)
Gao, Michael C.; Ünlü, Necip; Mihalkovic, Marek; Widom, Michael; Shiflet, G. J.
2007-10-01
This study investigates glass formation, phase equilibria, and thermodynamic descriptions of the Al-rich Al-Ce-Co ternary system using a novel approach that combines critical experiments, CALPHAD modeling, and first-principles (FP) calculations. The glass formation range (GFR) and a partial 500 °C isotherm are determined using a range of experimental techniques including melt spinning, transmission electron microscopy (TEM), electron probe microanalysis (EPMA), X-ray diffraction, and differential thermal analysis (DTA). Three stable ternary phases are confirmed, namely, Al8CeCo2, Al4CeCo, and AlCeCo, while a metastable phase, Al5CeCo2, was discovered. The equilibrium and metastable phases identified by the present and earlier reported experiments, together with many hypothetical ternary compounds, are further studied by FP calculations. Based on new experimental data and FP calculations, the thermodynamics of the Al-rich Al-Co-Ce system is optimized using the CALPHAD method. Application to glass formation is discussed in light of present studies.
Direct-soldering 6061 aluminum alloys with ultrasonic coating.
Ding, Min; Zhang, Pei-lei; Zhang, Zhen-yu; Yao, Shun
2010-02-01
In this study, the authors applied furnace soldering with ultrasonic coating method to solder 6061 aluminum alloy and investigated the effects of both coating time and soldering temperature on its properties. The following results were obtained: firstly, the solder region mainly composed of four kinds of microstructure zones: rich Sn zone, rich-Pb zone, Sn-Pb eutectic phase and rich Al zone. Meanwhile, the microanalysis identified a continuous reaction product at the alumina-solder interface as a rich-Pb zone. Therefore, the joint strength changed with soldering time and soldering temperature. Secondly, the tensile data had significantly greater variability, with values ranging from 13.99MPa to 24.74MPa. The highest value was obtained for the samples coated with Sn-Pb-Zn alloy for 45s. Fractures occurred along the solder-alumina interface for the 6061 aluminum alloy with its surface including hybrid tough fracture of dimple and tear ridge. The interface could initially strip at the rich Bi zone with the effect of shear stress.
Experimental study and thermodynamic modeling of the Al–Co–Cr–Ni system
Gheno, Thomas; Liu, Xuan L.; Lindwall, Greta; ...
2015-09-21
In this study, a thermodynamic database for the Al–Co–Cr–Ni system is built via the Calphad method by extrapolating re-assessed ternary subsystems. A minimum number of quaternary parameters are included, which are optimized using experimental phase equilibrium data obtained by electron probe micro-analysis and x-ray diffraction analysis of NiCoCrAlY alloys spanning a wide compositional range, after annealing at 900 °C, 1100 °C and 1200 °C, and water quenching. These temperatures are relevant to oxidation and corrosion resistant MCrAlY coatings, where M corresponds to some combination of nickel and cobalt. Comparisons of calculated and measured phase compositions show excellent agreement for themore » β–γ equilibrium, and good agreement for three-phase β–γ–σ and β–γ–α equilibria. An extensive comparison with existing Ni-base databases (TCNI6, TTNI8, NIST) is presented in terms of phase compositions.« less
First detection of lead in black paper from intraoral film: an environmental concern.
Guedes, Débora F C; Silva, Reginaldo S; da Veiga, Márcia A M S; Pecora, Jesus D
2009-10-30
Lead (Pb) contamination in the black paper that recovers intraoral films (BKP) has been investigated. BKP samples were collected from the Radiology Clinics of the Dental School of Ribeirão Preto, University of São Paulo, Brazil. For sake of comparison, four different methods were used. The results revealed the presence of high lead levels, well above the maximum limit allowed by the legislation. Pb contamination levels achieved after the following treatments: paper digestion in nitric acid, microwave treatment, DIN38414-54 method and TCLP method were 997 microg g(-1), 189 microg g(-1), 20.8 microg g(-1), and 54.0 microg g(-1), respectively. Flame atomic absorption spectrometry (FAAS) and inductively coupled plasma mass spectrometry (ICP-MS) were employed for lead determination according to the protocols of the applied methods. Lead contamination in used BKP was confirmed by scanning electron microscopy coupled with energy dispersive X-ray microanalysis (SEM-EDS). All the SEM imaging was carried out in the secondary electron mode (SE) and backscattered-electron mode (QBSD) following punctual X-ray fluorescence spectra. Soil contamination derived from this product revealed the urgent need of addressing this problem. These elevated Pb levels, show that a preliminary treatment of BKP is mandatory before it is disposed into the common trash. The high lead content of this material makes its direct dumping into the environment unwise.
Synthesis and characterization of nanocrystalline apatites from solution modeling human blood
NASA Astrophysics Data System (ADS)
Solodyankina, Anna; Nikolaev, Anton; Frank-Kamenetskaya, Olga; Golovanova, Olga
2016-09-01
Present paper is devoted to the research of the calcification processes in the blood plasma of human body. Spontaneous crystallization from the solution modeling the inorganic part of the blood plasma has been carried out. Obtained precipitates were studied by the various instrumental methods (X-ray powder diffraction, Fourier-transformed infrared spectroscopy, scanning electron microscopy, electron probe microanalysis and gas-volumetric method). All gathered data allow to summarize that nonstoichiometric carbonated hydroxyapatite with low crystallinity (CSD lengths 18-28 nm), high water content and small amount of chlorine ion was obtained throughout the syntheses. Part of vacancies at the Ca sites varies from 0.17 to 0.87; the value of the Cat/(P + C) ratio-from 1.52 to 1.64 (where Cat = Ca2+ + Na+ + K+ + Mg2+). The poor crystallized synthetic apatites with high carbonate ion content (from 4.34 to 5.54 wt%) and c parameter (6.888-6.894 Å) are analogues of the apatites of the pathological cardiovascular deposits. They can be obtained from the solution modeling human blood plasma by the inorganic components with calcium phosphate supersaturation 25 and 50 and with 10 and 12 weeks experiment time.
NASA Astrophysics Data System (ADS)
Tempesta, Gioacchino; Senesi, Giorgio S.; Manzari, Paola; Agrosì, Giovanna
2018-06-01
Two fragments of an iron meteorite shower named Dronino were characterized by a novel technique, i.e. Double-Pulse micro-Laser Induced Breakdown Spectroscopy (DP-μLIBS) combined with optical microscope. This technique allowed to perform a fast and detailed analysis of the chemical composition of the fragments and permitted to determine their composition, the alteration state differences and the cooling rate of the meteorite. Qualitative analysis indicated the presence of Fe, Ni and Co in both fragments, whereas the elements Al, Ca, Mg, Si and, for the first time Li, were detected only in one fragment and were related to its post-falling alteration and contamination by weathering processes. Quantitative analysis data obtained using the calibration-free (CF) - LIBS method showed a good agreement with those obtained by traditional methods generally applied to meteorite analysis, i.e. Electron Dispersion Spectroscopy - Scanning Electron Microscopy (EDS-SEM), also performed in this study, and Electron Probe Microanalysis (EMPA) (literature data). The local and coupled variability of Ni and Co (increase of Ni and decrease of Co) determined for the unaltered portions exhibiting plessite texture, suggested the occurrence of solid state diffusion processes under a slow cooling rate for the Dronino meteorite.
NASA Technical Reports Server (NTRS)
Carpenter, Paul; Curreri, Peter A. (Technical Monitor)
2002-01-01
This course will cover practical applications of the energy-dispersive spectrometer (EDS) to x-ray microanalysis. Topics covered will include detector technology, advances in pulse processing, resolution and performance monitoring, detector modeling, peak deconvolution and fitting, qualitative and quantitative analysis, compositional mapping, and standards. An emphasis will be placed on use of the EDS for quantitative analysis, with discussion of typical problems encountered in the analysis of a wide range of materials and sample geometries.
Electrolytic Reduction of Titania Slag in Molten Calcium Chloride Bath
NASA Astrophysics Data System (ADS)
Mohanty, Jayashree
2012-05-01
Ferro-titanium is prepared by direct electrolytic reduction of titania-rich slag obtained from plasma smelting of ilmenite in molten CaCl2. The product after electro-reduction is characterized by x-ray diffraction, scanning electron microscopy, and electron probe microanalysis. The electrolysis is carried out at a cell voltage of 3.0 V, taking graphite as the electrolysis cell as well as the anode, and a titania-rich slag piece wrapped by a nichrome wire is used as the cathode.
NASA Astrophysics Data System (ADS)
Zlatoustova, O. Yu; Vasilev, S. V.; Rudy, A. S.
2016-08-01
The results of the study of human aortic walls, subjected to different stages of mineralization are presented. By means of scanning electron microscopy and X-ray microanalysis the morphology, elemental composition and characteristics of the mineral component localization were investigated. The key differences in the initial, intermediate and final stages of pathological mineralization of the aorta wall were identified. The data obtained may be useful in describing the mechanism of biomineral deposits formation in human body.
Studies of the Ossicles from the Ciliate Protozoan Spirostomum ambiguum
NASA Astrophysics Data System (ADS)
Takagui, Regina; Silveira, Marina
1999-09-01
Spirostomum ambiguum is able to concentrate intracellular deposits of calcium phosphate. This mineralization process is dependent on the age of the culture and can be stimulated by an applied piezoelectric potential. Crystalline deposits induced to form in laboratory cultures were analysed both in situ and after isolation from the cells, using transmission and scanning electron microscopies, energy dispersive microanalysis, and optical spectrophotometry. The ratio of Ca:P (1.57±0.01) fits with the expected value for hydroxyapatite.
Intermetallic Precipitation in Low-Density Steel
NASA Astrophysics Data System (ADS)
Chatterjee, S.; Chatterjee, A.; Chakrabarti, D.
2018-06-01
Low-density steels (LDS) represent a relatively new class of material that contains a large concentration of aluminum. In the present work, we studied the effect of copper addition to these steels. Microanalysis and electron diffraction study were used to demonstrate that on the contrary to the theoretical expectation, copper formed a variety of intermetallic, instead of metallic, precipitates on reaction with aluminum. The precipitation led to a significant age-hardening response that imparted a special characteristic to this material, which had never been reported previously.
2010-12-01
in the conventional Bragg-Bentano mode. The residual stress of the coatings was measured by glancing incident angle XRD (GIXRD) in the same X - ray ...micro-analysis (EPMA), x - ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), nanoindentation, scratch test, and ball-on...the coatings was determined by XRD using a SIEMENS X - ray diffractometer (Model KRISTALLOFLEX-810) operated with K-alpha Cu radiation (30 kV and 20 mA
Inter-layered clay stacks in Jurassic shales
NASA Technical Reports Server (NTRS)
Pye, K.; Krinsley, D. H.
1983-01-01
Scanning electron microscopy in the backscattered electron mode is used together with energy-dispersive X-ray microanalysis to show that Lower Jurassic shales from the North Sea Basin contain large numbers of clay mineral stacks up to 150 microns in size. Polished shale sections are examined to determine the size, shape orientation, textural relationships, and internal compositional variations of the clays. Preliminary evidence that the clay stacks are authigenic, and may have formed at shallow burial depths during early diagenesis, is presented.
Song, Young-Chul; Ryu, JiYeon; Malek, Md Abdul; Jung, Hae-Jin; Ro, Chul-Un
2010-10-01
In our previous work, it was demonstrated that the combined use of attenuated total reflectance (ATR) FT-IR imaging and quantitative energy-dispersive electron probe X-ray microanalysis (ED-EPMA), named low-Z particle EPMA, had the potential for characterization of individual aerosol particles. Additionally, the speciation of individual mineral particles was performed on a single particle level by the combined use of the two techniques, demonstrating that simultaneous use of the two single particle analytical techniques is powerful for the detailed characterization of externally heterogeneous mineral particle samples and has great potential for characterization of atmospheric mineral dust aerosols. These single particle analytical techniques provide complementary information on the physicochemical characteristics of the same individual particles, such as low-Z particle EPMA on morphology and elemental concentrations and the ATR-FT-IR imaging on molecular species, crystal structures, functional groups, and physical states. In this work, this analytical methodology was applied to characterize an atmospheric aerosol sample collected in Incheon, Korea. Overall, 118 individual particles were observed to be primarily NaNO(3)-containing, Ca- and/or Mg-containing, silicate, and carbonaceous particles, although internal mixing states of the individual particles proved complicated. This work demonstrates that more detailed physiochemical properties of individual airborne particles can be obtained using this approach than when either the low-Z particle EPMA or ATR-FT-IR imaging technique is used alone.
Meffert, Matthias; Störmer, Heike; Gerthsen, Dagmar
2016-02-01
(Ba0.5Sr0.5)(Co0.8Fe0.2)O3-δ (BSCF) is a promising material with mixed ionic and electronic conductivity which is considered for oxygen separation membranes. Selective improvement of material properties, e.g. oxygen diffusivity or suppression of secondary phase formation, can be achieved by B-site doping. This study is concerned with the formation of Co-oxide precipitates in undoped BSCF at typical homogenization temperatures of 1,000°C, which act as undesirable nucleation sites for other secondary phases in the application-relevant temperature range. Y-doping successfully suppresses Co-oxide formation, whereas only minor improvements are achieved by Sc-doping. To understand the reason for the different behavior of Y and Sc, the lattice sites of dopant cations in BSCF were experimentally determined in this work. Energy-dispersive X-ray spectroscopy in a transmission electron microscope was applied to locate dopant sites exploiting the atom location by channeling enhanced microanalysis technique. It is shown that Sc exclusively occupies B-cation sites, whereas Y is detected on A- and B-cation sites in Y-doped BSCF, although solely B-site doping was intended. A model is presented for the suppression of Co-oxide formation in Y-doped BSCF based on Y double-site occupancy.
NASA Astrophysics Data System (ADS)
Steffen, S.; Otto, M.; Niewoehner, L.; Barth, M.; Bro¿żek-Mucha, Z.; Biegstraaten, J.; Horváth, R.
2007-09-01
A gunshot residue sample that was collected from an object or a suspected person is automatically searched for gunshot residue relevant particles. Particle data (such as size, morphology, position on the sample for manual relocation, etc.) as well as the corresponding X-ray spectra and images are stored. According to these data, particles are classified by the analysis-software into different groups: 'gunshot residue characteristic', 'consistent with gunshot residue' and environmental particles, respectively. Potential gunshot residue particles are manually checked and - if necessary - confirmed by the operating forensic scientist. As there are continuing developments on the ammunition market worldwide, it becomes more and more difficult to assign a detected particle to a particular ammunition brand. As well, the differentiation towards environmental particles similar to gunshot residue is getting more complex. To keep external conditions unchanged, gunshot residue particles were collected using a specially designed shooting device for the test shots revealing defined shooting distances between the weapon's muzzle and the target. The data obtained as X-ray spectra of a number of particles (3000 per ammunition brand) were reduced by Fast Fourier Transformation and subjected to a chemometric evaluation by means of regularized discriminant analysis. In addition to the scanning electron microscopy in combination with energy dispersive X-ray microanalysis results, isotope ratio measurements based on inductively coupled plasma analysis with mass-spectrometric detection were carried out to provide a supplementary feature for an even lower risk of misclassification.
Delogne, Christophe; Lawford, Patricia V; Habesch, Steven M; Carolan, Vikki A
2007-10-01
Bioprosthetic heart valve tissue and associated calcification were studied in their natural state, using environmental scanning electron microscopy (ESEM). Energy dispersive X-ray micro-analysis, X-ray diffraction, Fourier-transform infrared and Raman spectroscopy were used to characterize the various calcific deposits observed with ESEM. The major elements present in calcified valves were also analyzed by inductively coupled plasma-optical emission spectroscopy. To better understand the precursor formation of the calcific deposits, results from the elemental analyses were statistically correlated. ESEM revealed the presence of four broad types of calcium phosphate crystal morphology. In addition, two main patterns of organization of calcific deposits were observed associated with the collagen fibres. Energy dispersive X-ray micro-analysis identified the crystals observed by ESEM as salts containing mainly calcium and phosphate with ratios from 1.340 (possibly octacalcium phosphate, which has a Ca/P ratio of 1.336) to 2.045 (possibly hydroxyapatite with incorporation of carbonate and metal ion contaminants, such as silicon and magnesium, in the crystal lattice). Raman and fourier-transform infrared spectroscopy also identified the presence of carbonate and the analyses showed spectral features very similar to a crystalline hydroxyapatite spectrum, also refuting the presence of precursor phases such as beta-tricalcium phosphate, octacalcium phosphate and dicalcium phosphate dihydrate. The results of this study raised the possibility of the presence of precursor phases associated with the early stages of calcification.
Sub-microanalysis of solid samples with near-field enhanced atomic emission spectroscopy
NASA Astrophysics Data System (ADS)
Wang, Xiaohua; Liang, Zhisen; Meng, Yifan; Wang, Tongtong; Hang, Wei; Huang, Benli
2018-03-01
A novel approach, which we have chosen to name it as near-field enhanced atomic emission spectroscopy (NFE-AES), was proposed by introducing a scanning tunnelling microscope (STM) system into a laser-induced breakdown spectrometry (LIBS). The near-field enhancement of a laser-illuminated tip was utilized to improve the lateral resolution tremendously. Using the hybrid arrangement, pure metal tablets were analyzed to verify the performance of NFE-AES both in atmosphere and in vacuum. Due to localized surface plasmon resonance (LSPR), the incident electromagnetic field is enhanced and confined at the apex of tip, resulting in sub-micron scale ablation and elemental emission signal. We discovered that the signal-to-noise ratio (SNR) and the spectral resolution obtained in vacuum condition are better than those acquired in atmospheric condition. The quantitative capability of NFE-AES was demonstrated by analyzing Al and Pb in Cu matrix, respectively. Submicron-sized ablation craters were achieved by performing NFE-AES on a Si wafer with an Al film, and the spectroscopic information from a crater of 650 nm diameter was successfully obtained. Due to its advantage of high lateral resolution, NFE-AES imaging of micro-patterned Al lines on an integrated circuit of a SIM card was demonstrated with a sub-micron lateral resolution. These results reveal the potential of the NFE-AES technique in sub-microanalysis of solids, opening an opportunity to map chemical composition at sub-micron scale.
Normal incidence X-ray mirror for chemical microanalysis
Carr, Martin J.; Romig, Jr., Alton D.
1990-01-01
A non-planar, focusing mirror, to be utilized in both electron column instruments and micro-x-ray fluorescence instruments for performing chemical microanalysis on a sample, comprises a concave, generally spherical base substrate and a predetermined number of alternating layers of high atomic number material and low atomic number material contiguously formed on the base substrate. The thickness of each layer is an integral multiple of the wavelength being reflected and may vary non-uniformly according to a predetermined design. The chemical analytical instruments in which the mirror is used also include a predetermined energy source for directing energy onto the sample and a detector for receiving and detecting the x-rays emitted from the sample; the non-planar mirror is located between the sample and detector and collects the x-rays emitted from the sample at a large solid angle and focuses the collected x-rays to the sample. For electron column instruments, the wavelengths of interest lie above 1.5 nm, while for x-ray fluorescence instruments, the range of interest is below 0.2 nm. Also, x-ray fluorescence instruments include an additional non-planar focusing mirror, formed in the same manner as the previously described m The invention described herein was made in the performance of work under contract with the Department of Energy, Contract No. DE-AC04-76DP00789, and the United States Government has rights in the invention pursuant to this contract.
Eom, Hyo-Jin; Jung, Hae-Jin; Sobanska, Sophie; Chung, Sang-Gwi; Son, Youn-Suk; Kim, Jo-Chun; Sunwoo, Young; Ro, Chul-Un
2013-11-05
Quantitative energy-dispersive electron probe X-ray microanalysis (ED-EPMA), known as low-Z particle EPMA, and Raman microspectrometry (RMS) were applied in combination for an analysis of the iron species in airborne PM10 particles collected in underground subway tunnels. Iron species have been reported to be a major chemical species in underground subway particles generated mainly from mechanical wear and friction processes. In particular, iron-containing particles in subway tunnels are expected to be generated with minimal outdoor influence on the particle composition. Because iron-containing particles have different toxicity and magnetic properties depending on their oxidation states, it is important to determine the iron species of underground subway particles in the context of both indoor public health and control measures. A recently developed analytical methodology, i.e., the combined use of low-Z particle EPMA and RMS, was used to identify the chemical species of the same individual subway particles on a single particle basis, and the bulk iron compositions of airborne subway particles were also analyzed by X-ray diffraction. The majority of airborne subway particles collected in the underground tunnels were found to be magnetite, hematite, and iron metal. All the particles collected in the tunnels of underground subway stations were attracted to permanent magnets due mainly to the almost ubiquitous ferrimagnetic magnetite, indicating that airborne subway particles can be removed using magnets as a control measure.
Potentially Reactive Forms of Silica in Volcanic Rocks Using Different Analytical Approaches
NASA Astrophysics Data System (ADS)
Esteves, Hugo; Fernandes, Isabel; Janeiro, Ana; Santos Silva, António; Pereira, Manuel; Medeiros, Sara; Nunes, João Carlos
2017-12-01
Several concrete structures show signs of deterioration resulting from internal chemical reactions, such as the alkali-silica reaction (ASR). It is well known that these swelling reactions occur in the presence of moisture, between some silica mineral phases present in the aggregates and the alkalis of the concrete, leading to the degradation of concrete structures and consequently compromising their safety. In most of the cases, rehabilitation, demolition or even rebuilding of such structures is needed and the effective costs can be very high. Volcanic rocks are commonly used as aggregates in concrete, and they are sometimes the only option due to the unavailability of other rock types. These rocks may contain different forms of silica that are deleterious to concrete, such as opal, chalcedony, cristobalite, tridymite and micro- to cryptocrystalline quartz, as well as Si-rich volcanic glass. Volcanic rocks are typically very finegrained and their constituting minerals are usually not distinguished under optical microscopy, thus leading to using complementary methods. The objective of this research is to find the more adequate analytical methods to identify silica phases that might be present in volcanic aggregates and cause ASR. The complementary methods used include X-Ray Diffraction (XRD), mineral acid digestion and Scanning Electron Microscopy with Energy Dispersive X-Ray Spectrometry (SEM/EDS), as well as Electron Probe Micro-Analysis (EPMA).
Ellipsometric porosimetry on pore-controlled TiO2 layers
NASA Astrophysics Data System (ADS)
Rosu, Dana-Maria; Ortel, Erik; Hodoroaba, Vasile-Dan; Kraehnert, Ralph; Hertwig, Andreas
2017-11-01
The practical performance of surface coatings in applications like catalysis, water splitting or batteries depends critically on the coating materials' porosity. Determining the porosity in a fast and non-destructive way is still an unsolved problem for industrial thin-films technology. As a contribution to calibrated, non-destructive, optical layer characterisation, we present a multi-method comparison study on porous TiO2 films deposited by sol-gel synthesis on Si wafers. The ellipsometric data were collected on a range of samples with different TiO2 layer thickness and different porosity values. These samples were produced by templated sol-gel synthesis resulting in layers with a well-defined pore size and pore density. The ellipsometry measurement data were analysed by means of a Bruggeman effective medium approximation (BEMA), with the aim to determine the mixture ratio of void and matrix material by a multi-sample analysis strategy. This analysis yielded porosities and layer thicknesses for all samples as well as the dielectric function for the matrix material. Following the idea of multi-method techniques in metrology, the data was referenced to imaging by electron microscopy (SEM) and to a new EPMA (electron probe microanalysis) porosity approach for thin film analysis. This work might lead to a better metrological understanding of optical porosimetry and also to better-qualified characterisation methods for nano-porous layer systems.
Li, Peng-Li; Li, Chun-Xia; Xue, Yi-Ting; Li, Hai-Hua; Liu, Hong-Bing; He, Xiao-Xi; Yu, Guang-Li; Guan, Hua-Shi
2013-01-01
This study was aimed at developing a sensitive and selective HPLC method with postcolumn fluorescence derivatization for the detection of propylene glycol alginate sodium sulfate (PSS) in rat plasma. Plasma samples were prepared by a simple and fast ultrafiltration method. PSS was extracted from rat plasma with d-glucuronic acid as internal standard. Isocratic chromatographic separation was performed on a TSKgel G2500 PWxL column with the mobile phase of 0.1 M sodium sulfate at a flow rate of 0.5 mL/min. Analyte detection was achieved by fluorescence detection (FLD) at 250 nm (excitation) and 435 nm (emission) using guanidine hydrochloride as postcolumn derivatizing reagent in an alkaline medium at 120 °C. The calibration curve was linear over a concentration range of 1–500 μg/mL, and the lower limit of detection (LLOD) was found to be 250 ng/mL. This validated method was applied successfully to the pharmacokinetic study of PSS and PSS-loaded poly lactic-co-glycolic acid (PLGA) nanoparticles (PSS-NP) in rat plasma after a single intravenous (PSS only) and oral administration (PSS and PSS-NP). Significant differences in the main pharmacokinetic parameters of PSS and PSS-NP were observed. The relative bioavailability of PSS-NP was 190.10% compared with PSS which shows that PSS-NP can improve oral bioavailability. PMID:23549283
Electron microprobe analysis program for biological specimens: BIOMAP
NASA Technical Reports Server (NTRS)
Edwards, B. F.
1972-01-01
BIOMAP is a Univac 1108 compatible program which facilitates the electron probe microanalysis of biological specimens. Input data are X-ray intensity data from biological samples, the X-ray intensity and composition data from a standard sample and the electron probe operating parameters. Outputs are estimates of the weight percentages of the analyzed elements, the distribution of these estimates for sets of red blood cells and the probabilities for correlation between elemental concentrations. An optional feature statistically estimates the X-ray intensity and residual background of a principal standard relative to a series of standards.
Advanced STEM microanalysis of bimetallic nanoparticle catalysts
NASA Astrophysics Data System (ADS)
Lyman, Charles E.; Dimick, Paul S.
2012-05-01
Individual particles within bimetallic nanoparticle populations are not always identical, limiting the usefulness of bulk analysis techniques such as EXAFS. The scanning transmission electron microscope (STEM) is the only instrument able to characterize supported nanoparticle populations on a particle-by-particle basis. Quantitative elemental analyses of sub-5-nm particles reveal phase separations among particles and surface segregation within particles. This knowledge can lead to improvements in bimetallic catalysts. Advanced STEMs with field-emission guns, aberration-corrected optics, and efficient signal detection systems allow analysis of sub-nanometer particles.
The microstructure and formation of duplex and black plessite in iron meteorites
NASA Technical Reports Server (NTRS)
Zhang, J.; Williams, D. B.; Goldstein, J. I.
1993-01-01
Two of the most common plessite structures, duplex and black plessite, in the taenite region of the Windmanstatten pattern of two iron meteorites (Grant and Carlton) are characterized using high-resolution electron microscopy and microanalysis techniques. Two types of gamma precipitates, found in the duplex plessite and black plessite regions, respectively, are identified, and their morphologies are described. The formation of the plessite structure is discussed using the information obtained in this study and results of a parallel investigation of decomposed martensitic Fe-Ni laboratory alloys.
Barakat, Assem; Ghabbour, Hazem A; Al-Majid, Abdullah Mohammed; Soliman, Saied M; Ali, M; Mabkhot, Yahia Nasser; Shaik, Mohammed Rafi; Fun, Hoong-Kun
2015-07-21
The synthesis of 2,6-bis(hydroxy(phenyl)methyl)cyclohexanone 1 is described. The molecular structure of the title compound 1 was confirmed by NMR, FT-IR, MS, CHN microanalysis, and X-ray crystallography. The molecular structure was also investigated by a set of computational studies and found to be in good agreement with the experimental data obtained from the various spectrophotometric techniques. The antimicrobial activity and molecular docking of the synthesized compound was investigated.
Viscosity of the liquid Al-6Mg-1Mn-0.2Sc-0.1Zr alloy
NASA Astrophysics Data System (ADS)
Reznik, P. L.; Chikova, O. A.; Tsepelev, V. S.
2017-07-01
The microstructure and the phase composition of as-cast Al-Mg-Mn-Sc-Zr alloy samples are studied by electron microscopy and electron-probe microanalysis. The processes of solidification and melting of this alloy are described. The temperature dependence of the kinematic viscosity of the Al-Mg-Mn-Sc-Zr melts is studied during heating and subsequent cooling of the samples. The measurement results are used to determine the temperature at which inherited microheterogeneities in the melts are destroyed irreversibly.
NASA Astrophysics Data System (ADS)
Linnik, S. A.; Gaidaichuk, A. V.; Okhotnikov, V. V.
2018-02-01
The influence of cobalt on the phase composition and adhesion strength of polycrystalline diamond coatings has been studied using scanning electron microscopy, Raman spectroscopy, and X-ray microanalysis. The coatings have been deposited on WC-Co hard alloy substrates in glow discharge plasma. It has been found that the catalytic amorphization of carbon only takes place during the direct synthesis of the diamond coating, when the cobalt vapor pressure over the substrate is high and the cobalt-related degradation of the synthesized diamond is absent.
Galle, P
1981-01-05
Aluminium and indium, two elements of group IIIA of the periodic table, are concentrated by the kidney inside lysosomes of proximal tubule cell. In these lysosomes, aluminium and indium are precipitated as non-soluble phosphate salts and these precipitates are then expelled in the tubular lumen and eliminated with the urinary flow. These data have been visualized by analytical microscopy (ion microscopy and X ray microanalysis). Local acid phosphatases are assumed to permit the concentration of aluminium and indium salts inside the lysosomes.
ITEP MEVVA ion beam for rhenium silicide production.
Kulevoy, T; Gerasimenko, N; Seleznev, D; Kropachev, G; Kozlov, A; Kuibeda, R; Yakushin, P; Petrenko, S; Medetov, N; Zaporozhan, O
2010-02-01
The rhenium silicides are very attractive materials for semiconductor industry. In the Institute for Theoretical and Experimental Physics (ITEP) at the ion source test bench the research program of rhenium silicide production by ion beam implantation are going on. The investigation of silicon wafer after implantation of rhenium ion beam with different energy and with different total dose were carried out by secondary ions mass spectrometry, energy-dispersive x-ray microanalysis, and x-ray diffraction analysis. The first promising results of rhenium silicide film production by high intensity ion beam implantation are presented.
Forensic microanalysis of Manhattan Project legacy radioactive wastes in St. Louis, MO.
Kaltofen, Marco; Alvarez, Robert; Hixson, Lucas W
2018-06-01
Radioactive particulate matter (RPM) in St Louis, MO, area surface soils, house dusts and sediments was examined by scanning electron microscopy with energy dispersive X-ray analysis. Analyses found RPM containing 238 U and decay products (up to 46 wt%), and a distinct second form of RPM containing 230 Th and decay products (up to 15.6 wt%). The SEM-EDS analyses found similar RPM in Manhattan Project-era radioactive wastes and indoor dusts in surrounding homes. Copyright © 2018 Elsevier Ltd. All rights reserved.
Remediation of a historically Pb contaminated soil using a model natural Mn oxide waste.
McCann, Clare M; Gray, Neil D; Tourney, Janette; Davenport, Russell J; Wade, Matthew; Finlay, Nina; Hudson-Edwards, Karen A; Johnson, Karen L
2015-11-01
A natural Mn oxide (NMO) waste was assessed as an in situ remediation amendment for Pb contaminated sites. The viability of this was investigated using a 10 month lysimeter trial, wherein a historically Pb contaminated soil was amended with a 10% by weight model NMO. The model NMO was found to have a large Pb adsorption capacity (qmax 346±14 mg g(-1)). However, due to the heterogeneous nature of the Pb contamination in the soils (3650.54-9299.79 mg kg(-1)), no treatment related difference in Pb via geochemistry could be detected. To overcome difficulties in traditional geochemical techniques due to pollutant heterogeneity we present a new method for unequivocally proving metal sorption to in situ remediation amendments. The method combines two spectroscopic techniques; namely electron probe microanalysis (EPMA) and X-ray photoelectron spectroscopy (XPS). Using this we showed Pb immobilisation on NMO, which were Pb free prior to their addition to the soils. Amendment of the soil with exogenous Mn oxide had no effect on microbial functioning, nor did it perturb the composition of the dominant phyla. We conclude that NMOs show excellent potential as remediation amendments. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Protein Adsorption to Titanium and Zirconia Using a Quartz Crystal Microbalance Method
Kusakawa, You
2017-01-01
Protein adsorption onto titanium (Ti) or zirconia (ZrO2) was evaluated using a 27 MHz quartz crystal microbalance (QCM). As proteins, fibronectin (Fn), a cell adhesive protein, and albumin (Alb), a cell adhesion-inhibiting protein, were evaluated. The Ti and ZrO2 sensors for QCM were characterized by atomic force microscopy and electron probe microanalysis observation, measurement of contact angle against water, and surface roughness. The amounts of Fn and Alb adsorbed onto the Ti and ZrO2 sensors and apparent reaction rate were obtained using QCM measurements. Ti sensor showed greater adsorption of Fn and Alb than the ZrO2 sensor. In addition, amount of Fn adsorbed onto the Ti or ZrO2 sensors was higher than that of Alb. The surface roughness and hydrophilicity of Ti or ZrO2 may influence the adsorption of Fn or Alb. With regard to the adsorption rate, Alb adsorbed more rapidly than Fn onto Ti. Comparing Ti and ZrO2, Alb adsorption rate to Ti was faster than that to ZrO2. Fn adsorption will be effective for cell activities, but Alb adsorption will not. QCM method could simulate in vivo Fn and Alb adsorption to Ti or ZrO2. PMID:28246591
Size-controlled synthesis of nanocrystalline CdSe thin films by inert gas condensation
NASA Astrophysics Data System (ADS)
Sharma, Jeewan; Singh, Randhir; Kumar, Akshay; Singh, Tejbir; Agrawal, Paras; Thakur, Anup
2018-02-01
Size, shape and structure are considered to have significant influence on various properties of semiconducting nanomaterials. Different properties of these materials can be tailored by controlling the size. Size-controlled CdSe crystallites ranging from ˜ 04 to 95 nm were deposited by inert gas-condensation technique (IGC). In IGC method, by controlling the inert gas pressure in the condensation chamber and the substrate temperature or both, it was possible to produce nanoparticles with desired size. Structure and crystallite size of CdSe thin films were determined from Hall-Williamson method using X-ray diffraction data. The composition of CdSe samples was estimated by X-ray microanalysis. It was confirmed that CdSe thin film with different nanometer range crystallite sizes were synthesized with this technique, depending upon the synthesis conditions. The phase of deposited CdSe thin films also depend upon deposition conditions and cubic to hexagonal phase transition was observed with increase in substrate temperature. The effect of crystallite size on optical and electrical properties of these films was also studied. The crystallite size affects the optical band gap, electrical conductivity and mobility activation of nanocrystalline CdSe thin films. Mobility activation study suggested that there is a quasi-continuous linear distribution of three different trap levels below the conduction band.
Gao, Wei; Nan, Tiegui; Tan, Guiyu; Zhao, Hongwei; Tan, Weiming; Meng, Fanyun; Li, Zhaohu; Li, Qing X; Wang, Baomin
2015-01-01
The distribution of metallic ions in plant tissues is associated with their toxicity and is important for understanding mechanisms of toxicity tolerance. A quantitative histochemical method can help advance knowledge of cellular and subcellular localization and distribution of heavy metals in plant tissues. An immunohistochemical (IHC) imaging method for cadmium ions (Cd2+) was developed for the first time for the wheat Triticum aestivum grown in Cd2+-fortified soils. Also, 1-(4-Isothiocyanobenzyl)-ethylenediamine-N,N,N,N-tetraacetic acid (ITCB-EDTA) was used to chelate the mobile Cd2+. The ITCB-EDTA/Cd2+ complex was fixed with proteins in situ via the isothiocyano group. A new Cd2+-EDTA specific monoclonal antibody, 4F3B6D9A1, was used to locate the Cd2+-EDTA protein complex. After staining, the fluorescence intensities of sections of Cd2+-positive roots were compared with those of Cd2+-negative roots under a laser confocal scanning microscope, and the location of colloidal gold particles was determined with a transmission electron microscope. The results enable quantification of the Cd2+ content in plant tissues and illustrate Cd2+ translocation and cellular and subcellular responses of T. aestivum to Cd2+ stress. Compared to the conventional metal-S coprecipitation histochemical method, this new IHC method is quantitative, more specific and has less background interference. The subcellular location of Cd2+ was also confirmed with energy-dispersive X-ray microanalysis. The IHC method is suitable for locating and quantifying Cd2+ in plant tissues and can be extended to other heavy metallic ions.
Chemically prepared La2Se3 nanocubes thin film for supercapacitor application.
Patil, S J; Lokhande, V C; Chodankar, N R; Lokhande, C D
2016-05-01
Lanthanum selenide (La2Se3) nanocubes thin film is prepared via successive ionic layer adsorption and reaction (SILAR) method and utilized for energy storage application. The prepared La2Se3 thin film is characterized by X-ray diffraction, field emission scanning electron microscopy and contact angle measurement techniques for structural, surface morphological and wettability studies, respectively. Energy dispersive X-ray microanalysis (EDAX) is performed in order to obtain the elemental composition of the thin film. The La2Se3 film electrode shows a maximum specific capacitance of 363 F g(-1) in a 0.8 M LiClO4/PC electrolyte at a scan rate of 5 mV s(-1) within 1.3 V/SCE potential range. The specific capacitive retention of 83 % of La2Se3 film electrode is obtained over 1000 cyclic voltammetry cycles. The predominant performance, such as high energy (80 Wh kg(-1)) and power density (2.5 kW kg(-1)), indicates that La2Se3 film electrode facilitates fast ion diffusion during redox processes. Copyright © 2016 Elsevier Inc. All rights reserved.
Major and Trace Element Analysis of Natural and Experimental Igneous Systems using LA-ICP-MS
NASA Technical Reports Server (NTRS)
Jenner, Frances E.; Arevalo, Ricardo D., Jr.
2016-01-01
Major- and trace-element compositions of minerals provide valuable information on a variety of global Earth-system processes, including melting of distinct mantle reservoirs, the growth and evolution of the Earths crust and the formation of economically viable ore deposits. In the mid-1980s and early 1990s, attempts were made to couple laser ablation (LA) systems to inductively coupled plasma mass spectrometry (ICPMS) instruments (e.g. Fryer et al. 1995; Jackson et al. 1992). The goal was to develop a rapid, highly sensitive in situ analytical technique to measure abundances and spatial distributions of trace elements in minerals and other geological samples. Elemental analysis using LAICPMS was envisaged as a quicker and less destructive means of chemical analysis (requiring only g quantities) than labour-intensive sample digestion and solution analysis (requiring mg-levels of material); and it would be a more cost-effective method than secondary ion mass spectrometry (SIMS) for the routine analysis of trace elements from solid samples. Furthermore, it would have lower limits-of-detection than electron probe microanalysis (EPMA) (e.g. Jackson et al. 1992; Eggins 2003).
Liu, Xuan L; Gheno, Thomas; Lindahl, Bonnie B; Lindwall, Greta; Gleeson, Brian; Liu, Zi-Kui
2015-01-01
The phase relations and thermodynamic properties of the condensed Al-Co-Cr ternary alloy system are investigated using first-principles calculations based on density functional theory (DFT) and phase-equilibria experiments that led to X-ray diffraction (XRD) and electron probe micro-analysis (EPMA) measurements. A thermodynamic description is developed by means of the calculations of phase diagrams (CALPHAD) method using experimental and computational data from the present work and the literature. Emphasis is placed on modeling the bcc-A2, B2, fcc-γ, and tetragonal-σ phases in the temperature range of 1173 to 1623 K. Liquid, bcc-A2 and fcc-γ phases are modeled using substitutional solution descriptions. First-principles special quasirandom structures (SQS) calculations predict a large bcc-A2 (disordered)/B2 (ordered) miscibility gap, in agreement with experiments. A partitioning model is then used for the A2/B2 phase to effectively describe the order-disorder transitions. The critically assessed thermodynamic description describes all phase equilibria data well. A2/B2 transitions are also shown to agree well with previous experimental findings.
NASA Astrophysics Data System (ADS)
Kesler, V. G.; Seleznev, V. A.; Kovchavtsev, A. P.; Guzev, A. A.
2010-05-01
X-ray photoelectron spectroscopy and atomic force microscopy were used to examine the chemical composition and surface morphology of InAs(1 1 1)A surface chemically etched in isopropanol-hydrochloric acid solution (HCl-iPA) and subsequently annealed in vacuum in the temperature range 200-500 °C. Etching for 2-30 min resulted in the formation of "pits" and "hillocks" on the sample surface, respectively 1-2 nm deep and high, with lateral dimensions 50-100 nm. The observed local formations, whose density was up to 3 × 10 8 cm -2, entirely vanished from the surface after the samples were vacuum-annealed at temperatures above 300 °C. Using a direct method, electron beam microanalysis, we have determined that the defects of the hillock type includes oxygen and excessive As, while the "pits" proved to be identical in their chemical composition to InAs. Vacuum anneals were found to cause a decrease in As surface concentration relative to In on InAs surface, with a concomitant rise of surface recombination rate.
Wang, Wenquan; Li, Wenmo; Xu, Hongyong
2017-07-11
The strengthening hard phases TiN/C 1- x N x Ti were generated by in-situ solid-gas reaction in Ni-based composite coatings prepared using a plasma spray welding process to reinforce the wear resistance of the coatings. The microstructures and properties of the coatings were investigated. The results showed that the coatings mainly consisted of phases such as TiN, C 1- x N x Ti, TiC, etc. A small amount of CrB, M₇C₃, and M 23 C₆ were also detected in the coatings by micro-analysis method. Compared with the originally pure NiCrBSi coatings, the hardness of the NiCrBSi coatings reinforced by in-situ solid-gas reaction was 900 HV 0.5 , increased by more than 35%. Consequently, the wear resistance of the reinforced coatings was greatly improved due to the finely and uniformly dispersed hard phases mentioned above. The weight losses after wear test for the two kinds of coatings were 15 mg and 8 mg, respectively.
Effects of sol-gel processing parameters on the phases and microstructures of HA films.
Wang, Diangang; Chen, Chuanzhong; Liu, Xiuna; Lei, Tingquan
2007-06-15
Bioactive hydroxyapatite (HA) films were fabricated by a sol-gel method and triethylphosphate and calcium nitrate were used as the phosphorus and calcium precursors, respectively. The effects of the heat treatment temperature, pH level and substrate materials on the phases and microstructures of HA films were studied by X-ray diffraction (XRD), scanning electronic microscopy (SEM) and electronic probe microanalysis (EPMA) and so on. The results show that all the sol-gel films are composed of the phases of HA, CaO, TiO(2) and CaTiO(3). With increasing the calcining temperature, the crystallinity of the films increases, the structure becomes more compact and changes from granular and lamellar to cellular structure, and the Ca/P ratio increases slightly because of the loss of P in the films. The addition of ammonia (adjusting the pH level to be about 7.5) can increase the HA content in the films, and the difference of substrate materials only has a little influence on the microstructure of the sol-gel films.
Chen, Chen-Wen; Hsu, Wen-Chan; Lu, Ya-Chen; Weng, Jing-Ru; Feng, Chia-Hsien
2018-02-15
Parabens are common preservatives and environmental hormones. As such, possible detrimental health effects could be amplified through their widespread use in foods, cosmetics, and pharmaceutical products. Thus, the determination of parabens in such products is of particular importance. This study explored vortex-assisted dispersive liquid-liquid microextraction techniques based on the solidification of a floating organic drop (VA-DLLME-SFO) and salt-assisted cloud point extraction (SA-CPE) for paraben extraction. Microanalysis was performed using a capillary liquid chromatography-ultraviolet detection system. These techniques were modified successfully to determine four parabens in 19 commercial products. The regression equations of these parabens exhibited good linearity (r 2 =0.998, 0.1-10μg/mL), good precision (RSD<5%) and accuracy (RE<5%), reduced reagent consumption and reaction times (<6min), and excellent sample versatility. VA-DLLME-SFO was also particularly convenient due to the use of a solidified extract. Thus, the VA-DLLME-SFO technique was better suited to the extraction of parabens from complex matrices. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Hsin; Muralidharan, Govindarajan; Leonard, Donovan N.; Haynes, J. Allen; Porter, Wallace D.; England, Roger D.; Hays, Michael; Dwivedi, Gopal; Sampath, Sanjay
2018-02-01
Multilayer, graded ceramic/metal coatings were prepared by an air plasma spray method on Ti-6Al-4V, 4140 steel and graphite substrates. The coatings were designed to provide thermal barriers for diesel engine pistons to operate at higher temperatures with improved thermal efficiency and cleaner emissions. A systematic, progressive variation in the mixture of yttria-stabilized zirconia and bondcoat alloys (NiCoCrAlYHfSi) was designed to provide better thermal expansion match with the substrate and to improve thermal shock resistance and cycle life. Heat transfer through the layers was evaluated by a flash diffusivity technique based on a model of one-dimensional heat flow. The aging effect of the as-sprayed coatings was captured during diffusivity measurements, which included one heating and cooling cycle. The hysteresis of thermal diffusivity due to aging was not observed after 100-h annealing at 800 °C. The measurements of coatings on substrate and freestanding coatings allowed the influence of interface resistance to be evaluated. The microstructure of the multilayer coating was examined using scanning electron microscope and electron probe microanalysis.
Denecke, Melissa A; Somogyi, Andrea; Janssens, Koen; Simon, Rolf; Dardenne, Kathy; Noseck, Ulrich
2007-06-01
Micro-focused synchrotron radiation techniques to investigate actinide elements in geological samples are becoming an increasingly used tool in nuclear waste disposal research. In this article, results using mu-focus techniques are presented from a bore core section of a U-rich tertiary sediment collected from Ruprechtov, Czech Republic, a natural analog to nuclear waste repository scenarios in deep geological formations. Different methods are applied to obtain various, complementary information. Elemental and element chemical state distributions are obtained from micro-XRF measurements, oxidation states of As determined from micro-XANES, and the crystalline structure of selected regions are studied by means of micro-XRD. We find that preparation of the thin section created an As oxidation state artifact; it apparently changed the As valence in some regions of the sample. Results support our previously proposed hypothesis of the mechanism for U-enrichment in the sediment. AsFeS coating on framboid Fe nodules in the sediment reduced mobile groundwater-dissolved U(VI) to less-soluble U(IV), thereby immobilizing the uranium in the sediment.
Metallurgical characterization of experimental Ag-based soldering alloys
Ntasi, Argyro; Al Jabbari, Youssef S.; Silikas, Nick; Al Taweel, Sara M.; Zinelis, Spiros
2014-01-01
Aim To characterize microstructure, hardness and thermal properties of experimental Ag-based soldering alloys for dental applications. Materials and methods Ag12Ga (AgGa) and Ag10Ga5Sn (AgGaSn) were fabricated by induction melting. Six samples were prepared for each alloy and microstructure, hardness and their melting range were determined by, scanning electron microscopy, energy dispersive X-ray (EDX) microanalysis, X-ray diffraction (XRD), Vickers hardness testing and differential scanning calorimetry (DSC). Results Both alloys demonstrated a gross dendritic microstructure while according to XRD results both materials consisted predominately of a Ag-rich face centered cubic phase The hardness of AgGa (61 ± 2) was statistically lower than that of AgGaSn (84 ± 2) while the alloys tested showed similar melting range of 627–762 °C for AgGa and 631–756 °C for AgGaSn. Conclusion The experimental alloys tested demonstrated similar microstructures and melting ranges. Ga and Sn might be used as alternative to Cu and Zn to modify the selected properties of Ag based soldering alloys. PMID:25382945
Łabuz, Justyna; Samardakiewicz, Sławomir; Hermanowicz, Paweł; Wyroba, Elżbieta; Pilarska, Maria; Gabryś, Halina
2016-01-01
Calcium is involved in the signal transduction pathway from phototropins, the blue light photoreceptor kinases which mediate chloroplast movements. The chloroplast accumulation response in low light is controlled by both phot1 and phot2, while only phot2 is involved in avoidance movement induced by strong light. Phototropins elevate cytosolic Ca2+ after activation by blue light. In higher plants, both types of chloroplast responses depend on Ca2+, and internal calcium stores seem to be crucial for these processes. Yet, the calcium signatures generated after the perception of blue light by phototropins are not well understood. To characterize the localization of calcium in Arabidopsis mesophyll cells, loosely bound (exchangeable) Ca2+ was precipitated with potassium pyroantimonate and analyzed by transmission electron microscopy followed by energy-dispersive X-ray microanalysis. In dark-adapted wild-type Arabidopsis leaves, calcium precipitates were observed at the cell wall, where they formed spherical structures. After strong blue light irradiation, calcium at the apoplast prevailed, and bigger, multilayer precipitates were found. Spherical calcium precipitates were also detected at the tonoplast. After red light treatment as a control, the precipitates at the cell wall were smaller and less numerous. In the phot2 and phot1phot2 mutants, calcium patterns were different from those of wild-type plants. In both mutants, no elevation of calcium after blue light treatment was observed at the cell periphery (including the cell wall and a fragment of cytoplasm). This result confirms the involvement of phototropin2 in the regulation of Ca2+ homeostasis in mesophyll cells. PMID:26957564
X-Ray Microanalysis of Human Cementum
NASA Astrophysics Data System (ADS)
Alvarez-Pérez, Marco Antonio; Alvarez-Fregoso, Octavio; Ortiz-López, Jaime; Arzate, Higinio
2005-08-01
An energy dispersive x-ray microanalysis study was performed throughout the total length of cementum on five impacted human teeth. Mineral content of calcium, phosphorous, and magnesium were determined with an electron probe from the cemento-enamel junction to the root apex on the external surface of the cementum. The concentration profiles for calcium, phosphorous, and magnesium were compared by using Ca/P and Mg/Ca atomic percent ratio. Our findings demonstrated that the Ca/P ratio at the cemento-enamel junction showed the highest values (1.8 2.2). However, the area corresponding to the acellular extrinsic fiber cementum (AEFC) usually located on the coronal one-third of the root surface showed a Ca/P media value of 1.65. Nevertheless, on the area representing the fulcrum of the root there is an abrupt change in the Ca/P ratio, which decreases to 1.3. Our results revealed that Mg2+ distribution throughout the length of human cementum reached its maximum Mg/Ca ratio value of 1.3 1.4 at.% around the fulcrum of the root and an average value of 0.03%. A remarkable finding was that the Mg/Ca ratio pattern distribution showed that in the region where the Ca/P ratio showed a decreasing tendency, the Mg/Ca ratio reached its maximum value, showing a negative correlation. In conclusion, this study has established that clear compositional differences exist between AEFC and cellular mixed stratified cementum varieties and adds new knowledge about Mg2+ distribution and suggests its provocative role regulating human cementum metabolism.
Laitinen, Heleena; Kaunonen, Marja; Astedt-Kurki, Päivi
2014-11-01
To give clarity to the analysis of participant observation in nursing when implementing the grounded theory method. Participant observation (PO) is a method of collecting data that reveals the reality of daily life in a specific context. In grounded theory, interviews are the primary method of collecting data but PO gives a distinctive insight, revealing what people are really doing, instead of what they say they are doing. However, more focus is needed on the analysis of PO. An observational study carried out to gain awareness of nursing care and its electronic documentation in four acute care wards in hospitals in Finland. Discussion of using the grounded theory method and PO as a data collection tool. The following methodological tools are discussed: an observational protocol, jotting of notes, microanalysis, the use of questioning, constant comparison, and writing and illustrating. Each tool has specific significance in collecting and analysing data, working in constant interaction. Grounded theory and participant observation supplied rich data and revealed the complexity of the daily reality of acute care. In this study, the methodological tools provided a base for the study at the research sites and outside. The process as a whole was challenging. It was time-consuming and it required rigorous and simultaneous data collection and analysis, including reflective writing. Using these methodological tools helped the researcher stay focused from data collection and analysis to building theory. Using PO as a data collection method in qualitative nursing research provides insights. It is not commonly discussed in nursing research and therefore this study can provide insight, which cannot be seen or revealed by using other data collection methods. Therefore, this paper can produce a useful tool for those who intend to use PO and grounded theory in their nursing research.
García-Florentino, Cristina; Maguregui, Maite; Romera-Fernández, Miriam; Queralt, Ignasi; Margui, Eva; Madariaga, Juan Manuel
2018-05-01
Wavelength dispersive X-ray fluorescence (WD-XRF) spectrometry has been widely used for elemental quantification of mortars and cements. In this kind of instrument, samples are usually prepared as pellets or fused beads and the whole volume of sample is measured at once. In this work, the usefulness of a dual energy dispersive X-ray fluorescence spectrometer (ED-XRF), working at two lateral resolutions (1 mm and 25 μm) for macro and microanalysis respectively, to develop quantitative methods for the elemental characterization of mortars and concretes is demonstrated. A crucial step before developing any quantitative method with this kind of spectrometers is to verify the homogeneity of the standards at these two lateral resolutions. This new ED-XRF quantitative method also demonstrated the importance of matrix effects in the accuracy of the results being necessary to use Certified Reference Materials as standards. The results obtained with the ED-XRF quantitative method were compared with the ones obtained with two WD-XRF quantitative methods employing two different sample preparation strategies (pellets and fused beads). The selected ED-XRF and both WD-XRF quantitative methods were applied to the analysis of real mortars. The accuracy of the ED-XRF results turn out to be similar to the one achieved by WD-XRF, except for the lightest elements (Na and Mg). The results described in this work proved that μ-ED-XRF spectrometers can be used not only for acquiring high resolution elemental map distributions, but also to perform accurate quantitative studies avoiding the use of more sophisticated WD-XRF systems or the acid extraction/alkaline fusion required as destructive pretreatment in Inductively coupled plasma mass spectrometry based procedures.
NASA Astrophysics Data System (ADS)
Llovet, Xavier, Dr; Matthews, Mr Michael B.; Brisset, François, Dr; Guimarães, Fernanda, Dr; Vieira, Professor Joaquim M., Dr
2014-03-01
This volume of the IOP Conference Series: Materials Science and Engineering contains papers from the 13th Workshop of the European Microbeam Analysis Society (EMAS) on Modern Developments and Applications in Microbeam Analysis which took place from the 12th to the 16th of May 2013 in the Centro de Congressos do Alfândega, Porto, Portugal. The primary aim of this series of workshops is to assess the state-of-the-art and reliability of microbeam analysis techniques. The workshops also provide a forum where students and young scientists starting out on a career in microbeam analysis can meet and discuss with the established experts. The workshops have a very specific format comprising invited plenary lectures by internationally recognized experts, poster presentations by the participants and round table discussions on the key topics led by specialists in the field. This workshop was organized in collaboration with LNEG - Laboratório Nacional de Energia e Geologia and SPMICROS - Sociedade Portuguesa de Microscopia. The technical programme included the following topics: electron probe microanalysis, future technologies, electron backscatter diffraction (EBSD), particle analysis, and applications. As at previous workshops there was also a special oral session for young scientists. The best presentation by a young scientist was awarded with an invitation to attend the 2014 Microscopy and Microanalysis meeting at Hartford, Connecticut. The prize went to Shirin Kaboli, of the Department of Metals and Materials Engineering of McGill University (Montréal, Canada), for her talk entitled ''Plastic deformation studies with electron channelling contrast imaging and electron backscattered diffraction''. The continuing relevance of the EMAS workshops and the high regard in which they are held internationally can be seen from the fact that 74 posters from 21 countries were on display at the meeting and that the participants came from as far away as Japan, Canada and the USA. A selection of participants with posters was invited to give a short oral presentation of their work in three dedicated sessions. The prize for the best poster was an invitation to participate in the 22nd Australian Conference on Microscopy and Microanalysis (ACMM 23) at Adelaide, South Australia. The prize was awarded to Pierre Burdet of the EM Group of the Department of Materials Science and Metallurgy of the University of Cambridge (UK), for the poster entitled: ''3D EDS microanalysis by FIB-SEM: advantages of a low take-off angle''. This proceedings volume contains the full texts of 8 of the invited plenary lectures and of 13 papers on related topics originating from the posters presented at the workshop. All the papers have been subjected to peer review by a least two referees. January 2014 Acknowledgements On behalf of the European Microbeam Analysis Society I would like to thank all the invited speakers, session chairs and members of the discussion panels for making the meeting such a great success. Special thanks go to Fernanda Guimarães and Luc Van't dack who directed the organisation of the workshop giving freely of their time and talents. As was the case for previous workshops, the EMAS board in corpore was responsible for the scientific programme. The Workshop also included a commercial exhibition where many leading instrument suppliers were represented. Several companies that exhibited provided financial support, either by sponsoring an event or by advertising. Below, in alphabetical order, is a list of exhibiting companies and sponsors of the workshop. - Ametek GmbH, Edax Business Unit- IZASA Group Werfen - Bruker Nano GmbH- Jeol (Europe) SAS - Cameca SA- Porto Gran Cruz - Câmara Municipal do Porto- Oxford Instruments NanoAnalysis Ltd. - European Institute for Transuranium Elements (Germany)- Probe Software, Inc. - FEI Company- Tescan, a.s. Michael B Matthews EMAS President
Structure of a radiate pseudocolony associated with an intrauterine contraceptive device
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Brien, P.K.; Lea, P.J.; Roth-Moyo, L.A.
Transmission electron microscopy of a radiate pseudocolony associated with an intrauterine contraceptive device (IUCD) showed central bundles of extracellular fibers averaging 35 nm in diameter, surrounded by layered mantles of electron-dense, amorphous granular material. No bacterial, viral, or fungal structures were present. X-ray microanalysis revealed copper, sulfur, chloride, iron, and phosphorus; no calcium was found. It is postulated that these structures and histologically identical non-IUCD-associated granules from the female genital tract, as well as similar structures from other body locations, including those reported in colloid cysts of the third ventricle, are of lipofuscin origin.
NASA Astrophysics Data System (ADS)
Movenko, D. A.; Kotel'nikov, G. I.; Pavlov, A. V.; Bytsenko, O. A.
2015-11-01
Experimental heats of low-alloy steel are performed under various conditions of rare-earth metal microalloying and aluminum and calcium deoxidation. Electron-probe microanalysis of nonmetallic inclusions and a metallographic investigation of a metal are used to show that, when interacting with water, nonmetallic cerium oxide inclusions do not form hydrates and, correspondingly, are not aggressive. When aluminum, calcium, and cerium additions are sequentially introduced into a melt, a continuous cerium oxide shell forms on calcium aluminates, protects corrosive nonmetallic inclusions against interaction with water, and weakens local metal corrosion.
NASA Technical Reports Server (NTRS)
Fournelle, John; Carpenter, Paul
2006-01-01
Modem electron microprobe systems have become increasingly sophisticated. These systems utilize either UNIX or PC computer systems for measurement, automation, and data reduction. These systems have undergone major improvements in processing, storage, display, and communications, due to increased capabilities of hardware and software. Instrument specifications are typically utilized at the time of purchase and concentrate on hardware performance. The microanalysis community includes analysts, researchers, software developers, and manufacturers, who could benefit from exchange of ideas and the ultimate development of core community specifications (CCS) for hardware and software components of microprobe instrumentation and operating systems.
Stettler, L E; Groth, D H; MacKay, G R
1977-02-01
Open lung biopsy specimens from two welders and air samples from their workplace environments were examined with the electron probe microanalyzer. X-ray analysis showed that the majority of particles found in the lung tissue from both workers and in the air samples to be composed of varying amounts of iron, chromium, manganese and nickel, the major components of some types of stainless steel. Based upon these analyses, it was concluded that the majority of the particles in both biopsy specimens were a result of the workplace environment.
Composition, speciation and distribution of iron minerals in Imperata cylindrica.
Amils, Ricardo; de la Fuente, Vicenta; Rodríguez, Nuria; Zuluaga, Javier; Menéndez, Nieves; Tornero, Jesús
2007-05-01
A comparative study of the roots, rhizomes and leaves of an iron hyperaccumulator plant, Imperata cylindrica, isolated from the banks of an extreme acidic environment, using complementary techniques: Mösbauer spectroscopy (MS), X-ray diffraction (XRD), scanning electron microscopy (SEM) coupled to energy-dispersive X-ray microanalysis (EDAX) and transmission electron microscopy (TEM), has shown that two main biominerals, jarosite and ferrihydrate-ferritin, accumulate in the different tissues. Jarosite accumulates mainly in roots and rhizomes, while ferritin has been detected in all the structures. A model of iron management in I. cylindrica is presented.
Secondary sulfate minerals from Alum Cave Bluff: Microscopy and microanalysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lauf, R.J.
1997-07-01
Microcrystals of secondary sulfate minerals from Alum Cave Bluff, Great Smoky Mountains National Park, were examined by scanning electron microscopy and identified by X-ray fluorescence (XRF) in the SEM. Among the samples the author discovered three new rare-earth sulfates: coskrenite-(Ce), levinsonite-(Y), and zugshunstite-(Ce). Other minerals illustrated in this report include sulfur, tschermigite, gypsum, epsomite, melanterite, halotrichite, apjohnite, jarosite, slavikite, magnesiocopiapite, and diadochite. Additional specimens whose identification is more tentative include pickeringite, aluminite, basaluminite, and botryogen. Alum Cave is a ``Dana locality`` for apjohnite and potash alum, and is the first documented North American occurrence of slavikite.
NASA Astrophysics Data System (ADS)
Ward, Antony J.; Pujari, Ajit A.; Costanzo, Lorenzo; Masters, Anthony F.; Maschmeyer, Thomas
2011-12-01
A series of mesoporous silicas impregnated with nanocrystalline sulphated zirconia was prepared by a sol-gel process using an ionic liquid-templated route. The physicochemical properties of the mesoporous sulphated zirconia materials were studied using characterisation techniques such as inductively coupled optical emission spectroscopy, X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray microanalysis, elemental analysis and X-ray photoelectron spectroscopy. Analysis of the new silicas indicates isomorphous substitution of silicon with zirconium and reveals the presence of extremely small (< 10 nm) polydispersed zirconia nanoparticles in the materials with zirconium loadings from 27.77 to 41.4 wt.%.
The detection of sulphur in contamination spots in electron probe X-ray microanalysis
Adler, I.; Dwornik, E.J.; Rose, H.J.
1962-01-01
Sulphur has been identified as one of the elements present in the contamination spot which forms under the electron beam in the microprobe. The presence of the sulphur results in a rapid change in intensity measurements causing a loss of observed intensity for elements other than sulphur. The source of sulphur has been traced at least in part to the Apiezon B diffusion pump oil. A comparative X-ray fluorescence study of the Apiezon B and Octoil diffusion pump oils showed substantial amounts of sulphur in the Apiezon B. The Octoil was relatively free of sulphur.
Mazzocchin, Gian-Antonio; Del Favero, Michela; Tasca, Giovanni
2007-09-01
The analysis of wall painting fragments recovered in the "agro centuriato" of Julia Concordia has been carried out by using Scanning Electron Microscopy equipped with an EDS microanalysis detector (SEM-EDS), Infrared Spectroscopy (FTIR) and X-Ray powder Diffraction (XRD). The pigments used have been identified and the data obtained suggest the presence of three rustic villas richly decorated also with Egyptian blue. The presence of white of aragonite suggest that these villas were decorated during the Imperial Age, in agreement with the recovery of high quality materials and a bronze statue.
Electroerosion micro- and nanopowders for the production of hard alloys
NASA Astrophysics Data System (ADS)
Latypov, R. A.; Ageeva, E. V.; Kruglyakov, O. V.; Latypova, G. R.
2016-06-01
The shape and the surface morphology of the powder particles fabricated by the electroerosion dispersion of tungsten-containing wastes in illuminating oil are studied. The hard alloy fabricated from these powder particles is analyzed by electron-probe microanalysis. The powder synthesized by the electroerosion dispersion of the wastes of sintered hard alloys is found to consist of particles of a spherical or elliptical shape, an irregular shape (conglomerates), and a fragment shape. It is shown that W, Ti, and Co are the main elements in the hard alloy fabricated from the powder synthesized by electroerosion dispersion in illuminating oil.
A useful and non-invasive microanalysis method for dental restoration materials
NASA Astrophysics Data System (ADS)
Hosoki, M.; Satsuma, T.; Nishigawa, K.; Takeuchi, H.; Asaoka, K.
2012-12-01
The elemental analysis of intraoral dental restorations provides considerable information for the treatment of dental metal allergy. Elemental analyses require specific instruments and complicated procedures, so this examination is not commonly carried out in private dental clinics. We describe a novel, simple and useful micro-analytical method for dental metal restorations. Micro metal dust was obtained by polishing the surface of restorative metal material with an unused silicone point (SUPER-SNAP). The metal dust on the silicone point was then rubbed onto adhesive tape, and this tape was covered with polyethylene film. The amount of metal dust material was <20 μg. An energy dispersive X-ray fluorescence spectrometer was used to carry out the elementary analysis of the metal dust on the polyethylene film. Three types of dental metal alloy materials of known components were examined. The results of elementary analyses were compared with the specifications provided by the manufacturer. The same procedure was carried out for three dental metal restorations of an adult female volunteer in vivo. The results of elemental analyses for five alloy materials exactly matched the product specification. Three metal samples obtained from intraoral restoration were also available for elemental analyses. The distinct advantage of this method is that it enables sample extraction without an invasive effect for the restoration. The metal sample is in a polyethylene film, so it is easy to mail it for inspection at specialist institutes yet it can be also be used in general dental clinics.
NASA Astrophysics Data System (ADS)
Goltz, A. E.; Hoover, W. F.; Page, F. Z.; Moreira, H.; Storey, C.; Kitajima, K.; Valley, J. W.
2017-12-01
Mélange fluids play a vital role in metamorphic processes; however, because of the complexity of the mélange, the fluid signals are hard to isolate. Microanalysis of Heavy Rare Earth Elements (HREE) in garnet has the potential to be a powerful tool in understanding the nature of these fluids. When coupled to oxygen isotope analysis, HREE signals may be attributed to an internal or external fluid source. This study pairs microanalysis of HREE and oxygen isotopes in garnet to reveal the origin of HREE enrichment events in two rocks (02WC1 and 02WC4) from the Ward Creek area of the Franciscan Complex. 02WC1 is an intergrown epidote-blueschist and eclogite, with the assemblage omph + ep + glc + gt + sph ± rt ± ab. Its whole-rock major element composition is similar to altered oceanic crust. Two generations of epidote are evident: the first Mn-rich, the other Mn-poor. Garnets have prograde zoning profiles with high spessartine contents ( 40%) in their cores, are unzoned in oxygen isotopes from core (9.6±0.4‰, 2SD, VSMOW) to rim (9.8±0.4‰), and have HREE peaks in their mantles. 02WC4 is also banded with zones of differing epidote content and overall assemblage ep + gt + hbl + omph + sph ± phg ± chl. The whole rock composition of 02WC4 is unusual; it is broadly basaltic but is also SiO2 poor (41.95%) and Cr and Ni rich (675 and 182 ppm, respectively). Epidote shows two generations with higher (cores) and lower (rims) Mn content. Garnet cores are high in spessartine ( 50%), and some garnet mantles have pronounced Mn and Fe plateaux. Garnets are zoned in oxygen isotopes from core (10.2±0.6‰) to rim (6.9±0.4‰). There is one HREE peak in the mantle, coincident with high values of δ18O and one in the rims corresponding to lower values of δ18O. The HREE peaks that occur in high δ18O areas throughout 02WC1 and 02WC4 are likely internally derived within the sample. Mn annuli in garnets and dissolution textures in epidote cores implicate epidote dehydration as the cause of HREE transfer in this case. On the other hand, HREE peaks in lower δ18O regimes are probably externally derived. In addition to δ18O and HREE zoning in the rims of garnets, the enrichment of Cr and Ni and depletion of SiO2 suggest a late-stage mantle metasomatic event in the rock. Correlated HREE and δ18O analysis in garnet provides a powerful new technique to unravel complicated fluid histories in rocks.
Alavi, Shiva; Kachuie, Marzie
2017-01-01
Background: This study was conducted to assess the hardness of orthodontic brackets produced by metal injection molding (MIM) and conventional methods and different orthodontic wires (stainless steel, nickel-titanium [Ni-Ti], and beta-titanium alloys) for better clinical results. Materials and Methods: A total of 15 specimens from each brand of orthodontic brackets and wires were examined. The brackets (Elite Opti-Mim which is produced by MIM process and Ultratrimm which is produced by conventional brazing method) and the wires (stainless steel, Ni-Ti, and beta-titanium) were embedded in epoxy resin, followed by grinding, polishing, and coating. Then, X-ray energy dispersive spectroscopy (EDS) microanalysis was applied to assess their elemental composition. The same specimen surfaces were repolished and used for Vickers microhardness assessment. Hardness was statistically analyzed with Kruskal–Wallis test, followed by Mann–Whitney test at the 0.05 level of significance. Results: The X-ray EDS analysis revealed different ferrous or co-based alloys in each bracket. The maximum mean hardness values of the wires were achieved for stainless steel (SS) (529.85 Vickers hardness [VHN]) versus the minimum values for beta-titanium (334.65 VHN). Among the brackets, Elite Opti-Mim exhibited significantly higher VHN values (262.66 VHN) compared to Ultratrimm (206.59 VHN). VHN values of wire alloys were significantly higher than those of the brackets. Conclusion: MIM orthodontic brackets exhibited hardness values much lower than those of SS orthodontic archwires and were more compatible with NiTi and beta-titanium archwires. A wide range of microhardness values has been reported for conventional orthodontic brackets and it should be considered that the manufacturing method might be only one of the factors affecting the mechanical properties of orthodontic brackets including hardness. PMID:28928783
Al-Qtaitat, A; Shore, R C; Aaron, J E
2010-03-01
The periosteum and Sharpey's fibre extensions occupy the musculoskeletal interface and may be strategic in age-related deterioration. Because of its exceptionally powerful insertions the porcine mandible is an ideal model and its periosteal system was compared in 4 separate regions of adult young (1 year) and older (3 year) animals. These were examined by undecalcified histology, collagen immunohistochemistry and mineral histochemistry using polarization, epifluorescence and laser confocal microscopy; mineral ultrastructure was facilitated by chromium labelling with EDX microanalysis. Birefringent Sharpey's fibres were coarse (>8 microm) or fine and classified as horizontal (more common with age), oblique (most common in youth) or vertical (least common); in addition they were designated "superficial", "transcortical" and "intertrabecular" (the latter being deep, coarse and vertical). Their specific affinity for collagen type III FITC-labelled antibody demonstrated 3-dimensional arrays of bone-permeating fibres. With age at each region the cortical thickness rose (e.g. 4.9 mm to 9.3 mm), the periosteum thinned (e.g. 180-/+7 microm to 129-/+8 microm; p<0.001), and the periosteum: bone ratio diminished (e.g. 3.65-/+0.36 to 1.40-/+0.14; p<0.001) while Sharpey's fibres became fewer, fragmented, superficial and shortened (e.g. 226-/+27 microm to 55-/+6 microm; p<0.001). Accompanying was the sporadic encroachment of calcified particles, 1 microm diameter, in irregular periosteal aggregates or interlinked around Sharpey bundles (resembling calcifying turkey leg tendon). EDX microanalysis confirmed prominent chromium spectral peaks in the older periosteum only, coincident with chromium-labelled mineral "ghosts". It was concluded that the periosteum and Sharpey's fibres, deep-penetrating and complex in youth, partially hardens and regresses with age with implications for its functional properties.
Łabuz, Justyna; Samardakiewicz, Sławomir; Hermanowicz, Paweł; Wyroba, Elżbieta; Pilarska, Maria; Gabryś, Halina
2016-06-01
Calcium is involved in the signal transduction pathway from phototropins, the blue light photoreceptor kinases which mediate chloroplast movements. The chloroplast accumulation response in low light is controlled by both phot1 and phot2, while only phot2 is involved in avoidance movement induced by strong light. Phototropins elevate cytosolic Ca(2+) after activation by blue light. In higher plants, both types of chloroplast responses depend on Ca(2+), and internal calcium stores seem to be crucial for these processes. Yet, the calcium signatures generated after the perception of blue light by phototropins are not well understood. To characterize the localization of calcium in Arabidopsis mesophyll cells, loosely bound (exchangeable) Ca(2+) was precipitated with potassium pyroantimonate and analyzed by transmission electron microscopy followed by energy-dispersive X-ray microanalysis. In dark-adapted wild-type Arabidopsis leaves, calcium precipitates were observed at the cell wall, where they formed spherical structures. After strong blue light irradiation, calcium at the apoplast prevailed, and bigger, multilayer precipitates were found. Spherical calcium precipitates were also detected at the tonoplast. After red light treatment as a control, the precipitates at the cell wall were smaller and less numerous. In the phot2 and phot1phot2 mutants, calcium patterns were different from those of wild-type plants. In both mutants, no elevation of calcium after blue light treatment was observed at the cell periphery (including the cell wall and a fragment of cytoplasm). This result confirms the involvement of phototropin2 in the regulation of Ca(2+) homeostasis in mesophyll cells. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.
NASA Astrophysics Data System (ADS)
Newbury, Dale E.; Ritchie, Nicholas W. M.
2013-05-01
The typical strategy for analysis of a microscopic particle by scanning electron microscopy/energy dispersive spectrometry x-ray microanalysis (SEM/EDS) is to use a fixed beam placed at the particle center or to continuously overscan to gather an "averaged" x-ray spectrum. While useful, such strategies inevitably concede any possibility of recognizing microstructure within the particle, and such fine scale structure is often critical for understanding the origins, behavior, and fate of particles. Elemental imaging by x-ray mapping has been a mainstay of SEM/EDS analytical practice for many years, but the time penalty associated with mapping with older EDS technology has discouraged its general use and reserved it more for detailed studies that justified the time investment. The emergence of the high throughput, high peak stability silicon drift detector (SDD-EDS) has enabled a more effective particle mapping strategy: "flash" x-ray spectrum image maps can now be recorded in seconds that capture the spatial distribution of major (concentration, C > 0.1 mass fraction) and minor (0.01 <= C <= 0.1) constituents. New SEM/SDD-EDS instrument configurations feature multiple SDDs that view the specimen from widely spaced azimuthal angles. Multiple, simultaneous measurements from different angles enable x-ray spectrometry and mapping that can minimize the strong geometric effects of particles. The NIST DTSA-II software engine is a powerful aid for quantitatively analyzing EDS spectra measured individually as well as for mapping information (available free for Java platforms at: http://www.cstl.nist.gov/div837/837.02/epq/dtsa2/index.html).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyaruu, D.M.; Blijleven, N.; Hoeben-Schornagel, K.
1989-09-01
The developing enamel from three-day-old hamster first maxillary (M1) molar tooth germs exposed to fluoride (F-) in vitro was analyzed for its mineral content by means of the energy-dispersive x-ray microanalysis technique. The aim of this study was to obtain semi-quantitative data on the F(-)-induced hypermineralization patterns in the enamel and to confirm that the increase in electron density observed in micrographs of F(-)-treated enamel is indeed due to an increase in mineral content in the fluorotic enamel. The tooth germs were explanted during the early stages of secretory amelogenesis and initially cultured for 24 hr in the presence ofmore » 10 ppm F- in the culture medium. The germs were then cultured for another 24 hr without F-. In order to compare the ultrastructural results directly with the microprobe data, we used the same specimens for both investigations. The net calcium counts (measurement minus background counts) in the analyses were used as a measure of the mineral content in the enamel. The aprismatic pre-exposure enamel, deposited in vivo before the onset of culture, was the most hypermineralized region in the fluorotic enamel, i.e., it contained the highest amount of calcium measured. The degree of the F(-)-induced hypermineralization gradually decreased (but was not abolished) in the more mature regions of the enamel. The unmineralized enamel matrix secreted during the initial F- treatment in vitro mineralized during the subsequent culture without F-. The calcium content in this enamel layer was in the same order of magnitude as that recorded for the newly deposited enamel in control tooth germs cultured without F-.« less
NASA Astrophysics Data System (ADS)
Tylko, Grzegorz; Dubchak, Sergyi; Banach, Zuzanna; Turnau, Katarzyna
2010-04-01
Monte Carlo simulations of gelatin matrices with known elemental concentrations confirmed the suitability of protein standards to quantify elements of cellulose material in x-ray microanalysis. However, gelatin standards and cellulose plant cell walls differ in structure, what influences x-ray generation and emission in both specimens. The goal of the project was to establish the influence of gelatin structure on x-ray generation and its usefulness to calculate elemental concentrations in plant cell walls of different width. Roots of Medicago truncatula as well as gelatin standards with known elemental composition were prepared according to freeze-drying protocols. The thermanox polymer was chosen to establish background formation for flat and compact organic materials. All analyses were performed with the scanning electron microscope operated at 10 keV and probe current of 350 pA. The Monte Carlo code Casino was applied to calculate the intensities of the generated and the emitted x-rays from biological matrix of different width. No topography effects of gelatin structure were visible when the raster mode of electron impact was applied to the specimen. Monte Carlo simulations of gelatin of different width revealed that a significant decrease of the generated x-ray intensity appears at the width of the specimen around 3.5 μm. However, an increase of emission of low energy x-ray intensities (Na, Mg) was noted at 3.5 μm size with constant emission of higher energy x-rays (Cl, K) down to 2.5 μm width. It determines the minimal size of plant specimen useful for comparison to bulk gelatin standard when quantitative analysis is performed for biologically important elements.
Shalabi, Manal M; Wolke, Johannes G C; Cuijpers, Vincent M J I; Jansen, John A
2007-10-01
High-resolution three-dimensional data about the bone response to oral implants can be obtained by using microfocus computer tomography. However, a disadvantage is that metallic implants cause streaking artifacts due to scattering of X-rays, which prevents an accurate evaluation of the interfacial bone-to-implant contact. It has been suggested that the use of thin titanium coatings deposited on polymeric implants can offer an alternative option for analyzing bone contact using micro-CT imaging. Consequently, the aim of the current study was to investigate bone behavior to titanium-coated polymethylmethacrylate (PMMA) implants by micro-CT and histological evaluation. For the experiment titanium-coated PMMA implants were used. The implants had a machined threaded appearance and were provided with a 400-500 nm thick titanium coating. The implants were inserted in the right or left tibia of 10 goats. After an implantation period of 12 weeks the implants were retrieved and prepared for micro-computer tomography (microCT), light microscopy, and X-ray microanalysis. The micro-CT showed that the screw-threads and typical implant configuration were well maintained through the installation procedure. Overall, histological responses showed that the titanium-coated implants were well tolerated and caused no atypical tissue response. In addition, the bone was seen in direct contact with the titanium-coated layer. The X-ray microanalysis results confirmed the light microscopical data. In conclusion, the obtained results proof the final use of titanium-coated PMMA implants for evaluation of the bone-implant response using microCT. However, this study also confirms that for a proper analysis of the bone-implant interface the additional use of microscopical techniques is still required.
Maskey, Shila; Geng, Hong; Song, Young-Chul; Hwang, Heejin; Yoon, Young-Jun; Ahn, Kang-Ho; Ro, Chul-Un
2011-08-01
Single-particle characterization of Antarctic aerosols was performed to investigate the impact of marine biogenic sulfur species on the chemical compositions of sea-salt aerosols in the polar atmosphere. Quantitative energy-dispersive electron probe X-ray microanalysis was used to characterize 2900 individual particles in 10 sets of aerosol samples collected between March 12 and 16, 2009 at King Sejong Station, a Korean scientific research station located at King George Island in the Antarctic. Two size modes of particles, i.e., PM(2.5-10) and PM(1.0-2.5), were analyzed, and four types of particles were identified, with sulfur-containing sea-salt particles being the most abundant, followed by genuine sea-salt particles without sulfur species, iron-containing particles, and other species including CaCO(3)/CaMg(CO(3))(2), organic carbon, and aluminosilicates. When a sulfur-containing sea-salt particle showed an atomic concentration ratio of sulfur to sodium of >0.083 (seawater ratio), it is regarded as containing nonsea-salt sulfate (nss-SO(4)(2-)) and/or methanesulfonate (CH(3)SO(3)(-)), which was supported by attenuated total reflection Fourier transform-infrared imaging measurements. These internal mixture particles of sea-salt/CH(3)SO(3)(-)/SO(4)(2-) were very frequently encountered. As nitrate-containing particles were not encountered, and the air-masses for all of the samples originated from the Pacific Ocean (based on 5-day backward trajectories), the oxidation of dimethylsulfide (DMS) emitted from phytoplanktons in the ocean is most likely to be responsible for the formation of the mixed sea-salt/CH(3)SO(3)(-)/SO(4)(2-) particles.
Lozano-Carrascal, Naroa; Satorres-Nieto, Marta; Delgado-Ruiz, Rafael; Maté-Sánchez de Val, José Eduardo; Gehrke, Sergio Alexandre; Gargallo-Albiol, Jorge; Calvo-Guirado, José Luis
2017-01-01
The aim of the present study was to evaluate the feasibility of SEM and EDX microanalysis on evaluating the effect of porcine xenografts (MP3 ® ) supplemented with pamidronate during socket healing. Mandibular second premolars (P2) and first molars (M1) were extracted from six Beagle dogs. P2 were categorized as small defects (SD) and M1 as large defects (LD). Four random groups were created: SC (small control defects with MP3 ® ), ST (small test defects MP3 ® +pamidronate), LC (large control defects with MP3 ® ), and LT (large test defects MP3 ® +pamidronate). At four and eight weeks of healing the samples were evaluated fisically through scanning electron microscopy (SEM), and chemical element mapping was carried out by Energy dispersive X-ray spectroscopy (EDX). After four weeks of healing, SEM and EDX analysis revealed more mineralized bone in ST and LT groups compared with control groups (p<0.05). After eight weeks, Ca/P ratios were slightly higher for small defects (groups SC and ST); in SEM description, in both control and test groups, trabecular bone density was similar to the adjacent mineralized cortical bone. Within the limitations of this experimental study, SEM description and EDX elemental microanalysis have demonstrated to be useful techniques to assess bone remodelling of small and large defects. Both techniques show increased bone formation in test groups (MP3 ® modified with pamidronate) after four and eight weeks of healing. Copyright © 2016 Elsevier GmbH. All rights reserved.
Samiei, Mohammad; Janani, Maryam; Vahdati, Amin; Alemzadeh, Yalda; Bahari, Mahmoud
2017-01-01
The present study evaluated the element distribution in completely set calcium-enriched mixture (CEM) cement after application of 35% carbamide peroxide, 40% hydrogen peroxide and sodium perborate as commercial bleaching agents using an energy-dispersive x-ray microanalysis (EDX) system. The surface structure was also observed using the scanning electron microscope (SEM). Twenty completely set CEM cement samples, measuring 4×4 mm 2 , were prepared in the present in vitro study and randomly divided into 4 groups based on the preparation technique as follows: the control group; 35% carbamide peroxide group in contact for 30-60 min for 4 times; 40% hydrogen peroxide group with contact time of 15-20 min for 3 times; and sodium perborate group, where the powder and liquid were mixed and placed on CEM cement surface 4 times. Data were analyzed at a significance level of 0.05 through the one Way ANOVA and Tukey's post hoc tests. EDX showed similar element distribution of oxygen, sodium, calcium and carbon in CEM cement with the use of carbamide peroxide and hydroxide peroxide; however, the distribution of silicon was different ( P <0.05). In addition, these bleaching agents resulted in significantly higher levels of oxygen and carbon ( P <0.05) and a lower level of calcium ( P <0.05) compared to the control group. SEM of the control group showed plate-like and globular structure. Sodium perborate was similar to control group due to its weak oxidizing properties. Globular structures and numerous woodpecker holes were observed on the even surface on the carbamide peroxide group. The mean elemental distribution of completely set CEM cement was different when exposed to sodium perborate, carbamide peroxide and hydrogen peroxide.
Odegård, M; Mansfeld, J; Dundas, S H
2001-08-01
Calibration materials for microanalysis of Ti minerals have been prepared by direct fusion of synthetic and natural materials by resistance heating in high-purity graphite electrodes. Synthetic materials were FeTiO3 and TiO2 reagents doped with minor and trace elements; CRMs for ilmenite, rutile, and a Ti-rich magnetite were used as natural materials. Problems occurred during fusion of Fe2O3-rich materials, because at atmospheric pressure Fe2O3 decomposes into Fe3O4 and O2 at 1462 degrees C. An alternative fusion technique under pressure was tested, but the resulting materials were characterized by extensive segregation and development of separate phases. Fe2O3-rich materials were therefore fused below this temperature, resulting in a form of sintering, without conversion of the materials into amorphous glasses. The fused materials were studied by optical microscopy and EPMA, and tested as calibration materials by inductively coupled plasma mass spectrometry, equipped with laser ablation for sample introduction (LA-ICP-MS). It was demonstrated that calibration curves based on materials of rutile composition, within normal analytical uncertainty, generally coincide with calibration curves based on materials of ilmenite composition. It is, therefore, concluded that LA-ICP-MS analysis of Ti minerals can with advantage be based exclusively on calibration materials prepared for rutile, thereby avoiding the special fusion problems related to oxide mixtures of ilmenite composition. It is documented that sintered materials were in good overall agreement with homogeneous glass materials, an observation that indicates that in other situations also sintered mineral concentrates might be a useful alternative for instrument calibration, e.g. as alternative to pressed powders.
Tribological properties of TiC/a-C:H nanocomposite coatings prepared via HiPIMS
NASA Astrophysics Data System (ADS)
Sánchez-López, J. C.; Dominguez-Meister, S.; Rojas, T. C.; Colasuonno, M.; Bazzan, M.; Patelli, A.
2018-05-01
High power impulse magnetron sputtering (HiPIMS) technology has been employed to prepare TiC/a-C:H nanocomposite coatings from a titanium target in acetylene (C2H2) reactive atmospheres. Gas fluxes were varied from 1.3 to 4.4 sccm to obtain C/Ti ratios from 2 to 15 as measured by electron probe microanalysis (EPMA). X-ray diffraction and transmission electron microscopy demonstrate the presence of TiC nanocrystals embedded in an amorphous carbon-based matrix. The hardness properties decrease from 17 to 10 GPa as the carbon content increases. The tribological properties were measured using a pin-on-disk tribometer in ambient air (RH = 30-40%) at 10 cm/s with 5 N of applied load against 6-mm 100Cr6 balls. The friction coefficient and the film wear rates are gradually improved from 0.3 and 7 × 10-6 mm3/N m to 0.15 and 2 × 10-7 mm3/N m, respectively, by increasing the C2H2 flux. To understand the tribological processes appearing at the interface and to elucidate the wear mechanism, microstructural and chemical investigations of the coatings were performed before and after the friction test. EPMA, X-ray photoelectron and electron energy-loss spectroscopies were employed to obtain an estimation of the fraction of the a-C:H phase, which can be correlated with the tribological behavior. Examination of the friction counterfaces (ball and track) by Raman microanalysis reveals an increased ordering of the amorphous carbon phase concomitant with friction reduction. The tribological results were compared with similar TiC/a-C(:H) composites prepared by the conventional direct current process.
Ohtsuka, Masahiro; Muto, Shunsuke; Tatsumi, Kazuyoshi; Kobayashi, Yoshinori; Kawata, Tsunehiro
2016-04-01
The occupation sites and the occupancies of trace dopants in La/Co co-doped Sr-M-type ferrite, SrFe12O19, were quantitatively and precisely determined by beam-rocking energy-dispersive X-ray spectroscopy (EDXS) on the basis of electron-channeling effects. Because the Co atoms, in particular, should be partially substituted for the five crystallographically inequivalent sites, which could be key parameters in improving the magneto-crystalline anisotropy, it is difficult yet intriguing to discover their occupation sites and occupancies without using the methods of large-scale facilities, such as neutron diffraction and synchrotron radiation. In the present study, we tackled this problem by applying an extended statistical atom location by channeling enhanced microanalysis method, using conventional transmission electron microscopy, EDXS and dynamical electron elastic/inelastic scattering theories. The results show that the key occupation sites of Co were the 2a, 4f1 and 12k sites. The quantified occupancies of Co were consistent with those of the previous study, which involved a combination of neutron diffraction and extended X-ray absorption fine structure analysis, as well as energetics considerations based on by first-principles calculations. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Tripathi, Pranav K; Durbach, Shane; Coville, Neil J
2017-09-22
The disposal of non-biodegradable plastic waste without further upgrading/downgrading is not environmentally acceptable and many methods to overcome the problem have been proposed. Herein we indicate a simple method to make high-value nanomaterials from plastic waste as a partial solution to the environmental problem. Laboratory-based waste centrifuge tubes made of polypropylene were chosen as a carbon source to show the process principle. In the process, multi-walled carbon nanotubes (MWCNTs) were synthesized from plastic waste in a two-stage stainless steel 316 (SS 316) metal tube that acted as both reactor vessel and catalyst. The steel reactor contains Fe (and Ni, and various alloys), which act as the catalyst for the carbon conversion process. The reaction and products were studied using electron probe microanalysis, thermogravimetric analysis, Raman spectroscopy and transmission electron microscopy and scanning electron microscopy. Optimization studies to determine the effect of different parameters on the process showed that the highest yield and most graphitized MWCNTs were formed at 900 °C under the reaction conditions used (yield 42%; Raman I D / I G ratio = 0.48). The high quality and high yield of the MWCNTs that were produced in a flow reactor from plastic waste using a two stage SS 316 chemical vapor deposition (CVD) furnace did not require the use of an added catalyst.
Durbach, Shane
2017-01-01
The disposal of non-biodegradable plastic waste without further upgrading/downgrading is not environmentally acceptable and many methods to overcome the problem have been proposed. Herein we indicate a simple method to make high-value nanomaterials from plastic waste as a partial solution to the environmental problem. Laboratory-based waste centrifuge tubes made of polypropylene were chosen as a carbon source to show the process principle. In the process, multi-walled carbon nanotubes (MWCNTs) were synthesized from plastic waste in a two-stage stainless steel 316 (SS 316) metal tube that acted as both reactor vessel and catalyst. The steel reactor contains Fe (and Ni, and various alloys), which act as the catalyst for the carbon conversion process. The reaction and products were studied using electron probe microanalysis, thermogravimetric analysis, Raman spectroscopy and transmission electron microscopy and scanning electron microscopy. Optimization studies to determine the effect of different parameters on the process showed that the highest yield and most graphitized MWCNTs were formed at 900 °C under the reaction conditions used (yield 42%; Raman ID/IG ratio = 0.48). The high quality and high yield of the MWCNTs that were produced in a flow reactor from plastic waste using a two stage SS 316 chemical vapor deposition (CVD) furnace did not require the use of an added catalyst. PMID:28937596
PREFACE: 22nd International Congress on X-Ray Optics and Microanalysis
NASA Astrophysics Data System (ADS)
Falkenberg, Gerald; Schroer, Christian G.
2014-04-01
ICXOM22 The 22nd edition of the International Congress on X-ray Optics and Microanalysis (ICXOM 22) was held from 2-6 September 2013, in Hamburg, Germany. The congress was organized by scientists from DESY in collaboration with TU Dresden and Helmholtz-Zentrum Geesthacht, who also formed the scientific advisory board. The congress was hosted in the historical lecture hall building of the University of Hamburg located in the city center. ICXOM22 was attended by about 210 registered participants, including 67 students, and was open for listeners. The attendance was split between 26 countries (Germany 120, rest of Europe 57, America 20, Asia 8, Australia 6). The ICXOM series is a forum for the discussion of new developments in instrumentation, methods and applications in the fields of micro- and nano-analysis by means of X-ray beams. Following the trend of the last 10 years, the conference focusses more and more on synchrotron radiation rather than X-ray laboratory sources. Besides micro-beam X-ray fluorescence and absorption spectroscopy, different methods based on diffraction and full-field imaging were covered. Newly introduced to the ICXOM series was scanning coherent X-ray diffraction imaging, which was shown to evolve into a mature method for the imaging of nanostructures, defects and strain fields. New developments on fast X-ray detectors were discussed (Lambda, Maia) and advances in X-ray optics — like the generation of a sub 5nm point focus by Multilayer Zone plates — were presented. Talks on micro- and nano-analysis applications were distributed in special sessions on bio-imaging, Earth and environmental sciences, and Cultural heritage. The congress featured nine keynote and ten plenary talks, 56 talks in 14 parallel sessions and about 120 posters in three afternoon sessions. Seventeen commercial exhibitors exposed related X-ray instrumentation products, and two luncheon seminars on detector electronics were given. This allowed us to keep the student fees low and to distribute eight student travel grants. The Wednesday was devoted to an outing to DESY with guided tours to PETRA III and FLASH experiments and to the European XFEL construction site. A lecture was given by Henry Chapman introducing to structural imaging at X-ray free-electron lasers. Talks highlighting the current status and future of nanoanalysis at the leading synchrotron facilities APS (J Maser), ESRF (P Cloetens) and SPRing8 (Ishikawa) were given in the DESY auditorium offering other DESY scientists the opportunity to follow the talks. Participants A higher quality version of this image is available in supplementary data Further information about ICXOM22, including a detailed program and electronic abstract book, can be found on the congress website www.icxom22.de. We thank all the participants of ICXOM22, everybody who helped in the organization and are looking forward to hearing about further progress during ICXOM23, which will be organized by Brookhaven National Laboratory in Uptown, New York. Gerald Falkenberg ICXOM22 conference chair Christian Schroer ICXOM22 co-chair
Long term fine aerosol analysis by XRF and PIXE techniques in the city of Rijeka, Croatia
NASA Astrophysics Data System (ADS)
Ivošević, Tatjana; Orlić, Ivica; Radović, Iva Bogdanović
2015-11-01
The results of a long term, multi elemental XRF and PIXE analysis of fine aerosol pollution in the city of Rijeka, Croatia, are reported for the first time. The samples were collected during a seven months period (6th Aug 2013-28th Feb 2014) on thin stretched Teflon filters and analyzed by energy dispersive X-ray fluorescence (EDXRF) at the Laboratory for Elemental Micro-Analysis (LEMA), University of Rijeka and by Particle Induced X-ray Emission (PIXE) using 1.6 MeV protons at the Laboratory for Ion Beam Interactions (LIBI), Ruđer Bošković Institute, Zagreb. The newly developed micro-XRF system at LEMA provided results for 19 elements in the range from Si to Pb. The PIXE at the LIBI provided information for the same elements as well for the light elements such as Na, Mg and Al. Black carbon was determined with the Laser Integrated Plate Method (LIPM). The results were statistically evaluated by means of the positive matrix factorization (PMF). The seven major pollution sources were identified together with their relative contributions, these are: secondary sulfates, road traffic, smoke, road dust, sea spray, ship emissions and soil dust.
Reszka, Przemysław; Nowicka, Alicja; Lipski, Mariusz; Dura, Włodzimierz; Droździk, Agnieszka; Woźniak, Krzysztof
2016-01-01
Objective. The present study assessed the chemical elements in two novel calcium silicate-containing root canal sealers, BioRoot RCS and Well-Root ST, compared to a calcium silicate-containing root canal sealer that has been on the market for several years, MTA Fillapex, and epoxy resin-based sealer AHPlus. Material and Methods. The sealers were mixed and manipulated according to the manufacturers' instructions. Twelve cylindrical molds (inner diameter 4 mm; height 3 mm) were placed on a glass petri dish and packed with the materials. The dish was transferred to an incubator. After 72 h the molds were examined by scanning electron microscopy and energy dispersive X-ray microanalysis. Results. BioRoot RCS and Well-Root ST had high peaks of calcium, zirconium, oxygen, carbon, silicon, and chlorine. Well-Root ST also had sodium, magnesium, aluminum, and titanium peaks. MTA Fillapex and AHPlus had carbon, oxygen, calcium, titanium, and bismuth peaks. A silicon peak was also observed for MTA Fillapex, and zirconium and tungsten peaks for AHPlus. Conclusion. BioRoot RSC had the highest degree of purity. The clinical implication of metals contained in the other sealers needs to be investigated.
Electron backscatter diffraction applied to lithium sheets prepared by broad ion beam milling.
Brodusch, Nicolas; Zaghib, Karim; Gauvin, Raynald
2015-01-01
Due to its very low hardness and atomic number, pure lithium cannot be prepared by conventional methods prior to scanning electron microscopy analysis. Here, we report on the characterization of pure lithium metallic sheets used as base electrodes in the lithium-ion battery technology using electron backscatter diffraction (EBSD) and X-ray microanalysis using energy dispersive spectroscopy (EDS) after the sheet surface was polished by broad argon ion milling (IM). No grinding and polishing were necessary to achieve the sufficiently damage free necessary for surface analysis. Based on EDS results the impurities could be characterized and EBSD revealed the microsctructure and microtexture of this material with accuracy. The beam damage and oxidation/hydration resulting from the intensive use of IM and the transfer of the sample into the microscope chamber was estimated to be <50 nm. Despite the fact that the IM process generates an increase of temperature at the specimen surface, it was assumed that the milling parameters were sufficient to minimize the heating effect on the surface temperature. However, a cryo-stage should be used if available during milling to guaranty a heating artefact free surface after the milling process. © 2014 Wiley Periodicals, Inc.
Designing interaction, voice, and inclusion in AAC research.
Pullin, Graham; Treviranus, Jutta; Patel, Rupal; Higginbotham, Jeff
2017-09-01
The ISAAC 2016 Research Symposium included a Design Stream that examined timely issues across augmentative and alternative communication (AAC), framed in terms of designing interaction, designing voice, and designing inclusion. Each is a complex term with multiple meanings; together they represent challenging yet important frontiers of AAC research. The Design Stream was conceived by the four authors, researchers who have been exploring AAC and disability-related design throughout their careers, brought together by a shared conviction that designing for communication implies more than ensuring access to words and utterances. Each of these presenters came to AAC from a different background: interaction design, inclusive design, speech science, and social science. The resulting discussion among 24 symposium participants included controversies about the role of technology, tensions about independence and interdependence, and a provocation about taste. The paper concludes by proposing new directions for AAC research: (a) new interdisciplinary research could combine scientific and design research methods, as distant yet complementary as microanalysis and interaction design, (b) new research tools could seed accessible and engaging contextual research into voice within a social model of disability, and (c) new open research networks could support inclusive, international and interdisciplinary research.
NASA Astrophysics Data System (ADS)
Zhang, Qi; Fan, Lin; Yang, Zhen; Zhang, Runnan; Liu, Ya-nan; He, Mingrui; Su, Yanlei; Jiang, Zhongyi
2017-07-01
In this study, a high flux nanofiltration (NF) membrane with hybrid polymer-nanoparticle active layer was fabricated by chemical crosslinking of piperazine (PIP) and 1, 3, 5-benzene tricarbonyl trichloride (TMC). An in-situ generated method was applied to deposit titanium dioxide (TiO2) nanoparticles uniformly on the membrane surface, leading to the enhancement of the surface hydrophilicity, roughness and relative surface area of the polyamide (PA) layer. The morphology of the modified membrane was investigated by scanning electron microscopy (SEM) and Atomic force microscopy (AFM), also energy dispersive X-ray microanalysis (EDX) was used to analyze the distribution of Ti element. Chemical structure was observed by Fourier transmission infrared attenuated total reflectance (FTIR-ATR) spectroscopy. Remarkably, the optimal water flux of the loose NF membrane was 65.0 Lm-2 h-1 bar-1 nearly 5 times as much as the pure PA membrane flux. The rejections of the loose NF membranes for dyes were almost all greater than 95.0%, while the rejection for sodium sulfate (Na2SO4) was only about 17.0%, which indicated that the modified membrane had an impressive potential application for dye desalination and purification.
NASA Astrophysics Data System (ADS)
Kotsifaki, Domna G.; Mackenzie, Mark D.; Polydefki, Georgia; Kar, Ajoy K.; Makropoulou, Mersini; Serafetinides, Alexandros A.
2017-12-01
Microfluidic devices provide a platform with wide ranging applications from environmental monitoring to disease diagnosis. They offer substantive advantages but are often not optimized or designed to be used by nonexpert researchers. Microchannels of a microanalysis platform and their geometrical characterization are of eminent importance when designing such devices. We present a method that is used to optimize each microchannel within a device using high-throughput particle manipulation. For this purpose, glass-based microfluidic devices, with three-dimensional channel networks of several geometrical sizes, were fabricated by employing laser fabrication techniques. The effect of channel geometry was investigated by employing an optical tweezer. The optical trapping force depends on the flow velocity that is associated with the dimensions of the microchannel. We observe a linear dependence of the trapping efficiency and of the fluid flow velocity, with the channel dimensions. We determined that the highest trapping efficiency was achieved for microchannels with aspect ratio equal to one. Numerical simulation validated the impact of the device design dimensions on the trapping efficiency. This investigation indicates that the geometrical characteristics, the flow velocity, and trapping efficiency are crucial and should be considered when fabricating microfluidic devices for cell studies.
Colak, G; Baykul, M C; Gürler, R; Catak, E; Caner, N
2014-09-01
The interactions between cadmium stress and plant nutritional elements have been investigated on complete plant or at the level of organs. This study was undertaken to contribute to the exploration of the physiological basis of cadmium phytotoxicity. We examined the changes in the nutritional element compositions of the root epidermal cells of the seedlings of Lycopersicon esculentum Mill. at the initial growth stages that is known as the most sensitive stage to the stress. Effects of cadmium stress on the seedlings of Lycopersicon esculentum Mill. were examined by EDX (Energy Dispersive X-Ray Microanalysis) assay performed with using low vacuum (∼ 24 Pascal) Scanning Electron Microscopy. In the analysis performed at the level of root epidermal cells, some of the macro- and micronutrient contents of the cells (carbon, oxygen, nitrogen, phosphorus, potassium, calcium, magnesium, sulfur, iron, copper, and zinc levels) were found to change when the applying toxic concentrations of cadmium. There was no change in the manganese and sodium content of the epidermal cells. It was concluded that the changes in nutritional element composition of the cells can be considered as an effective parameter in explaining the physiological mechanisms of cadmium-induced growth inhibition.
Trace element mapping in Parkinsonian brain by quantitative ion beam microscopy
NASA Astrophysics Data System (ADS)
Barapatre, Nirav; Morawski, Markus; Butz, Tilman; Reinert, Tilo
2010-06-01
The role of iron in the pathogenesis of the Parkinson's disease (PD) is a current subject of research in Neurochemistry, since an abnormal increase in iron is reported in the substantia nigra (SN) of Parkinsonian patients. A severe loss of the cells containing dopamine in the SN in the PD has also drawn attention towards the function of a browny-black pigment called neuromelanin, which accumulates predominantly in these dopaminergic neurons. The neuromelanin has an ability to chelate metal ions, which, in free state, may cause considerable damage to cells by reacting with their lipid-rich membranes. However, it could also potentiate free radical production if it releases the bound metal ions. The highly sensitive and non-destructive micro-PIXE method suits best to quantify and map the trace elements in the SN. The accuracy in charge measurement for such microanalysis studies is of utmost importance for quantitative analysis. Since a Faraday cup is usually placed behind the thin biological sample to measure the charge, the primary and the secondary electrons, knocked out from the sample by traversing ion beam, hamper an exact charge determination. Hence, a new non-interceptive technique was developed for precise charge measurement and for continuous monitoring of beam current.
NASA Astrophysics Data System (ADS)
Premović, Milena; Tomović, Milica; Minić, Duško; Manasijević, Dragan; Živković, Dragana; Ćosović, Vladan; Grković, Vladan; Đorđević, Aleksandar
2017-04-01
Ternary Al-Ag-Ga system at 200 °C was experimentally and thermodynamically assessed. Isothermal section was extrapolated using optimized thermodynamic parameters for constitutive binary systems. Microstructure and phase composition of the selected alloy samples were analyzed using light microscopy, scanning electron microscopy combined with energy-dispersive spectrometry and x-ray powder diffraction technique. The obtained experimental results were found to be in a close agreement with the predicted phase equilibria. Hardness and electrical conductivity of the alloy samples from four vertical sections Al-Ag80Ga20, Al-Ag60Ga40, Ag-Al80Ga20 and Ag-Al60Ga40 of the ternary Al-Ag-Ga system at 200 °C were experimentally determined using Brinell method and eddy current measurements. Additionally, hardness of the individual phases present in the microstructure of the studied alloy samples was determined using Vickers microhardness test. Based on experimentally obtained results, isolines of Brinell hardness and electrical conductivity were calculated for the alloys from isothermal section of the ternary Al-Ag-Ga system at 200 °C.
Morphological changes of olivine grains reacted with amino acid solutions by impact process
NASA Astrophysics Data System (ADS)
Umeda, Yuhei; Takase, Atsushi; Fukunaga, Nao; Sekine, Toshimori; Kobayashi, Takamichi; Furukawa, Yoshihiro; Kakegawa, Takeshi
2017-03-01
Early oceans on Earth might have contained certain amounts of biomolecules such as amino acids, and they were subjected to meteorite impacts, especially during the late heavy bombardment. We performed shock recovery experiments by using a propellant gun in order to simulate shock reactions among olivine as a representative meteorite component, water and biomolecules in oceans in the process of marine meteorite impacts. In the present study, recovered solid samples were analyzed by using X-ray powder diffraction method, scanning electron microscopy, electron probe microanalysis, and transmission electron microscopy with energy-dispersive X-ray spectrometry. The analytical results on shocked products in the recovered sample showed (1) morphological changes of olivine to fiber- and bamboo shoot-like crystals, and to pulverized grains; and features of lumpy surfaces affected by hot water, (2) the formation of carbon-rich substances derived from amino acids, and (3) the incorporation of metals from container into samples. According to the present results, fine-grained olivine in meteorites might have morphologically changed and shock-induced chemical reactions might have been enhanced so that amino acids related to the origin of life may have transformed to carbon-rich substances by impacts.
Thermoelectric properties and thermal stability of Bi-doped PbTe single crystal
NASA Astrophysics Data System (ADS)
Chen, Zhong; Li, Decong; Deng, Shuping; Tang, Yu; Sun, Luqi; Liu, Wenting; Shen, Lanxian; Yang, Peizhi; Deng, Shukang
2018-06-01
In this study, n-type Bi-doped single-crystal PbTe thermoelectric materials were prepared by melting and slow cooling method according to the stoichiometric ratio of Pb:Bi:Te = 1-x:x:1 (x = 0, 0.1, 0.15, 0.2, 0.25). The X-ray diffraction patterns of Pb1-xBixTe samples show that all main diffraction peaks are well matched with the PbTe matrix, which has a face-centered cubic structure with the space group Fm 3 bar m . Electron probe microanalysis reveals that Pb content decreases gradually, and Te content remains invariant basically with the increase of Bi content, indicating that Bi atoms are more likely to replace Pb atoms. Thermal analysis shows that the prepared samples possess relatively high thermal stability. Simultaneously, transmission electron microscopy and selected area electron diffraction pattern indicate that the prepared samples have typical single-crystal structures with good mechanical properties. Moreover, the electrical conductivity of the prepared samples improved significantly compared with that of the pure sample, and the maximum ZT value of 0.84 was obtained at 600 K by the sample with x = 0.2.
The effect of organic ligands on the crystallinity of calcium phosphate
NASA Astrophysics Data System (ADS)
van der Houwen, Jacqueline A. M.; Cressey, Gordon; Cressey, Barbara A.; Valsami-Jones, Eugenia
2003-03-01
Calcium phosphate phases precipitated under critical supersaturation were identified and studied in detail using X-ray powder diffraction, electron probe microanalysis, infrared spectroscopy (IR) and transmission electron microscopy. These synthetic calcium phosphates formed by spontaneous precipitation at pH 7, 25°C and 0.1 M ionic strength (NaCl as the background electrolyte). The combination of several methods allowed detailed characterisation of the calcium phosphates. The purpose of the work was to assess the influence of carboxylate ligands, specifically acetate and citrate, on the quality of the calcium phosphate precipitate. All precipitates were identified as non-stoichiometric, calcium-deficient hydroxylapatites (HAPs), containing carbonate, HPO 42-, sodium and chloride impurities. No other phases were found to be present in any of the precipitates. The presence of citrate resulted in a decrease in crystal size and a higher degree of apatite lattice imperfection in the precipitated HAP. Furthermore, IR spectroscopy showed a higher amount of carbonate present in that HAP, compared with the ones formed in the control and acetate experiments. An additional absorption band, in the infrared spectrum of the HAP formed in the presence of citrate, was observed at 1570 cm -1; this is interpreted as carboxyl groups bound to HAP.
Wang, Hsin; Muralidharan, Govindarajan; Leonard, Donovan N.; ...
2018-01-04
In this paper, multilayer, graded ceramic/metal coatings were prepared by an air plasma spray method on Ti-6Al-4V, 4140 steel and graphite substrates. The coatings were designed to provide thermal barriers for diesel engine pistons to operate at higher temperatures with improved thermal efficiency and cleaner emissions. A systematic, progressive variation in the mixture of yttria-stabilized zirconia and bondcoat alloys (NiCoCrAlYHfSi) was designed to provide better thermal expansion match with the substrate and to improve thermal shock resistance and cycle life. Heat transfer through the layers was evaluated by a flash diffusivity technique based on a model of one-dimensional heat flow.more » The aging effect of the as-sprayed coatings was captured during diffusivity measurements, which included one heating and cooling cycle. The hysteresis of thermal diffusivity due to aging was not observed after 100-h annealing at 800 °C. The measurements of coatings on substrate and freestanding coatings allowed the influence of interface resistance to be evaluated. Finally, the microstructure of the multilayer coating was examined using scanning electron microscope and electron probe microanalysis.« less
A Comparative Chemical Study of Calcium Silicate-Containing and Epoxy Resin-Based Root Canal Sealers
Reszka, Przemysław; Dura, Włodzimierz; Droździk, Agnieszka; Woźniak, Krzysztof
2016-01-01
Objective. The present study assessed the chemical elements in two novel calcium silicate-containing root canal sealers, BioRoot RCS and Well-Root ST, compared to a calcium silicate-containing root canal sealer that has been on the market for several years, MTA Fillapex, and epoxy resin-based sealer AHPlus. Material and Methods. The sealers were mixed and manipulated according to the manufacturers' instructions. Twelve cylindrical molds (inner diameter 4 mm; height 3 mm) were placed on a glass petri dish and packed with the materials. The dish was transferred to an incubator. After 72 h the molds were examined by scanning electron microscopy and energy dispersive X-ray microanalysis. Results. BioRoot RCS and Well-Root ST had high peaks of calcium, zirconium, oxygen, carbon, silicon, and chlorine. Well-Root ST also had sodium, magnesium, aluminum, and titanium peaks. MTA Fillapex and AHPlus had carbon, oxygen, calcium, titanium, and bismuth peaks. A silicon peak was also observed for MTA Fillapex, and zirconium and tungsten peaks for AHPlus. Conclusion. BioRoot RSC had the highest degree of purity. The clinical implication of metals contained in the other sealers needs to be investigated. PMID:28097154
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hsin; Muralidharan, Govindarajan; Leonard, Donovan N.
In this paper, multilayer, graded ceramic/metal coatings were prepared by an air plasma spray method on Ti-6Al-4V, 4140 steel and graphite substrates. The coatings were designed to provide thermal barriers for diesel engine pistons to operate at higher temperatures with improved thermal efficiency and cleaner emissions. A systematic, progressive variation in the mixture of yttria-stabilized zirconia and bondcoat alloys (NiCoCrAlYHfSi) was designed to provide better thermal expansion match with the substrate and to improve thermal shock resistance and cycle life. Heat transfer through the layers was evaluated by a flash diffusivity technique based on a model of one-dimensional heat flow.more » The aging effect of the as-sprayed coatings was captured during diffusivity measurements, which included one heating and cooling cycle. The hysteresis of thermal diffusivity due to aging was not observed after 100-h annealing at 800 °C. The measurements of coatings on substrate and freestanding coatings allowed the influence of interface resistance to be evaluated. Finally, the microstructure of the multilayer coating was examined using scanning electron microscope and electron probe microanalysis.« less
High-strength bioresorbable Fe–Ag nanocomposite scaffolds: Processing and properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharipova, Aliya; Skolkovo Institute of Science and Technology, Skolkovo, 143025; Psakhie, Sergey G.
2015-10-27
High strength ductile iron-silver nanocomposite scaffolds were fabricated employing high energy attrition milling of micron-submicron powders, followed by cold sintering/high pressure consolidation. Particulate leaching method with soluble Na{sub 2}SO{sub 4} and K{sub 2}CO{sub 3} salts as porogens was used to create scaffolds with 50, 55, 60 and 73% volume fraction of pores. Part of specimens was annealed at 600, 800 and 900°C. Specimens were characterized employing X-ray diffraction, scanning electron microscopy (SEM) with electron probe microanalysis (EDS) and high resolution SEM. Mechanical properties were measured in compression and permeability was measured in permeameter based on Darcy’s law. Scaffolds with 50%more » and 55% porosity exhibited high compressive strength (18–22 MPa), compressive strength of 8–12 MPa was observed for scaffolds with 73% porosity. Treatments at 800 and 900°C result in increase of strength and ductility with some coarsening of microstructure. Best combination of compressive strength (15 MPa) and permeability (0.6{sup −6} cm{sup 2}) is close to the range of trabecular bone.« less
Laser-induced breakdown spectroscopy measurement of a small fraction of rhenium in bulk tungsten
NASA Astrophysics Data System (ADS)
Nishijima, D.; Ueda, Y.; Doerner, R. P.; Baldwin, M. J.; Ibano, K.
2018-03-01
Laser-induced breakdown spectroscopy (LIBS) of bulk rhenium (Re) and tungsten (W)-Re alloy has been performed using a Q-switched Nd:YAG laser (wavelength = 1064 nm, pulse width ∼4-6 ns, laser energy = 115 mJ). It is found that the electron temperature, Te, of laser-induced Re plasma is lower than that of W plasma, and that Te of W-Re plasma is in between Re and W plasmas. This indicates that material properties affect Te in a laser-induced plasma. For analysis of W-3.3%Re alloy, only the strongest visible Re I 488.9 nm line is found to be used because of the strong enough intensity without contamination with W lines. Using the calibration-free LIBS method, the atomic fraction of Re, cRe, is evaluated as a function of the ambient Ar gas pressure, PAr. At PAr < 10 Torr, LIBS-measured cRe agrees well with that from EDX (energy-dispersive X-ray micro-analysis), while cRe increases with an increase in PAr at >10 Torr due to spectral overlapping of the Re I 488.9 nm line by an Ar II 488.9 nm line.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bezryadin, N. N.; Kotov, G. I., E-mail: giktv@mail.ru; Kuzubov, S. V., E-mail: kuzub@land.ru
2015-03-15
Surfaces of GaAs(100), InAs(100), and GaP(100) substrates thermally treated in selenium vapor have been investigated by transmission electron microscopy and electron probe X-ray microanalysis. Some specific features and regularities of the formation of A{sub 3}{sup III}B{sub 4}{sup VI} (100)c(2 × 2) surface phases and thin layers of gallium or indium selenides A{sub 2}{sup III}B{sub 3}{sup VI} (100) on surfaces of different A{sup III}B{sup V}(100) semiconductors are discussed within the vacancy model of surface atomic structure.
Patterned low temperature copper-rich deposits using inkjet printing
NASA Astrophysics Data System (ADS)
Rozenberg, Gregor G.; Bresler, Eric; Speakman, Stuart P.; Jeynes, Chris; Steinke, Joachim H. G.
2002-12-01
A PZT piezoelectric ceramic research drop-on-demand inkjet print head operating in bend mode was used as a means of delivering a copper precursor, vinyltrimethylsilane copper (+1) hexafluoroacetylacetonate, in a controlled and placement accurate fashion. The reagent disproportionates at low temperature (<200 °C), to deposit copper on glass. These deposits are shown to be more than 90% copper by weight by electron probe microanalysis and microbeam Rutherford backscattering spectroscopy. Microscopy shows a deposit diameter and three-dimensional profile that suggests a complex deposition and conversion mechanism. Our findings represent an important step towards the manufacture of electronic devices by entirely nonlithographic means.
Antarctic Meteorite Newsletter, volume 9, no. 2
NASA Technical Reports Server (NTRS)
Gooding, J. L. (Editor)
1986-01-01
Preliminary description and classifications of meteorites that were completed since publication of the February issue are contained. Most large (greater than 150 g) specimens (regardless of petrologic type) and all pebble sized (less than 150 g) specimens of special petrologic type are represented by separate descriptions. However, specimens of nonspecial petrologic type are listed only as single line entries. For convenience, new specimens are also recast by petrologic type. Each macroscopic description summarizes features that were visible to the eye at the time the meteorite was first examined. Classification is based on microscopic petrography and resonnaissance-level electron-probe microanalysis. The pairing list was updated.
2011-01-01
A series of mesoporous silicas impregnated with nanocrystalline sulphated zirconia was prepared by a sol-gel process using an ionic liquid-templated route. The physicochemical properties of the mesoporous sulphated zirconia materials were studied using characterisation techniques such as inductively coupled optical emission spectroscopy, X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray microanalysis, elemental analysis and X-ray photoelectron spectroscopy. Analysis of the new silicas indicates isomorphous substitution of silicon with zirconium and reveals the presence of extremely small (< 10 nm) polydispersed zirconia nanoparticles in the materials with zirconium loadings from 27.77 to 41.4 wt.%. PMID:21711725
μ-SRXRF characterization of Brazilian emeralds
NASA Astrophysics Data System (ADS)
Curado, J. F.; Radtke, M.; Buzanich, G.; Reinholz, U.; Riesemeier, H.; Guttler, R. A. S.; Rizzutto, M. A.
2014-04-01
The aim of the present study is to characterize emeralds from different mines of Brazil by using Synchrotron Radiation X-ray Fluorescence Microanalysis (μ-SRXRF). The advantage of this technique is that we can analyze a homogeneous, inclusion free area of the stone with the microbeam to distinguish the elemental fingerprint according to the provenance of the emerald. A total of 47 samples belonging to 5 different Brazilian mines were studied in this work and 28 elements were identified. By means of Principal Component Analysis (PCA) it is possible to build different groups according to the provenance of the stones, which allows to assign samples of unknown origin to the according mine.
[Scanning electron microscope observation and image quantitative analysis of Hippocampi].
Zhang, Z; Pu, Z; Xu, L; Xu, G; Wang, Q; Xu, G; Wu, L; Chen, J
1998-12-01
The "scale-like projects" on the derma of 3 species of Hippocampi, H. kuda Bleerer, H. trimaculatus Leach and H. japonicus Kaup were observed by scanning electron microscope (SEM). Results showed that some characteristics such us size, shape and type of arrangement of the "scale-like projects" can be considered as the evidence for microanalysis. Image quantitative analysis of the "scale-like project" was carried out on 45 pieces of photograph using area, long diameter, short diameter and shape factor as parameters. No difference among the different parts of the same species was observed, but significant differences were found among the above 3 species.
Advances toward submicron resolution optics for x-ray instrumentation and applications
NASA Astrophysics Data System (ADS)
Cordier, Mark; Stripe, Benjamin; Yun, Wenbing; Lau, S. H.; Lyon, Alan; Reynolds, David; Lewis, Sylvia J. Y.; Chen, Sharon; Semenov, Vladimir A.; Spink, Richard I.; Seshadri, Srivatsan
2017-08-01
Sigray's axially symmetric x-ray optics enable advanced microanalytical capabilities for focusing x-rays to microns-scale to submicron spot sizes, which can potentially unlock many avenues for laboratory micro-analysis. The design of these optics allows submicron spot sizes even at low x-ray energies, enabling research into low atomic number elements and allows increased sensitivity of grazing incidence measurements and surface analysis. We will discuss advances made in the fabrication of these double paraboloidal mirror lenses designed for use in laboratory x-ray applications. We will additionally present results from as-built paraboloids, including surface figure error and focal spot size achieved to-date.
Ion transport across the exocrine glands of the frog skin.
Mills, J W
1985-01-01
Exposure of the intact frog skin to beta-adrenergic agonists stimulates chloride secretion by the exocrine glands. The secretory response is dependent on Na in the serosal bath and is inhibited by exposure to ouabain and furosemide. Thus the transport mechanism has properties similar to those described for other exocrine glands. Analysis of 3H-ouabain binding sites and determination of intracellular ions by energy dispersive x-ray microanalysis indicates that the transepithelial pathway for Cl flux may be via a distinct group of cells located at the ductal pole of the acinus of two of the gland types; termed mucous and seromucous.
The density of the cell sap and endoplasm of Nitellopsis and Chara
NASA Technical Reports Server (NTRS)
Wayne, R.; Staves, M. P.
1991-01-01
We measured the densities of the cell sap, endoplasm and cell wall of Nitellopsis obtusa and Chara corallina using interference microscopy, refractometry, immersion refractometry, equilibrium sedimentation and chemical microanalysis techniques. These values are important for the determination of many rheological properties of the cytoplasm as well as for understanding buoyancy regulation, dispersal mechanisms and how cells respond to gravity. The average densities of the cell sap, endoplasm and cell wall are 1,006.9, 1,016.7 and 1,371 kg m-3 for Nitellopsis and 1,005.0, 1,013.9, and 1,355.3 kg m-3 for Chara.
Bone fragments a body can make
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stout, S.D.; Ross, L.M. Jr.
Data obtained from various analytical techniques applied to a number of small bone fragments recovered from a crime scene were used to provide evidence for the occurrence of a fatality. Microscopic and histomorphometric analyses confirmed that the fragments were from a human skull. X-ray microanalysis of darkened areas on the bone fragments revealed a chemical signature that matched the chemical signature of a shotgun pellet recovered at the scene of the crime. The above findings supported the deoxyribonucleic acid (DNA) fingerprint evidence which, along with other evidence, was used to convict a man for the murder of his wife, evenmore » though her body was never recovered.« less
The X-ray Fluorescence Microscopy Beamline at the Australian Synchrotron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paterson, D.; Jonge, M. D. de; Howard, D. L.
2011-09-09
A hard x-ray micro-nanoprobe has commenced operation at the Australian Synchrotron providing versatile x-ray fluorescence microscopy across an incident energy range from 4 to 25 keV. Two x-ray probes are used to collect {mu}-XRF and {mu}-XANES for elemental and chemical microanalysis: a Kirkpatrick-Baez mirror microprobe for micron resolution studies and a Fresnel zone plate nanoprobe capable of 60-nm resolution. Some unique aspects of the beamline design and operation are discussed. An advanced energy dispersive x-ray fluorescence detection scheme named Maia has been developed for the beamline, which enables ultrafast x-ray fluorescence microscopy.
Microstructural Aspects in FSW and TIG Welding of Cast ZE41A Magnesium Alloy
NASA Astrophysics Data System (ADS)
Carlone, Pierpaolo; Astarita, Antonello; Rubino, Felice; Pasquino, Nicola
2016-04-01
In this paper, magnesium ZE41A alloy plates were butt joined through friction stir welding (FSW) and Tungsten Inert Gas welding processes. Process-induced microstructures were investigated by optical and SEM observations, EDX microanalysis and microhardness measurements. The effect of a post-welded T5 heat treatment on FSW joints was also assessed. Sound joints were produced by means of both techniques. Different elemental distributions and grain sizes were found, whereas microhardness profiles reflect microstructural changes. Post-welding heat treatment did not induce significant alterations in elemental distribution. The FSW-treated joint showed a more homogeneous hardness profile than the as-welded FSW joint.
Alavi, Shiva; Kachuie, Marzie
2017-01-01
This study was conducted to assess the hardness of orthodontic brackets produced by metal injection molding (MIM) and conventional methods and different orthodontic wires (stainless steel, nickel-titanium [Ni-Ti], and beta-titanium alloys) for better clinical results. A total of 15 specimens from each brand of orthodontic brackets and wires were examined. The brackets (Elite Opti-Mim which is produced by MIM process and Ultratrimm which is produced by conventional brazing method) and the wires (stainless steel, Ni-Ti, and beta-titanium) were embedded in epoxy resin, followed by grinding, polishing, and coating. Then, X-ray energy dispersive spectroscopy (EDS) microanalysis was applied to assess their elemental composition. The same specimen surfaces were repolished and used for Vickers microhardness assessment. Hardness was statistically analyzed with Kruskal-Wallis test, followed by Mann-Whitney test at the 0.05 level of significance. The X-ray EDS analysis revealed different ferrous or co-based alloys in each bracket. The maximum mean hardness values of the wires were achieved for stainless steel (SS) (529.85 Vickers hardness [VHN]) versus the minimum values for beta-titanium (334.65 VHN). Among the brackets, Elite Opti-Mim exhibited significantly higher VHN values (262.66 VHN) compared to Ultratrimm (206.59 VHN). VHN values of wire alloys were significantly higher than those of the brackets. MIM orthodontic brackets exhibited hardness values much lower than those of SS orthodontic archwires and were more compatible with NiTi and beta-titanium archwires. A wide range of microhardness values has been reported for conventional orthodontic brackets and it should be considered that the manufacturing method might be only one of the factors affecting the mechanical properties of orthodontic brackets including hardness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael A. Pope
2011-10-01
The Deep Burn (DB) Project is a U.S. Department of Energy sponsored feasibility study of Transuranic Management using high burnup fuel in the high temperature helium cooled reactor (HTR). The DB Project consists of seven tasks: project management, core and fuel analysis, spent fuel management, fuel cycle integration, TRU fuel modeling, TRU fuel qualification, and HTR fuel recycle. In the Phase II of the Project, we conducted nuclear analysis of TRU destruction/utilization in the HTR prismatic block design (Task 2.1), deep burn fuel/TRISO microanalysis (Task 2.3), and synergy with fast reactors (Task 4.2). The Task 2.1 covers the core physicsmore » design, thermo-hydraulic CFD analysis, and the thermofluid and safety analysis (low pressure conduction cooling, LPCC) of the HTR prismatic block design. The Task 2.3 covers the analysis of the structural behavior of TRISO fuel containing TRU at very high burnup level, i.e. exceeding 50% of FIMA. The Task 4.2 includes the self-cleaning HTR based on recycle of HTR-generated TRU in the same HTR. Chapter IV contains the design and analysis results of the 600MWth DB-HTR core physics with the cycle length, the average discharged burnup, heavy metal and plutonium consumptions, radial and axial power distributions, temperature reactivity coefficients. Also, it contains the analysis results of the 450MWth DB-HTR core physics and the analysis of the decay heat of a TRU loaded DB-HTR core. The evaluation of the hot spot fuel temperature of the fuel block in the DB-HTR (Deep-Burn High Temperature Reactor) core under full operating power conditions are described in Chapter V. The investigated designs are the 600MWth and 460MWth DB-HTRs. In Chapter VI, the thermo-fluid and safety of the 600MWth DB-HTRs has been analyzed to investigate a thermal-fluid design performance at the steady state and a passive safety performance during an LPCC event. Chapter VII describes the analysis results of the TRISO fuel microanalysis of the 600MWth and 450MWth DB-HTRs. The TRISO fuel microanalysis covers the gas pressure buildup in a coated fuel particle including helium production, the thermo-mechanical behavior of a CFP, the failure probabilities of CFPs, the temperature distribution in a CPF, and the fission product (FP) transport in a CFP and a graphite. In Chapter VIII, it contains the core design and analysis of sodium cooled fast reactor (SFR) with deep burn HTR reactor. It considers a synergistic combination of the DB-MHR and an SFR burner for a safe and efficient transmutation of the TRUs from LWRs. Chapter IX describes the design and analysis results of the self-cleaning (or self-recycling) HTR core. The analysis is considered zero and 5-year cooling time of the spent LWR fuels.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Francesco Venneri; Chang-Keun Jo; Jae-Man Noh
2010-09-01
The Deep Burn (DB) Project is a U.S. Department of Energy sponsored feasibility study of Transuranic Management using high burnup fuel in the high temperature helium cooled reactor (HTR). The DB Project consists of seven tasks: project management, core and fuel analysis, spent fuel management, fuel cycle integration, TRU fuel modeling, TRU fuel qualification, and HTR fuel recycle. In the Phase II of the Project, we conducted nuclear analysis of TRU destruction/utilization in the HTR prismatic block design (Task 2.1), deep burn fuel/TRISO microanalysis (Task 2.3), and synergy with fast reactors (Task 4.2). The Task 2.1 covers the core physicsmore » design, thermo-hydraulic CFD analysis, and the thermofluid and safety analysis (low pressure conduction cooling, LPCC) of the HTR prismatic block design. The Task 2.3 covers the analysis of the structural behavior of TRISO fuel containing TRU at very high burnup level, i.e. exceeding 50% of FIMA. The Task 4.2 includes the self-cleaning HTR based on recycle of HTR-generated TRU in the same HTR. Chapter IV contains the design and analysis results of the 600MWth DB-HTR core physics with the cycle length, the average discharged burnup, heavy metal and plutonium consumptions, radial and axial power distributions, temperature reactivity coefficients. Also, it contains the analysis results of the 450MWth DB-HTR core physics and the analysis of the decay heat of a TRU loaded DB-HTR core. The evaluation of the hot spot fuel temperature of the fuel block in the DB-HTR (Deep-Burn High Temperature Reactor) core under full operating power conditions are described in Chapter V. The investigated designs are the 600MWth and 460MWth DB-HTRs. In Chapter VI, the thermo-fluid and safety of the 600MWth DB-HTRs has been analyzed to investigate a thermal-fluid design performance at the steady state and a passive safety performance during an LPCC event. Chapter VII describes the analysis results of the TRISO fuel microanalysis of the 600MWth and 450MWth DB-HTRs. The TRISO fuel microanalysis covers the gas pressure buildup in a coated fuel particle including helium production, the thermo-mechanical behavior of a CFP, the failure probabilities of CFPs, the temperature distribution in a CPF, and the fission product (FP) transport in a CFP and a graphite. In Chapter VIII, it contains the core design and analysis of sodium cooled fast reactor (SFR) with deep burn HTR reactor. It considers a synergistic combination of the DB-MHR and an SFR burner for a safe and efficient transmutation of the TRUs from LWRs. Chapter IX describes the design and analysis results of the self-cleaning (or self-recycling) HTR core. The analysis is considered zero and 5-year cooling time of the spent LWR fuels.« less
NASA Astrophysics Data System (ADS)
Sidhom, H.; Amadou, T.; Sahlaoui, H.; Braham, C.
2007-06-01
The evaluation of the degree of sensitization (DOS) to intergranular corrosion (IGC) of a commercial AISI 316L austenitic stainless steel aged at temperatures ranging from 550 °C to 800 °C during 100 to 80,000 hours was carried out using three different assessment methods. (1) The microstructural method coupled with the Strauss standard test (ASTM A262). This method establishes the kinetics of the precipitation phenomenon under different aging conditions, by transmission electronic microscope (TEM) examination of thin foils and electron diffraction. The subsequent chromium-depleted zones are characterized by X-ray microanalysis using scanning transmission electronic microscope (STEM). The superimposition of microstructural time-temperature-precipitation (TTP) and ASTM A262 time-temperature-sensitization (TTS) diagrams provides the relationship between aged microstructure and IGC. Moreover, by considering the chromium-depleted zone characteristics, sensitization and desensitization criteria could be established. (2) The electrochemical method involving the double loop-electrochemical potentiokinetic reactivation (DL-EPR) test. The operating conditions of this test were initially optimized using the experimental design method on the bases of the reliability, the selectivity, and the reproducibility of test responses for both annealed and sensitized steels. The TTS diagram of the AISI 316L stainless steel was established using this method. This diagram offers a quantitative assessment of the DOS and a possibility to appreciate the time-temperature equivalence of the IGC sensitization and desensitization. (3) The analytical method based on the chromium diffusion models. Using the IGC sensitization and desensitization criteria established by the microstructural method, numerical solving of the chromium diffusion equations leads to a calculated AISI 316L TTS diagram. Comparison of these three methods gives a clear advantage to the nondestructive DL-EPR test when it is used with its optimized operating conditions. This quantitative method is simple to perform; it is fast, reliable, economical, and presents the best ability to detect the lowest DOS to IGC. For these reasons, this method can be considered as a serious candidate for IGC checking of stainless steel components of industrial plants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carreras, Alejo C., E-mail: acarreras@famaf.unc.edu.ar; Cangiano, María de los A.; Ojeda, Manuel W.
The influence of the amount of complexing agent added to the starting solution on the physicochemical properties of Cu–Ni nanostructured alloys obtained through a chemical route, was studied. For this purpose, three Cu–Ni nanoalloy samples were synthesized by a previously developed procedure, starting from solutions with citric acid to metal molar ratios (C/Me) of 0.73, 1.00 and 1.50. The synthesis technique consisted in preparing a precursor via the citrate-gel method, and carrying out subsequent thermal treatments in controlled atmospheres. Sample characterization was performed by scanning electron microscopy, X-ray microanalysis, X-ray diffraction, transmission electron microscopy, X-ray nanoanalysis and electron diffraction. Inmore » the three cases, copper and nickel formed a solid solution with a Cu/Ni atomic ratio close to 50/50, and free of impurities inside the crystal structure. The citric acid content of the starting solution proved to have an important influence on the morphology, size distribution, porosity, and crystallinity of the Cu–Ni alloy microparticles obtained, but a lesser influence on their chemical composition. The molar ratio C/Me = 1.00 resulted in the alloy with the Cu/Ni atomic ratio closest to 50/50. - Highlights: • We synthesize Cu–Ni nanoalloys by a chemical route based on the citrate-gel method. • We study the influence of the complexing agent content of the starting solution. • We characterize the samples by electron microscopy and X-ray techniques. • Citric acid influences the shape, size, porosity and crystallinity of the alloys.« less
NASA Astrophysics Data System (ADS)
Obasi, N. L.; Kaior, G. U.; Ibezim, A.; Ochonogor, Alfred E.; Rhyman, Lydia; Uahengo, Veikko; Lutter, Michael; Jurkschat, Klaus; Ramasami, Ponnadurai
2017-12-01
Two Schiff bases namely N,N‧-Bis-[3-(4-metoxy-phenyl)-allylidene]ethane-1,2-diamine (TPMC/EDA) and [3-(4-methoxy-phenyl)-allylidene]-phenyl-amine (TPMC/AN) were synthesized. They were characterized using elemental microanalysis, IR, NMR, UV and mass spectroscopies. Single crystals of TPMC/AN were also analyzed by X-ray diffraction and the compound was examined using B3LYP/6-311++G(d,p) method. A Monoclinic crystal system and space groups of P21/c were obtained for the crystal. Docking calculations on the compounds showed they interacted with fungal N-myristoyltransferase and bacteria DNA gyrase at 2.62-2.95 and 190.26-98.99 μM ranges. The predicted docked poses identified unique binding modes of the compounds and vital intermolecular interactions. The anti-microbial screening of the compounds were carried out against Escherichia coli, Bacillus subtillis, Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans and Aspergillus niger using agar well diffusion method. The standard drugs used were the anti-bacterial ciprofloxacin and the anti-fungal fluconazole. The compounds showed activity against all the microorganisms comparable to the used standard drugs. TPMC/EDA was more active than the standard fungal drug in the screening against the fungi strain, Aspergillus niger. It showed the MIC and IZD of 1.3 mg/ml and 9.0 mm respectively. These suggest that the compounds are potential bactericidal and fungicidal candidates.
Method and apparatus for chemical and topographical microanalysis
NASA Technical Reports Server (NTRS)
Kossakovski, Dmitri A. (Inventor); Baldeschwieler, John D. (Inventor); Beauchamp, Jesse L. (Inventor)
2002-01-01
A scanning probe microscope is combined with a laser induced breakdown spectrometer to provide spatially resolved chemical analysis of the surface correlated with the surface topography. Topographical analysis is achieved by scanning a sharp probe across the sample at constant distance from the surface. Chemical analysis is achieved by the means of laser induced breakdown spectroscopy by delivering pulsed laser radiation to the sample surface through the same sharp probe, and consequent collection and analysis of emission spectra from plasma generated on the sample by the laser radiation. The method comprises performing microtopographical analysis of the sample with a scanning probe, selecting a scanned topological site on the sample, generating a plasma plume at the selected scanned topological site, and measuring a spectrum of optical emission from the plasma at the selected scanned topological site. The apparatus comprises a scanning probe, a pulsed laser optically coupled to the probe, an optical spectrometer, and a controller coupled to the scanner, laser and spectrometer for controlling the operation of the scanner, laser and spectrometer. The probe and scanner are used for topographical profiling the sample. The probe is also used for laser radiation delivery to the sample for generating a plasma plume from the sample. Optical emission from the plasma plume is collected and delivered to the optical spectrometer so that analysis of emission spectrum by the optical spectrometer allows for identification of chemical composition of the sample at user selected sites.
Wan, Chieh-Hao; Wu, Chun-Lin; Lin, Meng-Tsun; Shih, Chihhsiong
2010-07-01
In this paper, a modified technique to prepare Pt-Ir catalyst layer on the proton exchange membrane (PEM) surface using the impregnation-reduction (IR) method is proposed to improve the electrocatalytic activity as well as the life cycle of the bifunctional oxygen electrode (BOE). The resulted electrocatalysts were characterized by the Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Electron Probe Micro-Analysis (EPMA), and Transmission Electron Microscope (TEM). The electrocatalytic properties of the Pt-Ir layer on PEM surface for the oxygen reduction and water oxidation reactions as well as the life cycle of MEA were investigated. Experimental results showed that the Ir particles were dispersed densely in the platinum layer through the modified IR technique. The atomic ratio of Pt over Ir elements was 9:1, and the resulted thickness of the obtained Pt-Ir catalyst layer was about 1.0 microm. The Pt-Ir catalyst layer was composed of Pt layer doped with Ir nano-particles comprising nano Pt-Ir alloy phase. The large surface area of Ir core with Pt shell particles and the presence of nano Pt-Ir alloy phase led to a higher electrocatalytic activity of BOE. Due to the good binding between the Nafion membrane and the Pt-Ir alloy catalyst, as well as the composite structure of the resulted Pt-Ir, the life cycle of Unitized Regenerative Fuel Cell (URFC) is improved through this novel BOE.
NASA Technical Reports Server (NTRS)
Singh, J.; Jerman, G.; Bhat, B.; Poorman, R.
1993-01-01
Microstructure of wrought, laser, and electron-beam glazed NARloy-Z(Cu-3 wt.% Ag-0.5 wt.% Zr) was investigated for thermal stability at elevated temperatures (539 to 760 C (1,100 to 1,400 F)) up to 94 h. Optical and scanning electron microscopy and electron probe microanalysis were employed for studying microstructural evolution and kinetics of precipitation. Grain boundary precipitation and precipitate free zones (PFZ's) were observed in the wrought alloy after exposing to temperatures above 605 C (1,120 F). The fine-grained microstructure observed in the laser and electron-beam glazed NARloy-Z was much more stable at elevated temperatures. Microstructural changes correlated well with hardness measurements.
Structure of Ancient Glass by 29 Si Magic Angle Spinning NMR Spectroscopy.
Bradford, Henry; Ryder, Amy; Henderson, Julian; Titman, Jeremy J
2018-05-23
29 Si magic angle spinning (MAS) NMR spectroscopy has been applied for the first time to the structural analysis of ancient glass samples obtained from archaeological excavations. The results show that it is possible to establish the distribution of Si environments in ancient glass by 29 Si MAS NMR, so long as the concentrations of magnetic impurities, such as Mn and Fe oxides, are low. In general, good agreement has been obtained with compositions determined by means of electron probe microanalysis. In addition, the 29 Si MAS NMR data reveal structural differences between glasses manufactured at separate ancient sites. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Investigating the effect of V2O5 addition on sodium barium borosilicate glasses
NASA Astrophysics Data System (ADS)
Halder, Rumu; Sengupta, Pranesh; Sudarsan, V.; Kaushik, C. P.; Dey, G. K.
2016-05-01
V2O5 doped sodium barium borosilicate glasses were characterized by photoluminescence spectroscopy and electron probe microanalyzer (EPMA). The glass remains homogeneous for lower concentration of V2O5 but a phase separation is observed when V2O5 doping is increased beyond 5 mol%. Detailed microanalysis reveals that the phase separated glass consists of a phase containing V, Ba and Si and a separate Si rich phase within the glass matrix. The luminescence study demonstrated that at low concentration the vanadium mainly interacts with the structural units of B/Si while at higher concentrations, V-O-V/ V-O- Na+/Ba2+ linkages are formed.
Self-assembly of chiral molecular polygons.
Jiang, Hua; Lin, Wenbin
2003-07-09
Treatment of 2,2'-diacetyl-1,1'-binaphthyl-6,6'-bis(ethyne), L-H2, with 1 equiv of trans-Pt(PEt3)2Cl2 led to a mixture of different sizes of chiral metallocycles [trans-(PEt3)2Pt(L)]n (n = 3-8, 1-6). Each of the chiral molecular polygons 1-6 was purified by silica gel column chromatography and characterized by 1H, 13C{1H}, and 31P{1H} NMR spectroscopy, MS, IR, UV-vis, and circular dichroism spectroscopies, and microanalysis. The presence of tunable cavities (1.4-4.3 nm) and chiral functionalities in these molecular polygons promises to make them excellent receptors for a variety of guests.
Exploring the limits of EDS microanalysis: rare earth element analyses
NASA Astrophysics Data System (ADS)
Ritchie, N. W. M.; Newbury, D. E.; Lowers, H.; Mengason, M.
2018-01-01
It is a great time to be a microanalyst. After a few decades of incremental progress in energy-dispersive X-ray spectrometry (EDS), the last decade has seen the accuracy and precision surge forward. Today, the question is not whether EDS is generally useful but to identify the types of problems for which wavelength-dispersive X-ray spectrometry remains the better choice. The full extent of EDS’s capabilities has surprised many. Low Z, low energy, and trace element detection have been demonstrated even in the presence of extreme peak interferences. In this paper, we will summarise the state-of-the-art and investigate a challenging problem domain, the analysis of minerals bearing multiple rare-earth elements.
Ion beam microanalysis of human hair follicles
NASA Astrophysics Data System (ADS)
Kertész, Zs.; Szikszai, Z.; Pelicon, P.; Simčič, J.; Telek, A.; Bíró, T.
2007-07-01
Hair follicle is an appendage organ of the skin which is of importance to the survival of mammals and still maintains significance for the human race - not just biologically, but also through cosmetic and commercial considerations. However data on composition of hair follicles are scarce and mostly limited to the hair shaft. In this study we provide detailed information on the elemental distribution in human hair follicles in different growth phases (anagen and catagen) using a scanning proton microprobe. The analysis of skin samples obtained from human adults undergoing plastic surgery and of organ-cultured human hair follicles may yield a new insight into the function, development and cyclic activity of the hair follicle.
Transition joints between Zircaloy-2 and stainless steel by diffusion bonding
NASA Astrophysics Data System (ADS)
Bhanumurthy, K.; Krishnan, J.; Kale, G. B.; Banerjee, S.
1994-11-01
The diffusion bonding between Zircaloy-2 and stainless steel (AISI 304L) using niobium, nickel and copper as intermediate layers has been investigated in the temperature range of 750 to 900°C. Bonding was carried out in a vacuum hot press, under compressive loading. Electron probe microanalysis and metallographic analysis showed a good metallurgical compatibility and also indicated the absence of discontunities, micropores and intermetallic compounds at various interfaces. The bond strength of the diffusion bonded assembly was found to be about 400 MPa for the couples bonded at 870°C for 2 h. The dimple structure on the fractured surface is indicative of the ductile mode of failure of the bonded assembly.
Reflections on reflecting as a dialogic accomplishment in counseling.
Strong, Tom
2006-09-01
In this exploratory study, the author examines reflection as a dialogic phenomenon constructed in the back-and-forth of counseling dialogue. He videotaped and microanalyzed 11 one-hour lifestyle consultations for the conversational practices used by counselors and clients in collaboratively reflecting on developments in their dialogues. He then invited counselors and clients back to comment on their participation in videotaped passages of their dialogue selected for microanalysis, thus permitting a juxtaposition of their retrospective comments with the analysis. The author considers the results from this study with respect to training counselors and for pointing new ways to widen the evidence base with respect to interventions in counseling, particularly social constructionist approaches.
A Scan through the History of STEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pennycook, Stephen J
2011-01-01
The development of Scanning Transmission Electron Microscopy (STEM) is outlined from the first developments by Baron Manfred von Ardenne, through the first successful field emission gun STEM by Albert Crewe and his collaborators, to its widespread application today in the era of aberration correction. The review focuses on the development and understanding of incoherent imaging and electron energy loss spectroscopy at atomic resolution and will not include details on microanalysis, low loss imaging, or specialized modes such as cathodoluminescence. Although it attempts to cover all the major advances in approximately chronological order, undoubtedly there are omissions and an overemphasis onmore » developments that the author is most familiar with from his own history.« less
A new basaltic glass microanalytical reference material for multiple techniques
Wilson, Steve; Koenig, Alan; Lowers, Heather
2012-01-01
The U.S. Geological Survey (USGS) has been producing reference materials since the 1950s. Over 50 materials have been developed to cover bulk rock, sediment, and soils for the geological community. These materials are used globally in geochemistry, environmental, and analytical laboratories that perform bulk chemistry and/or microanalysis for instrument calibration and quality assurance testing. To answer the growing demand for higher spatial resolution and sensitivity, there is a need to create a new generation of microanalytical reference materials suitable for a variety of techniques, such as scanning electron microscopy/X-ray spectrometry (SEM/EDS), electron probe microanalysis (EPMA), laser ablation inductively coupled mass spectrometry (LA-ICP-MS), and secondary ion mass spectrometry (SIMS). As such, the microanalytical reference material (MRM) needs to be stable under the beam, be homogeneous at scales of better than 10–25 micrometers for the major to ultra-trace element level, and contain all of the analytes (elements or isotopes) of interest. Previous development of basaltic glasses intended for LA-ICP-MS has resulted in a synthetic basaltic matrix series of glasses (USGS GS-series) and a natural basalt series of glasses (BCR-1G, BHVO-2G, and NKT-1G). These materials have been useful for the LA-ICP-MS community but were not originally intended for use by the electron or ion beam community. A material developed from start to finish with intended use in multiple microanalytical instruments would be useful for inter-laboratory and inter-instrument platform comparisons. This article summarizes the experiments undertaken to produce a basalt glass reference material suitable for distribution as a multiple-technique round robin material. The goal of the analytical work presented here is to demonstrate that the elemental homogeneity of the new glass is acceptable for its use as a reference material. Because the round robin exercise is still underway, only nominal compositional ranges for each element are given in the article.
NASA Astrophysics Data System (ADS)
Hwang, HeeJin; Ro, Chul-Un
In the present work, it is demonstrated that a single particle analytical technique, named low- Z particle electron probe X-ray microanalysis, is a practically useful tool for the study of heterogeneous reactions of mineral dust and sea-salts when this analytical technique was applied to a sample collected during an Asian Dust storm event. The technique does not require a special treatment of sample to identify particles reacted in the air. Also, quantitative chemical speciation of reacted particles can provide concrete information on what chemical reaction, if any, occurred for individual particles. Among overall 178 analyzed particles, the number of reacted particles is 81 and heterogeneous chemical reactions mostly occurred on CaCO 3 mineral dust (54 particles) and sea-salts (26 particles). Several observations made for the Asian Dust sample in the present work are: (1) CaCO 3 species almost completely reacted to produce mostly Ca(NO 3) 2 species, and CaSO 4 to a much lesser extent. (2) When reacted particles contain CaSO 4, almost all of them are internally mixed with nitrate. (3) Reacted CaCO 3 particles seem to contain moisture when they were collected. (4) Some reacted CaCO 3 particles have unreacted mineral species, such as aluminosilicates, iron oxide, SiO 2, etc., in the core region. (5) All sea-salt particles are observed to have reacted in the air. Some of them were recrystallized in the air before being collected and they are observed as crystalline NaNO 3 particles. (6) Many sea-salts were collected as water drops, and some of them were fractionally recrystallized on Ag collecting substrate. When sea-salts were not recrystallized on the substrate, they are found as particles internally mixed with NaNO 3 and Mg(NO 3) 2, and in some cases SO 4 and Cl species as additional anions.
Brenner, D S; Drachenberg, C B; Papadimitriou, J C
2001-02-01
Hematoidin crystals (HC) are found in tissues where extravasated erythrocytes undergo degradation. Previous studies have determined that hematoidin is composed, in part, of a bilirubin-like pigment. In a previous study (Papadimitriou and Drachenberg, Ultrastruct. Pathol. 16, 413-421, 1992), we demonstrated that giant cell asteroid bodies (AB) are formed by membrane lipid bilayers. We evaluated three cases in which HC developed within splenic infarcts. The crystals were analyzed by light microscopy (LM), electron microscopy (EM), and X-ray microanalysis. A case of sarcoidosis with multiple epithelioid granulomas containing AB was studied for comparison. By LM the HC demonstrated intense, golden-color, fine threads, both intracellularly and extracellularly, in small and large clusters, and in radiating, star-shape patterns ranging in size from 2 to 200 microm. By EM the HC were composed of a core of empty clefts, consistent with dissolved lipids, suggestive of cholesterol crystals, and were surrounded by myelinoid membrane aggregates. The AB showed by LM significant morphological similarities with the intracellular HC. By EM, the AB were composed of a core of dense phospholipid bilayer tubes surrounded by a halo of myelinoid membranes. No accumulation of specific elements was found in either HC or AB by X-ray microanalysis. HC and AB show a similar star-shape morphology by both LM and EM. We postulate that this shape is due to the physicochemical properties of the accumulated lipids which originate from superfluous cell membranes created during cell fusion in the case of AB and after cellular (predominantly red cell) breakdown in the case of HC. The golden color of the HC likely results from adsorption of hydrophobic bilirubin-like pigments left over from erythrocyte breakdown into the accumulated lipids. Thus, this study shows two different (patho)physiological processes that lead to a markedly similar morphological end-product and provides further support to our proposed mechanism for AB formation.
NASA Astrophysics Data System (ADS)
Gopon, Phillip; Spicuzza, Michael J.; Kelly, Thomas F.; Reinhard, David; Prosa, Ty J.; Fournelle, John
2017-09-01
The lunar regolith contains a variety of chemically reduced phases of interest to planetary scientists and the most common, metallic iron, is generally ascribed to space weathering processes (Lucey et al. ). Reports of silicon metal and iron silicides, phases indicative of extremely reducing conditions, in lunar samples are rare (Anand et al. ; Spicuzza et al. ). Additional examples of Fe-silicides have been identified in a survey of particles from Apollo 16 sample 61501,22. Herein is demonstrated the utility of low keV electron probe microanalysis (EPMA), using the Fe Ll X-ray line, to analyze these submicron phases, and the necessity of accounting for carbon contamination. We document four Fe-Si and Si0 minerals in lunar regolith return material. The new Fe-Si samples have a composition close to (Fe,Ni)3Si, whereas those associated with Si0 are close to FeSi2 and Fe3Si7. Atom probe tomography of (Fe,Ni)3Si shows trace levels of C (60 ppma and nanodomains enriched in C, Ni, P, Cr, and Sr). These reduced minerals require orders of magnitude lower oxygen fugacity and more reducing conditions than required to form Fe0. Documenting the similarities and differences in these samples is important to constrain their formation processes. These phases potentially formed at high temperatures resulting from a meteorite impact. Whether carbon played a role in achieving the lower oxygen fugacities—and there is evidence of nearby carbonaceous chondritic material—it remains to be proven that carbon was the necessary component for the unique existence of these Si0 and iron silicide minerals.
Computer templates in chronic disease management: ethnographic case study in general practice.
Swinglehurst, Deborah; Greenhalgh, Trisha; Roberts, Celia
2012-01-01
To investigate how electronic templates shape, enable and constrain consultations about chronic diseases. Ethnographic case study, combining field notes, video-recording, screen capture with a microanalysis of talk, body language and data entry-an approach called linguistic ethnography. Two general practices in England. Ethnographic observation of administrative areas and 36 nurse-led consultations was done. Twenty-four consultations were directly observed and 12 consultations were video-recorded alongside computer screen capture. Consultations were transcribed using conversation analysis conventions, with notes on body language and the electronic record. The analysis involved repeated rounds of viewing video, annotating field notes, transcription and microanalysis to identify themes. The data was interpreted using discourse analysis, with attention to the sociotechnical theory. Consultations centred explicitly or implicitly on evidence-based protocols inscribed in templates. Templates did not simply identify tasks for completion, but contributed to defining what chronic diseases were, how care was being delivered and what it meant to be a patient or professional in this context. Patients' stories morphed into data bytes; the particular became generalised; the complex was made discrete, simple and manageable; and uncertainty became categorised and contained. Many consultations resembled bureaucratic encounters, primarily oriented to completing data fields. We identified a tension, sharpened by the template, between different framings of the patient-as 'individual' or as 'one of a population'. Some clinicians overcame this tension, responding creatively to prompts within a dialogue constructed around the patient's narrative. Despite their widespread implementation, little previous research has examined how templates are actually used in practice. Templates do not simply document the tasks of chronic disease management but profoundly change the nature of this work. Designed to assure standards of 'quality' care they contribute to bureaucratisation of care and may marginalise aspects of quality care which lie beyond their focus. Creative work is required to avoid privileging 'institution-centred' care over patient-centred care.
X-ray microanalysis of rotavirus-infected mouse intestine: A new concept of diarrhoeal secretion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spencer, A.J.; Osborne, M.P.; Haddon, S.J.
1990-05-01
Neonatal mice were infected at 7 days of age with rotavirus (epizootic diarrhea of infant mice (EDIM) virus) and killed at 24-h intervals postinfection (PI). Cytoplasmic concentrations of Na, Mg, P, S, Cl, K, and Ca intestinal epithelial cells from infected and age-matched control animals were measured by x-ray microanalysis. In villus tip cells, Ca concentration increased at 24-96 h PI; Na concentration increased at 24-72 h PI; Ca and Na concentrations were near normal by 168 h PI. K concentration decreased 24-72 h PI, and Cl concentration decreased 48-96 h PI. In crypt cells, changes were observed without amore » discernible pattern: at 96 h PI, Na, Mg, S, and Cl concentrations increased and K concentration decreased; at 120 h PI, the concentrations of all elements except Na and Ca increased. In villus base cells, the mean concentrations of all elements except Ca peaked at 48-72 h PI and at 120 h PI. Na and Cl concentrations increased dramatically in some cells from 48 h PI onward. All the above concentration values were obtained from freeze-dried specimens and expressed in millimoles per kilogram of dry weight. Conversion of a limited number of data, pertaining to villus base cells, from dry weight to wet weight was possible. This conversion revealed that villus base cells in infected animals were more hydrated than corresponding cells from control animals. Also, the Na and Cl concentrations in mmol/kg H2O were significantly higher in villus base cells from infected animals than in those from corresponding controls: 137 +/- 7 versus 38 +/- 4 (Na) and 121 +/- 5 versus 89 +/- 6 (Cl). Wet weight concentrations of other elements were either the same (Mg) or lower (P, S, and K) after infection with virus.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zs.-Nagy, I.; Zs.-Nagy, V.; Casoli, T.
1989-01-01
Male, spontaneously hypertensive, stroke-prone (SHRsp) rats established by Okamoto et al. were studied. About 80% of the males of this strain have a particularly short life span (33-41 weeks); they display a considerable hypertension (above 220 mmHg) and a tendency for plurifocal brain strokes. Hypertension and strokes can be provoked in an accelerated and synchronized fashion by supplementing 1% NaCl into their drinking water. Symptoms of the appearance of brain strokes can be judged from characteristic signs of motor disorders, and can be established also by pathohistology. Since hypertension and arteriosclerosis are frequently involved in aging, the question we intendedmore » to answer was whether these animals may represent a model of the normal aging process or not. Two approaches are described: (1) Accumulation of lipofuscin granules in their brain, liver and myocardium was followed by transmission electron microscopy before and after the appearance of strokes. It has been established that these tissues do not show any typical accumulation of lipofuscin granules, although submicroscopic signs of an enhanced damage of cell organelles (especially of mitochondria in liver and brain cells, but not in myocardium) were encountered. (2) The intracellular monovalent composition in the brain and liver was measured by using bulk-specimen X-ray microanalysis. The intracellular Na-content (mEq/kg water) was significantly higher (170-200%) in both the brain and liver cells, whereas the K-content increased only moderately (118-130%). The results suggest that although the SHRsp rats do not represent a direct model for the normal aging process from the point of view of lipofuscin accumulation, the shifts of the monovalent electrolyte contents in the brain and liver cells observed already in the youngest ages, are similar to those observed in aged normal rats.« less
Brázová, Tímea; Poddubnaya, Larisa G; Miss, Noemí Ramírez; Hanzelová, Vladimíra
2014-12-01
The ultrastructure and chemical composition of the proboscis hooks and surrounding tegument of Acanthocephalus lucii (Müller, 1776), a parasite of European perch, Perca fluviatilis Linnaeus, were examined using scanning (SEM) and transmission (TEM) electron microscopy and X-ray microanalysis (EDXA). The blade of middle hooks consists of three layers: an outer homogeneous layer, an inner heterogeneous layer and a central core. TEM observation revealed the presence of hollow tubes, which spaced the central core; fibrous inner hook layer surrounded by an electron-dense margin and the basal tegumental layer filled with electron-dense bodies and outer layer. We found for the first time that the so-called 'epidermal covering' surrounding of the exposed hook blade (outer hook layer) is a modified striped portion of the tegumental layer and there are no special contact sites between these two morphologically different structures, i.e. striped layer of the syncytial tegument and following proper outer hook layer, which is a homogeneous, moderately electron-dense layer of -0.3 μm in thickness. The hook root is embedded into subtegumental fibrous layer. X-ray microanalysis of both the surface and internal parts of A. lucii hooks demonstrated the presence of calcium, magnesium, phosphorus and sulphur. The highest concentration of sulphur was recorded at the tip of hooks, whereas the middle part of the hooks was most rich in calcium, phosphorus and magnesium. The proximal part of the hooks contained lower concentrations of sulphur, calcium and phosphorus. In the proboscis tegument, only two elements, calcium and silicon, were found. The differences observed in the chemical composition of the hook 'epidermal covering' and the proboscis tegument support our ultrastructural findings that the hook tegumental covering is a modified structure compared with that of the general proboscis tegument.
Sub-micrometer particles produced by a low-powered AC electric arc in liquids.
Jaworski, Jacek A; Fleury, Eric
2012-01-01
The article presents the report of the production of composites of sub-micrometer metal particles in matrix consisted of the metal compounds by means of an AC electric arc in water and paraffin solutions using electrodes carbon-metal and metal-metal (metal: Ni, Fe, Co, Cu). The advantage of this method is the low electric power (from 5 to 10 W) needed in comparison to standard DC arc-discharge methods (0.8 to 3 kW). This method enables the production of particles from conductive material also in wide range of temperature and in solvent which could be either transparent to light or opaque. Moreover the solvent can be electrolyte or insulating liquid. The microstructure of the composite layer was investigated by scanning electron microscopy (SEM), Electron Probe Microanalysis (EPMA) and X-ray. During particles production in water metal oxides were created. Additionally using cobalt-copper, nickel-copper as couple electrodes, insoluble in water copper (II) hydroxide crystal grains were created additionally which crystals shape was depended on transition metal. For iron-copper couple electrodes system the copper (II) hydroxide was not formed. Experiments with sequence production of Ni and Fe particles with C electrode assisting in molten paraffin let to obtain both Ni and Fe particles surrounded by paraffin. After solidification the material was insulator but if locally magnetic field influenced on the liquid solution in that place after solidification a new composite was created which was electric current conductor with resistivity around 0.1 omega x m, was attracted by magnetic field and presented magneto resistance around 0.4% in changing magnetic field in a range 150 mT. After mixing the concentrated paraffin with normal paraffin resistivity of the mixture increased and it became photosensitive and created small voltage under light influence.
HOLST, Alexandra Ioana; HOLST, Stefan; HIRSCHFELDER, Ursula; von SECKENDORFF, Volker
2012-01-01
Objective The objective of this study was to investigate the applicability of micro-analytical methods with high spatial resolution to the characterization of the composition and corrosion behavior of two bracket systems. Material and methods The surfaces of six nickel-free brackets and six nickel-containing brackets were examined for signs of corrosion and qualitative surface analysis using an electron probe microanalyzer (EPMA), prior to bonding to patient's tooth surfaces and four months after clinical use. The surfaces were characterized qualitatively by secondary electron (SE) images and back scattered electron (BSE) images in both compositional and topographical mode. Qualitative and quantitative wavelength-dispersive analyses were performed for different elements, and by utilizing qualitative analysis the relative concentration of selected elements was mapped two-dimensionally. The absolute concentration of the elements was determined in specially prepared brackets by quantitative analysis using pure element standards for calibration and calculating correction-factors (ZAF). Results Clear differences were observed between the different bracket types. The nickel-containing stainless steel brackets consist of two separate pieces joined by a brazing alloy. Compositional analysis revealed two different alloy compositions, and reaction zones on both sides of the brazing alloy. The nickel-free bracket was a single piece with only slight variation in element concentration, but had a significantly rougher surface. After clinical use, no corrosive phenomena were detectable with the methods applied. Traces of intraoral wear at the contact areas between the bracket slot and the arch wire were verified. Conclusion Electron probe microanalysis is a valuable tool for the characterization of element distribution and quantitative analysis for corrosion studies. PMID:23032212
NASA Astrophysics Data System (ADS)
Elmanov, G.; Dzhumaev, P.; Ivanitskaya, E.; Skrytnyi, V.; Ruslanov, A.
2016-04-01
This paper presents results of research of the structure and phase transformations during the multistage crystallization of the metallic glasses with the compositions Ni71,5Cr6,8Fe2,7B11,9Si7,1 and Ni63,4Cr7,4Fe4,3Mn0,8B15,6Si8,5 labeled as AWS BNi-2 according to American Welding Society. Differential scanning calorimetry (DSC), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDX) were used as experimental research methods. The influence of the alloys chemical composition (boron, manganese and iron) on the temperatures and the exothermic heat effects of phase transformations, as well as on the phase composition of alloys at three stages of crystallization was analyzed. We present a thermodynamic explanation of the observed heat effects. It has been shown that manganese has the main influence on the phase transformations temperatures and heat effects in these two alloys. It is also assumed that at the final crystallization stage simultaneously with the formation of phases Ni3B and β1-Ni3Si should occur the nucleation of borides of CrB type with high Cr and low Si content.
Microanalysis of plant cell wall polysaccharides.
Obel, Nicolai; Erben, Veronika; Schwarz, Tatjana; Kühnel, Stefan; Fodor, Andrea; Pauly, Markus
2009-09-01
Oligosaccharide Mass Profiling (OLIMP) allows a fast and sensitive assessment of cell wall polymer structure when coupled with Matrix Assisted Laser Desorption Ionisation Time Of Flight Mass Spectrometry (MALDI-TOF MS). The short time required for sample preparation and analysis makes possible the study of a wide range of plant organs, revealing a high degree of heterogeneity in the substitution pattern of wall polymers such as the cross-linking glycan xyloglucan and the pectic polysaccharide homogalacturonan. The high sensitivity of MALDI-TOF allows the use of small amounts of samples, thus making it possible to investigate the wall structure of single cell types when material is collected by such methods as laser micro-dissection. As an example, the analysis of the xyloglucan structure in the leaf cell types outer epidermis layer, entire epidermis cell layer, palisade mesophyll cells, and vascular bundles were investigated. OLIMP is amenable to in situ wall analysis, where wall polymers are analyzed on unprepared plant tissue itself without first isolating cell walls. In addition, OLIMP enables analysis of wall polymers in Golgi-enriched fractions, the location of nascent matrix polysaccharide biosynthesis, enabling separation of the processes of wall biosynthesis versus post-deposition apoplastic metabolism. These new tools will make possible a semi-quantitative analysis of the cell wall at an unprecedented level.
NASA Astrophysics Data System (ADS)
Ezeorah, Julius Chigozie; Ossai, Valentine; Obasi, Lawrence Nnamdi; Elzagheid, Mohamed I.; Rhyman, Lydia; Lutter, Michael; Jurkschat, Klaus; Dege, Necmi; Ramasami, Ponnadurai
2018-01-01
The Schiff base 3-{(E)-[(2-hydroxyphenyl)imino]methyl}benzene-1,2-diol was synthesized by the condensation of 2,3-dihydroxybenzaldehyde and 2-aminophenol in water at room temperature. The crystal was grown using two solvents (dry methanol and 60% methanol). The compound was characterized using elemental microanalysis, IR, NMR, UV spectroscopies and single-crystal X-ray diffraction crystallography. The X-ray structure reveals that the Schiff base crystallizes as a methanol solvate in dry methanol with triclinic crystal system, space group P-1 and Z = 2 in the unit cell and as a non-methanol solvate in 60% methanol with triclinic crystal system, space group P-1 and Z = 4 in the unit cell. The compound showed absorption bands at 272, 389, 473 and 602 nm in DMSO. These bands were assigned as π → π ∗, n → π∗ and n-σ∗ transitions. The 473 and 602 nm bands in DMSO reveal that the compound exists in tautomeric forms. The presence of N-H, C-O and Cdbnd N stretching vibrations in the IR spectrum indicates that the compound is zwitterionic in the solid state. This study was supplemented using density functional theory method.
Yamashita, Takako; Tanaka, Yuji; Yagoshi, Masayasu; Ishida, Kiyohito
2016-01-01
In multiphase steels, control of the carbon contents in the respective phases is the most important factor in alloy design for achieving high strength and high ductility. However, it is unusually difficult to determine the carbon contents in multiphase structures with high accuracy by electron probe microanalysis (EPMA) due to the unavoidable effect of hydrocarbon contamination during measurements. We have investigated new methods for suppressing hydrocarbon contamination during field emission (FE) EPMA measurements as well as a conventional liquid nitrogen trap. Plasma cleaner inside the specimen chamber results in a improvement of carbon-content determination by point analysis, increasing precision tenfold from the previous 0.1 mass%C to 0.01 mass%C. Stage heating at about 100 °C dramatically suppresses contamination growth during continuous point measurement and mapping. By the combination of above two techniques, we successfully visualized the two-dimensional carbon distribution in a dual-phase steel. It was also noted that the carbon concentrations at the ferrite/martensite interfaces were not the same across all interfaces, and local variation was observed. The developed technique is expected to be a powerful tool for understanding the mechanisms of mechanical properties and microstructural evolution, thereby contributing to the design of new steel products with superior properties. PMID:27431281
Determination of element levels in human serum: Total reflection X-ray fluorescence applications
NASA Astrophysics Data System (ADS)
Majewska, U.; Łyżwa, P.; Łyżwa, K.; Banaś, D.; Kubala-Kukuś, A.; Wudarczyk-Moćko, J.; Stabrawa, I.; Braziewicz, J.; Pajek, M.; Antczak, G.; Borkowska, B.; Góźdź, S.
2016-08-01
Deficiency or excess of elements could disrupt proper functioning of the human body and could lead to several disorders. Determination of their concentrations in different biological human fluids and tissues should become a routine practice in medical treatment. Therefore the knowledge about appropriate element concentrations in human organism is required. The purpose of this study was to determine the concentration of several elements (P, S, Cl, K, Ca, Cr, Fe, Cu, Zn, Se, Br, Rb, Pb) in human serum and to define the reference values of element concentration. Samples of serum were obtained from 105 normal presumably healthy volunteers (66 women aged between 15 and 78 years old; 39 men aged between 15 and 77 years old). Analysis has been done for the whole studied population and for subgroups by sex and age. It is probably first so a wide study of elemental composition of serum performed in the case of Świętokrzyskie region. Total reflection X-ray fluorescence (TXRF) method was used to perform the elemental analysis. Spectrometer S2 Picofox (Bruker AXS Microanalysis GmbH) was used to identify and measure elemental composition of serum samples. Finally, 1st and 3rd quartiles were accepted as minimum and maximum values of concentration reference range.
Study of the specific features of single-crystal boron microstructure
NASA Astrophysics Data System (ADS)
Blagov, A. E.; Vasil'ev, A. L.; Dmitriev, V. P.; Ivanova, A. G.; Kulikov, A. G.; Marchenkov, N. V.; Popov, P. A.; Presnyakov, M. Yu.; Prosekov, P. A.; Pisarevskii, Yu. V.; Targonskii, A. V.; Chernaya, T. S.; Chernyshov, D. Yu.
2017-09-01
A complex study of the structure of β-boron single crystal grown by the floating-zone method, with sizes significantly exceeding the analogs known in the literature, has been performed. The study includes X-ray diffraction analysis and X-ray diffractometry (measurement of pole figures and rocking curves), performed on both laboratory and synchrotron sources; atomic-resolution scanning transmission electron microscopy with spherical aberration correction; and energy-dispersive microanalysis. X-ray diffraction analysis using synchrotron radiation has been used to refine the β-boron structure and find impurity Si atoms. The relative variations in the unit-cell parameters a and c for the crystal bulk are found to be δ a/ a ≈ 0.4 and δ c/ c ≈ 0.1%. X-ray diffractometry has revealed that the single-crystal growth axis coincides with the [2\\bar 2013] crystallographic axis and makes an angle of 21.12° with the [0001] threefold axis. Electron microscopy data have confirmed that the sample under study is a β-boron crystal, which may contain 0.3-0.4 at % Si as an impurity. Planar defects (stacking faults and dislocations) are found. The results of additional measurements of the temperature dependence of the thermal conductivity of the crystal in the range of 50-300 K are indicative of its high structural quality.
NASA Astrophysics Data System (ADS)
Obasi, L. N.; Kaior, G. U.; Rhyman, L.; Alswaidan, Ibrahim A.; Fun, Hoong-Kun; Ramasami, P.
2016-09-01
The Schiff base, 4-[3-(4-methoxy-phenyl)-allylideneamino]-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-one (TPMC/AAP) was synthesized by the condensation of 4-aminoantipyrine (4-amino-1,5-dimethyl-2-phenylpyrazole-3-one) and trans-para-methoxycinnamaldehyde (trans-3,4-methoxyphenyl-2-propenal) in dry methanol at 75 °C. The compound was characterized using elemental microanalysis, IR, NMR, UV spectroscopies and single-crystal X-ray crystallography. The X-ray structure determination shows that the Schiff base, (TPMC/AAP) is orthorhombic with the Pbca space group. The anti-microbial screening of the compound was carried out with Escherichia coli, Bacillus subtillis, Staphylococcus aureus, Pseudemonas aeruginosa, Candida albicans and Aspergillus niger using agar well diffusion method. The Schiff base possesses significant antimicrobial activity. The minimum inhibitory concentration (MIC) of the compound was also determined and the activity was compared with that of conventional drugs ciprofloxacin and ketoconazole. The compound (TPMC/AAP) showed varying activity against the cultured bacteria and fungi used. To complement the experimental data, density functional theory (DFT) was used to have deeper understanding into the molecular parameters and infrared spectra of the compound.
Ghavamnasiri, Marjaneh; Eslami, Samaneh; Ameri, Hamide; Chasteen, Joseph E.; Majidinia, Sara; Moghadam, Fatemeh Velayaty
2015-01-01
Objectives: To evaluate the effect of amalgam corrosion products in non-discolored dentin on the bond strength of replaced composite resin. Materials and Methods: One hundred and sixty-one Class I cavities were prepared on extracted premolars and divided into seven groups. Group 1: Light-cured composite; Groups 2, 3, and 4: Amalgam stored in 37°C normal saline for respectively 1, 3, and 6 months and then replaced with composite leaving the cavity walls intact. Groups 5, 6, and 7: Identical to Groups 2, 3, and 4, except the cavity walls were extended 0.5 mm after amalgam removal. Eighteen specimens from each group were selected for shear bond strength testing, while on remaining five samples, elemental microanalysis was conducted. Data were analyzed using Mann-Whitney and Freidman (α = 0.05). Results: There was a significant difference between Groups 1 and 4 and also between Group 1 and Groups 5, 6, and 7. However, Groups 1, 2, and 3 showed no significant difference regarding bond strength. Bond strengths of Group 4 was significantly less than Groups 2 and 3. However, Groups 5, 6, and 7 showed similar bond strength. There was no difference among all groups in terms of metal elements at any storage times. PMID:25657522
Microstructural Evolution and Phase Formation in 2nd-Generation Refractory-Based High Entropy Alloys
Eshed, Eyal; Larianovsky, Natalya; Kovalevsky, Alexey; Popov, Vladimir; Gorbachev, Igor; Popov, Vladimir; Katz-Demyanetz, Alexander
2018-01-01
Refractory-based high entropy alloys (HEAs) of the 2nd-generation type are new intensively-studied materials with a high potential for structural high-temperature applications. This paper presents investigation results on microstructural evolution and phase formation in as-cast and subsequently heat-treated HEAs at various temperature-time regimes. Microstructural examination was performed by means of scanning electron microscopy (SEM) combined with the energy dispersive spectroscopy (EDS) mode of electron probe microanalysis (EPMA) and qualitative X-ray diffraction (XRD). The primary evolutionary trend observed was the tendency of Zr to gradually segregate as the temperature rises, while all the other elements eventually dissolve in the BCC solid solution phase once the onset of Laves phase complex decomposition is reached. The performed thermodynamic modelling was based on the Calculation of Phase Diagrams method (CALPHAD). The BCC A2 solid solution phase is predicted by the model to contain increasing amounts of Cr as the temperature rises, which is in perfect agreement with the actual results obtained by SEM. However, the model was not able to predict the existence of the Zr-rich phase or the tendency of Zr to segregate and form its own solid solution—most likely as a result of the Zr segregation trend not being an equilibrium phenomenon. PMID:29360763
NASA Astrophysics Data System (ADS)
Mohammadpour, Zahra; Zare, Hamid R.
2018-07-01
Nickel-tungsten multi-walled carbon nanotubes (Ni-W/MWCNTs) nanocomposite coatings were co-electrodeposited in the ammonium-free bath by means of constant direct current coulometry. The results indicate that the amount of MWCNTs incorporated into the nanocomposite coatings has a key role in the improvement of their microhardness and corrosion resistance. The corrosion behavior of the coatings was evaluated using potentiodynamic polarization and electrochemical impedance spectroscopy methods in three corrosive media of 3.5 wt% NaCl, 1.0 M NaOH, and 0.5 M H2SO4. The experimental data of the corrosion current density (jcorr), corrosion rate (CR), the polarization resistance (Rp), and microhardness indicate that the presence of MWCNTs in coatings improves the quality of those coatings. The surface morphology of the coatings and the elemental analysis data were obtained by scanning electron microscopy and energy dispersive X-ray microanalysis respectively. As the results showed, the coatings were uniform and crack-free in the presence of 5.3 wt% carbon. Also, a microhardness test revealed that the nanocomposite coating containing 5.3 wt% carbon obtained in an ammonium-free bath which provided the higher content of tungsten had the highest hardness value among others.
NASA Astrophysics Data System (ADS)
Mohammadpour, Zahra; Zare, Hamid R.
2018-03-01
Nickel-tungsten multi-walled carbon nanotubes (Ni-W/MWCNTs) nanocomposite coatings were co-electrodeposited in the ammonium-free bath by means of constant direct current coulometry. The results indicate that the amount of MWCNTs incorporated into the nanocomposite coatings has a key role in the improvement of their microhardness and corrosion resistance. The corrosion behavior of the coatings was evaluated using potentiodynamic polarization and electrochemical impedance spectroscopy methods in three corrosive media of 3.5 wt% NaCl, 1.0 M NaOH, and 0.5 M H2SO4. The experimental data of the corrosion current density (jcorr), corrosion rate (CR), the polarization resistance (Rp), and microhardness indicate that the presence of MWCNTs in coatings improves the quality of those coatings. The surface morphology of the coatings and the elemental analysis data were obtained by scanning electron microscopy and energy dispersive X-ray microanalysis respectively. As the results showed, the coatings were uniform and crack-free in the presence of 5.3 wt% carbon. Also, a microhardness test revealed that the nanocomposite coating containing 5.3 wt% carbon obtained in an ammonium-free bath which provided the higher content of tungsten had the highest hardness value among others.
Azuma, Kentaro; Suzuki, Sachiko; Uchiyama, Seiichi; Kajiro, Toshi; Santa, Tomofumi; Imai, Kazuhiro
2003-04-01
To develop new fluorescent derivatization reagents, we investigated the relationship between the chemical structures and the fluorescence quantum yields (phi(f)) of coumarins, quinoxalinones and benzoxadinones. Forty-six compounds were synthesized and their fluorescence spectra were measured in n-hexane, ethyl acetate, methanol and water. The energy levels of these compounds were calculated by combination of the semi-empirical AM1 and INDO/S (CI = all) methods. The deltaE(Tn(n,pi*), S1(pi,pi*)) (the energy gap between the Tn(n,pi*) and S1(pi,pi*) states) values were well correlated with the phi(f) values, which enables us to predict the phi(f) values from their chemical structures. Based on this relationship, 3-phenyl-7-N-piperazinoquinoxalin-2(1H)-one (PQ-Pz) and 7-(3-(S)-aminopyrrolidin-1-yl)-3-phenylquinoxalin-2-(1H)-one (PQ-APy) were developed as fluorescent derivatization reagents for carboxylic acids. The derivatives of the carboxylic acids with PQ-Pz and PQ-APy showed large phi(f) values even in polar solvents, suggesting that these reagents are suitable for the microanalysis of biologically important carboxylic acids by reversed phase HPLC.
Magnetic and charge transport properties of the Na-based Os oxide pyrochlore
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Y.G., E-mail: SHI.Youguo@nims.go.j; International Center for Materials Nanoarchitectonics; JST, Transformative Research-Project on Iron Pnictides
2009-04-15
The Na-based osmium oxide pyrochlore was synthesized for the first time by an ion-exchange method using KOs{sub 2}O{sub 6} as a host. The composition was identified as Na{sub 1.4}Os{sub 2}O{sub 6}.H{sub 2}O by electron probe micro-analysis, thermogravimetric analysis, and structural analysis using synchrotron X-ray diffraction. Na{sub 1.4}Os{sub 2}O{sub 6}.H{sub 2}O crystallizes in a regular pyrochlore structure with some defects (space group: Fd-3m, a=10.16851(1) A). Electrical resistivity, heat capacity, and magnetization measurements clearly showed absence of superconductivity down to 2 K, being in large contrast to what was found for the beta-type pyrochlore superconductor AOs{sub 2}O{sub 6} (A=Cs, Rb, and K).more » The Sommerfeld coefficient is 22 mJ K{sup -2} mol{sup -1}, being the smallest among AOs{sub 2}O{sub 6}. A magnetic anomaly at {approx}57 K and associated magneto-resistance (+3.7% at 2 K in 70 kOe) were found. - Graphical abstract: Crystal structure of the Na-based Os oxide pyrochlore Na{sub 1.4}Os{sub 2}O{sub 6}.H{sub 2}O.« less
Ercole, Claudia; Cacchio, Paola; Botta, Anna Lucia; Centi, Valeria; Lepidi, Aldo
2007-02-01
Bacterially induced carbonate mineralization has been proposed as a new method for the restoration of limestones in historic buildings and monuments. We describe here the formation of calcite crystals by extracellular polymeric substances isolated from Bacillus firmus and Bacillus sphaericus. We isolated bacterial outer structures (glycocalix and parietal polymers), such as exopolysaccharides (EPS) and capsular polysaccharides (CPS) and checked for their influence on calcite precipitation. CPS and EPS extracted from both B. firmus and B. sphaericus were able to mediate CaCO3 precipitation in vitro. X-ray microanalysis showed that in all cases the formed crystals were calcite. Scanning electron microscopy showed that the shape of the crystals depended on the fractions utilized. These results suggest the possibility that biochemical composition of CPS or EPS influences the resulting morphology of CaCO3. There were no precipitates in the blank samples. CPS and EPS comprised of proteins and glycoproteins. Positive alcian blue staining also reveals acidic polysaccharides in CPS and EPS fractions. Proteins with molecular masses of 25-40 kDa and 70 kDa in the CPS fraction were highly expressed in the presence of calcium oxalate. This high level of synthesis could be related to the binding of calcium ions and carbonate deposition.
NASA Astrophysics Data System (ADS)
Bártová, H.; Trojek, T.; Čechák, T.; Šefců, R.; Chlumská, Š.
2017-10-01
The presence of heavy chemical elements in old pigments is possible to identify in historical paintings using X-ray fluorescence analysis (XRF). This is a non-destructive analytical method frequently used in examination of objects that require in situ analysis, where it is necessary to avoid damaging the object by taking samples. Different modalities are available, such as microanalysis, scanning selected areas, or depth profiling techniques. Surface scanning is particularly profitable since 2D element distribution maps are much more understandable than the results of individual analyses. Information on the layered structure of the painting can be also obtained by handheld portable systems. Results presented in our paper combine 2D element distribution maps obtained by scanning analysis, and depth profiling using conventional XRF. The latter is very suitable for objects of art, as it can be evaluated from data measured with portable XRF device. Depth profiling by conventional XRF is based on the differences in X-ray absorption in paint layers. The XRF technique was applied for analysis of panel paintings of the Master of the St George Altarpiece who was active in Prague in the 1470s and 1480s. The results were evaluated by taking micro-samples and performing a material analysis.
NASA Astrophysics Data System (ADS)
Renno, A. D.; Merchel, S.; Michalak, P. P.; Munnik, F.; Wiedenbeck, M.
2010-12-01
Recent economic trends regarding the supply of rare metals readily justify scientific research into non-conventional raw materials, where a particular need is a better understanding of the relationship between mineralogy, microstructure and the distribution of key metals within ore deposits (geometallurgy). Achieving these goals will require an extensive usage of in-situ microanalytical techniques capable of spatially resolving material heterogeneities which can be key for understanding better resource utilization. The availability of certified reference materials (CRMs) is an essential prerequisite for (1) validating new analytical methods, (2) demonstrating data quality to the contracting authorities, (3) supporting method development and instrument calibration, and (4) establishing traceability between new analytical approaches and existing data sets. This need has led to the granting of funding by the European Union and the German Free State of Saxony for a program to develop such reference materials . This effort will apply the following strategies during the selection of the phases: (1) will use exclusively synthetic minerals, thereby providing large volumes of homogeneous starting material. (2) will focus on matrices which are capable of incorporating many ‘important’ elements while avoid exotic compositions which would not be optimal matrix matches. (3) will emphasise those phases which remain stable during the various microanalytical procedure. This initiative will assess the homogeneity of the reference materials at sampling sizes ranging between 50 and 1 µm; it is also intended to document crystal structural homogeneity too, as this too may potentially impact specific analytical methods. As far as possible both definitive methods as well as methods involving matrix corrections will be used for determining the compositions of the of the individual materials. A critical challenge will be the validation of the determination of analytes concentrations as sub-µg sampling masses. It is planned to cooperate with those who are interested in the development of such reference materials and we invite them to take part in round-robin exercises.
Enamel paint techniques in archaeology and their identification using XRF and micro-XRF
NASA Astrophysics Data System (ADS)
Hložek, M.; Trojek, T.; Komoróczy, B.; Prokeš, R.
2017-08-01
This investigation focuses in detail on the analysis of discoveries in South Moravia - important sites from the Roman period in Pasohlávky and Mušov. Using X-ray fluorescence analysis and micro-analysis we help identify the techniques of enamel paint and give a thorough chemical analysis in details which would not be possible to determine by means of macroscopic examination. We thus address the influence of elemental composition on the final colour of the enamel paint and describe the less known technique of combining enamel with millefiori. The material analyses of the metal artefacts decorated with enamel paint significantly contribute to our knowledge of the technology being used during the Roman period.
NASA Astrophysics Data System (ADS)
Sultan, J. S.; Fezea, S. M.; Mousa, F. H.
2018-05-01
A binucleating tetradentate Schiff base ligand, 1,4- di[amino methylene carboxylic] phenylene (H2L) and its forth new binuclear complexes [Co(II), Cu(II), Zn(II) and Cd(II)] were prepared via reaction metal (II) chloride with ligand (H2L) using 2:1 (M:L) in ethanol solvent. The new ligand (H2L) and its complexes were characterized by elemental microanalysis (C.H.N), atomic absorption, chloride content, molar conductance’s magnetic susceptibility, FTIR UV- Vis spectral and, 1H, 13 C- NMR (for H2L). The antibacterial activity with bacteria activity with bacteria, Staphylococcus aureus, Bacillus and Esccherichia Coli were studied.
NASA Astrophysics Data System (ADS)
Lerner, M. I.; Bakina, O. V.; Pervikov, A. V.; Glazkova, E. A.; Lozhkomoev, A. S.; Vorozhtsov, A. B.
2018-05-01
X-ray phase analysis, transmission electron microscopy, and X-ray microanalysis were used to examine the structural-phase states of Fe-Cu and Fe-Ag bimetallic nanoparticles. The nanoparticles were obtained by the electric explosion of two twisted metal wires in argon atmosphere. It was demonstrated that the nanoparticles have the structure of Janus particles. Presence of the Janus particle structure in the samples indicates formation of binary melt under conditions of combined electric explosion of two wires. Phases based on supersaturated solid solutions were not found in the examined samples. The data obtained allow arguing that it is possible to achieve uniform mixing of the two-wire explosion products under the described experiment conditions.
Yamanda, Shinsuke; Kobayashi, Seiichi; Hanagama, Masakazu; Sato, Hikari; Suzuki, Satoshi; Ueda, Shinsaku; Takahashi, Toru; Yanai, Masaru
We report two cases of organizing pneumonia (OP) secondary to the inhalation of the dried tsunami sludge which formed during the 2011 Great East Japan Earthquake and the consequent tsunami. After the disaster, both of these patients had been engaged in the restoration work. About half a month later, they developed shortness of breath and pulmonary infiltrates. These patients were diagnosed with interstitial pneumonia. Their biopsy specimens revealed multifocal peribronchiolitis and OP. An electron probe microanalysis of these specimens demonstrated the presence of elements from the earth's crust in the inflammatory lesions. These two cases indicate that exposure to dried tsunami sludge can cause OP.
Spectrum simulation in DTSA-II.
Ritchie, Nicholas W M
2009-10-01
Spectrum simulation is a useful practical and pedagogical tool. Particularly with complex samples or trace constituents, a simulation can help to understand the limits of the technique and the instrument parameters for the optimal measurement. DTSA-II, software for electron probe microanalysis, provides both easy to use and flexible tools for simulating common and less common sample geometries and materials. Analytical models based on (rhoz) curves provide quick simulations of simple samples. Monte Carlo models based on electron and X-ray transport provide more sophisticated models of arbitrarily complex samples. DTSA-II provides a broad range of simulation tools in a framework with many different interchangeable physical models. In addition, DTSA-II provides tools for visualizing, comparing, manipulating, and quantifying simulated and measured spectra.
The origin of Cu/Au ratios in porphyry-type ore deposits.
Halter, Werner E; Pettke, Thomas; Heinrich, Christoph A
2002-06-07
Microanalysis of major and trace elements in sulfide and silicate melt inclusions by laser-ablation inductively coupled plasma mass spectrometry indicates a direct link between a magmatic sulfide liquid and the composition of porphyry-type ore deposits. Copper (Cu), gold (Au), and iron (Fe) are first concentrated in a sulfide melt during magmatic evolution and then released to an ore-forming hydrothermal fluid exsolved late in the history of a magma chamber. The composition of sulfide liquids depends on the initial composition and source of the magma, but it also changes during the evolution of the magma in the crust. Magmatic sulfide melts may exert the dominant direct control on the economic metal ratios of porphyry-type ore deposits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertsch, Paul
2013-11-07
The goal of this project was to provide support for an advanced X-ray microspectroscopy facility at the National Synchrotron Light Source, Brookhaven National Laboratory. This facility is operated by the University of Chicago and the University of Kentucky. The facility is available to researchers at both institutions as well as researchers around the globe through the general user program. This facility was successfully supported during the project period. It provided access to advanced X-ray microanalysis techniques which lead to fundamental advances in understanding the behavior of contaminants and geochemistry that is applicable to environmental remediation of DOE legacy sites asmore » well as contaminated sites around the United States and beyond.« less
Crystal Chemistry and Conductivity Studies in the System La 0.5+ x+ yLi 0.5-3 xTi 1-3 yCr 3 yO 3
NASA Astrophysics Data System (ADS)
Martínez-Sarrión, M. L.; Mestres, L.; Morales, M.; Herraiz, M.
2000-12-01
The stoichiometry polymorphism and electrical behavior of solid solutions La0.5+x+yLi0.5-3xTi1-3yCr3yO3 with perovskite-type structure were studied. Data are given in the form of a solid solutions triangle, phase diagrams, XRD patterns for the three polymorphs, A, β, and C, composition dependence of their lattice parameters, and ionic and electronic conductivity plots. Microstructure and composition were studied by SEM/EDS and electron probe microanalysis. These compounds are mixed conductors. Ionic conductivity decreased when the amount of lithium diminished and electronic conductivity increased with chromium content.
Cruz-Silva, Eduardo; Cullen, David A; Gu, Lin; Romo-Herrera, Jose Manuel; Muñoz-Sandoval, Emilio; López-Urías, Florentino; Sumpter, Bobby G; Meunier, Vincent; Charlier, Jean-Christophe; Smith, David J; Terrones, Humberto; Terrones, Mauricio
2008-03-01
Arrays of multiwalled carbon nanotubes doped with phosphorus (P) and nitrogen (N) are synthesized using a solution of ferrocene, triphenyl-phosphine, and benzylamine in conjunction with spray pyrolysis. We demonstrate that iron phosphide (Fe(3)P) nanoparticles act as catalysts during nanotube growth, leading to the formation of novel PN-doped multiwalled carbon nanotubes. The samples were examined by high resolution electron microscopy and microanalysis techniques, and their chemical stability was explored by means of thermogravimetric analysis in the presence of oxygen. The PN-doped structures reveal important morphology and chemical changes when compared to N-doped nanotubes. These types of heterodoped nanotubes are predicted to offer many new opportunities in the fabrication of fast-response chemical sensors.
An evaluation of smear layer with various desensitizing agents after tooth preparation.
Zaimoglu, A; Aydin, A K
1992-09-01
According to hydrodynamics, any agent blocking the dentinal tubules reduces the flow of fluids and diminishes hypersensitivity. The properties of the desensitizing agents that sponsor tubular occlusion and the barrier efficiency resulting from the interaction of the smear layer with test materials were examined with the scanning electron microscope and energy-dispersive x-ray microanalysis. Selected dentinal desensitizing was accomplished with burnishing procedures, cavity varnish, calcium hydroxide, and topical fluoride. Subjective evaluations were also recorded clinically after tooth preparation. This investigation indicated that the smear layer did not protect against zinc phosphate cement, and that cavity varnish prevented the formation of the smear plugs. The smear layer and plugs were basically composed of calcium and phosphorus, the major ingredients of dentin.
Extension of the TRANSURANUS burnup model to heavy water reactor conditions
NASA Astrophysics Data System (ADS)
Lassmann, K.; Walker, C. T.; van de Laar, J.
1998-06-01
The extension of the light water reactor burnup equations of the TRANSURANUS code to heavy water reactor conditions is described. Existing models for the fission of 235U and the buildup of plutonium in a heavy water reactor are evaluated. In order to overcome the limitations of the frequently used RADAR model at high burnup, a new model is presented. After verification against data for the radial distributions of Xe, Cs, Nd and Pu from electron probe microanalysis, the model is used to analyse the formation of the high burnup structure in a heavy water reactor. The new model allows the analysis of light water reactor fuel rod designs at high burnup in the OECD Halden Heavy Water Reactor.
NASA Technical Reports Server (NTRS)
Sagan, D. (Editor)
1985-01-01
The results of the planetary biology microbial ecology's 1984 Summer Research Program, which examined various aspects of the global sulfur cycle are summarized. Ways in which sulfur flows through the many living and chemical species that inhabit the surface of the Earth were investigated. Major topics studied include: (1) sulfur cycling and metabolism of phototropic and filamentous sulfur bacteria; (2) sulfur reduction in sediments of marine and evaporite environments; (3) recent cyanobacterial mats; (4) microanalysis of community metabolism in proximity to the photic zone in potential stromatolites; and (5) formation and activity of microbial biofilms on metal sulfides and other mineral surfaces. Relationships between the global sulfur cycle and the understanding of the early evolution of the Earth and biosphere and current processes that affect global habitability are stressed.
Detection and distribution of lithium in Mg-Li-Al based alloy by ToF-SIMS
NASA Astrophysics Data System (ADS)
Kumar, Vinod
2016-12-01
Time of Flight-Secondary Ion Mass Spectrometry (ToF-SIMS) is used to investigate the surface as well as bulk microstructural features of novel Mg-Li-Al based alloy namely Mg-9Li-7Al-3Sn-1Zn (LATZ9531). ToF-SIMS study indicates that there are six multi-oxide layers present within the surface film of LATZ9531. Furthermore, The presence of Li containing phase has been qualitatively confirmed based on the high number of Li-ion counts in SIMS, and the same is verified quantitatively by using electron probe microanalysis (EPMA). The novel approach may be useful to determine the chemical composition of the phases in various alloys which has lighter alloying elements such as lithium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Musgrave, J.A.; Carey, R.G.; Janecky, D.R.
1994-06-01
The instrumentation, the luminescence microprobe, and synchronously scanned luminescence spectroscopy technique described here can be used to classify microliter quantities of oil such as those in fluid inclusions in cements from petroleum reservoirs. It is primarily constructed to obtain synchronously scanned luminescence spectra from microscopic sized samples to characterize the organic classes of compounds that predominate. At present no other technique can so readily analyze a single oil-bearing fluid inclusion. The data collected from the technique are pertinent to evaluating systems and providing quantitative data for solving problems in oil migration and maturation determinations, oil-to-oil and oil-to-source correlations, oil degradation,more » and episodes and chemistry of cementation.« less
NASA Astrophysics Data System (ADS)
Lerner, M. I.; Bakina, O. V.; Pervikov, A. V.; Glazkova, E. A.; Lozhkomoev, A. S.; Vorozhtsov, A. B.
2018-05-01
X-ray phase analysis, transmission electron microscopy, and X-ray microanalysis were used to examine the structural-phase states of Fe-Cu and Fe-Ag bimetallic nanoparticles. The nanoparticles were obtained by the electric explosion of two twisted metal wires in argon atmosphere. It was demonstrated that the nanoparticles have the structure of Janus particles. Presence of the Janus particle structure in the samples indicates formation of binary melt under conditions of combined electric explosion of two wires. Phases based on supersaturated solid solutions were not found in the examined samples. The data obtained allow arguing that it is possible to achieve uniform mixing of the two-wire explosion products under the described experiment conditions.
Siczek, Krzysztof; Fichna, Jakub; Zatorski, Hubert; Karolewicz, Bożena; Klimek, Leszek; Owczarek, Artur
2018-03-01
Recent findings indicating the anti-inflammatory action of silver preparations through modulation of the gut microbiota and apoptosis of inflammatory cells predestine silver use in inflammatory bowel disease (IBD). The aim of our study was to validate the possibility of effective silver release from silver-coated glass beads for anti-inflammatory local application in the lower sections of the gastrointestinal (GI) tract. Silver-coated glass beads were prepared using magnetron method. Release of silver from the silver-coated glass bead surface was carried out in BIO-DIS reciprocating cylinder apparatus. Erosion of silver coating and indirect estimation of the silver release dynamics was assessed using scanning electron microscope. Rectal suppositories containing silver-coated glass beads were prepared using five different methods (M1-M5) and X-ray scanned for their composition. The XR microanalysis and the chemical composition analysis evidenced for a rapid (within 30 min) release of nearly 50% of silver from the coating of the glass beads, which remained stable up to 24 h of incubation. The most homogeneous distribution of beads in the entire volume of the suppository was obtained for formulation M5, where the molten base was poured into mold placed in an ice bath, and the beads were added after 10 s. Our study is the first to present the concept of enclosing silver-coated glass beads in the lipophilic suppository base to attenuate inflammation in the lower GI tract and promises efficient treatment with reduced side effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hossain, M. Anwar; Center for Crystal Science and Technology, University of Yamanashi, Miyamae 7-32, Kofu, Yamanashi 400-8511; Tanaka, Isao
We studied thermoelectric properties of YB{sub 41}Si{sub 1.3} single crystals grown by the floating zone method. The composition of the grown crystal was confirmed by electron probe micro-analysis. We have determined the growth direction for the first time for these borosilicides, and discovered relatively large anisotropy in electrical properties. We measured the electrical resistivity and Seebeck coefficient along [510] (the growth direction) and [052] directions and we found that this crystal exhibits strong electrical anisotropy with a maximum of more than 8 times. An interesting layered structural feature is revealed along [510] with dense boron cluster layers and yttrium layers,more » with conductivity enhanced along this direction. We obtained 3.6 times higher power factor along [510] compared to that along [052]. Although the ZT of the present system is low, anisotropy in the thermoelectric properties of a boride was reported for the first time, and can be a clue in developing other boride systems also. - Graphical abstract: The growth direction ([510]) was determined for the first time in YB{sub 41}Si{sub 1.3} single crystals and revealed an interesting layered feature of boron clusters and metal atoms, along which the electrical conductivity and thermoelectric power factor was strongly enhanced. - Highlights: • We have grown YB{sub 41}Si{sub 1.3} single crystals by the floating zone method. • Growth direction of [510] determined for first time in REB{sub 41}Si{sub 1.2}. • Electrical resistivity was strongly anisotropic with possible enhancement along metal layers. • The obtained power factor along [510] is 3.6 times higher than that along [052].« less
Massey, M.A.; Prior, D.J.; Moecher, D.P.
2011-01-01
Optical microscopy, electron probe microanalysis, and electron backscatter diffraction methods have been used to examine a broad range of garnet microstructures within a high strain zone that marks the western margin of a major transpression zone in the southern New England Appalachians. Garnet accommodated variable states of finite strain, expressed as low strain porphyroclasts (Type 1), high strain polycrystalline aggregates (Type 2), and transitional morphologies (Type 3) that range between these end members. Type 1 behaved as rigid porphyroclasts and is characterized by four concentric Ca growth zones. Type 2 help define foliation and lineation, are characterized by three Ca zones, and possess a consistent bulk crystallographic preferred orientation of (100) symmetrical to the tectonic fabric. Type 3 show variable degrees of porphyroclast associated with aggregate, where porphyroclasts display complex compositional zoning that corresponds to lattice distortion, low-angle boundaries, and subgrains, and aggregate CPO mimics porphyroclast orientation. All aggregates accommodated a significant proportion of greenschist facies deformation through grain boundary sliding, grain rotation and impingement, and pressure solution, which lead to a cohesive behavior and overall strain hardening of the aggregates. The characteristic CPO could not have been developed in this manner, and was the result of an older phase of partitioned amphibolite facies dislocation creep, recovery including chemical segregation, and recrystallization of porphyroclasts. This study demonstrates the significance of strain accommodation within garnet and its affect on composition under a range of PT conditions, and emphasizes the importance of utilizing EBSD methods with studies that rely upon a sound understanding of garnet. ?? 2010 Elsevier Ltd.
Shchudlo, Nathalia; Varsegova, Tatyana; Stupina, Tatyana; Shchudlo, Michael; Saifutdinov, Marat; Yemanov, Andrey
2017-01-01
AIM To determine peculiarities of tissue responses to manual and automated Ilizarov bone distraction in nerves and articular cartilage. METHODS Twenty-nine dogs were divided in two experimental groups: Group M - leg lengthening with manual distraction (1 mm/d in 4 steps), Group A - automated distraction (1 mm/d in 60 steps) and intact group. Animals were euthanized at the end of distraction, at 30th day of fixation in apparatus and 30 d after the fixator removal. M-responses in gastrocnemius and tibialis anterior muscles were recorded, numerical histology of peroneal and tibialis nerves and knee cartilage semi-thin sections, scanning electron microscopy and X-ray electron probe microanalysis were performed. RESULTS Better restoration of M-response amplitudes in leg muscles was noted in A-group. Fibrosis of epineurium with adipocytes loss in peroneal nerve, subperineurial edema and fibrosis of endoneurium in some fascicles of both nerves were noted only in M-group, shares of nerve fibers with atrophic and degenerative changes were bigger in M-group than in A-group. At the end of experiment morphometric parameters of nerve fibers in peroneal nerve were comparable with intact nerve only in A-group. Quantitative parameters of articular cartilage (thickness, volumetric densities of chondrocytes, percentages of isogenic clusters and empty cellular lacunas, contents of sulfur and calcium) were badly changed in M-group and less changed in A-group. CONCLUSION Automated Ilizarov distraction is more safe method of orthopedic leg lengthening than manual distraction in points of nervous fibers survival and articular cartilage arthrotic changes. PMID:28979852
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allison, N.; Finch, A.A.; Tudhope, A.W.
The Sr/Ca of coral skeletons demonstrates potential as an indicator of sea surface temperatures (SSTs). However, the glacial-interglacial SST ranges predicted from Sr/Ca of fossil corals are usually higher than from other marine proxies. We observed infilling of secondary aragonite, characterized by high Sr/Ca ratios, along intraskeletal pores of a fossil coral from Papua New Guinea that grew during the penultimate deglaciation (130 {+-} 2 ka). Selective microanalysis of unaltered areas of the fossil coral indicates that SSTs at {approx}130 ka were {le} 1 C cooler than at present in contrast with bulk measurements (combining infilled and unaltered areas) whichmore » indicate a difference of 6-7 C. The analysis of unaltered areas of fossil skeletons by microprobe techniques may offer a route to more accurate reconstruction of past SSTs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ovcharov, A. V.; Karateev, I. A.; Mikhutkin, A. A.
The surface microstructure of Ni–W alloy tapes, which are used as substrates to form films of high-temperature superconductors and photovoltaic devices, has been studied. Several samples of a Ni{sub 95}W{sub 5} tape (Evico) annealed under different conditions were analyzed using scanning electron microscopy, energy-dispersive X-ray microanalysis, electron diffraction, and electron energy-loss spectroscopy. NiWO{sub 4} precipitates are found on the surface of annealed samples. The growth of precipitates at a temperature of 950°C is accompanied by the formation of pores on the surface or under an oxide film. Depressions with a wedge-shaped profile are found at the grain boundaries. Annealing inmore » a reducing atmosphere using a specially prepared chamber allows one to form a surface free of nickel tungstate precipitates.« less
Synthesis, characterization and antibacterial study of tripodal tris-(N-benzoylthioureido)ethylamine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adan, Dalina; Yamin, Bohari; Leng, Ong Wei
A new tripodal tris-(N-benzoylthiouredoethyl)amine has been successfully synthesized and characterized by spectroscopic technique such as FTIR, ESI MS, {sup 1}H and {sup 13}C NMR. The microanalysis data is in a good agreement with the expected molecular formula. The {sup 1}H NMR chemical shift for both amide and thioamide proton are at lower field than their normal value indicates the presence of the hydrogen bond between the carbonyl oxygen atom and thioamide hydrogen. This is possible when the benzoyl group adopt a trans configuration againts thione group along the C-N bond. The compound has been tested for antibacterial activity against threemore » selected bacteria namely Staphylococcus aureus, Proteus vulgaris and Pseudomanas aeroginosa but there is no significant activities observed.« less
NASA Astrophysics Data System (ADS)
Ortega, R.; Devès, G.; Bonnin-Mosbah, M.; Salomé, M.; Susini, J.; Anderson, L. M.; Kasprzak, K. S.
2001-07-01
Preconception exposure to certain chemicals may increase risk of tumors in offspring, especially with regard to occupational metals such as chromium. However, the mechanism of chromium trans-generation carcinogenicity remains unknown. Using scanning proton X-ray microanalysis we have been able to detect chromium in testicular tissue sections from mice treated by intraperitoneal injection of 1 mmol/kg CrCl 3. Chromium concentration was about 5 μg/g dry mass in average, but higher concentrations were found within the limiting membrane of the testes, the tunica albuginea. In addition, synchrotron radiation X-ray fluorescence measurements, with microscopic resolution, clearly demonstrated the presence of chromium in the tunica albuginea but also within isolated cells from the interstitial connective tissue.
NASA Astrophysics Data System (ADS)
Pinto, M.; Calderón, X.; Mejía Ospino, E.; Cabanzo, R.; Poveda, Juan C.
2016-02-01
In the present study, optical microscopy in stereoscopic mode coupled to laser- induced p-breakdown spectroscopy (μ-LIBS) was applied for analysing HP-40 steel samples. microLIBS (μ-LIBS) is a new growing area that employs low energy laser pulses for the generation of plasma emission, which allow the realization of localized microanalysis [1]. This new LIBS instrument was used for the surface characterization of the steel samples in the spectral range from 356 to 401nm. Elements such as Cr, Ni, Fe, Nb, Pb, Mo, C, Mn and Si in the steel samples were investigated. The results allowed the construction of elemental distribution profiles of the samples. Complementary the HP-40 steel samples were superficially characterized by Scanning Electron Microscope (SEM).
Photopatterned materials in bioanalytical microfluidic technology
Tentori, Augusto M.; Herr, Amy E.
2011-01-01
Microfluidic technologies are playing an increasingly important role in biological inquiry. Sophisticated approaches to the microanalysis of biological specimens rely, in part, on the fine fluid and material control offered by microtechnology, as well as a sufficient capacity for systems integration. A suite of techniques that utilize photopatterning of polymers on fluidic surfaces, within fluidic volumes, and as primary device structures underpins recent technological innovation in bioanalysis. Well-characterized photopatterning approaches enable previously fabricated or commercially fabricated devices to be customized by the user in a straight-forward manner, making the tools accessible to laboratories that do not focus on microfabrication technology innovation. In this review of recent advances, we summarize reported microfluidic devices with photopatterned structures and regions as platforms for a diverse set of biological measurements and assays. PMID:21857772
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendrick, M.J.; Goldschmidt, M.H.; Shofer, F.S.
1992-10-01
An increase in fibrosarcomas in a biopsy population of cats in the Pennsylvania area appears to be related to the increased vaccination of cats following enactment of a mandatory rabies vaccination law. The majority of fibrosarcomas arose in sites routinely used by veterinarians for vaccination, and 42 of 198 tumors were surrounded by lymphocytes and macrophages containing foreign material identical to that previously described in postvaccinal inflammatory injection site reactions. Some of the vaccines used have aluminum-based adjuvants, and macrophages surrounding three tumors contained aluminum oxide identified by electron probe microanalysis and imaged by energy-filtered electron microscopy. Persistence of inflammatorymore » and immunological reactions associated with aluminum may predispose the cat to a derangement of its fibrous connective tissue repair response, leading to neoplasia.« less
Aldoghachi, Mohammed A; Azirun, Mohd Sofian; Yusoff, Ismail; Ashraf, Muhammad Aqeel
2016-09-01
Experiments on hybrid red tilapia Oreochromis sp. were conducted to assess histopathological effects induced in gill tissues of 96 h exposure to waterborne lead (5.5 mg/L). These tissues were investigated by light and scanning electron microscopy. Results showed that structural design of gill tissues was noticeably disrupted. Major symptoms were changes of epithelial cells, fusion in adjacent secondary lamellae, hypertrophy and hyperplasia of chloride cells and coagulate necrosis in pavement cells with disappearance of its microridges. Electron microscopic X-ray microanalysis of fish gills exposed to sublethal lead revealed that lead accumulated on the surface of the gill lamella. This study confirmed that lead exposure incited a difference of histological impairment in fish, supporting environmental watch over aquatic systems when polluted by lead.
Microanalysis of iron oxidation states in earth and planetary materials
NASA Astrophysics Data System (ADS)
Bajt, S.; Sutton, S. R.; Delaney, J. S.
1995-02-01
Initial studies have been made on quantifying Fe oxidation states in different iron-bearing minerals using K-edge XANES. The energy of a weak pre-edge peak in the XANES spectrum due to 1s-3d electron transition was used to quantify ferric/ferrous ratios with microprobe spatial resolution. The estimated accuracy of the technique was +/- 10% in terms of Fe3+/((Fe2+ + Fe3+)). The detection limit was ~ 100 ppm with a synchrotron beam of ~ 100 μm in diameter. The pre-edge peak energy in well-characterized samples with known Fe oxidation states was found to be a linear function of the ferric/(ferrous) ratio. The technique was applied to altered magnetics (ideally Fe3O4), and various silicates and oxides from meteorites.
Microanalysis study of archaeological mural samples containing Maya blue pigment
NASA Astrophysics Data System (ADS)
Sánchez del Río, M.; Martinetto, P.; Somogyi, A.; Reyes-Valerio, C.; Dooryhée, E.; Peltier, N.; Alianelli, L.; Moignard, B.; Pichon, L.; Calligaro, T.; Dran, J.-C.
2004-10-01
Elemental analysis by X-ray fluorescence and particle induced X-ray emission is applied to the study of several Mesoamerican mural samples containing blue pigments. The most characteristic blue pigment is Maya blue, a very stable organo-clay complex original from Maya culture and widely used in murals, pottery and sculptures in a vast region of Mesoamerica during the pre-hispanic time (from VIII century) and during the colonization until 1580. The mural samples come from six different archaeological sites (four pre-hispanic and two from XVI century colonial convents). The correlation between the presence of some elements and the pigment colour is discussed. From the comparative study of the elemental concentration, some conclusions are drawn on the nature of the pigments and the technology used.
Investigating the effect of V{sub 2}O{sub 5} addition on sodium barium borosilicate glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halder, Rumu, E-mail: rumuhalder24feb@gmail.com; Sengupta, Pranesh; Dey, G. K.
2016-05-23
V{sub 2}O{sub 5} doped sodium barium borosilicate glasses were characterized by photoluminescence spectroscopy and electron probe microanalyzer (EPMA). The glass remains homogeneous for lower concentration of V{sub 2}O{sub 5} but a phase separation is observed when V{sub 2}O{sub 5} doping is increased beyond 5 mol%. Detailed microanalysis reveals that the phase separated glass consists of a phase containing V, Ba and Si and a separate Si rich phase within the glass matrix. The luminescence study demonstrated that at low concentration the vanadium mainly interacts with the structural units of B/Si while at higher concentrations, V-O-V/ V-O{sup −} Na{sup +}/Ba{sup 2+} linkagesmore » are formed.« less
NASA Astrophysics Data System (ADS)
Tudu, Kichakeswari; Pal, Sagar; Mandre, N. R.
2018-05-01
This study aims to beneficiate low grade goethitic iron ore fines using a selective flocculation process. Selective flocculation studies were conducted using different polymers such as starch amylopectin (AP), poly acrylic acid (PAA), and a graft copolymer (AP-g-PAA). The obtained results were analyzed; they indicate the enhancement of the iron ore grade from 58.49% to 67.52% using AP-g-PAA with a recovery of 95.08%. In addition, 64.45% Fe with a recovery of 88.79% was obtained using AP. Similarly, using PAA, the grade increased to 63.46% Fe with a recovery of 82.10%. The findings are also supported by characterizing concentrates using X-ray diffraction (XRD) and electron probe microanalysis (EPMA) techniques.
Hair casts due to a deodorant spray.
Ena, Pasquale; Mazzarello, Vittorio; Chiarolini, Fausto
2005-11-01
A 7-year-old girl presented with itching and greyish-white sleeve-like structures in her hair. After ruling out other possible causes for the symptoms, such as nits and dandruff, it was determined that the patient was affected by hair casts. These are small cylindrical structures resembling louse eggs that encircle individual scalp hairs and are easily movable along the hair shafts. It was concluded that she had induced the condition through misuse of a deodorant body spray. Scanning electron microscopy combined with electron dispersive X-ray analysis (X-ray microanalysis) of the hair casts showed the chemical nature of the structures. Some elements present in the composition of the ingredients of the deodorant spray, such as aluminium, chlorine, silicon, magnesium and carbon, were also present in this uncommon type of hair casts.
Genèse d'un horizon tacheté par déferruginisation dans une couverture à latérite du Bassin amazonien
NASA Astrophysics Data System (ADS)
Rosolen, Vania; Lamotte, Mathieu; Boulet, René; Trichet, Jean; Rouer, Olivier; José Melfi, Adolpho
A mottled horizon in a laterite cover (without any duricrust) was studied by microscopy and quantitative chemical microanalysis. Apart from the voids, light red spots consisting of Fe-rich particles (≈2 μm) are set in clayey plasma. Dark red spots consisted of concentrations of Fe-rich particles. These patterns are inherited. On the border of structural or biological voids, where Fe-depletion features are systematic, gray or yellow spots result from dissolution of the Fe-rich particles and impregnation of the plasma by iron, respectively. The present Fe-depletion is the dominant process that explains the mottled differentiation and the absence of lateritic duricrust. To cite this article: V. Rosolen et al., C. R. Geoscience 334 (2002) 187-195.
Sedlák, Miloš; Bhosale, Dattatry Shivajirao; Beneš, Ludvík; Palarčík, Jiří; Kalendová, Andrea; Královec, Karel; Imramovský, Aleš
2013-08-15
The Letter describes the preparation and characterization of a conjugate of isoniazid (INH) with magnetic nanoparticles Fe3O4@SiO2 115±60 nm in size. The INH molecules were attached to the surface of nanoparticles by a covalent pH-sensitive amidine bond. The conjugate was characterized by X-ray diffraction, SEM, dynamic light scattering, IR spectroscopy and microanalysis. The conjugate released isoniazid under in vitro conditions (pH=4; 37 °C; t1/2≈115 s). In addition, the cytotoxicity of the Fe3O4@SiO2-INH conjugate was evaluated in SK-BR-3 cells using the xCELLigence system. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Schalm, Olivier; Janssens, Koen; Wouters, Hilde; Caluwé, Danielle
2007-07-01
A set of ca. 500 window glass fragments originating from different historical sites in Belgium and covering the period 12 th-18 th century was analyzed by means of electron probe microanalysis. Most samples are archaeological finds deriving from non-figurative windows in secular buildings. However, the analyzed set also contains glass sampled from still existing non-figurative windows in secular buildings and stained-glass windows in religious buildings. A sudden compositional change at the end of the 14 th century can be noticed among the series of glass compositions that were obtained. These changes could be related to the use of different glassmaker recipes and to the introduction of new raw materials for glass making.
NASA Astrophysics Data System (ADS)
Kryazhev, Yu. G.; Vorob'ev, M. S.; Koval', N. N.; Trenikhin, M. V.; Solodovnichenko, V. S.; Sulakshin, S. A.; Likholobov, V. A.
2016-10-01
This work shows the possibility in principle of forming hydrocarbon structures in polyvinyl chloride films free of admixtures and polyvinyl chloride films modified with 5-mass % ferrocene via a radiation chemical transformation in the atmosphere with the use of an electron accelerator with a plasma cathode operating in the pulsed-periodic mode maximal electron energy no higher than 160 keV, pulse length of 40 μs, and current density of 5 mA/cm2. According to the results of semiquantitative X-ray microanalysis, an irradiated polyvinyl chloride film free of admixtures contains 92 of carbon, 6 of oxygen, and 2 mass % of chlorine; the irradiated polyvinyl chloride is an amorphous carbon material. A possible mechanism of the phenomenon is discussed.
Liu, Lihong; Xu, Xiaoying; Liu, Yanhui; Zhang, Xuanxuan; Li, Lin; Jia, Zhimin
2016-02-20
In this paper, we design a microreactor based on electrophoretically mediated microanalysis (EMMA) with capillary electrophoresis (CE) for screening HIV-1 inhibitors that bind to the N-terminal heptad repeat (NHR, N36) region. Initially, a test sample plug is loaded into a capillary filled with buffer solution followed by N36 peptide solution, and the two solutions simultaneously mix by diffusion. Then, voltage is applied, and the sample molecules pass through the N36 peptide zone. The active compounds combine with N36, leading to a loss in the peak height of the active compound. More than 100 traditional Chinese medicine extracts (TCME) were screened, and an extract of Pheretima aspergillum (E. Perrier) (L5) was identified as having potent inhibitory activity. The results showed that L5 could significantly inhibit the HIV-1JR-FL pseudotyped virus infection; the 50% effective concentration (EC50) of L5 was approximately 32.1±1.2μg/mL, and the 50% cytotoxicity concentration (CC50) value of L5 was 146.9±4.4μg/mL, suggesting that L5 had low in vitro cytotoxicity on U87-CD4-CCR5 cells. The new method is simple and rapid, is free of antibodies, and does not require tedious processes. Copyright © 2015 Elsevier B.V. All rights reserved.
Wille, G; Lerouge, C; Schmidt, U
2018-01-16
In cassiterite, tin is associated with metals (titanium, niobium, tantalum, indium, tungsten, iron, manganese, mercury). Knowledge of mineral chemistry and trace-element distribution is essential for: the understanding of ore formation, the exploration phase, the feasibility of ore treatment, and disposal/treatment of tailings after the exploitation phase. However, the availability of analytical methods make these characterisations difficult. We present a multitechnical approach to chemical and structural data that includes scanning electron microscopy (SEM)-based imaging and microanalysis techniques such as: secondary and backscattered electrons, cathodoluminescence (CL), electron probe microanalyser (EPMA), electron backscattered diffraction (EBSD) and confocal Raman-imaging integrated in a SEM (RISE). The presented results show the complementarity of the used analytical techniques. SEM, CL, EBSD, EPMA provide information from the interaction of an electron beam with minerals, leading to atomistic information about their composition, whereas RISE, Raman spectroscopy and imaging completes the studies with information about molecular vibrations, which are sensitive to structural modifications of the minerals. The correlation of Raman bands with the presence/absence of Nb, Ta, Fe (heterovalent substitution) and Ti (homovalent substitution) is established at a submicrometric scale. Combination of the different techniques makes it possible to establish a direct link between chemical and crystallographic data of cassiterite. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.
NASA Astrophysics Data System (ADS)
Nadammal, Naresh; Kailas, Satish V.; Szpunar, Jerzy; Suwas, Satyam
2015-05-01
Friction-stir processing (FSP) has been proven as a successful method for the grain refinement of high-strength aluminum alloys. The most important attributes of this process are the fine-grain microstructure and characteristic texture, which impart suitable properties in the as-processed material. In the current work, FSP of the precipitation-hardenable aluminum alloy 2219 has been carried out and the consequent evolution of microstructure and texture has been studied. The as-processed materials were characterized using electron back-scattered diffraction, x-ray diffraction, and electron probe microanalysis. Onion-ring formation was observed in the nugget zone, which has been found to be related to the precipitation response and crystallographic texture of the alloy. Texture development in the alloy has been attributed to the combined effect of shear deformation and dynamic recrystallization. The texture was found heterogeneous even within the nugget zone. A microtexture analysis revealed the dominance of shear texture components, with C component at the top of nugget zone and the B and A2* components in the middle and bottom. The bulk texture measurement in the nugget zone revealed a dominant C component. The development of a weaker texture along with the presence of some large particles in the nugget zone indicates particle-stimulated nucleation as the dominant nucleation mechanism during FSP. Grain growth follows the Burke and Turnbull mechanism and geometrical coalescence.
Lunar and Planetary Science XXXVI, Part 7
NASA Technical Reports Server (NTRS)
2005-01-01
Topics discussed include: Lunar Geologic Mapping: Preliminary Mapping of Copernicus Quad High-Resolution Topography of Layers in the Valles Marineris Via Thermoclinometry ; The Critical Importance of Data Reduction Calibrations in the Interpretability of S-type Asteroid Spectra; (sup 238)U-(sup 206)Pb Age and Uranium-Lead Isotope Systematics of Mare Basalt 10017; Morphological Investigations of Martian Spherules, Comparisons to Collected Terrestrial Counterparts; The Vapor Pressure of Palladium at Temperatures up to 1973K; Areas of Favorable Illumination at the Lunar Poles Calculated from Topography; An Indigenous Origin for the South Pole-Aitken Basin Thorium Anomaly; Ar-Ar Ages of Nakhlites Y000593, NWA998, and Nakhla and CRE Ages of NWA998; Experiments on the Acoustic Properties of Titan-like Atmospheres; Analysis of Downstream Transitions in Morphology and Structure of Lava Channels on Mars; Structure and Bonding of Carbon in Clays from CI Carbonaceous Chondrites; Comparison of Three Hydrogen Distributions at the Equator of Mars; An Impact Origin for the Foliation of Ordinary Chondrites; A New Micrometeorite Collection from Antarctica and Its Preliminary Characterization by Microobservation, Microanalysis and Magnetic Methods; Volcanic Plumes and Plume Deposits on Io; Results of the Alpha-Particle-X-Ray Spectrometer on Board of the Mars Exploration Rovers; Effects of Oceans on Atmospheric Loss During the Stage of Giant Impacts; and Identification of Predominant Ferric Signatures in Association to the Martian Sulfate Deposits
Al Husseini, Amelène El-Mufleh; Béchet, Béatrice; Gaudin, Anne; Ruban, Véronique
2013-01-01
The management of stormwater sediment is a key issue for local authorities due to the pollution load and significant tonnages. In view of reuse, for example for civil engineering, the environmental evaluation of these highly aggregated sediments requires the study of the fractionation and mobility of trace metals. The distribution of trace metals (Cd, Cr, Cu, Ni, Pb, Zn) and their level of lability in three French stormwater sediments was determined using sequential and kinetic extractions (EDTA reagent) associated with mineralogical analysis and scanning electron microscopy observations. Using microanalysis, new data were acquired on the evolution of aggregate state during extractions, and on its significant role in the retention of trace metals. Trace metals were, in particular, observed to be very stable in small aggregates (10-50 microm). Comparison of the two extraction methods revealed that EDTA extraction was not convenient for evaluating the stable fraction of Cr, Ni and Zn. Moreover, the results were relevant for basins presenting similar sources of trace metals, whatever the physicochemical conditions in basins. The results suggest that the management of stormwater sediments could be improved by a better knowledge of metal mobility, as chemical extractions could highlight the localization of the mobile fraction of trace metals. Treatment could be therefore avoided, or specific treatment could be applied to a reduced volume of sediments.
Physico-chemical analyses of Hispano-Moresque lustred ceramic: a precursor for Italian majolica?
NASA Astrophysics Data System (ADS)
Chabanne, D.; Bouquillon, A.; Aucouturier, M.; Dectot, X.; Padeletti, G.
2008-07-01
The paper presents a comprehensive physico-chemical investigation on a series of Hispano-Moresque objects produced in the eastern Spain workshops between the XIV and XVIII centuries and fragments from XII century, in order to compare them with the Italian Renaissance majolica production. The techniques used are mainly non-destructive (ion beam analyses and X-ray diffraction), sometimes complemented by SEM observation and microanalysis, and electrothermal atomic emission spectrometry. Such methods allow a full description of the terra cotta, of the glaze and of the different surface layers which constitute the lustre decoration indicating individual elemental composition and thickness of each layer containing or not metallic nanoparticles. Principal results show the following: i) a constant source of supply for the eastern Spain terra cotta; ii) a significant change in the composition of the Spanish glazes around the XVII century, with the disappearance of the opacifying tin oxide addition; iii) significant evolutions in the structure and composition of the lustre layers, in particular related to the presence or not of a metal-free surface glaze film and its thickness; iv) interesting analogies and differences with the Italian majolica; v) confirmation of the change in the quality of blue pigment during XVI century, already evidenced by the authors in previous publications. A discussion about the transmission of the lustre technique between eastern Spain and Italy at the Renaissance period is proposed.
Newbury, Dale E; Ritchie, Nicholas W M
2015-10-01
A scanning electron microscope with a silicon drift detector energy-dispersive X-ray spectrometer (SEM/SDD-EDS) was used to analyze materials containing the low atomic number elements B, C, N, O, and F achieving a high degree of accuracy. Nearly all results fell well within an uncertainty envelope of ±5% relative (where relative uncertainty (%)=[(measured-ideal)/ideal]×100%). Quantification was performed with the standards-based "k-ratio" method with matrix corrections calculated based on the Pouchou and Pichoir expression for the ionization depth distribution function, as implemented in the NIST DTSA-II EDS software platform. The analytical strategy that was followed involved collection of high count (>2.5 million counts from 100 eV to the incident beam energy) spectra measured with a conservative input count rate that restricted the deadtime to ~10% to minimize coincidence effects. Standards employed included pure elements and simple compounds. A 10 keV beam was employed to excite the K- and L-shell X-rays of intermediate and high atomic number elements with excitation energies above 3 keV, e.g., the Fe K-family, while a 5 keV beam was used for analyses of elements with excitation energies below 3 keV, e.g., the Mo L-family.
NASA Astrophysics Data System (ADS)
Wuhrer, R.; Moran, K.
2014-03-01
Quantitative X-ray mapping with silicon drift detectors and multi-EDS detector systems have become an invaluable analysis technique and one of the most useful methods of X-ray microanalysis today. The time to perform an X-ray map has reduced considerably with the ability to map minor and trace elements very accurately due to the larger detector area and higher count rate detectors. Live X-ray imaging can now be performed with a significant amount of data collected in a matter of minutes. A great deal of information can be obtained from X-ray maps. This includes; elemental relationship or scatter diagram creation, elemental ratio mapping, chemical phase mapping (CPM) and quantitative X-ray maps. In obtaining quantitative x-ray maps, we are able to easily generate atomic number (Z), absorption (A), fluorescence (F), theoretical back scatter coefficient (η), and quantitative total maps from each pixel in the image. This allows us to generate an image corresponding to each factor (for each element present). These images allow the user to predict and verify where they are likely to have problems in our images, and are especially helpful to look at possible interface artefacts. The post-processing techniques to improve the quantitation of X-ray map data and the development of post processing techniques for improved characterisation are covered in this paper.
Microbial synthesis of core/shell gold/palladium nanoparticles for applications in green chemistry
Deplanche, Kevin; Merroun, Mohamed L.; Casadesus, Merixtell; Tran, Dung T.; Mikheenko, Iryna P.; Bennett, James A.; Zhu, Ju; Jones, Ian P.; Attard, Gary A.; Wood, J.; Selenska-Pobell, Sonja; Macaskie, Lynne E.
2012-01-01
We report a novel biochemical method based on the sacrificial hydrogen strategy to synthesize bimetallic gold (Au)–palladium (Pd) nanoparticles (NPs) with a core/shell configuration. The ability of Escherichia coli cells supplied with H2 as electron donor to rapidly precipitate Pd(II) ions from solution is used to promote the reduction of soluble Au(III). Pre-coating cells with Pd(0) (bioPd) dramatically accelerated Au(III) reduction, with the Au(III) reduction rate being dependent upon the initial Pd loading by mass on the cells. Following Au(III) addition, the bioPd–Au(III) mixture rapidly turned purple, indicating the formation of colloidal gold. Mapping of bio-NPs by energy dispersive X-ray microanalysis suggested Au-dense core regions and peripheral Pd but only Au was detected by X-ray diffraction (XRD) analysis. However, surface analysis of cleaned NPs by cyclic voltammetry revealed large Pd surface sites, suggesting, since XRD shows no crystalline Pd component, that layers of Pd atoms surround Au NPs. Characterization of the bimetallic particles using X-ray absorption spectroscopy confirmed the existence of Au-rich core and Pd-rich shell type bimetallic biogenic NPs. These showed comparable catalytic activity to chemical counterparts with respect to the oxidation of benzyl alcohol, in air, and at a low temperature (90°C). PMID:22399790
Sample Preparation for Electron Probe Microanalysis—Pushing the Limits
Geller, Joseph D.; Engle, Paul D.
2002-01-01
There are two fundamental considerations in preparing samples for electron probe microanalysis (EPMA). The first one may seem obvious, but we often find it is overlooked. That is, the sample analyzed should be representative of the population from which it comes. The second is a direct result of the assumptions in the calculations used to convert x-ray intensity ratios, between the sample and standard, to concentrations. Samples originate from a wide range of sources. During their journey to being excited under the electron beam for the production of x rays there are many possibilities for sample alteration. Handling can contaminate samples by adding extraneous matter. In preparation, the various abrasives used in sizing the sample by sawing, grinding and polishing can embed themselves. The most accurate composition of a contaminated sample is, at best, not representative of the original sample; it is misleading. Our laboratory performs EPMA analysis on customer submitted samples and prepares over 250 different calibration standards including pure elements, compounds, alloys, glasses and minerals. This large variety of samples does not lend itself to mass production techniques, including automatic polishing. Our manual preparation techniques are designed individually for each sample. The use of automated preparation equipment does not lend itself to this environment, and is not included in this manuscript. The final step in quantitative electron probe microanalysis is the conversion of x-ray intensities ratios, known as the “k-ratios,” to composition (in mass fraction or atomic percent) and/or film thickness. Of the many assumptions made in the ZAF (where these letters stand for atomic number, absorption and fluorescence) corrections the localized geometry between the sample and electron beam, or takeoff angle, must be accurately known. Small angular errors can lead to significant errors in the final results. The sample preparation technique then becomes very important, and, under certain conditions, may even be the limiting factor in the analytical uncertainty budget. This paper considers preparing samples to get known geometries. It will not address the analysis of samples with irregular, unprepared surfaces or unknown geometries. PMID:27446757
NASA Astrophysics Data System (ADS)
Sheibani, Hamdi
2002-01-01
Liquid Phase Electroepitaxy (LPEE) and is a relatively new, promising technique for producing high quality, thick compound semiconductors and their alloys. The main objectives are to reduce the adverse effect of natural convection and to determine the optimum growth conditions for reproducible desired crystals for the optoelectronic and electronic device industry. Among the available techniques for suppressing the adverse effect of natural convection, the application of an external magnetic field seems the most feasible one. The research work in this dissertation consists of two parts. The first part is focused on the design and development of a state of the art LPEE facility with a novel crucible design, that can produce bulk crystals of quality higher than those achieved by the existing LPEE system. A growth procedure was developed to take advantage of this novel crucible design. The research of the growth of InGaAs single crystals presented in this thesis will be a basis for the future LPEE growth of other important material and is an ideal vehicle for the development of a ternary crystal growth process. The second part of the research program is the experimental study of the LPEE growth process of high quality bulk single crystals of binary/ternary semiconductors under applied magnetic field. The compositional uniformity of grown crystals was measured by Electron Probe Micro-analysis (EPMA) and X-ray microanalysis. The state-of-the-art LPEE system developed at University of Victoria, because of its novel design features, has achieved a growth rate of about 4.5 mm/day (with the application of an external fixed magnetic field of 4.5 KGauss and 3 A/cm2 electric current density), and a growth rate of about 11 mm/day (with 4.5 KGauss magnetic field and 7 A/cm2 electric current density). This achievement is simply a breakthrough in LPEE, making this growth technique absolutely a bulk growth technique and putting it in competition with other bulk growth techniques. The growth rates achieved can even be higher for higher electric current and magnetic field intensities. (Abstract shortened by UMI.)
Oxovanadium(IV)-catalysed oxidation of dibenzothiophene and 4,6-dimethyldibenzothiophene.
Ogunlaja, Adeniyi S; Chidawanyika, Wadzanai; Antunes, Edith; Fernandes, Manuel A; Nyokong, Tebello; Torto, Nelson; Tshentu, Zenixole R
2012-12-07
The reaction between [V(IV)OSO(4)] and the tetradentate N(2)O(2)-donor Schiff base ligand, N,N-bis(o-hydroxybenzaldehyde)phenylenediamine (sal-HBPD), obtained by the condensation of salicylaldehyde and o-phenylenediamine in a molar ratio of 2 : 1 respectively, resulted in the formation of [V(IV)O(sal-HBPD)]. The molecular structure of [V(IV)O(sal-HBPD)] was determined by single crystal X-ray diffraction, and confirmed the distorted square pyramidal geometry of the complex with the N(2)O(2) binding mode of the tetradentate ligand. The formation of the polymer-supported p[V(IV)O(sal-AHBPD)] proceeded via the nitrosation of sal-HBPD, followed by the reduction with hydrogen to form an amine group that was then linked to Merrifield beads followed by the reaction with [V(IV)OSO(4)]. XPS and EPR were used to confirm the presence of oxovanadium(IV) within the beads. The BET surface area and porosity of the heterogeneous catalyst p[V(IV)O(sal-AHBPD)] were found to be 6.9 m(2) g(-1) and 180.8 Å respectively. Microanalysis, TG, UV-Vis and FT-IR were used for further characterization of both [V(IV)O(sal-HBPD)] and p[V(IV)O(sal-AHBPD)]. Oxidation of dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (4,6-DMDBT) was investigated using [V(IV)O(sal-HBPD)] and p[V(IV)O(sal-AHBPD)] as catalysts. Progress for oxidation of these model compounds was monitored with a gas chromatograph fitted with a flame ionization detector. The oxidation products were characterized using gas chromatography-mass spectrometry, microanalysis and NMR. Dibenzothiophene sulfone (DBTO(2)) and 4,6-dimethyldibenzothiophene sulfone (4,6-DMDBTO(2)) were found to be the main products of oxidation. Oxovanadium(IV) Schiff base microspherical beads, p[V(IV)O(sal-AHBPD)], were able to catalyse the oxidation of sulfur in dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (4,6-DMDBT) to a tune of 88.0% and 71.8% respectively after 3 h at 40 °C. These oxidation results show promise for potential application of this catalyst in the oxidative desulfurization of crude oils.
Geng, Hong; Cheng, Fangqin; Ro, Chul-Un
2011-11-01
A quantitative energy-dispersive electron probe X-ray microanalysis (ED-EPMA), namely low-Z (atomic number) particle EPMA, was used to characterize the chemical compositions of the individual aerosol particles collected at the Gosan supersite, Jeju Island, Korea, as a part of the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia). On 4-10 April 2001 just before a severe dust storm arrived, seven sets of aerosol samples were obtained by a seven-stage May cascade impactor with a flow rate of 20 L/min. Overall 11,200 particles on stages 1-6 with cutoff diameters of 16, 8, 4, 2, 1, and 0.5 microm, respectively, were examined and classified based on their secondary electron images and X-ray spectra. In general, sea salt particles were the most frequently encountered, followed by mineral dust, organic carbon (OC)-like, (NH4)2SO4/NH4HSO4-containing, elemental carbon (EC)-like, Fe-rich, and K-rich particles. Sea salt and mineral dust particles had a higher relative abundance on stages 1-5, whereas OC-like, (NH4)2SO4/NH4HSO4-containing, Fe-rich, and K-rich particles were relatively abundant on stage 6. The analysis on relative number abundances of various particle types combined with 72-hr backward air mass trajectories indicated that a lot of reacted sea salt and reacted mineral dust (with airborne NOx and SO2 or their acidic products) and OC-like particles were carried by the air masses passing over the Yellow Sea (for sample "10 April") and many NH4HSO4/ (NH4)2SO4-containing particles were carried by the air masses passing over the Sea of Japan and Korea Strait (for samples "4-9 April"). It was concluded that the atmosphere over Jeju Island was influenced by anthropogenic SO2 and NOx, organic compounds, and secondary aerosols when Asian dust was absent.
Karakus, M.; Hagni, R.D.; Koenig, A.; Ciftc, E.
2008-01-01
Natural sphalerite associated with copper, silver, lead-zinc, tin and tungsten deposits from various world-famous mineral deposits have been studied by cathodoluminescence (CL), laser ablasion inductively coupled plasma mass spectrometry (LA-ICP-MS), electron probe microanalysis (EPMA) and electron paramagnetic resonance (EPR) to determine the relationship between trace element type and content and the CL properties of sphalerite. In general, sphalerite produces a spectrum of CL colour under electron bombardment that includes deep blue, turquoise, lime green, yellow-orange, orange-red and dull dark red depending on the type and concentration of trace quantities of activator ions. Sphalerite from most deposits shows a bright yellow-orange CL colour with ??max centred at 585 nm due to Mn2+ ion, and the intensity of CL is strongly dependent primarily on Fe2+ concentration. The blue emission band with ??max centred at 470-490 nm correlates with Ga and Ag at the Tsumeb, Horn Silver, Balmat and Kankoy mines. Colloform sphalerite from older well-known European lead-zinc deposits and late Cretaceous Kuroko-type VMS deposits of Turkey shows intense yellowish CL colour and their CL spectra are characterised by extremely broad emission bands ranging from 450 to 750 nm. These samples are characterised by low Mn (<10 ppm) and Ag (<1 ppm), and they are enriched in Tl (1-30 ppm) and Pb (80-1500 ppm). Strong green CL is produced by sphalerite from the Balmat-Edwards district. Amber, lime-green and red-orange sphalerite produced weak orange-red CL at room temperatures, with several emission bands centred at 490, 580, 630, 680, 745, with ??max at 630 nm being the strongest. These emission bands are well correlated with trace quantities of Sn, In, Cu and Mn activators. Sphalerite from the famous Ogdensburg and Franklin mines exhibited brilliant deep blue and orange CL colours and the blue CL may be related to Se. Cathodoluminescence behaviour of sphalerite serves to characterise ore types and help detect technologically important trace elements.
NASA Astrophysics Data System (ADS)
de Oliveira Souza, Sidnei; François, Luciane Luiza; Borges, Aline Rocha; Vale, Maria Goreti Rodrigues; Araujo, Rennan Geovanny Oliveira
2015-12-01
The present study proposes the determination of copper and mercury in phosphate fertilizers by direct solid sampling analysis (SS) employing high resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS). For Cu determination, two analytical lines were used: 327.3960 nm and 249.2146 nm. Hg determination was carried out on the line 253.6521 nm and 100 μg KMnO4 was used as chemical modifier. The optimal pyrolysis temperature for Cu determination was 1300 °C. Atomization temperatures for Cu and Hg were 2400 and 1100 °C, respectively. External calibration with aqueous standard solutions was adopted for both elements. The limits of quantification (LoQs) and characteristic mass (m0) obtained for Cu determination were 0.4 μg g- 1 and 1.12 ng, respectively, on line 249.2146 nm, and 64 μg g- 1 and 25 pg on 327.3960 nm. For mercury, LoQ and m0 were 4.8 ng g- 1 and 39 pg, respectively. The accuracy of the proposed methods was confirmed by the analysis of standard reference material (SRM) of Trace Elements in Multi-Nutrient Fertilizer (SRM NIST 695). The precision expressed as relative standard deviation (RSD), was better than 8.2% for Hg and 7.7% for the Cu (n = 5), considered satisfactory for microanalysis in solid sample. Four fertilizer samples acquired in commercial establishments in the city of Salvador, Bahia, Brazil, were analyzed. The optimized analytical methods were simple, fast, accurate, precise and free of spectral interferences for the determination of Cu and Hg in phosphate fertilizer samples by SS-HR-CS GF AAS, avoiding the dissolution of the sample, the use of harmful reagents and the generation of residues.
[Element distribution analysis of welded fusion zone by laser-induced breakdown spectroscopy].
Yang, Chun; Zhang, Yong; Jia, Yun-Hai; Wang, Hai-Zhou
2014-04-01
Over the past decade there has been intense activity in the study and development of laser-induced breakdown spectroscopy (LIBS). As a new tool for surface microanalysis, it caused widespread in materials science because of the advantage of rapid and high sensitivity. In the present paper, the distribution of Ni, Mn, C and Si near weld fusion line was analyzed on two kinds of weld sample. Line scanning mode analysis was carried out by three different kinds of methods, namely laser-induced breakdown spectroscopy (LIBS), scanning electron microscope/energy dispersive spectrometer (SEM/EDS) and electron probe X-ray microanalyser (EPMA). The concentration variation trend of Ni and Mn acquired by LIBS is coincident with SEM/EDS and EPMA. The result shows that the content of Ni and Mn was significantly different between weld seam and base metal on both the samples. The content of Ni and Mn was much higher in weld seam than in base metal, and a sharp concentration gradient was analyzed in the fusion zone. According to the distribution of Ni and Mn, all the three methods got a similar value of welded fusion zone width. The concentration variation trend of C and Si acquired by LIBS is not coincident with SEM/EDS and EPMA. The concentration difference between weld seam and base metal was analyzed by LIBS, but had not by SEM/EDS and EPMA, because of the low concentration and slight difference. The concentration gradient of C and Si in fusion zone was shows clearly by LIBS. For higher sensitivity performance, LIBS is much more adapted to analyze low content element than SEM/EDS and EPMA.
NASA Astrophysics Data System (ADS)
Moreno-Valencia, E. I.; Paredes-Carrera, S. P.; Sánchez-Ochoa, J. C.; Flores-Valle, S. O.; Avendaño-Gómez, J. R.
2017-11-01
In this work, a photocatalytic system to degrade diclofenac was developed using a composite Fe3O4/Ti x O y on an activated carbon fiber. Diclofenac is widely used as an anti-inflammatory compound worldwide and it is constantly being added as waste in the environment (Heberer 2002 J. Hydrol. 266 175-89), exceeding the permissible maximum concentration in the wastewater (GEO-3 2002 Programa de las Naciones Unidas para el Medio Ambiente; Golet et al 2003 Environ. Sci. Technol. 37 3243-9 Oviedo et al 2010 Environ. Toxicol. Pharmacol. 29 9-43 Le-Minh et al 2010 Water Res. 44 4295-323 Legrini et al 1993 Chem. Rev. 1093 671-98). The composite was synthesized by sol-gel technique with and without ultrasound irradiation (Singh and Nakate 2014 J. Nanopart. 2014 326747). The solids were deposited by ultrasound irradiation on active carbon fiber in order to optimize the diclofenac degradation. The solids were characterized by x-ray diffraction (XRD), nitrogen physisorption (BET), and scanning electron microscopy with EDS microanalysis (SEM-EDS). The crystal size was calculated with the Debye-Scherrer equation, and the band gap values by the diffuse reflectance method. The evaluation process was studied by UV-vis spectroscopy (Rizzoa et al 2009 Water Res. 43 979-88). It was found that in this synthesis method (ultrasound), textural properties such as porosity, specific surface area and morphology depend on the ultrasound irradiation. The proposed system, Fe3O4/titanium oxide hydrate showed better degradation profile than TiO2 anatase phase; the increase of diclofenac degradation was attributed to the textural properties of the composite, it avoids the filtering process since the separation can be achieved by magnetizing and/or decantation.
Svarcová, Silvie; Kocí, Eva; Bezdicka, Petr; Hradil, David; Hradilová, Janka
2010-09-01
The uniqueness and limited amounts of forensic samples and samples from objects of cultural heritage together with the complexity of their composition requires the application of a wide range of micro-analytical methods, which are non-destructive to the samples, because these must be preserved for potential late revision. Laboratory powder X-ray micro-diffraction (micro-XRD) is a very effective non-destructive technique for direct phase analysis of samples smaller than 1 mm containing crystal constituents. It compliments optical and electron microscopy with elemental micro-analysis, especially in cases of complicated mixtures containing phases with similar chemical composition. However, modification of X-ray diffraction to the micro-scale together with its application for very heterogeneous real samples leads to deviations from the standard procedure. Knowledge of both the limits and the phenomena which can arise during the analysis is crucial for the meaningful and proper application of the method. We evaluated basic limits of micro-XRD equipped with a mono-capillary with an exit diameter of 0.1 mm, for example the size of irradiated area, appropriate grain size, and detection limits allowing identification of given phases. We tested the reliability and accuracy of quantitative phase analysis based on micro-XRD data in comparison with conventional XRD (reflection and transmission), carrying out experiments with two-phase model mixtures simulating historic colour layers. Furthermore, we demonstrate the wide use of micro-XRD for investigation of various types of micro-samples (contact traces, powder traps, colour layers) and we show how to enhance data quality by proper choice of experiment geometry and conditions.
Development of binding assays in microfabricated picoliter vials: an assay for biotin.
Grosvenor, A L; Feltus, A; Conover, R C; Daunert, S; Anderson, K W
2000-06-01
A homogeneous binding assay for the detection of biotin in picoliter vials was developed using the photoprotein aequorin as the label. The binding assay was based on the competition of free biotin with biotinylated aequorin (AEQ-biotin) for avidin. A sequential protocol was used, and modification of the assay to reduce the number of steps was examined. Results showed that detection limits on the order of 10(-14) mol of biotin were possible. Reducing the number of steps provided similar detection limits but only if the amount of avidin used was decreased. These binding assays based on picoliter volumes have potential applications in a variety of fields, including microanalysis and single-cell analysis, where the amount of sample is limited. In addition, these assays are suitable for the high-throughput screening of biopharmaceuticals.
NASA Astrophysics Data System (ADS)
Chen, Zhangqi; Liu, Zi-Kui; Zhao, Ji-Cheng
2018-05-01
Diffusion coefficients of seven binary systems (Ti-Mo, Ti-Nb, Ti-Ta, Ti-Zr, Zr-Mo, Zr-Nb, and Zr-Ta) at 1200 °C, 1000 °C, and 800 °C were experimentally determined using three Ti-Mo-Nb-Ta-Zr diffusion multiples. Electron probe microanalysis (EPMA) was performed to collect concentration profiles at the binary diffusion regions. Forward simulation analysis (FSA) was then applied to extract both impurity and interdiffusion coefficients in Ti-rich and Zr-rich part of the bcc phase. Excellent agreements between our results and most of the literature data validate the high-throughput approach combining FSA with diffusion multiples to obtain a large amount of systematic diffusion data, which will help establish the diffusion (mobility) databases for the design and development of biomedical and structural Ti alloys.
Reduction and Smelting of Vanadium Titanomagnetite Metallized Pellets
NASA Astrophysics Data System (ADS)
Wang, Shuai; Chen, Mao; Guo, Yufeng; Jiang, Tao; Zhao, Baojun
2018-04-01
Reduction and smelting of the vanadium titanomagnetite metallized pellets have been experimentally investigated in this study. By using the high-temperature smelting, rapid quenching, and electron probe x-ray microanalysis (EPMA) technique, the effects of basicity, reaction time, and graphite reductant amount were investigated. The vanadium contents in iron alloys increase with increasing basicity, reaction time, and graphite amount, whereas the FeO and V2O3 concentrations in the liquid phase decrease with the increase of graphite amount and reaction time. Increasing the reaction time and reductant content promotes the reduction of titanium oxide, whereas the reduction of titanium oxides can be suppressed with increasing the slag basicity. Titanium carbide (TiC) was not observed in all the quenched samples under the present conditions. The experimental results and the FactSage calculations are also compared in the present study.
Czyrska-Filemonowicz, A; Buffat, P A
2009-01-01
Surface processing of a Ti-6Al-4V alloy led to a complex multilayered microstructure containing several phases of the Ni-Ti-P-Al-O system, which improves the mechanical and tribological surface properties. The microstructure, chemical and phase compositions of the hard layer formed on the surface were investigated by LM, XRD, SEM as well as analytical/high-resolution TEM, STEM, EDS, electron diffraction and FIB. Phase identification based on electron diffraction, HRTEM and EDS microanalysis revealed the presence of several binary and ternary phases in the system Ti-Ni-P, sometimes with partial substitution of Ti by Al. However some phases, mainly nanoparticles, still remain not identified satisfactorily. Electron microscopy techniques used for identification of phases present in surface multilayers and some practical limits to their routine application are reminded here.
Bladder stone in a human female: The case of an abnormally located intrauterine contraceptive device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, S.R.; Wilkinson, E.J.
A single 4.7 x 3.3 x 1.5 cm solid nodule was removed from the bladder of a 24 years old white female who had lost an intrauterine contraceptive device (IUD) installed approximately four years ago. The nodule showed no external evidence of an IUD or its string. An examination of the nodular surface by scanning electron microscopy (SEM) showed mostly amorphous material with some adherent filamentous structures. Its energy dispersive x-ray microanalysis revealed the presence of calcium and phosphorus suggesting that the nodule was actually a urolith. Fracturing the nodule exposed an embedded entity consistent with being a copper IUD.more » Apparently, the lost IUD had migrated from the uterus into the bladder where it became mineralized. Thus the solid nodule was actually a foreign body stone.« less
Structural investigation of cooperite (PtS) crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rozhdestvina, V. I., E-mail: veronika@ascnet.ru; Udovenko, A. A.; Rubanov, S. V.
2016-03-15
The single-crystal structure of cooperite, a natural platinum sulfide PtS, is studied by X-ray diffraction supported by high-resolution scanning transmission electron microscopy and X-ray spectrum microanalysis. It is found that, in addition to the main reflections corresponding to the known tetragonal cell (a = 3.47 and c = 6.11 Å; space group P4{sub 2}/mmc), many weak reflections with intensities I ≤ 60σ(I) are clearly observed. These reflections fit the tetragonal cell (space group I4/mmm) with doubled parameters. In structures with small (P4{sub 2}/mmc) and large (I4/mmm) cells, the S atoms occupy statistically two special positions. It is shown that themore » chemical composition of the cooperite crystals deviates from the stoichiometric composition: sulfur-deficient specimens predominate.« less
Qureshi, Farah; Khuhawar, Muhammad Yar; Jahangir, Taj Muhammad; Channar, Abdul Hamid
2016-01-01
Five new linear Schiff base polymers having azomethine structures, ether linkages and extended aliphatic chain lengths with flexible spacers were synthesized by polycondensation of dialdehyde (monomer) with aliphatic and aromatic diamines. The formation yields of monomer and polymers were obtained within 75-92%. The polymers with flexible spacers of n-hexane were somewhat soluble in acetone, chloroform, THF, DMF and DMSO on heating. The monomer and polymers were characterized by melting point, elemental microanalysis, FT-IR, (1)HNMR, UV-Vis spectroscopy, thermogravimetry (TG), differential thermal analysis (DTA), fluorescence emission, scanning electron microscopy (SEM) and viscosities and thermodynamic parameters measurements of their dilute solutions. The studies supported formation of the monomer and polymers and on the basis of these studies their structures have been assigned. The synthesized polymers were tested for their antibacterial and antifungal activities.
NASA Astrophysics Data System (ADS)
Pantazopoulos, G.; Vazdirvanidis, A.
2014-03-01
Emphasis is placed on the evaluation of corrosion failures of copper and machineable brass alloys during service. Typical corrosion failures of the presented case histories mainly focussed on stress corrosion cracking and dezincification that acted as the major degradation mechanisms in components used in piping and water supply systems. SEM assessment, coupled with EDS spectroscopy, revealed the main cracking modes together with the root-source(s) that are responsible for the damage initiation and evolution. In addition, fracture surface observations contributed to the identification of the incurred fracture mechanisms and potential environmental issues that stimulated crack initiation and propagation. Very frequently, the detection of chlorides among the corrosion products served as a suggestive evidence of the influence of working environment on passive layer destabilisation and metal dissolution.
Microanalysis of dissolved iron and phosphate in pore waters of hypersaline sediment
NASA Technical Reports Server (NTRS)
Haddad, R.; Shaw, T.
1985-01-01
Diurnal fluctuations of reduced iron concentrations, expected to occur in reduced sediments in the photic zone, were studied. Iron concentration was compared to O2-H2S, a microcanalysis of sulfate reduction was performed, as well as an examination of diurnal concentration of dissolved phosphate and changes in interstitial CO2. The iron profiles suggest a strong correlation between iron remobilization and processes occurring in the light. Phosphate profiles suggest the removal of phosphate is strongly correlated with precipitation of oxidized iron in the upper 2 mm to 5 mm of the sediments. Pore water CO2 concentrations and carbon isotope ratios are presented. These data are from the analyses of minisediment cores collected from the 42 per mil salt pond and incubated in the laboratory under light and dark conditions.
Quantitative mapping of intracellular cations in the human amniotic membrane
NASA Astrophysics Data System (ADS)
Moretto, Ph.; Llabador, Y.; Simonoff, M.; Razafindrabe, L.; Bara, M.; Guiet-Bara, A.
1993-05-01
The effect of magnesium and taurine on the permeability of cell membranes to monovalent cations has been investigated using the Bordeaux nuclear microprobe. PIXE and RBS techniques have been used to provide quantitative measurements and ion distributions in the isolated amniotic membrane. This physiological model for cellular exchanges allowed us to reveal the distribution of most elements involved in cellular pathways and the modifications under different experimental conditions of incubation in physiological fluids. The PIXE microanalysis provided an original viewpoint on these mechanisms. Following this first study, the amnion compact lamina was found to play a role which was not, up to now, taken into account in the interpretation of electrophysiological experimentations. The release of some ionic species, such as K +, from the epithelial cells, during immersion in isotonic fluids, could have been hitherto underestimated.
Ancient jades map 3,000 years of prehistoric exchange in Southeast Asia
Hung, Hsiao-Chun; Iizuka, Yoshiyuki; Bellwood, Peter; Nguyen, Kim Dung; Bellina, Bérénice; Silapanth, Praon; Dizon, Eusebio; Santiago, Rey; Datan, Ipoi; Manton, Jonathan H.
2007-01-01
We have used electron probe microanalysis to examine Southeast Asian nephrite (jade) artifacts, many archeologically excavated, dating from 3000 B.C. through the first millennium A.D. The research has revealed the existence of one of the most extensive sea-based trade networks of a single geological material in the prehistoric world. Green nephrite from a source in eastern Taiwan was used to make two very specific forms of ear pendant that were distributed, between 500 B.C. and 500 A.D., through the Philippines, East Malaysia, southern Vietnam, and peninsular Thailand, forming a 3,000-km-diameter halo around the southern and eastern coastlines of the South China Sea. Other Taiwan nephrite artifacts, especially beads and bracelets, were distributed earlier during Neolithic times throughout Taiwan and from Taiwan into the Philippines. PMID:18048347
Conversion of Nuclear Waste to Molten Glass: Cold-Cap Reactions in Crucible Tests
Xu, Kai; Hrma, Pavel; Rice, Jarrett A.; ...
2016-05-23
The feed-to-glass conversion, which comprises complex chemical reactions and phase transitions, occurs in the cold cap during nuclear waste vitrification. Here, to investigate the conversion process, we analyzed heat-treated samples of a simulated high-level waste feed using X-ray diffraction, electron probe microanalysis, leaching tests, and residual anion analysis. Feed dehydration, gas evolution, and borate phase formation occurred at temperatures below 700°C before the emerging glass-forming melt was completely connected. Above 700°C, intermediate aluminosilicate phases and quartz particles gradually dissolved in the continuous borosilicate melt, which expanded with transient foam. Finally, knowledge of the chemistry and physics of feed-to-glass conversion willmore » help us control the conversion path by changing the melter feed makeup to maximize the glass production rate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Sean W.; Matthews, David J.; Conley, John F., E-mail: jconley@eecs.oregonstate.edu
2014-07-01
Cellulose nanocrystal (CNC) aerogels are coated with thin conformal layers of Al{sub 2}O{sub 3} using atomic layer deposition to form hybrid organic/inorganic nanocomposites. Electron probe microanalysis and scanning electron microscopy analysis indicated the Al{sub 2}O{sub 3} penetrated more than 1500 μm into the aerogel for extended precursor pulse and exposure/purge times. The measured profile of coated fiber radius versus depth from the aerogel surface agrees well with simulations of precursor penetration depth in modeled aerogel structures. Thermogravimetric analysis shows that Al{sub 2}O{sub 3} coated CNC aerogel nanocomposites do not show significant thermal degradation below 295 °C as compared with 175 °C for uncoatedmore » CNC aerogels, an improvement of over 100 °C.« less
NASA Astrophysics Data System (ADS)
Chen, Zhangqi; Liu, Zi-Kui; Zhao, Ji-Cheng
2018-07-01
Diffusion coefficients of seven binary systems (Ti-Mo, Ti-Nb, Ti-Ta, Ti-Zr, Zr-Mo, Zr-Nb, and Zr-Ta) at 1200 °C, 1000 °C, and 800 °C were experimentally determined using three Ti-Mo-Nb-Ta-Zr diffusion multiples. Electron probe microanalysis (EPMA) was performed to collect concentration profiles at the binary diffusion regions. Forward simulation analysis (FSA) was then applied to extract both impurity and interdiffusion coefficients in Ti-rich and Zr-rich part of the bcc phase. Excellent agreements between our results and most of the literature data validate the high-throughput approach combining FSA with diffusion multiples to obtain a large amount of systematic diffusion data, which will help establish the diffusion (mobility) databases for the design and development of biomedical and structural Ti alloys.
NASA Astrophysics Data System (ADS)
Zhao, Hengyu; Uda, Satoshi; Maeda, Kensaku; Nozawa, Jun; Koizumi, Haruhiko; Fujiwara, Kozo
2015-04-01
A lever rule was applied to data concerning the compositions and proportions of secondary phases coexisting with a Ca3TaGa3Si2O14 (CTGS) matrix to determine the boundary compositions of the solid-solution region for CTGS at 1320 °C, as a means of ascertaining the solid-solution for the langasite-type phase in the quaternary CaO-Ta2O5-Ga2O3-SiO2 system. The compositions and proportions of secondary phases were assessed by electron probe micro-analysis as well as through back-scattered electron images. The experimental results showed that the narrow solid-solution region for CTGS is located in a Ta-poor, Ga-poor and Si-rich region relative to its stoichiometric composition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suvorova, E. I., E-mail: suvorova@ns.crys.ras.ru; Klechkovskaya, V. V.
2010-12-15
Transmission electron microscopy and X-ray energy dispersive microanalysis study of the structure of particles formed during the reduction of Se(IV) to Se(0) in aqueous solutions in the presence of amphiphilic polymers showed the formation of Se/polymer composite particles. The content of carbon inside the particles can be as large as 80 at %. Polymers deeply influence the structure of particles. Depending on polymers, the composite particles may be unstable with time and they spontaneously evolve from Se/polymer composite particles to crystalline particles of monoclinic Se. For the stable ones, addition of bacterial cellulose Acetobacter xylinum gel-film can induce crystallization inmore » the particles which expel the polymeric material. The Se/polymer composite particles and Se crystalline particles exhibit different sensitivity to electron irradiation and stiffness.« less
Hybrid magnetic materials formed by ferritin intercalated into a layered double hydroxide
NASA Astrophysics Data System (ADS)
Clemente-León, Miguel; Coronado, Eugenio; Primo, Vicent; Ribera, Antonio; Soriano-Portillo, Alejandra
2008-12-01
A hybrid magnetic material formed by ferritin intercalated into a layered double hydroxide (LDH) of Mg and Al (Mg/Al molar ratio 2) is prepared and characterized through powder X-ray diffraction (XRD), thermogravimetric analysis (TGA), Fourier transform infrared (FT-IR) spectroscopy, electron probe microanalysis (EPMA) and high resolution transmission electron microscopy (HRTEM). One observes an enhancement in the thermal stability of the ferritin molecules when they are inserted in the layered material. Magnetic measurements of the hybrid material exhibit the typical superparamagnetic behaviour of the ferritin molecule. On the other hand, the intercalation of ferritin into the LDH guarantees a homogeneous dispersion of the ferritin molecules, which do not aggregate even after calcination of the sample. This feature allows obtaining well-dispersed magnetic metal oxide nanoparticles upon calcination of the hybrid material.
Hydroxyapatite coatings produced on commercially pure titanium by micro-arc oxidation.
Huang, Yong; Wang, Yingjun; Ning, Chengyun; Nan, Kaihui; Han, Yong
2007-09-01
A porous hydroxyapatite (HA) coating on commercially pure titanium was prepared by micro-arc oxidation (MAO) in electrolytic solution containing calcium acetate and beta-glycerol phosphate disodium salt pentahydrate (beta-GP). The thickness, phase, composition morphology and biocompatibility of the oxide coating were characterized by x-ray diffraction (XRD), electron probe microanalysis (EPMA), scanning electron microscopy (SEM) with an energy dispersive x-ray spectrometer (EDS) and cell culture. The thickness of the MAO film was about 20 microm, and the coating was porous and uneven without any apparent interface to the titanium substrates. The result of XRD showed that the porous coating was made up of HA film. The favorable osteoblast cell affinity gives HA film good biocompatibility. HA coatings are expected to have significant uses for medical applications such as dental implants and artificial bone joints.
NASA Technical Reports Server (NTRS)
Ramohalli, K.
1980-01-01
Attempts to alleviate carbon-fiber-composite electrical hazards during airplane crash fires through fiber gasification are described. Thermogravimetric and differential scanning calorimetric experiments found several catalysts that caused fibers to combust when composites were exposed to test fires. Composites were tested in the 'Burn-Bang' apparatus and in high voltage electrical detection grid apparatus. In a standard three minute burn test modified composites released no fibers, while state-of-the-art composites released several hundred fiber fragments. Expected service life with and without catalytic modification was studied and electron microscopy and X-ray microanalysis furnished physical appearance and chemical composition data. An acrylic acid polymer fiber coating was developed that wet the carbon fiber surface uniformly with the catalyst, providing a marked contrast with the uneven coats obtained by solution-dipping.
Ceramic debris in hip prosthesis: correlation between synovial fluid and joint capsule.
De Pasquale, Dalila; Stea, Susanna; Beraudi, Alina; Montesi, Monica; Squarzoni, Stefano; Toni, Aldo
2013-05-01
Detection of ceramic particles in synovial fluids allows early diagnosis of ceramic damage, but there is no evidence of a relationship between ceramic debris in the articular space and in the joint capsule. The aim of the present study is to verify if the particles isolated in the synovial fluid are comparable with those stored in the capsular tissue. Twenty-one patients were enrolled. Both synovial fluid and capsular samples were collected during revision surgery and ceramic particles were isolated and analyzed by scanning electron microscopy and energy-dispersive X-ray microanalysis. It resulted a significant correlation between the samples couples (18 out of 21). This study confirms that the synovial fluid analysis can give a clear definition of the presence of particles in the joint capsule. Copyright © 2013 Elsevier Inc. All rights reserved.
Microstructure of In x Ga1-x N nanorods grown by molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Webster, R. F.; Soundararajah, Q. Y.; Griffiths, I. J.; Cherns, D.; Novikov, S. V.; Foxon, C. T.
2015-11-01
Transmission electron microscopy is used to examine the structure and composition of In x Ga1-x N nanorods grown by plasma-assisted molecular beam epitaxy. The results confirm a core-shell structure with an In-rich core and In-poor shell resulting from axial and lateral growth sectors respectively. Atomic resolution mapping by energy-dispersive x-ray microanalysis and high angle annular dark field imaging show that both the core and the shell are decomposed into Ga-rich and In-rich platelets parallel to their respective growth surfaces. It is argued that platelet formation occurs at the surfaces, through the lateral expansion of surface steps. Studies of nanorods with graded composition show that decomposition ceases for x ≥ 0.8 and the ratio of growth rates, shell:core, decreases with increasing In concentration.