Cortez, Juliana; Pasquini, Celio
2013-02-05
The ring-oven technique, originally applied for classical qualitative analysis in the years 1950s to 1970s, is revisited to be used in a simple though highly efficient and green procedure for analyte preconcentration prior to its determination by the microanalytical techniques presently available. The proposed preconcentration technique is based on the dropwise delivery of a small volume of sample to a filter paper substrate, assisted by a flow-injection-like system. The filter paper is maintained in a small circular heated oven (the ring oven). Drops of the sample solution diffuse by capillarity from the center to a circular area of the paper substrate. After the total sample volume has been delivered, a ring with a sharp (c.a. 350 μm) circular contour, of about 2.0 cm diameter, is formed on the paper to contain most of the analytes originally present in the sample volume. Preconcentration coefficients of the analyte can reach 250-fold (on a m/m basis) for a sample volume as small as 600 μL. The proposed system and procedure have been evaluated to concentrate Na, Fe, and Cu in fuel ethanol, followed by simultaneous direct determination of these species in the ring contour, employing the microanalytical technique of laser induced breakdown spectroscopy (LIBS). Detection limits of 0.7, 0.4, and 0.3 μg mL(-1) and mean recoveries of (109 ± 13)%, (92 ± 18)%, and (98 ± 12)%, for Na, Fe, and Cu, respectively, were obtained in fuel ethanol. It is possible to anticipate the application of the technique, coupled to modern microanalytical and multianalyte techniques, to several analytical problems requiring analyte preconcentration and/or sample stabilization.
Today's and Tomorrow's Instruments.
Conty, Claude
2001-03-01
This article will discuss the importance of Raimond Castaing's thesis on the genesis of a nondestructive and truly quantitative microanalytical method that assisted the scientific community in moving forward in the development of microanalytical instruments. I will also share with you my recollection of the decades of improvement in the electron probe microanalyzer (EPMA), that has allowed us to reach our present level of instrument sophistication, and I will explore with you my thoughts on the future evolution of this technique. To conclude, I will present the current status of related microanalysis techniques developed under Castaing in Orsay in the 1960s, as Castaing's interest in microanalysis was not limited to electron probe microanalysis alone.
A new basaltic glass microanalytical reference material for multiple techniques
Wilson, Steve; Koenig, Alan; Lowers, Heather
2012-01-01
The U.S. Geological Survey (USGS) has been producing reference materials since the 1950s. Over 50 materials have been developed to cover bulk rock, sediment, and soils for the geological community. These materials are used globally in geochemistry, environmental, and analytical laboratories that perform bulk chemistry and/or microanalysis for instrument calibration and quality assurance testing. To answer the growing demand for higher spatial resolution and sensitivity, there is a need to create a new generation of microanalytical reference materials suitable for a variety of techniques, such as scanning electron microscopy/X-ray spectrometry (SEM/EDS), electron probe microanalysis (EPMA), laser ablation inductively coupled mass spectrometry (LA-ICP-MS), and secondary ion mass spectrometry (SIMS). As such, the microanalytical reference material (MRM) needs to be stable under the beam, be homogeneous at scales of better than 10–25 micrometers for the major to ultra-trace element level, and contain all of the analytes (elements or isotopes) of interest. Previous development of basaltic glasses intended for LA-ICP-MS has resulted in a synthetic basaltic matrix series of glasses (USGS GS-series) and a natural basalt series of glasses (BCR-1G, BHVO-2G, and NKT-1G). These materials have been useful for the LA-ICP-MS community but were not originally intended for use by the electron or ion beam community. A material developed from start to finish with intended use in multiple microanalytical instruments would be useful for inter-laboratory and inter-instrument platform comparisons. This article summarizes the experiments undertaken to produce a basalt glass reference material suitable for distribution as a multiple-technique round robin material. The goal of the analytical work presented here is to demonstrate that the elemental homogeneity of the new glass is acceptable for its use as a reference material. Because the round robin exercise is still underway, only nominal compositional ranges for each element are given in the article.
ERIC Educational Resources Information Center
Cleary, Timothy J.; Callan, Gregory L.; Malatesta, Jaime; Adams, Tanya
2015-01-01
This study examined the convergent and predictive validity of self-regulated learning (SRL) microanalytic measures. Specifically, theoretically based relations among a set of self-reflection processes, self-efficacy, and achievement were examined as was the level of convergence between a microanalytic strategy measure and a SRL self-report…
Structure, chemistry, and stress corrosion cracking of grain boundaries in alloys 600 and 690
NASA Astrophysics Data System (ADS)
Stiller, Krystyna; Nilsson, Jan-Olof; Norring, Kjell
1996-02-01
The microstructure in six commercial batches of alloys 600 and 690 has been investigated using scanning electron microscopy (SEM), analytical transmission electron microscopy (ATEM), atom probe field ion microscopy (APFIM), and secondary ion mass spectroscopy (SIMS). The materials were also tested with respect to their resistance to intergranular stress corrosion cracking (IGSCC) in high-purity water at 365 °. Applied microanalytical techniques allowed direct measurement of carbon concentration in the matrix together with determination of grain boundary micro structure and microchemistry in all material conditions. The distribution of oxygen near a crack in material tested with respect to IGSCC was also investigated. The role of carbon and chromium and intergranular precipitates on IGSCC is discussed.
Entrepreneur Grows Microswitch Company
DOE Office of Scientific and Technical Information (OSTI.GOV)
Czaja, Danny; Christenson, Todd
2014-10-24
Todd Christenson took advantage of Sandia National Laboratories’ Entrepreneurial Separation to Transfer Technology (ESTT) program to start HT MicroAnalytical (HT Micro) in 2003 in order to apply his specialized expertise in high aspect ratio microfabrication (HARM) technology gained while at Sandia to the creation of the world’s smallest electromechanical switches.
Critical Narrative Analysis: The Interplay of Critical Discourse and Narrative Analyses
ERIC Educational Resources Information Center
Souto-Manning, Mariana
2014-01-01
In this article, I question the micro-macro separation in discourse analysis, the separation of personal and institutional discourses. I apply a mostly macroanalytic perspective (critical discourse analysis [CDA]) to inform a predominantly microanalytic perspective (analysis of conversational narratives) and vice versa. In the combination of these…
Entrepreneur Grows Microswitch Company
Czaja, Danny; Christenson, Todd
2018-05-30
Todd Christenson took advantage of Sandia National Laboratoriesâ Entrepreneurial Separation to Transfer Technology (ESTT) program to start HT MicroAnalytical (HT Micro) in 2003 in order to apply his specialized expertise in high aspect ratio microfabrication (HARM) technology gained while at Sandia to the creation of the worldâs smallest electromechanical switches.
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa
2002-01-01
This article is a chapter of the book entitled, "Tribology of Mechanical Systems," to be published by ASME Press, New York, NY. It describes selected analytical techniques, which are being used in understanding phenomena and mechanisms of oxidation, adhesion, bonding, friction, erosion, abrasion, and wear, and in defining the problems. The primary emphasis is on microanalytical approaches to engineering surfaces.
NASA Astrophysics Data System (ADS)
Stelten, M. E.
2017-12-01
The Yellowstone Plateau volcanic field in northwestern Wyoming is one of the world's largest, active silicic volcanic centers, and has produced three caldera-forming "super eruptions" over the past 2.1 Myr. As a result, the petrologic evolution of Yellowstone's magmatic system has been the focus of numerous studies over the past 60 years. Early studies at Yellowstone focused on characterizing whole-rock chemical and isotopic variations observed in magmas erupted over Yellowstone's lifetime. While these have provided important insights into the source of Yellowstone magmas and the processes controlling their compositional evolution though time, whole-rock studies are limited in their ability to identify the mechanisms and timescales of rhyolite generation. In contrast, much of the recent work at Yellowstone has focused on applying micro-analytical techniques to characterize the age and composition of phenocrysts hosted in Yellowstone rhyolites. These studies have greatly advanced our understanding of the magmatic system at Yellowstone and have provided crucial new insights into the mechanisms and timescales of rhyolite generation. In particular, recent work has focused on applying micro-analytical techniques to study the age and origin of the [1] three caldera-forming eruptions that produced the Huckleberry Ridge, Mesa Falls, Lava Creek tuffs and [2] post-Lava Creek tuff intracaldera rhyolites that compose the Plateau Rhyolite. As a result, a wealth of crystal-chemical data now exists for rhyolites erupted throughout Yellowstone's 2.1 Myr history. These data provide a unique opportunity to create a detailed reconstruction of Yellowstone's magmatic system through time. In this contribution, I integrate available age, chemical, and isotopic data for phenocrysts hosted in Yellowstone rhyolites to construct a model for the evolution of Yellowstone's magmatic system from the caldera-forming eruption of the Lava Creek tuff at ca. 0.63 Ma to the present day. In particular, I highlight new insights into [1] the physical nature of Yellowstone's magmatic system, [2] the ways in which the mechanisms and timescales of rhyolite generation have changed though time, and [3] implications for the current state of the Yellowstone's magmatic system.
Ion beam analyses of radionuclide migration in heterogeneous rocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alonso, Ursula; Missana, Tiziana; Garcia-Gutierrez, Miguel
2013-07-18
The migration of radionuclides (RN) in the environment is a topic of general interest, for its implications on public health, and it is an issue for the long-term safety studies of deep geological repositories (DGR) for high-level radioactive waste. The role played by colloids on RN migration is also of great concern. Diffusion and sorption are fundamental mechanisms controlling RN migration in rocks and many experimental approaches are applied to determine transport parameters for low sorbing RN in homogeneous rocks. However, it is difficult to obtain relevant data for high sorbing RN or colloids, for which diffusion lengths are extremelymore » short, or within heterogeneous rocks, where transport might be different in different minerals. The ion beam techniques Rutherford Backscattering Spectrometry (RBS) and micro-Particle Induced X-Ray Emission ({mu}PIXE), rarely applied in the field, were selected for their micro-analytical potential to study RN diffusion and surface retention within heterogeneous rocks. Main achievements obtained during last 12 years are highlighted.« less
Analysis of defect structure in silicon. Characterization of samples from UCP ingot 5848-13C
NASA Technical Reports Server (NTRS)
Natesh, R.; Guyer, T.; Stringfellow, G. B.
1982-01-01
Statistically significant quantitative structural imperfection measurements were made on samples from ubiquitous crystalline process (UCP) Ingot 5848 - 13 C. Important trends were noticed between the measured data, cell efficiency, and diffusion length. Grain boundary substructure appears to have an important effect on the conversion efficiency of solar cells from Semix material. Quantitative microscopy measurements give statistically significant information compared to other microanalytical techniques. A surface preparation technique to obtain proper contrast of structural defects suitable for QTM analysis was perfected.
NASA Astrophysics Data System (ADS)
Echard, J.-P.; Cotte, M.; Dooryhee, E.; Bertrand, L.
2008-07-01
Though ancient violins and other stringed instruments are often revered for the beauty of their varnishes, the varnishing techniques are not much known. In particular, very few detailed varnish analyses have been published so far. Since 2002, a research program at the Musée de la musique (Paris) is dedicated to a detailed description of varnishes on famous ancient musical instruments using a series of novel analytical methods. For the first time, results are presented on the study of the varnish from a late 16th century Venetian lute, using synchrotron micro-analytical methods. Identification of both organic and inorganic compounds distributed within the individual layers of a varnish microsample has been performed using spatially resolved synchrotron Fourier transform infrared microscopy. The univocal identification of the mineral phases is obtained through synchrotron powder X-ray diffraction. The materials identified may be of utmost importance to understand the varnishing process and its similarities with some painting techniques. In particular, the proteinaceous binding medium and the calcium sulfate components (bassanite and anhydrite) that have been identified in the lower layers of the varnish microsample could be related, to a certain extent, to the ground materials of earlier Italian paintings.
Lin, Yuehe; Bennett, Wendy D.; Timchalk, Charles; Thrall, Karla D.
2004-03-02
Microanalytical systems based on a microfluidics/electrochemical detection scheme are described. Individual modules, such as microfabricated piezoelectrically actuated pumps and a microelectrochemical cell were integrated onto portable platforms. This allowed rapid change-out and repair of individual components by incorporating "plug and play" concepts now standard in PC's. Different integration schemes were used for construction of the microanalytical systems based on microfluidics/electrochemical detection. In one scheme, all individual modules were integrated in the surface of the standard microfluidic platform based on a plug-and-play design. Microelectrochemical flow cell which integrated three electrodes based on a wall-jet design was fabricated on polymer substrate. The microelectrochemical flow cell was then plugged directly into the microfluidic platform. Another integration scheme was based on a multilayer lamination method utilizing stacking modules with different functionality to achieve a compact microanalytical device. Application of the microanalytical system for detection of lead in, for example, river water and saliva samples using stripping voltammetry is described.
ERIC Educational Resources Information Center
Walton, Katherine M.; Ingersoll, Brooke R.
2015-01-01
Adult responsiveness is related to language development both in young typically developing children and in children with autism spectrum disorders, such that parents who use more responsive language with their children have children who develop better language skills over time. This study used a micro-analytic technique to examine how two facets…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fiechtner, Gregory J; Singh, Anup K; Wiedenman, Boyd J
2008-03-18
The present embodiment describes a laminar-mixing embodiment that utilizes simple, three-dimensional injection. Also described is the use of the embodiment in combination with wide and shallow sections of channel to affect rapid mixing in microanalytical systems. The shallow channel sections are constructed using all planar micromachining techniques, including those based on isotropic etching. The planar construction enables design using minimum dispersion concepts that, in turn, enable simultaneous mixing and injection into subsequent chromatography channels.
GSD-1G and MPI-DING Reference Glasses for In Situ and Bulk Isotopic Determination
Jochum, K.P.; Wilson, S.A.; Abouchami, W.; Amini, M.; Chmeleff, J.; Eisenhauer, A.; Hegner, E.; Iaccheri, L.M.; Kieffer, B.; Krause, J.; McDonough, W.F.; Mertz-Kraus, R.; Raczek, I.; Rudnick, R.L.; Scholz, Donna K.; Steinhoefel, G.; Stoll, B.; Stracke, A.; Tonarini, S.; Weis, D.; Weis, U.; Woodhead, J.D.
2011-01-01
This paper contains the results of an extensive isotopic study of United States Geological Survey GSD-1G and MPI-DING reference glasses. Thirteen different laboratories were involved using high-precision bulk (TIMS, MC-ICP-MS) and microanalytical (LA-MC-ICP-MS, LA-ICP-MS) techniques. Detailed studies were performed to demonstrate the large-scale and small-scale homogeneity of the reference glasses. Together with previously published isotopic data from ten other laboratories, preliminary reference and information values as well as their uncertainties at the 95% confidence level were determined for H, O, Li, B, Si, Ca, Sr, Nd, Hf, Pb, Th and U isotopes using the recommendations of the International Association of Geoanalysts for certification of reference materials. Our results indicate that GSD-1G and the MPI-DING glasses are suitable reference materials for microanalytical and bulk analytical purposes. Ce document contient les r??sultats d'une importante ??tude isotopique des verres de r??f??rence USGS GSD-1G et MPI-DING. Treize laboratoires diff??rents ont particip?? au travers de techniques analytiques de haute pr??cision travaillant soit sur ??chantillon total (TIMS, MC-ICP-MS) soit par microanalyse ??in situ?? (LA-MC-ICP-MS, LA-ICP-MS). ?? 2010 The Authors. Geostandards and Geoanalytical Research ?? 2010 International Association of Geoanalysts.
Microanalytic Coding versus Global Rating of Maternal Parenting Behaviour
ERIC Educational Resources Information Center
Morawska, Alina; Basha, Allison; Adamson, Michelle; Winter, Leanne
2015-01-01
This study examined the relationship between microanalytic coding and global rating systems when coding maternal parenting behaviour in two contexts. Observational data from 55 mother--child interactions with two- to four-year-old children, in either a mealtime (clinic; N?=?20 or control; N?=?20) or a playtime context (community; N?=?15), were…
Development of Aspen: A microanalytic simulation model of the US economy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pryor, R.J.; Basu, N.; Quint, T.
1996-02-01
This report describes the development of an agent-based microanalytic simulation model of the US economy. The microsimulation model capitalizes on recent technological advances in evolutionary learning and parallel computing. Results are reported for a test problem that was run using the model. The test results demonstrate the model`s ability to predict business-like cycles in an economy where prices and inventories are allowed to vary. Since most economic forecasting models have difficulty predicting any kind of cyclic behavior. These results show the potential of microanalytic simulation models to improve economic policy analysis and to provide new insights into underlying economic principles.more » Work already has begun on a more detailed model.« less
Negotiating Story Entry: A Micro-Analytic Study of Storytelling Projection in English and Japanese
ERIC Educational Resources Information Center
Yasui, Eiko
2011-01-01
This dissertation offers a micro-analytic study of the use of language and body during storytelling in American English and Japanese conversations. Specifically, I focus on its beginning and explore how a story is "projected." A beginning of an action or activity is where an incipient speaker negotiates the floor with co-participants; they…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Michael W. M.; Phillips, Nicholas W.; van Riessen, Grant A.
2016-08-11
Owing to its extreme sensitivity, quantitative mapping of elemental distributionsviaX-ray fluorescence microscopy (XFM) has become a key microanalytical technique. The recent realisation of scanning X-ray diffraction microscopy (SXDM) meanwhile provides an avenue for quantitative super-resolved ultra-structural visualization. The similarity of their experimental geometries indicates excellent prospects for simultaneous acquisition. Here, in both step- and fly-scanning modes, robust, simultaneous XFM-SXDM is demonstrated.
NASA Astrophysics Data System (ADS)
Guggino, S. N.; Hervig, R. L.
2010-12-01
Fluorine (F) is a volatile constituent of magmas and hydrous minerals, and trace amounts of F are incorporated into nominally anhydrous minerals such as olivine and clinopyroxene. Microanalytical techniques are routinely used to measure trace amounts of F at both high sensitivity and high spatial resolution in glasses and crystals. However, there are few well-established F concentrations for the glass standards routinely used in microanalytical laboratories, particularly standards of low silica, basaltic composition. In this study, we determined the F content of fourteen commonly used microanalytical glass standards of basaltic, intermediate, and rhyolitic composition. To serve as calibration standards, five basaltic glasses with ~0.2 to 2.5 wt% F were synthesized and characterized. A natural tholeiite from the East Pacific Rise was mixed with variable amounts of CaF2. The mixture was heated in a 1 atmosphere furnace to 1440 °C at fO2 = NNO for 30 minutes and quenched in water. Portions of the run products were studied by electron probe microanalysis (EPMA) and secondary ion mass spectrometry (SIMS). The EPMA used a 15 µm diameter defocused electron beam with a 15 kV accelerating voltage and a 25 nA primary current, a TAP crystal for detecting FKα X-rays, and Biotite 3 as the F standard. The F contents by EPMA agreed with the F added to the basalts after correction for mass loss during melting. The SIMS analyses used a primary beam of 16O- and detection of low-energy negative ions (-5 kV) at a mass resolution that resolved 18OH. Both microanalytical techniques confirmed homogeneity, and the SIMS calibration defined by EPMA shows an excellent linear trend with backgrounds of 2 ppm or less. Analyses of basaltic glass standards based on our synthesized calibration standards gave the following F contents and 2σ errors (ppm): ALV-519 = 83 ± 3; BCR-2G = 359 ± 6; BHVO-2G = 322 ± 15; GSA-1G = 10 ± 1; GSC-1G = 11 ± 1; GSD-1G = 19 ± 2; GSE-1G = 173 ± 1; KL2G (MPI-DING) = 101 ± 1; ML3B-G (MPI-DING) = 49 ± 17. These values are lower than published values for BCR-2 and BHVO-2 (unmelted powders) and the “information values” for the MPI-DING glass standards. Proton Induced Gamma ray Emission (PIGE) was tested for the high silica samples. PIGE analyses (1.7 MeV Tandem Accelerator; reaction type: 19F(p, αγ)16O; primary current = 20-30 nA; incident beam voltage = 1.5 MeV) were calibrated with a crystal of fluor-topaz (F = 20.3 wt%) and gave F values of: NIST 610 = 266 ± 14 ppm; NIST 620 = 54 ± 5 ppm; and UTR-2 = 1432 ± 32 ppm. SIMS calibration defined by the PIGE analyses shows an excellent linear trend with low background similar to the basaltic calibration. The F concentrations of intermediate MPI-DING glasses were determined based on SIMS calibration generated from the PIGE analysis above. The F concentrations and 2σ errors (ppm) are: T1G = 219.9 ± 6.8; StHs/680-G = 278.0 ± 2.0 ppm. This study revealed a large matrix effect between the high-silica and basaltic glasses, thus requiring the use of appropriate standards and separate SIMS calibrations when analyzing samples of different compositions.
ERIC Educational Resources Information Center
DiBenedetto, Maria K.
2009-01-01
The purpose of the current investigation was to establish the validity of microanalytic measures used to assess students' self-regulation of an academic science task, not only in terms of immediate achievement, but also in terms of a well-established "person" measure of self-regulated learning. Person measures are designed to capture enduring…
Durning, Steven J; Lubarsky, Stuart; Torre, Dario; Dory, Valérie; Holmboe, Eric
2015-01-01
The purpose of this article is to propose new approaches to assessment that are grounded in educational theory and the concept of "nonlinearity." The new approaches take into account related phenomena such as "uncertainty," "ambiguity," and "chaos." To illustrate these approaches, we will use the example of assessment of clinical reasoning, although the principles we outline may apply equally well to assessment of other constructs in medical education. Theoretical perspectives include a discussion of script theory, assimilation theory, self-regulated learning theory, and situated cognition. Assessment examples to include script concordance testing, concept maps, self-regulated learning microanalytic technique, and work-based assessment, which parallel the above-stated theories, respectively, are also highlighted. We conclude with some practical suggestions for approaching nonlinearity. © 2015 The Alliance for Continuing Education in the Health Professions, the Society for Academic Continuing Medical Education, and the Council on Continuing Medical Education, Association for Hospital Medical Education.
Microfabricated diffusion source
Oborny, Michael C [Albuquerque, NM; Frye-Mason, Gregory C [Cedar Crest, NM; Manginell, Ronald P [Albuquerque, NM
2008-07-15
A microfabricated diffusion source to provide for a controlled diffusion rate of a vapor comprises a porous reservoir formed in a substrate that can be filled with a liquid, a headspace cavity for evaporation of the vapor therein, a diffusion channel to provide a controlled diffusion of the vapor, and an outlet to release the vapor into a gas stream. The microfabricated diffusion source can provide a calibration standard for a microanalytical system. The microanalytical system with an integral diffusion source can be fabricated with microelectromechanical systems technologies.
NASA Astrophysics Data System (ADS)
Renno, A. D.; Merchel, S.; Michalak, P. P.; Munnik, F.; Wiedenbeck, M.
2010-12-01
Recent economic trends regarding the supply of rare metals readily justify scientific research into non-conventional raw materials, where a particular need is a better understanding of the relationship between mineralogy, microstructure and the distribution of key metals within ore deposits (geometallurgy). Achieving these goals will require an extensive usage of in-situ microanalytical techniques capable of spatially resolving material heterogeneities which can be key for understanding better resource utilization. The availability of certified reference materials (CRMs) is an essential prerequisite for (1) validating new analytical methods, (2) demonstrating data quality to the contracting authorities, (3) supporting method development and instrument calibration, and (4) establishing traceability between new analytical approaches and existing data sets. This need has led to the granting of funding by the European Union and the German Free State of Saxony for a program to develop such reference materials . This effort will apply the following strategies during the selection of the phases: (1) will use exclusively synthetic minerals, thereby providing large volumes of homogeneous starting material. (2) will focus on matrices which are capable of incorporating many ‘important’ elements while avoid exotic compositions which would not be optimal matrix matches. (3) will emphasise those phases which remain stable during the various microanalytical procedure. This initiative will assess the homogeneity of the reference materials at sampling sizes ranging between 50 and 1 µm; it is also intended to document crystal structural homogeneity too, as this too may potentially impact specific analytical methods. As far as possible both definitive methods as well as methods involving matrix corrections will be used for determining the compositions of the of the individual materials. A critical challenge will be the validation of the determination of analytes concentrations as sub-µg sampling masses. It is planned to cooperate with those who are interested in the development of such reference materials and we invite them to take part in round-robin exercises.
NASA Astrophysics Data System (ADS)
Whitesides, George M.; Tang, Sindy K. Y.
2006-09-01
Fluidic optics is a new class of optical system with real-time tunability and reconfigurability enabled by the introduction of fluidic components into the optical path. We describe the design, fabrication, operation of a number of fluidic optical systems, and focus on three devices, liquid-core/liquid-cladding (L2) waveguides, microfluidic dye lasers, and diffraction gratings based on flowing, crystalline lattices of bubbles, to demonstrate the integration of microfluidics and optics. We fabricate these devices in poly(dimethylsiloxane) (PDMS) with soft-lithographic techniques. They are simple to construct, and readily integrable with microanalytical or lab-on-a-chip systems.
NASA Technical Reports Server (NTRS)
Zinner, Ernst
1991-01-01
A survey of microanalytical measurements on interplanetary dust particles (IDPs) and interstellar dust grains from primitive meteorites is presented. Ion-microprobe mass spectrometry with its capability to determine isotopic compositions of many elements on a micron spatial scale has played a special role. Examples are measurements of H, N, and O isotopes and refractory trace elements in IDPs; C, N, Mg, and Si isotopes in interstellar SiC grains; and C and N isotopes and H, N, Al, and Si concentrations in interstellar graphite grains.
Chemical preconcentrator with integral thermal flow sensor
Manginell, Ronald P.; Frye-Mason, Gregory C.
2003-01-01
A chemical preconcentrator with integral thermal flow sensor can be used to accurately measure fluid flow rate in a microanalytical system. The thermal flow sensor can be operated in either constant temperature or constant power mode and variants thereof. The chemical preconcentrator with integral thermal flow sensor can be fabricated with the same MEMS technology as the rest of the microanlaytical system. Because of its low heat capacity, low-loss, and small size, the chemical preconcentrator with integral thermal flow sensor is fast and efficient enough to be used in battery-powered, portable microanalytical systems.
Audetat, Andreas; Garbe-Schonberg, Dieter; Kronz, Andreas; Pettke, Thomas; Rusk, Brian G.; Donovan, John J.; Lowers, Heather
2015-01-01
A natural smoky quartz crystal from Shandong province, China, was characterised by laser ablation ICP-MS, electron probe microanalysis (EPMA) and solution ICP-MS to determine the concentration of twenty-four trace and ultra trace elements. Our main focus was on Ti quantification because of the increased use of this element for titanium-in-quartz (TitaniQ) thermobarometry. Pieces of a uniform growth zone of 9 mm thickness within the quartz crystal were analysed in four different LA-ICP-MS laboratories, three EPMA laboratories and one solution-ICP-MS laboratory. The results reveal reproducible concentrations of Ti (57 ± 4 μg g-1), Al (154 ± 15 μg g-1), Li (30 ± 2 μg g-1), Fe (2.2 ± 0.3 μg g-1), Mn (0.34 ± 0.04 μg g-1), Ge (1.7 ± 0.2 μg g-1) and Ga (0.020 ± 0.002 μg g-1) and detectable, but less reproducible, concentrations of Be, B, Na, Cu, Zr, Sn and Pb. Concentrations of K, Ca, Sr, Mo, Ag, Sb, Ba and Au were below the limits of detection of all three techniques. The uncertainties on the average concentration determinations by multiple techniques and laboratories for Ti, Al, Li, Fe, Mn, Ga and Ge are low; hence, this quartz can serve as a reference material or a secondary reference material for microanalytical applications involving the quantification of trace elements in quartz.
Ghosal, Sutapa; Wagner, Jeff
2013-07-07
We present correlated application of two micro-analytical techniques: scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS) and Raman micro-spectroscopy (RMS) for the non-invasive characterization and molecular identification of flame retardants (FRs) in environmental dusts and consumer products. The SEM/EDS-RMS technique offers correlated, morphological, molecular, spatial distribution and semi-quantitative elemental concentration information at the individual particle level with micrometer spatial resolution and minimal sample preparation. The presented methodology uses SEM/EDS analyses for rapid detection of particles containing FR specific elements as potential indicators of FR presence in a sample followed by correlated RMS analyses of the same particles for characterization of the FR sub-regions and surrounding matrices. The spatially resolved characterization enabled by this approach provides insights into the distributional heterogeneity as well as potential transfer and exposure mechanisms for FRs in the environment that is typically not available through traditional FR analysis. We have used this methodology to reveal a heterogeneous distribution of highly concentrated deca-BDE particles in environmental dust, sometimes in association with identifiable consumer materials. The observed coexistence of deca-BDE with consumer material in dust is strongly indicative of its release into the environment via weathering/abrasion of consumer products. Ingestion of such enriched FR particles in dust represents a potential for instantaneous exposure to high FR concentrations. Therefore, correlated SEM/RMS analysis offers a novel investigative tool for addressing an area of important environmental concern.
Saffarzadeh, Amirhomayoun; Shimaoka, Takayuki; Kakuta, Yoshitada; Kawano, Takashi
2014-10-01
After the March 11, 2011 Tohoku earthquake and Fukushima I Nuclear Power Plant accident, incineration was initially adopted as an effective technique for the treatment of post-disaster wastes. Accordingly, considerable amounts of radioactively contaminated residues were immediately generated through incineration. The level of radioactivity associated with radiocesium in the incineration ash residues (bottom ash and fly ash) became significantly high (several thousand to 100,000 Bq/kg) as a result of this treatment. In order to understand the modes of occurrence of radiocesium, bottom ash products were synthesized through combusting of refuse-derived fuel (RDF) with stable Cs salts in a pilot incinerator. Microscopic and microanalytical (SEM-EDX) techniques were applied and the following Cs categories were identified: low and high concentrations in the matrix glass, low-level partitioning into some newly-formed silicate minerals, partitioning into metal-sulfide compounds, and occurring in newly-formed Cs-rich minerals. These categories that are essentially silicate-bound are the most dominant forms in large and medium size bottom ash particles. It is expected that these achievements provide solutions to the immobilization of radiocesium in the incineration ash products contaminated by Fukushima nuclear accident. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Natesh, R.; Stringfellow, G. B.; Virkar, A. V.; Dunn, J.; Guyer, T.
1983-01-01
Statistically significant quantitative structural imperfection measurements were made on samples from ubiquitous crystalline process (UCP) Ingot 5848 - 13C. Important correlation was obtained between defect densities, cell efficiency, and diffusion length. Grain boundary substructure displayed a strong influence on the conversion efficiency of solar cells from Semix material. Quantitative microscopy measurements gave statistically significant information compared to other microanalytical techniques. A surface preparation technique to obtain proper contrast of structural defects suitable for quantimet quantitative image analyzer (QTM) analysis was perfected and is used routinely. The relationships between hole mobility and grain boundary density was determined. Mobility was measured using the van der Pauw technique, and grain boundary density was measured using quantitative microscopy technique. Mobility was found to decrease with increasing grain boundary density.
Salvador, Cátia; Martins, M Rosário; Caldeira, A Teresa
2015-02-01
Different compounds of edible mushrooms are responsible for their bioactivity. The ability to synthesize polysaccharides, namely protein-polysaccharide (PPS) complexes, is related to the antioxidant capacity of these compounds and present great interest in preventing a number of diseases, including cancer, cardiovascular and auto-immune diseases, and accelerated aging. Amanita ponderosa are wild edible mushrooms that grow in Mediterranean "montado" areas [Portuguese name given to cork oak (Quercus suber) and holm oak (Quercus ilex) forests]. The aim of this study was to evaluate the production of PPS complexes obtained from A. ponderosa cultures using a new microanalytical approach to quickly and easily monitor the production process. Microanalysis using Fourier-transform infrared using attenuated total reflection and Raman spectroscopy of PPS samples showed spectra compatible with identification of this type of compound in culture extracts. PPS separated by size-exclusion chromatography showed seven main complexes. Molecular weights of the main PPS complexes isolated from cultures ranged between 1.5 and 20 kDa and did not present toxicity against Artemia salina, demonstrating the potential of A. ponderosa as a source of biologically active compounds with nutraceutical value. Application of this microanalytical approach to monitoring the production of PPS compounds can be successfully applied in biotechnological processes.
NASA Astrophysics Data System (ADS)
Budzyń, Bartosz; Sláma, Jiří; Kozub-Budzyń, Gabriela A.; Konečný, Patrik; Holický, Ivan; Rzepa, Grzegorz; Jastrzębski, Mirosław
2018-06-01
The application of zircon and xenotime geochronometers requires knowledge of their potential and limitations related to possible disturbance of the age record. The alteration of the intergrown zircon and xenotime in pegmatite from the Góry Sowie Block (SW Poland) was studied using the electron microprobe analysis, X-ray WDS compositional mapping, micro-Raman analysis, and LA-ICP-MS U-Pb dating of zircon and xenotime, as well as the U-Th-total Pb dating of uraninite. These microanalytical techniques were applied to understand the formation mechanisms of the secondary textures related to post-magmatic processes in the zircon and xenotime intergrowth, and to constrain their timing. Textural and compositional features combined with U-Pb data indicate that the pegmatite-related crystallization of the zircon and xenotime intergrowth occurred ca. 2.09 Ga (2086 ± 35 Ma for zircon and 2093 ± 52 Ma for xenotime), followed by the re-equilibration of zircon and xenotime ca. 370 Ma (373 ± 18 Ma and 368 ± 6 Ma, respectively) during the formation of the younger pegmatite. The zircon and xenotime were most likely derived from Precambrian basement rocks and emplaced in the pegmatite as a restite. The zircon preserved textures related to diffusion-reaction processes that affected its high-U core (up to ca. 9.6 wt% UO2), which underwent further metamictization and amorphization due to self-radiation damage. The zircon rim and xenotime were affected by coupled dissolution-reprecipitation processes that resulted in patchy zoning, age disturbance and sponge-like textures. Xenotime was also partially replaced by fluorapatite or hingganite-(Y) and Y-enriched allanite-(Ce). The termination of the low-temperature alteration was constrained by the U-Th-total Pb age of the uraninite inclusions that crystallized in zircon at 281 ± 2 Ma, which is consistent with the age of 278 ± 15 Ma obtained from the youngest cluster of U-Pb ages in the re-equilibrated high-U zircon domains. This study demonstrates the importance of the careful examination of compositional, microtextural and geochronological data obtained using microanalytical techniques to reconstruct the complex thermal histories recorded by accessory minerals.
Workshop on Analysis of Returned Comet Nucleus Samples
NASA Technical Reports Server (NTRS)
1989-01-01
This volume contains abstracts that were accepted by the Program Committee for presentation at the workshop on the analysis of returned comet nucleus samples held in Milpitas, California, January 16 to 18, 1989. The abstracts deal with the nature of cometary ices, cryogenic handling and sampling equipment, origin and composition of samples, and spectroscopic, thermal and chemical processing methods of cometary nuclei. Laboratory simulation experimental results on dust samples are reported. Some results obtained from Halley's comet are also included. Microanalytic techniques for examining trace elements of cometary particles, synchrotron x ray fluorescence and instrument neutron activation analysis (INAA), are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macholdt, D. S.; Jochum, K. P.; Pöhlker, C.
We investigated rock varnishes collected from several locations and environments worldwide by a wide range of microanalytical techniques. These techniques were selected to address the challenges posed by the chemical and structural complexity within the micrometer- to nanometer-sized structures in these geological materials. Femtosecond laser ablation-inductively coupled plasma-mass spectrometry (fs LA-ICP-MS), scanning transmission X-ray microscopy-near edge X-ray adsorption fine structure spectroscopy (STXM-NEXAFS) in combination with scanning electron microscopy (SEM) of focused ion beam (FIB) ultra-thin (100–200 nm) sections, conventional and polarization microscopy, as well as electron paramagnetic resonance (EPR) measurements were used to obtain information about these rock varnishes. Rockmore » varnishes from different environments, which cannot readily be distinguished based on their macroscopic appearance, differ significantly in their constituent elemental mass fractions, e.g., of Mn, Fe, Ni, Co, Ba, and Pb, and their rare earth element (REE) patterns. Structural characteristics such as the particle sizes of embedded dust grains, internal structures such as layers of Mn-, Fe-, and Ca -rich material, and structures such as cavities varied between varnishes from different environments and regions in the world. The EPR spectra were consistent with aged biogenic Mn oxides in all samples, but showed subtle differences between samples of different origin. Our observations allow us to separate rock varnishes into different types, with differences that might be indicators of distinct geneses. Five different types of rock varnish could be distinguished, Type I–V, of which only Type I might be used as potential paleoclimate archive. Each varnish type has specific characteristics in terms of their elemental composition, element distribution, and structures. The combination of element ratios (Mn/Ba, Al/Ni, Mn/REY, Mn/Ce, Mn/Pb, La N /Yb N , and Ce/Ce*), total REE contents, and structures can be used to separate the different types of rock varnish from each other.« less
Method for making electro-fluidic connections in microfluidic devices
Frye-Mason, Gregory C.; Martinez, David; Manginell, Ronald P.; Heller, Edwin J.; Chanchani, Rajen
2004-08-10
A method for forming electro-fluidic interconnections in microfluidic devices comprises forming an electrical connection between matching bond pads on a die containing an active electrical element and a microfluidic substrate and forming a fluidic seal ring that circumscribes the active electrical element and a fluidic feedthrough. Preferably, the electrical connection and the seal ring are formed in a single bonding step. The simple method is particularly useful for chemical microanalytical systems wherein a plurality of microanalytical components, such as a chemical preconcentrator, a gas chromatography column, and a surface acoustic wave detector, are fluidically interconnected on a hybrid microfluidic substrate having electrical connection to external support electronics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodríguez-Pulido, A.; Martínez-Gutiérrez, H.; Calderon-Polania, G. A.
Nitrogen-doped multiwalled carbon nanotubes (CNx-MWNTs) have been decorated with γ-Al 2O 3 nanoparticles by a novel method. This process involved a wet chemical approach in conjunction with thermal treatment. During the particle anchoring process, individual CNx-MWNT nanotubes agglomerated into bundles, resulting in arrays of aligned CNx-MWNT coated with γ-Al 2O 3. Extensive characterization of the resulting γ-Al 2O 3/CNx-MWNT bundles was performed using a range of electron microscopy imaging and microanalytical techniques. In conclusion, a possible mechanism explaining the nanobundle alignment is described, and possible applications of these materials for the fabrication of ceramic composites using CNx-MWNTs are briefly discussed.
Formation of hydrogen peroxide in the silver reductor: A micro-analytical method for iron
Fryling, C.F.; Tooley, F.V.
1936-01-01
1. An attempt to determine small quantities of iron by reduction with silver followed by titration with eerie sulfate revealed an error attributable to the formation of hydrogen peroxide in the reductor. 2. By conducting the reduction in an atmosphere of hydrogen, thereby decreasing the reductor correction, and applying a correction for the indicator, it was possible to determine quantities of iron of the order of 1.5 mg. with a high degree of accuracy. 3. The method was found to be relatively rapid and not to require the use of large platinum dishes, thus possessing advantages of practical value.
NASA Astrophysics Data System (ADS)
Lin, Yuehe; Wen, Jenny; Fan, Xiang; Matson, Dean W.; Smith, Richard D.
1999-08-01
A microfabricated device for isoelectric focusing (IEF) incorporating an optimized electrospray ionization (ESI) tip was constructed on polycarbonate plates using a laser micromachining technique. The separation channels on an IEF chip were 16 cm long, 50 micrometers wide and 30 micrometers deep. Electrical potentials used for IEF focusing and electrospray were applied through platinum electrodes placed in the buffer reservoirs, and which were isolated from the separation channel by molecular porous membranes. On-line ESI produced directly from a sharp `tip' on the microchip was evaluated. The results indicate that this design can produce a stable electrospray that is further improved and made more flexible with the assistance of sheath gas and sheath liquid. Error analysis of the spectral data shows that the standard deviation in signal intensity for an analyte peak was less than approximately 5% over 3 hours. The production of stable electrosprays directly from microchip IEF devices represents a step towards easily- fabricated microanalytical devices. IEF separations of protein mixtures were demonstrated for uncoated polycarbonate microchips. On-line IEF/ESI-MS was demonstrated using the microfabricated chip with an ion-trap ESI mass spectrometer for characterization of protein mixtures.
Morphological classification and microanalysis of tire tread particles worn by abrasion or corrosion
NASA Astrophysics Data System (ADS)
Crosta, Giovanni F.
2011-06-01
Two types of tread wear particles are investigated: tread wear particles from a steel brush abrader (TrBP) and particles produced during a steering pad run (TrSP). A leaching experiment in water at pH = 7.5 for 24 and 48h was carried out on TrBP to simulate environmental degradation. Images of all materials were collected by a scanning electron microscope (SEM) together with element microanalytical (EDX) data. Surface morphology is described by a function of wave number (the "enhanced spectrum") obtained from SEM image analysis and non-linear filtering. A surface roughness index, ρ, is derived from the enhanced spectrum. The innovative contribution of this work is the representation of morphology by means of ρ, which, together with EDX data, allows the quantitative characterization of the materials. In particular, the surface roughness of leached TrBP is shown to decay in time and is related to the corresponding microanalytical data for the first time. The morphology of steering pad TrSP, affected by included mineral particles, is shown to be more heterogeneous. Differences in morphology (enhanced spectra and ρ), elemental composition and surface chemistry of TrBP and TrSP are discussed. All methods described and implemented herewith can be immediately applied to other types of tread wear material. The arguments put forward herewith should help in the proper design of those experiments aimed at assessing the impact of tread wear materials on the environment and on human health.
Anchorage of γ-Al 2O 3 nanoparticles on nitrogen-doped multiwalled carbon nanotubes
Rodríguez-Pulido, A.; Martínez-Gutiérrez, H.; Calderon-Polania, G. A.; ...
2016-06-07
Nitrogen-doped multiwalled carbon nanotubes (CNx-MWNTs) have been decorated with γ-Al 2O 3 nanoparticles by a novel method. This process involved a wet chemical approach in conjunction with thermal treatment. During the particle anchoring process, individual CNx-MWNT nanotubes agglomerated into bundles, resulting in arrays of aligned CNx-MWNT coated with γ-Al 2O 3. Extensive characterization of the resulting γ-Al 2O 3/CNx-MWNT bundles was performed using a range of electron microscopy imaging and microanalytical techniques. In conclusion, a possible mechanism explaining the nanobundle alignment is described, and possible applications of these materials for the fabrication of ceramic composites using CNx-MWNTs are briefly discussed.
Mafalda, Ana Cardeira; da Câmara, Rodrigo Bettencourt; Strzelec, Patrick; Schiavon, Nick; Mirão, José; Candeias, António; Carvalho, Maria Luísa; Manso, Marta
2015-02-01
The artwork "Smoke Rings: Two Concentric Tunnels, Non-Communicating" by Bruce Nauman represents a case study of corrosion of a black patina-coated Al-alloy contemporary artwork. The main concern over this artwork was the widespread presence of white spots on its surface. Alloy substrate, patina, and white spots were characterized by means of energy-dispersive X-ray fluorescence and scanning electron microscopy with energy-dispersive spectroscopy. Alloy substrate was identified as an aluminum alloy 6,000 series Al-Si-Mg. Patina's identified composition confirmed the documentation provided by the atelier. Concerning the white spots, zircon particles were found on patina surface as external elements.
Australian Red Dune Sand: A Potential Martian Regolith Analog
NASA Technical Reports Server (NTRS)
Kuhlman, K. R.; Marshall, J.; Evans, N. D.; Luttge, A.
2001-01-01
To demonstrate the potential scientific and technical merits of in situ microscopy on Mars, we analyzed a possible Martian regolith analog - an acolian red dune sand from the central Australian desert (near Mt. Olga). This sand was chosen for its ubiquitous red coating and the desert environment in which is it found. Grains of this sand were analyzed using a variety of microanalytical techniques. A database of detailed studies of such terrestrial analogs would assist the study of geological and astrobiological specimens in future missions to Mars. Potential instrument concepts for in situ deployment on Mars include local electrode atom probe nanoanalysis (LEAP), vertical scanning white light interferometry (VSWLI), scanning electron microscopies, energy dispersive x-ray microanalysis (EDX), atomic force microscopy (AFM) and X-ray diffraction (XRD). While in situ deployment of these techniques is many years away, ground-based studies using these analytical techniques extend our understanding of the data obtained from instruments to be flown in the near future.
Manginell, Ronald P; Moorman, Matthew W; Wheeler, David R
2014-05-27
A microfabricated capacitive chemical sensor can be used as an autonomous chemical sensor or as an analyte-sensitive chemical preconcentrator in a larger microanalytical system. The capacitive chemical sensor detects changes in sensing film dielectric properties, such as the dielectric constant, conductivity, or dimensionality. These changes result from the interaction of a target analyte with the sensing film. This capability provides a low-power, self-heating chemical sensor suitable for remote and unattended sensing applications. The capacitive chemical sensor also enables a smart, analyte-sensitive chemical preconcentrator. After sorption of the sample by the sensing film, the film can be rapidly heated to release the sample for further analysis. Therefore, the capacitive chemical sensor can optimize the sample collection time prior to release to enable the rapid and accurate analysis of analytes by a microanalytical system.
Querido, William; Rossi, Andre L; Farina, Marcos
2016-01-01
The interest in effects of strontium (Sr) on bone has greatly increased in the last decade due to the development of the promising drug strontium ranelate. This drug is used for treating osteoporosis, a major bone disease affecting hundreds of millions of people worldwide, especially postmenopausal women. The novelty of strontium ranelate compared to other treatments for osteoporosis is its unique effect on bone: it simultaneously promotes bone formation by osteoblasts and inhibits bone resorption by osteoclasts. Besides affecting bone cells, treatment with strontium ranelate also has a direct effect on the mineralized bone matrix. Due to the chemical similarities between Sr and Ca, a topic that has long been of particular interest is the incorporation of Sr into bones replacing Ca from the mineral phase, which is composed by carbonated hydroxyapatite nanocrystals. Several groups have analyzed the mineral produced during treatment; however, most analysis were done with relatively large samples containing numerous nanocrystals, resulting thus on data that represents an average of many crystalline domains. The nanoscale analysis of the bone apatite crystals containing Sr has only been described in a few studies. In this study, we review the current knowledge on the effects of Sr on bone mineral and discuss the methodological approaches that have been used in the field. In particular, we focus on the great potential that advanced microscopy and microanalytical techniques may have on the detailed analysis of the nanostructure and composition of bone apatite nanocrystals produced during treatment with strontium ranelate. Copyright © 2015. Published by Elsevier Ltd.
Driscoll, Rhonda; Hageman, Phillip L.; Benzel, William M.; Diehl, Sharon F.; Adams, David T.; Morman, Suzette; Choate, LaDonna M.
2012-01-01
In this study, four randomly selected copper-bearing minerals were examined—azurite, malachite, bornite, and chalcopyrite. The objectives were to examine and enumerate the crystalline and chemical properties of each of the minerals, to determine which, if any, of the Cu-bearing minerals might adversely affect systems biota, and to provide a multi-procedure reference. Laboratory work included use of computational software for quantifying crystalline and amorphous material and optical and electron imaging instruments to model and project crystalline structures. Chemical weathering, human fluid, and enzyme simulation studies were also conducted. The analyses were conducted systematically: X-ray diffraction and microanalytical studies followed by a series of chemical, bio-leaching, and toxicity experiments.
Solving mercury (Hg) speciation in soil samples by synchrotron X-ray microspectroscopic techniques.
Terzano, Roberto; Santoro, Anna; Spagnuolo, Matteo; Vekemans, Bart; Medici, Luca; Janssens, Koen; Göttlicher, Jörg; Denecke, Melissa A; Mangold, Stefan; Ruggiero, Pacifico
2010-08-01
Direct mercury (Hg) speciation was assessed for soil samples with a Hg concentration ranging from 7 up to 240 mg kg(-1). Hg chemical forms were identified and quantified by sequential extractions and bulk- and micro-analytical techniques exploiting synchrotron generated X-rays. In particular, microspectroscopic techniques such as mu-XRF, mu-XRD and mu-XANES were necessary to solve bulk Hg speciation, in both soil fractions <2 mm and <2 microm. The main Hg-species found in the soil samples were metacinnabar (beta-HgS), cinnabar (alpha-HgS), corderoite (Hg(3)S(2)Cl(2)), and an amorphous phase containing Hg bound to chlorine and sulfur. The amount of metacinnabar and amorphous phases increased in the fraction <2 microm. No interaction among Hg-species and soil components was observed. All the observed Hg-species originated from the slow weathering of an inert Hg-containing waste material (K106, U.S. EPA) dumped in the area several years ago, which is changing into a relatively more dangerous source of pollution. Copyright 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bankova, A.; Videkov, V.; Tzaneva, B.; Mitov, M.
2018-03-01
We report studies on the mechanical response and deformation behavior of heat-treated nanoporous anodic alumina using a micro-balance test and experimental test equipment especially designed for this purpose. AAO samples were characterized mechanically by a three-point bending test using a micro-analytical balance. The deformation behavior was studied by repetitive mechanical bending of the AAO membranes using an electronically controlled system. The nanoporous AAO structures were prepared electrochemically from Al sheet substrates using a two-step anodizing technique in oxalic acid followed by heat treatment at 700 °C in air. The morphological study of the aluminum oxide layer after the mechanical tests and mechanical deformation was conducted using scanning electron and optical microscopy, respectively. The experimental results showed that the techniques proposed are simple and accurate; they could, therefore, be combined to constitute a method for mechanical stability assessment of nanostructured AAO films, which are important structural components in the design of MEMS devices and sensors.
Beebe, Beatrice; Steele, Miriam
2013-01-01
Microanalysis research on 4-month mother-infant face-to-face communication operates like a “social microscope” and identifies aspects of maternal sensitivity and the origins of attachment with a more detailed lens. We hope to enhance a dialogue between these two paradigms, microanalysis of mother-infant communication and maternal sensitivity and emerging working models of attachment. The prediction of infant attachment from microanalytic approaches and their contribution to concepts of maternal sensitivity are described. We summarize aspects of one microanalytic study by Beebe and colleagues (2010) that documents new communication patterns between mothers and infants at 4 months that predict future disorganized (vs. secure) attachment. The microanalysis approach opens up a new window on the details of the micro-processes of face-to-face communication. It provides a new, rich set of behaviors with which to extend our understanding of the origins of infant attachment and of maternal sensitivity. PMID:24299136
Beebe, Beatrice; Steele, Miriam
2013-01-01
Microanalysis research on 4-month infant-mother face-to-face communication operates like a "social microscope" and identifies aspects of maternal sensitivity and the origins of attachment with a more detailed lens. We hope to enhance a dialogue between these two paradigms, microanalysis of mother-infant communication and maternal sensitivity and emerging working models of attachment. The prediction of infant attachment from microanalytic approaches and their contribution to concepts of maternal sensitivity are described. We summarize aspects of one microanalytic study by Beebe and colleagues published in 2010 that documents new communication patterns between mothers and infants at 4 months that predict future disorganized (vs. secure) attachment. The microanalysis approach opens up a new window on the details of the micro-processes of face-to-face communication. It provides a new, rich set of behaviors with which to extend our understanding of the origins of infant attachment and of maternal sensitivity.
Cleary, Timothy J; Durning, Steven J; Artino, Anthony R
2016-11-01
Helping medical educators obtain and use assessment data to assist medical students, residents, and physicians in reducing diagnostic errors and other forms of ineffective clinical practice is of critical importance. Self-Regulated Learning-Microanalytic Assessment and Training is an assessment-to-intervention framework designed to address this need by generating data about trainees' strategic processes (e.g., focusing on clinical task procedures), regulatory processes (e.g., planning how to do a task), and motivational processes (e.g., increasing confidence for performing a task) as they perform clinical activities. In this article, the authors review several studies that have used an innovative assessment approach, called self-regulated learning (SRL) microanalysis, to generate data about how trainees regulate their thinking and actions during clinical reasoning tasks. Across the studies, initial findings revealed that medical students often do not exhibit strategic thinking and action during clinical reasoning practice tasks even though some regulatory processes (e.g., planning) are predictive of important medical education outcomes. Further, trainees' motivation beliefs, strategic thinking, and self-evaluative judgments tend to shift rapidly during clinical skills practice and may also vary across different parts of a patient encounter. Collectively, these findings underscore the value of dynamically assessing trainees' SRL as they complete clinical tasks. The findings also set the stage for exploring how medical educators can best use SRL microanalytic assessment data to guide remedial practices and the provision of feedback to trainees. Implications and future research directions for connecting assessments to intervention in medical education are discussed.
Chemical compositions of primitive solar system particles
NASA Technical Reports Server (NTRS)
Sutton, Steve R.; Bajt, S.
1994-01-01
Chemical studies of micrometeorites are of fundamental importance primarily because atmospheric entry selection effects (such as destruction of friable objects) are less significant than those for conventional meteorites. As a result, particles that have experienced very little postaccretional processing have a significant chance of surviving the Earth encounter and subsequent collection. Thus, chemical analyses of these relatively unaltered micrometeorites may lead to a better understanding of the compositions of the most primitive materials in the solar system and thereby constrain the conditions (physical and chemical) that existed in the early solar nebula. Micrometeorites have been collected from the stratosphere, polar ices, and ocean sediments, but the stratospheric collection is the best source for the most unaltered material because they are small and are not heated to their melting points. Despite the fact that the stratospheric micrometeorites have masses in the nanogram range, a variety of microanalytical techniques have been applied to bulk chemical analyses with part-per-million sensitivity. In some cases, multi-disciplinary studies (e.g., chemistry and mineralogy) have been performed on individual particles. The first-order conclusion is that the chondrite-like particles are chemically similar to carbonaceous chondrites but in detail are distinct from members of the conventional meteorite collection. The purpose of this paper is to provide an overview of the results to date and identify important areas for further study.
Microanalytical Efforts in Support of NASA's Materials Science Programs
NASA Technical Reports Server (NTRS)
Gillies, Donald C.
2004-01-01
Following a brief overview of NASA s Microgravity Materials Science programs, specific examples will be given showing electron beam and optical microscopic applications to two-phase glass structures, dendrite tip radii, solid solution semiconductors, undercooled two-phase stainless steels and meteorites.
The Analytical Limits of Modeling Short Diffusion Timescales
NASA Astrophysics Data System (ADS)
Bradshaw, R. W.; Kent, A. J.
2016-12-01
Chemical and isotopic zoning in minerals is widely used to constrain the timescales of magmatic processes such as magma mixing and crystal residence, etc. via diffusion modeling. Forward modeling of diffusion relies on fitting diffusion profiles to measured compositional gradients. However, an individual measurement is essentially an average composition for a segment of the gradient defined by the spatial resolution of the analysis. Thus there is the potential for the analytical spatial resolution to limit the timescales that can be determined for an element of given diffusivity, particularly where the scale of the gradient approaches that of the measurement. Here we use a probabilistic modeling approach to investigate the effect of analytical spatial resolution on estimated timescales from diffusion modeling. Our method investigates how accurately the age of a synthetic diffusion profile can be obtained by modeling an "unknown" profile derived from discrete sampling of the synthetic compositional gradient at a given spatial resolution. We also include the effects of analytical uncertainty and the position of measurements relative to the diffusion gradient. We apply this method to the spatial resolutions of common microanalytical techniques (LA-ICP-MS, SIMS, EMP, NanoSIMS). Our results confirm that for a given diffusivity, higher spatial resolution gives access to shorter timescales, and that each analytical spacing has a minimum timescale, below which it overestimates the timescale. For example, for Ba diffusion in plagioclase at 750 °C timescales are accurate (within 20%) above 10, 100, 2,600, and 71,000 years at 0.3, 1, 5, and 25 mm spatial resolution, respectively. For Sr diffusion in plagioclase at 750 °C, timescales are accurate above 0.02, 0.2, 4, and 120 years at the same spatial resolutions. Our results highlight the importance of selecting appropriate analytical techniques to estimate accurate diffusion-based timescales.
Microstructural and Microanalytical Study on Concrete Exposed to the Sulfate Environment
NASA Astrophysics Data System (ADS)
Qing, Fang; Beixing, Li; Jiangang, Yin; Xiaolu, Yuan
2017-11-01
Microstructural properties have been examined to investigate the effect of mineral admixtures on the sulfate resistance of concrete. Concrete and cement paste specimens made with ordinary Portland cement (OPC) or ordinary Portland cement incorporating 20% fly ash (FA) or 30% ground blast furnace slag (GBFS), were made and exposed to 250 cycles of the cyclic sulfate environment. Microstructural and Microanalytical study was conducted by means of x-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and mercury intrusion porosimetry (MIP). Results indicate that the pore structure of concrete after sulfate exposure possesses the fractal feature. The OPC concrete presents more complex pore internal surface, higher porosity and less micro-pores than the concrete incorporating fly ash and GBFS. Portlandite in OPC concrete and OPC-FA concrete is mainly converted to gypsum; while for OPC-GBFS concrete, both gypsum and ettringite are formed. In the cyclic sulfate environment, repeated hydration and dehydration of sulfates produce the expansive stress in pores, aggravating the demolishment of concrete structure.
Trace-Based Microanalytic Measurement of Self-Regulated Learning Processes
ERIC Educational Resources Information Center
Siadaty, Melody; Gaševic, Dragan; Hatala, Marek
2016-01-01
To keep pace with today's rapidly growing knowledge-driven society, productive self-regulation of one's learning processes are essential. We introduce and discuss a trace-based measurement protocol to measure the effects of scaffolding interventions on self-regulated learning (SRL) processes. It guides tracing of learners' actions in a learning…
USDA-ARS?s Scientific Manuscript database
Araucaria angustifolia is a conifer species found in South American subtropical forests that comprises less than 3% of the native vegetation. Thus, little is known concerning the accumulation of nutritional elements in its needles. In this study, scanning electron microscopy (SEM) coupled with energ...
Practices of Grading: An Ethnographic Study of Educational Assessment
ERIC Educational Resources Information Center
Kalthoff, Herbert
2013-01-01
The school as an institution assumes that students' grades are constituted by their assessments. This paper examines the background of this presupposition and provides a micro-analytical perspective of the grading practice of teachers in German High Schools ("Gymnasium"). This paper conceptualises the theoretical framework of the…
Immunoaffinity chromatography: an introduction to applications and recent developments
Moser, Annette C
2010-01-01
Immunoaffinity chromatography (IAC) combines the use of LC with the specific binding of antibodies or related agents. The resulting method can be used in assays for a particular target or for purification and concentration of analytes prior to further examination by another technique. This review discusses the history and principles of IAC and the various formats that can be used with this method. An overview is given of the general properties of antibodies and of antibody-production methods. The supports and immobilization methods used with antibodies in IAC and the selection of application and elution conditions for IAC are also discussed. Several applications of IAC are considered, including its use in purification, immunodepletion, direct sample analysis, chromatographic immunoassays and combined analysis methods. Recent developments include the use of IAC with CE or MS, ultrafast immunoextraction methods and the use of immunoaffinity columns in microanalytical systems. PMID:20640220
NASA Technical Reports Server (NTRS)
Ross, M. D.; Pote, K. G.; Rarey, K. E.; Verma, L. M.
1981-01-01
The gravity receptors of all vertebrates utilize a 'test mass' consisting of a complex arrangement of mineral and organic substance that lies over the sensory receptor areas. In most vertebrates, the mineral is a polymorph of calcium carbonate in the form of minute, single crystals called otoconia. An investigation is conducted to determine the number of proteins in otoconial complexes and their molecular weights. The investigation makes use of a microdisk gel electrophoresis method reported by Gainer (1971). The most important finding of the reported research is that analysis of the proteins of the organic material of the otoconial complexes is possible when sensitive microanalytical methods are employed. Further modification of the basic technique employed and the inclusion of other sensitive staining methods should mean that, in the future, protein separation by molecular weight will be possible in sample pools containing only two otoconial masses.
Scalzullo, Stefania; Mondal, Kartick; Witcomb, Mike; Deshmukh, Amit; Scurrell, Mike; Mallick, Kaushik
2008-02-20
A single-step synthesis route is described for the preparation of a metal-polymer composite in which palladium acetate and meta-amino benzoic acid were used as the precursors for palladium nanoparticles and poly(meta-amino benzoic acid) (PABA). The palladium nanoparticles were found to be uniformly dispersed and highly stabilized throughout the macromolecule matrix. The resultant composite material was characterized by means of different techniques, such as IR and Raman spectroscopy, which provided information regarding the chemical structure of the polymer, whereas electron microscopy images yielded information regarding the morphology of the composite material and the distribution of the metal particles in the composite material. The composite material was used as a catalyst for the ethylene hydrogenation reaction and showed catalytic activity at higher temperatures. TEM studies confirmed the changed environment of the nanoparticles at these temperatures.
Nassar, Ekhlass; El-Badry, Yaser Abdel-Moemen; El Kazaz, Hagar
2016-01-01
Chalcone (3) has been synthesized as a new chalcone derivative bearing benzofuran moiety at 1 position. Such chalcone was used as a model dielectrophile applied to react with some nucleophiles such as 5-amino pyrazoles, 5-amino-1,2,4-triazole, 2-aminobenzimidazole, and 6-uraciles under Michael reaction conditions and resulted in a new series of fused pyrimidines such as pyrazolo[1,5-a]pyrimidines 7a-e, [1,2,4]-triazolo[1,5-a]pyrimidine 9, pyrimido[1,2-a]benzimidazole 11, and synthesis of pyrido[2,3-d]pyrimidinones 13a and b. The structures of the synthesized target heterocyclic compounds were confirmed by microanalytical and spectral data such as Fourier transform (FT)-IR, (1)H-NMR, and MS spectra. The newly synthesized compounds were evaluated for their anti-inflammatory and antimicrobial activities; most showed significant activities.
Otero-Fernández, Mara; Cocho, José Ángel; Tabernero, María Jesús; Bermejo, Ana María; Bermejo-Barrera, Pilar; Moreda-Piñeiro, Antonio
2013-06-19
A micro-analytical method based on spotting urine samples (20μL) onto blood/urine spot collection cards followed by air-drying and extraction (dried urine spot, DUS) was developed and validated for the screening/confirmation assay of morphine, 6-methylacetylmorphine (6-MAM), codeine, cocaine and benzoylecgonine (BZE). Acetonitrile (3 mL) was found to be a useful solvent for target extraction from DUSs under an orbital-horizontal stirring at 180 rpm for 10 min. Determinations were performed by direct electrospray ionization tandem mass spectrometry (ESI-MS/MS) under positive electrospray ionization conditions, and by using multiple reaction monitoring (MRM) with one precursor ion/product ion transition for the identification and quantification (deuterated analogs of each target as internal standards) of each analyte. The limits of detection of the method were 0.26, 0.94, 1.5, 1.1, and 2.0 ng mL(-1), for cocaine, BZE, codeine, morphine and 6-MAM, respectively; whereas, relative standard deviations of intra- and inter-day precision were lower than 8 and 11%, respectively, and intra- and inter-day analytical recoveries ranged from 94±4 to 105±3%. The small volume of urine required (20 μL), combined with the simplicity of the analytical technique makes it a useful procedure for screening/quantifying drugs of abuse. The method was successfully applied to the analysis of urine from polydrug abusers. Copyright © 2013 Elsevier B.V. All rights reserved.
The Interactional Management of Claims of Insufficient Knowledge in English Language Classrooms
ERIC Educational Resources Information Center
Sert, Olcay; Walsh, Steve
2013-01-01
This paper primarily investigates the interactional unfolding and management of "claims of insufficient knowledge" (Beach and Metzger 1997) in two English language classrooms from a multi-modal, conversation-analytic perspective. The analyses draw on a close, micro-analytic account of sequential organisation of talk as well as on various…
Using Microanalytical Simulation Methods in Educational Evaluation: An Exploratory Study
ERIC Educational Resources Information Center
Sondergeld, Toni A.; Beltyukova, Svetlana A.; Fox, Christine M.; Stone, Gregory E.
2012-01-01
Scientifically based research used to inform evidence based school reform efforts has been required by the federal government in order to receive grant funding since the reenactment of No Child Left Behind (2002). Educational evaluators are thus faced with the challenge to use rigorous research designs to establish causal relationships. However,…
ERIC Educational Resources Information Center
Ingram, Jenni
2014-01-01
This article examines the shifts in attention and focus as one teacher introduces and explains an image that represents the processes involved in a numeric problem that his students have been working on. This paper takes a micro-analytic approach to examine how the focus of attention shifts through what the teacher and students do and say in the…
ERIC Educational Resources Information Center
Cleary, Timothy J.; Dong, Ting; Artino, Anthony R., Jr.
2015-01-01
This study examined within-group shifts in the motivation beliefs and regulatory processes of second-year medical students as they engaged in a diagnostic reasoning activity. Using a contextualized assessment methodology called self-regulated learning microanalysis, the authors found that the 71 medical student participants showed statistically…
Bullying in Context: Stories of Bullying on an Internet Discussion Board
ERIC Educational Resources Information Center
Osvaldsson, Karin
2011-01-01
The paper examines how young people describe experiences of bullying when participating in an Internet community dedicated to young people experiencing mental health problems. The micro-analytic focus demonstrates how young people construct their identities in relation to their telling about their experiences of being victims of bullying,…
Tensions in the Biology Laboratory: What Are They?
ERIC Educational Resources Information Center
Tan, Aik-Ling
2008-01-01
The purpose of this paper is to identify tensions in teacher-student interaction in a high school biology laboratory. Using micro-analytic analysis of classroom talk, the interaction between the students and a teacher working in the biology laboratory session on "Reproduction in Plants" is studied. The two tensions highlighted here are…
Affordances for Participation: Children's Appropriation of Rules in a Reggio Emilia School
ERIC Educational Resources Information Center
Martin, Cathrin; Evaldsson, Ann-Carita
2012-01-01
This study explores how young children appropriate school rules and what opportunities for active participation are afforded in a Reggio Emilia elementary classroom with particular interest in the interactional and communicative competences children display in situated practice. An ethnographic and microanalytic approach is used to study how the…
Late-Preterm Birth, Maternal Symptomatology, and Infant Negativity
Voegtline, Kristin M.; Stifter, Cynthia A.
2010-01-01
The present study examined infant negativity and maternal symptomatology by term status in a predominately low-income, rural sample of 132 infants (66 late-preterm) and their mothers. Late-preterm and term infants were group-matched by race, income, and maternal age. Maternal depression and anxiety symptoms were measured with the Brief Symptom Inventory 18 (BSI-18) when infants were 2 and 6 months of age. Also at 6 months, infant negativity was assessed by global observer ratings, maternal ratings, and microanalytic behavioral coding of fear and frustration. Results indicate that after controlling for infant age, late-preterm status predicted higher ratings of infant negativity by mothers, but not by global observers or microanalytic coding, despite a positive association in negativity across the three measures. Further, mothers of late-preterm infants reported more elevated and chronic co-morbid symptoms of depression and anxiety, which in turn, was related to concurrent maternal ratings of their infant’s negativity. Mothers response to late-preterm birth and partiality in the assessment of their infant’s temperament is discussed. PMID:20732715
New techniques for imaging and analyzing lung tissue.
Roggli, V L; Ingram, P; Linton, R W; Gutknecht, W F; Mastin, P; Shelburne, J D
1984-01-01
The recent technological revolution in the field of imaging techniques has provided pathologists and toxicologists with an expanding repertoire of analytical techniques for studying the interaction between the lung and the various exogenous materials to which it is exposed. Analytical problems requiring elemental sensitivity or specificity beyond the range of that offered by conventional scanning electron microscopy and energy dispersive X-ray analysis are particularly appropriate for the application of these newer techniques. Electron energy loss spectrometry, Auger electron spectroscopy, secondary ion mass spectrometry, and laser microprobe mass analysis each offer unique advantages in this regard, but also possess their own limitations and disadvantages. Diffraction techniques provide crystalline structural information available through no other means. Bulk chemical techniques provide useful cross-checks on the data obtained by microanalytical approaches. It is the purpose of this review to summarize the methodology of these techniques, acknowledge situations in which they have been used in addressing problems in pulmonary toxicology, and comment on the relative advantages and disadvantages of each approach. It is necessary for an investigator to weigh each of these factors when deciding which technique is best suited for any given analytical problem; often it is useful to employ a combination of two or more of the techniques discussed. It is anticipated that there will be increasing utilization of these technologies for problems in pulmonary toxicology in the decades to come. Images FIGURE 3. A FIGURE 3. B FIGURE 3. C FIGURE 3. D FIGURE 4. FIGURE 5. FIGURE 7. A FIGURE 7. B FIGURE 8. A FIGURE 8. B FIGURE 8. C FIGURE 9. A FIGURE 9. B FIGURE 10. PMID:6090115
Development in Dialogic Teaching Skills: A Micro-Analytic Case Study of a Pre-Service ITA
ERIC Educational Resources Information Center
Rine, Emily F.
2009-01-01
As universities have come to depend increasingly on international, non-native English-speaking graduate students to teach many of the undergraduate courses, they have created International Teaching Assistant (ITA) programs in order to provide ITAs with the cultural, pedagogical, and linguistic skills needed to instruct in an American university…
ERIC Educational Resources Information Center
Wise, Alyssa Friend; Perera, Nishan; Hsiao, Ying-Ting; Speer, Jennifer; Marbouti, Farshid
2012-01-01
This study presents three case studies of students' participation patterns in an online discussion to address the gap in our current understanding of how "individuals" experience asynchronous learning environments. Cases were constructed via microanalysis of log-file data, post contents, and the evolving discussion structure. The first student was…
[Microanalytical determinations of gold alloys for fixed dentures].
Lotito, M; Negri, P; Fraschini, M
1993-01-01
In this work the authors analyse gold alloys for fixed prosthesis by X-ray spectrometry in energy dispersion (EDS). The results of this analysis, given in graphic and table form, show remarkable differences in alloy composition. For this reason recommended dentists are to be attentive and severe in the control of gold alloys for fixed prosthesis.
A microanalytical method for the determination of dihydroquercetin in wood
Richard W. Hemingway; W.E. Hillis
1969-01-01
Dihydroquercetin (3,5,7,3',4'-pentahydroxyflavanone) is a major constituent of the alcohol soluble materials in the wood of Larch species and the wood and bark of Douglas-fir. A sensitive analytical method is needed to enable rapid assessment of amounts of dihydroquercetin (DHQ) when processing commercial materials and for studies of biochemical aspects of...
ERIC Educational Resources Information Center
Meier, Matt E.; Smeekens, Bridget A.; Silvia, Paul J.; Kwapil, Thomas R.; Kane, Michael J.
2018-01-01
The association between working memory capacity (WMC) and the antisaccade task, which requires subjects to move their eyes and attention away from a strong visual cue, supports the claim that WMC is partially an attentional construct (Kane, Bleckley, Conway, & Engle, 2001; Unsworth, Schrock, & Engle, 2004). Specifically, the…
Becker, J Susanne; Mounicou, Sandra; Zoriy, Miroslav V; Becker, J Sabine; Lobinski, Ryszard
2008-09-15
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) have become established as very efficient and sensitive biopolymer and elemental mass spectrometric techniques for studying metal-binding proteins (metalloproteins) in life sciences. Protein complexes present in rat tissues (liver and kidney) were separated in their native state in the first dimension by blue native gel electrophoresis (BN-PAGE). Essential and toxic metals, such as zinc, copper, iron, nickel, chromium, cadmium and lead, were detected by scanning the gel bands using quadrupole LA-ICP-MS with and without collision cell as a microanalytical technique. Several proteins were identified by using MALDI-TOF-MS together with a database search. For example, on one protein band cut from the BN-PAGE gel and digested with the enzyme trypsin, two different proteins - protein FAM44B and cathepsin B precursor - were identified. By combining biomolecular and elemental mass spectrometry, it was possible to characterize and identify selected metal-binding rat liver and kidney tissue proteins.
Xu, Xiaoli; Zhang, Song; Chen, Hui; Kong, Jilie
2009-11-15
Micro-total analysis systems (microTAS) integrate different analytical operations like sample preparation, separation and detection into a single microfabricated device. With the outstanding advantages of low cost, satisfactory analytical efficiency and flexibility in design, highly integrated and miniaturized devices from the concept of microTAS have gained widespread applications, especially in biochemical assays. Electrochemistry is shown to be quite compatible with microanalytical systems for biochemical assays, because of its attractive merits such as simplicity, rapidity, high sensitivity, reduced power consumption, and sample/reagent economy. This review presents recent developments in the integration of electrochemistry in microdevices for biochemical assays. Ingenious microelectrode design and fabrication methods, and versatility of electrochemical techniques are involved. Practical applications of such integrated microsystem in biochemical assays are focused on in situ analysis, point-of-care testing and portable devices. Electrochemical techniques are apparently suited to microsystems, since easy microfabrication of electrochemical elements and a high degree of integration with multi-analytical functions can be achieved at low cost. Such integrated microsystems will play an increasingly important role for analysis of small volume biochemical samples. Work is in progress toward new microdevice design and applications.
From Dates to Rates: The Emergence of Integrated Geochronometry (Invited)
NASA Astrophysics Data System (ADS)
Hodges, K. V.; Adams, B. A.; Bohon, W.; Cooper, F. J.; Tripathy-Lang, A.; Van Soest, M. C.; Watson, E. B.; Young, K. E.
2013-12-01
Many applications of isotope geochemistry to telling time have involved geochronology - the measurement of the crystallization age of a mineral - or thermochronology, the measurement of the time at which a mineral cooled through an estimated closure temperature. The resulting data typically provide one or two points along an evolving temperature-time (Tt) path. Unfortunately, many problems require a richer knowledge of longer portions of the Tt path and thus the integrated application of multiple chronometers to individual minerals or suites of minerals from a particular sample or outcrop. In this presentation, we review some of the most recent advances in geochronometry, the direct dating of rates of a wide range of geologic processes on timescales ranging from seconds (in the case of bolide impact on Earth and elsewhere in the Solar System) to hundreds of millions of years (in the case of very slowly cooled Precambrian terrains). For all chronometers except those based on the production of fission tracks, our capacity to extract precise and accurate Tt paths depends on a good understanding of the kinetics of diffusive loss of radiogenic daughter isotopes. Laboratory experiments have substantially improved our understanding of nominal kinetic parameters in recent years, but our increased use of new methods for their determination (e.g., Rutherford backscattering spectroscopy, nuclear reaction analysis, and laser depth profiling) have demonstrated complexities related to compositional variations and asymmetric diffusion. At the same time, a growing number of geologic applications of these chronometers illustrate the importance of deformation history and radiation damage in modifying effective diffusion parameters. Such factors have two important implications for geochronometry. First, they suggest that studies of multiple minerals employing multiple isotopic methods - integrated geochronometry - are likely to produce more robust constraints on Tt paths than those involving the application of a single geochronometer. Second, they suggest that characterization of the chemistry and structure of minerals prior to dating may become standard procedure in most laboratories. Some of the most valuable constraints on the cooling histories of individual crystals come from microanalytical techniques that illuminate natural diffusive loss profiles, either directly (e.g., laser and ion microprobe mapping) or indirectly (e.g., 40Ar/39Ar and 4He/3He incremental heating experimentation). For most materials and most cooling histories, direct microanalytical approaches yield less spatial resolution and thus a poorer resolution of the cooling history. On the other hand, the extraction of cooling histories based on data obtained through indirect techniques requires significant simplifying assumptions regarding the three-dimensional distribution of parent isotopes that are not always warranted. Studies that integrate such techniques, rare in the literature thus far, are ushering in a new era of quantitative geochronometry.
2010-01-22
Davidson, Y.Y.; McWhorter, C.S.; Soper , S.A.; McCarley, R.L. Surface modification of poly(methyl methacrylate) used in the fabrication of microanalytical...J.; Hupert, M.L.; Patterson, D.; Gottert, J.; McCarley, R.L.; Nikitopoulos, D.; Murphy, M.C.; Soper , S.A. Highly efficient circulating tumor cell
NASA Astrophysics Data System (ADS)
Campos, G. N.; Solórzano, I. G.
The present work has as its objective a microanalytical study of a metallic archeological artifact using methods of optical microscopy (MO), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The object of the study corresponds to an agricultural tool (a hoe) from the Brazilian colonial period, dating from the late XVIII century, removed from an archeological site (Sítio Rochedo) in excavations conducted by researchers of the Brazilian Archeological Institute. Sample preparation required a meticulous procedure in view of the fragility of the object. The hoe has been suffering the action of oxidation-corrosion over the years, thereby making the impregnation of mineral sediments possible. A detailed metallographic analysis, coupled with spectroscopic SEM and TEM measurements, allows one to conclude that the hoe was made of puddle iron, retaining significant amount of slag. The hoe was probably made by African slaves who had metallurgical knowledge acquired from their ancestors under Portuguese colonization. The equi-axial microstructure of ferrite grains, together with the alignment of slag inclusions, strongly suggest a metal forming procedure conducted on low-carbon puddled iron, followed by heat treatment and then cooling at a slow rate.
Cytology of pollutant metals in marine invertebrates: A review of microanalytical applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nott, J.A.
1991-03-01
x-ray microanalysis (XRMA) is customized for investigations of the metabolic and detoxification strategies of heavy metals taken by marine organisms from polluted environments. Sites of uptake, intracellular accumulation, transport and excretion are visualized, analysed and quantified. Cryopreparation techniques are required to prevent the translocation or loss from specimens of soluble metal species. In marine invertebrates, metals are detoxified by systems of chemical binding and intracellular compartmentalization. XRMA investigations have concentrated on marine molluscs and crustaceans and even within these restricted groups there are marked inter-species differences in the biochemical and cytological processes which reduce metal bioavailability. Some detoxification systems alsomore » protect the carnivores which ingest the metal-laden tissues of the prey. This results in the bioreduction of metals along a food chain. These processes are investigated by XRMA which can be tuned to observe the complex interactions which operate at all levels within and between the biota and polluted environments. 90 refs.« less
Integrated Experimental and Modelling Research for Non-Ferrous Smelting and Recycling Systems
NASA Astrophysics Data System (ADS)
Jak, Evgueni; Hidayat, Taufiq; Shishin, Denis; Mehrjardi, Ata Fallah; Chen, Jiang; Decterov, Sergei; Hayes, Peter
The chemistries of industrial pyrometallurgical non-ferrous smelting and recycling processes are becoming increasingly complex. Optimisation of process conditions, charge composition, temperature, oxygen partial pressure, and partitioning of minor elements between phases and different process streams require accurate description of phase equilibria and thermodynamics which are the focus of the present research. The experiments involve high temperature equilibration in controlled gas atmospheres, rapid quenching and direct measurement of equilibrium phase compositions with quantitative microanalytical techniques including electron probe X-ray microanalysis and Laser Ablation ICP-MS. The thermodynamic modelling is undertaken using computer package FactSage with the quasi-chemical model for the liquid slag phase and other advanced models. Experimental and modelling studies are combined into an integrated research program focused on the major elements Cu-Pb-Fe-O-Si-S system, slagging Al, Ca, Mg and other minor elements. The ongoing development of the research methodologies has resulted in significant advances in research capabilities. Examples of applications are given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castellanos, Sergio; Ekstrom, Kai E.; Autruffe, Antoine
2016-05-01
In recent years, high-performance multicrystalline silicon (HPMC-Si) has emerged as an attractive alternative to traditional ingot-based multicrystalline silicon (mc-Si), with a similar cost structure but improved cell performance. Herein, we evaluate the gettering response of traditional mc-Si and HPMC-Si. Microanalytical techniques demonstrate that HPMC-Si and mc-Si share similar lifetime-limiting defect types but have different relative concentrations and distributions. HPMC-Si shows a substantial lifetime improvement after P-gettering compared with mc-Si, chiefly because of lower area fraction of dislocation-rich clusters. In both materials, the dislocation clusters and grain boundaries were associated with relatively higher interstitial iron point-defect concentrations after diffusion, which ismore » suggestive of dissolving metal-impurity precipitates. The relatively fewer dislocation clusters in HPMC-Si are shown to exhibit similar characteristics to those found in mc-Si. Given similar governing principles, a proxy to determine relative recombination activity of dislocation clusters developed for mc-Si is successfully transferred to HPMC-Si.« less
Sayen, Stéphanie; Guillon, Emmanuel
2014-07-15
In this study, a combination of column experiments and micro-analytical techniques exploiting synchrotron generated X-rays was used to assess the effect of aging time on Zn retention and mobility in the specific case of calcareous soils (high pH value, ≈ 8). The samples were subjected to aging for 2, 6, 17, and 63 days. Freshly added Zn mainly existed as an exchangeable form, and this metal fraction decreased over time due to Zn redistribution to stronger binding sites. Thus, after aging for 63 days, 45% of Zn is remobilized from exchangeable sites to stronger binding sites. μ-XRF maps were used to find correlations among elements in the sample, and μ-XANES spectra were recorded to precise Zn speciation. These analyses evidenced an increasing partitioning of Zn from organic matter to iron oxy(hydr)oxides over time. The occurrence of hydrozincite is evidenced in all samples. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Dibenedetto, Maria K.
2009-12-01
The present investigation sought to examine differences in the self-regulated learning processes and beliefs of students who vary in their level of expertise in science and to investigate if there are gender differences. Participants were 51 ethnically diverse 11th grade students from three parochial high schools consisting of 34 females and 17 males. Students were grouped as either expert, non-expert, or at-risk based on the school's classification. Students were provided with a short passage on tornados to read and study. The two achievement measures obtained were the Tornado Knowledge Test : ten short-answer questions and the Conceptual Model Test : a question which required the students to draw and describe the three sequential images of tornado development from the textual description of the three phases. A microanalytic methodology was used which consists of asking a series of questions aimed at assessing students' psychological behaviors, feelings, and thoughts in each of Zimmerman's three phases of self-regulation: forethought, performance, and reflection. These questions were asked of the students while they were engaged in learning. Two additional measures were obtained: the Rating Student Self-Regulated Learning Outcomes: A Teacher Scale (RSSRL) and the Self-Efficacy for Self-Regulated Learning (SELF). Analysis of variance, chi square analysis, and post hoc test results showed significant expertise differences, large effect sizes, and positive linear trends on most measures. Regarding gender, there were significant differences on only two measures. Correlational analyses also revealed significant relations among the self-regulatory subprocesses across the three phases. The microanalytic measures were combined across the three phases and entered into a regression formula to predict the students' scores on the Tornado Knowledge Test. These self-regulatory processes explained 77% of the variance in the Tornado Knowledge Test, which was a significant and substantial effect. Prior to this investigation, there have been no studies which have tested Zimmerman's three phase model on an academic task, such as science, within an expertise framework. Implications from the present study suggest that students varying in expertise level in science achievement also vary in self-regulatory behavior, and that gender is not a significant factor.
Birosca, S; Ding, R; Ooi, S; Buckingham, R; Coleman, C; Dicks, K
2015-06-01
Nowadays flow-forming has become a desired near net shape manufacturing method as it provides excellent mechanical properties with improved surface finish and significant manufacturing cost reduction. However, the material is subjected to excessive plastic deformation during flow-forming process, generating a very fine and complex microstructure. In addition, the intense dislocation density and residual stress that is generated in the component during processing makes the microstructure characterisation using conventional micro-analytical tools challenging. Thus, the microstructure/property relationship study in such a material is rather difficult. In the present study a flow-formed Cr-Mo-V steel nanostructure and crystallographic texture were characterised by means of Transmission Kikuchi Diffraction (TKD). Here, TKD is shown to be a powerful technique in revealing very fine martensite laths within an austenite matrix. Moreover, fine precipitates in the order of 20-70 nm on the martensite lath boundaries were clearly imaged and characterised. This greatly assisted in understanding the preferable site formation of the carbides in such a complex microstructure. The results showed that the actual TKD spatial resolution was in the range of 5-10 nm using 25 kV for flow-formed Cr-Mo-V steel. Copyright © 2015 Elsevier B.V. All rights reserved.
Zhu, Yumin; Zhang, Hua; Shao, Liming; He, Pinjing
2015-01-01
Excessive inter-contamination with heavy metals hampers the application of biological treatment products derived from mixed or mechanically-sorted municipal solid waste (MSW). In this study, we investigated fine particles of <2mm, which are small fractions in MSW but constitute a significant component of the total heavy metal content, using bulk detection techniques. A total of 17 individual fine particles were evaluated using synchrotron radiation-based micro-X-ray fluorescence and micro-X-ray diffraction. We also discussed the association, speciation and source apportionment of heavy metals. Metals were found to exist in a diffuse distribution with heterogeneous intensities and intense hot-spots of <10 μm within the fine particles. Zn-Cu, Pb-Fe and Fe-Mn-Cr had significant correlations in terms of spatial distribution. The overlapped enrichment, spatial association, and the mineral phases of metals revealed the potential sources of fine particles from size-reduced waste fractions (such as scraps of organic wastes or ceramics) or from the importation of other particles. The diverse sources of heavy metal pollutants within the fine particles suggested that separate collection and treatment of the biodegradable waste fraction (such as food waste) is a preferable means of facilitating the beneficial utilization of the stabilized products. Copyright © 2014. Published by Elsevier B.V.
Prospects for Practical Laser Ablation U/Pb and (U-Th)/He Double-Dating (LADD) of Detrital Apatite
NASA Astrophysics Data System (ADS)
Horne, A.; Hodges, K. V.; Van Soest, M. C.
2017-12-01
A laser ablation micro-analytical technique for (U-Th)/He dating has been shown to be an effective approach to the thermochronologic study of detrital zircons (Tripathy-Lang et al., J. Geophys. Res., 2013), while Evans et al. (J. Anal. At. Spectrom., 2015) and Horne et al. (Geochim. Cosmochim. Acta, 2016) demonstrated how the technique could be modified to enable laser ablation U/Pb and (U-Th)/He double-dating (LADD) of detrital zircon and titanite. These successes beg the question of whether or not LADD is viable for another commonly encountered detrital mineral: apatite. Exploratory LADD studies in Arizona State University's Group 18 Laboratories - using Durango fluorapatite, apatite from the Fish Canyon tuff, and detrital apatite from modern fluvial sediments in the eastern Sierra Nevada of California - illustrate that the method is indeed viable for detrital apatite. However, the method may not be appropriate for all detrital samples. For example, many apatite grains encountered in detrital samples from young orogenic settings have low concentrations of U and Th and small crystal sizes. This can lead to imprecise laser ablation (U-Th)/He dates, especially for very young grains potentially obscuring or inhibiting relevant interpretations of the data set.
Temperature programmable microfabricated gas chromatography column
Manginell, Ronald P.; Frye-Mason, Gregory C.
2003-12-23
A temperature programmable microfabricated gas chromatography column enables more efficient chemical separation of chemical analytes in a gas mixture by the integration of a resistive heating element and temperature sensing on the microfabricated column. Additionally, means are provided to thermally isolate the heated column from their surroundings. The small heat capacity and thermal isolation of the microfabricated column improves the thermal time response and power consumption, both important factors for portable microanalytical systems.
A semi-microanalytical method is described for desorbing contaminants from Hopcalite , an oxide catalyst used in the purification of submarine...contaminants are desorbed from the Hopcalite by passing pressurized steam through a column of the catalyst. The various compounds are eluted from the column...appropriate solvent. Infrared spectral analyses of contaminants desorbed from Hopcalite following its use as a catalyst for the oxidation of pure
Exploring Clinical Reasoning in Novices: A Self-Regulated Learning Microanalytic Approach
2013-07-05
important medical school performance outcomes. Self-Regulated Learning Microanalysis Social-cognitive researchers have defined SRL as “the...It is important to note at the outset, however, that our plan was not to use SRL microanalysis to comprehensively assess students’ reasoning skills...2.97 1.31 .29* 1.39 .51 .32 † 22 Discussion This study was important because it represents an initial attempt to examine SRL
Crowell, Sheila E; Baucom, Brian R; McCauley, Elizabeth; Potapova, Natalia V; Fitelson, Martha; Barth, Heather; Smith, Cindy J; Beauchaine, Theodore P
2013-01-01
According to developmental theories of self-injury, both child characteristics and environmental contexts shape and maintain problematic behaviors. Although progress has been made toward identifying biological vulnerabilities to self-injury, mechanisms underlying psychosocial risk have received less attention. In the present study, we compared self-injuring adolescents (n = 17) with typical controls (n = 20) during a mother-child conflict discussion. Dyadic interactions were coded using both global and microanalytic systems, allowing for a highly detailed characterization of mother-child interactions. We also assessed resting state psychophysiological regulation, as indexed by respiratory sinus arrhythmia (RSA). Global coding revealed that maternal invalidation was associated with adolescent anger. Furthermore, maternal invalidation and coerciveness were both related to adolescent opposition/defiance. Results from the microanalytic system indicated that self-injuring dyads were more likely to escalate conflict, suggesting a potential mechanism through which emotion dysregulation is shaped and maintained over time. Finally, mother and teen aversiveness interacted to predict adolescent resting RSA. Low-aversive teens with highly aversive mothers had the highest RSA, whereas teens in high-high dyads showed the lowest RSA. These findings are consistent with theories that emotion invalidation and conflict escalation are possible contextual risk factors for self-injury.
Crowell, Sheila E.; Baucom, Brian R.; McCauley, Elizabeth; Potapova, Natalia V.; Fitelson, Martha; Barth, Heather; Smith, Cindy J.; Beauchaine, Theodore P.
2013-01-01
OBJECTIVE According to developmental theories of self-injury, both child characteristics and environmental contexts shape and maintain problematic behaviors. Although progress has been made toward identifying biological vulnerabilities to self-injury, mechanisms underlying psychosocial risk have received less attention. METHOD In the present study, we compared self-injuring adolescents (n=17) with typical controls (n=20) during a mother-child conflict discussion. Dyadic interactions were coded using both global and microanalytic systems, allowing for a highly detailed characterization of mother-child interactions. We also assessed resting state psychophysiological regulation, as indexed by respiratory sinus arrhythmia (RSA). RESULTS Global coding revealed that maternal invalidation was associated with adolescent anger. Furthermore, maternal invalidation and coerciveness were both related to adolescent opposition/defiance. Results from the microanalytic system indicated that self-injuring dyads were more likely to escalate conflict, suggesting a potential mechanism through which emotion dysregulation is shaped and maintained over time. Finally, mother and teen aversiveness interacted to predict adolescent resting RSA. Low-aversive teens with highly aversive mothers had the highest RSA, whereas teens in high-high dyads showed the lowest RSA. CONCLUSIONS These findings are consistent with theories that emotion invalidation and conflict escalation are possible contextual risk factors for self-injury. PMID:23581508
Blending Curriculum with Research in an Undergraduate Petrology Course: A Recipe for Success?
NASA Astrophysics Data System (ADS)
Gonzales, D. A.; Semken, S. C.
2009-12-01
In this presentation we discuss the design, key curricular elements, and strengths and weaknesses of an undergraduate course in the Department of Geosciences at Fort Lewis College that was recast to focus on petrologic studies in the Southern Rocky Mountains and Colorado Plateau. Redesign of the course retained an additional petrology option in the curriculum and offered undergraduates a richer opportunity to learn and practice science-research skills. This course emphasizes direct engagement and student responsibility for learning: traits valuable in transforming undergraduates into experienced and competent professionals. Previous offerings of this course have been field based, each having a unique context for research. The primary pedagogical strategy was to blend field studies with inquiry to promote authentic, student-driven research. Students applied and tested their prior knowledge, and used observational and interpretative skills, to investigate major regional rock bodies and geologic histories, as opposed to completing a set of activities with predefined outcomes. In 2010, students will work on an NSF-funded project to test hypotheses on the origin and evolution of mafic magmas of the Navajo volcanic field. This research will most involve petrographic and microanalytical techniques on rock specimens with a subordinate amount of field work. Formative and summative assessment data for previous offerings of this course reveal that these classes have an impact on the academic interests and future successes of students. Assessment data collected from students, and other faculty that interacted with them, indicate that students in this research-oriented petrology course have gained a greater understanding of the elements and complications of research. They have also developed geologic skills and a passion for geologic research that have influenced subsequent academic (and later career) paths of the students.
HOLST, Alexandra Ioana; HOLST, Stefan; HIRSCHFELDER, Ursula; von SECKENDORFF, Volker
2012-01-01
Objective The objective of this study was to investigate the applicability of micro-analytical methods with high spatial resolution to the characterization of the composition and corrosion behavior of two bracket systems. Material and methods The surfaces of six nickel-free brackets and six nickel-containing brackets were examined for signs of corrosion and qualitative surface analysis using an electron probe microanalyzer (EPMA), prior to bonding to patient's tooth surfaces and four months after clinical use. The surfaces were characterized qualitatively by secondary electron (SE) images and back scattered electron (BSE) images in both compositional and topographical mode. Qualitative and quantitative wavelength-dispersive analyses were performed for different elements, and by utilizing qualitative analysis the relative concentration of selected elements was mapped two-dimensionally. The absolute concentration of the elements was determined in specially prepared brackets by quantitative analysis using pure element standards for calibration and calculating correction-factors (ZAF). Results Clear differences were observed between the different bracket types. The nickel-containing stainless steel brackets consist of two separate pieces joined by a brazing alloy. Compositional analysis revealed two different alloy compositions, and reaction zones on both sides of the brazing alloy. The nickel-free bracket was a single piece with only slight variation in element concentration, but had a significantly rougher surface. After clinical use, no corrosive phenomena were detectable with the methods applied. Traces of intraoral wear at the contact areas between the bracket slot and the arch wire were verified. Conclusion Electron probe microanalysis is a valuable tool for the characterization of element distribution and quantitative analysis for corrosion studies. PMID:23032212
Tracking Radionuclide Fractionation in the First Atomic Explosion Using Stable Elements
Bonamici, Chloë E.; Hervig, Richard L.; Kinman, William S.
2017-08-25
Compositional analysis of postdetonation fallout is a tool for forensic identification of nuclear devices. However, the relationship between device composition and fallout composition is difficult to interpret because of the complex combination of physical mixing, nuclear reactions, and chemical fractionations that occur in the chaotic nuclear fireball. By using a combination of in situ microanalytical techniques (electron microprobe analysis and secondary ion mass spectrometry), we show that some heavy stable elements (Rb, Sr, Zr, Ba, Cs, Ba, La, Ce, Nd, Sm, Dy, Lu, U, Th) in glassy fallout from the first nuclear test, Trinity, are reliable chemical proxies for radionuclidesmore » generated during the explosion. Stable-element proxies show that radionuclides from the Trinity device were chemically, but not isotopically, fractionated by condensation. Moreover, stable-element proxies delineate chemical fractionation trends that can be used to connect present-day fallout composition to past fireball composition. Stable-element proxies therefore offer a novel approach for elucidating the phenomenology of the nuclear fireball as it relates to the formation of debris and the fixation of device materials within debris.« less
Tracking Radionuclide Fractionation in the First Atomic Explosion Using Stable Elements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonamici, Chloë E.; Hervig, Richard L.; Kinman, William S.
Compositional analysis of postdetonation fallout is a tool for forensic identification of nuclear devices. However, the relationship between device composition and fallout composition is difficult to interpret because of the complex combination of physical mixing, nuclear reactions, and chemical fractionations that occur in the chaotic nuclear fireball. By using a combination of in situ microanalytical techniques (electron microprobe analysis and secondary ion mass spectrometry), we show that some heavy stable elements (Rb, Sr, Zr, Ba, Cs, Ba, La, Ce, Nd, Sm, Dy, Lu, U, Th) in glassy fallout from the first nuclear test, Trinity, are reliable chemical proxies for radionuclidesmore » generated during the explosion. Stable-element proxies show that radionuclides from the Trinity device were chemically, but not isotopically, fractionated by condensation. Moreover, stable-element proxies delineate chemical fractionation trends that can be used to connect present-day fallout composition to past fireball composition. Stable-element proxies therefore offer a novel approach for elucidating the phenomenology of the nuclear fireball as it relates to the formation of debris and the fixation of device materials within debris.« less
The Space Shuttle Columbia Accident Investigation and Reconstruction: Two Years Later
NASA Technical Reports Server (NTRS)
McDanels, Steven J.
2005-01-01
The Space Shuttle Columbia was lost during re-entry over two years ago. Since the release of the official materials-related findings in August of 2003, additional testing and analysis of select pieces of debris has continued. Microanalytical techniques, including EMPA, ESCA, and x-ray elemental dot mapping, were employed during the initial investigation; the results related the microstructural characteristics of deposit layers to the breach location in the leading edge of the left wing. Such characteristics included deposition order, composition, and distribution. Subsequent to the original efforts, new analytical data and information, not available at the time of the primary investigation, has been generated. This data was obtained via a low-vacuum SEM, fitted not only with a light-element EDS detector, but an XRF tube as well. Essentially, for elements up to sodium, classic EDS was utilized; above sodium, XRF was used. Predominantly, the elements of interest were aluminum, titanium, chromium, iron, nickel, and copper. The findings of both old and new data are compared, and their application to the overall accident investigation detailed.
Tracking Radionuclide Fractionation in the First Atomic Explosion Using Stable Elements.
Bonamici, Chloë E; Hervig, Richard L; Kinman, William S
2017-09-19
Compositional analysis of postdetonation fallout is a tool for forensic identification of nuclear devices. However, the relationship between device composition and fallout composition is difficult to interpret because of the complex combination of physical mixing, nuclear reactions, and chemical fractionations that occur in the chaotic nuclear fireball. Using a combination of in situ microanalytical techniques (electron microprobe analysis and secondary ion mass spectrometry), we show that some heavy stable elements (Rb, Sr, Zr, Ba, Cs, Ba, La, Ce, Nd, Sm, Dy, Lu, U, Th) in glassy fallout from the first nuclear test, Trinity, are reliable chemical proxies for radionuclides generated during the explosion. Stable-element proxies show that radionuclides from the Trinity device were chemically, but not isotopically, fractionated by condensation. Furthermore, stable-element proxies delineate chemical fractionation trends that can be used to connect present-day fallout composition to past fireball composition. Stable-element proxies therefore offer a novel approach for elucidating the phenomenology of the nuclear fireball as it relates to the formation of debris and the fixation of device materials within debris.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stavinga, Drew; Jamieson, Heather; Layton-Matthews, Daniel
2017-02-01
Prairie Creek is an unmined high grade Zn-Pb-Ag deposit in the southern Mackenzie Mountains of the Northwest Territories, located in a 320 km2 enclave surrounded by the Nahanni National Park reserve. The upper portion of the quartz-carbonate-sulphide vein mineralization has undergone extensive oxidation, forming high grade zones, rich in smithsonite (ZnCO3) and cerussite (PbCO3). This weathered zone represents a significant resource and a potential component of mine waste material. This study is focused on characterizing the geochemical and mineralogical controls on metal(loid) mobility under mine waste conditions, with particular attention to the metal carbonates as a potential source of tracemore » elements to the environment. Analyses were conducted using a combination of microanalytical techniques (electron microprobe, scanning electron microscopy with automated mineralogy, laser-ablation inductively-coupled mass spectrometry, and synchrotron-based element mapping, micro-X-ray diffraction and micro-X-ray absorbance). The elements of interest included Zn, Pb, Ag, As, Cd, Cu, Hg, Sb and Se.« less
Sahani, M K; Yadava, U; Pandey, O P; Sengupta, S K
2014-05-05
A new class of oxovanadium(IV) complexes with Schiff bases derived by the condensation of 5-(phenyl/substituted phenyl)-2-hydrazino-1,3,4-thiadiazoles and indoline-2,3-dione have been prepared in ethanol in the presence of sodium acetate. Micro-analytical data, magnetic susceptibility, UV-Vis, IR, EPR and XRD spectral techniques were used to confirm the structures. Electronic absorption spectra of the complexes suggest a square-pyramidal geometry. The oxovanadium(IV) complexes have monoclinic crystal system and particle sizes were found to be in the range 18.0 nm to 24.0 nm (nano-size). In vitro antifungal activity of synthesized compounds was determined against fungi Aspergillus niger, Colletotrichum falcatum and Colletotrichum pallescence and in vitro antibacterial activity was determined by screening the compounds against Gram-negative (Escherichia coli and Salmonella typhi) and Gram-positive (Staphylococcus aureus and Bacillus subtilis) bacterial strains. The oxovanadium(IV) complexes have higher antimicrobial effect than free ligands. Copyright © 2014 Elsevier B.V. All rights reserved.
Computational Methodology for Absolute Calibration Curves for Microfluidic Optical Analyses
Chang, Chia-Pin; Nagel, David J.; Zaghloul, Mona E.
2010-01-01
Optical fluorescence and absorption are two of the primary techniques used for analytical microfluidics. We provide a thorough yet tractable method for computing the performance of diverse optical micro-analytical systems. Sample sizes range from nano- to many micro-liters and concentrations from nano- to milli-molar. Equations are provided to trace quantitatively the flow of the fundamental entities, namely photons and electrons, and the conversion of energy from the source, through optical components, samples and spectral-selective components, to the detectors and beyond. The equations permit facile computations of calibration curves that relate the concentrations or numbers of molecules measured to the absolute signals from the system. This methodology provides the basis for both detailed understanding and improved design of microfluidic optical analytical systems. It saves prototype turn-around time, and is much simpler and faster to use than ray tracing programs. Over two thousand spreadsheet computations were performed during this study. We found that some design variations produce higher signal levels and, for constant noise levels, lower minimum detection limits. Improvements of more than a factor of 1,000 were realized. PMID:22163573
Hg localisation in Tillandsia usneoides L. (Bromeliaceae), an atmospheric biomonitor
NASA Astrophysics Data System (ADS)
Amado Filho, G. M.; Andrade, L. R.; Farina, M.; Malm, O.
The Spanish moss, Tillandsia usneoides, has been applied as an atmospheric biomonitor of Hg contamination, although the mechanism of metal plant accumulation has not been understood until now. In the present work, analytical scanning electron microscopy (SEM) was used to localize Hg in T. usneoides exposed to a Hg-air-contaminated area during 15 days. After this period, Hg was determined by the flow injection mercury system, and plants were prepared for SEM observation and energy-dispersive X-ray analysis. A concentration of 2702±318 μg Hg g -1 was determined in exposed plants. The presented microanalytical results demonstrated that Hg was partly associated with atmospheric particles deposited upon the plant surface, but it was highly absorbed by the scales, stem and leaves surfaces and less absorbed by epidermal cells of T. usneoides. No Hg was detected in mesophyll parenchyma or in vascular system cells. The great surface adsorption area provided by the scales, in addition to the characteristics of T. usneoides morphology, especially of the node region, are suggested to confer the great capability of T. usneoides in Hg holding.
Microanalytical identification of barium sulphate crystals in statoliths of Chara Rhizoids
NASA Technical Reports Server (NTRS)
Schroeter, K.; Lauchli, A.; Sievers, A. J.
1979-01-01
In contrast to higher plants, Chara rhizoids contain statolith vacuoles filled with biocrystallites of BaS04 in the form of rods composed of globular subunits ca. 7 nm in diameter. The revelation of the crystallites under electron microscopy is dependent on the fixative; best structural preservation was observed after fixation in a buffered glutaraldehyde + acrolein solution; 0s04 and KMnO4 partially dissolved both the biocrystallites and synthetic BaS04.
Microfabricated thermionic detector
Lewis, Patrick R; Manginell, Ronald P; Wheeler, David R; Trudell, Daniel E
2012-10-30
A microfabricated TID comprises a microhotplate and a thermionic source disposed on the microhotplate. The microfabricated TID can provide high sensitivity and selectivity to nitrogen- and phosphorous-containing compounds and other compounds containing electronegative function groups. The microfabricated TID can be microfabricated with semiconductor-based materials. The microfabricated TID can be combined with a microfabricated separation column and used in microanalytical system for the rapid on-site detection of pesticides, chemical warfare agents, explosives, pharmaceuticals, and other organic compounds that contain nitrogen or phosphorus.
2003-06-07
The heart of a colorimetric solid phase extractor (CSPE) test kit quickly measures the concentration of the biocides silver or iodine in astronauts’ drinking water to determine whether concentrations are safe. When 10 milliliters (ml) of water is drawn through the disk, the disk will turn color (yellow in this picture for iodine) indicating the presence of the biocides. The device could someday be used to test water safety at reservoirs and water treatment plants on Earth. (photo credit: Microanalytical Instrumentation Center, Iowa State University).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vilches, J.; Lopez, A.; Martinez, M.C.
This paper discusses the value of scanning electron microscopy (SEM) and x-ray microanalysis in the classification of craniopharyngiomas. This neoplasm shows epithelial nest, cords of cuboid cells, foci of squamous metaplasia, and microcystic degeneration. SEM reveals that the epithelial cysts are lined with elongated cells that possess numerous microvilli and blebs and that some cysts are lined with polyhedral cells. The microvilli are interpreted as characteristic of the fast growing craniopharyngiomas. A microanalytical study of the calcified areas reveals the presence of magnesium, phosphorus, and calcium.
Analytical electron microscopy in mineralogy; exsolved phases in pyroxenes
Nord, G.L.
1982-01-01
Analytical scanning transmission electron microscopy has been successfully used to characterize the structure and composition of lamellar exsolution products in pyroxenes. At operating voltages of 100 and 200 keV, microanalytical techniques of x-ray energy analysis, convergent-beam electron diffraction, and lattice imaging have been used to chemically and structurally characterize exsolution lamellae only a few unit cells wide. Quantitative X-ray energy analysis using ratios of peak intensities has been adopted for the U.S. Geological Survey AEM in order to study the compositions of exsolved phases and changes in compositional profiles as a function of time and temperature. The quantitative analysis procedure involves 1) removal of instrument-induced background, 2) reduction of contamination, and 3) measurement of correction factors obtained from a wide range of standard compositions. The peak-ratio technique requires that the specimen thickness at the point of analysis be thin enough to make absorption corrections unnecessary (i.e., to satisfy the "thin-foil criteria"). In pyroxenes, the calculated "maximum thicknesses" range from 130 to 1400 nm for the ratios Mg/Si, Fe/Si, and Ca/Si; these "maximum thicknesses" have been contoured in pyroxene composition space as a guide during analysis. Analytical spatial resolutions of 50-100 nm have been achieved in AEM at 200 keV from the composition-profile studies, and analytical reproducibility in AEM from homogeneous pyroxene standards is ?? 1.5 mol% endmember. ?? 1982.
Next-generation confirmatory disease diagnostics
NASA Astrophysics Data System (ADS)
Lin, Robert; Gerver, Rachel; Karns, Kelly; Apori, Akwasi A.; Denisin, Aleksandra K.; Herr, Amy E.
2014-06-01
Microfluidic tools are advancing capabilities in screening diagnostics for use in near-patient settings. Here, we review three case studies to illustrate the flexibility and analytical power offered by microanalytical tools. We first overview a near-patient tool for detection of protein markers found in cerebrospinal fluid (CSF), as a means to identify the presence of cerebrospinal fluid in nasal mucous - an indication that CSF is leaking into the nasal cavity. Microfluidic design allowed integration of several up-stream preparatory steps and rapid, specific completion of the human CSF protein assay. Second, we overview a tear fluid based assay for lactoferrin, a protein produced in the lacrimal gland, then secreted into tear fluid. Tear Lf is a putative biomarker for primary SS. A critical contribution of this and related work being measurement of Lf, even in light of well-known and significant matrix interactions and losses during the tear fluid collection and preparation. Lastly, we review a microfluidic barcode platform that enables rapid measurement of multiple infectious disease biomarkers in human sera. The assay presents a new approach to multiplexed biomarker detection, yet in a simple straight microchannel - thus providing a streamlined, simplified microanalytical platform, as is relevant to robust operation in diagnostic settings. We view microfluidic design and analytical chemistry as the basis for emerging, sophisticated assays that will advance not just screening diagnostic technology, but confirmatory assays, sample preparation and handling, and thus introduction and utilization of new biomarkers and assay formats.
Kalanithi, M; Rajarajan, M; Tharmaraj, P; Sheela, C D
2012-02-15
Tridentate chelate complexes of Co(II), Ni(II), Cu(II) and Zn(II) have been synthesized from the chalcone based ligands 2-[1-(3-(1H-imidazol-1-yl)propylimino)-3-(phenylallyl)]phenol(HL(1)), 2-[1-(3-(1H-imidazol-1-yl)propylimino)-3-p-tolylallyl]phenol(HL(2)), 2-[1-(3-(1H-imidazol-1-yl)propylimino)-3-4-nitrophenylallyl]phenol(HL(3)). Microanalytical data, UV-vis spectrophotometric method, magnetic susceptibility measurements, IR, 1H NMR, Mass, and EPR techniques were used to characterize the structure of chelates. The electronic absorption spectra and magnetic susceptibility measurements suggest a distorted square planar geometry for the copper(II) ion. The other metal complexes show distorted tetrahedral geometry. The coordination of the ligands with metal(II) ions was further confirmed by solution fluorescence spectrum. The antimicrobial activity of the ligands and metal(II) complexes against the species Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Bacillus subtilis, Candida albigans and Aspergillus niger has been carried out and compared. The electrochemical behavior of copper(II) complex is studied by cyclic voltammetry. Copyright © 2011 Elsevier B.V. All rights reserved.
Álvarez, Ángela; Yáñez, Jorge; Contreras, David; Saavedra, Renato; Sáez, Pedro; Amarasiriwardena, Dulasiri
2017-11-01
The use of propellant for making improvised explosive devices (IED) is an incipient criminal practice. Propellant can be used as initiator in explosive mixtures along with other components such as coal, ammonium nitrate, sulfur, etc. The identification of the propellant's brand used in homemade explosives can provide additional forensic information of this evidence. In this work, four of the most common propellant brands were characterized by Fourier-transform infrared photoacoustic spectroscopy (FTIR-PAS) which is a non-destructive micro-analytical technique. Spectra shows characteristic signals of typical compounds in the propellants, such as nitrocellulose, nitroglycerin, guanidine, diphenylamine, etc. The differentiation of propellant components was achieved by using FTIR-PAS combined with chemometric methods of classification. Principal component analysis (PCA) and soft independent modelling of class analogy (SIMCA) were used to achieve an effective differentiation and classification (100%) of propellant brands. Furthermore, propellant brand differentiation was also assessed using partial least squares discriminant analyses (PLS-DA) by leave one out cross (∼97%) and external (∼100%) validation method. Our results show the ability of FTIR-PAS combined with chemometric analysis to identify and differentiate propellant brands in different explosive formulations of IED. Copyright © 2017 Elsevier B.V. All rights reserved.
A review of electrochemiluminescence (ECL) in and for microfluidic analytical devices.
Kirschbaum, Stefanie E K; Baeumner, Antje J
2015-05-01
The concept and realization of microfluidic total analysis systems (microTAS) have revolutionized the analytical process by integrating the whole breadth of analytical techniques into miniaturized systems. Paramount for efficient and competitive microTAS are integrated detection strategies, which lead to low limits of detection while reducing the sample volume. The concept of electrochemiluminescence (ECL) has been intriguing ever since its introduction based on Ru(bpy)3 (2+) by Tokel and Bard [1] (J Am Chem Soc 1853:2862-2863, 1972), especially because of its immense sensitivity, nonexistent auto-luminescent background signal, and simplicity in experimental design. Therefore, integrating ECL detection into microTAS is a logical consequence to achieve simple, yet highly sensitive, sensors. However, published microanalytical devices employing ECL detection focus in general on traditional ECL chemistry and have yet to take advantage of advances made in standard bench-top ECL strategies. This review will therefore focus on the most recent advancements in microfluidic ECL approaches, but also evaluate the potential impact of bench-top ECL research progress that would further improve performance and lower limits of detection of micro analytical ECL systems, ensuring their desirability as detection principle for microTAS applications.
Shanks, Wayne C.; Böhlke, John Karl; Seal, Robert R.; Humphries, S.D.; Zierenberg, Robert A.; Mullineaux, Lauren S.; Thomson, Richard E.
1995-01-01
Studies of abundance variations of light stable isotopes in nature have had a tremendous impact on all aspects of geochemistry since the development, in 1947, of a gas source isotope ratio mass spectrometer capable of measuring small variations in stable isotope ratios (Nice, 1947]. Stable isotope geochemistry is now a mature field, as witnessed by the proliferation of commercially available mass spectrometers installed at virtually every major academic, government, and private-sector research geochemistry laboratory. A recent search of a literature database revealed over 3,000 articles that utilized stable isotope geochemistry over the last 20 years. Nonetheless, many exciting new technical developments are leading to exciting new discoveries and applications. In particular, micro-analytical techniques involving new generations of laser- and ion-microprobes are revolutionizing the types of analyses that can be done on spot sizes as small as a few tens of micrometers [Shanks and Criss, 1989]. New generations of conventional gas source and thermal ionization mass spectrometers, with high levels of automation and increased sensitivity and precision, are allowing analyses of large numbers of samples, like those needed for stable isotope stratigraphy in marine sediments, and are enabling the development and application of new isotopic systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orphan, Victoria
2016-07-15
Syntrophy and other forms of symbiotic associations between microorganisms are central to carbon and nutrient cycling in the environment. However, the inherent interdependence of these interactions, dynamic behavior, and frequent existence at thermodynamic limits has hindered our ability to both recognize syntrophic partnerships in nature and effectively study their behavior in the laboratory. To characterize and understand the underlying factors influencing syntrophic associations within complex communities requires a suite of tools that extend beyond basic molecular identification and cultivation. This specifically includes methods that preserve the natural spatial relationships between metabolically interdependent microorganisms while allowing downstream geochemical and/or molecular analysis.more » With support from this award, we have developed and applied new combinations of molecular, microscopy, and stable isotope-based methodologies that enable the characterization of fundamental links between phylogenetically-identified microorganisms and their specific metabolic activities and interactions in the environment. Through the coupling of fluorescence in situ hybridization (FISH) with cell capture and targeted metagenomics (Magneto-FISH), and FISH + secondary ion mass spectrometry (i.e. FISH-SIMS or FISH-nanoSIMS), we have defined new microbial interactions and the ecophysiology of anaerobic microorganisms involved in environmental methane cycling.« less
Electroosmotic pumps for microflow analysis
Wang, Xiayan; Wang, Shili; Gendhar, Brina; Cheng, Chang; Byun, Chang Kyu; Li, Guanbin; Zhao, Meiping; Liu, Shaorong
2009-01-01
With rapid development in microflow analysis, electroosmotic pumps are receiving increasing attention. Compared to other micropumps, electroosmotic pumps have several unique features. For example, they are bi-directional, can generate constant and pulse-free flows with flow rates well suited to microanalytical systems, and can be readily integrated with lab-on-chip devices. The magnitude and the direction of flow of an electroosmotic pump can be changed instantly. In addition, electroosmotic pumps have no moving parts. In this article, we discuss common features, introduce fabrication technologies and highlight applications of electroosmotic pumps. PMID:20047021
Non-planar chemical preconcentrator
Manginell, Ronald P [Albuquerque, NM; Adkins, Douglas R [Albuquerque, NM; Sokolowski, Sara S [Albuquerque, NM; Lewis, Patrick R [Albuquerque, NM
2006-10-10
A non-planar chemical preconcentrator comprises a high-surface area, low mass, three-dimensional, flow-through sorption support structure that can be coated or packed with a sorptive material. The sorptive material can collect and concentrate a chemical analyte from a fluid stream and rapidly release it as a very narrow temporal plug for improved separations in a microanalytical system. The non-planar chemical preconcentrator retains most of the thermal and fabrication benefits of a planar preconcentrator, but has improved ruggedness and uptake, while reducing sorptive coating concerns and extending the range of collectible analytes.
Sub-to super-ambient temperature programmable microfabricated gas chromatography column
Robinson, Alex L.; Anderson, Lawrence F.
2004-03-16
A sub- to super-ambient temperature programmable microfabricated gas chromatography column enables more efficient chemical separation of chemical analytes in a gas mixture by combining a thermoelectric cooler and temperature sensing on the microfabricated column. Sub-ambient temperature programming enables the efficient separation of volatile organic compounds and super-ambient temperature programming enables the elution of less volatile analytes within a reasonable time. The small heat capacity and thermal isolation of the microfabricated column improves the thermal time response and power consumption, both important factors for portable microanalytical systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vilches, J.; Lopez, A.; De Palacio, L.
Calculi removed from human prostates affected with nodular hyperplasia were analyzed with scanning electron microscopy and EDAX system. The general spectrum was made up of Na, Al, Mg, S, P, Ca and Zn. Two types of stone were identified morphostructurally and microanalytically: calculi type I of nodular surface with high peaks of S, and calculi type II polyfaceted with high peaks of P and Ca. Their formation from corpora amylacea and/or exogenous constituents is discussed. The superficial deposit of Zn suggests its incorporation from the prostatic liquid and does not seem to play an important role in the genesis.
Pai, Rekha S; Walsh, Kevin M; Crain, Mark M; Roussel, Thomas J; Jackson, Douglas J; Baldwin, Richard P; Keynton, Robert S; Naber, John F
2009-06-15
A scalable and rather inexpensive solution to producing microanalytical systems with "on-chip" three-dimensional (3D) microelectrodes is presented in this study, along with applicability to practical electrochemical (EC) detection scenarios such as preconcentration and interferant removal. This technique to create high-aspect-ratio (as much as 4:1) gold microstructures in constrained areas involved the modification of stud bump geometry with microfabricated silicon molds via an optimized combination of temperature, pressure, and time. The microelectrodes that resulted consisted of an array of square pillars approximately 18 microm tall and 20 microm wide on each side, placed at the end of a microfabricated electrophoresis channel. This technique increased the active surface area of the microelectrodes by as much as a factor of 50, while mass transfer and, consequently, preconcentration collection efficiencies were increased to approximately 100%, compared to approximately 30% efficiency for planar nonmodified microelectrodes (samples that were used included the neurotransmitters dopamine and catechol). The 3D microelectrodes were used both in a stand-alone configuration, for direct EC detection of model catecholamine analytes, and, more interestingly, in dual electrode configurations for EC sample processing prior to detection downstream at a second planar electrode. In particular, the 3D electrodes were shown to be capable of performing coulometry or complete (100%) redox conversion of analyte species over a wide range of concentrations, from 4.3 microM to 4.4 mM, in either plug-flow or continuous-flow formats.
NASA Astrophysics Data System (ADS)
Layne, G. D.
2009-12-01
Today, many areas of geochemical research utilize microanalytical determinations of trace elements in carbonate minerals. In particular, there has been an explosion in the application of Secondary Ion Mass Spectrometry (SIMS) to studies of marine biomineralization. SIMS provides highly precise determinations of Mg and Sr at the concentration levels normally encountered in corals, mollusks or fish otoliths. It is also a highly effective means for determining a wide range of other trace elements at ppm levels (e.g., Na, Fe, Mn, Ba, REE, Pb, Th, and U) in a variety of naturally occurring calcite and aragonite matrices - and so is potentially valuable in studies of diagenesis, hydrothermal fluids and carbonatitic magmas. For SIMS, modest time per spot (often <5 min), lateral spatial resolution (<10 μm), sample volume consumption (<10 ng) and overall reproducibility compare extremely favorably with other microanalytical techniques for these applications. However, accuracy and reproducibility are currently wholly limited by the homogeneity of available solid reference material - which is far inferior to the tenths of a percent levels of precision achieved by SIMS. Due to variation in the sputtered ion yields of most elements with the major element composition of the sample matrix, accuracy of SIMS depends intimately on matrix-matched solid reference materials. Despite its rapidly increasing use for trace element analyses of carbonates, there remains a dearth of certified reference materials suitable for calibrating SIMS. The pressed powders used by some analysts to calibrate LA-ICP-MS do not perform well for SIMS - they are not perfectly dense or homogeneous to the desired level at the micron scale of sampling. Further, they often prove incompatible with the sample high vacuum compatibility requirement for stable SIMS analysis (10-8 to 10-9 torr). Some naturally occurring calcite has apparent utility as a reference material. For example, equigranular calcite from some zones of carbonatite intrusions (sovites) and recrystallized calcites from highly metamorphosed metallic ore deposits. Most calcite marbles, though possibly appropriate as Sr standards, show substantial inhomogeneity in Mg, Mn and Ba. Some hydrothermal “Iceland Spar” calcite may prove useful as a reference for extremely low concentrations of Mg, Sr and Ba. The best carbonatitic calcites currently in use appear homogeneous to better than 2-3% for Sr (and somewhat less homogeneous for Mg). But these standards still require numerous replicate analyses during analytical sessions to reduce the overall uncertainty to <<1.0%.The availability of appropriate certified solid reference materials with a high degree of homogeneity would greatly benefit the utilization and inter-comparison of SIMS determinations in carbonates, while substantially reducing the time consumed in calibration. Some studies would also benefit from the extension of this effort to the characterization of appropriate standards of other rhombohedral carbonates (especially dolomite and Fe-rich calcite).
NASA Astrophysics Data System (ADS)
Sin, Yongkun; Ayvazian, Talin; Brodie, Miles; Lingley, Zachary
2018-03-01
High-power single-mode (SM) and multi-mode (MM) InGaAs-AlGaAs strained quantum well (QW) lasers are critical components for both terrestrial and space satellite communications systems. Since these lasers predominantly fail by catastrophic and sudden degradation due to catastrophic optical damage (COD), it is especially crucial for space satellite applications to investigate reliability, failure modes, precursor signatures of failure, and degradation mechanisms of these lasers. Our group reported a new failure mode in MM and SM InGaAs-AlGaAs strained QW lasers in 2009 and 2016, respectively. Our group also reported in 2017 that bulk failure due to catastrophic optical bulk damage (COBD) is the dominant failure mode of both SM and MM lasers that were subject to long-term life-tests. For the present study, we continued our physics of failure investigation by performing long-term life-tests followed by failure mode analysis (FMA) using nondestructive and destructive micro-analytical techniques. We performed long-term accelerated life-tests on state-of-the-art SM and MM InGaAs- AlGaAs strained QW lasers under ACC mode. Our life-tests have accumulated over 25,000 test hours for SM lasers and over 35,000 test hours for MM lasers. We first employed electron beam induced current (EBIC) technique to identify failure modes of degraded SM lasers by observing dark line defects. All the SM failures that we studied showed catastrophic and sudden degradation and all of these failures were bulk failures. Since degradation mechanisms responsible for COBD are still not well understood, we also employed other techniques including focused ion beam (FIB) and high-resolution TEM to further study dark line defects and dislocations in post-aged lasers. Keywor
Busse, B; Niecke, M; Püschel, K; Delling, G; Katzer, A; Hahn, M
2007-01-01
Periprosthetic tissue was analysed by the combination of different investigation techniques without destruction. The localisation and geometry of polyethylene abrasion particles were determined quantitatively to differentiate between abrasion due to function and abrasion due to implant loosening. Non-polyethylene particles from implant components which contaminate the tissue were micro-analytically measured. The results will help us to understand loosening mechanisms and thus lead to implant optimisations. A non-destructive particle analysis using highly sensitive proton-induced X-ray emission (PIXE) was developed to achieve a better histological allocation. Five autopsy cases with firmly fitting hip endoprosthesis (2 x Endo-Modell Mark III, 1 x St. Georg Mark II, LINK, Germany; 2 x Spongiosa Metal II, ESKA, Germany) were prepared as ground tissue specimens. Wear investigations were accomplished with a combined application of different microscopic techniques and microanalysis. The abrasion due to implant loosening was histologically evaluated on 293 loosened cup implants (St. Georg Mark II, LINK, Germany). Wear particles are heterogeneously distributed in the soft tissue. In cases of cemented prostheses, cement particles are dominating whereas metal particles could rarely be detected. The concentration of the alloy constituent cobalt (Co) is increased in the mineralised bone tissue. The measured co-depositions depend on the localisation and/or lifetime of an implant. Functional polyethylene (PE) abrasion needs to be differentiated from PE abrasion of another genesis (loosening, impingement) morphologically and by different tissue reactions. In the past a reduction of abrasion was targeted primarily by the optimisation of the bearing surfaces and tribology. The interpretation of our findings indicates that different mechanisms of origin in terms of tissue contamination with wear debris and the alloy should be included in the improvement of implants or implantation techniques.
Characterization and speciation of mercury-bearing mine wastes using X-ray absorption spectroscopy
Kim, C.S.; Brown, Gordon E.; Rytuba, J.J.
2000-01-01
Mining of mercury deposits located in the California Coast Range has resulted in the release of mercury to the local environment and water supplies. The solubility, transport, and potential bioavailability of mercury are controlled by its chemical speciation, which can be directly determined for samples with total mercury concentrations greater than 100 mg kg-1 (ppm) using X-ray absorption spectroscopy (XAS). This technique has the additional benefits of being non-destructive to the sample, element-specific, relatively sensitive at low concentrations, and requiring minimal sample preparation. In this study, Hg L(III)-edge extended X-ray absorption fine structure (EXAFS) spectra were collected for several mercury mine tailings (calcines) in the California Coast Range. Total mercury concentrations of samples analyzed ranged from 230 to 1060 ppm. Speciation data (mercury phases present and relative abundances) were obtained by comparing the spectra from heterogeneous, roasted (calcined) mine tailings samples with a spectral database of mercury minerals and sorbed mercury complexes. Speciation analyses were also conducted on known mixtures of pure mercury minerals in order to assess the quantitative accuracy of the technique. While some calcine samples were found to consist exclusively of mercuric sulfide, others contain additional, more soluble mercury phases, indicating a greater potential for the release of mercury into solution. Also, a correlation was observed between samples from hot-spring mercury deposits, in which chloride levels are elevated, and the presence of mercury-chloride species as detected by the speciation analysis. The speciation results demonstrate the ability of XAS to identify multiple mercury phases in a heterogeneous sample, with a quantitative accuracy of ??25% for the mercury-containing phases considered. Use of this technique, in conjunction with standard microanalytical techniques such as X-ray diffraction and electron probe microanalysis, is beneficial in the prioritization and remediation of mercury-contaminated mine sites. (C) 2000 Elsevier Science B.V.
[Early interaction is a prerequisite for favorable psychic development].
Pesonen, Anu-Katriina
2010-01-01
Empirical studies on the parent-baby interaction have greatly influenced our insight into the child's psychological development. Initial stages of the research attempted to reveal features in the mother's action that would predict the child's favorable development. Since then, also fathers and the child's development in a more broad sense have been studied. The most prominent progress has taken place in microanalytical methods for these interactions. The research has increased our knowledge of the baby's interactive capabilities and the significance of successful interactive events for the child's development, laying the basis for various interventions related to parenthood.
Microanalytical study of some cosmic dust discovered in sea-floor sediments in China
NASA Technical Reports Server (NTRS)
Shijie, Z.; Hanchang, P.; Zhong, Y.
1984-01-01
The study of cosmic dust can provide useful data in the investigation of the origin of the Earth and the evolution of celestial bodies. Three types of cosmic dust (ferriginous, siliceous, and glassy) were discovered in the seafloor sediments near China. Their chemical composition and microstructure were examined by X-ray diffraction, fractography, and electron microscopy. The major mineral in an iron-containing cosmic dust is magnetite. The silicate spheres contain sundry metals and metal oxides. Glassy microtektites are similar in composition to tektites, and are found in all the major meteorite areas worldwide.
Coelho, Lúcia H G; Melchert, Wanessa R; Rocha, Flavio R; Rocha, Fábio R P; Gutz, Ivano G R
2010-11-15
The analytical determination of atmospheric pollutants still presents challenges due to the low-level concentrations (frequently in the μg m(-3) range) and their variations with sampling site and time. In this work, a capillary membrane diffusion scrubber (CMDS) was scaled down to match with capillary electrophoresis (CE), a quick separation technique that requires nothing more than some nanoliters of sample and, when combined with capacitively coupled contactless conductometric detection (C(4)D), is particularly favorable for ionic species that do not absorb in the UV-vis region, like the target analytes formaldehyde, formic acid, acetic acid and ammonium. The CMDS was coaxially assembled inside a PTFE tube and fed with acceptor phase (deionized water for species with a high Henry's constant such as formaldehyde and carboxylic acids, or acidic solution for ammonia sampling with equilibrium displacement to the non-volatile ammonium ion) at a low flow rate (8.3 nL s(-1)), while the sample was aspirated through the annular gap of the concentric tubes at 2.5 mL s(-1). A second unit, in all similar to the CMDS, was operated as a capillary membrane diffusion emitter (CMDE), generating a gas flow with know concentrations of ammonia for the evaluation of the CMDS. The fluids of the system were driven with inexpensive aquarium air pumps, and the collected samples were stored in vials cooled by a Peltier element. Complete protocols were developed for the analysis, in air, of NH(3), CH(3)COOH, HCOOH and, with a derivatization setup, CH(2)O, by associating the CMDS collection with the determination by CE-C(4)D. The ammonia concentrations obtained by electrophoresis were checked against the reference spectrophotometric method based on Berthelot's reaction. Sensitivity enhancements of this reference method were achieved by using a modified Berthelot reaction, solenoid micro-pumps for liquid propulsion and a long optical path cell based on a liquid core waveguide (LCW). All techniques and methods of this work are in line with the green analytical chemistry trends. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
de Winter, N.; Sinnesael, M.; Vansteenberge, S.; Goderis, S.; Snoeck, C.; Van Malderen, S. J. M.; Vanhaecke, F. F.; Claeys, P.
2017-12-01
Well-preserved shells of Torreites rudists from the Late Campanian Saiwan Formation in Oman exhibit fine internal layering. These fine (±20 µm) laminae are rhythmically bundled (±400 µm) and subdivide the shells' larger scale annual lamination (±15 mm), suggesting the presence of several interfering cycles in shell growth rate. The aim of the present study is to determine the duration and chemical signature of these rhythmic variations in shell composition. To achieve this, a range of micro-analytical techniques is applied on cross sections through the shells. Firstly, microscopy-based layer counting and colorimetric analysis are carried out on thin sections of shell calcite. Secondly, X-Ray Fluorescence (XRF) and Fourier Transform InfraRed (FTIR) mapping of cross sections of the shells reveal chemical and structural differences between laminae in 2D. Thirdly, high-resolution XRF (25 µm) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS; 10 µm) trace element profiles are used to quantify variations in chemical composition between shell laminae. Fourthly, annual chronology is established based on micro-sampled stable carbon and oxygen stable isotope measurements (250 µm) along the growth axis of the shells. Finally, spectral analysis routines are applied to extract rhythmic patterns matched to the shell laminae from the structural, chemical and colorimetric data. Combining these methods allows for a full evaluation of the structural and chemical characteristics as well as the timing of sub-annual lamination in rudist shells. The results of this study shed light on the external factors that influenced growth rates in rudist bivalves. A better understanding of the timing of deposition of these laminae allows them to be used to improve age models of geochemical records in rudist shells. Characterization of small scale variations in shell composition will characterize the uncertainties contained within lower resolution proxy records from these fossil bivalves. Finally, the study of these laminae enables the reconstruction of sub-annual cyclicity in the environment of Late Cretaceous rudist bivalves. This may in turn shed light on the mechanics of climate in this shallow marine hothouse setting, which provide an analogue of future climate in the light of anthropogenic climate change.
Wierzchos, Jacek; Sancho, Leopoldo García; Ascaso, Carmen
2005-04-01
In some zones of Antarctica's cold and dry desert, the extinction of cryptoendolithic microorganisms leaves behind inorganic traces of microbial life. In this paper, we examine the transition from live microorganisms, through their decay, to microbial fossils using in situ microscopy (transmission electron microscopy, scanning electron microscopy in back-scattered electron mode) and microanalytical (energy dispersive X-ray spectroscopy) techniques. Our results demonstrate that, after their death, endolithic microorganisms inhabiting Commonwealth Glacier sandstone from the Antarctica McMurdo Dry Valleys become mineralized. In some cases, epicellular deposition of minerals and/or simply filling up of empty moulds by minerals leads to the formation of cell-shaped structures that may be considered biomarkers. The continuous deposition of allochthonous clay minerals and sulfate-rich salts fills the sandstone pores. This process can give rise to microbial fossils with distinguishable cell wall structures. Often, fossilized cell interiors were of a different chemical composition to the mineralized cell walls. We propose that the microbial fossil formation observed was induced by mineral precipitation resulting from inorganic processes occurring after the death of cryptoendolithic microorganisms. Nevertheless, it must have been the organic template that provoked the diffusion of mineral elements and gave rise to their characteristic distribution pattern inside the fossilized cells.
Walton, Katherine M; Ingersoll, Brooke R
2015-05-01
Adult responsiveness is related to language development both in young typically developing children and in children with autism spectrum disorders, such that parents who use more responsive language with their children have children who develop better language skills over time. This study used a micro-analytic technique to examine how two facets of maternal utterances, relationship to child focus of attention and degree of demandingness, influenced the immediate use of appropriate expressive language of preschool-aged children with autism spectrum disorders (n = 28) and toddlers with typical development (n = 16) within a naturalistic mother-child play session. Mothers' use of follow-in demanding language was most likely to elicit appropriate expressive speech in both children with autism spectrum disorders and children with typical development. For children with autism spectrum disorders, but not children with typical development, mothers' use of orienting cues conferred an additional benefit for expressive speech production. These findings are consistent with the naturalistic behavioral intervention philosophy and suggest that following a child's lead while prompting for language is likely to elicit speech production in children with autism spectrum disorders and children with typical development. Furthermore, using orienting cues may help children with autism spectrum disorders to verbally respond. © The Author(s) 2014.
NASA Astrophysics Data System (ADS)
Taha, A.; Farag, A. A. M.; Adly, O. M. I.; Roushdy, N.; Shebl, Magdy; Ahmed, H. M.
2017-08-01
A newly Schiff base,2-benzylidene-3-hydroxy-1-(5,6-diphenyl-1,2,4-triazine-3-yl)hydrazine] (HBDHT) was synthesized and characterized on the basis of micro-analytical and spectroscopic studies. Basic parameters of the combined compound HBDHT were ascertained on the premise of DFT level actualized on Gaussian 09. Thin films of HBDHT were successfully prepared by spin coating technique and confirmed by atomic force microscopy (AFM). The optical attributes of the studied films were considered utilizing spectrophotometric estimations in a wide spectral range of 200-2500 nm. Some important optical parameters such as extinction index, refractive index, dispersion energy, oscillator energy and high-frequency dielectric constant were extracted. Analysis of the absorption coefficient near the fundamental absorption edge confirms an indirectly allowed transition with an energy gap of 1.7eV. The refractive index dispersion was estimated on basis of single oscillator model expressed by Wemple-Didomenico. Current-voltage (I-V) characteristics were studied in dark and under illumination of 100 mW/cm2 to clarify the sensitivity to light. Moreover, the photo-transient properties were also investigated to confirm that the prepared heterojunction based HBDHT can be operated as a photodiode.
Chromium oxidation state mapping in human cells
NASA Astrophysics Data System (ADS)
Ortega, R.; Fayard, B.; Salomé, M.; Devès, G.; Susini, J.
2003-03-01
The widespread use of chromium in industrial applications such as chemical production of pigments, refractory brick production, tanning, metallurgy, electroplating, and combustion of fuels has lead to human occupational exposure and to its increased introduction into the environment. Hexavalent chromium compounds are established carcinogens but their mechanism of cell transformation is not known. Up to now, no microanalytical technique was sensitive enough to allow the observation of chromium distribution, and oxidation state identification, within isolated cells at carcinogenic concentrations. In this experiment, we used successfully the ID-21 X-ray microscope to map Cr(VI) and total Cr distributions in cells exposed in vitro to soluble, and insoluble, Cr(VI) compounds. Exposure to soluble compounds, weak carcinogens, resulted in a homogeneous intracellular distribution of Cr, confirming by in situ measurement that Cr is present in the cell nucleus. Cr(VI) was never detected in cells which suggests a mechanism of rapid intracellular reducticn. On the other hand, exposure to insoluble compounds, strong carcinogens, also resulted in a homogeneous distribution of reduced forms of Cr in cells, and their nucleus. However, in this case, Cr(VI)-rich structures were observed into the cells suggesting that carcinogenicity is enhanced when oxidation reactions due to Cr(VI) chronic exposure are associated to Cr-DNA alterations.
Current Nucleic Acid Extraction Methods and Their Implications to Point-of-Care Diagnostics.
Ali, Nasir; Rampazzo, Rita de Cássia Pontello; Costa, Alexandre Dias Tavares; Krieger, Marco Aurelio
2017-01-01
Nucleic acid extraction (NAE) plays a vital role in molecular biology as the primary step for many downstream applications. Many modifications have been introduced to the original 1869 method. Modern processes are categorized into chemical or mechanical, each with peculiarities that influence their use, especially in point-of-care diagnostics (POC-Dx). POC-Dx is a new approach aiming to replace sophisticated analytical machinery with microanalytical systems, able to be used near the patient, at the point of care or point of need . Although notable efforts have been made, a simple and effective extraction method is still a major challenge for widespread use of POC-Dx. In this review, we dissected the working principle of each of the most common NAE methods, overviewing their advantages and disadvantages, as well their potential for integration in POC-Dx systems. At present, it seems difficult, if not impossible, to establish a procedure which can be universally applied to POC-Dx. We also discuss the effects of the NAE chemicals upon the main plastic polymers used to mass produce POC-Dx systems. We end our review discussing the limitations and challenges that should guide the quest for an efficient extraction method that can be integrated in a POC-Dx system.
Incorporation of Metals into Calcite in a Deep Anoxic Granite Aquifer.
Drake, Henrik; Mathurin, Frédéric A; Zack, Thomas; Schäfer, Thorsten; Roberts, Nick Mw; Whitehouse, Martin; Karlsson, Andreas; Broman, Curt; Åström, Mats E
2018-01-16
Understanding metal scavenging by calcite in deep aquifers in granite is of importance for deciphering and modeling hydrochemical fluctuations and water-rock interaction in the upper crust and for retention mechanisms associated with underground repositories for toxic wastes. Metal scavenging into calcite has generally been established in the laboratory or in natural environments that cannot be unreservedly applied to conditions in deep crystalline rocks, an environment of broad interest for nuclear waste repositories. Here, we report a microanalytical study of calcite precipitated over a period of 17 years from anoxic, low-temperature (14 °C), neutral (pH: 7.4-7.7), and brackish (Cl: 1700-7100 mg/L) groundwater flowing in fractures at >400 m depth in granite rock. This enabled assessment of the trace metal uptake by calcite under these deep-seated conditions. Aquatic speciation modeling was carried out to assess influence of metal complexation on the partitioning into calcite. The resulting environment-specific partition coefficients were for several divalent ions in line with values obtained in controlled laboratory experiments, whereas for several other ions they differed substantially. High absolute uptake of rare earth elements and U(IV) suggests that coprecipitation into calcite can be an important sink for these metals and analogousactinides in the vicinity of geological repositories.
Current Nucleic Acid Extraction Methods and Their Implications to Point-of-Care Diagnostics
Ali, Nasir; Rampazzo, Rita de Cássia Pontello; Krieger, Marco Aurelio
2017-01-01
Nucleic acid extraction (NAE) plays a vital role in molecular biology as the primary step for many downstream applications. Many modifications have been introduced to the original 1869 method. Modern processes are categorized into chemical or mechanical, each with peculiarities that influence their use, especially in point-of-care diagnostics (POC-Dx). POC-Dx is a new approach aiming to replace sophisticated analytical machinery with microanalytical systems, able to be used near the patient, at the point of care or point of need. Although notable efforts have been made, a simple and effective extraction method is still a major challenge for widespread use of POC-Dx. In this review, we dissected the working principle of each of the most common NAE methods, overviewing their advantages and disadvantages, as well their potential for integration in POC-Dx systems. At present, it seems difficult, if not impossible, to establish a procedure which can be universally applied to POC-Dx. We also discuss the effects of the NAE chemicals upon the main plastic polymers used to mass produce POC-Dx systems. We end our review discussing the limitations and challenges that should guide the quest for an efficient extraction method that can be integrated in a POC-Dx system. PMID:28785592
Advances toward submicron resolution optics for x-ray instrumentation and applications
NASA Astrophysics Data System (ADS)
Cordier, Mark; Stripe, Benjamin; Yun, Wenbing; Lau, S. H.; Lyon, Alan; Reynolds, David; Lewis, Sylvia J. Y.; Chen, Sharon; Semenov, Vladimir A.; Spink, Richard I.; Seshadri, Srivatsan
2017-08-01
Sigray's axially symmetric x-ray optics enable advanced microanalytical capabilities for focusing x-rays to microns-scale to submicron spot sizes, which can potentially unlock many avenues for laboratory micro-analysis. The design of these optics allows submicron spot sizes even at low x-ray energies, enabling research into low atomic number elements and allows increased sensitivity of grazing incidence measurements and surface analysis. We will discuss advances made in the fabrication of these double paraboloidal mirror lenses designed for use in laboratory x-ray applications. We will additionally present results from as-built paraboloids, including surface figure error and focal spot size achieved to-date.
Preliminary Characterization of a Microbial Community of Rock Varnish from Death Valley, California
NASA Technical Reports Server (NTRS)
Kuhlman, K. R.; LaDuc, M. T.; Kuhlman, G. M.; Anderson, R. C.; Newcombe, D. A.; Fusco, W.; Steucker, T.; Allenbach, L.; Ball, C.; Crawford, R. L.
2003-01-01
Rock varnish (also referred to as desert varnish in the literature because it is particularly noticeable in desert environments) is a dark, thin (typically 50-500 m thick), layered veneer composed of clay minerals cemented together by oxides and hydroxides of manganese and iron. Some scientists suggest that varnish may provide a historical record of environmental processes such as global warming and long-term climate change. However, despite more than 30 years of study using modern microanalytical and microbial culturing techniques, the nucleation and growth mechanisms of rock varnish remain a mystery. Rock varnish is of interest to the Mars science community because a varnish-like sheen has been reported on the rocks at the Viking Lander sites. It therefore important for us to understand the formation mechanisms of terrestrial varnish abiotic, biotic, or a combination of the two -- as this understanding may give us clues concerning the chemical and physical processes occurring on the surface of Mars. It is strongly believed by some in the biogeochemistry community that microbes have a role in forming rock varnish, and iron- and manganese-oxidation by microbes isolated from varnish has been extensively investigated. Only two of these studies have investigated the microbial genetics of varnish. These studies examined the morphological, physiological and molecular characteristics of microbes that had previously been cultured from various rock varnishes and identified the cultivars using 16S rDNA sequencing techniques. However, it is well known that most of organisms existing in nature are refractory to cultivation, so many important organisms would have been missed. The currently described work investigates the genetics of rock varnish microbial community from a site in the Whipple Mtns., south of Death Valley, CA, near Parker, Arizona. We employed both cultural and molecular techniques to characterize the microorganisms found within the varnish and surrounding soil with the objectives of (a) identifying microorganisms potentially involved in varnish formation, and (b) discovering microorganisms that simply use the varnish as an extreme habitat.
Denton, J S; Murrell, M T; Goldstein, S J; Nunn, A J; Amato, R S; Hinrichs, K A
2013-10-15
Recent advances in high-resolution, rapid, in situ microanalytical techniques present numerous opportunities for the analytical community, provided accurately characterized reference materials are available. Here, we present multicollector thermal ionization mass spectrometry (MC-TIMS) and multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) uranium and thorium concentration and isotopic data obtained by isotope dilution for a suite of newly available Chinese Geological Standard Glasses (CGSG) designed for microanalysis. These glasses exhibit a range of compositions including basalt, syenite, andesite, and a soil. Uranium concentrations for these glasses range from ∼2 to 14 μg g(-1), Th/U weight ratios range from ∼4 to 6, (234)U/(238)U activity ratios range from 0.93 to 1.02, and (230)Th/(238)U activity ratios range from 0.98 to 1.12. Uranium and thorium concentration and isotopic data are also presented for a rhyolitic obsidian from Macusani, SE Peru (macusanite). This glass can also be used as a rhyolitic reference material, has a very low Th/U weight ratio (around 0.077), and is approximately in (238)U-(234)U-(230)Th secular equilibrium. The U-Th concentration data agree with but are significantly more precise than those previously measured. U-Th concentration and isotopic data agree within estimated errors for the two measurement techniques, providing validation of the two methods. The large (238)U-(234)U-(230)Th disequilibria for some of the glasses, along with the wide range in their chemical compositions and Th/U ratios should provide useful reference points for the U-series analytical community.
Microanalytical investigation of degradation issues in Byzantine wall paintings
NASA Astrophysics Data System (ADS)
Sotiropoulou, S.; Daniilia, Sister; Miliani, C.; Rosi, F.; Cartechini, L.; Papanikola-Bakirtzis, D.
2008-07-01
The St. Euthymius wall paintings, in the Cathedral of Thessaloniki, dated 1303 AD., are stylistically attributed to the School of Panselinos, one of the most important painters of Palaeologean Art. An in situ non-invasive study has been carried out as part of a MOLAB project (a mobile laboratory accessible through the Eu-ARTECH project, funded by the EC 6th FP) combining different analytical techniques such as XRF, mid-FTIR and UV-vis diffuse reflectance spectroscopy. It was during this comprehensive in situ study that certain scientific queries were raised about sensitive areas, where indications of the phenomena of decay requested further attention. A subsequent laboratory study of selected cross-sections using microscopic analysis with μFTIR, SEM-EDS and μRaman, further confirmed the identification of only the atypical in situ observations. The comparative interpretation of all respective results on the specific regions of interest permitted the identification of several degradation phenomena which justify certain aesthetic or stylistic incoherences in the representations. Namely, (i) thermal dehydration of the yellow ochre explaining the reddish appearance of the flesh tones and halos as an accidental effect of the fire; (ii) thermal degradation of azurite converted to tenorite explaining the atypical instance of dark lightings on the purple garments; (iii) degradation of red lead employed in the lightings of the red garments; (iv) widespread presence of oxalates in the paint surface.
ATR-FTIR microscopy in mapping mode for the study of verdigris and its secondary products
NASA Astrophysics Data System (ADS)
Prati, S.; Bonacini, I.; Sciutto, G.; Genty-Vincent, A.; Cotte, M.; Eveno, M.; Menu, M.; Mazzeo, R.
2016-01-01
To study degradation processes occurring on painting materials, the use of high-resolution micro-analytical techniques is highly requested since it provides a detailed identification and localisation of both the original and deteriorated ingredients. Among the various pigments recently studied, the characterisation of verdigris has received a major interest. This pigment has not a unique chemical formula, but its composition depends on the recipe employed for its manufacturing. Moreover, verdigris paints are not stable and are subject to a colour change from blue-green to green, which occurs in the first few months after the application. In this paper, we focused our attention on the use of ATR-FTIR mapping as a useful method to identify verdigris secondary products and pathways. Several mock-ups and real samples have been analysed, and the correlation among the detected compounds and their spatial location, obtained by the application of ATR-FTIR microscopy in mapping mode, allowed formulating some hypotheses on the degradation pattern of verdigris, which may feed the discussion on the transformation and stability of this pigment. From an analytical point of view, we showed how FTIR mapping approaches may be extremely useful both for the identification of compounds in complex matrix in which single spectra may limit the exhaustive characterisations due to bands overlapping and for the study of degradation pathways by taking into consideration the relative distribution of degradation products.
Detecting Cancer Quickly and Accurately
NASA Astrophysics Data System (ADS)
Gourley, Paul; McDonald, Anthony; Hendricks, Judy; Copeland, Guild; Hunter, John; Akhil, Ohmar; Capps, Heather; Curry, Marc; Skirboll, Steve
2000-03-01
We present a new technique for high throughput screening of tumor cells in a sensitive nanodevice that has the potential to quickly identify a cell population that has begun the rapid protein synthesis and mitosis characteristic of cancer cell proliferation. Currently, pathologists rely on microscopic examination of cell morphology using century-old staining methods that are labor-intensive, time-consuming and frequently in error. New micro-analytical methods for automated, real time screening without chemical modification are critically needed to advance pathology and improve diagnoses. We have teamed scientists with physicians to create a microlaser biochip (based upon our R&D award winning bio-laser concept)1 which evaluates tumor cells by quantifying their growth kinetics. The key new discovery was demonstrating that the lasing spectra are sensitive to the biomolecular mass in the cell, which changes the speed of light in the laser microcavity. Initial results with normal and cancerous human brain cells show that only a few hundred cells -- the equivalent of a billionth of a liter -- are required to detect abnormal growth. The ability to detect cancer in such a minute tissue sample is crucial for resecting a tumor margin or grading highly localized tumor malignancy. 1. P. L. Gourley, NanoLasers, Scientific American, March 1998, pp. 56-61. This work supported under DOE contract DE-AC04-94AL85000 and the Office of Basic Energy Sciences.
NASA Astrophysics Data System (ADS)
Jernström, J.; Eriksson, M.; Simon, R.; Tamborini, G.; Bildstein, O.; Marquez, R. Carlos; Kehl, S. R.; Hamilton, T. F.; Ranebo, Y.; Betti, M.
2006-08-01
Six plutonium-containing particles stemming from Runit Island soil (Marshall Islands) were characterized by non-destructive analytical and microanalytical methods. Composition and elemental distribution in the particles were studied with synchrotron radiation based micro X-ray fluorescence spectrometry. Scanning electron microscope equipped with energy dispersive X-ray detector and with wavelength dispersive system as well as a secondary ion mass spectrometer were used to examine particle surfaces. Based on the elemental composition the particles were divided into two groups: particles with pure Pu matrix, and particles where the plutonium is included in Si/O-rich matrix being more heterogenously distributed. All of the particles were identified as nuclear fuel fragments of exploded weapon components. As containing plutonium with low 240Pu/ 239Pu atomic ratio, less than 0.065, which corresponds to weapons-grade plutonium or a detonation with low fission yield, the particles were identified to originate from the safety test and low-yield tests conducted in the history of Runit Island. The Si/O-rich particles contained traces of 137Cs ( 239 + 240 Pu/ 137Cs activity ratio higher than 2500), which indicated that a minor fission process occurred during the explosion. The average 241Am/ 239Pu atomic ratio in the six particles was 3.7 × 10 - 3 ± 0.2 × 10 - 3 (February 2006), which indicated that plutonium in the different particles had similar age.
Salbu, Brit; Lind, Ole Christian
2016-10-01
After severe nuclear events, a major fraction of refractory radionuclides such as U and Pu are released to the environment in the form of radioactive particles. After the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident, Pu isotope ratio signals different from that of global fallout have been reported, indicating that spent fuel particles have been released from the reactors or reactor vessels. Radioactive particles containing (37) Cs and other volatile radionuclides, as well as a series of stable refractory metals (Cs, Fe, Zn, U, etc.), have been identified by several authors claiming that these particles originated from the FDNPP fuel. If so, long-lived radioactive isotopes of the refractory metals should have been identified in these particles. It is therefore most probable that volatile radionuclides released as gases during the accidents have deposited on available surfaces such as fly ash, forming condensation particles during release or transport. If spent fuel particles have been deposited in the FDNPP surroundings, information on particle characteristics influencing ecosystem transport, uptake, and effects is essential for assessing environmental impact and risk. More emphasis should therefore be put on the identification of hot spots in the FDNPP environment followed by the characterization of radioactive particles using nanoanalytical-microanalytical techniques to support environmental monitoring, as recommended in the present study. Integr Environ Assess Manag 2016;12:687-689. © 2016 SETAC. © 2016 SETAC.
NASA Astrophysics Data System (ADS)
Sin, Yongkun; Lingley, Zachary; Ayvazian, Talin; Brodie, Miles; Ives, Neil
2018-02-01
High-power single-mode (SM) and multi-mode (MM) InGaAs-AlGaAs strained quantum well (QW) lasers are critical components for both terrestrial and space satellite communications systems. Since these lasers predominantly fail by catastrophic and sudden degradation due to COD, it is especially crucial for space satellite applications to investigate reliability, failure modes, and degradation mechanisms of these lasers. Our group reported a new failure mode in MM and SM InGaAs-AlGaAs strained QW lasers in 2009 and 2016, respectively. Our group also reported in 2017 that bulk failure due to catastrophic optical bulk damage (COBD) is the dominant failure mode of both SM and MM lasers that were subject to long-term life-tests. For the present study, we report root causes investigation of COBD by performing long-term lifetests followed by failure mode analysis (FMA) using various micro-analytical techniques including electron beam induced current (EBIC), time-resolved electroluminescence (EL), focused ion beam (FIB), high-resolution transmission electron microscopy (TEM), and deep level transient spectroscopy (DLTS). Our life-tests with accumulated test hours of over 25,000 hours for SM lasers and over 35,000 hours for MM lasers generated a number of COBD failures with various failure times. EBIC techniques were employed to study dark line defects (DLDs) generated in SM COBD failures stressed under different test conditions. FIB and high-resolution TEM were employed to prepare cross sectional and plan view TEM specimens to study DLD areas (dislocations) in post-aged SM lasers. Time-resolved EL techniques were employed to study initiation and progressions of dark spots and dark lines in real time as MM lasers were aged. Lastly, to investigate precursor signatures of failure and degradation mechanisms responsible for COBD in both SM and MM lasers, we employed DLTS techniques to study a role that electron traps (non-radiative recombination centers) play in degradation of these lasers. Our in-depth root causes investigation results are reported.
The epididymal microenvironment: a site of attack for a male contraceptive?
Hinton, B T
1980-07-01
During their development, spermatozoa are continually bathed in fluid provided by epithelial secretions of the seminiferous tubule and the epididymal duct. This fluid or microenvironment is probably very important for spermatozoal maturation and survival. Micropuncture and microanalytic studies have revealed the occurrence of several biochemical changes of this specialized microenvironment along the epididymal duct; these changes seem to be linked to sperm maturation. The interactions between maturing spermatozoa and their microenvironment must be understood before interference in sperm maturation through intervention of the formation of the microenvironment is possible. Several compounds have been shown to interfere in spermatozoal maturation in the epididymis although their use as male contraceptives requires further investigation.
Vital effects in coral skeletal composition display strict three-dimensional control
Meibom, A.; Yurimoto, H.; Cuif, J.-P.; Domart-Coulon, I.; Houlbreque, F.; Constantz, B.; Dauphin, Y.; Tambutte, E.; Tambutte, S.; Allemand, D.; Wooden, J.; Dunbar, R.
2006-01-01
Biological control over coral skeletal composition is poorly understood but critically important to paleoenvironmental reconstructions. We present microanalytical measurements of trace-element abundances as well as oxygen and carbon isotopic compositions of individual skeletal components in the zooxanthellate coral Colpophyllia sp. Our data show that centers of calcification (COC) have higher trace element concentrations and distinctly lighter isotopic compositions than the fibrous components of the skeleton. These observations necessitate that COC and the fibrous skeleton are precipitated by different mechanisms, which are controlled by specialized domains of the calicoblastic cell-layer. Biological processes control the composition of the skeleton even at the ultra-structure level. Copyright 2006 by the American Geophysical Union.
Rodak, Bruna Wurr; Freitas, Douglas Siqueira; Bamberg, Soraya Marx; Carneiro, Marco Aurélio Carbone; Guilherme, Luiz Roberto Guimarães
2017-01-01
The symbiosis between legumes, arbuscular mycorrhizal (AM) fungi, and N 2 -fixing bacteria (NFB) provides mutual nutritional gains. However, assessing the nutritional status of the microorganisms is a difficult task. A methodology that could assess this status, in situ, could assist managing these organisms in agriculture. This study used X-ray microanalyses to quantify and locate mineral elements in structures formed in a tripartite symbiosis. Lima bean (Phaseolus lunatus L. Walp) was cultivated in pots under greenhouse conditions, to which we have added AM fungal isolates (Glomus macrocarpum and Acaulospora colombiana) and NFB (Bradyrhizobium japonicum) inocula. Uninoculated control plants were also included. Symbionts were evaluated at the onset of flowering. Quantification of the mineral elements in the symbiotic components was performed using energy dispersive X-ray spectroscopy (EDX) and a scanning electron microscopy (SEM) was used to identify structures. EDX analysis detected 13 elements with the most abundant being N, Ca, and Se, occurring in all tissues, Fe in roots, Ni and Al in epidermis and P and Mo in nodules. Elemental quantification in fungal structures was not possible. The distribution of elements was related to their symbiotic function. X-ray microanalysis can be efficiently applied for nutritional diagnosis in tripartite symbiosis. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
van Soest, M. C.; Monteleone, B. D.; Boyce, J. W.; Hodges, K.
2009-12-01
Since its development (e.g. Zeitler et al., 1987, Lippolt et al., 1994, Farley et al., 1996, Wolf et al., 1996) as a viable low temperature thermochronological method (U-Th)/He dating of apatite has become a popular and widely applied low temperature thermochronometer. The method has been applied with success to a great variety of geological problems, and the fundamental parameters of the method: the bulk diffusion parameters of helium in apatite, and the calculated theoretical helium stopping distance in apatite used to correct the ages for the effects of alpha ejection appear sound. However, the development of the UV laser microprobe technique for the (U-Th)/He method (Boyce et al., 2006) allows for in-situ testing of the helium bulk diffusion parameters (Farley, 2000) and can provide a direct measurement of the alpha ejection distance in apatite. So, with the ultimate goal of further developing the in-situ (U-Th)/He dating method and micro-analytical depth profiling techniques to constrain cooling histories in natural grains, we conducted a helium depth profiling study of induced diffusion and natural alpha ejection profiles in Durango apatite. For the diffusion depth profiling, a Durango crystal was cut in slabs oriented parallel and perpendicular to the crystal c-axis. The slabs were polished and heated using different temperature and time schedules to induce predictable diffusion profiles based on the bulk helium diffusion parameters in apatite. Depth profiling of the 4He diffusion profiles was done using an ArF excimer laser. The measured diffusion depth profiles at 350°, 400°, and 450° C coincide well with the predicted bulk diffusion curves, independent of slab orientation, but the 300° C profiles consistently deviate significantly. The possible cause for this deviation is currently being investigated. Alpha ejection profiling was carried out on crystal margins from two different Durango apatite crystals, several faces from each crystal were analyzed to evaluate the potential effects of crystallographic orientation on alpha ejection. The results from both crystals were very reproducible irrespective of crystal surface used and confirm the findings of Monteleone et al. (2008) that the measured alpha ejection profiles deviate significantly from and are shorter than the calculated theoretical average value. Efforts are currently underway to better constrain the measured alpha ejection distance and measure alpha ejection profiles in apatite crystals other than Durango apatite. References: Boyce, J. et al. (2006) GCA 70, pp. 3031-3039. Farley, K. et al. (1996) GCA 60, pp. 4223-4229. Farley, K. (2006) JGR SE 105, p. 2903-2914. Lippolt, H. et al. (1994) Chem Geol 112, pp. 179-191. Monteleone, B. et al. (2008) Eos Trans AGU, 89 Fall Meeting V53B-2162. Wolf, R. et al. (1996) GCA 60, pp. 4231-4240. Zeitler, P. et al. (1987) GCA 51, pp. 2865-2868.
NASA Astrophysics Data System (ADS)
Tuffen, Hugh; Houghton, Bruce F.; Dingwellp, Donald B.; Pinkerton, Harry
2010-05-01
Measurement of dissolved volatile concentrations in pyroclasts has formed the basis of our understanding of the links between magma degassing and the explosivity of silicic eruptions[1]. To date these studies have focussed exclusively on the densest pyroclastic obsidians, which comprise on a tiny proportion of the erupted products, in order to bypass the difficulty of analysing vesicular material. As a consequence, crucial information is missing about how degassing in the densest clasts relates to the behaviour of the bulk of the magma volume. To overcome this shortcoming, the volatile content of variably vesicular pyroclasts from the Rotongaio ash has been analysed using both micro-analytical (SIMS, synchrotron FTIR) and bulk techniques (TGA-MS). The Rotongaio ash was an exceptionally violent phase of phreatomagmatic activity during the 181 AD rhyolitic eruption of Taupo (New Zealand), the most powerful worldwide in the last 5000 years. The Rotongaio phase involved opening of new vents beneath Lake Taupo and the ash is characterised by a wide range of clast vesicularities (<10 to ~80 % by volume). Volatile measurement was challenging due to the high bubble number densities and small clast sizes. The mismatch between the water content of matrix glasses measured using bulk and micro-analytical techniques reflects pervasive post-eruption hydration of vesicle walls, which is most problematic at high vesicularities. Micron-scale maps of water concentration variations around vesicles in 30-50 vol % vesicular samples were acquired using SIMS. They indicate strong hydration within ~5 microns of vesicle walls, with pockets of unhydrated glass remaining in the thickest septa. Analysis of these unhydrated domains allowed robust measurement of water contents in pyroclasts ranging from ~1 to >50 vol % vesicles. Matrix glasses had largely degassed (0.19-0.49 wt % H2O, compared with an initial concentration in melt inclusions of ~3.6 wt %). The water contents measured using SIMS decreased systematically with increasing magma vesicularity. These results are fit well by a simple magma degassing model, in which a batch of magma first undergoes partial open-system degassing to a uniform water concentration of ~0.4 wt % H2O. Vesiculation then occurs with closed-system degassing, creating a negative relationship between vesicle content and the water content remaining in the melt. This model is consistent with the intrusion of a shallow cryptodome beneath Lake Taupo (depth ~100-200 metres) and prolonged stalling of magma at this shallow level. This was then followed by abrupt magma ascent and vesiculation, accompanied by interaction with the overlying lake water. Recent experiments have shown that the most violent interactions between rhyolitic magma and water may occur when the magma is highly viscous and prone to shear failure, as this creates the initial surface area for magma-water contact that results in explosive fuel-coolant interaction. The accumulation of a large volume (~1 km3) of degassed, highly-viscous rhyolitic magma directly beneath Lake Taupo may have therefore caused the exceptionally violent magma-water interaction that occurred during the Rotongaio phase. This reveals new links between magma degassing and the explosivity of eruptions when external water is involved, and illustrates the value of analysing pyroclastic material spanning a wide range of vesicularity in order to better reconstruct degassing systematics. References [1] Newman S. et al. (1988) J. Volcanol. Geotherm. Res. 35, 75-96. [2] Smith RT & Houghton BF (1995) Bull. Volcanol. 57, 432-439. [3] A. Austin-Erickson et al. (2008) J. Geophys. Res., 113, B11201.
Exploring clinical reasoning in novices: a self-regulated learning microanalytic assessment approach
Artino, Anthony R; Cleary, Timothy J; Dong, Ting; Hemmer, Paul A; Durning, Steven J
2014-01-01
Objectives The primary objectives of this study were to examine the regulatory processes of medical students as they completed a diagnostic reasoning task and to examine whether the strategic quality of these regulatory processes were related to short-term and longer-term medical education outcomes. Methods A self-regulated learning (SRL) microanalytic assessment was administered to 71 second-year medical students while they read a clinical case and worked to formulate the most probable diagnosis. Verbal responses to open-ended questions targeting forethought and performance phase processes of a cyclical model of SRL were recorded verbatim and subsequently coded using a framework from prior research. Descriptive statistics and hierarchical linear regression models were used to examine the relationships between the SRL processes and several outcomes. Results Most participants (90%) reported focusing on specific diagnostic reasoning strategies during the task (metacognitive monitoring), but only about one-third of students referenced these strategies (e.g. identifying symptoms, integration) in relation to their task goals and plans for completing the task. After accounting for prior undergraduate achievement and verbal reasoning ability, strategic planning explained significant additional variance in course grade (ΔR2 = 0.15, p < 0.01), second-year grade point average (ΔR2 = 0.14, p < 0.01), United States Medical Licensing Examination Step 1 score (ΔR2 = 0.08, p < 0.05) and National Board of Medical Examiner subject examination score in internal medicine (ΔR2 = 0.10, p < 0.05). Conclusions These findings suggest that most students in the formative stages of learning diagnostic reasoning skills are aware of and think about at least one key diagnostic reasoning process or strategy while solving a clinical case, but a substantially smaller percentage set goals or develop plans that incorporate such strategies. Given that students who developed more strategic plans achieved better outcomes, the potential importance of forethought regulatory processes is underscored. PMID:24528463
NASA Astrophysics Data System (ADS)
Mandell, Brian E.
The purpose of the present embedded mixed method study was to examine the self-regulatory processes used by high, average, and low achieving seventh grade students as they learned about a complex science topic from a hypermedia learning environment. Thirty participants were sampled. Participants were administered a number of measures to assess their achievement and self-efficacy. In addition, a microanalytic methodology, grounded in Zimmerman's cyclical model of self-regulated learning, was used to assess student self-regulated learning. It was hypothesized that there would be modest positive correlations between Zimmerman's three phases of self-regulated learning, that high achieving science students would deploy more self-regulatory subprocesses than average and low achieving science students, that high achieving science students would have higher self-efficacy beliefs to engage in self-regulated learning than average and low achieving science students, and that low achieving science students would over-estimate their self-efficacy for performance beliefs, average achieving science students would slightly overestimate their self-efficacy for performance beliefs, and high achieving science students would under-estimate their self-efficacy for performance beliefs. All hypotheses were supported except for the high achieving science students who under-estimated their self-efficacy for performance beliefs on the Declarative Knowledge Measure and slightly overestimated their self-efficacy for performance beliefs on the Conceptual Knowledge Measure. Finally, all measures of self-regulated learning were combined and entered into a regression formula to predict the students' scores on the two science tests, and it was revealed that the combined measure predicted 91% of the variance on the Declarative Knowledge Measure and 92% of the variance on the Conceptual Knowledge Measure. This study adds hypermedia learning environments to the contexts that the microanalytic methodology has been successfully administered. Educational implications and limitations to the study are also discussed.
The Byzantine Church of ``40 Holy Martyrs'' in Veliko Turnovo, Bulgaria: Pigments and Technique
NASA Astrophysics Data System (ADS)
Sakellariou, E.; Zorba, T.; Pavlidou, E.; Angelova, S.; Paraskevopoulos, K. M.
2010-01-01
The "St. 40 Martyrs" church is the most famous medieval building in Veliko Turnovo, Bulgaria. It is located in Assenova mahala, just next to Tsarevets. It was built and its walls were painted during the reign of Bulgarian king Ivan Assen II after the victory against Epyrus despot Theodoros Comninos (1230 AD). It consists of two buildings - a six-column basilica and another, smaller building on its western wall, which was built later. During the presence of the Ottoman Turks, maybe until the first half of the 18th century, the church remained christian. When it was converted to a mosque, all the christian symbols in it were destroyed. The archeological researches on site were initiated in 1969. As it is clear, the 40 Martyrs church is a historical monument of culture with great significance. The church had murals, from the earlier period, but in the following years and especially during the Ottoman period, the church has suffered many and different destructions. Nevertheless, the very few pieces of murals that are rescued till nowadays provide important information for the technique and the pigments that were used on its wall paintings. In the present work, twelve series of samples from the wall paintings were studied in order to characterize the materials and the technique used for church iconography. The study was based on the micro-analytical techniques of the Fourier Transform Infrared micro-spectroscopy (μs-FTIR), the Optical Microscopy and the Scanning Electron Microscopy (SEM) coupled to an Energy Dispersive X-ray Spectrometer (EDS). In the FTIR spectra of all pigments the characteristic peaks of calcite were detected, confirming the use of fresco technique for the creation of murals. The combination of FTIR spectroscopy and SEM-EDS analysis, reveal the existence of lapis-lazuli for the blue color, green earth for the green color, cinnabar for the red color, calcite for the white color and carbon black for the black color. Moreover, in other chromatic layers, the presence of iron oxides (hematite and limonite) indicating the use of ochre for the yellow and red pigments, is identified. Finally, the surface of some samples was covered by a transparent and tensile material. This material was characterized by μs-FTIR spectroscopy as an organic substance, probably a natural resin that was used to protect the murals in the early ages.
X-ray microanalytical surveys of minor element concentrations in unsectioned biological samples
NASA Astrophysics Data System (ADS)
Schofield, R. M. S.; Lefevre, H. W.; Overley, J. C.; Macdonald, J. D.
1988-03-01
Approximate concentration maps of small unsectioned biological samples are made using the pixel by pixel ratio of PIXE images to areal density images. Areal density images are derived from scanning transmission ion microscopy (STIM) proton energy-loss images. Corrections for X-ray production cross section variations, X-ray attenuation, and depth averaging are approximated or ignored. Estimates of the magnitude of the resulting error are made. Approximate calcium concentrations within the head of a fruit fly are reported. Concentrations in the retinula cell region of the eye average about 1 mg/g dry weight. Concentrations of zinc in the mandible of several ant species average about 40 mg/g. Zinc concentrations in the stomachs of these ants are at least 1 mg/g.
Sample injector for high pressure liquid chromatography
Paul, Phillip H.; Arnold, Don W.; Neyer, David W.
2001-01-01
Apparatus and method for driving a sample, having a well-defined volume, under pressure into a chromatography column. A conventional high pressure sampling valve is replaced by a sample injector composed of a pair of injector components connected in series to a common junction. The injector components are containers of porous dielectric material constructed so as to provide for electroosmotic flow of a sample into the junction. At an appropriate time, a pressure pulse from a high pressure source, that can be an electrokinetic pump, connected to the common junction, drives a portion of the sample, whose size is determined by the dead volume of the common junction, into the chromatographic column for subsequent separation and analysis. The apparatus can be fabricated on a substrate for microanalytical applications.
The Amsterdam quintuplet nuclear microprobe
NASA Astrophysics Data System (ADS)
van den Putte, M. J. J.; van den Brand, J. F. J.; Jamieson, D. N.; Rout, B.; Szymanski, R.
2003-09-01
A new nuclear microprobe comprising of a quintuplet lens system is being constructed at the Ion Beam Facility of the "Vrije Universiteit" Amsterdam in collaboration with the Microanalytical Research Centre of the University of Melbourne. An overview of the Amsterdam set-up will be presented. Detailed characterisation of the individual lenses was performed with the grid shadow method using a 2000 mesh Cu grid mounted at a relative angle of 0.5° to the vertical lens line focus. The lenses were found to have very low parasitic aberrations equal or below the minimum detectable limit for the method, which was approximately 0.1% for the sextupole component and 0.2% for the octupole component. We present experimental and theoretical grid shadow patterns, showing results for all five lenses.
Pedothem carbonates reveal anomalous North American atmospheric circulation 70,000–55,000 years ago
Sharp, Warren D.; Oster, Jessica L.; Ebeling, Angela; Valley, John W.; Kozdon, Reinhard; Orland, Ian J.; Woodhead, Jon D.; Hergt, Janet M.; Chadwick, Oliver A.; Amundson, Ronald
2016-01-01
Our understanding of climatic conditions, and therefore forcing factors, in North America during the past two glacial cycles is limited in part by the scarcity of long, well-dated, continuous paleoclimate records. Here, we present the first, to our knowledge, continuous, millennial-resolution paleoclimate proxy record derived from millimeter-thick pedogenic carbonate clast coatings (pedothems), which are widely distributed in semiarid to arid regions worldwide. Our new multiisotope pedothem record from the Wind River Basin in Wyoming confirms a previously hypothesized period of increased transport of Gulf of Mexico moisture northward into the continental interior from 70,000 to 55,000 years ago based on oxygen and carbon isotopes determined by ion microprobe and uranium isotopes and U-Th dating by laser ablation inductively coupled plasma mass spectrometry. This pronounced meridional moisture transport, which contrasts with the dominant zonal transport of Pacific moisture into the North American interior by westerly winds before and after 70,000–55,000 years ago, may have resulted from a persistent anticyclone developed above the North American ice sheet during Marine Isotope Stage 4. We conclude that pedothems, when analyzed using microanalytical techniques, can provide high-resolution paleoclimate records that may open new avenues into understanding past terrestrial climates in regions where paleoclimate records are not otherwise available. When pedothem paleoclimate records are combined with existing records they will add complimentary soil-based perspectives on paleoclimate conditions. PMID:26755592
NASA Astrophysics Data System (ADS)
Andreae, M. O.; Al-Amri, A. M.; Jochum, K. P.; Kappl, M.; Kilcoyne, A. D.; Macholdt, D.; Müller, M.; Pöhlker, C.; Weber, B.; Weigand, M.
2014-12-01
Desert varnishes are thin, shiny, blackish to brown coatings frequently found on the surfaces of exposed rocks in deserts around the globe. They have been proposed as terrestrial analogues of superficial hematite enrichments observed on Mars. While the first scientific studies of such varnishes go back to Darwin and von Humboldt, and intensive studies by a variety of techniques have been conducted over the last few decades, their origin is still a matter of debate. Microscopic and molecular studies have shown the presence of fungi and bacteria, but it is still unclear whether they are involved in the formation of the varnish material or just opportunistic colonizers on available surfaces. We have analysed samples of desert varnish from sites in Death Valley, the Mojave Desert, the Negev of Israel, Central Saudi Arabia, and the Succulent Karoo by a variety of microanalytical techniques. Measurements by UV-femtosecond Laser Ablation Inductively Coupled Plasma Mass Spectrometry show enrichments of manganese, iron, barium and other elements. Isotopic and trace chemical signatures show that these enriched elements cannot originate from the rocks that form the substrate on which the crusts have been deposited, but most likely are the result of (bio?)chemical transformation of windblown material. For a more detailed investigation of the internal structure of the crusts, we prepared ultra-thin sections (~100 nm) using focused ion beam slicing and analysed them by Scanning Transmission X-ray Microscopy with Near-Edge X-ray Absorption Fine Structure spectroscopy (STXM-NEXAFS). This technique revealed layered or chaotic structures consisting of alternating Mn and Fe-rich zones. Some of these layers are enriched in organic carbon with spectral features dominated by aromatic and carboxylate functionalities, indicating a biological origin of some of the crust material. Some crusts also show cavities that are lined with similar organic material. Since the age of these crusts is of the order of 100-10,000 of years, this organic matter must represent fossil evidence that has survived intensive solar radiation, extreme temperatures, and chemical weathering over long periods of time within microns from the varnish surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendrick, M.J.; Goldschmidt, M.H.; Shofer, F.S.
1992-10-01
An increase in fibrosarcomas in a biopsy population of cats in the Pennsylvania area appears to be related to the increased vaccination of cats following enactment of a mandatory rabies vaccination law. The majority of fibrosarcomas arose in sites routinely used by veterinarians for vaccination, and 42 of 198 tumors were surrounded by lymphocytes and macrophages containing foreign material identical to that previously described in postvaccinal inflammatory injection site reactions. Some of the vaccines used have aluminum-based adjuvants, and macrophages surrounding three tumors contained aluminum oxide identified by electron probe microanalysis and imaged by energy-filtered electron microscopy. Persistence of inflammatorymore » and immunological reactions associated with aluminum may predispose the cat to a derangement of its fibrous connective tissue repair response, leading to neoplasia.« less
Chohan, Zahid H; Sumrra, Sajjad H
2012-04-01
A new series of biologically active thienyl derived triazole Schiff bases and their oxovanadium(IV) complexes have been synthesized and characterized on the basis of physical (m.p., magnetic susceptibility and conductivity), spectral (IR, ¹H and ¹³C NMR, electronic and mass spectrometry) and microanalytical data. All the Schiff base ligands and their oxovanadium(IV) complexes have been subjected to in vitro antibacterial activity against four Gram-negative (Escherichia coli, Shigella flexneri, Pseudomonas aeruginosa, Salmonella enterica serover typhi) and two Gram-positive (Staphylococcus aureus and Bacillus subtilis) bacterial strains and, for in vitro antifungal activity against Trichophyton longifucus, Candida albican, Aspergillus flavus, Microscopum canis, Fusarium solani and Candida glabrata. Brine shrimp bioassay was also carried out to check the cytotoxic nature of these compounds.
Aberration-Corrected STEM Imaging Through Off-Site Remote Operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jarvis, Karalee; Allard Jr, Lawrence Frederick; Jerome, Timothy Y
2010-01-01
Recent advances in aberration-corrected electron microscopy have allowed researchers to image materials at sub- ngstr m resolution. Many of these modern instruments are designed to be operated from separate 'control' rooms, removing the effect of the operator on the instrument s physical environment. This capability also allows operation from suitable workstations, over internet connections, from literally anywhere in the world [1]. Researchers at the University of Texas at Austin (UTA) have collaborated with Oak Ridge National Laboratory (ORNL) and JEOL Ltd. to routinely conduct research sessions in which high-resolution images and X-ray microanalytical data are acquired during after-hours research sessions,more » utilizing the JEOL 2200FS aberration-corrected STEM/TEM at ORNL from their lab in Austin. Details of the remote operation are presented here.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakellariou, E.; Zorba, T.; Pavlidou, E.
The 'St. 40 Martyrs' church is the most famous medieval building in Veliko Turnovo, Bulgaria. It is located in Assenova mahala, just next to Tsarevets. It was built and its walls were painted during the reign of Bulgarian king Ivan Assen II after the victory against Epyrus despot Theodoros Comninos (1230 AD). It consists of two buildings - a six-column basilica and another, smaller building on its western wall, which was built later. During the presence of the Ottoman Turks, maybe until the first half of the 18th century, the church remained christian. When it was converted to a mosque,more » all the christian symbols in it were destroyed. The archeological researches on site were initiated in 1969. As it is clear, the 40 Martyrs church is a historical monument of culture with great significance. The church had murals, from the earlier period, but in the following years and especially during the Ottoman period, the church has suffered many and different destructions. Nevertheless, the very few pieces of murals that are rescued till nowadays provide important information for the technique and the pigments that were used on its wall paintings. In the present work, twelve series of samples from the wall paintings were studied in order to characterize the materials and the technique used for church iconography. The study was based on the micro-analytical techniques of the Fourier Transform Infrared micro-spectroscopy (mus-FTIR), the Optical Microscopy and the Scanning Electron Microscopy (SEM) coupled to an Energy Dispersive X-ray Spectrometer (EDS). In the FTIR spectra of all pigments the characteristic peaks of calcite were detected, confirming the use of fresco technique for the creation of murals. The combination of FTIR spectroscopy and SEM-EDS analysis, reveal the existence of lapis-lazuli for the blue color, green earth for the green color, cinnabar for the red color, calcite for the white color and carbon black for the black color. Moreover, in other chromatic layers, the presence of iron oxides (hematite and limonite) indicating the use of ochre for the yellow and red pigments, is identified. Finally, the surface of some samples was covered by a transparent and tensile material. This material was characterized by mus-FTIR spectroscopy as an organic substance, probably a natural resin that was used to protect the murals in the early ages.« less
NASA Astrophysics Data System (ADS)
Figueroa, M. C.; Gregory, D. D.; Lyons, T. W.; Williford, K. H.
2017-12-01
Life processes affect trace element abundances in pyrite such that sedimentary and hydrothermal pyrite have significantly different trace element signatures. Thus, we propose that these biogeochemical data could be used to identify pyrite that formed biogenetically either early in our planet's history or on other planets, particularly Mars. The potential for this approach is elevated because pyrite is common in diverse sedimentary settings, and its trace element content can be preserved despite secondary overprints up to greenschist facies, thus minimizing the concerns about remobilization that can plague traditional whole rock studies. We are also including in-situ sulfur isotope analysis to further refine our understanding of the complex signatures of ancient pyrite. Sulfur isotope data can point straightforwardly to the involvement of life, because pyrite in sediments is inextricably linked to bacterial sulfate reduction and its diagnostic isotopic expressions. In addition to analyzing pyrite of known biological origin formed in the modern and ancient oceans under a range of conditions, we are building a data set for pyrite formed by hydrothermal and metamorphic processes to minimize the risk of false positives in life detection. We have used Random Forests (RF), a machine learning statistical technique with proven efficiency for classifying large geological datasets, to classify pyrite into biotic and abiotic end members. Coupling the trace element and sulfur isotope data from our analyses with a large existing dataset from diverse settings has yielded 4500 analyses with 18 different variables. Our initial results reveal the promise of the RF approach, correctly identifying biogenic pyrite 97 percent of the time. We will continue to couple new in-situ S-isotope and trace element analyses of biogenic pyrite grains from modern and ancient environments, using cutting-edge microanalytical techniques, with new data from high temperature settings. Our ultimately goal is a refined search tool with straightforward application in the search for early life on Earth and distant life recorded in meteorites, returned samples, and in situ measurements.
The behaviour of monazite at high temperature and high stress in the lower crust
NASA Astrophysics Data System (ADS)
Clark, Chris; Taylor, Richard; Erickson, Timmons; Reddy, Steven; Fougerouse, Denis; Fitzsimons, Ian; Hand, Martin
2017-04-01
Monazite is fast becoming the go to geochronometer for establishing the timing of metamorphic, deformational and hydrothermal events in crustal rocks. This is principally due to monazite forming in rocks that are petrologically useful (e.g. metapelites), it's susceptibility to recrystallization (both fluid and deformation driven) and the suite of trace elements it incorporates during growth. In dry conditions (i.e. the melt-depleted lower crust) monazite has a high closure temperature. It therefore has the ability to record the timing of prograde to peak metamorphic conditions. The reactivity of monazite in the presence of fluid allows the timing of post-peak fluid and melt crystallisation events to be constrained. Under high-stress monazite will recrystallise, forming new crystals that can be used to constrain the age of deformational events - this feature is particularly useful as high-grade reworking of lower crustal rocks often leave no geochronological record within other accessory minerals (e.g. zircon). However, it has long been recognised that monazite can record a cryptic range and/or distribution of ages that are difficult reconcile with how we traditionally believe the lower crust responds to deformational events - e.g. the anhydrous nature of lower crustal rocks and the preservation of granulite facies mineral assemblages. Here we present datasets collected by a suite of microanalytical techniques on monazite grains from lower-crustal rocks that have experienced deformation, fluid-rock interaction and ultrahigh temperature metamorphism. To better understand how monazite behaves in these environments we integrate electron probe, electron backscatter diffraction, laser ablation split stream petrochronology, transmission electron microscopy and Atom Probe Tomography datasets to image and quantify behaviour of key elements from the micro- to the nanoscale. When used sequentially, these techniques provide a detailed view of the processes that re-distribute U-Th-REE-Y-Pb at the nanoscale. Understanding how monazite behaves under different stress and thermal conditions is the key to using this geochronometer to develop and refine event chronologies in the lower crust.
NASA Astrophysics Data System (ADS)
Kwah, Helen
This thesis explores the questions of how a teacher guides students to see concepts, and the role of gesture and gesture viewpoints in mediating the process of guidance. To examine these questions, two sociocultural theoretical frameworks--Radford's cultural-semiotic theory of knowledge objectification (e.g., 2003), and Goldman's Points of Viewing theory (e.g., 2007)--were applied to conduct a microanalytic, explanatory case study of the instructional activity of an exemplary teacher and his students in a middle school robotics programming class. According to Radford, students acquire concepts as they draw upon semiotic resources such as language and gesture to generalize and objectify initially concrete perceptions and actions. I applied Radford's framework to explain the mediations that a teacher might enact in guiding students to objectify and see concepts. Furthermore, I focused on gesture as semiotic means because of emergent research on gesture's role in communicating the visuospatial imagery that underlies math/ scientific concepts. I extended the view of gestures to the viewpoints constructed in gesture, and applied Goldman's theory to explain how perspectives might be actively constructed and shared in the process of guiding student conceptualization. Data was collected over a semester through participant observation, field notes, teacher and student interviews, and reviews of artifacts. Multimodal microanalyses were conducted on video data from eight class sessions. The findings provide confirmations and some disconfirmations about the applicability of Radford's and Goldman's theories for explaining a teacher's process of guiding student conceptualization. Notably, some of Radford's notions about de-contextualization and symbolic generalizations were not confirmed. Overall, the findings are summarized through three themes including, grounding, and perceptual organizers as two ways that gesture and other means served to both index and identify action-perception schemes for bridging to the symbolic level of programming concepts and conceptual structures. A third theme of iteration, shifting, and layering described the quality of the teacher's process, and the importance of constructing shifting and multiple viewpoints in gesture and speech, as Goldman's theory proposed. Finally, implications for designing educational applications that draw upon gesture as mediational means are discussed.
NASA Astrophysics Data System (ADS)
Wynn, Peter M.; Fairchild, Ian J.; Borsato, Andrea; Spötl, Christoph; Hartland, Adam; Baker, Andy; Frisia, Silvia; Baldini, James U. L.
2018-04-01
Carbonate-associated sulphate (CAS) is a useful carrier of palaeoenvironmental information throughout the geologic record, particularly through its stable isotope composition. However, a paucity of experimental data restricts quantitative understanding of sulphate incorporation into carbonates, and consequently CAS concentrations and their diagenetic modifications are rarely interpreted. However, in the case of calcite speleothems, the remarkably high-resolution CAS records which are obtainable via modern microanalytical techniques represent a potentially invaluable source of palaeoenvironmental information. Here, we describe the results of controlled experiments of sulphate co-precipitation with calcite in freshwater solutions where pH, saturation state, and sulphate concentration were varied independently of each other. Solution pH is confirmed as the principal control on sulphate incorporation into calcite. The relative efficiency of incorporation was calculated as a partition coefficient DSO4 = (mSO4/mCO3)solid/(mSO4/mCO3)solution. High crystal growth rates (driven by either pH or saturation state) encouraged higher values of DSO4 because of an increasing concentration of defect sites on crystal surfaces. At low growth rates, DSO4 was reduced due to an inferred competition between sulphate and bicarbonate at the calcite surface. These experimental results are applied to understand the incorporation of sulphate into speleothem calcite. The experimentally determined pH-dependence suggests that strong seasonal variations in cave air PCO2 could account for annual cycles in sulphate concentration observed in stalagmites. Our new experimentally determined values of DSO4 were compared with DSO4 values calculated from speleothem-drip water monitoring from two caves within the Austrian and Italian Alps. At Obir cave, Austria, DSO4 (×105) varies between 11.1 (winter) and 9.0 (summer) and the corresponding figures for Ernesto cave, Italy, are 15.4 (winter) and 14.9 (summer). These values approximate predicted DSO4 values based on our chamber experiments containing both low (2 ppm) and high (20 ppm) sulphate concentrations. Our experimental values of DSO4 obtained at crystal growth rates typical of stalagmites, closely match those observed in other cave sites from around the world. This validates the universality of the controls behind DSO4 and will enhance the use of speleothem CAS as a palaeoenvironmental proxy.
Artino, Anthony R; Cleary, Timothy J; Dong, Ting; Hemmer, Paul A; Durning, Steven J
2014-03-01
The primary objectives of this study were to examine the regulatory processes of medical students as they completed a diagnostic reasoning task and to examine whether the strategic quality of these regulatory processes were related to short-term and longer-term medical education outcomes. A self-regulated learning (SRL) microanalytic assessment was administered to 71 second-year medical students while they read a clinical case and worked to formulate the most probable diagnosis. Verbal responses to open-ended questions targeting forethought and performance phase processes of a cyclical model of SRL were recorded verbatim and subsequently coded using a framework from prior research. Descriptive statistics and hierarchical linear regression models were used to examine the relationships between the SRL processes and several outcomes. Most participants (90%) reported focusing on specific diagnostic reasoning strategies during the task (metacognitive monitoring), but only about one-third of students referenced these strategies (e.g. identifying symptoms, integration) in relation to their task goals and plans for completing the task. After accounting for prior undergraduate achievement and verbal reasoning ability, strategic planning explained significant additional variance in course grade (ΔR(2 ) = 0.15, p < 0.01), second-year grade point average (ΔR(2) = 0.14, p < 0.01), United States Medical Licensing Examination Step 1 score (ΔR(2) = 0.08, p < 0.05) and National Board of Medical Examiner subject examination score in internal medicine (ΔR(2) = 0.10, p < 0.05). These findings suggest that most students in the formative stages of learning diagnostic reasoning skills are aware of and think about at least one key diagnostic reasoning process or strategy while solving a clinical case, but a substantially smaller percentage set goals or develop plans that incorporate such strategies. Given that students who developed more strategic plans achieved better outcomes, the potential importance of forethought regulatory processes is underscored. Published 2014. This article is a U.S. Government work and is in the public domain in the USA. Medical Education published by John Wiley & Sons Ltd.
QACD: A method for the quantitative assessment of compositional distribution in geologic materials
NASA Astrophysics Data System (ADS)
Loocke, M. P.; Lissenberg, J. C. J.; MacLeod, C. J.
2017-12-01
In order to fully understand the petrogenetic history of a rock, it is critical to obtain a thorough characterization of the chemical and textural relationships of its mineral constituents. Element mapping combines the microanalytical techniques that allow for the analysis of major- and minor elements at high spatial resolutions (e.g., electron microbeam analysis) with 2D mapping of samples in order to provide unprecedented detail regarding the growth histories and compositional distributions of minerals within a sample. We present a method for the acquisition and processing of large area X-ray element maps obtained by energy-dispersive X-ray spectrometer (EDS) to produce a quantitative assessment of compositional distribution (QACD) of mineral populations within geologic materials. By optimizing the conditions at which the EDS X-ray element maps are acquired, we are able to obtain full thin section quantitative element maps for most major elements in relatively short amounts of time. Such maps can be used to not only accurately identify all phases and calculate mineral modes for a sample (e.g., a petrographic thin section), but, critically, enable a complete quantitative assessment of their compositions. The QACD method has been incorporated into a python-based, easy-to-use graphical user interface (GUI) called Quack. The Quack software facilitates the generation of mineral modes, element and molar ratio maps and the quantification of full-sample compositional distributions. The open-source nature of the Quack software provides a versatile platform which can be easily adapted and modified to suit the needs of the user.
NASA Astrophysics Data System (ADS)
Sahlstedt, Elina; Arppe, Laura
2017-04-01
Stable isotope composition of bones, analysed either from the mineral phase (hydroxyapatite) or from the organic phase (mainly collagen) carry important climatological and ecological information and are therefore widely used in paleontological and archaeological research. For the analysis of the stable isotope compositions, both of the phases, hydroxyapatite and collagen, have their more or less well established separation and analytical techniques. Recent development in IRMS and wet chemical extraction methods have facilitated the analysis of very small bone fractions (500 μg or less starting material) for PO43-O isotope composition. However, the uniqueness and (pre-) historical value of each archaeological and paleontological finding lead to preciously little material available for stable isotope analyses, encouraging further development of microanalytical methods for the use of stable isotope analyses. Here we present the first results in developing extraction methods for combining collagen C- and N-isotope analyses to PO43-O-isotope analyses from a single bone sample fraction. We tested sequential extraction starting with dilute acid demineralization and collection of both collagen and PO43-fractions, followed by further purification step by H2O2 (PO43-fraction). First results show that bone sample separates as small as 2 mg may be analysed for their δ15N, δ13C and δ18OPO4 values. The method may be incorporated in detailed investigation of sequentially developing skeletal material such as teeth, potentially allowing for the investigation of interannual variability in climatological/environmental signals or investigation of the early life history of an individual.
Manual for Transference Work Scale; a micro-analytical tool for therapy process analyses.
Ulberg, Randi; Amlo, Svein; Høglend, Per
2014-11-18
The present paper is a manual for the Transference Work Scale (TWS). The inter-rater agreement on the 26 TWS items was good to excellent and previously published. TWS is a therapy process rating scale focusing on Transference Work (TW) (i.e. analysis of the patient-therapist relationship). TW is considered a core active ingredient in dynamic psychotherapy. Adequate process scales are needed to identify and analyze in-session effects of therapist techniques in psychodynamic psychotherapy and empirically establish their links to outcome. TWS was constructed to identify and categorize relational (transference) interventions, and explore the in-session impact of analysis of the patient-therapist relationship (transference work). TWS has sub scales that rate timing, content, and valence of the transference interventions, as well as response from the patient. Descriptions and elaborations of the items in TWS are provided. Clinical examples of transference work from the First Experimental Study of Transference Interpretations (FEST) are included and followed by examples of how to rate transcripts from therapy sessions with TWS. The present manual describes in detail the rating procedure when using Transference Work Scale. Ratings are illustrated with clinical examples from FEST. TWS might be a potentially useful tool to explore the interaction of timing, category, and valence of transference work in predicting in-session patient response as well as treatment outcome. TWS might prove especially suitable for intensive case studies combining quantitative and narrative data. First Experimental Study of Transference-interpretations (FEST307/95). ClinicalTrials.gov Identifier: NCT00423462. URL: http://clinicaltrials.gov/ct2/show/NCT00423462?term=FEST&rank=2.
Revealing the sub-nanometere three-dimensional microscture of a metallic meteorite
NASA Astrophysics Data System (ADS)
Einsle, J. F.; Harrison, R.; Blukis, R.; Eggeman, A.; Saghi, Z.; Martineau, B.; Bagot, P.; Collins, S. M.; Midgley, P. A.
2017-12-01
Coming from from the core of differentiated planetesimals, iron-nickel meteorites provide some of the only direct material artefacts from planetary cores. Iron - nickel meteorites contain a record of their thermal and magnetic history, written in the intergrowth of iron-rich and nickel-rich phases that formed during slow cooling over millions of years. Of intense interest for understanding the thermal and magnetic history is the `'cloudy zone''. This nanoscale intergrowth that has recently been used to provide a record of magnetic activity on the parent body of stony-iron meteorites. The cloudy zone consists of islands of tetrataenite surrounded by a matrix phase, Here we use a multi-scale and multidimensional comparative study using high-resolution electron diffraction, scanning transmission electron tomography with chemical mapping, atom probe tomography and micromagnetic simulations to reveal the three-dimensional architecture of the cloudy zone with sub-nanometre spatial resolution. Machine learning data deconvolution strategies enable the three microanalytical techniques to converge on a consistent microstructural description for the cloudy zone. Isolated islands of tetrataenite are found, embedded in a continuous matrix of an FCC-supercell of Fe27Ni5 structure, never before identified in nature. The tetrataenite islands are arranged in clusters of three crystallographic variants, which control how magnetic information is encoded into the nanostructure during slow cooling. The new compositional, crystallographic and micromagnetic data have profound implications for how the cloudy zone acquires magnetic remanence, and requires a revision of the low-temperature metastable phase diagram of the Fe-Ni system. This can lead to a refinement of core dynamics in small planetoids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sato, S.; Murphy, G.F.; Bernhard, J.D.
1981-09-01
In order to elucidate the nature and distribution of the pigment responsible for the circumscribed blue-black cutaneous hyperpigmentation occurring after administration of minocycline hydrochloride, transmission electron microscopy and energy-dispersive electron x-ray microanalysis were performed on lesional skin. Ultrastructural observations demonstrated electron-dense iron-containing particles either incorporated into a variety of siderosomes, within dermal histiocytes, free within the cytoplasm, or, rarely, scattered among dermal collagen fibers. Electron x-ray microanalysis confirmed iron content present within these particles. Although siderosomal inclusions contained occasional melanosome complexes, the degree of deposition of electron-dense iron-containing particles in dermal histiocytes seemed to be primarily responsible for the blue-blackmore » discoloration of the skin. The present study is an investigation of the structure and composition of the pigment responsible for minocycline-related cutaneous hyperpigmentation.« less
Flachsbart, Bruce R; Wong, Kachuen; Iannacone, Jamie M; Abante, Edward N; Vlach, Robert L; Rauchfuss, Peter A; Bohn, Paul W; Sweedler, Jonathan V; Shannon, Mark A
2006-05-01
The design and fabrication of a multilayered polymer micro-nanofluidic chip is described that consists of poly(methylmethacrylate) (PMMA) layers that contain microfluidic channels separated in the vertical direction by polycarbonate (PC) membranes that incorporate an array of nanometre diameter cylindrical pores. The materials are optically transparent to allow inspection of the fluids within the channels in the near UV and visible spectrum. The design architecture enables nanofluidic interconnections to be placed in the vertical direction between microfluidic channels. Such an architecture allows microchannel separations within the chip, as well as allowing unique operations that utilize nanocapillary interconnects: the separation of analytes based on molecular size, channel isolation, enhanced mixing, and sample concentration. Device fabrication is made possible by a transfer process of labile membranes and the development of a contact printing method for a thermally curable epoxy based adhesive. This adhesive is shown to have bond strengths that prevent leakage and delamination and channel rupture tests exceed 6 atm (0.6 MPa) under applied pressure. Channels 100 microm in width and 20 microm in depth are contact printed without the adhesive entering the microchannel. The chip is characterized in terms of resistivity measurements along the microfluidic channels, electroosmotic flow (EOF) measurements at different pH values and laser-induced-fluorescence (LIF) detection of green-fluorescent protein (GFP) plugs injected across the nanocapillary membrane and into a microfluidic channel. The results indicate that the mixed polymer micro-nanofluidic multilayer chip has electrical characteristics needed for use in microanalytical systems.
Tortuous path chemical preconcentrator
Manginell, Ronald P.; Lewis, Patrick R.; Adkins, Douglas R.; Wheeler, David R.; Simonson, Robert J.
2010-09-21
A non-planar, tortuous path chemical preconcentrator has a high internal surface area having a heatable sorptive coating that can be used to selectively collect and concentrate one or more chemical species of interest from a fluid stream that can be rapidly released as a concentrated plug into an analytical or microanalytical chain for separation and detection. The non-planar chemical preconcentrator comprises a sorptive support structure having a tortuous flow path. The tortuosity provides repeated twists, turns, and bends to the flow, thereby increasing the interfacial contact between sample fluid stream and the sorptive material. The tortuous path also provides more opportunities for desorption and readsorption of volatile species. Further, the thermal efficiency of the tortuous path chemical preconcentrator is comparable or superior to the prior non-planar chemical preconcentrator. Finally, the tortuosity can be varied in different directions to optimize flow rates during the adsorption and desorption phases of operation of the preconcentrator.
Microchannel gel electrophoretic separation systems and methods for preparing and using
Herr, Amy E; Singh, Anup K; Throckmorton, Daniel J
2015-02-24
A micro-analytical platform for performing electrophoresis-based immunoassays was developed by integrating photopolymerized cross-linked polyacrylamide gels within a microfluidic device. The microfluidic immunoassays are performed by gel electrophoretic separation and quantifying analyte concentration based upon conventional polyacrylamide gel electrophoresis (PAGE). To retain biological activity of proteins and maintain intact immune complexes, native PAGE conditions were employed. Both direct (non-competitive) and competitive immunoassay formats are demonstrated in microchips for detecting toxins and biomarkers (cytokines, c-reactive protein) in bodily fluids (serum, saliva, oral fluids). Further, a description of gradient gels fabrication is included, in an effort to describe methods we have developed for further optimization of on-chip PAGE immunoassays. The described chip-based PAGE immunoassay method enables immunoassays that are fast (minutes) and require very small amounts of sample (less than a few microliters). Use of microfabricated chips as a platform enables integration, parallel assays, automation and development of portable devices.
Cosmic Dust Collection Facility: Scientific objectives and programmatic relations
NASA Technical Reports Server (NTRS)
Hoerz, Fred (Editor); Brownlee, D. E.; Bunch, T. E.; Grounds, D.; Grun, E.; Rummel, Y.; Quaide, W. L.; Walker, R. M.
1990-01-01
The science objectives are summarized for the Cosmic Dust Collection Facility (CDCF) on Space Station Freedom and these objectives are related to ongoing science programs and mission planning within NASA. The purpose is to illustrate the potential of the CDCF project within the broad context of early solar system sciences that emphasize the study of primitive objects in state-of-the-art analytical and experimental laboratories on Earth. Current knowledge about the sources of cosmic dust and their associated orbital dynamics is examined, and the results are reviewed of modern microanalytical investigations of extraterrestrial dust particles collected on Earth. Major areas of scientific inquiry and uncertainty are identified and it is shown how CDCF will contribute to their solution. General facility and instrument concepts that need to be pursued are introduced, and the major development tasks that are needed to attain the scientific objectives of the CDCF project are identified.
NASA Astrophysics Data System (ADS)
Tezcan, Burcu; Ulusal, Fatma; Egitmen, Asım; Guzel, Bilgehan
2018-05-01
Ligand-free palladium nanoparticles supported on multi-walled carbon nanotubes (Pd/MWCNT) were prepared by the supercritical carbon dioxide (scCO2) deposition method using a novel scCO2-soluble Pd organometallic complex as a precursor. The precursor with the perfluoroalkyl chain group was synthesized and identified by microanalytic methods. The deposition was carried out at the temperature of 363.15 K and pressure of 27.6 MPa CO2. The prepared metallic nanoparticles were obtained with an average size of 2 nm. Pd/MWCNT was utilized as a heterogeneous catalyst in Suzuki cross-coupling reaction. The nanocatalyst was found very effective in Suzuki reaction and it could also be recovered easily from the reaction media and reused over several cycles without significant loss of catalytic activity under mild conditions. [Figure not available: see fulltext.
Microchannel gel electrophoretic separation systems and methods for preparing and using
Herr, Amy; Singh, Anup K; Throckmorton, Daniel J
2013-09-03
A micro-analytical platform for performing electrophoresis-based immunoassays was developed by integrating photopolymerized cross-linked polyacrylamide gels within a microfluidic device. The microfluidic immunoassays are performed by gel electrophoretic separation and quantifying analyte concentration based upon conventional polyacrylamide gel electrophoresis (PAGE). To retain biological activity of proteins and maintain intact immune complexes, native PAGE conditions were employed. Both direct (non-competitive) and competitive immunoassay formats are demonstrated in microchips for detecting toxins and biomarkers (cytokines, c-reactive protein) in bodily fluids (serum, saliva, oral fluids). Further, a description of gradient gels fabrication is included, in an effort to describe methods we have developed for further optimization of on-chip PAGE immunoassays. The described chip-based PAGE immunoassay method enables immunoassays that are fast (minutes) and require very small amounts of sample (less than a few microliters). Use of microfabricated chips as a platform enables integration, parallel assays, automation and development of portable devices.
Frontalini, F; Curzi, D; Giordano, F M; Bernhard, J M; Falcieri, E; Coccioni, R
2015-01-30
The responses of Ammonia parkinsoniana (Foraminifera) exposed to different concentrations of lead (Pb) were evaluated at the cytological level. Foraminifera-bearing sediments were placed in mesocosms that were housed in aquaria each with seawater of a different lead concentration. On the basis of transmission electron microscopy and environmental scanning electron microscopy coupled with energy dispersive spectrometer analyses, it was possible to recognize numerous morphological differences between untreated (i.e., control) and treated (i.e., lead enrichment) specimens. In particular, higher concentrations of this pollutant led to numerical increase of lipid droplets characterized by a more electron-dense core, proliferation of residual bodies, a thickening of the organic lining, mitochondrial degeneration, autophagosome proliferation and the development of inorganic aggregates. All these cytological modifications might be related to the pollutant-induced stress and some of them such as the thickening of organic lining might suggest a potential mechanism of protection adopted by foraminifera.
Johnson, Mitchell E; Landers, James P
2004-11-01
Laser-induced fluorescence is an extremely sensitive method for detection in chemical separations. In addition, it is well-suited to detection in small volumes, and as such is widely used for capillary electrophoresis and microchip-based separations. This review explores the detailed instrumental conditions required for sub-zeptomole, sub-picomolar detection limits. The key to achieving the best sensitivity is to use an excitation and emission volume that is matched to the separation system and that, simultaneously, will keep scattering and luminescence background to a minimum. We discuss how this is accomplished with confocal detection, 90 degrees on-capillary detection, and sheath-flow detection. It is shown that each of these methods have their advantages and disadvantages, but that all can be used to produce extremely sensitive detectors for capillary- or microchip-based separations. Analysis of these capabilities allows prediction of the optimal means of achieving ultrasensitive detection on microchips.
NASA Astrophysics Data System (ADS)
Refat, Moamen S.
2013-03-01
Complexes of Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) with curcumin ligand as antitumor activity were synthesized and characterized by elemental analysis, conductometry, magnetic susceptibility, UV-Vis, IR, Raman, ESR, 1H-NMR spectroscopy, X-ray diffraction analysis of powdered samples and thermal analysis, and screened for antimicrobial activity. The IR spectral data suggested that the ligand behaves as a monobasic bidentate ligand towards the central metal ion with an oxygen's donor atoms sequence of both sbnd OH and Cdbnd O groups under keto-enol structure. From the microanalytical data, the stoichiometry of the complexes 1:2 (metal:ligand) was found. The ligand and their metal complexes were screened for antibacterial activity against Escherichia Coli, Staphylococcus aureus, Bacillus subtilis and Pseudomonas aeruginosa and fungicidal activity against Aspergillus flavus and Candida albicans.
Miniature Bioreactor System for Long-Term Cell Culture
NASA Technical Reports Server (NTRS)
Gonda, Steve R.; Kleis, Stanley J.; Geffert, Sandara K.
2010-01-01
A prototype miniature bioreactor system is designed to serve as a laboratory benchtop cell-culturing system that minimizes the need for relatively expensive equipment and reagents and can be operated under computer control, thereby reducing the time and effort required of human investigators and reducing uncertainty in results. The system includes a bioreactor, a fluid-handling subsystem, a chamber wherein the bioreactor is maintained in a controlled atmosphere at a controlled temperature, and associated control subsystems. The system can be used to culture both anchorage-dependent and suspension cells, which can be either prokaryotic or eukaryotic. Cells can be cultured for extended periods of time in this system, and samples of cells can be extracted and analyzed at specified intervals. By integrating this system with one or more microanalytical instrument(s), one can construct a complete automated analytical system that can be tailored to perform one or more of a large variety of assays.
Characterization of blue decorated Renaissance pottery fragments from Caltagirone (Sicily, Italy)
NASA Astrophysics Data System (ADS)
Barilaro, D.; Crupi, V.; Interdonato, S.; Majolino, D.; Venuti, V.; Barone, G.; La Russa, M. F.; Bardelli, F.
2008-07-01
Renaissance blue decorated pottery fragments from the archaeological site of Caltagirone (Sicily, Italy) were analysed by scanning electron microscopy - energy dispersive X-ray spectrometry (SEM/EDS). The samples were dated back to 16th century AD on the basis of archaeological observations. The micro-chemical analyses were performed on the ceramic body and the surface decorated layer of the samples. Particularly, the investigation was addressed the characterization of the coating blue decorations. The obtained results allowed us to clearly identify smalt as pigment. Also the presence of arsenic (As) was revealed and the Co/As ratio values were calculated and related to the different process used for the pigment preparation. Further spectroscopic analyses, performed through X-ray absorbance spectroscopy (XAS), carried out at the Co K-edge, confirmed the micro-analytical results and permitted us to identify the oxidation form and the local environment of cobalt atoms.
Progress Towards an Open Data Ecosystem for Australian Geochemistry and Geochronology Data
NASA Astrophysics Data System (ADS)
McInnes, B.; Rawling, T.; Brown, W.; Liffers, M.; Wyborn, L. A.; Brown, A.; Cox, S. J. D.
2016-12-01
Technological improvements in laboratory automation and microanalytical methods are producing an unprecedented volume of high-value geochemical data for use by geoscientists in understanding geological and planetary processes. In contrast, the research infrastructure necessary to systematically manage, deliver and archive analytical data has not progressed much beyond the minimum effort necessary to produce a peer-reviewed publication. Anecdotal evidence indicates that the majority of publically funded data is underreported, and what is published is relatively undiscoverable to experienced researchers let alone the general public. Government-funded "open data" initiatives have a role to play in the development of networks of data management and delivery ecosystems and practices allowing access to publically funded data. This paper reports on progress in Australia towards creation of an open data ecosystem involving multiple academic and government research institutions cooperating to create an open data architecture linking researchers, physical samples, sample metadata, laboratory metadata, analytical data and consumers.
Pala, Eva M; Dey, Sudip
2016-02-01
Conventional and highly sophisticated analytical methods (Cyria et al., 1989; Massar et al., 2012a) were used to analyze micro-structural and micro-analytical aspects of the blood of snake head fish, Channa gachua, exposed to municipal wastes and city garbage. Red (RBC) and white blood cell (WBC) counts and hemhemoglobin content were found to be higher in pollution affected fish as compared with control. Scanning electron microscopy revealed the occurrence of abnormal erythrocytes such as crenated cells, echinocytes, lobopodial projections, membrane internalization, spherocytes, ruptured cells, contracted cells, depression, and uneven elongation of erythrocyte membranes in fish inhabiting the polluted sites. Energy-dispersive X-ray spectroscopy (EDS) revealed the presence of silicon and lead in the RBCs of pollution affected fish. Significance of the study includes the highly sophisticated analytical approach, which revealed the aforementioned micro-structural abnormalities.
Ferguson, David J.; Gonnermann, Helge M.; Ruprecht, Philipp; Plank, Terry; Hauri, Erik H.; Houghton, Bruce F.; Swanson, Donald A.
2016-01-01
The decompression rate of magma as it ascends during volcanic eruptions is an important but poorly constrained parameter that controls many of the processes that influence eruptive behavior. In this study, we quantify decompression rates for basaltic magmas using volatile diffusion in olivine-hosted melt tubes (embayments) for three contrasting eruptions of Kīlauea volcano, Hawaii. Incomplete exsolution of H2O, CO2, and S from the embayment melts during eruptive ascent creates diffusion profiles that can be measured using microanalytical techniques, and then modeled to infer the average decompression rate. We obtain average rates of ~0.05–0.45 MPa s−1 for eruptions ranging from Hawaiian style fountains to basaltic subplinian, with the more intense eruptions having higher rates. The ascent timescales for these magmas vary from around ~5 to ~36 min from depths of ~2 to ~4 km, respectively. Decompression-exsolution models based on the embayment data also allow for an estimate of the mass fraction of pre-existing exsolved volatiles within the magma body. In the eruptions studied, this varies from 0.1 to 3.2 wt% but does not appear to be the key control on eruptive intensity. Our results do not support a direct link between the concentration of pre-eruptive volatiles and eruptive intensity; rather, they suggest that for these eruptions, decompression rates are proportional to independent estimates of mass discharge rate. Although the intensity of eruptions is defined by the discharge rate, based on the currently available dataset of embayment analyses, it does not appear to scale linearly with average decompression rate. This study demonstrates the utility of the embayment method for providing quantitative constraints on magma ascent during explosive basaltic eruptions.
Trace and minor elements in sphalerite from metamorphosed sulphide deposits
NASA Astrophysics Data System (ADS)
Lockington, Julian A.; Cook, Nigel J.; Ciobanu, Cristiana L.
2014-12-01
Sphalerite is a common sulphide and is the dominant ore mineral in Zn-Pb sulphide deposits. Precise determination of minor and trace element concentrations in sulphides, including sphalerite, by Laser-Ablation Inductively-Coupled-Plasma Mass-Spectrometry (LA-ICP-MS) is a potentially valuable petrogenetic tool. In this study, LA-ICP-MS is used to analyse 19 sphalerite samples from metamorphosed, sphalerite-bearing volcanic-associated and sedimentary exhalative massive sulphide deposits in Norway and Australia. The distributions of Mn, Fe, Co, Cu, Ga, Se, Ag, Cd, In, Sn, Sb, Hg, Tl, Pb and Bi are addressed with emphasis on how concentrations of these elements vary with metamorphic grade of the deposit and the extent of sulphide recrystallization. Results show that the concentrations of a group of trace elements which are believed to be present in sphalerite as micro- to nano-scale inclusions (Pb, Bi, and to some degree Cu and Ag) diminish with increasing metamorphic grade. This is interpreted as due to release of these elements during sphalerite recrystallization and subsequent remobilization to form discrete minerals elsewhere. The concentrations of lattice-bound elements (Mn, Fe, Cd, In and Hg) show no correlation with metamorphic grade. Primary metal sources, physico-chemical conditions during initial deposition, and element partitioning between sphalerite and co-existing sulphides are dominant in defining the concentrations of these elements and they appear to be readily re-incorporated into recrystallized sphalerite, offering potential insights into ore genesis. Given that sphalerite accommodates a variety of trace elements that can be precisely determined by contemporary microanalytical techniques, the mineral has considerable potential as a geothermometer, providing that element partitioning between sphalerite and coexisting minerals (galena, chalcopyrite etc.) can be quantified in samples for which the crystallization temperature can be independently constrained.
Function and Dynamics of Auxin and Carbohydrates during Earlywood/Latewood Transition in Scots Pine1
Uggla, Claes; Magel, Elisabeth; Moritz, Thomas; Sundberg, Björn
2001-01-01
In temperate regions the annual pattern of wood development is characterized by the formation of radially narrow and thick walled latewood cells. This takes place at the later part of the growing season when cambial cell division declines. To gain new insight into the regulation of this process, micro-analytical techniques were used to visualize the distribution of indole-3-acetic acid (IAA), soluble carbohydrates, and activities of sucrose (Suc)-metabolizing enzymes across the cambial region tissues in Scots pine (Pinus sylvestris). The total amount of IAA in the cambial region did not change with latewood initiation. But its radial distribution pattern was altered, resulting in an increased concentration in the cambial meristem and its recent derivatives. Thus, initiation of latewood formation and cessation of cambial cell division is not a consequence of decreased IAA concentrations in dividing and expanding cells. Rather, IAA most likely has a role in defining the altered developmental pattern associated with latewood formation. Carbohydrates and enzyme activities showed distinctive radial distribution patterns. Suc peaked in the phloem and decreased sharply to low levels across the cambial zone, whereas fructose and glucose reached their highest levels in the maturing tracheids. Suc synthase was the dominating Suc cleaving enzyme with a peak in the secondary wall-forming tracheids and in the phloem. Soluble acid invertase peaked in dividing and expanding cells. Suc-phosphate synthase had its highest activities in the phloem. Activities of cell wall bound invertase were low. The absence of major seasonal variations indicates that carbohydrate availability is not a trigger for latewood initiation. However, steep concentration gradients of the sugars suggest a role for sugar signaling in vascular development. PMID:11299382
Function and dynamics of auxin and carbohydrates during earlywood/latewood transition in scots pine.
Uggla, C; Magel, E; Moritz, T; Sundberg, B
2001-04-01
In temperate regions the annual pattern of wood development is characterized by the formation of radially narrow and thick walled latewood cells. This takes place at the later part of the growing season when cambial cell division declines. To gain new insight into the regulation of this process, micro-analytical techniques were used to visualize the distribution of indole-3-acetic acid (IAA), soluble carbohydrates, and activities of sucrose (Suc)-metabolizing enzymes across the cambial region tissues in Scots pine (Pinus sylvestris). The total amount of IAA in the cambial region did not change with latewood initiation. But its radial distribution pattern was altered, resulting in an increased concentration in the cambial meristem and its recent derivatives. Thus, initiation of latewood formation and cessation of cambial cell division is not a consequence of decreased IAA concentrations in dividing and expanding cells. Rather, IAA most likely has a role in defining the altered developmental pattern associated with latewood formation. Carbohydrates and enzyme activities showed distinctive radial distribution patterns. Suc peaked in the phloem and decreased sharply to low levels across the cambial zone, whereas fructose and glucose reached their highest levels in the maturing tracheids. Suc synthase was the dominating Suc cleaving enzyme with a peak in the secondary wall-forming tracheids and in the phloem. Soluble acid invertase peaked in dividing and expanding cells. Suc-phosphate synthase had its highest activities in the phloem. Activities of cell wall bound invertase were low. The absence of major seasonal variations indicates that carbohydrate availability is not a trigger for latewood initiation. However, steep concentration gradients of the sugars suggest a role for sugar signaling in vascular development.
NASA Astrophysics Data System (ADS)
Ferguson, David J.; Gonnermann, Helge M.; Ruprecht, Philipp; Plank, Terry; Hauri, Erik H.; Houghton, Bruce F.; Swanson, Donald A.
2016-10-01
The decompression rate of magma as it ascends during volcanic eruptions is an important but poorly constrained parameter that controls many of the processes that influence eruptive behavior. In this study, we quantify decompression rates for basaltic magmas using volatile diffusion in olivine-hosted melt tubes (embayments) for three contrasting eruptions of Kīlauea volcano, Hawaii. Incomplete exsolution of H2O, CO2, and S from the embayment melts during eruptive ascent creates diffusion profiles that can be measured using microanalytical techniques, and then modeled to infer the average decompression rate. We obtain average rates of ~0.05-0.45 MPa s-1 for eruptions ranging from Hawaiian style fountains to basaltic subplinian, with the more intense eruptions having higher rates. The ascent timescales for these magmas vary from around ~5 to ~36 min from depths of ~2 to ~4 km, respectively. Decompression-exsolution models based on the embayment data also allow for an estimate of the mass fraction of pre-existing exsolved volatiles within the magma body. In the eruptions studied, this varies from 0.1 to 3.2 wt% but does not appear to be the key control on eruptive intensity. Our results do not support a direct link between the concentration of pre-eruptive volatiles and eruptive intensity; rather, they suggest that for these eruptions, decompression rates are proportional to independent estimates of mass discharge rate. Although the intensity of eruptions is defined by the discharge rate, based on the currently available dataset of embayment analyses, it does not appear to scale linearly with average decompression rate. This study demonstrates the utility of the embayment method for providing quantitative constraints on magma ascent during explosive basaltic eruptions.
NASA Astrophysics Data System (ADS)
Henley, Richard W.; Brink, Frank J.; King, Penelope L.; Leys, Clyde; Ganguly, Jibamitra; Mernagh, Terrance; Middleton, Jill; Renggli, Christian J.; Sieber, Melanie; Troitzsch, Ulrike; Turner, Michael
2017-12-01
The 2.7-3 Ma Ertsberg East Skarn System (Indonesia), adjacent to the giant Grasberg Porphyry Copper deposit, is part of the world's largest system of Cu -Au skarn deposits. Published fluid inclusion and stable isotope data show that it formed through the flux of magma-derived fluid through contact metamorphosed carbonate rock sequences at temperatures well above 600° C and pressures of less than 50 MPa. Under these conditions, the fluid has very low density and the properties of a gas. Combining a range of micro-analytical techniques, high-resolution QEMSCAN mineral mapping and computer-assisted X-ray micro-tomography, an array of coupled gas-solid reactions may be identified that controlled reactive mass transfer through the 1 km3 hydrothermal skarn system. Vacancy-driven mineral chemisorption reactions are identified as a new type of reactive transport process for high-temperature skarn alteration. These gas-solid reactions are maintained by the interaction of unsatisfied bonds on mineral surfaces and dipolar gas-phase reactants such as SO2 and HCl that are continuously supplied through open fractures and intergranular diffusion. Principal reactions are (a) incongruent dissolution of almandine-grossular to andradite and anorthite (an alteration mineral not previously recognized at Ertsberg), and (b) sulfation of anorthite to anhydrite. These sulfation reactions also generate reduced sulfur with consequent co-deposition of metal sulfides. Diopside undergoes similar reactions with deposition of Fe-enriched pyroxene in crypto-veins and vein selvedges. The loss of calcium from contact metamorphic garnet to form vein anhydrite necessarily results in Fe-enrichment of wallrock, and does not require Fe-addition from a vein fluid as is commonly assumed.
Svarcová, Silvie; Kocí, Eva; Bezdicka, Petr; Hradil, David; Hradilová, Janka
2010-09-01
The uniqueness and limited amounts of forensic samples and samples from objects of cultural heritage together with the complexity of their composition requires the application of a wide range of micro-analytical methods, which are non-destructive to the samples, because these must be preserved for potential late revision. Laboratory powder X-ray micro-diffraction (micro-XRD) is a very effective non-destructive technique for direct phase analysis of samples smaller than 1 mm containing crystal constituents. It compliments optical and electron microscopy with elemental micro-analysis, especially in cases of complicated mixtures containing phases with similar chemical composition. However, modification of X-ray diffraction to the micro-scale together with its application for very heterogeneous real samples leads to deviations from the standard procedure. Knowledge of both the limits and the phenomena which can arise during the analysis is crucial for the meaningful and proper application of the method. We evaluated basic limits of micro-XRD equipped with a mono-capillary with an exit diameter of 0.1 mm, for example the size of irradiated area, appropriate grain size, and detection limits allowing identification of given phases. We tested the reliability and accuracy of quantitative phase analysis based on micro-XRD data in comparison with conventional XRD (reflection and transmission), carrying out experiments with two-phase model mixtures simulating historic colour layers. Furthermore, we demonstrate the wide use of micro-XRD for investigation of various types of micro-samples (contact traces, powder traps, colour layers) and we show how to enhance data quality by proper choice of experiment geometry and conditions.
NENIMF: Northeast National Ion Microprobe Facility - A Multi-User Facility for SIMS Microanalysis
NASA Astrophysics Data System (ADS)
Layne, G. D.; Shimizu, N.
2002-12-01
The MIT-Brown-Harvard Regional Ion Microprobe Facility was one of the earliest multi-user facilities enabled by Dan Weill's Instrumentation and Facilities Program - and began with the delivery of a Cameca IMS 3f ion microprobe to MIT in 1978. The Northeast National Ion Microprobe Facility (NENIMF) is the direct descendant of this original facility. Now housed at WHOI, the facility incorporates both the original IMS 3f, and a new generation, high transmission-high resolution instrument - the Cameca IMS 1270. Purchased with support from NSF, and from a consortium of academic institutions in the Northeast (The American Museum of Natural History, Brown University, The Lamont-Doherty Earth Observatory, MIT, Rensselaer Polytechnic Institute, WHOI) - this latest instrument was delivered and installed during 1996. NENIMF continues to be supported by NSF EAR I&F as a multi-user facility for geochemical research. Work at NENIMF has extended the original design strength of the IMS 1270 for microanalytical U-Pb zircon geochronology to a wide variety of novel and improved techniques for geochemical research. Isotope microanalysis for studies in volcanology and petrology is currently the largest single component of facility activity. This includes the direct measurement of Pb isotopes in melt inclusions, an application developed at NENIMF, which is making an increasingly significant contribution to our understanding of basalt petrogenesis. This same technique has also been extended to the determination of Pb isotopes in detrital feldspar grains, for the study of sedimentary provenance and tectonics of the Himalayas and other terrains. The determination of δ11B in volcanic melt inclusions has also proven to be a powerful tool in the modeling of subduction-related magmatism. The recent development of δ34S and δ37Cl determination in glasses is being applied to studies of the behavior of these volatile elements in both natural and experimental systems. Other recent undertakings have included development of high precision 232Th/230Th for U-series disequilibrium studies of young volcanic rocks, and the implementation and refinement of U-Th-Pb dating of individual monazite crystals. The facility is also developing an expanding number of applications in the general field of biogeochemistry. Examples include; δ18O in biogenic carbonates for climate and paleotemperature studies, determination of δ13C in graphite microfossils for early life studies, and determination of δ13C and trace metal concentrations in bacterial cultures in support of studies of natural microbial ecosystems. The IMS 3f instrument - now in its 25th year of operation - continues to be a productive resource for trace element and rare earth element determinations in natural and experimental materials. It has also become an important component of ongoing research in the derivation of paleotemperatures from marine biomineralization using trace element ratios of biogenic aragonite.
Groves, Ethan; Palenik, Skip; Palenik, Christopher S
2018-04-18
While color is arguably the most important optical property of evidential fibers, the actual dyestuffs responsible for its expression in them are, in forensic trace evidence examinations, rarely analyzed and still less often identified. This is due, primarily, to the exceedingly small quantities of dye present in a single fiber as well as to the fact that dye identification is a challenging analytical problem, even when large quantities are available for analysis. Among the practical reasons for this are the wide range of dyestuffs available (and the even larger number of trade names), the low total concentration of dyes in the finished product, the limited amount of sample typically available for analysis in forensic cases, and the complexity of the dye mixtures that may exist within a single fiber. Literature on the topic of dye analysis is often limited to a specific method, subset of dyestuffs, or an approach that is not applicable given the constraints of a forensic analysis. Here, we present a generalized approach to dye identification that ( 1 ) combines several robust analytical methods, ( 2 ) is broadly applicable to a wide range of dye chemistries, application classes, and fiber types, and ( 3 ) can be scaled down to forensic casework-sized samples. The approach is based on the development of a reference collection of 300 commercially relevant textile dyes that have been characterized by a variety of microanalytical methods (HPTLC, Raman microspectroscopy, infrared microspectroscopy, UV-Vis spectroscopy, and visible microspectrophotometry). Although there is no single approach that is applicable to all dyes on every type of fiber, a combination of these analytical methods has been applied using a reproducible approach that permits the use of reference libraries to constrain the identity of and, in many cases, identify the dye (or dyes) present in a textile fiber sample.
NASA Astrophysics Data System (ADS)
McLeod, C. L.; Brown, K.; Brydon, R.; Haley, M.; Hill, T.; Shaulis, B.; Tronnes, R. G.
2017-12-01
Advances in the capabilities of microanalysis over the past several decades have promoted a redefinition of traditional petrological terminology. This has allowed a more accurate evaluation of a samples petrogenetic history. For example, the term "phenocryst", specifically describes crystals that grew from the liquid that solidified into the groundmass. Evolving from this idea is the term xenocryst, referring to crystals that did not originate in the magma but were gathered by it, and antecrysts, which crystallized from a progenitor of the magma that solidified into the groundmass. Through identification of a magmas different, and distinct, crystal populations, the petrogenetic history of a magmatic rock can therefore be unraveled. This approach has been widely applied to terrestrial volcanic systems throughout the past several decades. This study presents results from a combined microimaging and in-situ microanalytical investigation of granitic magmas crystal cargoes in order to unravel how granitic batholiths are constructed. 27 lithological units from two granite batholiths in the Oslo Rift, Norway form the basis of this investigation. Micro X-Ray Fluorescence (µXRF) mapping of major elements and selected trace elements is used in order to chemically map each granitic unit, identify any characteristic growth zoning, and compare the crystal cargoes of the different units. Major and trace elemental abundances of the major phases (feldspars, biotite, amphibole) and minor phases (apatite and titanite) are to be quantified through electron microprobe analysis (EPMA) and laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) respectively. Through chemically fingerprinting the crystal cargoes of these Oslo Rift granitic magmas, the open vs. closed nature of granitic, intrusive, magmatic systems will be investigated. Within the context of the Oslo Rift, this study also offers an opportunity to evaluate the processes inherent to granitoid magmatism during continental rifting.
Klinkenberg, Martina; Brandt, Felix; Breuer, Uwe; Bosbach, Dirk
2014-06-17
A combined macroscopic and microanalytical approach was applied on two distinct barite samples from Ra uptake batch experiments using time of flight-secondary ion mass spectrometry (ToF-SIMS) and detailed scanning electron microscopy (SEM) investigations. The experiments were set up at near to equilibrium conditions to distinguish between two possible scenarios for the uptake of Ra by already existent barite: (1) formation of a Ba1-xRaxSO4 solid solution surface layer on the barite or (2) a complete recrystallization, leading to homogeneous Ba1-xRaxSO4 crystals. It could be clearly shown that Ra uptake in all barite particles analyzed within this study is not limited to the surface but extends to the entire solid. For most grains a homogeneous distribution of Ra could be determined, indicating a complete recrystallization of barite into a Ba1-xRaxSO4 solid solution. The maxima of the Ra/Ba intensity ratio distribution histograms calculated from ToF-SIMS are identical with the expected Ra/Ba ratios calculated from mass balance assuming a complete recrystallization. In addition, the role of Ra during the recrystallization of barite was examined via detailed SEM investigations. Depending on the type of barite used, an additional coarsening effect or a strong formation of oriented aggregates was observed compared to blank samples without Ra. In conclusion, the addition of Ra to a barite at close to equilibrium conditions has a major impact on the system leading to a fast re-equilibration of the solid to a Ba1-xRaxSO4 solid solution and visible effects on the particle size distribution, even at room temperature.
Study of Chemical Changes in Uranium Oxyfluoride Particles Progress Report March - October 2009
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kips, R; Kristo, M; Hutcheon, I
2009-11-22
Nuclear forensics relies on the analysis of certain sample characteristics to determine the origin and history of a nuclear material. In the specific case of uranium enrichment facilities, it is the release of trace amounts of uranium hexafluoride (UF{sub 6}) gas - used for the enrichment of uranium - that leaves a process-characteristic fingerprint. When UF{sub 6} gas interacts with atmospheric moisture, uranium oxyfluoride particles or particle agglomerates are formed with sizes ranging from several microns down to a few tens of nanometers. These particles are routinely collected by safeguards organizations, such as the International Atomic Energy Agency (IAEA), allowingmore » them to verify whether a facility is compliant with its declarations. Spectrometric analysis of uranium particles from UF{sub 6} hydrolysis has revealed the presence of both particles that contain fluorine, and particles that do not. It is therefore assumed that uranium oxyfluoride is unstable, and decomposes to form uranium oxide. Understanding the rate of fluorine loss in uranium oxyfluoride particles, and the parameters that control it, may therefore contribute to placing boundaries on the particle's exposure time in the environment. Expressly for the purpose of this study, we prepared a set of uranium oxyfluoride particles at the Institute for Reference Materials and Measurements (EU-JRC-IRMM) from a static release of UF{sub 6} in a humid atmosphere. The majority of the samples was stored in controlled temperature, humidity and lighting conditions. Single particles were characterized by a suite of micro-analytical techniques, including NanoSIMS, micro-Raman spectrometry (MRS), scanning (SEM) and transmission (TEM) electron microscopy, energy-dispersive X-ray spectrometry (EDX) and focused ion beam (FIB). The small particle size was found to be the main analytical challenge. The relative amount of fluorine, as well as the particle chemical composition and morphology were determined at different stages in the ageing process, and immediately after preparation. This report summarizes our most recent findings for each of the analytical techniques listed above, and provides an outlook on what remains to be resolved. Additional spectroscopic and mass spectrometric measurements were carried out at Pacific Northwest National Laboratory, but are not included in this summary.« less
Lichen-rock interaction in volcanic environments: evidences of soil-precursor formation
NASA Astrophysics Data System (ADS)
Vingiani, S.; Adamo, P.; Terribile, F.
2012-04-01
The weathering action of the lichens Lecidea fuscoatra (L.) Ach. and Stereocaulon vesuvianum Pers. on basaltic rock collected on the slopes of Mt. Etna (Sicily) at 1550 m a.s.l. has been studied using optical (OM) and electron (SEM) microscopy equipped with microanalytical device (EDS). Biological factors associated with lichen growth play a major role in the weathering of minerals on bare rocks and contribute to the preliminary phases of soil formation. The present work investigates the biogeophysical and biogeochemical weathering associated to the growth of epilithic lichens on lava flows from Mt. Etna (Sicily) and Mt. Vesuvius (Campania). The chosen lichen species were the crustose Lecidea fuscoatra (L.) Ach., the foliose Xanthoparmelia conspersa and the fructicose Stereocaulon vesuvianum Pers. An integrated approach based on the study of both disturbed and undisturbed samples of lichenized rock was applied in order to appreciate the complexity of the rock-lichen interface environment in terms of micromorphological, mineralogical and chemical properties. XRD and XRF analyses coupled to microscopical (OM), submicroscopical (SEM) and microanalitical (EDS) observations were the used techniques. In both study environments, the chemical, mineralogical and micromorphological properties of the uncoherent materials found at the lichen-rock interface suggest they consist of rock fragments eroded from the surroundings and accumulated in cavities and fissures of the rough lava flows. According to the thallus morphology, the lichens colonizing the lava preserve the interface materials from further aeolic and water erosion, provide these materials of organic matter and moisture, entrap allochtonous quartz and clay minerals. The calcium oxalate production by L. fuscoatra and X. conspersa, the Al enrichment around S. vesuvianum hyphae and the occurrence of Fe-oxide phases at the rock-lichen interface are evidences of lichens interaction with the underlying sediments. Indeed, according to the young age of the basaltic lava the recent lichen colonization results in a physical reorganization and chemical modification of the interface materials, which are not necessarily produced by the lichen action on the rock substrate. In volcanic environment, the ability of lichens to retain considerable amount of unconsolidated material, which becomes mixed with organic matter, produced by decomposition of the thallus, and trap atmospheric dust may contribute to the andosolization process. Accumulation of Al and Fe, found at the rock-lichen interface likely as organo-metal complexes, can be considered initial stage of Al and Fe active phases formation, distinguishing features of Andosols development. The simple chelating oxalic acid, produced by the lichens, may be involved in the formation of organo-metal complexes.
Vollenweider, Pierre; Bernasconi, Petra; Gautschi, Hans-Peter; Menard, Terry; Frey, Beat; Günthardt-Goerg, Madeleine S
2011-01-01
The phytoextraction potential of plants for removing heavy metals from polluted soils is determined by their capacity to store contaminants in aboveground organs and complex them safely. In this study, the metal compartmentation, elemental composition of zinc deposits and zinc complexation within leaves from poplars grown on soil with mixed metal contamination was analysed combining several histochemical and microanalytical approaches. Zinc was the only heavy metal detected and was stored in several organelles in the form of globoid deposits showing β-metachromasy. It was associated to oxygen anions and different cations, noteworthy phosphorous. The deposit structure, elemental composition and element ratios indicated that zinc was chelated by phytic acid ligands. Maturation processes in vacuolar vs. cytoplasmic deposits were suggested by differences in size and amounts of complexed zinc. Hence, zinc complexation by phytate contributed to metal detoxification and accumulation in foliage but could not prevent toxicity reactions therein. Copyright © 2010 Elsevier Ltd. All rights reserved.
Compound Nucleus Reactions in LENR, Analogy to Uranium Fission
NASA Astrophysics Data System (ADS)
Hora, Heinrich; Miley, George; Philberth, Karl
2008-03-01
The discovery of nuclear fission by Hahn and Strassmann was based on a very rare microanalytical result that could not initially indicate the very complicated details of this most important process. A similarity is discussed for the low energy nuclear reactions (LENRs) with analogies to the yield structure found in measurements of uranium fission. The LENR product distribution measured earlier in a reproducible way in experiments with thin film electrodes and a high density deuteron concentration in palladium has several striking similarities with the uranium fission fragment yield curve.ootnotetextG.H. Miley and J.A. Patterson, J. New Energy 1, 11 (1996); G.H. Miley et al, Proc ICCF6, p. 629 (1997).This comparison is specifically focussed to the Maruhn-Greiner local maximum of the distribution within the large-scale minimum when the fission nuclei are excited. Implications for uranium fission are discussed in comparison with LENR relative to the identification of fission a hypothetical compound nuclear reaction via a element ^306X126 with double magic numbers.
Development and characterization of a voltammetric carbon-fiber microelectrode pH sensor.
Makos, Monique A; Omiatek, Donna M; Ewing, Andrew G; Heien, Michael L
2010-06-15
This work describes the development and characterization of a modified carbon-fiber microelectrode sensor capable of measuring real-time physiological pH changes in biological microenvironments. The reagentless sensor was fabricated under ambient conditions from voltammetric reduction of the diazonium salt Fast Blue RR onto a carbon-fiber surface in aprotic media. Fast-scan cyclic voltammetry was used to probe redox activity of the p-quinone moiety of the surface-bound molecule as a function of pH. In vitro calibration of the sensor in solutions ranging from pH 6.5 to 8.0 resulted in a pH-dependent anodic peak potential response. Flow-injection analysis was used to characterize the modified microelectrode, revealing sensitivity to acidic and basic changes discernible to 0.005 pH units. Furthermore, the modified electrode was used to measure dynamic in vivo pH changes evoked during neurotransmitter release in the central nervous system of the microanalytical model organism Drosophila melanogaster.
Characterization of uranium tetrafluoride (UF 4) with Raman spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Villa-Aleman, Eliel; Wellons, Matthew S.
The Raman spectrum of uranium tetrafluoride (UF 4) is unambiguously characterized with multiple Raman excitation laser sources for the first time. Across different laser excitation wavelengths, UF 4 demonstrates 16 distinct Raman bands within the 50-400 cm -1 region. The observed Raman bands are representative of various F-F vibrational modes. UF 4 also shows intense fluorescent bands in the 325 – 750 nm spectral region. Comparison of the UF 4 spectrum with the ZrF 4 spectrum, its crystalline analog, demonstrates a similar Raman band structure consistent with group theory predictions for expected Raman bands. Additionally, a demonstration of combined scanningmore » electron microscopy (SEM) and in situ Raman spectroscopy microanalytical measurements of UF 4 particulates shows that despite the inherent weak intensity of Raman bands, identification and characterization are possible for micron-sized particulates with modern instrumentation. The published well characterized UF 4 spectrum is extremely relevant to nuclear materials and nuclear safeguard applications.« less
Characterization of uranium tetrafluoride (UF 4) with Raman spectroscopy
Villa-Aleman, Eliel; Wellons, Matthew S.
2016-03-22
The Raman spectrum of uranium tetrafluoride (UF 4) is unambiguously characterized with multiple Raman excitation laser sources for the first time. Across different laser excitation wavelengths, UF 4 demonstrates 16 distinct Raman bands within the 50-400 cm -1 region. The observed Raman bands are representative of various F-F vibrational modes. UF 4 also shows intense fluorescent bands in the 325 – 750 nm spectral region. Comparison of the UF 4 spectrum with the ZrF 4 spectrum, its crystalline analog, demonstrates a similar Raman band structure consistent with group theory predictions for expected Raman bands. Additionally, a demonstration of combined scanningmore » electron microscopy (SEM) and in situ Raman spectroscopy microanalytical measurements of UF 4 particulates shows that despite the inherent weak intensity of Raman bands, identification and characterization are possible for micron-sized particulates with modern instrumentation. The published well characterized UF 4 spectrum is extremely relevant to nuclear materials and nuclear safeguard applications.« less
Gajdosik, Martina Srajer; Clifton, James; Josic, Djuro
2012-01-01
Sample displacement chromatography (SDC) in reversed-phase and ion-exchange modes was introduced approximately twenty years ago. This method takes advantage of relative binding affinities of components in a sample mixture. During loading, there is a competition among different sample components for the sorption on the surface of the stationary phase. SDC was first used for the preparative purification of proteins. Later, it was demonstrated that this kind of chromatography can also be performed in ion-exchange, affinity and hydrophobic-interaction mode. It has also been shown that SDC can be performed on monoliths and membrane-based supports in both analytical and preparative scale. Recently, SDC in ion-exchange and hydrophobic interaction mode was also employed successfully for the removal of trace proteins from monoclonal antibody preparations and for the enrichment of low abundance proteins from human plasma. In this review, the principals of SDC are introduced, and the potential for separation of proteins and peptides in micro-analytical, analytical and preparative scale is discussed. PMID:22520159
Wear of liquid nitrogen-cooled 440C bearing steels in an oxygen environment
NASA Technical Reports Server (NTRS)
Chaudhuri, Dilip K.; Verma, Ravi
1988-01-01
This paper presents up-to-date findings of the research being conducted to understand the mechanism of sliding wear in unlubricated 440C bearing steels under oxidative conditions. A sliding wear test rig has been designed and built with a cylinder-on-flat geometry. The equipment is capable of testing specimens under high axial loads and sliding speeds in a simulated LOX environment. Samples of 440C steel, quenched and tempered to a hardness of Rc 56, were tested under a load of 890 N and a sliding speed of 2.05 m/sec for total sliding distances of up to 5.54 km. Flash temperatures during these tests were measured with an IR camera and a fast digital recorder. Microstructural and microanalytical data from the worn surfaces and the debris particles are analyzed extensively, along with wear rates, flash temperatures, surface profiles, hardnesses, and residual stresses, in the context of oxidation and wear theories.
The development of maternal touch across the first year of life.
Ferber, Sari Goldstein; Feldman, Ruth; Makhoul, Imad R
2008-06-01
The developmental trajectories of specific forms of maternal touch during natural caregiving were examined across the first year in relation to the development of mother-infant reciprocal communication. One hundred and thirty-one mothers and infants in four groups aged 3, 6, 9, and 12 months were observed in a cross-sectional design at home during natural caregiving and mother-child play sessions. Microanalytic coding of the caregiving sessions considered nine forms of maternal touch, which were aggregated into three global touch categories: affectionate, stimulating, and instrumental. Play sessions were coded for maternal sensitivity and dyadic reciprocity. Maternal affectionate and stimulating touch decreased significantly during the second 6 months of life. In parallel, dyadic reciprocity increased in the second half year. Dyadic reciprocity was predicted by the frequency of affectionate touch but not by any other form of touch. Results contribute to specifying the role of touch as it evolves across the first year of life within the global mother-infant communication system.
Schröter, K; Läuchli, A; Sievers, A
1975-01-01
In contrast to the statocytes of higher plants, in which amyloplasts function as statoliths, Chara-rhizoids contain statolith vacuoles filled with biocrystallites of BaSO4. This was revealed by qualitative and quantitative electron microprobe analysis, atomic absorption spectrophotometry and selected area electron diffraction. The barium sulphate crystallites are rods which are linearly composed of globular subunits approximately 7 nm in diameter.The electron optical evidence of the crystallites depends on the nature of the fixatives. Best structural preservation was observed after fixation in a buffered solution of glutaraldehyde plus acrolein without addition of heavy metals. OsO4 and particularly KMnO4 partially dissolve the biocrystallites as well as synthetic BaSO4. The crystal solubility must be taken into consideration when micrographs of such small crystallites are interpreted.The fact that BaSO4 is chemically very inert seems to exclude biochemical interactions of the statoliths with other cell components during graviperception. It favours the theory that only the mass of the statoliths is effective.
Maternal Responsiveness and Sensitivity Re-Considered: Some Is More
Bornstein, Marc H.; Manian, Nanmathi
2013-01-01
Is it always or necessarily the case that common and important parenting practices are better insofar as they occur more often, or worse because they occur less often? Perhaps, less is more, or some is more. To address this question, we studied mothers’ microcoded contingent responsiveness to their infants (M = 5.4 months, SD = 0.2) in relation to independent global judgments of the same mothers’ parenting sensitivity. In a community sample of 335 European American dyads, videorecorded infant and maternal behaviors were timed microanalytically throughout an extended home observation; separately and independently, global maternal sensitivity was rated macroanalytically. Sequential analysis and spline regression showed that, as maternal contingent responsiveness increased, judged maternal sensitivity increased to significance on the contingency continuum, after which mothers who were even more contingent were judged less sensitive. Just significant levels of maternal responsiveness are deemed optimally sensitive. Implications of these findings for typical and atypical parenting, child development, and intervention science are discussed. PMID:24229542
Combined oxygen-isotope and U-Pb zoning studies of titanite: New criteria for age preservation
Bonamici, Chloe E.; Fanning, C. Mark; Kozdon, Reinhard; ...
2015-02-11
Here, titanite is an important U-Pb chronometer for dating geologic events, but its high-temperature applicability depends upon its retention of radiogenic lead (Pb). Experimental data predict similar rates of diffusion for lead (Pb) and oxygen (O) in titanite at granulite-facies metamorphic conditions (T = 650-800°C). This study therefore investigates the utility of O-isotope zoning as an indicator for U-Pb zoning in natural titanite samples from the Carthage-Colton Mylonite Zone of the Adirondack Mountains, New York. Based on previous field, textural, and microanalytical work, there are four generations (types) of titanite in the study area, at least two of which preservemore » diffusion-related δ 18O zoning. U-Th-Pb was analyzed by SIMS along traverses across three grains of type-2 titanite, which show well-developed diffusional δ 18O zoning, and one representative grain from each of the other titanite generations.« less
NASA Astrophysics Data System (ADS)
Refat, Moamen S.; El-Megharbel, Samy M.; Hussien, M. A.; Hamza, Reham Z.; Al-Omar, Mohamed A.; Naglah, Ahmed M.; Afifi, Walid M.; Kobeasy, Mohamed I.
2017-02-01
New binuclear chromium (III) niacinamide compound with chemical formula [Cr2(Nic)(Cl)6(H2O)4]·H2O was obtained upon the reaction of chromium (III) chloride with niacinamide (Nic) in methanol solvent at 60 °C. The proposed structure was discussed with the help of microanalytical analyses, conductivity, spectroscopic (FT-IR and UV-vis.), magnetic calculations, thermogravimetric analyses (TG/TGA), and morphological studies (X-ray of solid powder and scan electron microscopy. The infrared spectrum of free niacinamide in comparison with its chromium (III) compound indicated that the chelation mode occurs via both nitrogen atoms of pyridine ring and primary -NH2 group. The efficiency of chromium (III) niacinamide compound in decreasing of glucose level of blood and HbA1c in case of diabetic rats was checked. The ameliorating gluconeogenic enzymes, lipid profile and antioxidant defense capacities are considered as an indicator of the efficiency of new chromium (III) compound as antidiabetic drug model.
Development and Characterization of a Voltammetric Carbon-fiber Microelectrode pH Sensor
Makos, Monique A.; Omiatek, Donna M.; Ewing, Andrew G.; Heien, Michael L.
2010-01-01
This work describes the development and characterization of a modified carbon-fiber microelectrode sensor capable of measuring real-time physiological pH changes in biological microenvironments. The reagentless sensor was fabricated under ambient conditions from voltammetric reduction of the diazonium salt Fast Blue RR onto a carbon-fiber surface in aprotic media. Fast-scan cyclic voltammetry was used to probe redox activity of the p-quinone moiety of the surface-bound molecule as a function of pH. In vitro calibration of the sensor in solutions ranging from pH 6.5 to 8.0 resulted in a pH-dependent anodic peak potential response. Flow-injection analysis was used to characterize the modified microelectrode, revealing sensitivity to acidic and basic changes discernable to 0.005 pH units. Furthermore, the modified electrode was used to measure dynamic in vivo pH changes evoked during neurotransmitter release in the central nervous system of the microanalytical model organism Drosophila melanogaster. PMID:20380393
NASA Astrophysics Data System (ADS)
Schofield, Robert M. S.
A method for measuring concentrations of minor elements in microscopic volumes of heterogeneous, unsectioned biological specimens using an ion microprobe is developed. The element quantity is obtained from PIXE (Proton Induced X-ray Emission) and the total quantity of material is derived from STIM (Scanning Transmission Ion Microscopy) energy loss measurements. Sources of error, including changes in x-ray production cross section with proton energy and absorption of induced x-rays, are discussed and a method of calculating the total measurement uncertainty, typically about 25% here, is developed. The measurement accuracy is shown to be improved for symmetric specimens, and a method of using the bremsstrahlung background to correct for x-ray attenuation within irregular specimens is developed. Methods for measuring local concentrations in internal features are also discussed. With this technique, scorpions were found to contain cuticular accumulations of one or more heavy metals (manganese up to 5% of dry weight, iron up to 8%, zinc up to 24%) in the chelicera, pedipalp denticles, tarsal claws, and stingers; different region soften contained different metals. The stingers are argued to be of particular interest because they are not homologous to legs. Similar accumulations were found in spiders, some other chelicerates and crustaceans. Previous reports of manganese and zinc accumulations in insect and worm mouth parts were augmented with local concentration measurements and with the detection of other enrichment features (such as 6% iron in the paragnaths of the worm Nereis vexillosa). Zinc accumulations (up to only 0.1%) were also found in the tips of the teeth of a hagfish, Myxine + glutinosa. X-ray images of several of these features are presented. It is argued that the extreme magnitude of some concentration values suggests that some metals are incorporated in unusual biominerals rather than organically bound. Results of x-ray diffractometry and Vickers microhardness measurements are reported although the results are inconclusive. The atomic ratio of zinc to chlorine in these accumulations is shown not to be constant. It is suggested from their typical locations that at least two of the observed accumulation patterns impart different mechanical properties to the cuticle.
Fractography of ceramic and metal failures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1984-01-01
STP 827 is organized into the two broad areas of ceramics and metals. The ceramics section covers fracture analysis techniques, surface analysis techniques, and applied fractography. The metals section covers failure analysis techniques, and latest approaches to fractography, and applied fractography.
Rusmin, Ruhaida; Sarkar, Binoy; Tsuzuki, Takuya; Kawashima, Nobuyuki; Naidu, Ravi
2017-11-01
A palygorskite-iron oxide nanocomposite (Pal-IO) was synthesized in situ by embedding magnetite into the palygorskite structure through co-precipitation method. The physico-chemical characteristics of Pal-IO and their pristine components were examined through various spectroscopic and micro-analytical techniques. Batch adsorption experiments were conducted to evaluate the performance of Pal-IO in removing Pb(II) from aqueous solution. The surface morphology, magnetic recyclability and adsorption efficiency of regenerated Pal-IO using desorbing agents HCl (Pal-IO-HCl) and ethylenediaminetetraacetic acid disodium salt (EDTA-Na 2 ) (Pal-IO-EDTA) were compared. The nanocomposite showed a superparamagnetic property (magnetic susceptibility: 20.2 emu g -1 ) with higher specific surface area (99.8 m 2 g -1 ) than the pristine palygorskite (49.4 m 2 g -1 ) and iron oxide (72.6 m 2 g -1 ). Pal-IO showed a maximum Pb(II) adsorption capacity of 26.6 mg g -1 (experimental condition: 5 g L -1 adsorbent loading, 150 agitations min -1 , initial Pb(II) concentration from 20 to 500 mg L -1 , at 25 °C) with easy separation of the spent adsorbent. The adsorption data best fitted to the Langmuir isotherm model (R 2 = 0.9995) and pseudo-second order kinetic model (R 2 = 0.9945). Pb(II) desorption using EDTA as the complexing agent produced no disaggregation of Pal-IO crystal bundles, and was able to preserve the composite's magnetic recyclability. Pal-IO-EDTA exhibited almost 64% removal capacity after three cycles of regeneration and preserved the nanocomposite's structural integrity and magnetic properties (15.6 emu g -1 ). The nanocomposite holds advantages as a sustainable material (easily separable and recyclable) for potential application in purifying heavy metal contaminated wastewaters. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orphan, Victoria Jeanne
2014-11-26
Syntrophy and mutualism play a central role in carbon and nutrient cycling by microorganisms. Yet, our ability to effectively study symbionts in culture has been hindered by the inherent interdependence of syntrophic associations, their dynamic behavior, and their frequent existence at thermodynamic limits. Now solutions to these challenges are emerging in the form of new methodologies. Developing strategies that establish links between the identity of microorganisms and their metabolic potential, as well as techniques that can probe metabolic networks on a scale that captures individual molecule exchange and processing, is at the forefront of microbial ecology. Understanding the interactions betweenmore » microorganisms on this level, at a resolution previously intractable, will lead to our greater understanding of carbon turnover and microbial community resilience to environmental perturbations. In this project, we studied an enigmatic syntrophic association between uncultured methane-oxidizing archaea and sulfate-reducing bacteria. This environmental archaeal-bacterial partnership represents a globally important sink for methane in anoxic environments. The specific goals of this project were organized into 3 major tasks designed to address questions relating to the ecophysiology of these syntrophic organisms under changing environmental conditions (e.g. different electron acceptors and nutrients), primarily through the development of microanalytical imaging methods which enable the visualization of the spatial distribution of the partners within aggregates, consumption and exchange of isotopically labeled substrates, and expression of targeted proteins identified via metaproteomics. The advanced tool set developed here to collect, correlate, and analyze these high resolution image and isotope-based datasets from methane-oxidizing consortia has the potential to be widely applicable for studying and modeling patterns of activity and interactions across a broad range of spatially structured microbial partnerships, including other syntrophic associations, microbial mats, biofilms, and plant-microbe or animal-microbe symbioses in nature.« less
Geophysics Under Pressure: Large-Volume Presses Versus the Diamond-Anvil Cell
NASA Astrophysics Data System (ADS)
Hazen, R. M.
2002-05-01
Prior to 1970, the legacy of Harvard physicist Percy Bridgman dominated high-pressure geophysics. Massive presses with large-volume devices, including piston-cylinder, opposed-anvil, and multi-anvil configurations, were widely used in both science and industry to achieve a range of crustal and upper mantle temperatures and pressures. George Kennedy of UCLA was a particularly influential advocate of large-volume apparatus for geophysical research prior to his death in 1980. The high-pressure scene began to change in 1959 with the invention of the diamond-anvil cell, which was designed simultaneously and independently by John Jamieson at the University of Chicago and Alvin Van Valkenburg at the National Bureau of Standards in Washington, DC. The compact, inexpensive diamond cell achieved record static pressures and had the advantage of optical access to the high-pressure environment. Nevertheless, members of the geophysical community, who favored the substantial sample volumes, geothermally relevant temperature range, and satisfying bulk of large-volume presses, initially viewed the diamond cell with indifference or even contempt. Several factors led to a gradual shift in emphasis from large-volume presses to diamond-anvil cells in geophysical research during the 1960s and 1970s. These factors include (1) their relatively low cost at time of fiscal restraint, (2) Alvin Van Valkenburg's new position as a Program Director at the National Science Foundation in 1964 (when George Kennedy's proposal for a Nation High-Pressure Laboratory was rejected), (3) the development of lasers and micro-analytical spectroscopic techniques suitable for analyzing samples in a diamond cell, and (4) the attainment of record pressures (e.g., 100 GPa in 1975 by Mao and Bell at the Geophysical Laboratory). Today, a more balanced collaborative approach has been adopted by the geophysics and mineral physics community. Many high-pressure laboratories operate a new generation of less expensive large-volume presses side-by-side with a wide variety of diamond-anvil cells.
NASA Astrophysics Data System (ADS)
Gomes, M. L.; Fike, D. A.; Bergmann, K.; Knoll, A. H.
2015-12-01
Sulfur (S) isotope signatures of sedimentary pyrite preserved in marine rocks provide a rich suite of information about changes in biogeochemical cycling associated with the evolution of microbial metabolisms and oxygenation of Earth surface environments. Conventionally, these S isotope records are based on bulk rock measurements. Yet, in modern microbial mat environments, S isotope compositions of sulfide can vary by up to 40‰ over a spatial range of ~ 1 mm. Similar ranges of S isotope variability have been found in Archean pyrite grains using both Secondary Ion Mass Spectrometry and other micro-analytical techniques. These micron-scale patterns have been linked to changes in rates of microbial sulfate reduction and/or sulfide oxidation, isotopic distillation of the sulfate reservoir due to microbial sulfate reduction, and post-depositional alteration. Fine-scale mapping of S isotope compositions of pyrite can thus be used to differentiate primary environmental signals from post-depositional overprinting - improving our understanding of both. Here, we examine micron-scale S isotope patterns of pyrite in microbialites from the Mesoproterozoic-Neoproterozoic Sukhaya Tunguska Formation and Neoproterozoic Draken Formation in order to explore S isotope variability associated with different mat textures and pyrite grain morphologies. A primary goal is to link modern observations of how sulfide spatial isotope distributions reflect active microbial communities present at given depths in the mats to ancient processes driving fine-sale pyrite variability in microbialites. We find large (up to 60‰) S isotope variability within a spatial range of less than 2.5cm. The micron-scale S isotope measurements converge around the S isotope composition of pyrite extracted from bulk samples of the same microbialites. These micron-scale pyrite S isotope patterns have the potential to reveal important information about ancient biogeochemical cycling in Proterozoic mat environments with implications for interpreting S isotope signatures from the geological record.
New geochemical insights into volcanic degassing.
Edmonds, Marie
2008-12-28
Magma degassing plays a fundamental role in controlling the style of volcanic eruptions. Whether a volcanic eruption is explosive, or effusive, is of crucial importance to approximately 500 million people living in the shadow of hazardous volcanoes worldwide. Studies of how gases exsolve and separate from magma prior to and during eruptions have been given new impetus by the emergence of more accurate and automated methods to measure volatile species both as volcanic gases and dissolved in the glasses of erupted products. The composition of volcanic gases is dependent on a number of factors, the most important being magma composition and the depth of gas-melt segregation prior to eruption; this latter parameter has proved difficult to constrain in the past, yet is arguably the most critical for controlling eruptive style. Spectroscopic techniques operating in the infrared have proved to be of great value in measuring the composition of gases at high temporal resolution. Such methods, when used in tandem with microanalytical geochemical investigations of erupted products, are leading to better constraints on the depth at which gases are generated and separated from magma. A number of recent studies have focused on transitions between explosive and effusive activity and have led to a better understanding of gas-melt segregation at basaltic volcanoes. Other studies have focused on degassing during intermediate and silicic eruptions. Important new results include the recognition of fluxing by deep-derived gases, which buffer the amount of dissolved volatiles in the melt at shallow depths, and the observation of gas flow up permeable conduit wall shear zones, which may be the primary mechanism for gas loss at the cusp of the most explosive and unpredictable volcanic eruptions. In this paper, I review current and future directions in the field of geochemical studies of volcanic degassing processes and illustrate how the new insights are beginning to change the way in which we understand and classify volcanic eruptions.
ERIC Educational Resources Information Center
Al-Saggaf, Yeslam; Burmeister, Oliver K.
2012-01-01
This exploratory study compares and contrasts two types of critical thinking techniques; one is a philosophical and the other an applied ethical analysis technique. The two techniques analyse an ethically challenging situation involving ICT that a recent media article raised to demonstrate their ability to develop the ethical analysis skills of…
Applying knowledge compilation techniques to model-based reasoning
NASA Technical Reports Server (NTRS)
Keller, Richard M.
1991-01-01
Researchers in the area of knowledge compilation are developing general purpose techniques for improving the efficiency of knowledge-based systems. In this article, an attempt is made to define knowledge compilation, to characterize several classes of knowledge compilation techniques, and to illustrate how some of these techniques can be applied to improve the performance of model-based reasoning systems.
NASA Technical Reports Server (NTRS)
Austin, W. W.
1983-01-01
The effect on LANDSAT data of a Sun angle correction, an intersatellite LANDSAT-2 and LANDSAT-3 data range adjustment, and the atmospheric correction algorithm was evaluated. Fourteen 1978 crop year LACIE sites were used as the site data set. The preprocessing techniques were applied to multispectral scanner channel data and transformed data were plotted and used to analyze the effectiveness of the preprocessing techniques. Ratio transformations effectively reduce the need for preprocessing techniques to be applied directly to the data. Subtractive transformations are more sensitive to Sun angle and atmospheric corrections than ratios. Preprocessing techniques, other than those applied at the Goddard Space Flight Center, should only be applied as an option of the user. While performed on LANDSAT data the study results are also applicable to meteorological satellite data.
Achieving an empathic stance: dialogical sequence analysis of a change episode.
Tikkanen, Soile; Stiles, William B; Leiman, Mikael
2013-01-01
Abstract This study examined a client's therapeutic progress within one session of an 18-session child neurological assessment. The analysis focused on a parent-psychologist dialogue in one session of the assessment process. Dialogical sequence analysis (DSA; Leiman, 2004, 2012) was used as a micro-analytic method to examine the developing discourse. The analysis traced the mother's developing of a reflective stance toward herself and her problematic ways of interacting with her daughter, who was the client. During the dialogue, the mother began to recognize her own contribution in maintaining the problematic pattern. Her gradual acknowledgment of the child's perspective and her growing sense of the child's otherness were mediated by an observer position (third-person view) toward the problematic pattern, which allowed a flexible exchange between the perspectives of self and the other. The results demonstrate the parallel development of intrapersonal and interpersonal empathy shown previously to characterize the transition from stage 3 (problem statement/clarification) to stage 4 (understanding/insight) in the assimilation of problematic experiences sequence (Brinegar, Salvi, Stiles, & Greenberg, 2006).
Fundamentals of Passive Oxidation In SiC and Si3N4
NASA Technical Reports Server (NTRS)
Thomas-Ogbuji, Linus U.
1998-01-01
The very slow oxidation kinetics of silicon carbide and silicon nitride, which derive from their adherent and passivating oxide films, has been explored at length in a broad series of studies utilizing thermogravimetric analysis, electron and optical micrography, energy dispersive spectrometry, x-ray diffractometry, micro-analytical depth profiling, etc. Some interesting microstructural phenomena accompanying the process of oxidation in the two materials will be presented. In Si3N4 the oxide is stratified, with an SiO2 topscale (which is relatively impervious to O2)underlain by a coherent subscale of silicon oxynitride which is even less permeable to O2- Such "defence in depth" endows Si3N4 with what is perhaps the highest oxidation resistance of any material, and results in a unique set of oxidation processes. In SiC the oxidation reactions are much simpler, yet new issues still emerge; for instance, studies involving controlled devitrification of the amorphous silica scale confirmed that the oxidation rate of SiC drops by more than an order of magnitude when the oxide scale fully crystallizes.
Moliner-Martínez, Y; Herráez-Hernández, R; Campíns-Falcó, P
2007-09-14
A new microscale method is presented for the determination of ammonium and primary short-chain aliphatic amines (methylamine, ethylamine, propylamine, n-butylamine and n-pentylamine) in water. The assay uses precolumn derivatization with the reagent o-phthaldialdehyde (OPA) in combination with the thiol N-acetyl-L-cysteine (NAC), and capillary liquid chromatography with UV detection at 330 nm. The described method is very simple and rapid as no preconcentration of the analytes is necessary, and the volume of sample required is only 0.1 mL. Under the proposed conditions good linearity has been obtained up to a concentration of the analytes of 10.0 mgL(-1), the limits of detection being of 8-50 microgL(-1). No matrix effect was found, and recoveries between 97 and 110% were obtained. The precision of the method was good, and the achieved variation coefficients were below 12%. The reliability of the proposed approach has been tested by analyzing a microsample of fogwater collected from leaf surfaces.
31 CFR 205.11 - What requirements apply to funding techniques?
Code of Federal Regulations, 2010 CFR
2010-07-01
... techniques? 205.11 Section 205.11 Money and Finance: Treasury Regulations Relating to Money and Finance... EFFICIENT FEDERAL-STATE FUNDS TRANSFERS Rules Applicable to Federal Assistance Programs Included in a Treasury-State Agreement § 205.11 What requirements apply to funding techniques? (a) A State and a Federal...
Lowe, Aaron M.; Ozer, Byram H.; Wiepz, Gregory J.; Bertics, Paul J.; Abbott, Nicholas L.
2009-01-01
Elastomers based on poly(dimethylsiloxane) (PDMS) are promising materials for fabrication of a wide range of microanalytical systems due to their mechanical and optical properties and ease of processing. To date, however, quantitative studies that demonstrate reliable and reproducible methods for attachment of binding groups that capture complex receptor proteins of relevance to biomedical applications of PDMS microsystems have not been reported. Herein we describe methods that lead to the reproducible capture of a transmembrane protein, the human epidermal growth factor (EGF) receptor, onto PDMS surfaces presenting covalently immobilized antibodies for EGF receptor, and subsequent isolation of the captured receptor by mechanical transfer of the receptor onto a chemically functionalized surface of a gold film for detection. This result is particularly significant because the physical properties of transmembrane proteins make this class of proteins a difficult one to analyze. We benchmark the performance of antibodies to the human EGF receptor covalently immobilized on PDMS against the performance of the same antibodies physisorbed to conventional surfaces utilized in ELISA assays through the use of EGF receptor that was 32P-radiolabeled in its autophosphorylation domain. These results reveal that two pan-reactive antibodies for the EGF receptor (H11 and 111.6) and one phosphospecific EGF receptor antibody (pY1068) capture the receptor on both PDMS and ELISA plates. When using H11 antibody to capture EGF receptor and subsequent treatment with a stripping buffer (NaOH and sodium dodecylsulfate) to isolate the receptor, the signal-to-background obtained using the PDMS surface was 82:1, exceeding the signal-to-background measured on the ELISA plate (<48:1). We also characterized the isolation of captured EGF receptor by mechanical contact of the PDMS surface with a chemically functionalized gold film. The efficiency of mechanical transfer of the transmembrane protein from the PDMS surface was found to be 75–81%. However, the transfer of non-specifically bound protein was substantially less than 75%, thus leading to the important finding that mechanical transfer of the EGF receptor leads to an approximately four-fold increase in signal-to-background from 20:1 to 88:1. The signal-to-background obtained following mechanical transfer is also better than that obtained using ELISA plates and stripping buffer (<48:1). The EGF receptor is a clinically important protein and the target of numerous anticancer agents and thus these results, when combined, provide guidance for the design of PDMS-based microanalytical systems for the capture and isolation of complex and clinically important transmembrane proteins. PMID:18651079
Lowe, Aaron M; Ozer, Byram H; Wiepz, Gregory J; Bertics, Paul J; Abbott, Nicholas L
2008-08-01
Elastomers based on poly(dimethylsiloxane) (PDMS) are promising materials for fabrication of a wide range of microanalytical systems due to their mechanical and optical properties and ease of processing. To date, however, quantitative studies that demonstrate reliable and reproducible methods for attachment of binding groups that capture complex receptor proteins of relevance to biomedical applications of PDMS microsystems have not been reported. Herein we describe methods that lead to the reproducible capture of a transmembrane protein, the human epidermal growth factor (EGF) receptor, onto PDMS surfaces presenting covalently immobilized antibodies for EGF receptor, and subsequent isolation of the captured receptor by mechanical transfer of the receptor onto a chemically functionalized surface of a gold film for detection. This result is particularly significant because the physical properties of transmembrane proteins make this class of proteins a difficult one to analyze. We benchmark the performance of antibodies to the human EGF receptor covalently immobilized on PDMS against the performance of the same antibodies physisorbed to conventional surfaces utilized in ELISA assays through the use of EGF receptor that was (32)P-radiolabeled in its autophosphorylation domain. These results reveal that two pan-reactive antibodies for the EGF receptor (clones H11 and 111.6) and one phosphospecific EGF receptor antibody (clone pY1068) capture the receptor on both PDMS and ELISA plates. When using H11 antibody to capture EGF receptor and subsequent treatment with a stripping buffer (NaOH and sodium dodecylsulfate) to isolate the receptor, the signal-to-background obtained using the PDMS surface was 82 : 1, exceeding the signal-to-background measured on the ELISA plate (<48 : 1). We also characterized the isolation of captured EGF receptor by mechanical contact of the PDMS surface with a chemically functionalized gold film. The efficiency of mechanical transfer of the transmembrane protein from the PDMS surface was found to be 75-81%. However, the transfer of non-specifically bound protein was substantially less than 75%, thus leading to the important finding that mechanical transfer of the EGF receptor leads to an approximately four-fold increase in signal-to-background from 20 : 1 to 88 : 1. The signal-to-background obtained following mechanical transfer is also better than that obtained using ELISA plates and stripping buffer (<48 : 1). The EGF receptor is a clinically important protein and the target of numerous anticancer agents and thus these results, when combined, provide guidance for the design of PDMS-based microanalytical systems for the capture and isolation of complex and clinically important transmembrane proteins.
Unfolding and unfoldability of digital pulses in the z-domain
NASA Astrophysics Data System (ADS)
Regadío, Alberto; Sánchez-Prieto, Sebastián
2018-04-01
The unfolding (or deconvolution) technique is used in the development of digital pulse processing systems applied to particle detection. This technique is applied to digital signals obtained by digitization of analog signals that represent the combined response of the particle detectors and the associated signal conditioning electronics. This work describes a technique to determine if the signal is unfoldable. For unfoldable signals the characteristics of the unfolding system (unfolder) are presented. Finally, examples of the method applied to real experimental setup are discussed.
The Elicitation Interview Technique: Capturing People's Experiences of Data Representations.
Hogan, Trevor; Hinrichs, Uta; Hornecker, Eva
2016-12-01
Information visualization has become a popular tool to facilitate sense-making, discovery and communication in a large range of professional and casual contexts. However, evaluating visualizations is still a challenge. In particular, we lack techniques to help understand how visualizations are experienced by people. In this paper we discuss the potential of the Elicitation Interview technique to be applied in the context of visualization. The Elicitation Interview is a method for gathering detailed and precise accounts of human experience. We argue that it can be applied to help understand how people experience and interpret visualizations as part of exploration and data analysis processes. We describe the key characteristics of this interview technique and present a study we conducted to exemplify how it can be applied to evaluate data representations. Our study illustrates the types of insights this technique can bring to the fore, for example, evidence for deep interpretation of visual representations and the formation of interpretations and stories beyond the represented data. We discuss general visualization evaluation scenarios where the Elicitation Interview technique may be beneficial and specify what needs to be considered when applying this technique in a visualization context specifically.
Conceptual design optimization study
NASA Technical Reports Server (NTRS)
Hollowell, S. J.; Beeman, E. R., II; Hiyama, R. M.
1990-01-01
The feasibility of applying multilevel functional decomposition and optimization techniques to conceptual design of advanced fighter aircraft was investigated. Applying the functional decomposition techniques to the conceptual design phase appears to be feasible. The initial implementation of the modified design process will optimize wing design variables. A hybrid approach, combining functional decomposition techniques for generation of aerodynamic and mass properties linear sensitivity derivatives with existing techniques for sizing mission performance and optimization, is proposed.
NASA Astrophysics Data System (ADS)
Vidya Sagar, R.; Raghu Prasad, B. K.
2012-03-01
This article presents a review of recent developments in parametric based acoustic emission (AE) techniques applied to concrete structures. It recapitulates the significant milestones achieved by previous researchers including various methods and models developed in AE testing of concrete structures. The aim is to provide an overview of the specific features of parametric based AE techniques of concrete structures carried out over the years. Emphasis is given to traditional parameter-based AE techniques applied to concrete structures. A significant amount of research on AE techniques applied to concrete structures has already been published and considerable attention has been given to those publications. Some recent studies such as AE energy analysis and b-value analysis used to assess damage of concrete bridge beams have also been discussed. The formation of fracture process zone and the AE energy released during the fracture process in concrete beam specimens have been summarised. A large body of experimental data on AE characteristics of concrete has accumulated over the last three decades. This review of parametric based AE techniques applied to concrete structures may be helpful to the concerned researchers and engineers to better understand the failure mechanism of concrete and evolve more useful methods and approaches for diagnostic inspection of structural elements and failure prediction/prevention of concrete structures.
Non-destructive scanning for applied stress by the continuous magnetic Barkhausen noise method
NASA Astrophysics Data System (ADS)
Franco Grijalba, Freddy A.; Padovese, L. R.
2018-01-01
This paper reports the use of a non-destructive continuous magnetic Barkhausen noise technique to detect applied stress on steel surfaces. The stress profile generated in a sample of 1070 steel subjected to a three-point bending test is analyzed. The influence of different parameters such as pickup coil type, scanner speed, applied magnetic field and frequency band analyzed on the effectiveness of the technique is investigated. A moving smoothing window based on a second-order statistical moment is used to analyze the time signal. The findings show that the technique can be used to detect applied stress profiles.
The First Trial of the P Technique in Psychotherapy Research: A Still-Lively Legacy.
ERIC Educational Resources Information Center
Luborsky, Lester
1995-01-01
Reexamines a 49-year-old study of P technique applied to a psychotherapy patient with a recurrent physical symptom. Explores dimensions of psychotherapeutic change as well as the context for the recurrent symptom. Illustrates the contributions from applying the P technique to psychotherapy research, to psychosomatic medicine, and to personality…
GENOMIC AND PROTEOMIC TECHNIQUES APPLIED TO REPRODUCTIVE BIOLOGY
Genomic and proteomic techniques applied to reproductive biology
John C. Rockett
Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, Research Tria...
NASA Astrophysics Data System (ADS)
Abdullah, Mohamed H.; Wilson, Gillian; Klypin, Anatoly
2018-07-01
We introduce GalWeight, a new technique for assigning galaxy cluster membership. This technique is specifically designed to simultaneously maximize the number of bona fide cluster members while minimizing the number of contaminating interlopers. The GalWeight technique can be applied to both massive galaxy clusters and poor galaxy groups. Moreover, it is effective in identifying members in both the virial and infall regions with high efficiency. We apply the GalWeight technique to MDPL2 and Bolshoi N-body simulations, and find that it is >98% accurate in correctly assigning cluster membership. We show that GalWeight compares very favorably against four well-known existing cluster membership techniques (shifting gapper, den Hartog, caustic, SIM). We also apply the GalWeight technique to a sample of 12 Abell clusters (including the Coma cluster) using observations from the Sloan Digital Sky Survey. We conclude by discussing GalWeight’s potential for other astrophysical applications.
NASA Astrophysics Data System (ADS)
Drakopoulou, E.; Cowan, G. A.; Needham, M. D.; Playfer, S.; Taani, M.
2018-04-01
The application of machine learning techniques to the reconstruction of lepton energies in water Cherenkov detectors is discussed and illustrated for TITUS, a proposed intermediate detector for the Hyper-Kamiokande experiment. It is found that applying these techniques leads to an improvement of more than 50% in the energy resolution for all lepton energies compared to an approach based upon lookup tables. Machine learning techniques can be easily applied to different detector configurations and the results are comparable to likelihood-function based techniques that are currently used.
Top down, bottom up structured programming and program structuring
NASA Technical Reports Server (NTRS)
Hamilton, M.; Zeldin, S.
1972-01-01
New design and programming techniques for shuttle software. Based on previous Apollo experience, recommendations are made to apply top-down structured programming techniques to shuttle software. New software verification techniques for large software systems are recommended. HAL, the higher order language selected for the shuttle flight code, is discussed and found to be adequate for implementing these techniques. Recommendations are made to apply the workable combination of top-down, bottom-up methods in the management of shuttle software. Program structuring is discussed relevant to both programming and management techniques.
Mass balance for on-line alphakLa estimation in activated sludge oxidation ditch.
Chatellier, P; Audic, J M
2001-01-01
The capacity of an aeration system to transfer oxygen to a given activated sludge oxidation ditch is characterised by the alphakLa parameter. This parameter is difficult to measure under normal plant working conditions. Usually this measurement involves off-gas techniques or static mass balance. Therefore an on-line technique has been developed and tested in order to evaluate alphakLa. This technique deduces alphakLa from a data analysis of low cost sensor measurement: two flow meters and one oxygen probe. It involves a dynamic mass balance applied to aeration cycles selected according to given criteria. This technique has been applied to a wastewater treatment plant during four years. Significant variations of the alphakLa values have been detected while the number of blowers changes. This technique has been applied to another plant during two months.
Computer assisted analysis of auroral images obtained from high altitude polar satellites
NASA Technical Reports Server (NTRS)
Samadani, Ramin; Flynn, Michael
1993-01-01
Automatic techniques that allow the extraction of physically significant parameters from auroral images were developed. This allows the processing of a much larger number of images than is currently possible with manual techniques. Our techniques were applied to diverse auroral image datasets. These results were made available to geophysicists at NASA and at universities in the form of a software system that performs the analysis. After some feedback from users, an upgraded system was transferred to NASA and to two universities. The feasibility of user-trained search and retrieval of large amounts of data using our automatically derived parameter indices was demonstrated. Techniques based on classification and regression trees (CART) were developed and applied to broaden the types of images to which the automated search and retrieval may be applied. Our techniques were tested with DE-1 auroral images.
Approximated Stable Inversion for Nonlinear Systems with Nonhyperbolic Internal Dynamics. Revised
NASA Technical Reports Server (NTRS)
Devasia, Santosh
1999-01-01
A technique to achieve output tracking for nonminimum phase nonlinear systems with non- hyperbolic internal dynamics is presented. The present paper integrates stable inversion techniques (that achieve exact-tracking) with approximation techniques (that modify the internal dynamics) to circumvent the nonhyperbolicity of the internal dynamics - this nonhyperbolicity is an obstruction to applying presently available stable inversion techniques. The theory is developed for nonlinear systems and the method is applied to a two-cart with inverted-pendulum example.
NASA Technical Reports Server (NTRS)
Rummler, D. R.
1976-01-01
The results are presented of investigations to apply regression techniques to the development of methodology for creep-rupture data analysis. Regression analysis techniques are applied to the explicit description of the creep behavior of materials for space shuttle thermal protection systems. A regression analysis technique is compared with five parametric methods for analyzing three simulated and twenty real data sets, and a computer program for the evaluation of creep-rupture data is presented.
Shugars, D A; Trent, P J; Heymann, H O
1979-08-01
Two instructional strategies, the traditional lecture method and a standardized self-instructional (ACORDE) format, were compared for efficiency and perceived usefulness in a preclinical restorative dentistry technique course through the use of a posttest-only control group research design. Control and experimental groups were compared on (a) technique grades, (b) didactic grades, (c) amount of time spent, (d) student and faculty perceptions, and (e) observation of social dynamics. The results of this study demonstrated the effectiveness of Project ACORDE materials in teaching dental students, provided an example of applied research designed to test contemplated instructional innovations prior to use and used a method which highlighted qualitative, as well as quantitative, techniques for data gathering in applied research.
Experimental scrambling and noise reduction applied to the optical encryption of QR codes.
Barrera, John Fredy; Vélez, Alejandro; Torroba, Roberto
2014-08-25
In this contribution, we implement two techniques to reinforce optical encryption, which we restrict in particular to the QR codes, but could be applied in a general encoding situation. To our knowledge, we present the first experimental-positional optical scrambling merged with an optical encryption procedure. The inclusion of an experimental scrambling technique in an optical encryption protocol, in particular dealing with a QR code "container", adds more protection to the encoding proposal. Additionally, a nonlinear normalization technique is applied to reduce the noise over the recovered images besides increasing the security against attacks. The opto-digital techniques employ an interferometric arrangement and a joint transform correlator encrypting architecture. The experimental results demonstrate the capability of the methods to accomplish the task.
NASA Technical Reports Server (NTRS)
Devasia, Santosh
1996-01-01
A technique to achieve output tracking for nonminimum phase linear systems with non-hyperbolic and near non-hyperbolic internal dynamics is presented. This approach integrates stable inversion techniques, that achieve exact-tracking, with approximation techniques, that modify the internal dynamics to achieve desirable performance. Such modification of the internal dynamics is used (1) to remove non-hyperbolicity which an obstruction to applying stable inversion techniques and (2) to reduce large pre-actuation time needed to apply stable inversion for near non-hyperbolic cases. The method is applied to an example helicopter hover control problem with near non-hyperbolic internal dynamic for illustrating the trade-off between exact tracking and reduction of pre-actuation time.
Flight control system design factors for applying automated testing techniques
NASA Technical Reports Server (NTRS)
Sitz, Joel R.; Vernon, Todd H.
1990-01-01
Automated validation of flight-critical embedded systems is being done at ARC Dryden Flight Research Facility. The automated testing techniques are being used to perform closed-loop validation of man-rated flight control systems. The principal design features and operational experiences of the X-29 forward-swept-wing aircraft and F-18 High Alpha Research Vehicle (HARV) automated test systems are discussed. Operationally applying automated testing techniques has accentuated flight control system features that either help or hinder the application of these techniques. The paper also discusses flight control system features which foster the use of automated testing techniques.
A real-time interferometer technique for compressible flow research
NASA Technical Reports Server (NTRS)
Bachalo, W. D.; Houser, M. J.
1984-01-01
Strengths and shortcomings in the application of interferometric techniques to transonic flow fields are examined and an improved method is elaborated. Such applications have demonstrated the value of interferometry in obtaining data for compressible flow research. With holographic techniques, interferometry may be applied in large scale facilities without the use of expensive optics or elaborate vibration isolation equipment. Results obtained using holographic interferometry and other methods demonstrate that reliable qualitative and quantitative data can be acquired. Nevertheless, the conventional method can be difficult to set up and apply, and it cannot produce real-time data. A new interferometry technique is investigated that promises to be easier to apply and can provide real-time information. This single-beam technique has the necessary insensitivity to vibration for large scale wind tunnel operations. Capabilities of the method and preliminary tests on some laboratory scale flow fluids are described.
NASA Astrophysics Data System (ADS)
Correa-Torres, S. N.; Kopytko, M.; Avila, S.
2016-07-01
This study reports the optimization of innovation chemical techniques in order to improve the remediation of soils contaminated with organochloride pesticides. The techniques used for remediation were dehalogenation and chemical oxidation in soil contaminated by pesticides. These techniques were applied sequentially and combined to evaluate the design optimize the concentration and contact time variables. The soil of this study was collect in cotton crop zone in Agustin Codazzi municipality, Colombia, and its physical properties was measure. The modified dehalogenation technique of EPA was applied on the contaminated soil by adding Sodium Bicarbonate solution at different concentrations and rates during 4, 7 and 14 days, subsequently oxidation technique was implemented by applying a solution of KMnO4 at different concentration and reaction times. Organochlorine were detected by Gas Chromatography analysis coupled Mass Spectrometry and its removals were between 85.4- 90.0% of compounds such as 4, 4’-DDT, 4,4’-DDD, 4,4-DDE, trans-Clordane y Endrin. These results demonstrate that the technique of dehalogenation with oxidation chemistry can be used for remediation soils contaminated by organochloride pesticides.
Performance Characterization of an Instrument.
ERIC Educational Resources Information Center
Salin, Eric D.
1984-01-01
Describes an experiment designed to teach students to apply the same statistical awareness to instrumentation they commonly apply to classical techniques. Uses propagation of error techniques to pinpoint instrumental limitations and breakdowns and to demonstrate capabilities and limitations of volumetric and gravimetric methods. Provides lists of…
Airborne Particulate Threat Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patrick Treado; Oksana Klueva; Jeffrey Beckstead
Aerosol threat detection requires the ability to discern between threat agents and ambient background particulate matter (PM) encountered in the environment. To date, Raman imaging technology has been demonstrated as an effective strategy for the assessment of threat agents in the presence of specific, complex backgrounds. Expanding our understanding of the composition of ambient particulate matter background will improve the overall performance of Raman Chemical Imaging (RCI) detection strategies for the autonomous detection of airborne chemical and biological hazards. Improving RCI detection performance is strategic due to its potential to become a widely exploited detection approach by several U.S. governmentmore » agencies. To improve the understanding of the ambient PM background with subsequent improvement in Raman threat detection capability, ChemImage undertook the Airborne Particulate Threat Assessment (APTA) Project in 2005-2008 through a collaborative effort with the National Energy Technology Laboratory (NETL), under cooperative agreement number DE-FC26-05NT42594. During Phase 1 of the program, a novel PM classification based on molecular composition was developed based on a comprehensive review of the scientific literature. In addition, testing protocols were developed for ambient PM characterization. A signature database was developed based on a variety of microanalytical techniques, including scanning electron microscopy, FT-IR microspectroscopy, optical microscopy, fluorescence and Raman chemical imaging techniques. An automated particle integrated collector and detector (APICD) prototype was developed for automated collection, deposition and detection of biothreat agents in background PM. During Phase 2 of the program, ChemImage continued to refine the understanding of ambient background composition. Additionally, ChemImage enhanced the APICD to provide improved autonomy, sensitivity and specificity. Deliverables included a Final Report detailing our findings and APICD Gen II subsystems for automated collection, deposition and detection of ambient particulate matter. Key findings from the APTA Program include: Ambient biological PM taxonomy; Demonstration of key subsystems needed for autonomous bioaerosol detection; System design; Efficient electrostatic collection; Automated bioagent recognition; Raman analysis performance validating Td<9 sec; Efficient collection surface regeneration; and Development of a quantitative bioaerosol defection model. The objective of the APTA program was to advance the state of our knowledge of ambient background PM composition. Operation of an automated aerosol detection system was enhanced by a more accurate assessment of background variability, especially for sensitive and specific sensing strategies like Raman detection that are background-limited in performance. Based on this improved knowledge of background, the overall threat detection performance of Raman sensors was improved.« less
Development of Austenitic ODS Strengthened Alloys for Very High Temperature Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stubbins, James; Heuser, Brent; Robertson, Ian
2015-04-22
This “Blue Sky” project was directed at exploring the opportunities that would be gained by developing Oxide Dispersion Strengthened (ODS) alloys based on the Fe-Cr-Ni austenitic alloy system. A great deal of research effort has been directed toward ferritic and ferritic/martensitic ODS alloys which has resulted in reasonable advances in alloy properties. Similar gains should be possible with austenitic alloy which would also take advantage of other superior properties of that alloy system. The research effort was aimed at the developing an in-depth understanding of the microstructural-level strengthening effects of ODS particles in austentic alloys. This was accomplished on amore » variety of alloy compositions with the main focus on 304SS and 316SS compositions. A further goal was to develop an understanding other the role of ODS particles on crack propagation and creep performance. Since these later two properties require bulk alloy material which was not available, this work was carried out on promising austentic alloy systems which could later be enhanced with ODS strengthening. The research relied on a large variety of micro-analytical techniques, many of which were available through various scientific user facilities. Access to these facilities throughout the course of this work was instrumental in gathering complimentary data from various analysis techniques to form a well-rounded picture of the processes which control austenitic ODS alloy performance. Micromechanical testing of the austenitic ODS alloys confirmed their highly superior mechanical properties at elevated temperature from the enhanced strengthening effects. The study analyzed the microstructural mechanisms that provide this enhanced high temperature performance. The findings confirm that the smallest size ODS particles provide the most potent strengthening component. Larger particles and other thermally- driven precipitate structures were less effective contributors and, in some cases, limited overall properties. With this understanding, the major materials development challenge is to provide a high uniformly distributed population of very fine ODS particles to be able to realize the full promise of dispersion strengthening. This should be a major goal of future work. This program had the further goal to develop graduate student researcher with the experience and capabilities to move this field forward. The support in this program was used for graduate student support and for research expenses; none of the program funds directly supported the faculty in the program. In this sense, the program was successful in supporting several very promising graduate researchers. Four of the graduate students supported here will complete their PhDs in 2015.« less
NASA Astrophysics Data System (ADS)
Roushangar, Kiyoumars; Mehrabani, Fatemeh Vojoudi; Shiri, Jalal
2014-06-01
This study presents Artificial Intelligence (AI)-based modeling of total bed material load through developing the accuracy level of the predictions of traditional models. Gene expression programming (GEP) and adaptive neuro-fuzzy inference system (ANFIS)-based models were developed and validated for estimations. Sediment data from Qotur River (Northwestern Iran) were used for developing and validation of the applied techniques. In order to assess the applied techniques in relation to traditional models, stream power-based and shear stress-based physical models were also applied in the studied case. The obtained results reveal that developed AI-based models using minimum number of dominant factors, give more accurate results than the other applied models. Nonetheless, it was revealed that k-fold test is a practical but high-cost technique for complete scanning of applied data and avoiding the over-fitting.
Gender Differences in Emotion Expression in Low-Income Adolescents Under Stress
Panjwani, Naaila; Chaplin, Tara M.; Sinha, Rajita; Mayes, Linda C.
2015-01-01
Gender roles in mainstream U.S. culture suggest that girls express more happiness, sadness, anxiety, and shame/embarrassment than boys, while boys express more anger and externalizing emotions, such as contempt. However, gender roles and emotion expression may be different in low-income and ethnically diverse families, as children and parents are often faced with greater environmental stressors and may have different gender expectations. This study examined gender differences in emotion expression in low-income adolescents, an understudied population. One hundred and seventy nine adolescents (aged 14-17) participated in the Trier Social Stress Test (TSST). Trained coders rated adolescents’ expressions of happiness, sadness, anxiety, shame/embarrassment, anger, and contempt during the TSST using a micro-analytic coding system. Analyses showed that, consistent with gender roles, girls expressed higher levels of happiness and shame than boys; however, contrary to traditional gender roles, girls showed higher levels of contempt than boys. Also, in contrast to cultural stereotypes, there were no differences in anger between boys and girls. Findings suggest gender-role inconsistent displays of externalizing emotions in low-income adolescents under acute stress, and may reflect different emotion socialization experiences in this group. PMID:29056804
Gender Differences in Emotion Expression in Low-Income Adolescents Under Stress.
Panjwani, Naaila; Chaplin, Tara M; Sinha, Rajita; Mayes, Linda C
2016-06-01
Gender roles in mainstream U.S. culture suggest that girls express more happiness, sadness, anxiety, and shame/embarrassment than boys, while boys express more anger and externalizing emotions, such as contempt. However, gender roles and emotion expression may be different in low-income and ethnically diverse families, as children and parents are often faced with greater environmental stressors and may have different gender expectations. This study examined gender differences in emotion expression in low-income adolescents, an understudied population. One hundred and seventy nine adolescents (aged 14-17) participated in the Trier Social Stress Test (TSST). Trained coders rated adolescents' expressions of happiness, sadness, anxiety, shame/embarrassment, anger, and contempt during the TSST using a micro-analytic coding system. Analyses showed that, consistent with gender roles, girls expressed higher levels of happiness and shame than boys; however, contrary to traditional gender roles, girls showed higher levels of contempt than boys. Also, in contrast to cultural stereotypes, there were no differences in anger between boys and girls. Findings suggest gender-role inconsistent displays of externalizing emotions in low-income adolescents under acute stress, and may reflect different emotion socialization experiences in this group.
Chehade, F; Maurizis, J C; Pucci, B; Pavia, A A; Ollier, M; Veyre, A; Escaig, F; Jeanguillaume, C; Dennebouy, R; Slodzian, G; Hindié, E
1996-05-01
Tris-hydroxymethyl-amino-methane telomers bearing a fluorinated end have recently been proposed as potential drug carriers. Using ion microscopy, we have investigated the cell uptake and subcellular distribution of a perfluorinated telomere, called F-TAC, in two cell lines, malignant murine B16 melanoma and normal rat skin fibroblasts. Single layer cell cultures on gold plates were incubated with F-TAC at different concentrations. Ion microscopy using mass spectrometry enabled the detection of Fluorine 19 atoms entering into F-TAC constitution. This microanalytical study showed an elective cytoplasmic localization of the molecule, wherein the distribution is relatively homogeneous. Within same culture and incubation conditions, intercellular variations in F-TAC content were very low. In the malignant line, the intracellular concentration remains practically identical when increasing F-TAC concentration in the culture medium above 0.2 mg/ml, indicating that the uptake phenomenon is saturable. In conclusion, the F-TAC telomer easily crosses the plasma membrane, however, it has difficulties in crossing the nuclear membrane. It is likely that intracellular penetration is essentially due to rapid endocytosis of the telomer.
Optimizing the use of a skin prick test device on children.
Buyuktiryaki, Betul; Sahiner, Umit Murat; Karabulut, Erdem; Cavkaytar, Ozlem; Tuncer, Ayfer; Sekerel, Bulent Enis
2013-01-01
Studies comparing skin prick test (SPT) devices have revealed varying results in performance and there is little known about their use on children. We performed 2 complementary studies to test the sensitivity, reproducibility and acceptability of commercially available SPT devices (Stallerpoint, Antony, France) using different application techniques. In the first part, histamine/saline was put on as a drop by use of a vial (V), and in the second part it was transferred from a well with the aid of the test device (W). The techniques were as follows: apply vertical pressure (Stallerpoint-VP or Stallerpoint-WP), apply vertical pressure with 90° clockwise rotation (Stallerpoint-VC or Stallerpoint-WC) and apply vertical pressure with 90° clockwise and counter-clockwise rotations (Stallerpoint-VCC or Stallerpoint-WCC). For comparison, ALK Lancet was used with a technique of 'drop and apply vertical pressure'. In the first part, sensitivities of the Stallerpoint-VC (96.6%), Stallerpoint-VCC (95.5%) and ALK Lancet (93.2%) techniques were superior (p < 0.001) to the other Stallerpoint-VP and Stallerpoint-WP techniques (76.1 and 46.6%). Intrapatient coefficient of variation (CV) values were 15.0, 18.9, 15.4, 22.4 and 48.5%, respectively. Interpatient CV ranged between 22.8 and 55.1%. In the second part, the Stallerpoint-WC (98.8%), WCC (97.5%) and ALK Lancet (98.8%) techniques yielded high sensitivities, whereas the sensitivity of Stallerpoint-WP (28.7%) was very low. There were false-positive reactions in the Stallerpoint-VCC and WCC techniques. In children, the SPT technique was found to be as important as the testing device. Stallerpoint-VC and WC techniques are reliable, tolerable and comparable with the ALK Lancet technique. Copyright © 2013 S. Karger AG, Basel.
Analysis of Learning Curve Fitting Techniques.
1987-09-01
1986. 15. Neter, John and others. Applied Linear Regression Models. Homewood IL: Irwin, 19-33. 16. SAS User’s Guide: Basics, Version 5 Edition. SAS... Linear Regression Techniques (15:23-52). Random errors are assumed to be normally distributed when using -# ordinary least-squares, according to Johnston...lot estimated by the improvement curve formula. For a more detailed explanation of the ordinary least-squares technique, see Neter, et. al., Applied
Comparison of three different techniques for application of water solutions to Finn Chambers®.
Frick-Engfeldt, Malin; Gruvberger, Birgitta; Isaksson, Marléne; Hauksson, Inese; Pontén, Ann; Bruze, Magnus
2010-11-01
With regard to contact allergy, the dose of a sensitizer per unit skin area is an important factor for both sensitization and elicitation, and therefore a known amount/volume of test preparation should be applied at patch testing. To compare three different techniques for the application of aqueous solutions to Finn Chambers, in order to determine the precision and accuracy of each technique when the recommended 15 µl volume is applied. Four technicians applied formaldehyde 1.0% aq. (wt/vol) and methylchloroisothiazolinone/methylisothiazolinone 200 ppm (wt/vol) in sets of 10 onto Finn Chambers, with three different techniques: (i) micro-pipetting; (ii) dripping the solutions; and (iii) dripping the solutions followed by removal of excess solution with a soft tissue. Assessment of the variations was performed with the use of descriptive data. The ability to apply the exact amount was assessed by Fisher's exact test by categorizing each application as in or out of the range 12-18 µl. The micro-pipette technique had the best accuracy and precision, as well as the lowest inter-individual variation. The technique in which excess solution was removed had good precision, but failed in the application of the defined amount, i.e. 15 µl. © 2010 John Wiley & Sons A/S.
Grossman, R A
1995-09-01
The purpose of this study was to determine whether women can discriminate better from less effective paracervical block techniques applied to opposite sides of the cervix. If this discrimination could be made, it would be possible to compare different techniques and thus improve the quality of paracervical anesthesia. Two milliliters of local anesthetic was applied to one side and 6 ml to the other side of volunteers' cervices before cervical dilation. Statistical examination was by sequential analysis. The study was stopped after 47 subjects had entered, when sequential analysis found that there was no significant difference in women's perception of pain. Nine women reported more pain on the side with more anesthesia and eight reported more pain on the side with less anesthesia. Because the amount of anesthesia did not make a difference, the null hypothesis (that women cannot discriminate between different anesthetic techniques) was accepted. Women are not able to discriminate different doses of local anesthetic when applied to opposite sides of the cervix.
Application of neural networks and sensitivity analysis to improved prediction of trauma survival.
Hunter, A; Kennedy, L; Henry, J; Ferguson, I
2000-05-01
The performance of trauma departments is widely audited by applying predictive models that assess probability of survival, and examining the rate of unexpected survivals and deaths. Although the TRISS methodology, a logistic regression modelling technique, is still the de facto standard, it is known that neural network models perform better. A key issue when applying neural network models is the selection of input variables. This paper proposes a novel form of sensitivity analysis, which is simpler to apply than existing techniques, and can be used for both numeric and nominal input variables. The technique is applied to the audit survival problem, and used to analyse the TRISS variables. The conclusions discuss the implications for the design of further improved scoring schemes and predictive models.
NASA Technical Reports Server (NTRS)
Zapata, R. N.; Humphris, R. R.; Henderson, K. C.
1975-01-01
The basic research and development work towards proving the feasibility of operating an all-superconductor magnetic suspension and balance device for aerodynamic testing is presented. The feasibility of applying a quasi-six-degree-of freedom free support technique to dynamic stability research was studied along with the design concepts and parameters for applying magnetic suspension techniques to large-scale aerodynamic facilities. A prototype aerodynamic test facility was implemented. Relevant aspects of the development of the prototype facility are described in three sections: (1) design characteristics; (2) operational characteristics; and (3) scaling to larger facilities.
Crustal forensics in arc magmas
NASA Astrophysics Data System (ADS)
Davidson, Jon P.; Hora, John M.; Garrison, Jennifer M.; Dungan, Michael A.
2005-01-01
The geochemical characteristics of continental crust are present in nearly all arc magmas. These characteristics may reflect a specific source process, such as fluid fluxing, common to both arc magmas and the continental crust, and/or may reflect the incorporation of continental crust into arc magmas either at source via subducted sediment, or via contamination during differentiation. Resolving the relative mass contributions of juvenile, mantle-derived material, versus that derived from pre-existing crust of the upper plate, and providing these estimates on an element-by-element basis, is important because: (1) we want to constrain crustal growth rates; (2) we want to quantitatively track element cycling at convergent margins; and (3) we want to determine the origin of economically important elements and compounds. Traditional geochemical approaches for determining the contributions of various components to arc magmas are particularly successful when applied on a comparative basis. Studies of suites from multiple magmatic systems along arcs, for which differentiation effects can be individually constrained, can be used to extrapolate to potential source compositions. In the Lesser Antilles Arc, for example, differentiation trends from individual volcanoes are consistent with open-system evolution. However, such trends do not project back to a common primitive magma composition, suggesting that differentiation modifies magmas that were derived from distinct mantle sources. We propose that such approaches should now be complemented by petrographically constrained mineral-scale isotope and trace element analysis to unravel the contributing components to arc magmas. This innovative approach can: (1) better constrain true end-member compositions by returning wider ranges in geochemical compositions among constituent minerals than is found in whole rocks; (2) better determine magmatic evolution processes from core-rim isotopic or trace element profiles from the phases contained in magmas; and (3) constrain rates of differentiation by applying diffusion-controlled timescales to element profiles. An example from Nguaruhoe Volcano, New Zealand, underscores the importance of such a microsampling approach, showing that mineral isotopic compositions encompass wide ranges, that whole-rock isotopic compositions are consequently simply element-weighted averages of the heterogeneous crystal cargo, and that open-system evolution is proved by core-rim variations in Sr isotope ratios. Nguaruhoe is just one of many systems examined through microanalytical approaches. The overwhelming conclusion of these studies is that crystal cargoes are not truly phenocrystic, but are inherited from various sources. The implication of this realization is that the interpretation of whole-rock isotopic data, including the currently popular U-series, needs careful evaluation in the context of petrographic observations.
GLO-STIX: Graph-Level Operations for Specifying Techniques and Interactive eXploration
Stolper, Charles D.; Kahng, Minsuk; Lin, Zhiyuan; Foerster, Florian; Goel, Aakash; Stasko, John; Chau, Duen Horng
2015-01-01
The field of graph visualization has produced a wealth of visualization techniques for accomplishing a variety of analysis tasks. Therefore analysts often rely on a suite of different techniques, and visual graph analysis application builders strive to provide this breadth of techniques. To provide a holistic model for specifying network visualization techniques (as opposed to considering each technique in isolation) we present the Graph-Level Operations (GLO) model. We describe a method for identifying GLOs and apply it to identify five classes of GLOs, which can be flexibly combined to re-create six canonical graph visualization techniques. We discuss advantages of the GLO model, including potentially discovering new, effective network visualization techniques and easing the engineering challenges of building multi-technique graph visualization applications. Finally, we implement the GLOs that we identified into the GLO-STIX prototype system that enables an analyst to interactively explore a graph by applying GLOs. PMID:26005315
Benhammouda, Brahim
2016-01-01
Since 1980, the Adomian decomposition method (ADM) has been extensively used as a simple powerful tool that applies directly to solve different kinds of nonlinear equations including functional, differential, integro-differential and algebraic equations. However, for differential-algebraic equations (DAEs) the ADM is applied only in four earlier works. There, the DAEs are first pre-processed by some transformations like index reductions before applying the ADM. The drawback of such transformations is that they can involve complex algorithms, can be computationally expensive and may lead to non-physical solutions. The purpose of this paper is to propose a novel technique that applies the ADM directly to solve a class of nonlinear higher-index Hessenberg DAEs systems efficiently. The main advantage of this technique is that; firstly it avoids complex transformations like index reductions and leads to a simple general algorithm. Secondly, it reduces the computational work by solving only linear algebraic systems with a constant coefficient matrix at each iteration, except for the first iteration where the algebraic system is nonlinear (if the DAE is nonlinear with respect to the algebraic variable). To demonstrate the effectiveness of the proposed technique, we apply it to a nonlinear index-three Hessenberg DAEs system with nonlinear algebraic constraints. This technique is straightforward and can be programmed in Maple or Mathematica to simulate real application problems.
Challenging Aerospace Problems for Intelligent Systems
2003-06-01
importance of each rule. Techniques such as logarithmic regression or Saaty’s AHP may be employed to apply the weights on to the fuzzy rules. 15-9 Given u...at which designs could be evaluated. This implies that modeling techniques such as neural networks, fuzzy systems and so on can play an important role...failure conditions [4-6]. These approaches apply techniques, such as neural networks, fuzzy logic, and parameter identification, to improve aircraft
Advancement of the anterior maxilla by distraction (case report).
Karakasis, Dimitri; Hadjipetrou, Loucia
2004-06-01
Several techniques of distraction osteogenesis have been applied for the correction of compromised midface in patients with clefts of the lip, alveolus and palate. This article presents a technique of callus distraction applied in a specific case of hypoplasia of a cleft maxilla with the sagittal advancement of the maxilla thus not affecting velopharyngeal function. The decision to apply distraction osteogenesis for advancement of the anterior maxillary segment in cleft patients offers many advantages.
2009-06-01
3. Previous Navy CRM Assessments ....................................................24 4. Applying Kirkpatrick’s Topology of Evaluation...development within each aviation community. Kirkpatrick’s (1976) hierarchy of training evaluation technique was applied to examine three levels of... Applying methods and techniques used in previous CRM evaluation research, this thesis provided an updated evaluation of the Naval CRM program to fill
Optimal systems of geoscience surveying A preliminary discussion
NASA Astrophysics Data System (ADS)
Shoji, Tetsuya
2006-10-01
In any geoscience survey, each survey technique must be effectively applied, and many techniques are often combined optimally. An important task is to get necessary and sufficient information to meet the requirement of the survey. A prize-penalty function quantifies effectiveness of the survey, and hence can be used to determine the best survey technique. On the other hand, an information-cost function can be used to determine the optimal combination of survey techniques on the basis of the geoinformation obtained. Entropy is available to evaluate geoinformation. A simple model suggests the possibility that low-resolvability techniques are generally applied at early stages of survey, and that higher-resolvability techniques should alternate with lower-resolvability ones with the progress of the survey.
Employing Subgoals in Computer Programming Education
ERIC Educational Resources Information Center
Margulieux, Lauren E.; Catrambone, Richard; Guzdial, Mark
2016-01-01
The rapid integration of technology into our professional and personal lives has left many education systems ill-equipped to deal with the influx of people seeking computing education. To improve computing education, we are applying techniques that have been developed for other procedural fields. The present study applied such a technique, subgoal…
Applying GRA and QFD to Improve Library Service Quality
ERIC Educational Resources Information Center
Chen, Yen-Ting; Chou, Tsung-Yu
2011-01-01
This paper applied Grey Relational Analysis (GRA) to Quality Function Deployment (QFD) to identify service improvement techniques for an academic library. First, reader needs and their importance, and satisfaction degrees were examined via questionnaires. Second, the service improvement techniques for satisfying the reader needs were developed by…
Two Student Self-Management Techniques Applied to Data-Based Program Modification.
ERIC Educational Resources Information Center
Wesson, Caren
Two student self-management techniques, student charting and student selection of instructional activities, were applied to ongoing data-based program modification. Forty-two elementary school resource room students were assigned randomly (within teacher) to one of three treatment conditions: Teacher Chart-Teacher Select Instructional Activities…
39 CFR 3050.1 - Definitions applicable to this part.
Code of Federal Regulations, 2012 CFR
2012-07-01
... was applied by the Commission in its most recent Annual Compliance Determination unless a different analytical principle subsequently was accepted by the Commission in a final rule. (b) Accepted quantification technique refers to a quantification technique that was applied in the most recent iteration of the periodic...
39 CFR 3050.1 - Definitions applicable to this part.
Code of Federal Regulations, 2014 CFR
2014-07-01
... was applied by the Commission in its most recent Annual Compliance Determination unless a different analytical principle subsequently was accepted by the Commission in a final rule. (b) Accepted quantification technique refers to a quantification technique that was applied in the most recent iteration of the periodic...
Noise distribution and denoising of current density images
Beheshti, Mohammadali; Foomany, Farbod H.; Magtibay, Karl; Jaffray, David A.; Krishnan, Sridhar; Nanthakumar, Kumaraswamy; Umapathy, Karthikeyan
2015-01-01
Abstract. Current density imaging (CDI) is a magnetic resonance (MR) imaging technique that could be used to study current pathways inside the tissue. The current distribution is measured indirectly as phase changes. The inherent noise in the MR imaging technique degrades the accuracy of phase measurements leading to imprecise current variations. The outcome can be affected significantly, especially at a low signal-to-noise ratio (SNR). We have shown the residual noise distribution of the phase to be Gaussian-like and the noise in CDI images approximated as a Gaussian. This finding matches experimental results. We further investigated this finding by performing comparative analysis with denoising techniques, using two CDI datasets with two different currents (20 and 45 mA). We found that the block-matching and three-dimensional (BM3D) technique outperforms other techniques when applied on current density (J). The minimum gain in noise power by BM3D applied to J compared with the next best technique in the analysis was found to be around 2 dB per pixel. We characterize the noise profile in CDI images and provide insights on the performance of different denoising techniques when applied at two different stages of current density reconstruction. PMID:26158100
Characterisation of high temperature refractory ceramics for nuclear applications
NASA Astrophysics Data System (ADS)
Bottomley, P. D. W.; Wiss, Th; Janssen, A.; Cremer, B.; Thiele, H.; Manara, D.; Scheindlin, M.; Murray-Farthing, M.; Lajarge, P.; Menna, M.; Bouexière, D.; Rondinella, V. V.
2012-03-01
The ternary oxide ceramic system UO2-ZrO2-FeO is a refractory system that is of great relevance to the nuclear industry as it represents one of the main systems resulting from the interaction of the Zircaloy cladding, the UO2 fuel and the structural elements of a nuclear reactor. It is particularly the high temperature properties that require investigation; that is, when substantial overheating of the nuclear core occurs and interactions can lead to its degradation, melting and result in a severe nuclear accident. There has been much work on the UO2-ZrO2 system and also on the ternary system with FeO but there is still a need to examine 2 further aspects; firstly the effect of sub-oxidized systems, the UO2-Zr and FeO-Zr systems, and secondly the effect of Fe/Zr or Fe/U ratios on the melting point of the U-Zr-Fe oxide system. Samples of UO2-Zr and UO2-ZrO2-FeO were fabricated at ITU and then characterized by optical microscopy (OM) and X-ray diffraction to determine the ceramic's structure and verify the composition. Thereafter the samples are to be melted by laser flash heating and their liquidus and solidus temperatures determined by pyrometry. This programme is currently ongoing. The frozen samples, after testing, were then sectioned, polished and the molten zone micro-analytically examined by OM & SEM-EDS in order to determine its structure and composition and to compare with the existing phase diagrams. Examples of results from these systems will be given. Finally, a reacted Zr-FeO thermite mixture was examined, which had been used to generate high temperatures during tests of reactor melt-concrete interactions. The aim was to assess the reaction and estimate the heat generation from this novel technique. These results allow verification or improvement of the phase diagram and are of primary importance as input to models used to predict materials interactions in a severe nuclear accident.
NASA Astrophysics Data System (ADS)
Tully, M.; Saunders, K.; Troll, V. R.; Jolis, E.; Muir, D. D.; Deegan, F. M.; Budd, D. A.; Astbury, R.; Bromiley, G. D.
2014-12-01
Present knowledge of the chain of dominantly andesitic volcanoes, which span the Sumatran portion of the Sunda Arc is extremely limited. Previous studies have focused on Toba and Krakatau, although over 13 further volcanic edifices are known. Several recent explosive eruptions in Sumatra such as that of Mt. Sinabung, 2014, have highlighted the potential hazard that these volcanoes pose to the local and regional communities. Mount Kerinci, is one of the most active of the volcanoes in this region, yet little is known about the petrogenesis of the magma by which it is fed. Kerinci is located approximately mid-way between Toba in the North and Krakatau in the south. Along arc variations are observed in the major, minor and trace elements of whole rock analyses. However, bulk rock approaches produce an average chemical composition for a sample, potentially masking important chemical signatures. In-situ micro-analytical analysis of individual components of samples such as melt inclusions, crystals and groundmass provides chemical signatures of individual components allowing the evolution of volcanic centres to be deciphered in considerably more detail. Examination of whole rock chemistry indicates its location may be key to unravelling the petrogenesis of the arc as significant chemical changes occur between Kerinci and Kaba, 250 km to the south. Kerinci samples are dominantly porphyritic with large crystals of plagioclase, pyroxene and Fe-Ti oxides, rare olivine crystals are observed. Plagioclase and pyroxene crystals are chemically zoned and host melt inclusions. Multiple plagioclase populations are observed. A combination of in-situ micro-analysis techniques will be used to characterise the chemical composition of melt inclusions and crystals. These data can be used along with extant geothermobarometric models to help determine the magma source, storage conditions and composition of the evolving melt. Integration of the findings from this study with existing data for the volcanic chain will enable along-arc variations in magmatic processes in Sumatra to be assessed more thoroughly, providing fundamental insights into the evolution of not only Kerinci, but magma genesis in Sumatra in general. Keywords: Sunda Arc, andesite, arc volcanism, petrogenesis.
The effects of trace element content on pyrite oxidation rates
NASA Astrophysics Data System (ADS)
Gregory, D. D.; Lyons, T.; Cliff, J. B.; Perea, D. E.; Johnson, A.; Romaniello, S. J.; Large, R. R.
2017-12-01
Pyrite acts as both an important source and sink for many different metals and metalloids in the environment, including many that are toxic. Oxidation of pyrite can release these elements while at the same time producing significant amounts of sulfuric acid. Such issues are common in the vicinity of abandoned mines and smelters, but, as pyrite is a common accessory mineral in many different lithologies, significant pyrite oxidation can occur whenever pyritic rocks are exposed to oxygenated water or the atmosphere. Accelerated exposure to oxygen can occur during deforestation, fracking for petroleum, and construction projects. Geochemical models for pyrite oxidation can help us develop strategies to mitigate these deleterious effects. An important component of these models is an accurate pyrite oxidation rate; however, current pyrite oxidation rates have been determined using relatively pure pyrite. Natural pyrite is rarely pure and has a wide range of trace element concentrations that may affect the oxidation rate. Furthermore, the position of trace elements within the mineral lattice can also affect the oxidation rate. For example, elements such as Ni and Co, which substitute into the pyrite lattice, are thought to stabilize the lattice and thus prevent pyrite oxidation. Alternatively, trace elements that are held within inclusions of other minerals could form a galvanic cell with the surrounding pyrite, thus enhancing pyrite oxidation rates. In this study, we present preliminary analyses from three different pyrite oxidation experiments each using natural pyrite with different trace element compositions. These results show that the pyrite with the highest trace element concentration has approximately an order of magnitude higher oxidation rate compared to the lowest trace element sample. To further elucidate the mechanisms, we employed microanalytical techniques to investigate how the trace elements are held within the pyrite. LA-ICPMS was used to determine the variability of trace element content from the pyrite samples. These data were then used to select areas of interest for NanoSIMS analyses, which in turn was used to select areas for TEM and APT. These analyses show that the trace element content of pyrite can be highly variable, which may significantly affect the rate of pyrite oxidation.
Diagnostics and Active Control of Aircraft Interior Noise
NASA Technical Reports Server (NTRS)
Fuller, C. R.
1998-01-01
This project deals with developing advanced methods for investigating and controlling interior noise in aircraft. The work concentrates on developing and applying the techniques of Near Field Acoustic Holography (NAH) and Principal Component Analysis (PCA) to the aircraft interior noise dynamic problem. This involves investigating the current state of the art, developing new techniques and then applying them to the particular problem being studied. The knowledge gained under the first part of the project was then used to develop and apply new, advanced noise control techniques for reducing interior noise. A new fully active control approach based on the PCA was developed and implemented on a test cylinder. Finally an active-passive approach based on tunable vibration absorbers was to be developed and analytically applied to a range of test structures from simple plates to aircraft fuselages.
Creighton, Doug; Gruca, Mark; Marsh, Douglas; Murphy, Nancy
2014-11-01
Cervical mobilization and manipulation have been shown to improve cervical range of motion and pain. Rotatory thrust manipulation applied to the lower cervical segments is associated with controversy and the potential for eliciting adverse reactions (AR). The purpose of this clinical trial was to describe two translatory non-thrust mobilization techniques and evaluate their effect on cervical pain, motion restriction, and whether any adverse effects were reported when applied to the C7 segment. This trial included 30 participants with painful and restricted cervical rotation. Participants were randomly assigned to receive one of the two mobilization techniques. Active cervical rotation and pain intensity measurements were recorded pre- and post-intervention. Within group comparisons were determined using the Wilcoxon signed-rank test and between group comparisons were analyzed using the Mann-Whitney U test. Significance was set at P = 0.05. Thirty participants were evaluated immediately after one of the two mobilization techniques was applied. There was a statistically significant difference (improvement) for active cervical rotation after application of the C7 facet distraction technique for both right (P = 0.022) and left (P = 0.022) rotation. Statistically significant improvement was also found for the C7 facet gliding technique for both right (P = 0.022) and left rotation (P = 0.020). Pain reduction was statistically significant for both right and left rotation after application of both techniques. Both mobilization techniques produced similar positive effects and one was not statistically superior to the other. A single application of both C7 mobilization techniques improved active cervical rotation, reduced perceived pain, and did not produce any AR in 30 patients with neck pain and movement limitation. These two non-thrust techniques may offer clinicians an additional safe and effective manual intervention for patients with limited and painful cervical rotation. A more robust experimental design is recommended to further examine these and similar cervical translatory mobilization techniques.
Erdemci, Zeynep Yalçınkaya; Cehreli, S Burçak; Tirali, R Ebru
2014-01-01
This study's purpose was to investigate microleakage and marginal discrepancies in stainless steel crowns (SSCs) placed using conventional and Hall techniques and cemented with three different luting agents. Seventy-eight human primary maxillary second molars were randomly assigned to two groups (N=39), and SSCs were applied either with the Hall or conventional technique. These two groups were further subgrouped according to the material used for crown cementation (N=13 per group). Two specimens in each group were processed for scanning electron microscopy investigation. The extent of microleakage and marginal fit was quantified in millimeters on digitally photographed sections using image analysis software. The data were compared with a two-way independent and a two-way mixed analysis of variance (P=.05). The scores in the Hall group were significantly worse than those in the conventional technique group (P<.05). In both groups, resin cement displayed the lowest extent of microleakage, followed by glass ionomer and polycarboxylate cements (P<.05). Stainless steel crowns applied using the Hall technique displayed higher microleakage scores than those applied using the conventional technique, regardless of the cementation material. When the interaction of the material and technique was assessed, resin cement presented as the best choice for minimizing microleakage in both techniques.
NASA Astrophysics Data System (ADS)
Bellotti, Mariela I.; Bast, Walter; Berra, Alejandro; Bonetto, Fabián J.
2011-07-01
We present a novel experimental technique to determine eye ulcers in animals using a spectral electrical impedance technique. We expect that this technique will be useful in dry eye syndrome. We used a sensor that is basically a platinum (Pt) microelectrode electrically insulated by glass from a cylindrical stainless steel counter-electrode. This sensor was applied to the naked eye of New Zealand rabbits (2.0-3.5 kg in weight). Whereas half of the eyes were normal (control), we applied to the remainder a few drops of 20% (v/v) alcohol to produce an ulcer in the eye. Using a multispectral electrical impedance system we measured ulcerated and control eyes and observed significant difference between normal and pathological samples. We also investigated the effects of different applied pressures and natural degradation of initially normal eyes as a function of time. We believe that this technique could be sufficiently sensitive and repetitive to help diagnose ocular surface diseases such as dry eye syndrome.
NASA Astrophysics Data System (ADS)
Jog, Mayank V.; Smith, Robert X.; Jann, Kay; Dunn, Walter; Lafon, Belen; Truong, Dennis; Wu, Allan; Parra, Lucas; Bikson, Marom; Wang, Danny J. J.
2016-10-01
Transcranial direct current stimulation (tDCS) is an emerging non-invasive neuromodulation technique that applies mA currents at the scalp to modulate cortical excitability. Here, we present a novel magnetic resonance imaging (MRI) technique, which detects magnetic fields induced by tDCS currents. This technique is based on Ampere’s law and exploits the linear relationship between direct current and induced magnetic fields. Following validation on a phantom with a known path of electric current and induced magnetic field, the proposed MRI technique was applied to a human limb (to demonstrate in-vivo feasibility using simple biological tissue) and human heads (to demonstrate feasibility in standard tDCS applications). The results show that the proposed technique detects tDCS induced magnetic fields as small as a nanotesla at millimeter spatial resolution. Through measurements of magnetic fields linearly proportional to the applied tDCS current, our approach opens a new avenue for direct in-vivo visualization of tDCS target engagement.
Bellotti, Mariela I; Bast, Walter; Berra, Alejandro; Bonetto, Fabián J
2011-07-01
We present a novel experimental technique to determine eye ulcers in animals using a spectral electrical impedance technique. We expect that this technique will be useful in dry eye syndrome. We used a sensor that is basically a platinum (Pt) microelectrode electrically insulated by glass from a cylindrical stainless steel counter-electrode. This sensor was applied to the naked eye of New Zealand rabbits (2.0-3.5 kg in weight). Whereas half of the eyes were normal (control), we applied to the remainder a few drops of 20% (v/v) alcohol to produce an ulcer in the eye. Using a multispectral electrical impedance system we measured ulcerated and control eyes and observed significant difference between normal and pathological samples. We also investigated the effects of different applied pressures and natural degradation of initially normal eyes as a function of time. We believe that this technique could be sufficiently sensitive and repetitive to help diagnose ocular surface diseases such as dry eye syndrome.
Techniques for noise removal and registration of TIMS data
Hummer-Miller, S.
1990-01-01
Extracting subtle differences from highly correlated thermal infrared aircraft data is possible with appropriate noise filters, constructed and applied in the spatial frequency domain. This paper discusses a heuristic approach to designing noise filters for removing high- and low-spatial frequency striping and banding. Techniques for registering thermal infrared aircraft data to a topographic base using Thematic Mapper data are presented. The noise removal and registration techniques are applied to TIMS thermal infrared aircraft data. -Author
Optimization techniques applied to passive measures for in-orbit spacecraft survivability
NASA Technical Reports Server (NTRS)
Mog, Robert A.; Price, D. Marvin
1987-01-01
Optimization techniques applied to passive measures for in-orbit spacecraft survivability, is a six-month study, designed to evaluate the effectiveness of the geometric programming (GP) optimization technique in determining the optimal design of a meteoroid and space debris protection system for the Space Station Core Module configuration. Geometric Programming was found to be superior to other methods in that it provided maximum protection from impact problems at the lowest weight and cost.
Residual stress measurement in silicon sheet by shadow moire interferometry
NASA Technical Reports Server (NTRS)
Kwon, Y.; Danyluk, S.; Bucciarelli, L.; Kalejs, J. P.
1987-01-01
A shadow moire interferometry technique has been developed to measure residual strain in thin silicon sheet. The curvature of a segment of sheet undergoing four-point bending is analyzed to include the applied bending moments, the in-plane residual stresses, and the 'end effect' of the sheet since it is of finite length. The technique is applied to obtain residual stress distributions for silicon sheet grown by the edge-defined film-fed growth technique.
2011-02-01
seakeeping was the transient wave technique, developed analytically by Davis and Zarnick (1964). At the David Taylor Model Basin, Davis and Zarnick, and...Gersten and Johnson (1969) applied the transient wave technique to regular wave model experiments for heave and pitch, at zero forward speed. These...tests demonstrated a potential reduction by an order of magnitude of the total necessary testing time. The transient wave technique was also applied to
Kailasa, Suresh Kumar; Wu, Hui-Fen
2013-07-01
Recently, mass spectrometric related techniques have been widely applied for the identification and quantification of neurochemicals and their metabolites in biofluids. This article presents an overview of mass spectrometric techniques applied in the detection of neurological substances and their metabolites from biological samples. In addition, the advances of chromatographic methods (LC, GC and CE) coupled with mass spectrometric techniques for analysis of neurochemicals in pharmaceutical and biological samples are also discussed.
Applying Parallel Processing Techniques to Tether Dynamics Simulation
NASA Technical Reports Server (NTRS)
Wells, B. Earl
1996-01-01
The focus of this research has been to determine the effectiveness of applying parallel processing techniques to a sizable real-world problem, the simulation of the dynamics associated with a tether which connects two objects in low earth orbit, and to explore the degree to which the parallelization process can be automated through the creation of new software tools. The goal has been to utilize this specific application problem as a base to develop more generally applicable techniques.
Fabrication of functional devices using soft lithography and unconventional micropatterning
NASA Astrophysics Data System (ADS)
Deng, Tao
In this thesis, I present part of our work in the fabrication of functional devices using soft lithography, and also describe unconventional micropatterning techniques involving photographic films. Soft lithography is a set of techniques that are complementary to photolithography, but not limited to planar patterning. It offers the capability of generating micro and nanostructures to a larger community than that familiar with conventional fabrication facilities. The first part of this thesis (chapter 1--4) focuses on the fabrication of microelectronic and micromagnetic devices. These successful demonstrations establish the compatibility of soft lithography with multilayer fabrication of functional devices, and open the door for the further development in these areas. Chapter 1 and 2 describe the use of microtransfer molding (muTM), micromolding in capillaries (MIMIC), and microcontact (muCP) for fabricating Schottky diodes and half-wave rectifier circuits. The fabrication processes involve multiple soft lithography steps and address the registrations between different layer of structures. Room temperature characteristics of these devices resemble those of diodes and rectifiers fabricated by photolithography. Chapter 3 and 4 demonstrate the fabrication of micromagnetic systems. In chapter 3, a one-dimensional bead motor is reported. Based on current-carrying wire systems, the bead motor can trap and transfer magnetic beads suspended in aqueous solutions. Chapter 4 shows a microfiltration system that uses arrays of nickel posts positioned in a polydimethylsiloxane (PDMS) microfluidic channel as the filtering elements. Turning on or off the magnetic field that is localized by these nickel posts can trap or release magnetic beads flowing by. The second part of this thesis (chapter 5--7) focuses on the development of unconventional microfabrication. The major objective underlying this work is to explore the simplest and most broadly available techniques that we could identify for forming patterns with features useful in functional microstructures. Chapter 5 and 6 describe the use of photographic films (microfiche and slide film) and transparencies printed using different printers as photomasks in the fabrication of PDMS stamps/molds for soft lithography. In chapter 6, we also compare different methods of generating microstructures using facilities readily and inexpensively available to chemistry and biology laboratories. Among the films and transparencies investigated, microfiche carries the highest resolution. It can generate structures as small as ˜10 mum in lateral dimensions. Chapter 7 shows a new rapid prototyping process for the fabrication of metallic microstructures using silver halide-based photographic film. The whole process, which involves photographic development and electrochemical deposition, only takes ˜2 hours, starting from a computer design file. It can generate electrically continuous structures with the smallest dimension of ˜30 mum in the plane of the film. The resulting structures---either supported on the film backing, or freed from it---are appropriate for use as passive, structural materials such as wire frames or meshes, and can also be used in microfluidic, microanalytical, and microelectromechanical systems (MEMS).
Data analysis techniques used at the Oak Ridge Y-12 plant flywheel evaluation laboratory
NASA Astrophysics Data System (ADS)
Steels, R. S., Jr.; Babelay, E. F., Jr.
1980-07-01
Some of the more advanced data analysis techniques applied to the problem of experimentally evaluating the performance of high performance composite flywheels are presented. Real time applications include polar plots of runout with interruptions relating to balance and relative motions between parts, radial growth measurements, and temperature of the spinning part. The technique used to measure torque applied to a containment housing during flywheel failure is also presented. The discussion of pre and post test analysis techniques includes resonant frequency determination with modal analysis, waterfall charts, and runout signals at failure.
NASA Astrophysics Data System (ADS)
Al-Saggaf, Yeslam; Burmeister, Oliver K.
2012-09-01
This exploratory study compares and contrasts two types of critical thinking techniques; one is a philosophical and the other an applied ethical analysis technique. The two techniques analyse an ethically challenging situation involving ICT that a recent media article raised to demonstrate their ability to develop the ethical analysis skills of ICT students and professionals. In particular the skill development focused on includes: being able to recognise ethical challenges and formulate coherent responses; distancing oneself from subjective judgements; developing ethical literacy; identifying stakeholders; and communicating ethical decisions made, to name a few.
Application of artificial neural networks with backpropagation technique in the financial data
NASA Astrophysics Data System (ADS)
Jaiswal, Jitendra Kumar; Das, Raja
2017-11-01
The propensity of applying neural networks has been proliferated in multiple disciplines for research activities since the past recent decades because of its powerful control with regulatory parameters for pattern recognition and classification. It is also being widely applied for forecasting in the numerous divisions. Since financial data have been readily available due to the involvement of computers and computing systems in the stock market premises throughout the world, researchers have also developed numerous techniques and algorithms to analyze the data from this sector. In this paper we have applied neural network with backpropagation technique to find the data pattern from finance section and prediction for stock values as well.
Flash X-ray with image enhancement applied to combustion events
NASA Astrophysics Data System (ADS)
White, K. J.; McCoy, D. G.
1983-10-01
Flow visualization of interior ballistic processes by use of X-rays has placed more stringent requirements on flash X-ray techniques. The problem of improving radiographic contrast of propellants in X-ray transparent chambers was studied by devising techniques for evaluating, measuring and reducing the effects of scattering from both the test object and structures in the test area. X-ray film and processing is reviewed and techniques for evaluating and calibrating these are outlined. Finally, after X-ray techniques were optimized, the application of image enhancement processing which can improve image quality is described. This technique was applied to X-ray studies of the combustion of very high burning rate (VHBR) propellants and stick propellant charges.
State-of-the-art of optics in China reviewed
NASA Astrophysics Data System (ADS)
Wang, Daheng; Wo, Xinneng
1985-06-01
The state-of-the-art of optics and applied optics in China is reviewed. Developments in lasers, infrared and opto-electronic techniques, optical metrology, high-speed photography, holography and information processing, nonlinear optics, optical fiber communications and optical techniques are described. Further development of optics and applied optics in China are proposed.
Semantics of User Interface for Image Retrieval: Possibility Theory and Learning Techniques.
ERIC Educational Resources Information Center
Crehange, M.; And Others
1989-01-01
Discusses the need for a rich semantics for the user interface in interactive image retrieval and presents two methods for building such interfaces: possibility theory applied to fuzzy data retrieval, and a machine learning technique applied to learning the user's deep need. Prototypes developed using videodisks and knowledge-based software are…
The Effects of Translanguaging on the Bi-Literate Inferencing Strategies of Fourth Grade Learners
ERIC Educational Resources Information Center
Mgijima, Vukile Desmond; Makalela, Leketi
2016-01-01
Previous research suggests that enhanced cognitive and metacognitive skills are achieved when translanguaging techniques are applied in a multilingual classroom. This paper presents findings on the effects of translanguaging techniques on teaching grade 4 learners how to apply relevant background knowledge when drawing inferences during reading.…
Study of SEM induced current and voltage contrast modes to assess semiconductor reliability
NASA Technical Reports Server (NTRS)
Beall, J. R.
1976-01-01
The purpose of the scanning electron microscopy study was to review the failure history of existing integrated circuit technologies to identify predominant failure mechanisms, and to evaluate the feasibility of their detection using SEM application techniques. The study investigated the effects of E-beam irradiation damage and contamination deposition rates; developed the necessary methods for applying the techniques to the detection of latent defects and weaknesses in integrated circuits; and made recommendations for applying the techniques.
Ellwood, R; Stratoudaki, T; Sharples, S D; Clark, M; Somekh, M G
2014-03-01
The third-order elastic constants of a material are believed to be sensitive to residual stress, fatigue, and creep damage. The acoustoelastic coefficient is directly related to these third-order elastic constants. Several techniques have been developed to monitor the acoustoelastic coefficient using ultrasound. In this article, two techniques to impose stress on a sample are compared, one using the classical method of applying a static strain using a bending jig and the other applying a dynamic stress due to the presence of an acoustic wave. Results on aluminum samples are compared. Both techniques are found to produce similar values for the acoustoelastic coefficient. The dynamic strain technique however has the advantages that it can be applied to large, real world components, in situ, while ensuring the measurement takes place in the nondestructive, elastic regime.
Demonstration of PIV in a Transonic Compressor
NASA Technical Reports Server (NTRS)
Wernet, Mark P.
1997-01-01
Particle Imaging Velocimetry (PIV) is a powerful measurement technique which can be used as an alternative or complementary approach to Laser Doppler Velocimetry (LDV) in a wide range of research applications. PIV data are measured simultaneously at multiple points in space, which enables the investigation of the non-stationary spatial structures typically encountered in turbomachinery. Many of the same issues encountered in the application of LDV techniques to rotating machinery apply in the application of PIV. Preliminary results from the successful application of the standard 2-D PIV technique to a transonic axial compressor are presented. The lessons learned from the application of the 2-D PIV technique will serve as the basis for applying 3-component PIV techniques to turbomachinery.
Geology orbiter comparison study
NASA Technical Reports Server (NTRS)
Cutts, J. A. J.; Blasius, K. R.; Davis, D. R.; Pang, K. D.; Shreve, D. C.
1977-01-01
Instrument requirements of planetary geology orbiters were examined with the objective of determining the feasibility of applying standard instrument designs to a host of terrestrial targets. Within the basic discipline area of geochemistry, gamma-ray, X-ray fluorescence, and atomic spectroscopy remote sensing techniques were considered. Within the discipline area of geophysics, the complementary techniques of gravimetry and radar were studied. Experiments using these techniques were analyzed for comparison at the Moon, Mercury, Mars and the Galilean satellites. On the basis of these comparative assessments, the adaptability of each sensing technique was judged as a basic technique for many targets, as a single instrument applied to many targets, as a single instrument used in different mission modes, and as an instrument capability for nongeoscience objectives.
ERIC Educational Resources Information Center
Sucuoglu, Esen
2017-01-01
The aim of this study is to determine the perceptions of English language teachers teaching at a preparatory school in relation to their knowing and applying contemporary language teaching techniques in their lessons. An investigation was conducted of 21 English language teachers at a preparatory school in North Cyprus. The SPSS statistical…
A comparison of two conformal mapping techniques applied to an aerobrake body
NASA Technical Reports Server (NTRS)
Hommel, Mark J.
1987-01-01
Conformal mapping is a classical technique which has been utilized for solving problems in aerodynamics and hydrodynamics. Conformal mapping has been successfully applied in the construction of grids around airfoils, engine inlets and other aircraft configurations. Conformal mapping techniques were applied to an aerobrake body having an axis of symmetry. Two different approaches were utilized: (1) Karman-Trefftz transformation; and (2) Point Wise Schwarz Christoffel transformation. In both cases, the aerobrake body was mapped onto a near circle, and a grid was generated in the mapped plane. The mapped body and grid were then mapped back into physical space and the properties of the associated grids were examined. Advantages and disadvantages of both approaches are discussed.
Hierarchical classification method and its application in shape representation
NASA Astrophysics Data System (ADS)
Ireton, M. A.; Oakley, John P.; Xydeas, Costas S.
1992-04-01
In this paper we describe a technique for performing shaped-based content retrieval of images from a large database. In order to be able to formulate such user-generated queries about visual objects, we have developed an hierarchical classification technique. This hierarchical classification technique enables similarity matching between objects, with the position in the hierarchy signifying the level of generality to be used in the query. The classification technique is unsupervised, robust, and general; it can be applied to any suitable parameter set. To establish the potential of this classifier for aiding visual querying, we have applied it to the classification of the 2-D outlines of leaves.
New technique for calibrating hydrocarbon gas flowmeters
NASA Technical Reports Server (NTRS)
Singh, J. J.; Puster, R. L.
1984-01-01
A technique for measuring calibration correction factors for hydrocarbon mass flowmeters is described. It is based on the Nernst theorem for matching the partial pressure of oxygen in the combustion products of the test hydrocarbon, burned in oxygen-enriched air, with that in normal air. It is applied to a widely used type of commercial thermal mass flowmeter for a number of hydrocarbons. The calibration correction factors measured using this technique are in good agreement with the values obtained by other independent procedures. The technique is successfully applied to the measurement of differences as low as one percent of the effective hydrocarbon content of the natural gas test samples.
Microscale and nanoscale strain mapping techniques applied to creep of rocks
NASA Astrophysics Data System (ADS)
Quintanilla-Terminel, Alejandra; Zimmerman, Mark E.; Evans, Brian; Kohlstedt, David L.
2017-07-01
Usually several deformation mechanisms interact to accommodate plastic deformation. Quantifying the contribution of each to the total strain is necessary to bridge the gaps from observations of microstructures, to geomechanical descriptions, to extrapolating from laboratory data to field observations. Here, we describe the experimental and computational techniques involved in microscale strain mapping (MSSM), which allows strain produced during high-pressure, high-temperature deformation experiments to be tracked with high resolution. MSSM relies on the analysis of the relative displacement of initially regularly spaced markers after deformation. We present two lithography techniques used to pattern rock substrates at different scales: photolithography and electron-beam lithography. Further, we discuss the challenges of applying the MSSM technique to samples used in high-temperature and high-pressure experiments. We applied the MSSM technique to a study of strain partitioning during creep of Carrara marble and grain boundary sliding in San Carlos olivine, synthetic forsterite, and Solnhofen limestone at a confining pressure, Pc, of 300 MPa and homologous temperatures, T/Tm, of 0.3 to 0.6. The MSSM technique works very well up to temperatures of 700 °C. The experimental developments described here show promising results for higher-temperature applications.
A Deformable Smart Skin for Continuous Sensing Based on Electrical Impedance Tomography.
Visentin, Francesco; Fiorini, Paolo; Suzuki, Kenji
2016-11-16
In this paper, we present a low-cost, adaptable, and flexible pressure sensor that can be applied as a smart skin over both stiff and deformable media. The sensor can be easily adapted for use in applications related to the fields of robotics, rehabilitation, or costumer electronic devices. In order to remove most of the stiff components that block the flexibility of the sensor, we based the sensing capability on the use of a tomographic technique known as Electrical Impedance Tomography. The technique allows the internal structure of the domain under study to be inferred by reconstructing its conductivity map. By applying the technique to a material that changes its resistivity according to applied forces, it is possible to identify these changes and then localise the area where the force was applied. We tested the system when applied to flat and curved surfaces. For all configurations, we evaluate the artificial skin capabilities to detect forces applied over a single point, over multiple points, and changes in the underlying geometry. The results are all promising, and open the way for the application of such sensors in different robotic contexts where deformability is the key point.
A Deformable Smart Skin for Continuous Sensing Based on Electrical Impedance Tomography
Visentin, Francesco; Fiorini, Paolo; Suzuki, Kenji
2016-01-01
In this paper, we present a low-cost, adaptable, and flexible pressure sensor that can be applied as a smart skin over both stiff and deformable media. The sensor can be easily adapted for use in applications related to the fields of robotics, rehabilitation, or costumer electronic devices. In order to remove most of the stiff components that block the flexibility of the sensor, we based the sensing capability on the use of a tomographic technique known as Electrical Impedance Tomography. The technique allows the internal structure of the domain under study to be inferred by reconstructing its conductivity map. By applying the technique to a material that changes its resistivity according to applied forces, it is possible to identify these changes and then localise the area where the force was applied. We tested the system when applied to flat and curved surfaces. For all configurations, we evaluate the artificial skin capabilities to detect forces applied over a single point, over multiple points, and changes in the underlying geometry. The results are all promising, and open the way for the application of such sensors in different robotic contexts where deformability is the key point. PMID:27854325
Strategies for Fermentation Medium Optimization: An In-Depth Review
Singh, Vineeta; Haque, Shafiul; Niwas, Ram; Srivastava, Akansha; Pasupuleti, Mukesh; Tripathi, C. K. M.
2017-01-01
Optimization of production medium is required to maximize the metabolite yield. This can be achieved by using a wide range of techniques from classical “one-factor-at-a-time” to modern statistical and mathematical techniques, viz. artificial neural network (ANN), genetic algorithm (GA) etc. Every technique comes with its own advantages and disadvantages, and despite drawbacks some techniques are applied to obtain best results. Use of various optimization techniques in combination also provides the desirable results. In this article an attempt has been made to review the currently used media optimization techniques applied during fermentation process of metabolite production. Comparative analysis of the merits and demerits of various conventional as well as modern optimization techniques have been done and logical selection basis for the designing of fermentation medium has been given in the present review. Overall, this review will provide the rationale for the selection of suitable optimization technique for media designing employed during the fermentation process of metabolite production. PMID:28111566
The efficacy of the 'mind map' study technique.
Farrand, Paul; Hussain, Fearzana; Hennessy, Enid
2002-05-01
To examine the effectiveness of using the 'mind map' study technique to improve factual recall from written information. To obtain baseline data, subjects completed a short test based on a 600-word passage of text prior to being randomly allocated to form two groups: 'self-selected study technique' and 'mind map'. After a 30-minute interval the self-selected study technique group were exposed to the same passage of text previously seen and told to apply existing study techniques. Subjects in the mind map group were trained in the mind map technique and told to apply it to the passage of text. Recall was measured after an interfering task and a week later. Measures of motivation were taken. Barts and the London School of Medicine and Dentistry, University of London. 50 second- and third-year medical students. Recall of factual material improved for both the mind map and self-selected study technique groups at immediate test compared with baseline. However this improvement was only robust after a week for those in the mind map group. At 1 week, the factual knowledge in the mind map group was greater by 10% (adjusting for baseline) (95% CI -1% to 22%). However motivation for the technique used was lower in the mind map group; if motivation could have been made equal in the groups, the improvement with mind mapping would have been 15% (95% CI 3% to 27%). Mind maps provide an effective study technique when applied to written material. However before mind maps are generally adopted as a study technique, consideration has to be given towards ways of improving motivation amongst users.
NASA Astrophysics Data System (ADS)
Hancher, M.
2017-12-01
Recent years have seen promising results from many research teams applying deep learning techniques to geospatial data processing. In that same timeframe, TensorFlow has emerged as the most popular framework for deep learning in general, and Google has assembled petabytes of Earth observation data from a wide variety of sources and made them available in analysis-ready form in the cloud through Google Earth Engine. Nevertheless, developing and applying deep learning to geospatial data at scale has been somewhat cumbersome to date. We present a new set of tools and techniques that simplify this process. Our approach combines the strengths of several underlying tools: TensorFlow for its expressive deep learning framework; Earth Engine for data management, preprocessing, postprocessing, and visualization; and other tools in Google Cloud Platform to train TensorFlow models at scale, perform additional custom parallel data processing, and drive the entire process from a single familiar Python development environment. These tools can be used to easily apply standard deep neural networks, convolutional neural networks, and other custom model architectures to a variety of geospatial data structures. We discuss our experiences applying these and related tools to a range of machine learning problems, including classic problems like cloud detection, building detection, land cover classification, as well as more novel problems like illegal fishing detection. Our improved tools will make it easier for geospatial data scientists to apply modern deep learning techniques to their own problems, and will also make it easier for machine learning researchers to advance the state of the art of those techniques.
NASA reliability preferred practices for design and test
NASA Technical Reports Server (NTRS)
1991-01-01
Given here is a manual that was produced to communicate within the aerospace community design practices that have contributed to NASA mission success. The information represents the best technical advice that NASA has to offer on reliability design and test practices. Topics covered include reliability practices, including design criteria, test procedures, and analytical techniques that have been applied to previous space flight programs; and reliability guidelines, including techniques currently applied to space flight projects, where sufficient information exists to certify that the technique will contribute to mission success.
Higher-Order Spectral Analysis of F-18 Flight Flutter Data
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Dunn, Shane
2005-01-01
Royal Australian Air Force (RAAF) F/A-18 flight flutter test data is presented and analyzed using various techniques. The data includes high-quality measurements of forced responses and limit cycle oscillation (LCO) phenomena. Standard correlation and power spectral density (PSD) techniques are applied to the data and presented. Novel applications of experimentally-identified impulse responses and higher-order spectral techniques are also applied to the data and presented. The goal of this research is to develop methods that can identify the onset of nonlinear aeroelastic phenomena, such as LCO, during flutter testing.
Sensor Data Qualification Technique Applied to Gas Turbine Engines
NASA Technical Reports Server (NTRS)
Csank, Jeffrey T.; Simon, Donald L.
2013-01-01
This paper applies a previously developed sensor data qualification technique to a commercial aircraft engine simulation known as the Commercial Modular Aero-Propulsion System Simulation 40,000 (C-MAPSS40k). The sensor data qualification technique is designed to detect, isolate, and accommodate faulty sensor measurements. It features sensor networks, which group various sensors together and relies on an empirically derived analytical model to relate the sensor measurements. Relationships between all member sensors of the network are analyzed to detect and isolate any faulty sensor within the network.
Improved Indentation Test for Measuring Nonlinear Elasticity
NASA Technical Reports Server (NTRS)
Eldridge, Jeffrey I.
2004-01-01
A cylindrical-punch indentation technique has been developed as a means of measuring the nonlinear elastic responses of materials -- more specifically, for measuring the moduli of elasticity of materials in cases in which these moduli vary with applied loads. This technique offers no advantage for characterizing materials that exhibit purely linear elastic responses (constant moduli of elasticity, independent of applied loads). However, the technique offers a significant advantage for characterizing such important materials as plasma-sprayed thermal-barrier coatings, which, in cyclic loading, exhibit nonlinear elasticity with hysteresis related to compaction and sliding within their microstructures.
Chromatic changes to artificial irises produced using different techniques
NASA Astrophysics Data System (ADS)
Bannwart, Lisiane Cristina; Goiato, Marcelo Coelho; dos Santos, Daniela Micheline; Moreno, Amália; Pesqueira, Aldiéris Alves; Haddad, Marcela Filié; Andreotti, Agda Marobo; de Medeiros, Rodrigo Antonio
2013-05-01
Ocular prostheses are important determinants of their users' aesthetic recovery and self-esteem. Because of use, ocular prostheses longevity is strongly affected by instability of the iris color due to polymerization. The goal of this study is to examine how the color of the artificial iris button is affected by different techniques of artificial wear and by the application of varnish following polymerization of the colorless acrylic resin that covers the colored paint. We produce 60 samples (n=10) according to the wear technique applied: conventional technique without varnish (PE); conventional technique with varnish (PEV); technique involving a prefabricated cap without varnish (CA); technique involving a prefabricated cap with varnish (CAV); technique involving inverted painting without varnish (PI); and technique involving inverted painting with varnish (PIV). Color readings using a spectrophotometer are taken before and after polymerization. We submitted the data obtained to analyses of variance and Tukey's test (P<0.05). The color test shows significant changes after polymerization in all groups. The PE and PI techniques have clinically acceptable values of ΔE, independent of whether we apply varnish to protect the paint. The PI technique produces the least color change, whereas the PE and CA techniques significantly improve color stability.
TPS as an Effective Technique to Enhance the Students' Achievement on Writing Descriptive Text
ERIC Educational Resources Information Center
Sumarsih, M. Pd.; Sanjaya, Dedi
2013-01-01
Students' achievement in writing descriptive text is very low, in this study Think Pair Share (TPS) is applied to solve the problem. Action research is conducted for the result. Additionally, qualitative and quantitative techniques are applied in this research. The subject of this research is grade VIII in Junior High School in Indonesia. From…
Deploying an Intelligent Pairing Assistant for Air Operation Centers
2016-06-23
primary contributions of this case study are applying artificial intelligence techniques to a novel domain and discussing the software evaluation...their standard workflows. The primary contributions of this case study are applying artificial intelligence techniques to a novel domain and...users for more efficient and accurate pairing? Participants Participants in the evaluation consisted of three SMEs employed at Intelligent Software
NASA Technical Reports Server (NTRS)
Liberty, S. R.; Mielke, R. R.; Tung, L. J.
1981-01-01
Applied research in the area of spectral assignment in multivariable systems is reported. A frequency domain technique for determining the set of all stabilizing controllers for a single feedback loop multivariable system is described. It is shown that decoupling and tracking are achievable using this procedure. The technique is illustrated with a simple example.
NASA Technical Reports Server (NTRS)
Bowley, C. J.; Barnes, J. C.; Rango, A.
1981-01-01
The purpose of the handbook is to update the various snowcover interpretation techniques, document the snow mapping techniques used in the various ASVT study areas, and describe the ways snowcover data have been applied to runoff prediction. Through documentation in handbook form, the methodology developed in the Snow Mapping ASVT can be applied to other areas.
NASA Astrophysics Data System (ADS)
Sridhar, J.
2015-12-01
The focus of this work is to examine polarimetric decomposition techniques primarily focussed on Pauli decomposition and Sphere Di-Plane Helix (SDH) decomposition for forest resource assessment. The data processing methods adopted are Pre-processing (Geometric correction and Radiometric calibration), Speckle Reduction, Image Decomposition and Image Classification. Initially to classify forest regions, unsupervised classification was applied to determine different unknown classes. It was observed K-means clustering method gave better results in comparison with ISO Data method.Using the algorithm developed for Radar Tools, the code for decomposition and classification techniques were applied in Interactive Data Language (IDL) and was applied to RISAT-1 image of Mysore-Mandya region of Karnataka, India. This region is chosen for studying forest vegetation and consists of agricultural lands, water and hilly regions. Polarimetric SAR data possess a high potential for classification of earth surface.After applying the decomposition techniques, classification was done by selecting region of interests andpost-classification the over-all accuracy was observed to be higher in the SDH decomposed image, as it operates on individual pixels on a coherent basis and utilises the complete intrinsic coherent nature of polarimetric SAR data. Thereby, making SDH decomposition particularly suited for analysis of high-resolution SAR data. The Pauli Decomposition represents all the polarimetric information in a single SAR image however interpretation of the resulting image is difficult. The SDH decomposition technique seems to produce better results and interpretation as compared to Pauli Decomposition however more quantification and further analysis are being done in this area of research. The comparison of Polarimetric decomposition techniques and evolutionary classification techniques will be the scope of this work.
Applied Remote Sensing Program (ARSP)
NASA Technical Reports Server (NTRS)
Johnson, J. D.; Foster, K. E.; Mouat, D. A.; Miller, D. A.; Conn, J. S.
1976-01-01
The activities and accomplishments of the Applied Remote Sensing Program during FY 1975-1976 are reported. The principal objective of the Applied Remote Sensing Program continues to be designed projects having specific decision-making impacts as a principal goal. These projects are carried out in cooperation and collaboration with local, state and federal agencies whose responsibilities lie with planning, zoning and environmental monitoring and/or assessment in the application of remote sensing techniques. The end result of the projects is the use by the involved agencies of remote sensing techniques in problem solving.
Ma, Jianfeng; Ji, Zhe; Zhou, Xia; Zhang, Zhiheng; Xu, Feng
2013-02-01
Transmission electron microscopy (TEM), fluorescence microscopy, and confocal Raman microscopy can be used to characterize ultrastructural and compositional heterogeneity of plant cell walls. In this study, TEM observations revealed the ultrastructural characterization of Cornus alba L. fiber, vessel, axial parenchyma, ray parenchyma, and pit membrane between cells, notably with the ray parenchyma consisting of two well-defined layers. Fluorescence microscopy evidenced that cell corner middle lamella was more lignified than adjacent compound middle lamella and secondary wall with variation in lignification level from cell to cell. In situ Raman images showed that the inhomogeneity in cell wall components (cellulose and lignin) among different cells and within morphologically distinct cell wall layers. As the significant precursors of lignin biosynthesis, the pattern of coniferyl alcohol and aldehyde (joint abbreviation Lignin-CAA for both structures) distribution in fiber cell wall was also identified by Raman images, with higher concentration occurring in the fiber secondary wall where there was the highest cellulose concentration. Moreover, noteworthy was the observation that higher concentration of lignin and very minor amounts of cellulose were visualized in the pit membrane areas. These complementary microanalytical methods provide more accurate and complete information with regard to ultrastructural and compositional characterization of plant cell walls.
Glimpses into the blind spot: Social interaction and autism.
Bottema-Beutel, Kristen
2017-07-01
A primary feature of autism spectrum disorder (ASD) is marked difficulty in social interactions. Despite the centrality of social interaction differences to the clinical presentation of ASD, only a small portion of research in this field characterizes interaction in everyday social contexts. This theoretical paper reviews the growing corpus of interactional research on ASD, including discourse analysis (DA) and conversation analysis (CA) approaches. DA and CA are micro-analytic methods aimed at understanding the organizational structure of, and actions pursued within, social encounters. These methods are aligned with enactive theories of social interaction. The bulk of current ASD research construes social interaction as involving isolated individuals who represent and/or theorize about the minds of an interlocutor. Enactive approaches posit that achieving intersubjectivity does not require theories of other minds, but instead a propensity for coordinating social actions with others. Through the complementary lenses of enactivism and interactional research, I offer an account of autistic social interaction as involving differences in interactional coordination, interactional priorities, and the enactment of meaning across conversational turns. This characterization challenges the explanatory role of cognitive processes such as Theory of Mind, and points to new avenues for conceptualizing, measuring, and supporting social interaction. Copyright © 2017 Elsevier Inc. All rights reserved.
TCP is hardly resorbed and not osteoconductive in a non-loading calvarial model.
Handschel, Jörg; Wiesmann, Hans Peter; Stratmann, Udo; Kleinheinz, Johannes; Meyer, Ulrich; Joos, Ulrich
2002-04-01
Tricalciumphosphate (TCP) has been used as a ceramic bone substitute material in the orthopedic field as well as in craniofacial surgery. Some controversies exist concerning the osteoconductive potential of this material in different implantation sites. This study was designed to evaluate the biological response of calvarial bone towards TCP granules under non-loading conditions to assess the potential of TCP as a biodegredable and osteoconductive bone substitue material for the cranial vault. Full-thickness non-critical size defects were made bilaterally in the calvaria of 21 adult Wistar rats. One side was filled by TCP granules, the contralateral side was left empty and used as a control. Animals were sacrified in defined time intervals up to 6 months. Bone regeneration was analyzed with special respect toward the micromorphological and microanalytical features of the material-bone interaction by electron microscopy and electron diffraction analysis. Histologic examination revealed no TCP degradation even after 6 months of implantation. In contrast, a nearly complete bone regeneration of control defects was found after 6 months. At all times TCP was surrounded by a thin fibrous layer without presence of osteoblasts and features of regular mineralization. As far as degradation and substitution are concerned, TCP is a less favourable material tinder conditions of non-loading.
Drilling technique for crystals
NASA Technical Reports Server (NTRS)
Hunter, T.; Miyagawa, I.
1977-01-01
Hole-drilling technique uses special crystal driller in which drill bit rotates at fixed position at speed of 30 rpm while crystal slowly advances toward drill. Technique has been successfully applied to crystal of Rochell salt, Triglycine sulfate, and N-acetyglycine. Technique limits heat buildup and reduces strain on crystal.
Applied potential tomography. A new noninvasive technique for measuring gastric emptying
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avill, R.; Mangnall, Y.F.; Bird, N.C.
1987-04-01
Applied potential tomography is a new, noninvasive technique that yields sequential images of the resistivity of gastric contents after subjects have ingested a liquid or semisolid meal. This study validates the technique as a means of measuring gastric emptying. Experiments in vitro showed an excellent correlation between measurements of resistivity and either the square of the radius of a glass rod or the volume of water in a spherical balloon when both were placed in an oval tank containing saline. Altering the lateral position of the rod in the tank did not alter the values obtained. Images of abdominal resistivitymore » were also directly correlated with the volume of air in a gastric balloon. Profiles of gastric emptying of liquid meals obtained using applied potential tomography were very similar to those obtained using scintigraphy or dye dilution techniques, provided that acid secretion was inhibited by cimetidine. Profiles of emptying of a mashed potato meal using applied potential tomography were also very similar to those obtained by scintigraphy. Measurements of the emptying of a liquid meal from the stomach were reproducible if acid secretion was inhibited by cimetidine. Thus, applied potential tomography is an accurate and reproducible method of measuring gastric emptying of liquids and particulate food. It is inexpensive, well tolerated, easy to use, and ideally suited for multiple studies in patients, even those who are pregnant.« less
Pseudo-random number generator for the Sigma 5 computer
NASA Technical Reports Server (NTRS)
Carroll, S. N.
1983-01-01
A technique is presented for developing a pseudo-random number generator based on the linear congruential form. The two numbers used for the generator are a prime number and a corresponding primitive root, where the prime is the largest prime number that can be accurately represented on a particular computer. The primitive root is selected by applying Marsaglia's lattice test. The technique presented was applied to write a random number program for the Sigma 5 computer. The new program, named S:RANDOM1, is judged to be superior to the older program named S:RANDOM. For applications requiring several independent random number generators, a table is included showing several acceptable primitive roots. The technique and programs described can be applied to any computer having word length different from that of the Sigma 5.
Genetic programming based ensemble system for microarray data classification.
Liu, Kun-Hong; Tong, Muchenxuan; Xie, Shu-Tong; Yee Ng, Vincent To
2015-01-01
Recently, more and more machine learning techniques have been applied to microarray data analysis. The aim of this study is to propose a genetic programming (GP) based new ensemble system (named GPES), which can be used to effectively classify different types of cancers. Decision trees are deployed as base classifiers in this ensemble framework with three operators: Min, Max, and Average. Each individual of the GP is an ensemble system, and they become more and more accurate in the evolutionary process. The feature selection technique and balanced subsampling technique are applied to increase the diversity in each ensemble system. The final ensemble committee is selected by a forward search algorithm, which is shown to be capable of fitting data automatically. The performance of GPES is evaluated using five binary class and six multiclass microarray datasets, and results show that the algorithm can achieve better results in most cases compared with some other ensemble systems. By using elaborate base classifiers or applying other sampling techniques, the performance of GPES may be further improved.
Genetic Programming Based Ensemble System for Microarray Data Classification
Liu, Kun-Hong; Tong, Muchenxuan; Xie, Shu-Tong; Yee Ng, Vincent To
2015-01-01
Recently, more and more machine learning techniques have been applied to microarray data analysis. The aim of this study is to propose a genetic programming (GP) based new ensemble system (named GPES), which can be used to effectively classify different types of cancers. Decision trees are deployed as base classifiers in this ensemble framework with three operators: Min, Max, and Average. Each individual of the GP is an ensemble system, and they become more and more accurate in the evolutionary process. The feature selection technique and balanced subsampling technique are applied to increase the diversity in each ensemble system. The final ensemble committee is selected by a forward search algorithm, which is shown to be capable of fitting data automatically. The performance of GPES is evaluated using five binary class and six multiclass microarray datasets, and results show that the algorithm can achieve better results in most cases compared with some other ensemble systems. By using elaborate base classifiers or applying other sampling techniques, the performance of GPES may be further improved. PMID:25810748
Choi, Hyun Ho; Lee, Ju Hwan; Kim, Sung Min; Park, Sung Yun
2015-01-01
Here, the speckle noise in ultrasonic images is removed using an image fusion-based denoising method. To optimize the denoising performance, each discrete wavelet transform (DWT) and filtering technique was analyzed and compared. In addition, the performances were compared in order to derive the optimal input conditions. To evaluate the speckle noise removal performance, an image fusion algorithm was applied to the ultrasound images, and comparatively analyzed with the original image without the algorithm. As a result, applying DWT and filtering techniques caused information loss and noise characteristics, and did not represent the most significant noise reduction performance. Conversely, an image fusion method applying SRAD-original conditions preserved the key information in the original image, and the speckle noise was removed. Based on such characteristics, the input conditions of SRAD-original had the best denoising performance with the ultrasound images. From this study, the best denoising technique proposed based on the results was confirmed to have a high potential for clinical application.
Kračun, Stjepan Krešimir; Fangel, Jonatan Ulrik; Rydahl, Maja Gro; Pedersen, Henriette Lodberg; Vidal-Melgosa, Silvia; Willats, William George Tycho
2017-01-01
Cell walls are an important feature of plant cells and a major component of the plant glycome. They have both structural and physiological functions and are critical for plant growth and development. The diversity and complexity of these structures demand advanced high-throughput techniques to answer questions about their structure, functions and roles in both fundamental and applied scientific fields. Microarray technology provides both the high-throughput and the feasibility aspects required to meet that demand. In this chapter, some of the most recent microarray-based techniques relating to plant cell walls are described together with an overview of related contemporary techniques applied to carbohydrate microarrays and their general potential in glycoscience. A detailed experimental procedure for high-throughput mapping of plant cell wall glycans using the comprehensive microarray polymer profiling (CoMPP) technique is included in the chapter and provides a good example of both the robust and high-throughput nature of microarrays as well as their applicability to plant glycomics.
Low cost MATLAB-based pulse oximeter for deployment in research and development applications.
Shokouhian, M; Morling, R C S; Kale, I
2013-01-01
Problems such as motion artifact and effects of ambient lights have forced developers to design different signal processing techniques and algorithms to increase the reliability and accuracy of the conventional pulse oximeter device. To evaluate the robustness of these techniques, they are applied either to recorded data or are implemented on chip to be applied to real-time data. Recorded data is the most common method of evaluating however it is not as reliable as real-time measurements. On the other hand, hardware implementation can be both expensive and time consuming. This paper presents a low cost MATLAB-based pulse oximeter that can be used for rapid evaluation of newly developed signal processing techniques and algorithms. Flexibility to apply different signal processing techniques, providing both processed and unprocessed data along with low implementation cost are the important features of this design which makes it ideal for research and development purposes, as well as commercial, hospital and healthcare application.
Application of Artificial Intelligence Techniques in Unmanned Aerial Vehicle Flight
NASA Technical Reports Server (NTRS)
Bauer, Frank H. (Technical Monitor); Dufrene, Warren R., Jr.
2003-01-01
This paper describes the development of an application of Artificial Intelligence for Unmanned Aerial Vehicle (UAV) control. The project was done as part of the requirements for a class in Artificial Intelligence (AI) at Nova southeastern University and as an adjunct to a project at NASA Goddard Space Flight Center's Wallops Flight Facility for a resilient, robust, and intelligent UAV flight control system. A method is outlined which allows a base level application for applying an AI method, Fuzzy Logic, to aspects of Control Logic for UAV flight. One element of UAV flight, automated altitude hold, has been implemented and preliminary results displayed. A low cost approach was taken using freeware, gnu, software, and demo programs. The focus of this research has been to outline some of the AI techniques used for UAV flight control and discuss some of the tools used to apply AI techniques. The intent is to succeed with the implementation of applying AI techniques to actually control different aspects of the flight of an UAV.
Application Of Iterative Reconstruction Techniques To Conventional Circular Tomography
NASA Astrophysics Data System (ADS)
Ghosh Roy, D. N.; Kruger, R. A.; Yih, B. C.; Del Rio, S. P.; Power, R. L.
1985-06-01
Two "point-by-point" iteration procedures, namely, Iterative Least Square Technique (ILST) and Simultaneous Iterative Reconstructive Technique (SIRT) were applied to classical circular tomographic reconstruction. The technique of tomosynthetic DSA was used in forming the tomographic images. Reconstructions of a dog's renal and neck anatomy are presented.
Techniques for characterizing lignin
Nicole M. Stark; Daniel J. Yelle; Umesh P. Agarwal
2016-01-01
Many techniques are available to characterize lignin. The techniques presented in this chapter are considered nondegradative, which are commonly applied to lignin. A brief discussion of lignin structure is included with this chapter to aid the reader in understanding why the discussed characterization techniques are appropriate for the study of lignin. Because the...
Planning and executing motions for multibody systems in free-fall. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Cameron, Jonathan M.
1991-01-01
The purpose of this research is to develop an end-to-end system that can be applied to a multibody system in free-fall to analyze its possible motions, save those motions in a database, and design a controller that can execute those motions. A goal is for the process to be highly automated and involve little human intervention. Ideally, the output of the system would be data and algorithms that could be put in ROM to control the multibody system in free-fall. The research applies to more than just robots in space. It applies to any multibody system in free-fall. Mathematical techniques from nonlinear control theory were used to study the nature of the system dynamics and its possible motions. Optimization techniques were applied to plan motions. Image compression techniques were proposed to compress the precomputed motion data for storage. A linearized controller was derived to control the system while it executes preplanned trajectories.
Applied Computational Electromagnetics Society Journal, Volume 9, Number 2
1994-07-01
input/output standardization; code or technique optimization and error minimization; innovations in solution technique or in data input/output...THE APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL EDITORS 3DITOR-IN-CH•IF/ACES EDITOR-IN-CHIEP/JOURNAL MANAGING EDITOR W. Perry Wheless...Adalbert Konrad and Paul P. Biringer Department of Electrical and Computer Engineering, University of Toronto Toronto, Ontario, CANADA M5S 1A4 Ailiwir
NASA Technical Reports Server (NTRS)
Hague, D. S.; Merz, A. W.
1975-01-01
Multivariable search techniques are applied to a particular class of airfoil optimization problems. These are the maximization of lift and the minimization of disturbance pressure magnitude in an inviscid nonlinear flow field. A variety of multivariable search techniques contained in an existing nonlinear optimization code, AESOP, are applied to this design problem. These techniques include elementary single parameter perturbation methods, organized search such as steepest-descent, quadratic, and Davidon methods, randomized procedures, and a generalized search acceleration technique. Airfoil design variables are seven in number and define perturbations to the profile of an existing NACA airfoil. The relative efficiency of the techniques are compared. It is shown that elementary one parameter at a time and random techniques compare favorably with organized searches in the class of problems considered. It is also shown that significant reductions in disturbance pressure magnitude can be made while retaining reasonable lift coefficient values at low free stream Mach numbers.
NASA Technical Reports Server (NTRS)
Hardman, R. R.; Mahan, J. R.; Smith, M. H.; Gelhausen, P. A.; Van Dalsem, W. R.
1991-01-01
The need for a validation technique for computational fluid dynamics (CFD) codes in STOVL applications has led to research efforts to apply infrared thermal imaging techniques to visualize gaseous flow fields. Specifically, a heated, free-jet test facility was constructed. The gaseous flow field of the jet exhaust was characterized using an infrared imaging technique in the 2 to 5.6 micron wavelength band as well as conventional pitot tube and thermocouple methods. These infrared images are compared to computer-generated images using the equations of radiative exchange based on the temperature distribution in the jet exhaust measured with the thermocouple traverses. Temperature and velocity measurement techniques, infrared imaging, and the computer model of the infrared imaging technique are presented and discussed. From the study, it is concluded that infrared imaging techniques coupled with the radiative exchange equations applied to CFD models are a valid method to qualitatively verify CFD codes used in STOVL applications.
NASA Astrophysics Data System (ADS)
Fibrianto, K.; Febryana, Y. R.; Wulandari, E. S.
2018-03-01
This study aimed to assess the effect of different brewing techniques with the use of appropriate particle size standard of Apresiocoffee cafe (Category 1) compared to the difference brewing techniques with the use of the same particle size (coarse) (Category 2) of the sensory attributes Dampit robusta coffee. Rate-All-That-Apply (RATA) method was applied in this study, and the data was analysed by ANOVA General Linier Model (GLM) on Minitab-16. The influence of brewing techniques (tubruk, French-press, drips, syphon) and type of particle size ground coffee (fine, medium, coarse) were sensorially observed. The result showed that only two attributes, including bitter taste, and astringent/rough-mouth-feel were affected by brewing techniques (p-value <0.05) as observed for brewed coarse coffee powder.
Generalized Green's function molecular dynamics for canonical ensemble simulations
NASA Astrophysics Data System (ADS)
Coluci, V. R.; Dantas, S. O.; Tewary, V. K.
2018-05-01
The need of small integration time steps (˜1 fs) in conventional molecular dynamics simulations is an important issue that inhibits the study of physical, chemical, and biological systems in real timescales. Additionally, to simulate those systems in contact with a thermal bath, thermostating techniques are usually applied. In this work, we generalize the Green's function molecular dynamics technique to allow simulations within the canonical ensemble. By applying this technique to one-dimensional systems, we were able to correctly describe important thermodynamic properties such as the temperature fluctuations, the temperature distribution, and the velocity autocorrelation function. We show that the proposed technique also allows the use of time steps one order of magnitude larger than those typically used in conventional molecular dynamics simulations. We expect that this technique can be used in long-timescale molecular dynamics simulations.
Ferreira, F J O; Crispim, V R; Silva, A X
2010-06-01
In this study the development of a methodology to detect illicit drugs and plastic explosives is described with the objective of being applied in the realm of public security. For this end, non-destructive assay with neutrons was used and the technique applied was the real time neutron radiography together with computerized tomography. The system is endowed with automatic responses based upon the application of an artificial intelligence technique. In previous tests using real samples, the system proved capable of identifying 97% of the inspected materials. Copyright 2010 Elsevier Ltd. All rights reserved.
A systematic mapping study of process mining
NASA Astrophysics Data System (ADS)
Maita, Ana Rocío Cárdenas; Martins, Lucas Corrêa; López Paz, Carlos Ramón; Rafferty, Laura; Hung, Patrick C. K.; Peres, Sarajane Marques; Fantinato, Marcelo
2018-05-01
This study systematically assesses the process mining scenario from 2005 to 2014. The analysis of 705 papers evidenced 'discovery' (71%) as the main type of process mining addressed and 'categorical prediction' (25%) as the main mining task solved. The most applied traditional technique is the 'graph structure-based' ones (38%). Specifically concerning computational intelligence and machine learning techniques, we concluded that little relevance has been given to them. The most applied are 'evolutionary computation' (9%) and 'decision tree' (6%), respectively. Process mining challenges, such as balancing among robustness, simplicity, accuracy and generalization, could benefit from a larger use of such techniques.
Ting, Li; Kun, Yang
2018-04-16
The in vitro nucleic acid amplification technique based on polymerase chain reaction (PCR) has been successfully applied to scientific researches. In recent years, the emergence of isothermal amplification technology is increasingly applied in the molecular diagnosis and disease detection because of its advantages of constant temperature, high efficiency, short time-consuming, and less reliance on equipment and instruments. The principle, characteristics and application of the partial isothermal amplification technique in the pathogen detection in parasitic and other diseases are reviewed in this paper, and the prospects of the wide development of the technique are also discussed.
Whitmire, Jeannette M; Merrell, D Scott
2017-01-01
Mutagenesis is a valuable tool to examine the structure-function relationships of bacterial proteins. As such, a wide variety of mutagenesis techniques and strategies have been developed. This chapter details a selection of random mutagenesis methods and site-directed mutagenesis procedures that can be applied to an array of bacterial species. Additionally, the direct application of the techniques to study the Helicobacter pylori Ferric Uptake Regulator (Fur) protein is described. The varied approaches illustrated herein allow the robust investigation of the structural-functional relationships within a protein of interest.
Investigation of energy management strategies for photovoltaic systems - An analysis technique
NASA Technical Reports Server (NTRS)
Cull, R. C.; Eltimsahy, A. H.
1982-01-01
Progress is reported in formulating energy management strategies for stand-alone PV systems, developing an analytical tool that can be used to investigate these strategies, applying this tool to determine the proper control algorithms and control variables (controller inputs and outputs) for a range of applications, and quantifying the relative performance and economics when compared to systems that do not apply energy management. The analysis technique developed may be broadly applied to a variety of systems to determine the most appropriate energy management strategies, control variables and algorithms. The only inputs required are statistical distributions for stochastic energy inputs and outputs of the system and the system's device characteristics (efficiency and ratings). Although the formulation was originally driven by stand-alone PV system needs, the techniques are also applicable to hybrid and grid connected systems.
Chiropractic biophysics technique: a linear algebra approach to posture in chiropractic.
Harrison, D D; Janik, T J; Harrison, G R; Troyanovich, S; Harrison, D E; Harrison, S O
1996-10-01
This paper discusses linear algebra as applied to human posture in chiropractic, specifically chiropractic biophysics technique (CBP). Rotations, reflections and translations are geometric functions studied in vector spaces in linear algebra. These mathematical functions are termed rigid body transformations and are applied to segmental spinal movement in the literature. Review of the literature indicates that these linear algebra concepts have been used to describe vertebral motion. However, these rigid body movers are presented here as applying to the global postural movements of the head, thoracic cage and pelvis. The unique inverse functions of rotations, reflections and translations provide a theoretical basis for making postural corrections in neutral static resting posture. Chiropractic biophysics technique (CBP) uses these concepts in examination procedures, manual spinal manipulation, instrument assisted spinal manipulation, postural exercises, extension traction and clinical outcome measures.
Investigation of energy management strategies for photovoltaic systems - An analysis technique
NASA Astrophysics Data System (ADS)
Cull, R. C.; Eltimsahy, A. H.
Progress is reported in formulating energy management strategies for stand-alone PV systems, developing an analytical tool that can be used to investigate these strategies, applying this tool to determine the proper control algorithms and control variables (controller inputs and outputs) for a range of applications, and quantifying the relative performance and economics when compared to systems that do not apply energy management. The analysis technique developed may be broadly applied to a variety of systems to determine the most appropriate energy management strategies, control variables and algorithms. The only inputs required are statistical distributions for stochastic energy inputs and outputs of the system and the system's device characteristics (efficiency and ratings). Although the formulation was originally driven by stand-alone PV system needs, the techniques are also applicable to hybrid and grid connected systems.
Artificial Intelligence Techniques: Applications for Courseware Development.
ERIC Educational Resources Information Center
Dear, Brian L.
1986-01-01
Introduces some general concepts and techniques of artificial intelligence (natural language interfaces, expert systems, knowledge bases and knowledge representation, heuristics, user-interface metaphors, and object-based environments) and investigates ways these techniques might be applied to analysis, design, development, implementation, and…
The Q Sort Technique Applied to Nutrition Attitudes Investigation.
ERIC Educational Resources Information Center
Sutnick, Mona R.
1981-01-01
Suggests the use of the Q Sort Technique to assess attitudes toward nutrition-related topics. Describes research utilizing this technique to assess junior high school students' (N=512) attitudes toward and knowledge of nutrition with and without nutrition instruction. (DS)
Martínez Martínez, Adel; Lujan Pardo, María Del Pilar; Harris Ricardo, Jonathan
2016-12-01
The authors conducted an experimental study to determine patient perception of discomfort during injection and the need for supplemental anesthesia using the intraosseous technique with 4% articaine with 1:100,000 epinephrine in patients with symptomatic pulpitis in mandibular molars. At different clinical sessions, researchers used 4% articaine with 1:100,000 epinephrine to apply intraosseous injection (Group 1) or inferior alveolar nerve block (Group 2). Each technique was applied in 35 patients. In each group, the need for additional anesthesia was determined and patient discomfort during injection was assessed with a Visual Analogue Scale (VAS) test. In the intraosseous group, no supplemental technique was needed in 22 patients (62.85 %), and results were similar for the inferior alveolar technique (n: 23 65.71%). The intraosseous technique proved to be more comfortable than the mandibular technique (18 patients - 25.7%). This study found that the use of intraosseous technique with 4% articaine shows promising results regarding patient comfort and reducing the need for additional anesthesia. Sociedad Argentina de Investigación Odontológica.
Application of Phase-Field Techniques to Hydraulically- and Deformation-Induced Fracture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Culp, David; Miller, Nathan; Schweizer, Laura
Phase-field techniques provide an alternative approach to fracture problems which mitigate some of the computational expense associated with tracking the crack interface and the coalescence of individual fractures. The technique is extended to apply to hydraulically driven fracture such as would occur during fracking or CO 2 sequestration. Additionally, the technique is applied to a stainless steel specimen used in the Sandia Fracture Challenge. It was found that the phase-field model performs very well, at least qualitatively, in both deformation-induced fracture and hydraulically-induced fracture, though spurious hourglassing modes were observed during coupled hydralically-induced fracture. Future work would include performing additionalmore » quantitative benchmark tests and updating the model as needed.« less
Pulsed-neutron imaging by a high-speed camera and center-of-gravity processing
NASA Astrophysics Data System (ADS)
Mochiki, K.; Uragaki, T.; Koide, J.; Kushima, Y.; Kawarabayashi, J.; Taketani, A.; Otake, Y.; Matsumoto, Y.; Su, Y.; Hiroi, K.; Shinohara, T.; Kai, T.
2018-01-01
Pulsed-neutron imaging is attractive technique in the research fields of energy-resolved neutron radiography and RANS (RIKEN) and RADEN (J-PARC/JAEA) are small and large accelerator-driven pulsed-neutron facilities for its imaging, respectively. To overcome the insuficient spatial resolution of the conunting type imaging detectors like μ NID, nGEM and pixelated detectors, camera detectors combined with a neutron color image intensifier were investigated. At RANS center-of-gravity technique was applied to spots image obtained by a CCD camera and the technique was confirmed to be effective for improving spatial resolution. At RADEN a high-frame-rate CMOS camera was used and super resolution technique was applied and it was recognized that the spatial resolution was futhermore improved.
Enhance Video Film using Retnix method
NASA Astrophysics Data System (ADS)
Awad, Rasha; Al-Zuky, Ali A.; Al-Saleh, Anwar H.; Mohamad, Haidar J.
2018-05-01
An enhancement technique used to improve the studied video quality. Algorithms like mean and standard deviation are used as a criterion within this paper, and it applied for each video clip that divided into 80 images. The studied filming environment has different light intensity (315, 566, and 644Lux). This different environment gives similar reality to the outdoor filming. The outputs of the suggested algorithm are compared with the results before applying it. This method is applied into two ways: first, it is applied for the full video clip to get the enhanced film; second, it is applied for every individual image to get the enhanced image then compiler them to get the enhanced film. This paper shows that the enhancement technique gives good quality video film depending on a statistical method, and it is recommended to use it in different application.
Hybrid Clustering-GWO-NARX neural network technique in predicting stock price
NASA Astrophysics Data System (ADS)
Das, Debashish; Safa Sadiq, Ali; Mirjalili, Seyedali; Noraziah, A.
2017-09-01
Prediction of stock price is one of the most challenging tasks due to nonlinear nature of the stock data. Though numerous attempts have been made to predict the stock price by applying various techniques, yet the predicted price is not always accurate and even the error rate is high to some extent. Consequently, this paper endeavours to determine an efficient stock prediction strategy by implementing a combinatorial method of Grey Wolf Optimizer (GWO), Clustering and Non Linear Autoregressive Exogenous (NARX) Technique. The study uses stock data from prominent stock market i.e. New York Stock Exchange (NYSE), NASDAQ and emerging stock market i.e. Malaysian Stock Market (Bursa Malaysia), Dhaka Stock Exchange (DSE). It applies K-means clustering algorithm to determine the most promising cluster, then MGWO is used to determine the classification rate and finally the stock price is predicted by applying NARX neural network algorithm. The prediction performance gained through experimentation is compared and assessed to guide the investors in making investment decision. The result through this technique is indeed promising as it has shown almost precise prediction and improved error rate. We have applied the hybrid Clustering-GWO-NARX neural network technique in predicting stock price. We intend to work with the effect of various factors in stock price movement and selection of parameters. We will further investigate the influence of company news either positive or negative in stock price movement. We would be also interested to predict the Stock indices.
An adaptive technique to maximize lossless image data compression of satellite images
NASA Technical Reports Server (NTRS)
Stewart, Robert J.; Lure, Y. M. Fleming; Liou, C. S. Joe
1994-01-01
Data compression will pay an increasingly important role in the storage and transmission of image data within NASA science programs as the Earth Observing System comes into operation. It is important that the science data be preserved at the fidelity the instrument and the satellite communication systems were designed to produce. Lossless compression must therefore be applied, at least, to archive the processed instrument data. In this paper, we present an analysis of the performance of lossless compression techniques and develop an adaptive approach which applied image remapping, feature-based image segmentation to determine regions of similar entropy and high-order arithmetic coding to obtain significant improvements over the use of conventional compression techniques alone. Image remapping is used to transform the original image into a lower entropy state. Several techniques were tested on satellite images including differential pulse code modulation, bi-linear interpolation, and block-based linear predictive coding. The results of these experiments are discussed and trade-offs between computation requirements and entropy reductions are used to identify the optimum approach for a variety of satellite images. Further entropy reduction can be achieved by segmenting the image based on local entropy properties then applying a coding technique which maximizes compression for the region. Experimental results are presented showing the effect of different coding techniques for regions of different entropy. A rule-base is developed through which the technique giving the best compression is selected. The paper concludes that maximum compression can be achieved cost effectively and at acceptable performance rates with a combination of techniques which are selected based on image contextual information.
A Comparison of Two Methods for Estimating Black Hole Spin in Active Galactic Nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capellupo, Daniel M.; Haggard, Daryl; Wafflard-Fernandez, Gaylor, E-mail: danielc@physics.mcgill.ca
Angular momentum, or spin, is a fundamental property of black holes (BHs), yet it is much more difficult to estimate than mass or accretion rate (for actively accreting systems). In recent years, high-quality X-ray observations have allowed for detailed measurements of the Fe K α emission line, where relativistic line broadening allows constraints on the spin parameter (the X-ray reflection method). Another technique uses accretion disk models to fit the AGN continuum emission (the continuum-fitting, or CF, method). Although each technique has model-dependent uncertainties, these are the best empirical tools currently available and should be vetted in systems where bothmore » techniques can be applied. A detailed comparison of the two methods is also useful because neither method can be applied to all AGN. The X-ray reflection technique targets mostly local ( z ≲ 0.1) systems, while the CF method can be applied at higher redshift, up to and beyond the peak of AGN activity and growth. Here, we apply the CF method to two AGN with X-ray reflection measurements. For both the high-mass AGN, H1821+643, and the Seyfert 1, NGC 3783, we find a range in spin parameter consistent with the X-ray reflection measurements. However, the near-maximal spin favored by the reflection method for NGC 3783 is more probable if we add a disk wind to the model. Refinement of these techniques, together with improved X-ray measurements and tighter BH mass constraints, will permit this comparison in a larger sample of AGN and increase our confidence in these spin estimation techniques.« less
Direct measurement of carbon-14 in carbon dioxide by liquid scintillation counting
NASA Technical Reports Server (NTRS)
Horrocks, D. L.
1969-01-01
Liquid scintillation counting technique is applied to the direct measurement of carbon-14 in carbon dioxide. This method has high counting efficiency and eliminates many of the basic problems encountered with previous techniques. The technique can be used to achieve a percent substitution reaction and is of interest as an analytical technique.
Sensing Applied Load and Damage Effects in Composites with Nondestructive Techniques
2017-05-01
evaluation (NDE) techniques. Evaluation using piezoelectrically induced guided waves, acoustic emission, thermography, and X-ray imaging were compared...nondestructive inspection to further understanding of the material itself and the capabilities of various nondestructive evaluation (NDE) techniques...materials because of their inherent differences. NDE techniques exist that can evaluate composite structures for damage including C-Scan
ERIC Educational Resources Information Center
Coordination in Development, New York, NY.
This booklet was produced in response to the growing need for reliable environmental assessment techniques that can be applied to small-scale development projects. The suggested techniques emphasize low-technology environmental analysis. Although these techniques may lack precision, they can be extremely valuable in helping to assure the success…
Time-Distance Analysis of Deep Solar Convection
NASA Technical Reports Server (NTRS)
Duvall, T. L., Jr.; Hanasoge, S. M.
2011-01-01
Recently it was shown by Hanasoge, Duvall, and DeRosa (2010) that the upper limit to convective flows for spherical harmonic degrees l is considerably smaller than the flows predicted by the ASH simulations (Miesch et a7. ref) at the depth r/R=0.95 ' The deep-focusing Lime-distance technique used to develop the upper limit was applied to linear acoustic simulations of a solar interior perturbed by convective flows in order to calibrate the technique. This technique has been applied to other depths in the convection zone and the results will be presented. The deep-focusing technique has considerable sensitivity to the flow ' signals at the desired subsurface location ' However, as shown by Birch {ref}, there is remaining much sensitivity to near-surface signals. Modifications to the technique using multiple bounce signals have been examined in a search for a more refined sensitivity, or kernel function. Initial results are encouraging and results will be presented'
Chapter 14: Electron Microscopy on Thin Films for Solar Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romero, Manuel; Abou-Ras, Daniel; Nichterwitz, Melanie
2016-07-22
This chapter overviews the various techniques applied in scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and highlights their possibilities and also limitations. It gives the various imaging and analysis techniques applied on a scanning electron microscope. The chapter shows that imaging is divided into that making use of secondary electrons (SEs) and of backscattered electrons (BSEs), resulting in different contrasts in the images and thus providing information on compositions, microstructures, and surface potentials. Whenever aiming for imaging and analyses at scales of down to the angstroms range, TEM and its related techniques are appropriate tools. In many cases,more » also SEM techniques provide the access to various material properties of the individual layers, not requiring specimen preparation as time consuming as TEM techniques. Finally, the chapter dedicates to cross-sectional specimen preparation for electron microscopy. The preparation decides indeed on the quality of imaging and analyses.« less
NASA Technical Reports Server (NTRS)
Smith, R. E.
1981-01-01
A grid generation technique called the two boundary technique is developed and applied for the solution of the three dimensional Navier-Stokes equations. The Navier-Stokes equations are transformed from a cartesian coordinate system to a computational coordinate system, and the grid generation technique provides the Jacobian matrix describing the transformation. The two boundary technique is based on algebraically defining two distinct boundaries of a flow domain and the distribution of the grid is achieved by applying functions to the uniform computational grid which redistribute the computational independent variables and consequently concentrate or disperse the grid points in the physical domain. The Navier-Stokes equations are solved using a MacCormack time-split technique. Grids and supersonic laminar flow solutions are obtained for a family of three dimensional corners and two spike-nosed bodies.
Hoffmeyer, Frank; Raulf-Heimsoth, Monika; Lehnert, Martin; Kendzia, Benjamin; Bernard, Sabine; Berresheim, Hans; Düser, Maria; Henry, Jana; Weiss, Tobias; Koch, Holger M; Pesch, Beate; Brüning, Thomas
2012-01-01
Total mass and composition of welding fumes are predominantly dependent on the welding technique and welding wire applied. The objective of this study was to investigate the impact of welding techniques on biological effect markers in exhaled breath condensate (EBC) of 58 healthy welders. The welding techniques applied were gas metal arc welding with solid wire (GMAW) (n=29) or flux cored wire (FCAW) (n=29). Welding fume particles were collected with personal samplers in the breathing zone inside the helmets. Levels of leukotriene B(4) (LTB(4)), prostaglandin E(2) (PGE(2)), and 8-isoprostane (8-iso-PGF(2α)) were measured with immunoassay kits and the EBC pH was measured after deaeration. Significantly higher 8-iso-PGF(2α) concentrations and a less acid pH were detected in EBC of welders using the FCAW than in EBC of welders using the GMAW technique. The lowest LTB(4) concentrations were measured in nonsmoking welders applying a solid wire. No significant influences were found in EBC concentrations of PGE(2) based upon smoking status or type of welding technique. This study suggests an enhanced irritative effect in the lower airways of mild steel welders due to the application of FCAW compared to GMAW, most likely associated with a higher emission of welding fumes.
Kuran, Ismail; Öreroğlu, Ali Rıza; Efendioğlu, Kamran
2014-09-01
An important consideration in rhinoplasty is maintenance of the applied tip rotation. Different techniques have been proposed to accomplish this. Loss of rotation after surgery not only results in a derotated tip but also can create a supratip deformity. As a supplement to dorsal reconstruction, the authors introduced and applied the lateral crural rein flap technique, whereby cartilage flaps are created from the cephalic portion of the lateral crura to control and stabilize tip rotation. Eleven patients underwent primary open-approach rhinoplasty that included the lateral crural rein technique; the mean follow-up time was 18 months. Excess cephalic portions of the lateral crura were prepared as medial crura-based cartilaginous flaps and were incorporated into the nasal dorsum (similar to spreader grafts) and stabilized to achieve the desired tip rotation. The lateral crural rein flap technique provided stability to the nasal tip while minimizing derotation in the postoperative period. Long-term follow-up revealed maintenance of the nasal tip rotation and symmetric dorsal aesthetic lines. The lateral crural rein flap technique is effective for controlling nasal tip rotation while reducing lateral crural cephalic excess. Longevity of the applied tip rotation is reinforced by secure attachment of the lower nasal cartilage complex to the midvault structures. 4. © 2014 The American Society for Aesthetic Plastic Surgery, Inc.
Techniques For Focusing In Zone Electrophoresis
NASA Technical Reports Server (NTRS)
Sharnez, Rizwan; Twitty, Garland E.; Sammons, David W.
1994-01-01
In two techniques for focusing in zone electrophoresis, force of applied electrical field in each charged particle balanced by restoring force of electro-osmosis. Two techniques: velocity-gradient focusing (VGF), suitable for rectangular electrophoresis chambers; and field-gradient focusing (FGF), suitable for step-shaped electrophoresis chambers.
48 CFR 1631.203-70 - Allocation techniques.
Code of Federal Regulations, 2010 CFR
2010-10-01
... shall consistently apply the methods and techniques established to classify direct and indirect costs... meant to be exhaustive, but rather are examples of allocation methods that may be acceptable under... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Allocation techniques. 1631...
NASA Technical Reports Server (NTRS)
Choudhary, Alok Nidhi; Leung, Mun K.; Huang, Thomas S.; Patel, Janak H.
1989-01-01
Several techniques to perform static and dynamic load balancing techniques for vision systems are presented. These techniques are novel in the sense that they capture the computational requirements of a task by examining the data when it is produced. Furthermore, they can be applied to many vision systems because many algorithms in different systems are either the same, or have similar computational characteristics. These techniques are evaluated by applying them on a parallel implementation of the algorithms in a motion estimation system on a hypercube multiprocessor system. The motion estimation system consists of the following steps: (1) extraction of features; (2) stereo match of images in one time instant; (3) time match of images from different time instants; (4) stereo match to compute final unambiguous points; and (5) computation of motion parameters. It is shown that the performance gains when these data decomposition and load balancing techniques are used are significant and the overhead of using these techniques is minimal.
A new technique for solving puzzles.
Makridis, Michael; Papamarkos, Nikos
2010-06-01
This paper proposes a new technique for solving jigsaw puzzles. The novelty of the proposed technique is that it provides an automatic jigsaw puzzle solution without any initial restriction about the shape of pieces, the number of neighbor pieces, etc. The proposed technique uses both curve- and color-matching similarity features. A recurrent procedure is applied, which compares and merges puzzle pieces in pairs, until the original puzzle image is reformed. Geometrical and color features are extracted on the characteristic points (CPs) of the puzzle pieces. CPs, which can be considered as high curvature points, are detected by a rotationally invariant corner detection algorithm. The features which are associated with color are provided by applying a color reduction technique using the Kohonen self-organized feature map. Finally, a postprocessing stage checks and corrects the relative position between puzzle pieces to improve the quality of the resulting image. Experimental results prove the efficiency of the proposed technique, which can be further extended to deal with even more complex jigsaw puzzle problems.
A novel analytical technique suitable for the identification of plastics.
Nečemer, Marijan; Kump, Peter; Sket, Primož; Plavec, Janez; Grdadolnik, Jože; Zvanut, Maja
2013-01-01
The enormous development and production of plastic materials in the last century resulted in increasing numbers of such kinds of objects. Development of a simple and fast technique to classify different types of plastics could be used in many activities dealing with plastic materials such as packaging of food, sorting of used plastic materials, and also, if technique would be non-destructive, for conservation of plastic artifacts in museum collections, a relatively new field of interest since 1990. In our previous paper we introduced a non-destructive technique for fast identification of unknown plastics based on EDXRF spectrometry,1 using as a case study some plastic artifacts archived in the Museum in order to show the advantages of the nondestructive identification of plastic material. In order to validate our technique it was necessary to apply for this purpose the comparison of analyses with some of the analytical techniques, which are more suitable and so far rather widely applied in identifying some most common sorts of plastic materials.
Gräfe, James L; McNeill, Fiona E
2018-06-28
This article briefly reviews the main measurement techniques for the non-invasive detection of residual gadolinium (Gd) in those exposed to gadolinium-based contrast agents (GBCAs). Approach and Main results: The current status of in vivo Gd measurement is discussed and is put into the context of concerns within the radiology community. The main techniques are based on applied atomic/nuclear medicine utilizing the characteristic atomic and nuclear spectroscopic signature of Gd. The main emission energies are in the 40-200 keV region and require spectroscopic detectors with good energy resolution. The two main techniques, prompt gamma neutron activation analysis and x-ray fluorescence, provide adequate detection limits for in vivo measurement, whilst delivering a low effective radiation dose on the order of a few µSv. Gadolinium is being detected in measureable quantities in people with healthy renal function who have received FDA approved GBCAs. The applied atomic/nuclear medicine techniques discussed in this review will be useful in determining the significance of this retention, and will help on advising future administration protocols.
Clique-Based Neural Associative Memories with Local Coding and Precoding.
Mofrad, Asieh Abolpour; Parker, Matthew G; Ferdosi, Zahra; Tadayon, Mohammad H
2016-08-01
Techniques from coding theory are able to improve the efficiency of neuroinspired and neural associative memories by forcing some construction and constraints on the network. In this letter, the approach is to embed coding techniques into neural associative memory in order to increase their performance in the presence of partial erasures. The motivation comes from recent work by Gripon, Berrou, and coauthors, which revisited Willshaw networks and presented a neural network with interacting neurons that partitioned into clusters. The model introduced stores patterns as small-size cliques that can be retrieved in spite of partial error. We focus on improving the success of retrieval by applying two techniques: doing a local coding in each cluster and then applying a precoding step. We use a slightly different decoding scheme, which is appropriate for partial erasures and converges faster. Although the ideas of local coding and precoding are not new, the way we apply them is different. Simulations show an increase in the pattern retrieval capacity for both techniques. Moreover, we use self-dual additive codes over field [Formula: see text], which have very interesting properties and a simple-graph representation.
Probabilistic Analysis Techniques Applied to Complex Spacecraft Power System Modeling
NASA Technical Reports Server (NTRS)
Hojnicki, Jeffrey S.; Rusick, Jeffrey J.
2005-01-01
Electric power system performance predictions are critical to spacecraft, such as the International Space Station (ISS), to ensure that sufficient power is available to support all the spacecraft s power needs. In the case of the ISS power system, analyses to date have been deterministic, meaning that each analysis produces a single-valued result for power capability because of the complexity and large size of the model. As a result, the deterministic ISS analyses did not account for the sensitivity of the power capability to uncertainties in model input variables. Over the last 10 years, the NASA Glenn Research Center has developed advanced, computationally fast, probabilistic analysis techniques and successfully applied them to large (thousands of nodes) complex structural analysis models. These same techniques were recently applied to large, complex ISS power system models. This new application enables probabilistic power analyses that account for input uncertainties and produce results that include variations caused by these uncertainties. Specifically, N&R Engineering, under contract to NASA, integrated these advanced probabilistic techniques with Glenn s internationally recognized ISS power system model, System Power Analysis for Capability Evaluation (SPACE).
Flood Detection/Monitoring Using Adjustable Histogram Equalization Technique
Riaz, Muhammad Mohsin; Ghafoor, Abdul
2014-01-01
Flood monitoring technique using adjustable histogram equalization is proposed. The technique overcomes the limitations (overenhancement, artifacts, and unnatural look) of existing technique by adjusting the contrast of images. The proposed technique takes pre- and postimages and applies different processing steps for generating flood map without user interaction. The resultant flood maps can be used for flood monitoring and detection. Simulation results show that the proposed technique provides better output quality compared to the state of the art existing technique. PMID:24558332
Gary H. Elsner; Richard C. Smardon; technical coordinators
1979-01-01
These 104 papers were presented at "Our National Landscape: A Conference on Applied Techniques for Analysis and Management of the Visual Resource," Incline Village, Nevada, April 23-25, 1979. Included in this proceedings are state-of-the-art papers on landscape planning. Emphasis is upon planning the visual aspects of the large and wildland areas of the...
[A comprehensive approach to designing of magnetotherapy techniques based on the Atos device].
Raĭgorodskiĭ, Iu M; Semiachkin, G P; Tatarenko, D A
1995-01-01
The paper determines how to apply a comprehensive approach to designing magnetic therapeutical techniques based on concomitant exposures to two or more physical factors. It shows the advantages of the running pattern of a magnetic field and photostimuli in terms of optimization of physiotherapeutical exposures. An Atos apparatus with an Amblio-1 attachment is used as an example to demonstrate how to apply the comprehensive approach for ophthalmology.
Order reduction for a model of marine bacteriophage evolution
NASA Astrophysics Data System (ADS)
Pagliarini, Silvia; Korobeinikov, Andrei
2017-02-01
A typical mechanistic model of viral evolution necessary includes several time scales which can differ by orders of magnitude. Such a diversity of time scales makes analysis of these models difficult. Reducing the order of a model is highly desirable when handling such a model. A typical approach applied to such slow-fast (or singularly perturbed) systems is the time scales separation technique. Constructing the so-called quasi-steady-state approximation is the usual first step in applying the technique. While this technique is commonly applied, in some cases its straightforward application can lead to unsatisfactory results. In this paper we construct the quasi-steady-state approximation for a model of evolution of marine bacteriophages based on the Beretta-Kuang model. We show that for this particular model the quasi-steady-state approximation is able to produce only qualitative but not quantitative fit.
NASA Astrophysics Data System (ADS)
Furlong, Cosme; Pryputniewicz, Ryszard J.
2002-06-01
Effective suppression of speckle noise content in interferometric data images can help in improving accuracy and resolution of the results obtained with interferometric optical metrology techniques. In this paper, novel speckle noise reduction algorithms based on the discrete wavelet transformation are presented. The algorithms proceed by: (a) estimating the noise level contained in the interferograms of interest, (b) selecting wavelet families, (c) applying the wavelet transformation using the selected families, (d) wavelet thresholding, and (e) applying the inverse wavelet transformation, producing denoised interferograms. The algorithms are applied to the different stages of the processing procedures utilized for generation of quantitative speckle correlation interferometry data of fiber-optic based opto-electronic holography (FOBOEH) techniques, allowing identification of optimal processing conditions. It is shown that wavelet algorithms are effective for speckle noise reduction while preserving image features otherwise faded with other algorithms.
NASA Astrophysics Data System (ADS)
Lin, Jack; Weis, Martin; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa
2011-04-01
Transient measurements of impedance spectroscopy and electrical time-of-flight (TOF) techniques were used for the evaluation of carrier propagation dependence on applied potentials in a pentacene organic field effect transistor (OFET). These techniques are based on carrier propagation, thus isolates the effect of charge density. The intrinsic mobility which is free from contact resistance effects was obtained by measurement of various channel lengths. The obtained intrinsic mobility shows good correspondence with steady-state current-voltage measurement's saturation mobility. However, their power law relations on mobility vs applied potential resulted in different exponents, suggesting different carrier propagation mechanisms, which is attributable to filling of traps or space charge field in the channel region. The hypothesis was verified by a modified electrical TOF experiment which demonstrated how the accumulated charges in the channel influence the effective mobility.
Dunham, David W; Farquhar, Robert W
2004-05-01
This paper describes astrodynamic techniques applied to develop special orbital designs for past and future space missions of the Applied Physics Laboratory (APL) of Johns Hopkins University, and background about those techniques. The paper does not describe the long history of low Earth-orbiting missions at APL, but rather concentrates on the astrodynamically more interesting high-altitude and interplanetary missions that APL has undertaken in recent years. The authors developed many of their techniques in preparation for, and during, the Third International Sun-Earth Explorer (ISEE-3) halo orbit mission while they worked for the Goddard Space Flight Center (GSFC) of NASA during the 1970s and 1980s. Later missions owed much to the ground breaking work of the trajectory designs for ISEE-3 (later known as the International Cometary Explorer, or ICE). This experience, and other new ideas, were applied to the APL near Earth asteroid rendezvous (NEAR) and comet nucleus tour (CONTOUR) discovery missions, as well as to APL's future MESSENGER, STEREO, and New Horizons missions. These will be described in the paper.
Adhesive performance of a multi-mode adhesive system: 1-year in vitro study.
Marchesi, Giulio; Frassetto, Andrea; Mazzoni, Annalisa; Apolonio, Fabianni; Diolosà, Marina; Cadenaro, Milena; Di Lenarda, Roberto; Pashley, David H; Tay, Franklin; Breschi, Lorenzo
2014-05-01
The aim of this study was to investigate the adhesive stability over time of a multi-mode one-step adhesive applied using different bonding techniques on human coronal dentine. The hypotheses tested were that microtensile bond strength (μTBS), interfacial nanoleakage expression and matrix metalloproteinases (MMPs) activation are not affected by the adhesive application mode (following the use of self-etch technique or with the etch-and-rinse technique on dry or wet dentine) or by ageing for 24h, 6 months and 1year in artificial saliva. Human molars were cut to expose middle/deep dentine and assigned to one of the following bonding systems (N=15): (1) Scotchbond Universal (3M ESPE) self-etch mode, (2) Scotchbond Universal etch-and-rinse technique on wet dentine, (3) Scotchbond Universal etch-and-rinse technique on dry dentine, and (4) Prime&Bond NT (Dentsply De Trey) etch-and-rinse technique on wet dentine (control). Specimens were processed for μTBS test in accordance with the non-trimming technique and stressed to failure after 24h, 6 months or 1 year. Additional specimens were processed and examined to assay interfacial nanoleakage and MMP expression. At baseline, no differences between groups were found. After 1 year of storage, Scotchbond Universal applied in the self-etch mode and Prime&Bond NT showed higher μTBS compared to the other groups. The lowest nanoleakage expression was found for Scotchbond Universal applied in the self-etch mode, both at baseline and after storage. MMPs activation was found after application of each tested adhesive. The results of this study support the use of the self-etch approach for bonding the tested multi-mode adhesive system to dentine due to improved stability over time. Improved bonding effectiveness of the tested universal adhesive system on dentine may be obtained if the adhesive is applied with the self-etch approach. Copyright © 2014 Elsevier Ltd. All rights reserved.
Structural Bioinformatics of the Interactome
Petrey, Donald; Honig, Barry
2014-01-01
The last decade has seen a dramatic expansion in the number and range of techniques available to obtain genome-wide information, and to analyze this information so as to infer both the function of individual molecules and how they interact to modulate the behavior of biological systems. Here we review these techniques, focusing on the construction of physical protein-protein interaction networks, and highlighting approaches that incorporate protein structure which is becoming an increasingly important component of systems-level computational techniques. We also discuss how network analyses are being applied to enhance the basic understanding of biological systems and their disregulation, and how they are being applied in drug development. PMID:24895853
Optical skin friction measurement technique in hypersonic wind tunnel
NASA Astrophysics Data System (ADS)
Chen, Xing; Yao, Dapeng; Wen, Shuai; Pan, Junjie
2016-10-01
Shear-sensitive liquid-crystal coatings (SSLCCs) have an optical characteristic that they are sensitive to the applied shear stress. Based on this, a novel technique is developed to measure the applied shear stress of the model surface regarding both its magnitude and direction in hypersonic flow. The system of optical skin friction measurement are built in China Academy of Aerospace Aerodynamics (CAAA). A series of experiments of hypersonic vehicle is performed in wind tunnel of CAAA. Global skin friction distribution of the model which shows complicated flow structures is discussed, and a brief mechanism analysis and an evaluation on optical measurement technique have been made.
Microwave holographic metrology for antenna diagnosis
NASA Astrophysics Data System (ADS)
Rahmat-Samii, Y.
1990-11-01
Advances in antenna diagnostic methodologies have been very significant in recent years. In particular, microwave holographic diagnostic techniques have been applied very successfully in improving the performance of reflector and array antennas. These techniques use the knowledge of the measured amplitude and phase of the antenna radiated fields and then take advantage of the existing Fourier transform relationships between the radiated fields and the effective aperture or current distribution to eventually determine the reflector surface or array excitation coefficients anomalies. In this paper an overview of the recent developments in applying microwave holography is presented. The theoretical, numerical and measurement aspects of this technique is detailed by providing representative results.
NASA Technical Reports Server (NTRS)
Barranger, J. P.
1978-01-01
The rotor blade tip clearance measurement system consists of a capacitance sensing probe with self contained tuning elements, a connecting coaxial cable, and remotely located electronics. Tests show that the accuracy of the system suffers from a strong dependence on probe tip temperature and humidity. A novel inplace recalibration technique was presented which partly overcomes this problem through a simple modification of the electronics that permits a scale factor correction. This technique, when applied to a commercial system significantly reduced errors under varying conditions of humidity and temperature. Equations were also found that characterize the important cable and probe design quantities.
Self-Normalized Photoacoustic Technique for the Quantitative Analysis of Paper Pigments
NASA Astrophysics Data System (ADS)
Balderas-López, J. A.; Gómez y Gómez, Y. M.; Bautista-Ramírez, M. E.; Pescador-Rojas, J. A.; Martínez-Pérez, L.; Lomelí-Mejía, P. A.
2018-03-01
A self-normalized photoacoustic technique was applied for quantitative analysis of pigments embedded in solids. Paper samples (filter paper, Whatman No. 1), attached with the pigment: Direct Fast Turquoise Blue GL, were used for this study. This pigment is a blue dye commonly used in industry to dye paper and other fabrics. The optical absorption coefficient, at a wavelength of 660 nm, was measured for this pigment at various concentrations in the paper substrate. It was shown that Beer-Lambert model for light absorption applies well for pigments in solid substrates and optical absorption coefficients as large as 220 cm^{-1} can be measured with this photoacoustic technique.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunter, Scott R.; Efird, Marty
The purpose of the technology maturation project was to develop an enhanced application technique for applying diatomaceous earth with pinned polysiloxane oil to PVC pipes and materials. The oil infiltration technique is applied as a spray of diluted oil in a solvent onto the superhydrophobic diatomaceous earth substrate. This makes the surface take on the following characteristics: wet-cleanable; anti-biofouling; waterproof; and anti-corrosion. The project involved obtaining input and supplies from VeloxFlow and the development of successful techniques that would quickly result in a commercial license agreement with VeloxFlow and other companies that use PVC materials in a variety of othermore » fields of use.« less
Using Decision Trees for Estimating Mode Choice of Trips in Buca-Izmir
NASA Astrophysics Data System (ADS)
Oral, L. O.; Tecim, V.
2013-05-01
Decision makers develop transportation plans and models for providing sustainable transport systems in urban areas. Mode Choice is one of the stages in transportation modelling. Data mining techniques can discover factors affecting the mode choice. These techniques can be applied with knowledge process approach. In this study a data mining process model is applied to determine the factors affecting the mode choice with decision trees techniques by considering individual trip behaviours from household survey data collected within Izmir Transportation Master Plan. From this perspective transport mode choice problem is solved on a case in district of Buca-Izmir, Turkey with CRISP-DM knowledge process model.
A NOVEL TECHNIQUE APPLYING SPECTRAL ESTIMATION TO JOHNSON NOISE THERMOMETRY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ezell, N Dianne Bull; Britton Jr, Charles L; Roberts, Michael
Johnson noise thermometry (JNT) is one of many important measurements used to monitor the safety levels and stability in a nuclear reactor. However, this measurement is very dependent on the electromagnetic environment. Properly removing unwanted electromagnetic interference (EMI) is critical for accurate drift free temperature measurements. The two techniques developed by Oak Ridge National Laboratory (ORNL) to remove transient and periodic EMI are briefly discussed in this document. Spectral estimation is a key component in the signal processing algorithm utilized for EMI removal and temperature calculation. Applying these techniques requires the simple addition of the electronics and signal processing tomore » existing resistive thermometers.« less
Estimation of Heavy Metals Contamination in the Soil of Zaafaraniya City Using the Neural Network
NASA Astrophysics Data System (ADS)
Ghazi, Farah F.
2018-05-01
The aim of this paper is to estimate the heavy metals Contamination in soils which can be used to determine the rate of environmental contamination by using new technique depend on design feedback neural network as an alternative accurate technique. The network simulates to estimate the concentration of Cadmium (Cd), Nickel (Ni), Lead (Pb), Zinc (Zn) and Copper (Cu). Then to show the accuracy and efficiency of suggested design we applied the technique in Al- Zafaraniyah in Baghdad city. The results of this paper show that the suggested networks can be successfully applied to the rapid and accuracy estimation of concentration of heavy metals.
Ming, Hai; Tang, Lin; Sun, Xiaohong; Zhang, Jiangying; Wang, Pei; Lu, Yonghua; Bai, Ming; Guo, Yang; Xie, Aifang; Zhang, Zebo
2004-01-01
This article summarizes the near-field optical technique applied for investigating the characteristics of polymer fiber and waveguide structures. The near-field optical technique is used to analyze multimode interference structures of fiber. The localized fluctuation of the transmission caused by fractal cluster is carried out in Nd3+- and Eu3+-doped polymer fiber and film by means of a scanning near-field optical microscopy. The near-field optical spectrum of Nd3+-doped polymer fiber is investigated. The topography and near-field intensity images of Azo-polymer liquid crystal film for waveguide are obtained simultaneously.
NASA Technical Reports Server (NTRS)
Migneault, G. E.
1979-01-01
Emulation techniques applied to the analysis of the reliability of highly reliable computer systems for future commercial aircraft are described. The lack of credible precision in reliability estimates obtained by analytical modeling techniques is first established. The difficulty is shown to be an unavoidable consequence of: (1) a high reliability requirement so demanding as to make system evaluation by use testing infeasible; (2) a complex system design technique, fault tolerance; (3) system reliability dominated by errors due to flaws in the system definition; and (4) elaborate analytical modeling techniques whose precision outputs are quite sensitive to errors of approximation in their input data. Next, the technique of emulation is described, indicating how its input is a simple description of the logical structure of a system and its output is the consequent behavior. Use of emulation techniques is discussed for pseudo-testing systems to evaluate bounds on the parameter values needed for the analytical techniques. Finally an illustrative example is presented to demonstrate from actual use the promise of the proposed application of emulation.
Dual-energy KUB radiographic examination for the detection of renal calculus.
Yen, Peggy; Bailly, Greg; Pringle, Christopher; Barnes, David
2014-08-01
The dual-energy radiographic technique has been proved to be clinically useful in the thorax. Herein, we attempt to apply this technique to the abdomen and pelvis in the context of renal colic. The visibility of renal calculi were assessed using various dual energy peak kilovoltage combination radiographs applied to standard phantoms. This technique demonstrates a higher than acceptable radiation dosage required to optimize the image quality and the optimized diagnostic quality is inferior to that of the standard Kidneys, Ureters, and Bladder radiograph. The dual-energy radiographic technique could not better identify the radiopaque renal calculi. Limiting technical considerations include the increased subcutaneous and peritoneal adipose tissue and the limited contrast between the soft tissue and underlying calculi. Copyright © 2014 AUR. Published by Elsevier Inc. All rights reserved.
Electromagnetically induced acoustic emission—novel NDT technique for damage evaluation
NASA Astrophysics Data System (ADS)
Finkel, P.; Godinez, V.; Miller, R.; Finlayson, R.
2001-04-01
A recently developed electromagnetically induced acoustic emission technique (EM AE) which can be used for damage assessment of thin walled conducting structures is described. This technique allows a structure to be loaded locally by applying an electromagnetic field in order to produce an AE response, which may be captured by conventional or fiber optic (FO) AE sensors. The advantage of this technique is that the localized dynamic stresses induced by a short current pulse in the presence of an external magnetic field aid in the detection of cracks. Also, it is shown that electromagnetic stimulation can be applied to enhance conventional ultrasonics by modulation of the scattered signal from the defect (EM UT). Experimental data is presented for the case of a fatigue crack near rivet holes in thin walled aluminum structures.
NASA Technical Reports Server (NTRS)
Puliafito, E.; Bevilacqua, R.; Olivero, J.; Degenhardt, W.
1992-01-01
The formal retrieval error analysis of Rodgers (1990) allows the quantitative determination of such retrieval properties as measurement error sensitivity, resolution, and inversion bias. This technique was applied to five numerical inversion techniques and two nonlinear iterative techniques used for the retrieval of middle atmospheric constituent concentrations from limb-scanning millimeter-wave spectroscopic measurements. It is found that the iterative methods have better vertical resolution, but are slightly more sensitive to measurement error than constrained matrix methods. The iterative methods converge to the exact solution, whereas two of the matrix methods under consideration have an explicit constraint, the sensitivity of the solution to the a priori profile. Tradeoffs of these retrieval characteristics are presented.
Combining Simultaneous with Temporal Masking
ERIC Educational Resources Information Center
Hermens, Frouke; Herzog, Michael H.; Francis, Gregory
2009-01-01
Simultaneous and temporal masking are two frequently used techniques in psychology and vision science. Although there are many studies and theories related to each masking technique, there are no systematic investigations of their mutual relationship, even though both techniques are often applied together. Here, the authors show that temporal…
Sexual Hypnotherapy for Couples and Family Counselors.
ERIC Educational Resources Information Center
Araoz, Daniel; Burte, Jan; Goldin, Eugene
2001-01-01
Presents the utilization of Ericksonian hypnotic techniques in conjunction with cognitive behavioral techniques collectively labeled the New Hypnosis, as they apply to the treatment of male and female sexual dysfunction within a counseling setting. Specific techniques to improve functioning throughout the five stages of sexual response are…
NASA Astrophysics Data System (ADS)
Zhou, Xiang
Using an innovative portable holographic inspection and testing system (PHITS) developed at the Australian Defence Force Academy, fatigue cracks in riveted lap joints can be detected by visually inspecting the abnormal fringe changes recorded on holographic interferograms. In this thesis, for automatic crack detection, some modern digital image processing techniques are investigated and applied to holographic interferogram evaluation. Fringe analysis algorithms are developed for identification of the crack-induced fringe changes. Theoretical analysis of PHITS and riveted lap joints and two typical experiments demonstrate that the fatigue cracks in lightly-clamped joints induce two characteristic fringe changes: local fringe discontinuities at the cracking sites; and the global crescent fringe distribution near to the edge of the rivet hole. Both of the fringe features are used for crack detection in this thesis. As a basis of the fringe feature extraction, an algorithm for local fringe orientation calculation is proposed. For high orientation accuracy and computational efficiency, Gaussian gradient filtering and neighboring direction averaging are used to minimize the effects of image background variations and random noise. The neighboring direction averaging is also used to approximate the fringe directions in centerlines of bright and dark fringes. Experimental results indicate that for high orientation accuracy the scales of the Gaussian filter and neighboring direction averaging should be chosen according to the local fringe spacings. The orientation histogram technique is applied to detect the local fringe discontinuity due to the fatigue cracks. The Fourier descriptor technique is used to characterize the global fringe distribution change from a circular to a crescent distribution with the fatigue crack growth. Experiments and computer simulations are conducted to analyze the detectability and reliability of crack detection using the two techniques. Results demonstrate that the Fourier descriptor technique is more promising in the detection of the short cracks near the edge of the rivet head. However, it is not as reliable as the fringe orientation technique for detection of the long through cracks. For reliability, both techniques should be used in practical crack detection. Neither the Fourier descriptor technique nor the orientation histogram technique have been previously applied to holographic interferometry. While this work related primarily to interferograms of cracked rivets, the techniques would be readily applied to other areas of fringe pattern analysis.
[Application of three-dimensional printing technique in orthopaedics].
Luo, Qiang; Lau, Tak Wing; Fang, Xinshuo; Leung, Frankie
2014-03-01
To review the current progress of three-dimensional (3-D) printing technique in the clinical practice, its limitations and prospects. The recent publications associated with the clinical application of 3-D printing technique in the field of surgery, especially in orthopaedics were extensively reviewed. Currently, 3-D printing technique has been applied in orthopaedic surgery to aid diagnosis, make operative plans, and produce personalized prosthesis or implants. 3-D printing technique is a promising technique in clinical application.
NASA Astrophysics Data System (ADS)
Fosso-Kankeu, Elvis
2018-06-01
In the present study af-PFCl, GL-g-P(AN) hydrogel and GL-g-P(AN)/TEOS hydrogel composite were synthesized. The hydrogels were characterized using the fourier transformed infra-red (FTIR) and the scanning electron microscope (SEM) techniques. The coagulant af-PFCl and the hydrogels were applied consecutively in flocculation and adsorption processes respectively for the treatment of acid mine drainage (AMD). It was observed that the grafting process increased the amount of binding groups on the hydrogels. The hybridization of the techniques assisted in the removal of anions; while the cations were mostly removed by the adsorption process. The adsorbents behaviour was fittingly expressed by the pseudo-second order model. The adsorption capacities of GL-g-P(AN)/TEOS hydrogel composite for the removal of Al, As and Zn were 3.89, 0.66 and 0.394 respectively; while the adsorption capacities of GL-g-P(AN) for the removal of Al and Mg were 3.47 and 9.66 mg/g respectively. The techniques applied in this study have shown good potential for the removal of specific pollutants from the AMD; it is however, important that the appropriate hybridization of techniques allows to remove all the pollutants and restore acceptable water quality.
Application of volume rendering technique (VRT) for musculoskeletal imaging.
Darecki, Rafał
2002-10-30
A review of the applications of volume rendering technique in musculoskeletal three-dimensional imaging from CT data. General features, potential and indications for applying the method are presented.
Optical detection of paramagnetic centres: From crystals to glass-ceramics
NASA Astrophysics Data System (ADS)
Rogulis, Uldis
2016-07-01
An unambiguous attribution of the absorption spectra to definite paramagnetic centres identified by the EPR techniques in the most cases is problematic. This problem may be solved by applying of a direct measurement techniques—the EPR detected via the magnetic circular dichroism, or briefly MCD-EPR. The present survey reports on the advantages and disadvantages applying the MCD-EPR techniques to simple and complex paramagnetic centres in crystals as well as glasses and glass-ceramics.
Real-time emergency forecasting technique for situation management systems
NASA Astrophysics Data System (ADS)
Kopytov, V. V.; Kharechkin, P. V.; Naumenko, V. V.; Tretyak, R. S.; Tebueva, F. B.
2018-05-01
The article describes the real-time emergency forecasting technique that allows increasing accuracy and reliability of forecasting results of any emergency computational model applied for decision making in situation management systems. Computational models are improved by the Improved Brown’s method applying fractal dimension to forecast short time series data being received from sensors and control systems. Reliability of emergency forecasting results is ensured by the invalid sensed data filtering according to the methods of correlation analysis.
Ion beam analysis of diffusion in heterogeneous materials
NASA Astrophysics Data System (ADS)
Clough, A. S.; Jenneson, P. M.
1998-04-01
Ion-beam analysis has been applied to a variety of problems involving diffusion in heterogeneous materials. An energy loss technique has been used to study both the diffusion of water and the surface segregation of fluoropolymers in polymeric matrices. A scanning micro-beam technique has been developed to allow water concentrations in hydrophilic polymers and cements to be measured together with associated solute elements. It has also been applied to the diffusion of shampoo into hair.
NASA Technical Reports Server (NTRS)
1996-01-01
Solving for the displacements of free-free coupled systems acted upon by static loads is a common task in the aerospace industry. Often, these problems are solved by static analysis with inertia relief. This technique allows for a free-free static analysis by balancing the applied loads with the inertia loads generated by the applied loads. For some engineering applications, the displacements of the free-free coupled system induce additional static loads. Hence, the applied loads are equal to the original loads plus the displacement-dependent loads. A launch vehicle being acted upon by an aerodynamic loading can have such applied loads. The final displacements of such systems are commonly determined with iterative solution techniques. Unfortunately, these techniques can be time consuming and labor intensive. Because the coupled system equations for free-free systems with displacement-dependent loads can be written in closed form, it is advantageous to solve for the displacements in this manner. Implementing closed-form equations in static analysis with inertia relief is analogous to implementing transfer functions in dynamic analysis. An MSC/NASTRAN (MacNeal-Schwendler Corporation/NASA Structural Analysis) DMAP (Direct Matrix Abstraction Program) Alter was used to include displacement-dependent loads in static analysis with inertia relief. It efficiently solved a common aerospace problem that typically has been solved with an iterative technique.
Outcome of 7-S, TQM technique for healthcare waste management.
Ullah, Junaid Habib; Ahmed, Rashid; Malik, Javed Iqbal; Khan, M Amanullah
2011-12-01
To assess the present waste management system of healthcare facilities (HCFs) attached with Shalamar Hospital, Lahore by applying the 7-S technique of Total Quality Management (TQM) and to find out the outcome after imparting training. Interventional quasi-experimental study. The Shalamar Hospital, Lahore, Punjab, Pakistan, November, 2009 to November, 2010. Mckinsey's 7-S, technique of TQM was applied to assess the 220 HCFs from Lahore, Gujranwala and Sheikhupura districts for segregation, collection, transportation and disposal (SCTD) of hospital waste. Direct interview method was applied. Trainings were provided in each institution. After one year action period, the status of four areas of concern was compared before and after training. The parameters studied were segregation, collection, transportation and disposal systems in the 220 HCFs. Each of these were further elaborated by strategy, structure, system, staff, skill, style and stakeholder/shared value factors. Standard error of difference of proportion was applied to assess significance using 95% confidence level. There was marked improvement in all these areas ranging from 20% to 77% following a training program of 3 months. In case of disposal of the waste strategy, structure and system an increase of 60%, 65% and 75% was observed after training. The 7-S technique played a vital role in assessing the hospital waste management system. Training for the healthcare workers played a significant role in healthcare facilities.
NASA Technical Reports Server (NTRS)
Sidney, T.; Aylott, B.; Christensen, N.; Farr, B.; Farr, W.; Feroz, F.; Gair, J.; Grover, K.; Graff, P.; Hanna, C.;
2014-01-01
The problem of reconstructing the sky position of compact binary coalescences detected via gravitational waves is a central one for future observations with the ground-based network of gravitational-wave laser interferometers, such as Advanced LIGO and Advanced Virgo. Different techniques for sky localization have been independently developed. They can be divided in two broad categories: fully coherent Bayesian techniques, which are high latency and aimed at in-depth studies of all the parameters of a source, including sky position, and "triangulation-based" techniques, which exploit the data products from the search stage of the analysis to provide an almost real-time approximation of the posterior probability density function of the sky location of a detection candidate. These techniques have previously been applied to data collected during the last science runs of gravitational-wave detectors operating in the so-called initial configuration. Here, we develop and analyze methods for assessing the self consistency of parameter estimation methods and carrying out fair comparisons between different algorithms, addressing issues of efficiency and optimality. These methods are general, and can be applied to parameter estimation problems other than sky localization. We apply these methods to two existing sky localization techniques representing the two above-mentioned categories, using a set of simulated inspiralonly signals from compact binary systems with a total mass of equal to or less than 20M solar mass and nonspinning components. We compare the relative advantages and costs of the two techniques and show that sky location uncertainties are on average a factor approx. equals 20 smaller for fully coherent techniques than for the specific variant of the triangulation-based technique used during the last science runs, at the expense of a factor approx. equals 1000 longer processing time.
NASA Astrophysics Data System (ADS)
Sidery, T.; Aylott, B.; Christensen, N.; Farr, B.; Farr, W.; Feroz, F.; Gair, J.; Grover, K.; Graff, P.; Hanna, C.; Kalogera, V.; Mandel, I.; O'Shaughnessy, R.; Pitkin, M.; Price, L.; Raymond, V.; Röver, C.; Singer, L.; van der Sluys, M.; Smith, R. J. E.; Vecchio, A.; Veitch, J.; Vitale, S.
2014-04-01
The problem of reconstructing the sky position of compact binary coalescences detected via gravitational waves is a central one for future observations with the ground-based network of gravitational-wave laser interferometers, such as Advanced LIGO and Advanced Virgo. Different techniques for sky localization have been independently developed. They can be divided in two broad categories: fully coherent Bayesian techniques, which are high latency and aimed at in-depth studies of all the parameters of a source, including sky position, and "triangulation-based" techniques, which exploit the data products from the search stage of the analysis to provide an almost real-time approximation of the posterior probability density function of the sky location of a detection candidate. These techniques have previously been applied to data collected during the last science runs of gravitational-wave detectors operating in the so-called initial configuration. Here, we develop and analyze methods for assessing the self consistency of parameter estimation methods and carrying out fair comparisons between different algorithms, addressing issues of efficiency and optimality. These methods are general, and can be applied to parameter estimation problems other than sky localization. We apply these methods to two existing sky localization techniques representing the two above-mentioned categories, using a set of simulated inspiral-only signals from compact binary systems with a total mass of ≤20M⊙ and nonspinning components. We compare the relative advantages and costs of the two techniques and show that sky location uncertainties are on average a factor ≈20 smaller for fully coherent techniques than for the specific variant of the triangulation-based technique used during the last science runs, at the expense of a factor ≈1000 longer processing time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cotter, M.J.; Meyers, P.; van Zelst, L.
Neutron activation autoradiography and activation analysis were used to study techniques and material used by nineteenth century painters particularly Ralph A. Blakelock. These techniques can supply information on pigments as well as the way they are applied. (LK)
Enviromentally Sound Timber Extracting Techniques for Small Tree Harvesting
Lihai Wang
1999-01-01
Due to large area disturbed and great deal of energy cost during-its operations, introducing or applying the appropriate timber extracting techniques could significantly reduce the impact of timber extraction operations to forest environment while pursuing the reasonable operation costs. Four environmentally sound timber extraction techniques for small tree harvesting...
ERIC Educational Resources Information Center
Otani, Akira
1989-01-01
Delineates five selected hypnotically based techniques of client resistance management pioneered by Milton H. Erickson: acceptance; paradoxical encouragement; reframing; displacement; dissociation. Explains how techniques can be applied to nonhypnotic mental health counseling. Discusses relevant clinical, theoretical, and empirical issues related…
Multiple Beam Interferometry in Elementary Teaching
ERIC Educational Resources Information Center
Tolansky, S.
1970-01-01
Discusses a relatively simple technique for demonstrating multiple beam interferometry. The technique can be applied to measuring (1) radii of curvature of lenses, (2) surface finish of glass, and (3) differential phase change on reflection. Microtopographies, modulated fringe systems and opaque objects may also be observed by this technique.…
NASA Astrophysics Data System (ADS)
Thomas, Benjamin A.; Cuplov, Vesna; Bousse, Alexandre; Mendes, Adriana; Thielemans, Kris; Hutton, Brian F.; Erlandsson, Kjell
2016-11-01
Positron emission tomography (PET) images are degraded by a phenomenon known as the partial volume effect (PVE). Approaches have been developed to reduce PVEs, typically through the utilisation of structural information provided by other imaging modalities such as MRI or CT. These methods, known as partial volume correction (PVC) techniques, reduce PVEs by compensating for the effects of the scanner resolution, thereby improving the quantitative accuracy. The PETPVC toolbox described in this paper comprises a suite of methods, both classic and more recent approaches, for the purposes of applying PVC to PET data. Eight core PVC techniques are available. These core methods can be combined to create a total of 22 different PVC techniques. Simulated brain PET data are used to demonstrate the utility of toolbox in idealised conditions, the effects of applying PVC with mismatched point-spread function (PSF) estimates and the potential of novel hybrid PVC methods to improve the quantification of lesions. All anatomy-based PVC techniques achieve complete recovery of the PET signal in cortical grey matter (GM) when performed in idealised conditions. Applying deconvolution-based approaches results in incomplete recovery due to premature termination of the iterative process. PVC techniques are sensitive to PSF mismatch, causing a bias of up to 16.7% in GM recovery when over-estimating the PSF by 3 mm. The recovery of both GM and a simulated lesion was improved by combining two PVC techniques together. The PETPVC toolbox has been written in C++, supports Windows, Mac and Linux operating systems, is open-source and publicly available.
Moini, Mehdi
2018-05-01
In the past few years, there has been a significant effort by the forensic science community to develop new scientific techniques for the analysis of forensic evidence. Forensic chemists have been spearheaded to develop information-rich confirmatory technologies and techniques and apply them to a broad array of forensic challenges. The purpose of these confirmatory techniques is to provide alternatives to presumptive techniques that rely on data such as color changes, pattern matching, or retention time alone, which are prone to more false positives. To this end, the application of separation techniques in conjunction with mass spectrometry has played an important role in the analysis of forensic evidence. Moreover, in the past few years the role of liquid separation techniques, such as liquid chromatography and capillary electrophoresis in conjunction with mass spectrometry, has gained significant tractions and have been applied to a wide range of chemicals, from small molecules such as drugs and explosives, to large molecules such as proteins. For example, proteomics and peptidomics have been used for identification of humans, organs, and bodily fluids. A wide range of HPLC techniques including reversed phase, hydrophilic interaction, mixed-mode, supercritical fluid, multidimensional chromatography, and nanoLC, as well as several modes of capillary electrophoresis mass spectrometry, including capillary zone electrophoresis, partial filling, full filling, and micellar electrokenetic chromatography have been applied to the analysis drugs, explosives, and questioned documents. In this article, we review recent (2015-2017) applications of liquid separation in conjunction with mass spectrometry to the analysis of forensic evidence. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
ERIC Educational Resources Information Center
Anders, Jake
2017-01-01
A much larger proportion of English 14-year-olds expect to apply to university than ultimately make an application by age 21, but the proportion expecting to apply falls from age 14 onwards. In order to assess the role of socioeconomic status in explaining changes in expectations, this paper applies duration modelling techniques to the…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zieba, P.; Gust, W.
1999-07-09
The morphology and kinetics of the discontinuous precipitation (DP) and discontinuous dissolution (DD) reactions have been studied in a Ni-4 at.% Sn alloy. High spatial resolution energy-dispersive X-ray microanalysis has been used to determine the Sn concentration profiles left behind the moving reaction front for the individual cells of the Sn-depleted [alpha] lamellae and Ni[sub 3]Sn compound. These data, combined with the local values of the reaction front velocity and the thickness of the [alpha]lamellae, have been used to evaluate the local s[delta]D[sub b] values (D[sub b] is the grain-boundary chemical diffusion coefficient, [delta] is the grain-boundary thickness and smore » is the segregation factor). The obtained results have been compared with those calculated by the global approach to the DP and DD reactions, which is relevant for the whole population of the cells. It has been shown that the application of the local characterization of the DP and DD reactions removes essentially the differences between the s[delta]D[sub b] values calculated by the Petermann-Hornbogen equation and the equations of Cahn and Zieba-Pawlowski. Moreover, both sets of data do not show any substantial differences from the s[delta]D[sub b] values obtained from measurements of the tracer diffusion of tin along stationary grain boundaries in nickel.« less
Microanalysis of tool steel and glass with laser-induced breakdown spectroscopy
NASA Astrophysics Data System (ADS)
Loebe, Klaus; Uhl, Arnold; Lucht, Hartmut
2003-10-01
A laser microscope system for the microanalytical characterization of complex materials is described. The universal measuring principle of laser-induced breakdown spectroscopy (LIBS) in combination with echelle optics permits a fast simultaneous multielement analysis with a possible spatial resolution below 10 pm. The developed system features completely UV-transparent optics for the laser-microscope coupling and the emission beam path and enables parallel signal detection within the wavelength range of 200-800 nm with a spectral resolution of a few picometers. Investigations of glass defects and tool steels were performed. The characterization of a glass defect in a tumbler by a micro-LIBS line scan, with use of a 266-nm diode-pumped Nd:YAG laser for excitation, is possible by simple comparison of plasma spectra of the defect and the surrounding area. Variations in the main elemental composition as well as impurities by trace elements are detected at the same time. Through measurement of the calibration samples with the known concentration of the corresponding element, a correlation between the intensity of spectral lines and the element concentration was also achieved. The change of elemental composition at the transient stellite solder of tool steels has been determined by an area scan. The two-dimensional pictures show abrupt changes of the element distribution along the solder edge and allow fundamental researches of dynamic modifications (e.g., diffusion) in steel.
Crean, Daniel E; Livens, Francis R; Stennett, Martin C; Grolimund, Daniel; Borca, Camelia N; Hyatt, Neil C
2014-01-01
Use of depleted uranium (DU) munitions has resulted in contamination of the near-surface environment with penetrator residues. Uncertainty in the long-term environmental fate of particles produced by impact of DU penetrators with hard targets is a specific concern. In this study DU particles produced in this way and exposed to the surface terrestrial environment for longer than 30 years at a U.K. firing range were characterized using synchrotron X-ray chemical imaging. Two sites were sampled: a surface soil and a disposal area for DU-contaminated wood, and the U speciation was different between the two areas. Surface soil particles showed little extent of alteration, with U speciated as oxides U3O7 and U3O8. Uranium oxidation state and crystalline phase mapping revealed these oxides occur as separate particles, reflecting heterogeneous formation conditions. Particles recovered from the disposal area were substantially weathered, and U(VI) phosphate phases such as meta-ankoleite (K(UO2)(PO4) · 3H2O) were dominant. Chemical imaging revealed domains of contrasting U oxidation state linked to the presence of both U3O7 and meta-ankoleite, indicating growth of a particle alteration layer. This study demonstrates that substantial alteration of DU residues can occur, which directly influences the health and environmental hazards posed by this contamination.
Influence of dyadic matching of affect on infant self-regulation.
Noe, Daniela; Schluckwerder, Sabine; Reck, Corinna
2015-01-01
Affective behavioural matching during face-to-face interaction fosters the transition from mutual regulation to infant self-regulation. Optimum midrange models of mother-infant interaction hold that moderate degrees of dyadic matching facilitate infant socio-emotional development. The aim of this study was to examine which degree of dyadic matching is most beneficial for infant self-regulation. To evaluate this model, 3 groups of highly, midrange and poorly matched dyads were created from a mixed sample of 68 dyads with healthy and post-partum depressed mothers and their infants (age range = 1-8 months, mean age = 3.9 months). Mother-infant interactions were videotaped in the face-to-face still-face paradigm (FFSF) and micro-analytically coded. Specifically, the relation between affective behavioural matching in FFSF play and infant positive and negative affect in FFSF still face and FFSF reunion was explored. Contrary to our expectation, we found a monotonous trend for all groups: the more matching in FFSF play, the more positive and less negative affect the infant showed in FFSF still face and FFSF reunion, respectively. The present findings further illuminate the association between different degrees of dyadic matching in early mother-infant interaction and infant self-regulation. Further research should focus on the integration and replication of findings and conceptual approaches to further evaluate and refine the concept of midrange matching and make it applicable to therapeutic work with mothers and their infants.
Slavin, R E; Swedo, J; Cartwright, J; Viegas, S; Custer, E M
1988-02-01
Bullet wounds causing lead synovitis in the wrist and knee are reported in two patients, one of whom also developed clinical plumbism. Very high lead levels in the synovial fluid are believed to be responsible for toxicity changes that occurred in the synovium and bone. Ultrastructurally, these alterations included the formation of nuclear lead inclusions, dilation, and degranulation of the rough endoplasmic reticulum and deposition of crystalline precipitates in the matrix of the mitochondria in macrophages, osteoclasts, and synoviocytes, as well as the development of cytoplasmic lead inclusions in osteoclasts. Energy-dispersive x-ray elemental analysis (EDXEA) indicated that the nuclear inclusions contained only lead, whereas precipitates within the mitochondria and elsewhere in the cytoplasm were composed of complexes containing lead, calcium, and phosphorus. Similarly constituted extracellular complexes were incorporated into newly formed trabecular bone laid down as a physiologic response to the bullet lodged within the wrist bones. This bone subsequently exhibited defects in bone resorption, which were characterized by depressed osteoclastic function and a unique lesion termed incomplete osteocytic osteolysis. The genesis of this latter lesion is uncertain. The sequestration of the partially degraded bone fragments containing lead complexes into the marrow and eventually into the joint spaces and synovium permitted the recycling of bone lead, and this may have played an important role in inducing clinical plumbism in one of the patients in this study.
Research Spotlight: The next big thing is actually small.
Garcia, Carlos D
2012-07-01
Recent developments in materials, surface modifications, separation schemes, detection systems and associated instrumentation have allowed significant advances in the performance of lab-on-a-chip devices. These devices, also referred to as micro total analysis systems (µTAS), offer great versatility, high throughput, short analysis time, low cost and, more importantly, performance that is comparable to standard bench-top instrumentation. To date, µTAS have demonstrated advantages in a significant number of fields including biochemical, pharmaceutical, military and environmental. Perhaps most importantly, µTAS represent excellent platforms to introduce students to microfabrication and nanotechnology, bridging chemistry with other fields, such as engineering and biology, enabling the integration of various skills and curricular concepts. Considering the advantages of the technology and the potential impact to society, our research program aims to address the need for simpler, more affordable, faster and portable devices to measure biologically active compounds. Specifically, the program is focused on the development and characterization of a series of novel strategies towards the realization of integrated microanalytical devices. One key aspect of our research projects is that the developed analytical strategies must be compatible with each other; therefore, enabling their use in integrated devices. The program combines spectroscopy, surface chemistry, capillary electrophoresis, electrochemical detection and nanomaterials. This article discusses some of the most recent results obtained in two main areas of emphasis: capillary electrophoresis, microchip-capillary electrophoresis, electrochemical detection and interaction of proteins with nanomaterials.
Advances in aluminum anodizing
NASA Technical Reports Server (NTRS)
Dale, K. H.
1969-01-01
White anodize is applied to aluminum alloy surfaces by specific surface preparation, anodizing, pigmentation, and sealing techniques. The development techniques resulted in alloys, which are used in space vehicles, with good reflectance values and excellent corrosive resistance.
Analytical Chemistry of Surfaces: Part III. Ion Spectroscopy.
ERIC Educational Resources Information Center
Hercules, David M.; Hercules, Shirley H.
1984-01-01
The fundamentals of two surface techniques--secondary-ion mass spectrometry (SIMS) and ion-scattering spectrometry (ISS)--are discussed. Examples of how these techniques have been applied to surface problems are provided. (JN)
Laplace Transforms without Integration
ERIC Educational Resources Information Center
Robertson, Robert L.
2017-01-01
Calculating Laplace transforms from the definition often requires tedious integrations. This paper provides an integration-free technique for calculating Laplace transforms of many familiar functions. It also shows how the technique can be applied to probability theory.
Control strip study : interim report.
DOT National Transportation Integrated Search
1972-01-01
This report is concerned with the application of the "control strip" technique using nuclear devices for compaction control of certain base courses and asphaltic concrete surface course. The technique, as evaluated here, consisted of applying increas...
APPLYING DATA MINING APPROACHES TO FURTHER ...
This dataset will be used to illustrate various data mining techniques to biologically profile the chemical space. This dataset will be used to illustrate various data mining techniques to biologically profile the chemical space.
Applicability and Limitations of Reliability Allocation Methods
NASA Technical Reports Server (NTRS)
Cruz, Jose A.
2016-01-01
Reliability allocation process may be described as the process of assigning reliability requirements to individual components within a system to attain the specified system reliability. For large systems, the allocation process is often performed at different stages of system design. The allocation process often begins at the conceptual stage. As the system design develops, more information about components and the operating environment becomes available, different allocation methods can be considered. Reliability allocation methods are usually divided into two categories: weighting factors and optimal reliability allocation. When properly applied, these methods can produce reasonable approximations. Reliability allocation techniques have limitations and implied assumptions that need to be understood by system engineers. Applying reliability allocation techniques without understanding their limitations and assumptions can produce unrealistic results. This report addresses weighting factors, optimal reliability allocation techniques, and identifies the applicability and limitations of each reliability allocation technique.
The application of Environmental Friendly Technique For Seagrass Transplantation
NASA Astrophysics Data System (ADS)
Riniatsih, Ita; Hartati, Retno; Endrawati, Hadi; Mahendrajaya, Robertus; Redjeki, Sri; Widianingsih, Widianingsih
2018-02-01
Many attempts have been made to solve tremendous seagrass losses the marine environment in many area in the world. Artificial transplanting of shoots and spreading of seeds from intact meadows to non-vegetated coastal sediment are the most applied techniques. The study was aimed to apply environmentally seagrass tranplantation techniques in less vegetated area. Frame and small tube made from bamboo were used to do seagrass tranplantation in Jepara Waters. Vegetative shoots (springs) of Enhalus acoroides dan Cymodocea serrulata were collected from a healthy donor bed located nearby the transplantation site, and planted into unvegetated areas. Test transplant survival was assessed every month for three months. The result revealed that the survival rates of transplants were varied with the area. It might have due to difference in sediment characteristics of transplanting sites and transplant technique are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vieira, M.; Fantoni, A.; Martins, R.
1994-12-31
Using the Flying Spot Technique (FST) the authors have studied minority carrier transport parallel and perpendicular to the surface of amorphous silicon films (a-Si:H). To reduce slow transients due to charge redistribution in low resistivity regions during the measurement they have applied a strong homogeneously absorbed bias light. The defect density was estimated from Constant Photocurrent Method (CPM) measurements. The steady-state photocarrier grating technique (SSPG) is a 1-dimensional approach. However, the modulation depth of the carrier profile is also dependent on film surface properties, like surface recombination velocity. Both methods yield comparable diffusion lengths when applied to a-Si:H.
High Resolution Imaging of the Sun with CORONAS-1
NASA Technical Reports Server (NTRS)
Karovska, Margarita
1998-01-01
We applied several image restoration and enhancement techniques, to CORONAS-I images. We carried out the characterization of the Point Spread Function (PSF) using the unique capability of the Blind Iterative Deconvolution (BID) technique, which recovers the real PSF at a given location and time of observation, when limited a priori information is available on its characteristics. We also applied image enhancement technique to extract the small scale structure imbeded in bright large scale structures on the disk and on the limb. The results demonstrate the capability of the image post-processing to substantially increase the yield from the space observations by improving the resolution and reducing noise in the images.
Santiago-Rodriguez, Tasha M; Cano, Raúl J
2016-08-01
Soil microbial forensics can be defined as the study of how microorganisms can be applied to forensic investigations. The field of soil microbial forensics is of increasing interest and applies techniques commonly used in diverse disciplines in order to identify microbes and determine their abundances, complexities, and interactions with soil and surrounding objects. Emerging new techniques are also providing insights into the complexity of microbes in soil. Soil may harbor unique microbes that may reflect specific physical and chemical characteristics indicating site specificity. While applications of some of these techniques in the field of soil microbial forensics are still in early stages, we are still gaining insight into how microorganisms may be more robustly used in forensic investigations.
Topological study of nanomaterials using surface-enhanced ellipsometric contrast microscopy (SEEC)
NASA Astrophysics Data System (ADS)
Muckenhirn, Sylvain
2016-03-01
Innovations in nanotechnology are empowering scientists to deepen their understanding of physical, chemical and biological mechanisms. Powerful and precise characterization systems are essential to meet researchers' requirements. SEEC (Surface Enhanced Ellipsometric Contrast) microscopy is an innovative advanced optical technique based on ellipsometric and interference fringes of Fizeau principles. This technique offers live and label-free topographic imaging of organic, inorganic and biological samples with high Z resolution (down to 0.1nm thickness), and enhanced X-Y detection limit (down to 1.5nm width). This technique has been successfully applied to the study of nanometric films and structures, biological layers, and nano-objects. We applied SEEC technology to different applications explored below.
Electrolyzer assembly method and system
Swala, Dana Ray; Bourgeois, Richard Scott; Paraszczak, Steven; Buckley, Donald Joseph
2017-05-23
The present techniques provide a novel electrolyzer and methods for welding components of such electrolyzers. The techniques may use conductors, such as resistance wires, placed in paths around the internal structural features and edges of the components. The conductors may be incorporated into the components during manufacture by injection molding, or other molding techniques, or may be tacked or otherwise applied to the surface of the components after manufacture. When current, a field or other excitation is applied to the conductors, the plastic surrounding the wire is melted. If this plastic is in direct contact with an adjoining component, a strong, hermetic seal may be formed between the two components, including the internal structural features.
An Optimized Integrator Windup Protection Technique Applied to a Turbofan Engine Control
NASA Technical Reports Server (NTRS)
Watts, Stephen R.; Garg, Sanjay
1995-01-01
This paper introduces a new technique for providing memoryless integrator windup protection which utilizes readily available optimization software tools. This integrator windup protection synthesis provides a concise methodology for creating integrator windup protection for each actuation system loop independently while assuring both controller and closed loop system stability. The individual actuation system loops' integrator windup protection can then be combined to provide integrator windup protection for the entire system. This technique is applied to an H(exp infinity) based multivariable control designed for a linear model of an advanced afterburning turbofan engine. The resulting transient characteristics are examined for the integrated system while encountering single and multiple actuation limits.
Towards Real Time Diagnostics of Hybrid Welding Laser/GMAW
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timothy Mcjunkin; Dennis C. Kunerth; Corrie Nichol
2013-07-01
Methods are currently being developed towards a more robust system real time feedback in the high throughput process combining laser welding with gas metal arc welding. A combination of ultrasonic, eddy current, electronic monitoring, and visual techniques are being applied to the welding process. Initial simulation and bench top evaluation of proposed real time techniques on weld samples are presented along with the concepts to apply the techniques concurrently to the weld process. Consideration for the eventual code acceptance of the methods and system are also being researched as a component of this project. The goal is to detect defectsmore » or precursors to defects and correct when possible during the weld process.« less
Towards real time diagnostics of Hybrid Welding Laser/GMAW
DOE Office of Scientific and Technical Information (OSTI.GOV)
McJunkin, T. R.; Kunerth, D. C.; Nichol, C. I.
2014-02-18
Methods are currently being developed towards a more robust system real time feedback in the high throughput process combining laser welding with gas metal arc welding. A combination of ultrasonic, eddy current, electronic monitoring, and visual techniques are being applied to the welding process. Initial simulation and bench top evaluation of proposed real time techniques on weld samples are presented along with the concepts to apply the techniques concurrently to the weld process. Consideration for the eventual code acceptance of the methods and system are also being researched as a component of this project. The goal is to detect defectsmore » or precursors to defects and correct when possible during the weld process.« less
Towards real time diagnostics of Hybrid Welding Laser/GMAW
NASA Astrophysics Data System (ADS)
McJunkin, T. R.; Kunerth, D. C.; Nichol, C. I.; Todorov, E.; Levesque, S.
2014-02-01
Methods are currently being developed towards a more robust system real time feedback in the high throughput process combining laser welding with gas metal arc welding. A combination of ultrasonic, eddy current, electronic monitoring, and visual techniques are being applied to the welding process. Initial simulation and bench top evaluation of proposed real time techniques on weld samples are presented along with the concepts to apply the techniques concurrently to the weld process. Consideration for the eventual code acceptance of the methods and system are also being researched as a component of this project. The goal is to detect defects or precursors to defects and correct when possible during the weld process.
[Technique and value of direct MR arthrography applying articular distraction].
Becce, Fabio; Wettstein, Michael; Guntern, Daniel; Mouhsine, Elyazid; Palhais, Nuno; Theumann, Nicolas
2010-02-24
Direct MR arthrography has a better diagnostic accuracy than MR imaging alone. However, contrast material is not always homogeneously distributed in the articular space. Lesions of cartilage surfaces or intra-articular soft tissues can thus be misdiagnosed. Concomitant application of axial traction during MR arthrography leads to articular distraction. This enables better distribution of contrast material in the joint and better delineation of intra-articular structures. Therefore, this technique improves detection of cartilage lesions. Moreover, the axial stress applied on articular structures may reveal lesions invisible on MR images without traction. Based on our clinical experience, we believe that this relatively unknown technique is promising and should be further developed.
Photographic film image enhancement
NASA Technical Reports Server (NTRS)
Horner, J. L.
1975-01-01
A series of experiments were undertaken to assess the feasibility of defogging color film by the techniques of optical spatial filtering. A coherent optical processor was built using red, blue, and green laser light input and specially designed Fourier transformation lenses. An array of spatial filters was fabricated on black and white emulsion slides using the coherent optical processor. The technique was first applied to laboratory white light fogged film, and the results were successful. However, when the same technique was applied to some original Apollo X radiation fogged color negatives, the results showed no similar restoration. Examples of each experiment are presented and possible reasons for the lack of restoration in the Apollo films are discussed.
Novel Application of FTIR Spectroscopy for the Passive Standoff Detection of Radiological Materials
2006-08-01
possibility of applying the long-wave passive standoff detection technique to the identification of radiological materials. This work is based on...infrared (FTIR) radiometry is a well-known technique for detecting and identifying chemical warfare agents. In addition to these potential threats...necessary tools and techniques available for detecting and identifying radioactive products. At present, the main detection techniques depend on methods
Myocardial blood flow: Roentgen videodensitometry techniques
NASA Technical Reports Server (NTRS)
Smith, H. C.; Robb, R. A.; Wood, E. H.
1975-01-01
The current status of roentgen videodensitometric techniques that provide an objective assessment of blood flow at selected sites within the coronary circulation were described. Roentgen videodensitometry employs conventional radiopaque indicators, radiological equipment and coronary angiographic techniques. Roentgen videodensitometry techniques developed in the laboratory during the past nine years, and for the past three years were applied to analysis of angiograms in the clinical cardiac catheterization laboratory.
Surface chemistry at Swiss Universities of Applied Sciences.
Brodard, Pierre; Pfeifer, Marc E; Adlhart, Christian D; Pieles, Uwe; Shahgaldian, Patrick
2014-01-01
In the Swiss Universities of Applied Sciences, a number of research groups are involved in surface science, with different methodological approaches and a broad range of sophisticated characterization techniques. A snapshot of the current research going on in different groups from the University of Applied Sciences and Arts Western Switzerland (HES-SO), the Zurich University of Applied Sciences (ZHAW) and the University of Applied Sciences and Arts Northwestern Switzerland (FHNW) is given.
A Hydrothermal Study of Wachusett Reservoir with Considerations of Water Quality Management
1989-05-01
of Water Quality Management Techniques 108 1 5.1 Current operational management techniques 108 5.2 Copper toxicity and considerations for algicide ...sulfate (CuSO 4) is applied to the epilimnion of the reservoir. The method of treatment consists of dragging burlap sacks of the algicide crystal through...Figure 5.2 shows the application rate for the Fall of 1987 amounting to over 20 tons of algicide applied for the fall period. In addition to a sampling
NASA Technical Reports Server (NTRS)
Bailey, R. R.; Wightman, J. P.
1975-01-01
The influence of outgas conditions and temperature on the adsorptive properties of two aluminas Alon-c and Al6sG were studied using adsorption isotherm measurements. Alon-C and Al6SG were characterized using X-ray powder diffraction, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and BET nitrogen surface areas. Some of these techniques were applied to two other aluminas but no isotherm data was obtained. Isotherm data and techniques applied to each alumina are summarized in tabular form.
Evaluation of vibrated fluidized bed techniques in coating hemosorbents.
Morley, D B
1991-06-01
A coating technique employing a vibrated fluidized bed was used to apply an ultrathin (2 microns) cellulose nitrate coating to synthetic bead activated charcoal. In vitro characteristics of the resulting coated sorbent, including permeability to model small and middle molecules, and mechanical integrity, were evaluated to determine the suitability of the process in coating granular sorbents used in hemoperfusion. Initial tests suggest the VFB-applied CN coating is both highly uniform and tightly adherent and warrants further investigation as a hemosorbent coating.
Modal control of an oblique wing aircraft
NASA Technical Reports Server (NTRS)
Phillips, James D.
1989-01-01
A linear modal control algorithm is applied to the NASA Oblique Wing Research Aircraft (OWRA). The control law is evaluated using a detailed nonlinear flight simulation. It is shown that the modal control law attenuates the coupling and nonlinear aerodynamics of the oblique wing and remains stable during control saturation caused by large command inputs or large external disturbances. The technique controls each natural mode independently allowing single-input/single-output techniques to be applied to multiple-input/multiple-output systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Francavilla, T.L.; Gubser, D.U.; Pande, C.S.
1985-03-01
The temperature dependence of V/sub 3/Ga multifilamentary wire produced by the modified jelly roll technique is reported as a function of applied magnetic field in the range 10K - 14K and 0-13T. Parameters which relate J /SUB c/ to H at 4.2K were found to apply at these temperatures and fields. The form of the temperature dependence of the critical current density is compared with theory.
Error-trellis Syndrome Decoding Techniques for Convolutional Codes
NASA Technical Reports Server (NTRS)
Reed, I. S.; Truong, T. K.
1984-01-01
An error-trellis syndrome decoding technique for convolutional codes is developed. This algorithm is then applied to the entire class of systematic convolutional codes and to the high-rate, Wyner-Ash convolutional codes. A special example of the one-error-correcting Wyner-Ash code, a rate 3/4 code, is treated. The error-trellis syndrome decoding method applied to this example shows in detail how much more efficient syndrome decoding is than Viterbi decoding if applied to the same problem. For standard Viterbi decoding, 64 states are required, whereas in the example only 7 states are needed. Also, within the 7 states required for decoding, many fewer transitions are needed between the states.
Error-trellis syndrome decoding techniques for convolutional codes
NASA Technical Reports Server (NTRS)
Reed, I. S.; Truong, T. K.
1985-01-01
An error-trellis syndrome decoding technique for convolutional codes is developed. This algorithm is then applied to the entire class of systematic convolutional codes and to the high-rate, Wyner-Ash convolutional codes. A special example of the one-error-correcting Wyner-Ash code, a rate 3/4 code, is treated. The error-trellis syndrome decoding method applied to this example shows in detail how much more efficient syndrome decordig is than Viterbi decoding if applied to the same problem. For standard Viterbi decoding, 64 states are required, whereas in the example only 7 states are needed. Also, within the 7 states required for decoding, many fewer transitions are needed between the states.
Cognitive Support in Teaching Football Techniques
ERIC Educational Resources Information Center
Duda, Henryk
2009-01-01
Study aim: To improve the teaching of football techniques by applying cognitive and imagery techniques. Material and methods: Four groups of subjects, n = 32 each, were studied: male and female physical education students aged 20-21 years, not engaged previously in football training; male juniors and minors, aged 16 and 13 years, respectively,…
Development of analysis techniques for remote sensing of vegetation resources
NASA Technical Reports Server (NTRS)
Draeger, W. C.
1972-01-01
Various data handling and analysis techniques are summarized for evaluation of ERTS-A and supporting high flight imagery. These evaluations are concerned with remote sensors applied to wildland and agricultural vegetation resource inventory problems. Monitoring California's annual grassland, automatic texture analysis, agricultural ground data collection techniques, and spectral measurements are included.
NASA Technical Reports Server (NTRS)
Ricks, Wendell R.
1995-01-01
Pairwise comparison (PWC) is computer program that collects data for psychometric scaling techniques now used in cognitive research. It applies technique of pairwise comparisons, which is one of many techniques commonly used to acquire the data necessary for analyses. PWC administers task, collects data from test subject, and formats data for analysis. Written in Turbo Pascal v6.0.
Segmentation Techniques for Expanding a Library Instruction Market: Evaluating and Brainstorming.
ERIC Educational Resources Information Center
Warren, Rebecca; Hayes, Sherman; Gunter, Donna
2001-01-01
Describes a two-part segmentation technique applied to an instruction program for an academic library during a strategic planning process. Discusses a brainstorming technique used to create a list of existing and potential audiences, and then describes a follow-up review session that evaluated the past years' efforts. (Author/LRW)
Photoacoustic technique applied to the study of skin and leather
NASA Astrophysics Data System (ADS)
Vargas, M.; Varela, J.; Hernández, L.; González, A.
1998-08-01
In this paper the photoacoustic technique is used in bull skin for the determination of thermal and optical properties as a function of the tanning process steps. Our results show that the photoacoustic technique is sensitive to the study of physical changes in this kind of material due to the tanning process.
Hot-wire anemometry in hypersonic helium flow
NASA Technical Reports Server (NTRS)
Wagner, R. D.; Weinstein, L. M.
1974-01-01
Hot-wire anemometry techniques are described that have been developed and used for hypersonic-helium-flow studies. The short run time available dictated certain innovations in applying conventional hot-wire techniques. Some examples are given to show the application of the techniques used. Modifications to conventional equipment are described, including probe modifications and probe heating controls.
Modeling software systems by domains
NASA Technical Reports Server (NTRS)
Dippolito, Richard; Lee, Kenneth
1992-01-01
The Software Architectures Engineering (SAE) Project at the Software Engineering Institute (SEI) has developed engineering modeling techniques that both reduce the complexity of software for domain-specific computer systems and result in systems that are easier to build and maintain. These techniques allow maximum freedom for system developers to apply their domain expertise to software. We have applied these techniques to several types of applications, including training simulators operating in real time, engineering simulators operating in non-real time, and real-time embedded computer systems. Our modeling techniques result in software that mirrors both the complexity of the application and the domain knowledge requirements. We submit that the proper measure of software complexity reflects neither the number of software component units nor the code count, but the locus of and amount of domain knowledge. As a result of using these techniques, domain knowledge is isolated by fields of engineering expertise and removed from the concern of the software engineer. In this paper, we will describe kinds of domain expertise, describe engineering by domains, and provide relevant examples of software developed for simulator applications using the techniques.
Matías, J M; Taboada, J; Ordóñez, C; Nieto, P G
2007-08-17
This article describes a methodology to model the degree of remedial action required to make short stretches of a roadway suitable for dangerous goods transport (DGT), particularly pollutant substances, using different variables associated with the characteristics of each segment. Thirty-one factors determining the impact of an accident on a particular stretch of road were identified and subdivided into two major groups: accident probability factors and accident severity factors. Given the number of factors determining the state of a particular road segment, the only viable statistical methods for implementing the model were machine learning techniques, such as multilayer perceptron networks (MLPs), classification trees (CARTs) and support vector machines (SVMs). The results produced by these techniques on a test sample were more favourable than those produced by traditional discriminant analysis, irrespective of whether dimensionality reduction techniques were applied. The best results were obtained using SVMs specifically adapted to ordinal data. This technique takes advantage of the ordinal information contained in the data without penalising the computational load. Furthermore, the technique permits the estimation of the utility function that is latent in expert knowledge.
Islas, Gabriela; Hernandez, Prisciliano
2017-01-01
To achieve analytical success, it is necessary to develop thorough clean-up procedures to extract analytes from the matrix. Dispersive solid phase extraction (DSPE) has been used as a pretreatment technique for the analysis of several compounds. This technique is based on the dispersion of a solid sorbent in liquid samples in the extraction isolation and clean-up of different analytes from complex matrices. DSPE has found a wide range of applications in several fields, and it is considered to be a selective, robust, and versatile technique. The applications of dispersive techniques in the analysis of veterinary drugs in different matrices involve magnetic sorbents, molecularly imprinted polymers, carbon-based nanomaterials, and the Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) method. Techniques based on DSPE permit minimization of additional steps such as precipitation, centrifugation, and filtration, which decreases the manipulation of the sample. In this review, we describe the main procedures used for synthesis, characterization, and application of this pretreatment technique and how it has been applied to food analysis. PMID:29181027
Noise suppression in surface microseismic data
Forghani-Arani, Farnoush; Batzle, Mike; Behura, Jyoti; Willis, Mark; Haines, Seth S.; Davidson, Michael
2012-01-01
We introduce a passive noise suppression technique, based on the τ − p transform. In the τ − p domain, one can separate microseismic events from surface noise based on distinct characteristics that are not visible in the time-offset domain. By applying the inverse τ − p transform to the separated microseismic event, we suppress the surface noise in the data. Our technique significantly improves the signal-to-noise ratios of the microseismic events and is superior to existing techniques for passive noise suppression in the sense that it preserves the waveform. We introduce a passive noise suppression technique, based on the τ − p transform. In the τ − p domain, one can separate microseismic events from surface noise based on distinct characteristics that are not visible in the time-offset domain. By applying the inverse τ − p transform to the separated microseismic event, we suppress the surface noise in the data. Our technique significantly improves the signal-to-noise ratios of the microseismic events and is superior to existing techniques for passive noise suppression in the sense that it preserves the waveform.
Design and fabrication of planar structures with graded electromagnetic properties
NASA Astrophysics Data System (ADS)
Good, Brandon Lowell
Successfully integrating electromagnetic properties in planar structures offers numerous benefits to the microwave and optical communities. This work aims at formulating new analytic and optimized design methods, creating new fabrication techniques for achieving those methods, and matching appropriate implementation of methods to fabrication techniques. The analytic method consists of modifying an approach that realizes perfect antireflective properties from graded profiles. This method is shown for all-dielectric and magneto-dielectric grading profiles. The optimized design methods are applied to transformer (discrete) or taper (continuous) designs. From these methods, a subtractive and an additive manufacturing technique were established and are described. The additive method, dry powder dot deposition, enables three dimensional varying electromagnetic properties in a structural composite. Combining the methods and fabrication is shown in two applied methodologies. The first uses dry powder dot deposition to design one dimensionally graded electromagnetic profiles in a planar fiberglass composite. The second method simultaneously applies antireflective properties and adjusts directivity through a slab through the use of subwavelength structures to achieve a flat antireflective lens. The end result of this work is a complete set of methods, formulations, and fabrication techniques to achieve integrated electromagnetic properties in planar structures.
NASA Astrophysics Data System (ADS)
Itoh, Hideo; Lin, Xin; Kaji, Ryosaku; Niwa, Tatsuya; Nakamura, Yoshiyuki; Nishimura, Takuichi
2006-01-01
The National Institute of Advanced Industrial Science and Technology (AIST) in Japan has been developing Aimulet, which is a compact low-power consuming information terminal for a personal information services. Conventional Aimulet, which is called Aimulet ver. 1 or CoBIT, has features of location and direction sensitive information service device without batteries. On the other hand, the Aimulet ver. 1 has two subjects, one is multiplex and demultiplex of some contents, and another is operation under sunshine. In Former subject is of solved by the wavelength multiplex technique using LED emitter with different wavelength and dielectric optical filters. Latter subject is solved by new micro spherical solar cells with a visible-light-eliminating optical filter and a new design of light irradiation. These techniques are applied to the EXPO 2005, Aichi Japan and introduced in public. The former technique is applied on Aimulet GH, which is used in Orange Hall of the Global House, scientific museum with a fossil of a frozen mammoth. The latter technique is applied on Aimulet LA, which is used in the Laurie Anderson's WALK project in the Japanese Garden.
Mathias, Patrick C; Turner, Emily H; Scroggins, Sheena M; Salipante, Stephen J; Hoffman, Noah G; Pritchard, Colin C; Shirts, Brian H
2016-03-01
To apply techniques for ancestry and sex computation from next-generation sequencing (NGS) data as an approach to confirm sample identity and detect sample processing errors. We combined a principal component analysis method with k-nearest neighbors classification to compute the ancestry of patients undergoing NGS testing. By combining this calculation with X chromosome copy number data, we determined the sex and ancestry of patients for comparison with self-report. We also modeled the sensitivity of this technique in detecting sample processing errors. We applied this technique to 859 patient samples with reliable self-report data. Our k-nearest neighbors ancestry screen had an accuracy of 98.7% for patients reporting a single ancestry. Visual inspection of principal component plots was consistent with self-report in 99.6% of single-ancestry and mixed-ancestry patients. Our model demonstrates that approximately two-thirds of potential sample swaps could be detected in our patient population using this technique. Patient ancestry can be estimated from NGS data incidentally sequenced in targeted panels, enabling an inexpensive quality control method when coupled with patient self-report. © American Society for Clinical Pathology, 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Saleh, Sarah S.; Lotfy, Hayam M.; Hassan, Nagiba Y.; Salem, Hesham
2014-11-01
This work represents a comparative study of a novel progressive spectrophotometric resolution technique namely, amplitude center method (ACM), versus the well-established successive spectrophotometric resolution techniques namely; successive derivative subtraction (SDS); successive derivative of ratio spectra (SDR) and mean centering of ratio spectra (MCR). All the proposed spectrophotometric techniques consist of several consecutive steps utilizing ratio and/or derivative spectra. The novel amplitude center method (ACM) can be used for the determination of ternary mixtures using single divisor where the concentrations of the components are determined through progressive manipulation performed on the same ratio spectrum. Those methods were applied for the analysis of the ternary mixture of chloramphenicol (CHL), dexamethasone sodium phosphate (DXM) and tetryzoline hydrochloride (TZH) in eye drops in the presence of benzalkonium chloride as a preservative. The proposed methods were checked using laboratory-prepared mixtures and were successfully applied for the analysis of pharmaceutical formulation containing the cited drugs. The proposed methods were validated according to the ICH guidelines. A comparative study was conducted between those methods regarding simplicity, limitation and sensitivity. The obtained results were statistically compared with those obtained from the official BP methods, showing no significant difference with respect to accuracy and precision.
NASA Astrophysics Data System (ADS)
Parvin, Fahmida; Sultana, Nargis; Habib, S. M. Ahsan; Bhoumik, Nikhil Chandra
2017-11-01
The aim of this study is to find out the facile and effective pretreatment technique to enhance the capacity of jute stick powder (JSP) in adsorbing dye from raw textile effluent. Hence, different pretreatment techniques, i.e., radiation treatment, alkali treatment, ammonia treatment, steam treatment and CaCl2 treatment were applied to JSP and the adsorbing performance were examined for synthetic dye solutions (Blue FCL and Red RL dye). Different gamma radiation doses were applied on JSP and optimum dye removal efficiency was found at 500 krad in removing these two dyes (50 ppm) from solutions. Among the different pretreatment techniques, gamma irradiated JSP (500 Krad) exhibits highest dye uptake capacity for RED RL dye, whereas steam-treated JSP shows highest performance in adsorbing blue FCL dye. Subsequently, we applied the gamma irradiated and steam-treated JSP on real textile effluent (RTE) and these two techniques shows potentiality in adsorbing dye from raw textile effluent and in reducing BOD5, COD load and TOC to some extent as well. Fourier transform infrared spectroscopy (FTIR) analysis also proved that dye has been adsorbed on pretreated JSP.
The correlated k-distribution technique as applied to the AVHRR channels
NASA Technical Reports Server (NTRS)
Kratz, David P.
1995-01-01
Correlated k-distributions have been created to account for the molecular absorption found in the spectral ranges of the five Advanced Very High Resolution Radiometer (AVHRR) satellite channels. The production of the k-distributions was based upon an exponential-sum fitting of transmissions (ESFT) technique which was applied to reference line-by-line absorptance calculations. To account for the overlap of spectral features from different molecular species, the present routines made use of the multiplication transmissivity property which allows for considerable flexibility, especially when altering relative mixing ratios of the various molecular species. To determine the accuracy of the correlated k-distribution technique as compared to the line-by-line procedure, atmospheric flux and heating rate calculations were run for a wide variety of atmospheric conditions. For the atmospheric conditions taken into consideration, the correlated k-distribution technique has yielded results within about 0.5% for both the cases where the satellite spectral response functions were applied and where they were not. The correlated k-distribution's principal advantages is that it can be incorporated directly into multiple scattering routines that consider scattering as well as absorption by clouds and aerosol particles.
Trompier, François; Burbidge, Christopher; Bassinet, Céline; Baumann, Marion; Bortolin, Emanuela; De Angelis, Cinzia; Eakins, Jonathan; Della Monaca, Sara; Fattibene, Paola; Quattrini, Maria Cristina; Tanner, Rick; Wieser, Albrecht; Woda, Clemens
2017-01-01
In the EC-funded project RENEB (Realizing the European Network in Biodosimetry), physical methods applied to fortuitous dosimetric materials are used to complement biological dosimetry, to increase dose assessment capacity for large-scale radiation/nuclear accidents. This paper describes the work performed to implement Optically Stimulated Luminescence (OSL) and Electron Paramagnetic Resonance (EPR) dosimetry techniques. OSL is applied to electronic components and EPR to touch-screen glass from mobile phones. To implement these new approaches, several blind tests and inter-laboratory comparisons (ILC) were organized for each assay. OSL systems have shown good performances. EPR systems also show good performance in controlled conditions, but ILC have also demonstrated that post-irradiation exposure to sunlight increases the complexity of the EPR signal analysis. Physically-based dosimetry techniques present high capacity, new possibilities for accident dosimetry, especially in the case of large-scale events. Some of the techniques applied can be considered as operational (e.g. OSL on Surface Mounting Devices [SMD]) and provide a large increase of measurement capacity for existing networks. Other techniques and devices currently undergoing validation or development in Europe could lead to considerable increases in the capacity of the RENEB accident dosimetry network.
Implementation speed of deterministic population passages compared to that of Rabi pulses
NASA Astrophysics Data System (ADS)
Chen, Jingwei; Wei, L. F.
2015-02-01
Fast Rabi π -pulse technique has been widely applied to various coherent quantum manipulations, although it requires precise designs of the pulse areas. Relaxing the precise pulse designs, various rapid adiabatic passage (RAP) approaches have been alternatively utilized to implement various population passages deterministically. However, the usual RAP protocol could not be implemented desirably fast, as the relevant adiabatic condition should be robustly satisfied during the passage. Here, we propose a modified shortcut to adiabaticity (STA) technique to accelerate significantly the desired deterministic quantum state population passages. This transitionless technique is beyond the usual rotating wave approximation (RWA) performed in the recent STA protocols, and thus can be applied to deliver various fast quantum evolutions wherein the relevant counter-rotating effects cannot be neglected. The proposal is demonstrated specifically with the driven two- and three-level systems. Numerical results show that with the present STA technique beyond the RWA the usual Stark-chirped RAPs and stimulated Raman adiabatic passages could be significantly speeded up; the deterministic population passages could be implemented as fast as the widely used fast Rabi π pulses, but are insensitive to the applied pulse areas.
NASA Technical Reports Server (NTRS)
Barnett, Alan R.; Widrick, Timothy W.; Ludwiczak, Damian R.
1995-01-01
Solving for the displacements of free-free coupled systems acted upon by static loads is commonly performed throughout the aerospace industry. Many times, these problems are solved using static analysis with inertia relief. This solution technique allows for a free-free static analysis by balancing the applied loads with inertia loads generated by the applied loads. For some engineering applications, the displacements of the free-free coupled system induce additional static loads. Hence, the applied loads are equal to the original loads plus displacement-dependent loads. Solving for the final displacements of such systems is commonly performed using iterative solution techniques. Unfortunately, these techniques can be time-consuming and labor-intensive. Since the coupled system equations for free-free systems with displacement-dependent loads can be written in closed-form, it is advantageous to solve for the displacements in this manner. Implementing closed-form equations in static analysis with inertia relief is analogous to implementing transfer functions in dynamic analysis. Using a MSC/NASTRAN DMAP Alter, displacement-dependent loads have been included in static analysis with inertia relief. Such an Alter has been used successfully to solve efficiently a common aerospace problem typically solved using an iterative technique.
Gondal, M A; Seddigi, Z S; Nasr, M M; Gondal, B
2010-03-15
Laser Induced Breakdown Spectroscopy (LIBS) technique was applied to determine the concentrations of different toxic elements like lead, chromium, cadmium and zinc in four different lipstick brands sold at local markets in Saudi Arabia. These samples contain toxic elements like lead, cadmium and chromium which are carcinogen dermatitis, allergic and eczematous. Their extraction from human body takes over 40 years and accumulation in the body cause problems like disruption of nervous systems and kidney damage. They could trigger to systemic lupus erythematosus (SLE). In order to test the validity of our LIBS results, standard technique like (ICP-AES) was also applied. To the best of our knowledge, this is the first study where LIBS technique was applied for the measurement of toxic substances in lipsticks. The maximum concentration detected in four lipstick brands was much higher than the permissible safe limits for human use and could lead to serious health problems. It is worth mentioning that the lipstick is not a solid rather is in fluid state which is not trivial to analyze using LIBS technique. For this purpose, special treatment of the lipstick samples was necessary to analyze with our LIBS method. (c) 2009 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Yapici, Hakki
2016-01-01
The aim of this study is to apply the jigsaw technique in Social Sciences teaching and to unroll the effects of this technique on learning. The unit "Science within Time" in the secondary 7th grade Social Sciences text book was chosen for the research. It is aimed to compare the jigsaw technique with the traditional teaching method in…
A review on prognostic techniques for non-stationary and non-linear rotating systems
NASA Astrophysics Data System (ADS)
Kan, Man Shan; Tan, Andy C. C.; Mathew, Joseph
2015-10-01
The field of prognostics has attracted significant interest from the research community in recent times. Prognostics enables the prediction of failures in machines resulting in benefits to plant operators such as shorter downtimes, higher operation reliability, reduced operations and maintenance cost, and more effective maintenance and logistics planning. Prognostic systems have been successfully deployed for the monitoring of relatively simple rotating machines. However, machines and associated systems today are increasingly complex. As such, there is an urgent need to develop prognostic techniques for such complex systems operating in the real world. This review paper focuses on prognostic techniques that can be applied to rotating machinery operating under non-linear and non-stationary conditions. The general concept of these techniques, the pros and cons of applying these methods, as well as their applications in the research field are discussed. Finally, the opportunities and challenges in implementing prognostic systems and developing effective techniques for monitoring machines operating under non-stationary and non-linear conditions are also discussed.
NASA Technical Reports Server (NTRS)
Takacs, Lawrence L.; Sawyer, William; Suarez, Max J. (Editor); Fox-Rabinowitz, Michael S.
1999-01-01
This report documents the techniques used to filter quantities on a stretched grid general circulation model. Standard high-latitude filtering techniques (e.g., using an FFT (Fast Fourier Transformations) to decompose and filter unstable harmonics at selected latitudes) applied on a stretched grid are shown to produce significant distortions of the prognostic state when used to control instabilities near the pole. A new filtering technique is developed which accurately accounts for the non-uniform grid by computing the eigenvectors and eigenfrequencies associated with the stretching. A filter function, constructed to selectively damp those modes whose associated eigenfrequencies exceed some critical value, is used to construct a set of grid-spaced weights which are shown to effectively filter without distortion. Both offline and GCM (General Circulation Model) experiments are shown using the new filtering technique. Finally, a brief examination is also made on the impact of applying the Shapiro filter on the stretched grid.
Harrison, Peter M C; Collins, Tom; Müllensiefen, Daniel
2017-06-15
Modern psychometric theory provides many useful tools for ability testing, such as item response theory, computerised adaptive testing, and automatic item generation. However, these techniques have yet to be integrated into mainstream psychological practice. This is unfortunate, because modern psychometric techniques can bring many benefits, including sophisticated reliability measures, improved construct validity, avoidance of exposure effects, and improved efficiency. In the present research we therefore use these techniques to develop a new test of a well-studied psychological capacity: melodic discrimination, the ability to detect differences between melodies. We calibrate and validate this test in a series of studies. Studies 1 and 2 respectively calibrate and validate an initial test version, while Studies 3 and 4 calibrate and validate an updated test version incorporating additional easy items. The results support the new test's viability, with evidence for strong reliability and construct validity. We discuss how these modern psychometric techniques may also be profitably applied to other areas of music psychology and psychological science in general.
NASA Technical Reports Server (NTRS)
Mellstrom, J. A.; Smyth, P.
1991-01-01
The results of applying pattern recognition techniques to diagnose fault conditions in the pointing system of one of the Deep Space network's large antennas, the DSS 13 34-meter structure, are discussed. A previous article described an experiment whereby a neural network technique was used to identify fault classes by using data obtained from a simulation model of the Deep Space Network (DSN) 70-meter antenna system. Described here is the extension of these classification techniques to the analysis of real data from the field. The general architecture and philosophy of an autonomous monitoring paradigm is described and classification results are discussed and analyzed in this context. Key features of this approach include a probabilistic time-varying context model, the effective integration of signal processing and system identification techniques with pattern recognition algorithms, and the ability to calibrate the system given limited amounts of training data. Reported here are recognition accuracies in the 97 to 98 percent range for the particular fault classes included in the experiments.
Carroll, Patrick D.; Widness, John A.
2012-01-01
The development of anemia after birth in very premature, critically ill newborn infants is a universal well-described phenomenon. Although preventing anemia in this population, along with efforts to establish optimal red blood cell (RBC) transfusion and pharmacologic therapy continue to be actively investigated, the present review focuses exclusively on nonpharmacological approaches to the prevention and treatment of neonatal anemia. We begin with an overview of topics relevant to nonpharmacological techniques. These topics include neonatal and fetoplacental hemoglobin levels and blood volumes, clinical and laboratory practices applied in critically ill neonates, and current RBC transfusion practice guidelines. This is followed by a discussion of the most effective and promising nonpharmacological blood conservation strategies and techniques. Fortunately, many of these techniques are feasible in most neonatal intensive care units. When applied together, these techniques are more effective than existing pharmacotherapies in significantly decreasing neonatal RBC transfusions. They include increasing hemoglobin endowment and circulating blood volume at birth; removing less blood for laboratory testing; and optimizing nutrition. PMID:22818543
Lorido, Laura; Estévez, Mario; Ventanas, Sonia
2014-01-01
Although dynamic sensory techniques such as time-intensity (TI) have been applied to certain meat products, existing knowledge regarding the temporal sensory perception of muscle foods is still limited. The objective of the present study was to apply TI to the flavour and texture perception of three different Iberian meat products: liver pâté, dry-cured sausages ("salchichon") and dry-cured loin. Moreover, the advantages of using dynamic versus static sensory techniques were explored by subjecting the same products to a quantitative descriptive analysis (QDA). TI was a suitable technique to assess the impact of composition and structure of the three meat products on flavour and texture perception from a dynamic perspective. TI parameters extracted from the TI-curves and related to temporal perception enabled the detection of clear differences in sensory temporal perception between the meat products and provided additional insight on sensory perception compared to the conventional static sensory technique (QDA). © 2013.
NASA Astrophysics Data System (ADS)
Bi, Chuan-Xing; Hu, Ding-Yu; Zhang, Yong-Bin; Jing, Wen-Qian
2015-06-01
In previous studies, an equivalent source method (ESM)-based technique for recovering the free sound field in a noisy environment has been successfully applied to exterior problems. In order to evaluate its performance when applied to a more general noisy environment, that technique is used to identify active sources inside cavities where the sound field is composed of the field radiated by active sources and that reflected by walls. A patch approach with two semi-closed surfaces covering the target active sources is presented to perform the measurements, and the field that would be radiated by these target active sources into free space is extracted from the mixed field by using the proposed technique, which will be further used as the input of nearfield acoustic holography for source identification. Simulation and experimental results validate the effectiveness of the proposed technique for source identification in cavities, and show the feasibility of performing the measurements with a double layer planar array.
VEG: An intelligent workbench for analysing spectral reflectance data
NASA Technical Reports Server (NTRS)
Harrison, P. Ann; Harrison, Patrick R.; Kimes, Daniel S.
1994-01-01
An Intelligent Workbench (VEG) was developed for the systematic study of remotely sensed optical data from vegetation. A goal of the remote sensing community is to infer the physical and biological properties of vegetation cover (e.g. cover type, hemispherical reflectance, ground cover, leaf area index, biomass, and photosynthetic capacity) using directional spectral data. VEG collects together, in a common format, techniques previously available from many different sources in a variety of formats. The decision as to when a particular technique should be applied is nonalgorithmic and requires expert knowledge. VEG has codified this expert knowledge into a rule-based decision component for determining which technique to use. VEG provides a comprehensive interface that makes applying the techniques simple and aids a researcher in developing and testing new techniques. VEG also provides a classification algorithm that can learn new classes of surface features. The learning system uses the database of historical cover types to learn class descriptions of one or more classes of cover types.
Determination of Residual Stresses in Rails
DOT National Transportation Integrated Search
1983-05-01
A destructive sectioning technique for measuring the complete three-dimensional residual stresses in a rail cross section was developed. The technique was applied to four tangent rail specimens: two 136-pound specimens were taken from FAST (Facility ...
Diagnostic Radiology--The Impact of New Technology.
ERIC Educational Resources Information Center
Harrison, R. M.
1989-01-01
Discussed are technological advances applying computer techniques for image acquisition and processing, including digital radiography, computed tomography, and nuclear magnetic resonance imaging. Several diagrams and pictures showing the use of each technique are presented. (YP)
Reachability analysis of real-time systems using time Petri nets.
Wang, J; Deng, Y; Xu, G
2000-01-01
Time Petri nets (TPNs) are a popular Petri net model for specification and verification of real-time systems. A fundamental and most widely applied method for analyzing Petri nets is reachability analysis. The existing technique for reachability analysis of TPNs, however, is not suitable for timing property verification because one cannot derive end-to-end delay in task execution, an important issue for time-critical systems, from the reachability tree constructed using the technique. In this paper, we present a new reachability based analysis technique for TPNs for timing property analysis and verification that effectively addresses the problem. Our technique is based on a concept called clock-stamped state class (CS-class). With the reachability tree generated based on CS-classes, we can directly compute the end-to-end time delay in task execution. Moreover, a CS-class can be uniquely mapped to a traditional state class based on which the conventional reachability tree is constructed. Therefore, our CS-class-based analysis technique is more general than the existing technique. We show how to apply this technique to timing property verification of the TPN model of a command and control (C2) system.
Extreme Learning Machine and Particle Swarm Optimization in optimizing CNC turning operation
NASA Astrophysics Data System (ADS)
Janahiraman, Tiagrajah V.; Ahmad, Nooraziah; Hani Nordin, Farah
2018-04-01
The CNC machine is controlled by manipulating cutting parameters that could directly influence the process performance. Many optimization methods has been applied to obtain the optimal cutting parameters for the desired performance function. Nonetheless, the industry still uses the traditional technique to obtain those values. Lack of knowledge on optimization techniques is the main reason for this issue to be prolonged. Therefore, the simple yet easy to implement, Optimal Cutting Parameters Selection System is introduced to help the manufacturer to easily understand and determine the best optimal parameters for their turning operation. This new system consists of two stages which are modelling and optimization. In modelling of input-output and in-process parameters, the hybrid of Extreme Learning Machine and Particle Swarm Optimization is applied. This modelling technique tend to converge faster than other artificial intelligent technique and give accurate result. For the optimization stage, again the Particle Swarm Optimization is used to get the optimal cutting parameters based on the performance function preferred by the manufacturer. Overall, the system can reduce the gap between academic world and the industry by introducing a simple yet easy to implement optimization technique. This novel optimization technique can give accurate result besides being the fastest technique.
Super Resolution and Interference Suppression Technique applied to SHARAD Radar Data
NASA Astrophysics Data System (ADS)
Raguso, M. C.; Mastrogiuseppe, M.; Seu, R.; Piazzo, L.
2017-12-01
We will present a super resolution and interference suppression technique applied to the data acquired by the SHAllow RADar (SHARAD) on board the NASA's 2005 Mars Reconnaissance Orbiter (MRO) mission, currently operating around Mars [1]. The algorithms allow to improve the range resolution roughly by a factor of 3 and the Signal to Noise Ratio (SNR) by a several decibels. Range compression algorithms usually adopt conventional Fourier transform techniques, which are limited in the resolution by the transmitted signal bandwidth, analogous to the Rayleigh's criterion in optics. In this work, we investigate a super resolution method based on autoregressive models and linear prediction techniques [2]. Starting from the estimation of the linear prediction coefficients from the spectral data, the algorithm performs the radar bandwidth extrapolation (BWE), thereby improving the range resolution of the pulse-compressed coherent radar data. Moreover, the EMIs (ElectroMagnetic Interferences) are detected and the spectra is interpolated in order to reconstruct an interference free spectrum, thereby improving the SNR. The algorithm can be applied to the single complex look image after synthetic aperture processing (SAR). We apply the proposed algorithm to simulated as well as to real radar data. We will demonstrate the effective enhancement on vertical resolution with respect to the classical spectral estimator. We will show that the imaging of the subsurface layered structures observed in radargrams is improved, allowing additional insights for the scientific community in the interpretation of the SHARAD radar data, which will help to further our understanding of the formation and evolution of known geological features on Mars. References: [1] Seu et al. 2007, Science, 2007, 317, 1715-1718 [2] K.M. Cuomo, "A Bandwidth Extrapolation Technique for Improved Range Resolution of Coherent Radar Data", Project Report CJP-60, Revision 1, MIT Lincoln Laboratory (4 Dec. 1992).
Geophysical assessments of renewable gas energy compressed in geologic pore storage reservoirs.
Al Hagrey, Said Attia; Köhn, Daniel; Rabbel, Wolfgang
2014-01-01
Renewable energy resources can indisputably minimize the threat of global warming and climate change. However, they are intermittent and need buffer storage to bridge the time-gap between production (off peak) and demand peaks. Based on geologic and geochemical reasons, the North German Basin has a very large capacity for compressed air/gas energy storage CAES in porous saltwater aquifers and salt cavities. Replacing pore reservoir brine with CAES causes changes in physical properties (elastic moduli, density and electrical properties) and justify applications of integrative geophysical methods for monitoring this energy storage. Here we apply techniques of the elastic full waveform inversion FWI, electric resistivity tomography ERT and gravity to map and quantify a gradually saturated gas plume injected in a thin deep saline aquifer within the North German Basin. For this subsurface model scenario we generated different synthetic data sets without and with adding random noise in order to robust the applied techniques for the real field applications. Datasets are inverted by posing different constraints on the initial model. Results reveal principally the capability of the applied integrative geophysical approach to resolve the CAES targets (plume, host reservoir, and cap rock). Constrained inversion models of elastic FWI and ERT are even able to recover well the gradual gas desaturation with depth. The spatial parameters accurately recovered from each technique are applied in the adequate petrophysical equations to yield precise quantifications of gas saturations. Resulting models of gas saturations independently determined from elastic FWI and ERT techniques are in accordance with each other and with the input (true) saturation model. Moreover, the gravity technique show high sensitivity to the mass deficit resulting from the gas storage and can resolve saturations and temporal saturation changes down to ±3% after reducing any shallow fluctuation such as that of groundwater table.
Sanyal, Oishi; Lee, Ilsoon
2014-03-01
Reverse osmosis (RO) and nanofiltration (NF) are the two dominant membrane separation processes responsible for ion rejection. While RO is highly efficient in removal of ions it needs a high operating pressure and offers very low selectivity between ions. Nanofiltration on the other hand has a comparatively low operating pressure and most commercial membranes offer selectivity in terms of ion rejection. However in many nanofiltration operations rejection of monovalent ions is not appreciable. Therefore a high flux high rejection membrane is needed that can be applied to water purification systems. One such alternative is the usage of polyelectrolyte multilayer membranes that are prepared by the deposition of alternately charged polyelectrolytes via layer-by-layer (LbL) assembly method. LbL is one of the most common self-assembly techniques and finds application in various areas. It has a number of tunable parameters like deposition conditions, number of bilayers deposited etc. which can be manipulated as per the type of application. This technique can be applied to make a nanothin membrane skin which gives high rejection and at the same time allow a high water flux across it. Several research groups have applied this highly versatile technique to prepare membranes that can be employed for water purification. Some of these membranes have shown better performance than the commercial nanofiltration and reverse osmosis membranes. These membranes have the potential to be applied to various different aspects of water treatment like water softening, desalination and recovery of certain ions. Besides the conventional method of LbL technique other alternative methods have also been suggested that can make the technique fast, more efficient and thereby make it more commercially acceptable.
Kevlar: Transitioning Helix from Research to Practice
2015-04-01
protective transformations are applied to application binaries before they are deployed. Salient features of Kevlar include applying high- entropy ...variety of classes. Kevlar uses novel, fine-grained, high- entropy diversification transformations to prevent an attacker from successfully exploiting...Kevlar include applying high- entropy randomization techniques, automated program repairs, leveraging highly-optimized virtual machine technology, and in
Hands-On Teaching through a Student Field Project in Applied Geophysics.
ERIC Educational Resources Information Center
Klasner, John Samuel; Crockett, Jeffrey Jon; Horton, Kimberly Beth; Poe, Michele Daun; Wollert, Matthew Todd
1992-01-01
Describes the Proffit Mountain project, part of a senior-level class in applied geophysics that provides students with hands-on experience in applying principles and techniques learned in class. Students conduct magnetic, gravity, and radiometric studies over a diabase body which intrudes rhyolite at Proffitt Mountain in southeast Missouri.…
Finite Element Modeling, Simulation, Tools, and Capabilities at Superform
NASA Astrophysics Data System (ADS)
Raman, Hari; Barnes, A. J.
2010-06-01
Over the past thirty years Superform has been a pioneer in the SPF arena, having developed a keen understanding of the process and a range of unique forming techniques to meet varying market needs. Superform’s high-profile list of customers includes Boeing, Airbus, Aston Martin, Ford, and Rolls Royce. One of the more recent additions to Superform’s technical know-how is finite element modeling and simulation. Finite element modeling is a powerful numerical technique which when applied to SPF provides a host of benefits including accurate prediction of strain levels in a part, presence of wrinkles and predicting pressure cycles optimized for time and part thickness. This paper outlines a brief history of finite element modeling applied to SPF and then reviews some of the modeling tools and techniques that Superform have applied and continue to do so to successfully superplastically form complex-shaped parts. The advantages of employing modeling at the design stage are discussed and illustrated with real-world examples.
Bibliography of spatial interferometry in optical astronomy
NASA Technical Reports Server (NTRS)
Gezari, Daniel Y.; Roddier, Francois; Roddier, Claude
1990-01-01
The Bibliography of Spatial Interferometry in Optical Astronomy is a guide to the published literature in applications of spatial interferometry techniques to astronomical observations, theory and instrumentation at visible and infrared wavelengths. The key words spatial and optical define the scope of this discipline, distinguishing it from spatial interferometry at radio wavelengths, interferometry in the frequency domain applied to spectroscopy, or more general electro-optics theoretical and laboratory research. The main bibliography is a listing of all technical articles published in the international scientific literature and presented at the major international meetings and workshops attended by the spatial interferometry community. Section B summarizes publications dealing with the basic theoretical concepts and algorithms proposed and applied to optical spatial interferometry and imaging through a turbulent atmosphere. The section on experimental techniques is divided into twelve categories, representing the most clearly identified major areas of experimental research work. Section D, Observations, identifies publications dealing specifically with observations of astronomical sources, in which optical spatial interferometry techniques have been applied.
Ferenidou, Fotini; Chalimourdas, Theodoros; Antonakis, Velissarios; Vaidakis, Nikolaos; Papadimitriou, Georgios
2012-01-01
The efficacy of behavior therapy based mainly on real-life exposure situations as well as applied tension was examined for a combined case of blood-injury-injection (BII) phobia and social anxiety disorder. Treatment involved 28 behavior therapy sessions, while applied tension technique was also described and practiced. The specific contribution of social skills techniques, fantasy, and real-life situations exposure was examined in a single case design. The subject was a 39-year-old male with anxiety symptoms when confronting an audience, as well as symptoms of the autonomic nervous system (bradycardia and syncope), which were better explained by BII. All self-report measures regarding fear, social phobia, and anxiety were reduced after behavior therapy and remained maintained at followup, while BII decreased further after applied tension techniques. The contribution of behavior therapy to the overall outcome of the case is considered significant for many reasons that are discussed in the pape. PMID:23304602
Recchia, Gabriel L; Louwerse, Max M
2016-11-01
Computational techniques comparing co-occurrences of city names in texts allow the relative longitudes and latitudes of cities to be estimated algorithmically. However, these techniques have not been applied to estimate the provenance of artifacts with unknown origins. Here, we estimate the geographic origin of artifacts from the Indus Valley Civilization, applying methods commonly used in cognitive science to the Indus script. We show that these methods can accurately predict the relative locations of archeological sites on the basis of artifacts of known provenance, and we further apply these techniques to determine the most probable excavation sites of four sealings of unknown provenance. These findings suggest that inscription statistics reflect historical interactions among locations in the Indus Valley region, and they illustrate how computational methods can help localize inscribed archeological artifacts of unknown origin. The success of this method offers opportunities for the cognitive sciences in general and for computational anthropology specifically. Copyright © 2015 Cognitive Science Society, Inc.
Applying contact to individual silicon nanowires using a dielectrophoresis (DEP)-based technique
NASA Astrophysics Data System (ADS)
Leiterer, Christian; Broenstrup, Gerald; Jahr, Norbert; Urban, Matthias; Arnold, Cornelia; Christiansen, Silke; Fritzsche, Wolfgang
2013-05-01
One major challenge for the technological use of nanostructures is the control of their electrical and optoelectronic properties. For that purpose, extensive research into the electrical characterization and therefore a fast and reliable way of contacting these structures are needed. Here, we report on a new, dielectrophoresis (DEP)-based technique, which enables to apply sufficient and reliable contact to individual nanostructures, like semiconducting nanowires (NW), easily and without the need for lithography. The DEP contacting technique presented in this article can be done without high-tech equipment and monitored in situ with an optical microscope. In the presented experiments, individual SiNWs are trapped and subsequently welded between two photolithographically pre-patterned electrodes by applying varying AC voltages to the electrodes. To proof the quality of these contacts, I-V curves, photoresponse and photoconductivity of a single SiNW were measured. Furthermore, the measured photoconductivity in dependence on the wavelength of illuminated light and was compared with calculations predicting the absorption spectra of an individual SiNW.
A study of two statistical methods as applied to shuttle solid rocket booster expenditures
NASA Technical Reports Server (NTRS)
Perlmutter, M.; Huang, Y.; Graves, M.
1974-01-01
The state probability technique and the Monte Carlo technique are applied to finding shuttle solid rocket booster expenditure statistics. For a given attrition rate per launch, the probable number of boosters needed for a given mission of 440 launches is calculated. Several cases are considered, including the elimination of the booster after a maximum of 20 consecutive launches. Also considered is the case where the booster is composed of replaceable components with independent attrition rates. A simple cost analysis is carried out to indicate the number of boosters to build initially, depending on booster costs. Two statistical methods were applied in the analysis: (1) state probability method which consists of defining an appropriate state space for the outcome of the random trials, and (2) model simulation method or the Monte Carlo technique. It was found that the model simulation method was easier to formulate while the state probability method required less computing time and was more accurate.
Comparison of a 3-D CFD-DSMC Solution Methodology With a Wind Tunnel Experiment
NASA Technical Reports Server (NTRS)
Glass, Christopher E.; Horvath, Thomas J.
2002-01-01
A solution method for problems that contain both continuum and rarefied flow regions is presented. The methodology is applied to flow about the 3-D Mars Sample Return Orbiter (MSRO) that has a highly compressed forebody flow, a shear layer where the flow separates from a forebody lip, and a low density wake. Because blunt body flow fields contain such disparate regions, employing a single numerical technique to solve the entire 3-D flow field is often impractical, or the technique does not apply. Direct simulation Monte Carlo (DSMC) could be employed to solve the entire flow field; however, the technique requires inordinate computational resources for continuum and near-continuum regions, and is best suited for the wake region. Computational fluid dynamics (CFD) will solve the high-density forebody flow, but continuum assumptions do not apply in the rarefied wake region. The CFD-DSMC approach presented herein may be a suitable way to obtain a higher fidelity solution.
Soria Morillo, Luis M; Alvarez-Garcia, Juan A; Gonzalez-Abril, Luis; Ortega Ramírez, Juan A
2016-07-15
In this paper a new approach is applied to the area of marketing research. The aim of this paper is to recognize how brain activity responds during the visualization of short video advertisements using discrete classification techniques. By means of low cost electroencephalography devices (EEG), the activation level of some brain regions have been studied while the ads are shown to users. We may wonder about how useful is the use of neuroscience knowledge in marketing, or what could provide neuroscience to marketing sector, or why this approach can improve the accuracy and the final user acceptance compared to other works. By using discrete techniques over EEG frequency bands of a generated dataset, C4.5, ANN and the new recognition system based on Ameva, a discretization algorithm, is applied to obtain the score given by subjects to each TV ad. The proposed technique allows to reach more than 75 % of accuracy, which is an excellent result taking into account the typology of EEG sensors used in this work. Furthermore, the time consumption of the algorithm proposed is reduced up to 30 % compared to other techniques presented in this paper. This bring about a battery lifetime improvement on the devices where the algorithm is running, extending the experience in the ubiquitous context where the new approach has been tested.
Limit Cycle Analysis Applied to the Oscillations of Decelerating Blunt-Body Entry Vehicles
NASA Technical Reports Server (NTRS)
Schoenenberger, Mark; Queen, Eric M.
2008-01-01
Many blunt-body entry vehicles have nonlinear dynamic stability characteristics that produce self-limiting oscillations in flight. Several different test techniques can be used to extract dynamic aerodynamic coefficients to predict this oscillatory behavior for planetary entry mission design and analysis. Most of these test techniques impose boundary conditions that alter the oscillatory behavior from that seen in flight. Three sets of test conditions, representing three commonly used test techniques, are presented to highlight these effects. Analytical solutions to the constant-coefficient planar equations-of-motion for each case are developed to show how the same blunt body behaves differently depending on the imposed test conditions. The energy equation is applied to further illustrate the governing dynamics. Then, the mean value theorem is applied to the energy rate equation to find the effective damping for an example blunt body with nonlinear, self-limiting dynamic characteristics. This approach is used to predict constant-energy oscillatory behavior and the equilibrium oscillation amplitudes for the various test conditions. These predictions are verified with planar simulations. The analysis presented provides an overview of dynamic stability test techniques and illustrates the effects of dynamic stability, static aerodynamics and test conditions on observed dynamic motions. It is proposed that these effects may be leveraged to develop new test techniques and refine test matrices in future tests to better define the nonlinear functional forms of blunt body dynamic stability curves.
A TRMM-Calibrated Infrared Technique for Global Rainfall Estimation
NASA Technical Reports Server (NTRS)
Negri, Andrew J.; Adler, Robert F.
2002-01-01
The development of a satellite infrared (IR) technique for estimating convective and stratiform rainfall and its application in studying the diurnal variability of rainfall on a global scale is presented. The Convective-Stratiform Technique (CST), calibrated by coincident, physically retrieved rain rates from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR), is applied over the global tropics during 2001. The technique is calibrated separately over land and ocean, making ingenious use of the IR data from the TRMM Visible/Infrared Scanner (VIRS) before application to global geosynchronous satellite data. The low sampling rate of TRMM PR imposes limitations on calibrating IR-based techniques; however, our research shows that PR observations can be applied to improve IR-based techniques significantly by selecting adequate calibration areas and calibration length. The diurnal cycle of rainfall, as well as the division between convective and stratiform rainfall will be presented. The technique is validated using available data sets and compared to other global rainfall products such as Global Precipitation Climatology Project (GPCP) IR product, calibrated with TRMM Microwave Imager (TMI) data. The calibrated CST technique has the advantages of high spatial resolution (4 km), filtering of non-raining cirrus clouds, and the stratification of the rainfall into its convective and stratiform components, the latter being important for the calculation of vertical profiles of latent heating.
Applications of surface analytical techniques in Earth Sciences
NASA Astrophysics Data System (ADS)
Qian, Gujie; Li, Yubiao; Gerson, Andrea R.
2015-03-01
This review covers a wide range of surface analytical techniques: X-ray photoelectron spectroscopy (XPS), scanning photoelectron microscopy (SPEM), photoemission electron microscopy (PEEM), dynamic and static secondary ion mass spectroscopy (SIMS), electron backscatter diffraction (EBSD), atomic force microscopy (AFM). Others that are relatively less widely used but are also important to the Earth Sciences are also included: Auger electron spectroscopy (AES), low energy electron diffraction (LEED) and scanning tunnelling microscopy (STM). All these techniques probe only the very top sample surface layers (sub-nm to several tens of nm). In addition, we also present several other techniques i.e. Raman microspectroscopy, reflection infrared (IR) microspectroscopy and quantitative evaluation of minerals by scanning electron microscopy (QEMSCAN) that penetrate deeper into the sample, up to several μm, as all of them are fundamental analytical tools for the Earth Sciences. Grazing incidence synchrotron techniques, sensitive to surface measurements, are also briefly introduced at the end of this review. (Scanning) transmission electron microscopy (TEM/STEM) is a special case that can be applied to characterisation of mineralogical and geological sample surfaces. Since TEM/STEM is such an important technique for Earth Scientists, we have also included it to draw attention to the capability of TEM/STEM applied as a surface-equivalent tool. While this review presents most of the important techniques for the Earth Sciences, it is not an all-inclusive bibliography of those analytical techniques. Instead, for each technique that is discussed, we first give a very brief introduction about its principle and background, followed by a short section on approaches to sample preparation that are important for researchers to appreciate prior to the actual sample analysis. We then use examples from publications (and also some of our known unpublished results) within the Earth Sciences to show how each technique is applied and used to obtain specific information and to resolve real problems, which forms the central theme of this review. Although this review focuses on applications of these techniques to study mineralogical and geological samples, we also anticipate that researchers from other research areas such as Material and Environmental Sciences may benefit from this review.