Sample records for microarray analysis suggests

  1. The Use of Atomic Force Microscopy for 3D Analysis of Nucleic Acid Hybridization on Microarrays.

    PubMed

    Dubrovin, E V; Presnova, G V; Rubtsova, M Yu; Egorov, A M; Grigorenko, V G; Yaminsky, I V

    2015-01-01

    Oligonucleotide microarrays are considered today to be one of the most efficient methods of gene diagnostics. The capability of atomic force microscopy (AFM) to characterize the three-dimensional morphology of single molecules on a surface allows one to use it as an effective tool for the 3D analysis of a microarray for the detection of nucleic acids. The high resolution of AFM offers ways to decrease the detection threshold of target DNA and increase the signal-to-noise ratio. In this work, we suggest an approach to the evaluation of the results of hybridization of gold nanoparticle-labeled nucleic acids on silicon microarrays based on an AFM analysis of the surface both in air and in liquid which takes into account of their three-dimensional structure. We suggest a quantitative measure of the hybridization results which is based on the fraction of the surface area occupied by the nanoparticles.

  2. Archetypal analysis of diverse Pseudomonas aeruginosa transcriptomes reveals adaptation in cystic fibrosis airways

    PubMed Central

    2013-01-01

    Background Analysis of global gene expression by DNA microarrays is widely used in experimental molecular biology. However, the complexity of such high-dimensional data sets makes it difficult to fully understand the underlying biological features present in the data. The aim of this study is to introduce a method for DNA microarray analysis that provides an intuitive interpretation of data through dimension reduction and pattern recognition. We present the first “Archetypal Analysis” of global gene expression. The analysis is based on microarray data from five integrated studies of Pseudomonas aeruginosa isolated from the airways of cystic fibrosis patients. Results Our analysis clustered samples into distinct groups with comprehensible characteristics since the archetypes representing the individual groups are closely related to samples present in the data set. Significant changes in gene expression between different groups identified adaptive changes of the bacteria residing in the cystic fibrosis lung. The analysis suggests a similar gene expression pattern between isolates with a high mutation rate (hypermutators) despite accumulation of different mutations for these isolates. This suggests positive selection in the cystic fibrosis lung environment, and changes in gene expression for these isolates are therefore most likely related to adaptation of the bacteria. Conclusions Archetypal analysis succeeded in identifying adaptive changes of P. aeruginosa. The combination of clustering and matrix factorization made it possible to reveal minor similarities among different groups of data, which other analytical methods failed to identify. We suggest that this analysis could be used to supplement current methods used to analyze DNA microarray data. PMID:24059747

  3. Quantitative Proteomic and Microarray Analysis of the Archaeon Methanosarcina Acetivorans Grown with Acetate Versus Methanol*

    PubMed Central

    Li, Lingyun; Li, Qingbo; Rohlin, Lars; Kim, UnMi; Salmon, Kirsty; Rejtar, Tomas; Gunsalus, Robert P.; Karger, Barry L.; Ferry, James G.

    2008-01-01

    Summary Methanosarcina acetivorans strain C2A is an acetate- and methanol-utilizing methane-producing organism for which the genome, the largest yet sequenced among the Archaea, reveals extensive physiological diversity. LC linear ion trap-FTICR mass spectrometry was employed to analyze acetate- vs. methanol-grown cells metabolically labeled with 14N vs. 15N, respectively, to obtain quantitative protein abundance ratios. DNA microarray analyses of acetate- vs. methanol-grown cells was also performed to determine gene expression ratios. The combined approaches were highly complementary, extending the physiological understanding of growth and methanogenesis. Of the 1081 proteins detected, 255 were ≥ 3-fold differentially abundant. DNA microarray analysis revealed 410 genes that were ≥ 2.5-fold differentially expressed of 1972 genes with detected expression. The ratios of differentially abundant proteins were in good agreement with expression ratios of the encoding genes. Taken together, the results suggest several novel roles for electron transport components specific to acetate-grown cells, including two flavodoxins each specific for growth on acetate or methanol. Protein abundance ratios indicated that duplicate CO dehydrogenase/acetyl-CoA complexes function in the conversion of acetate to methane. Surprisingly, the protein abundance and gene expression ratios indicated a general stress response in acetate- vs. methanol-grown cells that included enzymes specific for polyphosphate accumulation and oxidative stress. The microarray analysis identified transcripts of several genes encoding regulatory proteins with identity to the PhoU, MarR, GlnK, and TetR families commonly found in the Bacteria domain. An analysis of neighboring genes suggested roles in controlling phosphate metabolism (PhoU), ammonia assimilation (GlnK), and molybdopterin cofactor biosynthesis (TetR). Finally, the proteomic and microarray results suggested roles for two-component regulatory systems specific for each growth substrate. PMID:17269732

  4. Detection of cryptic pathogenic copy number variations and constitutional loss of heterozygosity using high resolution SNP microarray analysis in 117 patients referred for cytogenetic analysis and impact on clinical practice.

    PubMed

    Bruno, D L; Ganesamoorthy, D; Schoumans, J; Bankier, A; Coman, D; Delatycki, M; Gardner, R J M; Hunter, M; James, P A; Kannu, P; McGillivray, G; Pachter, N; Peters, H; Rieubland, C; Savarirayan, R; Scheffer, I E; Sheffield, L; Tan, T; White, S M; Yeung, A; Bowman, Z; Ngo, C; Choy, K W; Cacheux, V; Wong, L; Amor, D J; Slater, H R

    2009-02-01

    Microarray genome analysis is realising its promise for improving detection of genetic abnormalities in individuals with mental retardation and congenital abnormality. Copy number variations (CNVs) are now readily detectable using a variety of platforms and a major challenge is the distinction of pathogenic from ubiquitous, benign polymorphic CNVs. The aim of this study was to investigate replacement of time consuming, locus specific testing for specific microdeletion and microduplication syndromes with microarray analysis, which theoretically should detect all known syndromes with CNV aetiologies as well as new ones. Genome wide copy number analysis was performed on 117 patients using Affymetrix 250K microarrays. 434 CNVs (195 losses and 239 gains) were found, including 18 pathogenic CNVs and 9 identified as "potentially pathogenic". Almost all pathogenic CNVs were larger than 500 kb, significantly larger than the median size of all CNVs detected. Segmental regions of loss of heterozygosity larger than 5 Mb were found in 5 patients. Genome microarray analysis has improved diagnostic success in this group of patients. Several examples of recently discovered "new syndromes" were found suggesting they are more common than previously suspected and collectively are likely to be a major cause of mental retardation. The findings have several implications for clinical practice. The study revealed the potential to make genetic diagnoses that were not evident in the clinical presentation, with implications for pretest counselling and the consent process. The importance of contributing novel CNVs to high quality databases for genotype-phenotype analysis and review of guidelines for selection of individuals for microarray analysis is emphasised.

  5. Mining microarrays for metabolic meaning: nutritional regulation of hypothalamic gene expression.

    PubMed

    Mobbs, Charles V; Yen, Kelvin; Mastaitis, Jason; Nguyen, Ha; Watson, Elizabeth; Wurmbach, Elisa; Sealfon, Stuart C; Brooks, Andrew; Salton, Stephen R J

    2004-06-01

    DNA microarray analysis has been used to investigate relative changes in the level of gene expression in the CNS, including changes that are associated with disease, injury, psychiatric disorders, drug exposure or withdrawal, and memory formation. We have used oligonucleotide microarrays to identify hypothalamic genes that respond to nutritional manipulation. In addition to commonly used microarray analysis based on criteria such as fold-regulation, we have also found that simply carrying out multiple t tests then sorting by P value constitutes a highly reliable method to detect true regulation, as assessed by real-time polymerase chain reaction (PCR), even for relatively low abundance genes or relatively low magnitude of regulation. Such analyses directly suggested novel mechanisms that mediate effects of nutritional state on neuroendocrine function and are being used to identify regulated gene products that may elucidate the metabolic pathology of obese ob/ob, lean Vgf-/Vgf-, and other models with profound metabolic impairments.

  6. Identifying novel glioma associated pathways based on systems biology level meta-analysis.

    PubMed

    Hu, Yangfan; Li, Jinquan; Yan, Wenying; Chen, Jiajia; Li, Yin; Hu, Guang; Shen, Bairong

    2013-01-01

    With recent advances in microarray technology, including genomics, proteomics, and metabolomics, it brings a great challenge for integrating this "-omics" data to analysis complex disease. Glioma is an extremely aggressive and lethal form of brain tumor, and thus the study of the molecule mechanism underlying glioma remains very important. To date, most studies focus on detecting the differentially expressed genes in glioma. However, the meta-analysis for pathway analysis based on multiple microarray datasets has not been systematically pursued. In this study, we therefore developed a systems biology based approach by integrating three types of omics data to identify common pathways in glioma. Firstly, the meta-analysis has been performed to study the overlapping of signatures at different levels based on the microarray gene expression data of glioma. Among these gene expression datasets, 12 pathways were found in GeneGO database that shared by four stages. Then, microRNA expression profiles and ChIP-seq data were integrated for the further pathway enrichment analysis. As a result, we suggest 5 of these pathways could be served as putative pathways in glioma. Among them, the pathway of TGF-beta-dependent induction of EMT via SMAD is of particular importance. Our results demonstrate that the meta-analysis based on systems biology level provide a more useful approach to study the molecule mechanism of complex disease. The integration of different types of omics data, including gene expression microarrays, microRNA and ChIP-seq data, suggest some common pathways correlated with glioma. These findings will offer useful potential candidates for targeted therapeutic intervention of glioma.

  7. Comparative study of joint analysis of microarray gene expression data in survival prediction and risk assessment of breast cancer patients

    PubMed Central

    2016-01-01

    Abstract Microarray gene expression data sets are jointly analyzed to increase statistical power. They could either be merged together or analyzed by meta-analysis. For a given ensemble of data sets, it cannot be foreseen which of these paradigms, merging or meta-analysis, works better. In this article, three joint analysis methods, Z -score normalization, ComBat and the inverse normal method (meta-analysis) were selected for survival prognosis and risk assessment of breast cancer patients. The methods were applied to eight microarray gene expression data sets, totaling 1324 patients with two clinical endpoints, overall survival and relapse-free survival. The performance derived from the joint analysis methods was evaluated using Cox regression for survival analysis and independent validation used as bias estimation. Overall, Z -score normalization had a better performance than ComBat and meta-analysis. Higher Area Under the Receiver Operating Characteristic curve and hazard ratio were also obtained when independent validation was used as bias estimation. With a lower time and memory complexity, Z -score normalization is a simple method for joint analysis of microarray gene expression data sets. The derived findings suggest further assessment of this method in future survival prediction and cancer classification applications. PMID:26504096

  8. Microarray Я US: a user-friendly graphical interface to Bioconductor tools that enables accurate microarray data analysis and expedites comprehensive functional analysis of microarray results.

    PubMed

    Dai, Yilin; Guo, Ling; Li, Meng; Chen, Yi-Bu

    2012-06-08

    Microarray data analysis presents a significant challenge to researchers who are unable to use the powerful Bioconductor and its numerous tools due to their lack of knowledge of R language. Among the few existing software programs that offer a graphic user interface to Bioconductor packages, none have implemented a comprehensive strategy to address the accuracy and reliability issue of microarray data analysis due to the well known probe design problems associated with many widely used microarray chips. There is also a lack of tools that would expedite the functional analysis of microarray results. We present Microarray Я US, an R-based graphical user interface that implements over a dozen popular Bioconductor packages to offer researchers a streamlined workflow for routine differential microarray expression data analysis without the need to learn R language. In order to enable a more accurate analysis and interpretation of microarray data, we incorporated the latest custom probe re-definition and re-annotation for Affymetrix and Illumina chips. A versatile microarray results output utility tool was also implemented for easy and fast generation of input files for over 20 of the most widely used functional analysis software programs. Coupled with a well-designed user interface, Microarray Я US leverages cutting edge Bioconductor packages for researchers with no knowledge in R language. It also enables a more reliable and accurate microarray data analysis and expedites downstream functional analysis of microarray results.

  9. Genome-scale cluster analysis of replicated microarrays using shrinkage correlation coefficient.

    PubMed

    Yao, Jianchao; Chang, Chunqi; Salmi, Mari L; Hung, Yeung Sam; Loraine, Ann; Roux, Stanley J

    2008-06-18

    Currently, clustering with some form of correlation coefficient as the gene similarity metric has become a popular method for profiling genomic data. The Pearson correlation coefficient and the standard deviation (SD)-weighted correlation coefficient are the two most widely-used correlations as the similarity metrics in clustering microarray data. However, these two correlations are not optimal for analyzing replicated microarray data generated by most laboratories. An effective correlation coefficient is needed to provide statistically sufficient analysis of replicated microarray data. In this study, we describe a novel correlation coefficient, shrinkage correlation coefficient (SCC), that fully exploits the similarity between the replicated microarray experimental samples. The methodology considers both the number of replicates and the variance within each experimental group in clustering expression data, and provides a robust statistical estimation of the error of replicated microarray data. The value of SCC is revealed by its comparison with two other correlation coefficients that are currently the most widely-used (Pearson correlation coefficient and SD-weighted correlation coefficient) using statistical measures on both synthetic expression data as well as real gene expression data from Saccharomyces cerevisiae. Two leading clustering methods, hierarchical and k-means clustering were applied for the comparison. The comparison indicated that using SCC achieves better clustering performance. Applying SCC-based hierarchical clustering to the replicated microarray data obtained from germinating spores of the fern Ceratopteris richardii, we discovered two clusters of genes with shared expression patterns during spore germination. Functional analysis suggested that some of the genetic mechanisms that control germination in such diverse plant lineages as mosses and angiosperms are also conserved among ferns. This study shows that SCC is an alternative to the Pearson correlation coefficient and the SD-weighted correlation coefficient, and is particularly useful for clustering replicated microarray data. This computational approach should be generally useful for proteomic data or other high-throughput analysis methodology.

  10. MASQOT: a method for cDNA microarray spot quality control

    PubMed Central

    Bylesjö, Max; Eriksson, Daniel; Sjödin, Andreas; Sjöström, Michael; Jansson, Stefan; Antti, Henrik; Trygg, Johan

    2005-01-01

    Background cDNA microarray technology has emerged as a major player in the parallel detection of biomolecules, but still suffers from fundamental technical problems. Identifying and removing unreliable data is crucial to prevent the risk of receiving illusive analysis results. Visual assessment of spot quality is still a common procedure, despite the time-consuming work of manually inspecting spots in the range of hundreds of thousands or more. Results A novel methodology for cDNA microarray spot quality control is outlined. Multivariate discriminant analysis was used to assess spot quality based on existing and novel descriptors. The presented methodology displays high reproducibility and was found superior in identifying unreliable data compared to other evaluated methodologies. Conclusion The proposed methodology for cDNA microarray spot quality control generates non-discrete values of spot quality which can be utilized as weights in subsequent analysis procedures as well as to discard spots of undesired quality using the suggested threshold values. The MASQOT approach provides a consistent assessment of spot quality and can be considered an alternative to the labor-intensive manual quality assessment process. PMID:16223442

  11. Microarray data mining using Bioconductor packages.

    PubMed

    Nie, Haisheng; Neerincx, Pieter B T; van der Poel, Jan; Ferrari, Francesco; Bicciato, Silvio; Leunissen, Jack A M; Groenen, Martien A M

    2009-07-16

    This paper describes the results of a Gene Ontology (GO) term enrichment analysis of chicken microarray data using the Bioconductor packages. By checking the enriched GO terms in three contrasts, MM8-PM8, MM8-MA8, and MM8-MM24, of the provided microarray data during this workshop, this analysis aimed to investigate the host reactions in chickens occurring shortly after a secondary challenge with either a homologous or heterologous species of Eimeria. The results of GO enrichment analysis using GO terms annotated to chicken genes and GO terms annotated to chicken-human orthologous genes were also compared. Furthermore, a locally adaptive statistical procedure (LAP) was performed to test differentially expressed chromosomal regions, rather than individual genes, in the chicken genome after Eimeria challenge. GO enrichment analysis identified significant (raw p-value < 0.05) GO terms for all three contrasts included in the analysis. Some of the GO terms linked to, generally, primary immune responses or secondary immune responses indicating the GO enrichment analysis is a useful approach to analyze microarray data. The comparisons of GO enrichment results using chicken gene information and chicken-human orthologous gene information showed more refined GO terms related to immune responses when using chicken-human orthologous gene information, this suggests that using chicken-human orthologous gene information has higher power to detect significant GO terms with more refined functionality. Furthermore, three chromosome regions were identified to be significantly up-regulated in contrast MM8-PM8 (q-value < 0.01). Overall, this paper describes a practical approach to analyze microarray data in farm animals where the genome information is still incomplete. For farm animals, such as chicken, with currently limited gene annotation, borrowing gene annotation information from orthologous genes in well-annotated species, such as human, will help improve the pathway analysis results substantially. Furthermore, LAP analysis approach is a relatively new and very useful way to be applied in microarray analysis.

  12. Analysis of High-Throughput ELISA Microarray Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Amanda M.; Daly, Don S.; Zangar, Richard C.

    Our research group develops analytical methods and software for the high-throughput analysis of quantitative enzyme-linked immunosorbent assay (ELISA) microarrays. ELISA microarrays differ from DNA microarrays in several fundamental aspects and most algorithms for analysis of DNA microarray data are not applicable to ELISA microarrays. In this review, we provide an overview of the steps involved in ELISA microarray data analysis and how the statistically sound algorithms we have developed provide an integrated software suite to address the needs of each data-processing step. The algorithms discussed are available in a set of open-source software tools (http://www.pnl.gov/statistics/ProMAT).

  13. EzArray: A web-based highly automated Affymetrix expression array data management and analysis system

    PubMed Central

    Zhu, Yuerong; Zhu, Yuelin; Xu, Wei

    2008-01-01

    Background Though microarray experiments are very popular in life science research, managing and analyzing microarray data are still challenging tasks for many biologists. Most microarray programs require users to have sophisticated knowledge of mathematics, statistics and computer skills for usage. With accumulating microarray data deposited in public databases, easy-to-use programs to re-analyze previously published microarray data are in high demand. Results EzArray is a web-based Affymetrix expression array data management and analysis system for researchers who need to organize microarray data efficiently and get data analyzed instantly. EzArray organizes microarray data into projects that can be analyzed online with predefined or custom procedures. EzArray performs data preprocessing and detection of differentially expressed genes with statistical methods. All analysis procedures are optimized and highly automated so that even novice users with limited pre-knowledge of microarray data analysis can complete initial analysis quickly. Since all input files, analysis parameters, and executed scripts can be downloaded, EzArray provides maximum reproducibility for each analysis. In addition, EzArray integrates with Gene Expression Omnibus (GEO) and allows instantaneous re-analysis of published array data. Conclusion EzArray is a novel Affymetrix expression array data analysis and sharing system. EzArray provides easy-to-use tools for re-analyzing published microarray data and will help both novice and experienced users perform initial analysis of their microarray data from the location of data storage. We believe EzArray will be a useful system for facilities with microarray services and laboratories with multiple members involved in microarray data analysis. EzArray is freely available from . PMID:18218103

  14. Chemiluminescence microarrays in analytical chemistry: a critical review.

    PubMed

    Seidel, Michael; Niessner, Reinhard

    2014-09-01

    Multi-analyte immunoassays on microarrays and on multiplex DNA microarrays have been described for quantitative analysis of small organic molecules (e.g., antibiotics, drugs of abuse, small molecule toxins), proteins (e.g., antibodies or protein toxins), and microorganisms, viruses, and eukaryotic cells. In analytical chemistry, multi-analyte detection by use of analytical microarrays has become an innovative research topic because of the possibility of generating several sets of quantitative data for different analyte classes in a short time. Chemiluminescence (CL) microarrays are powerful tools for rapid multiplex analysis of complex matrices. A wide range of applications for CL microarrays is described in the literature dealing with analytical microarrays. The motivation for this review is to summarize the current state of CL-based analytical microarrays. Combining analysis of different compound classes on CL microarrays reduces analysis time, cost of reagents, and use of laboratory space. Applications are discussed, with examples from food safety, water safety, environmental monitoring, diagnostics, forensics, toxicology, and biosecurity. The potential and limitations of research on multiplex analysis by use of CL microarrays are discussed in this review.

  15. Role of PELP1 in EGFR-ER Signaling Crosstalk in Ovarian Cancer Cells

    DTIC Science & Technology

    2009-04-01

    expression of genes involved in metastasis using a focused microarray approach. We have used Human Tumor Metastasis Microarray (Oligo GE array from...ovarian cancer progression. Analysis of human genome databases and SAGE data suggested deregulation of PELP1 expression in ovarian cancer cells...PI3K, and STAT3 in the cytosol. PELP1/MNAR regulates meiosis via its interactions with heterotimeric Gbc protein, androgen receptor (AR), and by

  16. Visible red and infrared light alters gene expression in human marrow stromal fibroblast cells.

    PubMed

    Guo, J; Wang, Q; Wai, D; Zhang, Q Z; Shi, S H; Le, A D; Shi, S T; Yen, S L-K

    2015-04-01

    This study tested whether or not gene expression in human marrow stromal fibroblast (MSF) cells depends on light wavelength and energy density. Primary cultures of isolated human bone marrow stem cells (hBMSC) were exposed to visible red (VR, 633 nm) and infrared (IR, 830 nm) radiation wavelengths from a light emitting diode (LED) over a range of energy densities (0.5, 1.0, 1.5, and 2.0 Joules/cm2) Cultured cells were assayed for cell proliferation, osteogenic potential, adipogenesis, mRNA and protein content. mRNA was analyzed by microarray and compared among different wavelengths and energy densities. Mesenchymal and epithelial cell responses were compared to determine whether responses were cell type specific. Protein array analysis was used to further analyze key pathways identified by microarrays. Different wavelengths and energy densities produced unique sets of genes identified by microarray analysis. Pathway analysis pointed to TGF-beta 1 in the visible red and Akt 1 in the infrared wavelengths as key pathways to study. TGF-beta protein arrays suggested switching from canonical to non-canonical TGF-beta pathways with increases to longer IR wavelengths. Microarrays suggest RANKL and MMP 10 followed IR energy density dose-response curves. Epithelial and mesenchymal cells respond differently to stimulation by light suggesting cell type-specific response is possible. These studies demonstrate differential gene expression with different wavelengths, energy densities and cell types. These differences in gene expression have the potential to be exploited for therapeutic purposes and can help explain contradictory results in the literature when wavelengths, energy densities and cell types differ. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Transcriptional Changes in Canine Distemper Virus-Induced Demyelinating Leukoencephalitis Favor a Biphasic Mode of Demyelination

    PubMed Central

    Ulrich, Reiner; Puff, Christina; Wewetzer, Konstantin; Kalkuhl, Arno; Deschl, Ulrich; Baumgärtner, Wolfgang

    2014-01-01

    Canine distemper virus (CDV)-induced demyelinating leukoencephalitis in dogs (Canis familiaris) is suggested to represent a naturally occurring translational model for subacute sclerosing panencephalitis and multiple sclerosis in humans. The aim of this study was a hypothesis-free microarray analysis of the transcriptional changes within cerebellar specimens of five cases of acute, six cases of subacute demyelinating, and three cases of chronic demyelinating and inflammatory CDV leukoencephalitis as compared to twelve non-infected control dogs. Frozen cerebellar specimens were used for analysis of histopathological changes including demyelination, transcriptional changes employing microarrays, and presence of CDV nucleoprotein RNA and protein using microarrays, RT-qPCR and immunohistochemistry. Microarray analysis revealed 780 differentially expressed probe sets. The dominating change was an up-regulation of genes related to the innate and the humoral immune response, and less distinct the cytotoxic T-cell-mediated immune response in all subtypes of CDV leukoencephalitis as compared to controls. Multiple myelin genes including myelin basic protein and proteolipid protein displayed a selective down-regulation in subacute CDV leukoencephalitis, suggestive of an oligodendrocyte dystrophy. In contrast, a marked up-regulation of multiple immunoglobulin-like expressed sequence tags and the delta polypeptide of the CD3 antigen was observed in chronic CDV leukoencephalitis, in agreement with the hypothesis of an immune-mediated demyelination in the late inflammatory phase of the disease. Analysis of pathways intimately linked to demyelination as determined by morphometry employing correlation-based Gene Set Enrichment Analysis highlighted the pathomechanistic importance of up-regulated genes comprised by the gene ontology terms “viral replication” and “humoral immune response” as well as down-regulated genes functionally related to “metabolite and energy generation”. PMID:24755553

  18. Transcriptional changes in canine distemper virus-induced demyelinating leukoencephalitis favor a biphasic mode of demyelination.

    PubMed

    Ulrich, Reiner; Puff, Christina; Wewetzer, Konstantin; Kalkuhl, Arno; Deschl, Ulrich; Baumgärtner, Wolfgang

    2014-01-01

    Canine distemper virus (CDV)-induced demyelinating leukoencephalitis in dogs (Canis familiaris) is suggested to represent a naturally occurring translational model for subacute sclerosing panencephalitis and multiple sclerosis in humans. The aim of this study was a hypothesis-free microarray analysis of the transcriptional changes within cerebellar specimens of five cases of acute, six cases of subacute demyelinating, and three cases of chronic demyelinating and inflammatory CDV leukoencephalitis as compared to twelve non-infected control dogs. Frozen cerebellar specimens were used for analysis of histopathological changes including demyelination, transcriptional changes employing microarrays, and presence of CDV nucleoprotein RNA and protein using microarrays, RT-qPCR and immunohistochemistry. Microarray analysis revealed 780 differentially expressed probe sets. The dominating change was an up-regulation of genes related to the innate and the humoral immune response, and less distinct the cytotoxic T-cell-mediated immune response in all subtypes of CDV leukoencephalitis as compared to controls. Multiple myelin genes including myelin basic protein and proteolipid protein displayed a selective down-regulation in subacute CDV leukoencephalitis, suggestive of an oligodendrocyte dystrophy. In contrast, a marked up-regulation of multiple immunoglobulin-like expressed sequence tags and the delta polypeptide of the CD3 antigen was observed in chronic CDV leukoencephalitis, in agreement with the hypothesis of an immune-mediated demyelination in the late inflammatory phase of the disease. Analysis of pathways intimately linked to demyelination as determined by morphometry employing correlation-based Gene Set Enrichment Analysis highlighted the pathomechanistic importance of up-regulated genes comprised by the gene ontology terms "viral replication" and "humoral immune response" as well as down-regulated genes functionally related to "metabolite and energy generation".

  19. Autoregressive-model-based missing value estimation for DNA microarray time series data.

    PubMed

    Choong, Miew Keen; Charbit, Maurice; Yan, Hong

    2009-01-01

    Missing value estimation is important in DNA microarray data analysis. A number of algorithms have been developed to solve this problem, but they have several limitations. Most existing algorithms are not able to deal with the situation where a particular time point (column) of the data is missing entirely. In this paper, we present an autoregressive-model-based missing value estimation method (ARLSimpute) that takes into account the dynamic property of microarray temporal data and the local similarity structures in the data. ARLSimpute is especially effective for the situation where a particular time point contains many missing values or where the entire time point is missing. Experiment results suggest that our proposed algorithm is an accurate missing value estimator in comparison with other imputation methods on simulated as well as real microarray time series datasets.

  20. Workflows for microarray data processing in the Kepler environment.

    PubMed

    Stropp, Thomas; McPhillips, Timothy; Ludäscher, Bertram; Bieda, Mark

    2012-05-17

    Microarray data analysis has been the subject of extensive and ongoing pipeline development due to its complexity, the availability of several options at each analysis step, and the development of new analysis demands, including integration with new data sources. Bioinformatics pipelines are usually custom built for different applications, making them typically difficult to modify, extend and repurpose. Scientific workflow systems are intended to address these issues by providing general-purpose frameworks in which to develop and execute such pipelines. The Kepler workflow environment is a well-established system under continual development that is employed in several areas of scientific research. Kepler provides a flexible graphical interface, featuring clear display of parameter values, for design and modification of workflows. It has capabilities for developing novel computational components in the R, Python, and Java programming languages, all of which are widely used for bioinformatics algorithm development, along with capabilities for invoking external applications and using web services. We developed a series of fully functional bioinformatics pipelines addressing common tasks in microarray processing in the Kepler workflow environment. These pipelines consist of a set of tools for GFF file processing of NimbleGen chromatin immunoprecipitation on microarray (ChIP-chip) datasets and more comprehensive workflows for Affymetrix gene expression microarray bioinformatics and basic primer design for PCR experiments, which are often used to validate microarray results. Although functional in themselves, these workflows can be easily customized, extended, or repurposed to match the needs of specific projects and are designed to be a toolkit and starting point for specific applications. These workflows illustrate a workflow programming paradigm focusing on local resources (programs and data) and therefore are close to traditional shell scripting or R/BioConductor scripting approaches to pipeline design. Finally, we suggest that microarray data processing task workflows may provide a basis for future example-based comparison of different workflow systems. We provide a set of tools and complete workflows for microarray data analysis in the Kepler environment, which has the advantages of offering graphical, clear display of conceptual steps and parameters and the ability to easily integrate other resources such as remote data and web services.

  1. cDNA microarray analysis of esophageal cancer: discoveries and prospects.

    PubMed

    Shimada, Yutaka; Sato, Fumiaki; Shimizu, Kazuharu; Tsujimoto, Gozoh; Tsukada, Kazuhiro

    2009-07-01

    Recent progress in molecular biology has revealed many genetic and epigenetic alterations that are involved in the development and progression of esophageal cancer. Microarray analysis has also revealed several genetic networks that are involved in esophageal cancer. However, clinical application of microarray techniques and use of microarray data have not yet occurred. In this review, we focus on the recent developments and problems with microarray analysis of esophageal cancer.

  2. Insights into the degradation capacities of Amycolatopsis tucumanensis DSM 45259 guided by microarray data.

    PubMed

    Bourguignon, Natalia; Bargiela, Rafael; Rojo, David; Chernikova, Tatyana N; de Rodas, Sara A López; García-Cantalejo, Jesús; Näther, Daniela J; Golyshin, Peter N; Barbas, Coral; Ferrero, Marcela; Ferrer, Manuel

    2016-12-01

    The analysis of catabolic capacities of microorganisms is currently often achieved by cultivation approaches and by the analysis of genomic or metagenomic datasets. Recently, a microarray system designed from curated key aromatic catabolic gene families and key alkane degradation genes was designed. The collection of genes in the microarray can be exploited to indicate whether a given microbe or microbial community is likely to be functionally connected with certain degradative phenotypes, without previous knowledge of genome data. Herein, this microarray was applied to capture new insights into the catabolic capacities of copper-resistant actinomycete Amycolatopsis tucumanensis DSM 45259. The array data support the presumptive ability of the DSM 45259 strain to utilize single alkanes (n-decane and n-tetradecane) and aromatics such as benzoate, phthalate and phenol as sole carbon sources, which was experimentally validated by cultivation and mass spectrometry. Interestingly, while in strain DSM 45259 alkB gene encoding an alkane hydroxylase is most likely highly similar to that found in other actinomycetes, the genes encoding benzoate 1,2-dioxygenase, phthalate 4,5-dioxygenase and phenol hydroxylase were homologous to proteobacterial genes. This suggests that strain DSM 45259 contains catabolic genes distantly related to those found in other actinomycetes. Together, this study not only provided new insight into the catabolic abilities of strain DSM 45259, but also suggests that this strain contains genes uncommon within actinomycetes.

  3. Importing MAGE-ML format microarray data into BioConductor.

    PubMed

    Durinck, Steffen; Allemeersch, Joke; Carey, Vincent J; Moreau, Yves; De Moor, Bart

    2004-12-12

    The microarray gene expression markup language (MAGE-ML) is a widely used XML (eXtensible Markup Language) standard for describing and exchanging information about microarray experiments. It can describe microarray designs, microarray experiment designs, gene expression data and data analysis results. We describe RMAGEML, a new Bioconductor package that provides a link between cDNA microarray data stored in MAGE-ML format and the Bioconductor framework for preprocessing, visualization and analysis of microarray experiments. http://www.bioconductor.org. Open Source.

  4. Knowledge-based analysis of microarrays for the discovery of transcriptional regulation relationships

    PubMed Central

    2010-01-01

    Background The large amount of high-throughput genomic data has facilitated the discovery of the regulatory relationships between transcription factors and their target genes. While early methods for discovery of transcriptional regulation relationships from microarray data often focused on the high-throughput experimental data alone, more recent approaches have explored the integration of external knowledge bases of gene interactions. Results In this work, we develop an algorithm that provides improved performance in the prediction of transcriptional regulatory relationships by supplementing the analysis of microarray data with a new method of integrating information from an existing knowledge base. Using a well-known dataset of yeast microarrays and the Yeast Proteome Database, a comprehensive collection of known information of yeast genes, we show that knowledge-based predictions demonstrate better sensitivity and specificity in inferring new transcriptional interactions than predictions from microarray data alone. We also show that comprehensive, direct and high-quality knowledge bases provide better prediction performance. Comparison of our results with ChIP-chip data and growth fitness data suggests that our predicted genome-wide regulatory pairs in yeast are reasonable candidates for follow-up biological verification. Conclusion High quality, comprehensive, and direct knowledge bases, when combined with appropriate bioinformatic algorithms, can significantly improve the discovery of gene regulatory relationships from high throughput gene expression data. PMID:20122245

  5. Knowledge-based analysis of microarrays for the discovery of transcriptional regulation relationships.

    PubMed

    Seok, Junhee; Kaushal, Amit; Davis, Ronald W; Xiao, Wenzhong

    2010-01-18

    The large amount of high-throughput genomic data has facilitated the discovery of the regulatory relationships between transcription factors and their target genes. While early methods for discovery of transcriptional regulation relationships from microarray data often focused on the high-throughput experimental data alone, more recent approaches have explored the integration of external knowledge bases of gene interactions. In this work, we develop an algorithm that provides improved performance in the prediction of transcriptional regulatory relationships by supplementing the analysis of microarray data with a new method of integrating information from an existing knowledge base. Using a well-known dataset of yeast microarrays and the Yeast Proteome Database, a comprehensive collection of known information of yeast genes, we show that knowledge-based predictions demonstrate better sensitivity and specificity in inferring new transcriptional interactions than predictions from microarray data alone. We also show that comprehensive, direct and high-quality knowledge bases provide better prediction performance. Comparison of our results with ChIP-chip data and growth fitness data suggests that our predicted genome-wide regulatory pairs in yeast are reasonable candidates for follow-up biological verification. High quality, comprehensive, and direct knowledge bases, when combined with appropriate bioinformatic algorithms, can significantly improve the discovery of gene regulatory relationships from high throughput gene expression data.

  6. Nutrient control of gene expression in Drosophila: microarray analysis of starvation and sugar-dependent response

    PubMed Central

    Zinke, Ingo; Schütz, Christina S.; Katzenberger, Jörg D.; Bauer, Matthias; Pankratz, Michael J.

    2002-01-01

    We have identified genes regulated by starvation and sugar signals in Drosophila larvae using whole-genome microarrays. Based on expression profiles in the two nutrient conditions, they were organized into different categories that reflect distinct physiological pathways mediating sugar and fat metabolism, and cell growth. In the category of genes regulated in sugar-fed, but not in starved, animals, there is an upregulation of genes encoding key enzymes of the fat biosynthesis pathway and a downregulation of genes encoding lipases. The highest and earliest activated gene upon sugar ingestion is sugarbabe, a zinc finger protein that is induced in the gut and the fat body. Identification of potential targets using microarrays suggests that sugarbabe functions to repress genes involved in dietary fat breakdown and absorption. The current analysis provides a basis for studying the genetic mechanisms underlying nutrient signalling. PMID:12426388

  7. The Longhorn Array Database (LAD): An Open-Source, MIAME compliant implementation of the Stanford Microarray Database (SMD)

    PubMed Central

    Killion, Patrick J; Sherlock, Gavin; Iyer, Vishwanath R

    2003-01-01

    Background The power of microarray analysis can be realized only if data is systematically archived and linked to biological annotations as well as analysis algorithms. Description The Longhorn Array Database (LAD) is a MIAME compliant microarray database that operates on PostgreSQL and Linux. It is a fully open source version of the Stanford Microarray Database (SMD), one of the largest microarray databases. LAD is available at Conclusions Our development of LAD provides a simple, free, open, reliable and proven solution for storage and analysis of two-color microarray data. PMID:12930545

  8. ArraySolver: an algorithm for colour-coded graphical display and Wilcoxon signed-rank statistics for comparing microarray gene expression data.

    PubMed

    Khan, Haseeb Ahmad

    2004-01-01

    The massive surge in the production of microarray data poses a great challenge for proper analysis and interpretation. In recent years numerous computational tools have been developed to extract meaningful interpretation of microarray gene expression data. However, a convenient tool for two-groups comparison of microarray data is still lacking and users have to rely on commercial statistical packages that might be costly and require special skills, in addition to extra time and effort for transferring data from one platform to other. Various statistical methods, including the t-test, analysis of variance, Pearson test and Mann-Whitney U test, have been reported for comparing microarray data, whereas the utilization of the Wilcoxon signed-rank test, which is an appropriate test for two-groups comparison of gene expression data, has largely been neglected in microarray studies. The aim of this investigation was to build an integrated tool, ArraySolver, for colour-coded graphical display and comparison of gene expression data using the Wilcoxon signed-rank test. The results of software validation showed similar outputs with ArraySolver and SPSS for large datasets. Whereas the former program appeared to be more accurate for 25 or fewer pairs (n < or = 25), suggesting its potential application in analysing molecular signatures that usually contain small numbers of genes. The main advantages of ArraySolver are easy data selection, convenient report format, accurate statistics and the familiar Excel platform.

  9. ArraySolver: An Algorithm for Colour-Coded Graphical Display and Wilcoxon Signed-Rank Statistics for Comparing Microarray Gene Expression Data

    PubMed Central

    2004-01-01

    The massive surge in the production of microarray data poses a great challenge for proper analysis and interpretation. In recent years numerous computational tools have been developed to extract meaningful interpretation of microarray gene expression data. However, a convenient tool for two-groups comparison of microarray data is still lacking and users have to rely on commercial statistical packages that might be costly and require special skills, in addition to extra time and effort for transferring data from one platform to other. Various statistical methods, including the t-test, analysis of variance, Pearson test and Mann–Whitney U test, have been reported for comparing microarray data, whereas the utilization of the Wilcoxon signed-rank test, which is an appropriate test for two-groups comparison of gene expression data, has largely been neglected in microarray studies. The aim of this investigation was to build an integrated tool, ArraySolver, for colour-coded graphical display and comparison of gene expression data using the Wilcoxon signed-rank test. The results of software validation showed similar outputs with ArraySolver and SPSS for large datasets. Whereas the former program appeared to be more accurate for 25 or fewer pairs (n ≤ 25), suggesting its potential application in analysing molecular signatures that usually contain small numbers of genes. The main advantages of ArraySolver are easy data selection, convenient report format, accurate statistics and the familiar Excel platform. PMID:18629036

  10. Microarray Meta-Analysis Identifies Acute Lung Injury Biomarkers in Donor Lungs That Predict Development of Primary Graft Failure in Recipients

    PubMed Central

    Haitsma, Jack J.; Furmli, Suleiman; Masoom, Hussain; Liu, Mingyao; Imai, Yumiko; Slutsky, Arthur S.; Beyene, Joseph; Greenwood, Celia M. T.; dos Santos, Claudia

    2012-01-01

    Objectives To perform a meta-analysis of gene expression microarray data from animal studies of lung injury, and to identify an injury-specific gene expression signature capable of predicting the development of lung injury in humans. Methods We performed a microarray meta-analysis using 77 microarray chips across six platforms, two species and different animal lung injury models exposed to lung injury with or/and without mechanical ventilation. Individual gene chips were classified and grouped based on the strategy used to induce lung injury. Effect size (change in gene expression) was calculated between non-injurious and injurious conditions comparing two main strategies to pool chips: (1) one-hit and (2) two-hit lung injury models. A random effects model was used to integrate individual effect sizes calculated from each experiment. Classification models were built using the gene expression signatures generated by the meta-analysis to predict the development of lung injury in human lung transplant recipients. Results Two injury-specific lists of differentially expressed genes generated from our meta-analysis of lung injury models were validated using external data sets and prospective data from animal models of ventilator-induced lung injury (VILI). Pathway analysis of gene sets revealed that both new and previously implicated VILI-related pathways are enriched with differentially regulated genes. Classification model based on gene expression signatures identified in animal models of lung injury predicted development of primary graft failure (PGF) in lung transplant recipients with larger than 80% accuracy based upon injury profiles from transplant donors. We also found that better classifier performance can be achieved by using meta-analysis to identify differentially-expressed genes than using single study-based differential analysis. Conclusion Taken together, our data suggests that microarray analysis of gene expression data allows for the detection of “injury" gene predictors that can classify lung injury samples and identify patients at risk for clinically relevant lung injury complications. PMID:23071521

  11. An efficient method to identify differentially expressed genes in microarray experiments

    PubMed Central

    Qin, Huaizhen; Feng, Tao; Harding, Scott A.; Tsai, Chung-Jui; Zhang, Shuanglin

    2013-01-01

    Motivation Microarray experiments typically analyze thousands to tens of thousands of genes from small numbers of biological replicates. The fact that genes are normally expressed in functionally relevant patterns suggests that gene-expression data can be stratified and clustered into relatively homogenous groups. Cluster-wise dimensionality reduction should make it feasible to improve screening power while minimizing information loss. Results We propose a powerful and computationally simple method for finding differentially expressed genes in small microarray experiments. The method incorporates a novel stratification-based tight clustering algorithm, principal component analysis and information pooling. Comprehensive simulations show that our method is substantially more powerful than the popular SAM and eBayes approaches. We applied the method to three real microarray datasets: one from a Populus nitrogen stress experiment with 3 biological replicates; and two from public microarray datasets of human cancers with 10 to 40 biological replicates. In all three analyses, our method proved more robust than the popular alternatives for identification of differentially expressed genes. Availability The C++ code to implement the proposed method is available upon request for academic use. PMID:18453554

  12. Comparing microarrays and next-generation sequencing technologies for microbial ecology research.

    PubMed

    Roh, Seong Woon; Abell, Guy C J; Kim, Kyoung-Ho; Nam, Young-Do; Bae, Jin-Woo

    2010-06-01

    Recent advances in molecular biology have resulted in the application of DNA microarrays and next-generation sequencing (NGS) technologies to the field of microbial ecology. This review aims to examine the strengths and weaknesses of each of the methodologies, including depth and ease of analysis, throughput and cost-effectiveness. It also intends to highlight the optimal application of each of the individual technologies toward the study of a particular environment and identify potential synergies between the two main technologies, whereby both sample number and coverage can be maximized. We suggest that the efficient use of microarray and NGS technologies will allow researchers to advance the field of microbial ecology, and importantly, improve our understanding of the role of microorganisms in their various environments.

  13. Weighted analysis of paired microarray experiments.

    PubMed

    Kristiansson, Erik; Sjögren, Anders; Rudemo, Mats; Nerman, Olle

    2005-01-01

    In microarray experiments quality often varies, for example between samples and between arrays. The need for quality control is therefore strong. A statistical model and a corresponding analysis method is suggested for experiments with pairing, including designs with individuals observed before and after treatment and many experiments with two-colour spotted arrays. The model is of mixed type with some parameters estimated by an empirical Bayes method. Differences in quality are modelled by individual variances and correlations between repetitions. The method is applied to three real and several simulated datasets. Two of the real datasets are of Affymetrix type with patients profiled before and after treatment, and the third dataset is of two-colour spotted cDNA type. In all cases, the patients or arrays had different estimated variances, leading to distinctly unequal weights in the analysis. We suggest also plots which illustrate the variances and correlations that affect the weights computed by our analysis method. For simulated data the improvement relative to previously published methods without weighting is shown to be substantial.

  14. The Microarray Revolution: Perspectives from Educators

    ERIC Educational Resources Information Center

    Brewster, Jay L.; Beason, K. Beth; Eckdahl, Todd T.; Evans, Irene M.

    2004-01-01

    In recent years, microarray analysis has become a key experimental tool, enabling the analysis of genome-wide patterns of gene expression. This review approaches the microarray revolution with a focus upon four topics: 1) the early development of this technology and its application to cancer diagnostics; 2) a primer of microarray research,…

  15. Microarray gene expression profiling analysis combined with bioinformatics in multiple sclerosis.

    PubMed

    Liu, Mingyuan; Hou, Xiaojun; Zhang, Ping; Hao, Yong; Yang, Yiting; Wu, Xiongfeng; Zhu, Desheng; Guan, Yangtai

    2013-05-01

    Multiple sclerosis (MS) is the most prevalent demyelinating disease and the principal cause of neurological disability in young adults. Recent microarray gene expression profiling studies have identified several genetic variants contributing to the complex pathogenesis of MS, however, expressional and functional studies are still required to further understand its molecular mechanism. The present study aimed to analyze the molecular mechanism of MS using microarray analysis combined with bioinformatics techniques. We downloaded the gene expression profile of MS from Gene Expression Omnibus (GEO) and analysed the microarray data using the differentially coexpressed genes (DCGs) and links package in R and Database for Annotation, Visualization and Integrated Discovery. The regulatory impact factor (RIF) algorithm was used to measure the impact factor of transcription factor. A total of 1,297 DCGs between MS patients and healthy controls were identified. Functional annotation indicated that these DCGs were associated with immune and neurological functions. Furthermore, the RIF result suggested that IKZF1, BACH1, CEBPB, EGR1, FOS may play central regulatory roles in controlling gene expression in the pathogenesis of MS. Our findings confirm the presence of multiple molecular alterations in MS and indicate the possibility for identifying prognostic factors associated with MS pathogenesis.

  16. Single-Nucleotide Polymorphism-Microarray Ploidy Analysis of Paraffin-Embedded Products of Conception in Recurrent Pregnancy Loss Evaluations.

    PubMed

    Maslow, Bat-Sheva L; Budinetz, Tara; Sueldo, Carolina; Anspach, Erica; Engmann, Lawrence; Benadiva, Claudio; Nulsen, John C

    2015-07-01

    To compare the analysis of chromosome number from paraffin-embedded products of conception using single-nucleotide polymorphism (SNP) microarray with the recommended screening for the evaluation of couples presenting with recurrent pregnancy loss who do not have previous fetal cytogenetic data. We performed a retrospective cohort study including all women who presented for a new evaluation of recurrent pregnancy loss over a 2-year period (January 1, 2012, to December 31, 2013). All participants had at least two documented first-trimester losses and both the recommended screening tests and SNP microarray performed on at least one paraffin-embedded products of conception sample. Single-nucleotide polymorphism microarray identifies all 24 chromosomes (22 autosomes, X, and Y). Forty-two women with a total of 178 losses were included in the study. Paraffin-embedded products of conception from 62 losses were sent for SNP microarray. Single-nucleotide polymorphism microarray successfully diagnosed fetal chromosome number in 71% (44/62) of samples, of which 43% (19/44) were euploid and 57% (25/44) were noneuploid. Seven of 42 (17%) participants had abnormalities on recurrent pregnancy loss screening. The per-person detection rate for a cause of pregnancy loss was significantly higher in the SNP microarray (0.50; 95% confidence interval [CI] 0.36-0.64) compared with recurrent pregnancy loss evaluation (0.17; 95% CI 0.08-0.31) (P=.002). Participants with one or more euploid loss identified on paraffin-embedded products of conception were significantly more likely to have an abnormality on recurrent pregnancy loss screening than those with only noneuploid results (P=.028). The significance remained when controlling for age, number of losses, number of samples, and total pregnancies. These results suggest that SNP microarray testing of paraffin-embedded products of conception is a valuable tool for the evaluation of recurrent pregnancy loss in patients without prior fetal cytogenetic results. Recommended recurrent pregnancy loss screening was unnecessary in almost half the patients in our study. II.

  17. EMAAS: An extensible grid-based Rich Internet Application for microarray data analysis and management

    PubMed Central

    Barton, G; Abbott, J; Chiba, N; Huang, DW; Huang, Y; Krznaric, M; Mack-Smith, J; Saleem, A; Sherman, BT; Tiwari, B; Tomlinson, C; Aitman, T; Darlington, J; Game, L; Sternberg, MJE; Butcher, SA

    2008-01-01

    Background Microarray experimentation requires the application of complex analysis methods as well as the use of non-trivial computer technologies to manage the resultant large data sets. This, together with the proliferation of tools and techniques for microarray data analysis, makes it very challenging for a laboratory scientist to keep up-to-date with the latest developments in this field. Our aim was to develop a distributed e-support system for microarray data analysis and management. Results EMAAS (Extensible MicroArray Analysis System) is a multi-user rich internet application (RIA) providing simple, robust access to up-to-date resources for microarray data storage and analysis, combined with integrated tools to optimise real time user support and training. The system leverages the power of distributed computing to perform microarray analyses, and provides seamless access to resources located at various remote facilities. The EMAAS framework allows users to import microarray data from several sources to an underlying database, to pre-process, quality assess and analyse the data, to perform functional analyses, and to track data analysis steps, all through a single easy to use web portal. This interface offers distance support to users both in the form of video tutorials and via live screen feeds using the web conferencing tool EVO. A number of analysis packages, including R-Bioconductor and Affymetrix Power Tools have been integrated on the server side and are available programmatically through the Postgres-PLR library or on grid compute clusters. Integrated distributed resources include the functional annotation tool DAVID, GeneCards and the microarray data repositories GEO, CELSIUS and MiMiR. EMAAS currently supports analysis of Affymetrix 3' and Exon expression arrays, and the system is extensible to cater for other microarray and transcriptomic platforms. Conclusion EMAAS enables users to track and perform microarray data management and analysis tasks through a single easy-to-use web application. The system architecture is flexible and scalable to allow new array types, analysis algorithms and tools to be added with relative ease and to cope with large increases in data volume. PMID:19032776

  18. An Introduction to MAMA (Meta-Analysis of MicroArray data) System.

    PubMed

    Zhang, Zhe; Fenstermacher, David

    2005-01-01

    Analyzing microarray data across multiple experiments has been proven advantageous. To support this kind of analysis, we are developing a software system called MAMA (Meta-Analysis of MicroArray data). MAMA utilizes a client-server architecture with a relational database on the server-side for the storage of microarray datasets collected from various resources. The client-side is an application running on the end user's computer that allows the user to manipulate microarray data and analytical results locally. MAMA implementation will integrate several analytical methods, including meta-analysis within an open-source framework offering other developers the flexibility to plug in additional statistical algorithms.

  19. Controlling false-negative errors in microarray differential expression analysis: a PRIM approach.

    PubMed

    Cole, Steve W; Galic, Zoran; Zack, Jerome A

    2003-09-22

    Theoretical considerations suggest that current microarray screening algorithms may fail to detect many true differences in gene expression (Type II analytic errors). We assessed 'false negative' error rates in differential expression analyses by conventional linear statistical models (e.g. t-test), microarray-adapted variants (e.g. SAM, Cyber-T), and a novel strategy based on hold-out cross-validation. The latter approach employs the machine-learning algorithm Patient Rule Induction Method (PRIM) to infer minimum thresholds for reliable change in gene expression from Boolean conjunctions of fold-induction and raw fluorescence measurements. Monte Carlo analyses based on four empirical data sets show that conventional statistical models and their microarray-adapted variants overlook more than 50% of genes showing significant up-regulation. Conjoint PRIM prediction rules recover approximately twice as many differentially expressed transcripts while maintaining strong control over false-positive (Type I) errors. As a result, experimental replication rates increase and total analytic error rates decline. RT-PCR studies confirm that gene inductions detected by PRIM but overlooked by other methods represent true changes in mRNA levels. PRIM-based conjoint inference rules thus represent an improved strategy for high-sensitivity screening of DNA microarrays. Freestanding JAVA application at http://microarray.crump.ucla.edu/focus

  20. A novel approach for human whole transcriptome analysis based on absolute gene expression of microarray data.

    PubMed

    Bikel, Shirley; Jacobo-Albavera, Leonor; Sánchez-Muñoz, Fausto; Cornejo-Granados, Fernanda; Canizales-Quinteros, Samuel; Soberón, Xavier; Sotelo-Mundo, Rogerio R; Del Río-Navarro, Blanca E; Mendoza-Vargas, Alfredo; Sánchez, Filiberto; Ochoa-Leyva, Adrian

    2017-01-01

    In spite of the emergence of RNA sequencing (RNA-seq), microarrays remain in widespread use for gene expression analysis in the clinic. There are over 767,000 RNA microarrays from human samples in public repositories, which are an invaluable resource for biomedical research and personalized medicine. The absolute gene expression analysis allows the transcriptome profiling of all expressed genes under a specific biological condition without the need of a reference sample. However, the background fluorescence represents a challenge to determine the absolute gene expression in microarrays. Given that the Y chromosome is absent in female subjects, we used it as a new approach for absolute gene expression analysis in which the fluorescence of the Y chromosome genes of female subjects was used as the background fluorescence for all the probes in the microarray. This fluorescence was used to establish an absolute gene expression threshold, allowing the differentiation between expressed and non-expressed genes in microarrays. We extracted the RNA from 16 children leukocyte samples (nine males and seven females, ages 6-10 years). An Affymetrix Gene Chip Human Gene 1.0 ST Array was carried out for each sample and the fluorescence of 124 genes of the Y chromosome was used to calculate the absolute gene expression threshold. After that, several expressed and non-expressed genes according to our absolute gene expression threshold were compared against the expression obtained using real-time quantitative polymerase chain reaction (RT-qPCR). From the 124 genes of the Y chromosome, three genes (DDX3Y, TXLNG2P and EIF1AY) that displayed significant differences between sexes were used to calculate the absolute gene expression threshold. Using this threshold, we selected 13 expressed and non-expressed genes and confirmed their expression level by RT-qPCR. Then, we selected the top 5% most expressed genes and found that several KEGG pathways were significantly enriched. Interestingly, these pathways were related to the typical functions of leukocytes cells, such as antigen processing and presentation and natural killer cell mediated cytotoxicity. We also applied this method to obtain the absolute gene expression threshold in already published microarray data of liver cells, where the top 5% expressed genes showed an enrichment of typical KEGG pathways for liver cells. Our results suggest that the three selected genes of the Y chromosome can be used to calculate an absolute gene expression threshold, allowing a transcriptome profiling of microarray data without the need of an additional reference experiment. Our approach based on the establishment of a threshold for absolute gene expression analysis will allow a new way to analyze thousands of microarrays from public databases. This allows the study of different human diseases without the need of having additional samples for relative expression experiments.

  1. Preliminary report for analysis of genome wide mutations from four ciprofloxacin resistant B. anthracis Sterne isolates generated by Illumina, 454 sequencing and microarrays for DHS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaing, Crystal; Vergez, Lisa; Hinckley, Aubree

    2011-06-21

    The objective of this project is to provide DHS a comprehensive evaluation of the current genomic technologies including genotyping, Taqman PCR, multiple locus variable tandem repeat analysis (MLVA), microarray and high-throughput DNA sequencing in the analysis of biothreat agents from complex environmental samples. As the result of a different DHS project, we have selected for and isolated a large number of ciprofloxacin resistant B. anthracis Sterne isolates. These isolates vary in the concentrations of ciprofloxacin that they can tolerate, suggesting multiple mutations in the samples. In collaboration with University of Houston, Eureka Genomics and Oak Ridge National Laboratory, we analyzedmore » the ciprofloxacin resistant B. anthracis Sterne isolates by microarray hybridization, Illumina and Roche 454 sequencing to understand the error rates and sensitivity of the different methods. The report provides an assessment of the results and a complete set of all protocols used and all data generated along with information to interpret the protocols and data sets.« less

  2. PAX3 gene deletion detected by microarray analysis in a girl with hearing loss.

    PubMed

    Drozniewska, Malgorzata; Haus, Olga

    2014-01-01

    Deletions of the PAX3 gene have been rarely reported in the literature. Mutations of this gene are a common cause of Waardenburg syndrome type 1 and 3. We report a 16 year old female presenting hearing loss and normal intellectual development, without major features of Waardenburg syndrome type 1, and without family history of the syndrome. Her phenotype, however, overlaps with features of craniofacial-deafness-hand syndrome. Microarray analysis showed ~862 kb de novo deletion at 2q36.1 including PAX3. The above findings suggest that the rearrangement found in our patient appeared de novo and with high probability is a cause of her phenotype.

  3. Alteration of gene expression in the colon of colorectal cancer model rat by dietary sodium gluconate.

    PubMed

    Kameue, Chiyoko; Tsukahara, Takamitsu; Ushida, Kazunari

    2006-03-01

    Butyrate induces apoptosis of various cancer cell lines in a p53-independent manner and inhibits the proliferation of cancer cells. In a previous report, we reported a significant reduction in tumor incidence in rat colon as a result of dietary sodium gluconate (GNA). The stimulation of apoptosis through enhanced butyrate production in the large intestine was involved in the antitumorigenic effect of GNA. In the present study, a cDNA microarray analysis was performed to investigate the particular mechanism involved in the antitumorigenic effect of GNA. Some up-regulated genes suggested by microarray analysis were further evaluated using real-time PCR. A microarray revealed that GNA regulates the expression of retinoic acid receptor (RAR) and retinoid X receptor (RXR), and several genes known as the target of retinoids in cancer cells. In other words, the antitumorigenic effect of GNA may involve the regulation of the retinoid signaling pathway by butyrate in a retinoid-independent manner.

  4. Novel Biomarker Candidates for Colorectal Cancer Metastasis: A Meta-analysis of In Vitro Studies

    PubMed Central

    Long, Nguyen Phuoc; Lee, Wun Jun; Huy, Nguyen Truong; Lee, Seul Ji; Park, Jeong Hill; Kwon, Sung Won

    2016-01-01

    Colorectal cancer (CRC) is one of the most common and lethal cancers. Although numerous studies have evaluated potential biomarkers for early diagnosis, current biomarkers have failed to reach an acceptable level of accuracy for distant metastasis. In this paper, we performed a gene set meta-analysis of in vitro microarray studies and combined the results from this study with previously published proteomic data to validate and suggest prognostic candidates for CRC metastasis. Two microarray data sets included found 21 significant genes. Of these significant genes, ALDOA, IL8 (CXCL8), and PARP4 had strong potential as prognostic candidates. LAMB2, MCM7, CXCL23A, SERPINA3, ABCA3, ALDH3A2, and POLR2I also have potential. Other candidates were more controversial, possibly because of the biologic heterogeneity of tumor cells, which is a major obstacle to predicting metastasis. In conclusion, we demonstrated a meta-analysis approach and successfully suggested ten biomarker candidates for future investigation. PMID:27688707

  5. Novel Biomarker Candidates for Colorectal Cancer Metastasis: A Meta-analysis of In Vitro Studies.

    PubMed

    Long, Nguyen Phuoc; Lee, Wun Jun; Huy, Nguyen Truong; Lee, Seul Ji; Park, Jeong Hill; Kwon, Sung Won

    2016-01-01

    Colorectal cancer (CRC) is one of the most common and lethal cancers. Although numerous studies have evaluated potential biomarkers for early diagnosis, current biomarkers have failed to reach an acceptable level of accuracy for distant metastasis. In this paper, we performed a gene set meta-analysis of in vitro microarray studies and combined the results from this study with previously published proteomic data to validate and suggest prognostic candidates for CRC metastasis. Two microarray data sets included found 21 significant genes. Of these significant genes, ALDOA, IL8 (CXCL8), and PARP4 had strong potential as prognostic candidates. LAMB2, MCM7, CXCL23A, SERPINA3, ABCA3, ALDH3A2, and POLR2I also have potential. Other candidates were more controversial, possibly because of the biologic heterogeneity of tumor cells, which is a major obstacle to predicting metastasis. In conclusion, we demonstrated a meta-analysis approach and successfully suggested ten biomarker candidates for future investigation.

  6. Assessing differential expression in two-color microarrays: a resampling-based empirical Bayes approach.

    PubMed

    Li, Dongmei; Le Pape, Marc A; Parikh, Nisha I; Chen, Will X; Dye, Timothy D

    2013-01-01

    Microarrays are widely used for examining differential gene expression, identifying single nucleotide polymorphisms, and detecting methylation loci. Multiple testing methods in microarray data analysis aim at controlling both Type I and Type II error rates; however, real microarray data do not always fit their distribution assumptions. Smyth's ubiquitous parametric method, for example, inadequately accommodates violations of normality assumptions, resulting in inflated Type I error rates. The Significance Analysis of Microarrays, another widely used microarray data analysis method, is based on a permutation test and is robust to non-normally distributed data; however, the Significance Analysis of Microarrays method fold change criteria are problematic, and can critically alter the conclusion of a study, as a result of compositional changes of the control data set in the analysis. We propose a novel approach, combining resampling with empirical Bayes methods: the Resampling-based empirical Bayes Methods. This approach not only reduces false discovery rates for non-normally distributed microarray data, but it is also impervious to fold change threshold since no control data set selection is needed. Through simulation studies, sensitivities, specificities, total rejections, and false discovery rates are compared across the Smyth's parametric method, the Significance Analysis of Microarrays, and the Resampling-based empirical Bayes Methods. Differences in false discovery rates controls between each approach are illustrated through a preterm delivery methylation study. The results show that the Resampling-based empirical Bayes Methods offer significantly higher specificity and lower false discovery rates compared to Smyth's parametric method when data are not normally distributed. The Resampling-based empirical Bayes Methods also offers higher statistical power than the Significance Analysis of Microarrays method when the proportion of significantly differentially expressed genes is large for both normally and non-normally distributed data. Finally, the Resampling-based empirical Bayes Methods are generalizable to next generation sequencing RNA-seq data analysis.

  7. Transfection microarray and the applications.

    PubMed

    Miyake, Masato; Yoshikawa, Tomohiro; Fujita, Satoshi; Miyake, Jun

    2009-05-01

    Microarray transfection has been extensively studied for high-throughput functional analysis of mammalian cells. However, control of efficiency and reproducibility are the critical issues for practical use. By using solid-phase transfection accelerators and nano-scaffold, we provide a highly efficient and reproducible microarray-transfection device, "transfection microarray". The device would be applied to the limited number of available primary cells and stem cells not only for large-scale functional analysis but also reporter-based time-lapse cellular event analysis.

  8. Microarray technology for major chemical contaminants analysis in food: current status and prospects.

    PubMed

    Zhang, Zhaowei; Li, Peiwu; Hu, Xiaofeng; Zhang, Qi; Ding, Xiaoxia; Zhang, Wen

    2012-01-01

    Chemical contaminants in food have caused serious health issues in both humans and animals. Microarray technology is an advanced technique suitable for the analysis of chemical contaminates. In particular, immuno-microarray approach is one of the most promising methods for chemical contaminants analysis. The use of microarrays for the analysis of chemical contaminants is the subject of this review. Fabrication strategies and detection methods for chemical contaminants are discussed in detail. Application to the analysis of mycotoxins, biotoxins, pesticide residues, and pharmaceutical residues is also described. Finally, future challenges and opportunities are discussed.

  9. Contributions to Statistical Problems Related to Microarray Data

    ERIC Educational Resources Information Center

    Hong, Feng

    2009-01-01

    Microarray is a high throughput technology to measure the gene expression. Analysis of microarray data brings many interesting and challenging problems. This thesis consists three studies related to microarray data. First, we propose a Bayesian model for microarray data and use Bayes Factors to identify differentially expressed genes. Second, we…

  10. Microarray platform for omics analysis

    NASA Astrophysics Data System (ADS)

    Mecklenburg, Michael; Xie, Bin

    2001-09-01

    Microarray technology has revolutionized genetic analysis. However, limitations in genome analysis has lead to renewed interest in establishing 'omic' strategies. As we enter the post-genomic era, new microarray technologies are needed to address these new classes of 'omic' targets, such as proteins, as well as lipids and carbohydrates. We have developed a microarray platform that combines self- assembling monolayers with the biotin-streptavidin system to provide a robust, versatile immobilization scheme. A hydrophobic film is patterned on the surface creating an array of tension wells that eliminates evaporation effects thereby reducing the shear stress to which biomolecules are exposed to during immobilization. The streptavidin linker layer makes it possible to adapt and/or develop microarray based assays using virtually any class of biomolecules including: carbohydrates, peptides, antibodies, receptors, as well as them ore traditional DNA based arrays. Our microarray technology is designed to furnish seamless compatibility across the various 'omic' platforms by providing a common blueprint for fabricating and analyzing arrays. The prototype microarray uses a microscope slide footprint patterned with 2 by 96 flat wells. Data on the microarray platform will be presented.

  11. Microarrays in brain research: the good, the bad and the ugly.

    PubMed

    Mirnics, K

    2001-06-01

    Making sense of microarray data is a complex process, in which the interpretation of findings will depend on the overall experimental design and judgement of the investigator performing the analysis. As a result, differences in tissue harvesting, microarray types, sample labelling and data analysis procedures make post hoc sharing of microarray data a great challenge. To ensure rapid and meaningful data exchange, we need to create some order out of the existing chaos. In these ground-breaking microarray standardization and data sharing efforts, NIH agencies should take a leading role

  12. Development and Validation of Sandwich ELISA Microarrays with Minimal Assay Interference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez, Rachel M.; Servoss, Shannon; Crowley, Sheila A.

    Sandwich enzyme-linked immunosorbent assay (ELISA) microarrays are emerging as a strong candidate platform for multiplex biomarker analysis because of the ELISA’s ability to quantitatively measure rare proteins in complex biological fluids. Advantages of this platform are high-throughput potential, assay sensitivity and stringency, and the similarity to the standard ELISA test, which facilitates assay transfer from a research setting to a clinical laboratory. However, a major concern with the multiplexing of ELISAs is maintaining high assay specificity. In this study, we systematically determine the amount of assay interference and noise contributed by individual components of the multiplexed 24-assay system. We findmore » that non-specific reagent cross-reactivity problems are relatively rare. We did identify the presence of contaminant antigens in a “purified antigen”. We tested the validated ELISA microarray chip using paired serum samples that had been collected from four women at a 6-month interval. This analysis demonstrated that protein levels typically vary much more between individuals then within an individual over time, a result which suggests that longitudinal studies may be useful in controlling for biomarker variability across a population. Overall, this research demonstrates the importance of a stringent screening protocol and the value of optimizing the antibody and antigen concentrations when designing chips for ELISA microarrays.« less

  13. ValWorkBench: an open source Java library for cluster validation, with applications to microarray data analysis.

    PubMed

    Giancarlo, R; Scaturro, D; Utro, F

    2015-02-01

    The prediction of the number of clusters in a dataset, in particular microarrays, is a fundamental task in biological data analysis, usually performed via validation measures. Unfortunately, it has received very little attention and in fact there is a growing need for software tools/libraries dedicated to it. Here we present ValWorkBench, a software library consisting of eleven well known validation measures, together with novel heuristic approximations for some of them. The main objective of this paper is to provide the interested researcher with the full software documentation of an open source cluster validation platform having the main features of being easily extendible in a homogeneous way and of offering software components that can be readily re-used. Consequently, the focus of the presentation is on the architecture of the library, since it provides an essential map that can be used to access the full software documentation, which is available at the supplementary material website [1]. The mentioned main features of ValWorkBench are also discussed and exemplified, with emphasis on software abstraction design and re-usability. A comparison with existing cluster validation software libraries, mainly in terms of the mentioned features, is also offered. It suggests that ValWorkBench is a much needed contribution to the microarray software development/algorithm engineering community. For completeness, it is important to mention that previous accurate algorithmic experimental analysis of the relative merits of each of the implemented measures [19,23,25], carried out specifically on microarray data, gives useful insights on the effectiveness of ValWorkBench for cluster validation to researchers in the microarray community interested in its use for the mentioned task. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Fiber-optic microarray for simultaneous detection of multiple harmful algal bloom species.

    PubMed

    Ahn, Soohyoun; Kulis, David M; Erdner, Deana L; Anderson, Donald M; Walt, David R

    2006-09-01

    Harmful algal blooms (HABs) are a serious threat to coastal resources, causing a variety of impacts on public health, regional economies, and ecosystems. Plankton analysis is a valuable component of many HAB monitoring and research programs, but the diversity of plankton poses a problem in discriminating toxic from nontoxic species using conventional detection methods. Here we describe a sensitive and specific sandwich hybridization assay that combines fiber-optic microarrays with oligonucleotide probes to detect and enumerate the HAB species Alexandrium fundyense, Alexandrium ostenfeldii, and Pseudo-nitzschia australis. Microarrays were prepared by loading oligonucleotide probe-coupled microspheres (diameter, 3 mum) onto the distal ends of chemically etched imaging fiber bundles. Hybridization of target rRNA from HAB cells to immobilized probes on the microspheres was visualized using Cy3-labeled secondary probes in a sandwich-type assay format. We applied these microarrays to the detection and enumeration of HAB cells in both cultured and field samples. Our study demonstrated a detection limit of approximately 5 cells for all three target organisms within 45 min, without a separate amplification step, in both sample types. We also developed a multiplexed microarray to detect the three HAB species simultaneously, which successfully detected the target organisms, alone and in combination, without cross-reactivity. Our study suggests that fiber-optic microarrays can be used for rapid and sensitive detection and potential enumeration of HAB species in the environment.

  15. HDBStat!: a platform-independent software suite for statistical analysis of high dimensional biology data.

    PubMed

    Trivedi, Prinal; Edwards, Jode W; Wang, Jelai; Gadbury, Gary L; Srinivasasainagendra, Vinodh; Zakharkin, Stanislav O; Kim, Kyoungmi; Mehta, Tapan; Brand, Jacob P L; Patki, Amit; Page, Grier P; Allison, David B

    2005-04-06

    Many efforts in microarray data analysis are focused on providing tools and methods for the qualitative analysis of microarray data. HDBStat! (High-Dimensional Biology-Statistics) is a software package designed for analysis of high dimensional biology data such as microarray data. It was initially developed for the analysis of microarray gene expression data, but it can also be used for some applications in proteomics and other aspects of genomics. HDBStat! provides statisticians and biologists a flexible and easy-to-use interface to analyze complex microarray data using a variety of methods for data preprocessing, quality control analysis and hypothesis testing. Results generated from data preprocessing methods, quality control analysis and hypothesis testing methods are output in the form of Excel CSV tables, graphs and an Html report summarizing data analysis. HDBStat! is a platform-independent software that is freely available to academic institutions and non-profit organizations. It can be downloaded from our website http://www.soph.uab.edu/ssg_content.asp?id=1164.

  16. A novel approach for human whole transcriptome analysis based on absolute gene expression of microarray data

    PubMed Central

    Bikel, Shirley; Jacobo-Albavera, Leonor; Sánchez-Muñoz, Fausto; Cornejo-Granados, Fernanda; Canizales-Quinteros, Samuel; Soberón, Xavier; Sotelo-Mundo, Rogerio R.; del Río-Navarro, Blanca E.; Mendoza-Vargas, Alfredo; Sánchez, Filiberto

    2017-01-01

    Background In spite of the emergence of RNA sequencing (RNA-seq), microarrays remain in widespread use for gene expression analysis in the clinic. There are over 767,000 RNA microarrays from human samples in public repositories, which are an invaluable resource for biomedical research and personalized medicine. The absolute gene expression analysis allows the transcriptome profiling of all expressed genes under a specific biological condition without the need of a reference sample. However, the background fluorescence represents a challenge to determine the absolute gene expression in microarrays. Given that the Y chromosome is absent in female subjects, we used it as a new approach for absolute gene expression analysis in which the fluorescence of the Y chromosome genes of female subjects was used as the background fluorescence for all the probes in the microarray. This fluorescence was used to establish an absolute gene expression threshold, allowing the differentiation between expressed and non-expressed genes in microarrays. Methods We extracted the RNA from 16 children leukocyte samples (nine males and seven females, ages 6–10 years). An Affymetrix Gene Chip Human Gene 1.0 ST Array was carried out for each sample and the fluorescence of 124 genes of the Y chromosome was used to calculate the absolute gene expression threshold. After that, several expressed and non-expressed genes according to our absolute gene expression threshold were compared against the expression obtained using real-time quantitative polymerase chain reaction (RT-qPCR). Results From the 124 genes of the Y chromosome, three genes (DDX3Y, TXLNG2P and EIF1AY) that displayed significant differences between sexes were used to calculate the absolute gene expression threshold. Using this threshold, we selected 13 expressed and non-expressed genes and confirmed their expression level by RT-qPCR. Then, we selected the top 5% most expressed genes and found that several KEGG pathways were significantly enriched. Interestingly, these pathways were related to the typical functions of leukocytes cells, such as antigen processing and presentation and natural killer cell mediated cytotoxicity. We also applied this method to obtain the absolute gene expression threshold in already published microarray data of liver cells, where the top 5% expressed genes showed an enrichment of typical KEGG pathways for liver cells. Our results suggest that the three selected genes of the Y chromosome can be used to calculate an absolute gene expression threshold, allowing a transcriptome profiling of microarray data without the need of an additional reference experiment. Discussion Our approach based on the establishment of a threshold for absolute gene expression analysis will allow a new way to analyze thousands of microarrays from public databases. This allows the study of different human diseases without the need of having additional samples for relative expression experiments. PMID:29230367

  17. ArrayNinja: An Open Source Platform for Unified Planning and Analysis of Microarray Experiments.

    PubMed

    Dickson, B M; Cornett, E M; Ramjan, Z; Rothbart, S B

    2016-01-01

    Microarray-based proteomic platforms have emerged as valuable tools for studying various aspects of protein function, particularly in the field of chromatin biochemistry. Microarray technology itself is largely unrestricted in regard to printable material and platform design, and efficient multidimensional optimization of assay parameters requires fluidity in the design and analysis of custom print layouts. This motivates the need for streamlined software infrastructure that facilitates the combined planning and analysis of custom microarray experiments. To this end, we have developed ArrayNinja as a portable, open source, and interactive application that unifies the planning and visualization of microarray experiments and provides maximum flexibility to end users. Array experiments can be planned, stored to a private database, and merged with the imaged results for a level of data interaction and centralization that is not currently attainable with available microarray informatics tools. © 2016 Elsevier Inc. All rights reserved.

  18. Prenatal diagnosis of two fetuses with deletions of 8p23.1, critical region for congenital diaphragmatic hernia and heart defects.

    PubMed

    Keitges, Elisabeth A; Pasion, Romela; Burnside, Rachel D; Mason, Carla; Gonzalez-Ruiz, Antonio; Dunn, Teresa; Masiello, Meredith; Gebbia, Joseph A; Fernandez, Carlos O; Risheg, Hiba

    2013-07-01

    Microdeletions of 8p23.1 are mediated by low copy repeats and can cause congenital diaphragmatic hernia (CDH) and cardiac defects. Within this region, point mutations of the GATA4 gene have been shown to cause cardiac defects. However, the cause of CDH in these deletions has been difficult to determine due to the paucity of mutations that result in CDH, the lack of smaller deletions to refine the region and the reduced penetrance of CDH in these large deletions. Mice deficient for one copy of the Gata4 gene have been described with CDH and heart defects suggesting mutations in Gata4 can cause the phenotype in mice. We report on the SNP microarray analysis on two fetuses with deletions of 8p23.1. The first had CDH and a ventricular septal defect (VSD) on ultrasonography and a family history of a maternal VSD. Microarray analysis detected a 127-kb deletion which included the GATA4 and NEIL2 genes which was inherited from the mother. The second fetus had an incomplete atrioventricular canal defect on ultrasonography. Microarray analysis showed a 315-kb deletion that included seven genes, GATA4, NEIL2, FDFT1, CTSB, DEFB136, DEFB135, and DEFB134. These results suggest that haploinsufficiency of the two genes in common within 8p23.1; GATA4 and NEIL2 can cause CDH and cardiac defects in humans. Copyright © 2013 Wiley Periodicals, Inc.

  19. Evaluation of Different Normalization and Analysis Procedures for Illumina Gene Expression Microarray Data Involving Small Changes

    PubMed Central

    Johnstone, Daniel M.; Riveros, Carlos; Heidari, Moones; Graham, Ross M.; Trinder, Debbie; Berretta, Regina; Olynyk, John K.; Scott, Rodney J.; Moscato, Pablo; Milward, Elizabeth A.

    2013-01-01

    While Illumina microarrays can be used successfully for detecting small gene expression changes due to their high degree of technical replicability, there is little information on how different normalization and differential expression analysis strategies affect outcomes. To evaluate this, we assessed concordance across gene lists generated by applying different combinations of normalization strategy and analytical approach to two Illumina datasets with modest expression changes. In addition to using traditional statistical approaches, we also tested an approach based on combinatorial optimization. We found that the choice of both normalization strategy and analytical approach considerably affected outcomes, in some cases leading to substantial differences in gene lists and subsequent pathway analysis results. Our findings suggest that important biological phenomena may be overlooked when there is a routine practice of using only one approach to investigate all microarray datasets. Analytical artefacts of this kind are likely to be especially relevant for datasets involving small fold changes, where inherent technical variation—if not adequately minimized by effective normalization—may overshadow true biological variation. This report provides some basic guidelines for optimizing outcomes when working with Illumina datasets involving small expression changes. PMID:27605185

  20. Prediction of Microbial Infection of Cultured Cells Using DNA Microarray Gene-Expression Profiles of Host Responses

    PubMed Central

    Park, Yu Rang; Chung, Tae Su; Lee, Young Joo; Song, Yeong Wook; Lee, Eun Young; Sohn, Yeo Won; Song, Sukgil; Park, Woong Yang

    2012-01-01

    Infection by microorganisms may cause fatally erroneous interpretations in the biologic researches based on cell culture. The contamination by microorganism in the cell culture is quite frequent (5% to 35%). However, current approaches to identify the presence of contamination have many limitations such as high cost of time and labor, and difficulty in interpreting the result. In this paper, we propose a model to predict cell infection, using a microarray technique which gives an overview of the whole genome profile. By analysis of 62 microarray expression profiles under various experimental conditions altering cell type, source of infection and collection time, we discovered 5 marker genes, NM_005298, NM_016408, NM_014588, S76389, and NM_001853. In addition, we discovered two of these genes, S76389, and NM_001853, are involved in a Mycolplasma-specific infection process. We also suggest models to predict the source of infection, cell type or time after infection. We implemented a web based prediction tool in microarray data, named Prediction of Microbial Infection (http://www.snubi.org/software/PMI). PMID:23091307

  1. WebArray: an online platform for microarray data analysis

    PubMed Central

    Xia, Xiaoqin; McClelland, Michael; Wang, Yipeng

    2005-01-01

    Background Many cutting-edge microarray analysis tools and algorithms, including commonly used limma and affy packages in Bioconductor, need sophisticated knowledge of mathematics, statistics and computer skills for implementation. Commercially available software can provide a user-friendly interface at considerable cost. To facilitate the use of these tools for microarray data analysis on an open platform we developed an online microarray data analysis platform, WebArray, for bench biologists to utilize these tools to explore data from single/dual color microarray experiments. Results The currently implemented functions were based on limma and affy package from Bioconductor, the spacings LOESS histogram (SPLOSH) method, PCA-assisted normalization method and genome mapping method. WebArray incorporates these packages and provides a user-friendly interface for accessing a wide range of key functions of limma and others, such as spot quality weight, background correction, graphical plotting, normalization, linear modeling, empirical bayes statistical analysis, false discovery rate (FDR) estimation, chromosomal mapping for genome comparison. Conclusion WebArray offers a convenient platform for bench biologists to access several cutting-edge microarray data analysis tools. The website is freely available at . It runs on a Linux server with Apache and MySQL. PMID:16371165

  2. A Customized DNA Microarray for Microbial Source Tracking ...

    EPA Pesticide Factsheets

    It is estimated that more than 160, 000 miles of rivers and streams in the United States are impaired due to the presence of waterborne pathogens. These pathogens typically originate from human and other animal fecal pollution sources; therefore, a rapid microbial source tracking (MST) method is needed to facilitate water quality assessment and impaired water remediation. We report a novel qualitative DNA microarray technology consisting of 453 probes for the detection of general fecal and host-associated bacteria, viruses, antibiotic resistance, and other environmentally relevant genetic indicators. A novel data normalization and reduction approach is also presented to help alleviate false positives often associated with high-density microarray applications. To evaluate the performance of the approach, DNA and cDNA was isolated from swine, cattle, duck, goose and gull fecal reference samples, as well as soiled poultry liter and raw municipal sewage. Based on nonmetric multidimensional scaling analysis of results, findings suggest that the novel microarray approach may be useful for pathogen detection and identification of fecal contamination in recreational waters. The ability to simultaneously detect a large collection of environmentally important genetic indicators in a single test has the potential to provide water quality managers with a wide range of information in a short period of time. Future research is warranted to measure microarray performance i

  3. Gene expression profile of blood cells for the prediction of delayed cerebral ischemia after intracranial aneurysm rupture: a pilot study in humans.

    PubMed

    Baumann, Antoine; Devaux, Yvan; Audibert, Gérard; Zhang, Lu; Bracard, Serge; Colnat-Coulbois, Sophie; Klein, Olivier; Zannad, Faiez; Charpentier, Claire; Longrois, Dan; Mertes, Paul-Michel

    2013-01-01

    Delayed cerebral ischemia (DCI) is a potentially devastating complication after intracranial aneurysm rupture and its mechanisms remain poorly elucidated. Early identification of the patients prone to developing DCI after rupture may represent a major breakthrough in its prevention and treatment. The single gene approach of DCI has demonstrated interest in humans. We hypothesized that whole genome expression profile of blood cells may be useful for better comprehension and prediction of aneurysmal DCI. Over a 35-month period, 218 patients with aneurysm rupture were included in this study. DCI was defined as the occurrence of a new delayed neurological deficit occurring within 2 weeks after aneurysm rupture with evidence of ischemia either on perfusion-diffusion MRI, CT angiography or CT perfusion imaging, or with cerebral angiography. DCI patients were matched against controls based on 4 out of 5 criteria (age, sex, Fisher grade, aneurysm location and smoking status). Genome-wide expression analysis of blood cells obtained at admission was performed by microarrays. Transcriptomic analysis was performed using long oligonucleotide microarrays representing 25,000 genes. Quantitative PCR: 1 µg of total RNA extracted was reverse-transcribed, and the resulting cDNA was diluted 10-fold before performing quantitative PCR. Microarray data were first analyzed by 'Significance Analysis of Microarrays' software which includes the Benjamini correction for multiple testing. In a second step, microarray data fold change was compared using a two-tailed, paired t test. Analysis of receiver-operating characteristic (ROC) curves and the area under the ROC curves were used for prediction analysis. Logistic regression models were used to investigate the additive value of multiple biomarkers. A total of 16 patients demonstrated DCI. Significance Analysis of Microarrays software failed to retrieve significant genes, most probably because of the heterogeneity of the patients included in the microarray experiments and the small size of the DCI population sample. Standard two-tailed paired t test and C-statistic revealed significant associations between gene expression and the occurrence of DCI: in particular, the expression of neuroregulin 1 was 1.6-fold upregulated in patients with DCI (p = 0.01) and predicted DCI with an area under the ROC curve of 0.96. Logistic regression analyses revealed a significant association between neuroregulin 1 and DCI (odds ratio 1.46, 95% confidence interval 1.02-2.09, p = 0.02). This pilot study suggests that blood cells may be a reservoir of prognostic biomarkers of DCI in patients with intracranial aneurysm rupture. Despite an evident lack of power, this study elicited neuroregulin 1, a vasoreactivity-, inflammation- and angiogenesis-related gene, as a possible candidate predictor of DCI. Larger cohort studies are needed but genome-wide microarray-based studies are promising research tools for the understanding of DCI after intracranial aneurysm rupture. © 2013 S. Karger AG, Basel.

  4. [Technology of analysis of epigenetic and structural changes of epithelial tumors genome with NotI-microarrays by the example of human chromosome].

    PubMed

    Pavlova, T V; Kashuba, V I; Muravenko, O V; Yenamandra, S P; Ivanova, T A; Zabarovskaia, V I; Rakhmanaliev, E R; Petrenko, L A; Pronina, I V; Loginov, V I; Iurkevich, O Iu; Kiselev, L L; Zelenin, A V; Zabarovskiĭ, E R

    2009-01-01

    New comparative genome hybridization technology on NotI-microarrays is presented (Karolinska Institute International Patent WO02/086163). The method is based on comparative genome hybridization of NotI-probes from tumor and normal genomic DNA with the principle of new DNA NotI-microarrays. Using this method 181 NotI linking loci from human chromosome 3 were analyzed in 200 malignant tumor samples from different organs: kidney, lung, breast, ovary, cervical, prostate. Most frequently (more than in 30%) aberrations--deletions, methylation,--were identified in NotI-sites located in MINT24, BHLHB2, RPL15, RARbeta1, ITGA9, RBSP3, VHL, ZIC4 genes, that suggests they probably are involved in cancer development. Methylation of these genomic loci was confirmed by methylation-specific PCR and bisulfite sequencing. The results demonstrate perspective of using this method to solve some oncogenomic problems.

  5. Issues in the analysis of oligonucleotide tiling microarrays for transcript mapping

    NASA Technical Reports Server (NTRS)

    Royce, Thomas E.; Rozowsky, Joel S.; Bertone, Paul; Samanta, Manoj; Stolc, Viktor; Weissman, Sherman; Snyder, Michael; Gerstein, Mark

    2005-01-01

    Traditional microarrays use probes complementary to known genes to quantitate the differential gene expression between two or more conditions. Genomic tiling microarray experiments differ in that probes that span a genomic region at regular intervals are used to detect the presence or absence of transcription. This difference means the same sets of biases and the methods for addressing them are unlikely to be relevant to both types of experiment. We introduce the informatics challenges arising in the analysis of tiling microarray experiments as open problems to the scientific community and present initial approaches for the analysis of this nascent technology.

  6. The Development of Protein Microarrays and Their Applications in DNA-Protein and Protein-Protein Interaction Analyses of Arabidopsis Transcription Factors

    PubMed Central

    Gong, Wei; He, Kun; Covington, Mike; Dinesh-Kumar, S. P.; Snyder, Michael; Harmer, Stacey L.; Zhu, Yu-Xian; Deng, Xing Wang

    2009-01-01

    We used our collection of Arabidopsis transcription factor (TF) ORFeome clones to construct protein microarrays containing as many as 802 TF proteins. These protein microarrays were used for both protein-DNA and protein-protein interaction analyses. For protein-DNA interaction studies, we examined AP2/ERF family TFs and their cognate cis-elements. By careful comparison of the DNA-binding specificity of 13 TFs on the protein microarray with previous non-microarray data, we showed that protein microarrays provide an efficient and high throughput tool for genome-wide analysis of TF-DNA interactions. This microarray protein-DNA interaction analysis allowed us to derive a comprehensive view of DNA-binding profiles of AP2/ERF family proteins in Arabidopsis. It also revealed four TFs that bound the EE (evening element) and had the expected phased gene expression under clock-regulation, thus providing a basis for further functional analysis of their roles in clock regulation of gene expression. We also developed procedures for detecting protein interactions using this TF protein microarray and discovered four novel partners that interact with HY5, which can be validated by yeast two-hybrid assays. Thus, plant TF protein microarrays offer an attractive high-throughput alternative to traditional techniques for TF functional characterization on a global scale. PMID:19802365

  7. Karyotype versus microarray testing for genetic abnormalities after stillbirth.

    PubMed

    Reddy, Uma M; Page, Grier P; Saade, George R; Silver, Robert M; Thorsten, Vanessa R; Parker, Corette B; Pinar, Halit; Willinger, Marian; Stoll, Barbara J; Heim-Hall, Josefine; Varner, Michael W; Goldenberg, Robert L; Bukowski, Radek; Wapner, Ronald J; Drews-Botsch, Carolyn D; O'Brien, Barbara M; Dudley, Donald J; Levy, Brynn

    2012-12-06

    Genetic abnormalities have been associated with 6 to 13% of stillbirths, but the true prevalence may be higher. Unlike karyotype analysis, microarray analysis does not require live cells, and it detects small deletions and duplications called copy-number variants. The Stillbirth Collaborative Research Network conducted a population-based study of stillbirth in five geographic catchment areas. Standardized postmortem examinations and karyotype analyses were performed. A single-nucleotide polymorphism array was used to detect copy-number variants of at least 500 kb in placental or fetal tissue. Variants that were not identified in any of three databases of apparently unaffected persons were then classified into three groups: probably benign, clinical significance unknown, or pathogenic. We compared the results of karyotype and microarray analyses of samples obtained after delivery. In our analysis of samples from 532 stillbirths, microarray analysis yielded results more often than did karyotype analysis (87.4% vs. 70.5%, P<0.001) and provided better detection of genetic abnormalities (aneuploidy or pathogenic copy-number variants, 8.3% vs. 5.8%; P=0.007). Microarray analysis also identified more genetic abnormalities among 443 antepartum stillbirths (8.8% vs. 6.5%, P=0.02) and 67 stillbirths with congenital anomalies (29.9% vs. 19.4%, P=0.008). As compared with karyotype analysis, microarray analysis provided a relative increase in the diagnosis of genetic abnormalities of 41.9% in all stillbirths, 34.5% in antepartum stillbirths, and 53.8% in stillbirths with anomalies. Microarray analysis is more likely than karyotype analysis to provide a genetic diagnosis, primarily because of its success with nonviable tissue, and is especially valuable in analyses of stillbirths with congenital anomalies or in cases in which karyotype results cannot be obtained. (Funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development.).

  8. Microarray profiles reveal that circular RNA hsa_circ_0007385 functions as an oncogene in non-small cell lung cancer tumorigenesis.

    PubMed

    Jiang, Ming-Ming; Mai, Zhi-Tao; Wan, Shan-Zhi; Chi, Yu-Min; Zhang, Xin; Sun, Bao-Hua; Di, Qing-Guo

    2018-04-01

    Circular RNAs (circRNAs) are a novel class of non-protein-coding RNA. Emerging evidence indicates that circRNAs participate in the regulation of many pathophysiological processes. This study aims to explore the expression profiles and pathological effects of circRNAs in non-small cell lung cancer (NSCLC). Human circRNAs microarray analysis was performed to screen the expression profile of circRNAs in NSCLC tissue. Expressions of circRNA and miRNA in NSCLC tissues and cells were quantified by qRTPCR. Functional experiments were performed to investigate the biological functions of circRNA, including CCK-8 assay, colony formation assay, transwell assay and xenograft in vivo assay. Human circRNAs microarray revealed a total 957 abnormally expressed circRNAs (> twofold, P < 0.05) in NSCLC tissue compared with adjacent normal tissue. In further studies, hsa_circ_0007385 was significantly up regulated in NSCLC tissue and cells. In vitro experiments with hsa_circ_0007385 knockdown resulted in significant suppression of the proliferation, migration and invasion of NSCLC cells. In vivo xenograft assay using hsa_circ_0007385 knockdown, significantly reduced tumor growth. Bioinformatics analysis and luciferase reporter assay verified the potential target miR-181, suggesting a possible regulatory pathway for hsa_circ_0007385. In summary, results suggest hsa_circ_0007385 plays a role in NSCLC tumorigenesis, providing a potential therapeutic target for NSCLC.

  9. Emerging Use of Gene Expression Microarrays in Plant Physiology

    DOE PAGES

    Wullschleger, Stan D.; Difazio, Stephen P.

    2003-01-01

    Microarrays have become an important technology for the global analysis of gene expression in humans, animals, plants, and microbes. Implemented in the context of a well-designed experiment, cDNA and oligonucleotide arrays can provide highthroughput, simultaneous analysis of transcript abundance for hundreds, if not thousands, of genes. However, despite widespread acceptance, the use of microarrays as a tool to better understand processes of interest to the plant physiologist is still being explored. To help illustrate current uses of microarrays in the plant sciences, several case studies that we believe demonstrate the emerging application of gene expression arrays in plant physiology weremore » selected from among the many posters and presentations at the 2003 Plant and Animal Genome XI Conference. Based on this survey, microarrays are being used to assess gene expression in plants exposed to the experimental manipulation of air temperature, soil water content and aluminium concentration in the root zone. Analysis often includes characterizing transcript profiles for multiple post-treatment sampling periods and categorizing genes with common patterns of response using hierarchical clustering techniques. In addition, microarrays are also providing insights into developmental changes in gene expression associated with fibre and root elongation in cotton and maize, respectively. Technical and analytical limitations of microarrays are discussed and projects attempting to advance areas of microarray design and data analysis are highlighted. Finally, although much work remains, we conclude that microarrays are a valuable tool for the plant physiologist interested in the characterization and identification of individual genes and gene families with potential application in the fields of agriculture, horticulture and forestry.« less

  10. A genome-wide 20 K citrus microarray for gene expression analysis

    PubMed Central

    Martinez-Godoy, M Angeles; Mauri, Nuria; Juarez, Jose; Marques, M Carmen; Santiago, Julia; Forment, Javier; Gadea, Jose

    2008-01-01

    Background Understanding of genetic elements that contribute to key aspects of citrus biology will impact future improvements in this economically important crop. Global gene expression analysis demands microarray platforms with a high genome coverage. In the last years, genome-wide EST collections have been generated in citrus, opening the possibility to create new tools for functional genomics in this crop plant. Results We have designed and constructed a publicly available genome-wide cDNA microarray that include 21,081 putative unigenes of citrus. As a functional companion to the microarray, a web-browsable database [1] was created and populated with information about the unigenes represented in the microarray, including cDNA libraries, isolated clones, raw and processed nucleotide and protein sequences, and results of all the structural and functional annotation of the unigenes, like general description, BLAST hits, putative Arabidopsis orthologs, microsatellites, putative SNPs, GO classification and PFAM domains. We have performed a Gene Ontology comparison with the full set of Arabidopsis proteins to estimate the genome coverage of the microarray. We have also performed microarray hybridizations to check its usability. Conclusion This new cDNA microarray replaces the first 7K microarray generated two years ago and allows gene expression analysis at a more global scale. We have followed a rational design to minimize cross-hybridization while maintaining its utility for different citrus species. Furthermore, we also provide access to a website with full structural and functional annotation of the unigenes represented in the microarray, along with the ability to use this site to directly perform gene expression analysis using standard tools at different publicly available servers. Furthermore, we show how this microarray offers a good representation of the citrus genome and present the usefulness of this genomic tool for global studies in citrus by using it to catalogue genes expressed in citrus globular embryos. PMID:18598343

  11. A Java-based tool for the design of classification microarrays.

    PubMed

    Meng, Da; Broschat, Shira L; Call, Douglas R

    2008-08-04

    Classification microarrays are used for purposes such as identifying strains of bacteria and determining genetic relationships to understand the epidemiology of an infectious disease. For these cases, mixed microarrays, which are composed of DNA from more than one organism, are more effective than conventional microarrays composed of DNA from a single organism. Selection of probes is a key factor in designing successful mixed microarrays because redundant sequences are inefficient and limited representation of diversity can restrict application of the microarray. We have developed a Java-based software tool, called PLASMID, for use in selecting the minimum set of probe sequences needed to classify different groups of plasmids or bacteria. The software program was successfully applied to several different sets of data. The utility of PLASMID was illustrated using existing mixed-plasmid microarray data as well as data from a virtual mixed-genome microarray constructed from different strains of Streptococcus. Moreover, use of data from expression microarray experiments demonstrated the generality of PLASMID. In this paper we describe a new software tool for selecting a set of probes for a classification microarray. While the tool was developed for the design of mixed microarrays-and mixed-plasmid microarrays in particular-it can also be used to design expression arrays. The user can choose from several clustering methods (including hierarchical, non-hierarchical, and a model-based genetic algorithm), several probe ranking methods, and several different display methods. A novel approach is used for probe redundancy reduction, and probe selection is accomplished via stepwise discriminant analysis. Data can be entered in different formats (including Excel and comma-delimited text), and dendrogram, heat map, and scatter plot images can be saved in several different formats (including jpeg and tiff). Weights generated using stepwise discriminant analysis can be stored for analysis of subsequent experimental data. Additionally, PLASMID can be used to construct virtual microarrays with genomes from public databases, which can then be used to identify an optimal set of probes.

  12. Enhancing interdisciplinary mathematics and biology education: a microarray data analysis course bridging these disciplines.

    PubMed

    Tra, Yolande V; Evans, Irene M

    2010-01-01

    BIO2010 put forth the goal of improving the mathematical educational background of biology students. The analysis and interpretation of microarray high-dimensional data can be very challenging and is best done by a statistician and a biologist working and teaching in a collaborative manner. We set up such a collaboration and designed a course on microarray data analysis. We started using Genome Consortium for Active Teaching (GCAT) materials and Microarray Genome and Clustering Tool software and added R statistical software along with Bioconductor packages. In response to student feedback, one microarray data set was fully analyzed in class, starting from preprocessing to gene discovery to pathway analysis using the latter software. A class project was to conduct a similar analysis where students analyzed their own data or data from a published journal paper. This exercise showed the impact that filtering, preprocessing, and different normalization methods had on gene inclusion in the final data set. We conclude that this course achieved its goals to equip students with skills to analyze data from a microarray experiment. We offer our insight about collaborative teaching as well as how other faculty might design and implement a similar interdisciplinary course.

  13. Enhancing Interdisciplinary Mathematics and Biology Education: A Microarray Data Analysis Course Bridging These Disciplines

    PubMed Central

    Evans, Irene M.

    2010-01-01

    BIO2010 put forth the goal of improving the mathematical educational background of biology students. The analysis and interpretation of microarray high-dimensional data can be very challenging and is best done by a statistician and a biologist working and teaching in a collaborative manner. We set up such a collaboration and designed a course on microarray data analysis. We started using Genome Consortium for Active Teaching (GCAT) materials and Microarray Genome and Clustering Tool software and added R statistical software along with Bioconductor packages. In response to student feedback, one microarray data set was fully analyzed in class, starting from preprocessing to gene discovery to pathway analysis using the latter software. A class project was to conduct a similar analysis where students analyzed their own data or data from a published journal paper. This exercise showed the impact that filtering, preprocessing, and different normalization methods had on gene inclusion in the final data set. We conclude that this course achieved its goals to equip students with skills to analyze data from a microarray experiment. We offer our insight about collaborative teaching as well as how other faculty might design and implement a similar interdisciplinary course. PMID:20810954

  14. Chromosomal Microarray versus Karyotyping for Prenatal Diagnosis

    PubMed Central

    Wapner, Ronald J.; Martin, Christa Lese; Levy, Brynn; Ballif, Blake C.; Eng, Christine M.; Zachary, Julia M.; Savage, Melissa; Platt, Lawrence D.; Saltzman, Daniel; Grobman, William A.; Klugman, Susan; Scholl, Thomas; Simpson, Joe Leigh; McCall, Kimberly; Aggarwal, Vimla S.; Bunke, Brian; Nahum, Odelia; Patel, Ankita; Lamb, Allen N.; Thom, Elizabeth A.; Beaudet, Arthur L.; Ledbetter, David H.; Shaffer, Lisa G.; Jackson, Laird

    2013-01-01

    Background Chromosomal microarray analysis has emerged as a primary diagnostic tool for the evaluation of developmental delay and structural malformations in children. We aimed to evaluate the accuracy, efficacy, and incremental yield of chromosomal microarray analysis as compared with karyotyping for routine prenatal diagnosis. Methods Samples from women undergoing prenatal diagnosis at 29 centers were sent to a central karyotyping laboratory. Each sample was split in two; standard karyotyping was performed on one portion and the other was sent to one of four laboratories for chromosomal microarray. Results We enrolled a total of 4406 women. Indications for prenatal diagnosis were advanced maternal age (46.6%), abnormal result on Down’s syndrome screening (18.8%), structural anomalies on ultrasonography (25.2%), and other indications (9.4%). In 4340 (98.8%) of the fetal samples, microarray analysis was successful; 87.9% of samples could be used without tissue culture. Microarray analysis of the 4282 nonmosaic samples identified all the aneuploidies and unbalanced rearrangements identified on karyotyping but did not identify balanced translocations and fetal triploidy. In samples with a normal karyotype, microarray analysis revealed clinically relevant deletions or duplications in 6.0% with a structural anomaly and in 1.7% of those whose indications were advanced maternal age or positive screening results. Conclusions In the context of prenatal diagnostic testing, chromosomal microarray analysis identified additional, clinically significant cytogenetic information as compared with karyotyping and was equally efficacious in identifying aneuploidies and unbalanced rearrangements but did not identify balanced translocations and triploidies. (Funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development and others; ClinicalTrials.gov number, NCT01279733.) PMID:23215555

  15. Analysis of microarray leukemia data using an efficient MapReduce-based K-nearest-neighbor classifier.

    PubMed

    Kumar, Mukesh; Rath, Nitish Kumar; Rath, Santanu Kumar

    2016-04-01

    Microarray-based gene expression profiling has emerged as an efficient technique for classification, prognosis, diagnosis, and treatment of cancer. Frequent changes in the behavior of this disease generates an enormous volume of data. Microarray data satisfies both the veracity and velocity properties of big data, as it keeps changing with time. Therefore, the analysis of microarray datasets in a small amount of time is essential. They often contain a large amount of expression, but only a fraction of it comprises genes that are significantly expressed. The precise identification of genes of interest that are responsible for causing cancer are imperative in microarray data analysis. Most existing schemes employ a two-phase process such as feature selection/extraction followed by classification. In this paper, various statistical methods (tests) based on MapReduce are proposed for selecting relevant features. After feature selection, a MapReduce-based K-nearest neighbor (mrKNN) classifier is also employed to classify microarray data. These algorithms are successfully implemented in a Hadoop framework. A comparative analysis is done on these MapReduce-based models using microarray datasets of various dimensions. From the obtained results, it is observed that these models consume much less execution time than conventional models in processing big data. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. COMPARATIVE MICROARRAY EXPRESSION ANALYSIS OF SELECTED CANCER RELEVANT GENES IN HYPERTENSIVE RESISTANT VERSUS SUSCEPTIBLE RODENT STRAINS

    EPA Science Inventory

    Hypertension and cancer are prevalent diseases. Epidemiological studies suggest that hypertension may increase the long term risk of cancer. Identification of resistance and/or susceptibility genes using rodent models could provide important insights into the management and treat...

  17. Controlled hydrostatic pressure stress downregulates the expression of ribosomal genes in preimplantation embryos: a possible protection mechanism?

    PubMed

    Bock, I; Raveh-Amit, H; Losonczi, E; Carstea, A C; Feher, A; Mashayekhi, K; Matyas, S; Dinnyes, A; Pribenszky, C

    2016-04-01

    The efficiency of various assisted reproductive techniques can be improved by preconditioning the gametes and embryos with sublethal hydrostatic pressure treatment. However, the underlying molecular mechanism responsible for this protective effect remains unknown and requires further investigation. Here, we studied the effect of optimised hydrostatic pressure treatment on the global gene expression of mouse oocytes after embryonic genome activation. Based on a gene expression microarray analysis, a significant effect of treatment was observed in 4-cell embryos derived from treated oocytes, revealing a transcriptional footprint of hydrostatic pressure-affected genes. Functional analysis identified numerous genes involved in protein synthesis that were downregulated in 4-cell embryos in response to hydrostatic pressure treatment, suggesting that regulation of translation has a major role in optimised hydrostatic pressure-induced stress tolerance. We present a comprehensive microarray analysis and further delineate a potential mechanism responsible for the protective effect of hydrostatic pressure treatment.

  18. Factorial microarray analysis of zebra mussel (Dreissena polymorpha: Dreissenidae, Bivalvia) adhesion

    PubMed Central

    2010-01-01

    Background The zebra mussel (Dreissena polymorpha) has been well known for its expertise in attaching to substances under the water. Studies in past decades on this underwater adhesion focused on the adhesive protein isolated from the byssogenesis apparatus of the zebra mussel. However, the mechanism of the initiation, maintenance, and determination of the attachment process remains largely unknown. Results In this study, we used a zebra mussel cDNA microarray previously developed in our lab and a factorial analysis to identify the genes that were involved in response to the changes of four factors: temperature (Factor A), current velocity (Factor B), dissolved oxygen (Factor C), and byssogenesis status (Factor D). Twenty probes in the microarray were found to be modified by one of the factors. The transcription products of four selected genes, DPFP-BG20_A01, EGP-BG97/192_B06, EGP-BG13_G05, and NH-BG17_C09 were unique to the zebra mussel foot based on the results of quantitative reverse transcription PCR (qRT-PCR). The expression profiles of these four genes under the attachment and non-attachment were also confirmed by qRT-PCR and the result is accordant to that from microarray assay. The in situ hybridization with the RNA probes of two identified genes DPFP-BG20_A01 and EGP-BG97/192_B06 indicated that both of them were expressed by a type of exocrine gland cell located in the middle part of the zebra mussel foot. Conclusions The results of this study suggested that the changes of D. polymorpha byssogenesis status and the environmental factors can dramatically affect the expression profiles of the genes unique to the foot. It turns out that the factorial design and analysis of the microarray experiment is a reliable method to identify the influence of multiple factors on the expression profiles of the probesets in the microarray; therein it provides a powerful tool to reveal the mechanism of zebra mussel underwater attachment. PMID:20509938

  19. Direct labeling of serum proteins by fluorescent dye for antibody microarray.

    PubMed

    Klimushina, M V; Gumanova, N G; Metelskaya, V A

    2017-05-06

    Analysis of serum proteome by antibody microarray is used to identify novel biomarkers and to study signaling pathways including protein phosphorylation and protein-protein interactions. Labeling of serum proteins is important for optimal performance of the antibody microarray. Proper choice of fluorescent label and optimal concentration of protein loaded on the microarray ensure good quality of imaging that can be reliably scanned and processed by the software. We have optimized direct serum protein labeling using fluorescent dye Arrayit Green 540 (Arrayit Corporation, USA) for antibody microarray. Optimized procedure produces high quality images that can be readily scanned and used for statistical analysis of protein composition of the serum. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Sex genes for genomic analysis in human brain: internal controls for comparison of probe level data extraction.

    PubMed Central

    Galfalvy, Hanga C; Erraji-Benchekroun, Loubna; Smyrniotopoulos, Peggy; Pavlidis, Paul; Ellis, Steven P; Mann, J John; Sibille, Etienne; Arango, Victoria

    2003-01-01

    Background Genomic studies of complex tissues pose unique analytical challenges for assessment of data quality, performance of statistical methods used for data extraction, and detection of differentially expressed genes. Ideally, to assess the accuracy of gene expression analysis methods, one needs a set of genes which are known to be differentially expressed in the samples and which can be used as a "gold standard". We introduce the idea of using sex-chromosome genes as an alternative to spiked-in control genes or simulations for assessment of microarray data and analysis methods. Results Expression of sex-chromosome genes were used as true internal biological controls to compare alternate probe-level data extraction algorithms (Microarray Suite 5.0 [MAS5.0], Model Based Expression Index [MBEI] and Robust Multi-array Average [RMA]), to assess microarray data quality and to establish some statistical guidelines for analyzing large-scale gene expression. These approaches were implemented on a large new dataset of human brain samples. RMA-generated gene expression values were markedly less variable and more reliable than MAS5.0 and MBEI-derived values. A statistical technique controlling the false discovery rate was applied to adjust for multiple testing, as an alternative to the Bonferroni method, and showed no evidence of false negative results. Fourteen probesets, representing nine Y- and two X-chromosome linked genes, displayed significant sex differences in brain prefrontal cortex gene expression. Conclusion In this study, we have demonstrated the use of sex genes as true biological internal controls for genomic analysis of complex tissues, and suggested analytical guidelines for testing alternate oligonucleotide microarray data extraction protocols and for adjusting multiple statistical analysis of differentially expressed genes. Our results also provided evidence for sex differences in gene expression in the brain prefrontal cortex, supporting the notion of a putative direct role of sex-chromosome genes in differentiation and maintenance of sexual dimorphism of the central nervous system. Importantly, these analytical approaches are applicable to all microarray studies that include male and female human or animal subjects. PMID:12962547

  1. Sex genes for genomic analysis in human brain: internal controls for comparison of probe level data extraction.

    PubMed

    Galfalvy, Hanga C; Erraji-Benchekroun, Loubna; Smyrniotopoulos, Peggy; Pavlidis, Paul; Ellis, Steven P; Mann, J John; Sibille, Etienne; Arango, Victoria

    2003-09-08

    Genomic studies of complex tissues pose unique analytical challenges for assessment of data quality, performance of statistical methods used for data extraction, and detection of differentially expressed genes. Ideally, to assess the accuracy of gene expression analysis methods, one needs a set of genes which are known to be differentially expressed in the samples and which can be used as a "gold standard". We introduce the idea of using sex-chromosome genes as an alternative to spiked-in control genes or simulations for assessment of microarray data and analysis methods. Expression of sex-chromosome genes were used as true internal biological controls to compare alternate probe-level data extraction algorithms (Microarray Suite 5.0 [MAS5.0], Model Based Expression Index [MBEI] and Robust Multi-array Average [RMA]), to assess microarray data quality and to establish some statistical guidelines for analyzing large-scale gene expression. These approaches were implemented on a large new dataset of human brain samples. RMA-generated gene expression values were markedly less variable and more reliable than MAS5.0 and MBEI-derived values. A statistical technique controlling the false discovery rate was applied to adjust for multiple testing, as an alternative to the Bonferroni method, and showed no evidence of false negative results. Fourteen probesets, representing nine Y- and two X-chromosome linked genes, displayed significant sex differences in brain prefrontal cortex gene expression. In this study, we have demonstrated the use of sex genes as true biological internal controls for genomic analysis of complex tissues, and suggested analytical guidelines for testing alternate oligonucleotide microarray data extraction protocols and for adjusting multiple statistical analysis of differentially expressed genes. Our results also provided evidence for sex differences in gene expression in the brain prefrontal cortex, supporting the notion of a putative direct role of sex-chromosome genes in differentiation and maintenance of sexual dimorphism of the central nervous system. Importantly, these analytical approaches are applicable to all microarray studies that include male and female human or animal subjects.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Amanda M.; Daly, Don S.; Willse, Alan R.

    The Automated Microarray Image Analysis (AMIA) Toolbox for MATLAB is a flexible, open-source microarray image analysis tool that allows the user to customize analysis of sets of microarray images. This tool provides several methods of identifying and quantify spot statistics, as well as extensive diagnostic statistics and images to identify poor data quality or processing. The open nature of this software allows researchers to understand the algorithms used to provide intensity estimates and to modify them easily if desired.

  3. Methodological study of affine transformations of gene expression data with proposed robust non-parametric multi-dimensional normalization method.

    PubMed

    Bengtsson, Henrik; Hössjer, Ola

    2006-03-01

    Low-level processing and normalization of microarray data are most important steps in microarray analysis, which have profound impact on downstream analysis. Multiple methods have been suggested to date, but it is not clear which is the best. It is therefore important to further study the different normalization methods in detail and the nature of microarray data in general. A methodological study of affine models for gene expression data is carried out. Focus is on two-channel comparative studies, but the findings generalize also to single- and multi-channel data. The discussion applies to spotted as well as in-situ synthesized microarray data. Existing normalization methods such as curve-fit ("lowess") normalization, parallel and perpendicular translation normalization, and quantile normalization, but also dye-swap normalization are revisited in the light of the affine model and their strengths and weaknesses are investigated in this context. As a direct result from this study, we propose a robust non-parametric multi-dimensional affine normalization method, which can be applied to any number of microarrays with any number of channels either individually or all at once. A high-quality cDNA microarray data set with spike-in controls is used to demonstrate the power of the affine model and the proposed normalization method. We find that an affine model can explain non-linear intensity-dependent systematic effects in observed log-ratios. Affine normalization removes such artifacts for non-differentially expressed genes and assures that symmetry between negative and positive log-ratios is obtained, which is fundamental when identifying differentially expressed genes. In addition, affine normalization makes the empirical distributions in different channels more equal, which is the purpose of quantile normalization, and may also explain why dye-swap normalization works or fails. All methods are made available in the aroma package, which is a platform-independent package for R.

  4. ELISA-BASE: An Integrated Bioinformatics Tool for Analyzing and Tracking ELISA Microarray Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Amanda M.; Collett, James L.; Seurynck-Servoss, Shannon L.

    ELISA-BASE is an open-source database for capturing, organizing and analyzing protein enzyme-linked immunosorbent assay (ELISA) microarray data. ELISA-BASE is an extension of the BioArray Soft-ware Environment (BASE) database system, which was developed for DNA microarrays. In order to make BASE suitable for protein microarray experiments, we developed several plugins for importing and analyzing quantitative ELISA microarray data. Most notably, our Protein Microarray Analysis Tool (ProMAT) for processing quantita-tive ELISA data is now available as a plugin to the database.

  5. ExprAlign - the identification of ESTs in non-model species by alignment of cDNA microarray expression profiles

    PubMed Central

    2009-01-01

    Background Sequence identification of ESTs from non-model species offers distinct challenges particularly when these species have duplicated genomes and when they are phylogenetically distant from sequenced model organisms. For the common carp, an environmental model of aquacultural interest, large numbers of ESTs remained unidentified using BLAST sequence alignment. We have used the expression profiles from large-scale microarray experiments to suggest gene identities. Results Expression profiles from ~700 cDNA microarrays describing responses of 7 major tissues to multiple environmental stressors were used to define a co-expression landscape. This was based on the Pearsons correlation coefficient relating each gene with all other genes, from which a network description provided clusters of highly correlated genes as 'mountains'. We show that these contain genes with known identities and genes with unknown identities, and that the correlation constitutes evidence of identity in the latter. This procedure has suggested identities to 522 of 2701 unknown carp ESTs sequences. We also discriminate several common carp genes and gene isoforms that were not discriminated by BLAST sequence alignment alone. Precision in identification was substantially improved by use of data from multiple tissues and treatments. Conclusion The detailed analysis of co-expression landscapes is a sensitive technique for suggesting an identity for the large number of BLAST unidentified cDNAs generated in EST projects. It is capable of detecting even subtle changes in expression profiles, and thereby of distinguishing genes with a common BLAST identity into different identities. It benefits from the use of multiple treatments or contrasts, and from the large-scale microarray data. PMID:19939286

  6. Hybrid genetic algorithm-neural network: feature extraction for unpreprocessed microarray data.

    PubMed

    Tong, Dong Ling; Schierz, Amanda C

    2011-09-01

    Suitable techniques for microarray analysis have been widely researched, particularly for the study of marker genes expressed to a specific type of cancer. Most of the machine learning methods that have been applied to significant gene selection focus on the classification ability rather than the selection ability of the method. These methods also require the microarray data to be preprocessed before analysis takes place. The objective of this study is to develop a hybrid genetic algorithm-neural network (GANN) model that emphasises feature selection and can operate on unpreprocessed microarray data. The GANN is a hybrid model where the fitness value of the genetic algorithm (GA) is based upon the number of samples correctly labelled by a standard feedforward artificial neural network (ANN). The model is evaluated by using two benchmark microarray datasets with different array platforms and differing number of classes (a 2-class oligonucleotide microarray data for acute leukaemia and a 4-class complementary DNA (cDNA) microarray dataset for SRBCTs (small round blue cell tumours)). The underlying concept of the GANN algorithm is to select highly informative genes by co-evolving both the GA fitness function and the ANN weights at the same time. The novel GANN selected approximately 50% of the same genes as the original studies. This may indicate that these common genes are more biologically significant than other genes in the datasets. The remaining 50% of the significant genes identified were used to build predictive models and for both datasets, the models based on the set of genes extracted by the GANN method produced more accurate results. The results also suggest that the GANN method not only can detect genes that are exclusively associated with a single cancer type but can also explore the genes that are differentially expressed in multiple cancer types. The results show that the GANN model has successfully extracted statistically significant genes from the unpreprocessed microarray data as well as extracting known biologically significant genes. We also show that assessing the biological significance of genes based on classification accuracy may be misleading and though the GANN's set of extra genes prove to be more statistically significant than those selected by other methods, a biological assessment of these genes is highly recommended to confirm their functionality. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Genotyping microarray (gene chip) for the ABCR (ABCA4) gene.

    PubMed

    Jaakson, K; Zernant, J; Külm, M; Hutchinson, A; Tonisson, N; Glavac, D; Ravnik-Glavac, M; Hawlina, M; Meltzer, M R; Caruso, R C; Testa, F; Maugeri, A; Hoyng, C B; Gouras, P; Simonelli, F; Lewis, R A; Lupski, J R; Cremers, F P M; Allikmets, R

    2003-11-01

    Genetic variation in the ABCR (ABCA4) gene has been associated with five distinct retinal phenotypes, including Stargardt disease/fundus flavimaculatus (STGD/FFM), cone-rod dystrophy (CRD), and age-related macular degeneration (AMD). Comparative genetic analyses of ABCR variation and diagnostics have been complicated by substantial allelic heterogeneity and by differences in screening methods. To overcome these limitations, we designed a genotyping microarray (gene chip) for ABCR that includes all approximately 400 disease-associated and other variants currently described, enabling simultaneous detection of all known ABCR variants. The ABCR genotyping microarray (the ABCR400 chip) was constructed by the arrayed primer extension (APEX) technology. Each sequence change in ABCR was included on the chip by synthesis and application of sequence-specific oligonucleotides. We validated the chip by screening 136 confirmed STGD patients and 96 healthy controls, each of whom we had analyzed previously by single strand conformation polymorphism (SSCP) technology and/or heteroduplex analysis. The microarray was >98% effective in determining the existing genetic variation and was comparable to direct sequencing in that it yielded many sequence changes undetected by SSCP. In STGD patient cohorts, the efficiency of the array to detect disease-associated alleles was between 54% and 78%, depending on the ethnic composition and degree of clinical and molecular characterization of a cohort. In addition, chip analysis suggested a high carrier frequency (up to 1:10) of ABCR variants in the general population. The ABCR genotyping microarray is a robust, cost-effective, and comprehensive screening tool for variation in one gene in which mutations are responsible for a substantial fraction of retinal disease. The ABCR chip is a prototype for the next generation of screening and diagnostic tools in ophthalmic genetics, bridging clinical and scientific research. Copyright 2003 Wiley-Liss, Inc.

  8. Transcriptome analysis in non-model species: a new method for the analysis of heterologous hybridization on microarrays

    PubMed Central

    2010-01-01

    Background Recent developments in high-throughput methods of analyzing transcriptomic profiles are promising for many areas of biology, including ecophysiology. However, although commercial microarrays are available for most common laboratory models, transcriptome analysis in non-traditional model species still remains a challenge. Indeed, the signal resulting from heterologous hybridization is low and difficult to interpret because of the weak complementarity between probe and target sequences, especially when no microarray dedicated to a genetically close species is available. Results We show here that transcriptome analysis in a species genetically distant from laboratory models is made possible by using MAXRS, a new method of analyzing heterologous hybridization on microarrays. This method takes advantage of the design of several commercial microarrays, with different probes targeting the same transcript. To illustrate and test this method, we analyzed the transcriptome of king penguin pectoralis muscle hybridized to Affymetrix chicken microarrays, two organisms separated by an evolutionary distance of approximately 100 million years. The differential gene expression observed between different physiological situations computed by MAXRS was confirmed by real-time PCR on 10 genes out of 11 tested. Conclusions MAXRS appears to be an appropriate method for gene expression analysis under heterologous hybridization conditions. PMID:20509979

  9. Microarray Analysis Gene Expression Profiles in Laryngeal Muscle After Recurrent Laryngeal Nerve Injury.

    PubMed

    Bijangi-Vishehsaraei, Khadijeh; Blum, Kevin; Zhang, Hongji; Safa, Ahmad R; Halum, Stacey L

    2016-03-01

    The pathophysiology of recurrent laryngeal nerve (RLN) transection injury is rare in that it is characteristically followed by a high degree of spontaneous reinnervation, with reinnervation of the laryngeal adductor complex (AC) preceding that of the abducting posterior cricoarytenoid (PCA) muscle. Here, we aim to elucidate the differentially expressed myogenic factors following RLN injury that may be at least partially responsible for the spontaneous reinnervation. F344 male rats underwent RLN injury (n = 12) or sham surgery (n = 12). One week after RLN injury, larynges were harvested following euthanasia. The mRNA was extracted from PCA and AC muscles bilaterally, and microarray analysis was performed using a full rat genome array. Microarray analysis of denervated AC and PCA muscles demonstrated dramatic differences in gene expression profiles, with 205 individual probes that were differentially expressed between the denervated AC and PCA muscles and only 14 genes with similar expression patterns. The differential expression patterns of the AC and PCA suggest different mechanisms of reinnervation. The PCA showed the gene patterns of Wallerian degeneration, while the AC expressed the gene patterns of reinnervation by adjacent axonal sprouting. This finding may reveal important therapeutic targets applicable to RLN and other peripheral nerve injuries. © The Author(s) 2015.

  10. A Human Lectin Microarray for Sperm Surface Glycosylation Analysis *

    PubMed Central

    Sun, Yangyang; Cheng, Li; Gu, Yihua; Xin, Aijie; Wu, Bin; Zhou, Shumin; Guo, Shujuan; Liu, Yin; Diao, Hua; Shi, Huijuan; Wang, Guangyu; Tao, Sheng-ce

    2016-01-01

    Glycosylation is one of the most abundant and functionally important protein post-translational modifications. As such, technology for efficient glycosylation analysis is in high demand. Lectin microarrays are a powerful tool for such investigations and have been successfully applied for a variety of glycobiological studies. However, most of the current lectin microarrays are primarily constructed from plant lectins, which are not well suited for studies of human glycosylation because of the extreme complexity of human glycans. Herein, we constructed a human lectin microarray with 60 human lectin and lectin-like proteins. All of the lectins and lectin-like proteins were purified from yeast, and most showed binding to human glycans. To demonstrate the applicability of the human lectin microarray, human sperm were probed on the microarray and strong bindings were observed for several lectins, including galectin-1, 7, 8, GalNAc-T6, and ERGIC-53 (LMAN1). These bindings were validated by flow cytometry and fluorescence immunostaining. Further, mass spectrometry analysis showed that galectin-1 binds several membrane-associated proteins including heat shock protein 90. Finally, functional assays showed that binding of galectin-8 could significantly enhance the acrosome reaction within human sperms. To our knowledge, this is the first construction of a human lectin microarray, and we anticipate it will find wide use for a range of human or mammalian studies, alone or in combination with plant lectin microarrays. PMID:27364157

  11. Experimental design for three-color and four-color gene expression microarrays.

    PubMed

    Woo, Yong; Krueger, Winfried; Kaur, Anupinder; Churchill, Gary

    2005-06-01

    Three-color microarrays, compared with two-color microarrays, can increase design efficiency and power to detect differential expression without additional samples and arrays. Furthermore, three-color microarray technology is currently available at a reasonable cost. Despite the potential advantages, clear guidelines for designing and analyzing three-color experiments do not exist. We propose a three- and a four-color cyclic design (loop) and a complementary graphical representation to help design experiments that are balanced, efficient and robust to hybridization failures. In theory, three-color loop designs are more efficient than two-color loop designs. Experiments using both two- and three-color platforms were performed in parallel and their outputs were analyzed using linear mixed model analysis in R/MAANOVA. These results demonstrate that three-color experiments using the same number of samples (and fewer arrays) will perform as efficiently as two-color experiments. The improved efficiency of the design is somewhat offset by a reduced dynamic range and increased variability in the three-color experimental system. This result suggests that, with minor technological improvements, three-color microarrays using loop designs could detect differential expression more efficiently than two-color loop designs. http://www.jax.org/staff/churchill/labsite/software Multicolor cyclic design construction methods and examples along with additional results of the experiment are provided at http://www.jax.org/staff/churchill/labsite/pubs/yong.

  12. Comparative transcriptional and translational analysis of leptospiral outer membrane protein expression in response to temperature.

    PubMed

    Lo, Miranda; Cordwell, Stuart J; Bulach, Dieter M; Adler, Ben

    2009-12-08

    Leptospirosis is a global zoonosis affecting millions of people annually. Transcriptional changes in response to temperature were previously investigated using microarrays to identify genes potentially expressed upon host entry. Past studies found that various leptospiral outer membrane proteins are differentially expressed at different temperatures. However, our microarray studies highlighted a divergence between protein abundance and transcript levels for some proteins. Given the abundance of post-transcriptional expression control mechanisms, this finding highlighted the importance of global protein analysis systems. To complement our previous transcription study, we evaluated differences in the proteins of the leptospiral outer membrane fraction in response to temperature upshift. Outer membrane protein-enriched fractions from Leptospira interrogans grown at 30 degrees C or overnight upshift to 37 degrees C were isolated and the relative abundance of each protein was determined by iTRAQ analysis coupled with two-dimensional liquid chromatography and tandem mass spectrometry (2-DLC/MS-MS). We identified 1026 proteins with 99% confidence; 27 and 66 were present at elevated and reduced abundance respectively. Protein abundance changes were compared with transcriptional differences determined from the microarray studies. While there was some correlation between the microarray and iTRAQ data, a subset of genes that showed no differential expression by microarray was found to encode temperature-regulated proteins. This set of genes is of particular interest as it is likely that regulation of their expression occurs post-transcriptionally, providing an opportunity to develop hypotheses about the molecular dynamics of the outer membrane of Leptospira in response to changing environments. This is the first study to compare transcriptional and translational responses to temperature shift in L. interrogans. The results thus provide an insight into the mechanisms used by L. interrogans to adapt to conditions encountered in the host and to cause disease. Our results suggest down-regulation of protein expression in response to temperature, and decreased expression of outer membrane proteins may facilitate minimal interaction with host immune mechanisms.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gentry, T.; Schadt, C.; Zhou, J.

    Microarray technology has the unparalleled potential tosimultaneously determine the dynamics and/or activities of most, if notall, of the microbial populations in complex environments such as soilsand sediments. Researchers have developed several types of arrays thatcharacterize the microbial populations in these samples based on theirphylogenetic relatedness or functional genomic content. Several recentstudies have used these microarrays to investigate ecological issues;however, most have only analyzed a limited number of samples withrelatively few experiments utilizing the full high-throughput potentialof microarray analysis. This is due in part to the unique analyticalchallenges that these samples present with regard to sensitivity,specificity, quantitation, and data analysis. Thismore » review discussesspecific applications of microarrays to microbial ecology research alongwith some of the latest studies addressing the difficulties encounteredduring analysis of complex microbial communities within environmentalsamples. With continued development, microarray technology may ultimatelyachieve its potential for comprehensive, high-throughput characterizationof microbial populations in near real-time.« less

  14. Fully automated analysis of multi-resolution four-channel micro-array genotyping data

    NASA Astrophysics Data System (ADS)

    Abbaspour, Mohsen; Abugharbieh, Rafeef; Podder, Mohua; Tebbutt, Scott J.

    2006-03-01

    We present a fully-automated and robust microarray image analysis system for handling multi-resolution images (down to 3-micron with sizes up to 80 MBs per channel). The system is developed to provide rapid and accurate data extraction for our recently developed microarray analysis and quality control tool (SNP Chart). Currently available commercial microarray image analysis applications are inefficient, due to the considerable user interaction typically required. Four-channel DNA microarray technology is a robust and accurate tool for determining genotypes of multiple genetic markers in individuals. It plays an important role in the state of the art trend where traditional medical treatments are to be replaced by personalized genetic medicine, i.e. individualized therapy based on the patient's genetic heritage. However, fast, robust, and precise image processing tools are required for the prospective practical use of microarray-based genetic testing for predicting disease susceptibilities and drug effects in clinical practice, which require a turn-around timeline compatible with clinical decision-making. In this paper we have developed a fully-automated image analysis platform for the rapid investigation of hundreds of genetic variations across multiple genes. Validation tests indicate very high accuracy levels for genotyping results. Our method achieves a significant reduction in analysis time, from several hours to just a few minutes, and is completely automated requiring no manual interaction or guidance.

  15. Transcriptome Analysis of Early Responsive Genes in Rice during Magnaporthe oryzae Infection.

    PubMed

    Wang, Yiming; Kwon, Soon Jae; Wu, Jingni; Choi, Jaeyoung; Lee, Yong-Hwan; Agrawal, Ganesh Kumar; Tamogami, Shigeru; Rakwal, Randeep; Park, Sang-Ryeol; Kim, Beom-Gi; Jung, Ki-Hong; Kang, Kyu Young; Kim, Sang Gon; Kim, Sun Tae

    2014-12-01

    Rice blast disease caused by Magnaporthe oryzae is one of the most serious diseases of cultivated rice (Oryza sativa L.) in most rice-growing regions of the world. In order to investigate early response genes in rice, we utilized the transcriptome analysis approach using a 300 K tilling microarray to rice leaves infected with compatible and incompatible M. oryzae strains. Prior to the microarray experiment, total RNA was validated by measuring the differential expression of rice defense-related marker genes (chitinase 2, barwin, PBZ1, and PR-10) by RT-PCR, and phytoalexins (sakuranetin and momilactone A) with HPLC. Microarray analysis revealed that 231 genes were up-regulated (>2 fold change, p < 0.05) in the incompatible interaction compared to the compatible one. Highly expressed genes were functionally characterized into metabolic processes and oxidation-reduction categories. The oxidative stress response was induced in both early and later infection stages. Biotic stress overview from MapMan analysis revealed that the phytohormone ethylene as well as signaling molecules jasmonic acid and salicylic acid is important for defense gene regulation. WRKY and Myb transcription factors were also involved in signal transduction processes. Additionally, receptor-like kinases were more likely associated with the defense response, and their expression patterns were validated by RT-PCR. Our results suggest that candidate genes, including receptor-like protein kinases, may play a key role in disease resistance against M. oryzae attack.

  16. A novel strategy of integrated microarray analysis identifies CENPA, CDK1 and CDC20 as a cluster of diagnostic biomarkers in lung adenocarcinoma.

    PubMed

    Liu, Wan-Ting; Wang, Yang; Zhang, Jing; Ye, Fei; Huang, Xiao-Hui; Li, Bin; He, Qing-Yu

    2018-07-01

    Lung adenocarcinoma (LAC) is the most lethal cancer and the leading cause of cancer-related death worldwide. The identification of meaningful clusters of co-expressed genes or representative biomarkers may help improve the accuracy of LAC diagnoses. Public databases, such as the Gene Expression Omnibus (GEO), provide rich resources of valuable information for clinics, however, the integration of multiple microarray datasets from various platforms and institutes remained a challenge. To determine potential indicators of LAC, we performed genome-wide relative significance (GWRS), genome-wide global significance (GWGS) and support vector machine (SVM) analyses progressively to identify robust gene biomarker signatures from 5 different microarray datasets that included 330 samples. The top 200 genes with robust signatures were selected for integrative analysis according to "guilt-by-association" methods, including protein-protein interaction (PPI) analysis and gene co-expression analysis. Of these 200 genes, only 10 genes showed both intensive PPI network and high gene co-expression correlation (r > 0.8). IPA analysis of this regulatory networks suggested that the cell cycle process is a crucial determinant of LAC. CENPA, as well as two linked hub genes CDK1 and CDC20, are determined to be potential indicators of LAC. Immunohistochemical staining showed that CENPA, CDK1 and CDC20 were highly expressed in LAC cancer tissue with co-expression patterns. A Cox regression model indicated that LAC patients with CENPA + /CDK1 + and CENPA + /CDC20 + were high-risk groups in terms of overall survival. In conclusion, our integrated microarray analysis demonstrated that CENPA, CDK1 and CDC20 might serve as novel cluster of prognostic biomarkers for LAC, and the cooperative unit of three genes provides a technically simple approach for identification of LAC patients. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. A High Phosphorus Diet Affects Lipid Metabolism in Rat Liver: A DNA Microarray Analysis

    PubMed Central

    Chun, Sunwoo; Bamba, Takeshi; Suyama, Tatsuya; Ishijima, Tomoko; Fukusaki, Eiichiro; Abe, Keiko; Nakai, Yuji

    2016-01-01

    A high phosphorus (HP) diet causes disorders of renal function, bone metabolism, and vascular function. We previously demonstrated that DNA microarray analysis is an appropriate method to comprehensively evaluate the effects of a HP diet on kidney dysfunction such as calcification, fibrillization, and inflammation. We reported that type IIb sodium-dependent phosphate transporter is significantly up-regulated in this context. In the present study, we performed DNA microarray analysis to investigate the effects of a HP diet on the liver, which plays a pivotal role in energy metabolism. DNA microarray analysis was performed with total RNA isolated from the livers of rats fed a control diet (containing 0.3% phosphorus) or a HP diet (containing 1.2% phosphorus). Gene Ontology analysis of differentially expressed genes (DEGs) revealed that the HP diet induced down-regulation of genes involved in hepatic amino acid catabolism and lipogenesis, while genes related to fatty acid β-oxidation process were up-regulated. Although genes related to fatty acid biosynthesis were down-regulated in HP diet-fed rats, genes important for the elongation and desaturation reactions of omega-3 and -6 fatty acids were up-regulated. Concentrations of hepatic arachidonic acid and eicosapentaenoic acid were increased in HP diet-fed rats. These essential fatty acids activate peroxisome proliferator-activated receptor alpha (PPARα), a transcription factor for fatty acid β-oxidation. Evaluation of the upstream regulators of DEGs using Ingenuity Pathway Analysis indicated that PPARα was activated in the livers of HP diet-fed rats. Furthermore, the serum concentration of fibroblast growth factor 21, a hormone secreted from the liver that promotes fatty acid utilization in adipose tissue as a PPARα target gene, was higher (p = 0.054) in HP diet-fed rats than in control diet-fed rats. These data suggest that a HP diet enhances energy expenditure through the utilization of free fatty acids released via lipolysis of white adipose tissue. PMID:27187182

  18. R Script Approach to Infer Toxoplasma Infection Mechanisms From Microarrays and Domain-Domain Protein Interactions

    PubMed Central

    Arenas, Ailan F; Salcedo, Gladys E; Gomez-Marin, Jorge E

    2017-01-01

    Pathogen-host protein-protein interaction systems examine the interactions between the protein repertoires of 2 distinct organisms. Some of these pathogen proteins interact with the host protein system and may manipulate it for their own advantages. In this work, we designed an R script by concatenating 2 functions called rowDM and rowCVmed to infer pathogen-host interaction using previously reported microarray data, including host gene enrichment analysis and the crossing of interspecific domain-domain interactions. We applied this script to the Toxoplasma-host system to describe pathogen survival mechanisms from human, mouse, and Toxoplasma Gene Expression Omnibus series. Our outcomes exhibited similar results with previously reported microarray analyses, but we found other important proteins that could contribute to toxoplasma pathogenesis. We observed that Toxoplasma ROP38 is the most differentially expressed protein among toxoplasma strains. Enrichment analysis and KEGG mapping indicated that the human retinal genes most affected by Toxoplasma infections are those related to antiapoptotic mechanisms. We suggest that proteins PIK3R1, PRKCA, PRKCG, PRKCB, HRAS, and c-JUN could be the possible substrates for differentially expressed Toxoplasma kinase ROP38. Likewise, we propose that Toxoplasma causes overexpression of apoptotic suppression human genes. PMID:29317802

  19. PRACTICAL STRATEGIES FOR PROCESSING AND ANALYZING SPOTTED OLIGONUCLEOTIDE MICROARRAY DATA

    EPA Science Inventory

    Thoughtful data analysis is as important as experimental design, biological sample quality, and appropriate experimental procedures for making microarrays a useful supplement to traditional toxicology. In the present study, spotted oligonucleotide microarrays were used to profile...

  20. Fisetin and hesperetin induced apoptosis and cell cycle arrest in chronic myeloid leukemia cells accompanied by modulation of cellular signaling.

    PubMed

    Adan, Aysun; Baran, Yusuf

    2016-05-01

    Fisetin and hesperetin, naturally occurring flavonoids, have been reported as novel antioxidants with chemopreventive/chemotherapeutic potential against various types of cancer. However, their mechanism of action in CML is still unknown. This particular study aims to evaluate the therapeutic potentials of fisetin and hesperetin and their effects on cell proliferation, apoptosis, and cell cycle progression in human K562 CML cells. The results indicated that fisetin and hesperetin inhibited cell proliferation and triggered programmed cell death in these cells. The latter was confırmed by mitochondrial membrane depolarization and an increase in caspase-3 activation. In addition to that, we have detected S and G2/M cell cycle arrests and G0/G1 arrest upon fisetin and hesperetin treatment, respectively. To identify the altered genes and genetic networks in response to fisetin and hesperetin, whole-genome microarray analysis was performed. The microarray gene profiling analysis revealed some important signaling pathways including JAK/STAT pathway, KIT receptor signaling, and growth hormone receptor signaling that were altered upon fisetin and hesperetin treatment. Moreover, microarray data suggested potential candidate genes for targeted CML therapy. Fisetin and hesperetin significantly modulated the expression of genes involved in cell proliferation and division, apoptosis, cell cycle regulation, and other significant cellular processes such as replication, transcription, and translation. In conclusion, our results suggest that fisetin and hesperetin as potential natural agents for CML therapy.

  1. Rapid Characterization of Candidate Biomarkers for Pancreatic Cancer Using Cell Microarrays (CMAs)

    PubMed Central

    Kim, Min-Sik; Kuppireddy, Sarada V.; Sakamuri, Sruthi; Singal, Mukul; Getnet, Derese; Harsha, H. C.; Goel, Renu; Balakrishnan, Lavanya; Jacob, Harrys K. C.; Kashyap, Manoj K.; Tankala, Shantal G.; Maitra, Anirban; Iacobuzio-Donahue, Christine A.; Jaffee, Elizabeth; Goggins, Michael G.; Velculescu, Victor E.; Hruban, Ralph H.; Pandey, Akhilesh

    2013-01-01

    Tissue microarrays have become a valuable tool for high-throughput analysis using immunohistochemical labeling. However, the large majority of biochemical studies are carried out in cell lines to further characterize candidate biomarkers or therapeutic targets with subsequent studies in animals or using primary tissues. Thus, cell line-based microarrays could be a useful screening tool in some situations. Here, we constructed a cell microarray (CMA) containing a panel of 40 pancreatic cancer cell lines available from American Type Culture Collection in addition to those locally available at Johns Hopkins. As proof of principle, we performed immunocytochemical labeling of an epithelial cell adhesion molecule (Ep-CAM), a molecule generally expressed in the epithelium, on this pancreatic cancer CMA. In addition, selected molecules that have been previously shown to be differentially expressed in pancreatic cancer in the literature were validated. For example, we observed strong labeling of CA19-9 antigen, a prognostic and predictive marker for pancreatic cancer. We also carried out a bioinformatics analysis of a literature curated catalog of pancreatic cancer biomarkers developed previously by our group and identified two candidate biomarkers, HLA class I and transmembrane protease, serine 4 (TMPRSS4), and examined their expression in the cell lines represented on the pancreatic cancer CMAs. Our results demonstrate the utility of CMAs as a useful resource for rapid screening of molecules of interest and suggest that CMAs can become a universal standard platform in cancer research. PMID:22985314

  2. Prenatal chromosomal microarray analysis in fetuses with congenital heart disease: a prospective cohort study.

    PubMed

    Wang, Yan; Cao, Li; Liang, Dong; Meng, Lulu; Wu, Yun; Qiao, Fengchang; Ji, Xiuqing; Luo, Chunyu; Zhang, Jingjing; Xu, Tianhui; Yu, Bin; Wang, Leilei; Wang, Ting; Pan, Qiong; Ma, Dingyuan; Hu, Ping; Xu, Zhengfeng

    2018-02-01

    Currently, chromosomal microarray analysis is considered the first-tier test in pediatric care and prenatal diagnosis. However, the diagnostic yield of chromosomal microarray analysis for prenatal diagnosis of congenital heart disease has not been evaluated based on a large cohort. Our aim was to evaluate the clinical utility of chromosomal microarray as the first-tier test for chromosomal abnormalities in fetuses with congenital heart disease. In this prospective study, 602 prenatal cases of congenital heart disease were investigated using single nucleotide polymorphism array over a 5-year period. Overall, pathogenic chromosomal abnormalities were identified in 125 (20.8%) of 602 prenatal cases of congenital heart disease, with 52.0% of them being numerical chromosomal abnormalities. The detection rates of likely pathogenic copy number variations and variants of uncertain significance were 1.3% and 6.0%, respectively. The detection rate of pathogenic chromosomal abnormalities in congenital heart disease plus additional structural anomalies (48.9% vs 14.3%, P < .0001) or intrauterine growth retardation group (50.0% vs 14.3%, P = .044) was significantly higher than that in isolated congenital heart disease group. Additionally, the detection rate in congenital heart disease with additional structural anomalies group was significantly higher than that in congenital heart disease with soft markers group (48.9% vs 19.8%, P < .0001). No significant difference was observed in the detection rates between congenital heart disease with additional structural anomalies and congenital heart disease with intrauterine growth retardation groups (48.9% vs 50.0%), congenital heart disease with soft markers and congenital heart disease with intrauterine growth retardation groups (19.8% vs 50.0%), or congenital heart disease with soft markers and isolated congenital heart disease groups (19.8% vs 14.3%). The detection rate in fetuses with congenital heart disease plus mild ventriculomegaly was significantly higher than in those with other types of soft markers (50.0% vs 15.6%, P < .05). Our study suggests chromosomal microarray analysis is a reliable and high-resolution technology and should be used as the first-tier test for prenatal diagnosis of congenital heart disease in clinical practice. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. GeneXplorer: an interactive web application for microarray data visualization and analysis.

    PubMed

    Rees, Christian A; Demeter, Janos; Matese, John C; Botstein, David; Sherlock, Gavin

    2004-10-01

    When publishing large-scale microarray datasets, it is of great value to create supplemental websites where either the full data, or selected subsets corresponding to figures within the paper, can be browsed. We set out to create a CGI application containing many of the features of some of the existing standalone software for the visualization of clustered microarray data. We present GeneXplorer, a web application for interactive microarray data visualization and analysis in a web environment. GeneXplorer allows users to browse a microarray dataset in an intuitive fashion. It provides simple access to microarray data over the Internet and uses only HTML and JavaScript to display graphic and annotation information. It provides radar and zoom views of the data, allows display of the nearest neighbors to a gene expression vector based on their Pearson correlations and provides the ability to search gene annotation fields. The software is released under the permissive MIT Open Source license, and the complete documentation and the entire source code are freely available for download from CPAN http://search.cpan.org/dist/Microarray-GeneXplorer/.

  4. Nanotechnology: moving from microarrays toward nanoarrays.

    PubMed

    Chen, Hua; Li, Jun

    2007-01-01

    Microarrays are important tools for high-throughput analysis of biomolecules. The use of microarrays for parallel screening of nucleic acid and protein profiles has become an industry standard. A few limitations of microarrays are the requirement for relatively large sample volumes and elongated incubation time, as well as the limit of detection. In addition, traditional microarrays make use of bulky instrumentation for the detection, and sample amplification and labeling are quite laborious, which increase analysis cost and delays the time for obtaining results. These problems limit microarray techniques from point-of-care and field applications. One strategy for overcoming these problems is to develop nanoarrays, particularly electronics-based nanoarrays. With further miniaturization, higher sensitivity, and simplified sample preparation, nanoarrays could potentially be employed for biomolecular analysis in personal healthcare and monitoring of trace pathogens. In this chapter, it is intended to introduce the concept and advantage of nanotechnology and then describe current methods and protocols for novel nanoarrays in three aspects: (1) label-free nucleic acids analysis using nanoarrays, (2) nanoarrays for protein detection by conventional optical fluorescence microscopy as well as by novel label-free methods such as atomic force microscopy, and (3) nanoarray for enzymatic-based assay. These nanoarrays will have significant applications in drug discovery, medical diagnosis, genetic testing, environmental monitoring, and food safety inspection.

  5. A meta-data based method for DNA microarray imputation.

    PubMed

    Jörnsten, Rebecka; Ouyang, Ming; Wang, Hui-Yu

    2007-03-29

    DNA microarray experiments are conducted in logical sets, such as time course profiling after a treatment is applied to the samples, or comparisons of the samples under two or more conditions. Due to cost and design constraints of spotted cDNA microarray experiments, each logical set commonly includes only a small number of replicates per condition. Despite the vast improvement of the microarray technology in recent years, missing values are prevalent. Intuitively, imputation of missing values is best done using many replicates within the same logical set. In practice, there are few replicates and thus reliable imputation within logical sets is difficult. However, it is in the case of few replicates that the presence of missing values, and how they are imputed, can have the most profound impact on the outcome of downstream analyses (e.g. significance analysis and clustering). This study explores the feasibility of imputation across logical sets, using the vast amount of publicly available microarray data to improve imputation reliability in the small sample size setting. We download all cDNA microarray data of Saccharomyces cerevisiae, Arabidopsis thaliana, and Caenorhabditis elegans from the Stanford Microarray Database. Through cross-validation and simulation, we find that, for all three species, our proposed imputation using data from public databases is far superior to imputation within a logical set, sometimes to an astonishing degree. Furthermore, the imputation root mean square error for significant genes is generally a lot less than that of non-significant ones. Since downstream analysis of significant genes, such as clustering and network analysis, can be very sensitive to small perturbations of estimated gene effects, it is highly recommended that researchers apply reliable data imputation prior to further analysis. Our method can also be applied to cDNA microarray experiments from other species, provided good reference data are available.

  6. BABAR: an R package to simplify the normalisation of common reference design microarray-based transcriptomic datasets

    PubMed Central

    2010-01-01

    Background The development of DNA microarrays has facilitated the generation of hundreds of thousands of transcriptomic datasets. The use of a common reference microarray design allows existing transcriptomic data to be readily compared and re-analysed in the light of new data, and the combination of this design with large datasets is ideal for 'systems'-level analyses. One issue is that these datasets are typically collected over many years and may be heterogeneous in nature, containing different microarray file formats and gene array layouts, dye-swaps, and showing varying scales of log2- ratios of expression between microarrays. Excellent software exists for the normalisation and analysis of microarray data but many data have yet to be analysed as existing methods struggle with heterogeneous datasets; options include normalising microarrays on an individual or experimental group basis. Our solution was to develop the Batch Anti-Banana Algorithm in R (BABAR) algorithm and software package which uses cyclic loess to normalise across the complete dataset. We have already used BABAR to analyse the function of Salmonella genes involved in the process of infection of mammalian cells. Results The only input required by BABAR is unprocessed GenePix or BlueFuse microarray data files. BABAR provides a combination of 'within' and 'between' microarray normalisation steps and diagnostic boxplots. When applied to a real heterogeneous dataset, BABAR normalised the dataset to produce a comparable scaling between the microarrays, with the microarray data in excellent agreement with RT-PCR analysis. When applied to a real non-heterogeneous dataset and a simulated dataset, BABAR's performance in identifying differentially expressed genes showed some benefits over standard techniques. Conclusions BABAR is an easy-to-use software tool, simplifying the simultaneous normalisation of heterogeneous two-colour common reference design cDNA microarray-based transcriptomic datasets. We show BABAR transforms real and simulated datasets to allow for the correct interpretation of these data, and is the ideal tool to facilitate the identification of differentially expressed genes or network inference analysis from transcriptomic datasets. PMID:20128918

  7. Microarray analysis of gene expression in West Nile virus–infected human retinal pigment epithelium

    PubMed Central

    Munoz-Erazo, Luis; Natoli, Ricardo; Provis, Jan Marie; Madigan, Michelle Catherine

    2012-01-01

    Purpose To identify key genes differentially expressed in the human retinal pigment epithelium (hRPE) following low-level West Nile virus (WNV) infection. Methods Primary hRPE and retinal pigment epithelium cell line (ARPE-19) cells were infected with WNV (multiplicity of infection 1). RNA extracted from mock-infected and WNV-infected cells was assessed for differential expression of genes using Affymetrix microarray. Quantitative real-time PCR analysis of 23 genes was used to validate the microarray results. Results Functional annotation clustering of the microarray data showed that gene clusters involved in immune and antiviral responses ranked highly, involving genes such as chemokine (C-C motif) ligand 2 (CCL2), chemokine (C-C motif) ligand 5 (CCL5), chemokine (C-X-C motif) ligand 10 (CXCL10), and toll like receptor 3 (TLR3). In conjunction with the quantitative real-time PCR analysis, other novel genes regulated by WNV infection included indoleamine 2,3-dioxygenase (IDO1), genes involved in the transforming growth factor–β pathway (bone morphogenetic protein and activin membrane-bound inhibitor homolog [BAMBI] and activating transcription factor 3 [ATF3]), and genes involved in apoptosis (tumor necrosis factor receptor superfamily, member 10d [TNFRSF10D]). WNV-infected RPE did not produce any interferon-γ, suggesting that IDO1 is induced by other soluble factors, by the virus alone, or both. Conclusions Low-level WNV infection of hRPE cells induced expression of genes that are typically associated with the host cell response to virus infection. We also identified other genes, including IDO1 and BAMBI, that may influence the RPE and therefore outer blood-retinal barrier integrity during ocular infection and inflammation, or are associated with degeneration, as seen for example in aging. PMID:22509103

  8. The efficacy of microarray screening for autosomal recessive retinitis pigmentosa in routine clinical practice

    PubMed Central

    van Huet, Ramon A. C.; Pierrache, Laurence H.M.; Meester-Smoor, Magda A.; Klaver, Caroline C.W.; van den Born, L. Ingeborgh; Hoyng, Carel B.; de Wijs, Ilse J.; Collin, Rob W. J.; Hoefsloot, Lies H.

    2015-01-01

    Purpose To determine the efficacy of multiple versions of a commercially available arrayed primer extension (APEX) microarray chip for autosomal recessive retinitis pigmentosa (arRP). Methods We included 250 probands suspected of arRP who were genetically analyzed with the APEX microarray between January 2008 and November 2013. The mode of inheritance had to be autosomal recessive according to the pedigree (including isolated cases). If the microarray identified a heterozygous mutation, we performed Sanger sequencing of exons and exon–intron boundaries of that specific gene. The efficacy of this microarray chip with the additional Sanger sequencing approach was determined by the percentage of patients that received a molecular diagnosis. We also collected data from genetic tests other than the APEX analysis for arRP to provide a detailed description of the molecular diagnoses in our study cohort. Results The APEX microarray chip for arRP identified the molecular diagnosis in 21 (8.5%) of the patients in our cohort. Additional Sanger sequencing yielded a second mutation in 17 patients (6.8%), thereby establishing the molecular diagnosis. In total, 38 patients (15.2%) received a molecular diagnosis after analysis using the microarray and additional Sanger sequencing approach. Further genetic analyses after a negative result of the arRP microarray (n = 107) resulted in a molecular diagnosis of arRP (n = 23), autosomal dominant RP (n = 5), X-linked RP (n = 2), and choroideremia (n = 1). Conclusions The efficacy of the commercially available APEX microarray chips for arRP appears to be low, most likely caused by the limitations of this technique and the genetic and allelic heterogeneity of RP. Diagnostic yields up to 40% have been reported for next-generation sequencing (NGS) techniques that, as expected, thereby outperform targeted APEX analysis. PMID:25999674

  9. Overexpression of GRß in colonic mucosal cell line partly reflects altered gene expression in colonic mucosa of patients with inflammatory bowel disease.

    PubMed

    Nagy, Zsolt; Acs, Bence; Butz, Henriett; Feldman, Karolina; Marta, Alexa; Szabo, Peter M; Baghy, Kornelia; Pazmany, Tamas; Racz, Karoly; Liko, Istvan; Patocs, Attila

    2016-01-01

    The glucocorticoid receptor (GR) plays a crucial role in inflammatory responses. GR has several isoforms, of which the most deeply studied are the GRα and GRß. Recently it has been suggested that in addition to its negative dominant effect on GRα, the GRß may have a GRα-independent transcriptional activity. The GRß isoform was found to be frequently overexpressed in various autoimmune diseases, including inflammatory bowel disease (IBD). In this study, we wished to test whether the gene expression profile found in a GRß overexpressing intestinal cell line (Caco-2GRß) might mimic the gene expression alterations found in patients with IBD. Whole genome microarray analysis was performed in both normal and GRß overexpressing Caco-2 cell lines with and without dexamethasone treatment. IBD-related genes were identified from a meta-analysis of 245 microarrays available in online microarray deposits performed on intestinal mucosa samples from patients with IBD and healthy individuals. The differentially expressed genes were further studied using in silico pathway analysis. Overexpression of GRß altered a large proportion of genes that were not regulated by dexamethasone suggesting that GRß may have a GRα-independent role in the regulation of gene expression. About 10% of genes differentially expressed in colonic mucosa samples from IBD patients compared to normal subjects were also detected in Caco-2 GRß intestinal cell line. Common genes are involved in cell adhesion and cell proliferation. Overexpression of GRß in intestinal cells may affect appropriate mucosal repair and intact barrier function. The proposed novel role of GRß in intestinal epithelium warrants further studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Principles of gene microarray data analysis.

    PubMed

    Mocellin, Simone; Rossi, Carlo Riccardo

    2007-01-01

    The development of several gene expression profiling methods, such as comparative genomic hybridization (CGH), differential display, serial analysis of gene expression (SAGE), and gene microarray, together with the sequencing of the human genome, has provided an opportunity to monitor and investigate the complex cascade of molecular events leading to tumor development and progression. The availability of such large amounts of information has shifted the attention of scientists towards a nonreductionist approach to biological phenomena. High throughput technologies can be used to follow changing patterns of gene expression over time. Among them, gene microarray has become prominent because it is easier to use, does not require large-scale DNA sequencing, and allows for the parallel quantification of thousands of genes from multiple samples. Gene microarray technology is rapidly spreading worldwide and has the potential to drastically change the therapeutic approach to patients affected with tumor. Therefore, it is of paramount importance for both researchers and clinicians to know the principles underlying the analysis of the huge amount of data generated with microarray technology.

  11. 16S rRNA gene-based phylogenetic microarray for simultaneous identification of members of the genus Burkholderia.

    PubMed

    Schönmann, Susan; Loy, Alexander; Wimmersberger, Céline; Sobek, Jens; Aquino, Catharine; Vandamme, Peter; Frey, Beat; Rehrauer, Hubert; Eberl, Leo

    2009-04-01

    For cultivation-independent and highly parallel analysis of members of the genus Burkholderia, an oligonucleotide microarray (phylochip) consisting of 131 hierarchically nested 16S rRNA gene-targeted oligonucleotide probes was developed. A novel primer pair was designed for selective amplification of a 1.3 kb 16S rRNA gene fragment of Burkholderia species prior to microarray analysis. The diagnostic performance of the microarray for identification and differentiation of Burkholderia species was tested with 44 reference strains of the genera Burkholderia, Pandoraea, Ralstonia and Limnobacter. Hybridization patterns based on presence/absence of probe signals were interpreted semi-automatically using the novel likelihood-based strategy of the web-tool Phylo- Detect. Eighty-eight per cent of the reference strains were correctly identified at the species level. The evaluated microarray was applied to investigate shifts in the Burkholderia community structure in acidic forest soil upon addition of cadmium, a condition that selected for Burkholderia species. The microarray results were in agreement with those obtained from phylogenetic analysis of Burkholderia 16S rRNA gene sequences recovered from the same cadmiumcontaminated soil, demonstrating the value of the Burkholderia phylochip for determinative and environmental studies.

  12. Support vector machine and principal component analysis for microarray data classification

    NASA Astrophysics Data System (ADS)

    Astuti, Widi; Adiwijaya

    2018-03-01

    Cancer is a leading cause of death worldwide although a significant proportion of it can be cured if it is detected early. In recent decades, technology called microarray takes an important role in the diagnosis of cancer. By using data mining technique, microarray data classification can be performed to improve the accuracy of cancer diagnosis compared to traditional techniques. The characteristic of microarray data is small sample but it has huge dimension. Since that, there is a challenge for researcher to provide solutions for microarray data classification with high performance in both accuracy and running time. This research proposed the usage of Principal Component Analysis (PCA) as a dimension reduction method along with Support Vector Method (SVM) optimized by kernel functions as a classifier for microarray data classification. The proposed scheme was applied on seven data sets using 5-fold cross validation and then evaluation and analysis conducted on term of both accuracy and running time. The result showed that the scheme can obtained 100% accuracy for Ovarian and Lung Cancer data when Linear and Cubic kernel functions are used. In term of running time, PCA greatly reduced the running time for every data sets.

  13. Experimental Approaches to Microarray Analysis of Tumor Samples

    ERIC Educational Resources Information Center

    Furge, Laura Lowe; Winter, Michael B.; Meyers, Jacob I.; Furge, Kyle A.

    2008-01-01

    Comprehensive measurement of gene expression using high-density nucleic acid arrays (i.e. microarrays) has become an important tool for investigating the molecular differences in clinical and research samples. Consequently, inclusion of discussion in biochemistry, molecular biology, or other appropriate courses of microarray technologies has…

  14. Multiplex cDNA quantification method that facilitates the standardization of gene expression data

    PubMed Central

    Gotoh, Osamu; Murakami, Yasufumi; Suyama, Akira

    2011-01-01

    Microarray-based gene expression measurement is one of the major methods for transcriptome analysis. However, current microarray data are substantially affected by microarray platforms and RNA references because of the microarray method can provide merely the relative amounts of gene expression levels. Therefore, valid comparisons of the microarray data require standardized platforms, internal and/or external controls and complicated normalizations. These requirements impose limitations on the extensive comparison of gene expression data. Here, we report an effective approach to removing the unfavorable limitations by measuring the absolute amounts of gene expression levels on common DNA microarrays. We have developed a multiplex cDNA quantification method called GEP-DEAN (Gene expression profiling by DCN-encoding-based analysis). The method was validated by using chemically synthesized DNA strands of known quantities and cDNA samples prepared from mouse liver, demonstrating that the absolute amounts of cDNA strands were successfully measured with a sensitivity of 18 zmol in a highly multiplexed manner in 7 h. PMID:21415008

  15. Spot detection and image segmentation in DNA microarray data.

    PubMed

    Qin, Li; Rueda, Luis; Ali, Adnan; Ngom, Alioune

    2005-01-01

    Following the invention of microarrays in 1994, the development and applications of this technology have grown exponentially. The numerous applications of microarray technology include clinical diagnosis and treatment, drug design and discovery, tumour detection, and environmental health research. One of the key issues in the experimental approaches utilising microarrays is to extract quantitative information from the spots, which represent genes in a given experiment. For this process, the initial stages are important and they influence future steps in the analysis. Identifying the spots and separating the background from the foreground is a fundamental problem in DNA microarray data analysis. In this review, we present an overview of state-of-the-art methods for microarray image segmentation. We discuss the foundations of the circle-shaped approach, adaptive shape segmentation, histogram-based methods and the recently introduced clustering-based techniques. We analytically show that clustering-based techniques are equivalent to the one-dimensional, standard k-means clustering algorithm that utilises the Euclidean distance.

  16. Split-plot microarray experiments: issues of design, power and sample size.

    PubMed

    Tsai, Pi-Wen; Lee, Mei-Ling Ting

    2005-01-01

    This article focuses on microarray experiments with two or more factors in which treatment combinations of the factors corresponding to the samples paired together onto arrays are not completely random. A main effect of one (or more) factor(s) is confounded with arrays (the experimental blocks). This is called a split-plot microarray experiment. We utilise an analysis of variance (ANOVA) model to assess differentially expressed genes for between-array and within-array comparisons that are generic under a split-plot microarray experiment. Instead of standard t- or F-test statistics that rely on mean square errors of the ANOVA model, we use a robust method, referred to as 'a pooled percentile estimator', to identify genes that are differentially expressed across different treatment conditions. We illustrate the design and analysis of split-plot microarray experiments based on a case application described by Jin et al. A brief discussion of power and sample size for split-plot microarray experiments is also presented.

  17. Two-Dimensional VO2 Mesoporous Microarrays for High-Performance Supercapacitor

    NASA Astrophysics Data System (ADS)

    Fan, Yuqi; Ouyang, Delong; Li, Bao-Wen; Dang, Feng; Ren, Zongming

    2018-05-01

    Two-dimensional (2D) mesoporous VO2 microarrays have been prepared using an organic-inorganic liquid interface. The units of microarrays consist of needle-like VO2 particles with a mesoporous structure, in which crack-like pores with a pore size of about 2 nm and depth of 20-100 nm are distributed on the particle surface. The liquid interface acts as a template for the formation of the 2D microarrays, as identified from the kinetic observation. Due to the mesoporous structure of the units and high conductivity of the microarray, such 2D VO2 microarrays exhibit a high specific capacitance of 265 F/g at 1 A/g and excellent rate capability (182 F/g at 10 A/g) and cycling stability, suggesting the effect of unique microstructure for improving the electrochemical performance.

  18. PGD and aneuploidy screening for 24 chromosomes: advantages and disadvantages of competing platforms.

    PubMed

    Bisignano, A; Wells, D; Harton, G; Munné, S

    2011-12-01

    Diagnosis of embryos for chromosome abnormalities, i.e. aneuploidy screening, has been invigorated by the introduction of microarray-based testing methods allowing analysis of 24 chromosomes in one test. Recent data have been suggestive of increased implantation and pregnancy rates following microarray testing. Preimplantation genetic diagnosis for infertility aims to test for gross chromosome changes with the hope that identification and transfer of normal embryos will improve IVF outcomes. Testing by some methods, specifically single-nucleotide polymorphism (SNP) microarrays, allow for more information and potential insight into parental origin of aneuploidy and uniparental disomy. The usefulness and validity of reporting this information is flawed. Numerous papers have shown that the majority of meiotic errors occur in the egg, while mitotic errors in the embryo affect parental chromosomes at random. Potential mistakes made in assigning an error as meiotic or mitotic may lead to erroneous reporting of results with medical consequences. This study's data suggest that the bioinformatic cleaning used to 'fix' the miscalls that plague single-cell whole-genome amplification provides little improvement in the quality of useful data. Based on the information available, SNP-based aneuploidy screening suffers from a number of serious issues that must be resolved. Copyright © 2011 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  19. Microarray assessment of virulence, antibiotic, and heavy metal resistance in an agricultural watershed creek.

    PubMed

    Unc, Adrian; Zurek, Ludek; Peterson, Greg; Narayanan, Sanjeev; Springthorpe, Susan V; Sattar, Syed A

    2012-01-01

    Potential risks associated with impaired surface water quality have commonly been evaluated by indirect description of potential sources using various fecal microbial indicators and derived source-tracking methods. These approaches are valuable for assessing and monitoring the impacts of land-use changes and changes in management practices at the source of contamination. A more detailed evaluation of putative etiologically significant genetic determinants can add value to these assessments. We evaluated the utility of using a microarray that integrates virulence genes with antibiotic and heavy metal resistance genes to describe and discriminate among spatially and seasonally distinct water samples from an agricultural watershed creek in Eastern Ontario. Because microarray signals may be analyzed as binomial distributions, the significance of ambiguous signals can be easily evaluated by using available off-the-shelf software. The FAMD software was used to evaluate uncertainties in the signal data. Analysis of multilocus fingerprinting data sets containing missing data has shown that, for the tested system, any variability in microarray signals had a marginal effect on data interpretation. For the tested watershed, results suggest that in general the wet fall season increased the downstream detection of virulence and resistance genes. Thus, the tested microarray technique has the potential to rapidly describe the quality of surface waters and thus to provide a qualitative tool to augment quantitative microbial risk assessments. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  20. Chromosomal microarray findings in pregnancies with an isolated pelvic kidney.

    PubMed

    Sagi-Dain, Lena; Singer, Amihood; Frumkin, Ayala; Shalata, Adel; Koifman, Arie; Segel, Reeval; Benyamini, Lilach; Rienstein, Shlomit; Kahyat, Morad; Sharony, Reuven; Maya, Idit; Ben Shachar, Shay

    2018-05-29

    To examine the risk for abnormal chromosomal microarray analysis (CMA) results among fetuses with an apparently isolated pelvic kidney. Data from all CMA analyses performed due to an isolated pelvic kidney reported to the Israeli Ministry of Health between January 2013 and September 2016 were retrospectively obtained. Risk estimation was performed comparing the rate of abnormal observed CMA findings to the general population risk, based on a systematic review encompassing 9272 cases and on local data of 5541 cases. Of 120 pregnancies with an isolated pelvic kidney, two gain-of-copy number variants suggesting microduplication syndromes were demonstrated (1.67%). In addition, three variants of unknown significance were detected (2.5%). The risk for clinically significant CMA findings among pregnancies with an isolated single pelvic kidney was not significantly different compared to both control populations. The results of our study question the practice of routine CMA analysis in fetuses with an isolated pelvic kidney.

  1. Sensitive immunoassay detection of multiple environmental chemicals on protein microarrays using DNA/dye conjugate as a fluorescent label.

    PubMed

    Fan, Ziyan; Keum, Young Soo; Li, Qing X; Shelver, Weilin L; Guo, Liang-Hong

    2012-05-01

    Indirect competitive immunoassays were developed on protein microarrays for the sensitive and simultaneous detection of multiple environmental chemicals in one sample. In this assay, a DNA/SYTOX Orange conjugate was employed as an antibody label to increase the fluorescence signal and sensitivity of the immunoassays. Epoxy-modified glass slides were selected as the substrate for the production of 4 × 4 coating antigen microarrays. With this signal-enhancing system, competition curves for 17β-estradiol (E2), benzo[a]pyrene (BaP) and 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) were obtained individually on the protein microarray. The IC(50) and calculated limit of detection (LOD) are 0.32 μg L(-1) and 0.022 μg L(-1) for E2, 37.2 μg L(-1) and 24.5 μg L(-1) for BaP, and 31.6 μg L(-1) and 2.8 μg L(-1) for BDE-47, respectively. LOD of E2 is 14-fold lower than the value reported in a previous study using Cy3 labeled antibody (Du et al., Clin. Chem, 2005, 51, 368-375). The results of the microarray immunoassay were within 15% of chromatographic analysis for all three pollutants in spiked river water samples, thus verifying the immunoassay. Simultaneous detection of E2, BaP and BDE-47 in one sample was demonstrated. There was no cross-reaction in the immunoassay between these three environmental chemicals. These results suggest that microarray-based immunoassays with DNA/dye conjugate labels are useful tools for the rapid, sensitive, and high throughput screening of multiple environmental contaminants.

  2. Prognostic value of matrix metalloproteinase 9 expression in patients with juvenile nasopharyngeal angiofibroma: tissue microarray analysis.

    PubMed

    Sun, Xicai; Guo, Limin; Wang, Jingjing; Wang, Huan; Liu, Zhuofu; Liu, Juan; Yu, Huapeng; Hu, Li; Li, Han; Wang, Dehui

    2014-08-01

    Although JNA is a benign neoplasm histopathologically, it has a propensity for locally destructive growth and remains a higher postoperative recurrence rate. The aim of this study was to analyze the expression and localization of MMP-9 in JNA using tissue microarray to elucidate its correlation with clinicopathological features and recurrence. The expression of MMP-9 was assessed by immunohistochemistry in a tissue microarray from 70 patients with JNA and 10 control subjects. Correlation between the levels of MMP-9 expression and clinicopathologic variables, as well as tumor recurrence, were analyzed. MMP-9 was detected in perivascular and extravascular less differentiated cells and stromal cells of patients with JNA but not in the matured vascular endothelial cells of these patients. The presence of MMP-9 expression in JNA was correlated with patient's age (p=0.001). Spearman correlation analysis suggested that high expression of MMP-9 in JNA had negative correlation with patient's age (r=-0.412, p<0.001). The recurrence rate in JNA patients with high MMP-9 expression was significantly higher than those with low MMP-9 expression (p=0.002). In multivariate and ROC curve analysis, MMP-9 was a good prognostic factor for tumor recurrence of JNA. Higher MMP-9 expression is a poor prognostic factor for patients with JNA who have been surgically treated. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Comprehensive analysis of differentially expressed profiles of lncRNAs and construction of miR-133b mediated ceRNA network in colorectal cancer.

    PubMed

    Wu, Hao; Wu, Runliu; Chen, Miao; Li, Daojiang; Dai, Jing; Zhang, Yi; Gao, Kai; Yu, Jun; Hu, Gui; Guo, Yihang; Lin, Changwei; Li, Xiaorong

    2017-03-28

    Growing evidence suggests that long non-coding RNAs (lncRNAs) play a key role in tumorigenesis. However, the mechanism remains largely unknown. Thousands of significantly dysregulated lncRNAs and mRNAs were identified by microarray. Furthermore, a miR-133b-meditated lncRNA-mRNA ceRNA network was revealed, a subset of which was validated in 14 paired CRC patient tumor/non-tumor samples. Gene set enrichment analysis (GSEA) results demonstrated that lncRNAs ENST00000520055 and ENST00000535511 shared KEGG pathways with miR-133b target genes. We used microarrays to survey the lncRNA and mRNA expression profiles of colorectal cancer and para-cancer tissues. Gene Ontology (GO) and KEGG pathway enrichment analyses were performed to explore the functions of the significantly dysregulated genes. An innovate method was employed that combined analyses of two microarray data sets to construct a miR-133b-mediated lncRNA-mRNA competing endogenous RNAs (ceRNA) network. Quantitative RT-PCR analysis was used to validate part of this network. GSEA was used to predict the potential functions of these lncRNAs. This study identifies and validates a new method to investigate the miR-133b-mediated lncRNA-mRNA ceRNA network and lays the foundation for future investigation into the role of lncRNAs in colorectal cancer.

  4. Application of nanostructured biochips for efficient cell transfection microarrays

    NASA Astrophysics Data System (ADS)

    Akkamsetty, Yamini; Hook, Andrew L.; Thissen, Helmut; Hayes, Jason P.; Voelcker, Nicolas H.

    2007-01-01

    Microarrays, high-throughput devices for genomic analysis, can be further improved by developing materials that are able to manipulate the interfacial behaviour of biomolecules. This is achieved both spatially and temporally by smart materials possessing both switchable and patterned surface properties. A system had been developed to spatially manipulate both DNA and cell growth based upon the surface modification of highly doped silicon by plasma polymerisation and polyethylene grafting followed by masked laser ablation for formation of a pattered surface with both bioactive and non-fouling regions. This platform has been successfully applied to transfected cell microarray applications with the parallel expression of genes by utilising its ability to direct and limit both DNA and cell attachment to specific sites. One of the greatest advantages of this system is its application to reverse transfection, whereupon by utilising the switchable adsorption and desorption of DNA using a voltage bias, the efficiency of cell transfection can be enhanced. However, it was shown that application of a voltage also reduces the viability of neuroblastoma cells grown on a plasma polymer surface, but not human embryonic kidney cells. This suggests that the application of a voltage may not only result in the desorption of bound DNA but may also affect attached cells. The characterisation of a DNA microarray by contact printing has also been investigated.

  5. Characteristic Markers of the WNT Signaling Pathways Are Differentially Expressed in Osteoarthritic Cartilage

    PubMed Central

    Dehne, T.; Lindahl, A.; Brittberg, M.; Pruss, A.; Ringe, J.; Sittinger, M.; Karlsson, C.

    2012-01-01

    Objective: It is well known that expression of markers for WNT signaling is dysregulated in osteoarthritic (OA) bone. However, it is still not fully known if the expression of these markers also is affected in OA cartilage. The aim of this study was therefore to examine this issue. Methods: Human cartilage biopsies from OA and control donors were subjected to genome-wide oligonucleotide microarrays. Genes involved in WNT signaling were selected using the BioRetis database, KEGG pathway analysis was searched using DAVID software tools, and cluster analysis was performed using Genesis software. Results from the microarray analysis were verified using quantitative real-time PCR and immunohistochemistry. In order to study the impact of cytokines for the dysregulated WNT signaling, OA and control chondrocytes were stimulated with interleukin-1 and analyzed with real-time PCR for their expression of WNT-related genes. Results: Several WNT markers displayed a significantly altered expression in OA compared to normal cartilage. Interestingly, inhibitors of the canonical and planar cell polarity WNT signaling pathways displayed significantly increased expression in OA cartilage, while the Ca2+/WNT signaling pathway was activated. Both real-time PCR and immunohistochemistry verified the microarray results. Real-time PCR analysis demonstrated that interleukin-1 upregulated expression of important WNT markers. Conclusions: WNT signaling is significantly affected in OA cartilage. The result suggests that both the canonical and planar cell polarity WNT signaling pathways were partly inhibited while the Ca2+/WNT pathway was activated in OA cartilage. PMID:26069618

  6. Initiation of follicular atresia: gene networks during early atresia in pig ovaries.

    PubMed

    Zhang, Jinbi; Liu, Yang; Yao, Wang; Li, Qifa; Liu, Hong-Lin; Pan, Zengxiang

    2018-05-09

    In mammals, more than 99% of ovarian follicles undergo a degenerative process known as atresia. The molecular events involve in atresia initiation remain incompletely understood. The objective of this study was to analyze differential gene expression profiles of medium antral ovarian follicles during early atresia in pig. The transcriptome evaluation was performed on cDNA microarrays using healthy and early atretic follicle samples and was validated by quantitative PCR. Annotation analysis applying current database (sus scrofa 11.1) revealed 450 significantly differential expressed genes between healthy and early atretic follicles. Among them, 142 were significantly up-regulated in early atretic with respect to healthy group and 308 were down-regulated. Similar expression trends were observed between microarray data and qRT-PCR confirmation, which indicated the reliability of the microarray analysis. Further analysis of the differential expressed genes revealed the most significantly affected biological functions during early atresia including blood vessel development, regulation of DNA-templated transcription in response to stress and negative regulation of cell adhesion. The pathway and interaction analysis suggested that atresia initiation associates with 1) a crosstalk of cell apoptosis, autophagy, and ferroptosis rather than change of typical apoptosis markers, 2) dramatic shift of steroidogenic enzymes, 3) deficient glutathione metabolism, and 4) vascular degeneration. The novel gene candidates and pathways identified in the current study will lead to a comprehensive view of the molecular regulation of ovarian follicular atresia and a new understanding of atresia initiation.

  7. A remark on copy number variation detection methods.

    PubMed

    Li, Shuo; Dou, Xialiang; Gao, Ruiqi; Ge, Xinzhou; Qian, Minping; Wan, Lin

    2018-01-01

    Copy number variations (CNVs) are gain and loss of DNA sequence of a genome. High throughput platforms such as microarrays and next generation sequencing technologies (NGS) have been applied for genome wide copy number losses. Although progress has been made in both approaches, the accuracy and consistency of CNV calling from the two platforms remain in dispute. In this study, we perform a deep analysis on copy number losses on 254 human DNA samples, which have both SNP microarray data and NGS data publicly available from Hapmap Project and 1000 Genomes Project respectively. We show that the copy number losses reported from Hapmap Project and 1000 Genome Project only have < 30% overlap, while these reports are required to have cross-platform (e.g. PCR, microarray and high-throughput sequencing) experimental supporting by their corresponding projects, even though state-of-art calling methods were employed. On the other hand, copy number losses are found directly from HapMap microarray data by an accurate algorithm, i.e. CNVhac, almost all of which have lower read mapping depth in NGS data; furthermore, 88% of which can be supported by the sequences with breakpoint in NGS data. Our results suggest the ability of microarray calling CNVs and the possible introduction of false negatives from the unessential requirement of the additional cross-platform supporting. The inconsistency of CNV reports from Hapmap Project and 1000 Genomes Project might result from the inadequate information containing in microarray data, the inconsistent detection criteria, or the filtration effect of cross-platform supporting. The statistical test on CNVs called from CNVhac show that the microarray data can offer reliable CNV reports, and majority of CNV candidates can be confirmed by raw sequences. Therefore, the CNV candidates given by a good caller could be highly reliable without cross-platform supporting, so additional experimental information should be applied in need instead of necessarily.

  8. Transcriptomic analysis of persistent infection with foot-and-mouth disease virus in cattle suggests impairment of cell-mediated immunity in the nasopharynx

    USDA-ARS?s Scientific Manuscript database

    In order to investigate the mechanisms of persistent foot-and-mouth disease virus (FMDV) infection in cattle, transcriptome alterations associated with the FMDV carrier state were characterized using a bovine whole-transcriptome microarray. Eighteen cattle (8 vaccinated with a recombinant FMDV A vac...

  9. MALDI-TOF mass spectrometry for quantitative gene expression analysis of acid responses in Staphylococcus aureus.

    PubMed

    Rode, Tone Mari; Berget, Ingunn; Langsrud, Solveig; Møretrø, Trond; Holck, Askild

    2009-07-01

    Microorganisms are constantly exposed to new and altered growth conditions, and respond by changing gene expression patterns. Several methods for studying gene expression exist. During the last decade, the analysis of microarrays has been one of the most common approaches applied for large scale gene expression studies. A relatively new method for gene expression analysis is MassARRAY, which combines real competitive-PCR and MALDI-TOF (matrix-assisted laser desorption/ionization time-of-flight) mass spectrometry. In contrast to microarray methods, MassARRAY technology is suitable for analysing a larger number of samples, though for a smaller set of genes. In this study we compare the results from MassARRAY with microarrays on gene expression responses of Staphylococcus aureus exposed to acid stress at pH 4.5. RNA isolated from the same stress experiments was analysed using both the MassARRAY and the microarray methods. The MassARRAY and microarray methods showed good correlation. Both MassARRAY and microarray estimated somewhat lower fold changes compared with quantitative real-time PCR (qRT-PCR). The results confirmed the up-regulation of the urease genes in acidic environments, and also indicated the importance of metal ion regulation. This study shows that the MassARRAY technology is suitable for gene expression analysis in prokaryotes, and has advantages when a set of genes is being analysed for an organism exposed to many different environmental conditions.

  10. Microarray analysis of potential genes in the pathogenesis of recurrent oral ulcer.

    PubMed

    Han, Jingying; He, Zhiwei; Li, Kun; Hou, Lu

    2015-01-01

    Recurrent oral ulcer seriously threatens patients' daily life and health. This study investigated potential genes and pathways that participate in the pathogenesis of recurrent oral ulcer by high throughput bioinformatic analysis. RT-PCR and Western blot were applied to further verify screened interleukins effect. Recurrent oral ulcer related genes were collected from websites and papers, and further found out from Human Genome 280 6.0 microarray data. Each pathway of recurrent oral ulcer related genes were got through chip hybridization. RT-PCR was applied to test four recurrent oral ulcer related genes to verify the microarray data. Data transformation, scatter plot, clustering analysis, and expression pattern analysis were used to analyze recurrent oral ulcer related gene expression changes. Recurrent oral ulcer gene microarray was successfully established. Microarray showed that 551 genes involved in recurrent oral ulcer activity and 196 genes were recurrent oral ulcer related genes. Of them, 76 genes up-regulated, 62 genes down-regulated, and 58 genes up-/down-regulated. Total expression level up-regulated 752 times (60%) and down-regulated 485 times (40%). IL-2 plays an important role in the occurrence, development and recurrence of recurrent oral ulcer on the mRNA and protein levels. Gene microarray can be used to analyze potential genes and pathways in recurrent oral ulcer. IL-2 may be involved in the pathogenesis of recurrent oral ulcer.

  11. A preliminary result of three-dimensional microarray technology to gene analysis with endoscopic ultrasound-guided fine-needle aspiration specimens and pancreatic juices

    PubMed Central

    2010-01-01

    Background Analysis of gene expression and gene mutation may add information to be different from ordinary pathological tissue diagnosis. Since samples obtained endoscopically are very small, it is desired that more sensitive technology is developed for gene analysis. We investigated whether gene expression and gene mutation analysis by newly developed ultra-sensitive three-dimensional (3D) microarray is possible using small amount samples from endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA) specimens and pancreatic juices. Methods Small amount samples from 17 EUS-FNA specimens and 16 pancreatic juices were obtained. After nucleic acid extraction, the samples were amplified with labeling and analyzed by the 3D microarray. Results The analyzable rate with the microarray was 46% (6/13) in EUS-FNA specimens of RNAlater® storage, and RNA degradations were observed in all the samples of frozen storage. In pancreatic juices, the analyzable rate was 67% (4/6) in frozen storage samples and 20% (2/10) in RNAlater® storage. EUS-FNA specimens were classified into cancer and non-cancer by gene expression analysis and K-ras codon 12 mutations were also detected using the 3D microarray. Conclusions Gene analysis from small amount samples obtained endoscopically was possible by newly developed 3D microarray technology. High quality RNA from EUS-FNA samples were obtained and remained in good condition only using RNA stabilizer. In contrast, high quality RNA from pancreatic juice samples were obtained only in frozen storage without RNA stabilizer. PMID:20416107

  12. MAAMD: a workflow to standardize meta-analyses and comparison of affymetrix microarray data

    PubMed Central

    2014-01-01

    Background Mandatory deposit of raw microarray data files for public access, prior to study publication, provides significant opportunities to conduct new bioinformatics analyses within and across multiple datasets. Analysis of raw microarray data files (e.g. Affymetrix CEL files) can be time consuming, complex, and requires fundamental computational and bioinformatics skills. The development of analytical workflows to automate these tasks simplifies the processing of, improves the efficiency of, and serves to standardize multiple and sequential analyses. Once installed, workflows facilitate the tedious steps required to run rapid intra- and inter-dataset comparisons. Results We developed a workflow to facilitate and standardize Meta-Analysis of Affymetrix Microarray Data analysis (MAAMD) in Kepler. Two freely available stand-alone software tools, R and AltAnalyze were embedded in MAAMD. The inputs of MAAMD are user-editable csv files, which contain sample information and parameters describing the locations of input files and required tools. MAAMD was tested by analyzing 4 different GEO datasets from mice and drosophila. MAAMD automates data downloading, data organization, data quality control assesment, differential gene expression analysis, clustering analysis, pathway visualization, gene-set enrichment analysis, and cross-species orthologous-gene comparisons. MAAMD was utilized to identify gene orthologues responding to hypoxia or hyperoxia in both mice and drosophila. The entire set of analyses for 4 datasets (34 total microarrays) finished in ~ one hour. Conclusions MAAMD saves time, minimizes the required computer skills, and offers a standardized procedure for users to analyze microarray datasets and make new intra- and inter-dataset comparisons. PMID:24621103

  13. Gene Expression Browser: Large-Scale and Cross-Experiment Microarray Data Management, Search & Visualization

    USDA-ARS?s Scientific Manuscript database

    The amount of microarray gene expression data in public repositories has been increasing exponentially for the last couple of decades. High-throughput microarray data integration and analysis has become a critical step in exploring the large amount of expression data for biological discovery. Howeve...

  14. Parallel, confocal, and complete spectrum imager for fluorescent detection of high-density microarray

    NASA Astrophysics Data System (ADS)

    Bogdanov, Valery L.; Boyce-Jacino, Michael

    1999-05-01

    Confined arrays of biochemical probes deposited on a solid support surface (analytical microarray or 'chip') provide an opportunity to analysis multiple reactions simultaneously. Microarrays are increasingly used in genetics, medicine and environment scanning as research and analytical instruments. A power of microarray technology comes from its parallelism which grows with array miniaturization, minimization of reagent volume per reaction site and reaction multiplexing. An optical detector of microarray signals should combine high sensitivity, spatial and spectral resolution. Additionally, low-cost and a high processing rate are needed to transfer microarray technology into biomedical practice. We designed an imager that provides confocal and complete spectrum detection of entire fluorescently-labeled microarray in parallel. Imager uses microlens array, non-slit spectral decomposer, and high- sensitive detector (cooled CCD). Two imaging channels provide a simultaneous detection of localization, integrated and spectral intensities for each reaction site in microarray. A dimensional matching between microarray and imager's optics eliminates all in moving parts in instrumentation, enabling highly informative, fast and low-cost microarray detection. We report theory of confocal hyperspectral imaging with microlenses array and experimental data for implementation of developed imager to detect fluorescently labeled microarray with a density approximately 103 sites per cm2.

  15. Multiplexed Analysis of Serum Breast and Ovarian Cancer Markers by Means of Suspension Bead-quantum Dot Microarrays

    NASA Astrophysics Data System (ADS)

    Brazhnik, Kristina; Sokolova, Zinaida; Baryshnikova, Maria; Bilan, Regina; Nabiev, Igor; Sukhanova, Alyona

    Multiplexed analysis of cancer markers is crucial for early tumor diagnosis and screening. We have designed lab-on-a-bead microarray for quantitative detection of three breast cancer markers in human serum. Quantum dots were used as bead-bound fluorescent tags for identifying each marker by means of flow cytometry. Antigen-specific beads reliably detected CA 15-3, CEA, and CA 125 in serum samples, providing clear discrimination between the samples with respect to the antigen levels. The novel microarray is advantageous over the routine single-analyte ones due to the simultaneous detection of various markers. Therefore the developed microarray is a promising tool for serum tumor marker profiling.

  16. Construction of a cDNA microarray derived from the ascidian Ciona intestinalis.

    PubMed

    Azumi, Kaoru; Takahashi, Hiroki; Miki, Yasufumi; Fujie, Manabu; Usami, Takeshi; Ishikawa, Hisayoshi; Kitayama, Atsusi; Satou, Yutaka; Ueno, Naoto; Satoh, Nori

    2003-10-01

    A cDNA microarray was constructed from a basal chordate, the ascidian Ciona intestinalis. The draft genome of Ciona has been read and inferred to contain approximately 16,000 protein-coding genes, and cDNAs for transcripts of 13,464 genes have been characterized and compiled as the "Ciona intestinalis Gene Collection Release I". In the present study, we constructed a cDNA microarray of these 13,464 Ciona genes. A preliminary experiment with Cy3- and Cy5-labeled probes showed extensive differential gene expression between fertilized eggs and larvae. In addition, there was a good correlation between results obtained by the present microarray analysis and those from previous EST analyses. This first microarray of a large collection of Ciona intestinalis cDNA clones should facilitate the analysis of global gene expression and gene networks during the embryogenesis of basal chordates.

  17. DNA microarray-based experimental strategy for trustworthy expression profiling of the hippocampal genes by astaxanthin supplementation in adult mouse

    PubMed Central

    Yook, Jang Soo; Shibato, Junko; Rakwal, Randeep; Soya, Hideaki

    2015-01-01

    Naturally occurring astaxantin (ASX) is one of the noticeable carotenoid and dietary supplement, which has strong antioxidant and anti-inflammatory properties, and neuroprotective effects in the brain through crossing the blood–brain barrier. Specially, we are interested in the role of ASX as a brain food. Although ASX has been suggested to have potential benefit to the brain function, the underlying molecular mechanisms and events mediating such effect remain unknown. Here we examined molecular factors in the hippocampus of adult mouse fed ASX diets (0.1% and 0.5% doses) using DNA microarray (Agilent 4 × 44 K whole mouse genome chip) analysis. In this study, we described in detail our experimental workflow and protocol, and validated quality controls with the housekeeping gene expression (Gapdh and Beta-actin) on the dye-swap based approach to advocate our microarray data, which have been uploaded to Gene Expression Omnibus (accession number GSE62197) as a gene resource for the scientific community. This data will also form an important basis for further detailed experiments and bioinformatics analysis with an aim to unravel the potential molecular pathways or mechanisms underlying the positive effects of ASX supplementation on the brain, in particular the hippocampus. PMID:26981356

  18. Implementation of GenePattern within the Stanford Microarray Database.

    PubMed

    Hubble, Jeremy; Demeter, Janos; Jin, Heng; Mao, Maria; Nitzberg, Michael; Reddy, T B K; Wymore, Farrell; Zachariah, Zachariah K; Sherlock, Gavin; Ball, Catherine A

    2009-01-01

    Hundreds of researchers across the world use the Stanford Microarray Database (SMD; http://smd.stanford.edu/) to store, annotate, view, analyze and share microarray data. In addition to providing registered users at Stanford access to their own data, SMD also provides access to public data, and tools with which to analyze those data, to any public user anywhere in the world. Previously, the addition of new microarray data analysis tools to SMD has been limited by available engineering resources, and in addition, the existing suite of tools did not provide a simple way to design, execute and share analysis pipelines, or to document such pipelines for the purposes of publication. To address this, we have incorporated the GenePattern software package directly into SMD, providing access to many new analysis tools, as well as a plug-in architecture that allows users to directly integrate and share additional tools through SMD. In this article, we describe our implementation of the GenePattern microarray analysis software package into the SMD code base. This extension is available with the SMD source code that is fully and freely available to others under an Open Source license, enabling other groups to create a local installation of SMD with an enriched data analysis capability.

  19. Fabrication of Carbohydrate Microarrays by Boronate Formation.

    PubMed

    Adak, Avijit K; Lin, Ting-Wei; Li, Ben-Yuan; Lin, Chun-Cheng

    2017-01-01

    The interactions between soluble carbohydrates and/or surface displayed glycans and protein receptors are essential to many biological processes and cellular recognition events. Carbohydrate microarrays provide opportunities for high-throughput quantitative analysis of carbohydrate-protein interactions. Over the past decade, various techniques have been implemented for immobilizing glycans on solid surfaces in a microarray format. Herein, we describe a detailed protocol for fabricating carbohydrate microarrays that capitalizes on the intrinsic reactivity of boronic acid toward carbohydrates to form stable boronate diesters. A large variety of unprotected carbohydrates ranging in structure from simple disaccharides and trisaccharides to considerably more complex human milk and blood group (oligo)saccharides have been covalently immobilized in a single step on glass slides, which were derivatized with high-affinity boronic acid ligands. The immobilized ligands in these microarrays maintain the receptor-binding activities including those of lectins and antibodies according to the structures of their pendant carbohydrates for rapid analysis of a number of carbohydrate-recognition events within 30 h. This method facilitates the direct construction of otherwise difficult to obtain carbohydrate microarrays from underivatized glycans.

  20. The Glycan Microarray Story from Construction to Applications.

    PubMed

    Hyun, Ji Young; Pai, Jaeyoung; Shin, Injae

    2017-04-18

    Not only are glycan-mediated binding processes in cells and organisms essential for a wide range of physiological processes, but they are also implicated in various pathological processes. As a result, elucidation of glycan-associated biomolecular interactions and their consequences is of great importance in basic biological research and biomedical applications. In 2002, we and others were the first to utilize glycan microarrays in efforts aimed at the rapid analysis of glycan-associated recognition events. Because they contain a number of glycans immobilized in a dense and orderly manner on a solid surface, glycan microarrays enable multiple parallel analyses of glycan-protein binding events while utilizing only small amounts of glycan samples. Therefore, this microarray technology has become a leading edge tool in studies aimed at elucidating roles played by glycans and glycan binding proteins in biological systems. In this Account, we summarize our efforts on the construction of glycan microarrays and their applications in studies of glycan-associated interactions. Immobilization strategies of functionalized and unmodified glycans on derivatized glass surfaces are described. Although others have developed immobilization techniques, our efforts have focused on improving the efficiencies and operational simplicity of microarray construction. The microarray-based technology has been most extensively used for rapid analysis of the glycan binding properties of proteins. In addition, glycan microarrays have been employed to determine glycan-protein interactions quantitatively, detect pathogens, and rapidly assess substrate specificities of carbohydrate-processing enzymes. More recently, the microarrays have been employed to identify functional glycans that elicit cell surface lectin-mediated cellular responses. Owing to these efforts, it is now possible to use glycan microarrays to expand the understanding of roles played by glycans and glycan binding proteins in biological systems.

  1. EDGE3: A web-based solution for management and analysis of Agilent two color microarray experiments

    PubMed Central

    Vollrath, Aaron L; Smith, Adam A; Craven, Mark; Bradfield, Christopher A

    2009-01-01

    Background The ability to generate transcriptional data on the scale of entire genomes has been a boon both in the improvement of biological understanding and in the amount of data generated. The latter, the amount of data generated, has implications when it comes to effective storage, analysis and sharing of these data. A number of software tools have been developed to store, analyze, and share microarray data. However, a majority of these tools do not offer all of these features nor do they specifically target the commonly used two color Agilent DNA microarray platform. Thus, the motivating factor for the development of EDGE3 was to incorporate the storage, analysis and sharing of microarray data in a manner that would provide a means for research groups to collaborate on Agilent-based microarray experiments without a large investment in software-related expenditures or extensive training of end-users. Results EDGE3 has been developed with two major functions in mind. The first function is to provide a workflow process for the generation of microarray data by a research laboratory or a microarray facility. The second is to store, analyze, and share microarray data in a manner that doesn't require complicated software. To satisfy the first function, EDGE3 has been developed as a means to establish a well defined experimental workflow and information system for microarray generation. To satisfy the second function, the software application utilized as the user interface of EDGE3 is a web browser. Within the web browser, a user is able to access the entire functionality, including, but not limited to, the ability to perform a number of bioinformatics based analyses, collaborate between research groups through a user-based security model, and access to the raw data files and quality control files generated by the software used to extract the signals from an array image. Conclusion Here, we present EDGE3, an open-source, web-based application that allows for the storage, analysis, and controlled sharing of transcription-based microarray data generated on the Agilent DNA platform. In addition, EDGE3 provides a means for managing RNA samples and arrays during the hybridization process. EDGE3 is freely available for download at . PMID:19732451

  2. EDGE(3): a web-based solution for management and analysis of Agilent two color microarray experiments.

    PubMed

    Vollrath, Aaron L; Smith, Adam A; Craven, Mark; Bradfield, Christopher A

    2009-09-04

    The ability to generate transcriptional data on the scale of entire genomes has been a boon both in the improvement of biological understanding and in the amount of data generated. The latter, the amount of data generated, has implications when it comes to effective storage, analysis and sharing of these data. A number of software tools have been developed to store, analyze, and share microarray data. However, a majority of these tools do not offer all of these features nor do they specifically target the commonly used two color Agilent DNA microarray platform. Thus, the motivating factor for the development of EDGE(3) was to incorporate the storage, analysis and sharing of microarray data in a manner that would provide a means for research groups to collaborate on Agilent-based microarray experiments without a large investment in software-related expenditures or extensive training of end-users. EDGE(3) has been developed with two major functions in mind. The first function is to provide a workflow process for the generation of microarray data by a research laboratory or a microarray facility. The second is to store, analyze, and share microarray data in a manner that doesn't require complicated software. To satisfy the first function, EDGE3 has been developed as a means to establish a well defined experimental workflow and information system for microarray generation. To satisfy the second function, the software application utilized as the user interface of EDGE(3) is a web browser. Within the web browser, a user is able to access the entire functionality, including, but not limited to, the ability to perform a number of bioinformatics based analyses, collaborate between research groups through a user-based security model, and access to the raw data files and quality control files generated by the software used to extract the signals from an array image. Here, we present EDGE(3), an open-source, web-based application that allows for the storage, analysis, and controlled sharing of transcription-based microarray data generated on the Agilent DNA platform. In addition, EDGE(3) provides a means for managing RNA samples and arrays during the hybridization process. EDGE(3) is freely available for download at http://edge.oncology.wisc.edu/.

  3. MAPPI-DAT: data management and analysis for protein-protein interaction data from the high-throughput MAPPIT cell microarray platform.

    PubMed

    Gupta, Surya; De Puysseleyr, Veronic; Van der Heyden, José; Maddelein, Davy; Lemmens, Irma; Lievens, Sam; Degroeve, Sven; Tavernier, Jan; Martens, Lennart

    2017-05-01

    Protein-protein interaction (PPI) studies have dramatically expanded our knowledge about cellular behaviour and development in different conditions. A multitude of high-throughput PPI techniques have been developed to achieve proteome-scale coverage for PPI studies, including the microarray based Mammalian Protein-Protein Interaction Trap (MAPPIT) system. Because such high-throughput techniques typically report thousands of interactions, managing and analysing the large amounts of acquired data is a challenge. We have therefore built the MAPPIT cell microArray Protein Protein Interaction-Data management & Analysis Tool (MAPPI-DAT) as an automated data management and analysis tool for MAPPIT cell microarray experiments. MAPPI-DAT stores the experimental data and metadata in a systematic and structured way, automates data analysis and interpretation, and enables the meta-analysis of MAPPIT cell microarray data across all stored experiments. MAPPI-DAT is developed in Python, using R for data analysis and MySQL as data management system. MAPPI-DAT is cross-platform and can be ran on Microsoft Windows, Linux and OS X/macOS. The source code and a Microsoft Windows executable are freely available under the permissive Apache2 open source license at https://github.com/compomics/MAPPI-DAT. jan.tavernier@vib-ugent.be or lennart.martens@vib-ugent.be. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.

  4. TOXICOGENOMIC ANALYSIS INCORPORATING OPERON-TRANSCRIPTIONAL COUPLING AND TOXICANT CONCENTRATRION-EXPRESSION RESPONSE: Analysis of MX-Treated Salmonella

    EPA Science Inventory

    What is the study? This study is the first to use microarray analysis in the Ames strains of Salmonella. The microarray chips were custom-designed for this study and are not commercially available, and we evaluated the well-studied drinking water mutagen, MX. Because much inform...

  5. MICROARRAY ANALYSIS OF DICHLOROACETIC ACID-INDUCED CHANGES IN GENE EXPRESSION

    EPA Science Inventory


    MICROARRAY ANALYSIS OF DICHLOROACETIC ACID-INDUCED CHANGES IN GENE EXPRESSION

    Dichloroacetic acid (DCA) is a major by-product of water disinfection by chlorination. Several studies have demonstrated the hepatocarcinogenicity of DCA in rodents when administered in dri...

  6. Robust gene selection methods using weighting schemes for microarray data analysis.

    PubMed

    Kang, Suyeon; Song, Jongwoo

    2017-09-02

    A common task in microarray data analysis is to identify informative genes that are differentially expressed between two different states. Owing to the high-dimensional nature of microarray data, identification of significant genes has been essential in analyzing the data. However, the performances of many gene selection techniques are highly dependent on the experimental conditions, such as the presence of measurement error or a limited number of sample replicates. We have proposed new filter-based gene selection techniques, by applying a simple modification to significance analysis of microarrays (SAM). To prove the effectiveness of the proposed method, we considered a series of synthetic datasets with different noise levels and sample sizes along with two real datasets. The following findings were made. First, our proposed methods outperform conventional methods for all simulation set-ups. In particular, our methods are much better when the given data are noisy and sample size is small. They showed relatively robust performance regardless of noise level and sample size, whereas the performance of SAM became significantly worse as the noise level became high or sample size decreased. When sufficient sample replicates were available, SAM and our methods showed similar performance. Finally, our proposed methods are competitive with traditional methods in classification tasks for microarrays. The results of simulation study and real data analysis have demonstrated that our proposed methods are effective for detecting significant genes and classification tasks, especially when the given data are noisy or have few sample replicates. By employing weighting schemes, we can obtain robust and reliable results for microarray data analysis.

  7. The application of DNA microarrays in gene expression analysis.

    PubMed

    van Hal, N L; Vorst, O; van Houwelingen, A M; Kok, E J; Peijnenburg, A; Aharoni, A; van Tunen, A J; Keijer, J

    2000-03-31

    DNA microarray technology is a new and powerful technology that will substantially increase the speed of molecular biological research. This paper gives a survey of DNA microarray technology and its use in gene expression studies. The technical aspects and their potential improvements are discussed. These comprise array manufacturing and design, array hybridisation, scanning, and data handling. Furthermore, it is discussed how DNA microarrays can be applied in the working fields of: safety, functionality and health of food and gene discovery and pathway engineering in plants.

  8. Implementation of mutual information and bayes theorem for classification microarray data

    NASA Astrophysics Data System (ADS)

    Dwifebri Purbolaksono, Mahendra; Widiastuti, Kurnia C.; Syahrul Mubarok, Mohamad; Adiwijaya; Aminy Ma’ruf, Firda

    2018-03-01

    Microarray Technology is one of technology which able to read the structure of gen. The analysis is important for this technology. It is for deciding which attribute is more important than the others. Microarray technology is able to get cancer information to diagnose a person’s gen. Preparation of microarray data is a huge problem and takes a long time. That is because microarray data contains high number of insignificant and irrelevant attributes. So, it needs a method to reduce the dimension of microarray data without eliminating important information in every attribute. This research uses Mutual Information to reduce dimension. System is built with Machine Learning approach specifically Bayes Theorem. This theorem uses a statistical and probability approach. By combining both methods, it will be powerful for Microarray Data Classification. The experiment results show that system is good to classify Microarray data with highest F1-score using Bayesian Network by 91.06%, and Naïve Bayes by 88.85%.

  9. Gene ARMADA: an integrated multi-analysis platform for microarray data implemented in MATLAB.

    PubMed

    Chatziioannou, Aristotelis; Moulos, Panagiotis; Kolisis, Fragiskos N

    2009-10-27

    The microarray data analysis realm is ever growing through the development of various tools, open source and commercial. However there is absence of predefined rational algorithmic analysis workflows or batch standardized processing to incorporate all steps, from raw data import up to the derivation of significantly differentially expressed gene lists. This absence obfuscates the analytical procedure and obstructs the massive comparative processing of genomic microarray datasets. Moreover, the solutions provided, heavily depend on the programming skills of the user, whereas in the case of GUI embedded solutions, they do not provide direct support of various raw image analysis formats or a versatile and simultaneously flexible combination of signal processing methods. We describe here Gene ARMADA (Automated Robust MicroArray Data Analysis), a MATLAB implemented platform with a Graphical User Interface. This suite integrates all steps of microarray data analysis including automated data import, noise correction and filtering, normalization, statistical selection of differentially expressed genes, clustering, classification and annotation. In its current version, Gene ARMADA fully supports 2 coloured cDNA and Affymetrix oligonucleotide arrays, plus custom arrays for which experimental details are given in tabular form (Excel spreadsheet, comma separated values, tab-delimited text formats). It also supports the analysis of already processed results through its versatile import editor. Besides being fully automated, Gene ARMADA incorporates numerous functionalities of the Statistics and Bioinformatics Toolboxes of MATLAB. In addition, it provides numerous visualization and exploration tools plus customizable export data formats for seamless integration by other analysis tools or MATLAB, for further processing. Gene ARMADA requires MATLAB 7.4 (R2007a) or higher and is also distributed as a stand-alone application with MATLAB Component Runtime. Gene ARMADA provides a highly adaptable, integrative, yet flexible tool which can be used for automated quality control, analysis, annotation and visualization of microarray data, constituting a starting point for further data interpretation and integration with numerous other tools.

  10. Polyadenylation state microarray (PASTA) analysis.

    PubMed

    Beilharz, Traude H; Preiss, Thomas

    2011-01-01

    Nearly all eukaryotic mRNAs terminate in a poly(A) tail that serves important roles in mRNA utilization. In the cytoplasm, the poly(A) tail promotes both mRNA stability and translation, and these functions are frequently regulated through changes in tail length. To identify the scope of poly(A) tail length control in a transcriptome, we developed the polyadenylation state microarray (PASTA) method. It involves the purification of mRNA based on poly(A) tail length using thermal elution from poly(U) sepharose, followed by microarray analysis of the resulting fractions. In this chapter we detail our PASTA approach and describe some methods for bulk and mRNA-specific poly(A) tail length measurements of use to monitor the procedure and independently verify the microarray data.

  11. Transcriptome sequencing and microarray development for the woodrat (Neotoma spp.): custom genetic tools for exploring herbivore ecology.

    PubMed

    Malenke, J R; Milash, B; Miller, A W; Dearing, M D

    2013-07-01

    Massively parallel sequencing has enabled the creation of novel, in-depth genetic tools for nonmodel, ecologically important organisms. We present the de novo transcriptome sequencing, analysis and microarray development for a vertebrate herbivore, the woodrat (Neotoma spp.). This genus is of ecological and evolutionary interest, especially with respect to ingestion and hepatic metabolism of potentially toxic plant secondary compounds. We generated a liver transcriptome of the desert woodrat (Neotoma lepida) using the Roche 454 platform. The assembled contigs were well annotated using rodent references (99.7% annotation), and biotransformation function was reflected in the gene ontology. The transcriptome was used to develop a custom microarray (eArray, Agilent). We tested the microarray with three experiments: one across species with similar habitat (thus, dietary) niches, one across species with different habitat niches and one across populations within a species. The resulting one-colour arrays had high technical and biological quality. Probes designed from the woodrat transcriptome performed significantly better than functionally similar probes from the Norway rat (Rattus norvegicus). There were a multitude of expression differences across the woodrat treatments, many of which related to biotransformation processes and activities. The pattern and function of the differences indicate shared ecological pressures, and not merely phylogenetic distance, play an important role in shaping gene expression profiles of woodrat species and populations. The quality and functionality of the woodrat transcriptome and custom microarray suggest these tools will be valuable for expanding the scope of herbivore biology, as well as the exploration of conceptual topics in ecology. © 2013 John Wiley & Sons Ltd.

  12. The Utility of Chromosomal Microarray Analysis in Developmental and Behavioral Pediatrics

    ERIC Educational Resources Information Center

    Beaudet, Arthur L.

    2013-01-01

    Chromosomal microarray analysis (CMA) has emerged as a powerful new tool to identify genomic abnormalities associated with a wide range of developmental disabilities including congenital malformations, cognitive impairment, and behavioral abnormalities. CMA includes array comparative genomic hybridization (CGH) and single nucleotide polymorphism…

  13. Evaluation of chronic lymphocytic leukemia by oligonucleotide-based microarray analysis uncovers novel aberrations not detected by FISH or cytogenetic analysis

    PubMed Central

    2011-01-01

    Background Cytogenetic evaluation is a key component of the diagnosis and prognosis of chronic lymphocytic leukemia (CLL). We performed oligonucleotide-based comparative genomic hybridization microarray analysis on 34 samples with CLL and known abnormal karyotypes previously determined by cytogenetics and/or fluorescence in situ hybridization (FISH). Results Using a custom designed microarray that targets >1800 genes involved in hematologic disease and other malignancies, we identified additional cryptic aberrations and novel findings in 59% of cases. These included gains and losses of genes associated with cell cycle regulation, apoptosis and susceptibility loci on 3p21.31, 5q35.2q35.3, 10q23.31q23.33, 11q22.3, and 22q11.23. Conclusions Our results show that microarray analysis will detect known aberrations, including microscopic and cryptic alterations. In addition, novel genomic changes will be uncovered that may become important prognostic predictors or treatment targets for CLL in the future. PMID:22087757

  14. Characterization and simulation of cDNA microarray spots using a novel mathematical model

    PubMed Central

    Kim, Hye Young; Lee, Seo Eun; Kim, Min Jung; Han, Jin Il; Kim, Bo Kyung; Lee, Yong Sung; Lee, Young Seek; Kim, Jin Hyuk

    2007-01-01

    Background The quality of cDNA microarray data is crucial for expanding its application to other research areas, such as the study of gene regulatory networks. Despite the fact that a number of algorithms have been suggested to increase the accuracy of microarray gene expression data, it is necessary to obtain reliable microarray images by improving wet-lab experiments. As the first step of a cDNA microarray experiment, spotting cDNA probes is critical to determining the quality of spot images. Results We developed a governing equation of cDNA deposition during evaporation of a drop in the microarray spotting process. The governing equation included four parameters: the surface site density on the support, the extrapolated equilibrium constant for the binding of cDNA molecules with surface sites on glass slides, the macromolecular interaction factor, and the volume constant of a drop of cDNA solution. We simulated cDNA deposition from the single model equation by varying the value of the parameters. The morphology of the resulting cDNA deposit can be classified into three types: a doughnut shape, a peak shape, and a volcano shape. The spot morphology can be changed into a flat shape by varying the experimental conditions while considering the parameters of the governing equation of cDNA deposition. The four parameters were estimated by fitting the governing equation to the real microarray images. With the results of the simulation and the parameter estimation, the phenomenon of the formation of cDNA deposits in each type was investigated. Conclusion This study explains how various spot shapes can exist and suggests which parameters are to be adjusted for obtaining a good spot. This system is able to explore the cDNA microarray spotting process in a predictable, manageable and descriptive manner. We hope it can provide a way to predict the incidents that can occur during a real cDNA microarray experiment, and produce useful data for several research applications involving cDNA microarrays. PMID:18096047

  15. Interim report on updated microarray probes for the LLNL Burkholderia pseudomallei SNP array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, S; Jaing, C

    2012-03-27

    The overall goal of this project is to forensically characterize 100 unknown Burkholderia isolates in the US-Australia collaboration. We will identify genome-wide single nucleotide polymorphisms (SNPs) from B. pseudomallei and near neighbor species including B. mallei, B. thailandensis and B. oklahomensis. We will design microarray probes to detect these SNP markers and analyze 100 Burkholderia genomic DNAs extracted from environmental, clinical and near neighbor isolates from Australian collaborators on the Burkholderia SNP microarray. We will analyze the microarray genotyping results to characterize the genetic diversity of these new isolates and triage the samples for whole genome sequencing. In this interimmore » report, we described the SNP analysis and the microarray probe design for the Burkholderia SNP microarray.« less

  16. Generalized Correlation Coefficient for Non-Parametric Analysis of Microarray Time-Course Data.

    PubMed

    Tan, Qihua; Thomassen, Mads; Burton, Mark; Mose, Kristian Fredløv; Andersen, Klaus Ejner; Hjelmborg, Jacob; Kruse, Torben

    2017-06-06

    Modeling complex time-course patterns is a challenging issue in microarray study due to complex gene expression patterns in response to the time-course experiment. We introduce the generalized correlation coefficient and propose a combinatory approach for detecting, testing and clustering the heterogeneous time-course gene expression patterns. Application of the method identified nonlinear time-course patterns in high agreement with parametric analysis. We conclude that the non-parametric nature in the generalized correlation analysis could be an useful and efficient tool for analyzing microarray time-course data and for exploring the complex relationships in the omics data for studying their association with disease and health.

  17. MGDB: crossing the marker genes of a user microarray with a database of public-microarrays marker genes.

    PubMed

    Huerta, Mario; Munyi, Marc; Expósito, David; Querol, Enric; Cedano, Juan

    2014-06-15

    The microarrays performed by scientific teams grow exponentially. These microarray data could be useful for researchers around the world, but unfortunately they are underused. To fully exploit these data, it is necessary (i) to extract these data from a repository of the high-throughput gene expression data like Gene Expression Omnibus (GEO) and (ii) to make the data from different microarrays comparable with tools easy to use for scientists. We have developed these two solutions in our server, implementing a database of microarray marker genes (Marker Genes Data Base). This database contains the marker genes of all GEO microarray datasets and it is updated monthly with the new microarrays from GEO. Thus, researchers can see whether the marker genes of their microarray are marker genes in other microarrays in the database, expanding the analysis of their microarray to the rest of the public microarrays. This solution helps not only to corroborate the conclusions regarding a researcher's microarray but also to identify the phenotype of different subsets of individuals under investigation, to frame the results with microarray experiments from other species, pathologies or tissues, to search for drugs that promote the transition between the studied phenotypes, to detect undesirable side effects of the treatment applied, etc. Thus, the researcher can quickly add relevant information to his/her studies from all of the previous analyses performed in other studies as long as they have been deposited in public repositories. Marker-gene database tool: http://ibb.uab.es/mgdb © The Author 2014. Published by Oxford University Press.

  18. The genes Scgb1a1, Lpo and Gbp2 characteristically expressed in peri-implant epithelium of rats.

    PubMed

    Mori, Gentaro; Sasaki, Hodaka; Makabe, Yasushi; Yoshinari, Masao; Yajima, Yasutomo

    2016-12-01

    The peri-implant epithelium (PIE) plays an important role in the prevention against initial stage of inflammation. To minimize the risk of peri-implantitis, it is necessary to understand the biological characteristics of the PIE. The aim of this study was to investigate the characteristic gene expression profile of PIE as compared to junctional epithelium (JE) using laser microdissection and microarray analysis. Left upper first molars of 4-week-old rat were extracted, and titanium alloy implants were placed. Four weeks after surgery, samples were harvested by laser microdissection, and total RNA samples were isolated. Comprehensive analyses of genes expressed in the JE and PIE were performed using microarray analysis. Confirmation of the differential expression of selected genes was performed by quantitative real-time polymerase chain reaction and immunohistochemistry. The microarray analysis showed that 712 genes were more than twofold change upregulated in the PIE compared with the JE. Genes Scgb1a1 were significantly upregulated more than 19.1-fold, Lpo more than 19.0-fold, and Gbp2 more than 8.9-fold, in the PIE (P < 0.01). Immunohistochemical localization of SCGB1A1, LPO, and GBP2 was observed in PIE. The present results suggested that genes Scgb1a1, Lpo, and Gbp2 are characteristically expressed in the PIE. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Transcriptome analysis of salinity stress responses in common wheat using a 22k oligo-DNA microarray.

    PubMed

    Kawaura, Kanako; Mochida, Keiichi; Yamazaki, Yukiko; Ogihara, Yasunari

    2006-04-01

    In this study, we constructed a 22k wheat oligo-DNA microarray. A total of 148,676 expressed sequence tags of common wheat were collected from the database of the Wheat Genomics Consortium of Japan. These were grouped into 34,064 contigs, which were then used to design an oligonucleotide DNA microarray. Following a multistep selection of the sense strand, 21,939 60-mer oligo-DNA probes were selected for attachment on the microarray slide. This 22k oligo-DNA microarray was used to examine the transcriptional response of wheat to salt stress. More than 95% of the probes gave reproducible hybridization signals when targeted with RNAs extracted from salt-treated wheat shoots and roots. With the microarray, we identified 1,811 genes whose expressions changed more than 2-fold in response to salt. These included genes known to mediate response to salt, as well as unknown genes, and they were classified into 12 major groups by hierarchical clustering. These gene expression patterns were also confirmed by real-time reverse transcription-PCR. Many of the genes with unknown function were clustered together with genes known to be involved in response to salt stress. Thus, analysis of gene expression patterns combined with gene ontology should help identify the function of the unknown genes. Also, functional analysis of these wheat genes should provide new insight into the response to salt stress. Finally, these results indicate that the 22k oligo-DNA microarray is a reliable method for monitoring global gene expression patterns in wheat.

  20. Identifying molecular features for prostate cancer with Gleason 7 based on microarray gene expression profiles.

    PubMed

    Bălăcescu, Loredana; Bălăcescu, O; Crişan, N; Fetica, B; Petruţ, B; Bungărdean, Cătălina; Rus, Meda; Tudoran, Oana; Meurice, G; Irimie, Al; Dragoş, N; Berindan-Neagoe, Ioana

    2011-01-01

    Prostate cancer represents the first leading cause of cancer among western male population, with different clinical behavior ranging from indolent to metastatic disease. Although many molecules and deregulated pathways are known, the molecular mechanisms involved in the development of prostate cancer are not fully understood. The aim of this study was to explore the molecular variation underlying the prostate cancer, based on microarray analysis and bioinformatics approaches. Normal and prostate cancer tissues were collected by macrodissection from prostatectomy pieces. All prostate cancer specimens used in our study were Gleason score 7. Gene expression microarray (Agilent Technologies) was used for Whole Human Genome evaluation. The bioinformatics and functional analysis were based on Limma and Ingenuity software. The microarray analysis identified 1119 differentially expressed genes between prostate cancer and normal prostate, which were up- or down-regulated at least 2-fold. P-values were adjusted for multiple testing using Benjamini-Hochberg method with a false discovery rate of 0.01. These genes were analyzed with Ingenuity Pathway Analysis software and were established 23 genetic networks. Our microarray results provide new information regarding the molecular networks in prostate cancer stratified as Gleason 7. These data highlighted gene expression profiles for better understanding of prostate cancer progression.

  1. Porous Silicon Antibody Microarrays for Quantitative Analysis: Measurement of Free and Total PSA in Clinical Plasma Samples

    PubMed Central

    Tojo, Axel; Malm, Johan; Marko-Varga, György; Lilja, Hans; Laurell, Thomas

    2014-01-01

    The antibody microarrays have become widespread, but their use for quantitative analyses in clinical samples has not yet been established. We investigated an immunoassay based on nanoporous silicon antibody microarrays for quantification of total prostate-specific-antigen (PSA) in 80 clinical plasma samples, and provide quantitative data from a duplex microarray assay that simultaneously quantifies free and total PSA in plasma. To further develop the assay the porous silicon chips was placed into a standard 96-well microtiter plate for higher throughput analysis. The samples analyzed by this quantitative microarray were 80 plasma samples obtained from men undergoing clinical PSA testing (dynamic range: 0.14-44ng/ml, LOD: 0.14ng/ml). The second dataset, measuring free PSA (dynamic range: 0.40-74.9ng/ml, LOD: 0.47ng/ml) and total PSA (dynamic range: 0.87-295ng/ml, LOD: 0.76ng/ml), was also obtained from the clinical routine. The reference for the quantification was a commercially available assay, the ProStatus PSA Free/Total DELFIA. In an analysis of 80 plasma samples the microarray platform performs well across the range of total PSA levels. This assay might have the potential to substitute for the large-scale microtiter plate format in diagnostic applications. The duplex assay paves the way for a future quantitative multiplex assay, which analyses several prostate cancer biomarkers simultaneously. PMID:22921878

  2. Systematic evaluation of RNA quality, microarray data reliability and pathway analysis in fresh, fresh frozen and formalin-fixed paraffin-embedded tissue samples.

    PubMed

    Wimmer, Isabella; Tröscher, Anna R; Brunner, Florian; Rubino, Stephen J; Bien, Christian G; Weiner, Howard L; Lassmann, Hans; Bauer, Jan

    2018-04-20

    Formalin-fixed paraffin-embedded (FFPE) tissues are valuable resources commonly used in pathology. However, formalin fixation modifies nucleic acids challenging the isolation of high-quality RNA for genetic profiling. Here, we assessed feasibility and reliability of microarray studies analysing transcriptome data from fresh, fresh-frozen (FF) and FFPE tissues. We show that reproducible microarray data can be generated from only 2 ng FFPE-derived RNA. For RNA quality assessment, fragment size distribution (DV200) and qPCR proved most suitable. During RNA isolation, extending tissue lysis time to 10 hours reduced high-molecular-weight species, while additional incubation at 70 °C markedly increased RNA yields. Since FF- and FFPE-derived microarrays constitute different data entities, we used indirect measures to investigate gene signal variation and relative gene expression. Whole-genome analyses revealed high concordance rates, while reviewing on single-genes basis showed higher data variation in FFPE than FF arrays. Using an experimental model, gene set enrichment analysis (GSEA) of FFPE-derived microarrays and fresh tissue-derived RNA-Seq datasets yielded similarly affected pathways confirming the applicability of FFPE tissue in global gene expression analysis. Our study provides a workflow comprising RNA isolation, quality assessment and microarray profiling using minimal RNA input, thus enabling hypothesis-generating pathway analyses from limited amounts of precious, pathologically significant FFPE tissues.

  3. A perspective on DNA microarray technology in food and nutritional science.

    PubMed

    Kato, Hisanori; Saito, Kenji; Kimura, Takeshi

    2005-09-01

    The functions of nutrients and other foods have been revealed at the level of gene regulation. The advent of DNA microarray technology has enabled us to analyze the body's response to these factors in a much more holistic manner than before. This review is intended to overview the present status of this DNA microarray technology, hoping to provide food and nutrition scientists, especially those who are planning to introduce this technology, with hints and suggestions. The number of papers examining transcriptomics analysis in food and nutrition science has expanded over the last few years. The effects of some dietary conditions and administration of specific nutrients or food factors are studied in various animal models and cultured cells. The target food components range from macronutrients and micronutrients to other functional food factors. Such studies have already yielded fruitful results, which include discovery of novel functions of a food, uncovering hitherto unknown mechanisms of action, and analyses of food safety. The potency of DNA microarray technology in food and nutrition science is broadly recognized. This technique will surely continue to provide researchers and the public with valuable information on the beneficial and adverse effects of food factors. It should also be acknowledged, however, that there remain problems such as standardization of the data and sharing of the results among researchers in this field.

  4. Microarray analysis of 6-mercaptopurine-induced-toxicity-related genes and microRNAs in the rat placenta.

    PubMed

    Taki, Kenji; Fukushima, Tamio; Ise, Ryota; Horii, Ikuo; Yoshida, Takemi

    2013-02-01

    MicroRNAs (miRNAs) are small single-stranded RNAs of 19-25 nucleotides and are important in posttranscriptional regulation of genes. Recently, the role of miRNAs in toxicity incidence is reported to be a regulator of key-stopper of gene expression, however the detailed mechanism of miRNAs is not well known yet. 6-Mercaptopurine (6-MP), the anti-leukemic and immunosuppressive drug, produced teratogenicity and pregnancy loss. We focused on the placenta to evaluate toxicity in embryo/fetal development produced by 6-MP treatment. MiRNA expression in the placenta was analyzed by miRNA microarray. Fifteen miRNAs were upregulated on GD13 and 5 miRNAs were downregulated on GD15 in 6-MP treatment rat placentas. Some miRNAs may have functions in apoptosis (miR-195, miR-21, miR-29c and miR-34a), inflammation (miR-146b), and ischemia (miR-144 and miR-451). In the maternal plasma, expression of miR-144 was significantly reduced by 6-MP treatment when examined by real-time RT-PCR. We determined toxicity-related gene expression in the rat placenta. Gene expression analysis was carried out by DNA oligo microarray using rat placenta total RNAs. Compared between predicted targets of miRNAs and microarray data in 6-MP-treated rat placenta, expressions of hormone receptor genes (estrogen receptor 1; Esr1, progesterone receptor; Pgr, and prolactin receptor; Prlr), xanthine oxidase (Xdh), Slc38a5 and Phlda2 genes were changed. The histopathologically found increase in trophoblastic giant cells and reduced placental growth by 6-MP treatment were well correlated to these gene expressions. These data suggest that some miRNAs may link to toxicological reactions in 6-MP-induced placental toxicity.

  5. Derivation of Tissue-specific Functional Gene Sets to Aid Transcriptomic Analysis of Chemical Impacts on the Teleost Reproductive Axis.

    EPA Science Inventory

    Oligonucleotide microarrays are a powerful tool for unsupervised analysis of chemical impacts on biological systems. However, the lack of well annotated biological pathways for many aquatic organisms, including fish, and the poor power of microarray-based analyses to detect diffe...

  6. A probabilistic framework for microarray data analysis: fundamental probability models and statistical inference.

    PubMed

    Ogunnaike, Babatunde A; Gelmi, Claudio A; Edwards, Jeremy S

    2010-05-21

    Gene expression studies generate large quantities of data with the defining characteristic that the number of genes (whose expression profiles are to be determined) exceed the number of available replicates by several orders of magnitude. Standard spot-by-spot analysis still seeks to extract useful information for each gene on the basis of the number of available replicates, and thus plays to the weakness of microarrays. On the other hand, because of the data volume, treating the entire data set as an ensemble, and developing theoretical distributions for these ensembles provides a framework that plays instead to the strength of microarrays. We present theoretical results that under reasonable assumptions, the distribution of microarray intensities follows the Gamma model, with the biological interpretations of the model parameters emerging naturally. We subsequently establish that for each microarray data set, the fractional intensities can be represented as a mixture of Beta densities, and develop a procedure for using these results to draw statistical inference regarding differential gene expression. We illustrate the results with experimental data from gene expression studies on Deinococcus radiodurans following DNA damage using cDNA microarrays. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  7. Microarray-based screening of heat shock protein inhibitors.

    PubMed

    Schax, Emilia; Walter, Johanna-Gabriela; Märzhäuser, Helene; Stahl, Frank; Scheper, Thomas; Agard, David A; Eichner, Simone; Kirschning, Andreas; Zeilinger, Carsten

    2014-06-20

    Based on the importance of heat shock proteins (HSPs) in diseases such as cancer, Alzheimer's disease or malaria, inhibitors of these chaperons are needed. Today's state-of-the-art techniques to identify HSP inhibitors are performed in microplate format, requiring large amounts of proteins and potential inhibitors. In contrast, we have developed a miniaturized protein microarray-based assay to identify novel inhibitors, allowing analysis with 300 pmol of protein. The assay is based on competitive binding of fluorescence-labeled ATP and potential inhibitors to the ATP-binding site of HSP. Therefore, the developed microarray enables the parallel analysis of different ATP-binding proteins on a single microarray. We have demonstrated the possibility of multiplexing by immobilizing full-length human HSP90α and HtpG of Helicobacter pylori on microarrays. Fluorescence-labeled ATP was competed by novel geldanamycin/reblastatin derivatives with IC50 values in the range of 0.5 nM to 4 μM and Z(*)-factors between 0.60 and 0.96. Our results demonstrate the potential of a target-oriented multiplexed protein microarray to identify novel inhibitors for different members of the HSP90 family. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Variable approaches to genetic counseling for microarray regions of homozygosity associated with parental relatedness.

    PubMed

    Grote, Lauren; Myers, Melanie; Lovell, Anne; Saal, Howard; Sund, Kristen Lipscomb

    2014-01-01

    SNP microarrays are capable of detecting regions of homozygosity (ROH) which can suggest parental relatedness. This study was designed to describe pre- and post-test counseling practices of genetics professionals regarding ROH, explore perceived comfort and ethical concerns in the follow-up of such results, demonstrate awareness of laws surrounding duty to report consanguinity and incest, and allow respondents to share their personal experiences with results suggesting a parental relationship. A 35 question survey was administered to 240 genetic counselors and geneticists who had ordered or counseled for SNP microarray. The results are presented using descriptive statistics. There was variation in both pre- and post-test counseling practices of genetics professionals. Twenty-five percent of respondents reported pre-test counseling that ROH can indicate parental relatedness. The most commonly reported ethical concern was disclosure of findings suggesting parental relatedness to parents of the patient; only 48.4% reported disclosing parental relatedness when indicated. Fifty-seven percent felt comfortable receiving results suggesting parental consanguinity while 17% felt comfortable receiving results suggesting parental incest. Twenty percent of respondents were extremely/moderately familiar with the laws about duty to report incest. Personal experiences in post-test counseling included both parental acknowledgement and denial of relatedness. This study highlights the differences in genetics professionals' pre- and post-test counseling practices, comfort, and experiences surrounding parental relatedness suggested by SNP microarray results. It identifies a need for professional organizations to offer guidance to genetics professionals about how to respond to and counsel for molecular results suggesting parental consanguinity or incest. © 2013 Wiley Periodicals, Inc.

  9. Rapid Detection of Rare Deleterious Variants by Next Generation Sequencing with Optional Microarray SNP Genotype Data

    PubMed Central

    Watson, Christopher M.; Crinnion, Laura A.; Gurgel‐Gianetti, Juliana; Harrison, Sally M.; Daly, Catherine; Antanavicuite, Agne; Lascelles, Carolina; Markham, Alexander F.; Pena, Sergio D. J.; Bonthron, David T.

    2015-01-01

    ABSTRACT Autozygosity mapping is a powerful technique for the identification of rare, autosomal recessive, disease‐causing genes. The ease with which this category of disease gene can be identified has greatly increased through the availability of genome‐wide SNP genotyping microarrays and subsequently of exome sequencing. Although these methods have simplified the generation of experimental data, its analysis, particularly when disparate data types must be integrated, remains time consuming. Moreover, the huge volume of sequence variant data generated from next generation sequencing experiments opens up the possibility of using these data instead of microarray genotype data to identify disease loci. To allow these two types of data to be used in an integrated fashion, we have developed AgileVCFMapper, a program that performs both the mapping of disease loci by SNP genotyping and the analysis of potentially deleterious variants using exome sequence variant data, in a single step. This method does not require microarray SNP genotype data, although analysis with a combination of microarray and exome genotype data enables more precise delineation of disease loci, due to superior marker density and distribution. PMID:26037133

  10. Automatic Identification and Quantification of Extra-Well Fluorescence in Microarray Images.

    PubMed

    Rivera, Robert; Wang, Jie; Yu, Xiaobo; Demirkan, Gokhan; Hopper, Marika; Bian, Xiaofang; Tahsin, Tasnia; Magee, D Mitchell; Qiu, Ji; LaBaer, Joshua; Wallstrom, Garrick

    2017-11-03

    In recent studies involving NAPPA microarrays, extra-well fluorescence is used as a key measure for identifying disease biomarkers because there is evidence to support that it is better correlated with strong antibody responses than statistical analysis involving intraspot intensity. Because this feature is not well quantified by traditional image analysis software, identification and quantification of extra-well fluorescence is performed manually, which is both time-consuming and highly susceptible to variation between raters. A system that could automate this task efficiently and effectively would greatly improve the process of data acquisition in microarray studies, thereby accelerating the discovery of disease biomarkers. In this study, we experimented with different machine learning methods, as well as novel heuristics, for identifying spots exhibiting extra-well fluorescence (rings) in microarray images and assigning each ring a grade of 1-5 based on its intensity and morphology. The sensitivity of our final system for identifying rings was found to be 72% at 99% specificity and 98% at 92% specificity. Our system performs this task significantly faster than a human, while maintaining high performance, and therefore represents a valuable tool for microarray image analysis.

  11. Thermodynamically optimal whole-genome tiling microarray design and validation.

    PubMed

    Cho, Hyejin; Chou, Hui-Hsien

    2016-06-13

    Microarray is an efficient apparatus to interrogate the whole transcriptome of species. Microarray can be designed according to annotated gene sets, but the resulted microarrays cannot be used to identify novel transcripts and this design method is not applicable to unannotated species. Alternatively, a whole-genome tiling microarray can be designed using only genomic sequences without gene annotations, and it can be used to detect novel RNA transcripts as well as known genes. The difficulty with tiling microarray design lies in the tradeoff between probe-specificity and coverage of the genome. Sequence comparison methods based on BLAST or similar software are commonly employed in microarray design, but they cannot precisely determine the subtle thermodynamic competition between probe targets and partially matched probe nontargets during hybridizations. Using the whole-genome thermodynamic analysis software PICKY to design tiling microarrays, we can achieve maximum whole-genome coverage allowable under the thermodynamic constraints of each target genome. The resulted tiling microarrays are thermodynamically optimal in the sense that all selected probes share the same melting temperature separation range between their targets and closest nontargets, and no additional probes can be added without violating the specificity of the microarray to the target genome. This new design method was used to create two whole-genome tiling microarrays for Escherichia coli MG1655 and Agrobacterium tumefaciens C58 and the experiment results validated the design.

  12. Association of HADHA expression with the risk of breast cancer: targeted subset analysis and meta-analysis of microarray data

    PubMed Central

    2012-01-01

    Background The role of n-3 fatty acids in prevention of breast cancer is well recognized, but the underlying molecular mechanisms are still unclear. In view of the growing need for early detection of breast cancer, Graham et al. (2010) studied the microarray gene expression in histologically normal epithelium of subjects with or without breast cancer. We conducted a secondary analysis of this dataset with a focus on the genes (n = 47) involved in fat and lipid metabolism. We used stepwise multivariate logistic regression analyses, volcano plots and false discovery rates for association analyses. We also conducted meta-analyses of other microarray studies using random effects models for three outcomes--risk of breast cancer (380 breast cancer patients and 240 normal subjects), risk of metastasis (430 metastatic compared to 1104 non-metastatic breast cancers) and risk of recurrence (484 recurring versus 890 non-recurring breast cancers). Results The HADHA gene [hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase/enoyl-CoA hydratase (trifunctional protein), alpha subunit] was significantly under-expressed in breast cancer; more so in those with estrogen receptor-negative status. Our meta-analysis showed an 18.4%-26% reduction in HADHA expression in breast cancer. Also, there was an inconclusive but consistent under-expression of HADHA in subjects with metastatic and recurring breast cancers. Conclusions Involvement of mitochondria and the mitochondrial trifunctional protein (encoded by HADHA gene) in breast carcinogenesis is known. Our results lend additional support to the possibility of this involvement. Further, our results suggest that targeted subset analysis of large genome-based datasets can provide interesting association signals. PMID:22240105

  13. The pleiotropic effects of fisetin and hesperetin on human acute promyelocytic leukemia cells are mediated through apoptosis, cell cycle arrest, and alterations in signaling networks.

    PubMed

    Adan, Aysun; Baran, Yusuf

    2015-11-01

    Fisetin and hesperetin, flavonoids from various plants, have several pharmaceutical activities including antioxidative, anti-inflammatory, and anticancer effects. However, studies elucidating the role and the mechanism(s) of action of fisetin and hesperetin in acute promyelocytic leukemia are absent. In this study, we investigated the mechanism of the antiproliferative and apoptotic actions exerted by fisetin and hesperetin on human HL60 acute promyelocytic leukemia cells. The viability of HL60 cells was evaluated using the MTT assay, apoptosis by annexin V/propidium iodide (PI) staining and cell cycle distribution using flow cytometry, and changes in caspase-3 enzyme activity and mitochondrial transmembrane potential. Moreover, we performed whole-genome microarray gene expression analysis to reveal genes affected by fisetin and hesperetin that can be important for developing of future targeted therapy. Based on data obtained from microarray analysis, we also described biological networks modulated after fisetin and hesperetin treatment by KEGG and IPA analysis. Fisetin and hesperetin treatment showed a concentration- and time-dependent inhibition of proliferation and induced G2/M arrest for both agents and G0/G1 arrest for hesperetin at only the highest concentrations. There was a disruption of mitochondrial membrane potential together with increased caspase-3 activity. Furthermore, fisetin- and hesperetin-triggered apoptosis was confirmed by annexin V/PI analysis. The microarray gene profiling analysis revealed some important biological pathways including mitogen-activated protein kinases (MAPK) and inhibitor of DNA binding (ID) signaling pathways altered by fisetin and hesperetin treatment as well as gave a list of genes modulated ≥2-fold involved in cell proliferation, cell division, and apoptosis. Altogether, data suggested that fisetin and hesperetin have anticancer properties and deserve further investigation.

  14. Microarray Analysis of LTR Retrotransposon Silencing Identifies Hdac1 as a Regulator of Retrotransposon Expression in Mouse Embryonic Stem Cells

    PubMed Central

    Madej, Monika J.; Taggart, Mary; Gautier, Philippe; Garcia-Perez, Jose Luis; Meehan, Richard R.; Adams, Ian R.

    2012-01-01

    Retrotransposons are highly prevalent in mammalian genomes due to their ability to amplify in pluripotent cells or developing germ cells. Host mechanisms that silence retrotransposons in germ cells and pluripotent cells are important for limiting the accumulation of the repetitive elements in the genome during evolution. However, although silencing of selected individual retrotransposons can be relatively well-studied, many mammalian retrotransposons are seldom analysed and their silencing in germ cells, pluripotent cells or somatic cells remains poorly understood. Here we show, and experimentally verify, that cryptic repetitive element probes present in Illumina and Affymetrix gene expression microarray platforms can accurately and sensitively monitor repetitive element expression data. This computational approach to genome-wide retrotransposon expression has allowed us to identify the histone deacetylase Hdac1 as a component of the retrotransposon silencing machinery in mouse embryonic stem cells, and to determine the retrotransposon targets of Hdac1 in these cells. We also identify retrotransposons that are targets of other retrotransposon silencing mechanisms such as DNA methylation, Eset-mediated histone modification, and Ring1B/Eed-containing polycomb repressive complexes in mouse embryonic stem cells. Furthermore, our computational analysis of retrotransposon silencing suggests that multiple silencing mechanisms are independently targeted to retrotransposons in embryonic stem cells, that different genomic copies of the same retrotransposon can be differentially sensitive to these silencing mechanisms, and helps define retrotransposon sequence elements that are targeted by silencing machineries. Thus repeat annotation of gene expression microarray data suggests that a complex interplay between silencing mechanisms represses retrotransposon loci in germ cells and embryonic stem cells. PMID:22570599

  15. Fungal Morphology, Iron Homeostasis, and Lipid Metabolism Regulated by a GATA Transcription Factor in Blastomyces dermatitidis

    PubMed Central

    Marty, Amber J.; Broman, Aimee T.; Zarnowski, Robert; Dwyer, Teigan G.; Bond, Laura M.; Lounes-Hadj Sahraoui, Anissa; Fontaine, Joël; Ntambi, James M.; Keleş, Sündüz; Kendziorski, Christina; Gauthier, Gregory M.

    2015-01-01

    In response to temperature, Blastomyces dermatitidis converts between yeast and mold forms. Knowledge of the mechanism(s) underlying this response to temperature remains limited. In B. dermatitidis, we identified a GATA transcription factor, SREB, important for the transition to mold. Null mutants (SREBΔ) fail to fully complete the conversion to mold and cannot properly regulate siderophore biosynthesis. To capture the transcriptional response regulated by SREB early in the phase transition (0–48 hours), gene expression microarrays were used to compare SREB∆ to an isogenic wild type isolate. Analysis of the time course microarray data demonstrated SREB functioned as a transcriptional regulator at 37°C and 22°C. Bioinformatic and biochemical analyses indicated SREB was involved in diverse biological processes including iron homeostasis, biosynthesis of triacylglycerol and ergosterol, and lipid droplet formation. Integration of microarray data, bioinformatics, and chromatin immunoprecipitation identified a subset of genes directly bound and regulated by SREB in vivo in yeast (37°C) and during the phase transition to mold (22°C). This included genes involved with siderophore biosynthesis and uptake, iron homeostasis, and genes unrelated to iron assimilation. Functional analysis suggested that lipid droplets were actively metabolized during the phase transition and lipid metabolism may contribute to filamentous growth at 22°C. Chromatin immunoprecipitation, RNA interference, and overexpression analyses suggested that SREB was in a negative regulatory circuit with the bZIP transcription factor encoded by HAPX. Both SREB and HAPX affected morphogenesis at 22°C; however, large changes in transcript abundance by gene deletion for SREB or strong overexpression for HAPX were required to alter the phase transition. PMID:26114571

  16. Study of pharmacological effects of nilvadipine on RCS rat retinal degeneration by microarray analysis.

    PubMed

    Sato, Motoya; Ohguro, Hiroshi; Ohguro, Ikuyo; Mamiya, Kazuhisa; Takano, Yoshiko; Yamazaki, Hitoshi; Metoki, Tomomi; Miyagawa, Yasuhiro; Ishikawa, Fotoshi; Nakazawa, Mitsuru

    2003-07-11

    In our recent study, we found that the Ca(2+) antagonist, nilvadipine caused significant preservation of photoreceptor cells in The Royal College of Surgeons (RCS) rats [Invest. Ophthalmol. Vis. Sci. 43 (2002) 919]. Here, to elucidate the mechanisms of nilvadipine-induced effects we analyzed altered gene expression of 1101 genes commonly expressed in rodent by DNA microarray analysis in the retinas of nilvadipine-treated and untreated RCS rats and SD rat. In the total number of genes, the expression of 30 genes was altered upon administration of nilvadipine to RCS rats, including several genes related to the apoptotic pathway and other mechanisms. Remarkably, neurotrophic factors, FGF-2 and Arc, known to suppress the apoptosis in the central nervous system, were up-regulated. These changes were also confirmed by real-time quantitative (Taqman) RT-PCR and Western blot analysis. Therefore, our present data suggested that administration of nilvadipine to RCS rats increases the expression of endogenous FGF-2 and Arc in retina, and potentially has a protective effect against retinal degeneration.

  17. PageMan: an interactive ontology tool to generate, display, and annotate overview graphs for profiling experiments.

    PubMed

    Usadel, Björn; Nagel, Axel; Steinhauser, Dirk; Gibon, Yves; Bläsing, Oliver E; Redestig, Henning; Sreenivasulu, Nese; Krall, Leonard; Hannah, Matthew A; Poree, Fabien; Fernie, Alisdair R; Stitt, Mark

    2006-12-18

    Microarray technology has become a widely accepted and standardized tool in biology. The first microarray data analysis programs were developed to support pair-wise comparison. However, as microarray experiments have become more routine, large scale experiments have become more common, which investigate multiple time points or sets of mutants or transgenics. To extract biological information from such high-throughput expression data, it is necessary to develop efficient analytical platforms, which combine manually curated gene ontologies with efficient visualization and navigation tools. Currently, most tools focus on a few limited biological aspects, rather than offering a holistic, integrated analysis. Here we introduce PageMan, a multiplatform, user-friendly, and stand-alone software tool that annotates, investigates, and condenses high-throughput microarray data in the context of functional ontologies. It includes a GUI tool to transform different ontologies into a suitable format, enabling the user to compare and choose between different ontologies. It is equipped with several statistical modules for data analysis, including over-representation analysis and Wilcoxon statistical testing. Results are exported in a graphical format for direct use, or for further editing in graphics programs.PageMan provides a fast overview of single treatments, allows genome-level responses to be compared across several microarray experiments covering, for example, stress responses at multiple time points. This aids in searching for trait-specific changes in pathways using mutants or transgenics, analyzing development time-courses, and comparison between species. In a case study, we analyze the results of publicly available microarrays of multiple cold stress experiments using PageMan, and compare the results to a previously published meta-analysis.PageMan offers a complete user's guide, a web-based over-representation analysis as well as a tutorial, and is freely available at http://mapman.mpimp-golm.mpg.de/pageman/. PageMan allows multiple microarray experiments to be efficiently condensed into a single page graphical display. The flexible interface allows data to be quickly and easily visualized, facilitating comparisons within experiments and to published experiments, thus enabling researchers to gain a rapid overview of the biological responses in the experiments.

  18. Identification of candidate genes in osteoporosis by integrated microarray analysis.

    PubMed

    Li, J J; Wang, B Q; Fei, Q; Yang, Y; Li, D

    2016-12-01

    In order to screen the altered gene expression profile in peripheral blood mononuclear cells of patients with osteoporosis, we performed an integrated analysis of the online microarray studies of osteoporosis. We searched the Gene Expression Omnibus (GEO) database for microarray studies of peripheral blood mononuclear cells in patients with osteoporosis. Subsequently, we integrated gene expression data sets from multiple microarray studies to obtain differentially expressed genes (DEGs) between patients with osteoporosis and normal controls. Gene function analysis was performed to uncover the functions of identified DEGs. A total of three microarray studies were selected for integrated analysis. In all, 1125 genes were found to be significantly differentially expressed between osteoporosis patients and normal controls, with 373 upregulated and 752 downregulated genes. Positive regulation of the cellular amino metabolic process (gene ontology (GO): 0033240, false discovery rate (FDR) = 1.00E + 00) was significantly enriched under the GO category for biological processes, while for molecular functions, flavin adenine dinucleotide binding (GO: 0050660, FDR = 3.66E-01) and androgen receptor binding (GO: 0050681, FDR = 6.35E-01) were significantly enriched. DEGs were enriched in many osteoporosis-related signalling pathways, including those of mitogen-activated protein kinase (MAPK) and calcium. Protein-protein interaction (PPI) network analysis showed that the significant hub proteins contained ubiquitin specific peptidase 9, X-linked (Degree = 99), ubiquitin specific peptidase 19 (Degree = 57) and ubiquitin conjugating enzyme E2 B (Degree = 57). Analysis of gene function of identified differentially expressed genes may expand our understanding of fundamental mechanisms leading to osteoporosis. Moreover, significantly enriched pathways, such as MAPK and calcium, may involve in osteoporosis through osteoblastic differentiation and bone formation.Cite this article: J. J. Li, B. Q. Wang, Q. Fei, Y. Yang, D. Li. Identification of candidate genes in osteoporosis by integrated microarray analysis. Bone Joint Res 2016;5:594-601. DOI: 10.1302/2046-3758.512.BJR-2016-0073.R1. © 2016 Fei et al.

  19. Fast gene ontology based clustering for microarray experiments.

    PubMed

    Ovaska, Kristian; Laakso, Marko; Hautaniemi, Sampsa

    2008-11-21

    Analysis of a microarray experiment often results in a list of hundreds of disease-associated genes. In order to suggest common biological processes and functions for these genes, Gene Ontology annotations with statistical testing are widely used. However, these analyses can produce a very large number of significantly altered biological processes. Thus, it is often challenging to interpret GO results and identify novel testable biological hypotheses. We present fast software for advanced gene annotation using semantic similarity for Gene Ontology terms combined with clustering and heat map visualisation. The methodology allows rapid identification of genes sharing the same Gene Ontology cluster. Our R based semantic similarity open-source package has a speed advantage of over 2000-fold compared to existing implementations. From the resulting hierarchical clustering dendrogram genes sharing a GO term can be identified, and their differences in the gene expression patterns can be seen from the heat map. These methods facilitate advanced annotation of genes resulting from data analysis.

  20. Bisphenol A exposure leads to specific microRNA alterations in placental cells.

    PubMed

    Avissar-Whiting, Michele; Veiga, Keila R; Uhl, Kristen M; Maccani, Matthew A; Gagne, Luc A; Moen, Erika L; Marsit, Carmen J

    2010-07-01

    Exposure to bisphenol A (BPA) has been observed to alter developmental pathways and cell processes, at least in part, through epigenetic mechanisms. This study sought to investigate the effect of BPA on microRNAs (miRNAs) in human placental cells. miRNA microarray was performed following BPA treatment in three immortalized cytotrophoblast cell lines and the results validated using quantitative real-time PCR. For functional analysis, overexpression constructs were stably transfected into cells that were then assayed for changes in proliferation and response to toxicants. Microarray analysis revealed several miRNAs to be significantly altered in response to BPA treatment in two cell lines. Real-time PCR results confirmed that miR-146a was particularly strongly induced and its overexpression in cells led to slower proliferation as well as higher sensitivity to the DNA damaging agent, bleomycin. Overall, these results suggest that BPA can alter miRNA expression in placental cells, a potentially novel mode of BPA toxicity.

  1. Bisphenol A Exposure Leads to Specific MicroRNA Alterations in Placental Cells

    PubMed Central

    Avissar-Whiting, Michele; Veiga, Keila; Uhl, Kristen; Maccani, Matthew; Gagne, Luc; Moen, Erika; Marsit, Carmen J.

    2010-01-01

    Exposure to bisphenol-A (BPA) has been observed to alter developmental pathways and cell processes, at least in part, through epigenetic mechanisms. This study sought to investigate the effect of BPA on microRNAs (miRNAs) in human placental cells. miRNA microarray was performed following BPA treatment in three immortalized cytotrophoblast cell lines and the results validated using quantitative real-time PCR. For functional analysis, overexpression constructs were stably transfected into cells that were then assayed for changes in proliferation and response to toxicants. Microarray analysis revealed several miRNAs to be significantly altered in response to BPA treatment in two cell lines. Real-time PCR results confirmed that miR-146a was particularly strongly induced and its overexpression in cells led to slower proliferation as well as higher sensitivity to the DNA damaging agent, bleomycin. Overall, these results suggest that BPA can alter miRNA expression in placental cells, a potentially novel mode of BPA toxicity. PMID:20417706

  2. Meta-review of protein network regulating obesity between validated obesity candidate genes in the white adipose tissue of high-fat diet-induced obese C57BL/6J mice.

    PubMed

    Kim, Eunjung; Kim, Eun Jung; Seo, Seung-Won; Hur, Cheol-Goo; McGregor, Robin A; Choi, Myung-Sook

    2014-01-01

    Worldwide obesity and related comorbidities are increasing, but identifying new therapeutic targets remains a challenge. A plethora of microarray studies in diet-induced obesity models has provided large datasets of obesity associated genes. In this review, we describe an approach to examine the underlying molecular network regulating obesity, and we discuss interactions between obesity candidate genes. We conducted network analysis on functional protein-protein interactions associated with 25 obesity candidate genes identified in a literature-driven approach based on published microarray studies of diet-induced obesity. The obesity candidate genes were closely associated with lipid metabolism and inflammation. Peroxisome proliferator activated receptor gamma (Pparg) appeared to be a core obesity gene, and obesity candidate genes were highly interconnected, suggesting a coordinately regulated molecular network in adipose tissue. In conclusion, the current network analysis approach may help elucidate the underlying molecular network regulating obesity and identify anti-obesity targets for therapeutic intervention.

  3. Microarray analysis of differential gene expression elicited in Trametes versicolor during interspecific mycelial interactions.

    PubMed

    Eyre, Catherine; Muftah, Wafa; Hiscox, Jennifer; Hunt, Julie; Kille, Peter; Boddy, Lynne; Rogers, Hilary J

    2010-08-01

    Trametes versicolor is an important white rot fungus of both industrial and ecological interest. Saprotrophic basidiomycetes are the major decomposition agents in woodland ecosystems, and rarely form monospecific populations, therefore interspecific mycelial interactions continually occur. Interactions have different outcomes including replacement of one species by the other or deadlock. We have made subtractive cDNA libraries to enrich for genes that are expressed when T. versicolor interacts with another saprotrophic basidiomycete, Stereum gausapatum, an interaction that results in the replacement of the latter. Expressed sequence tags (ESTs) (1920) were used for microarray analysis, and their expression compared during interaction with three different fungi: S. gausapatum (replaced by T. versicolor), Bjerkandera adusta (deadlock) and Hypholoma fasciculare (replaced T. versicolor). Expression of significantly more probes changed in the interaction between T. versicolor and S. gausapatum or B. adusta compared to H. fasciculare, suggesting a relationship between interaction outcome and changes in gene expression. Copyright © 2010 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  4. Analysis of gene expression profile induced by EMP-1 in esophageal cancer cells using cDNA Microarray

    PubMed Central

    Wang, Hai-Tao; Kong, Jian-Ping; Ding, Fang; Wang, Xiu-Qin; Wang, Ming-Rong; Liu, Lian-Xin; Wu, Min; Liu, Zhi-Hua

    2003-01-01

    AIM: To obtain human esophageal cancer cell EC9706 stably expressed epithelial membrane protein-1 (EMP-1) with integrated eukaryotic plasmid harboring the open reading frame (ORF) of human EMP-1, and then to study the mechanism by which EMP-1 exerts its diverse cellular action on cell proliferation and altered gene profile by exploring the effect of EMP-1. METHODS: The authors first constructed pcDNA3.1/myc-his expression vector harboring the ORF of EMP-1 and then transfected it into human esophageal carcinoma cell line EC9706. The positive clones were analyzed by Western blot and RT-PCR. Moreover, the cell growth curve was observed and the cell cycle was checked by FACS technique. Using cDNA microarray technology, the authors compared the gene expression pattern in positive clones with control. To confirm the gene expression profile, semi-quantitative RT-PCR was carried out for 4 of the randomly picked differentially expressed genes. For those differentially expressed genes, classification was performed according to their function and cellular component. RESULTS: Human EMP-1 gene can be stably expressed in EC9706 cell line transfected with human EMP-1. The authors found the cell growth decreased, among which S phase was arrested and G1 phase was prolonged in the transfected positive clones. By cDNA microarray analysis, 35 genes showed an over 2.0 fold change in expression level after transfection, with 28 genes being consistently up-regulated and 7 genes being down-regulated. Among the classified genes, almost half of the induced genes (13 out of 28 genes) were related to cell signaling, cell communication and particularly to adhesion. CONCLUSION: Overexpression of human EMP-1 gene can inhibit the proliferation of EC9706 cell with S phase arrested and G1 phase prolonged. The cDNA microarray analysis suggested that EMP-1 may be one of regulators involved in cell signaling, cell communication and adhesion regulators. PMID:12632483

  5. Analysis of gene expression profile induced by EMP-1 in esophageal cancer cells using cDNA Microarray.

    PubMed

    Wang, Hai-Tao; Kong, Jian-Ping; Ding, Fang; Wang, Xiu-Qin; Wang, Ming-Rong; Liu, Lian-Xin; Wu, Min; Liu, Zhi-Hua

    2003-03-01

    To obtain human esophageal cancer cell EC9706 stably expressed epithelial membrane protein-1 (EMP-1) with integrated eukaryotic plasmid harboring the open reading frame (ORF) of human EMP-1, and then to study the mechanism by which EMP-1 exerts its diverse cellular action on cell proliferation and altered gene profile by exploring the effect of EMP-1. The authors first constructed pcDNA3.1/myc-his expression vector harboring the ORF of EMP-1 and then transfected it into human esophageal carcinoma cell line EC9706. The positive clones were analyzed by Western blot and RT-PCR. Moreover, the cell growth curve was observed and the cell cycle was checked by FACS technique. Using cDNA microarray technology, the authors compared the gene expression pattern in positive clones with control. To confirm the gene expression profile, semi-quantitative RT-PCR was carried out for 4 of the randomly picked differentially expressed genes. For those differentially expressed genes, classification was performed according to their function and cellular component. Human EMP-1 gene can be stably expressed in EC9706 cell line transfected with human EMP-1. The authors found the cell growth decreased, among which S phase was arrested and G1 phase was prolonged in the transfected positive clones. By cDNA microarray analysis, 35 genes showed an over 2.0 fold change in expression level after transfection, with 28 genes being consistently up-regulated and 7 genes being down-regulated. Among the classified genes, almost half of the induced genes (13 out of 28 genes) were related to cell signaling, cell communication and particularly to adhesion. Overexpression of human EMP-1 gene can inhibit the proliferation of EC9706 cell with S phase arrested and G1 phase prolonged. The cDNA microarray analysis suggested that EMP-1 may be one of regulators involved in cell signaling, cell communication and adhesion regulators.

  6. Combining suppressive subtractive hybridization and cDNA microarrays to identify dietary phosphorus-responsive genes of the rainbow trout (Oncorhynchus mykiss) kidney.

    PubMed

    Lake, Jennifer; Gravel, Catherine; Koko, Gabriel Koffi D; Robert, Claude; Vandenberg, Grant W

    2010-03-01

    Phosphorus (P)-responsive genes and how they regulate renal adaptation to phosphorous-deficient diets in animals, including fish, are not well understood. RNA abundance profiling using cDNA microarrays is an efficient approach to study nutrient-gene interactions and identify these dietary P-responsive genes. To test the hypothesis that dietary P-responsive genes are differentially expressed in fish fed varying P levels, rainbow trout were fed a practical high-P diet (R20: 0.96% P) or a low-P diet (R0: 0.38% P) for 7 weeks. The differentially-expressed genes between dietary groups were identified and compared from the kidney by combining suppressive subtractive hybridization (SSH) with cDNA microarray analysis. A number of genes were confirmed by real-time PCR, and correlated with plasma and bone P concentrations. Approximately 54 genes were identified as potential dietary P-responsive after 7 weeks on a diet deficient in P according to cDNA microarray analysis. Of 18 selected genes, 13 genes were confirmed to be P-responsive at 7 weeks by real-time PCR analysis, including: iNOS, cytochrome b, cytochrome c oxidase subunit II , alpha-globin I, beta-globin, ATP synthase, hyperosmotic protein 21, COL1A3, Nkef, NDPK, glucose phosphate isomerase 1, Na+/H+ exchange protein and GDP dissociation inhibitor 2. Many of these dietary P-responsive genes responded in a moderate way (R0/R20 ratio: <2-3 or >0.5) and in a transient manner to dietary P limitation. In summary, renal adaptation to dietary P deficiency in trout involves changes in the expression of several genes, suggesting a profile of metabolic stress, since many of these differentially-expressed candidates are associated with the cellular adaptative responses. Crown Copyright 2009. Published by Elsevier Inc. All rights reserved.

  7. Transcription Analysis of the Myometrium of Labouring and Non-Labouring Women

    PubMed Central

    Hutchinson, James L.; Hibbert, Nanette; Freeman, Tom C.; Saunders, Philippa T. K.; Norman, Jane E.

    2016-01-01

    An incomplete understanding of the molecular mechanisms that initiate normal human labour at term seriously hampers the development of effective ways to predict, prevent and treat disorders such as preterm labour. Appropriate analysis of large microarray experiments that compare gene expression in non-labouring and labouring gestational tissues is necessary to help bridge these gaps in our knowledge. In this work, gene expression in 48 (22 labouring, 26 non-labouring) lower-segment myometrial samples collected at Caesarean section were analysed using Illumina HT-12 v4.0 BeadChips. Normalised data were compared between labouring and non-labouring groups using traditional statistical methods and a novel network graph approach. We sought technical validation with quantitative real-time PCR, and biological replication through inverse variance-weighted meta-analysis with published microarray data. We have extended the list of genes suggested to be associated with labour: Compared to non-labouring samples, labouring samples showed apparent higher expression at 960 probes (949 genes) and apparent lower expression at 801 probes (789 genes) (absolute fold change ≥1.2, rank product percentage of false positive value (RP-PFP) <0.05). Although half of the women in the labouring group had received pharmaceutical treatment to induce or augment labour, sensitivity analysis suggested that this did not confound our results. In agreement with previous studies, functional analysis suggested that labour was characterised by an increase in the expression of inflammatory genes and network analysis suggested a strong neutrophil signature. Our analysis also suggested that labour is characterised by a decrease in the expression of muscle-specific processes, which has not been explicitly discussed previously. We validated these findings through the first formal meta-analysis of raw data from previous experiments and we hypothesise that this represents a change in the composition of myometrial tissue at labour. Further work will be necessary to reveal whether these results are solely due to leukocyte infiltration into the myometrium as a mechanism initiating labour, or in addition whether they also represent gene changes in the myocytes themselves. We have made all our data available at www.ebi.ac.uk/arrayexpress/ (accession number E-MTAB-3136) to facilitate progression of this work. PMID:27176052

  8. An integrated approach for identifying wrongly labelled samples when performing classification in microarray data.

    PubMed

    Leung, Yuk Yee; Chang, Chun Qi; Hung, Yeung Sam

    2012-01-01

    Using hybrid approach for gene selection and classification is common as results obtained are generally better than performing the two tasks independently. Yet, for some microarray datasets, both classification accuracy and stability of gene sets obtained still have rooms for improvement. This may be due to the presence of samples with wrong class labels (i.e. outliers). Outlier detection algorithms proposed so far are either not suitable for microarray data, or only solve the outlier detection problem on their own. We tackle the outlier detection problem based on a previously proposed Multiple-Filter-Multiple-Wrapper (MFMW) model, which was demonstrated to yield promising results when compared to other hybrid approaches (Leung and Hung, 2010). To incorporate outlier detection and overcome limitations of the existing MFMW model, three new features are introduced in our proposed MFMW-outlier approach: 1) an unbiased external Leave-One-Out Cross-Validation framework is developed to replace internal cross-validation in the previous MFMW model; 2) wrongly labeled samples are identified within the MFMW-outlier model; and 3) a stable set of genes is selected using an L1-norm SVM that removes any redundant genes present. Six binary-class microarray datasets were tested. Comparing with outlier detection studies on the same datasets, MFMW-outlier could detect all the outliers found in the original paper (for which the data was provided for analysis), and the genes selected after outlier removal were proven to have biological relevance. We also compared MFMW-outlier with PRAPIV (Zhang et al., 2006) based on same synthetic datasets. MFMW-outlier gave better average precision and recall values on three different settings. Lastly, artificially flipped microarray datasets were created by removing our detected outliers and flipping some of the remaining samples' labels. Almost all the 'wrong' (artificially flipped) samples were detected, suggesting that MFMW-outlier was sufficiently powerful to detect outliers in high-dimensional microarray datasets.

  9. Development and application of an antibody-based protein microarray to assess physiological stress in grizzly bears (Ursus arctos).

    PubMed

    Carlson, Ruth I; Cattet, Marc R L; Sarauer, Bryan L; Nielsen, Scott E; Boulanger, John; Stenhouse, Gordon B; Janz, David M

    2016-01-01

    A novel antibody-based protein microarray was developed that simultaneously determines expression of 31 stress-associated proteins in skin samples collected from free-ranging grizzly bears (Ursus arctos) in Alberta, Canada. The microarray determines proteins belonging to four broad functional categories associated with stress physiology: hypothalamic-pituitary-adrenal axis proteins, apoptosis/cell cycle proteins, cellular stress/proteotoxicity proteins and oxidative stress/inflammation proteins. Small skin samples (50-100 mg) were collected from captured bears using biopsy punches. Proteins were isolated and labelled with fluorescent dyes, with labelled protein homogenates loaded onto microarrays to hybridize with antibodies. Relative protein expression was determined by comparison with a pooled standard skin sample. The assay was sensitive, requiring 80 µg of protein per sample to be run in triplicate on the microarray. Intra-array and inter-array coefficients of variation for individual proteins were generally <10 and <15%, respectively. With one exception, there were no significant differences in protein expression among skin samples collected from the neck, forelimb, hindlimb and ear in a subsample of n = 4 bears. This suggests that remotely delivered biopsy darts could be used in future sampling. Using generalized linear mixed models, certain proteins within each functional category demonstrated altered expression with respect to differences in year, season, geographical sampling location within Alberta and bear biological parameters, suggesting that these general variables may influence expression of specific proteins in the microarray. Our goal is to apply the protein microarray as a conservation physiology tool that can detect, evaluate and monitor physiological stress in grizzly bears and other species at risk over time in response to environmental change.

  10. CNV-ROC: A cost effective, computer-aided analytical performance evaluator of chromosomal microarrays

    PubMed Central

    Goodman, Corey W.; Major, Heather J.; Walls, William D.; Sheffield, Val C.; Casavant, Thomas L.; Darbro, Benjamin W.

    2016-01-01

    Chromosomal microarrays (CMAs) are routinely used in both research and clinical laboratories; yet, little attention has been given to the estimation of genome-wide true and false negatives during the assessment of these assays and how such information could be used to calibrate various algorithmic metrics to improve performance. Low-throughput, locus-specific methods such as fluorescence in situ hybridization (FISH), quantitative PCR (qPCR), or multiplex ligation-dependent probe amplification (MLPA) preclude rigorous calibration of various metrics used by copy number variant (CNV) detection algorithms. To aid this task, we have established a comparative methodology, CNV-ROC, which is capable of performing a high throughput, low cost, analysis of CMAs that takes into consideration genome-wide true and false negatives. CNV-ROC uses a higher resolution microarray to confirm calls from a lower resolution microarray and provides for a true measure of genome-wide performance metrics at the resolution offered by microarray testing. CNV-ROC also provides for a very precise comparison of CNV calls between two microarray platforms without the need to establish an arbitrary degree of overlap. Comparison of CNVs across microarrays is done on a per-probe basis and receiver operator characteristic (ROC) analysis is used to calibrate algorithmic metrics, such as log2 ratio threshold, to enhance CNV calling performance. CNV-ROC addresses a critical and consistently overlooked aspect of analytical assessments of genome-wide techniques like CMAs which is the measurement and use of genome-wide true and false negative data for the calculation of performance metrics and comparison of CNV profiles between different microarray experiments. PMID:25595567

  11. MICROARRAY DATA ANALYSIS USING MULTIPLE STATISTICAL MODELS

    EPA Science Inventory

    Microarray Data Analysis Using Multiple Statistical Models

    Wenjun Bao1, Judith E. Schmid1, Amber K. Goetz1, Ming Ouyang2, William J. Welsh2,Andrew I. Brooks3,4, ChiYi Chu3,Mitsunori Ogihara3,4, Yinhe Cheng5, David J. Dix1. 1National Health and Environmental Effects Researc...

  12. Parents' Perceptions of the Usefulness of Chromosomal Microarray Analysis for Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Reiff, Marian; Giarelli, Ellen; Bernhardt, Barbara A.; Easley, Ebony; Spinner, Nancy B.; Sankar, Pamela L.; Mulchandani, Surabhi

    2015-01-01

    Clinical guidelines recommend chromosomal microarray analysis (CMA) for all children with autism spectrum disorders (ASDs). We explored the test's perceived usefulness among parents of children with ASD who had undergone CMA, and received a result categorized as pathogenic, variant of uncertain significance, or negative. Fifty-seven parents…

  13. A Graphical Systems Model and Tissue-specific Functional Gene Sets to Aid Transcriptomic Analysis of Chemical Impacts on the Female Teleost Reproductive Axis

    EPA Science Inventory

    Oligonucleotide microarrays and other ‘omics’ approaches are powerful tools for unsupervised analysis of chemical impacts on biological systems. However, the lack of well annotated biological pathways for many aquatic organisms, including fish, and the poor power of microarray-b...

  14. CGO: utilizing and integrating gene expression microarray data in clinical research and data management.

    PubMed

    Bumm, Klaus; Zheng, Mingzhong; Bailey, Clyde; Zhan, Fenghuang; Chiriva-Internati, M; Eddlemon, Paul; Terry, Julian; Barlogie, Bart; Shaughnessy, John D

    2002-02-01

    Clinical GeneOrganizer (CGO) is a novel windows-based archiving, organization and data mining software for the integration of gene expression profiling in clinical medicine. The program implements various user-friendly tools and extracts data for further statistical analysis. This software was written for Affymetrix GeneChip *.txt files, but can also be used for any other microarray-derived data. The MS-SQL server version acts as a data mart and links microarray data with clinical parameters of any other existing database and therefore represents a valuable tool for combining gene expression analysis and clinical disease characteristics.

  15. cluML: A markup language for clustering and cluster validity assessment of microarray data.

    PubMed

    Bolshakova, Nadia; Cunningham, Pádraig

    2005-01-01

    cluML is a new markup language for microarray data clustering and cluster validity assessment. The XML-based format has been designed to address some of the limitations observed in traditional formats, such as inability to store multiple clustering (including biclustering) and validation results within a dataset. cluML is an effective tool to support biomedical knowledge representation in gene expression data analysis. Although cluML was developed for DNA microarray analysis applications, it can be effectively used for the representation of clustering and for the validation of other biomedical and physical data that has no limitations.

  16. An unsupervised hierarchical dynamic self-organizing approach to cancer class discovery and marker gene identification in microarray data.

    PubMed

    Hsu, Arthur L; Tang, Sen-Lin; Halgamuge, Saman K

    2003-11-01

    Current Self-Organizing Maps (SOMs) approaches to gene expression pattern clustering require the user to predefine the number of clusters likely to be expected. Hierarchical clustering methods used in this area do not provide unique partitioning of data. We describe an unsupervised dynamic hierarchical self-organizing approach, which suggests an appropriate number of clusters, to perform class discovery and marker gene identification in microarray data. In the process of class discovery, the proposed algorithm identifies corresponding sets of predictor genes that best distinguish one class from other classes. The approach integrates merits of hierarchical clustering with robustness against noise known from self-organizing approaches. The proposed algorithm applied to DNA microarray data sets of two types of cancers has demonstrated its ability to produce the most suitable number of clusters. Further, the corresponding marker genes identified through the unsupervised algorithm also have a strong biological relationship to the specific cancer class. The algorithm tested on leukemia microarray data, which contains three leukemia types, was able to determine three major and one minor cluster. Prediction models built for the four clusters indicate that the prediction strength for the smaller cluster is generally low, therefore labelled as uncertain cluster. Further analysis shows that the uncertain cluster can be subdivided further, and the subdivisions are related to two of the original clusters. Another test performed using colon cancer microarray data has automatically derived two clusters, which is consistent with the number of classes in data (cancerous and normal). JAVA software of dynamic SOM tree algorithm is available upon request for academic use. A comparison of rectangular and hexagonal topologies for GSOM is available from http://www.mame.mu.oz.au/mechatronics/journalinfo/Hsu2003supp.pdf

  17. Microarray profiling of human white adipose tissue after exogenous leptin injection.

    PubMed

    Taleb, S; Van Haaften, R; Henegar, C; Hukshorn, C; Cancello, R; Pelloux, V; Hanczar, B; Viguerie, N; Langin, D; Evelo, C; Zucker, J; Clément, K; Saris, W H M

    2006-03-01

    Leptin is a secreted adipocyte hormone that plays a key role in the regulation of body weight homeostasis. The leptin effect on human white adipose tissue (WAT) is still debated. The aim of this study was to assess whether the administration of polyethylene glycol-leptin (PEG-OB) in a single supraphysiological dose has transcriptional effects on genes of WAT and to identify its target genes and functional pathways in WAT. Blood samples and WAT biopsies were obtained from 10 healthy nonobese men before treatment and 72 h after the PEG-OB injection, leading to an approximate 809-fold increase in circulating leptin. The WAT gene expression profile before and after the PEG-OB injection was compared using pangenomic microarrays. Functional gene annotations based on the gene ontology of the PEG-OB regulated genes were performed using both an 'in house' automated procedure and GenMAPP (Gene Microarray Pathway Profiler), designed for viewing and analyzing gene expression data in the context of biological pathways. Statistical analysis of microarray data revealed that PEG-OB had a major down-regulated effect on WAT gene expression, as we obtained 1,822 and 100 down- and up-regulated genes, respectively. Microarray data were validated using reverse transcription quantitative PCR. Functional gene annotations of PEG-OB regulated genes revealed that the functional class related to immunity and inflammation was among the most mobilized PEG-OB pathway in WAT. These genes are mainly expressed in the cell of the stroma vascular fraction in comparison with adipocytes. Our observations support the hypothesis that leptin could act on WAT, particularly on genes related to inflammation and immunity, which may suggest a novel leptin target pathway in human WAT.

  18. Analysis of developmental gene conservation in the Actinomycetales using DNA/DNA microarray comparisons.

    PubMed

    Kirby, Ralph; Herron, Paul; Hoskisson, Paul

    2011-02-01

    Based on available genome sequences, Actinomycetales show significant gene synteny across a wide range of species and genera. In addition, many genera show varying degrees of complex morphological development. Using the presence of gene synteny as a basis, it is clear that an analysis of gene conservation across the Streptomyces and various other Actinomycetales will provide information on both the importance of genes and gene clusters and the evolution of morphogenesis in these bacteria. Genome sequencing, although becoming cheaper, is still relatively expensive for comparing large numbers of strains. Thus, a heterologous DNA/DNA microarray hybridization dataset based on a Streptomyces coelicolor microarray allows a cheaper and greater depth of analysis of gene conservation. This study, using both bioinformatical and microarray approaches, was able to classify genes previously identified as involved in morphogenesis in Streptomyces into various subgroups in terms of conservation across species and genera. This will allow the targeting of genes for further study based on their importance at the species level and at higher evolutionary levels.

  19. Cross species analysis of microarray expression data

    PubMed Central

    Lu, Yong; Huggins, Peter; Bar-Joseph, Ziv

    2009-01-01

    Motivation: Many biological systems operate in a similar manner across a large number of species or conditions. Cross-species analysis of sequence and interaction data is often applied to determine the function of new genes. In contrast to these static measurements, microarrays measure the dynamic, condition-specific response of complex biological systems. The recent exponential growth in microarray expression datasets allows researchers to combine expression experiments from multiple species to identify genes that are not only conserved in sequence but also operated in a similar way in the different species studied. Results: In this review we discuss the computational and technical challenges associated with these studies, the approaches that have been developed to address these challenges and the advantages of cross-species analysis of microarray data. We show how successful application of these methods lead to insights that cannot be obtained when analyzing data from a single species. We also highlight current open problems and discuss possible ways to address them. Contact: zivbj@cs.cmu.edu PMID:19357096

  20. Separation and Analysis of Adherent and Non-Adherent Cancer Cells Using a Single-Cell Microarray Chip.

    PubMed

    Yamamura, Shohei; Yamada, Eriko; Kimura, Fukiko; Miyajima, Kumiko; Shigeto, Hajime

    2017-10-21

    A new single-cell microarray chip was designed and developed to separate and analyze single adherent and non-adherent cancer cells. The single-cell microarray chip is made of polystyrene with over 60,000 microchambers of 10 different size patterns (31-40 µm upper diameter, 11-20 µm lower diameter). A drop of suspension of adherent carcinoma (NCI-H1650) and non-adherent leukocyte (CCRF-CEM) cells was placed onto the chip, and single-cell occupancy of NCI-H1650 and CCRF-CEM was determined to be 79% and 84%, respectively. This was achieved by controlling the chip design and surface treatment. Analysis of protein expression in single NCI-H1650 and CCRF-CEM cells was performed on the single-cell microarray chip by multi-antibody staining. Additionally, with this system, we retrieved positive single cells from the microchambers by a micromanipulator. Thus, this system demonstrates the potential for easy and accurate separation and analysis of various types of single cells.

  1. Cambridge Healthtech Institute's Third Annual Conference on Lab-on-a-Chip and Microarrays. 22-24 January 2001, Zurich, Switzerland.

    PubMed

    Jain, K K

    2001-02-01

    Cambridge Healthtech Institute's Third Annual Conference on Lab-on-a-Chip and Microarray technology covered the latest advances in this technology and applications in life sciences. Highlights of the meetings are reported briefly with emphasis on applications in genomics, drug discovery and molecular diagnostics. There was an emphasis on microfluidics because of the wide applications in laboratory and drug discovery. The lab-on-a-chip provides the facilities of a complete laboratory in a hand-held miniature device. Several microarray systems have been used for hybridisation and detection techniques. Oligonucleotide scanning arrays provide a versatile tool for the analysis of nucleic acid interactions and provide a platform for improving the array-based methods for investigation of antisense therapeutics. A method for analysing combinatorial DNA arrays using oligonucleotide-modified gold nanoparticle probes and a conventional scanner has considerable potential in molecular diagnostics. Various applications of microarray technology for high-throughput screening in drug discovery and single nucleotide polymorphisms (SNP) analysis were discussed. Protein chips have important applications in proteomics. With the considerable amount of data generated by the different technologies using microarrays, it is obvious that the reading of the information and its interpretation and management through the use of bioinformatics is essential. Various techniques for data analysis were presented. Biochip and microarray technology has an essential role to play in the evolving trends in healthcare, which integrate diagnosis with prevention/treatment and emphasise personalised medicines.

  2. Differential gene expression detection and sample classification using penalized linear regression models.

    PubMed

    Wu, Baolin

    2006-02-15

    Differential gene expression detection and sample classification using microarray data have received much research interest recently. Owing to the large number of genes p and small number of samples n (p > n), microarray data analysis poses big challenges for statistical analysis. An obvious problem owing to the 'large p small n' is over-fitting. Just by chance, we are likely to find some non-differentially expressed genes that can classify the samples very well. The idea of shrinkage is to regularize the model parameters to reduce the effects of noise and produce reliable inferences. Shrinkage has been successfully applied in the microarray data analysis. The SAM statistics proposed by Tusher et al. and the 'nearest shrunken centroid' proposed by Tibshirani et al. are ad hoc shrinkage methods. Both methods are simple, intuitive and prove to be useful in empirical studies. Recently Wu proposed the penalized t/F-statistics with shrinkage by formally using the (1) penalized linear regression models for two-class microarray data, showing good performance. In this paper we systematically discussed the use of penalized regression models for analyzing microarray data. We generalize the two-class penalized t/F-statistics proposed by Wu to multi-class microarray data. We formally derive the ad hoc shrunken centroid used by Tibshirani et al. using the (1) penalized regression models. And we show that the penalized linear regression models provide a rigorous and unified statistical framework for sample classification and differential gene expression detection.

  3. Metabolic Capacity of Sinorhizobium (Ensifer) meliloti Strains as Determined by Phenotype MicroArray Analysis▿ †

    PubMed Central

    Biondi, Emanuele G.; Tatti, Enrico; Comparini, Diego; Giuntini, Elisa; Mocali, Stefano; Giovannetti, Luciana; Bazzicalupo, Marco; Mengoni, Alessio; Viti, Carlo

    2009-01-01

    Sinorhizobium meliloti is a soil bacterium that fixes atmospheric nitrogen in plant roots. The high genetic diversity of its natural populations has been the subject of extensive analysis. Recent genomic studies of several isolates revealed a high content of variable genes, suggesting a correspondingly large phenotypic differentiation among strains of S. meliloti. Here, using the Phenotype MicroArray (PM) system, hundreds of different growth conditions were tested in order to compare the metabolic capabilities of the laboratory reference strain Rm1021 with those of four natural S. meliloti isolates previously analyzed by comparative genomic hybridization (CGH). The results of PM analysis showed that most phenotypic differences involved carbon source utilization and tolerance to osmolytes and pH, while fewer differences were scored for nitrogen, phosphorus, and sulfur source utilization. Only the variability of the tested strain in tolerance to sodium nitrite and ammonium sulfate of pH 8 was hypothesized to be associated with the genetic polymorphisms detected by CGH analysis. Colony and cell morphologies and the ability to nodulate Medicago truncatula plants were also compared, revealing further phenotypic diversity. Overall, our results suggest that the study of functional (phenotypic) variability of S. meliloti populations is an important and complementary step in the investigation of genetic polymorphism of rhizobia and may help to elucidate rhizobial evolutionary dynamics, including adaptation to diverse environments. PMID:19561177

  4. Best practices for hybridization design in two-colour microarray analysis.

    PubMed

    Knapen, Dries; Vergauwen, Lucia; Laukens, Kris; Blust, Ronny

    2009-07-01

    Two-colour microarrays are a popular platform of choice in gene expression studies. Because two different samples are hybridized on a single microarray, and several microarrays are usually needed in a given experiment, there are many possible ways to combine samples on different microarrays. The actual combination employed is commonly referred to as the 'hybridization design'. Different types of hybridization designs have been developed, all aimed at optimizing the experimental setup for the detection of differentially expressed genes while coping with technical noise. Here, we first provide an overview of the different classes of hybridization designs, discussing their advantages and limitations, and then we illustrate the current trends in the use of different hybridization design types in contemporary research.

  5. [Diagnosis of a case with Williams-Beuren syndrome with nephrocalcinosis using chromosome microarray analysis].

    PubMed

    Jin, S J; Liu, M; Long, W J; Luo, X P

    2016-12-02

    Objective: To explore the clinical phenotypes and the genetic cause for a boy with unexplained growth retardation, nephrocalcinosis, auditory anomalies and multi-organ/system developmental disorders. Method: Routine G-banding and chromosome microarray analysis were applied to a child with unexplained growth retardation, nephrocalcinosis, auditory anomalies and multi-organ/system developmental disorders treated in the Department of Pediatrics of Tongji Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology in September 2015 and his parents to conduct the chromosomal karyotype analysis and the whole genome scanning. Deleted genes were searched in the Decipher and NCBI databases, and their relationships with the clinical phenotypes were analyzed. Result: A six-month-old boy was refered to us because of unexplained growth retardation and feeding intolerance.The affected child presented with abnormal manifestation such as special face, umbilical hernia, growth retardation, hypothyroidism, congenital heart disease, right ear sensorineural deafness, hypercalcemia and nephrocalcinosis. The child's karyotype was 46, XY, 16qh + , and his parents' karyotypes were normal. Chromosome microarray analysis revealed a 1 436 kb deletion on the 7q11.23(72701098_74136633) region of the child. This region included 23 protein-coding genes, which were reported to be corresponding to Williams-Beuren syndrome and its certain clinical phenotypes. His parents' results of chromosome microarray analysis were normal. Conclusion: A boy with characteristic manifestation of Williams-Beuren syndrome and rare nephrocalcinosis was diagnosed using chromosome microarray analysis. The deletion on the 7q11.23 might be related to the clinical phenotypes of Williams-Beuren syndrome, yet further studies are needed.

  6. AFM 4.0: a toolbox for DNA microarray analysis

    PubMed Central

    Breitkreutz, Bobby-Joe; Jorgensen, Paul; Breitkreutz, Ashton; Tyers, Mike

    2001-01-01

    We have developed a series of programs, collectively packaged as Array File Maker 4.0 (AFM), that manipulate and manage DNA microarray data. AFM 4.0 is simple to use, applicable to any organism or microarray, and operates within the familiar confines of Microsoft Excel. Given a database of expression ratios, AFM 4.0 generates input files for clustering, helps prepare colored figures and Venn diagrams, and can uncover aneuploidy in yeast microarray data. AFM 4.0 should be especially useful to laboratories that do not have access to specialized commercial or in-house software. PMID:11532221

  7. Fully Automated Complementary DNA Microarray Segmentation using a Novel Fuzzy-based Algorithm.

    PubMed

    Saberkari, Hamidreza; Bahrami, Sheyda; Shamsi, Mousa; Amoshahy, Mohammad Javad; Ghavifekr, Habib Badri; Sedaaghi, Mohammad Hossein

    2015-01-01

    DNA microarray is a powerful approach to study simultaneously, the expression of 1000 of genes in a single experiment. The average value of the fluorescent intensity could be calculated in a microarray experiment. The calculated intensity values are very close in amount to the levels of expression of a particular gene. However, determining the appropriate position of every spot in microarray images is a main challenge, which leads to the accurate classification of normal and abnormal (cancer) cells. In this paper, first a preprocessing approach is performed to eliminate the noise and artifacts available in microarray cells using the nonlinear anisotropic diffusion filtering method. Then, the coordinate center of each spot is positioned utilizing the mathematical morphology operations. Finally, the position of each spot is exactly determined through applying a novel hybrid model based on the principle component analysis and the spatial fuzzy c-means clustering (SFCM) algorithm. Using a Gaussian kernel in SFCM algorithm will lead to improving the quality in complementary DNA microarray segmentation. The performance of the proposed algorithm has been evaluated on the real microarray images, which is available in Stanford Microarray Databases. Results illustrate that the accuracy of microarray cells segmentation in the proposed algorithm reaches to 100% and 98% for noiseless/noisy cells, respectively.

  8. APPLICATION OF CDNA MICROARRAY TECHNOLOGY TO IN VITRO TOXICOLOGY AND THE SELECTION OF GENES FOR A REAL TIME RT-PCR-BASED SCREEN FOR OXIDATIVE STRESS IN HEP-G2 CELLS

    EPA Science Inventory

    Large-scale analysis of gene expression using cDNA microarrays promises the
    rapid detection of the mode of toxicity for drugs and other chemicals. cDNA
    microarrays were used to examine chemically-induced alterations of gene
    expression in HepG2 cells exposed to oxidative ...

  9. Where statistics and molecular microarray experiments biology meet.

    PubMed

    Kelmansky, Diana M

    2013-01-01

    This review chapter presents a statistical point of view to microarray experiments with the purpose of understanding the apparent contradictions that often appear in relation to their results. We give a brief introduction of molecular biology for nonspecialists. We describe microarray experiments from their construction and the biological principles the experiments rely on, to data acquisition and analysis. The role of epidemiological approaches and sample size considerations are also discussed.

  10. Self-directed student research through analysis of microarray datasets: a computer-based functional genomics practical class for masters-level students.

    PubMed

    Grenville-Briggs, Laura J; Stansfield, Ian

    2011-01-01

    This report describes a linked series of Masters-level computer practical workshops. They comprise an advanced functional genomics investigation, based upon analysis of a microarray dataset probing yeast DNA damage responses. The workshops require the students to analyse highly complex transcriptomics datasets, and were designed to stimulate active learning through experience of current research methods in bioinformatics and functional genomics. They seek to closely mimic a realistic research environment, and require the students first to propose research hypotheses, then test those hypotheses using specific sections of the microarray dataset. The complexity of the microarray data provides students with the freedom to propose their own unique hypotheses, tested using appropriate sections of the microarray data. This research latitude was highly regarded by students and is a strength of this practical. In addition, the focus on DNA damage by radiation and mutagenic chemicals allows them to place their results in a human medical context, and successfully sparks broad interest in the subject material. In evaluation, 79% of students scored the practical workshops on a five-point scale as 4 or 5 (totally effective) for student learning. More broadly, the general use of microarray data as a "student research playground" is also discussed. Copyright © 2011 Wiley Periodicals, Inc.

  11. Reproducibility-optimized test statistic for ranking genes in microarray studies.

    PubMed

    Elo, Laura L; Filén, Sanna; Lahesmaa, Riitta; Aittokallio, Tero

    2008-01-01

    A principal goal of microarray studies is to identify the genes showing differential expression under distinct conditions. In such studies, the selection of an optimal test statistic is a crucial challenge, which depends on the type and amount of data under analysis. While previous studies on simulated or spike-in datasets do not provide practical guidance on how to choose the best method for a given real dataset, we introduce an enhanced reproducibility-optimization procedure, which enables the selection of a suitable gene- anking statistic directly from the data. In comparison with existing ranking methods, the reproducibilityoptimized statistic shows good performance consistently under various simulated conditions and on Affymetrix spike-in dataset. Further, the feasibility of the novel statistic is confirmed in a practical research setting using data from an in-house cDNA microarray study of asthma-related gene expression changes. These results suggest that the procedure facilitates the selection of an appropriate test statistic for a given dataset without relying on a priori assumptions, which may bias the findings and their interpretation. Moreover, the general reproducibilityoptimization procedure is not limited to detecting differential expression only but could be extended to a wide range of other applications as well.

  12. Alteration of Gene Expression, DNA Methylation, and Histone Methylation in Free Radical Scavenging Networks in Adult Mouse Hippocampus following Fetal Alcohol Exposure.

    PubMed

    Chater-Diehl, Eric J; Laufer, Benjamin I; Castellani, Christina A; Alberry, Bonnie L; Singh, Shiva M

    2016-01-01

    The molecular basis of Fetal Alcohol Spectrum Disorders (FASD) is poorly understood; however, epigenetic and gene expression changes have been implicated. We have developed a mouse model of FASD characterized by learning and memory impairment and persistent gene expression changes. Epigenetic marks may maintain expression changes over a mouse's lifetime, an area few have explored. Here, mice were injected with saline or ethanol on postnatal days four and seven. At 70 days of age gene expression microarray, methylated DNA immunoprecipitation microarray, H3K4me3 and H3K27me3 chromatin immunoprecipitation microarray were performed. Following extensive pathway analysis of the affected genes, we identified the top affected gene expression pathway as "Free radical scavenging". We confirmed six of these changes by droplet digital PCR including the caspase Casp3 and Wnt transcription factor Tcf7l2. The top pathway for all methylation-affected genes was "Peroxisome biogenesis"; we confirmed differential DNA methylation in the Acca1 thiolase promoter. Altered methylation and gene expression in oxidative stress pathways in the adult hippocampus suggests a novel interface between epigenetic and oxidative stress mechanisms in FASD.

  13. Identification and handling of artifactual gene expression profiles emerging in microarray hybridization experiments

    PubMed Central

    Brodsky, Leonid; Leontovich, Andrei; Shtutman, Michael; Feinstein, Elena

    2004-01-01

    Mathematical methods of analysis of microarray hybridizations deal with gene expression profiles as elementary units. However, some of these profiles do not reflect a biologically relevant transcriptional response, but rather stem from technical artifacts. Here, we describe two technically independent but rationally interconnected methods for identification of such artifactual profiles. Our diagnostics are based on detection of deviations from uniformity, which is assumed as the main underlying principle of microarray design. Method 1 is based on detection of non-uniformity of microarray distribution of printed genes that are clustered based on the similarity of their expression profiles. Method 2 is based on evaluation of the presence of gene-specific microarray spots within the slides’ areas characterized by an abnormal concentration of low/high differential expression values, which we define as ‘patterns of differentials’. Applying two novel algorithms, for nested clustering (method 1) and for pattern detection (method 2), we can make a dual estimation of the profile’s quality for almost every printed gene. Genes with artifactual profiles detected by method 1 may then be removed from further analysis. Suspicious differential expression values detected by method 2 may be either removed or weighted according to the probabilities of patterns that cover them, thus diminishing their input in any further data analysis. PMID:14999086

  14. Novel calibration tools and validation concepts for microarray-based platforms used in molecular diagnostics and food safety control.

    PubMed

    Brunner, C; Hoffmann, K; Thiele, T; Schedler, U; Jehle, H; Resch-Genger, U

    2015-04-01

    Commercial platforms consisting of ready-to-use microarrays printed with target-specific DNA probes, a microarray scanner, and software for data analysis are available for different applications in medical diagnostics and food analysis, detecting, e.g., viral and bacteriological DNA sequences. The transfer of these tools from basic research to routine analysis, their broad acceptance in regulated areas, and their use in medical practice requires suitable calibration tools for regular control of instrument performance in addition to internal assay controls. Here, we present the development of a novel assay-adapted calibration slide for a commercialized DNA-based assay platform, consisting of precisely arranged fluorescent areas of various intensities obtained by incorporating different concentrations of a "green" dye and a "red" dye in a polymer matrix. These dyes present "Cy3" and "Cy5" analogues with improved photostability, chosen based upon their spectroscopic properties closely matching those of common labels for the green and red channel of microarray scanners. This simple tool allows to efficiently and regularly assess and control the performance of the microarray scanner provided with the biochip platform and to compare different scanners. It will be eventually used as fluorescence intensity scale for referencing of assays results and to enhance the overall comparability of diagnostic tests.

  15. Analysis of host response to bacterial infection using error model based gene expression microarray experiments

    PubMed Central

    Stekel, Dov J.; Sarti, Donatella; Trevino, Victor; Zhang, Lihong; Salmon, Mike; Buckley, Chris D.; Stevens, Mark; Pallen, Mark J.; Penn, Charles; Falciani, Francesco

    2005-01-01

    A key step in the analysis of microarray data is the selection of genes that are differentially expressed. Ideally, such experiments should be properly replicated in order to infer both technical and biological variability, and the data should be subjected to rigorous hypothesis tests to identify the differentially expressed genes. However, in microarray experiments involving the analysis of very large numbers of biological samples, replication is not always practical. Therefore, there is a need for a method to select differentially expressed genes in a rational way from insufficiently replicated data. In this paper, we describe a simple method that uses bootstrapping to generate an error model from a replicated pilot study that can be used to identify differentially expressed genes in subsequent large-scale studies on the same platform, but in which there may be no replicated arrays. The method builds a stratified error model that includes array-to-array variability, feature-to-feature variability and the dependence of error on signal intensity. We apply this model to the characterization of the host response in a model of bacterial infection of human intestinal epithelial cells. We demonstrate the effectiveness of error model based microarray experiments and propose this as a general strategy for a microarray-based screening of large collections of biological samples. PMID:15800204

  16. AccuTyping: new algorithms for automated analysis of data from high-throughput genotyping with oligonucleotide microarrays

    PubMed Central

    Hu, Guohong; Wang, Hui-Yun; Greenawalt, Danielle M.; Azaro, Marco A.; Luo, Minjie; Tereshchenko, Irina V.; Cui, Xiangfeng; Yang, Qifeng; Gao, Richeng; Shen, Li; Li, Honghua

    2006-01-01

    Microarray-based analysis of single nucleotide polymorphisms (SNPs) has many applications in large-scale genetic studies. To minimize the influence of experimental variation, microarray data usually need to be processed in different aspects including background subtraction, normalization and low-signal filtering before genotype determination. Although many algorithms are sophisticated for these purposes, biases are still present. In the present paper, new algorithms for SNP microarray data analysis and the software, AccuTyping, developed based on these algorithms are described. The algorithms take advantage of a large number of SNPs included in each assay, and the fact that the top and bottom 20% of SNPs can be safely treated as homozygous after sorting based on their ratios between the signal intensities. These SNPs are then used as controls for color channel normalization and background subtraction. Genotype calls are made based on the logarithms of signal intensity ratios using two cutoff values, which were determined after training the program with a dataset of ∼160 000 genotypes and validated by non-microarray methods. AccuTyping was used to determine >300 000 genotypes of DNA and sperm samples. The accuracy was shown to be >99%. AccuTyping can be downloaded from . PMID:16982644

  17. The statistics of identifying differentially expressed genes in Expresso and TM4: a comparison

    PubMed Central

    Sioson, Allan A; Mane, Shrinivasrao P; Li, Pinghua; Sha, Wei; Heath, Lenwood S; Bohnert, Hans J; Grene, Ruth

    2006-01-01

    Background Analysis of DNA microarray data takes as input spot intensity measurements from scanner software and returns differential expression of genes between two conditions, together with a statistical significance assessment. This process typically consists of two steps: data normalization and identification of differentially expressed genes through statistical analysis. The Expresso microarray experiment management system implements these steps with a two-stage, log-linear ANOVA mixed model technique, tailored to individual experimental designs. The complement of tools in TM4, on the other hand, is based on a number of preset design choices that limit its flexibility. In the TM4 microarray analysis suite, normalization, filter, and analysis methods form an analysis pipeline. TM4 computes integrated intensity values (IIV) from the average intensities and spot pixel counts returned by the scanner software as input to its normalization steps. By contrast, Expresso can use either IIV data or median intensity values (MIV). Here, we compare Expresso and TM4 analysis of two experiments and assess the results against qRT-PCR data. Results The Expresso analysis using MIV data consistently identifies more genes as differentially expressed, when compared to Expresso analysis with IIV data. The typical TM4 normalization and filtering pipeline corrects systematic intensity-specific bias on a per microarray basis. Subsequent statistical analysis with Expresso or a TM4 t-test can effectively identify differentially expressed genes. The best agreement with qRT-PCR data is obtained through the use of Expresso analysis and MIV data. Conclusion The results of this research are of practical value to biologists who analyze microarray data sets. The TM4 normalization and filtering pipeline corrects microarray-specific systematic bias and complements the normalization stage in Expresso analysis. The results of Expresso using MIV data have the best agreement with qRT-PCR results. In one experiment, MIV is a better choice than IIV as input to data normalization and statistical analysis methods, as it yields as greater number of statistically significant differentially expressed genes; TM4 does not support the choice of MIV input data. Overall, the more flexible and extensive statistical models of Expresso achieve more accurate analytical results, when judged by the yardstick of qRT-PCR data, in the context of an experimental design of modest complexity. PMID:16626497

  18. Diagnostic Yield of Chromosomal Microarray Analysis in an Autism Primary Care Practice: Which Guidelines to Implement?

    ERIC Educational Resources Information Center

    McGrew, Susan G.; Peters, Brittany R.; Crittendon, Julie A.; Veenstra-VanderWeele, Jeremy

    2012-01-01

    Genetic testing is recommended for patients with ASD; however specific recommendations vary by specialty. American Academy of Pediatrics and American Academy of Neurology guidelines recommend G-banded karyotype and Fragile X DNA. The American College of Medical Genetics recommends Chromosomal Microarray Analysis (CMA). We determined the yield of…

  19. Self-Directed Student Research through Analysis of Microarray Datasets: A Computer-Based Functional Genomics Practical Class for Masters-Level Students

    ERIC Educational Resources Information Center

    Grenville-Briggs, Laura J.; Stansfield, Ian

    2011-01-01

    This report describes a linked series of Masters-level computer practical workshops. They comprise an advanced functional genomics investigation, based upon analysis of a microarray dataset probing yeast DNA damage responses. The workshops require the students to analyse highly complex transcriptomics datasets, and were designed to stimulate…

  20. A MICROARRAY ANALYSIS OF GENE EXPRESSION IN THE EMBRYONIC FORELIMB OF THE C57BL/6J MOUSE REVEALS SIGNIFICANT ALTERATIONS METABOLIC AND DEVELOPMENTAL REGULATION FOLLOWING ETHANOL EXPOSURE.

    EPA Science Inventory

    The observation of transcriptional changes following embryonic ethanol exposure may provide significant insights into the biological response to ethanol exposure. In this study, we used microarray analysis to examine the transcriptional response of the developing limb to a dose ...

  1. Pathway modeling of microarray data: A case study of pathway activity changes in the testis following in utero exposure to dibutyl phthalate (DBP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ovacik, Meric A.; Sen, Banalata; Euling, Susan Y.

    Pathway activity level analysis, the approach pursued in this study, focuses on all genes that are known to be members of metabolic and signaling pathways as defined by the KEGG database. The pathway activity level analysis entails singular value decomposition (SVD) of the expression data of the genes constituting a given pathway. We explore an extension of the pathway activity methodology for application to time-course microarray data. We show that pathway analysis enhances our ability to detect biologically relevant changes in pathway activity using synthetic data. As a case study, we apply the pathway activity level formulation coupled with significancemore » analysis to microarray data from two different rat testes exposed in utero to Dibutyl Phthalate (DBP). In utero DBP exposure in the rat results in developmental toxicity of a number of male reproductive organs, including the testes. One well-characterized mode of action for DBP and the male reproductive developmental effects is the repression of expression of genes involved in cholesterol transport, steroid biosynthesis and testosterone synthesis that lead to a decreased fetal testicular testosterone. Previous analyses of DBP testes microarray data focused on either individual gene expression changes or changes in the expression of specific genes that are hypothesized, or known, to be important in testicular development and testosterone synthesis. However, a pathway analysis may inform whether there are additional affected pathways that could inform additional modes of action linked to DBP developmental toxicity. We show that Pathway activity analysis may be considered for a more comprehensive analysis of microarray data.« less

  2. Analysis of the effects of sex hormone background on the rat choroid plexus transcriptome by cDNA microarrays.

    PubMed

    Quintela, Telma; Gonçalves, Isabel; Carreto, Laura C; Santos, Manuel A S; Marcelino, Helena; Patriarca, Filipa M; Santos, Cecília R A

    2013-01-01

    The choroid plexus (CP) are highly vascularized branched structures that protrude into the ventricles of the brain, and form a unique interface between the blood and the cerebrospinal fluid (CSF), the blood-CSF barrier, that are the main site of production and secretion of CSF. Sex hormones are widely recognized as neuroprotective agents against several neurodegenerative diseases, and the presence of sex hormones cognate receptors suggest that it may be a target for these hormones. In an effort to provide further insight into the neuroprotective mechanisms triggered by sex hormones we analyzed gene expression differences in the CP of female and male rats subjected to gonadectomy, using microarray technology. In gonadectomized female and male animals, 3045 genes were differentially expressed by 1.5-fold change, compared to sham controls. Analysis of the CP transcriptome showed that the top-five pathways significantly regulated by the sex hormone background are olfactory transduction, taste transduction, metabolism, steroid hormone biosynthesis and circadian rhythm pathways. These results represent the first overview of global expression changes in CP of female and male rats induced by gonadectomy and suggest that sex hormones are implicated in pathways with central roles in CP functions and CSF homeostasis.

  3. Analysis of the Effects of Sex Hormone Background on the Rat Choroid Plexus Transcriptome by cDNA Microarrays

    PubMed Central

    Quintela, Telma; Gonçalves, Isabel; Carreto, Laura C.; Santos, Manuel A. S.; Marcelino, Helena; Patriarca, Filipa M.; Santos, Cecília R. A.

    2013-01-01

    The choroid plexus (CP) are highly vascularized branched structures that protrude into the ventricles of the brain, and form a unique interface between the blood and the cerebrospinal fluid (CSF), the blood-CSF barrier, that are the main site of production and secretion of CSF. Sex hormones are widely recognized as neuroprotective agents against several neurodegenerative diseases, and the presence of sex hormones cognate receptors suggest that it may be a target for these hormones. In an effort to provide further insight into the neuroprotective mechanisms triggered by sex hormones we analyzed gene expression differences in the CP of female and male rats subjected to gonadectomy, using microarray technology. In gonadectomized female and male animals, 3045 genes were differentially expressed by 1.5-fold change, compared to sham controls. Analysis of the CP transcriptome showed that the top-five pathways significantly regulated by the sex hormone background are olfactory transduction, taste transduction, metabolism, steroid hormone biosynthesis and circadian rhythm pathways. These results represent the first overview of global expression changes in CP of female and male rats induced by gonadectomy and suggest that sex hormones are implicated in pathways with central roles in CP functions and CSF homeostasis. PMID:23585832

  4. Global gene expression profiling of oral cavity cancers suggests molecular heterogeneity within anatomic subsites

    PubMed Central

    Severino, Patricia; Alvares, Adriana M; Michaluart, Pedro; Okamoto, Oswaldo K; Nunes, Fabio D; Moreira-Filho, Carlos A; Tajara, Eloiza H

    2008-01-01

    Background Oral squamous cell carcinoma (OSCC) is a frequent neoplasm, which is usually aggressive and has unpredictable biological behavior and unfavorable prognosis. The comprehension of the molecular basis of this variability should lead to the development of targeted therapies as well as to improvements in specificity and sensitivity of diagnosis. Results Samples of primary OSCCs and their corresponding surgical margins were obtained from male patients during surgery and their gene expression profiles were screened using whole-genome microarray technology. Hierarchical clustering and Principal Components Analysis were used for data visualization and One-way Analysis of Variance was used to identify differentially expressed genes. Samples clustered mostly according to disease subsite, suggesting molecular heterogeneity within tumor stages. In order to corroborate our results, two publicly available datasets of microarray experiments were assessed. We found significant molecular differences between OSCC anatomic subsites concerning groups of genes presently or potentially important for drug development, including mRNA processing, cytoskeleton organization and biogenesis, metabolic process, cell cycle and apoptosis. Conclusion Our results corroborate literature data on molecular heterogeneity of OSCCs. Differences between disease subsites and among samples belonging to the same TNM class highlight the importance of gene expression-based classification and challenge the development of targeted therapies. PMID:19014556

  5. Impact of developmental lead exposure on splenic factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasten-Jolly, Jane, E-mail: kjolly@wadsworth.or; Heo, Yong, E-mail: yheo@cu.ac.k; Lawrence, David A., E-mail: david.lawrence@wadsworth.or

    2010-09-01

    Lead (Pb) is known to alter the functions of numerous organ systems, including the hematopoietic and immune systems. Pb can induce anemia and can lower host resistance to bacterial and viral infections. The anemia is due to Pb's inhibition of hemoglobin synthesis and Pb's induction of membrane changes, leading to early erythrocyte senescence. Pb also increases B-cell activation/proliferation and skews T-cell help (Th) toward Th2 subset generation. The specific mechanisms for many of the Pb effects are, as yet, not completely understood. Therefore, we performed gene expression analysis, via microarray, on RNA from the spleens of developmentally Pb-exposed mice, inmore » order to gain further insight into these Pb effects. Splenic RNA microarray analysis indicated strong up-regulation of genes coding for proteolytic enzymes, lipases, amylase, and RNaseA. The data also showed that Pb affected the expression of many genes associated with innate immunity. Analysis of the microarray results via GeneSifter software indicated that Pb increased apoptosis, B-cell differentiation, and Th2 development. Direct up-regulation by Pb of expression of the gene encoding the heme-regulated inhibitor (HRI) suggested that Pb can decrease erythropoiesis by blocking globin mRNA translation. Pb's high elevation of digestive/catabolizing enzymes could generate immunogenic self peptides. With Pb's potential to induce new self-peptides and to enhance the expression of caspases, cytokines, and other immunomodulators, further evaluation of Pb's involvement in autoimmune phenomena, especially Th2-mediated autoantibody production, and alteration of organ system activities is warranted.« less

  6. Molecular analysis of meso- and thermophilic microbiota associated with anaerobic biowaste degradation

    PubMed Central

    2012-01-01

    Background Microbial anaerobic digestion (AD) is used as a waste treatment process to degrade complex organic compounds into methane. The archaeal and bacterial taxa involved in AD are well known, whereas composition of the fungal community in the process has been less studied. The present study aimed to reveal the composition of archaeal, bacterial and fungal communities in response to increasing organic loading in mesophilic and thermophilic AD processes by applying 454 amplicon sequencing technology. Furthermore, a DNA microarray method was evaluated in order to develop a tool for monitoring the microbiological status of AD. Results The 454 sequencing showed that the diversity and number of bacterial taxa decreased with increasing organic load, while archaeal i.e. methanogenic taxa remained more constant. The number and diversity of fungal taxa increased during the process and varied less in composition with process temperature than bacterial and archaeal taxa, even though the fungal diversity increased with temperature as well. Evaluation of the microarray using AD sample DNA showed correlation of signal intensities with sequence read numbers of corresponding target groups. The sensitivity of the test was found to be about 1%. Conclusions The fungal community survives in anoxic conditions and grows with increasing organic loading, suggesting that Fungi may contribute to the digestion by metabolising organic nutrients for bacterial and methanogenic groups. The microarray proof of principle tests suggest that the method has the potential for semiquantitative detection of target microbial groups given that comprehensive sequence data is available for probe design. PMID:22727142

  7. Meta-analysis of published transcriptional and translational fold changes reveals a preference for low-fold inductions.

    PubMed

    Wren, Jonathan D; Conway, Tyrrell

    2006-01-01

    The goals of this study were to gain a better quantitative understanding of the dynamic range of transcriptional and translational response observed in biological systems and to examine the reporting of regulatory events for trends and biases. A straightforward pattern-matching routine extracted 3,408 independent observations regarding transcriptional fold-changes and 1,125 regarding translational fold-changes from over 15 million MEDLINE abstracts. Approximately 95% of reported changes were > or =2-fold. Further, the historical trend of reporting individual fold-changes is declining in favor of high-throughput methods for transcription but not translation. Where it was possible to compare the average fold-changes in transcription and translation for the same gene/product (203 examples), approximately 53% were a < or =2-fold difference, suggesting a loose tendency for the two to be coupled in magnitude. We found also that approximately three-fourths of reported regulatory events have been at the transcriptional level. The frequency distribution appears to be normally distributed and peaks near 2-fold, suggesting that nature selects for a low-energy solution to regulatory responses. Because high-throughput technologies ordinarily sacrifice measurement quality for quantity, this also suggests that many regulatory events may not be reliably detectable by such technologies. Text mining of regulatory events and responses provides additional information incorporable into microarray analysis, such as prior fold-change observations and flagging genes that are regulated post-transcription. All extracted regulation and response patterns can be downloaded at the following website: www.ou.edu/microarray/ oumcf/Meta_analysis.xls.

  8. Experimental analysis of oligonucleotide microarray design criteria to detect deletions by comparative genomic hybridization.

    PubMed

    Flibotte, Stephane; Moerman, Donald G

    2008-10-21

    Microarray comparative genomic hybridization (CGH) is currently one of the most powerful techniques to measure DNA copy number in large genomes. In humans, microarray CGH is widely used to assess copy number variants in healthy individuals and copy number aberrations associated with various diseases, syndromes and disease susceptibility. In model organisms such as Caenorhabditis elegans (C. elegans) the technique has been applied to detect mutations, primarily deletions, in strains of interest. Although various constraints on oligonucleotide properties have been suggested to minimize non-specific hybridization and improve the data quality, there have been few experimental validations for CGH experiments. For genomic regions where strict design filters would limit the coverage it would also be useful to quantify the expected loss in data quality associated with relaxed design criteria. We have quantified the effects of filtering various oligonucleotide properties by measuring the resolving power for detecting deletions in the human and C. elegans genomes using NimbleGen microarrays. Approximately twice as many oligonucleotides are typically required to be affected by a deletion in human DNA samples in order to achieve the same statistical confidence as one would observe for a deletion in C. elegans. Surprisingly, the ability to detect deletions strongly depends on the oligonucleotide 15-mer count, which is defined as the sum of the genomic frequency of all the constituent 15-mers within the oligonucleotide. A similarity level above 80% to non-target sequences over the length of the probe produces significant cross-hybridization. We recommend the use of a fairly large melting temperature window of up to 10 degrees C, the elimination of repeat sequences, the elimination of homopolymers longer than 5 nucleotides, and a threshold of -1 kcal/mol on the oligonucleotide self-folding energy. We observed very little difference in data quality when varying the oligonucleotide length between 50 and 70, and even when using an isothermal design strategy. We have determined experimentally the effects of varying several key oligonucleotide microarray design criteria for detection of deletions in C. elegans and humans with NimbleGen's CGH technology. Our oligonucleotide design recommendations should be applicable for CGH analysis in most species.

  9. CNV-ROC: A cost effective, computer-aided analytical performance evaluator of chromosomal microarrays.

    PubMed

    Goodman, Corey W; Major, Heather J; Walls, William D; Sheffield, Val C; Casavant, Thomas L; Darbro, Benjamin W

    2015-04-01

    Chromosomal microarrays (CMAs) are routinely used in both research and clinical laboratories; yet, little attention has been given to the estimation of genome-wide true and false negatives during the assessment of these assays and how such information could be used to calibrate various algorithmic metrics to improve performance. Low-throughput, locus-specific methods such as fluorescence in situ hybridization (FISH), quantitative PCR (qPCR), or multiplex ligation-dependent probe amplification (MLPA) preclude rigorous calibration of various metrics used by copy number variant (CNV) detection algorithms. To aid this task, we have established a comparative methodology, CNV-ROC, which is capable of performing a high throughput, low cost, analysis of CMAs that takes into consideration genome-wide true and false negatives. CNV-ROC uses a higher resolution microarray to confirm calls from a lower resolution microarray and provides for a true measure of genome-wide performance metrics at the resolution offered by microarray testing. CNV-ROC also provides for a very precise comparison of CNV calls between two microarray platforms without the need to establish an arbitrary degree of overlap. Comparison of CNVs across microarrays is done on a per-probe basis and receiver operator characteristic (ROC) analysis is used to calibrate algorithmic metrics, such as log2 ratio threshold, to enhance CNV calling performance. CNV-ROC addresses a critical and consistently overlooked aspect of analytical assessments of genome-wide techniques like CMAs which is the measurement and use of genome-wide true and false negative data for the calculation of performance metrics and comparison of CNV profiles between different microarray experiments. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Parallel human genome analysis: microarray-based expression monitoring of 1000 genes.

    PubMed Central

    Schena, M; Shalon, D; Heller, R; Chai, A; Brown, P O; Davis, R W

    1996-01-01

    Microarrays containing 1046 human cDNAs of unknown sequence were printed on glass with high-speed robotics. These 1.0-cm2 DNA "chips" were used to quantitatively monitor differential expression of the cognate human genes using a highly sensitive two-color hybridization assay. Array elements that displayed differential expression patterns under given experimental conditions were characterized by sequencing. The identification of known and novel heat shock and phorbol ester-regulated genes in human T cells demonstrates the sensitivity of the assay. Parallel gene analysis with microarrays provides a rapid and efficient method for large-scale human gene discovery. Images Fig. 1 Fig. 2 Fig. 3 PMID:8855227

  11. Non-Small-Cell Lung Cancer Molecular Signatures Recapitulate Lung Developmental Pathways

    PubMed Central

    Borczuk, Alain C.; Gorenstein, Lyall; Walter, Kristin L.; Assaad, Adel A.; Wang, Liqun; Powell, Charles A.

    2003-01-01

    Current paradigms hold that lung carcinomas arise from pleuripotent stem cells capable of differentiation into one or several histological types. These paradigms suggest lung tumor cell ontogeny is determined by consequences of gene expression that recapitulate events important in embryonic lung development. Using oligonucleotide microarrays, we acquired gene profiles from 32 microdissected non-small-cell lung tumors. We determined the 100 top-ranked marker genes for adenocarcinoma, squamous cell, large cell, and carcinoid using nearest neighbor analysis. Results were validated by immunostaining for 11 selected proteins using a tissue microarray representing 80 tumors. Gene expression data of lung development were accessed from a publicly available dataset generated with the murine Mu11k genome microarray. Self-organized mapping identified two temporally distinct clusters of murine orthologues. Supervised clustering of lung development data showed large-cell carcinoma gene orthologues were in a cluster expressed in pseudoglandular and canalicular stages whereas adenocarcinoma homologues were predominantly in a cluster expressed later in the terminal sac and alveolar stages of murine lung development. Representative large-cell genes (E2F3, MYBL2, HDAC2, CDK4, PCNA) are expressed in the nucleus and are associated with cell cycle and proliferation. In contrast, adenocarcinoma genes are associated with lung-specific transcription pathways (SFTPB, TTF-1), cell adhesion, and signal transduction. In sum, non-small-cell lung tumors histology gene profiles suggest mechanisms relevant to ontogeny and clinical course. Adenocarcinoma genes are associated with differentiation and glandular formation whereas large-cell genes are associated with proliferation and differentiation arrest. The identification of developmentally regulated pathways active in tumorigenesis provides insights into lung carcinogenesis and suggests early steps may differ according to the eventual tumor morphology. PMID:14578194

  12. Microarray Data Processing Techniques for Genome-Scale Network Inference from Large Public Repositories.

    PubMed

    Chockalingam, Sriram; Aluru, Maneesha; Aluru, Srinivas

    2016-09-19

    Pre-processing of microarray data is a well-studied problem. Furthermore, all popular platforms come with their own recommended best practices for differential analysis of genes. However, for genome-scale network inference using microarray data collected from large public repositories, these methods filter out a considerable number of genes. This is primarily due to the effects of aggregating a diverse array of experiments with different technical and biological scenarios. Here we introduce a pre-processing pipeline suitable for inferring genome-scale gene networks from large microarray datasets. We show that partitioning of the available microarray datasets according to biological relevance into tissue- and process-specific categories significantly extends the limits of downstream network construction. We demonstrate the effectiveness of our pre-processing pipeline by inferring genome-scale networks for the model plant Arabidopsis thaliana using two different construction methods and a collection of 11,760 Affymetrix ATH1 microarray chips. Our pre-processing pipeline and the datasets used in this paper are made available at http://alurulab.cc.gatech.edu/microarray-pp.

  13. Chipster: user-friendly analysis software for microarray and other high-throughput data.

    PubMed

    Kallio, M Aleksi; Tuimala, Jarno T; Hupponen, Taavi; Klemelä, Petri; Gentile, Massimiliano; Scheinin, Ilari; Koski, Mikko; Käki, Janne; Korpelainen, Eija I

    2011-10-14

    The growth of high-throughput technologies such as microarrays and next generation sequencing has been accompanied by active research in data analysis methodology, producing new analysis methods at a rapid pace. While most of the newly developed methods are freely available, their use requires substantial computational skills. In order to enable non-programming biologists to benefit from the method development in a timely manner, we have created the Chipster software. Chipster (http://chipster.csc.fi/) brings a powerful collection of data analysis methods within the reach of bioscientists via its intuitive graphical user interface. Users can analyze and integrate different data types such as gene expression, miRNA and aCGH. The analysis functionality is complemented with rich interactive visualizations, allowing users to select datapoints and create new gene lists based on these selections. Importantly, users can save the performed analysis steps as reusable, automatic workflows, which can also be shared with other users. Being a versatile and easily extendable platform, Chipster can be used for microarray, proteomics and sequencing data. In this article we describe its comprehensive collection of analysis and visualization tools for microarray data using three case studies. Chipster is a user-friendly analysis software for high-throughput data. Its intuitive graphical user interface enables biologists to access a powerful collection of data analysis and integration tools, and to visualize data interactively. Users can collaborate by sharing analysis sessions and workflows. Chipster is open source, and the server installation package is freely available.

  14. Chipster: user-friendly analysis software for microarray and other high-throughput data

    PubMed Central

    2011-01-01

    Background The growth of high-throughput technologies such as microarrays and next generation sequencing has been accompanied by active research in data analysis methodology, producing new analysis methods at a rapid pace. While most of the newly developed methods are freely available, their use requires substantial computational skills. In order to enable non-programming biologists to benefit from the method development in a timely manner, we have created the Chipster software. Results Chipster (http://chipster.csc.fi/) brings a powerful collection of data analysis methods within the reach of bioscientists via its intuitive graphical user interface. Users can analyze and integrate different data types such as gene expression, miRNA and aCGH. The analysis functionality is complemented with rich interactive visualizations, allowing users to select datapoints and create new gene lists based on these selections. Importantly, users can save the performed analysis steps as reusable, automatic workflows, which can also be shared with other users. Being a versatile and easily extendable platform, Chipster can be used for microarray, proteomics and sequencing data. In this article we describe its comprehensive collection of analysis and visualization tools for microarray data using three case studies. Conclusions Chipster is a user-friendly analysis software for high-throughput data. Its intuitive graphical user interface enables biologists to access a powerful collection of data analysis and integration tools, and to visualize data interactively. Users can collaborate by sharing analysis sessions and workflows. Chipster is open source, and the server installation package is freely available. PMID:21999641

  15. A database for the analysis of immunity genes in Drosophila: PADMA database.

    PubMed

    Lee, Mark J; Mondal, Ariful; Small, Chiyedza; Paddibhatla, Indira; Kawaguchi, Akira; Govind, Shubha

    2011-01-01

    While microarray experiments generate voluminous data, discerning trends that support an existing or alternative paradigm is challenging. To synergize hypothesis building and testing, we designed the Pathogen Associated Drosophila MicroArray (PADMA) database for easy retrieval and comparison of microarray results from immunity-related experiments (www.padmadatabase.org). PADMA also allows biologists to upload their microarray-results and compare it with datasets housed within PADMA. We tested PADMA using a preliminary dataset from Ganaspis xanthopoda-infected fly larvae, and uncovered unexpected trends in gene expression, reshaping our hypothesis. Thus, the PADMA database will be a useful resource to fly researchers to evaluate, revise, and refine hypotheses.

  16. Enhancing Interdisciplinary Mathematics and Biology Education: A Microarray Data Analysis Course Bridging These Disciplines

    ERIC Educational Resources Information Center

    Tra, Yolande V.; Evans, Irene M.

    2010-01-01

    "BIO2010" put forth the goal of improving the mathematical educational background of biology students. The analysis and interpretation of microarray high-dimensional data can be very challenging and is best done by a statistician and a biologist working and teaching in a collaborative manner. We set up such a collaboration and designed a course on…

  17. Diagnostic Yield of Chromosomal Microarray Analysis in a Cohort of Patients with Autism Spectrum Disorders from a Highly Consanguineous Population

    ERIC Educational Resources Information Center

    Al-Mamari, Watfa; Al-Saegh, Abeer; Al-Kindy, Adila; Bruwer, Zandre; Al-Murshedi, Fathiya; Al-Thihli, Khalid

    2015-01-01

    Autism Spectrum Disorders are a complicated group of disorders characterized with heterogeneous genetic etiologies. The genetic investigations for this group of disorders have expanded considerably over the past decade. In our study we designed a tired approach and studied the diagnostic yield of chromosomal microarray analysis on patients…

  18. Immunological Targeting of Tumor Initiating Prostate Cancer Cells

    DTIC Science & Technology

    2014-10-01

    clinically using well-accepted immuno-competent animal models. 2) Keywords: Prostate Cancer, Lymphocyte, Vaccine, Antibody 3) Overall Project Summary...castrate animals . Task 1: Identify and verify antigenic targets from CAstrate Resistant Luminal Epithelial Cells (CRLEC) (months 1-16... animals per group will be processed to derive sufficient RNA for microarray analysis; the experiment will be repeated x 3. Microarray analysis will

  19. MiMiR – an integrated platform for microarray data sharing, mining and analysis

    PubMed Central

    Tomlinson, Chris; Thimma, Manjula; Alexandrakis, Stelios; Castillo, Tito; Dennis, Jayne L; Brooks, Anthony; Bradley, Thomas; Turnbull, Carly; Blaveri, Ekaterini; Barton, Geraint; Chiba, Norie; Maratou, Klio; Soutter, Pat; Aitman, Tim; Game, Laurence

    2008-01-01

    Background Despite considerable efforts within the microarray community for standardising data format, content and description, microarray technologies present major challenges in managing, sharing, analysing and re-using the large amount of data generated locally or internationally. Additionally, it is recognised that inconsistent and low quality experimental annotation in public data repositories significantly compromises the re-use of microarray data for meta-analysis. MiMiR, the Microarray data Mining Resource was designed to tackle some of these limitations and challenges. Here we present new software components and enhancements to the original infrastructure that increase accessibility, utility and opportunities for large scale mining of experimental and clinical data. Results A user friendly Online Annotation Tool allows researchers to submit detailed experimental information via the web at the time of data generation rather than at the time of publication. This ensures the easy access and high accuracy of meta-data collected. Experiments are programmatically built in the MiMiR database from the submitted information and details are systematically curated and further annotated by a team of trained annotators using a new Curation and Annotation Tool. Clinical information can be annotated and coded with a clinical Data Mapping Tool within an appropriate ethical framework. Users can visualise experimental annotation, assess data quality, download and share data via a web-based experiment browser called MiMiR Online. All requests to access data in MiMiR are routed through a sophisticated middleware security layer thereby allowing secure data access and sharing amongst MiMiR registered users prior to publication. Data in MiMiR can be mined and analysed using the integrated EMAAS open source analysis web portal or via export of data and meta-data into Rosetta Resolver data analysis package. Conclusion The new MiMiR suite of software enables systematic and effective capture of extensive experimental and clinical information with the highest MIAME score, and secure data sharing prior to publication. MiMiR currently contains more than 150 experiments corresponding to over 3000 hybridisations and supports the Microarray Centre's large microarray user community and two international consortia. The MiMiR flexible and scalable hardware and software architecture enables secure warehousing of thousands of datasets, including clinical studies, from microarray and potentially other -omics technologies. PMID:18801157

  20. MiMiR--an integrated platform for microarray data sharing, mining and analysis.

    PubMed

    Tomlinson, Chris; Thimma, Manjula; Alexandrakis, Stelios; Castillo, Tito; Dennis, Jayne L; Brooks, Anthony; Bradley, Thomas; Turnbull, Carly; Blaveri, Ekaterini; Barton, Geraint; Chiba, Norie; Maratou, Klio; Soutter, Pat; Aitman, Tim; Game, Laurence

    2008-09-18

    Despite considerable efforts within the microarray community for standardising data format, content and description, microarray technologies present major challenges in managing, sharing, analysing and re-using the large amount of data generated locally or internationally. Additionally, it is recognised that inconsistent and low quality experimental annotation in public data repositories significantly compromises the re-use of microarray data for meta-analysis. MiMiR, the Microarray data Mining Resource was designed to tackle some of these limitations and challenges. Here we present new software components and enhancements to the original infrastructure that increase accessibility, utility and opportunities for large scale mining of experimental and clinical data. A user friendly Online Annotation Tool allows researchers to submit detailed experimental information via the web at the time of data generation rather than at the time of publication. This ensures the easy access and high accuracy of meta-data collected. Experiments are programmatically built in the MiMiR database from the submitted information and details are systematically curated and further annotated by a team of trained annotators using a new Curation and Annotation Tool. Clinical information can be annotated and coded with a clinical Data Mapping Tool within an appropriate ethical framework. Users can visualise experimental annotation, assess data quality, download and share data via a web-based experiment browser called MiMiR Online. All requests to access data in MiMiR are routed through a sophisticated middleware security layer thereby allowing secure data access and sharing amongst MiMiR registered users prior to publication. Data in MiMiR can be mined and analysed using the integrated EMAAS open source analysis web portal or via export of data and meta-data into Rosetta Resolver data analysis package. The new MiMiR suite of software enables systematic and effective capture of extensive experimental and clinical information with the highest MIAME score, and secure data sharing prior to publication. MiMiR currently contains more than 150 experiments corresponding to over 3000 hybridisations and supports the Microarray Centre's large microarray user community and two international consortia. The MiMiR flexible and scalable hardware and software architecture enables secure warehousing of thousands of datasets, including clinical studies, from microarray and potentially other -omics technologies.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersen, G.L.; He, Z.; DeSantis, T.Z.

    Microarrays have proven to be a useful and high-throughput method to provide targeted DNA sequence information for up to many thousands of specific genetic regions in a single test. A microarray consists of multiple DNA oligonucleotide probes that, under high stringency conditions, hybridize only to specific complementary nucleic acid sequences (targets). A fluorescent signal indicates the presence and, in many cases, the abundance of genetic regions of interest. In this chapter we will look at how microarrays are used in microbial ecology, especially with the recent increase in microbial community DNA sequence data. Of particular interest to microbial ecologists, phylogeneticmore » microarrays are used for the analysis of phylotypes in a community and functional gene arrays are used for the analysis of functional genes, and, by inference, phylotypes in environmental samples. A phylogenetic microarray that has been developed by the Andersen laboratory, the PhyloChip, will be discussed as an example of a microarray that targets the known diversity within the 16S rRNA gene to determine microbial community composition. Using multiple, confirmatory probes to increase the confidence of detection and a mismatch probe for every perfect match probe to minimize the effect of cross-hybridization by non-target regions, the PhyloChip is able to simultaneously identify any of thousands of taxa present in an environmental sample. The PhyloChip is shown to reveal greater diversity within a community than rRNA gene sequencing due to the placement of the entire gene product on the microarray compared with the analysis of up to thousands of individual molecules by traditional sequencing methods. A functional gene array that has been developed by the Zhou laboratory, the GeoChip, will be discussed as an example of a microarray that dynamically identifies functional activities of multiple members within a community. The recent version of GeoChip contains more than 24,000 50mer oligonucleotide probes and covers more than 10,000 gene sequences in 150 gene categories involved in carbon, nitrogen, sulfur, and phosphorus cycling, metal resistance and reduction, and organic contaminant degradation. GeoChip can be used as a generic tool for microbial community analysis, and also link microbial community structure to ecosystem functioning. Examples of the application of both arrays in different environmental samples will be described in the two subsequent sections.« less

  2. Evaluation of a low density DNA microarray for small B-cell non-Hodgkin lymphoma differential diagnosis.

    PubMed

    Gillet, Jean-Pierre; Molina, Thierry Jo; Jamart, Jacques; Gaulard, Philippe; Leroy, Karen; Briere, Josette; Theate, Ivan; Thieblemont, Catherine; Bosly, Andre; Herin, Michel; Hamels, Jacques; Remacle, Jose

    2009-03-01

    Lymphomas are classified according to the World Health Organisation (WHO) classification which defines subtypes on the basis of clinical, morphological, immunophenotypic, molecular and cytogenetic criteria. Differential diagnosis of the subtypes is sometimes difficult, especially for small B-cell lymphoma (SBCL). Standardisation of molecular genetic assays using multiple gene expression analysis by microarrays could be a useful complement to the current diagnosis. The aim of the present study was to develop a low density DNA microarray for the analysis of 107 genes associated with B-cell non-Hodgkin lymphoma and to evaluate its performance in the diagnosis of SBCL. A predictive tool based on Fisher discriminant analysis using a training set of 40 patients including four different subtypes (follicular lymphoma n = 15, mantle cell lymphoma n = 7, B-cell chronic lymphocytic leukemia n = 6 and splenic marginal zone lymphoma n = 12) was designed. A short additional preliminary analysis to gauge the accuracy of this signature was then performed on an external set of nine patients. Using this model, eight of nine of those samples were classified successfully. This pilot study demonstrates that such a microarray tool may be a promising diagnostic approach for small B-cell non-Hodgkin lymphoma.

  3. MAGMA: analysis of two-channel microarrays made easy.

    PubMed

    Rehrauer, Hubert; Zoller, Stefan; Schlapbach, Ralph

    2007-07-01

    The web application MAGMA provides a simple and intuitive interface to identify differentially expressed genes from two-channel microarray data. While the underlying algorithms are not superior to those of similar web applications, MAGMA is particularly user friendly and can be used without prior training. The user interface guides the novice user through the most typical microarray analysis workflow consisting of data upload, annotation, normalization and statistical analysis. It automatically generates R-scripts that document MAGMA's entire data processing steps, thereby allowing the user to regenerate all results in his local R installation. The implementation of MAGMA follows the model-view-controller design pattern that strictly separates the R-based statistical data processing, the web-representation and the application logic. This modular design makes the application flexible and easily extendible by experts in one of the fields: statistical microarray analysis, web design or software development. State-of-the-art Java Server Faces technology was used to generate the web interface and to perform user input processing. MAGMA's object-oriented modular framework makes it easily extendible and applicable to other fields and demonstrates that modern Java technology is also suitable for rather small and concise academic projects. MAGMA is freely available at www.magma-fgcz.uzh.ch.

  4. Tomato Expression Database (TED): a suite of data presentation and analysis tools

    PubMed Central

    Fei, Zhangjun; Tang, Xuemei; Alba, Rob; Giovannoni, James

    2006-01-01

    The Tomato Expression Database (TED) includes three integrated components. The Tomato Microarray Data Warehouse serves as a central repository for raw gene expression data derived from the public tomato cDNA microarray. In addition to expression data, TED stores experimental design and array information in compliance with the MIAME guidelines and provides web interfaces for researchers to retrieve data for their own analysis and use. The Tomato Microarray Expression Database contains normalized and processed microarray data for ten time points with nine pair-wise comparisons during fruit development and ripening in a normal tomato variety and nearly isogenic single gene mutants impacting fruit development and ripening. Finally, the Tomato Digital Expression Database contains raw and normalized digital expression (EST abundance) data derived from analysis of the complete public tomato EST collection containing >150 000 ESTs derived from 27 different non-normalized EST libraries. This last component also includes tools for the comparison of tomato and Arabidopsis digital expression data. A set of query interfaces and analysis, and visualization tools have been developed and incorporated into TED, which aid users in identifying and deciphering biologically important information from our datasets. TED can be accessed at . PMID:16381976

  5. Tomato Expression Database (TED): a suite of data presentation and analysis tools.

    PubMed

    Fei, Zhangjun; Tang, Xuemei; Alba, Rob; Giovannoni, James

    2006-01-01

    The Tomato Expression Database (TED) includes three integrated components. The Tomato Microarray Data Warehouse serves as a central repository for raw gene expression data derived from the public tomato cDNA microarray. In addition to expression data, TED stores experimental design and array information in compliance with the MIAME guidelines and provides web interfaces for researchers to retrieve data for their own analysis and use. The Tomato Microarray Expression Database contains normalized and processed microarray data for ten time points with nine pair-wise comparisons during fruit development and ripening in a normal tomato variety and nearly isogenic single gene mutants impacting fruit development and ripening. Finally, the Tomato Digital Expression Database contains raw and normalized digital expression (EST abundance) data derived from analysis of the complete public tomato EST collection containing >150,000 ESTs derived from 27 different non-normalized EST libraries. This last component also includes tools for the comparison of tomato and Arabidopsis digital expression data. A set of query interfaces and analysis, and visualization tools have been developed and incorporated into TED, which aid users in identifying and deciphering biologically important information from our datasets. TED can be accessed at http://ted.bti.cornell.edu.

  6. Development and application of a microarray meter tool to optimize microarray experiments

    PubMed Central

    Rouse, Richard JD; Field, Katrine; Lapira, Jennifer; Lee, Allen; Wick, Ivan; Eckhardt, Colleen; Bhasker, C Ramana; Soverchia, Laura; Hardiman, Gary

    2008-01-01

    Background Successful microarray experimentation requires a complex interplay between the slide chemistry, the printing pins, the nucleic acid probes and targets, and the hybridization milieu. Optimization of these parameters and a careful evaluation of emerging slide chemistries are a prerequisite to any large scale array fabrication effort. We have developed a 'microarray meter' tool which assesses the inherent variations associated with microarray measurement prior to embarking on large scale projects. Findings The microarray meter consists of nucleic acid targets (reference and dynamic range control) and probe components. Different plate designs containing identical probe material were formulated to accommodate different robotic and pin designs. We examined the variability in probe quality and quantity (as judged by the amount of DNA printed and remaining post-hybridization) using three robots equipped with capillary printing pins. Discussion The generation of microarray data with minimal variation requires consistent quality control of the (DNA microarray) manufacturing and experimental processes. Spot reproducibility is a measure primarily of the variations associated with printing. The microarray meter assesses array quality by measuring the DNA content for every feature. It provides a post-hybridization analysis of array quality by scoring probe performance using three metrics, a) a measure of variability in the signal intensities, b) a measure of the signal dynamic range and c) a measure of variability of the spot morphologies. PMID:18710498

  7. High-throughput DNA microarray detection of pathogenic bacteria in shallow well groundwater in the Kathmandu Valley, Nepal.

    PubMed

    Inoue, Daisuke; Hinoura, Takuji; Suzuki, Noriko; Pang, Junqin; Malla, Rabin; Shrestha, Sadhana; Chapagain, Saroj Kumar; Matsuzawa, Hiroaki; Nakamura, Takashi; Tanaka, Yasuhiro; Ike, Michihiko; Nishida, Kei; Sei, Kazunari

    2015-01-01

    Because of heavy dependence on groundwater for drinking water and other domestic use, microbial contamination of groundwater is a serious problem in the Kathmandu Valley, Nepal. This study investigated comprehensively the occurrence of pathogenic bacteria in shallow well groundwater in the Kathmandu Valley by applying DNA microarray analysis targeting 941 pathogenic bacterial species/groups. Water quality measurements found significant coliform (fecal) contamination in 10 of the 11 investigated groundwater samples and significant nitrogen contamination in some samples. The results of DNA microarray analysis revealed the presence of 1-37 pathogen species/groups, including 1-27 biosafety level 2 ones, in 9 of the 11 groundwater samples. While the detected pathogens included several feces- and animal-related ones, those belonging to Legionella and Arthrobacter, which were considered not to be directly associated with feces, were detected prevalently. This study could provide a rough picture of overall pathogenic bacterial contamination in the Kathmandu Valley, and demonstrated the usefulness of DNA microarray analysis as a comprehensive screening tool of a wide variety of pathogenic bacteria.

  8. Microarray Analysis of Long Noncoding RNAs in Female Diabetic Peripheral Neuropathy Patients.

    PubMed

    Luo, Lin; Ji, Lin-Dan; Cai, Jiang-Jia; Feng, Mei; Zhou, Mi; Hu, Su-Pei; Xu, Jin; Zhou, Wen-Hua

    2018-01-01

    Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes mellitus (DM). Because of its controversial pathogenesis, DPN is still not diagnosed or managed properly in most patients. In this study, human lncRNA microarrays were used to identify the differentially expressed lncRNAs in DM and DPN patients, and some of the discovered lncRNAs were further validated in additional 78 samples by quantitative realtime PCR (qRT-PCR). The microarray analysis identified 446 and 1327 differentially expressed lncRNAs in DM and DPN, respectively. The KEGG pathway analysis further revealed that the differentially expressed lncRNA-coexpressed mRNAs between DPN and DM groups were significantly enriched in the MAPK signaling pathway. The lncRNA/mRNA coexpression network indicated that BDNF and TRAF2 correlated with 6 lncRNAs. The qRT-PCR confirmed the initial microarray results. These findings demonstrated that the interplay between lncRNAs and mRNA may be involved in the pathogenesis of DPN, especially the neurotrophin-MAPK signaling pathway, thus providing relevant information for future studies. © 2018 The Author(s). Published by S. Karger AG, Basel.

  9. Clinical application of chromosomal microarray analysis for the prenatal diagnosis of chromosomal abnormalities and copy number variations in fetuses with congenital heart disease.

    PubMed

    Xia, Yu; Yang, Yongchao; Huang, Shufang; Wu, Yueheng; Li, Ping; Zhuang, Jian

    2018-03-24

    This study aimed to determine chromosomal abnormalities and copy number variations (CNVs) in fetuses with congenital heart disease (CHD) by chromosomal microarray analysis (CMA). One hundred and ten cases with CHD detected by prenatal echocardiography were enrolled in the study; 27 cases were simple CHDs, and 83 were complex CHDs. Chromosomal microarray analysis was performed on the Affymetrix CytoScan HD platform. All annotated CNVs were validated by quantitative PCR. Chromosomal microarray analysis identified 6 cases with chromosomal abnormalities, including 2 cases with trisomy 21, 2 cases with trisomy 18, 1 case with trisomy 13, and 1 unusual case of mosaic trisomy 21. Pathogenic CNVs were detected in 15.5% (17/110) of the fetuses with CHDs, including 13 cases with CHD-associated CNVs. We further identified 10 genes as likely novel CHD candidate genes through gene functional enrichment analysis. We also found that pathogenic CMA results impacted the rate of pregnancy termination. This study shows that CMA is particularly effective for identifying chromosomal abnormalities and CNVs in fetuses with CHDs as well as having an effect on obstetrical outcomes. The elucidation of the genetic basis of CHDs will continue to expand our understanding of the etiology of CHDs. © 2018 John Wiley & Sons, Ltd.

  10. An evaluation of tyramide signal amplification and archived fixed and frozen tissue in microarray gene expression analysis

    PubMed Central

    Karsten, Stanislav L.; Van Deerlin, Vivianna M. D.; Sabatti, Chiara; Gill, Lisa H.; Geschwind, Daniel H.

    2002-01-01

    Archival formalin-fixed, paraffin-embedded and ethanol-fixed tissues represent a potentially invaluable resource for gene expression analysis, as they are the most widely available material for studies of human disease. Little data are available evaluating whether RNA obtained from fixed (archival) tissues could produce reliable and reproducible microarray expression data. Here we compare the use of RNA isolated from human archival tissues fixed in ethanol and formalin to frozen tissue in cDNA microarray experiments. Since an additional factor that can limit the utility of archival tissue is the often small quantities available, we also evaluate the use of the tyramide signal amplification method (TSA), which allows the use of small amounts of RNA. Detailed analysis indicates that TSA provides a consistent and reproducible signal amplification method for cDNA microarray analysis, across both arrays and the genes tested. Analysis of this method also highlights the importance of performing non-linear channel normalization and dye switching. Furthermore, archived, fixed specimens can perform well, but not surprisingly, produce more variable results than frozen tissues. Consistent results are more easily obtainable using ethanol-fixed tissues, whereas formalin-fixed tissue does not typically provide a useful substrate for cDNA synthesis and labeling. PMID:11788730

  11. MIGS-GPU: Microarray Image Gridding and Segmentation on the GPU.

    PubMed

    Katsigiannis, Stamos; Zacharia, Eleni; Maroulis, Dimitris

    2017-05-01

    Complementary DNA (cDNA) microarray is a powerful tool for simultaneously studying the expression level of thousands of genes. Nevertheless, the analysis of microarray images remains an arduous and challenging task due to the poor quality of the images that often suffer from noise, artifacts, and uneven background. In this study, the MIGS-GPU [Microarray Image Gridding and Segmentation on Graphics Processing Unit (GPU)] software for gridding and segmenting microarray images is presented. MIGS-GPU's computations are performed on the GPU by means of the compute unified device architecture (CUDA) in order to achieve fast performance and increase the utilization of available system resources. Evaluation on both real and synthetic cDNA microarray images showed that MIGS-GPU provides better performance than state-of-the-art alternatives, while the proposed GPU implementation achieves significantly lower computational times compared to the respective CPU approaches. Consequently, MIGS-GPU can be an advantageous and useful tool for biomedical laboratories, offering a user-friendly interface that requires minimum input in order to run.

  12. The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements

    PubMed Central

    2012-01-01

    Over the last decade, the introduction of microarray technology has had a profound impact on gene expression research. The publication of studies with dissimilar or altogether contradictory results, obtained using different microarray platforms to analyze identical RNA samples, has raised concerns about the reliability of this technology. The MicroArray Quality Control (MAQC) project was initiated to address these concerns, as well as other performance and data analysis issues. Expression data on four titration pools from two distinct reference RNA samples were generated at multiple test sites using a variety of microarray-based and alternative technology platforms. Here we describe the experimental design and probe mapping efforts behind the MAQC project. We show intraplatform consistency across test sites as well as a high level of interplatform concordance in terms of genes identified as differentially expressed. This study provides a resource that represents an important first step toward establishing a framework for the use of microarrays in clinical and regulatory settings. PMID:16964229

  13. Women's experiences receiving abnormal prenatal chromosomal microarray testing results.

    PubMed

    Bernhardt, Barbara A; Soucier, Danielle; Hanson, Karen; Savage, Melissa S; Jackson, Laird; Wapner, Ronald J

    2013-02-01

    Genomic microarrays can detect copy-number variants not detectable by conventional cytogenetics. This technology is diffusing rapidly into prenatal settings even though the clinical implications of many copy-number variants are currently unknown. We conducted a qualitative pilot study to explore the experiences of women receiving abnormal results from prenatal microarray testing performed in a research setting. Participants were a subset of women participating in a multicenter prospective study "Prenatal Cytogenetic Diagnosis by Array-based Copy Number Analysis." Telephone interviews were conducted with 23 women receiving abnormal prenatal microarray results. We found that five key elements dominated the experiences of women who had received abnormal prenatal microarray results: an offer too good to pass up, blindsided by the results, uncertainty and unquantifiable risks, need for support, and toxic knowledge. As prenatal microarray testing is increasingly used, uncertain findings will be common, resulting in greater need for careful pre- and posttest counseling, and more education of and resources for providers so they can adequately support the women who are undergoing testing.

  14. Fuzzy support vector machine: an efficient rule-based classification technique for microarrays.

    PubMed

    Hajiloo, Mohsen; Rabiee, Hamid R; Anooshahpour, Mahdi

    2013-01-01

    The abundance of gene expression microarray data has led to the development of machine learning algorithms applicable for tackling disease diagnosis, disease prognosis, and treatment selection problems. However, these algorithms often produce classifiers with weaknesses in terms of accuracy, robustness, and interpretability. This paper introduces fuzzy support vector machine which is a learning algorithm based on combination of fuzzy classifiers and kernel machines for microarray classification. Experimental results on public leukemia, prostate, and colon cancer datasets show that fuzzy support vector machine applied in combination with filter or wrapper feature selection methods develops a robust model with higher accuracy than the conventional microarray classification models such as support vector machine, artificial neural network, decision trees, k nearest neighbors, and diagonal linear discriminant analysis. Furthermore, the interpretable rule-base inferred from fuzzy support vector machine helps extracting biological knowledge from microarray data. Fuzzy support vector machine as a new classification model with high generalization power, robustness, and good interpretability seems to be a promising tool for gene expression microarray classification.

  15. Differential binding of calmodulin-related proteins to their targets revealed through high-density Arabidopsis protein microarrays

    PubMed Central

    Popescu, Sorina C.; Popescu, George V.; Bachan, Shawn; Zhang, Zimei; Seay, Montrell; Gerstein, Mark; Snyder, Michael; Dinesh-Kumar, S. P.

    2007-01-01

    Calmodulins (CaMs) are the most ubiquitous calcium sensors in eukaryotes. A number of CaM-binding proteins have been identified through classical methods, and many proteins have been predicted to bind CaMs based on their structural homology with known targets. However, multicellular organisms typically contain many CaM-like (CML) proteins, and a global identification of their targets and specificity of interaction is lacking. In an effort to develop a platform for large-scale analysis of proteins in plants we have developed a protein microarray and used it to study the global analysis of CaM/CML interactions. An Arabidopsis thaliana expression collection containing 1,133 ORFs was generated and used to produce proteins with an optimized medium-throughput plant-based expression system. Protein microarrays were prepared and screened with several CaMs/CMLs. A large number of previously known and novel CaM/CML targets were identified, including transcription factors, receptor and intracellular protein kinases, F-box proteins, RNA-binding proteins, and proteins of unknown function. Multiple CaM/CML proteins bound many binding partners, but the majority of targets were specific to one or a few CaMs/CMLs indicating that different CaM family members function through different targets. Based on our analyses, the emergent CaM/CML interactome is more extensive than previously predicted. Our results suggest that calcium functions through distinct CaM/CML proteins to regulate a wide range of targets and cellular activities. PMID:17360592

  16. Comparison of gene expression responses to hypoxia in viviparous (Xiphophorus) and oviparous (Oryzias) fishes using a medaka microarray.

    PubMed

    Boswell, Mikki G; Wells, Melissa C; Kirk, Lyndsey M; Ju, Zhenlin; Zhang, Ziping; Booth, Rachell E; Walter, Ronald B

    2009-03-01

    Gene expression profiling using DNA microarray technology is a useful tool for assessing gene transcript level responses after an organism is exposed to environmental stress. Herein, we detail results from studies using an 8 k medaka (Oryzias latipes) microarray to assess modulated gene expression patterns upon hypoxia exposure of the live-bearing aquaria fish, Xiphophorus maculatus. To assess the reproducibility and reliability of using the medaka array in cross-genus hybridization, a two-factor ANOVA analysis of gene expression was employed. The data show the tissue source of the RNA used for array hybridization contributed more to the observed response of modulated gene targets than did the species source of the RNA. In addition, hierarchical clustering via heat map analyses of groupings of tissues and species (Xiphophorus and medaka) suggests that hypoxia induced similar responses in the same tissues from these two diverse aquatic model organisms. Our Xiphophorus results indicate 206 brain, 37 liver, and 925 gill gene targets exhibit hypoxia induced expression changes. Analysis of the Xiphophorus data to determine those features exhibiting a significant (p<0.05)+/-3 fold change produced only two gene targets within brain tissue and 80 features within gill tissue. Of these 82 characterized features, 39 were identified via homology searching (cut-off E-value of 1 x 10(-5)) and placed into one or more biological process gene ontology groups. Among these 39 genes, metabolic energy changes and manipulation was the most affected biological pathway (13 genes).

  17. MobilomeFINDER: web-based tools for in silico and experimental discovery of bacterial genomic islands

    PubMed Central

    Ou, Hong-Yu; He, Xinyi; Harrison, Ewan M.; Kulasekara, Bridget R.; Thani, Ali Bin; Kadioglu, Aras; Lory, Stephen; Hinton, Jay C. D.; Barer, Michael R.; Rajakumar, Kumar

    2007-01-01

    MobilomeFINDER (http://mml.sjtu.edu.cn/MobilomeFINDER) is an interactive online tool that facilitates bacterial genomic island or ‘mobile genome’ (mobilome) discovery; it integrates the ArrayOme and tRNAcc software packages. ArrayOme utilizes a microarray-derived comparative genomic hybridization input data set to generate ‘inferred contigs’ produced by merging adjacent genes classified as ‘present’. Collectively these ‘fragments’ represent a hypothetical ‘microarray-visualized genome (MVG)’. ArrayOme permits recognition of discordances between physical genome and MVG sizes, thereby enabling identification of strains rich in microarray-elusive novel genes. Individual tRNAcc tools facilitate automated identification of genomic islands by comparative analysis of the contents and contexts of tRNA sites and other integration hotspots in closely related sequenced genomes. Accessory tools facilitate design of hotspot-flanking primers for in silico and/or wet-science-based interrogation of cognate loci in unsequenced strains and analysis of islands for features suggestive of foreign origins; island-specific and genome-contextual features are tabulated and represented in schematic and graphical forms. To date we have used MobilomeFINDER to analyse several Enterobacteriaceae, Pseudomonas aeruginosa and Streptococcus suis genomes. MobilomeFINDER enables high-throughput island identification and characterization through increased exploitation of emerging sequence data and PCR-based profiling of unsequenced test strains; subsequent targeted yeast recombination-based capture permits full-length sequencing and detailed functional studies of novel genomic islands. PMID:17537813

  18. Defining the interaction of human soluble lectin ZG16p and mycobacterial phosphatidylinositol mannosides

    PubMed Central

    Ikeda, Akemi; Kojima-Aikawa, Kyoko; Taniguchi, Naoyuki; Varón Silva, Daniel; Feizi, Ten; Seeberger, Peter H.; Yamaguchi, Yoshiki

    2018-01-01

    ZG16p is a soluble mammalian lectin that interacts with mannose and heparan sulfate. Here we describe detailed analyses of the interactions of human ZG16p with mycobacterial phosphatidylinositol mannosides (PIMs), using glycan microarray and NMR. Pathogen-related glycan microarray analysis identified phosphatidylinositol mono- and di-mannosides (PIM1 and PIM2) as novel ligand candidates of ZG16p. Saturation Transfer Difference (STD) NMR and transferred NOE experiments with chemically synthesized PIM glycans indicate that PIMs preferentially interacts with ZG16p using the mannose residues. Binding site of PIMs is identified by chemical shift perturbation experiments using uniformly 15N-labeled ZG16p. NMR results with docking simulations suggest a binding mode of ZG16p and PIM glycan, which would help to consider the physiological role of ZG16p. PMID:25919894

  19. Addressable droplet microarrays for single cell protein analysis.

    PubMed

    Salehi-Reyhani, Ali; Burgin, Edward; Ces, Oscar; Willison, Keith R; Klug, David R

    2014-11-07

    Addressable droplet microarrays are potentially attractive as a way to achieve miniaturised, reduced volume, high sensitivity analyses without the need to fabricate microfluidic devices or small volume chambers. We report a practical method for producing oil-encapsulated addressable droplet microarrays which can be used for such analyses. To demonstrate their utility, we undertake a series of single cell analyses, to determine the variation in copy number of p53 proteins in cells of a human cancer cell line.

  20. Expression Profile of Long Noncoding RNAs in Human Earlobe Keloids: A Microarray Analysis

    PubMed Central

    Guo, Liang; Xu, Kai; Yan, Hongbo; Feng, Haifeng

    2016-01-01

    Background. Long noncoding RNAs (lncRNAs) play key roles in a wide range of biological processes and their deregulation results in human disease, including keloids. Earlobe keloid is a type of pathological skin scar, and the molecular pathogenesis of this disease remains largely unknown. Methods. In this study, microarray analysis was used to determine the expression profiles of lncRNAs and mRNAs between 3 pairs of earlobe keloid and normal specimens. Gene Ontology (GO) categories and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to identify the main functions of the differentially expressed genes and earlobe keloid-related pathways. Results. A total of 2068 lncRNAs and 1511 mRNAs were differentially expressed between earlobe keloid and normal tissues. Among them, 1290 lncRNAs and 1092 mRNAs were upregulated, and 778 lncRNAs and 419 mRNAs were downregulated. Pathway analysis revealed that 24 pathways were correlated to the upregulated transcripts, while 11 pathways were associated with the downregulated transcripts. Conclusion. We characterized the expression profiles of lncRNA and mRNA in earlobe keloids and suggest that lncRNAs may serve as diagnostic biomarkers for the therapy of earlobe keloid. PMID:28101509

  1. GOTree Machine (GOTM): a web-based platform for interpreting sets of interesting genes using Gene Ontology hierarchies

    PubMed Central

    Zhang, Bing; Schmoyer, Denise; Kirov, Stefan; Snoddy, Jay

    2004-01-01

    Background Microarray and other high-throughput technologies are producing large sets of interesting genes that are difficult to analyze directly. Bioinformatics tools are needed to interpret the functional information in the gene sets. Results We have created a web-based tool for data analysis and data visualization for sets of genes called GOTree Machine (GOTM). This tool was originally intended to analyze sets of co-regulated genes identified from microarray analysis but is adaptable for use with other gene sets from other high-throughput analyses. GOTree Machine generates a GOTree, a tree-like structure to navigate the Gene Ontology Directed Acyclic Graph for input gene sets. This system provides user friendly data navigation and visualization. Statistical analysis helps users to identify the most important Gene Ontology categories for the input gene sets and suggests biological areas that warrant further study. GOTree Machine is available online at . Conclusion GOTree Machine has a broad application in functional genomic, proteomic and other high-throughput methods that generate large sets of interesting genes; its primary purpose is to help users sort for interesting patterns in gene sets. PMID:14975175

  2. Recurrent pregnancy loss evaluation combined with 24-chromosome microarray of miscarriage tissue provides a probable or definite cause of pregnancy loss in over 90% of patients.

    PubMed

    Popescu, F; Jaslow, C R; Kutteh, W H

    2018-04-01

    Will the addition of 24-chromosome microarray analysis on miscarriage tissue combined with the standard American Society for Reproductive Medicine (ASRM) evaluation for recurrent miscarriage explain most losses? Over 90% of patients with recurrent pregnancy loss (RPL) will have a probable or definitive cause identified when combining genetic testing on miscarriage tissue with the standard ASRM evaluation for recurrent miscarriage. RPL is estimated to occur in 2-4% of reproductive age couples. A probable cause can be identified in approximately 50% of patients after an ASRM recommended workup including an evaluation for parental chromosomal abnormalities, congenital and acquired uterine anomalies, endocrine imbalances and autoimmune factors including antiphospholipid syndrome. Single-center, prospective cohort study that included 100 patients seen in a private RPL clinic from 2014 to 2017. All 100 women had two or more pregnancy losses, a complete evaluation for RPL as defined by the ASRM, and miscarriage tissue evaluated by 24-chromosome microarray analysis after their second or subsequent miscarriage. Frequencies of abnormal results for evidence-based diagnostic tests considered definite or probable causes of RPL (karyotyping for parental chromosomal abnormalities, and 24-chromosome microarray evaluation for products of conception (POC); pelvic sonohysterography, hysterosalpingogram, or hysteroscopy for uterine anomalies; immunological tests for lupus anticoagulant and anticardiolipin antibodies; and blood tests for thyroid stimulating hormone (TSH), prolactin and hemoglobin A1c) were evaluated. We excluded cases where there was maternal cell contamination of the miscarriage tissue or if the ASRM evaluation was incomplete. A cost analysis for the evaluation of RPL was conducted to determine whether a proposed procedure of 24-chromome microarray evaluation followed by an ASRM RPL workup (for those RPL patients who had a normal 24-chromosome microarray evaluation) was more cost-efficient than conducting ASRM RPL workups on RPL patients followed by 24-chromosome microarray analysis (for those RPL patients who had a normal RPL workup). A definite or probable cause of pregnancy loss was identified in the vast majority (95/100; 95%) of RPL patients when a 24-chromosome pair microarray evaluation of POC testing is combined with the standard ASRM RPL workup evaluation at the time of the second or subsequent loss. The ASRM RPL workup identified an abnormality and a probable explanation for pregnancy loss in only 45/100 or 45% of all patients. A definite abnormality was identified in 67/100 patients or 67% when initial testing was performed using 24-chromosome microarray analyses on the miscarriage tissue. Only 5/100 (5%) patients, who had a euploid loss and a normal ASRM RPL workup, had a pregnancy loss without a probable or definitive cause identified. All other losses were explained by an abnormal 24-chromosome microarray analysis of the miscarriage tissue, an abnormal finding of the RPL workup, or a combination of both. Results from the cost analysis indicated that an initial approach of using a 24-chromosome microarray analysis on miscarriage tissue resulted in a 50% savings in cost to the health care system and to the patient. This is a single-center study on a small group of well-characterized women with RPL. There was an incomplete follow-up on subsequent pregnancy outcomes after evaluation, however this should not affect our principal results. The maternal age of patients varied from 26 to 45 years old. More aneuploid pregnancy losses would be expected in older women, particularly over the age of 35 years old. Evaluation of POC using 24-chromosome microarray analysis adds significantly to the ASRM recommended evaluation of RPL. Genetic evaluation on miscarriage tissue obtained at the time of the second and subsequent pregnancy losses should be offered to all couples with two or more consecutive pregnancy losses. The combination of a genetic evaluation on miscarriage tissue with an evidence-based evaluation for RPL will identify a probable or definitive cause in over 90% of miscarriages. No funding was received for this study and there are no conflicts of interest to declare. Not applicable.

  3. A Platform for Combined DNA and Protein Microarrays Based on Total Internal Reflection Fluorescence

    PubMed Central

    Asanov, Alexander; Zepeda, Angélica; Vaca, Luis

    2012-01-01

    We have developed a novel microarray technology based on total internal reflection fluorescence (TIRF) in combination with DNA and protein bioassays immobilized at the TIRF surface. Unlike conventional microarrays that exhibit reduced signal-to-background ratio, require several stages of incubation, rinsing and stringency control, and measure only end-point results, our TIRF microarray technology provides several orders of magnitude better signal-to-background ratio, performs analysis rapidly in one step, and measures the entire course of association and dissociation kinetics between target DNA and protein molecules and the bioassays. In many practical cases detection of only DNA or protein markers alone does not provide the necessary accuracy for diagnosing a disease or detecting a pathogen. Here we describe TIRF microarrays that detect DNA and protein markers simultaneously, which reduces the probabilities of false responses. Supersensitive and multiplexed TIRF DNA and protein microarray technology may provide a platform for accurate diagnosis or enhanced research studies. Our TIRF microarray system can be mounted on upright or inverted microscopes or interfaced directly with CCD cameras equipped with a single objective, facilitating the development of portable devices. As proof-of-concept we applied TIRF microarrays for detecting molecular markers from Bacillus anthracis, the pathogen responsible for anthrax. PMID:22438738

  4. Validation of MIMGO: a method to identify differentially expressed GO terms in a microarray dataset

    PubMed Central

    2012-01-01

    Background We previously proposed an algorithm for the identification of GO terms that commonly annotate genes whose expression is upregulated or downregulated in some microarray data compared with in other microarray data. We call these “differentially expressed GO terms” and have named the algorithm “matrix-assisted identification method of differentially expressed GO terms” (MIMGO). MIMGO can also identify microarray data in which genes annotated with a differentially expressed GO term are upregulated or downregulated. However, MIMGO has not yet been validated on a real microarray dataset using all available GO terms. Findings We combined Gene Set Enrichment Analysis (GSEA) with MIMGO to identify differentially expressed GO terms in a yeast cell cycle microarray dataset. GSEA followed by MIMGO (GSEA + MIMGO) correctly identified (p < 0.05) microarray data in which genes annotated to differentially expressed GO terms are upregulated. We found that GSEA + MIMGO was slightly less effective than, or comparable to, GSEA (Pearson), a method that uses Pearson’s correlation as a metric, at detecting true differentially expressed GO terms. However, unlike other methods including GSEA (Pearson), GSEA + MIMGO can comprehensively identify the microarray data in which genes annotated with a differentially expressed GO term are upregulated or downregulated. Conclusions MIMGO is a reliable method to identify differentially expressed GO terms comprehensively. PMID:23232071

  5. The use of open source bioinformatics tools to dissect transcriptomic data.

    PubMed

    Nitsche, Benjamin M; Ram, Arthur F J; Meyer, Vera

    2012-01-01

    Microarrays are a valuable technology to study fungal physiology on a transcriptomic level. Various microarray platforms are available comprising both single and two channel arrays. Despite different technologies, preprocessing of microarray data generally includes quality control, background correction, normalization, and summarization of probe level data. Subsequently, depending on the experimental design, diverse statistical analysis can be performed, including the identification of differentially expressed genes and the construction of gene coexpression networks.We describe how Bioconductor, a collection of open source and open development packages for the statistical programming language R, can be used for dissecting microarray data. We provide fundamental details that facilitate the process of getting started with R and Bioconductor. Using two publicly available microarray datasets from Aspergillus niger, we give detailed protocols on how to identify differentially expressed genes and how to construct gene coexpression networks.

  6. Integrated Microfluidic Devices for Automated Microarray-Based Gene Expression and Genotyping Analysis

    NASA Astrophysics Data System (ADS)

    Liu, Robin H.; Lodes, Mike; Fuji, H. Sho; Danley, David; McShea, Andrew

    Microarray assays typically involve multistage sample processing and fluidic handling, which are generally labor-intensive and time-consuming. Automation of these processes would improve robustness, reduce run-to-run and operator-to-operator variation, and reduce costs. In this chapter, a fully integrated and self-contained microfluidic biochip device that has been developed to automate the fluidic handling steps for microarray-based gene expression or genotyping analysis is presented. The device consists of a semiconductor-based CustomArray® chip with 12,000 features and a microfluidic cartridge. The CustomArray was manufactured using a semiconductor-based in situ synthesis technology. The micro-fluidic cartridge consists of microfluidic pumps, mixers, valves, fluid channels, and reagent storage chambers. Microarray hybridization and subsequent fluidic handling and reactions (including a number of washing and labeling steps) were performed in this fully automated and miniature device before fluorescent image scanning of the microarray chip. Electrochemical micropumps were integrated in the cartridge to provide pumping of liquid solutions. A micromixing technique based on gas bubbling generated by electrochemical micropumps was developed. Low-cost check valves were implemented in the cartridge to prevent cross-talk of the stored reagents. Gene expression study of the human leukemia cell line (K562) and genotyping detection and sequencing of influenza A subtypes have been demonstrated using this integrated biochip platform. For gene expression assays, the microfluidic CustomArray device detected sample RNAs with a concentration as low as 0.375 pM. Detection was quantitative over more than three orders of magnitude. Experiment also showed that chip-to-chip variability was low indicating that the integrated microfluidic devices eliminate manual fluidic handling steps that can be a significant source of variability in genomic analysis. The genotyping results showed that the device identified influenza A hemagglutinin and neuraminidase subtypes and sequenced portions of both genes, demonstrating the potential of integrated microfluidic and microarray technology for multiple virus detection. The device provides a cost-effective solution to eliminate labor-intensive and time-consuming fluidic handling steps and allows microarray-based DNA analysis in a rapid and automated fashion.

  7. CLUSFAVOR 5.0: hierarchical cluster and principal-component analysis of microarray-based transcriptional profiles

    PubMed Central

    Peterson, Leif E

    2002-01-01

    CLUSFAVOR (CLUSter and Factor Analysis with Varimax Orthogonal Rotation) 5.0 is a Windows-based computer program for hierarchical cluster and principal-component analysis of microarray-based transcriptional profiles. CLUSFAVOR 5.0 standardizes input data; sorts data according to gene-specific coefficient of variation, standard deviation, average and total expression, and Shannon entropy; performs hierarchical cluster analysis using nearest-neighbor, unweighted pair-group method using arithmetic averages (UPGMA), or furthest-neighbor joining methods, and Euclidean, correlation, or jack-knife distances; and performs principal-component analysis. PMID:12184816

  8. Parallel characterization of anaerobic toluene- and ethylbenzene-degrading microbial consortia by PCR-denaturing gradient gel electrophoresis, RNA-DNA membrane hybridization, and DNA microarray technology

    NASA Technical Reports Server (NTRS)

    Koizumi, Yoshikazu; Kelly, John J.; Nakagawa, Tatsunori; Urakawa, Hidetoshi; El-Fantroussi, Said; Al-Muzaini, Saleh; Fukui, Manabu; Urushigawa, Yoshikuni; Stahl, David A.

    2002-01-01

    A mesophilic toluene-degrading consortium (TDC) and an ethylbenzene-degrading consortium (EDC) were established under sulfate-reducing conditions. These consortia were first characterized by denaturing gradient gel electrophoresis (DGGE) fingerprinting of PCR-amplified 16S rRNA gene fragments, followed by sequencing. The sequences of the major bands (T-1 and E-2) belonging to TDC and EDC, respectively, were affiliated with the family Desulfobacteriaceae. Another major band from EDC (E-1) was related to an uncultured non-sulfate-reducing soil bacterium. Oligonucleotide probes specific for the 16S rRNAs of target organisms corresponding to T-1, E-1, and E-2 were designed, and hybridization conditions were optimized for two analytical formats, membrane and DNA microarray hybridization. Both formats were used to characterize the TDC and EDC, and the results of both were consistent with DGGE analysis. In order to assess the utility of the microarray format for analysis of environmental samples, oil-contaminated sediments from the coast of Kuwait were analyzed. The DNA microarray successfully detected bacterial nucleic acids from these samples, but probes targeting specific groups of sulfate-reducing bacteria did not give positive signals. The results of this study demonstrate the limitations and the potential utility of DNA microarrays for microbial community analysis.

  9. Parallel Characterization of Anaerobic Toluene- and Ethylbenzene-Degrading Microbial Consortia by PCR-Denaturing Gradient Gel Electrophoresis, RNA-DNA Membrane Hybridization, and DNA Microarray Technology

    PubMed Central

    Koizumi, Yoshikazu; Kelly, John J.; Nakagawa, Tatsunori; Urakawa, Hidetoshi; El-Fantroussi, Saïd; Al-Muzaini, Saleh; Fukui, Manabu; Urushigawa, Yoshikuni; Stahl, David A.

    2002-01-01

    A mesophilic toluene-degrading consortium (TDC) and an ethylbenzene-degrading consortium (EDC) were established under sulfate-reducing conditions. These consortia were first characterized by denaturing gradient gel electrophoresis (DGGE) fingerprinting of PCR-amplified 16S rRNA gene fragments, followed by sequencing. The sequences of the major bands (T-1 and E-2) belonging to TDC and EDC, respectively, were affiliated with the family Desulfobacteriaceae. Another major band from EDC (E-1) was related to an uncultured non-sulfate-reducing soil bacterium. Oligonucleotide probes specific for the 16S rRNAs of target organisms corresponding to T-1, E-1, and E-2 were designed, and hybridization conditions were optimized for two analytical formats, membrane and DNA microarray hybridization. Both formats were used to characterize the TDC and EDC, and the results of both were consistent with DGGE analysis. In order to assess the utility of the microarray format for analysis of environmental samples, oil-contaminated sediments from the coast of Kuwait were analyzed. The DNA microarray successfully detected bacterial nucleic acids from these samples, but probes targeting specific groups of sulfate-reducing bacteria did not give positive signals. The results of this study demonstrate the limitations and the potential utility of DNA microarrays for microbial community analysis. PMID:12088997

  10. Ontology-based, Tissue MicroArray oriented, image centered tissue bank

    PubMed Central

    Viti, Federica; Merelli, Ivan; Caprera, Andrea; Lazzari, Barbara; Stella, Alessandra; Milanesi, Luciano

    2008-01-01

    Background Tissue MicroArray technique is becoming increasingly important in pathology for the validation of experimental data from transcriptomic analysis. This approach produces many images which need to be properly managed, if possible with an infrastructure able to support tissue sharing between institutes. Moreover, the available frameworks oriented to Tissue MicroArray provide good storage for clinical patient, sample treatment and block construction information, but their utility is limited by the lack of data integration with biomolecular information. Results In this work we propose a Tissue MicroArray web oriented system to support researchers in managing bio-samples and, through the use of ontologies, enables tissue sharing aimed at the design of Tissue MicroArray experiments and results evaluation. Indeed, our system provides ontological description both for pre-analysis tissue images and for post-process analysis image results, which is crucial for information exchange. Moreover, working on well-defined terms it is then possible to query web resources for literature articles to integrate both pathology and bioinformatics data. Conclusions Using this system, users associate an ontology-based description to each image uploaded into the database and also integrate results with the ontological description of biosequences identified in every tissue. Moreover, it is possible to integrate the ontological description provided by the user with a full compliant gene ontology definition, enabling statistical studies about correlation between the analyzed pathology and the most commonly related biological processes. PMID:18460177

  11. Gene response profiles for Daphnia pulex exposed to the environmental stressor cadmium reveals novel crustacean metallothioneins.

    PubMed

    Shaw, Joseph R; Colbourne, John K; Davey, Jennifer C; Glaholt, Stephen P; Hampton, Thomas H; Chen, Celia Y; Folt, Carol L; Hamilton, Joshua W

    2007-12-21

    Genomic research tools such as microarrays are proving to be important resources to study the complex regulation of genes that respond to environmental perturbations. A first generation cDNA microarray was developed for the environmental indicator species Daphnia pulex, to identify genes whose regulation is modulated following exposure to the metal stressor cadmium. Our experiments revealed interesting changes in gene transcription that suggest their biological roles and their potentially toxicological features in responding to this important environmental contaminant. Our microarray identified genes reported in the literature to be regulated in response to cadmium exposure, suggested functional attributes for genes that share no sequence similarity to proteins in the public databases, and pointed to genes that are likely members of expanded gene families in the Daphnia genome. Genes identified on the microarray also were associated with cadmium induced phenotypes and population-level outcomes that we experimentally determined. A subset of genes regulated in response to cadmium exposure was independently validated using quantitative-realtime (Q-RT)-PCR. These microarray studies led to the discovery of three genes coding for the metal detoxication protein metallothionein (MT). The gene structures and predicted translated sequences of D. pulex MTs clearly place them in this gene family. Yet, they share little homology with previously characterized MTs. The genomic information obtained from this study represents an important first step in characterizing microarray patterns that may be diagnostic to specific environmental contaminants and give insights into their toxicological mechanisms, while also providing a practical tool for evolutionary, ecological, and toxicological functional gene discovery studies. Advances in Daphnia genomics will enable the further development of this species as a model organism for the environmental sciences.

  12. Gene response profiles for Daphnia pulex exposed to the environmental stressor cadmium reveals novel crustacean metallothioneins

    PubMed Central

    Shaw, Joseph R; Colbourne, John K; Davey, Jennifer C; Glaholt, Stephen P; Hampton, Thomas H; Chen, Celia Y; Folt, Carol L; Hamilton, Joshua W

    2007-01-01

    Background Genomic research tools such as microarrays are proving to be important resources to study the complex regulation of genes that respond to environmental perturbations. A first generation cDNA microarray was developed for the environmental indicator species Daphnia pulex, to identify genes whose regulation is modulated following exposure to the metal stressor cadmium. Our experiments revealed interesting changes in gene transcription that suggest their biological roles and their potentially toxicological features in responding to this important environmental contaminant. Results Our microarray identified genes reported in the literature to be regulated in response to cadmium exposure, suggested functional attributes for genes that share no sequence similarity to proteins in the public databases, and pointed to genes that are likely members of expanded gene families in the Daphnia genome. Genes identified on the microarray also were associated with cadmium induced phenotypes and population-level outcomes that we experimentally determined. A subset of genes regulated in response to cadmium exposure was independently validated using quantitative-realtime (Q-RT)-PCR. These microarray studies led to the discovery of three genes coding for the metal detoxication protein metallothionein (MT). The gene structures and predicted translated sequences of D. pulex MTs clearly place them in this gene family. Yet, they share little homology with previously characterized MTs. Conclusion The genomic information obtained from this study represents an important first step in characterizing microarray patterns that may be diagnostic to specific environmental contaminants and give insights into their toxicological mechanisms, while also providing a practical tool for evolutionary, ecological, and toxicological functional gene discovery studies. Advances in Daphnia genomics will enable the further development of this species as a model organism for the environmental sciences. PMID:18154678

  13. Comparison of gene expression microarray data with count-based RNA measurements informs microarray interpretation.

    PubMed

    Richard, Arianne C; Lyons, Paul A; Peters, James E; Biasci, Daniele; Flint, Shaun M; Lee, James C; McKinney, Eoin F; Siegel, Richard M; Smith, Kenneth G C

    2014-08-04

    Although numerous investigations have compared gene expression microarray platforms, preprocessing methods and batch correction algorithms using constructed spike-in or dilution datasets, there remains a paucity of studies examining the properties of microarray data using diverse biological samples. Most microarray experiments seek to identify subtle differences between samples with variable background noise, a scenario poorly represented by constructed datasets. Thus, microarray users lack important information regarding the complexities introduced in real-world experimental settings. The recent development of a multiplexed, digital technology for nucleic acid measurement enables counting of individual RNA molecules without amplification and, for the first time, permits such a study. Using a set of human leukocyte subset RNA samples, we compared previously acquired microarray expression values with RNA molecule counts determined by the nCounter Analysis System (NanoString Technologies) in selected genes. We found that gene measurements across samples correlated well between the two platforms, particularly for high-variance genes, while genes deemed unexpressed by the nCounter generally had both low expression and low variance on the microarray. Confirming previous findings from spike-in and dilution datasets, this "gold-standard" comparison demonstrated signal compression that varied dramatically by expression level and, to a lesser extent, by dataset. Most importantly, examination of three different cell types revealed that noise levels differed across tissues. Microarray measurements generally correlate with relative RNA molecule counts within optimal ranges but suffer from expression-dependent accuracy bias and precision that varies across datasets. We urge microarray users to consider expression-level effects in signal interpretation and to evaluate noise properties in each dataset independently.

  14. Genome Expression Pathway Analysis Tool – Analysis and visualization of microarray gene expression data under genomic, proteomic and metabolic context

    PubMed Central

    Weniger, Markus; Engelmann, Julia C; Schultz, Jörg

    2007-01-01

    Background Regulation of gene expression is relevant to many areas of biology and medicine, in the study of treatments, diseases, and developmental stages. Microarrays can be used to measure the expression level of thousands of mRNAs at the same time, allowing insight into or comparison of different cellular conditions. The data derived out of microarray experiments is highly dimensional and often noisy, and interpretation of the results can get intricate. Although programs for the statistical analysis of microarray data exist, most of them lack an integration of analysis results and biological interpretation. Results We have developed GEPAT, Genome Expression Pathway Analysis Tool, offering an analysis of gene expression data under genomic, proteomic and metabolic context. We provide an integration of statistical methods for data import and data analysis together with a biological interpretation for subsets of probes or single probes on the chip. GEPAT imports various types of oligonucleotide and cDNA array data formats. Different normalization methods can be applied to the data, afterwards data annotation is performed. After import, GEPAT offers various statistical data analysis methods, as hierarchical, k-means and PCA clustering, a linear model based t-test or chromosomal profile comparison. The results of the analysis can be interpreted by enrichment of biological terms, pathway analysis or interaction networks. Different biological databases are included, to give various information for each probe on the chip. GEPAT offers no linear work flow, but allows the usage of any subset of probes and samples as a start for a new data analysis. GEPAT relies on established data analysis packages, offers a modular approach for an easy extension, and can be run on a computer grid to allow a large number of users. It is freely available under the LGPL open source license for academic and commercial users at . Conclusion GEPAT is a modular, scalable and professional-grade software integrating analysis and interpretation of microarray gene expression data. An installation available for academic users can be found at . PMID:17543125

  15. Development of DNA Microarrays for Metabolic Pathway and Bioprocess Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregory Stephanopoulos

    Transcriptional profiling experiments utilizing DNA microarrays to study the intracellular accumulation of PHB in Synechocystis has proved difficult in large part because strains that show significant differences in PHB which would justify global analysis of gene expression have not been isolated.

  16. Development and validation of a microarray for the investigation of the CAZymes encoded by the human gut microbiome.

    PubMed

    El Kaoutari, Abdessamad; Armougom, Fabrice; Leroy, Quentin; Vialettes, Bernard; Million, Matthieu; Raoult, Didier; Henrissat, Bernard

    2013-01-01

    Distal gut bacteria play a pivotal role in the digestion of dietary polysaccharides by producing a large number of carbohydrate-active enzymes (CAZymes) that the host otherwise does not produce. We report here the design of a custom microarray that we used to spot non-redundant DNA probes for more than 6,500 genes encoding glycoside hydrolases and lyases selected from 174 reference genomes from distal gut bacteria. The custom microarray was tested and validated by the hybridization of bacterial DNA extracted from the stool samples of lean, obese and anorexic individuals. Our results suggest that a microarray-based study can detect genes from low-abundance bacteria better than metagenomic-based studies. A striking example was the finding that a gene encoding a GH6-family cellulase was present in all subjects examined, whereas metagenomic studies have consistently failed to detect this gene in both human and animal gut microbiomes. In addition, an examination of eight stool samples allowed the identification of a corresponding CAZome core containing 46 families of glycoside hydrolases and polysaccharide lyases, which suggests the functional stability of the gut microbiota despite large taxonomical variations between individuals.

  17. Gene expression profiling in gill tissues of White spot syndrome virus infected black tiger shrimp Penaeus monodon by DNA microarray.

    PubMed

    Shekhar, M S; Gomathi, A; Gopikrishna, G; Ponniah, A G

    2015-06-01

    White spot syndrome virus (WSSV) continues to be the most devastating viral pathogen infecting penaeid shrimp the world over. The genome of WSSV has been deciphered and characterized from three geographical isolates and significant progress has been made in developing various molecular diagnostic methods to detect the virus. However, the information on host immune gene response to WSSV pathogenesis is limited. Microarray analysis was carried out as an approach to analyse the gene expression in black tiger shrimp Penaeus monodon in response to WSSV infection. Gill tissues collected from the WSSV infected shrimp at 6, 24, 48 h and moribund stage were analysed for differential gene expression. Shrimp cDNAs of 40,059 unique sequences were considered for designing the microarray chip. The Cy3-labeled cRNA derived from healthy and WSSV-infected shrimp was subjected to hybridization with all the DNA spots in the microarray which revealed 8,633 and 11,147 as up- and down-regulated genes respectively at different time intervals post infection. The altered expression of these numerous genes represented diverse functions such as immune response, osmoregulation, apoptosis, nucleic acid binding, energy and metabolism, signal transduction, stress response and molting. The changes in gene expression profiles observed by microarray analysis provides molecular insights and framework of genes which are up- and down-regulated at different time intervals during WSSV infection in shrimp. The microarray data was validated by Real Time analysis of four differentially expressed genes involved in apoptosis (translationally controlled tumor protein, inhibitor of apoptosis protein, ubiquitin conjugated enzyme E2 and caspase) for gene expression levels. The role of apoptosis related genes in WSSV infected shrimp is discussed herein.

  18. Reuse of imputed data in microarray analysis increases imputation efficiency

    PubMed Central

    Kim, Ki-Yeol; Kim, Byoung-Jin; Yi, Gwan-Su

    2004-01-01

    Background The imputation of missing values is necessary for the efficient use of DNA microarray data, because many clustering algorithms and some statistical analysis require a complete data set. A few imputation methods for DNA microarray data have been introduced, but the efficiency of the methods was low and the validity of imputed values in these methods had not been fully checked. Results We developed a new cluster-based imputation method called sequential K-nearest neighbor (SKNN) method. This imputes the missing values sequentially from the gene having least missing values, and uses the imputed values for the later imputation. Although it uses the imputed values, the efficiency of this new method is greatly improved in its accuracy and computational complexity over the conventional KNN-based method and other methods based on maximum likelihood estimation. The performance of SKNN was in particular higher than other imputation methods for the data with high missing rates and large number of experiments. Application of Expectation Maximization (EM) to the SKNN method improved the accuracy, but increased computational time proportional to the number of iterations. The Multiple Imputation (MI) method, which is well known but not applied previously to microarray data, showed a similarly high accuracy as the SKNN method, with slightly higher dependency on the types of data sets. Conclusions Sequential reuse of imputed data in KNN-based imputation greatly increases the efficiency of imputation. The SKNN method should be practically useful to save the data of some microarray experiments which have high amounts of missing entries. The SKNN method generates reliable imputed values which can be used for further cluster-based analysis of microarray data. PMID:15504240

  19. Detection of clonal evolution in hematopoietic malignancies by combining comparative genomic hybridization and single nucleotide polymorphism arrays.

    PubMed

    Hartmann, Luise; Stephenson, Christine F; Verkamp, Stephanie R; Johnson, Krystal R; Burnworth, Bettina; Hammock, Kelle; Brodersen, Lisa Eidenschink; de Baca, Monica E; Wells, Denise A; Loken, Michael R; Zehentner, Barbara K

    2014-12-01

    Array comparative genomic hybridization (aCGH) has become a powerful tool for analyzing hematopoietic neoplasms and identifying genome-wide copy number changes in a single assay. aCGH also has superior resolution compared with fluorescence in situ hybridization (FISH) or conventional cytogenetics. Integration of single nucleotide polymorphism (SNP) probes with microarray analysis allows additional identification of acquired uniparental disomy, a copy neutral aberration with known potential to contribute to tumor pathogenesis. However, a limitation of microarray analysis has been the inability to detect clonal heterogeneity in a sample. This study comprised 16 samples (acute myeloid leukemia, myelodysplastic syndrome, chronic lymphocytic leukemia, plasma cell neoplasm) with complex cytogenetic features and evidence of clonal evolution. We used an integrated manual peak reassignment approach combining analysis of aCGH and SNP microarray data for characterization of subclonal abnormalities. We compared array findings with results obtained from conventional cytogenetic and FISH studies. Clonal heterogeneity was detected in 13 of 16 samples by microarray on the basis of log2 values. Use of the manual peak reassignment analysis approach improved resolution of the sample's clonal composition and genetic heterogeneity in 10 of 13 (77%) patients. Moreover, in 3 patients, clonal disease progression was revealed by array analysis that was not evident by cytogenetic or FISH studies. Genetic abnormalities originating from separate clonal subpopulations can be identified and further characterized by combining aCGH and SNP hybridization results from 1 integrated microarray chip by use of the manual peak reassignment technique. Its clinical utility in comparison to conventional cytogenetic or FISH studies is demonstrated. © 2014 American Association for Clinical Chemistry.

  20. Regional and temporal differences in gene expression of LH(BETA)T(AG) retinoblastoma tumors.

    PubMed

    Houston, Samuel K; Pina, Yolanda; Clarke, Jennifer; Koru-Sengul, Tulay; Scott, William K; Nathanson, Lubov; Schefler, Amy C; Murray, Timothy G

    2011-07-23

    The purpose of this study was to evaluate by microarray the hypothesis that LH(BETA)T(AG) retinoblastoma tumors exhibit regional and temporal variations in gene expression. LH(BETA)T(AG) mice aged 12, 16, and 20 weeks were euthanatized (n = 9). Specimens were taken from five tumor areas (apex, anterior lateral, center, base, and posterior lateral). Samples were hybridized to gene microarrays. The data were preprocessed and analyzed, and genes with a P < 0.01, according to the ANOVA models, and a log(2)-fold change >2.5 were considered to be differentially expressed. Differentially expressed genes were analyzed for overlap with known networks by using pathway analysis tools. There were significant temporal (P < 10(-8)) and regional differences in gene expression for LH(BETA)T(AG) retinoblastoma tumors. At P < 0.01 and log(2)-fold change >2.5, there were significant changes in gene expression of 190 genes apically, 84 genes anterolaterally, 126 genes posteriorly, 56 genes centrally, and 134 genes at the base. Differentially expressed genes overlapped with known networks, with significant involvement in regulation of cellular proliferation and growth, response to oxygen levels and hypoxia, regulation of cellular processes, cellular signaling cascades, and angiogenesis. There are significant temporal and regional variations in the LH(BETA)T(AG) retinoblastoma model. Differentially expressed genes overlap with key pathways that may play pivotal roles in murine retinoblastoma development. These findings suggest the mechanisms involved in tumor growth and progression in murine retinoblastoma tumors and identify pathways for analysis at a functional level, to determine significance in human retinoblastoma. Microarray analysis of LH(BETA)T(AG) retinal tumors showed significant regional and temporal variations in gene expression, including dysregulation of genes involved in hypoxic responses and angiogenesis.

  1. Modulation of Differentiation Processes in Murine Embryonic Stem Cells Exposed to Parabolic Flight-Induced Acute Hypergravity and Microgravity.

    PubMed

    Acharya, Aviseka; Brungs, Sonja; Henry, Margit; Rotshteyn, Tamara; Singh Yaduvanshi, Nirmala; Wegener, Lucia; Jentzsch, Simon; Hescheler, Jürgen; Hemmersbach, Ruth; Boeuf, Helene; Sachinidis, Agapios

    2018-06-15

    Embryonic developmental studies under microgravity conditions in space are very limited. To study the effects of short-term altered gravity on embryonic development processes, we exposed mouse embryonic stem cells (mESCs) to phases of hypergravity and microgravity and studied the differentiation potential of the cells using wide-genome microarray analysis. During the 64th European Space Agency's parabolic flight campaign, mESCs were exposed to 31 parabolas. Each parabola comprised phases lasting 22 s of hypergravity, microgravity, and a repeat of hypergravity. On different parabolas, RNA was isolated for microarray analysis. After exposure to 31 parabolas, mESCs (P31 mESCs) were further differentiated under normal gravity (1 g) conditions for 12 days, producing P31 12-day embryoid bodies (EBs). After analysis of the microarrays, the differentially expressed genes were analyzed using different bioinformatic tools to identify developmental and nondevelopmental biological processes affected by conditions on the parabolic flight experiment. Our results demonstrated that several genes belonging to GOs associated with cell cycle and proliferation were downregulated in undifferentiated mESCs exposed to gravity changes. However, several genes belonging to developmental processes, such as vasculature development, kidney development, skin development, and to the TGF-β signaling pathway, were upregulated. Interestingly, similar enriched and suppressed GOs were obtained in P31 12-day EBs compared with ground control 12-day EBs. Our results show that undifferentiated mESCs exposed to alternate hypergravity and microgravity phases expressed several genes associated with developmental/differentiation and cell cycle processes, suggesting a transition from the undifferentiated pluripotent to a more differentiated stage of mESCs.

  2. In-vitro analysis of Quantum Molecular Resonance effects on human mesenchymal stromal cells

    PubMed Central

    Sella, Sabrina; Adami, Valentina; Amati, Eliana; Bernardi, Martina; Chieregato, Katia; Gatto, Pamela; Menarin, Martina; Pozzato, Alessandro; Pozzato, Gianantonio; Astori, Giuseppe

    2018-01-01

    Electromagnetic fields play an essential role in cellular functions interfering with cellular pathways and tissue physiology. In this context, Quantum Molecular Resonance (QMR) produces waves with a specific form at high-frequencies (4–64 MHz) and low intensity through electric fields. We evaluated the effects of QMR stimulation on bone marrow derived mesenchymal stromal cells (MSC). MSC were treated with QMR for 10 minutes for 4 consecutive days for 2 weeks at different nominal powers. Cell morphology, phenotype, multilineage differentiation, viability and proliferation were investigated. QMR effects were further investigated by cDNA microarray validated by real-time PCR. After 1 and 2 weeks of QMR treatment morphology, phenotype and multilineage differentiation were maintained and no alteration of cellular viability and proliferation were observed between treated MSC samples and controls. cDNA microarray analysis evidenced more transcriptional changes on cells treated at 40 nominal power than 80 ones. The main enrichment lists belonged to development processes, regulation of phosphorylation, regulation of cellular pathways including metabolism, kinase activity and cellular organization. Real-time PCR confirmed significant increased expression of MMP1, PLAT and ARHGAP22 genes while A2M gene showed decreased expression in treated cells compared to controls. Interestingly, differentially regulated MMP1, PLAT and A2M genes are involved in the extracellular matrix (ECM) remodelling through the fibrinolytic system that is also implicated in embryogenesis, wound healing and angiogenesis. In our model QMR-treated MSC maintained unaltered cell phenotype, viability, proliferation and the ability to differentiate into bone, cartilage and adipose tissue. Microarray analysis may suggest an involvement of QMR treatment in angiogenesis and in tissue regeneration probably through ECM remodelling. PMID:29293552

  3. Analysis and modelling of septic shock microarray data using Singular Value Decomposition.

    PubMed

    Allanki, Srinivas; Dixit, Madhulika; Thangaraj, Paul; Sinha, Nandan Kumar

    2017-06-01

    Being a high throughput technique, enormous amounts of microarray data has been generated and there arises a need for more efficient techniques of analysis, in terms of speed and accuracy. Finding the differentially expressed genes based on just fold change and p-value might not extract all the vital biological signals that occur at a lower gene expression level. Besides this, numerous mathematical models have been generated to predict the clinical outcome from microarray data, while very few, if not none, aim at predicting the vital genes that are important in a disease progression. Such models help a basic researcher narrow down and concentrate on a promising set of genes which leads to the discovery of gene-based therapies. In this article, as a first objective, we have used the lesser known and used Singular Value Decomposition (SVD) technique to build a microarray data analysis tool that works with gene expression patterns and intrinsic structure of the data in an unsupervised manner. We have re-analysed a microarray data over the clinical course of Septic shock from Cazalis et al. (2014) and have shown that our proposed analysis provides additional information compared to the conventional method. As a second objective, we developed a novel mathematical model that predicts a set of vital genes in the disease progression that works by generating samples in the continuum between health and disease, using a simple normal-distribution-based random number generator. We also verify that most of the predicted genes are indeed related to septic shock. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Biomarkers of the Hedgehog/Smoothened pathway in healthy volunteers

    PubMed Central

    Kadam, Sunil K; Patel, Bharvin K R; Jones, Emma; Nguyen, Tuan S; Verma, Lalit K; Landschulz, Katherine T; Stepaniants, Sergey; Li, Bin; Brandt, John T; Brail, Leslie H

    2012-01-01

    The Hedgehog (Hh) pathway is involved in oncogenic transformation and tumor maintenance. The primary objective of this study was to select surrogate tissue to measure messenger ribonucleic acid (mRNA) levels of Hh pathway genes for measurement of pharmacodynamic effect. Expression of Hh pathway specific genes was measured by quantitative real time polymerase chain reaction (qRT-PCR) and global gene expression using Affymetrix U133 microarrays. Correlations were made between the expression of specific genes determined by qRT-PCR and normalized microarray data. Gene ontology analysis using microarray data for a broader set of Hh pathway genes was performed to identify additional Hh pathway-related markers in the surrogate tissue. RNA extracted from blood, hair follicle, and skin obtained from healthy subjects was analyzed by qRT-PCR for 31 genes, whereas 8 samples were analyzed for a 7-gene subset. Twelve sample sets, each with ≤500 ng total RNA derived from hair, skin, and blood, were analyzed using Affymetrix U133 microarrays. Transcripts for several Hh pathway genes were undetectable in blood using qRT-PCR. Skin was the most desirable matrix, followed by hair follicle. Whether processed by robust multiarray average or microarray suite 5 (MAS5), expression patterns of individual samples showed co-clustered signals; both normalization methods were equally effective for unsupervised analysis. The MAS5- normalized probe sets appeared better suited for supervised analysis. This work provides the basis for selection of a surrogate tissue and an expression analysis-based approach to evaluate pathway-related genes as markers of pharmacodynamic effect with novel inhibitors of the Hh pathway. PMID:22611475

  5. DigOut: viewing differential expression genes as outliers.

    PubMed

    Yu, Hui; Tu, Kang; Xie, Lu; Li, Yuan-Yuan

    2010-12-01

    With regards to well-replicated two-conditional microarray datasets, the selection of differentially expressed (DE) genes is a well-studied computational topic, but for multi-conditional microarray datasets with limited or no replication, the same task is not properly addressed by previous studies. This paper adopts multivariate outlier analysis to analyze replication-lacking multi-conditional microarray datasets, finding that it performs significantly better than the widely used limit fold change (LFC) model in a simulated comparative experiment. Compared with the LFC model, the multivariate outlier analysis also demonstrates improved stability against sample variations in a series of manipulated real expression datasets. The reanalysis of a real non-replicated multi-conditional expression dataset series leads to satisfactory results. In conclusion, a multivariate outlier analysis algorithm, like DigOut, is particularly useful for selecting DE genes from non-replicated multi-conditional gene expression dataset.

  6. Role of Adrenal Glucocorticoid Signaling in Prefrontal Cortex Gene Expression and Acute Behavioral Responses to Ethanol

    PubMed Central

    Costin, Blair N.; Wolen, Aaron R.; Fitting, Sylvia; Shelton, Keith L.; Miles, Michael F.

    2012-01-01

    Background Glucocorticoid hormones modulate acute and chronic behavioral and molecular responses to drugs of abuse including psychostimulants and opioids. There is growing evidence that glucocorticoids might also modulate behavioral responses to ethanol. Acute ethanol activates the HPA axis, causing release of adrenal glucocorticoid hormones. Our prior genomic studies suggest glucocorticoids play a role in regulating gene expression in the prefrontal cortex (PFC) of DBA2/J (D2) mice following acute ethanol administration. However, few studies have analyzed the role of glucocorticoid signaling in behavioral responses to acute ethanol. Such work could be significant, given the predictive value for level of response to acute ethanol in the risk for alcoholism. Methods We studied whether the glucocorticoid receptor (GR) antagonist, RU-486, or adrenalectomy (ADX) altered male D2 mouse behavioral responses to acute (locomotor activation, anxiolysis or loss-of-righting reflex (LORR)) or repeated (sensitization) ethanol treatment. Whole genome microarray analysis and bioinformatics approaches were used to identify PFC candidate genes possibly responsible for altered behavioral responses to ethanol following ADX. Results ADX and RU-486 both impaired acute ethanol (2 g/kg) induced locomotor activation in D2 mice without affecting basal locomotor activity. However, neither ADX nor RU-486 altered initiation of ethanol sensitization (locomotor activation or jump counts), ethanol-induced anxiolysis or LORR. ADX mice showed microarray gene expression changes in PFC that significantly overlapped with acute ethanol-responsive gene sets derived by our prior microarray studies. Q-rtPCR analysis verified that ADX decreased PFC expression of Fkbp5 while significantly increasing Gpr6 expression. In addition, high dose RU-486 pre-treatment blunted ethanol-induced Fkbp5 expression. Conclusions Our studies suggest that ethanol’s activation of adrenal glucocorticoid release and subsequent GR activation may partially modulate ethanol’s acute locomotor activation in male D2 mice. Furthermore, since adrenal glucocorticoid basal tone regulated PFC gene expression, including a significant set of acute ethanol-responsive genes, this suggests that glucocorticoid regulated PFC gene expression may be an important factor modulating acute behavioral responses to ethanol. PMID:22671426

  7. A comparative study of RNA-Seq and microarray data analysis on the two examples of rectal-cancer patients and Burkitt Lymphoma cells.

    PubMed

    Wolff, Alexander; Bayerlová, Michaela; Gaedcke, Jochen; Kube, Dieter; Beißbarth, Tim

    2018-01-01

    Pipeline comparisons for gene expression data are highly valuable for applied real data analyses, as they enable the selection of suitable analysis strategies for the dataset at hand. Such pipelines for RNA-Seq data should include mapping of reads, counting and differential gene expression analysis or preprocessing, normalization and differential gene expression in case of microarray analysis, in order to give a global insight into pipeline performances. Four commonly used RNA-Seq pipelines (STAR/HTSeq-Count/edgeR, STAR/RSEM/edgeR, Sailfish/edgeR, TopHat2/Cufflinks/CuffDiff)) were investigated on multiple levels (alignment and counting) and cross-compared with the microarray counterpart on the level of gene expression and gene ontology enrichment. For these comparisons we generated two matched microarray and RNA-Seq datasets: Burkitt Lymphoma cell line data and rectal cancer patient data. The overall mapping rate of STAR was 98.98% for the cell line dataset and 98.49% for the patient dataset. Tophat's overall mapping rate was 97.02% and 96.73%, respectively, while Sailfish had only an overall mapping rate of 84.81% and 54.44%. The correlation of gene expression in microarray and RNA-Seq data was moderately worse for the patient dataset (ρ = 0.67-0.69) than for the cell line dataset (ρ = 0.87-0.88). An exception were the correlation results of Cufflinks, which were substantially lower (ρ = 0.21-0.29 and 0.34-0.53). For both datasets we identified very low numbers of differentially expressed genes using the microarray platform. For RNA-Seq we checked the agreement of differentially expressed genes identified in the different pipelines and of GO-term enrichment results. In conclusion the combination of STAR aligner with HTSeq-Count followed by STAR aligner with RSEM and Sailfish generated differentially expressed genes best suited for the dataset at hand and in agreement with most of the other transcriptomics pipelines.

  8. Prediction of regulatory gene pairs using dynamic time warping and gene ontology.

    PubMed

    Yang, Andy C; Hsu, Hui-Huang; Lu, Ming-Da; Tseng, Vincent S; Shih, Timothy K

    2014-01-01

    Selecting informative genes is the most important task for data analysis on microarray gene expression data. In this work, we aim at identifying regulatory gene pairs from microarray gene expression data. However, microarray data often contain multiple missing expression values. Missing value imputation is thus needed before further processing for regulatory gene pairs becomes possible. We develop a novel approach to first impute missing values in microarray time series data by combining k-Nearest Neighbour (KNN), Dynamic Time Warping (DTW) and Gene Ontology (GO). After missing values are imputed, we then perform gene regulation prediction based on our proposed DTW-GO distance measurement of gene pairs. Experimental results show that our approach is more accurate when compared with existing missing value imputation methods on real microarray data sets. Furthermore, our approach can also discover more regulatory gene pairs that are known in the literature than other methods.

  9. Temperature Gradient Effect on Gas Discrimination Power of a Metal-Oxide Thin-Film Sensor Microarray

    PubMed Central

    Sysoev, Victor V.; Kiselev, Ilya; Frietsch, Markus; Goschnick, Joachim

    2004-01-01

    The paper presents results concerning the effect of spatial inhomogeneous operating temperature on the gas discrimination power of a gas-sensor microarray, with the latter based on a thin SnO2 film employed in the KAMINA electronic nose. Three different temperature distributions over the substrate are discussed: a nearly homogeneous one and two temperature gradients, equal to approx. 3.3 °C/mm and 6.7 °C/mm, applied across the sensor elements (segments) of the array. The gas discrimination power of the microarray is judged by using the Mahalanobis distance in the LDA (Linear Discrimination Analysis) coordinate system between the data clusters obtained by the response of the microarray to four target vapors: ethanol, acetone, propanol and ammonia. It is shown that the application of a temperature gradient increases the gas discrimination power of the microarray by up to 35 %.

  10. Chondrocyte channel transcriptomics

    PubMed Central

    Lewis, Rebecca; May, Hannah; Mobasheri, Ali; Barrett-Jolley, Richard

    2013-01-01

    To date, a range of ion channels have been identified in chondrocytes using a number of different techniques, predominantly electrophysiological and/or biomolecular; each of these has its advantages and disadvantages. Here we aim to compare and contrast the data available from biophysical and microarray experiments. This letter analyses recent transcriptomics datasets from chondrocytes, accessible from the European Bioinformatics Institute (EBI). We discuss whether such bioinformatic analysis of microarray datasets can potentially accelerate identification and discovery of ion channels in chondrocytes. The ion channels which appear most frequently across these microarray datasets are discussed, along with their possible functions. We discuss whether functional or protein data exist which support the microarray data. A microarray experiment comparing gene expression in osteoarthritis and healthy cartilage is also discussed and we verify the differential expression of 2 of these genes, namely the genes encoding large calcium-activated potassium (BK) and aquaporin channels. PMID:23995703

  11. Transcriptome Profiling of In-Vivo Produced Bovine Pre-implantation Embryos Using Two-color Microarray Platform.

    PubMed

    Salehi, Reza; Tsoi, Stephen C M; Colazo, Marcos G; Ambrose, Divakar J; Robert, Claude; Dyck, Michael K

    2017-01-30

    Early embryonic loss is a large contributor to infertility in cattle. Moreover, bovine becomes an interesting model to study human preimplantation embryo development due to their similar developmental process. Although genetic factors are known to affect early embryonic development, the discovery of such factors has been a serious challenge. Microarray technology allows quantitative measurement and gene expression profiling of transcript levels on a genome-wide basis. One of the main decisions that have to be made when planning a microarray experiment is whether to use a one- or two-color approach. Two-color design increases technical replication, minimizes variability, improves sensitivity and accuracy as well as allows having loop designs, defining the common reference samples. Although microarray is a powerful biological tool, there are potential pitfalls that can attenuate its power. Hence, in this technical paper we demonstrate an optimized protocol for RNA extraction, amplification, labeling, hybridization of the labeled amplified RNA to the array, array scanning and data analysis using the two-color analysis strategy.

  12. Clustering gene expression data based on predicted differential effects of GV interaction.

    PubMed

    Pan, Hai-Yan; Zhu, Jun; Han, Dan-Fu

    2005-02-01

    Microarray has become a popular biotechnology in biological and medical research. However, systematic and stochastic variabilities in microarray data are expected and unavoidable, resulting in the problem that the raw measurements have inherent "noise" within microarray experiments. Currently, logarithmic ratios are usually analyzed by various clustering methods directly, which may introduce bias interpretation in identifying groups of genes or samples. In this paper, a statistical method based on mixed model approaches was proposed for microarray data cluster analysis. The underlying rationale of this method is to partition the observed total gene expression level into various variations caused by different factors using an ANOVA model, and to predict the differential effects of GV (gene by variety) interaction using the adjusted unbiased prediction (AUP) method. The predicted GV interaction effects can then be used as the inputs of cluster analysis. We illustrated the application of our method with a gene expression dataset and elucidated the utility of our approach using an external validation.

  13. Roles of the Sodium-Translocating NADH:Quinone Oxidoreductase (Na+-NQR) on Vibrio cholerae Metabolism, Motility and Osmotic Stress Resistance

    PubMed Central

    Minato, Yusuke; Halang, Petra; Quinn, Matthew J.; Faulkner, Wyatt J.; Aagesen, Alisha M.; Steuber, Julia; Stevens, Jan F.; Häse, Claudia C.

    2014-01-01

    The Na+ translocating NADH:quinone oxidoreductase (Na+-NQR) is a unique respiratory enzyme catalyzing the electron transfer from NADH to quinone coupled with the translocation of sodium ions across the membrane. Typically, Vibrio spp., including Vibrio cholerae, have this enzyme but lack the proton-pumping NADH:ubiquinone oxidoreductase (Complex I). Thus, Na+-NQR should significantly contribute to multiple aspects of V. cholerae physiology; however, no detailed characterization of this aspect has been reported so far. In this study, we broadly investigated the effects of loss of Na+-NQR on V. cholerae physiology by using Phenotype Microarray (Biolog), transcriptome and metabolomics analyses. We found that the V. cholerae ΔnqrA-F mutant showed multiple defects in metabolism detected by Phenotype Microarray. Transcriptome analysis revealed that the V. cholerae ΔnqrA-F mutant up-regulates 31 genes and down-regulates 55 genes in both early and mid-growth phases. The most up-regulated genes included the cadA and cadB genes, encoding a lysine decarboxylase and a lysine/cadaverine antiporter, respectively. Increased CadAB activity was further suggested by the metabolomics analysis. The down-regulated genes include sialic acid catabolism genes. Metabolomic analysis also suggested increased reductive pathway of TCA cycle and decreased purine metabolism in the V. cholerae ΔnqrA-F mutant. Lack of Na+-NQR did not affect any of the Na+ pumping-related phenotypes of V. cholerae suggesting that other secondary Na+ pump(s) can compensate for Na+ pumping activity of Na+-NQR. Overall, our study provides important insights into the contribution of Na+-NQR to V. cholerae physiology. PMID:24811312

  14. Microarray-based gene expression analysis of strong seed dormancy in rice cv. N22 and less dormant mutant derivatives.

    PubMed

    Wu, Tao; Yang, Chunyan; Ding, Baoxu; Feng, Zhiming; Wang, Qian; He, Jun; Tong, Jianhua; Xiao, Langtao; Jiang, Ling; Wan, Jianmin

    2016-02-01

    Seed dormancy in rice is an important trait related to the pre-harvest sprouting resistance. In order to understand the molecular mechanisms of seed dormancy, gene expression was investigated by transcriptome analysis using seeds of the strongly dormant cultivar N22 and its less dormant mutants Q4359 and Q4646 at 24 days after heading (DAH). Microarray data revealed more differentially expressed genes in Q4359 than in Q4646 compared to N22. Most genes differing between Q4646 and N22 also differed between Q4359 and N22. GO analysis of genes differentially expressed in both Q4359 and Q4646 revealed that some genes such as those for starch biosynthesis were repressed, whereas metabolic genes such as those for carbohydrate metabolism were enhanced in Q4359 and Q4646 seeds relative to N22. Expression of some genes involved in cell redox homeostasis and chromatin remodeling differed significantly only between Q4359 and N22. The results suggested a close correlation between cell redox homeostasis, chromatin remodeling and seed dormancy. In addition, some genes involved in ABA signaling were down-regulated, and several genes involved in GA biosynthesis and signaling were up-regulated. These observations suggest that reduced seed dormancy in Q4359 was regulated by ABA-GA antagonism. A few differentially expressed genes were located in the regions containing qSdn-1 and qSdn-5 suggesting that they could be candidate genes underlying seed dormancy. Our work provides useful leads to further determine the underling mechanisms of seed dormancy and for cloning seed dormancy genes from N22. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  15. GenePublisher: Automated analysis of DNA microarray data.

    PubMed

    Knudsen, Steen; Workman, Christopher; Sicheritz-Ponten, Thomas; Friis, Carsten

    2003-07-01

    GenePublisher, a system for automatic analysis of data from DNA microarray experiments, has been implemented with a web interface at http://www.cbs.dtu.dk/services/GenePublisher. Raw data are uploaded to the server together with a specification of the data. The server performs normalization, statistical analysis and visualization of the data. The results are run against databases of signal transduction pathways, metabolic pathways and promoter sequences in order to extract more information. The results of the entire analysis are summarized in report form and returned to the user.

  16. Genomic analysis of Fusarium verticillioides.

    PubMed

    Brown, D W; Butchko, R A E; Proctor, R H

    2008-09-01

    Fusarium verticillioides (teleomorph Gibberella moniliformis) can be either an endophyte of maize, causing no visible disease, or a pathogen-causing disease of ears, stalks, roots and seedlings. At any stage, this fungus can synthesize fumonisins, a family of mycotoxins structurally similar to the sphingolipid sphinganine. Ingestion of fumonisin-contaminated maize has been associated with a number of animal diseases, including cancer in rodents, and exposure has been correlated with human oesophageal cancer in some regions of the world, and some evidence suggests that fumonisins are a risk factor for neural tube defects. A primary goal of the authors' laboratory is to eliminate fumonisin contamination of maize and maize products. Understanding how and why these toxins are made and the F. verticillioides-maize disease process will allow one to develop novel strategies to limit tissue destruction (rot) and fumonisin production. To meet this goal, genomic sequence data, expressed sequence tags (ESTs) and microarrays are being used to identify F. verticillioides genes involved in the biosynthesis of toxins and plant pathogenesis. This paper describes the current status of F. verticillioides genomic resources and three approaches being used to mine microarray data from a wild-type strain cultured in liquid fumonisin production medium for 12, 24, 48, 72, 96 and 120h. Taken together, these approaches demonstrate the power of microarray technology to provide information on different biological processes.

  17. Microarray characterization of gene expression changes in blood during acute ethanol exposure

    PubMed Central

    2013-01-01

    Background As part of the civil aviation safety program to define the adverse effects of ethanol on flying performance, we performed a DNA microarray analysis of human whole blood samples from a five-time point study of subjects administered ethanol orally, followed by breathalyzer analysis, to monitor blood alcohol concentration (BAC) to discover significant gene expression changes in response to the ethanol exposure. Methods Subjects were administered either orange juice or orange juice with ethanol. Blood samples were taken based on BAC and total RNA was isolated from PaxGene™ blood tubes. The amplified cDNA was used in microarray and quantitative real-time polymerase chain reaction (RT-qPCR) analyses to evaluate differential gene expression. Microarray data was analyzed in a pipeline fashion to summarize and normalize and the results evaluated for relative expression across time points with multiple methods. Candidate genes showing distinctive expression patterns in response to ethanol were clustered by pattern and further analyzed for related function, pathway membership and common transcription factor binding within and across clusters. RT-qPCR was used with representative genes to confirm relative transcript levels across time to those detected in microarrays. Results Microarray analysis of samples representing 0%, 0.04%, 0.08%, return to 0.04%, and 0.02% wt/vol BAC showed that changes in gene expression could be detected across the time course. The expression changes were verified by qRT-PCR. The candidate genes of interest (GOI) identified from the microarray analysis and clustered by expression pattern across the five BAC points showed seven coordinately expressed groups. Analysis showed function-based networks, shared transcription factor binding sites and signaling pathways for members of the clusters. These include hematological functions, innate immunity and inflammation functions, metabolic functions expected of ethanol metabolism, and pancreatic and hepatic function. Five of the seven clusters showed links to the p38 MAPK pathway. Conclusions The results of this study provide a first look at changing gene expression patterns in human blood during an acute rise in blood ethanol concentration and its depletion because of metabolism and excretion, and demonstrate that it is possible to detect changes in gene expression using total RNA isolated from whole blood. The analysis approach for this study serves as a workflow to investigate the biology linked to expression changes across a time course and from these changes, to identify target genes that could serve as biomarkers linked to pilot performance. PMID:23883607

  18. eSensor: an electrochemical detection-based DNA microarray technology enabling sample-to-answer molecular diagnostics

    NASA Astrophysics Data System (ADS)

    Liu, Robin H.; Longiaru, Mathew

    2009-05-01

    DNA microarrays are becoming a widespread tool used in life science and drug screening due to its many benefits of miniaturization and integration. Microarrays permit a highly multiplexed DNA analysis. Recently, the development of new detection methods and simplified methodologies has rapidly expanded the use of microarray technologies from predominantly gene expression analysis into the arena of diagnostics. Osmetech's eSensor® is an electrochemical detection platform based on a low-to- medium density DNA hybridization array on a cost-effective printed circuit board substrate. eSensor® has been cleared by FDA for Warfarin sensitivity test and Cystic Fibrosis Carrier Detection. Other genetic-based diagnostic and infectious disease detection tests are under development. The eSensor® platform eliminates the need for an expensive laser-based optical system and fluorescent reagents. It allows one to perform hybridization and detection in a single and small instrument without any fluidic processing and handling. Furthermore, the eSensor® platform is readily adaptable to on-chip sample-to-answer genetic analyses using microfluidics technology. The eSensor® platform provides a cost-effective solution to direct sample-to-answer genetic analysis, and thus have a potential impact in the fields of point-of-care genetic analysis, environmental testing, and biological warfare agent detection.

  19. Towards the integration, annotation and association of historical microarray experiments with RNA-seq.

    PubMed

    Chavan, Shweta S; Bauer, Michael A; Peterson, Erich A; Heuck, Christoph J; Johann, Donald J

    2013-01-01

    Transcriptome analysis by microarrays has produced important advances in biomedicine. For instance in multiple myeloma (MM), microarray approaches led to the development of an effective disease subtyping via cluster assignment, and a 70 gene risk score. Both enabled an improved molecular understanding of MM, and have provided prognostic information for the purposes of clinical management. Many researchers are now transitioning to Next Generation Sequencing (NGS) approaches and RNA-seq in particular, due to its discovery-based nature, improved sensitivity, and dynamic range. Additionally, RNA-seq allows for the analysis of gene isoforms, splice variants, and novel gene fusions. Given the voluminous amounts of historical microarray data, there is now a need to associate and integrate microarray and RNA-seq data via advanced bioinformatic approaches. Custom software was developed following a model-view-controller (MVC) approach to integrate Affymetrix probe set-IDs, and gene annotation information from a variety of sources. The tool/approach employs an assortment of strategies to integrate, cross reference, and associate microarray and RNA-seq datasets. Output from a variety of transcriptome reconstruction and quantitation tools (e.g., Cufflinks) can be directly integrated, and/or associated with Affymetrix probe set data, as well as necessary gene identifiers and/or symbols from a diversity of sources. Strategies are employed to maximize the annotation and cross referencing process. Custom gene sets (e.g., MM 70 risk score (GEP-70)) can be specified, and the tool can be directly assimilated into an RNA-seq pipeline. A novel bioinformatic approach to aid in the facilitation of both annotation and association of historic microarray data, in conjunction with richer RNA-seq data, is now assisting with the study of MM cancer biology.

  20. Optimization of cDNA microarrays procedures using criteria that do not rely on external standards.

    PubMed

    Bruland, Torunn; Anderssen, Endre; Doseth, Berit; Bergum, Hallgeir; Beisvag, Vidar; Laegreid, Astrid

    2007-10-18

    The measurement of gene expression using microarray technology is a complicated process in which a large number of factors can be varied. Due to the lack of standard calibration samples such as are used in traditional chemical analysis it may be a problem to evaluate whether changes done to the microarray procedure actually improve the identification of truly differentially expressed genes. The purpose of the present work is to report the optimization of several steps in the microarray process both in laboratory practices and in data processing using criteria that do not rely on external standards. We performed a cDNA microarry experiment including RNA from samples with high expected differential gene expression termed "high contrasts" (rat cell lines AR42J and NRK52E) compared to self-self hybridization, and optimized a pipeline to maximize the number of genes found to be differentially expressed in the "high contrasts" RNA samples by estimating the false discovery rate (FDR) using a null distribution obtained from the self-self experiment. The proposed high-contrast versus self-self method (HCSSM) requires only four microarrays per evaluation. The effects of blocking reagent dose, filtering, and background corrections methodologies were investigated. In our experiments a dose of 250 ng LNA (locked nucleic acid) dT blocker, no background correction and weight based filtering gave the largest number of differentially expressed genes. The choice of background correction method had a stronger impact on the estimated number of differentially expressed genes than the choice of filtering method. Cross platform microarray (Illumina) analysis was used to validate that the increase in the number of differentially expressed genes found by HCSSM was real. The results show that HCSSM can be a useful and simple approach to optimize microarray procedures without including external standards. Our optimizing method is highly applicable to both long oligo-probe microarrays which have become commonly used for well characterized organisms such as man, mouse and rat, as well as to cDNA microarrays which are still of importance for organisms with incomplete genome sequence information such as many bacteria, plants and fish.

  1. Optimization of cDNA microarrays procedures using criteria that do not rely on external standards

    PubMed Central

    Bruland, Torunn; Anderssen, Endre; Doseth, Berit; Bergum, Hallgeir; Beisvag, Vidar; Lægreid, Astrid

    2007-01-01

    Background The measurement of gene expression using microarray technology is a complicated process in which a large number of factors can be varied. Due to the lack of standard calibration samples such as are used in traditional chemical analysis it may be a problem to evaluate whether changes done to the microarray procedure actually improve the identification of truly differentially expressed genes. The purpose of the present work is to report the optimization of several steps in the microarray process both in laboratory practices and in data processing using criteria that do not rely on external standards. Results We performed a cDNA microarry experiment including RNA from samples with high expected differential gene expression termed "high contrasts" (rat cell lines AR42J and NRK52E) compared to self-self hybridization, and optimized a pipeline to maximize the number of genes found to be differentially expressed in the "high contrasts" RNA samples by estimating the false discovery rate (FDR) using a null distribution obtained from the self-self experiment. The proposed high-contrast versus self-self method (HCSSM) requires only four microarrays per evaluation. The effects of blocking reagent dose, filtering, and background corrections methodologies were investigated. In our experiments a dose of 250 ng LNA (locked nucleic acid) dT blocker, no background correction and weight based filtering gave the largest number of differentially expressed genes. The choice of background correction method had a stronger impact on the estimated number of differentially expressed genes than the choice of filtering method. Cross platform microarray (Illumina) analysis was used to validate that the increase in the number of differentially expressed genes found by HCSSM was real. Conclusion The results show that HCSSM can be a useful and simple approach to optimize microarray procedures without including external standards. Our optimizing method is highly applicable to both long oligo-probe microarrays which have become commonly used for well characterized organisms such as man, mouse and rat, as well as to cDNA microarrays which are still of importance for organisms with incomplete genome sequence information such as many bacteria, plants and fish. PMID:17949480

  2. Global transcriptome analysis of spore formation in Myxococcus xanthus reveals a locus necessary for cell differentiation

    PubMed Central

    2010-01-01

    Background Myxococcus xanthus is a Gram negative bacterium that can differentiate into metabolically quiescent, environmentally resistant spores. Little is known about the mechanisms involved in differentiation in part because sporulation is normally initiated at the culmination of a complex starvation-induced developmental program and only inside multicellular fruiting bodies. To obtain a broad overview of the sporulation process and to identify novel genes necessary for differentiation, we instead performed global transcriptome analysis of an artificial chemically-induced sporulation process in which addition of glycerol to vegetatively growing liquid cultures of M. xanthus leads to rapid and synchronized differentiation of nearly all cells into myxospore-like entities. Results Our analyses identified 1 486 genes whose expression was significantly regulated at least two-fold within four hours of chemical-induced differentiation. Most of the previously identified sporulation marker genes were significantly upregulated. In contrast, most genes that are required to build starvation-induced multicellular fruiting bodies, but which are not required for sporulation per se, were not significantly regulated in our analysis. Analysis of functional gene categories significantly over-represented in the regulated genes, suggested large rearrangements in core metabolic pathways, and in genes involved in protein synthesis and fate. We used the microarray data to identify a novel operon of eight genes that, when mutated, rendered cells unable to produce viable chemical- or starvation-induced spores. Importantly, these mutants displayed no defects in building fruiting bodies, suggesting these genes are necessary for the core sporulation process. Furthermore, during the starvation-induced developmental program, these genes were expressed in fruiting bodies but not in peripheral rods, a subpopulation of developing cells which do not sporulate. Conclusions These results suggest that microarray analysis of chemical-induced spore formation is an excellent system to specifically identify genes necessary for the core sporulation process of a Gram negative model organism for differentiation. PMID:20420673

  3. RECOVERING FILTER-BASED MICROARRAY DATA FOR PATHWAYS ANALYSIS USING A MULTIPOINT ALIGNMENT STRATEGY

    EPA Science Inventory

    The use of commercial microarrays are rapidly becoming the method of choice for profiling gene expression and assessing various disease states. Research Genetics has provided a series of well defined biological and software tools to the research community for these analyses. Th...

  4. Development of an oligo DNA microarray for the European sea bass and its application to expression profiling of jaw deformity

    PubMed Central

    2010-01-01

    Background The European sea bass (Dicentrarchus labrax) is a marine fish of great importance for fisheries and aquaculture. Functional genomics offers the possibility to discover the molecular mechanisms underlying productive traits in farmed fish, and a step towards the application of marker assisted selection methods in this species. To this end, we report here on the development of an oligo DNA microarray for D. labrax. Results A database consisting of 19,048 unique transcripts was constructed, of which 12,008 (63%) could be annotated by similarity and 4,692 received a GO functional annotation. Two non-overlapping 60mer probes were designed for each unique transcript and in-situ synthesized on glass slides using Agilent SurePrint™ technology. Probe design was positively completed for 19,035 target clusters; the oligo microarray was then applied to profile gene expression in mandibles and whole-heads of fish affected by prognathism, a skeletal malformation that strongly affects sea bass production. Statistical analysis identified 242 transcripts that are significantly down-regulated in deformed individuals compared to normal fish, with a significant enrichment in genes related to nervous system development and functioning. A set of genes spanning a wide dynamic range in gene expression level were selected for quantitative RT-PCR validation. Fold change correlation between microarray and qPCR data was always significant. Conclusions The microarray platform developed for the European sea bass has a high level of flexibility, reliability, and reproducibility. Despite the well known limitations in achieving a proper functional annotation in non-model species, sufficient information was obtained to identify biological processes that are significantly enriched among differentially expressed genes. New insights were obtained on putative mechanisms involved on mandibular prognathism, suggesting that bone/nervous system development might play a role in this phenomenon. PMID:20525278

  5. Estimating gene function with least squares nonnegative matrix factorization.

    PubMed

    Wang, Guoli; Ochs, Michael F

    2007-01-01

    Nonnegative matrix factorization is a machine learning algorithm that has extracted information from data in a number of fields, including imaging and spectral analysis, text mining, and microarray data analysis. One limitation with the method for linking genes through microarray data in order to estimate gene function is the high variance observed in transcription levels between different genes. Least squares nonnegative matrix factorization uses estimates of the uncertainties on the mRNA levels for each gene in each condition, to guide the algorithm to a local minimum in normalized chi2, rather than a Euclidean distance or divergence between the reconstructed data and the data itself. Herein, application of this method to microarray data is demonstrated in order to predict gene function.

  6. Microarray expression technology: from start to finish.

    PubMed

    Elvidge, Gareth

    2006-01-01

    The recent introduction of new microarray expression technologies and the further development of established platforms ensure that the researcher is presented with a range of options for performing an experiment. Whilst this has opened up the possibilities for future applications, such as exon-specific arrays, increased sample throughput and 'chromatin immunoprecipitation (ChIP) on chip' experiments, the initial decision processes and experiment planning are made more difficult. This review will give an overview of the various technologies that are available to perform a microarray expression experiment, from the initial planning stages through to the final data analysis. Both practical aspects and data analysis options will be considered. The relative advantages and disadvantages will be discussed with insights provided for future directions of the technology.

  7. Single molecule fluorescence microscopy for ultra-sensitive RNA expression profiling

    NASA Astrophysics Data System (ADS)

    Hesse, Jan; Jacak, Jaroslaw; Regl, Gerhard; Eichberger, Thomas; Aberger, Fritz; Schlapak, Robert; Howorka, Stefan; Muresan, Leila; Frischauf, Anna-Maria; Schütz, Gerhard J.

    2007-02-01

    We developed a microarray analysis platform for ultra-sensitive RNA expression profiling of minute samples. It utilizes a novel scanning system for single molecule fluorescence detection on cm2 size samples in combination with specialized biochips, optimized for low autofluorescence and weak unspecific adsorption. 20 μg total RNA was extracted from 10 6 cells of a human keratinocyte cell line (HaCaT) and reversely transcribed in the presence of Alexa647-aha-dUTP. 1% of the resulting labeled cDNA was used for complex hybridization to a custom-made oligonucleotide microarray representing a set of 125 different genes. For low abundant genes, individual cDNA molecules hybridized to the microarray spots could be resolved. Single cDNA molecules hybridized to the chip surface appeared as diffraction limited features in the fluorescence images. The à trous wavelet method was utilized for localization and counting of the separated cDNA signals. Subsequently, the degree of labeling of the localized cDNA molecules was determined by brightness analysis for the different genes. Variations by factors up to 6 were found, which in conventional microarray analysis would result in a misrepresentation of the relative abundance of mRNAs.

  8. Dual-color Proteomic Profiling of Complex Samples with a Microarray of 810 Cancer-related Antibodies*

    PubMed Central

    Schröder, Christoph; Jacob, Anette; Tonack, Sarah; Radon, Tomasz P.; Sill, Martin; Zucknick, Manuela; Rüffer, Sven; Costello, Eithne; Neoptolemos, John P.; Crnogorac-Jurcevic, Tatjana; Bauer, Andrea; Fellenberg, Kurt; Hoheisel, Jörg D.

    2010-01-01

    Antibody microarrays have the potential to enable comprehensive proteomic analysis of small amounts of sample material. Here, protocols are presented for the production, quality assessment, and reproducible application of antibody microarrays in a two-color mode with an array of 1,800 features, representing 810 antibodies that were directed at 741 cancer-related proteins. In addition to measures of array quality, we implemented indicators for the accuracy and significance of dual-color detection. Dual-color measurements outperform a single-color approach concerning assay reproducibility and discriminative power. In the analysis of serum samples, depletion of high-abundance proteins did not improve technical assay quality. On the contrary, depletion introduced a strong bias in protein representation. In an initial study, we demonstrated the applicability of the protocols to proteins derived from urine samples. We identified differences between urine samples from pancreatic cancer patients and healthy subjects and between sexes. This study demonstrates that biomedically relevant data can be produced. As demonstrated by the thorough quality analysis, the dual-color antibody array approach proved to be competitive with other proteomic techniques and comparable in performance to transcriptional microarray analyses. PMID:20164060

  9. Estimating differential expression from multiple indicators

    PubMed Central

    Ilmjärv, Sten; Hundahl, Christian Ansgar; Reimets, Riin; Niitsoo, Margus; Kolde, Raivo; Vilo, Jaak; Vasar, Eero; Luuk, Hendrik

    2014-01-01

    Regardless of the advent of high-throughput sequencing, microarrays remain central in current biomedical research. Conventional microarray analysis pipelines apply data reduction before the estimation of differential expression, which is likely to render the estimates susceptible to noise from signal summarization and reduce statistical power. We present a probe-level framework, which capitalizes on the high number of concurrent measurements to provide more robust differential expression estimates. The framework naturally extends to various experimental designs and target categories (e.g. transcripts, genes, genomic regions) as well as small sample sizes. Benchmarking in relation to popular microarray and RNA-sequencing data-analysis pipelines indicated high and stable performance on the Microarray Quality Control dataset and in a cell-culture model of hypoxia. Experimental-data-exhibiting long-range epigenetic silencing of gene expression was used to demonstrate the efficacy of detecting differential expression of genomic regions, a level of analysis not embraced by conventional workflows. Finally, we designed and conducted an experiment to identify hypothermia-responsive genes in terms of monotonic time-response. As a novel insight, hypothermia-dependent up-regulation of multiple genes of two major antioxidant pathways was identified and verified by quantitative real-time PCR. PMID:24586062

  10. The effect of column purification on cDNA indirect labelling for microarrays

    PubMed Central

    Molas, M Lia; Kiss, John Z

    2007-01-01

    Background The success of the microarray reproducibility is dependent upon the performance of standardized procedures. Since the introduction of microarray technology for the analysis of global gene expression, reproducibility of results among different laboratories has been a major problem. Two of the main contributors to this variability are the use of different microarray platforms and different laboratory practices. In this paper, we address the latter question in terms of how variation in one of the steps of a labelling procedure affects the cDNA product prior to microarray hybridization. Results We used a standard procedure to label cDNA for microarray hybridization and employed different types of column chromatography for cDNA purification. After purifying labelled cDNA, we used the Agilent 2100 Bioanalyzer and agarose gel electrophoresis to assess the quality of the labelled cDNA before its hybridization onto a microarray platform. There were major differences in the cDNA profile (i.e. cDNA fragment lengths and abundance) as a result of using four different columns for purification. In addition, different columns have different efficiencies to remove rRNA contamination. This study indicates that the appropriate column to use in this type of protocol has to be experimentally determined. Finally, we present new evidence establishing the importance of testing the method of purification used during an indirect labelling procedure. Our results confirm the importance of assessing the quality of the sample in the labelling procedure prior to hybridization onto a microarray platform. Conclusion Standardization of column purification systems to be used in labelling procedures will improve the reproducibility of microarray results among different laboratories. In addition, implementation of a quality control check point of the labelled samples prior to microarray hybridization will prevent hybridizing a poor quality sample to expensive micorarrays. PMID:17597522

  11. The effect of column purification on cDNA indirect labelling for microarrays.

    PubMed

    Molas, M Lia; Kiss, John Z

    2007-06-27

    The success of the microarray reproducibility is dependent upon the performance of standardized procedures. Since the introduction of microarray technology for the analysis of global gene expression, reproducibility of results among different laboratories has been a major problem. Two of the main contributors to this variability are the use of different microarray platforms and different laboratory practices. In this paper, we address the latter question in terms of how variation in one of the steps of a labelling procedure affects the cDNA product prior to microarray hybridization. We used a standard procedure to label cDNA for microarray hybridization and employed different types of column chromatography for cDNA purification. After purifying labelled cDNA, we used the Agilent 2100 Bioanalyzer and agarose gel electrophoresis to assess the quality of the labelled cDNA before its hybridization onto a microarray platform. There were major differences in the cDNA profile (i.e. cDNA fragment lengths and abundance) as a result of using four different columns for purification. In addition, different columns have different efficiencies to remove rRNA contamination. This study indicates that the appropriate column to use in this type of protocol has to be experimentally determined. Finally, we present new evidence establishing the importance of testing the method of purification used during an indirect labelling procedure. Our results confirm the importance of assessing the quality of the sample in the labelling procedure prior to hybridization onto a microarray platform. Standardization of column purification systems to be used in labelling procedures will improve the reproducibility of microarray results among different laboratories. In addition, implementation of a quality control check point of the labelled samples prior to microarray hybridization will prevent hybridizing a poor quality sample to expensive micorarrays.

  12. Functional interaction analysis of GM1-related carbohydrates and Vibrio cholerae toxins using carbohydrate microarray.

    PubMed

    Kim, Chang Sup; Seo, Jeong Hyun; Cha, Hyung Joon

    2012-08-07

    The development of analytical tools is important for understanding the infection mechanisms of pathogenic bacteria or viruses. In the present work, a functional carbohydrate microarray combined with a fluorescence immunoassay was developed to analyze the interactions of Vibrio cholerae toxin (ctx) proteins and GM1-related carbohydrates. Ctx proteins were loaded onto the surface-immobilized GM1 pentasaccharide and six related carbohydrates, and their binding affinities were detected immunologically. The analysis of the ctx-carbohydrate interactions revealed that the intrinsic selectivity of ctx was GM1 pentasaccharide ≫ GM2 tetrasaccharide > asialo GM1 tetrasaccharide ≥ GM3trisaccharide, indicating that a two-finger grip formation and the terminal monosaccharides play important roles in the ctx-GM1 interaction. In addition, whole cholera toxin (ctxAB(5)) had a stricter substrate specificity and a stronger binding affinity than only the cholera toxin B subunit (ctxB). On the basis of the quantitative analysis, the carbohydrate microarray showed the sensitivity of detection of the ctxAB(5)-GM1 interaction with a limit-of-detection (LOD) of 2 ng mL(-1) (23 pM), which is comparable to other reported high sensitivity assay tools. In addition, the carbohydrate microarray successfully detected the actual toxin directly secreted from V. cholerae, without showing cross-reactivity to other bacteria. Collectively, these results demonstrate that the functional carbohydrate microarray is suitable for analyzing toxin protein-carbohydrate interactions and can be applied as a biosensor for toxin detection.

  13. Bacterial identification and subtyping using DNA microarray and DNA sequencing.

    PubMed

    Al-Khaldi, Sufian F; Mossoba, Magdi M; Allard, Marc M; Lienau, E Kurt; Brown, Eric D

    2012-01-01

    The era of fast and accurate discovery of biological sequence motifs in prokaryotic and eukaryotic cells is here. The co-evolution of direct genome sequencing and DNA microarray strategies not only will identify, isotype, and serotype pathogenic bacteria, but also it will aid in the discovery of new gene functions by detecting gene expressions in different diseases and environmental conditions. Microarray bacterial identification has made great advances in working with pure and mixed bacterial samples. The technological advances have moved beyond bacterial gene expression to include bacterial identification and isotyping. Application of new tools such as mid-infrared chemical imaging improves detection of hybridization in DNA microarrays. The research in this field is promising and future work will reveal the potential of infrared technology in bacterial identification. On the other hand, DNA sequencing by using 454 pyrosequencing is so cost effective that the promise of $1,000 per bacterial genome sequence is becoming a reality. Pyrosequencing technology is a simple to use technique that can produce accurate and quantitative analysis of DNA sequences with a great speed. The deposition of massive amounts of bacterial genomic information in databanks is creating fingerprint phylogenetic analysis that will ultimately replace several technologies such as Pulsed Field Gel Electrophoresis. In this chapter, we will review (1) the use of DNA microarray using fluorescence and infrared imaging detection for identification of pathogenic bacteria, and (2) use of pyrosequencing in DNA cluster analysis to fingerprint bacterial phylogenetic trees.

  14. Gene features selection for three-class disease classification via multiple orthogonal partial least square discriminant analysis and S-plot using microarray data.

    PubMed

    Yang, Mingxing; Li, Xiumin; Li, Zhibin; Ou, Zhimin; Liu, Ming; Liu, Suhuan; Li, Xuejun; Yang, Shuyu

    2013-01-01

    DNA microarray analysis is characterized by obtaining a large number of gene variables from a small number of observations. Cluster analysis is widely used to analyze DNA microarray data to make classification and diagnosis of disease. Because there are so many irrelevant and insignificant genes in a dataset, a feature selection approach must be employed in data analysis. The performance of cluster analysis of this high-throughput data depends on whether the feature selection approach chooses the most relevant genes associated with disease classes. Here we proposed a new method using multiple Orthogonal Partial Least Squares-Discriminant Analysis (mOPLS-DA) models and S-plots to select the most relevant genes to conduct three-class disease classification and prediction. We tested our method using Golub's leukemia microarray data. For three classes with subtypes, we proposed hierarchical orthogonal partial least squares-discriminant analysis (OPLS-DA) models and S-plots to select features for two main classes and their subtypes. For three classes in parallel, we employed three OPLS-DA models and S-plots to choose marker genes for each class. The power of feature selection to classify and predict three-class disease was evaluated using cluster analysis. Further, the general performance of our method was tested using four public datasets and compared with those of four other feature selection methods. The results revealed that our method effectively selected the most relevant features for disease classification and prediction, and its performance was better than that of the other methods.

  15. Gene expression profiling of whole blood: Comparison of target preparation methods for accurate and reproducible microarray analysis

    PubMed Central

    Vartanian, Kristina; Slottke, Rachel; Johnstone, Timothy; Casale, Amanda; Planck, Stephen R; Choi, Dongseok; Smith, Justine R; Rosenbaum, James T; Harrington, Christina A

    2009-01-01

    Background Peripheral blood is an accessible and informative source of transcriptomal information for many human disease and pharmacogenomic studies. While there can be significant advantages to analyzing RNA isolated from whole blood, particularly in clinical studies, the preparation of samples for microarray analysis is complicated by the need to minimize artifacts associated with highly abundant globin RNA transcripts. The impact of globin RNA transcripts on expression profiling data can potentially be reduced by using RNA preparation and labeling methods that remove or block globin RNA during the microarray assay. We compared four different methods for preparing microarray hybridization targets from human whole blood collected in PAXGene tubes. Three of the methods utilized the Affymetrix one-cycle cDNA synthesis/in vitro transcription protocol but varied treatment of input RNA as follows: i. no treatment; ii. treatment with GLOBINclear; or iii. treatment with globin PNA oligos. In the fourth method cDNA targets were prepared with the Ovation amplification and labeling system. Results We find that microarray targets generated with labeling methods that reduce globin mRNA levels or minimize the impact of globin transcripts during hybridization detect more transcripts in the microarray assay compared with the standard Affymetrix method. Comparison of microarray results with quantitative PCR analysis of a panel of genes from the NF-kappa B pathway shows good correlation of transcript measurements produced with all four target preparation methods, although method-specific differences in overall correlation were observed. The impact of freezing blood collected in PAXGene tubes on data reproducibility was also examined. Expression profiles show little or no difference when RNA is extracted from either fresh or frozen blood samples. Conclusion RNA preparation and labeling methods designed to reduce the impact of globin mRNA transcripts can significantly improve the sensitivity of the DNA microarray expression profiling assay for whole blood samples. While blockage of globin transcripts during first strand cDNA synthesis with globin PNAs resulted in the best overall performance in this study, we conclude that selection of a protocol for expression profiling studies in blood should depend on several factors, including implementation requirements of the method and study design. RNA isolated from either freshly collected or frozen blood samples stored in PAXGene tubes can be used without altering gene expression profiles. PMID:19123946

  16. APPLICATION OF DNA MICROARRAYS TO REPRODUCTIVE TOXICOLOGY AND THE DEVELOPMENT OF A TESTIS ARRAY

    EPA Science Inventory

    With the advent of sequence information for entire mammalian genomes, it is now possible to analyze gene expression and gene polymorphisms on a genomic scale. The primary tool for analysis of gene expression is the DNA microarray. We have used commercially available cDNA micro...

  17. Microarrays for Undergraduate Classes

    ERIC Educational Resources Information Center

    Hancock, Dale; Nguyen, Lisa L.; Denyer, Gareth S.; Johnston, Jill M.

    2006-01-01

    A microarray experiment is presented that, in six laboratory sessions, takes undergraduate students from the tissue sample right through to data analysis. The model chosen, the murine erythroleukemia cell line, can be easily cultured in sufficient quantities for class use. Large changes in gene expression can be induced in these cells by…

  18. BIOMONITORING THE TOXICOGENOMIC RESPONSE TO ENDOCRINE DISRUPTING CHEMICALS IN HUMANS, LABORATORY SPECIES AND WILDLIFE

    EPA Science Inventory

    With the advent of sequence information for entire eukaryotic genomes, it is now possible to analyze gene expression on a genomic scale. The primary tool for genomic analysis of gene expression is the gene microarray. We have used commercially available and custom cDNA microarray...

  19. CLOFIBRATE-INDUCED GENE EXPRESSION CHANGES IN RAT LIVER: A CROSS-LABORATORY ANALYSIS USING MEMBRANE CDNA ARRAYS

    EPA Science Inventory

    Microarrays have the potential to significantly impact our ability to identify toxic hazards by the identification of mechanistically-relevant markers of toxicity. To be useful for risk assessment however, microarray data must be challenged to determine its reliability and inter...

  20. Comparative analysis of microarray data in Arabidopsis transcriptome during compatible interactions with plant viruses

    USDA-ARS?s Scientific Manuscript database

    To analyze transcriptome response to virus infection, we have assembled currently available microarray data on changes in gene expression levels in compatible Arabidopsis-virus interactions. We used the mean r (Pearson’s correlation coefficient) for neighboring pairs to estimate pairwise local simil...

  1. Profiling In Situ Microbial Community Structure with an Amplification Microarray

    PubMed Central

    Knickerbocker, Christopher; Bryant, Lexi; Golova, Julia; Wiles, Cory; Williams, Kenneth H.; Peacock, Aaron D.; Long, Philip E.

    2013-01-01

    The objectives of this study were to unify amplification, labeling, and microarray hybridization chemistries within a single, closed microfluidic chamber (an amplification microarray) and verify technology performance on a series of groundwater samples from an in situ field experiment designed to compare U(VI) mobility under conditions of various alkalinities (as HCO3−) during stimulated microbial activity accompanying acetate amendment. Analytical limits of detection were between 2 and 200 cell equivalents of purified DNA. Amplification microarray signatures were well correlated with 16S rRNA-targeted quantitative PCR results and hybridization microarray signatures. The succession of the microbial community was evident with and consistent between the two microarray platforms. Amplification microarray analysis of acetate-treated groundwater showed elevated levels of iron-reducing bacteria (Flexibacter, Geobacter, Rhodoferax, and Shewanella) relative to the average background profile, as expected. Identical molecular signatures were evident in the transect treated with acetate plus NaHCO3, but at much lower signal intensities and with a much more rapid decline (to nondetection). Azoarcus, Thaurea, and Methylobacterium were responsive in the acetate-only transect but not in the presence of bicarbonate. Observed differences in microbial community composition or response to bicarbonate amendment likely had an effect on measured rates of U reduction, with higher rates probable in the part of the field experiment that was amended with bicarbonate. The simplification in microarray-based work flow is a significant technological advance toward entirely closed-amplicon microarray-based tests and is generally extensible to any number of environmental monitoring applications. PMID:23160129

  2. Bioinformatic tools for inferring functional information from plant microarray data: tools for the first steps.

    PubMed

    Page, Grier P; Coulibaly, Issa

    2008-01-01

    Microarrays are a very powerful tool for quantifying the amount of RNA in samples; however, their ability to query essentially every gene in a genome, which can number in the tens of thousands, presents analytical and interpretative problems. As a result, a variety of software and web-based tools have been developed to help with these issues. This article highlights and reviews some of the tools for the first steps in the analysis of a microarray study. We have tried for a balance between free and commercial systems. We have organized the tools by topics including image processing tools (Section 2), power analysis tools (Section 3), image analysis tools (Section 4), database tools (Section 5), databases of functional information (Section 6), annotation tools (Section 7), statistical and data mining tools (Section 8), and dissemination tools (Section 9).

  3. Bioinformatics and Microarray Data Analysis on the Cloud.

    PubMed

    Calabrese, Barbara; Cannataro, Mario

    2016-01-01

    High-throughput platforms such as microarray, mass spectrometry, and next-generation sequencing are producing an increasing volume of omics data that needs large data storage and computing power. Cloud computing offers massive scalable computing and storage, data sharing, on-demand anytime and anywhere access to resources and applications, and thus, it may represent the key technology for facing those issues. In fact, in the recent years it has been adopted for the deployment of different bioinformatics solutions and services both in academia and in the industry. Although this, cloud computing presents several issues regarding the security and privacy of data, that are particularly important when analyzing patients data, such as in personalized medicine. This chapter reviews main academic and industrial cloud-based bioinformatics solutions; with a special focus on microarray data analysis solutions and underlines main issues and problems related to the use of such platforms for the storage and analysis of patients data.

  4. Identification of differentially expressed genes and false discovery rate in microarray studies.

    PubMed

    Gusnanto, Arief; Calza, Stefano; Pawitan, Yudi

    2007-04-01

    To highlight the development in microarray data analysis for the identification of differentially expressed genes, particularly via control of false discovery rate. The emergence of high-throughput technology such as microarrays raises two fundamental statistical issues: multiplicity and sensitivity. We focus on the biological problem of identifying differentially expressed genes. First, multiplicity arises due to testing tens of thousands of hypotheses, rendering the standard P value meaningless. Second, known optimal single-test procedures such as the t-test perform poorly in the context of highly multiple tests. The standard approach of dealing with multiplicity is too conservative in the microarray context. The false discovery rate concept is fast becoming the key statistical assessment tool replacing the P value. We review the false discovery rate approach and argue that it is more sensible for microarray data. We also discuss some methods to take into account additional information from the microarrays to improve the false discovery rate. There is growing consensus on how to analyse microarray data using the false discovery rate framework in place of the classical P value. Further research is needed on the preprocessing of the raw data, such as the normalization step and filtering, and on finding the most sensitive test procedure.

  5. Identification of rice genes associated with cosmic-ray response via co-expression gene network analysis.

    PubMed

    Hwang, Sun-Goo; Kim, Dong Sub; Hwang, Jung Eun; Han, A-Reum; Jang, Cheol Seong

    2014-05-15

    In order to better understand the biological systems that are affected in response to cosmic ray (CR), we conducted weighted gene co-expression network analysis using the module detection method. By using the Pearson's correlation coefficient (PCC) value, we evaluated complex gene-gene functional interactions between 680 CR-responsive probes from integrated microarray data sets, which included large-scale transcriptional profiling of 1000 microarray samples. These probes were divided into 6 distinct modules that contained 20 enriched gene ontology (GO) functions, such as oxidoreductase activity, hydrolase activity, and response to stimulus and stress. In particular, modules 1 and 2 commonly showed enriched annotation categories such as oxidoreductase activity, including enriched cis-regulatory elements known as ROS-specific regulators. These results suggest that the ROS-mediated irradiation response pathway is affected by CR in modules 1 and 2. We found 243 ionizing radiation (IR)-responsive probes that exhibited similarities in expression patterns in various irradiation microarray data sets. The expression patterns of 6 randomly selected IR-responsive genes were evaluated by quantitative reverse transcription polymerase chain reaction following treatment with CR, gamma rays (GR), and ion beam (IB); similar patterns were observed among these genes under these 3 treatments. Moreover, we constructed subnetworks of IR-responsive genes and evaluated the expression levels of their neighboring genes following GR treatment; similar patterns were observed among them. These results of network-based analyses might provide a clue to understanding the complex biological system related to the CR response in plants. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Toxicity evaluation of glyphosate agrochemical components using Japanese medaka (Oryzias latipes) and DNA microarray gene expression analysis.

    PubMed

    Uchida, Masaya; Takumi, Shota; Tachikawa, Keiko; Yamauchi, Ryoko; Goto, Yoshiyuki; Matsusaki, Hiromi; Nakamura, Hiroshi; Kagami, Yoshihiro; Kusano, Teruhiko; Arizono, Koji

    2012-01-01

    Using glyphosate agrochemical components, we investigated their acute toxicity to juvenile Japanese medaka (Oryzias latipes) as well as their toxic impact at gene expression level on the liver tissues of adult medaka using DNA microarray. In our acute toxicity test, juvenile medaka were exposed for 96 hr to each of the following glyphosate agrochemical components: 10~160 mg/l of glyphosate, 1.25~20 mg/l of fatty acid alkanolamide surfactant (DA), and 12~416 mg/l of a fully formulated glyphosate herbicide. As a result, LC(50) values of glyphosate, DA, and the glyphosate herbicide were > 160 mg/l, 8.5 mg/l, and 76.8 mg/l, respectively. On the other hand, adult male medaka fish were exposed to each of the glyphosate agrochemical components for 48 hr at the following concentrations: 16 mg/l of glyphosate, 0.5 mg/l of DA, and 16 mg/l-glyphosate/0.5 mg/l-DA mixture. Interestingly, DNA microarray analysis revealed that there were no significant gene expression changes in the medaka liver after exposure to glyphosate. Nevertheless, 78 and 138 genes were significantly induced by DA and the glyphosate/DA mixture, respectively. Furthermore, we identified five common genes that were affected by DA and glyphosate/DA mixture. These results suggested that glyphosate itself possessed very low toxicity as previously reported by some researchers at least to the small laboratory fish, and the major toxicity of the glyphosate agrochemical resided mainly in DA and perhaps in unintentionally generated byproduct(s) of glyphosate-DA mixture.

  7. Gene expression profile of mouse prostate tumors reveals dysregulations in major biological processes and identifies potential murine targets for preclinical development of human prostate cancer therapy.

    PubMed

    Haram, Kerstyn M; Peltier, Heidi J; Lu, Bin; Bhasin, Manoj; Otu, Hasan H; Choy, Bob; Regan, Meredith; Libermann, Towia A; Latham, Gary J; Sanda, Martin G; Arredouani, Mohamed S

    2008-10-01

    Translation of preclinical studies into effective human cancer therapy is hampered by the lack of defined molecular expression patterns in mouse models that correspond to the human counterpart. We sought to generate an open source TRAMP mouse microarray dataset and to use this array to identify differentially expressed genes from human prostate cancer (PCa) that have concordant expression in TRAMP tumors, and thereby represent lead targets for preclinical therapy development. We performed microarrays on total RNA extracted and amplified from eight TRAMP tumors and nine normal prostates. A subset of differentially expressed genes was validated by QRT-PCR. Differentially expressed TRAMP genes were analyzed for concordant expression in publicly available human prostate array datasets and a subset of resulting genes was analyzed by QRT-PCR. Cross-referencing differentially expressed TRAMP genes to public human prostate array datasets revealed 66 genes with concordant expression in mouse and human PCa; 56 between metastases and normal and 10 between primary tumor and normal tissues. Of these 10 genes, two, Sox4 and Tubb2a, were validated by QRT-PCR. Our analysis also revealed various dysregulations in major biologic pathways in the TRAMP prostates. We report a TRAMP microarray dataset of which a gene subset was validated by QRT-PCR with expression patterns consistent with previous gene-specific TRAMP studies. Concordance analysis between TRAMP and human PCa associated genes supports the utility of the model and suggests several novel molecular targets for preclinical therapy.

  8. Global Microarray Analysis of Carbohydrate Use in Alkaliphilic Hemicellulolytic Bacterium Bacillus sp. N16-5

    PubMed Central

    Song, Yajian; Xue, Yanfen; Ma, Yanhe

    2013-01-01

    The alkaliphilic hemicellulolytic bacterium Bacillus sp. N16-5 has a broad substrate spectrum and exhibits the capacity to utilize complex carbohydrates such as galactomannan, xylan, and pectin. In the monosaccharide mixture, sequential utilization by Bacillus sp. N16-5 was observed. Glucose appeared to be its preferential monosaccharide, followed by fructose, mannose, arabinose, xylose, and galactose. Global transcription profiles of the strain were determined separately for growth on six monosaccharides (glucose, fructose, mannose, galactose, arabinose, and xylose) and four polysaccharides (galactomannan, xylan, pectin, and sodium carboxymethylcellulose) using one-color microarrays. Numerous genes potentially related to polysaccharide degradation, sugar transport, and monosaccharide metabolism were found to respond to a specific substrate. Putative gene clusters for different carbohydrates were identified according to transcriptional patterns and genome annotation. Identification and analysis of these gene clusters contributed to pathway reconstruction for carbohydrate utilization in Bacillus sp. N16-5. Several genes encoding putative sugar transporters were highly expressed during growth on specific sugars, suggesting their functional roles. Two phosphoenolpyruvate-dependent phosphotransferase systems were identified as candidate transporters for mannose and fructose, and a major facilitator superfamily transporter was identified as a candidate transporter for arabinose and xylose. Five carbohydrate uptake transporter 1 family ATP-binding cassette transporters were predicted to participate in the uptake of hemicellulose and pectin degradation products. Collectively, microarray data improved the pathway reconstruction involved in carbohydrate utilization of Bacillus sp. N16-5 and revealed that the organism precisely regulates gene transcription in response to fluctuations in energy resources. PMID:23326578

  9. An evaluation of two-channel ChIP-on-chip and DNA methylation microarray normalization strategies

    PubMed Central

    2012-01-01

    Background The combination of chromatin immunoprecipitation with two-channel microarray technology enables genome-wide mapping of binding sites of DNA-interacting proteins (ChIP-on-chip) or sites with methylated CpG di-nucleotides (DNA methylation microarray). These powerful tools are the gateway to understanding gene transcription regulation. Since the goals of such studies, the sample preparation procedures, the microarray content and study design are all different from transcriptomics microarrays, the data pre-processing strategies traditionally applied to transcriptomics microarrays may not be appropriate. Particularly, the main challenge of the normalization of "regulation microarrays" is (i) to make the data of individual microarrays quantitatively comparable and (ii) to keep the signals of the enriched probes, representing DNA sequences from the precipitate, as distinguishable as possible from the signals of the un-enriched probes, representing DNA sequences largely absent from the precipitate. Results We compare several widely used normalization approaches (VSN, LOWESS, quantile, T-quantile, Tukey's biweight scaling, Peng's method) applied to a selection of regulation microarray datasets, ranging from DNA methylation to transcription factor binding and histone modification studies. Through comparison of the data distributions of control probes and gene promoter probes before and after normalization, and assessment of the power to identify known enriched genomic regions after normalization, we demonstrate that there are clear differences in performance between normalization procedures. Conclusion T-quantile normalization applied separately on the channels and Tukey's biweight scaling outperform other methods in terms of the conservation of enriched and un-enriched signal separation, as well as in identification of genomic regions known to be enriched. T-quantile normalization is preferable as it additionally improves comparability between microarrays. In contrast, popular normalization approaches like quantile, LOWESS, Peng's method and VSN normalization alter the data distributions of regulation microarrays to such an extent that using these approaches will impact the reliability of the downstream analysis substantially. PMID:22276688

  10. Advantages of RNA-seq compared to RNA microarrays for transcriptome profiling of anterior cruciate ligament tears.

    PubMed

    Rai, Muhammad Farooq; Tycksen, Eric D; Sandell, Linda J; Brophy, Robert H

    2018-01-01

    Microarrays and RNA-seq are at the forefront of high throughput transcriptome analyses. Since these methodologies are based on different principles, there are concerns about the concordance of data between the two techniques. The concordance of RNA-seq and microarrays for genome-wide analysis of differential gene expression has not been rigorously assessed in clinically derived ligament tissues. To demonstrate the concordance between RNA-seq and microarrays and to assess potential benefits of RNA-seq over microarrays, we assessed differences in transcript expression in anterior cruciate ligament (ACL) tissues based on time-from-injury. ACL remnants were collected from patients with an ACL tear at the time of ACL reconstruction. RNA prepared from torn ACL remnants was subjected to Agilent microarrays (N = 24) and RNA-seq (N = 8). The correlation of biological replicates in RNA-seq and microarrays data was similar (0.98 vs. 0.97), demonstrating that each platform has high internal reproducibility. Correlations between the RNA-seq data and the individual microarrays were low, but correlations between the RNA-seq values and the geometric mean of the microarrays values were moderate. The cross-platform concordance for differentially expressed transcripts or enriched pathways was linearly correlated (r = 0.64). RNA-Seq was superior in detecting low abundance transcripts and differentiating biologically critical isoforms. Additional independent validation of transcript expression was undertaken using microfluidic PCR for selected genes. PCR data showed 100% concordance (in expression pattern) with RNA-seq and microarrays data. These findings demonstrate that RNA-seq has advantages over microarrays for transcriptome profiling of ligament tissues when available and affordable. Furthermore, these findings are likely transferable to other musculoskeletal tissues where tissue collection is challenging and cells are in low abundance. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:484-497, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  11. A model of binding on DNA microarrays: understanding the combined effect of probe synthesis failure, cross-hybridization, DNA fragmentation and other experimental details of affymetrix arrays

    PubMed Central

    2012-01-01

    Background DNA microarrays are used both for research and for diagnostics. In research, Affymetrix arrays are commonly used for genome wide association studies, resequencing, and for gene expression analysis. These arrays provide large amounts of data. This data is analyzed using statistical methods that quite often discard a large portion of the information. Most of the information that is lost comes from probes that systematically fail across chips and from batch effects. The aim of this study was to develop a comprehensive model for hybridization that predicts probe intensities for Affymetrix arrays and that could provide a basis for improved microarray analysis and probe development. The first part of the model calculates probe binding affinities to all the possible targets in the hybridization solution using the Langmuir isotherm. In the second part of the model we integrate details that are specific to each experiment and contribute to the differences between hybridization in solution and on the microarray. These details include fragmentation, wash stringency, temperature, salt concentration, and scanner settings. Furthermore, the model fits probe synthesis efficiency and target concentration parameters directly to the data. All the parameters used in the model have a well-established physical origin. Results For the 302 chips that were analyzed the mean correlation between expected and observed probe intensities was 0.701 with a range of 0.88 to 0.55. All available chips were included in the analysis regardless of the data quality. Our results show that batch effects arise from differences in probe synthesis, scanner settings, wash strength, and target fragmentation. We also show that probe synthesis efficiencies for different nucleotides are not uniform. Conclusions To date this is the most complete model for binding on microarrays. This is the first model that includes both probe synthesis efficiency and hybridization kinetics/cross-hybridization. These two factors are sequence dependent and have a large impact on probe intensity. The results presented here provide novel insight into the effect of probe synthesis errors on Affymetrix microarrays; furthermore, the algorithms developed in this work provide useful tools for the analysis of cross-hybridization, probe synthesis efficiency, fragmentation, wash stringency, temperature, and salt concentration on microarray intensities. PMID:23270536

  12. Prokaryotic diversity, distribution, and insights into their role in biogeochemical cycling in marine basalts and gabbros

    NASA Astrophysics Data System (ADS)

    Mason, O. U.; di Meo-Savoie, C. A.; Nakagawa, T.; van Nostrand, J. D.; Rosner, M.; Maruyama, A.; Zhou, J.; Fisk, M. R.; Giovannoni, S. J.

    2008-12-01

    Oceanic crust covers nearly 70% of the Earth's surface, of which, the upper, sediment layer is estimated to harbor substantial microbial biomass. Marine crust, however, extends several kilometers beyond this surficial layer, and includes the basalt and gabbro layers. The microbial diversity in basalts is well characterized, yet metabolic diversity is unknown. To date, the microflora associated with gabbros, including microbial and metabolic diversity has not been reported. In our analyses basaltic and gabbroic endoliths were analyzed using terminal restriction fragment length polymorphism, cloning and sequencing, and microarray analysis of functional genes. Our results suggest that despite nearly identical chemical compositions of basalt and gabbro the associated microflora did not overlap. Basalt samples harbor a surprising diversity of seemingly cosmopolitan microorganisms, some of which appear to be basalt specialists. Conversely, gabbros have a low diversity of endoliths, none of which appear to be specifically adapted to the gabbroic environment. Microarray analysis (GeoChip) was used to assay for functional gene diversity in basalts and gabbros. In basalt genes coding for previously unreported processes such as carbon fixation, methane-oxidation, methanogenesis, and nitrogen fixation were present, suggesting that basalts harbor previously unrecognized metabolic diversity. Similar processes were observed in gabbroic samples, yet metabolic inference from phylogenetic relationships of gabbroic endoliths with other microorganisms, suggests that hydrocarbon oxidation is the prevailing metabolism in this environment. Our analyses revealed that the basalt and gabbro layers harbor microorganisms with the genetic potential to significantly impact biogeochemical cycling in the lithosphere and overlying hydrosphere.

  13. Importance of the efficiency of double-stranded DNA formation in cDNA synthesis for the imprecision of microarray expression analysis.

    PubMed

    Thormar, Hans G; Gudmundsson, Bjarki; Eiriksdottir, Freyja; Kil, Siyoen; Gunnarsson, Gudmundur H; Magnusson, Magnus Karl; Hsu, Jason C; Jonsson, Jon J

    2013-04-01

    The causes of imprecision in microarray expression analysis are poorly understood, limiting the use of this technology in molecular diagnostics. Two-dimensional strandness-dependent electrophoresis (2D-SDE) separates nucleic acid molecules on the basis of length and strandness, i.e., double-stranded DNA (dsDNA), single-stranded DNA (ssDNA), and RNA·DNA hybrids. We used 2D-SDE to measure the efficiency of cDNA synthesis and its importance for the imprecision of an in vitro transcription-based microarray expression analysis. The relative amount of double-stranded cDNA formed in replicate experiments that used the same RNA sample template was highly variable, ranging between 0% and 72% of the total DNA. Microarray experiments showed an inverse relationship between the difference between sample pairs in probe variance and the relative amount of dsDNA. Approximately 15% of probes showed between-sample variation (P < 0.05) when the dsDNA percentage was between 12% and 35%. In contrast, only 3% of probes showed between-sample variation when the dsDNA percentage was 69% and 72%. Replication experiments of the 35% dsDNA and 72% dsDNA samples were used to separate sample variation from probe replication variation. The estimated SD of the sample-to-sample variation and of the probe replicates was lower in 72% dsDNA samples than in 35% dsDNA samples. Variation in the relative amount of double-stranded cDNA synthesized can be an important component of the imprecision in T7 RNA polymerase-based microarray expression analysis. © 2013 American Association for Clinical Chemistry

  14. Integrated analysis of chromosome copy number variation and gene expression in cervical carcinoma

    PubMed Central

    Yan, Deng; Yi, Song; Chiu, Wang Chi; Qin, Liu Gui; Kin, Wong Hoi; Kwok Hung, Chung Tony; Linxiao, Han; Wai, Choy Kwong; Yi, Sui; Tao, Yang; Tao, Tang

    2017-01-01

    Objective This study was conducted to explore chromosomal copy number variations (CNV) and transcript expression and to examine pathways in cervical pathogenesis using genome-wide high resolution microarrays. Methods Genome-wide chromosomal CNVs were investigated in 6 cervical cancer cell lines by Human Genome CGH Microarray Kit (4x44K). Gene expression profiles in cervical cancer cell lines, primary cervical carcinoma and normal cervical epithelium tissues were also studied using the Whole Human Genome Microarray Kit (4x44K). Results Fifty common chromosomal CNVs were identified in the cervical cancer cell lines. Correlation analysis revealed that gene up-regulation or down-regulation is significantly correlated with genomic amplification (P=0.009) or deletion (P=0.006) events. Expression profiles were identified through cluster analysis. Gene annotation analysis pinpointed cell cycle pathways was significantly (P=1.15E-08) affected in cervical cancer. Common CNVs were associated with cervical cancer. Conclusion Chromosomal CNVs may contribute to their transcript expression in cervical cancer. PMID:29312578

  15. BioconductorBuntu: a Linux distribution that implements a web-based DNA microarray analysis server.

    PubMed

    Geeleher, Paul; Morris, Dermot; Hinde, John P; Golden, Aaron

    2009-06-01

    BioconductorBuntu is a custom distribution of Ubuntu Linux that automatically installs a server-side microarray processing environment, providing a user-friendly web-based GUI to many of the tools developed by the Bioconductor Project, accessible locally or across a network. System installation is via booting off a CD image or by using a Debian package provided to upgrade an existing Ubuntu installation. In its current version, several microarray analysis pipelines are supported including oligonucleotide, dual-or single-dye experiments, including post-processing with Gene Set Enrichment Analysis. BioconductorBuntu is designed to be extensible, by server-side integration of further relevant Bioconductor modules as required, facilitated by its straightforward underlying Python-based infrastructure. BioconductorBuntu offers an ideal environment for the development of processing procedures to facilitate the analysis of next-generation sequencing datasets. BioconductorBuntu is available for download under a creative commons license along with additional documentation and a tutorial from (http://bioinf.nuigalway.ie).

  16. A benchmark for statistical microarray data analysis that preserves actual biological and technical variance.

    PubMed

    De Hertogh, Benoît; De Meulder, Bertrand; Berger, Fabrice; Pierre, Michael; Bareke, Eric; Gaigneaux, Anthoula; Depiereux, Eric

    2010-01-11

    Recent reanalysis of spike-in datasets underscored the need for new and more accurate benchmark datasets for statistical microarray analysis. We present here a fresh method using biologically-relevant data to evaluate the performance of statistical methods. Our novel method ranks the probesets from a dataset composed of publicly-available biological microarray data and extracts subset matrices with precise information/noise ratios. Our method can be used to determine the capability of different methods to better estimate variance for a given number of replicates. The mean-variance and mean-fold change relationships of the matrices revealed a closer approximation of biological reality. Performance analysis refined the results from benchmarks published previously.We show that the Shrinkage t test (close to Limma) was the best of the methods tested, except when two replicates were examined, where the Regularized t test and the Window t test performed slightly better. The R scripts used for the analysis are available at http://urbm-cluster.urbm.fundp.ac.be/~bdemeulder/.

  17. Integrated analysis of chromosome copy number variation and gene expression in cervical carcinoma.

    PubMed

    Yan, Deng; Yi, Song; Chiu, Wang Chi; Qin, Liu Gui; Kin, Wong Hoi; Kwok Hung, Chung Tony; Linxiao, Han; Wai, Choy Kwong; Yi, Sui; Tao, Yang; Tao, Tang

    2017-12-12

    This study was conducted to explore chromosomal copy number variations (CNV) and transcript expression and to examine pathways in cervical pathogenesis using genome-wide high resolution microarrays. Genome-wide chromosomal CNVs were investigated in 6 cervical cancer cell lines by Human Genome CGH Microarray Kit (4x44K). Gene expression profiles in cervical cancer cell lines, primary cervical carcinoma and normal cervical epithelium tissues were also studied using the Whole Human Genome Microarray Kit (4x44K). Fifty common chromosomal CNVs were identified in the cervical cancer cell lines. Correlation analysis revealed that gene up-regulation or down-regulation is significantly correlated with genomic amplification ( P =0.009) or deletion ( P =0.006) events. Expression profiles were identified through cluster analysis. Gene annotation analysis pinpointed cell cycle pathways was significantly ( P =1.15E-08) affected in cervical cancer. Common CNVs were associated with cervical cancer. Chromosomal CNVs may contribute to their transcript expression in cervical cancer.

  18. Identification of genes involved in the ACC-mediated control of root cell elongation in Arabidopsis thaliana

    PubMed Central

    2012-01-01

    Background Along the root axis of Arabidopsis thaliana, cells pass through different developmental stages. In the apical meristem repeated cycles of division increase the numbers of cells. Upon leaving the meristem, these cells pass the transition zone where they are physiologically and mechanically prepared to undergo subsequent rapid elongation. During the process of elongation epidermal cells increase their length by 300% in a couple of hours. When elongation ceases, the cells acquire their final size, shape and functions (in the differentiation zone). Ethylene administered as its precursor 1-aminocyclopropane-1-carboxylic acid (ACC) is capable of inhibiting elongation in a concentration-dependent way. Using a microarray analysis, genes and/or processes involved in this elongation arrest are identified. Results Using a CATMA-microarray analysis performed on control and 3h ACC-treated roots, 240 differentially expressed genes were identified. Quantitative Real-Time RT-PCR analysis of the 10 most up and down regulated genes combined with literature search confirmed the accurateness of the analysis. This revealed that inhibition of cell elongation is, at least partly, caused by restricting the events that under normal growth conditions initiate elongation and by increasing the processes that normally stop cellular elongation at the end of the elongation/onset of differentiation zone. Conclusions ACC interferes with cell elongation in the Arabidopsis thaliana roots by inhibiting cells from entering the elongation process and by immediately stimulating the formation of cross-links in cell wall components, diminishing the remaining elongation capacity. From the analysis of the differentially expressed genes, it becomes clear that many genes identified in this response, are also involved in several other kind of stress responses. This suggests that many responses originate from individual elicitors, but that somewhere in the downstream signaling cascade, these are converged to a ’common pathway’. Furthermore, several potential keyplayers, such as transcription factors and auxin-responsive genes, were identified by the microarray analysis. They await further analysis to reveal their exact role in the control of cell elongation. PMID:23134674

  19. GeoChip 3.0: A High Throughput Tool for Analyzing Microbial Community, Composition, Structure, and Functional Activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Zhili; Deng, Ye; Nostrand, Joy Van

    2010-05-17

    Microarray-based genomic technology has been widely used for microbial community analysis, and it is expected that microarray-based genomic technologies will revolutionize the analysis of microbial community structure, function and dynamics. A new generation of functional gene arrays (GeoChip 3.0) has been developed, with 27,812 probes covering 56,990 gene variants from 292 functional gene families involved in carbon, nitrogen, phosphorus and sulfur cycles, energy metabolism, antibiotic resistance, metal resistance, and organic contaminant degradation. Those probes were derived from 2,744, 140, and 262 species for bacteria, archaea, and fungi, respectively. GeoChip 3.0 has several other distinct features, such as a common oligomore » reference standard (CORS) for data normalization and comparison, a software package for data management and future updating, and the gyrB gene for phylogenetic analysis. Our computational evaluation of probe specificity indicated that all designed probes had a high specificity to their corresponding targets. Also, experimental analysis with synthesized oligonucleotides and genomic DNAs showed that only 0.0036percent-0.025percent false positive rates were observed, suggesting that the designed probes are highly specific under the experimental conditions examined. In addition, GeoChip 3.0 was applied to analyze soil microbial communities in a multifactor grassland ecosystem in Minnesota, USA, which demonstrated that the structure, composition, and potential activity of soil microbial communities significantly changed with the plant species diversity. All results indicate that GeoChip 3.0 is a high throughput powerful tool for studying microbial community functional structure, and linking microbial communities to ecosystem processes and functioning. To our knowledge, GeoChip 3.0 is the most comprehensive microarrays currently available for studying microbial communities associated with geobiochemical cycling, global climate change, bioenergy, agricuture, land use, ecosystem management, environmental cleanup and restoration, bioreactor systems, and human health.« less

  20. Cancer diagnosis marker extraction for soft tissue sarcomas based on gene expression profiling data by using projective adaptive resonance theory (PART) filtering method

    PubMed Central

    Takahashi, Hiro; Nemoto, Takeshi; Yoshida, Teruhiko; Honda, Hiroyuki; Hasegawa, Tadashi

    2006-01-01

    Background Recent advances in genome technologies have provided an excellent opportunity to determine the complete biological characteristics of neoplastic tissues, resulting in improved diagnosis and selection of treatment. To accomplish this objective, it is important to establish a sophisticated algorithm that can deal with large quantities of data such as gene expression profiles obtained by DNA microarray analysis. Results Previously, we developed the projective adaptive resonance theory (PART) filtering method as a gene filtering method. This is one of the clustering methods that can select specific genes for each subtype. In this study, we applied the PART filtering method to analyze microarray data that were obtained from soft tissue sarcoma (STS) patients for the extraction of subtype-specific genes. The performance of the filtering method was evaluated by comparison with other widely used methods, such as signal-to-noise, significance analysis of microarrays, and nearest shrunken centroids. In addition, various combinations of filtering and modeling methods were used to extract essential subtype-specific genes. The combination of the PART filtering method and boosting – the PART-BFCS method – showed the highest accuracy. Seven genes among the 15 genes that are frequently selected by this method – MIF, CYFIP2, HSPCB, TIMP3, LDHA, ABR, and RGS3 – are known prognostic marker genes for other tumors. These genes are candidate marker genes for the diagnosis of STS. Correlation analysis was performed to extract marker genes that were not selected by PART-BFCS. Sixteen genes among those extracted are also known prognostic marker genes for other tumors, and they could be candidate marker genes for the diagnosis of STS. Conclusion The procedure that consisted of two steps, such as the PART-BFCS and the correlation analysis, was proposed. The results suggest that novel diagnostic and therapeutic targets for STS can be extracted by a procedure that includes the PART filtering method. PMID:16948864

  1. Microarray analysis identifies keratin loci as sensitive biomarkers for thyroid hormone disruption in the salamander Ambystoma mexicanum.

    PubMed

    Page, Robert B; Monaghan, James R; Samuels, Amy K; Smith, Jeramiah J; Beachy, Christopher K; Voss, S Randal

    2007-02-01

    Ambystomatid salamanders offer several advantages for endocrine disruption research, including genomic and bioinformatics resources, an accessible laboratory model (Ambystoma mexicanum), and natural lineages that are broadly distributed among North American habitats. We used microarray analysis to measure the relative abundance of transcripts isolated from A. mexicanum epidermis (skin) after exogenous application of thyroid hormone (TH). Only one gene had a >2-fold change in transcript abundance after 2 days of TH treatment. However, hundreds of genes showed significantly different transcript levels at days 12 and 28 in comparison to day 0. A list of 123 TH-responsive genes was identified using statistical, BLAST, and fold level criteria. Cluster analysis identified two groups of genes with similar transcription patterns: up-regulated versus down-regulated. Most notably, several keratins exhibited dramatic (1000 fold) increases or decreases in transcript abundance. Keratin gene expression changes coincided with morphological remodeling of epithelial tissues. This suggests that keratin loci can be developed as sensitive biomarkers to assay temporal disruptions of larval-to-adult gene expression programs. Our study has identified the first collection of loci that are regulated during TH-induced metamorphosis in a salamander, thus setting the stage for future investigations of TH disruption in the Mexican axolotl and other salamanders of the genus Ambystoma.

  2. DNA nanomechanics allows direct digital detection of complementary DNA and microRNA targets.

    PubMed

    Husale, Sudhir; Persson, Henrik H J; Sahin, Ozgur

    2009-12-24

    Techniques to detect and quantify DNA and RNA molecules in biological samples have had a central role in genomics research. Over the past decade, several techniques have been developed to improve detection performance and reduce the cost of genetic analysis. In particular, significant advances in label-free methods have been reported. Yet detection of DNA molecules at concentrations below the femtomolar level requires amplified detection schemes. Here we report a unique nanomechanical response of hybridized DNA and RNA molecules that serves as an intrinsic molecular label. Nanomechanical measurements on a microarray surface have sufficient background signal rejection to allow direct detection and counting of hybridized molecules. The digital response of the sensor provides a large dynamic range that is critical for gene expression profiling. We have measured differential expressions of microRNAs in tumour samples; such measurements have been shown to help discriminate between the tissue origins of metastatic tumours. Two hundred picograms of total RNA is found to be sufficient for this analysis. In addition, the limit of detection in pure samples is found to be one attomolar. These results suggest that nanomechanical read-out of microarrays promises attomolar-level sensitivity and large dynamic range for the analysis of gene expression, while eliminating biochemical manipulations, amplification and labelling.

  3. cDNA Microarray Analysis of Host-Pathogen Interactions in a Porcine In Vitro Model for Toxoplasma gondii Infection†

    PubMed Central

    Okomo-Adhiambo, Margaret; Beattie, Craig; Rink, Anette

    2006-01-01

    Toxoplasma gondii induces the expression of proinflammatory cytokines, reorganizes organelles, scavenges nutrients, and inhibits apoptosis in infected host cells. We used a cDNA microarray of 420 annotated porcine expressed sequence tags to analyze the molecular basis of these changes at eight time points over a 72-hour period in porcine kidney epithelial (PK13) cells infected with T. gondii. A total of 401 genes with Cy3 and Cy5 spot intensities of ≥500 were selected for analysis, of which 263 (65.6%) were induced ≥2-fold (expression ratio, ≥2.0; P ≤ 0.05 [t test]) over at least one time point and 48 (12%) were significantly down-regulated. At least 12 functional categories of genes were modulated (up- or down-regulated) by T. gondii. The majority of induced genes were clustered as transcription, signal transduction, host immune response, nutrient metabolism, and apoptosis related. The expression of selected genes altered by T. gondii was validated by quantitative real-time reverse transcription-PCR. These results suggest that significant changes in gene expression occur in response to T. gondii infection in PK13 cells, facilitating further analysis of host-pathogen interactions in toxoplasmosis in a secondary host. PMID:16790800

  4. Transcriptome profiling of a Saccharomyces cerevisiae mutant with a constitutively activated Ras/cAMP pathway.

    PubMed

    Jones, D L; Petty, J; Hoyle, D C; Hayes, A; Ragni, E; Popolo, L; Oliver, S G; Stateva, L I

    2003-12-16

    Often changes in gene expression levels have been considered significant only when above/below some arbitrarily chosen threshold. We investigated the effect of applying a purely statistical approach to microarray analysis and demonstrated that small changes in gene expression have biological significance. Whole genome microarray analysis of a pde2Delta mutant, constructed in the Saccharomyces cerevisiae reference strain FY23, revealed altered expression of approximately 11% of protein encoding genes. The mutant, characterized by constitutive activation of the Ras/cAMP pathway, has increased sensitivity to stress, reduced ability to assimilate nonfermentable carbon sources, and some cell wall integrity defects. Applying the Munich Information Centre for Protein Sequences (MIPS) functional categories revealed increased expression of genes related to ribosome biogenesis and downregulation of genes in the cell rescue, defense, cell death and aging category, suggesting a decreased response to stress conditions. A reduced level of gene expression in the unfolded protein response pathway (UPR) was observed. Cell wall genes whose expression was affected by this mutation were also identified. Several of the cAMP-responsive orphan genes, upon further investigation, revealed cell wall functions; others had previously unidentified phenotypes assigned to them. This investigation provides a statistical global transcriptome analysis of the cellular response to constitutive activation of the Ras/cAMP pathway.

  5. High-Throughput Quantification of SH2 Domain-Phosphopeptide Interactions with Cellulose-Peptide Conjugate Microarrays.

    PubMed

    Engelmann, Brett W

    2017-01-01

    The Src Homology 2 (SH2) domain family primarily recognizes phosphorylated tyrosine (pY) containing peptide motifs. The relative affinity preferences among competing SH2 domains for phosphopeptide ligands define "specificity space," and underpins many functional pY mediated interactions within signaling networks. The degree of promiscuity exhibited and the dynamic range of affinities supported by individual domains or phosphopeptides is best resolved by a carefully executed and controlled quantitative high-throughput experiment. Here, I describe the fabrication and application of a cellulose-peptide conjugate microarray (CPCMA) platform to the quantitative analysis of SH2 domain specificity space. Included herein are instructions for optimal experimental design with special attention paid to common sources of systematic error, phosphopeptide SPOT synthesis, microarray fabrication, analyte titrations, data capture, and analysis.

  6. Microbial Diagnostic Microarrays for the Detection and Typing of Food- and Water-Borne (Bacterial) Pathogens

    PubMed Central

    Kostić, Tanja; Sessitsch, Angela

    2011-01-01

    Reliable and sensitive pathogen detection in clinical and environmental (including food and water) samples is of greatest importance for public health. Standard microbiological methods have several limitations and improved alternatives are needed. Most important requirements for reliable analysis include: (i) specificity; (ii) sensitivity; (iii) multiplexing potential; (iv) robustness; (v) speed; (vi) automation potential; and (vii) low cost. Microarray technology can, through its very nature, fulfill many of these requirements directly and the remaining challenges have been tackled. In this review, we attempt to compare performance characteristics of the microbial diagnostic microarrays developed for the detection and typing of food and water pathogens, and discuss limitations, points still to be addressed and issues specific for the analysis of food, water and environmental samples. PMID:27605332

  7. The pathogenesis shared between abdominal aortic aneurysms and intracranial aneurysms: a microarray analysis.

    PubMed

    Wang, Wen; Li, Hao; Zhao, Zheng; Wang, Haoyuan; Zhang, Dong; Zhang, Yan; Lan, Qing; Wang, Jiangfei; Cao, Yong; Zhao, Jizong

    2018-04-01

    Abdominal aortic aneurysms (AAAs) and intracranial saccular aneurysms (IAs) are the most common types of aneurysms. This study was to investigate the common pathogenesis shared between these two kinds of aneurysms. We collected 12 IAs samples and 12 control arteries from the Beijing Tiantan Hospital and performed microarray analysis. In addition, we utilized the microarray datasets of IAs and AAAs from the Gene Expression Omnibus (GEO), in combination with our microarray results, to generate messenger RNA expression profiles for both AAAs and IAs in our study. Functional exploration and protein-protein interaction (PPI) analysis were performed. A total of 727 common genes were differentially expressed (404 was upregulated; 323 was downregulated) for both AAAs and IAs. The GO and pathway analyses showed that the common dysregulated genes were mainly enriched in vascular smooth muscle contraction, muscle contraction, immune response, defense response, cell activation, IL-6 signaling and chemokine signaling pathways, etc. The further protein-protein analysis identified 35 hub nodes, including TNF, IL6, MAPK13, and CCL5. These hub node genes were enriched in inflammatory response, positive regulation of IL-6 production, chemokine signaling pathway, and T/B cell receptor signaling pathway. Our study will gain new insight into the molecular mechanisms for the pathogenesis of both types of aneurysms and provide new therapeutic targets for the patients harboring AAAs and IAs.

  8. Cloud-scale genomic signals processing classification analysis for gene expression microarray data.

    PubMed

    Harvey, Benjamin; Soo-Yeon Ji

    2014-01-01

    As microarray data available to scientists continues to increase in size and complexity, it has become overwhelmingly important to find multiple ways to bring inference though analysis of DNA/mRNA sequence data that is useful to scientists. Though there have been many attempts to elucidate the issue of bringing forth biological inference by means of wavelet preprocessing and classification, there has not been a research effort that focuses on a cloud-scale classification analysis of microarray data using Wavelet thresholding in a Cloud environment to identify significantly expressed features. This paper proposes a novel methodology that uses Wavelet based Denoising to initialize a threshold for determination of significantly expressed genes for classification. Additionally, this research was implemented and encompassed within cloud-based distributed processing environment. The utilization of Cloud computing and Wavelet thresholding was used for the classification 14 tumor classes from the Global Cancer Map (GCM). The results proved to be more accurate than using a predefined p-value for differential expression classification. This novel methodology analyzed Wavelet based threshold features of gene expression in a Cloud environment, furthermore classifying the expression of samples by analyzing gene patterns, which inform us of biological processes. Moreover, enabling researchers to face the present and forthcoming challenges that may arise in the analysis of data in functional genomics of large microarray datasets.

  9. [Differentially expressed genes of cell signal transduction associated with benzene poisoning by cDNA microarray].

    PubMed

    Wang, Hong; Bi, Yongyi; Tao, Ning; Wang, Chunhong

    2005-08-01

    To detect the differential expression of cell signal transduction genes associated with benzene poisoning, and to explore the pathogenic mechanisms of blood system damage induced by benzene. Peripheral white blood cell gene expression profile of 7 benzene poisoning patients, including one aplastic anemia, was determined by cDNA microarray. Seven chips from normal workers were served as controls. Cluster analysis of gene expression profile was performed. Among the 4265 target genes, 176 genes associated with cell signal transduction were differentially expressed. 35 up-regulated genes including PTPRC, STAT4, IFITM1 etc were found in at least 6 pieces of microarray; 45 down-regulated genes including ARHB, PPP3CB, CDC37 etc were found in at least 5 pieces of microarray. cDNA microarray technology is an effective technique for screening the differentially expressed genes of cell signal transduction. Disorder in cell signal transduction may play certain role in the pathogenic mechanism of benzene poisoning.

  10. A study of metaheuristic algorithms for high dimensional feature selection on microarray data

    NASA Astrophysics Data System (ADS)

    Dankolo, Muhammad Nasiru; Radzi, Nor Haizan Mohamed; Sallehuddin, Roselina; Mustaffa, Noorfa Haszlinna

    2017-11-01

    Microarray systems enable experts to examine gene profile at molecular level using machine learning algorithms. It increases the potentials of classification and diagnosis of many diseases at gene expression level. Though, numerous difficulties may affect the efficiency of machine learning algorithms which includes vast number of genes features comprised in the original data. Many of these features may be unrelated to the intended analysis. Therefore, feature selection is necessary to be performed in the data pre-processing. Many feature selection algorithms are developed and applied on microarray which including the metaheuristic optimization algorithms. This paper discusses the application of the metaheuristics algorithms for feature selection in microarray dataset. This study reveals that, the algorithms have yield an interesting result with limited resources thereby saving computational expenses of machine learning algorithms.

  11. Identification and characterization of nuclear genes involved in photosynthesis in Populus

    PubMed Central

    2014-01-01

    Background The gap between the real and potential photosynthetic rate under field conditions suggests that photosynthesis could potentially be improved. Nuclear genes provide possible targets for improving photosynthetic efficiency. Hence, genome-wide identification and characterization of the nuclear genes affecting photosynthetic traits in woody plants would provide key insights on genetic regulation of photosynthesis and identify candidate processes for improvement of photosynthesis. Results Using microarray and bulked segregant analysis strategies, we identified differentially expressed nuclear genes for photosynthesis traits in a segregating population of poplar. We identified 515 differentially expressed genes in this population (FC ≥ 2 or FC ≤ 0.5, P < 0.05), 163 up-regulated and 352 down-regulated. Real-time PCR expression analysis confirmed the microarray data. Singular Enrichment Analysis identified 48 significantly enriched GO terms for molecular functions (28), biological processes (18) and cell components (2). Furthermore, we selected six candidate genes for functional examination by a single-marker association approach, which demonstrated that 20 SNPs in five candidate genes significantly associated with photosynthetic traits, and the phenotypic variance explained by each SNP ranged from 2.3% to 12.6%. This revealed that regulation of photosynthesis by the nuclear genome mainly involves transport, metabolism and response to stimulus functions. Conclusions This study provides new genome-scale strategies for the discovery of potential candidate genes affecting photosynthesis in Populus, and for identification of the functions of genes involved in regulation of photosynthesis. This work also suggests that improving photosynthetic efficiency under field conditions will require the consideration of multiple factors, such as stress responses. PMID:24673936

  12. Microarray analysis identified Puccinia striiformis f. sp. tritici genes involved in infection and sporulation.

    USDA-ARS?s Scientific Manuscript database

    Puccinia striiformis f. sp. tritici (Pst) causes stripe rust, one of the most important diseases of wheat worldwide. To identify Pst genes involved in infection and sporulation, a custom oligonucleotide Genechip was made using sequences of 442 genes selected from Pst cDNA libraries. Microarray analy...

  13. Clear cell papillary renal cell carcinoma: a chromosomal microarray analysis of two cases using a novel Molecular Inversion Probe (MIP) technology.

    PubMed

    Alexiev, Borislav A; Zou, Ying S

    2014-12-01

    Chromosomal microarray analysis using novel Molecular Inversion Probe (MIP) technology demonstrated 2,570 kb copy neutral LOH of 10q11.22 in two clear cell papillary renal cell carcinomas. In addition, one of the tumors had a big 29,784 kb deletion of 13q11-q14.2. There were two variants of unknown significance, a 2,509 kb gain of Xp22.33 and a 257 kb homozygous deletion of 8p11.22. The somatic mutation panel containing 74 mutations in nine genes did not reveal any mutations. Besides identification of submicroscopic duplications or deletions, SNP microarrays can reveal abnormal allelic imbalances including LOH and copy neutral LOH, which cannot be recognized by chromosome, FISH, and non-SNP microarray arrays. To the best of our knowledge, this is the first study demonstrating copy neutral LOH of 10q11.22 in clear cell papillary renal cell carcinomas using the new MIP SNP OncoScan FFPE Assay Kit on formalin-fixed paraffin-embedded tumor samples. Copyright © 2014 Elsevier GmbH. All rights reserved.

  14. A Unique Procedure to Identify Cell Surface Markers Through a Spherical Self-Organizing Map Applied to DNA Microarray Analysis.

    PubMed

    Sugii, Yuh; Kasai, Tomonari; Ikeda, Masashi; Vaidyanath, Arun; Kumon, Kazuki; Mizutani, Akifumi; Seno, Akimasa; Tokutaka, Heizo; Kudoh, Takayuki; Seno, Masaharu

    2016-01-01

    To identify cell-specific markers, we designed a DNA microarray platform with oligonucleotide probes for human membrane-anchored proteins. Human glioma cell lines were analyzed using microarray and compared with normal and fetal brain tissues. For the microarray analysis, we employed a spherical self-organizing map, which is a clustering method suitable for the conversion of multidimensional data into two-dimensional data and displays the relationship on a spherical surface. Based on the gene expression profile, the cell surface characteristics were successfully mirrored onto the spherical surface, thereby distinguishing normal brain tissue from the disease model based on the strength of gene expression. The clustered glioma-specific genes were further analyzed by polymerase chain reaction procedure and immunocytochemical staining of glioma cells. Our platform and the following procedure were successfully demonstrated to categorize the genes coding for cell surface proteins that are specific to glioma cells. Our assessment demonstrates that a spherical self-organizing map is a valuable tool for distinguishing cell surface markers and can be employed in marker discovery studies for the treatment of cancer.

  15. Systematic analysis of microarray datasets to identify Parkinson's disease‑associated pathways and genes.

    PubMed

    Feng, Yinling; Wang, Xuefeng

    2017-03-01

    In order to investigate commonly disturbed genes and pathways in various brain regions of patients with Parkinson's disease (PD), microarray datasets from previous studies were collected and systematically analyzed. Different normalization methods were applied to microarray datasets from different platforms. A strategy combining gene co‑expression networks and clinical information was adopted, using weighted gene co‑expression network analysis (WGCNA) to screen for commonly disturbed genes in different brain regions of patients with PD. Functional enrichment analysis of commonly disturbed genes was performed using the Database for Annotation, Visualization, and Integrated Discovery (DAVID). Co‑pathway relationships were identified with Pearson's correlation coefficient tests and a hypergeometric distribution‑based test. Common genes in pathway pairs were selected out and regarded as risk genes. A total of 17 microarray datasets from 7 platforms were retained for further analysis. Five gene coexpression modules were identified, containing 9,745, 736, 233, 101 and 93 genes, respectively. One module was significantly correlated with PD samples and thus the 736 genes it contained were considered to be candidate PD‑associated genes. Functional enrichment analysis demonstrated that these genes were implicated in oxidative phosphorylation and PD. A total of 44 pathway pairs and 52 risk genes were revealed, and a risk gene pathway relationship network was constructed. Eight modules were identified and were revealed to be associated with PD, cancers and metabolism. A number of disturbed pathways and risk genes were unveiled in PD, and these findings may help advance understanding of PD pathogenesis.

  16. Dissection of the cis-2-decenoic acid signaling network in Pseudomonas aeruginosa using microarray technique

    PubMed Central

    Rahmani-Badi, Azadeh; Sepehr, Shayesteh; Fallahi, Hossein; Heidari-Keshel, Saeed

    2015-01-01

    Many bacterial pathogens use quorum-sensing (QS) signaling to regulate the expression of factors contributing to virulence and persistence. Bacteria produce signals of different chemical classes. The signal molecule, known as diffusible signal factor (DSF), is a cis-unsaturated fatty acid that was first described in the plant pathogen Xanthomonas campestris. Previous works have shown that human pathogen, Pseudomonas aeruginosa, also synthesizes a structurally related molecule, characterized as cis-2-decenoic acid (C10: Δ2, CDA) that induces biofilm dispersal by multiple types of bacteria. Furthermore, CDA has been shown to be involved in inter-kingdom signaling that modulates fungal behavior. Therefore, an understanding of its signaling mechanism could suggest strategies for interference, with consequences for disease control. To identify the components of CDA signaling pathway in this pathogen, a comparative transcritpome analysis was conducted, in the presence and absence of CDA. A protein-protein interaction (PPI) network for differentially expressed (DE) genes with known function was then constructed by STRING and Cytoscape. In addition, the effects of CDA in combination with antimicrobial agents on the biofilm surface area and bacteria viability were evaluated using fluorescence microscopy and digital image analysis. Microarray analysis identified 666 differentially expressed genes in the presence of CDA and gene ontology (GO) analysis revealed that in P. aeruginosa, CDA mediates dispersion of biofilms through signaling pathways, including enhanced motility, metabolic activity, virulence as well as persistence at different temperatures. PPI data suggested that a cluster of five genes (PA4978, PA4979, PA4980, PA4982, PA4983) is involved in the CDA synthesis and perception. Combined treatments using both CDA and antimicrobial agents showed that following exposure of the biofilms to CDA, remaining cells on the surface were easily removed and killed by antimicrobials. PMID:25972860

  17. Profiling conserved biological pathways in Autosomal Dominant Polycystic Kidney Disorder (ADPKD) to elucidate key transcriptomic alterations regulating cystogenesis: A cross-species meta-analysis approach.

    PubMed

    Chatterjee, Shatakshee; Verma, Srikant Prasad; Pandey, Priyanka

    2017-09-05

    Initiation and progression of fluid filled cysts mark Autosomal Dominant Polycystic Kidney Disease (ADPKD). Thus, improved therapeutics targeting cystogenesis remains a constant challenge. Microarray studies in single ADPKD animal models species with limited sample sizes tend to provide scattered views on underlying ADPKD pathogenesis. Thus we aim to perform a cross species meta-analysis to profile conserved biological pathways that might be key targets for therapy. Nine ADPKD microarray datasets on rat, mice and human fulfilled our study criteria and were chosen. Intra-species combined analysis was performed after considering removal of batch effect. Significantly enriched GO biological processes and KEGG pathways were computed and their overlap was observed. For the conserved pathways, biological modules and gene regulatory networks were observed. Additionally, Gene Set Enrichment Analysis (GSEA) using Molecular Signature Database (MSigDB) was performed for genes found in conserved pathways. We obtained 28 modules of significantly enriched GO processes and 5 major functional categories from significantly enriched KEGG pathways conserved in human, mice and rats that in turn suggest a global transcriptomic perturbation affecting cyst - formation, growth and progression. Significantly enriched pathways obtained from up-regulated genes such as Genomic instability, Protein localization in ER and Insulin Resistance were found to regulate cyst formation and growth whereas cyst progression due to increased cell adhesion and inflammation was suggested by perturbations in Angiogenesis, TGF-beta, CAMs, and Infection related pathways. Additionally, networks revealed shared genes among pathways e.g. SMAD2 and SMAD7 in Endocytosis and TGF-beta. Our study suggests cyst formation and progression to be an outcome of interplay between a set of several key deregulated pathways. Thus, further translational research is warranted focusing on developing a combinatorial therapeutic approach for ADPKD redressal. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Gene set analysis approaches for RNA-seq data: performance evaluation and application guideline

    PubMed Central

    Rahmatallah, Yasir; Emmert-Streib, Frank

    2016-01-01

    Transcriptome sequencing (RNA-seq) is gradually replacing microarrays for high-throughput studies of gene expression. The main challenge of analyzing microarray data is not in finding differentially expressed genes, but in gaining insights into the biological processes underlying phenotypic differences. To interpret experimental results from microarrays, gene set analysis (GSA) has become the method of choice, in particular because it incorporates pre-existing biological knowledge (in a form of functionally related gene sets) into the analysis. Here we provide a brief review of several statistically different GSA approaches (competitive and self-contained) that can be adapted from microarrays practice as well as those specifically designed for RNA-seq. We evaluate their performance (in terms of Type I error rate, power, robustness to the sample size and heterogeneity, as well as the sensitivity to different types of selection biases) on simulated and real RNA-seq data. Not surprisingly, the performance of various GSA approaches depends only on the statistical hypothesis they test and does not depend on whether the test was developed for microarrays or RNA-seq data. Interestingly, we found that competitive methods have lower power as well as robustness to the samples heterogeneity than self-contained methods, leading to poor results reproducibility. We also found that the power of unsupervised competitive methods depends on the balance between up- and down-regulated genes in tested gene sets. These properties of competitive methods have been overlooked before. Our evaluation provides a concise guideline for selecting GSA approaches, best performing under particular experimental settings in the context of RNA-seq. PMID:26342128

  19. Comparison of RNA-seq and microarray-based models for clinical endpoint prediction.

    PubMed

    Zhang, Wenqian; Yu, Ying; Hertwig, Falk; Thierry-Mieg, Jean; Zhang, Wenwei; Thierry-Mieg, Danielle; Wang, Jian; Furlanello, Cesare; Devanarayan, Viswanath; Cheng, Jie; Deng, Youping; Hero, Barbara; Hong, Huixiao; Jia, Meiwen; Li, Li; Lin, Simon M; Nikolsky, Yuri; Oberthuer, André; Qing, Tao; Su, Zhenqiang; Volland, Ruth; Wang, Charles; Wang, May D; Ai, Junmei; Albanese, Davide; Asgharzadeh, Shahab; Avigad, Smadar; Bao, Wenjun; Bessarabova, Marina; Brilliant, Murray H; Brors, Benedikt; Chierici, Marco; Chu, Tzu-Ming; Zhang, Jibin; Grundy, Richard G; He, Min Max; Hebbring, Scott; Kaufman, Howard L; Lababidi, Samir; Lancashire, Lee J; Li, Yan; Lu, Xin X; Luo, Heng; Ma, Xiwen; Ning, Baitang; Noguera, Rosa; Peifer, Martin; Phan, John H; Roels, Frederik; Rosswog, Carolina; Shao, Susan; Shen, Jie; Theissen, Jessica; Tonini, Gian Paolo; Vandesompele, Jo; Wu, Po-Yen; Xiao, Wenzhong; Xu, Joshua; Xu, Weihong; Xuan, Jiekun; Yang, Yong; Ye, Zhan; Dong, Zirui; Zhang, Ke K; Yin, Ye; Zhao, Chen; Zheng, Yuanting; Wolfinger, Russell D; Shi, Tieliu; Malkas, Linda H; Berthold, Frank; Wang, Jun; Tong, Weida; Shi, Leming; Peng, Zhiyu; Fischer, Matthias

    2015-06-25

    Gene expression profiling is being widely applied in cancer research to identify biomarkers for clinical endpoint prediction. Since RNA-seq provides a powerful tool for transcriptome-based applications beyond the limitations of microarrays, we sought to systematically evaluate the performance of RNA-seq-based and microarray-based classifiers in this MAQC-III/SEQC study for clinical endpoint prediction using neuroblastoma as a model. We generate gene expression profiles from 498 primary neuroblastomas using both RNA-seq and 44 k microarrays. Characterization of the neuroblastoma transcriptome by RNA-seq reveals that more than 48,000 genes and 200,000 transcripts are being expressed in this malignancy. We also find that RNA-seq provides much more detailed information on specific transcript expression patterns in clinico-genetic neuroblastoma subgroups than microarrays. To systematically compare the power of RNA-seq and microarray-based models in predicting clinical endpoints, we divide the cohort randomly into training and validation sets and develop 360 predictive models on six clinical endpoints of varying predictability. Evaluation of factors potentially affecting model performances reveals that prediction accuracies are most strongly influenced by the nature of the clinical endpoint, whereas technological platforms (RNA-seq vs. microarrays), RNA-seq data analysis pipelines, and feature levels (gene vs. transcript vs. exon-junction level) do not significantly affect performances of the models. We demonstrate that RNA-seq outperforms microarrays in determining the transcriptomic characteristics of cancer, while RNA-seq and microarray-based models perform similarly in clinical endpoint prediction. Our findings may be valuable to guide future studies on the development of gene expression-based predictive models and their implementation in clinical practice.

  20. Application of microarray analysis on computer cluster and cloud platforms.

    PubMed

    Bernau, C; Boulesteix, A-L; Knaus, J

    2013-01-01

    Analysis of recent high-dimensional biological data tends to be computationally intensive as many common approaches such as resampling or permutation tests require the basic statistical analysis to be repeated many times. A crucial advantage of these methods is that they can be easily parallelized due to the computational independence of the resampling or permutation iterations, which has induced many statistics departments to establish their own computer clusters. An alternative is to rent computing resources in the cloud, e.g. at Amazon Web Services. In this article we analyze whether a selection of statistical projects, recently implemented at our department, can be efficiently realized on these cloud resources. Moreover, we illustrate an opportunity to combine computer cluster and cloud resources. In order to compare the efficiency of computer cluster and cloud implementations and their respective parallelizations we use microarray analysis procedures and compare their runtimes on the different platforms. Amazon Web Services provide various instance types which meet the particular needs of the different statistical projects we analyzed in this paper. Moreover, the network capacity is sufficient and the parallelization is comparable in efficiency to standard computer cluster implementations. Our results suggest that many statistical projects can be efficiently realized on cloud resources. It is important to mention, however, that workflows can change substantially as a result of a shift from computer cluster to cloud computing.

  1. Intratumoral concentration of estrogens and clinicopathological changes in ductal carcinoma in situ following aromatase inhibitor letrozole treatment

    PubMed Central

    Takagi, K; Ishida, T; Miki, Y; Hirakawa, H; Kakugawa, Y; Amano, G; Ebata, A; Mori, N; Nakamura, Y; Watanabe, M; Amari, M; Ohuchi, N; Sasano, H; Suzuki, T

    2013-01-01

    Background: Estrogens have important roles in ductal carcinoma in situ (DCIS) of the breast. However, the significance of presurgical aromatase inhibitor treatment remains unclear. Therefore, we examined intratumoral concentration of estrogens and changes of clinicopathological factors in DCIS after letrozole treatment. Methods: Ten cases of postmenopausal oestrogen receptor (ER)-positive DCIS were examined. They received oral letrozole before the surgery, and the tumour size was evaluated by ultrasonography. Surgical specimens and corresponding biopsy samples were used for immunohistochemistry. Snap-frozen specimens were also available in a subset of cases, and used for hormone assays and microarray analysis. Results: Intratumoral oestrogen levels were significantly lower in DCIS treated with letrozole compared with that in those without the therapy. A great majority of oestrogen-induced genes showed low expression levels in DCIS treated with letrozole by microarray analysis. Moreover, letrozole treatment reduced the greatest dimension of DCIS, and significantly decreased Ki-67 and progesterone receptor immunoreactivity in DCIS tissues. Conclusion: These results suggest that estrogens are mainly produced by aromatase in DCIS tissues, and aromatase inhibitors potently inhibit oestrogen actions in postmenopausal ER-positive DCIS through rapid deprivation of intratumoral estrogens. PMID:23756858

  2. Microarray-based analysis of cadmium-responsive microRNAs in rice (Oryza sativa)

    PubMed Central

    Ding, Yanfei; Chen, Zhen; Zhu, Cheng

    2011-01-01

    MicroRNAs (miRNAs) are a class of small non-coding RNAs that negatively regulate specific target mRNAs at the post-transcriptional level. Plant miRNAs have been implicated in developmental processes and adaptations to environmental stresses. Cadmium (Cd) is a non-essential heavy metal that is highly toxic to plants. To investigate the responsive functions of miRNAs under Cd stress, miRNA expression in Cd-stressed rice (Oryza sativa) was profiled using a microarray assay. A total of 19 Cd-responsive miRNAs were identified, of which six were further validated experimentally. Target genes were also predicted for these Cd-responsive miRNAs, which encoded transcription factors, and proteins associated with metabolic processes or stress responses. In addition, the mRNA levels of several targets were negatively correlated with the corresponding miRNAs under Cd stress. Promoter analysis showed that metal stress-responsive cis-elements tended to occur more frequently in the promoter regions of Cd-responsive miRNAs. These findings suggested that miRNAs played an important role in Cd tolerance in rice, and highlighted a novel molecular mechanism of heavy metal tolerance in plants. PMID:21362738

  3. Effects of Lactobacillus fermented soymilk and soy yogurt on hepatic lipid accumulation in rats fed a cholesterol-free diet.

    PubMed

    Kitawaki, Ryoko; Nishimura, Yuko; Takagi, Naohiro; Iwasaki, Mitsuhiro; Tsuzuki, Kimiko; Fukuda, Mitsuru

    2009-07-01

    We examined the effects of lactic acid fermented soymilk, in which part of the soymilk was replaced with okara (soy yogurt), on plasma and hepatic lipid profiles in rats fed a cholesterol-free diet. Additionally, we investigated the effects of soy yogurt on hepatic gene expression in rats using DNA microarray analysis. Male Sprague-Dawley rats aged 5 weeks (n=5/group) were fed a control diet (AIN-93) or a test diet in which 20% of the diet was replaced by soy yogurt for 7 weeks. Soy yogurt consumption did not affect body weight or adipose tissue weight as compared with control diet. In the soy yogurt group, the liver weight and hepatic triglyceride content were significantly lower than the control group, and the level of plasma cholesterol was also lower. Furthermore, DNA microarray analysis indicated that soy yogurt ingestion down-regulated the expression of the SREBP-1 gene and enzymes related to lipogenesis in the rat liver, while expression of beta-oxidation-related genes was up-regulated. These results suggest that soy yogurt is beneficial in preventing hepatic lipid accumulation in rats.

  4. A comprehensive sensitivity analysis of microarray breast cancer classification under feature variability

    PubMed Central

    2009-01-01

    Background Large discrepancies in signature composition and outcome concordance have been observed between different microarray breast cancer expression profiling studies. This is often ascribed to differences in array platform as well as biological variability. We conjecture that other reasons for the observed discrepancies are the measurement error associated with each feature and the choice of preprocessing method. Microarray data are known to be subject to technical variation and the confidence intervals around individual point estimates of expression levels can be wide. Furthermore, the estimated expression values also vary depending on the selected preprocessing scheme. In microarray breast cancer classification studies, however, these two forms of feature variability are almost always ignored and hence their exact role is unclear. Results We have performed a comprehensive sensitivity analysis of microarray breast cancer classification under the two types of feature variability mentioned above. We used data from six state of the art preprocessing methods, using a compendium consisting of eight diferent datasets, involving 1131 hybridizations, containing data from both one and two-color array technology. For a wide range of classifiers, we performed a joint study on performance, concordance and stability. In the stability analysis we explicitly tested classifiers for their noise tolerance by using perturbed expression profiles that are based on uncertainty information directly related to the preprocessing methods. Our results indicate that signature composition is strongly influenced by feature variability, even if the array platform and the stratification of patient samples are identical. In addition, we show that there is often a high level of discordance between individual class assignments for signatures constructed on data coming from different preprocessing schemes, even if the actual signature composition is identical. Conclusion Feature variability can have a strong impact on breast cancer signature composition, as well as the classification of individual patient samples. We therefore strongly recommend that feature variability is considered in analyzing data from microarray breast cancer expression profiling experiments. PMID:19941644

  5. Comparative analysis of growth-phase-dependent gene expression in virulent and avirulent Streptococcus pneumoniae using a high-density DNA microarray.

    PubMed

    Ko, Kwan Soo; Park, Sulhee; Oh, Won Sup; Suh, Ji-Yoeun; Oh, Taejeong; Ahn, Sungwhan; Chun, Jongsik; Song, Jae-Hoon

    2006-02-28

    The global pattern of growth-dependent gene expres-sion in Streptococcus pneumoniae strains was evalu-ated using a high-density DNA microarray. Total RNAs obtained from an avirulent S. pneumoniae strain R6 and a virulent strain AMC96-6 were used to compare the expression patterns at seven time points (2.5, 3.5, 4.5, 5.5, 6.0, 6.5, and 8.0 h). The expression profile of strain R6 changed between log and station-ary growth (the Log-Stat switch). There were clear differences between the growth-dependent gene ex-pression profiles of the virulent and avirulent pneumo-coccal strains in 367 of 1,112 genes. Transcripts of genes associated with bacterial competence and capsular polysaccharide formation, as well as clpP and cbpA, were higher in the virulent strain. Our data suggest that late log or early stationary phase may be the most virulent phase of S. pneumoniae.

  6. Mutation analysis of 272 Spanish families affected by autosomal recessive retinitis pigmentosa using a genotyping microarray.

    PubMed

    Ávila-Fernández, Almudena; Cantalapiedra, Diego; Aller, Elena; Vallespín, Elena; Aguirre-Lambán, Jana; Blanco-Kelly, Fiona; Corton, M; Riveiro-Álvarez, Rosa; Allikmets, Rando; Trujillo-Tiebas, María José; Millán, José M; Cremers, Frans P M; Ayuso, Carmen

    2010-12-03

    Retinitis pigmentosa (RP) is a genetically heterogeneous disorder characterized by progressive loss of vision. The aim of this study was to identify the causative mutations in 272 Spanish families using a genotyping microarray. 272 unrelated Spanish families, 107 with autosomal recessive RP (arRP) and 165 with sporadic RP (sRP), were studied using the APEX genotyping microarray. The families were also classified by clinical criteria: 86 juveniles and 186 typical RP families. Haplotype and sequence analysis were performed to identify the second mutated allele. At least one-gene variant was found in 14% and 16% of the juvenile and typical RP groups respectively. Further study identified four new mutations, providing both causative changes in 11% of the families. Retinol Dehydrogenase 12 (RDH12) was the most frequently mutated gene in the juvenile RP group, and Usher Syndrome 2A (USH2A) and Ceramide Kinase-Like (CERKL) were the most frequently mutated genes in the typical RP group. The only variant found in CERKL was p.Arg257Stop, the most frequent mutation. The genotyping microarray combined with segregation and sequence analysis allowed us to identify the causative mutations in 11% of the families. Due to the low number of characterized families, this approach should be used in tandem with other techniques.

  7. Curation of microarray oligonucleotides and corresponding ESTs/cDNAs used for gene expression analysis in zebra finches.

    PubMed

    Lovell, Peter V; Huizinga, Nicole A; Getachew, Abel; Mees, Brianna; Friedrich, Samantha R; Wirthlin, Morgan; Mello, Claudio V

    2018-05-18

    Zebra finches are a major model organism for investigating mechanisms of vocal learning, a trait that enables spoken language in humans. The development of cDNA collections with expressed sequence tags (ESTs) and microarrays has allowed for extensive molecular characterizations of circuitry underlying vocal learning and production. However, poor database curation can lead to errors in transcriptome and bioinformatics analyses, limiting the impact of these resources. Here we used genomic alignments and synteny analysis for orthology verification to curate and reannotate ~ 35% of the oligonucleotides and corresponding ESTs/cDNAs that make-up Agilent microarrays for gene expression analysis in finches. We found that: (1) 5475 out of 43,084 oligos (a) failed to align to the zebra finch genome, (b) aligned to multiple loci, or (c) aligned to Chr_un only, and thus need to be flagged until a better genome assembly is available, or (d) reflect cloning artifacts; (2) Out of 9635 valid oligos examined further, 3120 were incorrectly named, including 1533 with no known orthologs; and (3) 2635 oligos required name update. The resulting curated dataset provides a reference for correcting gene identification errors in previous finch microarrays studies, and avoiding such errors in future studies.

  8. A Model-Based Joint Identification of Differentially Expressed Genes and Phenotype-Associated Genes

    PubMed Central

    Seo, Minseok; Shin, Su-kyung; Kwon, Eun-Young; Kim, Sung-Eun; Bae, Yun-Jung; Lee, Seungyeoun; Sung, Mi-Kyung; Choi, Myung-Sook; Park, Taesung

    2016-01-01

    Over the last decade, many analytical methods and tools have been developed for microarray data. The detection of differentially expressed genes (DEGs) among different treatment groups is often a primary purpose of microarray data analysis. In addition, association studies investigating the relationship between genes and a phenotype of interest such as survival time are also popular in microarray data analysis. Phenotype association analysis provides a list of phenotype-associated genes (PAGs). However, it is sometimes necessary to identify genes that are both DEGs and PAGs. We consider the joint identification of DEGs and PAGs in microarray data analyses. The first approach we used was a naïve approach that detects DEGs and PAGs separately and then identifies the genes in an intersection of the list of PAGs and DEGs. The second approach we considered was a hierarchical approach that detects DEGs first and then chooses PAGs from among the DEGs or vice versa. In this study, we propose a new model-based approach for the joint identification of DEGs and PAGs. Unlike the previous two-step approaches, the proposed method identifies genes simultaneously that are DEGs and PAGs. This method uses standard regression models but adopts different null hypothesis from ordinary regression models, which allows us to perform joint identification in one-step. The proposed model-based methods were evaluated using experimental data and simulation studies. The proposed methods were used to analyze a microarray experiment in which the main interest lies in detecting genes that are both DEGs and PAGs, where DEGs are identified between two diet groups and PAGs are associated with four phenotypes reflecting the expression of leptin, adiponectin, insulin-like growth factor 1, and insulin. Model-based approaches provided a larger number of genes, which are both DEGs and PAGs, than other methods. Simulation studies showed that they have more power than other methods. Through analysis of data from experimental microarrays and simulation studies, the proposed model-based approach was shown to provide a more powerful result than the naïve approach and the hierarchical approach. Since our approach is model-based, it is very flexible and can easily handle different types of covariates. PMID:26964035

  9. Quantification of the epitope diversity of HIV-1-specific binding antibodies by peptide microarrays for global HIV-1 vaccine development

    DOE PAGES

    Stephenson, Kathryn E.; Neubauer, George H.; Reimer, Ulf; ...

    2014-11-14

    An effective vaccine against human immunodeficiency virus type 1 (HIV-1) will have to provide protection against a vast array of different HIV-1 strains. Current methods to measure HIV-1-specific binding antibodies following immunization typically focus on determining the magnitude of antibody responses, but the epitope diversity of antibody responses has remained largely unexplored. Here we describe the development of a global HIV-1 peptide microarray that contains 6564 peptides from across the HIV-1 proteome and covers the majority of HIV-1 sequences in the Los Alamos National Laboratory global HIV-1 sequence database. Using this microarray, we quantified the magnitude, breadth, and depth ofmore » IgG binding to linear HIV-1 sequences in HIV-1-infected humans and HIV-1-vaccinated humans, rhesus monkeys and guinea pigs. The microarray measured potentially important differences in antibody epitope diversity, particularly regarding the depth of epitope variants recognized at each binding site. Our data suggest that the global HIV-1 peptide microarray may be a useful tool for both preclinical and clinical HIV-1 research.« less

  10. Quantification of the epitope diversity of HIV-1-specific binding antibodies by peptide microarrays for global HIV-1 vaccine development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephenson, Kathryn E.; Neubauer, George H.; Reimer, Ulf

    An effective vaccine against human immunodeficiency virus type 1 (HIV-1) will have to provide protection against a vast array of different HIV-1 strains. Current methods to measure HIV-1-specific binding antibodies following immunization typically focus on determining the magnitude of antibody responses, but the epitope diversity of antibody responses has remained largely unexplored. Here we describe the development of a global HIV-1 peptide microarray that contains 6564 peptides from across the HIV-1 proteome and covers the majority of HIV-1 sequences in the Los Alamos National Laboratory global HIV-1 sequence database. Using this microarray, we quantified the magnitude, breadth, and depth ofmore » IgG binding to linear HIV-1 sequences in HIV-1-infected humans and HIV-1-vaccinated humans, rhesus monkeys and guinea pigs. The microarray measured potentially important differences in antibody epitope diversity, particularly regarding the depth of epitope variants recognized at each binding site. Our data suggest that the global HIV-1 peptide microarray may be a useful tool for both preclinical and clinical HIV-1 research.« less

  11. Analysis of Protein-DNA Interaction by Chromatin Immunoprecipitation and DNA Tiling Microarray (ChIP-on-chip).

    PubMed

    Gao, Hui; Zhao, Chunyan

    2018-01-01

    Chromatin immunoprecipitation (ChIP) has become the most effective and widely used tool to study the interactions between specific proteins or modified forms of proteins and a genomic DNA region. Combined with genome-wide profiling technologies, such as microarray hybridization (ChIP-on-chip) or massively parallel sequencing (ChIP-seq), ChIP could provide a genome-wide mapping of in vivo protein-DNA interactions in various organisms. Here, we describe a protocol of ChIP-on-chip that uses tiling microarray to obtain a genome-wide profiling of ChIPed DNA.

  12. Cloud-Scale Genomic Signals Processing for Robust Large-Scale Cancer Genomic Microarray Data Analysis.

    PubMed

    Harvey, Benjamin Simeon; Ji, Soo-Yeon

    2017-01-01

    As microarray data available to scientists continues to increase in size and complexity, it has become overwhelmingly important to find multiple ways to bring forth oncological inference to the bioinformatics community through the analysis of large-scale cancer genomic (LSCG) DNA and mRNA microarray data that is useful to scientists. Though there have been many attempts to elucidate the issue of bringing forth biological interpretation by means of wavelet preprocessing and classification, there has not been a research effort that focuses on a cloud-scale distributed parallel (CSDP) separable 1-D wavelet decomposition technique for denoising through differential expression thresholding and classification of LSCG microarray data. This research presents a novel methodology that utilizes a CSDP separable 1-D method for wavelet-based transformation in order to initialize a threshold which will retain significantly expressed genes through the denoising process for robust classification of cancer patients. Additionally, the overall study was implemented and encompassed within CSDP environment. The utilization of cloud computing and wavelet-based thresholding for denoising was used for the classification of samples within the Global Cancer Map, Cancer Cell Line Encyclopedia, and The Cancer Genome Atlas. The results proved that separable 1-D parallel distributed wavelet denoising in the cloud and differential expression thresholding increased the computational performance and enabled the generation of higher quality LSCG microarray datasets, which led to more accurate classification results.

  13. A hybrid approach to device integration on a genetic analysis platform

    NASA Astrophysics Data System (ADS)

    Brennan, Des; Jary, Dorothee; Kurg, Ants; Berik, Evgeny; Justice, John; Aherne, Margaret; Macek, Milan; Galvin, Paul

    2012-10-01

    Point-of-care (POC) systems require significant component integration to implement biochemical protocols associated with molecular diagnostic assays. Hybrid platforms where discrete components are combined in a single platform are a suitable approach to integration, where combining multiple device fabrication steps on a single substrate is not possible due to incompatible or costly fabrication steps. We integrate three devices each with a specific system functionality: (i) a silicon electro-wetting-on-dielectric (EWOD) device to move and mix sample and reagent droplets in an oil phase, (ii) a polymer microfluidic chip containing channels and reservoirs and (iii) an aqueous phase glass microarray for fluorescence microarray hybridization detection. The EWOD device offers the possibility of fully integrating on-chip sample preparation using nanolitre sample and reagent volumes. A key challenge is sample transfer from the oil phase EWOD device to the aqueous phase microarray for hybridization detection. The EWOD device, waveguide performance and functionality are maintained during the integration process. An on-chip biochemical protocol for arrayed primer extension (APEX) was implemented for single nucleotide polymorphism (SNiP) analysis. The prepared sample is aspirated from the EWOD oil phase to the aqueous phase microarray for hybridization. A bench-top instrumentation system was also developed around the integrated platform to drive the EWOD electrodes, implement APEX sample heating and image the microarray after hybridization.

  14. Performance of automated scoring of ER, PR, HER2, CK5/6 and EGFR in breast cancer tissue microarrays in the Breast Cancer Association Consortium

    PubMed Central

    Howat, William J; Blows, Fiona M; Provenzano, Elena; Brook, Mark N; Morris, Lorna; Gazinska, Patrycja; Johnson, Nicola; McDuffus, Leigh‐Anne; Miller, Jodi; Sawyer, Elinor J; Pinder, Sarah; van Deurzen, Carolien H M; Jones, Louise; Sironen, Reijo; Visscher, Daniel; Caldas, Carlos; Daley, Frances; Coulson, Penny; Broeks, Annegien; Sanders, Joyce; Wesseling, Jelle; Nevanlinna, Heli; Fagerholm, Rainer; Blomqvist, Carl; Heikkilä, Päivi; Ali, H Raza; Dawson, Sarah‐Jane; Figueroa, Jonine; Lissowska, Jolanta; Brinton, Louise; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli‐Matti; Cox, Angela; Brock, Ian W; Cross, Simon S; Reed, Malcolm W; Couch, Fergus J; Olson, Janet E; Devillee, Peter; Mesker, Wilma E; Seyaneve, Caroline M; Hollestelle, Antoinette; Benitez, Javier; Perez, Jose Ignacio Arias; Menéndez, Primitiva; Bolla, Manjeet K; Easton, Douglas F; Schmidt, Marjanka K; Pharoah, Paul D; Sherman, Mark E

    2014-01-01

    Abstract Breast cancer risk factors and clinical outcomes vary by tumour marker expression. However, individual studies often lack the power required to assess these relationships, and large‐scale analyses are limited by the need for high throughput, standardized scoring methods. To address these limitations, we assessed whether automated image analysis of immunohistochemically stained tissue microarrays can permit rapid, standardized scoring of tumour markers from multiple studies. Tissue microarray sections prepared in nine studies containing 20 263 cores from 8267 breast cancers stained for two nuclear (oestrogen receptor, progesterone receptor), two membranous (human epidermal growth factor receptor 2 and epidermal growth factor receptor) and one cytoplasmic (cytokeratin 5/6) marker were scanned as digital images. Automated algorithms were used to score markers in tumour cells using the Ariol system. We compared automated scores against visual reads, and their associations with breast cancer survival. Approximately 65–70% of tissue microarray cores were satisfactory for scoring. Among satisfactory cores, agreement between dichotomous automated and visual scores was highest for oestrogen receptor (Kappa = 0.76), followed by human epidermal growth factor receptor 2 (Kappa = 0.69) and progesterone receptor (Kappa = 0.67). Automated quantitative scores for these markers were associated with hazard ratios for breast cancer mortality in a dose‐response manner. Considering visual scores of epidermal growth factor receptor or cytokeratin 5/6 as the reference, automated scoring achieved excellent negative predictive value (96–98%), but yielded many false positives (positive predictive value = 30–32%). For all markers, we observed substantial heterogeneity in automated scoring performance across tissue microarrays. Automated analysis is a potentially useful tool for large‐scale, quantitative scoring of immunohistochemically stained tissue microarrays available in consortia. However, continued optimization, rigorous marker‐specific quality control measures and standardization of tissue microarray designs, staining and scoring protocols is needed to enhance results. PMID:27499890

  15. Automatic image analysis and spot classification for detection of pathogenic Escherichia coli on glass slide DNA microarrays

    USDA-ARS?s Scientific Manuscript database

    A computer algorithm was created to inspect scanned images from DNA microarray slides developed to rapidly detect and genotype E. Coli O157 virulent strains. The algorithm computes centroid locations for signal and background pixels in RGB space and defines a plane perpendicular to the line connect...

  16. Microarray as a First Genetic Test in Global Developmental Delay: A Cost-Effectiveness Analysis

    ERIC Educational Resources Information Center

    Trakadis, Yannis; Shevell, Michael

    2011-01-01

    Aim: Microarray technology has a significantly higher clinical yield than karyotyping in individuals with global developmental delay (GDD). Despite this, it has not yet been routinely implemented as a screening test owing to the perception that this approach is more expensive. We aimed to evaluate the effect that replacing karyotype with…

  17. Assessing probe-specific dye and slide biases in two-color microarray data

    USDA-ARS?s Scientific Manuscript database

    A primary reason for using two-color microarrays is that the use of two samples labeled with different dyes on the same slide and that bind to probes on the same spot is supposed to adjust for many factors that introduce noise and errors into the analysis. Most users assume that any differences bet...

  18. Exploratory Visual Analysis of Statistical Results from Microarray Experiments Comparing High and Low Grade Glioma

    PubMed Central

    Reif, David M.; Israel, Mark A.; Moore, Jason H.

    2007-01-01

    The biological interpretation of gene expression microarray results is a daunting challenge. For complex diseases such as cancer, wherein the body of published research is extensive, the incorporation of expert knowledge provides a useful analytical framework. We have previously developed the Exploratory Visual Analysis (EVA) software for exploring data analysis results in the context of annotation information about each gene, as well as biologically relevant groups of genes. We present EVA as a flexible combination of statistics and biological annotation that provides a straightforward visual interface for the interpretation of microarray analyses of gene expression in the most commonly occuring class of brain tumors, glioma. We demonstrate the utility of EVA for the biological interpretation of statistical results by analyzing publicly available gene expression profiles of two important glial tumors. The results of a statistical comparison between 21 malignant, high-grade glioblastoma multiforme (GBM) tumors and 19 indolent, low-grade pilocytic astrocytomas were analyzed using EVA. By using EVA to examine the results of a relatively simple statistical analysis, we were able to identify tumor class-specific gene expression patterns having both statistical and biological significance. Our interactive analysis highlighted the potential importance of genes involved in cell cycle progression, proliferation, signaling, adhesion, migration, motility, and structure, as well as candidate gene loci on a region of Chromosome 7 that has been implicated in glioma. Because EVA does not require statistical or computational expertise and has the flexibility to accommodate any type of statistical analysis, we anticipate EVA will prove a useful addition to the repertoire of computational methods used for microarray data analysis. EVA is available at no charge to academic users and can be found at http://www.epistasis.org. PMID:19390666

  19. Screening hybridomas for anabolic androgenic steroids by steroid analog antigen microarray.

    PubMed

    Du, Hongwu; Chen, Guangyu; Bian, Yongzhong; Xing, Cenzan; Ding, Xue; Zhu, Mengliang; Xun, Yiping; Chen, Peng; Zhou, Yabin; Li, Shaoxu

    2015-01-01

    Currently, dozens of anabolic androgenic steroids (AAS) are forbidden in the World Anti-Doping Agency Prohibited List, however, despite extensive investigation, there are still lots of AAS without corresponding monoclonal antibodies. A steroid analog antigen microarray made up of ten AAS was fabricated to screen the hybridoma and it was found an original unsuccessful clone turned out to be a candidate anti-boldenone antibody, without any cross-reactions with endogenous AAS or 44 different AAS standard reference materials tested. Our findings suggested that steroid analog antigen microarray could be a promising tool to screen and characterize new applications of antibodies for structure analogs, and this also exhibits the potential to fast identify effective epitopes of hybridomas in a single assay.

  20. Chromatin Immunoprecipitation and Microarray Analysis Suggest Functional Cooperation between Kaposi's Sarcoma-Associated Herpesvirus ORF57 and K-bZIP

    PubMed Central

    Hunter, Olga V.; Sei, Emi; Richardson, R. Blake

    2013-01-01

    The Kaposi's sarcoma-associated herpesvirus (KSHV) open reading frame 57 (ORF57)-encoded protein (Mta) is a multifunctional regulator of viral gene expression. ORF57 is essential for viral replication, so elucidation of its molecular mechanisms is important for understanding KSHV infection. ORF57 has been implicated in nearly every aspect of viral gene expression, including transcription, RNA stability, splicing, export, and translation. Here we demonstrate that ORF57 interacts with the KSHV K-bZIP protein in vitro and in cell extracts from lytically reactivated infected cells. To further test the biological relevance of the interaction, we performed a chromatin immunoprecipitation and microarray (ChIP-chip) analysis using anti-ORF57 antibodies and a KSHV tiling array. The results revealed four specific areas of enrichment, including the ORF4 and K8 (K-bZIP) promoters, as well as oriLyt, all of which interact with K-bZIP. In addition, ORF57 associated with DNA corresponding to the PAN RNA transcribed region, a known posttranscriptional target of ORF57. All of the peaks were RNase insensitive, demonstrating that ORF57 association with the viral genome is unlikely to be mediated exclusively by an RNA tether. Our data demonstrate that ORF57 associates with the viral genome by using at least two modes of recruitment, and they suggest that ORF57 and K-bZIP coregulate viral gene expression during lytic infection. PMID:23365430

  1. Chemoattractant signaling between tumor cells and macrophages regulates cancer cell migration, metastasis and neovascularization.

    PubMed

    Green, Chad E; Liu, Tiffany; Montel, Valerie; Hsiao, Gene; Lester, Robin D; Subramaniam, Shankar; Gonias, Steven L; Klemke, Richard L

    2009-08-21

    Tumor-associated macrophages are known to influence cancer progression by modulation of immune function, angiogenesis, and cell metastasis, however, little is known about the chemokine signaling networks that regulate this process. Utilizing CT26 colon cancer cells and RAW 264.7 macrophages as a model cellular system, we demonstrate that treatment of CT26 cells with RAW 264.7 conditioned medium induces cell migration, invasion and metastasis. Inflammatory gene microarray analysis indicated CT26-stimulated RAW 264.7 macrophages upregulate SDF-1alpha and VEGF, and that these cytokines contribute to CT26 migration in vitro. RAW 264.7 macrophages also showed a robust chemotactic response towards CT26-derived chemokines. In particular, microarray analysis and functional testing revealed CSF-1 as the major chemoattractant for RAW 264.7 macrophages. Interestingly, in the chick CAM model of cancer progression, RAW 264.7 macrophages localized specifically to the tumor periphery where they were found to increase CT26 tumor growth, microvascular density, vascular disruption, and lung metastasis, suggesting these cells home to actively invading areas of the tumor, but not the hypoxic core of the tumor mass. In support of these findings, hypoxic conditions down regulated CSF-1 production in several tumor cell lines and decreased RAW 264.7 macrophage migration in vitro. Together our findings suggest a model where normoxic tumor cells release CSF-1 to recruit macrophages to the tumor periphery where they secrete motility and angiogenic factors that facilitate tumor cell invasion and metastasis.

  2. Development of a cDNA microarray to identify gene expression of Puccinellia tenuiflora under saline-alkali stress.

    PubMed

    Wang, Yucheng; Yang, Chuanping; Liu, Guifeng; Jiang, Jing

    2007-08-01

    Puccinellia tenuiflora is the main grass species growing in the saline-alkali soil of the Songnen plain in northeastern China, suggesting it has a high tolerance to saline stress. In this study, cDNA microarrays containing 1067 clones of P. tenuiflora were constructed to investigate gene expression patterns resulting from saline-alkali (NaHCO(3)) stress. RNA was extracted from P. tenuiflora treated with 400 mmol L(-1) NaHCO(3) for 6, 12, 24 and 48 h. Untreated (no saline-alkali stress) samples were used as control. A total of 95 transcripts were differentially regulated under the conditions studied, and 38, 35, 25 and 49 genes were differentially expressed with NaHCO(3) stress for 6, 12, 24 and 48h, respectively. Among these, approximately 40% were putative novel or functionally unknown genes, and the remainder function in photosynthesis, cell rescue, defense, transport, metabolism, transcription regulation and protein destination, etc. Analysis of the P. tenuiflora genes demonstrated the complexity of, and differences in, gene expression patterns resulting from different NaHCO(3) stress times. The genetic relationship between P. tenuiflora and other plants was investigated by BlastN analysis. The results showed nearly 20% of the expressed sequence tags from P. tenuiflora shared significant similarities with rice Oryza sativa, an important food crop. The close genetic relationship between these two species suggests that P. tenuiflora may be a good plant model for studying saline-alkali tolerance mechanisms in O. sativa.

  3. Reverse-engineering the Arabidopsis thaliana transcriptional network under changing environmental conditions

    PubMed Central

    Carrera, Javier; Rodrigo, Guillermo; Jaramillo, Alfonso; Elena, Santiago F

    2009-01-01

    Background Understanding the molecular mechanisms plants have evolved to adapt their biological activities to a constantly changing environment is an intriguing question and one that requires a systems biology approach. Here we present a network analysis of genome-wide expression data combined with reverse-engineering network modeling to dissect the transcriptional control of Arabidopsis thaliana. The regulatory network is inferred by using an assembly of microarray data containing steady-state RNA expression levels from several growth conditions, developmental stages, biotic and abiotic stresses, and a variety of mutant genotypes. Results We show that the A. thaliana regulatory network has the characteristic properties of hierarchical networks. We successfully applied our quantitative network model to predict the full transcriptome of the plant for a set of microarray experiments not included in the training dataset. We also used our model to analyze the robustness in expression levels conferred by network motifs such as the coherent feed-forward loop. In addition, the meta-analysis presented here has allowed us to identify regulatory and robust genetic structures. Conclusions These data suggest that A. thaliana has evolved high connectivity in terms of transcriptional regulation among cellular functions involved in response and adaptation to changing environments, while gene networks constitutively expressed or less related to stress response are characterized by a lower connectivity. Taken together, these findings suggest conserved regulatory strategies that have been selected during the evolutionary history of this eukaryote. PMID:19754933

  4. Esophageal cancer stem cells are suppressed by tranilast, a TRPV2 channel inhibitor.

    PubMed

    Shiozaki, Atsushi; Kudou, Michihiro; Ichikawa, Daisuke; Fujiwara, Hitoshi; Shimizu, Hiroki; Ishimoto, Takeshi; Arita, Tomohiro; Kosuga, Toshiyuki; Konishi, Hirotaka; Komatsu, Shuhei; Okamoto, Kazuma; Marunaka, Yoshinori; Otsuji, Eigo

    2018-02-01

    Recent evidence suggests that the targeting of membrane proteins specifically activated in cancer stem cells (CSCs) is an important strategy for cancer therapy. The objectives of the present study were to investigate the expression and activity of ion-transport-related molecules in the CSCs of esophageal squamous cell carcinoma. Cells exhibiting strong aldehyde dehydrogenase 1 family member A1 (ALDH1A1) activity were isolated from TE8 cells by fluorescence-activated cell sorting, and CSCs were then generated with the sphere formation assay. The gene expression profiles of CSCs were examined by microarray analysis. Among TE8 cells, ALDH1A1 messenger RNA and protein levels were higher in CSCs than in non-CSCs. The CSCs obtained were resistant to cisplatin and had the ability to redifferentiate. The results of the microarray analysis revealed that the expression of 50 genes encoding plasma membrane proteins was altered in CSCs, whereas that of several genes related to ion channels, including transient receptor potential vanilloid 2 (TRPV2), was upregulated. The TRPV2 inhibitor tranilast was more cytotoxic at a lower concentration in CSCs than in non-CSCs, and effectively decreased the number of tumorspheres. Furthermore, tranilast significantly decreased the cell population that strongly expressed ALDH1A1 among TE8 cells. The results of the present study suggest that TRPV2 is involved in the maintenance of CSCs, and that its specific inhibitor, tranilast, has potential as a targeted therapeutic agent against esophageal squamous cell carcinoma.

  5. A microarray-based genotyping and genetic mapping approach for highly heterozygous outcrossing species enables localization of a large fraction of the unassembled Populus trichocarpa genome sequence.

    PubMed

    Drost, Derek R; Novaes, Evandro; Boaventura-Novaes, Carolina; Benedict, Catherine I; Brown, Ryan S; Yin, Tongming; Tuskan, Gerald A; Kirst, Matias

    2009-06-01

    Microarrays have demonstrated significant power for genome-wide analyses of gene expression, and recently have also revolutionized the genetic analysis of segregating populations by genotyping thousands of loci in a single assay. Although microarray-based genotyping approaches have been successfully applied in yeast and several inbred plant species, their power has not been proven in an outcrossing species with extensive genetic diversity. Here we have developed methods for high-throughput microarray-based genotyping in such species using a pseudo-backcross progeny of 154 individuals of Populus trichocarpa and P. deltoides analyzed with long-oligonucleotide in situ-synthesized microarray probes. Our analysis resulted in high-confidence genotypes for 719 single-feature polymorphism (SFP) and 1014 gene expression marker (GEM) candidates. Using these genotypes and an established microsatellite (SSR) framework map, we produced a high-density genetic map comprising over 600 SFPs, GEMs and SSRs. The abundance of gene-based markers allowed us to localize over 35 million base pairs of previously unplaced whole-genome shotgun (WGS) scaffold sequence to putative locations in the genome of P. trichocarpa. A high proportion of sampled scaffolds could be verified for their placement with independently mapped SSRs, demonstrating the previously un-utilized power that high-density genotyping can provide in the context of map-based WGS sequence reassembly. Our results provide a substantial contribution to the continued improvement of the Populus genome assembly, while demonstrating the feasibility of microarray-based genotyping in a highly heterozygous population. The strategies presented are applicable to genetic mapping efforts in all plant species with similarly high levels of genetic diversity.

  6. Cruella: developing a scalable tissue microarray data management system.

    PubMed

    Cowan, James D; Rimm, David L; Tuck, David P

    2006-06-01

    Compared with DNA microarray technology, relatively little information is available concerning the special requirements, design influences, and implementation strategies of data systems for tissue microarray technology. These issues include the requirement to accommodate new and different data elements for each new project as well as the need to interact with pre-existing models for clinical, biological, and specimen-related data. To design and implement a flexible, scalable tissue microarray data storage and management system that could accommodate information regarding different disease types and different clinical investigators, and different clinical investigation questions, all of which could potentially contribute unforeseen data types that require dynamic integration with existing data. The unpredictability of the data elements combined with the novelty of automated analysis algorithms and controlled vocabulary standards in this area require flexible designs and practical decisions. Our design includes a custom Java-based persistence layer to mediate and facilitate interaction with an object-relational database model and a novel database schema. User interaction is provided through a Java Servlet-based Web interface. Cruella has become an indispensable resource and is used by dozens of researchers every day. The system stores millions of experimental values covering more than 300 biological markers and more than 30 disease types. The experimental data are merged with clinical data that has been aggregated from multiple sources and is available to the researchers for management, analysis, and export. Cruella addresses many of the special considerations for managing tissue microarray experimental data and the associated clinical information. A metadata-driven approach provides a practical solution to many of the unique issues inherent in tissue microarray research, and allows relatively straightforward interoperability with and accommodation of new data models.

  7. Evaluation of the skin irritation using a DNA microarray on a reconstructed human epidermal model.

    PubMed

    Niwa, Makoto; Nagai, Kanji; Oike, Hideaki; Kobori, Masuko

    2009-02-01

    To avoid the need to use animals to test the skin irritancy potential of chemicals and cosmetics, it is important to establish an in vitro method based on the reconstructed human epidermal model. To evaluate skin irritancy efficiently and sensitively, we determined the gene expression induced by a topically-applied mild irritant sodium dodecyl sulfate (SDS) in a reconstructed human epidermal model LabCyte EPI-MODEL (LabCyte) using a DNA microarray carrying genes that were related to inflammation, immunity, stress and housekeeping. The expression and secretion of IL-1alpha in reconstructed human epidermal culture is known to be induced by irritation. We detected the induction of IL-1alpha expression and its secretion into the cell culture medium by treatment with 0.075% SDS for 18 h in LabCyte culture using DNA microarray, quantitative reverse-transcription polymerase chain reaction (RT-PCR) and ELISA. DNA microarray analysis indicated that the expression of 10 of the 205 genes carried on the DNA microarray was significantly induced in a LabCyte culture by 0.05% or 0.075% SDS irritation for 18 h. RT-PCR analysis confirmed that SDS treatment significantly induced the expressions of interleukin-1 receptor antagonist (IL-1RN), FOS-like antigen 1 (FOSL1), heat shock 70 kDa protein 1A (HSPA1) and myeloid differentiation primary response gene (88) (MYD88), as well as the known marker genes for irritation IL-1beta and IL-8 in a LabCyte culture. Our results showed that a DNA microarray is a useful tool for efficiently evaluating mild skin irritation using a reconstructed human epidermal model.

  8. Development and experimental validation of a 20K Atlantic cod (Gadus morhua) oligonucleotide microarray based on a collection of over 150,000 ESTs.

    PubMed

    Booman, Marije; Borza, Tudor; Feng, Charles Y; Hori, Tiago S; Higgins, Brent; Culf, Adrian; Léger, Daniel; Chute, Ian C; Belkaid, Anissa; Rise, Marlies; Gamperl, A Kurt; Hubert, Sophie; Kimball, Jennifer; Ouellette, Rodney J; Johnson, Stewart C; Bowman, Sharen; Rise, Matthew L

    2011-08-01

    The collapse of Atlantic cod (Gadus morhua) wild populations strongly impacted the Atlantic cod fishery and led to the development of cod aquaculture. In order to improve aquaculture and broodstock quality, we need to gain knowledge of genes and pathways involved in Atlantic cod responses to pathogens and other stressors. The Atlantic Cod Genomics and Broodstock Development Project has generated over 150,000 expressed sequence tags from 42 cDNA libraries representing various tissues, developmental stages, and stimuli. We used this resource to develop an Atlantic cod oligonucleotide microarray containing 20,000 unique probes. Selection of sequences from the full range of cDNA libraries enables application of the microarray for a broad spectrum of Atlantic cod functional genomics studies. We included sequences that were highly abundant in suppression subtractive hybridization (SSH) libraries, which were enriched for transcripts responsive to pathogens or other stressors. These sequences represent genes that potentially play an important role in stress and/or immune responses, making the microarray particularly useful for studies of Atlantic cod gene expression responses to immune stimuli and other stressors. To demonstrate its value, we used the microarray to analyze the Atlantic cod spleen response to stimulation with formalin-killed, atypical Aeromonas salmonicida, resulting in a gene expression profile that indicates a strong innate immune response. These results were further validated by quantitative PCR analysis and comparison to results from previous analysis of an SSH library. This study shows that the Atlantic cod 20K oligonucleotide microarray is a valuable new tool for Atlantic cod functional genomics research.

  9. Interim Report on SNP analysis and forensic microarray probe design for South American hemorrhagic fever viruses, tick-borne encephalitis virus, henipaviruses, Old World Arenaviruses, filoviruses, Crimean-Congo hemorrhagic fever viruses, Rift Valley fever

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaing, C; Gardner, S

    The goal of this project is to develop forensic genotyping assays for select agent viruses, enhancing the current capabilities for the viral bioforensics and law enforcement community. We used a multipronged approach combining bioinformatics analysis, PCR-enriched samples, microarrays and TaqMan assays to develop high resolution and cost effective genotyping methods for strain level forensic discrimination of viruses. We have leveraged substantial experience and efficiency gained through year 1 on software development, SNP discovery, TaqMan signature design and phylogenetic signature mapping to scale up the development of forensics signatures in year 2. In this report, we have summarized the whole genomemore » wide SNP analysis and microarray probe design for forensics characterization of South American hemorrhagic fever viruses, tick-borne encephalitis viruses and henipaviruses, Old World Arenaviruses, filoviruses, Crimean-Congo hemorrhagic fever virus, Rift Valley fever virus and Japanese encephalitis virus.« less

  10. Correcting for intra-experiment variation in Illumina BeadChip data is necessary to generate robust gene-expression profiles.

    PubMed

    Kitchen, Robert R; Sabine, Vicky S; Sims, Andrew H; Macaskill, E Jane; Renshaw, Lorna; Thomas, Jeremy S; van Hemert, Jano I; Dixon, J Michael; Bartlett, John M S

    2010-02-24

    Microarray technology is a popular means of producing whole genome transcriptional profiles, however high cost and scarcity of mRNA has led many studies to be conducted based on the analysis of single samples. We exploit the design of the Illumina platform, specifically multiple arrays on each chip, to evaluate intra-experiment technical variation using repeated hybridisations of universal human reference RNA (UHRR) and duplicate hybridisations of primary breast tumour samples from a clinical study. A clear batch-specific bias was detected in the measured expressions of both the UHRR and clinical samples. This bias was found to persist following standard microarray normalisation techniques. However, when mean-centering or empirical Bayes batch-correction methods (ComBat) were applied to the data, inter-batch variation in the UHRR and clinical samples were greatly reduced. Correlation between replicate UHRR samples improved by two orders of magnitude following batch-correction using ComBat (ranging from 0.9833-0.9991 to 0.9997-0.9999) and increased the consistency of the gene-lists from the duplicate clinical samples, from 11.6% in quantile normalised data to 66.4% in batch-corrected data. The use of UHRR as an inter-batch calibrator provided a small additional benefit when used in conjunction with ComBat, further increasing the agreement between the two gene-lists, up to 74.1%. In the interests of practicalities and cost, these results suggest that single samples can generate reliable data, but only after careful compensation for technical bias in the experiment. We recommend that investigators appreciate the propensity for such variation in the design stages of a microarray experiment and that the use of suitable correction methods become routine during the statistical analysis of the data.

  11. Correcting for intra-experiment variation in Illumina BeadChip data is necessary to generate robust gene-expression profiles

    PubMed Central

    2010-01-01

    Background Microarray technology is a popular means of producing whole genome transcriptional profiles, however high cost and scarcity of mRNA has led many studies to be conducted based on the analysis of single samples. We exploit the design of the Illumina platform, specifically multiple arrays on each chip, to evaluate intra-experiment technical variation using repeated hybridisations of universal human reference RNA (UHRR) and duplicate hybridisations of primary breast tumour samples from a clinical study. Results A clear batch-specific bias was detected in the measured expressions of both the UHRR and clinical samples. This bias was found to persist following standard microarray normalisation techniques. However, when mean-centering or empirical Bayes batch-correction methods (ComBat) were applied to the data, inter-batch variation in the UHRR and clinical samples were greatly reduced. Correlation between replicate UHRR samples improved by two orders of magnitude following batch-correction using ComBat (ranging from 0.9833-0.9991 to 0.9997-0.9999) and increased the consistency of the gene-lists from the duplicate clinical samples, from 11.6% in quantile normalised data to 66.4% in batch-corrected data. The use of UHRR as an inter-batch calibrator provided a small additional benefit when used in conjunction with ComBat, further increasing the agreement between the two gene-lists, up to 74.1%. Conclusion In the interests of practicalities and cost, these results suggest that single samples can generate reliable data, but only after careful compensation for technical bias in the experiment. We recommend that investigators appreciate the propensity for such variation in the design stages of a microarray experiment and that the use of suitable correction methods become routine during the statistical analysis of the data. PMID:20181233

  12. CHIR99021 promotes self-renewal of mouse embryonic stem cells by modulation of protein-encoding gene and long intergenic non-coding RNA expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yongyan; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A and F University, Yangling 712100, Shaanxi; Ai, Zhiying

    2013-10-15

    Embryonic stem cells (ESCs) can proliferate indefinitely in vitro and differentiate into cells of all three germ layers. These unique properties make them exceptionally valuable for drug discovery and regenerative medicine. However, the practical application of ESCs is limited because it is difficult to derive and culture ESCs. It has been demonstrated that CHIR99021 (CHIR) promotes self-renewal and enhances the derivation efficiency of mouse (m)ESCs. However, the downstream targets of CHIR are not fully understood. In this study, we identified CHIR-regulated genes in mESCs using microarray analysis. Our microarray data demonstrated that CHIR not only influenced the Wnt/β-catenin pathway bymore » stabilizing β-catenin, but also modulated several other pluripotency-related signaling pathways such as TGF-β, Notch and MAPK signaling pathways. More detailed analysis demonstrated that CHIR inhibited Nodal signaling, while activating bone morphogenetic protein signaling in mESCs. In addition, we found that pluripotency-maintaining transcription factors were up-regulated by CHIR, while several developmental-related genes were down-regulated. Furthermore, we found that CHIR altered the expression of epigenetic regulatory genes and long intergenic non-coding RNAs. Quantitative real-time PCR results were consistent with microarray data, suggesting that CHIR alters the expression pattern of protein-encoding genes (especially transcription factors), epigenetic regulatory genes and non-coding RNAs to establish a relatively stable pluripotency-maintaining network. - Highlights: • Combined use of CHIR with LIF promotes self-renewal of J1 mESCs. • CHIR-regulated genes are involved in multiple pathways. • CHIR inhibits Nodal signaling and promotes Bmp4 expression to activate BMP signaling. • Expression of epigenetic regulatory genes and lincRNAs is altered by CHIR.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perkins, Timothy N.; Dentener, Mieke A.

    Growth and development of the mature lung is a complex process orchestrated by a number of intricate developmental signaling pathways. Wingless-type MMTV-integration site (WNT) signaling plays critical roles in controlling branching morphogenesis cell differentiation, and formation of the conducting and respiratory airways. In addition, WNT pathways are often re-activated in mature lungs during repair and regeneration. WNT- signaling has been elucidated as a crucial contributor to the development of idiopathic pulmonary fibrosis as well as other hyper-proliferative lung diseases. Silicosis, a detrimental occupational lung disease caused by excessive inhalation of crystalline silica dust, is hallmarked by repeated cycles of damagingmore » inflammation, epithelial hyperplasia, and formation of dense, hyalinized nodules of whorled collagen. However, mechanisms of epithelial cell hyperplasia and matrix deposition are not well understood, as most research efforts have focused on the pronounced inflammatory response. Microarray data from our previous studies has revealed a number of WNT-signaling and WNT-target genes altered by crystalline silica in human lung epithelial cells. In the present study, we utilize pathway analysis to designate connections between genes altered by silica in WNT-signaling networks. Furthermore, we confirm microarray findings by QRT-PCR and demonstrate both activation of canonical (β-catenin) and down-regulation of non-canonical (WNT5A) signaling in immortalized (BEAS-2B) and primary (PBEC) human bronchial epithelial cells. These findings suggest that WNT-signaling and cross-talk with other pathways (e.g. Notch), may contribute to proliferative, fibrogenic and inflammatory responses to silica in lung epithelial cells. - Highlights: • Pathway analysis reveals silica-induced WNT-signaling in lung epithelial cells. • Silica-induced canonical WNT-signaling is mediated by autocrine/paracrine signals. • Crystalline silica decreases non-canonical WNT5A signaling. • Microarray reveals WNT as a novel complex signaling network in silica-mediated injury.« less

  14. Multi-membership gene regulation in pathway based microarray analysis

    PubMed Central

    2011-01-01

    Background Gene expression analysis has been intensively researched for more than a decade. Recently, there has been elevated interest in the integration of microarray data analysis with other types of biological knowledge in a holistic analytical approach. We propose a methodology that can be facilitated for pathway based microarray data analysis, based on the observation that a substantial proportion of genes present in biochemical pathway databases are members of a number of distinct pathways. Our methodology aims towards establishing the state of individual pathways, by identifying those truly affected by the experimental conditions based on the behaviour of such genes. For that purpose it considers all the pathways in which a gene participates and the general census of gene expression per pathway. Results We utilise hill climbing, simulated annealing and a genetic algorithm to analyse the consistency of the produced results, through the application of fuzzy adjusted rand indexes and hamming distance. All algorithms produce highly consistent genes to pathways allocations, revealing the contribution of genes to pathway functionality, in agreement with current pathway state visualisation techniques, with the simulated annealing search proving slightly superior in terms of efficiency. Conclusions We show that the expression values of genes, which are members of a number of biochemical pathways or modules, are the net effect of the contribution of each gene to these biochemical processes. We show that by manipulating the pathway and module contribution of such genes to follow underlying trends we can interpret microarray results centred on the behaviour of these genes. PMID:21939531

  15. Multi-membership gene regulation in pathway based microarray analysis.

    PubMed

    Pavlidis, Stelios P; Payne, Annette M; Swift, Stephen M

    2011-09-22

    Gene expression analysis has been intensively researched for more than a decade. Recently, there has been elevated interest in the integration of microarray data analysis with other types of biological knowledge in a holistic analytical approach. We propose a methodology that can be facilitated for pathway based microarray data analysis, based on the observation that a substantial proportion of genes present in biochemical pathway databases are members of a number of distinct pathways. Our methodology aims towards establishing the state of individual pathways, by identifying those truly affected by the experimental conditions based on the behaviour of such genes. For that purpose it considers all the pathways in which a gene participates and the general census of gene expression per pathway. We utilise hill climbing, simulated annealing and a genetic algorithm to analyse the consistency of the produced results, through the application of fuzzy adjusted rand indexes and hamming distance. All algorithms produce highly consistent genes to pathways allocations, revealing the contribution of genes to pathway functionality, in agreement with current pathway state visualisation techniques, with the simulated annealing search proving slightly superior in terms of efficiency. We show that the expression values of genes, which are members of a number of biochemical pathways or modules, are the net effect of the contribution of each gene to these biochemical processes. We show that by manipulating the pathway and module contribution of such genes to follow underlying trends we can interpret microarray results centred on the behaviour of these genes.

  16. Quantitative comparison of microarray experiments with published leukemia related gene expression signatures.

    PubMed

    Klein, Hans-Ulrich; Ruckert, Christian; Kohlmann, Alexander; Bullinger, Lars; Thiede, Christian; Haferlach, Torsten; Dugas, Martin

    2009-12-15

    Multiple gene expression signatures derived from microarray experiments have been published in the field of leukemia research. A comparison of these signatures with results from new experiments is useful for verification as well as for interpretation of the results obtained. Currently, the percentage of overlapping genes is frequently used to compare published gene signatures against a signature derived from a new experiment. However, it has been shown that the percentage of overlapping genes is of limited use for comparing two experiments due to the variability of gene signatures caused by different array platforms or assay-specific influencing parameters. Here, we present a robust approach for a systematic and quantitative comparison of published gene expression signatures with an exemplary query dataset. A database storing 138 leukemia-related published gene signatures was designed. Each gene signature was manually annotated with terms according to a leukemia-specific taxonomy. Two analysis steps are implemented to compare a new microarray dataset with the results from previous experiments stored and curated in the database. First, the global test method is applied to assess gene signatures and to constitute a ranking among them. In a subsequent analysis step, the focus is shifted from single gene signatures to chromosomal aberrations or molecular mutations as modeled in the taxonomy. Potentially interesting disease characteristics are detected based on the ranking of gene signatures associated with these aberrations stored in the database. Two example analyses are presented. An implementation of the approach is freely available as web-based application. The presented approach helps researchers to systematically integrate the knowledge derived from numerous microarray experiments into the analysis of a new dataset. By means of example leukemia datasets we demonstrate that this approach detects related experiments as well as related molecular mutations and may help to interpret new microarray data.

  17. Microarray analysis of the rat lacrimal gland following the loss of parasympathetic control of secretion

    PubMed Central

    Nguyen, Doan H.; Toshida, Hiroshi; Schurr, Jill; Beuerman, Roger W.

    2010-01-01

    Previous studies showed that loss of muscarinic parasympathetic input to the lacrimal gland (LG) leads to a dramatic reduction in tear secretion and profound changes to LG structure. In this study, we used DNA microarrays to examine the regulation of the gene expression of the genes for secretory function and organization of the LG. Long-Evans rats anesthetized with a mixture of ketamine/xylazine (80:10 mg/kg) underwent unilateral sectioning of the greater superficial petrosal nerve, the input to the pterygopalatine ganglion. After 7 days, tear secretion was measured, the animals were killed, and structural changes in the LG were examined by light microscopy. Total RNA from control and experimental LGs (n = 5) was used for DNA microarray analysis employing the U34A GeneChip. Three statistical algorithms (detection, change call, and signal log ratio) were used to determine differential gene expression using the Microarray Suite (5.0) and Data Mining Tools (3.0). Tear secretion was significantly reduced and corneal ulcers developed in all experimental eyes. Light microscopy showed breakdown of the acinar structure of the LG. DNA microarray analysis showed downregulation of genes associated with the endoplasmic reticulum and Golgi, including genes involved in protein folding and processing. Conversely, transcripts for cytoskeleton and extracellular matrix components, inflammation, and apoptosis were upregulated. The number of significantly upregulated genes (116) was substantially greater than the number of downregulated genes (49). Removal of the main secretory input to the rat LG resulted in clinical symptoms associated with severe dry eye. Components of the secretory pathway were negatively affected, and the increase in cell proliferation and inflammation may lead to loss of organization in the parasympathectomized lacrimal gland. PMID:15084711

  18. Identification of novel and known oocyte-specific genes using complementary DNA subtraction and microarray analysis in three different species.

    PubMed

    Vallée, Maud; Gravel, Catherine; Palin, Marie-France; Reghenas, Hélène; Stothard, Paul; Wishart, David S; Sirard, Marc-André

    2005-07-01

    The main objective of the present study was to identify novel oocyte-specific genes in three different species: bovine, mouse, and Xenopus laevis. To achieve this goal, two powerful technologies were combined: a polymerase chain reaction (PCR)-based cDNA subtraction, and cDNA microarrays. Three subtractive libraries consisting of 3456 clones were established and enriched for oocyte-specific transcripts. Sequencing analysis of the positive insert-containing clones resulted in the following classification: 53% of the clones corresponded to known cDNAs, 26% were classified as uncharacterized cDNAs, and a final 9% were classified as novel sequences. All these clones were used for cDNA microarray preparation. Results from these microarray analyses revealed that in addition to already known oocyte-specific genes, such as GDF9, BMP15, and ZP, known genes with unknown function in the oocyte were identified, such as a MLF1-interacting protein (MLF1IP), B-cell translocation gene 4 (BTG4), and phosphotyrosine-binding protein (xPTB). Furthermore, 15 novel oocyte-specific genes were validated by reverse transcription-PCR to confirm their preferential expression in the oocyte compared to somatic tissues. The results obtained in the present study confirmed that microarray analysis is a robust technique to identify true positives from the suppressive subtractive hybridization experiment. Furthermore, obtaining oocyte-specific genes from three species simultaneously allowed us to look at important genes that are conserved across species. Further characterization of these novel oocyte-specific genes will lead to a better understanding of the molecular mechanisms related to the unique functions found in the oocyte.

  19. Glycome Diagnosis of Human Induced Pluripotent Stem Cells Using Lectin Microarray*

    PubMed Central

    Tateno, Hiroaki; Toyota, Masashi; Saito, Shigeru; Onuma, Yasuko; Ito, Yuzuru; Hiemori, Keiko; Fukumura, Mihoko; Matsushima, Asako; Nakanishi, Mio; Ohnuma, Kiyoshi; Akutsu, Hidenori; Umezawa, Akihiro; Horimoto, Katsuhisa; Hirabayashi, Jun; Asashima, Makoto

    2011-01-01

    Induced pluripotent stem cells (iPSCs) can now be produced from various somatic cell (SC) lines by ectopic expression of the four transcription factors. Although the procedure has been demonstrated to induce global change in gene and microRNA expressions and even epigenetic modification, it remains largely unknown how this transcription factor-induced reprogramming affects the total glycan repertoire expressed on the cells. Here we performed a comprehensive glycan analysis using 114 types of human iPSCs generated from five different SCs and compared their glycomes with those of human embryonic stem cells (ESCs; nine cell types) using a high density lectin microarray. In unsupervised cluster analysis of the results obtained by lectin microarray, both undifferentiated iPSCs and ESCs were clustered as one large group. However, they were clearly separated from the group of differentiated SCs, whereas all of the four SCs had apparently distinct glycome profiles from one another, demonstrating that SCs with originally distinct glycan profiles have acquired those similar to ESCs upon induction of pluripotency. Thirty-eight lectins discriminating between SCs and iPSCs/ESCs were statistically selected, and characteristic features of the pluripotent state were then obtained at the level of the cellular glycome. The expression profiles of relevant glycosyltransferase genes agreed well with the results obtained by lectin microarray. Among the 38 lectins, rBC2LCN was found to detect only undifferentiated iPSCs/ESCs and not differentiated SCs. Hence, the high density lectin microarray has proved to be valid for not only comprehensive analysis of glycans but also diagnosis of stem cells under the concept of the cellular glycome. PMID:21471226

  20. Microarray analysis of gene expression profiles in ripening pineapple fruits.

    PubMed

    Koia, Jonni H; Moyle, Richard L; Botella, Jose R

    2012-12-18

    Pineapple (Ananas comosus) is a tropical fruit crop of significant commercial importance. Although the physiological changes that occur during pineapple fruit development have been well characterized, little is known about the molecular events that occur during the fruit ripening process. Understanding the molecular basis of pineapple fruit ripening will aid the development of new varieties via molecular breeding or genetic modification. In this study we developed a 9277 element pineapple microarray and used it to profile gene expression changes that occur during pineapple fruit ripening. Microarray analyses identified 271 unique cDNAs differentially expressed at least 1.5-fold between the mature green and mature yellow stages of pineapple fruit ripening. Among these 271 sequences, 184 share significant homology with genes encoding proteins of known function, 53 share homology with genes encoding proteins of unknown function and 34 share no significant homology with any database accession. Of the 237 pineapple sequences with homologs, 160 were up-regulated and 77 were down-regulated during pineapple fruit ripening. DAVID Functional Annotation Cluster (FAC) analysis of all 237 sequences with homologs revealed confident enrichment scores for redox activity, organic acid metabolism, metalloenzyme activity, glycolysis, vitamin C biosynthesis, antioxidant activity and cysteine peptidase activity, indicating the functional significance and importance of these processes and pathways during pineapple fruit development. Quantitative real-time PCR analysis validated the microarray expression results for nine out of ten genes tested. This is the first report of a microarray based gene expression study undertaken in pineapple. Our bioinformatic analyses of the transcript profiles have identified a number of genes, processes and pathways with putative involvement in the pineapple fruit ripening process. This study extends our knowledge of the molecular basis of pineapple fruit ripening and non-climacteric fruit ripening in general.

  1. Microarray analysis of gene expression profiles in ripening pineapple fruits

    PubMed Central

    2012-01-01

    Background Pineapple (Ananas comosus) is a tropical fruit crop of significant commercial importance. Although the physiological changes that occur during pineapple fruit development have been well characterized, little is known about the molecular events that occur during the fruit ripening process. Understanding the molecular basis of pineapple fruit ripening will aid the development of new varieties via molecular breeding or genetic modification. In this study we developed a 9277 element pineapple microarray and used it to profile gene expression changes that occur during pineapple fruit ripening. Results Microarray analyses identified 271 unique cDNAs differentially expressed at least 1.5-fold between the mature green and mature yellow stages of pineapple fruit ripening. Among these 271 sequences, 184 share significant homology with genes encoding proteins of known function, 53 share homology with genes encoding proteins of unknown function and 34 share no significant homology with any database accession. Of the 237 pineapple sequences with homologs, 160 were up-regulated and 77 were down-regulated during pineapple fruit ripening. DAVID Functional Annotation Cluster (FAC) analysis of all 237 sequences with homologs revealed confident enrichment scores for redox activity, organic acid metabolism, metalloenzyme activity, glycolysis, vitamin C biosynthesis, antioxidant activity and cysteine peptidase activity, indicating the functional significance and importance of these processes and pathways during pineapple fruit development. Quantitative real-time PCR analysis validated the microarray expression results for nine out of ten genes tested. Conclusions This is the first report of a microarray based gene expression study undertaken in pineapple. Our bioinformatic analyses of the transcript profiles have identified a number of genes, processes and pathways with putative involvement in the pineapple fruit ripening process. This study extends our knowledge of the molecular basis of pineapple fruit ripening and non-climacteric fruit ripening in general. PMID:23245313

  2. Transcriptomic response of the red tide dinoflagellate, Karenia brevis, to nitrogen and phosphorus depletion and addition.

    PubMed

    Morey, Jeanine S; Monroe, Emily A; Kinney, Amanda L; Beal, Marion; Johnson, Jillian G; Hitchcock, Gary L; Van Dolah, Frances M

    2011-07-05

    The role of coastal nutrient sources in the persistence of Karenia brevis red tides in coastal waters of Florida is a contentious issue that warrants investigation into the regulation of nutrient responses in this dinoflagellate. In other phytoplankton studied, nutrient status is reflected by the expression levels of N- and P-responsive gene transcripts. In dinoflagellates, however, many processes are regulated post-transcriptionally. All nuclear encoded gene transcripts studied to date possess a 5' trans-spliced leader (SL) sequence suggestive, based on the trypanosome model, of post-transcriptional regulation. The current study therefore sought to determine if the transcriptome of K. brevis is responsive to nitrogen and phosphorus and is informative of nutrient status. Microarray analysis of N-depleted K. brevis cultures revealed an increase in the expression of transcripts involved in N-assimilation (nitrate and ammonium transporters, glutamine synthetases) relative to nutrient replete cells. In contrast, a transcriptional signal of P-starvation was not apparent despite evidence of P-starvation based on their rapid growth response to P-addition. To study transcriptome responses to nutrient addition, the limiting nutrient was added to depleted cells and changes in global gene expression were assessed over the first 48 hours following nutrient addition. Both N- and P-addition resulted in significant changes in approximately 4% of genes on the microarray, using a significance cutoff of 1.7-fold and p ≤ 10-4. By far, the earliest responding genes were dominated in both nutrient treatments by pentatricopeptide repeat (PPR) proteins, which increased in expression up to 3-fold by 1 h following nutrient addition. PPR proteins are nuclear encoded proteins involved in chloroplast and mitochondria RNA processing. Correspondingly, other functions enriched in response to both nutrients were photosystem and ribosomal genes. Microarray analysis provided transcriptomic evidence for N- but not P-limitation in K. brevis. Transcriptomic responses to the addition of either N or P suggest a concerted program leading to the reactivation of chloroplast functions. Even the earliest responding PPR protein transcripts possess a 5' SL sequence that suggests post-transcriptional control. Given the current state of knowledge of dinoflagellate gene regulation, it is currently unclear how these rapid changes in such transcript levels are achieved.

  3. Strategies for comparing gene expression profiles from different microarray platforms: application to a case-control experiment.

    PubMed

    Severgnini, Marco; Bicciato, Silvio; Mangano, Eleonora; Scarlatti, Francesca; Mezzelani, Alessandra; Mattioli, Michela; Ghidoni, Riccardo; Peano, Clelia; Bonnal, Raoul; Viti, Federica; Milanesi, Luciano; De Bellis, Gianluca; Battaglia, Cristina

    2006-06-01

    Meta-analysis of microarray data is increasingly important, considering both the availability of multiple platforms using disparate technologies and the accumulation in public repositories of data sets from different laboratories. We addressed the issue of comparing gene expression profiles from two microarray platforms by devising a standardized investigative strategy. We tested this procedure by studying MDA-MB-231 cells, which undergo apoptosis on treatment with resveratrol. Gene expression profiles were obtained using high-density, short-oligonucleotide, single-color microarray platforms: GeneChip (Affymetrix) and CodeLink (Amersham). Interplatform analyses were carried out on 8414 common transcripts represented on both platforms, as identified by LocusLink ID, representing 70.8% and 88.6% of annotated GeneChip and CodeLink features, respectively. We identified 105 differentially expressed genes (DEGs) on CodeLink and 42 DEGs on GeneChip. Among them, only 9 DEGs were commonly identified by both platforms. Multiple analyses (BLAST alignment of probes with target sequences, gene ontology, literature mining, and quantitative real-time PCR) permitted us to investigate the factors contributing to the generation of platform-dependent results in single-color microarray experiments. An effective approach to cross-platform comparison involves microarrays of similar technologies, samples prepared by identical methods, and a standardized battery of bioinformatic and statistical analyses.

  4. Development and Comparison of Two Assay Formats for Parallel Detection of Four Biothreat Pathogens by Using Suspension Microarrays

    PubMed Central

    Janse, Ingmar; Bok, Jasper M.; Hamidjaja, Raditijo A.; Hodemaekers, Hennie M.; van Rotterdam, Bart J.

    2012-01-01

    Microarrays provide a powerful analytical tool for the simultaneous detection of multiple pathogens. We developed diagnostic suspension microarrays for sensitive and specific detection of the biothreat pathogens Bacillus anthracis, Yersinia pestis, Francisella tularensis and Coxiella burnetii. Two assay chemistries for amplification and labeling were developed, one method using direct hybridization and the other using target-specific primer extension, combined with hybridization to universal arrays. Asymmetric PCR products for both assay chemistries were produced by using a multiplex asymmetric PCR amplifying 16 DNA signatures (16-plex). The performances of both assay chemistries were compared and their advantages and disadvantages are discussed. The developed microarrays detected multiple signature sequences and an internal control which made it possible to confidently identify the targeted pathogens and assess their virulence potential. The microarrays were highly specific and detected various strains of the targeted pathogens. Detection limits for the different pathogen signatures were similar or slightly higher compared to real-time PCR. Probit analysis showed that even a few genomic copies could be detected with 95% confidence. The microarrays detected DNA from different pathogens mixed in different ratios and from spiked or naturally contaminated samples. The assays that were developed have a potential for application in surveillance and diagnostics. PMID:22355407

  5. Microarray platform affords improved product analysis in mammalian cell growth studies

    PubMed Central

    Li, Lingyun; Migliore, Nicole; Schaefer, Eugene; Sharfstein, Susan T.; Dordick, Jonathan S.; Linhardt, Robert J.

    2014-01-01

    High throughput (HT) platforms serve as cost-efficient and rapid screening method for evaluating the effect of cell culture conditions and screening of chemicals. The aim of the current study was to develop a high-throughput cell-based microarray platform to assess the effect of culture conditions on Chinese hamster ovary (CHO) cells. Specifically, growth, transgene expression and metabolism of a GS/MSX CHO cell line, which produces a therapeutic monoclonal antibody, was examined using microarray system in conjunction with conventional shake flask platform in a non-proprietary medium. The microarray system consists of 60 nl spots of cells encapsulated in alginate and separated in groups via an 8-well chamber system attached to the chip. Results show the non-proprietary medium developed allows cell growth, production and normal glycosylation of recombinant antibody and metabolism of the recombinant CHO cells in both the microarray and shake flask platforms. In addition, 10.3 mM glutamate addition to the defined base media results in lactate metabolism shift in the recombinant GS/MSX CHO cells in the shake flask platform. Ultimately, the results demonstrate that the high-throughput microarray platform has the potential to be utilized for evaluating the impact of media additives on cellular processes, such as, cell growth, metabolism and productivity. PMID:24227746

  6. Development and comparison of two assay formats for parallel detection of four biothreat pathogens by using suspension microarrays.

    PubMed

    Janse, Ingmar; Bok, Jasper M; Hamidjaja, Raditijo A; Hodemaekers, Hennie M; van Rotterdam, Bart J

    2012-01-01

    Microarrays provide a powerful analytical tool for the simultaneous detection of multiple pathogens. We developed diagnostic suspension microarrays for sensitive and specific detection of the biothreat pathogens Bacillus anthracis, Yersinia pestis, Francisella tularensis and Coxiella burnetii. Two assay chemistries for amplification and labeling were developed, one method using direct hybridization and the other using target-specific primer extension, combined with hybridization to universal arrays. Asymmetric PCR products for both assay chemistries were produced by using a multiplex asymmetric PCR amplifying 16 DNA signatures (16-plex). The performances of both assay chemistries were compared and their advantages and disadvantages are discussed. The developed microarrays detected multiple signature sequences and an internal control which made it possible to confidently identify the targeted pathogens and assess their virulence potential. The microarrays were highly specific and detected various strains of the targeted pathogens. Detection limits for the different pathogen signatures were similar or slightly higher compared to real-time PCR. Probit analysis showed that even a few genomic copies could be detected with 95% confidence. The microarrays detected DNA from different pathogens mixed in different ratios and from spiked or naturally contaminated samples. The assays that were developed have a potential for application in surveillance and diagnostics.

  7. Assessment of data processing to improve reliability of microarray experiments using genomic DNA reference.

    PubMed

    Yang, Yunfeng; Zhu, Mengxia; Wu, Liyou; Zhou, Jizhong

    2008-09-16

    Using genomic DNA as common reference in microarray experiments has recently been tested by different laboratories. Conflicting results have been reported with regard to the reliability of microarray results using this method. To explain it, we hypothesize that data processing is a critical element that impacts the data quality. Microarray experiments were performed in a gamma-proteobacterium Shewanella oneidensis. Pair-wise comparison of three experimental conditions was obtained either with two labeled cDNA samples co-hybridized to the same array, or by employing Shewanella genomic DNA as a standard reference. Various data processing techniques were exploited to reduce the amount of inconsistency between both methods and the results were assessed. We discovered that data quality was significantly improved by imposing the constraint of minimal number of replicates, logarithmic transformation and random error analyses. These findings demonstrate that data processing significantly influences data quality, which provides an explanation for the conflicting evaluation in the literature. This work could serve as a guideline for microarray data analysis using genomic DNA as a standard reference.

  8. Employing image processing techniques for cancer detection using microarray images.

    PubMed

    Dehghan Khalilabad, Nastaran; Hassanpour, Hamid

    2017-02-01

    Microarray technology is a powerful genomic tool for simultaneously studying and analyzing the behavior of thousands of genes. The analysis of images obtained from this technology plays a critical role in the detection and treatment of diseases. The aim of the current study is to develop an automated system for analyzing data from microarray images in order to detect cancerous cases. The proposed system consists of three main phases, namely image processing, data mining, and the detection of the disease. The image processing phase performs operations such as refining image rotation, gridding (locating genes) and extracting raw data from images the data mining includes normalizing the extracted data and selecting the more effective genes. Finally, via the extracted data, cancerous cell is recognized. To evaluate the performance of the proposed system, microarray database is employed which includes Breast cancer, Myeloid Leukemia and Lymphomas from the Stanford Microarray Database. The results indicate that the proposed system is able to identify the type of cancer from the data set with an accuracy of 95.45%, 94.11%, and 100%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Improved microarray methods for profiling the yeast knockout strain collection

    PubMed Central

    Yuan, Daniel S.; Pan, Xuewen; Ooi, Siew Loon; Peyser, Brian D.; Spencer, Forrest A.; Irizarry, Rafael A.; Boeke, Jef D.

    2005-01-01

    A remarkable feature of the Yeast Knockout strain collection is the presence of two unique 20mer TAG sequences in almost every strain. In principle, the relative abundances of strains in a complex mixture can be profiled swiftly and quantitatively by amplifying these sequences and hybridizing them to microarrays, but TAG microarrays have not been widely used. Here, we introduce a TAG microarray design with sophisticated controls and describe a robust method for hybridizing high concentrations of dye-labeled TAGs in single-stranded form. We also highlight the importance of avoiding PCR contamination and provide procedures for detection and eradication. Validation experiments using these methods yielded false positive (FP) and false negative (FN) rates for individual TAG detection of 3–6% and 15–18%, respectively. Analysis demonstrated that cross-hybridization was the chief source of FPs, while TAG amplification defects were the main cause of FNs. The materials, protocols, data and associated software described here comprise a suite of experimental resources that should facilitate the use of TAG microarrays for a wide variety of genetic screens. PMID:15994458

  10. Clustering approaches to identifying gene expression patterns from DNA microarray data.

    PubMed

    Do, Jin Hwan; Choi, Dong-Kug

    2008-04-30

    The analysis of microarray data is essential for large amounts of gene expression data. In this review we focus on clustering techniques. The biological rationale for this approach is the fact that many co-expressed genes are co-regulated, and identifying co-expressed genes could aid in functional annotation of novel genes, de novo identification of transcription factor binding sites and elucidation of complex biological pathways. Co-expressed genes are usually identified in microarray experiments by clustering techniques. There are many such methods, and the results obtained even for the same datasets may vary considerably depending on the algorithms and metrics for dissimilarity measures used, as well as on user-selectable parameters such as desired number of clusters and initial values. Therefore, biologists who want to interpret microarray data should be aware of the weakness and strengths of the clustering methods used. In this review, we survey the basic principles of clustering of DNA microarray data from crisp clustering algorithms such as hierarchical clustering, K-means and self-organizing maps, to complex clustering algorithms like fuzzy clustering.

  11. Specific Discrimination of Three Pathogenic Salmonella enterica subsp. enterica Serotypes by carB-Based Oligonucleotide Microarray

    PubMed Central

    Shin, Hwa Hui; Hwang, Byeong Hee; Seo, Jeong Hyun

    2014-01-01

    It is important to rapidly and selectively detect and analyze pathogenic Salmonella enterica subsp. enterica in contaminated food to reduce the morbidity and mortality of Salmonella infection and to guarantee food safety. In the present work, we developed an oligonucleotide microarray containing duplicate specific capture probes based on the carB gene, which encodes the carbamoyl phosphate synthetase large subunit, as a competent biomarker evaluated by genetic analysis to selectively and efficiently detect and discriminate three S. enterica subsp. enterica serotypes: Choleraesuis, Enteritidis, and Typhimurium. Using the developed microarray system, three serotype targets were successfully analyzed in a range as low as 1.6 to 3.1 nM and were specifically discriminated from each other without nonspecific signals. In addition, the constructed microarray did not have cross-reactivity with other common pathogenic bacteria and even enabled the clear discrimination of the target Salmonella serotype from a bacterial mixture. Therefore, these results demonstrated that our novel carB-based oligonucleotide microarray can be used as an effective and specific detection system for S. enterica subsp. enterica serotypes. PMID:24185846

  12. Specific discrimination of three pathogenic Salmonella enterica subsp. enterica serotypes by carB-based oligonucleotide microarray.

    PubMed

    Shin, Hwa Hui; Hwang, Byeong Hee; Seo, Jeong Hyun; Cha, Hyung Joon

    2014-01-01

    It is important to rapidly and selectively detect and analyze pathogenic Salmonella enterica subsp. enterica in contaminated food to reduce the morbidity and mortality of Salmonella infection and to guarantee food safety. In the present work, we developed an oligonucleotide microarray containing duplicate specific capture probes based on the carB gene, which encodes the carbamoyl phosphate synthetase large subunit, as a competent biomarker evaluated by genetic analysis to selectively and efficiently detect and discriminate three S. enterica subsp. enterica serotypes: Choleraesuis, Enteritidis, and Typhimurium. Using the developed microarray system, three serotype targets were successfully analyzed in a range as low as 1.6 to 3.1 nM and were specifically discriminated from each other without nonspecific signals. In addition, the constructed microarray did not have cross-reactivity with other common pathogenic bacteria and even enabled the clear discrimination of the target Salmonella serotype from a bacterial mixture. Therefore, these results demonstrated that our novel carB-based oligonucleotide microarray can be used as an effective and specific detection system for S. enterica subsp. enterica serotypes.

  13. Significance of genomic instability in breast cancer in atomic bomb survivors: analysis of microarray-comparative genomic hybridization.

    PubMed

    Oikawa, Masahiro; Yoshiura, Koh-ichiro; Kondo, Hisayoshi; Miura, Shiro; Nagayasu, Takeshi; Nakashima, Masahiro

    2011-12-07

    It has been postulated that ionizing radiation induces breast cancers among atomic bomb (A-bomb) survivors. We have reported a higher incidence of HER2 and C-MYC oncogene amplification in breast cancers from A-bomb survivors. The purpose of this study was to clarify the effect of A-bomb radiation exposure on genomic instability (GIN), which is an important hallmark of carcinogenesis, in archival formalin-fixed paraffin-embedded (FFPE) tissues of breast cancer by using microarray-comparative genomic hybridization (aCGH). Tumor DNA was extracted from FFPE tissues of invasive ductal cancers from 15 survivors who were exposed at 1.5 km or less from the hypocenter and 13 calendar year-matched non-exposed patients followed by aCGH analysis using a high-density oligonucleotide microarray. The total length of copy number aberrations (CNA) was used as an indicator of GIN, and correlation with clinicopathological factors were statistically tested. The mean of the derivative log ratio spread (DLRSpread), which estimates the noise by calculating the spread of log ratio differences between consecutive probes for all chromosomes, was 0.54 (range, 0.26 to 1.05). The concordance of results between aCGH and fluorescence in situ hybridization (FISH) for HER2 gene amplification was 88%. The incidence of HER2 amplification and histological grade was significantly higher in the A-bomb survivors than control group (P = 0.04, respectively). The total length of CNA tended to be larger in the A-bomb survivors (P = 0.15). Correlation analysis of CNA and clinicopathological factors revealed that DLRSpread was negatively correlated with that significantly (P = 0.034, r = -0.40). Multivariate analysis with covariance revealed that the exposure to A-bomb was a significant (P = 0.005) independent factor which was associated with larger total length of CNA of breast cancers. Thus, archival FFPE tissues from A-bomb survivors are useful for genome-wide aCGH analysis. Our results suggested that A-bomb radiation may affect the increased amount of CNA as a hallmark of GIN and, subsequently, be associated with a higher histologic grade in breast cancer found in A-bomb survivors.

  14. Significance of genomic instability in breast cancer in atomic bomb survivors: analysis of microarray-comparative genomic hybridization

    PubMed Central

    2011-01-01

    Background It has been postulated that ionizing radiation induces breast cancers among atomic bomb (A-bomb) survivors. We have reported a higher incidence of HER2 and C-MYC oncogene amplification in breast cancers from A-bomb survivors. The purpose of this study was to clarify the effect of A-bomb radiation exposure on genomic instability (GIN), which is an important hallmark of carcinogenesis, in archival formalin-fixed paraffin-embedded (FFPE) tissues of breast cancer by using microarray-comparative genomic hybridization (aCGH). Methods Tumor DNA was extracted from FFPE tissues of invasive ductal cancers from 15 survivors who were exposed at 1.5 km or less from the hypocenter and 13 calendar year-matched non-exposed patients followed by aCGH analysis using a high-density oligonucleotide microarray. The total length of copy number aberrations (CNA) was used as an indicator of GIN, and correlation with clinicopathological factors were statistically tested. Results The mean of the derivative log ratio spread (DLRSpread), which estimates the noise by calculating the spread of log ratio differences between consecutive probes for all chromosomes, was 0.54 (range, 0.26 to 1.05). The concordance of results between aCGH and fluorescence in situ hybridization (FISH) for HER2 gene amplification was 88%. The incidence of HER2 amplification and histological grade was significantly higher in the A-bomb survivors than control group (P = 0.04, respectively). The total length of CNA tended to be larger in the A-bomb survivors (P = 0.15). Correlation analysis of CNA and clinicopathological factors revealed that DLRSpread was negatively correlated with that significantly (P = 0.034, r = -0.40). Multivariate analysis with covariance revealed that the exposure to A-bomb was a significant (P = 0.005) independent factor which was associated with larger total length of CNA of breast cancers. Conclusions Thus, archival FFPE tissues from A-bomb survivors are useful for genome-wide aCGH analysis. Our results suggested that A-bomb radiation may affect the increased amount of CNA as a hallmark of GIN and, subsequently, be associated with a higher histologic grade in breast cancer found in A-bomb survivors. PMID:22152285

  15. Gene expression profiling and pathway analysis in MCF-7 and MDA-MB-231 human breast cancer cell lines treated with dioscin

    USDA-ARS?s Scientific Manuscript database

    The long-term goal of our study is to understand the genetic and epigenetic mechanisms of breast cancer metastasis in human and to discover new possible genetic markers for use in clinical practice. We have used microarray technology (Human OneArray microarray, phylanxbiotech.com) to compare gene ex...

  16. Microarray-Based Mapping for the Detection of Molecular Markers in Response to Aspergillus flavus Infection in Susceptible and Resistant Maize Lines

    USDA-ARS?s Scientific Manuscript database

    The objectives of this study were (1) to evaluate differential gene expression levels for resistance to A. flavus kernel infection in susceptible (Va35) and resistant (Mp313E) maize lines using Oligonucleotide and cDNA microarray analysis, (2) to evaluate differences in A. flavus accumulation betwee...

  17. ABRF-MARG RESEARCH STUDY: EVALUATION OF SMALL SAMPLE NUCLEIC ACID AMPLIFICATION TECHNOLOGIES FOR GENE EXPRESSION PROFILING

    EPA Science Inventory

    Microarrays have had a significant impact on many areas of biology. However, there are still many fertile research areas that would benefit from microarray analysis but are limited by the amount of biological material that can be obtained (e.g. samples obtained by small biopsy, f...

  18. Customizing microarrays for neuroscience drug discovery.

    PubMed

    Girgenti, Matthew J; Newton, Samuel S

    2007-08-01

    Microarray-based gene profiling has become the centerpiece of gene expression studies in the biological sciences. The ability to now interrogate the entire genome using a single chip demonstrates the progress in technology and instrumentation that has been made over the last two decades. Although this unbiased approach provides researchers with an immense quantity of data, obtaining meaningful insight is not possible without intensive data analysis and processing. Custom developed arrays have emerged as a viable and attractive alternative that can take advantage of this robust technology and tailor it to suit the needs and requirements of individual investigations. The ability to simplify data analysis, reduce noise and carefully optimize experimental conditions makes it a suitable tool that can be effectively utilized in neuroscience drug discovery efforts. Furthermore, incorporating recent advancements in fine focusing gene profiling to include specific cellular phenotypes can help resolve the complex cellular heterogeneity of the brain. This review surveys the use of microarray technology in neuroscience paying special attention to customized arrays and their potential in drug discovery. Novel applications of microarrays and ancillary techniques, such as laser microdissection, FAC sorting and RNA amplification, have also been discussed. The notion that a hypothesis-driven approach can be integrated into drug development programs is highlighted.

  19. Methodological Challenges in Protein Microarray and Immunohistochemistry for the Discovery of Novel Autoantibodies in Paediatric Acute Disseminated Encephalomyelitis

    PubMed Central

    Peschl, Patrick; Ramberger, Melanie; Höftberger, Romana; Jöhrer, Karin; Baumann, Matthias; Rostásy, Kevin; Reindl, Markus

    2017-01-01

    Acute disseminated encephalomyelitis (ADEM) is a rare autoimmune-mediated demyelinating disease affecting mainly children and young adults. Differentiation to multiple sclerosis is not always possible, due to overlapping clinical symptoms and recurrent and multiphasic forms. Until now, immunoglobulins reactive to myelin oligodendrocyte glycoprotein (MOG antibodies) have been found in a subset of patients with ADEM. However, there are still patients lacking autoantibodies, necessitating the identification of new autoantibodies as biomarkers in those patients. Therefore, we aimed to identify novel autoantibody targets in ADEM patients. Sixteen ADEM patients (11 seronegative, 5 seropositive for MOG antibodies) were analysed for potential new biomarkers, using a protein microarray and immunohistochemistry on rat brain tissue to identify antibodies against intracellular and surface neuronal and glial antigens. Nine candidate antigens were identified in the protein microarray analysis in at least two patients per group. Immunohistochemistry on rat brain tissue did not reveal new target antigens. Although no new autoantibody targets could be found here, future studies should aim to identify new biomarkers for therapeutic and prognostic purposes. The microarray analysis and immunohistochemistry methods used here have several limitations, which should be considered in future searches for biomarkers. PMID:28327523

  20. Novel statistical framework to identify differentially expressed genes allowing transcriptomic background differences.

    PubMed

    Ling, Zhi-Qiang; Wang, Yi; Mukaisho, Kenichi; Hattori, Takanori; Tatsuta, Takeshi; Ge, Ming-Hua; Jin, Li; Mao, Wei-Min; Sugihara, Hiroyuki

    2010-06-01

    Tests of differentially expressed genes (DEGs) from microarray experiments are based on the null hypothesis that genes that are irrelevant to the phenotype/stimulus are expressed equally in the target and control samples. However, this strict hypothesis is not always true, as there can be several transcriptomic background differences between target and control samples, including different cell/tissue types, different cell cycle stages and different biological donors. These differences lead to increased false positives, which have little biological/medical significance. In this article, we propose a statistical framework to identify DEGs between target and control samples from expression microarray data allowing transcriptomic background differences between these samples by introducing a modified null hypothesis that the gene expression background difference is normally distributed. We use an iterative procedure to perform robust estimation of the null hypothesis and identify DEGs as outliers. We evaluated our method using our own triplicate microarray experiment, followed by validations with reverse transcription-polymerase chain reaction (RT-PCR) and on the MicroArray Quality Control dataset. The evaluations suggest that our technique (i) results in less false positive and false negative results, as measured by the degree of agreement with RT-PCR of the same samples, (ii) can be applied to different microarray platforms and results in better reproducibility as measured by the degree of DEG identification concordance both intra- and inter-platforms and (iii) can be applied efficiently with only a few microarray replicates. Based on these evaluations, we propose that this method not only identifies more reliable and biologically/medically significant DEG, but also reduces the power-cost tradeoff problem in the microarray field. Source code and binaries freely available for download at http://comonca.org.cn/fdca/resources/softwares/deg.zip.

  1. Mining microarray data at NCBI's Gene Expression Omnibus (GEO)*.

    PubMed

    Barrett, Tanya; Edgar, Ron

    2006-01-01

    The Gene Expression Omnibus (GEO) at the National Center for Biotechnology Information (NCBI) has emerged as the leading fully public repository for gene expression data. This chapter describes how to use Web-based interfaces, applications, and graphics to effectively explore, visualize, and interpret the hundreds of microarray studies and millions of gene expression patterns stored in GEO. Data can be examined from both experiment-centric and gene-centric perspectives using user-friendly tools that do not require specialized expertise in microarray analysis or time-consuming download of massive data sets. The GEO database is publicly accessible through the World Wide Web at http://www.ncbi.nlm.nih.gov/geo.

  2. Gene Expression Profiling of Gastric Cancer

    PubMed Central

    Marimuthu, Arivusudar; Jacob, Harrys K.C.; Jakharia, Aniruddha; Subbannayya, Yashwanth; Keerthikumar, Shivakumar; Kashyap, Manoj Kumar; Goel, Renu; Balakrishnan, Lavanya; Dwivedi, Sutopa; Pathare, Swapnali; Dikshit, Jyoti Bajpai; Maharudraiah, Jagadeesha; Singh, Sujay; Sameer Kumar, Ghantasala S; Vijayakumar, M.; Veerendra Kumar, Kariyanakatte Veeraiah; Premalatha, Chennagiri Shrinivasamurthy; Tata, Pramila; Hariharan, Ramesh; Roa, Juan Carlos; Prasad, T.S.K; Chaerkady, Raghothama; Kumar, Rekha Vijay; Pandey, Akhilesh

    2015-01-01

    Gastric cancer is the second leading cause of cancer death worldwide, both in men and women. A genomewide gene expression analysis was carried out to identify differentially expressed genes in gastric adenocarcinoma tissues as compared to adjacent normal tissues. We used Agilent’s whole human genome oligonucleotide microarray platform representing ~41,000 genes to carry out gene expression analysis. Two-color microarray analysis was employed to directly compare the expression of genes between tumor and normal tissues. Through this approach, we identified several previously known candidate genes along with a number of novel candidate genes in gastric cancer. Testican-1 (SPOCK1) was one of the novel molecules that was 10-fold upregulated in tumors. Using tissue microarrays, we validated the expression of testican-1 by immunohistochemical staining. It was overexpressed in 56% (160/282) of the cases tested. Pathway analysis led to the identification of several networks in which SPOCK1 was among the topmost networks of interacting genes. By gene enrichment analysis, we identified several genes involved in cell adhesion and cell proliferation to be significantly upregulated while those corresponding to metabolic pathways were significantly downregulated. The differentially expressed genes identified in this study are candidate biomarkers for gastric adenoacarcinoma. PMID:27030788

  3. Tissue microarrays and quantitative tissue-based image analysis as a tool for oncology biomarker and diagnostic development.

    PubMed

    Dolled-Filhart, Marisa P; Gustavson, Mark D

    2012-11-01

    Translational oncology has been improved by using tissue microarrays (TMAs), which facilitate biomarker analysis of large cohorts on a single slide. This has allowed for rapid analysis and validation of potential biomarkers for prognostic and predictive value, as well as for evaluation of biomarker prevalence. Coupled with quantitative analysis of immunohistochemical (IHC) staining, objective and standardized biomarker data from tumor samples can further advance companion diagnostic approaches for the identification of drug-responsive or resistant patient subpopulations. This review covers the advantages, disadvantages and applications of TMAs for biomarker research. Research literature and reviews of TMAs and quantitative image analysis methodology have been surveyed for this review (with an AQUA® analysis focus). Applications such as multi-marker diagnostic development and pathway-based biomarker subpopulation analyses are described. Tissue microarrays are a useful tool for biomarker analyses including prevalence surveys, disease progression assessment and addressing potential prognostic or predictive value. By combining quantitative image analysis with TMAs, analyses will be more objective and reproducible, allowing for more robust IHC-based diagnostic test development. Quantitative multi-biomarker IHC diagnostic tests that can predict drug response will allow for greater success of clinical trials for targeted therapies and provide more personalized clinical decision making.

  4. Identification of candidate genes involved in neuroblastoma progression by combining genomic and expression microarrays with survival data.

    PubMed

    Łastowska, M; Viprey, V; Santibanez-Koref, M; Wappler, I; Peters, H; Cullinane, C; Roberts, P; Hall, A G; Tweddle, D A; Pearson, A D J; Lewis, I; Burchill, S A; Jackson, M S

    2007-11-22

    Identifying genes, whose expression is consistently altered by chromosomal gains or losses, is an important step in defining genes of biological relevance in a wide variety of tumour types. However, additional criteria are needed to discriminate further among the large number of candidate genes identified. This is particularly true for neuroblastoma, where multiple genomic copy number changes of proven prognostic value exist. We have used Affymetrix microarrays and a combination of fluorescent in situ hybridization and single nucleotide polymorphism (SNP) microarrays to establish expression profiles and delineate copy number alterations in 30 primary neuroblastomas. Correlation of microarray data with patient survival and analysis of expression within rodent neuroblastoma cell lines were then used to define further genes likely to be involved in the disease process. Using this approach, we identify >1000 genes within eight recurrent genomic alterations (loss of 1p, 3p, 4p, 10q and 11q, 2p gain, 17q gain, and the MYCN amplicon) whose expression is consistently altered by copy number change. Of these, 84 correlate with patient survival, with the minimal regions of 17q gain and 4p loss being enriched significantly for such genes. These include genes involved in RNA and DNA metabolism, and apoptosis. Orthologues of all but one of these genes on 17q are overexpressed in rodent neuroblastoma cell lines. A significant excess of SNPs whose copy number correlates with survival is also observed on proximal 4p in stage 4 tumours, and we find that deletion of 4p is associated with improved outcome in an extended cohort of tumours. These results define the major impact of genomic copy number alterations upon transcription within neuroblastoma, and highlight genes on distal 17q and proximal 4p for downstream analyses. They also suggest that integration of discriminators, such as survival and comparative gene expression, with microarray data may be useful in the identification of critical genes within regions of loss or gain in many human cancers.

  5. Cross-Study Homogeneity of Psoriasis Gene Expression in Skin across a Large Expression Range

    PubMed Central

    Kerkof, Keith; Timour, Martin; Russell, Christopher B.

    2013-01-01

    Background In psoriasis, only limited overlap between sets of genes identified as differentially expressed (psoriatic lesional vs. psoriatic non-lesional) was found using statistical and fold-change cut-offs. To provide a framework for utilizing prior psoriasis data sets we sought to understand the consistency of those sets. Methodology/Principal Findings Microarray expression profiling and qRT-PCR were used to characterize gene expression in PP and PN skin from psoriasis patients. cDNA (three new data sets) and cRNA hybridization (four existing data sets) data were compared using a common analysis pipeline. Agreement between data sets was assessed using varying qualitative and quantitative cut-offs to generate a DEG list in a source data set and then using other data sets to validate the list. Concordance increased from 67% across all probe sets to over 99% across more than 10,000 probe sets when statistical filters were employed. The fold-change behavior of individual genes tended to be consistent across the multiple data sets. We found that genes with <2-fold change values were quantitatively reproducible between pairs of data-sets. In a subset of transcripts with a role in inflammation changes detected by microarray were confirmed by qRT-PCR with high concordance. For transcripts with both PN and PP levels within the microarray dynamic range, microarray and qRT-PCR were quantitatively reproducible, including minimal fold-changes in IL13, TNFSF11, and TNFRSF11B and genes with >10-fold changes in either direction such as CHRM3, IL12B and IFNG. Conclusions/Significance Gene expression changes in psoriatic lesions were consistent across different studies, despite differences in patient selection, sample handling, and microarray platforms but between-study comparisons showed stronger agreement within than between platforms. We could use cut-offs as low as log10(ratio) = 0.1 (fold-change = 1.26), generating larger gene lists that validate on independent data sets. The reproducibility of PP signatures across data sets suggests that different sample sets can be productively compared. PMID:23308107

  6. Development and validation of a gene expression oligo microarray for the gilthead sea bream (Sparus aurata).

    PubMed

    Ferraresso, Serena; Vitulo, Nicola; Mininni, Alba N; Romualdi, Chiara; Cardazzo, Barbara; Negrisolo, Enrico; Reinhardt, Richard; Canario, Adelino V M; Patarnello, Tomaso; Bargelloni, Luca

    2008-12-03

    Aquaculture represents the most sustainable alternative of seafood supply to substitute for the declining marine fisheries, but severe production bottlenecks remain to be solved. The application of genomic technologies offers much promise to rapidly increase our knowledge on biological processes in farmed species and overcome such bottlenecks. Here we present an integrated platform for mRNA expression profiling in the gilthead sea bream (Sparus aurata), a marine teleost of great importance for aquaculture. A public data base was constructed, consisting of 19,734 unique clusters (3,563 contigs and 16,171 singletons). Functional annotation was obtained for 8,021 clusters. Over 4,000 sequences were also associated with a GO entry. Two 60mer probes were designed for each gene and in-situ synthesized on glass slides using Agilent SurePrint technology. Platform reproducibility and accuracy were assessed on two early stages of sea bream development (one-day and four days old larvae). Correlation between technical replicates was always > 0.99, with strong positive correlation between paired probes. A two class SAM test identified 1,050 differentially expressed genes between the two developmental stages. Functional analysis suggested that down-regulated transcripts (407) in older larvae are mostly essential/housekeeping genes, whereas tissue-specific genes are up-regulated in parallel with the formation of key organs (eye, digestive system). Cross-validation of microarray data was carried out using quantitative qRT-PCR on 11 target genes, selected to reflect the whole range of fold-change and both up-regulated and down-regulated genes. A statistically significant positive correlation was obtained comparing expression levels for each target gene across all biological replicates. Good concordance between qRT-PCR and microarray data was observed between 2- and 7-fold change, while fold-change compression in the microarray was present for differences greater than 10-fold in the qRT-PCR. A highly reliable oligo-microarray platform was developed and validated for the gilthead sea bream despite the presently limited knowledge of the species transcriptome. Because of the flexible design this array will be able to accommodate additional probes as soon as novel unique transcripts are available.

  7. The Choice of the Filtering Method in Microarrays Affects the Inference Regarding Dosage Compensation of the Active X-Chromosome

    PubMed Central

    Zeller, Tanja; Wild, Philipp S.; Truong, Vinh; Trégouët, David-Alexandre; Munzel, Thomas; Ziegler, Andreas; Cambien, François; Blankenberg, Stefan; Tiret, Laurence

    2011-01-01

    Background The hypothesis of dosage compensation of genes of the X chromosome, supported by previous microarray studies, was recently challenged by RNA-sequencing data. It was suggested that microarray studies were biased toward an over-estimation of X-linked expression levels as a consequence of the filtering of genes below the detection threshold of microarrays. Methodology/Principal Findings To investigate this hypothesis, we used microarray expression data from circulating monocytes in 1,467 individuals. In total, 25,349 and 1,156 probes were unambiguously assigned to autosomes and the X chromosome, respectively. Globally, there was a clear shift of X-linked expressions toward lower levels than autosomes. We compared the ratio of expression levels of X-linked to autosomal transcripts (X∶AA) using two different filtering methods: 1. gene expressions were filtered out using a detection threshold irrespective of gene chromosomal location (the standard method in microarrays); 2. equal proportions of genes were filtered out separately on the X and on autosomes. For a wide range of filtering proportions, the X∶AA ratio estimated with the first method was not significantly different from 1, the value expected if dosage compensation was achieved, whereas it was significantly lower than 1 with the second method, leading to the rejection of the hypothesis of dosage compensation. We further showed in simulated data that the choice of the most appropriate method was dependent on biological assumptions regarding the proportion of actively expressed genes on the X chromosome comparative to the autosomes and the extent of dosage compensation. Conclusion/Significance This study shows that the method used for filtering out lowly expressed genes in microarrays may have a major impact according to the hypothesis investigated. The hypothesis of dosage compensation of X-linked genes cannot be firmly accepted or rejected using microarray-based data. PMID:21912656

  8. Deletion of the transcriptional coactivator PGC1α in skeletal muscles is associated with reduced expression of genes related to oxidative muscle function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatazawa, Yukino; Research Fellow of Japan Society for the Promotion of Science, Tokyo; Minami, Kimiko

    The expression of the transcriptional coactivator PGC1α is increased in skeletal muscles during exercise. Previously, we showed that increased PGC1α leads to prolonged exercise performance (the duration for which running can be continued) and, at the same time, increases the expression of branched-chain amino acid (BCAA) metabolism-related enzymes and genes that are involved in supplying substrates for the TCA cycle. We recently created mice with PGC1α knockout specifically in the skeletal muscles (PGC1α KO mice), which show decreased mitochondrial content. In this study, global gene expression (microarray) analysis was performed in the skeletal muscles of PGC1α KO mice compared withmore » that of wild-type control mice. As a result, decreased expression of genes involved in the TCA cycle, oxidative phosphorylation, and BCAA metabolism were observed. Compared with previously obtained microarray data on PGC1α-overexpressing transgenic mice, each gene showed the completely opposite direction of expression change. Bioinformatic analysis of the promoter region of genes with decreased expression in PGC1α KO mice predicted the involvement of several transcription factors, including a nuclear receptor, ERR, in their regulation. As PGC1α KO microarray data in this study show opposing findings to the PGC1α transgenic data, a loss-of-function experiment, as well as a gain-of-function experiment, revealed PGC1α’s function in the oxidative energy metabolism of skeletal muscles. - Highlights: • Microarray analysis was performed in the skeletal muscle of PGC1α KO mice. • Expression of genes in the oxidative energy metabolism was decreased. • Bioinformatic analysis of promoter region of the genes predicted involvement of ERR. • PGC1α KO microarray data in this study show the mirror image of transgenic data.« less

  9. Expression profiling and pathway analysis of Krüppel-like factor 4 in mouse embryonic fibroblasts

    PubMed Central

    Hagos, Engda G; Ghaleb, Amr M; Kumar, Amrita; Neish, Andrew S; Yang, Vincent W

    2011-01-01

    Background: Krüppel-like factor 4 (KLF4) is a zinc-finger transcription factor with diverse regulatory functions in proliferation, differentiation, and development. KLF4 also plays a role in inflammation, tumorigenesis, and reprogramming of somatic cells to induced pluripotent stem (iPS) cells. To gain insight into the mechanisms by which KLF4 regulates these processes, we conducted DNA microarray analyses to identify differentially expressed genes in mouse embryonic fibroblasts (MEFs) wild type and null for Klf4. Methods: Expression profiles of fibroblasts isolated from mouse embryos wild type or null for the Klf4 alleles were examined by DNA microarrays. Differentially expressed genes were subjected to the Database for Annotation, Visualization and Integrated Discovery (DAVID). The microarray data were also interrogated with the Ingenuity Pathway Analysis (IPA) and Gene Set Enrichment Analysis (GSEA) for pathway identification. Results obtained from the microarray analysis were confirmed by Western blotting for select genes with biological relevance to determine the correlation between mRNA and protein levels. Results: One hundred and sixty three up-regulated and 88 down-regulated genes were identified that demonstrated a fold-change of at least 1.5 and a P-value < 0.05 in Klf4-null MEFs compared to wild type MEFs. Many of the up-regulated genes in Klf4-null MEFs encode proto-oncogenes, growth factors, extracellular matrix, and cell cycle activators. In contrast, genes encoding tumor suppressors and those involved in JAK-STAT signaling pathways are down-regulated in Klf4-null MEFs. IPA and GSEA also identified various pathways that are regulated by KLF4. Lastly, Western blotting of select target genes confirmed the changes revealed by microarray data. Conclusions: These data are not only consistent with previous functional studies of KLF4's role in tumor suppression and somatic cell reprogramming, but also revealed novel target genes that mediate KLF4's functions. PMID:21892412

  10. An efficient pseudomedian filter for tiling microrrays.

    PubMed

    Royce, Thomas E; Carriero, Nicholas J; Gerstein, Mark B

    2007-06-07

    Tiling microarrays are becoming an essential technology in the functional genomics toolbox. They have been applied to the tasks of novel transcript identification, elucidation of transcription factor binding sites, detection of methylated DNA and several other applications in several model organisms. These experiments are being conducted at increasingly finer resolutions as the microarray technology enjoys increasingly greater feature densities. The increased densities naturally lead to increased data analysis requirements. Specifically, the most widely employed algorithm for tiling array analysis involves smoothing observed signals by computing pseudomedians within sliding windows, a O(n2logn) calculation in each window. This poor time complexity is an issue for tiling array analysis and could prove to be a real bottleneck as tiling microarray experiments become grander in scope and finer in resolution. We therefore implemented Monahan's HLQEST algorithm that reduces the runtime complexity for computing the pseudomedian of n numbers to O(nlogn) from O(n2logn). For a representative tiling microarray dataset, this modification reduced the smoothing procedure's runtime by nearly 90%. We then leveraged the fact that elements within sliding windows remain largely unchanged in overlapping windows (as one slides across genomic space) to further reduce computation by an additional 43%. This was achieved by the application of skip lists to maintaining a sorted list of values from window to window. This sorted list could be maintained with simple O(log n) inserts and deletes. We illustrate the favorable scaling properties of our algorithms with both time complexity analysis and benchmarking on synthetic datasets. Tiling microarray analyses that rely upon a sliding window pseudomedian calculation can require many hours of computation. We have eased this requirement significantly by implementing efficient algorithms that scale well with genomic feature density. This result not only speeds the current standard analyses, but also makes possible ones where many iterations of the filter may be required, such as might be required in a bootstrap or parameter estimation setting. Source code and executables are available at http://tiling.gersteinlab.org/pseudomedian/.

  11. An efficient pseudomedian filter for tiling microrrays

    PubMed Central

    Royce, Thomas E; Carriero, Nicholas J; Gerstein, Mark B

    2007-01-01

    Background Tiling microarrays are becoming an essential technology in the functional genomics toolbox. They have been applied to the tasks of novel transcript identification, elucidation of transcription factor binding sites, detection of methylated DNA and several other applications in several model organisms. These experiments are being conducted at increasingly finer resolutions as the microarray technology enjoys increasingly greater feature densities. The increased densities naturally lead to increased data analysis requirements. Specifically, the most widely employed algorithm for tiling array analysis involves smoothing observed signals by computing pseudomedians within sliding windows, a O(n2logn) calculation in each window. This poor time complexity is an issue for tiling array analysis and could prove to be a real bottleneck as tiling microarray experiments become grander in scope and finer in resolution. Results We therefore implemented Monahan's HLQEST algorithm that reduces the runtime complexity for computing the pseudomedian of n numbers to O(nlogn) from O(n2logn). For a representative tiling microarray dataset, this modification reduced the smoothing procedure's runtime by nearly 90%. We then leveraged the fact that elements within sliding windows remain largely unchanged in overlapping windows (as one slides across genomic space) to further reduce computation by an additional 43%. This was achieved by the application of skip lists to maintaining a sorted list of values from window to window. This sorted list could be maintained with simple O(log n) inserts and deletes. We illustrate the favorable scaling properties of our algorithms with both time complexity analysis and benchmarking on synthetic datasets. Conclusion Tiling microarray analyses that rely upon a sliding window pseudomedian calculation can require many hours of computation. We have eased this requirement significantly by implementing efficient algorithms that scale well with genomic feature density. This result not only speeds the current standard analyses, but also makes possible ones where many iterations of the filter may be required, such as might be required in a bootstrap or parameter estimation setting. Source code and executables are available at . PMID:17555595

  12. GeneMesh: a web-based microarray analysis tool for relating differentially expressed genes to MeSH terms.

    PubMed

    Jani, Saurin D; Argraves, Gary L; Barth, Jeremy L; Argraves, W Scott

    2010-04-01

    An important objective of DNA microarray-based gene expression experimentation is determining inter-relationships that exist between differentially expressed genes and biological processes, molecular functions, cellular components, signaling pathways, physiologic processes and diseases. Here we describe GeneMesh, a web-based program that facilitates analysis of DNA microarray gene expression data. GeneMesh relates genes in a query set to categories available in the Medical Subject Headings (MeSH) hierarchical index. The interface enables hypothesis driven relational analysis to a specific MeSH subcategory (e.g., Cardiovascular System, Genetic Processes, Immune System Diseases etc.) or unbiased relational analysis to broader MeSH categories (e.g., Anatomy, Biological Sciences, Disease etc.). Genes found associated with a given MeSH category are dynamically linked to facilitate tabular and graphical depiction of Entrez Gene information, Gene Ontology information, KEGG metabolic pathway diagrams and intermolecular interaction information. Expression intensity values of groups of genes that cluster in relation to a given MeSH category, gene ontology or pathway can be displayed as heat maps of Z score-normalized values. GeneMesh operates on gene expression data derived from a number of commercial microarray platforms including Affymetrix, Agilent and Illumina. GeneMesh is a versatile web-based tool for testing and developing new hypotheses through relating genes in a query set (e.g., differentially expressed genes from a DNA microarray experiment) to descriptors making up the hierarchical structure of the National Library of Medicine controlled vocabulary thesaurus, MeSH. The system further enhances the discovery process by providing links between sets of genes associated with a given MeSH category to a rich set of html linked tabular and graphic information including Entrez Gene summaries, gene ontologies, intermolecular interactions, overlays of genes onto KEGG pathway diagrams and heatmaps of expression intensity values. GeneMesh is freely available online at http://proteogenomics.musc.edu/genemesh/.

  13. High throughput gene expression profiling: a molecular approach to integrative physiology

    PubMed Central

    Liang, Mingyu; Cowley, Allen W; Greene, Andrew S

    2004-01-01

    Integrative physiology emphasizes the importance of understanding multiple pathways with overlapping, complementary, or opposing effects and their interactions in the context of intact organisms. The DNA microarray technology, the most commonly used method for high-throughput gene expression profiling, has been touted as an integrative tool that provides insights into regulatory pathways. However, the physiology community has been slow in acceptance of these techniques because of early failure in generating useful data and the lack of a cohesive theoretical framework in which experiments can be analysed. With recent advances in both technology and analysis, we propose a concept of multidimensional integration of physiology that incorporates data generated by DNA microarray and other functional, genomic, and proteomic approaches to achieve a truly integrative understanding of physiology. Analysis of several studies performed in simpler organisms or in mammalian model animals supports the feasibility of such multidimensional integration and demonstrates the power of DNA microarray as an indispensable molecular tool for such integration. Evaluation of DNA microarray techniques indicates that these techniques, despite limitations, have advanced to a point where the question-driven profiling research has become a feasible complement to the conventional, hypothesis-driven research. With a keen sense of homeostasis, global regulation, and quantitative analysis, integrative physiologists are uniquely positioned to apply these techniques to enhance the understanding of complex physiological functions. PMID:14678487

  14. High Throughput Phenotypic Analysis of Mycobacterium tuberculosis and Mycobacterium bovis Strains' Metabolism Using Biolog Phenotype Microarrays

    PubMed Central

    Khatri, Bhagwati; Fielder, Mark; Jones, Gareth; Newell, William; Abu-Oun, Manal; Wheeler, Paul R.

    2013-01-01

    Tuberculosis is a major human and animal disease of major importance worldwide. Genetically, the closely related strains within the Mycobacterium tuberculosis complex which cause disease are well-characterized but there is an urgent need better to understand their phenotypes. To search rapidly for metabolic differences, a working method using Biolog Phenotype MicroArray analysis was developed. Of 380 substrates surveyed, 71 permitted tetrazolium dye reduction, the readout over 7 days in the method. By looking for ≥5-fold differences in dye reduction, 12 substrates differentiated M. tuberculosis H37Rv and Mycobacterium bovis AF2122/97. H37Rv and a Beijing strain of M. tuberculosis could also be distinguished in this way, as could field strains of M. bovis; even pairs of strains within one spoligotype could be distinguished by 2 to 3 substrates. Cluster analysis gave three clear groups: H37Rv, Beijing, and all the M. bovis strains. The substrates used agreed well with prior knowledge, though an unexpected finding that AF2122/97 gave greater dye reduction than H37Rv with hexoses was investigated further, in culture flasks, revealing that hexoses and Tween 80 were synergistic for growth and used simultaneously rather than in a diauxic fashion. Potential new substrates for growth media were revealed, too, most promisingly N-acetyl glucosamine. Osmotic and pH arrays divided the mycobacteria into two groups with different salt tolerance, though in contrast to the substrate arrays the groups did not entirely correlate with taxonomic differences. More interestingly, these arrays suggested differences between the amines used by the M. tuberculosis complex and enteric bacteria in acid tolerance, with some hydrophobic amino acids being highly effective. In contrast, γ-aminobutyrate, used in the enteric bacteria, had no effect in the mycobacteria. This study proved principle that Phenotype MicroArrays can be used with slow-growing pathogenic mycobacteria and already has generated interesting data worthy of further investigation. PMID:23326347

  15. Molecular pathological analysis for determining the possible mechanism of piperonyl butoxide-induced hepatocarcinogenesis in mice.

    PubMed

    Muguruma, Masako; Nishimura, Jihei; Jin, Meilan; Kashida, Yoko; Moto, Mitsuyoshi; Takahashi, Miwa; Yokouchi, Yusuke; Mitsumori, Kunitoshi

    2006-12-07

    Piperonyl butoxide (PBO), alpha-[2-(2-butoxyethoxy)ethoxy]-4,5-methylene-dioxy-2-propyltoluene, is widely used as a synergist for pyrethrins. In order to clarify the possible mechanism of non-genotoxic hepatocarcinogenesis induced by PBO, molecular pathological analyses consisting of low-density microarray analysis and real-time reverse transcriptase (RT)-PCR were performed in male ICR mice fed a basal powdered diet containing 6000 or 0 ppm PBO for 1, 4, or 8 weeks. The animals were sacrificed at weeks 1, 4, and 8, and the livers were histopathologically examined and analyzed for gene expression using the microarray at weeks 1 and 4 followed by real-time RT-PCR at each time point. Reactive oxygen species (ROS) products were also measured using liver microsomes. At each time point, the hepatocytes of PBO-treated mice showed centrilobular hypertrophy and increased lipofuscin deposition in Schmorl staining. The ROS products were significantly increased in the liver microsomes of PBO-treated mice. In the microarray analysis, the expression of oxidative and metabolic stress-related genes--cytochrome P450 (Cyp) 1A1, Cyp2A5 (week 1 only), Cyp2B9, Cyp2B10, and NADPH-cytochrome P450 oxidoreductase (Por) was over-expressed in mice given PBO at weeks 1 and 4. Fluctuations of these genes were confirmed by real-time RT-PCR in PBO-treated mice at each time point. In additional real-time RT-PCR, the expression of Cyclin D1 gene, key regulator of cell-cycle progression, and Xrcc5 gene, DNA damage repair-related gene, was significantly increased at each time point and at week 8, respectively. These results suggest the possibility that PBO has the potential to generate ROS via the metabolic pathway and to induce oxidative stress, including oxidative DNA damage, resulting in the induction of hepatocellular tumors in mice.

  16. Microarray identifies ADAM family members as key responders to TGF-beta1 in alveolar epithelial cells.

    PubMed

    Keating, Dominic T; Sadlier, Denise M; Patricelli, Andrea; Smith, Sinead M; Walls, Dermot; Egan, Jim J; Doran, Peter P

    2006-09-01

    The molecular mechanisms of Idiopathic Pulmonary Fibrosis (IPF) remain elusive. Transforming Growth Factor beta 1(TGF-beta1) is a key effector cytokine in the development of lung fibrosis. We used microarray and computational biology strategies to identify genes whose expression is significantly altered in alveolar epithelial cells (A549) in response to TGF-beta1, IL-4 and IL-13 and Epstein Barr virus. A549 cells were exposed to 10 ng/ml TGF-beta1, IL-4 and IL-13 at serial time points. Total RNA was used for hybridisation to Affymetrix Human Genome U133A microarrays. Each in vitro time-point was studied in duplicate and an average RMA value computed. Expression data for each time point was compared to control and a signal log ratio of 0.6 or greater taken to identify significant differential regulation. Using normalised RMA values and unsupervised Average Linkage Hierarchical Cluster Analysis, a list of 312 extracellular matrix (ECM) proteins or modulators of matrix turnover was curated via Onto-Compare and Gene-Ontology (GO) databases for baited cluster analysis of ECM associated genes. Interrogation of the dataset using ontological classification focused cluster analysis revealed coordinate differential expression of a large cohort of extracellular matrix associated genes. Of this grouping members of the ADAM (A disintegrin and Metalloproteinase domain containing) family of genes were differentially expressed. ADAM gene expression was also identified in EBV infected A549 cells as well as IL-13 and IL-4 stimulated cells. We probed pathologenomic activities (activation and functional activity) of ADAM19 and ADAMTS9 using siRNA and collagen assays. Knockdown of these genes resulted in diminished production of collagen in A549 cells exposed to TGF-beta1, suggesting a potential role for these molecules in ECM accumulation in IPF.

  17. Revisiting adverse effects of cross-hybridization in Affymetrix gene expression data: do they matter for correlation analysis?

    PubMed

    Klebanov, Lev; Chen, Linlin; Yakovlev, Andrei

    2007-11-07

    This work was undertaken in response to a recently published paper by Okoniewski and Miller (BMC Bioinformatics 2006, 7: Article 276). The authors of that paper came to the conclusion that the process of multiple targeting in short oligonucleotide microarrays induces spurious correlations and this effect may deteriorate the inference on correlation coefficients. The design of their study and supporting simulations cast serious doubt upon the validity of this conclusion. The work by Okoniewski and Miller drove us to revisit the issue by means of experimentation with biological data and probabilistic modeling of cross-hybridization effects. We have identified two serious flaws in the study by Okoniewski and Miller: (1) The data used in their paper are not amenable to correlation analysis; (2) The proposed simulation model is inadequate for studying the effects of cross-hybridization. Using two other data sets, we have shown that removing multiply targeted probe sets does not lead to a shift in the histogram of sample correlation coefficients towards smaller values. A more realistic approach to mathematical modeling of cross-hybridization demonstrates that this process is by far more complex than the simplistic model considered by the authors. A diversity of correlation effects (such as the induction of positive or negative correlations) caused by cross-hybridization can be expected in theory but there are natural limitations on the ability to provide quantitative insights into such effects due to the fact that they are not directly observable. The proposed stochastic model is instrumental in studying general regularities in hybridization interaction between probe sets in microarray data. As the problem stands now, there is no compelling reason to believe that multiple targeting causes a large-scale effect on the correlation structure of Affymetrix gene expression data. Our analysis suggests that the observed long-range correlations in microarray data are of a biological nature rather than a technological flaw.

  18. Micro-Analyzer: automatic preprocessing of Affymetrix microarray data.

    PubMed

    Guzzi, Pietro Hiram; Cannataro, Mario

    2013-08-01

    A current trend in genomics is the investigation of the cell mechanism using different technologies, in order to explain the relationship among genes, molecular processes and diseases. For instance, the combined use of gene-expression arrays and genomic arrays has been demonstrated as an effective instrument in clinical practice. Consequently, in a single experiment different kind of microarrays may be used, resulting in the production of different types of binary data (images and textual raw data). The analysis of microarray data requires an initial preprocessing phase, that makes raw data suitable for use on existing analysis platforms, such as the TIGR M4 (TM4) Suite. An additional challenge to be faced by emerging data analysis platforms is the ability to treat in a combined way those different microarray formats coupled with clinical data. In fact, resulting integrated data may include both numerical and symbolic data (e.g. gene expression and SNPs regarding molecular data), as well as temporal data (e.g. the response to a drug, time to progression and survival rate), regarding clinical data. Raw data preprocessing is a crucial step in analysis but is often performed in a manual and error prone way using different software tools. Thus novel, platform independent, and possibly open source tools enabling the semi-automatic preprocessing and annotation of different microarray data are needed. The paper presents Micro-Analyzer (Microarray Analyzer), a cross-platform tool for the automatic normalization, summarization and annotation of Affymetrix gene expression and SNP binary data. It represents the evolution of the μ-CS tool, extending the preprocessing to SNP arrays that were not allowed in μ-CS. The Micro-Analyzer is provided as a Java standalone tool and enables users to read, preprocess and analyse binary microarray data (gene expression and SNPs) by invoking TM4 platform. It avoids: (i) the manual invocation of external tools (e.g. the Affymetrix Power Tools), (ii) the manual loading of preprocessing libraries, and (iii) the management of intermediate files, such as results and metadata. Micro-Analyzer users can directly manage Affymetrix binary data without worrying about locating and invoking the proper preprocessing tools and chip-specific libraries. Moreover, users of the Micro-Analyzer tool can load the preprocessed data directly into the well-known TM4 platform, extending in such a way also the TM4 capabilities. Consequently, Micro Analyzer offers the following advantages: (i) it reduces possible errors in the preprocessing and further analysis phases, e.g. due to the incorrect choice of parameters or due to the use of old libraries, (ii) it enables the combined and centralized pre-processing of different arrays, (iii) it may enhance the quality of further analysis by storing the workflow, i.e. information about the preprocessing steps, and (iv) finally Micro-Analzyer is freely available as a standalone application at the project web site http://sourceforge.net/projects/microanalyzer/. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. A Versatile Microarray Platform for Capturing Rare Cells

    NASA Astrophysics Data System (ADS)

    Brinkmann, Falko; Hirtz, Michael; Haller, Anna; Gorges, Tobias M.; Vellekoop, Michael J.; Riethdorf, Sabine; Müller, Volkmar; Pantel, Klaus; Fuchs, Harald

    2015-10-01

    Analyses of rare events occurring at extremely low frequencies in body fluids are still challenging. We established a versatile microarray-based platform able to capture single target cells from large background populations. As use case we chose the challenging application of detecting circulating tumor cells (CTCs) - about one cell in a billion normal blood cells. After incubation with an antibody cocktail, targeted cells are extracted on a microarray in a microfluidic chip. The accessibility of our platform allows for subsequent recovery of targets for further analysis. The microarray facilitates exclusion of false positive capture events by co-localization allowing for detection without fluorescent labelling. Analyzing blood samples from cancer patients with our platform reached and partly outreached gold standard performance, demonstrating feasibility for clinical application. Clinical researchers free choice of antibody cocktail without need for altered chip manufacturing or incubation protocol, allows virtual arbitrary targeting of capture species and therefore wide spread applications in biomedical sciences.

  20. LS-CAP: an algorithm for identifying cytogenetic aberrations in hepatocellular carcinoma using microarray data.

    PubMed

    He, Xianmin; Wei, Qing; Sun, Meiqian; Fu, Xuping; Fan, Sichang; Li, Yao

    2006-05-01

    Biological techniques such as Array-Comparative genomic hybridization (CGH), fluorescent in situ hybridization (FISH) and affymetrix single nucleotide pleomorphism (SNP) array have been used to detect cytogenetic aberrations. However, on genomic scale, these techniques are labor intensive and time consuming. Comparative genomic microarray analysis (CGMA) has been used to identify cytogenetic changes in hepatocellular carcinoma (HCC) using gene expression microarray data. However, CGMA algorithm can not give precise localization of aberrations, fails to identify small cytogenetic changes, and exhibits false negatives and positives. Locally un-weighted smoothing cytogenetic aberrations prediction (LS-CAP) based on local smoothing and binomial distribution can be expected to address these problems. LS-CAP algorithm was built and used on HCC microarray profiles. Eighteen cytogenetic abnormalities were identified, among them 5 were reported previously, and 12 were proven by CGH studies. LS-CAP effectively reduced the false negatives and positives, and precisely located small fragments with cytogenetic aberrations.

  1. Comprehensive analysis of correlation coefficients estimated from pooling heterogeneous microarray data

    PubMed Central

    2013-01-01

    Background The synthesis of information across microarray studies has been performed by combining statistical results of individual studies (as in a mosaic), or by combining data from multiple studies into a large pool to be analyzed as a single data set (as in a melting pot of data). Specific issues relating to data heterogeneity across microarray studies, such as differences within and between labs or differences among experimental conditions, could lead to equivocal results in a melting pot approach. Results We applied statistical theory to determine the specific effect of different means and heteroskedasticity across 19 groups of microarray data on the sign and magnitude of gene-to-gene Pearson correlation coefficients obtained from the pool of 19 groups. We quantified the biases of the pooled coefficients and compared them to the biases of correlations estimated by an effect-size model. Mean differences across the 19 groups were the main factor determining the magnitude and sign of the pooled coefficients, which showed largest values of bias as they approached ±1. Only heteroskedasticity across the pool of 19 groups resulted in less efficient estimations of correlations than did a classical meta-analysis approach of combining correlation coefficients. These results were corroborated by simulation studies involving either mean differences or heteroskedasticity across a pool of N > 2 groups. Conclusions The combination of statistical results is best suited for synthesizing the correlation between expression profiles of a gene pair across several microarray studies. PMID:23822712

  2. Microarray analysis of genes associated with cell surface NIS protein levels in breast cancer.

    PubMed

    Beyer, Sasha J; Zhang, Xiaoli; Jimenez, Rafael E; Lee, Mei-Ling T; Richardson, Andrea L; Huang, Kun; Jhiang, Sissy M

    2011-10-11

    Na+/I- symporter (NIS)-mediated iodide uptake allows radioiodine therapy for thyroid cancer. NIS is also expressed in breast tumors, raising potential for radionuclide therapy of breast cancer. However, NIS expression in most breast cancers is low and may not be sufficient for radionuclide therapy. We aimed to identify biomarkers associated with NIS expression such that mechanisms underlying NIS modulation in human breast tumors may be elucidated. Published oligonucleotide microarray data within the National Center for Biotechnology Information Gene Expression Omnibus database were analyzed to identify gene expression tightly correlated with NIS mRNA level among human breast tumors. NIS immunostaining was performed in a tissue microarray composed of 28 human breast tumors which had corresponding oligonucleotide microarray data available for each tumor such that gene expression associated with cell surface NIS protein level could be identified. NIS mRNA levels do not vary among breast tumors or when compared to normal breast tissues when detected by Affymetrix oligonucleotide microarray platforms. Cell surface NIS protein levels are much more variable than their corresponding NIS mRNA levels. Despite a limited number of breast tumors examined, our analysis identified cysteinyl-tRNA synthetase as a biomarker that is highly associated with cell surface NIS protein levels in the ER-positive breast cancer subtype. Further investigation on genes associated with cell surface NIS protein levels within each breast cancer molecular subtype may lead to novel targets for selectively increasing NIS expression/function in a subset of breast cancers patients.

  3. Finding Groups in Gene Expression Data

    PubMed Central

    2005-01-01

    The vast potential of the genomic insight offered by microarray technologies has led to their widespread use since they were introduced a decade ago. Application areas include gene function discovery, disease diagnosis, and inferring regulatory networks. Microarray experiments enable large-scale, high-throughput investigations of gene activity and have thus provided the data analyst with a distinctive, high-dimensional field of study. Many questions in this field relate to finding subgroups of data profiles which are very similar. A popular type of exploratory tool for finding subgroups is cluster analysis, and many different flavors of algorithms have been used and indeed tailored for microarray data. Cluster analysis, however, implies a partitioning of the entire data set, and this does not always match the objective. Sometimes pattern discovery or bump hunting tools are more appropriate. This paper reviews these various tools for finding interesting subgroups. PMID:16046827

  4. Multiclass classification of microarray data samples with a reduced number of genes

    PubMed Central

    2011-01-01

    Background Multiclass classification of microarray data samples with a reduced number of genes is a rich and challenging problem in Bioinformatics research. The problem gets harder as the number of classes is increased. In addition, the performance of most classifiers is tightly linked to the effectiveness of mandatory gene selection methods. Critical to gene selection is the availability of estimates about the maximum number of genes that can be handled by any classification algorithm. Lack of such estimates may lead to either computationally demanding explorations of a search space with thousands of dimensions or classification models based on gene sets of unrestricted size. In the former case, unbiased but possibly overfitted classification models may arise. In the latter case, biased classification models unable to support statistically significant findings may be obtained. Results A novel bound on the maximum number of genes that can be handled by binary classifiers in binary mediated multiclass classification algorithms of microarray data samples is presented. The bound suggests that high-dimensional binary output domains might favor the existence of accurate and sparse binary mediated multiclass classifiers for microarray data samples. Conclusions A comprehensive experimental work shows that the bound is indeed useful to induce accurate and sparse multiclass classifiers for microarray data samples. PMID:21342522

  5. Bayesian hierarchical modeling for subject-level response classification in peptide microarray immunoassays

    PubMed Central

    Imholte, Gregory; Gottardo, Raphael

    2017-01-01

    Summary The peptide microarray immunoassay simultaneously screens sample serum against thousands of peptides, determining the presence of antibodies bound to array probes. Peptide microarrays tiling immunogenic regions of pathogens (e.g. envelope proteins of a virus) are an important high throughput tool for querying and mapping antibody binding. Because of the assay’s many steps, from probe synthesis to incubation, peptide microarray data can be noisy with extreme outliers. In addition, subjects may produce different antibody profiles in response to an identical vaccine stimulus or infection, due to variability among subjects’ immune systems. We present a robust Bayesian hierarchical model for peptide microarray experiments, pepBayes, to estimate the probability of antibody response for each subject/peptide combination. Heavy-tailed error distributions accommodate outliers and extreme responses, and tailored random effect terms automatically incorporate technical effects prevalent in the assay. We apply our model to two vaccine trial datasets to demonstrate model performance. Our approach enjoys high sensitivity and specificity when detecting vaccine induced antibody responses. A simulation study shows an adaptive thresholding classification method has appropriate false discovery rate control with high sensitivity, and receiver operating characteristics generated on vaccine trial data suggest that pepBayes clearly separates responses from non-responses. PMID:27061097

  6. Genome-wide identification of WRKY family genes and their response to cold stress in Vitis vinifera

    PubMed Central

    2014-01-01

    Background WRKY transcription factors are one of the largest families of transcriptional regulators in plants. WRKY genes are not only found to play significant roles in biotic and abiotic stress response, but also regulate growth and development. Grapevine (Vitis vinifera) production is largely limited by stressful climate conditions such as cold stress and the role of WRKY genes in the survival of grapevine under these conditions remains unknown. Results We identified a total of 59 VvWRKYs from the V. vinifera genome, belonging to four subgroups according to conserved WRKY domains and zinc-finger structure. The majority of VvWRKYs were expressed in more than one tissue among the 7 tissues examined which included young leaves, mature leaves, tendril, stem apex, root, young fruits and ripe fruits. Publicly available microarray data suggested that a subset of VvWRKYs was activated in response to diverse stresses. Quantitative real-time PCR (qRT-PCR) results demonstrated that the expression levels of 36 VvWRKYs are changed following cold exposure. Comparative analysis was performed on data from publicly available microarray experiments, previous global transcriptome analysis studies, and qRT-PCR. We identified 15 VvWRKYs in at least two of these databases which may relate to cold stress. Among them, the transcription of three genes can be induced by exogenous ABA application, suggesting that they can be involved in an ABA-dependent signaling pathway in response to cold stress. Conclusions We identified 59 VvWRKYs from the V. vinifera genome and 15 of them showed cold stress-induced expression patterns. These genes represented candidate genes for future functional analysis of VvWRKYs involved in the low temperature-related signal pathways in grape. PMID:24755338

  7. Upregulation of the ESR1 Gene and ESR Ratio (ESR1/ESR2) is Associated with a Worse Prognosis in Papillary Thyroid Carcinoma: The Impact of the Estrogen Receptor α/β Expression on Clinical Outcomes in Papillary Thyroid Carcinoma Patients.

    PubMed

    Yi, Jin Wook; Kim, Su-Jin; Kim, Jong Kyu; Seong, Chan Yong; Yu, Hyeong Won; Chai, Young Jun; Choi, June Young; Lee, Kyu Eun

    2017-11-01

    A gender disparity exists with respect to the incidence of papillary thyroid cancer (PTC), suggesting that sex hormones such as estrogen play a role in PTC development and progression. In this study, we compared estrogen receptor gene expression patterns in PTCs to determine the clinical significance of estrogen gene expression in PTC. We analyzed ESR1 and ESR2 messenger RNA expression counts using data from The Cancer Genome Atlas (TCGA). To validate the results of TCGA analysis, we analyzed microarray data (GSE 54958) from the Gene Expression Omnibus. ESR1 gene expression and ESR ratio (ESR1/ESR2) were significantly higher in PTC tissues than in paired normal thyroid tissues (mean 659.427 vs. 264.045 for ESR1, 92.017 vs. 19.064 for ESR ratio). Among female patients, ESR1 expression and ESR ratio were negatively correlated with increased age. ESR1 expression and ESR ratio were higher in patients with classic PTC, lymphovascular invasion, BRAF V600E mutation, and radioiodine therapy. Classification analysis demonstrated that higher ESR1 expression and a higher ESR ratio faced a worse overall survival (hazard ratio 6.348 for ESR1, 4.031 for ESR ratio). Validation microarray analysis demonstrated that ESR1 expression and ESR ratio were higher in tumor tissues, classic PTC, and BRAF V600E . Higher ESR1 expression and a higher ESR ratio were associated with aggressive prognostic factors and worse overall survival in female PTC patients. Our results suggest that ESR1 and ESR ratio can be used as prognostic markers to predict female patient survival and have potential as a therapeutic target.

  8. Phenotypic analysis of prostate-infiltrating lymphocytes reveals TH17 and Treg skewing.

    PubMed

    Sfanos, Karen Sandell; Bruno, Tullia C; Maris, Charles H; Xu, Lauren; Thoburn, Christopher J; DeMarzo, Angelo M; Meeker, Alan K; Isaacs, William B; Drake, Charles G

    2008-06-01

    Pathologic examination of prostate glands removed from patients with prostate cancer commonly reveals infiltrating CD4+ and CD8+ T cells. Little is known about the phenotype of these cells, despite accumulating evidence suggesting a potential role for chronic inflammation in the etiology of prostate cancer. We developed a technique that samples the majority of the peripheral prostate through serial needle aspirates. CD4+ prostate-infiltrating lymphocytes (PIL) were isolated using magnetic beads and analyzed for subset skewing using both flow cytometry and quantitative reverse transcription-PCR. The transcriptional profile of fluorescence-activated cell sorted prostate-infiltrating regulatory T cells (CD4+, CD25+, GITR+) was compared with naïve, peripheral blood T cells using microarray analysis. CD4+ PIL showed a paucity of TH2 (interleukin-4-secreting) cells, a surprising finding given the generally accepted association of these cells with chronic, smoldering inflammation. Instead, CD4+ PIL seemed to be skewed towards a regulatory Treg phenotype (FoxP3+) as well as towards the TH17 phenotype (interleukin-17+). We also found that a preponderance of TH17-mediated inflammation was associated with a lower pathologic Gleason score. These protein level data were reflected at the message level, as analyzed by quantitative reverse transcription-PCR. Microarray analysis of pooled prostate-infiltrating T(reg) revealed expected Treg-associated transcripts (FoxP3, CTLA-4, GITR, LAG-3) as well as a number of unique cell surface markers that may serve as additional Treg markers. Taken together, these data suggest that TH17 and/or Treg CD4+ T cells (rather than TH2 T cells) may be involved in the development or progression of prostate cancer.

  9. Changes in Polysome Association of mRNA Throughout Growth and Development in Arabidopsis thaliana.

    PubMed

    Yamasaki, Shotaro; Matsuura, Hideyuki; Demura, Taku; Kato, Ko

    2015-11-01

    Translational control is a key regulatory step in the expression of genes as proteins. In plant cells, the translational efficiency of mRNAs differs for different mRNA species, and the efficiency dynamically changes in various conditions. To gain a global view of translational control throughout growth and development, we performed genome-wide analysis of polysome association of mRNA during growth and leaf development in Arabidopsis thaliana by subjecting the mRNAs in polysomes to DNA microarray. This analysis revealed that the degree of polysome association of mRNA was different depending on the mRNA species, and the polysome association changed greatly throughout growth and development for each. In the growth stage, transcripts showed varying changes in polysome association from strongly depressed to unchanged, with the majority of transcripts showing dissociation from ribosomes. On the other hand, during leaf development, the polysome association of transcripts showed a normal distribution from repressed to activated mRNAs when comparing expanding and expanded leaves. In addition, functional category analysis of the microarray data suggested that translational control has a physiological significance in the plant growth and development process, especially in the categories of signaling and protein synthesis. In addition to this, we compared changes in polysome association of mRNAs between various conditions and characterized translational controls in each. This result suggested that mRNA translation might be controlled by complicated mechanisms for response to each condition. Our results highlight the importance of dynamic changes in mRNA translation in plant development and growth. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. Phenotypic Analysis of Prostate-Infiltrating Lymphocytes Reveals TH17 and Treg Skewing

    PubMed Central

    Sfanos, Karen Sandell; Bruno, Tullia C.; Maris, Charles H.; Xu, Lauren; Thoburn, Christopher J.; DeMarzo, Angelo M.; Meeker, Alan K.; Isaacs, William B.; Drake, Charles G.

    2011-01-01

    Purpose Pathologic examination of prostate glands removed from patients with prostate cancer commonly reveals infiltrating CD4+ and CD8+ T cells. Little is known about the phenotype of these cells, despite accumulating evidence suggesting a potential role for chronic inflammation in the etiology of prostate cancer. Experimental Design We developed a technique that samples the majority of the peripheral prostate through serial needle aspirates. CD4+ prostate-infiltrating lymphocytes (PIL) were isolated using magnetic beads and analyzed for subset skewing using both flow cytometry and quantitative reverse transcription-PCR. The transcriptional profile of fluorescence-activated cell sorted prostate-infiltrating regulatory T cells (CD4+, CD25+, GITR+) was compared with naïve, peripheral blood T cells using microarray analysis. Results CD4+ PIL showed a paucity of TH2 (interleukin-4– secreting) cells, a surprising finding given the generally accepted association of these cells with chronic, smoldering inflammation. Instead, CD4+ PIL seemed to be skewed towards a regulatory Treg phenotype (FoxP3+) as well as towards the TH17 phenotype (interleukin-17+). We also found that a preponderance of TH17-mediated inflammation was associated with a lower pathologic Gleason score. These protein level data were reflected at the message level, as analyzed by quantitative reverse transcription-PCR. Microarray analysis of pooled prostate-infiltrating Treg revealed expected Treg-associated transcripts (FoxP3, CTLA-4, GITR, LAG-3) as well as a number of unique cell surface markers that may serve as additional Treg markers. Conclusion Taken together, these data suggest that TH17 and/or Treg CD4+ T cells (rather than TH2 T cells) may be involved in the development or progression of prostate cancer. PMID:18519750

  11. An integrated bioinformatics approach to improve two-color microarray quality-control: impact on biological conclusions.

    PubMed

    van Haaften, Rachel I M; Luceri, Cristina; van Erk, Arie; Evelo, Chris T A

    2009-06-01

    Omics technology used for large-scale measurements of gene expression is rapidly evolving. This work pointed out the need of an extensive bioinformatics analyses for array quality assessment before and after gene expression clustering and pathway analysis. A study focused on the effect of red wine polyphenols on rat colon mucosa was used to test the impact of quality control and normalisation steps on the biological conclusions. The integration of data visualization, pathway analysis and clustering revealed an artifact problem that was solved with an adapted normalisation. We propose a possible point to point standard analysis procedure, based on a combination of clustering and data visualization for the analysis of microarray data.

  12. MeV+R: using MeV as a graphical user interface for Bioconductor applications in microarray analysis

    PubMed Central

    Chu, Vu T; Gottardo, Raphael; Raftery, Adrian E; Bumgarner, Roger E; Yeung, Ka Yee

    2008-01-01

    We present MeV+R, an integration of the JAVA MultiExperiment Viewer program with Bioconductor packages. This integration of MultiExperiment Viewer and R is easily extensible to other R packages and provides users with point and click access to traditionally command line driven tools written in R. We demonstrate the ability to use MultiExperiment Viewer as a graphical user interface for Bioconductor applications in microarray data analysis by incorporating three Bioconductor packages, RAMA, BRIDGE and iterativeBMA. PMID:18652698

  13. Ground testing of Arabidopsis preservation protocol for the microarray analysis to be used in the ISS EMCS Multigen-2 experiment

    NASA Astrophysics Data System (ADS)

    Kittang, Ann-Iren; Kvaløy, Brita; Winge, Per; Iversen, Tor-Henning

    2010-11-01

    Gene expression analysis using microarrays has proved to be an important method in life science. The opportunity to grow higher plants on the International Space Station (ISS) opens up the possibility for gene expression profiling of plants grown in microgravity. The work presented focuses on how to meet the scientific requirements of plant growth and the sample preservation, given the technical and operational constraints associated with space research. The growth chamber (Multigen-2 Science Testing Unit) and a protocol suggested to be used in the European Modular Cultivation System (EMCS) Multigen-2 experiment on the ISS to grow and later preserve Arabidopsis seedlings, were tested on ground. The results showed that most of the plants developed normally. In order to avoid high population stress the number of seedlings per growth area should be reduced. The RNAlater preservation method to be used in the space experiment was compared with a quick freeze in Liquid Nitrogen (LN2). The RNA from samples preserved in RNAlater at room temperature for 24 h was slightly more degraded than the RNA from the LN2 preserved samples (RNA integrity number, RIN: 7.7 and 8.6, respectively). However, the RNA quality and quantity was satisfactory for microarray analysis. Of the genes analysed, 74 genes (0.28%) were significantly differentially expressed, most of them showing moderate to low regulation. Among the genes induced in the RNAlater preserved samples, three salt inducible transcription factors (ZAT10, SZF1 and SZF2) were identified, suggesting that the high salt concentration in RNAlater causes salt stress before the transcription stopped. In conclusion, the Multigen-2 preservation protocol tested here will allow for the genes regulated by microgravity in the space experiment to be revealed. The results do indicate that not all the biological processes are stopped instantly by the RNAlater. The limited diffusion indirectly caused by the microgravity may potentially result in a different degree of salt stress in the test compared to the 1 × g control during the space experiment. This has to be accounted for during the evaluation of the results. Since slightly degraded RNA was observed, further optimalisation of the preservation protocol will be performed.

  14. ArrayWiki: an enabling technology for sharing public microarray data repositories and meta-analyses

    PubMed Central

    Stokes, Todd H; Torrance, JT; Li, Henry; Wang, May D

    2008-01-01

    Background A survey of microarray databases reveals that most of the repository contents and data models are heterogeneous (i.e., data obtained from different chip manufacturers), and that the repositories provide only basic biological keywords linking to PubMed. As a result, it is difficult to find datasets using research context or analysis parameters information beyond a few keywords. For example, to reduce the "curse-of-dimension" problem in microarray analysis, the number of samples is often increased by merging array data from different datasets. Knowing chip data parameters such as pre-processing steps (e.g., normalization, artefact removal, etc), and knowing any previous biological validation of the dataset is essential due to the heterogeneity of the data. However, most of the microarray repositories do not have meta-data information in the first place, and do not have a a mechanism to add or insert this information. Thus, there is a critical need to create "intelligent" microarray repositories that (1) enable update of meta-data with the raw array data, and (2) provide standardized archiving protocols to minimize bias from the raw data sources. Results To address the problems discussed, we have developed a community maintained system called ArrayWiki that unites disparate meta-data of microarray meta-experiments from multiple primary sources with four key features. First, ArrayWiki provides a user-friendly knowledge management interface in addition to a programmable interface using standards developed by Wikipedia. Second, ArrayWiki includes automated quality control processes (caCORRECT) and novel visualization methods (BioPNG, Gel Plots), which provide extra information about data quality unavailable in other microarray repositories. Third, it provides a user-curation capability through the familiar Wiki interface. Fourth, ArrayWiki provides users with simple text-based searches across all experiment meta-data, and exposes data to search engine crawlers (Semantic Agents) such as Google to further enhance data discovery. Conclusions Microarray data and meta information in ArrayWiki are distributed and visualized using a novel and compact data storage format, BioPNG. Also, they are open to the research community for curation, modification, and contribution. By making a small investment of time to learn the syntax and structure common to all sites running MediaWiki software, domain scientists and practioners can all contribute to make better use of microarray technologies in research and medical practices. ArrayWiki is available at . PMID:18541053

  15. Meta-Analysis of Multiple Sclerosis Microarray Data Reveals Dysregulation in RNA Splicing Regulatory Genes.

    PubMed

    Paraboschi, Elvezia Maria; Cardamone, Giulia; Rimoldi, Valeria; Gemmati, Donato; Spreafico, Marta; Duga, Stefano; Soldà, Giulia; Asselta, Rosanna

    2015-09-30

    Abnormalities in RNA metabolism and alternative splicing (AS) are emerging as important players in complex disease phenotypes. In particular, accumulating evidence suggests the existence of pathogenic links between multiple sclerosis (MS) and altered AS, including functional studies showing that an imbalance in alternatively-spliced isoforms may contribute to disease etiology. Here, we tested whether the altered expression of AS-related genes represents a MS-specific signature. A comprehensive comparative analysis of gene expression profiles of publicly-available microarray datasets (190 MS cases, 182 controls), followed by gene-ontology enrichment analysis, highlighted a significant enrichment for differentially-expressed genes involved in RNA metabolism/AS. In detail, a total of 17 genes were found to be differentially expressed in MS in multiple datasets, with CELF1 being dysregulated in five out of seven studies. We confirmed CELF1 downregulation in MS (p=0.0015) by real-time RT-PCRs on RNA extracted from blood cells of 30 cases and 30 controls. As a proof of concept, we experimentally verified the unbalance in alternatively-spliced isoforms in MS of the NFAT5 gene, a putative CELF1 target. In conclusion, for the first time we provide evidence of a consistent dysregulation of splicing-related genes in MS and we discuss its possible implications in modulating specific AS events in MS susceptibility genes.

  16. FH535, a β-catenin pathway inhibitor, represses pancreatic cancer xenograft growth and angiogenesis

    PubMed Central

    Gong, Fei-Ran; Zhou, Binhua P.; Lian, Lian; Shen, Bairong; Chen, Kai; Duan, Weiming; Wu, Meng-Yao; Tao, Min; Li, Wei

    2016-01-01

    The WNT/β-catenin pathway plays an important role in pancreatic cancer carcinogenesis. We evaluated the correlation between aberrant β-catenin pathway activation and the prognosis pancreatic cancer, and the potential of applying the β-catenin pathway inhibitor FH535 to pancreatic cancer treatment. Meta-analysis and immunohistochemistry showed that abnormal β-catenin pathway activation was associated with unfavorable outcome. FH535 repressed pancreatic cancer xenograft growth in vivo. Gene Ontology (GO) analysis of microarray data indicated that target genes responding to FH535 participated in stemness maintenance. Real-time PCR and flow cytometry confirmed that FH535 downregulated CD24 and CD44, pancreatic cancer stem cell (CSC) markers, suggesting FH535 impairs pancreatic CSC stemness. GO analysis of β-catenin chromatin immunoprecipitation sequencing data identified angiogenesis-related gene regulation. Immunohistochemistry showed that higher microvessel density correlated with elevated nuclear β-catenin expression and unfavorable outcome. FH535 repressed the secretion of the proangiogenic cytokines vascular endothelial growth factor (VEGF), interleukin (IL)-6, IL-8, and tumor necrosis factor-α, and also inhibited angiogenesis in vitro and in vivo. Protein and mRNA microarrays revealed that FH535 downregulated the proangiogenic genes ANGPT2, VEGFR3, IFN-γ, PLAUR, THPO, TIMP1, and VEGF. FH535 not only represses pancreatic CSC stemness in vitro, but also remodels the tumor microenvironment by repressing angiogenesis, warranting further clinical investigation. PMID:27323403

  17. Analysis and Characterization of Proteins Associated with Outer Membrane Vesicles Secreted by Cronobacter spp.

    PubMed Central

    Kothary, Mahendra H.; Gopinath, Gopal R.; Gangiredla, Jayanthi; Rallabhandi, Prasad V.; Harrison, Lisa M.; Yan, Qiong Q.; Chase, Hannah R.; Lee, Boram; Park, Eunbi; Yoo, YeonJoo; Chung, Taejung; Finkelstein, Samantha B.; Negrete, Flavia J.; Patel, Isha R.; Carter, Laurenda; Sathyamoorthy, Venugopal; Fanning, Séamus; Tall, Ben D.

    2017-01-01

    Little is known about secretion of outer membrane vesicles (OMVs) by Cronobacter. In this study, OMVs isolated from Cronobacter sakazakii, Cronobacter turicensis, and Cronobacter malonaticus were examined by electron microscopy (EM) and their associated outer membrane proteins (OMP) and genes were analyzed by SDS-PAGE, protein sequencing, BLAST, PCR, and DNA microarray. EM of stained cells revealed that the OMVs are secreted as pleomorphic micro-vesicles which cascade from the cell's surface. SDS-PAGE analysis identified protein bands with molecular weights of 18 kDa to >100 kDa which had homologies to OMPs such as GroEL; OmpA, C, E, F, and X; MipA proteins; conjugative plasmid transfer protein; and an outer membrane auto-transporter protein (OMATP). PCR analyses showed that most of the OMP genes were present in all seven Cronobacter species while a few genes (OMATP gene, groEL, ompC, mipA, ctp, and ompX) were absent in some phylogenetically-related species. Microarray analysis demonstrated sequence divergence among the OMP genes that was not captured by PCR. These results support previous findings that OmpA and OmpX may be involved in virulence of Cronobacter, and are packaged within secreted OMVs. These results also suggest that other OMV-packaged OMPs may be involved in roles such as stress response, cell wall and plasmid maintenance, and extracellular transport. PMID:28232819

  18. High matrix metalloproteinase activity is a hallmark of periapical granulomas.

    PubMed

    de Paula-Silva, Francisco Wanderley Garcia; D'Silva, Nisha J; da Silva, Léa Assed Bezerra; Kapila, Yvonne Lorraine

    2009-09-01

    The inability to distinguish periapical cysts from granulomas before performing root canal treatment leads to uncertainty in treatment outcomes because cysts have lower healing rates. Searching for differential expression of molecules within cysts or granulomas could provide information with regard to the identity of the lesion or suggest mechanistic differences that may form the basis for future therapeutic intervention. Thus, we investigated whether granulomas and cysts exhibit differential expression of extracellular matrix (ECM) molecules. Human periapical granulomas, periapical cysts, and healthy periodontal ligament tissues were used to investigate the differential expression of ECM molecules by microarray analysis. Because matrix metalloproteinases (MMP) showed the highest differential expression in the microarray analysis, MMPs were further examined by in situ zymography and immunohistochemistry. Data were analyzed by using one-way analysis of variance followed by the Tukey test. We observed that cysts and granulomas differentially expressed several ECM molecules, especially those from the MMP family. Compared with cysts, granulomas exhibited higher MMP enzymatic activity in areas stained for MMP-9. These areas were composed of polymorphonuclear cells (PMNs) in contrast to cysts. Similarly, MMP-13 was expressed by a greater number of cells in granulomas compared with cysts. Our findings indicate that high enzymatic MMP activity in PMNs together with MMP-9 and MMP-13 stained cells could be a molecular signature of granulomas unlike periapical cysts.

  19. Functional analysis of PGRP-LA in Drosophila immunity.

    PubMed

    Gendrin, Mathilde; Zaidman-Rémy, Anna; Broderick, Nichole A; Paredes, Juan; Poidevin, Mickaël; Roussel, Alain; Lemaitre, Bruno

    2013-01-01

    PeptidoGlycan Recognition Proteins (PGRPs) are key regulators of the insect innate antibacterial response. Even if they have been intensively studied, some of them have yet unknown functions. Here, we present a functional analysis of PGRP-LA, an as yet uncharacterized Drosophila PGRP. The PGRP-LA gene is located in cluster with PGRP-LC and PGRP-LF, which encode a receptor and a negative regulator of the Imd pathway, respectively. Structure predictions indicate that PGRP-LA would not bind to peptidoglycan, pointing to a regulatory role of this PGRP. PGRP-LA expression was enriched in barrier epithelia, but low in the fat body. Use of a newly generated PGRP-LA deficient mutant indicates that PGRP-LA is not required for the production of antimicrobial peptides by the fat body in response to a systemic infection. Focusing on the respiratory tract, where PGRP-LA is strongly expressed, we conducted a genome-wide microarray analysis of the tracheal immune response of wild-type, Relish, and PGRP-LA mutant larvae. Comparing our data to previous microarray studies, we report that a majority of genes regulated in the trachea upon infection differ from those induced in the gut or the fat body. Importantly, antimicrobial peptide gene expression was reduced in the tracheae of larvae and in the adult gut of PGRP-LA-deficient Drosophila upon oral bacterial infection. Together, our results suggest that PGRP-LA positively regulates the Imd pathway in barrier epithelia.

  20. Digital microarray analysis for digital artifact genomics

    NASA Astrophysics Data System (ADS)

    Jaenisch, Holger; Handley, James; Williams, Deborah

    2013-06-01

    We implement a Spatial Voting (SV) based analogy of microarray analysis for digital gene marker identification in malware code sections. We examine a famous set of malware formally analyzed by Mandiant and code named Advanced Persistent Threat (APT1). APT1 is a Chinese organization formed with specific intent to infiltrate and exploit US resources. Manidant provided a detailed behavior and sting analysis report for the 288 malware samples available. We performed an independent analysis using a new alternative to the traditional dynamic analysis and static analysis we call Spatial Analysis (SA). We perform unsupervised SA on the APT1 originating malware code sections and report our findings. We also show the results of SA performed on some members of the families associated by Manidant. We conclude that SV based SA is a practical fast alternative to dynamics analysis and static analysis.

  1. arrayCGHbase: an analysis platform for comparative genomic hybridization microarrays

    PubMed Central

    Menten, Björn; Pattyn, Filip; De Preter, Katleen; Robbrecht, Piet; Michels, Evi; Buysse, Karen; Mortier, Geert; De Paepe, Anne; van Vooren, Steven; Vermeesch, Joris; Moreau, Yves; De Moor, Bart; Vermeulen, Stefan; Speleman, Frank; Vandesompele, Jo

    2005-01-01

    Background The availability of the human genome sequence as well as the large number of physically accessible oligonucleotides, cDNA, and BAC clones across the entire genome has triggered and accelerated the use of several platforms for analysis of DNA copy number changes, amongst others microarray comparative genomic hybridization (arrayCGH). One of the challenges inherent to this new technology is the management and analysis of large numbers of data points generated in each individual experiment. Results We have developed arrayCGHbase, a comprehensive analysis platform for arrayCGH experiments consisting of a MIAME (Minimal Information About a Microarray Experiment) supportive database using MySQL underlying a data mining web tool, to store, analyze, interpret, compare, and visualize arrayCGH results in a uniform and user-friendly format. Following its flexible design, arrayCGHbase is compatible with all existing and forthcoming arrayCGH platforms. Data can be exported in a multitude of formats, including BED files to map copy number information on the genome using the Ensembl or UCSC genome browser. Conclusion ArrayCGHbase is a web based and platform independent arrayCGH data analysis tool, that allows users to access the analysis suite through the internet or a local intranet after installation on a private server. ArrayCGHbase is available at . PMID:15910681

  2. Pathway Analysis Hints Towards Beneficial Effects of Long-Term Vibration on Human Chondrocytes.

    PubMed

    Lützenberg, Ronald; Solano, Kendrick; Buken, Christoph; Sahana, Jayashree; Riwaldt, Stefan; Kopp, Sascha; Krüger, Marcus; Schulz, Herbert; Saar, Kathrin; Huebner, Norbert; Hemmersbach, Ruth; Bauer, Johann; Infanger, Manfred; Grimm, Daniela; Wehland, Markus

    2018-06-27

    Spaceflight negatively influences the function of cartilage tissue in vivo. In vitro human chondrocytes exhibit an altered gene expression of inflammation markers after a two-hour exposure to vibration. Little is known about the impact of long-term vibration on chondrocytes. Human cartilage cells were exposed for up to 24 h (VIB) on a specialised vibration platform (Vibraplex) simulating the vibration profile which occurs during parabolic flights and compared to static control conditions (CON). Afterwards, they were investigated by phase-contrast microscopy, rhodamine phalloidin staining, microarray analysis, qPCR and western blot analysis. Morphological investigations revealed no changes between CON and VIB chondrocytes. F-Actin staining showed no alterations of the cytoskeleton in VIB compared with CON cells. DAPI and TUNEL staining did not identify apoptotic cells. ICAM-1 was elevated and vimentin, beta-tubulin and osteopontin proteins were significantly reduced in VIB compared to CON cells. qPCR of cytoskeletal genes, ITGB1, SOX3, SOX5, SOX9 did not reveal differential regulations. Microarray analysis detected 13 differentially expressed genes, mostly indicating unspecific stimulations. Pathway analyses demonstrated interactions of PSMD4 and CNOT7 with ICAM. Long-term vibration did not damage human chondrocytes in vitro. The reduction of osteopontin protein and the down-regulation of PSMD4 and TBX15 gene expression suggest that in vitro long-term vibration might even positively influence cultured chondrocytes. © 2018 The Author(s). Published by S. Karger AG, Basel.

  3. TUSC2(FUS1)-erlotinib Induced Vulnerabilities in Epidermal Growth Factor Receptor(EGFR) Wildtype Non-small Cell Lung Cancer(NSCLC) Targeted by the Repurposed Drug Auranofin.

    PubMed

    Xiaobo, Cao; Majidi, Mourad; Feng, Meng; Shao, Ruping; Wang, Jing; Zhao, Yang; Baladandayuthapani, Veerabhadran; Song, Juhee; Fang, Bingliang; Ji, Lin; Mehran, Reza; Roth, Jack A

    2016-11-15

    Expression of the TUSC2/FUS1 tumor suppressor gene in TUSC2 deficient EGFR wildtype lung cancer cells increased sensitivity to erlotinib. Microarray mRNA expression analysis of TUSC2 inducible lung cancer cells treated with erlotinib uncovered defects in the response to oxidative stress suggesting that increasing reactive oxygen species (ROS) would enhance therapeutic efficacy. Addition of the thioredoxin reductase 1 inhibitor (TXNRD1) auranofin (AF) to NSCLC cells treated with combination of TUSC2 forced expression with erlotinib increased tumor cell apoptosis and inhibited colony formation. TXNRD1 overexpression rescued tumors from AF-TUSC2-erlotinib induced apoptosis. Neutralizing ROS with nordihydroguaiaretic acid (NDGA) abrogated cell death induced by AF-TUSC2-erlotinib, indicating a regulatory role for ROS in the efficacy of the three drug combination. Isobologram-based statistical analysis of this combination demonstrated superior synergism, compared with each individual treatment at lower concentrations. In NSCLC tumor xenografts, tumor growth was markedly inhibited and animal survival was prolonged over controls by AF-TUSC2-erlotinib. Microarray mRNA expression analysis uncovered oxidative stress and DNA damage gene signatures significantly upregulated by AF-TUSC2-erlotinib compared to TUSC2-erlotinib. Pathway analysis showed the highest positive z-score for the NRF2-mediated oxidative stress response. Taken together these findings show that the combination of TUSC2-erlotinib induces additional novel vulnerabilities that can be targeted with AF.

  4. Oligonucleotide microarray chip for the quantification of MS2, ΦX174, and adenoviruses on the multiplex analysis platform MCR 3.

    PubMed

    Lengger, Sandra; Otto, Johannes; Elsässer, Dennis; Schneider, Oliver; Tiehm, Andreas; Fleischer, Jens; Niessner, Reinhard; Seidel, Michael

    2014-05-01

    Pathogenic viruses are emerging contaminants in water which should be analyzed for water safety to preserve public health. A strategy was developed to quantify RNA and DNA viruses in parallel on chemiluminescence flow-through oligonucleotide microarrays. In order to show the proof of principle, bacteriophage MS2, ΦX174, and the human pathogenic adenovirus type 2 (hAdV2) were analyzed in spiked tap water samples on the analysis platform MCR 3. The chemiluminescence microarray imaging unit was equipped with a Peltier heater for a controlled heating of the flow cell. The efficiency and selectivity of DNA hybridization could be increased resulting in higher signal intensities and lower cross-reactivities of polymerase chain reaction (PCR) products from other viruses. The total analysis time for DNA/RNA extraction, cDNA synthesis for RNA viruses, polymerase chain reaction, single-strand separation, and oligonucleotide microarray analysis was performed in 4-4.5 h. The parallel quantification was possible in a concentration range of 9.6 × 10(5)-1.4 × 10(10) genomic units (GU)/mL for bacteriophage MS2, 1.4 × 10(5)-3.7 × 10(8) GU/mL for bacteriophage ΦX174, and 6.5 × 10(3)-1.2 × 10(5) for hAdV2, respectively, by using a measuring temperature of 40 °C. Detection limits could be calculated to 6.6 × 10(5) GU/mL for MS2, 5.3 × 10(3) GU/mL for ΦX174, and 1.5 × 10(2) GU/mL for hAdV2, respectively. Real samples of surface water and treated wastewater were tested. Generally, found concentrations of hAdV2, bacteriophage MS2, and ΦX174 were at the detection limit. Nevertheless, bacteriophages could be identified with similar results by means of quantitative PCR and oligonucleotide microarray analysis on the MCR 3.

  5. Cell cycle arrest and gene expression profiling of testis in mice exposed to fluoride.

    PubMed

    Su, Kai; Sun, Zilong; Niu, Ruiyan; Lei, Ying; Cheng, Jing; Wang, Jundong

    2017-05-01

    Exposure to fluoride results in low reproductive capacity; however, the mechanism underlying the impact of fluoride on male productive system still remains obscure. To assess the potential toxicity in testis of mice administrated with fluoride, global genome microarray and real-time PCR were performed to detect and identify the altered transcriptions. The results revealed that 763 differentially expressed genes were identified, including 330 up-regulated and 433 down-regulated genes, which were involved in spermatogenesis, apoptosis, DNA damage, DNA replication, and cell differentiation. Twelve differential expressed genes were selected to confirm the microarray results using real-time PCR, and the result kept the same tendency with that of microarray. Furthermore, compared with the control group, more apoptotic spermatogenic cells were observed in the fluoride group, and the spermatogonium were markedly increased in S phase and decreased in G2/M phase by fluoride. Our findings suggested global genome microarray provides an insight into the reproductive toxicity induced by fluoride, and several important biological clues for further investigations. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1558-1565, 2017. © 2016 Wiley Periodicals, Inc.

  6. Approximate geodesic distances reveal biologically relevant structures in microarray data.

    PubMed

    Nilsson, Jens; Fioretos, Thoas; Höglund, Mattias; Fontes, Magnus

    2004-04-12

    Genome-wide gene expression measurements, as currently determined by the microarray technology, can be represented mathematically as points in a high-dimensional gene expression space. Genes interact with each other in regulatory networks, restricting the cellular gene expression profiles to a certain manifold, or surface, in gene expression space. To obtain knowledge about this manifold, various dimensionality reduction methods and distance metrics are used. For data points distributed on curved manifolds, a sensible distance measure would be the geodesic distance along the manifold. In this work, we examine whether an approximate geodesic distance measure captures biological similarities better than the traditionally used Euclidean distance. We computed approximate geodesic distances, determined by the Isomap algorithm, for one set of lymphoma and one set of lung cancer microarray samples. Compared with the ordinary Euclidean distance metric, this distance measure produced more instructive, biologically relevant, visualizations when applying multidimensional scaling. This suggests the Isomap algorithm as a promising tool for the interpretation of microarray data. Furthermore, the results demonstrate the benefit and importance of taking nonlinearities in gene expression data into account.

  7. Microarray analysis of gene expression patterns in the leaf during potato tuberization in the potato somatic hybrid Solanum tuberosum and Solanum etuberosum.

    PubMed

    Tiwari, Jagesh Kumar; Devi, Sapna; Sundaresha, S; Chandel, Poonam; Ali, Nilofer; Singh, Brajesh; Bhardwaj, Vinay; Singh, Bir Pal

    2015-06-01

    Genes involved in photoassimilate partitioning and changes in hormonal balance are important for potato tuberization. In the present study, we investigated gene expression patterns in the tuber-bearing potato somatic hybrid (E1-3) and control non-tuberous wild species Solanum etuberosum (Etb) by microarray. Plants were grown under controlled conditions and leaves were collected at eight tuber developmental stages for microarray analysis. A t-test analysis identified a total of 468 genes (94 up-regulated and 374 down-regulated) that were statistically significant (p ≤ 0.05) and differentially expressed in E1-3 and Etb. Gene Ontology (GO) characterization of the 468 genes revealed that 145 were annotated and 323 were of unknown function. Further, these 145 genes were grouped based on GO biological processes followed by molecular function and (or) PGSC description into 15 gene sets, namely (1) transport, (2) metabolic process, (3) biological process, (4) photosynthesis, (5) oxidation-reduction, (6) transcription, (7) translation, (8) binding, (9) protein phosphorylation, (10) protein folding, (11) ubiquitin-dependent protein catabolic process, (12) RNA processing, (13) negative regulation of protein, (14) methylation, and (15) mitosis. RT-PCR analysis of 10 selected highly significant genes (p ≤ 0.01) confirmed the microarray results. Overall, we show that candidate genes induced in leaves of E1-3 were implicated in tuberization processes such as transport, carbohydrate metabolism, phytohormones, and transcription/translation/binding functions. Hence, our results provide an insight into the candidate genes induced in leaf tissues during tuberization in E1-3.

  8. Informatic selection of a neural crest-melanocyte cDNA set for microarray analysis

    PubMed Central

    Loftus, S. K.; Chen, Y.; Gooden, G.; Ryan, J. F.; Birznieks, G.; Hilliard, M.; Baxevanis, A. D.; Bittner, M.; Meltzer, P.; Trent, J.; Pavan, W.

    1999-01-01

    With cDNA microarrays, it is now possible to compare the expression of many genes simultaneously. To maximize the likelihood of finding genes whose expression is altered under the experimental conditions, it would be advantageous to be able to select clones for tissue-appropriate cDNA sets. We have taken advantage of the extensive sequence information in the dbEST expressed sequence tag (EST) database to identify a neural crest-derived melanocyte cDNA set for microarray analysis. Analysis of characterized genes with dbEST identified one library that contained ESTs representing 21 neural crest-expressed genes (library 198). The distribution of the ESTs corresponding to these genes was biased toward being derived from library 198. This is in contrast to the EST distribution profile for a set of control genes, characterized to be more ubiquitously expressed in multiple tissues (P < 1 × 10−9). From library 198, a subset of 852 clustered ESTs were selected that have a library distribution profile similar to that of the 21 neural crest-expressed genes. Microarray analysis demonstrated the majority of the neural crest-selected 852 ESTs (Mel1 array) were differentially expressed in melanoma cell lines compared with a non-neural crest kidney epithelial cell line (P < 1 × 10−8). This was not observed with an array of 1,238 ESTs that was selected without library origin bias (P = 0.204). This study presents an approach for selecting tissue-appropriate cDNAs that can be used to examine the expression profiles of developmental processes and diseases. PMID:10430933

  9. Transcriptional regulation of defence genes and involvement of the WRKY transcription factor in arbuscular mycorrhizal potato root colonization.

    PubMed

    Gallou, Adrien; Declerck, Stéphane; Cranenbrouck, Sylvie

    2012-03-01

    The establishment of arbuscular mycorrhizal associations causes major changes in plant roots and affects significantly the host in term of plant nutrition and resistance against biotic and abiotic stresses. As a consequence, major changes in root transcriptome, especially in plant genes related to biotic stresses, are expected. Potato microarray analysis, followed by real-time quantitative PCR, was performed to detect the wide transcriptome changes induced during the pre-, early and late stages of potato root colonization by Glomus sp. MUCL 41833. The microarray analysis revealed 526 up-regulated and 132 down-regulated genes during the pre-stage, 272 up-regulated and 109 down-regulated genes during the early stage and 734 up-regulated and 122 down-regulated genes during the late stage of root colonization. The most important class of regulated genes was associated to plant stress and in particular to the WRKY transcription factors genes during the pre-stage of root colonization. The expression profiling clearly demonstrated a wide transcriptional change during the pre-, early and late stages of root colonization. It further suggested that the WRKY transcription factor genes are involved in the mechanisms controlling the arbuscular mycorrhizal establishment by the regulation of plant defence genes.

  10. "Something Extra on Chromosome 5": Parents' Understanding of Positive Prenatal Chromosomal Microarray Analysis (CMA) Results.

    PubMed

    Walser, Sarah A; Werner-Lin, Allison; Russell, Amita; Wapner, Ronald J; Bernhardt, Barbara A

    2016-10-01

    This study aims to explore how couples' understanding of the nature and consequences of positive prenatal chromosomal microarray analysis (CMA) results impacts decision-making and concern about pregnancy. We interviewed 28 women and 12 male partners after receiving positive results and analyzed the transcripts to assess their understanding and level of concern about the expected clinical implications of results. Participant descriptions were compared to the original laboratory interpretation. When diagnosed prenatally, couples' understanding of the nature and consequences of copy number variants (CNVs) impacts decision-making and concern. Findings suggest women, but less so partners, generally understand the nature and clinical implications of prenatal CMA results. Couples feel reassured, perhaps sometimes falsely so, when a CNV is inherited from a "normal" parent and experience considerable uncertainty when a CNV is de novo, frequently precipitating a search for additional information and guidance. Five factors influenced participants' concern including: the pattern of inheritance, type of possible phenotypic involvement, perceived manageability of outcomes, availability and strength of evidence about outcomes associated with the CNV, and provider messages about continuing the pregnancy. A good understanding of results is vital as couples decide whether or not to continue with their pregnancy and seek additional information to assist in pregnancy decision-making.

  11. AMP-Activated Protein Kinase Interacts with the Peroxisome Proliferator-Activated Receptor Delta to Induce Genes Affecting Fatty Acid Oxidation in Human Macrophages.

    PubMed

    Kemmerer, Marina; Finkernagel, Florian; Cavalcante, Marcela Frota; Abdalla, Dulcineia Saes Parra; Müller, Rolf; Brüne, Bernhard; Namgaladze, Dmitry

    2015-01-01

    AMP-activated protein kinase (AMPK) maintains energy homeostasis by suppressing cellular ATP-consuming processes and activating catabolic, ATP-producing pathways such as fatty acid oxidation (FAO). The transcription factor peroxisome proliferator-activated receptor δ (PPARδ) also affects fatty acid metabolism, stimulating the expression of genes involved in FAO. To question the interplay of AMPK and PPARδ in human macrophages we transduced primary human macrophages with lentiviral particles encoding for the constitutively active AMPKα1 catalytic subunit, followed by microarray expression analysis after treatment with the PPARδ agonist GW501516. Microarray analysis showed that co-activation of AMPK and PPARδ increased expression of FAO genes, which were validated by quantitative PCR. Induction of these FAO-associated genes was also observed upon infecting macrophages with an adenovirus coding for AMPKγ1 regulatory subunit carrying an activating R70Q mutation. The pharmacological AMPK activator A-769662 increased expression of several FAO genes in a PPARδ- and AMPK-dependent manner. Although GW501516 significantly increased FAO and reduced the triglyceride amount in very low density lipoproteins (VLDL)-loaded foam cells, AMPK activation failed to potentiate this effect, suggesting that increased expression of fatty acid catabolic genes alone may be not sufficient to prevent macrophage lipid overload.

  12. AMP-Activated Protein Kinase Interacts with the Peroxisome Proliferator-Activated Receptor Delta to Induce Genes Affecting Fatty Acid Oxidation in Human Macrophages

    PubMed Central

    Kemmerer, Marina; Finkernagel, Florian; Cavalcante, Marcela Frota; Abdalla, Dulcineia Saes Parra; Müller, Rolf; Brüne, Bernhard; Namgaladze, Dmitry

    2015-01-01

    AMP-activated protein kinase (AMPK) maintains energy homeostasis by suppressing cellular ATP-consuming processes and activating catabolic, ATP-producing pathways such as fatty acid oxidation (FAO). The transcription factor peroxisome proliferator-activated receptor δ (PPARδ) also affects fatty acid metabolism, stimulating the expression of genes involved in FAO. To question the interplay of AMPK and PPARδ in human macrophages we transduced primary human macrophages with lentiviral particles encoding for the constitutively active AMPKα1 catalytic subunit, followed by microarray expression analysis after treatment with the PPARδ agonist GW501516. Microarray analysis showed that co-activation of AMPK and PPARδ increased expression of FAO genes, which were validated by quantitative PCR. Induction of these FAO-associated genes was also observed upon infecting macrophages with an adenovirus coding for AMPKγ1 regulatory subunit carrying an activating R70Q mutation. The pharmacological AMPK activator A-769662 increased expression of several FAO genes in a PPARδ- and AMPK-dependent manner. Although GW501516 significantly increased FAO and reduced the triglyceride amount in very low density lipoproteins (VLDL)-loaded foam cells, AMPK activation failed to potentiate this effect, suggesting that increased expression of fatty acid catabolic genes alone may be not sufficient to prevent macrophage lipid overload. PMID:26098914

  13. Root defense analysis against Fusarium oxysporum reveals new regulators to confer resistance

    PubMed Central

    Chen, Yi Chung; Wong, Chin Lin; Muzzi, Frederico; Vlaardingerbroek, Ido; Kidd, Brendan N.; Schenk, Peer M.

    2014-01-01

    Fusarium oxysporum is a root-infecting fungal pathogen that causes wilt disease on a broad range of plant species, including Arabidopsis thaliana. Investigation of the defense response against this pathogen had primarily been conducted using leaf tissue and little was known about the root defense response. In this study, we profiled the expression of root genes after infection with F. oxysporum by microarray analysis. In contrast to the leaf response, root tissue did not show a strong induction of defense-associated gene expression and instead showed a greater proportion of repressed genes. Screening insertion mutants from differentially expressed genes in the microarray uncovered a role for the transcription factor ETHYLENE RESPONSE FACTOR72 (ERF72) in susceptibility to F. oxysporum. Due to the role of ERF72 in suppressing programmed cell death and detoxifying reactive oxygen species (ROS), we examined the pub22/pub23/pub24 U-box type E3 ubiquitin ligase triple mutant which is known to possess enhanced ROS production in response to pathogen challenge. We found that the pub22/23/24 mutant is more resistant to F. oxysporum infection, suggesting that a heightened innate immune response provides protection against F. oxysporum. We conclude that root-mediated defenses against soil-borne pathogens can be provided at multiple levels. PMID:24998294

  14. Oil palm phenolics confer neuroprotective effects involving cognitive and motor functions in mice

    PubMed Central

    Leow, Soon-Sen; Sekaran, Shamala Devi; Tan, YewAi; Sundram, Kalyana; Sambanthamurthi, Ravigadevi

    2013-01-01

    Objectives Phenolics are important phytochemicals which have positive effects on chronic diseases, including neurodegenerative ailments. The oil palm (Elaeis guineensis) is a rich source of water-soluble phenolics. This study was carried out to discover the effects of administering oil palm phenolics (OPP) to mice, with the aim of identifying whether these compounds possess significant neuroprotective properties. Methods OPP was given to BALB/c mice on a normal diet as fluids for 6 weeks while the controls were given distilled water. These animals were tested in a water maze and on a rotarod weekly to assess the effects of OPP on cognitive and motor functions, respectively. Using Illumina microarrays, we further explored the brain gene expression changes caused by OPP in order to determine the molecular mechanisms involved. Real-time quantitative reverse transcription-polymerase chain reaction experiments were then carried out to validate the microarray data. Results We found that mice given OPP showed better cognitive function and spatial learning when tested in a water maze, and their performance also improved when tested on a rotarod, possibly due to better motor function and balance. Microarray gene expression analysis showed that these compounds up-regulated genes involved in brain development and activity, such as those under the regulation of the brain-derived neurotrophic factor. OPP also down-regulated genes involved in inflammation. Discussion These results suggest that the improvement of mouse cognitive and motor functions by OPP is caused by the neuroprotective and anti-inflammatory effects of the extract. PMID:23433062

  15. Methods for processing microarray data.

    PubMed

    Ares, Manuel

    2014-02-01

    Quality control must be maintained at every step of a microarray experiment, from RNA isolation through statistical evaluation. Here we provide suggestions for analyzing microarray data. Because the utility of the results depends directly on the design of the experiment, the first critical step is to ensure that the experiment can be properly analyzed and interpreted. What is the biological question? What is the best way to perform the experiment? How many replicates will be required to obtain the desired statistical resolution? Next, the samples must be prepared, pass quality controls for integrity and representation, and be hybridized and scanned. Also, slides with defects, missing data, high background, or weak signal must be rejected. Data from individual slides must be normalized and combined so that the data are as free of systematic bias as possible. The third phase is to apply statistical filters and tests to the data to determine genes (1) expressed above background, (2) whose expression level changes in different samples, and (3) whose RNA-processing patterns or protein associations change. Next, a subset of the data should be validated by an alternative method, such as reverse transcription-polymerase chain reaction (RT-PCR). Provided that this endorses the general conclusions of the array analysis, gene sets whose expression, splicing, polyadenylation, protein binding, etc. change in different samples can be classified with respect to function, sequence motif properties, as well as other categories to extract hypotheses for their biological roles and regulatory logic.

  16. Separate-channel analysis of two-channel microarrays: recovering inter-spot information.

    PubMed

    Smyth, Gordon K; Altman, Naomi S

    2013-05-26

    Two-channel (or two-color) microarrays are cost-effective platforms for comparative analysis of gene expression. They are traditionally analysed in terms of the log-ratios (M-values) of the two channel intensities at each spot, but this analysis does not use all the information available in the separate channel observations. Mixed models have been proposed to analyse intensities from the two channels as separate observations, but such models can be complex to use and the gain in efficiency over the log-ratio analysis is difficult to quantify. Mixed models yield test statistics for the null distributions can be specified only approximately, and some approaches do not borrow strength between genes. This article reformulates the mixed model to clarify the relationship with the traditional log-ratio analysis, to facilitate information borrowing between genes, and to obtain an exact distributional theory for the resulting test statistics. The mixed model is transformed to operate on the M-values and A-values (average log-expression for each spot) instead of on the log-expression values. The log-ratio analysis is shown to ignore information contained in the A-values. The relative efficiency of the log-ratio analysis is shown to depend on the size of the intraspot correlation. A new separate channel analysis method is proposed that assumes a constant intra-spot correlation coefficient across all genes. This approach permits the mixed model to be transformed into an ordinary linear model, allowing the data analysis to use a well-understood empirical Bayes analysis pipeline for linear modeling of microarray data. This yields statistically powerful test statistics that have an exact distributional theory. The log-ratio, mixed model and common correlation methods are compared using three case studies. The results show that separate channel analyses that borrow strength between genes are more powerful than log-ratio analyses. The common correlation analysis is the most powerful of all. The common correlation method proposed in this article for separate-channel analysis of two-channel microarray data is no more difficult to apply in practice than the traditional log-ratio analysis. It provides an intuitive and powerful means to conduct analyses and make comparisons that might otherwise not be possible.

  17. Identification of new autoantigens for primary biliary cirrhosis using human proteome microarrays.

    PubMed

    Hu, Chao-Jun; Song, Guang; Huang, Wei; Liu, Guo-Zhen; Deng, Chui-Wen; Zeng, Hai-Pan; Wang, Li; Zhang, Feng-Chun; Zhang, Xuan; Jeong, Jun Seop; Blackshaw, Seth; Jiang, Li-Zhi; Zhu, Heng; Wu, Lin; Li, Yong-Zhe

    2012-09-01

    Primary biliary cirrhosis (PBC) is a chronic cholestatic liver disease of unknown etiology and is considered to be an autoimmune disease. Autoantibodies are important tools for accurate diagnosis of PBC. Here, we employed serum profiling analysis using a human proteome microarray composed of about 17,000 full-length unique proteins and identified 23 proteins that correlated with PBC. To validate these results, we fabricated a PBC-focused microarray with 21 of these newly identified candidates and nine additional known PBC antigens. By screening the PBC microarrays with additional cohorts of 191 PBC patients and 321 controls (43 autoimmune hepatitis, 55 hepatitis B virus, 31 hepatitis C virus, 48 rheumatoid arthritis, 45 systematic lupus erythematosus, 49 systemic sclerosis, and 50 healthy), six proteins were confirmed as novel PBC autoantigens with high sensitivities and specificities, including hexokinase-1 (isoforms I and II), Kelch-like protein 7, Kelch-like protein 12, zinc finger and BTB domain-containing protein 2, and eukaryotic translation initiation factor 2C, subunit 1. To facilitate clinical diagnosis, we developed ELISA for Kelch-like protein 12 and zinc finger and BTB domain-containing protein 2 and tested large cohorts (297 PBC and 637 control sera) to confirm the sensitivities and specificities observed in the microarray-based assays. In conclusion, our research showed that a strategy using high content protein microarray combined with a smaller but more focused protein microarray can effectively identify and validate novel PBC-specific autoantigens and has the capacity to be translated to clinical diagnosis by means of an ELISA-based method.

  18. Ultrafiltration and Microarray for Detection of Microbial Source Tracking Marker and Pathogen Genes in Riverine and Marine Systems

    PubMed Central

    Li, Xiang; Harwood, Valerie J.; Nayak, Bina

    2016-01-01

    Pathogen identification and microbial source tracking (MST) to identify sources of fecal pollution improve evaluation of water quality. They contribute to improved assessment of human health risks and remediation of pollution sources. An MST microarray was used to simultaneously detect genes for multiple pathogens and indicators of fecal pollution in freshwater, marine water, sewage-contaminated freshwater and marine water, and treated wastewater. Dead-end ultrafiltration (DEUF) was used to concentrate organisms from water samples, yielding a recovery efficiency of >95% for Escherichia coli and human polyomavirus. Whole-genome amplification (WGA) increased gene copies from ultrafiltered samples and increased the sensitivity of the microarray. Viruses (adenovirus, bocavirus, hepatitis A virus, and human polyomaviruses) were detected in sewage-contaminated samples. Pathogens such as Legionella pneumophila, Shigella flexneri, and Campylobacter fetus were detected along with genes conferring resistance to aminoglycosides, beta-lactams, and tetracycline. Nonmetric dimensional analysis of MST marker genes grouped sewage-spiked freshwater and marine samples with sewage and apart from other fecal sources. The sensitivity (percent true positives) of the microarray probes for gene targets anticipated in sewage was 51 to 57% and was lower than the specificity (percent true negatives; 79 to 81%). A linear relationship between gene copies determined by quantitative PCR and microarray fluorescence was found, indicating the semiquantitative nature of the MST microarray. These results indicate that ultrafiltration coupled with WGA provides sufficient nucleic acids for detection of viruses, bacteria, protozoa, and antibiotic resistance genes by the microarray in applications ranging from beach monitoring to risk assessment. PMID:26729716

  19. An international standardization programme towards the application of gene expression profiling in routine leukaemia diagnostics: the Microarray Innovations in LEukemia study prephase

    PubMed Central

    Kohlmann, Alexander; Kipps, Thomas J; Rassenti, Laura Z; Downing, James R; Shurtleff, Sheila A; Mills, Ken I; Gilkes, Amanda F; Hofmann, Wolf-Karsten; Basso, Giuseppe; Dell’Orto, Marta Campo; Foà, Robin; Chiaretti, Sabina; De Vos, John; Rauhut, Sonja; Papenhausen, Peter R; Hernández, Jesus M; Lumbreras, Eva; Yeoh, Allen E; Koay, Evelyn S; Li, Rachel; Liu, Wei-min; Williams, Paul M; Wieczorek, Lothar; Haferlach, Torsten

    2008-01-01

    Gene expression profiling has the potential to enhance current methods for the diagnosis of haematological malignancies. Here, we present data on 204 analyses from an international standardization programme that was conducted in 11 laboratories as a prephase to the Microarray Innovations in LEukemia (MILE) study. Each laboratory prepared two cell line samples, together with three replicate leukaemia patient lysates in two distinct stages: (i) a 5-d course of protocol training, and (ii) independent proficiency testing. Unsupervised, supervised, and r2 correlation analyses demonstrated that microarray analysis can be performed with remarkably high intra-laboratory reproducibility and with comparable quality and reliability. PMID:18573112

  20. Mining Microarray Data at NCBI’s Gene Expression Omnibus (GEO)*

    PubMed Central

    Barrett, Tanya; Edgar, Ron

    2006-01-01

    Summary The Gene Expression Omnibus (GEO) at the National Center for Biotechnology Information (NCBI) has emerged as the leading fully public repository for gene expression data. This chapter describes how to use Web-based interfaces, applications, and graphics to effectively explore, visualize, and interpret the hundreds of microarray studies and millions of gene expression patterns stored in GEO. Data can be examined from both experiment-centric and gene-centric perspectives using user-friendly tools that do not require specialized expertise in microarray analysis or time-consuming download of massive data sets. The GEO database is publicly accessible through the World Wide Web at http://www.ncbi.nlm.nih.gov/geo. PMID:16888359

  1. Integrative missing value estimation for microarray data.

    PubMed

    Hu, Jianjun; Li, Haifeng; Waterman, Michael S; Zhou, Xianghong Jasmine

    2006-10-12

    Missing value estimation is an important preprocessing step in microarray analysis. Although several methods have been developed to solve this problem, their performance is unsatisfactory for datasets with high rates of missing data, high measurement noise, or limited numbers of samples. In fact, more than 80% of the time-series datasets in Stanford Microarray Database contain less than eight samples. We present the integrative Missing Value Estimation method (iMISS) by incorporating information from multiple reference microarray datasets to improve missing value estimation. For each gene with missing data, we derive a consistent neighbor-gene list by taking reference data sets into consideration. To determine whether the given reference data sets are sufficiently informative for integration, we use a submatrix imputation approach. Our experiments showed that iMISS can significantly and consistently improve the accuracy of the state-of-the-art Local Least Square (LLS) imputation algorithm by up to 15% improvement in our benchmark tests. We demonstrated that the order-statistics-based integrative imputation algorithms can achieve significant improvements over the state-of-the-art missing value estimation approaches such as LLS and is especially good for imputing microarray datasets with a limited number of samples, high rates of missing data, or very noisy measurements. With the rapid accumulation of microarray datasets, the performance of our approach can be further improved by incorporating larger and more appropriate reference datasets.

  2. A proposed metric for assessing the measurement quality of individual microarrays

    PubMed Central

    Kim, Kyoungmi; Page, Grier P; Beasley, T Mark; Barnes, Stephen; Scheirer, Katherine E; Allison, David B

    2006-01-01

    Background High-density microarray technology is increasingly applied to study gene expression levels on a large scale. Microarray experiments rely on several critical steps that may introduce error and uncertainty in analyses. These steps include mRNA sample extraction, amplification and labeling, hybridization, and scanning. In some cases this may be manifested as systematic spatial variation on the surface of microarray in which expression measurements within an individual array may vary as a function of geographic position on the array surface. Results We hypothesized that an index of the degree of spatiality of gene expression measurements associated with their physical geographic locations on an array could indicate the summary of the physical reliability of the microarray. We introduced a novel way to formulate this index using a statistical analysis tool. Our approach regressed gene expression intensity measurements on a polynomial response surface of the microarray's Cartesian coordinates. We demonstrated this method using a fixed model and presented results from real and simulated datasets. Conclusion We demonstrated the potential of such a quantitative metric for assessing the reliability of individual arrays. Moreover, we showed that this procedure can be incorporated into laboratory practice as a means to set quality control specifications and as a tool to determine whether an array has sufficient quality to be retained in terms of spatial correlation of gene expression measurements. PMID:16430768

  3. Variation of gene expression in Bacillus subtilis samples of fermentation replicates.

    PubMed

    Zhou, Ying; Yu, Wen-Bang; Ye, Bang-Ce

    2011-06-01

    The application of comprehensive gene expression profiling technologies to compare wild and mutated microorganism samples or to assess molecular differences between various treatments has been widely used. However, little is known about the normal variation of gene expression in microorganisms. In this study, an Agilent customized microarray representing 4,106 genes was used to quantify transcript levels of five-repeated flasks to assess normal variation in Bacillus subtilis gene expression. CV analysis and analysis of variance were employed to investigate the normal variance of genes and the components of variance, respectively. The results showed that above 80% of the total variation was caused by biological variance. For the 12 replicates, 451 of 4,106 genes exhibited variance with CV values over 10%. The functional category enrichment analysis demonstrated that these variable genes were mainly involved in cell type differentiation, cell type localization, cell cycle and DNA processing, and spore or cyst coat. Using power analysis, the minimal biological replicate number for a B. subtilis microarray experiment was determined to be six. The results contribute to the definition of the baseline level of variability in B. subtilis gene expression and emphasize the importance of replicate microarray experiments.

  4. Unlocking the potential of publicly available microarray data using inSilicoDb and inSilicoMerging R/Bioconductor packages.

    PubMed

    Taminau, Jonatan; Meganck, Stijn; Lazar, Cosmin; Steenhoff, David; Coletta, Alain; Molter, Colin; Duque, Robin; de Schaetzen, Virginie; Weiss Solís, David Y; Bersini, Hugues; Nowé, Ann

    2012-12-24

    With an abundant amount of microarray gene expression data sets available through public repositories, new possibilities lie in combining multiple existing data sets. In this new context, analysis itself is no longer the problem, but retrieving and consistently integrating all this data before delivering it to the wide variety of existing analysis tools becomes the new bottleneck. We present the newly released inSilicoMerging R/Bioconductor package which, together with the earlier released inSilicoDb R/Bioconductor package, allows consistent retrieval, integration and analysis of publicly available microarray gene expression data sets. Inside the inSilicoMerging package a set of five visual and six quantitative validation measures are available as well. By providing (i) access to uniformly curated and preprocessed data, (ii) a collection of techniques to remove the batch effects between data sets from different sources, and (iii) several validation tools enabling the inspection of the integration process, these packages enable researchers to fully explore the potential of combining gene expression data for downstream analysis. The power of using both packages is demonstrated by programmatically retrieving and integrating gene expression studies from the InSilico DB repository [https://insilicodb.org/app/].

  5. Characterization of regulatory pathways in Xylella fastidiosa: genes and phenotypes controlled by algU.

    PubMed

    Shi, Xiang Yang; Dumenyo, C Korsi; Hernandez-Martinez, Rufina; Azad, Hamid; Cooksey, Donald A

    2007-11-01

    Many virulence genes in plant bacterial pathogens are coordinately regulated by "global" regulatory genes. Conducting DNA microarray analysis of bacterial mutants of such genes, compared with the wild type, can help to refine the list of genes that may contribute to virulence in bacterial pathogens. The regulatory gene algU, with roles in stress response and regulation of the biosynthesis of the exopolysaccharide alginate in Pseudomonas aeruginosa and many other bacteria, has been extensively studied. The role of algU in Xylella fastidiosa, the cause of Pierce's disease of grapevines, was analyzed by mutation and whole-genome microarray analysis to define its involvement in aggregation, biofilm formation, and virulence. In this study, an algU::nptII mutant had reduced cell-cell aggregation, attachment, and biofilm formation and lower virulence in grapevines. Microarray analysis showed that 42 genes had significantly lower expression in the algU::nptII mutant than in the wild type. Among these are several genes that could contribute to cell aggregation and biofilm formation, as well as other physiological processes such as virulence, competition, and survival.

  6. DNA Microarray Data Analysis: A Novel Biclustering Algorithm Approach

    NASA Astrophysics Data System (ADS)

    Tchagang, Alain B.; Tewfik, Ahmed H.

    2006-12-01

    Biclustering algorithms refer to a distinct class of clustering algorithms that perform simultaneous row-column clustering. Biclustering problems arise in DNA microarray data analysis, collaborative filtering, market research, information retrieval, text mining, electoral trends, exchange analysis, and so forth. When dealing with DNA microarray experimental data for example, the goal of biclustering algorithms is to find submatrices, that is, subgroups of genes and subgroups of conditions, where the genes exhibit highly correlated activities for every condition. In this study, we develop novel biclustering algorithms using basic linear algebra and arithmetic tools. The proposed biclustering algorithms can be used to search for all biclusters with constant values, biclusters with constant values on rows, biclusters with constant values on columns, and biclusters with coherent values from a set of data in a timely manner and without solving any optimization problem. We also show how one of the proposed biclustering algorithms can be adapted to identify biclusters with coherent evolution. The algorithms developed in this study discover all valid biclusters of each type, while almost all previous biclustering approaches will miss some.

  7. Identification of rat lung-specific microRNAs by micoRNA microarray: valuable discoveries for the facilitation of lung research.

    PubMed

    Wang, Yang; Weng, Tingting; Gou, Deming; Chen, Zhongming; Chintagari, Narendranath Reddy; Liu, Lin

    2007-01-24

    An important mechanism for gene regulation utilizes small non-coding RNAs called microRNAs (miRNAs). These small RNAs play important roles in tissue development, cell differentiation and proliferation, lipid and fat metabolism, stem cells, exocytosis, diseases and cancers. To date, relatively little is known about functions of miRNAs in the lung except lung cancer. In this study, we utilized a rat miRNA microarray containing 216 miRNA probes, printed in-house, to detect the expression of miRNAs in the rat lung compared to the rat heart, brain, liver, kidney and spleen. Statistical analysis using Significant Analysis of Microarray (SAM) and Tukey Honestly Significant Difference (HSD) revealed 2 miRNAs (miR-195 and miR-200c) expressed specifically in the lung and 9 miRNAs co-expressed in the lung and another organ. 12 selected miRNAs were verified by Northern blot analysis. The identified lung-specific miRNAs from this work will facilitate functional studies of miRNAs during normal physiological and pathophysiological processes of the lung.

  8. Expression analysis of URI/RMP gene in endometrioid adenocarcinoma by tissue microarray immunohistochemistry.

    PubMed

    Gu, Junxia; Liang, Yuting; Qiao, Longwei; Li, Xiaoyun; Li, Xingang; Lu, Yaojuan; Zheng, Qiping

    2013-01-01

    Multiple studies have recently demonstrated the oncogenic property of URI (or RMP, a member of the prefoldin family of molecular chaperones) during progression of hepatocellular carcinoma, ovarian cancer, and possibly prostate cancer. Most recently, we have shown that URI/RMP is up-regulated in cervical cancer, another reproductive system tumor beside ovarian and prostate cancers. To investigate if URI/RMP also plays a role in other reproductive system tumors, especially in endometrioid adenocarcinoma, we analyzed URI/RMP expression in a TMA (tissue microarray) containing tissues from 30 cases of endometrioid adenocarcinoma (which covers tumor tissues from Grade I through Grade III) and adjacent endometrium by immunohistochemistry (IHC) and densitometry analysis using image-pro plus 6.0 software. Our results showed that the mean density of URI/RMP expression in cancerous tissue is slightly higher than that of the adjacent endometrial tissue, though not statistically significant (p>0.05). There is no significant difference either between the mean density of Grade III cancerous tissue and that of Grade I and II cancers. Notably, we detected significantly higher signal intensity in cancerous tissue of all 7 Grade III cases than that of their adjacent endometrial tissue (p<0.05), suggesting a correlation of URI/RMP expression with the differentiation and pathological classification of endometrioid adenocarcinoma. Together, our results demonstrate the heterogeneous expression of URI/RMP in endometrioid adenocarcinoma. The higher level of URI/RMP expression in high-grade endometrioid adenocarcinomas compared to tissues of adjacent endometrium or gland suggests a diagnostic and possibly, a prognostic value of URI/RMP in endometrioid adenocarcinoma.

  9. T Cell Dynamic Activation and Functional Analysis in Nanoliter Droplet Microarray.

    PubMed

    Sarkar, Saheli; Motwani, Vinny; Sabhachandani, Pooja; Cohen, Noa; Konry, Tania

    2015-06-01

    Characterization of the heterogeneity in immune reactions requires assessing dynamic single cell responses as well as interactions between the various immune cell subsets. Maturation and activation of effector cells is regulated by cell contact-dependent and soluble factor-mediated paracrine signalling. Currently there are few methods available that allow dynamic investigation of both processes simultaneously without physically constraining non-adherent cells and eliminating crosstalk from neighboring cell pairs. We describe here a microfluidic droplet microarray platform that permits rapid functional analysis of single cell responses and co-encapsulation of heterotypic cell pairs, thereby allowing us to evaluate the dynamic activation state of primary T cells. The microfluidic droplet platform enables generation and docking of monodisperse nanoliter volume (0.523 nl) droplets, with the capacity of monitoring a thousand droplets per experiment. Single human T cells were encapsulated in droplets and stimulated on-chip with the calcium ionophore ionomycin. T cells were also co-encapsulated with dendritic cells activated by ovalbumin peptide, followed by dynamic calcium signal monitoring. Ionomycin-stimulated cells depicted fluctuation in calcium signalling compared to control. Both cell populations demonstrated marked heterogeneity in responses. Calcium signalling was observed in T cells immediately following contact with DCs, suggesting an early activation signal. T cells further showed non-contact mediated increase in calcium level, although this response was delayed compared to contact-mediated signals. Our results suggest that this nanoliter droplet array-based microfluidic platform is a promising technique for assessment of heterogeneity in various types of cellular responses, detection of early/delayed signalling events and live cell phenotyping of immune cells.

  10. Amplification of a cytochrome P450 gene is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae.

    PubMed

    Puinean, Alin M; Foster, Stephen P; Oliphant, Linda; Denholm, Ian; Field, Linda M; Millar, Neil S; Williamson, Martin S; Bass, Chris

    2010-06-24

    The aphid Myzus persicae is a globally significant crop pest that has evolved high levels of resistance to almost all classes of insecticide. To date, the neonicotinoids, an economically important class of insecticides that target nicotinic acetylcholine receptors (nAChRs), have remained an effective control measure; however, recent reports of resistance in M. persicae represent a threat to the long-term efficacy of this chemical class. In this study, the mechanisms underlying resistance to the neonicotinoid insecticides were investigated using biological, biochemical, and genomic approaches. Bioassays on a resistant M. persicae clone (5191A) suggested that P450-mediated detoxification plays a primary role in resistance, although additional mechanism(s) may also contribute. Microarray analysis, using an array populated with probes corresponding to all known detoxification genes in M. persicae, revealed constitutive over-expression (22-fold) of a single P450 gene (CYP6CY3); and quantitative PCR showed that the over-expression is due, at least in part, to gene amplification. This is the first report of a P450 gene amplification event associated with insecticide resistance in an agriculturally important insect pest. The microarray analysis also showed over-expression of several gene sequences that encode cuticular proteins (2-16-fold), and artificial feeding assays and in vivo penetration assays using radiolabeled insecticide provided direct evidence of a role for reduced cuticular penetration in neonicotinoid resistance. Conversely, receptor radioligand binding studies and nucleotide sequencing of nAChR subunit genes suggest that target-site changes are unlikely to contribute to resistance to neonicotinoid insecticides in M. persicae.

  11. Expression analysis of URI/RMP gene in endometrioid adenocarcinoma by tissue microarray immunohistochemistry

    PubMed Central

    Gu, Junxia; Liang, Yuting; Qiao, Longwei; Li, Xiaoyun; Li, Xingang; Lu, Yaojuan; Zheng, Qiping

    2013-01-01

    Multiple studies have recently demonstrated the oncogenic property of URI (or RMP, a member of the prefoldin family of molecular chaperones) during progression of hepatocellular carcinoma, ovarian cancer, and possibly prostate cancer. Most recently, we have shown that URI/RMP is up-regulated in cervical cancer, another reproductive system tumor beside ovarian and prostate cancers. To investigate if URI/RMP also plays a role in other reproductive system tumors, especially in endometrioid adenocarcinoma, we analyzed URI/RMP expression in a TMA (tissue microarray) containing tissues from 30 cases of endometrioid adenocarcinoma (which covers tumor tissues from Grade I through Grade III) and adjacent endometrium by immunohistochemistry (IHC) and densitometry analysis using image-pro plus 6.0 software. Our results showed that the mean density of URI/RMP expression in cancerous tissue is slightly higher than that of the adjacent endometrial tissue, though not statistically significant (p>0.05). There is no significant difference either between the mean density of Grade III cancerous tissue and that of Grade I and II cancers. Notably, we detected significantly higher signal intensity in cancerous tissue of all 7 Grade III cases than that of their adjacent endometrial tissue (p<0.05), suggesting a correlation of URI/RMP expression with the differentiation and pathological classification of endometrioid adenocarcinoma. Together, our results demonstrate the heterogeneous expression of URI/RMP in endometrioid adenocarcinoma. The higher level of URI/RMP expression in high-grade endometrioid adenocarcinomas compared to tissues of adjacent endometrium or gland suggests a diagnostic and possibly, a prognostic value of URI/RMP in endometrioid adenocarcinoma. PMID:24228101

  12. Combining mouse mammary gland gene expression and comparative mapping for the identification of candidate genes for QTL of milk production traits in cattle

    PubMed Central

    Ron, Micha; Israeli, Galit; Seroussi, Eyal; Weller, Joel I; Gregg, Jeffrey P; Shani, Moshe; Medrano, Juan F

    2007-01-01

    Background Many studies have found segregating quantitative trait loci (QTL) for milk production traits in different dairy cattle populations. However, even for relatively large effects with a saturated marker map the confidence interval for QTL location by linkage analysis spans tens of map units, or hundreds of genes. Combining mapping and arraying has been suggested as an approach to identify candidate genes. Thus, gene expression analysis in the mammary gland of genes positioned in the confidence interval of the QTL can bridge the gap between fine mapping and quantitative trait nucleotide (QTN) determination. Results We hybridized Affymetrix microarray (MG-U74v2), containing 12,488 murine probes, with RNA derived from mammary gland of virgin, pregnant, lactating and involuting C57BL/6J mice in a total of nine biological replicates. We combined microarray data from two additional studies that used the same design in mice with a total of 75 biological replicates. The same filtering and normalization was applied to each microarray data using GeneSpring software. Analysis of variance identified 249 differentially expressed probe sets common to the three experiments along the four developmental stages of puberty, pregnancy, lactation and involution. 212 genes were assigned to their bovine map positions through comparative mapping, and thus form a list of candidate genes for previously identified QTLs for milk production traits. A total of 82 of the genes showed mammary gland-specific expression with at least 3-fold expression over the median representing all tissues tested in GeneAtlas. Conclusion This work presents a web tool for candidate genes for QTL (cgQTL) that allows navigation between the map of bovine milk production QTL, potential candidate genes and their level of expression in mammary gland arrays and in GeneAtlas. Three out of four confirmed genes that affect QTL in livestock (ABCG2, DGAT1, GDF8, IGF2) were over expressed in the target organ. Thus, cgQTL can be used to determine priority of candidate genes for QTN analysis based on differential expression in the target organ. PMID:17584498

  13. RNA transcriptional biosignature analysis for identifying febrile infants with serious bacterial infections in the emergency department: a feasibility study.

    PubMed

    Mahajan, Prashant; Kuppermann, Nathan; Suarez, Nicolas; Mejias, Asuncion; Casper, Charlie; Dean, J Michael; Ramilo, Octavio

    2015-01-01

    To develop the infrastructure and demonstrate the feasibility of conducting microarray-based RNA transcriptional profile analyses for the diagnosis of serious bacterial infections in febrile infants 60 days and younger in a multicenter pediatric emergency research network. We designed a prospective multicenter cohort study with the aim of enrolling more than 4000 febrile infants 60 days and younger. To ensure success of conducting complex genomic studies in emergency department (ED) settings, we established an infrastructure within the Pediatric Emergency Care Applied Research Network, including 21 sites, to evaluate RNA transcriptional profiles in young febrile infants. We developed a comprehensive manual of operations and trained site investigators to obtain and process blood samples for RNA extraction and genomic analyses. We created standard operating procedures for blood sample collection, processing, storage, shipping, and analyses. We planned to prospectively identify, enroll, and collect 1 mL blood samples for genomic analyses from eligible patients to identify logistical issues with study procedures. Finally, we planned to batch blood samples and determined RNA quantity and quality at the central microarray laboratory and organized data analysis with the Pediatric Emergency Care Applied Research Network data coordinating center. Below we report on establishment of the infrastructure and the feasibility success in the first year based on the enrollment of a limited number of patients. We successfully established the infrastructure at 21 EDs. Over the first 5 months we enrolled 79% (74 of 94) of eligible febrile infants. We were able to obtain and ship 1 mL of blood from 74% (55 of 74) of enrolled participants, with at least 1 sample per participating ED. The 55 samples were shipped and evaluated at the microarray laboratory, and 95% (52 of 55) of blood samples were of adequate quality and contained sufficient RNA for expression analysis. It is possible to create a robust infrastructure to conduct genomic studies in young febrile infants in the context of a multicenter pediatric ED research setting. The sufficient quantity and high quality of RNA obtained suggests that whole blood transcriptional profile analysis for the diagnostic evaluation of young febrile infants can be successfully performed in this setting.

  14. Emerging Putative Associations between Non-Coding RNAs and Protein-Coding Genes in Neuropathic Pain: Added Value from Reusing Microarray Data

    PubMed Central

    Raju, Hemalatha B.; Tsinoremas, Nicholas F.; Capobianco, Enrico

    2016-01-01

    Regeneration of injured nerves is likely occurring in the peripheral nervous system, but not in the central nervous system. Although protein-coding gene expression has been assessed during nerve regeneration, little is currently known about the role of non-coding RNAs (ncRNAs). This leaves open questions about the potential effects of ncRNAs at transcriptome level. Due to the limited availability of human neuropathic pain (NP) data, we have identified the most comprehensive time-course gene expression profile referred to sciatic nerve (SN) injury and studied in a rat model using two neuronal tissues, namely dorsal root ganglion (DRG) and SN. We have developed a methodology to identify differentially expressed bioentities starting from microarray probes and repurposing them to annotate ncRNAs, while analyzing the expression profiles of protein-coding genes. The approach is designed to reuse microarray data and perform first profiling and then meta-analysis through three main steps. First, we used contextual analysis to identify what we considered putative or potential protein-coding targets for selected ncRNAs. Relevance was therefore assigned to differential expression of neighbor protein-coding genes, with neighborhood defined by a fixed genomic distance from long or antisense ncRNA loci, and of parental genes associated with pseudogenes. Second, connectivity among putative targets was used to build networks, in turn useful to conduct inference at interactomic scale. Last, network paths were annotated to assess relevance to NP. We found significant differential expression in long-intergenic ncRNAs (32 lincRNAs in SN and 8 in DRG), antisense RNA (31 asRNA in SN and 12 in DRG), and pseudogenes (456 in SN and 56 in DRG). In particular, contextual analysis centered on pseudogenes revealed some targets with known association to neurodegeneration and/or neurogenesis processes. While modules of the olfactory receptors were clearly identified in protein–protein interaction networks, other connectivity paths were identified between proteins already investigated in studies on disorders, such as Parkinson, Down syndrome, Huntington disease, and Alzheimer. Our findings suggest the importance of reusing gene expression data by meta-analysis approaches. PMID:27803687

  15. Emerging Putative Associations between Non-Coding RNAs and Protein-Coding Genes in Neuropathic Pain: Added Value from Reusing Microarray Data.

    PubMed

    Raju, Hemalatha B; Tsinoremas, Nicholas F; Capobianco, Enrico

    2016-01-01

    Regeneration of injured nerves is likely occurring in the peripheral nervous system, but not in the central nervous system. Although protein-coding gene expression has been assessed during nerve regeneration, little is currently known about the role of non-coding RNAs (ncRNAs). This leaves open questions about the potential effects of ncRNAs at transcriptome level. Due to the limited availability of human neuropathic pain (NP) data, we have identified the most comprehensive time-course gene expression profile referred to sciatic nerve (SN) injury and studied in a rat model using two neuronal tissues, namely dorsal root ganglion (DRG) and SN. We have developed a methodology to identify differentially expressed bioentities starting from microarray probes and repurposing them to annotate ncRNAs, while analyzing the expression profiles of protein-coding genes. The approach is designed to reuse microarray data and perform first profiling and then meta-analysis through three main steps. First, we used contextual analysis to identify what we considered putative or potential protein-coding targets for selected ncRNAs. Relevance was therefore assigned to differential expression of neighbor protein-coding genes, with neighborhood defined by a fixed genomic distance from long or antisense ncRNA loci, and of parental genes associated with pseudogenes. Second, connectivity among putative targets was used to build networks, in turn useful to conduct inference at interactomic scale. Last, network paths were annotated to assess relevance to NP. We found significant differential expression in long-intergenic ncRNAs (32 lincRNAs in SN and 8 in DRG), antisense RNA (31 asRNA in SN and 12 in DRG), and pseudogenes (456 in SN and 56 in DRG). In particular, contextual analysis centered on pseudogenes revealed some targets with known association to neurodegeneration and/or neurogenesis processes. While modules of the olfactory receptors were clearly identified in protein-protein interaction networks, other connectivity paths were identified between proteins already investigated in studies on disorders, such as Parkinson, Down syndrome, Huntington disease, and Alzheimer. Our findings suggest the importance of reusing gene expression data by meta-analysis approaches.

  16. The Diagnostic Yield of Array Comparative Genomic Hybridization Is High Regardless of Severity of Intellectual Disability/Developmental Delay in Children.

    PubMed

    D'Arrigo, Stefano; Gavazzi, Francesco; Alfei, Enrico; Zuffardi, Orsetta; Montomoli, Cristina; Corso, Barbara; Buzzi, Erika; Sciacca, Francesca L; Bulgheroni, Sara; Riva, Daria; Pantaleoni, Chiara

    2016-05-01

    Microarray-based comparative genomic hybridization is a method of molecular analysis that identifies chromosomal anomalies (or copy number variants) that correlate with clinical phenotypes. The aim of the present study was to apply a clinical score previously designated by de Vries to 329 patients with intellectual disability/developmental disorder (intellectual disability/developmental delay) referred to our tertiary center and to see whether the clinical factors are associated with a positive outcome of aCGH analyses. Another goal was to test the association between a positive microarray-based comparative genomic hybridization result and the severity of intellectual disability/developmental delay. Microarray-based comparative genomic hybridization identified structural chromosomal alterations responsible for the intellectual disability/developmental delay phenotype in 16% of our sample. Our study showed that causative copy number variants are frequently found even in cases of mild intellectual disability (30.77%). We want to emphasize the need to conduct microarray-based comparative genomic hybridization on all individuals with intellectual disability/developmental delay, regardless of the severity, because the degree of intellectual disability/developmental delay does not predict the diagnostic yield of microarray-based comparative genomic hybridization. © The Author(s) 2015.

  17. Genome Consortium for Active Teaching: Meeting the Goals of BIO2010

    PubMed Central

    Ledbetter, Mary Lee S.; Hoopes, Laura L.M.; Eckdahl, Todd T.; Heyer, Laurie J.; Rosenwald, Anne; Fowlks, Edison; Tonidandel, Scott; Bucholtz, Brooke; Gottfried, Gail

    2007-01-01

    The Genome Consortium for Active Teaching (GCAT) facilitates the use of modern genomics methods in undergraduate education. Initially focused on microarray technology, but with an eye toward diversification, GCAT is a community working to improve the education of tomorrow's life science professionals. GCAT participants have access to affordable microarrays, microarray scanners, free software for data analysis, and faculty workshops. Microarrays provided by GCAT have been used by 141 faculty on 134 campuses, including 21 faculty that serve large numbers of underrepresented minority students. An estimated 9480 undergraduates a year will have access to microarrays by 2009 as a direct result of GCAT faculty workshops. Gains for students include significantly improved comprehension of topics in functional genomics and increased interest in research. Faculty reported improved access to new technology and gains in understanding thanks to their involvement with GCAT. GCAT's network of supportive colleagues encourages faculty to explore genomics through student research and to learn a new and complex method with their undergraduates. GCAT is meeting important goals of BIO2010 by making research methods accessible to undergraduates, training faculty in genomics and bioinformatics, integrating mathematics into the biology curriculum, and increasing participation by underrepresented minority students. PMID:17548873

  18. Genome Consortium for Active Teaching: meeting the goals of BIO2010.

    PubMed

    Campbell, A Malcolm; Ledbetter, Mary Lee S; Hoopes, Laura L M; Eckdahl, Todd T; Heyer, Laurie J; Rosenwald, Anne; Fowlks, Edison; Tonidandel, Scott; Bucholtz, Brooke; Gottfried, Gail

    2007-01-01

    The Genome Consortium for Active Teaching (GCAT) facilitates the use of modern genomics methods in undergraduate education. Initially focused on microarray technology, but with an eye toward diversification, GCAT is a community working to improve the education of tomorrow's life science professionals. GCAT participants have access to affordable microarrays, microarray scanners, free software for data analysis, and faculty workshops. Microarrays provided by GCAT have been used by 141 faculty on 134 campuses, including 21 faculty that serve large numbers of underrepresented minority students. An estimated 9480 undergraduates a year will have access to microarrays by 2009 as a direct result of GCAT faculty workshops. Gains for students include significantly improved comprehension of topics in functional genomics and increased interest in research. Faculty reported improved access to new technology and gains in understanding thanks to their involvement with GCAT. GCAT's network of supportive colleagues encourages faculty to explore genomics through student research and to learn a new and complex method with their undergraduates. GCAT is meeting important goals of BIO2010 by making research methods accessible to undergraduates, training faculty in genomics and bioinformatics, integrating mathematics into the biology curriculum, and increasing participation by underrepresented minority students.

  19. Oligonucleotide microarray analysis reveals dysregulation of energy-related metabolism in insulin-sensitive tissues of type 2 diabetes patients.

    PubMed

    Wang, M; Wang, X C; Zhao, L; Zhang, Y; Yao, L L; Lin, Y; Peng, Y D; Hu, R M

    2014-06-17

    Impaired insulin action within skeletal muscle, adipose tissue, and the liver is an important characteristic of type 2 diabetes (T2D). In order to identify common underlying defects in insulin-sensitive tissues that may be involved in the pathogenesis of T2D, the gene expression profiles of skeletal muscle, visceral adipose tissue, and liver from autopsy donors with or without T2D were examined using oligonucleotide microarrays and quantitative reverse transcriptase-PCR. Compared with controls, 691 genes were commonly dysregulated in these three insulin-sensitive tissues of humans with T2D. These co-expressed genes were enriched within the mitochondrion, with suggested involvement in energy metabolic processes such as glycolysis and gluconeogenesis, fatty acid beta oxidative, tricarboxylic acid cycle, and electron transport. Genes related to energy metabolism were mostly downregulated in diabetic skeletal muscle and visceral adipose tissue, while they were upregulated in the diabetic liver. This observed dysregulation in energy-related metabolism may be the underlying factor leading to the molecular mechanisms responsible for the insulin resistance of patients with T2D.

  20. Microarray analysis of thyroid stimulating hormone, insulin-like growth factor-1, and insulin-induced gene expression in FRTL-5 thyroid cells.

    PubMed

    Lee, You Jin; Park, Do Joon; Shin, Chan Soo; Park, Kyong Soo; Kim, Seong Yeon; Lee, Hong Kyu; Park, Young Joo; Cho, Bo Youn

    2007-10-01

    To determine which genes are regulated by thyroid stimulating hormone (thyrotropin, TSH), insulin and insulin-like growth factor-1 (IGF-1) in the rat thyroid, we used the microarray technology and observed the changes in gene expression. The expressions of genes for bone morphogenetic protein 6, the glucagon receptor, and cyclin D1 were increased by both TSH and IGF-1; for cytochrome P450, 2c37, the expression was decreased by both. Genes for cholecystokinin, glucuronidase, beta, demethyl-Q 7, and cytochrome c oxidase, subunit VIIIa, were up-regulated; the genes for ribosomal protein L37 and ribosomal protein L4 were down-regulated by TSH and insulin. However, there was no gene observed to be regulated by all three: TSH, IGF-1, and insulin molecules studied. These findings suggest that TSH, IGF-1, and insulin stimulate different signal pathways, which can interact with one another to regulate the proliferation of thyrocytes, and thereby provide additional influence on the process of cellular proliferation.

Top