Sample records for microarray-enriched human genomic

  1. Microarray data mining using Bioconductor packages.

    PubMed

    Nie, Haisheng; Neerincx, Pieter B T; van der Poel, Jan; Ferrari, Francesco; Bicciato, Silvio; Leunissen, Jack A M; Groenen, Martien A M

    2009-07-16

    This paper describes the results of a Gene Ontology (GO) term enrichment analysis of chicken microarray data using the Bioconductor packages. By checking the enriched GO terms in three contrasts, MM8-PM8, MM8-MA8, and MM8-MM24, of the provided microarray data during this workshop, this analysis aimed to investigate the host reactions in chickens occurring shortly after a secondary challenge with either a homologous or heterologous species of Eimeria. The results of GO enrichment analysis using GO terms annotated to chicken genes and GO terms annotated to chicken-human orthologous genes were also compared. Furthermore, a locally adaptive statistical procedure (LAP) was performed to test differentially expressed chromosomal regions, rather than individual genes, in the chicken genome after Eimeria challenge. GO enrichment analysis identified significant (raw p-value < 0.05) GO terms for all three contrasts included in the analysis. Some of the GO terms linked to, generally, primary immune responses or secondary immune responses indicating the GO enrichment analysis is a useful approach to analyze microarray data. The comparisons of GO enrichment results using chicken gene information and chicken-human orthologous gene information showed more refined GO terms related to immune responses when using chicken-human orthologous gene information, this suggests that using chicken-human orthologous gene information has higher power to detect significant GO terms with more refined functionality. Furthermore, three chromosome regions were identified to be significantly up-regulated in contrast MM8-PM8 (q-value < 0.01). Overall, this paper describes a practical approach to analyze microarray data in farm animals where the genome information is still incomplete. For farm animals, such as chicken, with currently limited gene annotation, borrowing gene annotation information from orthologous genes in well-annotated species, such as human, will help improve the pathway analysis results substantially. Furthermore, LAP analysis approach is a relatively new and very useful way to be applied in microarray analysis.

  2. Segmental Duplications and Copy-Number Variation in the Human Genome

    PubMed Central

    Sharp, Andrew J. ; Locke, Devin P. ; McGrath, Sean D. ; Cheng, Ze ; Bailey, Jeffrey A. ; Vallente, Rhea U. ; Pertz, Lisa M. ; Clark, Royden A. ; Schwartz, Stuart ; Segraves, Rick ; Oseroff, Vanessa V. ; Albertson, Donna G. ; Pinkel, Daniel ; Eichler, Evan E. 

    2005-01-01

    The human genome contains numerous blocks of highly homologous duplicated sequence. This higher-order architecture provides a substrate for recombination and recurrent chromosomal rearrangement associated with genomic disease. However, an assessment of the role of segmental duplications in normal variation has not yet been made. On the basis of the duplication architecture of the human genome, we defined a set of 130 potential rearrangement hotspots and constructed a targeted bacterial artificial chromosome (BAC) microarray (with 2,194 BACs) to assess copy-number variation in these regions by array comparative genomic hybridization. Using our segmental duplication BAC microarray, we screened a panel of 47 normal individuals, who represented populations from four continents, and we identified 119 regions of copy-number polymorphism (CNP), 73 of which were previously unreported. We observed an equal frequency of duplications and deletions, as well as a 4-fold enrichment of CNPs within hotspot regions, compared with control BACs (P < .000001), which suggests that segmental duplications are a major catalyst of large-scale variation in the human genome. Importantly, segmental duplications themselves were also significantly enriched >4-fold within regions of CNP. Almost without exception, CNPs were not confined to a single population, suggesting that these either are recurrent events, having occurred independently in multiple founders, or were present in early human populations. Our study demonstrates that segmental duplications define hotspots of chromosomal rearrangement, likely acting as mediators of normal variation as well as genomic disease, and it suggests that the consideration of genomic architecture can significantly improve the ascertainment of large-scale rearrangements. Our specialized segmental duplication BAC microarray and associated database of structural polymorphisms will provide an important resource for the future characterization of human genomic disorders. PMID:15918152

  3. An evaluation of two-channel ChIP-on-chip and DNA methylation microarray normalization strategies

    PubMed Central

    2012-01-01

    Background The combination of chromatin immunoprecipitation with two-channel microarray technology enables genome-wide mapping of binding sites of DNA-interacting proteins (ChIP-on-chip) or sites with methylated CpG di-nucleotides (DNA methylation microarray). These powerful tools are the gateway to understanding gene transcription regulation. Since the goals of such studies, the sample preparation procedures, the microarray content and study design are all different from transcriptomics microarrays, the data pre-processing strategies traditionally applied to transcriptomics microarrays may not be appropriate. Particularly, the main challenge of the normalization of "regulation microarrays" is (i) to make the data of individual microarrays quantitatively comparable and (ii) to keep the signals of the enriched probes, representing DNA sequences from the precipitate, as distinguishable as possible from the signals of the un-enriched probes, representing DNA sequences largely absent from the precipitate. Results We compare several widely used normalization approaches (VSN, LOWESS, quantile, T-quantile, Tukey's biweight scaling, Peng's method) applied to a selection of regulation microarray datasets, ranging from DNA methylation to transcription factor binding and histone modification studies. Through comparison of the data distributions of control probes and gene promoter probes before and after normalization, and assessment of the power to identify known enriched genomic regions after normalization, we demonstrate that there are clear differences in performance between normalization procedures. Conclusion T-quantile normalization applied separately on the channels and Tukey's biweight scaling outperform other methods in terms of the conservation of enriched and un-enriched signal separation, as well as in identification of genomic regions known to be enriched. T-quantile normalization is preferable as it additionally improves comparability between microarrays. In contrast, popular normalization approaches like quantile, LOWESS, Peng's method and VSN normalization alter the data distributions of regulation microarrays to such an extent that using these approaches will impact the reliability of the downstream analysis substantially. PMID:22276688

  4. Development of microbial genome-probing microarrays using digital multiple displacement amplification of uncultivated microbial single cells.

    PubMed

    Chang, Ho-Won; Sung, Youlboong; Kim, Kyoung-Ho; Nam, Young-Do; Roh, Seong Woon; Kim, Min-Soo; Jeon, Che Ok; Bae, Jin-Woo

    2008-08-15

    A crucial problem in the use of previously developed genome-probing microarrays (GPM) has been the inability to use uncultivated bacterial genomes to take advantage of the high sensitivity and specificity of GPM in microbial detection and monitoring. We show here a method, digital multiple displacement amplification (MDA), to amplify and analyze various genomes obtained from single uncultivated bacterial cells. We used 15 genomes from key microbes involved in dichloromethane (DCM)-dechlorinating enrichment as microarray probes to uncover the bacterial population dynamics of samples without PCR amplification. Genomic DNA amplified from single cells originating from uncultured bacteria with 80.3-99.4% similarity to 16S rRNA genes of cultivated bacteria. The digital MDA-GPM method successfully monitored the dynamics of DCM-dechlorinating communities from different phases of enrichment status. Without a priori knowledge of microbial diversity, the digital MDA-GPM method could be designed to monitor most microbial populations in a given environmental sample.

  5. ChIP-chip.

    PubMed

    Kim, Tae Hoon; Dekker, Job

    2018-05-01

    ChIP-chip can be used to analyze protein-DNA interactions in a region-wide and genome-wide manner. DNA microarrays contain PCR products or oligonucleotide probes that are designed to represent genomic sequences. Identification of genomic sites that interact with a specific protein is based on competitive hybridization of the ChIP-enriched DNA and the input DNA to DNA microarrays. The ChIP-chip protocol can be divided into two main sections: Amplification of ChIP DNA and hybridization of ChIP DNA to arrays. A large amount of DNA is required to hybridize to DNA arrays, and hybridization to a set of multiple commercial arrays that represent the entire human genome requires two rounds of PCR amplifications. The relative hybridization intensity of ChIP DNA and that of the input DNA is used to determine whether the probe sequence is a potential site of protein-DNA interaction. Resolution of actual genomic sites bound by the protein is dependent on the size of the chromatin and on the genomic distance between the probes on the array. As with expression profiling using gene chips, ChIP-chip experiments require multiple replicates for reliable statistical measure of protein-DNA interactions. © 2018 Cold Spring Harbor Laboratory Press.

  6. A comprehensive transcript index of the human genome generated using microarrays and computational approaches

    PubMed Central

    Schadt, Eric E; Edwards, Stephen W; GuhaThakurta, Debraj; Holder, Dan; Ying, Lisa; Svetnik, Vladimir; Leonardson, Amy; Hart, Kyle W; Russell, Archie; Li, Guoya; Cavet, Guy; Castle, John; McDonagh, Paul; Kan, Zhengyan; Chen, Ronghua; Kasarskis, Andrew; Margarint, Mihai; Caceres, Ramon M; Johnson, Jason M; Armour, Christopher D; Garrett-Engele, Philip W; Tsinoremas, Nicholas F; Shoemaker, Daniel D

    2004-01-01

    Background Computational and microarray-based experimental approaches were used to generate a comprehensive transcript index for the human genome. Oligonucleotide probes designed from approximately 50,000 known and predicted transcript sequences from the human genome were used to survey transcription from a diverse set of 60 tissues and cell lines using ink-jet microarrays. Further, expression activity over at least six conditions was more generally assessed using genomic tiling arrays consisting of probes tiled through a repeat-masked version of the genomic sequence making up chromosomes 20 and 22. Results The combination of microarray data with extensive genome annotations resulted in a set of 28,456 experimentally supported transcripts. This set of high-confidence transcripts represents the first experimentally driven annotation of the human genome. In addition, the results from genomic tiling suggest that a large amount of transcription exists outside of annotated regions of the genome and serves as an example of how this activity could be measured on a genome-wide scale. Conclusions These data represent one of the most comprehensive assessments of transcriptional activity in the human genome and provide an atlas of human gene expression over a unique set of gene predictions. Before the annotation of the human genome is considered complete, however, the previously unannotated transcriptional activity throughout the genome must be fully characterized. PMID:15461792

  7. Differential Adipose Tissue Gene Expression Profiles in Abacavir Treated Patients That May Contribute to the Understanding of Cardiovascular Risk: A Microarray Study

    PubMed Central

    Shahmanesh, Mohsen; Phillips, Kenneth; Boothby, Meg; Tomlinson, Jeremy W.

    2015-01-01

    Objective To compare changes in gene expression by microarray from subcutaneous adipose tissue from HIV treatment naïve patients treated with efavirenz based regimens containing abacavir (ABC), tenofovir (TDF) or zidovidine (AZT). Design Subcutaneous fat biopsies were obtained before, at 6- and 18–24-months after treatment, and from HIV negative controls. Groups were age, ethnicity, weight, biochemical profile, and pre-treatment CD4 count matched. Microarray data was generated using the Agilent Whole Human Genome Microarray. Identification of differentially expressed genes and genomic response pathways was performed using limma and gene set enrichment analysis. Results There were significant divergences between ABC and the other two groups 6 months after treatment in genes controlling cell adhesion and environmental information processing, with some convergence at 18–24 months. Compared to controls the ABC group, but not AZT or TDF showed enrichment of genes controlling adherence junction, at 6 months and 18–24 months (adjusted p<0.05) and focal adhesions and tight junction at 6 months (p<0.5). Genes controlling leukocyte transendothelial migration (p<0.05) and ECM-receptor interactions (p = 0.04) were over-expressed in ABC compared to TDF and AZT at 6 months but not at 18–24 months. Enrichment of pathways and individual genes controlling cell adhesion and environmental information processing were specifically dysregulated in the ABC group in comparison with other treatments. There was little difference between AZT and TDF. Conclusion After initiating treatment, there is divergence in the expression of genes controlling cell adhesion and environmental information processing between ABC and both TDF and AZT in subcutaneous adipose tissue. If similar changes are also taking place in other tissues including the coronary vasculature they may contribute to the increased risk of cardiovascular events reported in patients recently started on abacavir-containing regimens. PMID:25617630

  8. Genomic profiling of plasma cell disorders in a clinical setting: integration of microarray and FISH, after CD138 selection of bone marrow

    PubMed Central

    Berry, Nadine Kaye; Bain, Nicole L; Enjeti, Anoop K; Rowlings, Philip

    2014-01-01

    Aim To evaluate the role of whole genome comparative genomic hybridisation microarray (array-CGH) in detecting genomic imbalances as compared to conventional karyotype (GTG-analysis) or myeloma specific fluorescence in situ hybridisation (FISH) panel in a diagnostic setting for plasma cell dyscrasia (PCD). Methods A myeloma-specific interphase FISH (i-FISH) panel was carried out on CD138 PC-enriched bone marrow (BM) from 20 patients having BM biopsies for evaluation of PCD. Whole genome array-CGH was performed on reference (control) and neoplastic (test patient) genomic DNA extracted from CD138 PC-enriched BM and analysed. Results Comparison of techniques demonstrated a much higher detection rate of genomic imbalances using array-CGH. Genomic imbalances were detected in 1, 19 and 20 patients using GTG-analysis, i-FISH and array-CGH, respectively. Genomic rearrangements were detected in one patient using GTG-analysis and seven patients using i-FISH, while none were detected using array-CGH. I-FISH was the most sensitive method for detecting gene rearrangements and GTG-analysis was the least sensitive method overall. All copy number aberrations observed in GTG-analysis were detected using array-CGH and i-FISH. Conclusions We show that array-CGH performed on CD138-enriched PCs significantly improves the detection of clinically relevant and possibly novel genomic abnormalities in PCD, and thus could be considered as a standard diagnostic technique in combination with IGH rearrangement i-FISH. PMID:23969274

  9. Genomic profiling of plasma cell disorders in a clinical setting: integration of microarray and FISH, after CD138 selection of bone marrow.

    PubMed

    Berry, Nadine Kaye; Bain, Nicole L; Enjeti, Anoop K; Rowlings, Philip

    2014-01-01

    To evaluate the role of whole genome comparative genomic hybridisation microarray (array-CGH) in detecting genomic imbalances as compared to conventional karyotype (GTG-analysis) or myeloma specific fluorescence in situ hybridisation (FISH) panel in a diagnostic setting for plasma cell dyscrasia (PCD). A myeloma-specific interphase FISH (i-FISH) panel was carried out on CD138 PC-enriched bone marrow (BM) from 20 patients having BM biopsies for evaluation of PCD. Whole genome array-CGH was performed on reference (control) and neoplastic (test patient) genomic DNA extracted from CD138 PC-enriched BM and analysed. Comparison of techniques demonstrated a much higher detection rate of genomic imbalances using array-CGH. Genomic imbalances were detected in 1, 19 and 20 patients using GTG-analysis, i-FISH and array-CGH, respectively. Genomic rearrangements were detected in one patient using GTG-analysis and seven patients using i-FISH, while none were detected using array-CGH. I-FISH was the most sensitive method for detecting gene rearrangements and GTG-analysis was the least sensitive method overall. All copy number aberrations observed in GTG-analysis were detected using array-CGH and i-FISH. We show that array-CGH performed on CD138-enriched PCs significantly improves the detection of clinically relevant and possibly novel genomic abnormalities in PCD, and thus could be considered as a standard diagnostic technique in combination with IGH rearrangement i-FISH.

  10. FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) isolates active regulatory elements from human chromatin

    PubMed Central

    Giresi, Paul G.; Kim, Jonghwan; McDaniell, Ryan M.; Iyer, Vishwanath R.; Lieb, Jason D.

    2007-01-01

    DNA segments that actively regulate transcription in vivo are typically characterized by eviction of nucleosomes from chromatin and are experimentally identified by their hypersensitivity to nucleases. Here we demonstrate a simple procedure for the isolation of nucleosome-depleted DNA from human chromatin, termed FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements). To perform FAIRE, chromatin is crosslinked with formaldehyde in vivo, sheared by sonication, and phenol-chloroform extracted. The DNA recovered in the aqueous phase is fluorescently labeled and hybridized to a DNA microarray. FAIRE performed in human cells strongly enriches DNA coincident with the location of DNaseI hypersensitive sites, transcriptional start sites, and active promoters. Evidence for cell-type–specific patterns of FAIRE enrichment is also presented. FAIRE has utility as a positive selection for genomic regions associated with regulatory activity, including regions traditionally detected by nuclease hypersensitivity assays. PMID:17179217

  11. Exome sequencing of a multigenerational human pedigree.

    PubMed

    Hedges, Dale J; Hedges, Dale; Burges, Dan; Powell, Eric; Almonte, Cherylyn; Huang, Jia; Young, Stuart; Boese, Benjamin; Schmidt, Mike; Pericak-Vance, Margaret A; Martin, Eden; Zhang, Xinmin; Harkins, Timothy T; Züchner, Stephan

    2009-12-14

    Over the next few years, the efficient use of next-generation sequencing (NGS) in human genetics research will depend heavily upon the effective mechanisms for the selective enrichment of genomic regions of interest. Recently, comprehensive exome capture arrays have become available for targeting approximately 33 Mb or approximately 180,000 coding exons across the human genome. Selective genomic enrichment of the human exome offers an attractive option for new experimental designs aiming to quickly identify potential disease-associated genetic variants, especially in family-based studies. We have evaluated a 2.1 M feature human exome capture array on eight individuals from a three-generation family pedigree. We were able to cover up to 98% of the targeted bases at a long-read sequence read depth of > or = 3, 86% at a read depth of > or = 10, and over 50% of all targets were covered with > or = 20 reads. We identified up to 14,284 SNPs and small indels per individual exome, with up to 1,679 of these representing putative novel polymorphisms. Applying the conservative genotype calling approach HCDiff, the average rate of detection of a variant allele based on Illumina 1 M BeadChips genotypes was 95.2% at > or = 10x sequence. Further, we propose an advantageous genotype calling strategy for low covered targets that empirically determines cut-off thresholds at a given coverage depth based on existing genotype data. Application of this method was able to detect >99% of SNPs covered > or = 8x. Our results offer guidance for "real-world" applications in human genetics and provide further evidence that microarray-based exome capture is an efficient and reliable method to enrich for chromosomal regions of interest in next-generation sequencing experiments.

  12. Diff-seq: A high throughput sequencing-based mismatch detection assay for DNA variant enrichment and discovery

    PubMed Central

    Karas, Vlad O; Sinnott-Armstrong, Nicholas A; Varghese, Vici; Shafer, Robert W; Greenleaf, William J; Sherlock, Gavin

    2018-01-01

    Abstract Much of the within species genetic variation is in the form of single nucleotide polymorphisms (SNPs), typically detected by whole genome sequencing (WGS) or microarray-based technologies. However, WGS produces mostly uninformative reads that perfectly match the reference, while microarrays require genome-specific reagents. We have developed Diff-seq, a sequencing-based mismatch detection assay for SNP discovery without the requirement for specialized nucleic-acid reagents. Diff-seq leverages the Surveyor endonuclease to cleave mismatched DNA molecules that are generated after cross-annealing of a complex pool of DNA fragments. Sequencing libraries enriched for Surveyor-cleaved molecules result in increased coverage at the variant sites. Diff-seq detected all mismatches present in an initial test substrate, with specific enrichment dependent on the identity and context of the variation. Application to viral sequences resulted in increased observation of variant alleles in a biologically relevant context. Diff-Seq has the potential to increase the sensitivity and efficiency of high-throughput sequencing in the detection of variation. PMID:29361139

  13. Small Deletion Variants Have Stable Breakpoints Commonly Associated with Alu Elements

    PubMed Central

    Coin, Lachlan J. M.; Steinfeld, Israel; Yakhini, Zohar; Sladek, Rob; Froguel, Philippe; Blakemore, Alexandra I. F.

    2008-01-01

    Copy number variants (CNVs) contribute significantly to human genomic variation, with over 5000 loci reported, covering more than 18% of the euchromatic human genome. Little is known, however, about the origin and stability of variants of different size and complexity. We investigated the breakpoints of 20 small, common deletions, representing a subset of those originally identified by array CGH, using Agilent microarrays, in 50 healthy French Caucasian subjects. By sequencing PCR products amplified using primers designed to span the deleted regions, we determined the exact size and genomic position of the deletions in all affected samples. For each deletion studied, all individuals carrying the deletion share identical upstream and downstream breakpoints at the sequence level, suggesting that the deletion event occurred just once and later became common in the population. This is supported by linkage disequilibrium (LD) analysis, which has revealed that most of the deletions studied are in moderate to strong LD with surrounding SNPs, and have conserved long-range haplotypes. Analysis of the sequences flanking the deletion breakpoints revealed an enrichment of microhomology at the breakpoint junctions. More significantly, we found an enrichment of Alu repeat elements, the overwhelming majority of which intersected deletion breakpoints at their poly-A tails. We found no enrichment of LINE elements or segmental duplications, in contrast to other reports. Sequence analysis revealed enrichment of a conserved motif in the sequences surrounding the deletion breakpoints, although whether this motif has any mechanistic role in the formation of some deletions has yet to be determined. Considered together with existing information on more complex inherited variant regions, and reports of de novo variants associated with autism, these data support the presence of different subgroups of CNV in the genome which may have originated through different mechanisms. PMID:18769679

  14. Gene expression analysis uncovers novel Hedgehog interacting protein (HHIP) effects in human bronchial epithelial cells

    PubMed Central

    Zhou, Xiaobo; Qiu, Weiliang; Sathirapongsasuti, J. Fah.; Cho, Michael H.; Mancini, John D.; Lao, Taotao; Thibault, Derek M.; Litonjua, Gus; Bakke, Per S.; Gulsvik, Amund; Lomas, David A.; Beaty, Terri H.; Hersh, Craig P.; Anderson, Christopher; Geigenmuller, Ute; Raby, Benjamin A.; Rennard, Stephen I.; Perrella, Mark A.; Choi, Augustine M.K.; Quackenbush, John; Silverman, Edwin K.

    2013-01-01

    Hedgehog Interacting Protein (HHIP) was implicated in chronic obstructive pulmonary disease (COPD) by genome-wide association studies (GWAS). However, it remains unclear how HHIP contributes to COPD pathogenesis. To identify genes regulated by HHIP, we performed gene expression microarray analysis in a human bronchial epithelial cell line (Beas-2B) stably infected with HHIP shRNAs. HHIP silencing led to differential expression of 296 genes; enrichment for variants nominally associated with COPD was found. Eighteen of the differentially expressed genes were validated by real-time PCR in Beas-2B cells. Seven of 11 validated genes tested in human COPD and control lung tissues demonstrated significant gene expression differences. Functional annotation indicated enrichment for extracellular matrix and cell growth genes. Network modeling demonstrated that the extracellular matrix and cell proliferation genes influenced by HHIP tended to be interconnected. Thus, we identified potential HHIP targets in human bronchial epithelial cells that may contribute to COPD pathogenesis. PMID:23459001

  15. Development of a fluorescence-activated cell sorting method coupled with whole genome amplification to analyze minority and trace Dehalococcoides genomes in microbial communities.

    PubMed

    Lee, Patrick K H; Men, Yujie; Wang, Shanquan; He, Jianzhong; Alvarez-Cohen, Lisa

    2015-02-03

    Dehalococcoides mccartyi are functionally important bacteria that catalyze the reductive dechlorination of chlorinated ethenes. However, these anaerobic bacteria are fastidious to isolate, making downstream genomic characterization challenging. In order to facilitate genomic analysis, a fluorescence-activated cell sorting (FACS) method was developed in this study to separate D. mccartyi cells from a microbial community, and the DNA of the isolated cells was processed by whole genome amplification (WGA) and hybridized onto a D. mccartyi microarray for comparative genomics against four sequenced strains. First, FACS was successfully applied to a D. mccartyi isolate as positive control, and then microarray results verified that WGA from 10(6) cells or ∼1 ng of genomic DNA yielded high-quality coverage detecting nearly all genes across the genome. As expected, some inter- and intrasample variability in WGA was observed, but these biases were minimized by performing multiple parallel amplifications. Subsequent application of the FACS and WGA protocols to two enrichment cultures containing ∼10% and ∼1% D. mccartyi cells successfully enabled genomic analysis. As proof of concept, this study demonstrates that coupling FACS with WGA and microarrays is a promising tool to expedite genomic characterization of target strains in environmental communities where the relative concentrations are low.

  16. BIOMONITORING THE TOXICOGENOMIC RESPONSE TO ENDOCRINE DISRUPTING CHEMICALS IN HUMANS, LABORATORY SPECIES AND WILDLIFE

    EPA Science Inventory

    With the advent of sequence information for entire eukaryotic genomes, it is now possible to analyze gene expression on a genomic scale. The primary tool for genomic analysis of gene expression is the gene microarray. We have used commercially available and custom cDNA microarray...

  17. [Technology of analysis of epigenetic and structural changes of epithelial tumors genome with NotI-microarrays by the example of human chromosome].

    PubMed

    Pavlova, T V; Kashuba, V I; Muravenko, O V; Yenamandra, S P; Ivanova, T A; Zabarovskaia, V I; Rakhmanaliev, E R; Petrenko, L A; Pronina, I V; Loginov, V I; Iurkevich, O Iu; Kiselev, L L; Zelenin, A V; Zabarovskiĭ, E R

    2009-01-01

    New comparative genome hybridization technology on NotI-microarrays is presented (Karolinska Institute International Patent WO02/086163). The method is based on comparative genome hybridization of NotI-probes from tumor and normal genomic DNA with the principle of new DNA NotI-microarrays. Using this method 181 NotI linking loci from human chromosome 3 were analyzed in 200 malignant tumor samples from different organs: kidney, lung, breast, ovary, cervical, prostate. Most frequently (more than in 30%) aberrations--deletions, methylation,--were identified in NotI-sites located in MINT24, BHLHB2, RPL15, RARbeta1, ITGA9, RBSP3, VHL, ZIC4 genes, that suggests they probably are involved in cancer development. Methylation of these genomic loci was confirmed by methylation-specific PCR and bisulfite sequencing. The results demonstrate perspective of using this method to solve some oncogenomic problems.

  18. Identification of candidate genes involved in neuroblastoma progression by combining genomic and expression microarrays with survival data.

    PubMed

    Łastowska, M; Viprey, V; Santibanez-Koref, M; Wappler, I; Peters, H; Cullinane, C; Roberts, P; Hall, A G; Tweddle, D A; Pearson, A D J; Lewis, I; Burchill, S A; Jackson, M S

    2007-11-22

    Identifying genes, whose expression is consistently altered by chromosomal gains or losses, is an important step in defining genes of biological relevance in a wide variety of tumour types. However, additional criteria are needed to discriminate further among the large number of candidate genes identified. This is particularly true for neuroblastoma, where multiple genomic copy number changes of proven prognostic value exist. We have used Affymetrix microarrays and a combination of fluorescent in situ hybridization and single nucleotide polymorphism (SNP) microarrays to establish expression profiles and delineate copy number alterations in 30 primary neuroblastomas. Correlation of microarray data with patient survival and analysis of expression within rodent neuroblastoma cell lines were then used to define further genes likely to be involved in the disease process. Using this approach, we identify >1000 genes within eight recurrent genomic alterations (loss of 1p, 3p, 4p, 10q and 11q, 2p gain, 17q gain, and the MYCN amplicon) whose expression is consistently altered by copy number change. Of these, 84 correlate with patient survival, with the minimal regions of 17q gain and 4p loss being enriched significantly for such genes. These include genes involved in RNA and DNA metabolism, and apoptosis. Orthologues of all but one of these genes on 17q are overexpressed in rodent neuroblastoma cell lines. A significant excess of SNPs whose copy number correlates with survival is also observed on proximal 4p in stage 4 tumours, and we find that deletion of 4p is associated with improved outcome in an extended cohort of tumours. These results define the major impact of genomic copy number alterations upon transcription within neuroblastoma, and highlight genes on distal 17q and proximal 4p for downstream analyses. They also suggest that integration of discriminators, such as survival and comparative gene expression, with microarray data may be useful in the identification of critical genes within regions of loss or gain in many human cancers.

  19. Tissue-enriched expression profiles in Aedes aegypti identify hemocyte-specific transcriptome responses to infection

    PubMed Central

    Choi, Young-Jun; Fuchs, Jeremy F.; Mayhew, George F.; Yu, Helen E.; Christensen, Bruce M.

    2012-01-01

    Hemocytes are integral components of mosquito immune mechanisms such as phagocytosis, melanization, and production of antimicrobial peptides. However, our understanding of hemocyte-specific molecular processes and their contribution to shaping the host immune response remains limited. To better understand the immunophysiological features distinctive of hemocytes, we conducted genome-wide analysis of hemocyte-enriched transcripts, and examined how tissue-enriched expression patterns change with the immune status of the host. Our microarray data indicate that the hemocyte-enriched trascriptome is dynamic and context-dependent. Analysis of transcripts enriched after bacterial challenge in circulating hemocytes with respect to carcass added a dimension to evaluating infection-responsive genes and immune-related gene families. We resolved patterns of transcriptional change unique to hemocytes from those that are likely shared by other immune responsive tissues, and identified clusters of genes preferentially induced in hemocytes, likely reflecting their involvement in cell type specific functions. In addition, the study revealed conserved hemocyte-enriched molecular repertoires which might be implicated in core hemocyte function by cross-species meta-analysis of microarray expression data from Anopheles gambiae and Drosophila melanogaster. PMID:22796331

  20. Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications

    PubMed Central

    Harris, R. Alan; Wang, Ting; Coarfa, Cristian; Nagarajan, Raman P.; Hong, Chibo; Downey, Sara L.; Johnson, Brett E.; Fouse, Shaun D.; Delaney, Allen; Zhao, Yongjun; Olshen, Adam; Ballinger, Tracy; Zhou, Xin; Forsberg, Kevin J.; Gu, Junchen; Echipare, Lorigail; O’Geen, Henriette; Lister, Ryan; Pelizzola, Mattia; Xi, Yuanxin; Epstein, Charles B.; Bernstein, Bradley E.; Hawkins, R. David; Ren, Bing; Chung, Wen-Yu; Gu, Hongcang; Bock, Christoph; Gnirke, Andreas; Zhang, Michael Q.; Haussler, David; Ecker, Joseph; Li, Wei; Farnham, Peggy J.; Waterland, Robert A.; Meissner, Alexander; Marra, Marco A.; Hirst, Martin; Milosavljevic, Aleksandar; Costello, Joseph F.

    2010-01-01

    Sequencing-based DNA methylation profiling methods are comprehensive and, as accuracy and affordability improve, will increasingly supplant microarrays for genome-scale analyses. Here, four sequencing-based methodologies were applied to biological replicates of human embryonic stem cells to compare their CpG coverage genome-wide and in transposons, resolution, cost, concordance and its relationship with CpG density and genomic context. The two bisulfite methods reached concordance of 82% for CpG methylation levels and 99% for non-CpG cytosine methylation levels. Using binary methylation calls, two enrichment methods were 99% concordant, while regions assessed by all four methods were 97% concordant. To achieve comprehensive methylome coverage while reducing cost, an approach integrating two complementary methods was examined. The integrative methylome profile along with histone methylation, RNA, and SNP profiles derived from the sequence reads allowed genome-wide assessment of allele-specific epigenetic states, identifying most known imprinted regions and new loci with monoallelic epigenetic marks and monoallelic expression. PMID:20852635

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, Shea N.; McLoughlin, Kevin; Be, Nicholas A.

    Venezuelan equine encephalitis virus (VEEV) is a mosquito-borne alphavirus that has caused large outbreaks of severe illness in both horses and humans. New approaches are needed to rapidly infer the origin of a newly discovered VEEV strain, estimate its equine amplification and resultant epidemic potential, and predict human virulence phenotype. We performed whole genome single nucleotide polymorphism (SNP) analysis of all available VEE antigenic complex genomes, verified that a SNP-based phylogeny accurately captured the features of a phylogenetic tree based on multiple sequence alignment, and developed a high resolution genome-wide SNP microarray. We used the microarray to analyze a broadmore » panel of VEEV isolates, found excellent concordance between array- and sequence-based SNP calls, genotyped unsequenced isolates, and placed them on a phylogeny with sequenced genomes. The microarray successfully genotyped VEEV directly from tissue samples of an infected mouse, bypassing the need for viral isolation, culture and genomic sequencing. Lastly, we identified genomic variants associated with serotypes and host species, revealing a complex relationship between genotype and phenotype.« less

  2. DNA methylation profiling using HpaII tiny fragment enrichment by ligation-mediated PCR (HELP)

    PubMed Central

    Suzuki, Masako; Greally, John M.

    2010-01-01

    The HELP assay is a technique that allows genome-wide analysis of cytosine methylation. Here we describe the assay, its relative strengths and weaknesses, and the transition of the assay from a microarray to massively-parallel sequencing-based foundation. PMID:20434563

  3. Integrative genomic and proteomic profiling of human neuroblastoma SH-SY5Y cells reveals signatures of endosulfan exposure.

    PubMed

    Gandhi, Deepa; Tarale, Prashant; Naoghare, Pravin K; Bafana, Amit; Kannan, Krishnamurthi; Sivanesan, Saravanadevi

    2016-01-01

    Endosulfan, an organochlorine pesticide, is known to induce multiple disorders/abnormalities including neuro-degenerative disorders in many animal species. However, the molecular mechanism of endosulfan induced neuronal alterations is still not well understood. In the present study, the effect of sub-lethal concentration of endosulfan (3 μM) on human neuroblastoma cells (SH-SY5Y) was investigated using genomic and proteomic approaches. Microarray and 2D-PAGE followed by MALDI-TOF-MS analysis revealed differential expression of 831 transcripts and 16 proteins in exposed cells. A gene ontology enrichment analysis revealed that the differentially expressed genes and proteins were involved in variety of cellular events such as neuronal developmental pathway, immune response, cell differentiation, apoptosis, transmission of nerve impulse, axonogenesis, etc. The present study attempted to explore the possible molecular mechanism of endosulfan induced neuronal alterations in SH-SY5Y cells using an integrated genomic and proteomic approach. Based on the gene and protein profile possible mechanisms underlying endosulfan neurotoxicity were predicted. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Applications of microarray technology in breast cancer research

    PubMed Central

    Cooper, Colin S

    2001-01-01

    Microarrays provide a versatile platform for utilizing information from the Human Genome Project to benefit human health. This article reviews the ways in which microarray technology may be used in breast cancer research. Its diverse applications include monitoring chromosome gains and losses, tumour classification, drug discovery and development, DNA resequencing, mutation detection and investigating the mechanism of tumour development. PMID:11305951

  5. Profiling conserved biological pathways in Autosomal Dominant Polycystic Kidney Disorder (ADPKD) to elucidate key transcriptomic alterations regulating cystogenesis: A cross-species meta-analysis approach.

    PubMed

    Chatterjee, Shatakshee; Verma, Srikant Prasad; Pandey, Priyanka

    2017-09-05

    Initiation and progression of fluid filled cysts mark Autosomal Dominant Polycystic Kidney Disease (ADPKD). Thus, improved therapeutics targeting cystogenesis remains a constant challenge. Microarray studies in single ADPKD animal models species with limited sample sizes tend to provide scattered views on underlying ADPKD pathogenesis. Thus we aim to perform a cross species meta-analysis to profile conserved biological pathways that might be key targets for therapy. Nine ADPKD microarray datasets on rat, mice and human fulfilled our study criteria and were chosen. Intra-species combined analysis was performed after considering removal of batch effect. Significantly enriched GO biological processes and KEGG pathways were computed and their overlap was observed. For the conserved pathways, biological modules and gene regulatory networks were observed. Additionally, Gene Set Enrichment Analysis (GSEA) using Molecular Signature Database (MSigDB) was performed for genes found in conserved pathways. We obtained 28 modules of significantly enriched GO processes and 5 major functional categories from significantly enriched KEGG pathways conserved in human, mice and rats that in turn suggest a global transcriptomic perturbation affecting cyst - formation, growth and progression. Significantly enriched pathways obtained from up-regulated genes such as Genomic instability, Protein localization in ER and Insulin Resistance were found to regulate cyst formation and growth whereas cyst progression due to increased cell adhesion and inflammation was suggested by perturbations in Angiogenesis, TGF-beta, CAMs, and Infection related pathways. Additionally, networks revealed shared genes among pathways e.g. SMAD2 and SMAD7 in Endocytosis and TGF-beta. Our study suggests cyst formation and progression to be an outcome of interplay between a set of several key deregulated pathways. Thus, further translational research is warranted focusing on developing a combinatorial therapeutic approach for ADPKD redressal. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Expanding probe repertoire and improving reproducibility in human genomic hybridization

    PubMed Central

    Dorman, Stephanie N.; Shirley, Ben C.; Knoll, Joan H. M.; Rogan, Peter K.

    2013-01-01

    Diagnostic DNA hybridization relies on probes composed of single copy (sc) genomic sequences. Sc sequences in probe design ensure high specificity and avoid cross-hybridization to other regions of the genome, which could lead to ambiguous results that are difficult to interpret. We examine how the distribution and composition of repetitive sequences in the genome affects sc probe performance. A divide and conquer algorithm was implemented to design sc probes. With this approach, sc probes can include divergent repetitive elements, which hybridize to unique genomic targets under higher stringency experimental conditions. Genome-wide custom probe sets were created for fluorescent in situ hybridization (FISH) and microarray genomic hybridization. The scFISH probes were developed for detection of copy number changes within small tumour suppressor genes and oncogenes. The microarrays demonstrated increased reproducibility by eliminating cross-hybridization to repetitive sequences adjacent to probe targets. The genome-wide microarrays exhibited lower median coefficients of variation (17.8%) for two HapMap family trios. The coefficients of variations of commercial probes within 300 nt of a repetitive element were 48.3% higher than the nearest custom probe. Furthermore, the custom microarray called a chromosome 15q11.2q13 deletion more consistently. This method for sc probe design increases probe coverage for FISH and lowers variability in genomic microarrays. PMID:23376933

  7. Equalizer reduces SNP bias in Affymetrix microarrays.

    PubMed

    Quigley, David

    2015-07-30

    Gene expression microarrays measure the levels of messenger ribonucleic acid (mRNA) in a sample using probe sequences that hybridize with transcribed regions. These probe sequences are designed using a reference genome for the relevant species. However, most model organisms and all humans have genomes that deviate from their reference. These variations, which include single nucleotide polymorphisms, insertions of additional nucleotides, and nucleotide deletions, can affect the microarray's performance. Genetic experiments comparing individuals bearing different population-associated single nucleotide polymorphisms that intersect microarray probes are therefore subject to systemic bias, as the reduction in binding efficiency due to a technical artifact is confounded with genetic differences between parental strains. This problem has been recognized for some time, and earlier methods of compensation have attempted to identify probes affected by genome variants using statistical models. These methods may require replicate microarray measurement of gene expression in the relevant tissue in inbred parental samples, which are not always available in model organisms and are never available in humans. By using sequence information for the genomes of organisms under investigation, potentially problematic probes can now be identified a priori. However, there is no published software tool that makes it easy to eliminate these probes from an annotation. I present equalizer, a software package that uses genome variant data to modify annotation files for the commonly used Affymetrix IVT and Gene/Exon platforms. These files can be used by any microarray normalization method for subsequent analysis. I demonstrate how use of equalizer on experiments mapping germline influence on gene expression in a genetic cross between two divergent mouse species and in human samples significantly reduces probe hybridization-induced bias, reducing false positive and false negative findings. The equalizer package reduces probe hybridization bias from experiments performed on the Affymetrix microarray platform, allowing accurate assessment of germline influence on gene expression.

  8. Replication dynamics of the yeast genome.

    PubMed

    Raghuraman, M K; Winzeler, E A; Collingwood, D; Hunt, S; Wodicka, L; Conway, A; Lockhart, D J; Davis, R W; Brewer, B J; Fangman, W L

    2001-10-05

    Oligonucleotide microarrays were used to map the detailed topography of chromosome replication in the budding yeast Saccharomyces cerevisiae. The times of replication of thousands of sites across the genome were determined by hybridizing replicated and unreplicated DNAs, isolated at different times in S phase, to the microarrays. Origin activations take place continuously throughout S phase but with most firings near mid-S phase. Rates of replication fork movement vary greatly from region to region in the genome. The two ends of each of the 16 chromosomes are highly correlated in their times of replication. This microarray approach is readily applicable to other organisms, including humans.

  9. Integrated analysis of chromosome copy number variation and gene expression in cervical carcinoma

    PubMed Central

    Yan, Deng; Yi, Song; Chiu, Wang Chi; Qin, Liu Gui; Kin, Wong Hoi; Kwok Hung, Chung Tony; Linxiao, Han; Wai, Choy Kwong; Yi, Sui; Tao, Yang; Tao, Tang

    2017-01-01

    Objective This study was conducted to explore chromosomal copy number variations (CNV) and transcript expression and to examine pathways in cervical pathogenesis using genome-wide high resolution microarrays. Methods Genome-wide chromosomal CNVs were investigated in 6 cervical cancer cell lines by Human Genome CGH Microarray Kit (4x44K). Gene expression profiles in cervical cancer cell lines, primary cervical carcinoma and normal cervical epithelium tissues were also studied using the Whole Human Genome Microarray Kit (4x44K). Results Fifty common chromosomal CNVs were identified in the cervical cancer cell lines. Correlation analysis revealed that gene up-regulation or down-regulation is significantly correlated with genomic amplification (P=0.009) or deletion (P=0.006) events. Expression profiles were identified through cluster analysis. Gene annotation analysis pinpointed cell cycle pathways was significantly (P=1.15E-08) affected in cervical cancer. Common CNVs were associated with cervical cancer. Conclusion Chromosomal CNVs may contribute to their transcript expression in cervical cancer. PMID:29312578

  10. Integrated analysis of chromosome copy number variation and gene expression in cervical carcinoma.

    PubMed

    Yan, Deng; Yi, Song; Chiu, Wang Chi; Qin, Liu Gui; Kin, Wong Hoi; Kwok Hung, Chung Tony; Linxiao, Han; Wai, Choy Kwong; Yi, Sui; Tao, Yang; Tao, Tang

    2017-12-12

    This study was conducted to explore chromosomal copy number variations (CNV) and transcript expression and to examine pathways in cervical pathogenesis using genome-wide high resolution microarrays. Genome-wide chromosomal CNVs were investigated in 6 cervical cancer cell lines by Human Genome CGH Microarray Kit (4x44K). Gene expression profiles in cervical cancer cell lines, primary cervical carcinoma and normal cervical epithelium tissues were also studied using the Whole Human Genome Microarray Kit (4x44K). Fifty common chromosomal CNVs were identified in the cervical cancer cell lines. Correlation analysis revealed that gene up-regulation or down-regulation is significantly correlated with genomic amplification ( P =0.009) or deletion ( P =0.006) events. Expression profiles were identified through cluster analysis. Gene annotation analysis pinpointed cell cycle pathways was significantly ( P =1.15E-08) affected in cervical cancer. Common CNVs were associated with cervical cancer. Chromosomal CNVs may contribute to their transcript expression in cervical cancer.

  11. Detecting discordance enrichment among a series of two-sample genome-wide expression data sets.

    PubMed

    Lai, Yinglei; Zhang, Fanni; Nayak, Tapan K; Modarres, Reza; Lee, Norman H; McCaffrey, Timothy A

    2017-01-25

    With the current microarray and RNA-seq technologies, two-sample genome-wide expression data have been widely collected in biological and medical studies. The related differential expression analysis and gene set enrichment analysis have been frequently conducted. Integrative analysis can be conducted when multiple data sets are available. In practice, discordant molecular behaviors among a series of data sets can be of biological and clinical interest. In this study, a statistical method is proposed for detecting discordance gene set enrichment. Our method is based on a two-level multivariate normal mixture model. It is statistically efficient with linearly increased parameter space when the number of data sets is increased. The model-based probability of discordance enrichment can be calculated for gene set detection. We apply our method to a microarray expression data set collected from forty-five matched tumor/non-tumor pairs of tissues for studying pancreatic cancer. We divided the data set into a series of non-overlapping subsets according to the tumor/non-tumor paired expression ratio of gene PNLIP (pancreatic lipase, recently shown it association with pancreatic cancer). The log-ratio ranges from a negative value (e.g. more expressed in non-tumor tissue) to a positive value (e.g. more expressed in tumor tissue). Our purpose is to understand whether any gene sets are enriched in discordant behaviors among these subsets (when the log-ratio is increased from negative to positive). We focus on KEGG pathways. The detected pathways will be useful for our further understanding of the role of gene PNLIP in pancreatic cancer research. Among the top list of detected pathways, the neuroactive ligand receptor interaction and olfactory transduction pathways are the most significant two. Then, we consider gene TP53 that is well-known for its role as tumor suppressor in cancer research. The log-ratio also ranges from a negative value (e.g. more expressed in non-tumor tissue) to a positive value (e.g. more expressed in tumor tissue). We divided the microarray data set again according to the expression ratio of gene TP53. After the discordance enrichment analysis, we observed overall similar results and the above two pathways are still the most significant detections. More interestingly, only these two pathways have been identified for their association with pancreatic cancer in a pathway analysis of genome-wide association study (GWAS) data. This study illustrates that some disease-related pathways can be enriched in discordant molecular behaviors when an important disease-related gene changes its expression. Our proposed statistical method is useful in the detection of these pathways. Furthermore, our method can also be applied to genome-wide expression data collected by the recent RNA-seq technology.

  12. Multi-species data integration and gene ranking enrich significant results in an alcoholism genome-wide association study.

    PubMed

    Zhao, Zhongming; Guo, An-Yuan; van den Oord, Edwin J C G; Aliev, Fazil; Jia, Peilin; Edenberg, Howard J; Riley, Brien P; Dick, Danielle M; Bettinger, Jill C; Davies, Andrew G; Grotewiel, Michael S; Schuckit, Marc A; Agrawal, Arpana; Kramer, John; Nurnberger, John I; Kendler, Kenneth S; Webb, Bradley T; Miles, Michael F

    2012-01-01

    A variety of species and experimental designs have been used to study genetic influences on alcohol dependence, ethanol response, and related traits. Integration of these heterogeneous data can be used to produce a ranked target gene list for additional investigation. In this study, we performed a unique multi-species evidence-based data integration using three microarray experiments in mice or humans that generated an initial alcohol dependence (AD) related genes list, human linkage and association results, and gene sets implicated in C. elegans and Drosophila. We then used permutation and false discovery rate (FDR) analyses on the genome-wide association studies (GWAS) dataset from the Collaborative Study on the Genetics of Alcoholism (COGA) to evaluate the ranking results and weighting matrices. We found one weighting score matrix could increase FDR based q-values for a list of 47 genes with a score greater than 2. Our follow up functional enrichment tests revealed these genes were primarily involved in brain responses to ethanol and neural adaptations occurring with alcoholism. These results, along with our experimental validation of specific genes in mice, C. elegans and Drosophila, suggest that a cross-species evidence-based approach is useful to identify candidate genes contributing to alcoholism.

  13. Clinical significance of rare copy number variations in epilepsy: a case-control survey using microarray-based comparative genomic hybridization.

    PubMed

    Striano, Pasquale; Coppola, Antonietta; Paravidino, Roberta; Malacarne, Michela; Gimelli, Stefania; Robbiano, Angela; Traverso, Monica; Pezzella, Marianna; Belcastro, Vincenzo; Bianchi, Amedeo; Elia, Maurizio; Falace, Antonio; Gazzerro, Elisabetta; Ferlazzo, Edoardo; Freri, Elena; Galasso, Roberta; Gobbi, Giuseppe; Molinatto, Cristina; Cavani, Simona; Zuffardi, Orsetta; Striano, Salvatore; Ferrero, Giovanni Battista; Silengo, Margherita; Cavaliere, Maria Luigia; Benelli, Matteo; Magi, Alberto; Piccione, Maria; Dagna Bricarelli, Franca; Coviello, Domenico A; Fichera, Marco; Minetti, Carlo; Zara, Federico

    2012-03-01

    To perform an extensive search for genomic rearrangements by microarray-based comparative genomic hybridization in patients with epilepsy. Prospective cohort study. Epilepsy centers in Italy. Two hundred seventy-nine patients with unexplained epilepsy, 265 individuals with nonsyndromic mental retardation but no epilepsy, and 246 healthy control subjects were screened by microarray-based comparative genomic hybridization. Identification of copy number variations (CNVs) and gene enrichment. Rare CNVs occurred in 26 patients (9.3%) and 16 healthy control subjects (6.5%) (P = .26). The CNVs identified in patients were larger (P = .03) and showed higher gene content (P = .02) than those in control subjects. The CNVs larger than 1 megabase (P = .002) and including more than 10 genes (P = .005) occurred more frequently in patients than in control subjects. Nine patients (34.6%) among those harboring rare CNVs showed rearrangements associated with emerging microdeletion or microduplication syndromes. Mental retardation and neuropsychiatric features were associated with rare CNVs (P = .004), whereas epilepsy type was not. The CNV rate in patients with epilepsy and mental retardation or neuropsychiatric features is not different from that observed in patients with mental retardation only. Moreover, significant enrichment of genes involved in ion transport was observed within CNVs identified in patients with epilepsy. Patients with epilepsy show a significantly increased burden of large, rare, gene-rich CNVs, particularly when associated with mental retardation and neuropsychiatric features. The limited overlap between CNVs observed in the epilepsy group and those observed in the group with mental retardation only as well as the involvement of specific (ion channel) genes indicate a specific association between the identified CNVs and epilepsy. Screening for CNVs should be performed for diagnostic purposes preferentially in patients with epilepsy and mental retardation or neuropsychiatric features.

  14. A pooling-based approach to mapping genetic variants associated with DNA methylation

    PubMed Central

    Kaplow, Irene M.; MacIsaac, Julia L.; Mah, Sarah M.; McEwen, Lisa M.; Kobor, Michael S.; Fraser, Hunter B.

    2015-01-01

    DNA methylation is an epigenetic modification that plays a key role in gene regulation. Previous studies have investigated its genetic basis by mapping genetic variants that are associated with DNA methylation at specific sites, but these have been limited to microarrays that cover <2% of the genome and cannot account for allele-specific methylation (ASM). Other studies have performed whole-genome bisulfite sequencing on a few individuals, but these lack statistical power to identify variants associated with DNA methylation. We present a novel approach in which bisulfite-treated DNA from many individuals is sequenced together in a single pool, resulting in a truly genome-wide map of DNA methylation. Compared to methods that do not account for ASM, our approach increases statistical power to detect associations while sharply reducing cost, effort, and experimental variability. As a proof of concept, we generated deep sequencing data from a pool of 60 human cell lines; we evaluated almost twice as many CpGs as the largest microarray studies and identified more than 2000 genetic variants associated with DNA methylation. We found that these variants are highly enriched for associations with chromatin accessibility and CTCF binding but are less likely to be associated with traits indirectly linked to DNA, such as gene expression and disease phenotypes. In summary, our approach allows genome-wide mapping of genetic variants associated with DNA methylation in any tissue of any species, without the need for individual-level genotype or methylation data. PMID:25910490

  15. A pooling-based approach to mapping genetic variants associated with DNA methylation

    DOE PAGES

    Kaplow, Irene M.; MacIsaac, Julia L.; Mah, Sarah M.; ...

    2015-04-24

    DNA methylation is an epigenetic modification that plays a key role in gene regulation. Previous studies have investigated its genetic basis by mapping genetic variants that are associated with DNA methylation at specific sites, but these have been limited to microarrays that cover <2% of the genome and cannot account for allele-specific methylation (ASM). Other studies have performed whole-genome bisulfite sequencing on a few individuals, but these lack statistical power to identify variants associated with DNA methylation. We present a novel approach in which bisulfite-treated DNA from many individuals is sequenced together in a single pool, resulting in a trulymore » genome-wide map of DNA methylation. Compared to methods that do not account for ASM, our approach increases statistical power to detect associations while sharply reducing cost, effort, and experimental variability. As a proof of concept, we generated deep sequencing data from a pool of 60 human cell lines; we evaluated almost twice as many CpGs as the largest microarray studies and identified more than 2000 genetic variants associated with DNA methylation. Here we found that these variants are highly enriched for associations with chromatin accessibility and CTCF binding but are less likely to be associated with traits indirectly linked to DNA, such as gene expression and disease phenotypes. In summary, our approach allows genome-wide mapping of genetic variants associated with DNA methylation in any tissue of any species, without the need for individual-level genotype or methylation data.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaplow, Irene M.; MacIsaac, Julia L.; Mah, Sarah M.

    DNA methylation is an epigenetic modification that plays a key role in gene regulation. Previous studies have investigated its genetic basis by mapping genetic variants that are associated with DNA methylation at specific sites, but these have been limited to microarrays that cover <2% of the genome and cannot account for allele-specific methylation (ASM). Other studies have performed whole-genome bisulfite sequencing on a few individuals, but these lack statistical power to identify variants associated with DNA methylation. We present a novel approach in which bisulfite-treated DNA from many individuals is sequenced together in a single pool, resulting in a trulymore » genome-wide map of DNA methylation. Compared to methods that do not account for ASM, our approach increases statistical power to detect associations while sharply reducing cost, effort, and experimental variability. As a proof of concept, we generated deep sequencing data from a pool of 60 human cell lines; we evaluated almost twice as many CpGs as the largest microarray studies and identified more than 2000 genetic variants associated with DNA methylation. Here we found that these variants are highly enriched for associations with chromatin accessibility and CTCF binding but are less likely to be associated with traits indirectly linked to DNA, such as gene expression and disease phenotypes. In summary, our approach allows genome-wide mapping of genetic variants associated with DNA methylation in any tissue of any species, without the need for individual-level genotype or methylation data.« less

  17. Expression analysis and in silico characterization of intronic long noncoding RNAs in renal cell carcinoma: emerging functional associations

    PubMed Central

    2013-01-01

    Background Intronic and intergenic long noncoding RNAs (lncRNAs) are emerging gene expression regulators. The molecular pathogenesis of renal cell carcinoma (RCC) is still poorly understood, and in particular, limited studies are available for intronic lncRNAs expressed in RCC. Methods Microarray experiments were performed with custom-designed arrays enriched with probes for lncRNAs mapping to intronic genomic regions. Samples from 18 primary RCC tumors and 11 nontumor adjacent matched tissues were analyzed. Meta-analyses were performed with microarray expression data from three additional human tissues (normal liver, prostate tumor and kidney nontumor samples), and with large-scale public data for epigenetic regulatory marks and for evolutionarily conserved sequences. Results A signature of 29 intronic lncRNAs differentially expressed between RCC and nontumor samples was obtained (false discovery rate (FDR) <5%). A signature of 26 intronic lncRNAs significantly correlated with the RCC five-year patient survival outcome was identified (FDR <5%, p-value ≤0.01). We identified 4303 intronic antisense lncRNAs expressed in RCC, of which 22% were significantly (p <0.05) cis correlated with the expression of the mRNA in the same locus across RCC and three other human tissues. Gene Ontology (GO) analysis of those loci pointed to 'regulation of biological processes’ as the main enriched category. A module map analysis of the protein-coding genes significantly (p <0.05) trans correlated with the 20% most abundant lncRNAs, identified 51 enriched GO terms (p <0.05). We determined that 60% of the expressed lncRNAs are evolutionarily conserved. At the genomic loci containing the intronic RCC-expressed lncRNAs, a strong association (p <0.001) was found between their transcription start sites and genomic marks such as CpG islands, RNA Pol II binding and histones methylation and acetylation. Conclusion Intronic antisense lncRNAs are widely expressed in RCC tumors. Some of them are significantly altered in RCC in comparison with nontumor samples. The majority of these lncRNAs is evolutionarily conserved and possibly modulated by epigenetic modifications. Our data suggest that these RCC lncRNAs may contribute to the complex network of regulatory RNAs playing a role in renal cell malignant transformation. PMID:24238219

  18. Characterization of genetic variability of Venezuelan equine encephalitis viruses

    DOE PAGES

    Gardner, Shea N.; McLoughlin, Kevin; Be, Nicholas A.; ...

    2016-04-07

    Venezuelan equine encephalitis virus (VEEV) is a mosquito-borne alphavirus that has caused large outbreaks of severe illness in both horses and humans. New approaches are needed to rapidly infer the origin of a newly discovered VEEV strain, estimate its equine amplification and resultant epidemic potential, and predict human virulence phenotype. We performed whole genome single nucleotide polymorphism (SNP) analysis of all available VEE antigenic complex genomes, verified that a SNP-based phylogeny accurately captured the features of a phylogenetic tree based on multiple sequence alignment, and developed a high resolution genome-wide SNP microarray. We used the microarray to analyze a broadmore » panel of VEEV isolates, found excellent concordance between array- and sequence-based SNP calls, genotyped unsequenced isolates, and placed them on a phylogeny with sequenced genomes. The microarray successfully genotyped VEEV directly from tissue samples of an infected mouse, bypassing the need for viral isolation, culture and genomic sequencing. Lastly, we identified genomic variants associated with serotypes and host species, revealing a complex relationship between genotype and phenotype.« less

  19. Novel Population Specific Autosomal Copy Number Variation and Its Functional Analysis amongst Negritos from Peninsular Malaysia

    PubMed Central

    Mokhtar, Siti Shuhada; Marshall, Christian R.; Phipps, Maude E.; Thiruvahindrapuram, Bhooma; Lionel, Anath C.; Scherer, Stephen W.; Peng, Hoh Boon

    2014-01-01

    Copy number variation (CNV) has been recognized as a major contributor to human genome diversity. It plays an important role in determining phenotypes and has been associated with a number of common and complex diseases. However CNV data from diverse populations is still limited. Here we report the first investigation of CNV in the indigenous populations from Peninsular Malaysia. We genotyped 34 Negrito genomes from Peninsular Malaysia using the Affymetrix SNP 6.0 microarray and identified 48 putative novel CNVs, consisting of 24 gains and 24 losses, of which 5 were identified in at least 2 unrelated samples. These CNVs appear unique to the Negrito population and were absent in the DGV, HapMap3 and Singapore Genome Variation Project (SGVP) datasets. Analysis of gene ontology revealed that genes within these CNVs were enriched in the immune system (GO:0002376), response to stimulus mechanisms (GO:0050896), the metabolic pathways (GO:0001852), as well as regulation of transcription (GO:0006355). Copy number gains in CNV regions (CNVRs) enriched with genes were significantly higher than the losses (P value <0.001). In view of the small population size, relative isolation and semi-nomadic lifestyles of this community, we speculate that these CNVs may be attributed to recent local adaptation of Negritos from Peninsular Malaysia. PMID:24956385

  20. Novel population specific autosomal copy number variation and its functional analysis amongst Negritos from Peninsular Malaysia.

    PubMed

    Mokhtar, Siti Shuhada; Marshall, Christian R; Phipps, Maude E; Thiruvahindrapuram, Bhooma; Lionel, Anath C; Scherer, Stephen W; Peng, Hoh Boon

    2014-01-01

    Copy number variation (CNV) has been recognized as a major contributor to human genome diversity. It plays an important role in determining phenotypes and has been associated with a number of common and complex diseases. However CNV data from diverse populations is still limited. Here we report the first investigation of CNV in the indigenous populations from Peninsular Malaysia. We genotyped 34 Negrito genomes from Peninsular Malaysia using the Affymetrix SNP 6.0 microarray and identified 48 putative novel CNVs, consisting of 24 gains and 24 losses, of which 5 were identified in at least 2 unrelated samples. These CNVs appear unique to the Negrito population and were absent in the DGV, HapMap3 and Singapore Genome Variation Project (SGVP) datasets. Analysis of gene ontology revealed that genes within these CNVs were enriched in the immune system (GO:0002376), response to stimulus mechanisms (GO:0050896), the metabolic pathways (GO:0001852), as well as regulation of transcription (GO:0006355). Copy number gains in CNV regions (CNVRs) enriched with genes were significantly higher than the losses (P value <0.001). In view of the small population size, relative isolation and semi-nomadic lifestyles of this community, we speculate that these CNVs may be attributed to recent local adaptation of Negritos from Peninsular Malaysia.

  1. DNA microarrays: a powerful genomic tool for biomedical and clinical research

    PubMed Central

    Trevino, Victor; Falciani, Francesco; Barrera-Saldaña, Hugo A.

    2007-01-01

    Among the many benefits of the Human Genome Project are new and powerful tools such as the genome-wide hybridization devices referred as microarrays. Initially designed to measure gene transcriptional levels, microarray technologies are now used for comparing other genome features among individuals and their tissues and cells. Results provide valuable information on disease subcategories, disease prognosis, and treatment outcome. Likewise, reveal differences in genetic makeup, regulatory mechanisms and subtle variations are approaching the era of personalized medicine. To understand this powerful tool, its versatility and how it is dramatically changing the molecular approach to biomedical and clinical research, this review describes the technology, its applications, a didactic step-by-step review of a typical microarray protocol, and a real experiment. Finally, it calls the attention of the medical community to integrate multidisciplinary teams, to take advantage of this technology and its expanding applications that in a slide reveals our genetic inheritance and destiny. PMID:17660860

  2. Using FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) to isolate active regulatory DNA

    PubMed Central

    Simon, Jeremy M.; Giresi, Paul G.; Davis, Ian J.; Lieb, Jason D.

    2013-01-01

    Eviction or destabilization of nucleosomes from chromatin is a hallmark of functional regulatory elements of the eukaryotic genome. Historically identified by nuclease hypersensitivity, these regulatory elements are typically bound by transcription factors or other regulatory proteins. FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) is an alternative approach to identify these genomic regions and has proven successful in a multitude of eukaryotic cell and tissue types. Cells or dissociated tissues are crosslinked briefly with formaldehyde, lysed, and sonicated. Sheared chromatin is subjected to phenol-chloroform extraction and the isolated DNA, typically encompassing 1–3% of the human genome, is purified. We provide guidelines for quantitative analysis by PCR, microarrays, or next-generation sequencing. Regulatory elements enriched by FAIRE display high concordance with those identified by nuclease hypersensitivity or ChIP, and the entire procedure can be completed in three days. FAIRE exhibits low technical variability, which allows its use in large-scale studies of chromatin from normal or diseased tissues. PMID:22262007

  3. Recently evolved human-specific methylated regions are enriched in schizophrenia signals.

    PubMed

    Banerjee, Niladri; Polushina, Tatiana; Bettella, Francesco; Giddaluru, Sudheer; Steen, Vidar M; Andreassen, Ole A; Le Hellard, Stephanie

    2018-05-11

    One explanation for the persistence of schizophrenia despite the reduced fertility of patients is that it is a by-product of recent human evolution. This hypothesis is supported by evidence suggesting that recently-evolved genomic regions in humans are involved in the genetic risk for schizophrenia. Using summary statistics from genome-wide association studies (GWAS) of schizophrenia and 11 other phenotypes, we tested for enrichment of association with GWAS traits in regions that have undergone methylation changes in the human lineage compared to Neanderthals and Denisovans, i.e. human-specific differentially methylated regions (DMRs). We used analytical tools that evaluate polygenic enrichment of a subset of genomic variants against all variants. Schizophrenia was the only trait in which DMR SNPs showed clear enrichment of association that passed the genome-wide significance threshold. The enrichment was not observed for Neanderthal or Denisovan DMRs. The enrichment seen in human DMRs is comparable to that for genomic regions tagged by Neanderthal Selective Sweep markers, and stronger than that for Human Accelerated Regions. The enrichment survives multiple testing performed through permutation (n = 10,000) and bootstrapping (n = 5000) in INRICH (p < 0.01). Some enrichment of association with height was observed at the gene level. Regions where DNA methylation modifications have changed during recent human evolution show enrichment of association with schizophrenia and possibly with height. Our study further supports the hypothesis that genetic variants conferring risk of schizophrenia co-occur in genomic regions that have changed as the human species evolved. Since methylation is an epigenetic mark, potentially mediated by environmental changes, our results also suggest that interaction with the environment might have contributed to that association.

  4. Transcriptome of Cultured Lung Fibroblasts in Idiopathic Pulmonary Fibrosis: Meta-Analysis of Publically Available Microarray Datasets Reveals Repression of Inflammation and Immunity Pathways.

    PubMed

    Plantier, Laurent; Renaud, Hélène; Respaud, Renaud; Marchand-Adam, Sylvain; Crestani, Bruno

    2016-12-13

    Heritable profibrotic differentiation of lung fibroblasts is a key mechanism of idiopathic pulmonary fibrosis (IPF). Its mechanisms are yet to be fully understood. In this study, individual data from four independent microarray studies comparing the transcriptome of fibroblasts cultured in vitro from normal (total n = 20) and IPF (total n = 20) human lung were compiled for meta-analysis following normalization to z-scores. One hundred and thirteen transcripts were upregulated and 115 were downregulated in IPF fibroblasts using the Significance Analysis of Microrrays algorithm with a false discovery rate of 5%. Downregulated genes were highly enriched for Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional classes related to inflammation and immunity such as Defense response to virus, Influenza A, tumor necrosis factor (TNF) mediated signaling pathway, interferon-inducible absent in melanoma2 (AIM2) inflammasome as well as Apoptosis. Although upregulated genes were not enriched for any functional class, select factors known to play key roles in lung fibrogenesis were overexpressed in IPF fibroblasts, most notably connective tissue growth factor ( CTGF ) and serum response factor ( SRF ), supporting their role as drivers of IPF. The full data table is available as a supplement.

  5. Gene Expression Profiling of Gastric Cancer

    PubMed Central

    Marimuthu, Arivusudar; Jacob, Harrys K.C.; Jakharia, Aniruddha; Subbannayya, Yashwanth; Keerthikumar, Shivakumar; Kashyap, Manoj Kumar; Goel, Renu; Balakrishnan, Lavanya; Dwivedi, Sutopa; Pathare, Swapnali; Dikshit, Jyoti Bajpai; Maharudraiah, Jagadeesha; Singh, Sujay; Sameer Kumar, Ghantasala S; Vijayakumar, M.; Veerendra Kumar, Kariyanakatte Veeraiah; Premalatha, Chennagiri Shrinivasamurthy; Tata, Pramila; Hariharan, Ramesh; Roa, Juan Carlos; Prasad, T.S.K; Chaerkady, Raghothama; Kumar, Rekha Vijay; Pandey, Akhilesh

    2015-01-01

    Gastric cancer is the second leading cause of cancer death worldwide, both in men and women. A genomewide gene expression analysis was carried out to identify differentially expressed genes in gastric adenocarcinoma tissues as compared to adjacent normal tissues. We used Agilent’s whole human genome oligonucleotide microarray platform representing ~41,000 genes to carry out gene expression analysis. Two-color microarray analysis was employed to directly compare the expression of genes between tumor and normal tissues. Through this approach, we identified several previously known candidate genes along with a number of novel candidate genes in gastric cancer. Testican-1 (SPOCK1) was one of the novel molecules that was 10-fold upregulated in tumors. Using tissue microarrays, we validated the expression of testican-1 by immunohistochemical staining. It was overexpressed in 56% (160/282) of the cases tested. Pathway analysis led to the identification of several networks in which SPOCK1 was among the topmost networks of interacting genes. By gene enrichment analysis, we identified several genes involved in cell adhesion and cell proliferation to be significantly upregulated while those corresponding to metabolic pathways were significantly downregulated. The differentially expressed genes identified in this study are candidate biomarkers for gastric adenoacarcinoma. PMID:27030788

  6. Gene Expression Profiling Identifies Downregulation of the Neurotrophin-MAPK Signaling Pathway in Female Diabetic Peripheral Neuropathy Patients

    PubMed Central

    Luo, Lin; Zhou, Wen-Hua; Cai, Jiang-Jia; Feng, Mei; Zhou, Mi; Hu, Su-Pei

    2017-01-01

    Diabetic peripheral neuropathy (DPN) is a common complication of diabetes mellitus (DM). It is not diagnosed or managed properly in the majority of patients because its pathogenesis remains controversial. In this study, human whole genome microarrays identified 2898 and 4493 differentially expressed genes (DEGs) in DM and DPN patients, respectively. A further KEGG pathway analysis indicated that DPN and DM share four pathways, including apoptosis, B cell receptor signaling pathway, endocytosis, and Toll-like receptor signaling pathway. The DEGs identified through comparison of DPN and DM were significantly enriched in MAPK signaling pathway, NOD-like receptor signaling pathway, and neurotrophin signaling pathway, while the “neurotrophin-MAPK signaling pathway” was notably downregulated. Seven DEGs from the neurotrophin-MAPK signaling pathway were validated in additional 78 samples, and the results confirmed the initial microarray findings. These findings demonstrated that downregulation of the neurotrophin-MAPK signaling pathway may be the major mechanism of DPN pathogenesis, thus providing a potential approach for DPN treatment. PMID:28900628

  7. Gene Expression Profiling Identifies Downregulation of the Neurotrophin-MAPK Signaling Pathway in Female Diabetic Peripheral Neuropathy Patients.

    PubMed

    Luo, Lin; Zhou, Wen-Hua; Cai, Jiang-Jia; Feng, Mei; Zhou, Mi; Hu, Su-Pei; Xu, Jin; Ji, Lin-Dan

    2017-01-01

    Diabetic peripheral neuropathy (DPN) is a common complication of diabetes mellitus (DM). It is not diagnosed or managed properly in the majority of patients because its pathogenesis remains controversial. In this study, human whole genome microarrays identified 2898 and 4493 differentially expressed genes (DEGs) in DM and DPN patients, respectively. A further KEGG pathway analysis indicated that DPN and DM share four pathways, including apoptosis, B cell receptor signaling pathway, endocytosis, and Toll-like receptor signaling pathway. The DEGs identified through comparison of DPN and DM were significantly enriched in MAPK signaling pathway, NOD-like receptor signaling pathway, and neurotrophin signaling pathway, while the "neurotrophin-MAPK signaling pathway" was notably downregulated. Seven DEGs from the neurotrophin-MAPK signaling pathway were validated in additional 78 samples, and the results confirmed the initial microarray findings. These findings demonstrated that downregulation of the neurotrophin-MAPK signaling pathway may be the major mechanism of DPN pathogenesis, thus providing a potential approach for DPN treatment.

  8. Evaluation of the efficacy of constitutional array-based comparative genomic hybridization in the diagnosis of aneuploidy using genomic and amplified DNA.

    PubMed

    Tan, Niap H; Palmer, Rodger; Wang, Rubin

    2010-02-01

    Array-based comparative genomic hybridization (array CGH) is a new molecular technique that has the potential to revolutionize cytogenetics. However, use of high resolution array CGH in the clinical setting is plagued by the problem of widespread copy number variations (CNV) in the human genome. Constitutional microarray, containing only clones that interrogate regions of known constitutional syndromes, may circumvent the dilemma of detecting CNV of unknown clinical significance. The present study investigated the efficacy of constitutional microarray in the diagnosis of trisomy. Test samples included genomic DNA from trisomic cell lines, amplification products of 50 ng of genomic DNA and whole genome amplification products of single cells. DNA amplification was achieved by means of multiple displacement amplification (MDA) over 16 h. The trisomic and sex chromosomes copy number imbalances in the genomic DNA were correctly identified by the constitutional microarrays. However, there was a failure to detect the trisomy in the amplification products of 50 ng of genomic DNA and whole genome amplification products of single cells. Using carefully selected clones, Spectral Genomics constitutional microarray was able to detect the chromosomal copy number imbalances in genomic DNA without the confounding effects of CNV. The diagnostic failure in amplified DNA samples could be attributed to the amplification process. The MDA duration of 16 h generated excessive amount of biases and shortening the duration might minimize the problem.

  9. Expression Profile of Long Noncoding RNAs in Human Earlobe Keloids: A Microarray Analysis

    PubMed Central

    Guo, Liang; Xu, Kai; Yan, Hongbo; Feng, Haifeng

    2016-01-01

    Background. Long noncoding RNAs (lncRNAs) play key roles in a wide range of biological processes and their deregulation results in human disease, including keloids. Earlobe keloid is a type of pathological skin scar, and the molecular pathogenesis of this disease remains largely unknown. Methods. In this study, microarray analysis was used to determine the expression profiles of lncRNAs and mRNAs between 3 pairs of earlobe keloid and normal specimens. Gene Ontology (GO) categories and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to identify the main functions of the differentially expressed genes and earlobe keloid-related pathways. Results. A total of 2068 lncRNAs and 1511 mRNAs were differentially expressed between earlobe keloid and normal tissues. Among them, 1290 lncRNAs and 1092 mRNAs were upregulated, and 778 lncRNAs and 419 mRNAs were downregulated. Pathway analysis revealed that 24 pathways were correlated to the upregulated transcripts, while 11 pathways were associated with the downregulated transcripts. Conclusion. We characterized the expression profiles of lncRNA and mRNA in earlobe keloids and suggest that lncRNAs may serve as diagnostic biomarkers for the therapy of earlobe keloid. PMID:28101509

  10. Development and experimental validation of a 20K Atlantic cod (Gadus morhua) oligonucleotide microarray based on a collection of over 150,000 ESTs.

    PubMed

    Booman, Marije; Borza, Tudor; Feng, Charles Y; Hori, Tiago S; Higgins, Brent; Culf, Adrian; Léger, Daniel; Chute, Ian C; Belkaid, Anissa; Rise, Marlies; Gamperl, A Kurt; Hubert, Sophie; Kimball, Jennifer; Ouellette, Rodney J; Johnson, Stewart C; Bowman, Sharen; Rise, Matthew L

    2011-08-01

    The collapse of Atlantic cod (Gadus morhua) wild populations strongly impacted the Atlantic cod fishery and led to the development of cod aquaculture. In order to improve aquaculture and broodstock quality, we need to gain knowledge of genes and pathways involved in Atlantic cod responses to pathogens and other stressors. The Atlantic Cod Genomics and Broodstock Development Project has generated over 150,000 expressed sequence tags from 42 cDNA libraries representing various tissues, developmental stages, and stimuli. We used this resource to develop an Atlantic cod oligonucleotide microarray containing 20,000 unique probes. Selection of sequences from the full range of cDNA libraries enables application of the microarray for a broad spectrum of Atlantic cod functional genomics studies. We included sequences that were highly abundant in suppression subtractive hybridization (SSH) libraries, which were enriched for transcripts responsive to pathogens or other stressors. These sequences represent genes that potentially play an important role in stress and/or immune responses, making the microarray particularly useful for studies of Atlantic cod gene expression responses to immune stimuli and other stressors. To demonstrate its value, we used the microarray to analyze the Atlantic cod spleen response to stimulation with formalin-killed, atypical Aeromonas salmonicida, resulting in a gene expression profile that indicates a strong innate immune response. These results were further validated by quantitative PCR analysis and comparison to results from previous analysis of an SSH library. This study shows that the Atlantic cod 20K oligonucleotide microarray is a valuable new tool for Atlantic cod functional genomics research.

  11. Experimental analysis of oligonucleotide microarray design criteria to detect deletions by comparative genomic hybridization.

    PubMed

    Flibotte, Stephane; Moerman, Donald G

    2008-10-21

    Microarray comparative genomic hybridization (CGH) is currently one of the most powerful techniques to measure DNA copy number in large genomes. In humans, microarray CGH is widely used to assess copy number variants in healthy individuals and copy number aberrations associated with various diseases, syndromes and disease susceptibility. In model organisms such as Caenorhabditis elegans (C. elegans) the technique has been applied to detect mutations, primarily deletions, in strains of interest. Although various constraints on oligonucleotide properties have been suggested to minimize non-specific hybridization and improve the data quality, there have been few experimental validations for CGH experiments. For genomic regions where strict design filters would limit the coverage it would also be useful to quantify the expected loss in data quality associated with relaxed design criteria. We have quantified the effects of filtering various oligonucleotide properties by measuring the resolving power for detecting deletions in the human and C. elegans genomes using NimbleGen microarrays. Approximately twice as many oligonucleotides are typically required to be affected by a deletion in human DNA samples in order to achieve the same statistical confidence as one would observe for a deletion in C. elegans. Surprisingly, the ability to detect deletions strongly depends on the oligonucleotide 15-mer count, which is defined as the sum of the genomic frequency of all the constituent 15-mers within the oligonucleotide. A similarity level above 80% to non-target sequences over the length of the probe produces significant cross-hybridization. We recommend the use of a fairly large melting temperature window of up to 10 degrees C, the elimination of repeat sequences, the elimination of homopolymers longer than 5 nucleotides, and a threshold of -1 kcal/mol on the oligonucleotide self-folding energy. We observed very little difference in data quality when varying the oligonucleotide length between 50 and 70, and even when using an isothermal design strategy. We have determined experimentally the effects of varying several key oligonucleotide microarray design criteria for detection of deletions in C. elegans and humans with NimbleGen's CGH technology. Our oligonucleotide design recommendations should be applicable for CGH analysis in most species.

  12. Integrative ChIP-seq/Microarray Analysis Identifies a CTNNB1 Target Signature Enriched in Intestinal Stem Cells and Colon Cancer

    PubMed Central

    Watanabe, Kazuhide; Biesinger, Jacob; Salmans, Michael L.; Roberts, Brian S.; Arthur, William T.; Cleary, Michele; Andersen, Bogi; Xie, Xiaohui; Dai, Xing

    2014-01-01

    Background Deregulation of canonical Wnt/CTNNB1 (beta-catenin) pathway is one of the earliest events in the pathogenesis of colon cancer. Mutations in APC or CTNNB1 are highly frequent in colon cancer and cause aberrant stabilization of CTNNB1, which activates the transcription of Wnt target genes by binding to chromatin via the TCF/LEF transcription factors. Here we report an integrative analysis of genome-wide chromatin occupancy of CTNNB1 by chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq) and gene expression profiling by microarray analysis upon RNAi-mediated knockdown of CTNNB1 in colon cancer cells. Results We observed 3629 CTNNB1 binding peaks across the genome and a significant correlation between CTNNB1 binding and knockdown-induced gene expression change. Our integrative analysis led to the discovery of a direct Wnt target signature composed of 162 genes. Gene ontology analysis of this signature revealed a significant enrichment of Wnt pathway genes, suggesting multiple feedback regulations of the pathway. We provide evidence that this gene signature partially overlaps with the Lgr5+ intestinal stem cell signature, and is significantly enriched in normal intestinal stem cells as well as in clinical colorectal cancer samples. Interestingly, while the expression of the CTNNB1 target gene set does not correlate with survival, elevated expression of negative feedback regulators within the signature predicts better prognosis. Conclusion Our data provide a genome-wide view of chromatin occupancy and gene regulation of Wnt/CTNNB1 signaling in colon cancer cells. PMID:24651522

  13. Integrative ChIP-seq/microarray analysis identifies a CTNNB1 target signature enriched in intestinal stem cells and colon cancer.

    PubMed

    Watanabe, Kazuhide; Biesinger, Jacob; Salmans, Michael L; Roberts, Brian S; Arthur, William T; Cleary, Michele; Andersen, Bogi; Xie, Xiaohui; Dai, Xing

    2014-01-01

    Deregulation of canonical Wnt/CTNNB1 (beta-catenin) pathway is one of the earliest events in the pathogenesis of colon cancer. Mutations in APC or CTNNB1 are highly frequent in colon cancer and cause aberrant stabilization of CTNNB1, which activates the transcription of Wnt target genes by binding to chromatin via the TCF/LEF transcription factors. Here we report an integrative analysis of genome-wide chromatin occupancy of CTNNB1 by chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq) and gene expression profiling by microarray analysis upon RNAi-mediated knockdown of CTNNB1 in colon cancer cells. We observed 3629 CTNNB1 binding peaks across the genome and a significant correlation between CTNNB1 binding and knockdown-induced gene expression change. Our integrative analysis led to the discovery of a direct Wnt target signature composed of 162 genes. Gene ontology analysis of this signature revealed a significant enrichment of Wnt pathway genes, suggesting multiple feedback regulations of the pathway. We provide evidence that this gene signature partially overlaps with the Lgr5+ intestinal stem cell signature, and is significantly enriched in normal intestinal stem cells as well as in clinical colorectal cancer samples. Interestingly, while the expression of the CTNNB1 target gene set does not correlate with survival, elevated expression of negative feedback regulators within the signature predicts better prognosis. Our data provide a genome-wide view of chromatin occupancy and gene regulation of Wnt/CTNNB1 signaling in colon cancer cells.

  14. Differential gene transcription across the life cycle in Daphnia magna using a new all genome custom-made microarray.

    PubMed

    Campos, Bruno; Fletcher, Danielle; Piña, Benjamín; Tauler, Romà; Barata, Carlos

    2018-05-18

    Unravelling the link between genes and environment across the life cycle is a challenging goal that requires model organisms with well-characterized life-cycles, ecological interactions in nature, tractability in the laboratory, and available genomic tools. Very few well-studied invertebrate model species meet these requirements, being the waterflea Daphnia magna one of them. Here we report a full genome transcription profiling of D. magna during its life-cycle. The study was performed using a new microarray platform designed from the complete set of gene models representing the whole transcribed genome of D. magna. Up to 93% of the existing 41,317 D. magna gene models showed differential transcription patterns across the developmental stages of D. magna, 59% of which were functionally annotated. Embryos showed the highest number of unique transcribed genes, mainly related to DNA, RNA, and ribosome biogenesis, likely related to cellular proliferation and morphogenesis of the several body organs. Adult females showed an enrichment of transcripts for genes involved in reproductive processes. These female-specific transcripts were essentially absent in males, whose transcriptome was enriched in specific genes of male sexual differentiation genes, like doublesex. Our results define major characteristics of transcriptional programs involved in the life-cycle, differentiate males and females, and show that large scale gene-transcription data collected in whole animals can be used to identify genes involved in specific biological and biochemical processes.

  15. A high-density transcript linkage map with 1,845 expressed genes positioned by microarray-based Single Feature Polymorphisms (SFP) in Eucalyptus

    PubMed Central

    2011-01-01

    Background Technological advances are progressively increasing the application of genomics to a wider array of economically and ecologically important species. High-density maps enriched for transcribed genes facilitate the discovery of connections between genes and phenotypes. We report the construction of a high-density linkage map of expressed genes for the heterozygous genome of Eucalyptus using Single Feature Polymorphism (SFP) markers. Results SFP discovery and mapping was achieved using pseudo-testcross screening and selective mapping to simultaneously optimize linkage mapping and microarray costs. SFP genotyping was carried out by hybridizing complementary RNA prepared from 4.5 year-old trees xylem to an SFP array containing 103,000 25-mer oligonucleotide probes representing 20,726 unigenes derived from a modest size expressed sequence tags collection. An SFP-mapping microarray with 43,777 selected candidate SFP probes representing 15,698 genes was subsequently designed and used to genotype SFPs in a larger subset of the segregating population drawn by selective mapping. A total of 1,845 genes were mapped, with 884 of them ordered with high likelihood support on a framework map anchored to 180 microsatellites with average density of 1.2 cM. Using more probes per unigene increased by two-fold the likelihood of detecting segregating SFPs eventually resulting in more genes mapped. In silico validation showed that 87% of the SFPs map to the expected location on the 4.5X draft sequence of the Eucalyptus grandis genome. Conclusions The Eucalyptus 1,845 gene map is the most highly enriched map for transcriptional information for any forest tree species to date. It represents a major improvement on the number of genes previously positioned on Eucalyptus maps and provides an initial glimpse at the gene space for this global tree genome. A general protocol is proposed to build high-density transcript linkage maps in less characterized plant species by SFP genotyping with a concurrent objective of reducing microarray costs. HIgh-density gene-rich maps represent a powerful resource to assist gene discovery endeavors when used in combination with QTL and association mapping and should be especially valuable to assist the assembly of reference genome sequences soon to come for several plant and animal species. PMID:21492453

  16. Parallel human genome analysis: microarray-based expression monitoring of 1000 genes.

    PubMed Central

    Schena, M; Shalon, D; Heller, R; Chai, A; Brown, P O; Davis, R W

    1996-01-01

    Microarrays containing 1046 human cDNAs of unknown sequence were printed on glass with high-speed robotics. These 1.0-cm2 DNA "chips" were used to quantitatively monitor differential expression of the cognate human genes using a highly sensitive two-color hybridization assay. Array elements that displayed differential expression patterns under given experimental conditions were characterized by sequencing. The identification of known and novel heat shock and phorbol ester-regulated genes in human T cells demonstrates the sensitivity of the assay. Parallel gene analysis with microarrays provides a rapid and efficient method for large-scale human gene discovery. Images Fig. 1 Fig. 2 Fig. 3 PMID:8855227

  17. Measuring Sister Chromatid Cohesion Protein Genome Occupancy in Drosophila melanogaster by ChIP-seq.

    PubMed

    Dorsett, Dale; Misulovin, Ziva

    2017-01-01

    This chapter presents methods to conduct and analyze genome-wide chromatin immunoprecipitation of the cohesin complex and the Nipped-B cohesin loading factor in Drosophila cells using high-throughput DNA sequencing (ChIP-seq). Procedures for isolation of chromatin, immunoprecipitation, and construction of sequencing libraries for the Ion Torrent Proton high throughput sequencer are detailed, and computational methods to calculate occupancy as input-normalized fold-enrichment are described. The results obtained by ChIP-seq are compared to those obtained by ChIP-chip (genomic ChIP using tiling microarrays), and the effects of sequencing depth on the accuracy are analyzed. ChIP-seq provides similar sensitivity and reproducibility as ChIP-chip, and identifies the same broad regions of occupancy. The locations of enrichment peaks, however, can differ between ChIP-chip and ChIP-seq, and low sequencing depth can splinter broad regions of occupancy into distinct peaks.

  18. Microarray profile of human kidney from diabetes, renal cell carcinoma and renal cell carcinoma with diabetes

    PubMed Central

    Kosti, Adam; Harry Chen, Hung-I; Mohan, Sumathy; Liang, Sitai; Chen, Yidong; Habib, Samy L.

    2015-01-01

    Recent study from our laboratory showed that patients with diabetes are at a higher risk of developing kidney cancer. In the current study, we have screened whole human DNA genome from healthy control, patients with diabetes or renal cell carcinoma (RCC) or RCC+diabetes. We found that 883 genes gain/163 genes loss of copy number in RCC+diabetes group, 669 genes gain/307 genes loss in RCC group and 458 genes gain/38 genes loss of copy number in diabetes group, after removing gain/loss genes obtained from healthy control group. Data analyzed for functional annotation enrichment pathways showed that control group had the highest number (280) of enriched pathways, 191 in diabetes+RCC group, 148 in RCC group, and 81 in diabetes group. The overlap GO pathways between RCC+diabetes and RCC groups showed that nine were enriched, between RCC+diabetes and diabetes groups was four and between diabetes and RCC groups was eight GO pathways. Overall, we observed majority of DNA alterations in patients from RCC+diabetes group. Interestingly, insulin receptor (INSR) is highly expressed and had gains in copy number in RCC+diabetes and diabetes groups. The changes in INSR copy number may use as a biomarker for predicting RCC development in diabetic patients. PMID:25821562

  19. An anatomically comprehensive atlas of the adult human brain transcriptome

    PubMed Central

    Guillozet-Bongaarts, Angela L.; Shen, Elaine H.; Ng, Lydia; Miller, Jeremy A.; van de Lagemaat, Louie N.; Smith, Kimberly A.; Ebbert, Amanda; Riley, Zackery L.; Abajian, Chris; Beckmann, Christian F.; Bernard, Amy; Bertagnolli, Darren; Boe, Andrew F.; Cartagena, Preston M.; Chakravarty, M. Mallar; Chapin, Mike; Chong, Jimmy; Dalley, Rachel A.; David Daly, Barry; Dang, Chinh; Datta, Suvro; Dee, Nick; Dolbeare, Tim A.; Faber, Vance; Feng, David; Fowler, David R.; Goldy, Jeff; Gregor, Benjamin W.; Haradon, Zeb; Haynor, David R.; Hohmann, John G.; Horvath, Steve; Howard, Robert E.; Jeromin, Andreas; Jochim, Jayson M.; Kinnunen, Marty; Lau, Christopher; Lazarz, Evan T.; Lee, Changkyu; Lemon, Tracy A.; Li, Ling; Li, Yang; Morris, John A.; Overly, Caroline C.; Parker, Patrick D.; Parry, Sheana E.; Reding, Melissa; Royall, Joshua J.; Schulkin, Jay; Sequeira, Pedro Adolfo; Slaughterbeck, Clifford R.; Smith, Simon C.; Sodt, Andy J.; Sunkin, Susan M.; Swanson, Beryl E.; Vawter, Marquis P.; Williams, Derric; Wohnoutka, Paul; Zielke, H. Ronald; Geschwind, Daniel H.; Hof, Patrick R.; Smith, Stephen M.; Koch, Christof; Grant, Seth G. N.; Jones, Allan R.

    2014-01-01

    Neuroanatomically precise, genome-wide maps of transcript distributions are critical resources to complement genomic sequence data and to correlate functional and genetic brain architecture. Here we describe the generation and analysis of a transcriptional atlas of the adult human brain, comprising extensive histological analysis and comprehensive microarray profiling of ~900 neuroanatomically precise subdivisions in two individuals. Transcriptional regulation varies enormously by anatomical location, with different regions and their constituent cell types displaying robust molecular signatures that are highly conserved between individuals. Analysis of differential gene expression and gene co-expression relationships demonstrates that brain-wide variation strongly reflects the distributions of major cell classes such as neurons, oligodendrocytes, astrocytes and microglia. Local neighbourhood relationships between fine anatomical subdivisions are associated with discrete neuronal subtypes and genes involved with synaptic transmission. The neocortex displays a relatively homogeneous transcriptional pattern, but with distinct features associated selectively with primary sensorimotor cortices and with enriched frontal lobe expression. Notably, the spatial topography of the neocortex is strongly reflected in its molecular topography— the closer two cortical regions, the more similar their transcriptomes. This freely accessible online data resource forms a high-resolution transcriptional baseline for neurogenetic studies of normal and abnormal human brain function. PMID:22996553

  20. Transcriptomic Analysis and Meta-Analysis of Human Granulosa and Cumulus Cells

    PubMed Central

    Burnik Papler, Tanja; Vrtacnik Bokal, Eda; Maver, Ales; Kopitar, Andreja Natasa; Lovrečić, Luca

    2015-01-01

    Specific gene expression in oocytes and its surrounding cumulus (CC) and granulosa (GC) cells is needed for successful folliculogenesis and oocyte maturation. The aim of the present study was to compare genome-wide gene expression and biological functions of human GC and CC. Individual GC and CC were derived from 37 women undergoing IVF procedures. Gene expression analysis was performed using microarrays, followed by a meta-analysis. Results were validated using quantitative real-time PCR. There were 6029 differentially expressed genes (q < 10−4); of which 650 genes had a log2 FC ≥ 2. After the meta-analysis there were 3156 genes differentially expressed. Among these there were genes that have previously not been reported in human somatic follicular cells, like prokineticin 2 (PROK2), higher expressed in GC, and pregnancy up-regulated nonubiquitous CaM kinase (PNCK), higher expressed in CC. Pathways like inflammatory response and angiogenesis were enriched in GC, whereas in CC, cell differentiation and multicellular organismal development were among enriched pathways. In conclusion, transcriptomes of GC and CC as well as biological functions, are distinctive for each cell subpopulation. By describing novel genes like PROK2 and PNCK, expressed in GC and CC, we upgraded the existing data on human follicular biology. PMID:26313571

  1. Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays.

    PubMed

    Johnson, Jason M; Castle, John; Garrett-Engele, Philip; Kan, Zhengyan; Loerch, Patrick M; Armour, Christopher D; Santos, Ralph; Schadt, Eric E; Stoughton, Roland; Shoemaker, Daniel D

    2003-12-19

    Alternative pre-messenger RNA (pre-mRNA) splicing plays important roles in development, physiology, and disease, and more than half of human genes are alternatively spliced. To understand the biological roles and regulation of alternative splicing across different tissues and stages of development, systematic methods are needed. Here, we demonstrate the use of microarrays to monitor splicing at every exon-exon junction in more than 10,000 multi-exon human genes in 52 tissues and cell lines. These genome-wide data provide experimental evidence and tissue distributions for thousands of known and novel alternative splicing events. Adding to previous studies, the results indicate that at least 74% of human multi-exon genes are alternatively spliced.

  2. Identification of Human Lineage-Specific Transcriptional Coregulators Enabled by a Glossary of Binding Modules and Tunable Genomic Backgrounds.

    PubMed

    Mariani, Luca; Weinand, Kathryn; Vedenko, Anastasia; Barrera, Luis A; Bulyk, Martha L

    2017-09-27

    Transcription factors (TFs) control cellular processes by binding specific DNA motifs to modulate gene expression. Motif enrichment analysis of regulatory regions can identify direct and indirect TF binding sites. Here, we created a glossary of 108 non-redundant TF-8mer "modules" of shared specificity for 671 metazoan TFs from publicly available and new universal protein binding microarray data. Analysis of 239 ENCODE TF chromatin immunoprecipitation sequencing datasets and associated RNA sequencing profiles suggest the 8mer modules are more precise than position weight matrices in identifying indirect binding motifs and their associated tethering TFs. We also developed GENRE (genomically equivalent negative regions), a tunable tool for construction of matched genomic background sequences for analysis of regulatory regions. GENRE outperformed four state-of-the-art approaches to background sequence construction. We used our TF-8mer glossary and GENRE in the analysis of the indirect binding motifs for the co-occurrence of tethering factors, suggesting novel TF-TF interactions. We anticipate that these tools will aid in elucidating tissue-specific gene-regulatory programs. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Enrichment methods provide a feasible approach to comprehensive and adequately powered investigations of the brain methylome

    PubMed Central

    Chan, Robin F.; Shabalin, Andrey A.; Xie, Lin Y.; Adkins, Daniel E.; Zhao, Min; Turecki, Gustavo; Clark, Shaunna L.; Aberg, Karolina A.

    2017-01-01

    Abstract Methylome-wide association studies are typically performed using microarray technologies that only assay a very small fraction of the CG methylome and entirely miss two forms of methylation that are common in brain and likely of particular relevance for neuroscience and psychiatric disorders. The alternative is to use whole genome bisulfite (WGB) sequencing but this approach is not yet practically feasible with sample sizes required for adequate statistical power. We argue for revisiting methylation enrichment methods that, provided optimal protocols are used, enable comprehensive, adequately powered and cost-effective genome-wide investigations of the brain methylome. To support our claim we use data showing that enrichment methods approximate the sensitivity obtained with WGB methods and with slightly better specificity. However, this performance is achieved at <5% of the reagent costs. Furthermore, because many more samples can be sequenced simultaneously, projects can be completed about 15 times faster. Currently the only viable option available for comprehensive brain methylome studies, enrichment methods may be critical for moving the field forward. PMID:28334972

  4. Tissue-Specific Transcriptomic Profiling of Sorghum propinquum using a Rice Genome Array

    PubMed Central

    Zhang, Ting; Zhao, Xiuqin; Huang, Liyu; Liu, Xiaoyue; Zong, Ying; Zhu, Linghua; Yang, Daichang; Fu, Binying

    2013-01-01

    Sorghum (Sorghum bicolor) is one of the world's most important cereal crops. S. propinquum is a perennial wild relative of S. bicolor with well-developed rhizomes. Functional genomics analysis of S. propinquum, especially with respect to molecular mechanisms related to rhizome growth and development, can contribute to the development of more sustainable grain, forage, and bioenergy cropping systems. In this study, we used a whole rice genome oligonucleotide microarray to obtain tissue-specific gene expression profiles of S. propinquum with special emphasis on rhizome development. A total of 548 tissue-enriched genes were detected, including 31 and 114 unique genes that were expressed predominantly in the rhizome tips (RT) and internodes (RI), respectively. Further GO analysis indicated that the functions of these tissue-enriched genes corresponded to their characteristic biological processes. A few distinct cis-elements, including ABA-responsive RY repeat CATGCA, sugar-repressive TTATCC, and GA-responsive TAACAA, were found to be prevalent in RT-enriched genes, implying an important role in rhizome growth and development. Comprehensive comparative analysis of these rhizome-enriched genes and rhizome-specific genes previously identified in Oryza longistaminata and S. propinquum indicated that phytohormones, including ABA, GA, and SA, are key regulators of gene expression during rhizome development. Co-localization of rhizome-enriched genes with rhizome-related QTLs in rice and sorghum generated functional candidates for future cloning of genes associated with rhizome growth and development. PMID:23536906

  5. A molecular signature of an arrest of descent in human parturition

    PubMed Central

    MITTAL, Pooja; ROMERO, Roberto; TARCA, Adi L.; DRAGHICI, Sorin; NHAN-CHANG, Chia-Ling; CHAIWORAPONGSA, Tinnakorn; HOTRA, John; GOMEZ, Ricardo; KUSANOVIC, Juan Pedro; LEE, Deug-Chan; KIM, Chong Jai; HASSAN, Sonia S.

    2010-01-01

    Objective This study was undertaken to identify the molecular basis of an arrest of descent. Study Design Human myometrium was obtained from women in term labor (TL; n=29) and arrest of descent (AODes, n=21). Gene expression was characterized using Illumina® HumanHT-12 microarrays. A moderated t-test and false discovery rate adjustment were applied for analysis. Confirmatory qRT-PCR and immunoblot was performed in an independent sample set. Results 400 genes were differentially expressed between women with an AODes compared to those with TL. Gene Ontology analysis indicated enrichment of biological processes and molecular functions related to inflammation and muscle function. Impacted pathways included inflammation and the actin cytoskeleton. Overexpression of HIF1A, IL-6, and PTGS2 in AODES was confirmed. Conclusion We have identified a stereotypic pattern of gene expression in the myometrium of women with an arrest of descent. This represents the first study examining the molecular basis of an arrest of descent using a genome-wide approach. PMID:21284969

  6. A Discovery Resource of Rare Copy Number Variations in Individuals with Autism Spectrum Disorder

    PubMed Central

    Prasad, Aparna; Merico, Daniele; Thiruvahindrapuram, Bhooma; Wei, John; Lionel, Anath C.; Sato, Daisuke; Rickaby, Jessica; Lu, Chao; Szatmari, Peter; Roberts, Wendy; Fernandez, Bridget A.; Marshall, Christian R.; Hatchwell, Eli; Eis, Peggy S.; Scherer, Stephen W.

    2012-01-01

    The identification of rare inherited and de novo copy number variations (CNVs) in human subjects has proven a productive approach to highlight risk genes for autism spectrum disorder (ASD). A variety of microarrays are available to detect CNVs, including single-nucleotide polymorphism (SNP) arrays and comparative genomic hybridization (CGH) arrays. Here, we examine a cohort of 696 unrelated ASD cases using a high-resolution one-million feature CGH microarray, the majority of which were previously genotyped with SNP arrays. Our objective was to discover new CNVs in ASD cases that were not detected by SNP microarray analysis and to delineate novel ASD risk loci via combined analysis of CGH and SNP array data sets on the ASD cohort and CGH data on an additional 1000 control samples. Of the 615 ASD cases analyzed on both SNP and CGH arrays, we found that 13,572 of 21,346 (64%) of the CNVs were exclusively detected by the CGH array. Several of the CGH-specific CNVs are rare in population frequency and impact previously reported ASD genes (e.g., NRXN1, GRM8, DPYD), as well as novel ASD candidate genes (e.g., CIB2, DAPP1, SAE1), and all were inherited except for a de novo CNV in the GPHN gene. A functional enrichment test of gene-sets in ASD cases over controls revealed nucleotide metabolism as a potential novel pathway involved in ASD, which includes several candidate genes for follow-up (e.g., DPYD, UPB1, UPP1, TYMP). Finally, this extensively phenotyped and genotyped ASD clinical cohort serves as an invaluable resource for the next step of genome sequencing for complete genetic variation detection. PMID:23275889

  7. R Script Approach to Infer Toxoplasma Infection Mechanisms From Microarrays and Domain-Domain Protein Interactions

    PubMed Central

    Arenas, Ailan F; Salcedo, Gladys E; Gomez-Marin, Jorge E

    2017-01-01

    Pathogen-host protein-protein interaction systems examine the interactions between the protein repertoires of 2 distinct organisms. Some of these pathogen proteins interact with the host protein system and may manipulate it for their own advantages. In this work, we designed an R script by concatenating 2 functions called rowDM and rowCVmed to infer pathogen-host interaction using previously reported microarray data, including host gene enrichment analysis and the crossing of interspecific domain-domain interactions. We applied this script to the Toxoplasma-host system to describe pathogen survival mechanisms from human, mouse, and Toxoplasma Gene Expression Omnibus series. Our outcomes exhibited similar results with previously reported microarray analyses, but we found other important proteins that could contribute to toxoplasma pathogenesis. We observed that Toxoplasma ROP38 is the most differentially expressed protein among toxoplasma strains. Enrichment analysis and KEGG mapping indicated that the human retinal genes most affected by Toxoplasma infections are those related to antiapoptotic mechanisms. We suggest that proteins PIK3R1, PRKCA, PRKCG, PRKCB, HRAS, and c-JUN could be the possible substrates for differentially expressed Toxoplasma kinase ROP38. Likewise, we propose that Toxoplasma causes overexpression of apoptotic suppression human genes. PMID:29317802

  8. WholePathwayScope: a comprehensive pathway-based analysis tool for high-throughput data

    PubMed Central

    Yi, Ming; Horton, Jay D; Cohen, Jonathan C; Hobbs, Helen H; Stephens, Robert M

    2006-01-01

    Background Analysis of High Throughput (HTP) Data such as microarray and proteomics data has provided a powerful methodology to study patterns of gene regulation at genome scale. A major unresolved problem in the post-genomic era is to assemble the large amounts of data generated into a meaningful biological context. We have developed a comprehensive software tool, WholePathwayScope (WPS), for deriving biological insights from analysis of HTP data. Result WPS extracts gene lists with shared biological themes through color cue templates. WPS statistically evaluates global functional category enrichment of gene lists and pathway-level pattern enrichment of data. WPS incorporates well-known biological pathways from KEGG (Kyoto Encyclopedia of Genes and Genomes) and Biocarta, GO (Gene Ontology) terms as well as user-defined pathways or relevant gene clusters or groups, and explores gene-term relationships within the derived gene-term association networks (GTANs). WPS simultaneously compares multiple datasets within biological contexts either as pathways or as association networks. WPS also integrates Genetic Association Database and Partial MedGene Database for disease-association information. We have used this program to analyze and compare microarray and proteomics datasets derived from a variety of biological systems. Application examples demonstrated the capacity of WPS to significantly facilitate the analysis of HTP data for integrative discovery. Conclusion This tool represents a pathway-based platform for discovery integration to maximize analysis power. The tool is freely available at . PMID:16423281

  9. Thermodynamically optimal whole-genome tiling microarray design and validation.

    PubMed

    Cho, Hyejin; Chou, Hui-Hsien

    2016-06-13

    Microarray is an efficient apparatus to interrogate the whole transcriptome of species. Microarray can be designed according to annotated gene sets, but the resulted microarrays cannot be used to identify novel transcripts and this design method is not applicable to unannotated species. Alternatively, a whole-genome tiling microarray can be designed using only genomic sequences without gene annotations, and it can be used to detect novel RNA transcripts as well as known genes. The difficulty with tiling microarray design lies in the tradeoff between probe-specificity and coverage of the genome. Sequence comparison methods based on BLAST or similar software are commonly employed in microarray design, but they cannot precisely determine the subtle thermodynamic competition between probe targets and partially matched probe nontargets during hybridizations. Using the whole-genome thermodynamic analysis software PICKY to design tiling microarrays, we can achieve maximum whole-genome coverage allowable under the thermodynamic constraints of each target genome. The resulted tiling microarrays are thermodynamically optimal in the sense that all selected probes share the same melting temperature separation range between their targets and closest nontargets, and no additional probes can be added without violating the specificity of the microarray to the target genome. This new design method was used to create two whole-genome tiling microarrays for Escherichia coli MG1655 and Agrobacterium tumefaciens C58 and the experiment results validated the design.

  10. Construction of an Ostrea edulis database from genomic and expressed sequence tags (ESTs) obtained from Bonamia ostreae infected haemocytes: Development of an immune-enriched oligo-microarray.

    PubMed

    Pardo, Belén G; Álvarez-Dios, José Antonio; Cao, Asunción; Ramilo, Andrea; Gómez-Tato, Antonio; Planas, Josep V; Villalba, Antonio; Martínez, Paulino

    2016-12-01

    The flat oyster, Ostrea edulis, is one of the main farmed oysters, not only in Europe but also in the United States and Canada. Bonamiosis due to the parasite Bonamia ostreae has been associated with high mortality episodes in this species. This parasite is an intracellular protozoan that infects haemocytes, the main cells involved in oyster defence. Due to the economical and ecological importance of flat oyster, genomic data are badly needed for genetic improvement of the species, but they are still very scarce. The objective of this study is to develop a sequence database, OedulisDB, with new genomic and transcriptomic resources, providing new data and convenient tools to improve our knowledge of the oyster's immune mechanisms. Transcriptomic and genomic sequences were obtained using 454 pyrosequencing and compiled into an O. edulis database, OedulisDB, consisting of two sets of 10,318 and 7159 unique sequences that represent the oyster's genome (WG) and de novo haemocyte transcriptome (HT), respectively. The flat oyster transcriptome was obtained from two strains (naïve and tolerant) challenged with B. ostreae, and from their corresponding non-challenged controls. Approximately 78.5% of 5619 HT unique sequences were successfully annotated by Blast search using public databases. A total of 984 sequences were identified as being related to immune response and several key immune genes were identified for the first time in flat oyster. Additionally, transcriptome information was used to design and validate the first oligo-microarray in flat oyster enriched with immune sequences from haemocytes. Our transcriptomic and genomic sequencing and subsequent annotation have largely increased the scarce resources available for this economically important species and have enabled us to develop an OedulisDB database and accompanying tools for gene expression analysis. This study represents the first attempt to characterize in depth the O. edulis haemocyte transcriptome in response to B. ostreae through massively sequencing and has aided to improve our knowledge of the immune mechanisms of flat oyster. The validated oligo-microarray and the establishment of a reference transcriptome will be useful for large-scale gene expression studies in this species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Identification of the Key Genes and Pathways in Esophageal Carcinoma.

    PubMed

    Su, Peng; Wen, Shiwang; Zhang, Yuefeng; Li, Yong; Xu, Yanzhao; Zhu, Yonggang; Lv, Huilai; Zhang, Fan; Wang, Mingbo; Tian, Ziqiang

    2016-01-01

    Objective . Esophageal carcinoma (EC) is a frequently common malignancy of gastrointestinal cancer in the world. This study aims to screen key genes and pathways in EC and elucidate the mechanism of it. Methods . 5 microarray datasets of EC were downloaded from Gene Expression Omnibus. Differentially expressed genes (DEGs) were screened by bioinformatics analysis. Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, and protein-protein interaction (PPI) network construction were performed to obtain the biological roles of DEGs in EC. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to verify the expression level of DEGs in EC. Results . A total of 1955 genes were filtered as DEGs in EC. The upregulated genes were significantly enriched in cell cycle and the downregulated genes significantly enriched in Endocytosis. PPI network displayed CDK4 and CCT3 were hub proteins in the network. The expression level of 8 dysregulated DEGs including CDK4, CCT3, THSD4, SIM2, MYBL2, CENPF, CDCA3, and CDKN3 was validated in EC compared to adjacent nontumor tissues and the results were matched with the microarray analysis. Conclusion . The significantly DEGs including CDK4, CCT3, THSD4, and SIM2 may play key roles in tumorigenesis and development of EC involved in cell cycle and Endocytosis.

  12. Self-directed student research through analysis of microarray datasets: a computer-based functional genomics practical class for masters-level students.

    PubMed

    Grenville-Briggs, Laura J; Stansfield, Ian

    2011-01-01

    This report describes a linked series of Masters-level computer practical workshops. They comprise an advanced functional genomics investigation, based upon analysis of a microarray dataset probing yeast DNA damage responses. The workshops require the students to analyse highly complex transcriptomics datasets, and were designed to stimulate active learning through experience of current research methods in bioinformatics and functional genomics. They seek to closely mimic a realistic research environment, and require the students first to propose research hypotheses, then test those hypotheses using specific sections of the microarray dataset. The complexity of the microarray data provides students with the freedom to propose their own unique hypotheses, tested using appropriate sections of the microarray data. This research latitude was highly regarded by students and is a strength of this practical. In addition, the focus on DNA damage by radiation and mutagenic chemicals allows them to place their results in a human medical context, and successfully sparks broad interest in the subject material. In evaluation, 79% of students scored the practical workshops on a five-point scale as 4 or 5 (totally effective) for student learning. More broadly, the general use of microarray data as a "student research playground" is also discussed. Copyright © 2011 Wiley Periodicals, Inc.

  13. The Porcelain Crab Transcriptome and PCAD, the Porcelain Crab Microarray and Sequence Database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tagmount, Abderrahmane; Wang, Mei; Lindquist, Erika

    2010-01-27

    Background: With the emergence of a completed genome sequence of the freshwater crustacean Daphnia pulex, construction of genomic-scale sequence databases for additional crustacean sequences are important for comparative genomics and annotation. Porcelain crabs, genus Petrolisthes, have been powerful crustacean models for environmental and evolutionary physiology with respect to thermal adaptation and understanding responses of marine organisms to climate change. Here, we present a large-scale EST sequencing and cDNA microarray database project for the porcelain crab Petrolisthes cinctipes. Methodology/Principal Findings: A set of ~;;30K unique sequences (UniSeqs) representing ~;;19K clusters were generated from ~;;98K high quality ESTs from a set ofmore » tissue specific non-normalized and mixed-tissue normalized cDNA libraries from the porcelain crab Petrolisthes cinctipes. Homology for each UniSeq was assessed using BLAST, InterProScan, GO and KEGG database searches. Approximately 66percent of the UniSeqs had homology in at least one of the databases. All EST and UniSeq sequences along with annotation results and coordinated cDNA microarray datasets have been made publicly accessible at the Porcelain Crab Array Database (PCAD), a feature-enriched version of the Stanford and Longhorn Array Databases.Conclusions/Significance: The EST project presented here represents the third largest sequencing effort for any crustacean, and the largest effort for any crab species. Our assembly and clustering results suggest that our porcelain crab EST data set is equally diverse to the much larger EST set generated in the Daphnia pulex genome sequencing project, and thus will be an important resource to the Daphnia research community. Our homology results support the pancrustacea hypothesis and suggest that Malacostraca may be ancestral to Branchiopoda and Hexapoda. Our results also suggest that our cDNA microarrays cover as much of the transcriptome as can reasonably be captured in EST library sequencing approaches, and thus represent a rich resource for studies of environmental genomics.« less

  14. Development and Use of Integrated Microarray-Based Genomic Technologies for Assessing Microbial Community Composition and Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, J.; Wu, L.; Gentry, T.

    2006-04-05

    To effectively monitor microbial populations involved in various important processes, a 50-mer-based oligonucleotide microarray was developed based on known genes and pathways involved in: biodegradation, metal resistance and reduction, denitrification, nitrification, nitrogen fixation, methane oxidation, methanogenesis, carbon polymer decomposition, and sulfate reduction. This array contains approximately 2000 unique and group-specific probes with <85% similarity to their non-target sequences. Based on artificial probes, our results showed that at hybridization conditions of 50 C and 50% formamide, the 50-mer microarray hybridization can differentiate sequences having <88% similarity. Specificity tests with representative pure cultures indicated that the designed probes on the arrays appearedmore » to be specific to their corresponding target genes. Detection limits were about 5-10ng genomic DNA in the absence of background DNA, and 50-100ng ({approx}1.3{sup o} 10{sup 7} cells) in the presence background DNA. Strong linear relationships between signal intensity and target DNA and RNA concentration were observed (r{sup 2} = 0.95-0.99). Application of this microarray to naphthalene-amended enrichments and soil microcosms demonstrated that composition of the microflora varied depending on incubation conditions. While the naphthalene-degrading genes from Rhodococcus-type microorganisms were dominant in enrichments, the genes involved in naphthalene degradation from Gram-negative microorganisms such as Ralstonia, Comamonas, and Burkholderia were most abundant in the soil microcosms (as well as those for polyaromatic hydrocarbon and nitrotoluene degradation). Although naphthalene degradation is widely known and studied in Pseudomonas, Pseudomonas genes were not detected in either system. Real-time PCR analysis of 4 representative genes was consistent with microarray-based quantification (r{sup 2} = 0.95). Currently, we are also applying this microarray to the study of several different microbial communities and processes at the NABIR-FRC in Oak Ridge, TN. One project involves the monitoring of the development and dynamics of the microbial community of a fluidized bed reactor (FBR) used for reducing nitrate and the other project monitors microbial community responses to stimulation of uranium reducing populations via ethanol donor additions in situ and in a model system. Additionally, we are developing novel strategies for increasing microarray hybridization sensitivity. Finally, great improvements to our methods of probe design were made by the development of a new computer program, CommOligo. CommOligo designs unique and group-specific oligo probes for whole-genomes, metagenomes, and groups of environmental sequences and uses a new global alignment algorithm to design single or multiple probes for each gene or group. We are now using this program to design a more comprehensive functional gene array for environmental studies. Overall, our results indicate that the 50mer-based microarray technology has potential as a specific and quantitative tool to reveal the composition of microbial communities and their dynamics important to processes within contaminated environments.« less

  15. Analysis of Gene Expression Changes in PHA-M Stimulated Lymphocytes - Unraveling PHA Activity as Prerequisite for Dicentric Chromosome Analysis.

    PubMed

    Beinke, C; Port, M; Ullmann, R; Gilbertz, K; Majewski, M; Abend, M

    2018-06-01

    Dicentric chromosome analysis (DCA) is the gold standard for individual radiation dose assessment. However, DCA is limited by the time-consuming phytohemagglutinin (PHA)-mediated lymphocyte activation. In this study using human peripheral blood lymphocytes, we investigated PHA-associated whole genome gene expression changes to elucidate this process and sought to identify suitable gene targets as a means of meeting our long-term objective of accelerating cell cycle kinetics to reduce DCA culture time. Human peripheral whole blood from three healthy donors was separately cultured in RPMI/FCS/antibiotics with BrdU and PHA-M. Diluted whole blood samples were transferred into PAXgene tubes at 0, 12, 24 and 36 h culture time. RNA was isolated and aliquots were used for whole genome gene expression screening. Microarray results were validated using qRT-PCR and differentially expressed genes [significantly (FDR corrected) twofold different from the 0 h value reference] were analyzed using several bioinformatic tools. The cell cycle positions and DNA-synthetic activities of lymphocytes were determined by analyzing the correlated total DNA content and incorporated BrdU level with flow cytometry after continued BrdU incubation. From 42,545 transcripts of the whole genome microarray 47.6%, on average, appeared expressed. The number of differentially expressed genes increased linearly from 855 to 2,858 and 4,607 at 12, 24 and 36 h after PHA addition, respectively. Approximately 2-3 times more up- than downregulated genes were observed with several hundred genes differentially expressed at each time point. Earliest enrichment was observed for gene sets related to the nucleus (12 h) followed by genes assigned to intracellular structures such as organelles (24 h) and finally genes related to the membrane and the extracellular matrix were enriched (36 h). Early gene expression changes at 12 h, in particular, were associated with protein classes such as chemokines/cytokines (e.g., CXCL1, CXCL2) and chaperones. Genes coding for biological processes involved in cell cycle control (e.g., MYBL2, RBL1, CCNA, CCNE) and DNA replication (e.g., POLA, POLE, MCM) appeared enriched at 24 h and later, but many more biological processes (42 altogether) showed enrichment as well. Flow cytometry data fit together with gene expression and bioinformatic analyses as cell cycle transition into S phase was observed with interindividual differences from 12 h onward, whereas progression into G 2 as well as into the second G 1 occurred from 36 h onward after activation. Gene set enrichment analysis over time identifies, in particular, two molecular categories of PHA-responsive gene targets (cytokine and cell cycle control genes). Based on that analysis target genes for cell cycle acceleration in lymphocytes have been identified ( CDKN1A/B/C, RBL-1/RBL-2, E2F2, Deaf-1), and it remains undetermined whether the time expenditure for DCA can be reduced by influencing gene expression involved in the regulatory circuits controlling PHA-associated cell cycle entry and/or progression at a specific early cell cycle phase.

  16. AN ECOLOGICAL PERSPECTIVE OF GENOMICS: ASSESSING ECOLOGICAL RISK THROUGH PARTNERSHIPS

    EPA Science Inventory

    The application of new molecular biological tools to environmental toxicology was discussed at an international workshop attended by
    approximately 60 government, academic, and industrial scientists. The sequencing of the human genome, development of microarrays and
    DNA chip...

  17. Role of PELP1 in EGFR-ER Signaling Crosstalk in Ovarian Cancer Cells

    DTIC Science & Technology

    2009-04-01

    expression of genes involved in metastasis using a focused microarray approach. We have used Human Tumor Metastasis Microarray (Oligo GE array from...ovarian cancer progression. Analysis of human genome databases and SAGE data suggested deregulation of PELP1 expression in ovarian cancer cells...PI3K, and STAT3 in the cytosol. PELP1/MNAR regulates meiosis via its interactions with heterotimeric Gbc protein, androgen receptor (AR), and by

  18. Knockdown of the schizophrenia susceptibility gene TCF4 alters gene expression and proliferation of progenitor cells from the developing human neocortex.

    PubMed

    Hill, Matthew J; Killick, Richard; Navarrete, Katherinne; Maruszak, Aleksandra; McLaughlin, Gemma M; Williams, Brenda P; Bray, Nicholas J

    2017-05-01

    Common variants in the TCF4 gene are among the most robustly supported genetic risk factors for schizophrenia. Rare TCF4 deletions and loss-of-function point mutations cause Pitt-Hopkins syndrome, a developmental disorder associated with severe intellectual disability. To explore molecular and cellular mechanisms by which TCF4 perturbation could interfere with human cortical development, we experimentally reduced the endogenous expression of TCF4 in a neural progenitor cell line derived from the developing human cerebral cortex using RNA interference. Effects on genome-wide gene expression were assessed by microarray, followed by Gene Ontology and pathway analysis of differentially expressed genes. We tested for genetic association between the set of differentially expressed genes and schizophrenia using genome-wide association study data from the Psychiatric Genomics Consortium and competitive gene set analysis (MAGMA). Effects on cell proliferation were assessed using high content imaging. Genes that were differentially expressed following TCF4 knockdown were highly enriched for involvement in the cell cycle. There was a nonsignificant trend for genetic association between the differentially expressed gene set and schizophrenia. Consistent with the gene expression data, TCF4 knockdown was associated with reduced proliferation of cortical progenitor cells in vitro. A detailed mechanistic explanation of how TCF4 knockdown alters human neural progenitor cell proliferation is not provided by this study. Our data indicate effects of TCF4 perturbation on human cortical progenitor cell proliferation, a process that could contribute to cognitive deficits in individuals with Pitt-Hopkins syndrome and risk for schizophrenia.

  19. Principles of gene microarray data analysis.

    PubMed

    Mocellin, Simone; Rossi, Carlo Riccardo

    2007-01-01

    The development of several gene expression profiling methods, such as comparative genomic hybridization (CGH), differential display, serial analysis of gene expression (SAGE), and gene microarray, together with the sequencing of the human genome, has provided an opportunity to monitor and investigate the complex cascade of molecular events leading to tumor development and progression. The availability of such large amounts of information has shifted the attention of scientists towards a nonreductionist approach to biological phenomena. High throughput technologies can be used to follow changing patterns of gene expression over time. Among them, gene microarray has become prominent because it is easier to use, does not require large-scale DNA sequencing, and allows for the parallel quantification of thousands of genes from multiple samples. Gene microarray technology is rapidly spreading worldwide and has the potential to drastically change the therapeutic approach to patients affected with tumor. Therefore, it is of paramount importance for both researchers and clinicians to know the principles underlying the analysis of the huge amount of data generated with microarray technology.

  20. Pathway Distiller - multisource biological pathway consolidation

    PubMed Central

    2012-01-01

    Background One method to understand and evaluate an experiment that produces a large set of genes, such as a gene expression microarray analysis, is to identify overrepresentation or enrichment for biological pathways. Because pathways are able to functionally describe the set of genes, much effort has been made to collect curated biological pathways into publicly accessible databases. When combining disparate databases, highly related or redundant pathways exist, making their consolidation into pathway concepts essential. This will facilitate unbiased, comprehensive yet streamlined analysis of experiments that result in large gene sets. Methods After gene set enrichment finds representative pathways for large gene sets, pathways are consolidated into representative pathway concepts. Three complementary, but different methods of pathway consolidation are explored. Enrichment Consolidation combines the set of the pathways enriched for the signature gene list through iterative combining of enriched pathways with other pathways with similar signature gene sets; Weighted Consolidation utilizes a Protein-Protein Interaction network based gene-weighting approach that finds clusters of both enriched and non-enriched pathways limited to the experiments' resultant gene list; and finally the de novo Consolidation method uses several measurements of pathway similarity, that finds static pathway clusters independent of any given experiment. Results We demonstrate that the three consolidation methods provide unified yet different functional insights of a resultant gene set derived from a genome-wide profiling experiment. Results from the methods are presented, demonstrating their applications in biological studies and comparing with a pathway web-based framework that also combines several pathway databases. Additionally a web-based consolidation framework that encompasses all three methods discussed in this paper, Pathway Distiller (http://cbbiweb.uthscsa.edu/PathwayDistiller), is established to allow researchers access to the methods and example microarray data described in this manuscript, and the ability to analyze their own gene list by using our unique consolidation methods. Conclusions By combining several pathway systems, implementing different, but complementary pathway consolidation methods, and providing a user-friendly web-accessible tool, we have enabled users the ability to extract functional explanations of their genome wide experiments. PMID:23134636

  1. Pathway Distiller - multisource biological pathway consolidation.

    PubMed

    Doderer, Mark S; Anguiano, Zachry; Suresh, Uthra; Dashnamoorthy, Ravi; Bishop, Alexander J R; Chen, Yidong

    2012-01-01

    One method to understand and evaluate an experiment that produces a large set of genes, such as a gene expression microarray analysis, is to identify overrepresentation or enrichment for biological pathways. Because pathways are able to functionally describe the set of genes, much effort has been made to collect curated biological pathways into publicly accessible databases. When combining disparate databases, highly related or redundant pathways exist, making their consolidation into pathway concepts essential. This will facilitate unbiased, comprehensive yet streamlined analysis of experiments that result in large gene sets. After gene set enrichment finds representative pathways for large gene sets, pathways are consolidated into representative pathway concepts. Three complementary, but different methods of pathway consolidation are explored. Enrichment Consolidation combines the set of the pathways enriched for the signature gene list through iterative combining of enriched pathways with other pathways with similar signature gene sets; Weighted Consolidation utilizes a Protein-Protein Interaction network based gene-weighting approach that finds clusters of both enriched and non-enriched pathways limited to the experiments' resultant gene list; and finally the de novo Consolidation method uses several measurements of pathway similarity, that finds static pathway clusters independent of any given experiment. We demonstrate that the three consolidation methods provide unified yet different functional insights of a resultant gene set derived from a genome-wide profiling experiment. Results from the methods are presented, demonstrating their applications in biological studies and comparing with a pathway web-based framework that also combines several pathway databases. Additionally a web-based consolidation framework that encompasses all three methods discussed in this paper, Pathway Distiller (http://cbbiweb.uthscsa.edu/PathwayDistiller), is established to allow researchers access to the methods and example microarray data described in this manuscript, and the ability to analyze their own gene list by using our unique consolidation methods. By combining several pathway systems, implementing different, but complementary pathway consolidation methods, and providing a user-friendly web-accessible tool, we have enabled users the ability to extract functional explanations of their genome wide experiments.

  2. Molecular Targeted Therapies of Childhood Choroid Plexus Carcinoma

    DTIC Science & Technology

    2013-10-01

    Microarray intensities were analyzed in PGS, using the benign human choroid plexus papilloma (CPP) samples as an expression baseline reference. This...additional human and mouse CPC genomic profiles (timeframe: months 1-5). The goal of these studies is to expand our number of genomic profiles (DNA and...mRNA arrays) of both human and mouse CPCs to provide a comprehensive dataset with which to identify key candidate oncogenes, tumor suppressor genes

  3. Molecular Targeted Therapies of Childhood Choroid Plexus Carcinoma

    DTIC Science & Technology

    2012-10-01

    Microarray intensities were analyzed in PGS, using the benign human choroid plexus papilloma (CPP) samples as an expression baseline reference...identify candidate drug targets of CPC. Task 1: Generation of additional human and mouse CPC genomic profiles (timeframe: months 1-5). The goal...of these studies is to expand our number of genomic profiles (DNA and mRNA arrays) of both human and mouse CPCs to provide a comprehensive dataset

  4. Genome-wide analyses of LINE–LINE-mediated nonallelic homologous recombination

    PubMed Central

    Startek, Michał; Szafranski, Przemyslaw; Gambin, Tomasz; Campbell, Ian M.; Hixson, Patricia; Shaw, Chad A.; Stankiewicz, Paweł; Gambin, Anna

    2015-01-01

    Nonallelic homologous recombination (NAHR), occurring between low-copy repeats (LCRs) >10 kb in size and sharing >97% DNA sequence identity, is responsible for the majority of recurrent genomic rearrangements in the human genome. Recent studies have shown that transposable elements (TEs) can also mediate recurrent deletions and translocations, indicating the features of substrates that mediate NAHR may be significantly less stringent than previously believed. Using >4 kb length and >95% sequence identity criteria, we analyzed of the genome-wide distribution of long interspersed element (LINE) retrotransposon and their potential to mediate NAHR. We identified 17 005 directly oriented LINE pairs located <10 Mbp from each other as potential NAHR substrates, placing 82.8% of the human genome at risk of LINE–LINE-mediated instability. Cross-referencing these regions with CNVs in the Baylor College of Medicine clinical chromosomal microarray database of 36 285 patients, we identified 516 CNVs potentially mediated by LINEs. Using long-range PCR of five different genomic regions in a total of 44 patients, we confirmed that the CNV breakpoints in each patient map within the LINE elements. To additionally assess the scale of LINE–LINE/NAHR phenomenon in the human genome, we tested DNA samples from six healthy individuals on a custom aCGH microarray targeting LINE elements predicted to mediate CNVs and identified 25 LINE–LINE rearrangements. Our data indicate that LINE–LINE-mediated NAHR is widespread and under-recognized, and is an important mechanism of structural rearrangement contributing to human genomic variability. PMID:25613453

  5. Genomic footprints of dryland stress adaptation in Egyptian fat-tail sheep and their divergence from East African and western Asia cohorts.

    PubMed

    Mwacharo, Joram M; Kim, Eui-Soo; Elbeltagy, Ahmed R; Aboul-Naga, Adel M; Rischkowsky, Barbara A; Rothschild, Max F

    2017-12-15

    African indigenous sheep are classified as fat-tail, thin-tail and fat-rump hair sheep. The fat-tail are well adapted to dryland environments, but little is known on their genome profiles. We analyzed patterns of genomic variation by genotyping, with the Ovine SNP50K microarray, 394 individuals from five populations of fat-tail sheep from a desert environment in Egypt. Comparative inferences with other East African and western Asia fat-tail and European sheep, reveal at least two phylogeographically distinct genepools of fat-tail sheep in Africa that differ from the European genepool, suggesting separate evolutionary and breeding history. We identified 24 candidate selection sweep regions, spanning 172 potentially novel and known genes, which are enriched with genes underpinning dryland adaptation physiology. In particular, we found selection sweeps spanning genes and/or pathways associated with metabolism; response to stress, ultraviolet radiation, oxidative stress and DNA damage repair; activation of immune response; regulation of reproduction, organ function and development, body size and morphology, skin and hair pigmentation, and keratinization. Our findings provide insights on the complexity of genome architecture regarding dryland stress adaptation in the fat-tail sheep and showcase the indigenous stocks as appropriate genotypes for adaptation planning to sustain livestock production and human livelihoods, under future climates.

  6. Global Expression Profiling in Atopic Eczema Reveals Reciprocal Expression of Inflammatory and Lipid Genes

    PubMed Central

    Sääf, Annika M.; Tengvall-Linder, Maria; Chang, Howard Y.; Adler, Adam S.; Wahlgren, Carl-Fredrik; Scheynius, Annika; Nordenskjöld, Magnus; Bradley, Maria

    2008-01-01

    Background Atopic eczema (AE) is a common chronic inflammatory skin disorder. In order to dissect the genetic background several linkage and genetic association studies have been performed. Yet very little is known about specific genes involved in this complex skin disease, and the underlying molecular mechanisms are not fully understood. Methodology/Findings We used human DNA microarrays to identify a molecular picture of the programmed responses of the human genome to AE. The transcriptional program was analyzed in skin biopsy samples from lesional and patch-tested skin from AE patients sensitized to Malassezia sympodialis (M. sympodialis), and corresponding biopsies from healthy individuals. The most notable feature of the global gene-expression pattern observed in AE skin was a reciprocal expression of induced inflammatory genes and repressed lipid metabolism genes. The overall transcriptional response in M. sympodialis patch-tested AE skin was similar to the gene-expression signature identified in lesional AE skin. In the constellation of genes differentially expressed in AE skin compared to healthy control skin, we have identified several potential susceptibility genes that may play a critical role in the pathological condition of AE. Many of these genes, including genes with a role in immune responses, lipid homeostasis, and epidermal differentiation, are localized on chromosomal regions previously linked to AE. Conclusions/Significance Through genome-wide expression profiling, we were able to discover a distinct reciprocal expression pattern of induced inflammatory genes and repressed lipid metabolism genes in skin from AE patients. We found a significant enrichment of differentially expressed genes in AE with cytobands associated to the disease, and furthermore new chromosomal regions were found that could potentially guide future region-specific linkage mapping in AE. The full data set is available at http://microarray-pubs.stanford.edu/eczema. PMID:19107207

  7. Genome-wide expressions in autologous eutopic and ectopic endometrium of fertile women with endometriosis.

    PubMed

    Khan, Meraj A; Sengupta, Jayasree; Mittal, Suneeta; Ghosh, Debabrata

    2012-09-24

    In order to obtain a lead of the pathophysiology of endometriosis, genome-wide expressional analyses of eutopic and ectopic endometrium have earlier been reported, however, the effects of stages of severity and phases of menstrual cycle on expressional profiles have not been examined. The effect of genetic heterogeneity and fertility history on transcriptional activity was also not considered. In the present study, a genome-wide expression analysis of autologous, paired eutopic and ectopic endometrial samples obtained from fertile women (n=18) suffering from moderate (stage 3; n=8) or severe (stage 4; n=10) ovarian endometriosis during proliferative (n=13) and secretory (n=5) phases of menstrual cycle was performed. Individual pure RNA samples were subjected to Agilent's Whole Human Genome 44K microarray experiments. Microarray data were validated (P<0.01) by estimating transcript copy numbers by performing real time RT-PCR of seven (7) arbitrarily selected genes in all samples. The data obtained were subjected to differential expression (DE) and differential co-expression (DC) analyses followed by networks and enrichment analysis, and gene set enrichment analysis (GSEA). The reproducibility of prediction based on GSEA implementation of DC results was assessed by examining the relative expressions of twenty eight (28) selected genes in RNA samples obtained from fresh pool of eutopic and ectopic samples from confirmed ovarian endometriosis patients with stages 3 and 4 (n=4/each) during proliferative and secretory (n=4/each) phases. Higher clustering effect of pairing (cluster distance, cd=0.1) in samples from same individuals on expressional arrays among eutopic and ectopic samples was observed as compared to that of clinical stages of severity (cd=0.5) and phases of menstrual cycle (cd=0.6). Post hoc analysis revealed anomaly in the expressional profiles of several genes associated with immunological, neuracrine and endocrine functions and gynecological cancers however with no overt oncogenic potential in endometriotic tissue. Dys-regulation of three (CLOCK, ESR1, and MYC) major transcription factors appeared to be significant causative factors in the pathogenesis of ovarian endometriosis. A novel cohort of twenty-eight (28) genes representing potential marker for ovarian endometriosis in fertile women was discovered. Dysfunctional expression of immuno-neuro-endocrine behaviour in endometrium appeared critical to endometriosis. Although no overt oncogenic potential was evident, several genes associated with gynecological cancers were observed to be high in the expressional profiles in endometriotic tissue.

  8. AN ECOLOGICAL PERSPECTIVE OF GENOMICS: ASSESSING ECOLOGICAL RISK THROUGH PARTNERSHIPS

    EPA Science Inventory

    A workshop attended by approximately 60 scientists from around the world met to discuss the application of new molecular biology tools to issues in environmental toxicology and chemistry. With the sequencing of the human genome, development of microarrays and DNA chips, and devel...

  9. A remark on copy number variation detection methods.

    PubMed

    Li, Shuo; Dou, Xialiang; Gao, Ruiqi; Ge, Xinzhou; Qian, Minping; Wan, Lin

    2018-01-01

    Copy number variations (CNVs) are gain and loss of DNA sequence of a genome. High throughput platforms such as microarrays and next generation sequencing technologies (NGS) have been applied for genome wide copy number losses. Although progress has been made in both approaches, the accuracy and consistency of CNV calling from the two platforms remain in dispute. In this study, we perform a deep analysis on copy number losses on 254 human DNA samples, which have both SNP microarray data and NGS data publicly available from Hapmap Project and 1000 Genomes Project respectively. We show that the copy number losses reported from Hapmap Project and 1000 Genome Project only have < 30% overlap, while these reports are required to have cross-platform (e.g. PCR, microarray and high-throughput sequencing) experimental supporting by their corresponding projects, even though state-of-art calling methods were employed. On the other hand, copy number losses are found directly from HapMap microarray data by an accurate algorithm, i.e. CNVhac, almost all of which have lower read mapping depth in NGS data; furthermore, 88% of which can be supported by the sequences with breakpoint in NGS data. Our results suggest the ability of microarray calling CNVs and the possible introduction of false negatives from the unessential requirement of the additional cross-platform supporting. The inconsistency of CNV reports from Hapmap Project and 1000 Genomes Project might result from the inadequate information containing in microarray data, the inconsistent detection criteria, or the filtration effect of cross-platform supporting. The statistical test on CNVs called from CNVhac show that the microarray data can offer reliable CNV reports, and majority of CNV candidates can be confirmed by raw sequences. Therefore, the CNV candidates given by a good caller could be highly reliable without cross-platform supporting, so additional experimental information should be applied in need instead of necessarily.

  10. Microarray Analysis of Differential Gene Expression Profile Between Human Fetal and Adult Heart.

    PubMed

    Geng, Zhimin; Wang, Jue; Pan, Lulu; Li, Ming; Zhang, Jitai; Cai, Xueli; Chu, Maoping

    2017-04-01

    Although many changes have been discovered during heart maturation, the genetic mechanisms involved in the changes between immature and mature myocardium have only been partially elucidated. Here, gene expression profile changed between the human fetal and adult heart was characterized. A human microarray was applied to define the gene expression signatures of the fetal (13-17 weeks of gestation, n = 4) and adult hearts (30-40 years old, n = 4). Gene ontology analyses, pathway analyses, gene set enrichment analyses, and signal transduction network were performed to predict the function of the differentially expressed genes. Ten mRNAs were confirmed by quantificational real-time polymerase chain reaction. 5547 mRNAs were found to be significantly differentially expressed. "Cell cycle" was the most enriched pathway in the down-regulated genes. EFGR, IGF1R, and ITGB1 play a central role in the regulation of heart development. EGFR, IGF1R, and FGFR2 were the core genes regulating cardiac cell proliferation. The quantificational real-time polymerase chain reaction results were concordant with the microarray data. Our data identified the transcriptional regulation of heart development in the second trimester and the potential regulators that play a prominent role in the regulation of heart development and cardiac cells proliferation.

  11. Identification and characterization of nuclear genes involved in photosynthesis in Populus

    PubMed Central

    2014-01-01

    Background The gap between the real and potential photosynthetic rate under field conditions suggests that photosynthesis could potentially be improved. Nuclear genes provide possible targets for improving photosynthetic efficiency. Hence, genome-wide identification and characterization of the nuclear genes affecting photosynthetic traits in woody plants would provide key insights on genetic regulation of photosynthesis and identify candidate processes for improvement of photosynthesis. Results Using microarray and bulked segregant analysis strategies, we identified differentially expressed nuclear genes for photosynthesis traits in a segregating population of poplar. We identified 515 differentially expressed genes in this population (FC ≥ 2 or FC ≤ 0.5, P < 0.05), 163 up-regulated and 352 down-regulated. Real-time PCR expression analysis confirmed the microarray data. Singular Enrichment Analysis identified 48 significantly enriched GO terms for molecular functions (28), biological processes (18) and cell components (2). Furthermore, we selected six candidate genes for functional examination by a single-marker association approach, which demonstrated that 20 SNPs in five candidate genes significantly associated with photosynthetic traits, and the phenotypic variance explained by each SNP ranged from 2.3% to 12.6%. This revealed that regulation of photosynthesis by the nuclear genome mainly involves transport, metabolism and response to stimulus functions. Conclusions This study provides new genome-scale strategies for the discovery of potential candidate genes affecting photosynthesis in Populus, and for identification of the functions of genes involved in regulation of photosynthesis. This work also suggests that improving photosynthetic efficiency under field conditions will require the consideration of multiple factors, such as stress responses. PMID:24673936

  12. Privacy Preserving PCA on Distributed Bioinformatics Datasets

    ERIC Educational Resources Information Center

    Li, Xin

    2011-01-01

    In recent years, new bioinformatics technologies, such as gene expression microarray, genome-wide association study, proteomics, and metabolomics, have been widely used to simultaneously identify a huge number of human genomic/genetic biomarkers, generate a tremendously large amount of data, and dramatically increase the knowledge on human…

  13. Genome Expression Pathway Analysis Tool – Analysis and visualization of microarray gene expression data under genomic, proteomic and metabolic context

    PubMed Central

    Weniger, Markus; Engelmann, Julia C; Schultz, Jörg

    2007-01-01

    Background Regulation of gene expression is relevant to many areas of biology and medicine, in the study of treatments, diseases, and developmental stages. Microarrays can be used to measure the expression level of thousands of mRNAs at the same time, allowing insight into or comparison of different cellular conditions. The data derived out of microarray experiments is highly dimensional and often noisy, and interpretation of the results can get intricate. Although programs for the statistical analysis of microarray data exist, most of them lack an integration of analysis results and biological interpretation. Results We have developed GEPAT, Genome Expression Pathway Analysis Tool, offering an analysis of gene expression data under genomic, proteomic and metabolic context. We provide an integration of statistical methods for data import and data analysis together with a biological interpretation for subsets of probes or single probes on the chip. GEPAT imports various types of oligonucleotide and cDNA array data formats. Different normalization methods can be applied to the data, afterwards data annotation is performed. After import, GEPAT offers various statistical data analysis methods, as hierarchical, k-means and PCA clustering, a linear model based t-test or chromosomal profile comparison. The results of the analysis can be interpreted by enrichment of biological terms, pathway analysis or interaction networks. Different biological databases are included, to give various information for each probe on the chip. GEPAT offers no linear work flow, but allows the usage of any subset of probes and samples as a start for a new data analysis. GEPAT relies on established data analysis packages, offers a modular approach for an easy extension, and can be run on a computer grid to allow a large number of users. It is freely available under the LGPL open source license for academic and commercial users at . Conclusion GEPAT is a modular, scalable and professional-grade software integrating analysis and interpretation of microarray gene expression data. An installation available for academic users can be found at . PMID:17543125

  14. Investigating the epigenetic effects of a prototype smoke-derived carcinogen in human cells.

    PubMed

    Tommasi, Stella; Kim, Sang-in; Zhong, Xueyan; Wu, Xiwei; Pfeifer, Gerd P; Besaratinia, Ahmad

    2010-05-12

    Global loss of DNA methylation and locus/gene-specific gain of DNA methylation are two distinct hallmarks of carcinogenesis. Aberrant DNA methylation is implicated in smoking-related lung cancer. In this study, we have comprehensively investigated the modulation of DNA methylation consequent to chronic exposure to a prototype smoke-derived carcinogen, benzo[a]pyrene diol epoxide (B[a]PDE), in genomic regions of significance in lung cancer, in normal human cells. We have used a pulldown assay for enrichment of the CpG methylated fraction of cellular DNA combined with microarray platforms, followed by extensive validation through conventional bisulfite-based analysis. Here, we demonstrate strikingly similar patterns of DNA methylation in non-transformed B[a]PDE-treated cells vs control using high-throughput microarray-based DNA methylation profiling confirmed by conventional bisulfite-based DNA methylation analysis. The absence of aberrant DNA methylation in our model system within a timeframe that precedes cellular transformation suggests that following carcinogen exposure, other as yet unknown factors (secondary to carcinogen treatment) may help initiate global loss of DNA methylation and region-specific gain of DNA methylation, which can, in turn, contribute to lung cancer development. Unveiling the initiating events that cause aberrant DNA methylation in lung cancer has tremendous public health relevance, as it can help define future strategies for early detection and prevention of this highly lethal disease.

  15. Investigating the Epigenetic Effects of a Prototype Smoke-Derived Carcinogen in Human Cells

    PubMed Central

    Tommasi, Stella; Kim, Sang-in; Zhong, Xueyan; Wu, Xiwei; Pfeifer, Gerd P.; Besaratinia, Ahmad

    2010-01-01

    Global loss of DNA methylation and locus/gene-specific gain of DNA methylation are two distinct hallmarks of carcinogenesis. Aberrant DNA methylation is implicated in smoking-related lung cancer. In this study, we have comprehensively investigated the modulation of DNA methylation consequent to chronic exposure to a prototype smoke-derived carcinogen, benzo[a]pyrene diol epoxide (B[a]PDE), in genomic regions of significance in lung cancer, in normal human cells. We have used a pulldown assay for enrichment of the CpG methylated fraction of cellular DNA combined with microarray platforms, followed by extensive validation through conventional bisulfite-based analysis. Here, we demonstrate strikingly similar patterns of DNA methylation in non-transformed B[a]PDE-treated cells vs control using high-throughput microarray-based DNA methylation profiling confirmed by conventional bisulfite-based DNA methylation analysis. The absence of aberrant DNA methylation in our model system within a timeframe that precedes cellular transformation suggests that following carcinogen exposure, other as yet unknown factors (secondary to carcinogen treatment) may help initiate global loss of DNA methylation and region-specific gain of DNA methylation, which can, in turn, contribute to lung cancer development. Unveiling the initiating events that cause aberrant DNA methylation in lung cancer has tremendous public health relevance, as it can help define future strategies for early detection and prevention of this highly lethal disease. PMID:20485678

  16. Caryoscope: An Open Source Java application for viewing microarray data in a genomic context

    PubMed Central

    Awad, Ihab AB; Rees, Christian A; Hernandez-Boussard, Tina; Ball, Catherine A; Sherlock, Gavin

    2004-01-01

    Background Microarray-based comparative genome hybridization experiments generate data that can be mapped onto the genome. These data are interpreted more easily when represented graphically in a genomic context. Results We have developed Caryoscope, which is an open source Java application for visualizing microarray data from array comparative genome hybridization experiments in a genomic context. Caryoscope can read General Feature Format files (GFF files), as well as comma- and tab-delimited files, that define the genomic positions of the microarray reporters for which data are obtained. The microarray data can be browsed using an interactive, zoomable interface, which helps users identify regions of chromosomal deletion or amplification. The graphical representation of the data can be exported in a number of graphic formats, including publication-quality formats such as PostScript. Conclusion Caryoscope is a useful tool that can aid in the visualization, exploration and interpretation of microarray data in a genomic context. PMID:15488149

  17. Bioinformatics/biostatistics: microarray analysis.

    PubMed

    Eichler, Gabriel S

    2012-01-01

    The quantity and complexity of the molecular-level data generated in both research and clinical settings require the use of sophisticated, powerful computational interpretation techniques. It is for this reason that bioinformatic analysis of complex molecular profiling data has become a fundamental technology in the development of personalized medicine. This chapter provides a high-level overview of the field of bioinformatics and outlines several, classic bioinformatic approaches. The highlighted approaches can be aptly applied to nearly any sort of high-dimensional genomic, proteomic, or metabolomic experiments. Reviewed technologies in this chapter include traditional clustering analysis, the Gene Expression Dynamics Inspector (GEDI), GoMiner (GoMiner), Gene Set Enrichment Analysis (GSEA), and the Learner of Functional Enrichment (LeFE).

  18. Maternal Gametic Transmission of Translocations or Inversions of Human Chromosome 11p15.5 Results in Regional DNA Hypermethylation and Downregulation of CDKN1C Expression

    PubMed Central

    Smith, Adam C.; Suzuki, Masako; Thompson, Reid; Choufani, Sanaa; Higgins, Michael J.; Chiu, Idy W.; Squire, Jeremy A.; Greally, John M.; Weksberg, Rosanna

    2015-01-01

    Beckwith-Wiedemann syndrome (BWS) is an overgrowth syndrome associated with genetic or epigenetic alterations in one of two imprinted domains on chromosome 11p15.5. Rarely, chromosomal translocations or inversions of chromosome 11p15.5 are associated with BWS but the molecular pathophysiology in such cases is not understood. In our series of 3 translocation and 2 inversion patients with BWS, the chromosome 11p15.5 breakpoints map within the centromeric imprinted domain, 2. We hypothesized that either microdeletions/microduplications adjacent to the breakpoints could disrupt genomic sequences important for imprinted gene regulation. An alternate hypothesis was that epigenetic alterations of as yet unknown regulatory DNA sequences, result in the BWS phenotype. A high resolution Nimblegen custom microarray was designed representing all non-repetitive sequences in the telomeric 33 MB of the short arm of human chromosome 11. For the BWS-associated chromosome 11p15.5 translocations and inversions, we found no evidence of microdeletions/microduplications. DNA methylation was also tested on this microarray using the HpaII tiny fragment enrichment by ligation-mediated PCR (HELP) assay. This high-resolution DNA methylation microarray analysis revealed a gain of DNA methylation in the translocation/inversion patients affecting the p-ter segment of chromosome 11p15, including both imprinted domains. BWS patients that inherited a maternal translocation or inversion also demonstrated reduced expression of the growth suppressing imprinted gene, CDKN1C in Domain 2. In summary, our data demonstrate that translocations and inversions involving imprinted domain 2 on chromosome 11p15.5, alter regional DNA methylation patterns and imprinted gene expression in cis, suggesting that these epigenetic alterations are generated by an alteration in “chromatin context”. PMID:22079941

  19. Diversity arrays technology: a generic genome profiling technology on open platforms.

    PubMed

    Kilian, Andrzej; Wenzl, Peter; Huttner, Eric; Carling, Jason; Xia, Ling; Blois, Hélène; Caig, Vanessa; Heller-Uszynska, Katarzyna; Jaccoud, Damian; Hopper, Colleen; Aschenbrenner-Kilian, Malgorzata; Evers, Margaret; Peng, Kaiman; Cayla, Cyril; Hok, Puthick; Uszynski, Grzegorz

    2012-01-01

    In the last 20 years, we have observed an exponential growth of the DNA sequence data and simular increase in the volume of DNA polymorphism data generated by numerous molecular marker technologies. Most of the investment, and therefore progress, concentrated on human genome and genomes of selected model species. Diversity Arrays Technology (DArT), developed over a decade ago, was among the first "democratizing" genotyping technologies, as its performance was primarily driven by the level of DNA sequence variation in the species rather than by the level of financial investment. DArT also proved more robust to genome size and ploidy-level differences among approximately 60 organisms for which DArT was developed to date compared to other high-throughput genotyping technologies. The success of DArT in a number of organisms, including a wide range of "orphan crops," can be attributed to the simplicity of underlying concepts: DArT combines genome complexity reduction methods enriching for genic regions with a highly parallel assay readout on a number of "open-access" microarray platforms. The quantitative nature of the assay enabled a number of applications in which allelic frequencies can be estimated from DArT arrays. A typical DArT assay tests for polymorphism tens of thousands of genomic loci with the final number of markers reported (hundreds to thousands) reflecting the level of DNA sequence variation in the tested loci. Detailed DArT methods, protocols, and a range of their application examples as well as DArT's evolution path are presented.

  20. arrayCGHbase: an analysis platform for comparative genomic hybridization microarrays

    PubMed Central

    Menten, Björn; Pattyn, Filip; De Preter, Katleen; Robbrecht, Piet; Michels, Evi; Buysse, Karen; Mortier, Geert; De Paepe, Anne; van Vooren, Steven; Vermeesch, Joris; Moreau, Yves; De Moor, Bart; Vermeulen, Stefan; Speleman, Frank; Vandesompele, Jo

    2005-01-01

    Background The availability of the human genome sequence as well as the large number of physically accessible oligonucleotides, cDNA, and BAC clones across the entire genome has triggered and accelerated the use of several platforms for analysis of DNA copy number changes, amongst others microarray comparative genomic hybridization (arrayCGH). One of the challenges inherent to this new technology is the management and analysis of large numbers of data points generated in each individual experiment. Results We have developed arrayCGHbase, a comprehensive analysis platform for arrayCGH experiments consisting of a MIAME (Minimal Information About a Microarray Experiment) supportive database using MySQL underlying a data mining web tool, to store, analyze, interpret, compare, and visualize arrayCGH results in a uniform and user-friendly format. Following its flexible design, arrayCGHbase is compatible with all existing and forthcoming arrayCGH platforms. Data can be exported in a multitude of formats, including BED files to map copy number information on the genome using the Ensembl or UCSC genome browser. Conclusion ArrayCGHbase is a web based and platform independent arrayCGH data analysis tool, that allows users to access the analysis suite through the internet or a local intranet after installation on a private server. ArrayCGHbase is available at . PMID:15910681

  1. Regulatory interactions between long noncoding RNA LINC00968 and miR-9-3p in non-small cell lung cancer: A bioinformatic analysis based on miRNA microarray, GEO and TCGA.

    PubMed

    Li, Dong-Yao; Chen, Wen-Jie; Shang, Jun; Chen, Gang; Li, Shi-Kang

    2018-06-01

    Long non-coding RNAs (lncRNAs) have been demonstrated to mediate carcinogenesis in various types of cancer. However, the regulatory role of lncRNA LINC00968 in lung adenocarcinoma remains unclear. The microRNA (miRNA) expression in LINC00968-overexpressing human lung adenocarcinoma A549 cells was detected using miRNA microarray analysis. miR-9-3p was selected for further analysis, and its expression was verified in the Gene Expression Omnibus (GEO) database. In addition, the regulatory axis of LINC00968 was validated using The Cancer Genome Atlas (TCGA) database. Results of the GEO database indicated miR-9-3p expression in lung adenocarcinoma was significantly higher compared with normal tissues. Functional enrichment analyses of the target genes of miR-9-3p indicated protein binding and the AMP-activated protein kinase pathway were the most enriched Gene Ontology and KEGG terms, respectively. Combining target genes with the correlated genes of LINC00968 and miR-9-3p, 120 objective genes were obtained, which were used to construct a protein-protein interaction (PPI) network. Cyclin A2 (CCNA2) was identified to have a vital role in the PPI network. Significant correlations were detected between LINC00968, miR-9-3p and CCNA2 in lung adenocarcinoma. The LINC00968/miR-9-3p/CCNA2 regulatory axis provides a new foundation for further evaluating the regulatory mechanisms of LINC00968 in lung adenocarcinoma.

  2. Analysis of sensitivity and rapid hybridization of a multiplexed Microbial Detection Microarray

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thissen, James B.; McLoughlin, Kevin; Gardner, Shea

    Microarrays have proven to be useful in rapid detection of many viruses and bacteria. Pathogen detection microarrays have been used to diagnose viral and bacterial infections in clinical samples and to evaluate the safety of biological drug materials. A multiplexed version of the Lawrence Livermore Microbial Detection Array (LLMDA) was developed and evaluated with minimum detectable concentrations for pure unamplified DNA viruses, along with mixtures of viral and bacterial DNA subjected to different whole genome amplification protocols. In addition the performance of the array was tested when hybridization time was reduced from 17 h to 1 h. The LLMDA wasmore » able to detect unamplified vaccinia virus DNA at a concentration of 14 fM, or 100,000 genome copies in 12 μL of sample. With amplification, positive identification was made with only 100 genome copies of input material. When tested against human stool samples from patients with acute gastroenteritis, the microarray detected common gastroenteritis viral and bacterial infections such as rotavirus and E. coli. Accurate detection was found but with a 4-fold drop in sensitivity for a 1 h compared to a 17 h hybridization. The array detected 2 ng (equivalent concentration of 15.6 fM) of labeled DNA from a virus with 1 h hybridization without any amplification, and was able to identify the components of a mixture of viruses and bacteria at species and in some cases strain level resolution. Sensitivity improved by three orders of magnitude with random whole genome amplification prior to hybridization; for instance, the array detected a DNA virus with only 20 fg or 100 genome copies as input. This multiplexed microarray is an efficient tool to analyze clinical and environmental samples for the presence of multiple viral and bacterial pathogens rapidly.« less

  3. Analysis of sensitivity and rapid hybridization of a multiplexed Microbial Detection Microarray

    DOE PAGES

    Thissen, James B.; McLoughlin, Kevin; Gardner, Shea; ...

    2014-06-01

    Microarrays have proven to be useful in rapid detection of many viruses and bacteria. Pathogen detection microarrays have been used to diagnose viral and bacterial infections in clinical samples and to evaluate the safety of biological drug materials. A multiplexed version of the Lawrence Livermore Microbial Detection Array (LLMDA) was developed and evaluated with minimum detectable concentrations for pure unamplified DNA viruses, along with mixtures of viral and bacterial DNA subjected to different whole genome amplification protocols. In addition the performance of the array was tested when hybridization time was reduced from 17 h to 1 h. The LLMDA wasmore » able to detect unamplified vaccinia virus DNA at a concentration of 14 fM, or 100,000 genome copies in 12 μL of sample. With amplification, positive identification was made with only 100 genome copies of input material. When tested against human stool samples from patients with acute gastroenteritis, the microarray detected common gastroenteritis viral and bacterial infections such as rotavirus and E. coli. Accurate detection was found but with a 4-fold drop in sensitivity for a 1 h compared to a 17 h hybridization. The array detected 2 ng (equivalent concentration of 15.6 fM) of labeled DNA from a virus with 1 h hybridization without any amplification, and was able to identify the components of a mixture of viruses and bacteria at species and in some cases strain level resolution. Sensitivity improved by three orders of magnitude with random whole genome amplification prior to hybridization; for instance, the array detected a DNA virus with only 20 fg or 100 genome copies as input. This multiplexed microarray is an efficient tool to analyze clinical and environmental samples for the presence of multiple viral and bacterial pathogens rapidly.« less

  4. Insights into significant pathways and gene interaction networks underlying breast cancer cell line MCF-7 treated with 17β-estradiol (E2).

    PubMed

    Huan, Jinliang; Wang, Lishan; Xing, Li; Qin, Xianju; Feng, Lingbin; Pan, Xiaofeng; Zhu, Ling

    2014-01-01

    Estrogens are known to regulate the proliferation of breast cancer cells and to alter their cytoarchitectural and phenotypic properties, but the gene networks and pathways by which estrogenic hormones regulate these events are only partially understood. We used global gene expression profiling by Affymetrix GeneChip microarray analysis, with KEGG pathway enrichment, PPI network construction, module analysis and text mining methods to identify patterns and time courses of genes that are either stimulated or inhibited by estradiol (E2) in estrogen receptor (ER)-positive MCF-7 human breast cancer cells. Of the genes queried on the Affymetrix Human Genome U133 plus 2.0 microarray, we identified 628 (12h), 852 (24h) and 880 (48 h) differentially expressed genes (DEGs) that showed a robust pattern of regulation by E2. From pathway enrichment analysis, we found out the changes of metabolic pathways of E2 treated samples at each time point. At 12h time point, the changes of metabolic pathways were mainly focused on pathways in cancer, focal adhesion, and chemokine signaling pathway. At 24h time point, the changes were mainly enriched in neuroactive ligand-receptor interaction, cytokine-cytokine receptor interaction and calcium signaling pathway. At 48 h time point, the significant pathways were pathways in cancer, regulation of actin cytoskeleton, cell adhesion molecules (CAMs), axon guidance and ErbB signaling pathway. Of interest, our PPI network analysis and module analysis found that E2 treatment induced enhancement of PRSS23 at the three time points and PRSS23 was in the central position of each module. Text mining results showed that the important genes of DEGs have relationship with signal pathways, such as ERbB pathway (AREG), Wnt pathway (NDP), MAPK pathway (NTRK3, TH), IP3 pathway (TRA@) and some transcript factors (TCF4, MAF). Our studies highlight the diverse gene networks and metabolic and cell regulatory pathways through which E2 operates to achieve its widespread effects on breast cancer cells. © 2013 Elsevier B.V. All rights reserved.

  5. A Rapid Method of Genomic Array Analysis of Scaffold/Matrix Attachment Regions (S/MARs) Identifies a 2.5-Mb Region of Enhanced Scaffold/Matrix Attachment at a Human Neocentromere

    PubMed Central

    Sumer, Huseyin; Craig, Jeffrey M.; Sibson, Mandy; Choo, K.H. Andy

    2003-01-01

    Human neocentromeres are fully functional centromeres that arise at previously noncentromeric regions of the genome. We have tested a rapid procedure of genomic array analysis of chromosome scaffold/matrix attachment regions (S/MARs), involving the isolation of S/MAR DNA and hybridization of this DNA to a genomic BAC/PAC array. Using this procedure, we have defined a 2.5-Mb domain of S/MAR-enriched chromatin that fully encompasses a previously mapped centromere protein-A (CENP-A)-associated domain at a human neocentromere. We have independently verified this procedure using a previously established fluorescence in situ hybridization method on salt-treated metaphase chromosomes. In silico sequence analysis of the S/MAR-enriched and surrounding regions has revealed no outstanding sequence-related predisposition. This study defines the S/MAR-enriched domain of a higher eukaryotic centromere and provides a method that has broad application for the mapping of S/MAR attachment sites over large genomic regions or throughout a genome. PMID:12840048

  6. Genomes2Drugs: Identifies Target Proteins and Lead Drugs from Proteome Data

    PubMed Central

    Toomey, David; Hoppe, Heinrich C.; Brennan, Marian P.; Nolan, Kevin B.; Chubb, Anthony J.

    2009-01-01

    Background Genome sequencing and bioinformatics have provided the full hypothetical proteome of many pathogenic organisms. Advances in microarray and mass spectrometry have also yielded large output datasets of possible target proteins/genes. However, the challenge remains to identify new targets for drug discovery from this wealth of information. Further analysis includes bioinformatics and/or molecular biology tools to validate the findings. This is time consuming and expensive, and could fail to yield novel drugs if protein purification and crystallography is impossible. To pre-empt this, a researcher may want to rapidly filter the output datasets for proteins that show good homology to proteins that have already been structurally characterised or proteins that are already targets for known drugs. Critically, those researchers developing novel antibiotics need to select out the proteins that show close homology to any human proteins, as future inhibitors are likely to cross-react with the host protein, causing off-target toxicity effects later in clinical trials. Methodology/Principal Findings To solve many of these issues, we have developed a free online resource called Genomes2Drugs which ranks sequences to identify proteins that are (i) homologous to previously crystallized proteins or (ii) targets of known drugs, but are (iii) not homologous to human proteins. When tested using the Plasmodium falciparum malarial genome the program correctly enriched the ranked list of proteins with known drug target proteins. Conclusions/Significance Genomes2Drugs rapidly identifies proteins that are likely to succeed in drug discovery pipelines. This free online resource helps in the identification of potential drug targets. Importantly, the program further highlights proteins that are likely to be inhibited by FDA-approved drugs. These drugs can then be rapidly moved into Phase IV clinical studies under ‘change-of-application’ patents. PMID:19593435

  7. SSHscreen and SSHdb, generic software for microarray based gene discovery: application to the stress response in cowpea

    PubMed Central

    2010-01-01

    Background Suppression subtractive hybridization is a popular technique for gene discovery from non-model organisms without an annotated genome sequence, such as cowpea (Vigna unguiculata (L.) Walp). We aimed to use this method to enrich for genes expressed during drought stress in a drought tolerant cowpea line. However, current methods were inefficient in screening libraries and management of the sequence data, and thus there was a need to develop software tools to facilitate the process. Results Forward and reverse cDNA libraries enriched for cowpea drought response genes were screened on microarrays, and the R software package SSHscreen 2.0.1 was developed (i) to normalize the data effectively using spike-in control spot normalization, and (ii) to select clones for sequencing based on the calculation of enrichment ratios with associated statistics. Enrichment ratio 3 values for each clone showed that 62% of the forward library and 34% of the reverse library clones were significantly differentially expressed by drought stress (adjusted p value < 0.05). Enrichment ratio 2 calculations showed that > 88% of the clones in both libraries were derived from rare transcripts in the original tester samples, thus supporting the notion that suppression subtractive hybridization enriches for rare transcripts. A set of 118 clones were chosen for sequencing, and drought-induced cowpea genes were identified, the most interesting encoding a late embryogenesis abundant Lea5 protein, a glutathione S-transferase, a thaumatin, a universal stress protein, and a wound induced protein. A lipid transfer protein and several components of photosynthesis were down-regulated by the drought stress. Reverse transcriptase quantitative PCR confirmed the enrichment ratio values for the selected cowpea genes. SSHdb, a web-accessible database, was developed to manage the clone sequences and combine the SSHscreen data with sequence annotations derived from BLAST and Blast2GO. The self-BLAST function within SSHdb grouped redundant clones together and illustrated that the SSHscreen plots are a useful tool for choosing anonymous clones for sequencing, since redundant clones cluster together on the enrichment ratio plots. Conclusions We developed the SSHscreen-SSHdb software pipeline, which greatly facilitates gene discovery using suppression subtractive hybridization by improving the selection of clones for sequencing after screening the library on a small number of microarrays. Annotation of the sequence information and collaboration was further enhanced through a web-based SSHdb database, and we illustrated this through identification of drought responsive genes from cowpea, which can now be investigated in gene function studies. SSH is a popular and powerful gene discovery tool, and therefore this pipeline will have application for gene discovery in any biological system, particularly non-model organisms. SSHscreen 2.0.1 and a link to SSHdb are available from http://microarray.up.ac.za/SSHscreen. PMID:20359330

  8. Perspectives: Gene Expression in Fisheries Management

    USGS Publications Warehouse

    Nielsen, Jennifer L.; Pavey, Scott A.

    2010-01-01

    Functional genes and gene expression have been connected to physiological traits linked to effective production and broodstock selection in aquaculture, selective implications of commercial fish harvest, and adaptive changes reflected in non-commercial fish populations subject to human disturbance and climate change. Gene mapping using single nucleotide polymorphisms (SNPs) to identify functional genes, gene expression (analogue microarrays and real-time PCR), and digital sequencing technologies looking at RNA transcripts present new concepts and opportunities in support of effective and sustainable fisheries. Genomic tools have been rapidly growing in aquaculture research addressing aspects of fish health, toxicology, and early development. Genomic technologies linking effects in functional genes involved in growth, maturation and life history development have been tied to selection resulting from harvest practices. Incorporating new and ever-increasing knowledge of fish genomes is opening a different perspective on local adaptation that will prove invaluable in wild fish conservation and management. Conservation of fish stocks is rapidly incorporating research on critical adaptive responses directed at the effects of human disturbance and climate change through gene expression studies. Genomic studies of fish populations can be generally grouped into three broad categories: 1) evolutionary genomics and biodiversity; 2) adaptive physiological responses to a changing environment; and 3) adaptive behavioral genomics and life history diversity. We review current genomic research in fisheries focusing on those that use microarrays to explore differences in gene expression among phenotypes and within or across populations, information that is critically important to the conservation of fish and their relationship to humans.

  9. Genomic Hypomethylation in the Human Germline Associates with Selective Structural Mutability in the Human Genome

    PubMed Central

    Li, Jian; Harris, R. Alan; Cheung, Sau Wai; Coarfa, Cristian; Jeong, Mira; Goodell, Margaret A.; White, Lisa D.; Patel, Ankita; Kang, Sung-Hae; Shaw, Chad; Chinault, A. Craig; Gambin, Tomasz; Gambin, Anna; Lupski, James R.; Milosavljevic, Aleksandar

    2012-01-01

    The hotspots of structural polymorphisms and structural mutability in the human genome remain to be explained mechanistically. We examine associations of structural mutability with germline DNA methylation and with non-allelic homologous recombination (NAHR) mediated by low-copy repeats (LCRs). Combined evidence from four human sperm methylome maps, human genome evolution, structural polymorphisms in the human population, and previous genomic and disease studies consistently points to a strong association of germline hypomethylation and genomic instability. Specifically, methylation deserts, the ∼1% fraction of the human genome with the lowest methylation in the germline, show a tenfold enrichment for structural rearrangements that occurred in the human genome since the branching of chimpanzee and are highly enriched for fast-evolving loci that regulate tissue-specific gene expression. Analysis of copy number variants (CNVs) from 400 human samples identified using a custom-designed array comparative genomic hybridization (aCGH) chip, combined with publicly available structural variation data, indicates that association of structural mutability with germline hypomethylation is comparable in magnitude to the association of structural mutability with LCR–mediated NAHR. Moreover, rare CNVs occurring in the genomes of individuals diagnosed with schizophrenia, bipolar disorder, and developmental delay and de novo CNVs occurring in those diagnosed with autism are significantly more concentrated within hypomethylated regions. These findings suggest a new connection between the epigenome, selective mutability, evolution, and human disease. PMID:22615578

  10. Genomic evidence of reactive oxygen species elevation in papillary thyroid carcinoma with Hashimoto thyroiditis.

    PubMed

    Yi, Jin Wook; Park, Ji Yeon; Sung, Ji-Youn; Kwak, Sang Hyuk; Yu, Jihan; Chang, Ji Hyun; Kim, Jo-Heon; Ha, Sang Yun; Paik, Eun Kyung; Lee, Woo Seung; Kim, Su-Jin; Lee, Kyu Eun; Kim, Ju Han

    2015-01-01

    Elevated levels of reactive oxygen species (ROS) have been proposed as a risk factor for the development of papillary thyroid carcinoma (PTC) in patients with Hashimoto thyroiditis (HT). However, it has yet to be proven that the total levels of ROS are sufficiently increased to contribute to carcinogenesis. We hypothesized that if the ROS levels were increased in HT, ROS-related genes would also be differently expressed in PTC with HT. To find differentially expressed genes (DEGs) we analyzed data from the Cancer Genomic Atlas, gene expression data from RNA sequencing: 33 from normal thyroid tissue, 232 from PTC without HT, and 60 from PTC with HT. We prepared 402 ROS-related genes from three gene sets by genomic database searching. We also analyzed a public microarray data to validate our results. Thirty-three ROS related genes were up-regulated in PTC with HT, whereas there were only nine genes in PTC without HT (Chi-square p-value < 0.001). Mean log2 fold changes of up-regulated genes was 0.562 in HT group and 0.252 in PTC without HT group (t-test p-value = 0.001). In microarray data analysis, 12 of 32 ROS-related genes showed the same differential expression pattern with statistical significance. In gene ontology analysis, up-regulated ROS-related genes were related with ROS metabolism and apoptosis. Immune function-related and carcinogenesis-related gene sets were enriched only in HT group in Gene Set Enrichment Analysis. Our results suggested that ROS levels may be increased in PTC with HT. Increased levels of ROS may contribute to PTC development in patients with HT.

  11. Isolation of active regulatory elements from eukaryotic chromatin using FAIRE (Formaldehyde Assisted Isolation of Regulatory Elements)

    PubMed Central

    Giresi, Paul G.; Lieb, Jason D.

    2009-01-01

    The binding of sequence-specific regulatory factors and the recruitment of chromatin remodeling activities cause nucleosomes to be evicted from chromatin in eukaryotic cells. Traditionally, these active sites have been identified experimentally through their sensitivity to nucleases. Here we describe the details of a simple procedure for the genome-wide isolation of nucleosome-depleted DNA from human chromatin, termed FAIRE (Formaldehyde Assisted Isolation of Regulatory Elements). We also provide protocols for different methods of detecting FAIRE-enriched DNA, including use of PCR, DNA microarrays, and next-generation sequencing. FAIRE works on all eukaryotic chromatin tested to date. To perform FAIRE, chromatin is crosslinked with formaldehyde, sheared by sonication, and phenol-chloroform extracted. Most genomic DNA is crosslinked to nucleosomes and is sequestered to the interphase, whereas DNA recovered in the aqueous phase corresponds to nucleosome-depleted regions of the genome. The isolated regions are largely coincident with the location of DNaseI hypersensitive sites, transcriptional start sites, enhancers, insulators, and active promoters. Given its speed and simplicity, FAIRE has utility in establishing chromatin profiles of diverse cell types in health and disease, isolating DNA regulatory elements en masse for further characterization, and as a screening assay for the effects of small molecules on chromatin organization. PMID:19303047

  12. A genome-wide 20 K citrus microarray for gene expression analysis

    PubMed Central

    Martinez-Godoy, M Angeles; Mauri, Nuria; Juarez, Jose; Marques, M Carmen; Santiago, Julia; Forment, Javier; Gadea, Jose

    2008-01-01

    Background Understanding of genetic elements that contribute to key aspects of citrus biology will impact future improvements in this economically important crop. Global gene expression analysis demands microarray platforms with a high genome coverage. In the last years, genome-wide EST collections have been generated in citrus, opening the possibility to create new tools for functional genomics in this crop plant. Results We have designed and constructed a publicly available genome-wide cDNA microarray that include 21,081 putative unigenes of citrus. As a functional companion to the microarray, a web-browsable database [1] was created and populated with information about the unigenes represented in the microarray, including cDNA libraries, isolated clones, raw and processed nucleotide and protein sequences, and results of all the structural and functional annotation of the unigenes, like general description, BLAST hits, putative Arabidopsis orthologs, microsatellites, putative SNPs, GO classification and PFAM domains. We have performed a Gene Ontology comparison with the full set of Arabidopsis proteins to estimate the genome coverage of the microarray. We have also performed microarray hybridizations to check its usability. Conclusion This new cDNA microarray replaces the first 7K microarray generated two years ago and allows gene expression analysis at a more global scale. We have followed a rational design to minimize cross-hybridization while maintaining its utility for different citrus species. Furthermore, we also provide access to a website with full structural and functional annotation of the unigenes represented in the microarray, along with the ability to use this site to directly perform gene expression analysis using standard tools at different publicly available servers. Furthermore, we show how this microarray offers a good representation of the citrus genome and present the usefulness of this genomic tool for global studies in citrus by using it to catalogue genes expressed in citrus globular embryos. PMID:18598343

  13. Systematic evaluation of RNA quality, microarray data reliability and pathway analysis in fresh, fresh frozen and formalin-fixed paraffin-embedded tissue samples.

    PubMed

    Wimmer, Isabella; Tröscher, Anna R; Brunner, Florian; Rubino, Stephen J; Bien, Christian G; Weiner, Howard L; Lassmann, Hans; Bauer, Jan

    2018-04-20

    Formalin-fixed paraffin-embedded (FFPE) tissues are valuable resources commonly used in pathology. However, formalin fixation modifies nucleic acids challenging the isolation of high-quality RNA for genetic profiling. Here, we assessed feasibility and reliability of microarray studies analysing transcriptome data from fresh, fresh-frozen (FF) and FFPE tissues. We show that reproducible microarray data can be generated from only 2 ng FFPE-derived RNA. For RNA quality assessment, fragment size distribution (DV200) and qPCR proved most suitable. During RNA isolation, extending tissue lysis time to 10 hours reduced high-molecular-weight species, while additional incubation at 70 °C markedly increased RNA yields. Since FF- and FFPE-derived microarrays constitute different data entities, we used indirect measures to investigate gene signal variation and relative gene expression. Whole-genome analyses revealed high concordance rates, while reviewing on single-genes basis showed higher data variation in FFPE than FF arrays. Using an experimental model, gene set enrichment analysis (GSEA) of FFPE-derived microarrays and fresh tissue-derived RNA-Seq datasets yielded similarly affected pathways confirming the applicability of FFPE tissue in global gene expression analysis. Our study provides a workflow comprising RNA isolation, quality assessment and microarray profiling using minimal RNA input, thus enabling hypothesis-generating pathway analyses from limited amounts of precious, pathologically significant FFPE tissues.

  14. Genome-wide association study of preeclampsia detects novel maternal single nucleotide polymorphisms and copy-number variants in subsets of the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) study cohort

    PubMed Central

    Zhao, Linlu; Bracken, Michael B.; DeWan, Andrew T.

    2013-01-01

    Summary A genome-wide association study was undertaken to identify maternal single nucleotide polymorphisms (SNPs) and copy-number variants (CNVs) associated with preeclampsia. Case-control analysis was performed on 1070 Afro-Caribbean (n=21 cases and 1049 controls) and 723 Hispanic (n=62 cases and 661 controls) mothers and 1257 mothers of European ancestry (n=50 cases and 1207 controls) from the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) study. European ancestry subjects were genotyped on Illumina Human610-Quad and Afro-Caribbean and Hispanic subjects were genotyped on Illumina Human1M-Duo BeadChip microarrays. Genome-wide SNP data were analyzed using PLINK. CNVs were called using three detection algorithms (GNOSIS, PennCNV, and QuantiSNP), merged using CNVision, and then screened using stringent criteria. SNP and CNV findings were compared to those of the Study of Pregnancy Hypertension in Iowa (SOPHIA), an independent preeclampsia case-control dataset of Caucasian mothers (n=177 cases and 116 controls). A list of top SNPs were identified for each of the HAPO ethnic groups, but none reached Bonferroni-corrected significance. Novel candidate CNVs showing enrichment among preeclampsia cases were also identified in each of the three ethnic groups. Several variants were suggestively replicated in SOPHIA. The discovered SNPs and copy-number variable regions present interesting candidate genetic variants for preeclampsia that warrant further replication and investigation. PMID:23551011

  15. PExFInS: An Integrative Post-GWAS Explorer for Functional Indels and SNPs

    PubMed Central

    Cheng, Zhongshan; Chu, Hin; Fan, Yanhui; Li, Cun; Song, You-Qiang; Zhou, Jie; Yuen, Kwok-Yung

    2015-01-01

    Expression quantitative trait loci (eQTLs) mapping and linkage disequilibrium (LD) analysis have been widely employed to interpret findings of genome-wide association studies (GWAS). With the availability of deep sequencing data of 423 lymphoblastoid cell lines (LCLs) from six global populations and the microarray expression data, we performed eQTL analysis, identified more than 228 K SNP cis-eQTLs and 21 K indel cis-eQTLs and generated a LCL cis-eQTL database. We demonstrate that the percentages of population-shared and population-specific cis-eQTLs are comparable; while indel cis-eQTLs in the population-specific subsection make more contribution to gene expression variations than those in the population-shared subsection. We found cis-eQTLs, especially the population-shared cis-eQTLs are significantly enriched toward transcription start site. Moreover, the National Human Genome Research Institute cataloged GWAS SNPs are enriched for LCL cis-eQTLs. Specifically, 32.8% GWAS SNPs are LCL cis-eQTLs, among which 12.5% can be tagged by indel cis-eQTLs, suggesting the fundamental contribution of indel cis-eQTLs to GWAS association signals. To search for functional indels and SNPs tagging GWAS SNPs, a pipeline Post-GWAS Explorer for Functional Indels and SNPs (PExFInS) has been developed, integrating LD analysis, functional annotation from public databases, cis-eQTL mapping with our LCL cis-eQTL database and other published cis-eQTL datasets. PMID:26612672

  16. Mobile Interspersed Repeats Are Major Structural Variants in the Human Genome

    PubMed Central

    Huang, Cheng Ran Lisa; Schneider, Anna M.; Lu, Yunqi; Niranjan, Tejasvi; Shen, Peilin; Robinson, Matoya A.; Steranka, Jared P.; Valle, David; Civin, Curt I.; Wang, Tao; Wheelan, Sarah J.; Ji, Hongkai; Boeke, Jef D.; Burns, Kathleen H.

    2010-01-01

    Summary Characterizing structural variants in the human genome is of great importance, but a genome wide analysis to detect interspersed repeats has not been done. Thus, the degree to which mobile DNAs contribute to genetic diversity, heritable disease, and oncogenesis remains speculative. We perform transposon insertion profiling by microarray (TIP-chip) to map human L1(Ta) retrotransposons (LINE-1 s) genome-wide. This identified numerous novel human L1(Ta) insertional polymorphisms with highly variant allelic frequencies. We also explored TIP-chip's usefulness to identify candidate alleles associated with different phenotypes in clinical cohorts. Our data suggest that the occurrence of new insertions is twice as high as previously estimated, and that these repeats are under-recognized as sources of human genomic and phenotypic diversity. We have just begun to probe the universe of human L1(Ta) polymorphisms, and as TIP-chip is applied to other insertions such as Alu SINEs, it will expand the catalog of genomic variants even further. PMID:20602999

  17. Epigenetic functions enriched in transcription factors binding to mouse recombination hotspots.

    PubMed

    Wu, Min; Kwoh, Chee-Keong; Przytycka, Teresa M; Li, Jing; Zheng, Jie

    2012-06-21

    The regulatory mechanism of recombination is a fundamental problem in genomics, with wide applications in genome-wide association studies, birth-defect diseases, molecular evolution, cancer research, etc. In mammalian genomes, recombination events cluster into short genomic regions called "recombination hotspots". Recently, a 13-mer motif enriched in hotspots is identified as a candidate cis-regulatory element of human recombination hotspots; moreover, a zinc finger protein, PRDM9, binds to this motif and is associated with variation of recombination phenotype in human and mouse genomes, thus is a trans-acting regulator of recombination hotspots. However, this pair of cis and trans-regulators covers only a fraction of hotspots, thus other regulators of recombination hotspots remain to be discovered. In this paper, we propose an approach to predicting additional trans-regulators from DNA-binding proteins by comparing their enrichment of binding sites in hotspots. Applying this approach on newly mapped mouse hotspots genome-wide, we confirmed that PRDM9 is a major trans-regulator of hotspots. In addition, a list of top candidate trans-regulators of mouse hotspots is reported. Using GO analysis we observed that the top genes are enriched with function of histone modification, highlighting the epigenetic regulatory mechanisms of recombination hotspots.

  18. Epigenetic functions enriched in transcription factors binding to mouse recombination hotspots

    PubMed Central

    2012-01-01

    The regulatory mechanism of recombination is a fundamental problem in genomics, with wide applications in genome-wide association studies, birth-defect diseases, molecular evolution, cancer research, etc. In mammalian genomes, recombination events cluster into short genomic regions called "recombination hotspots". Recently, a 13-mer motif enriched in hotspots is identified as a candidate cis-regulatory element of human recombination hotspots; moreover, a zinc finger protein, PRDM9, binds to this motif and is associated with variation of recombination phenotype in human and mouse genomes, thus is a trans-acting regulator of recombination hotspots. However, this pair of cis and trans-regulators covers only a fraction of hotspots, thus other regulators of recombination hotspots remain to be discovered. In this paper, we propose an approach to predicting additional trans-regulators from DNA-binding proteins by comparing their enrichment of binding sites in hotspots. Applying this approach on newly mapped mouse hotspots genome-wide, we confirmed that PRDM9 is a major trans-regulator of hotspots. In addition, a list of top candidate trans-regulators of mouse hotspots is reported. Using GO analysis we observed that the top genes are enriched with function of histone modification, highlighting the epigenetic regulatory mechanisms of recombination hotspots. PMID:22759569

  19. A novel approach for human whole transcriptome analysis based on absolute gene expression of microarray data.

    PubMed

    Bikel, Shirley; Jacobo-Albavera, Leonor; Sánchez-Muñoz, Fausto; Cornejo-Granados, Fernanda; Canizales-Quinteros, Samuel; Soberón, Xavier; Sotelo-Mundo, Rogerio R; Del Río-Navarro, Blanca E; Mendoza-Vargas, Alfredo; Sánchez, Filiberto; Ochoa-Leyva, Adrian

    2017-01-01

    In spite of the emergence of RNA sequencing (RNA-seq), microarrays remain in widespread use for gene expression analysis in the clinic. There are over 767,000 RNA microarrays from human samples in public repositories, which are an invaluable resource for biomedical research and personalized medicine. The absolute gene expression analysis allows the transcriptome profiling of all expressed genes under a specific biological condition without the need of a reference sample. However, the background fluorescence represents a challenge to determine the absolute gene expression in microarrays. Given that the Y chromosome is absent in female subjects, we used it as a new approach for absolute gene expression analysis in which the fluorescence of the Y chromosome genes of female subjects was used as the background fluorescence for all the probes in the microarray. This fluorescence was used to establish an absolute gene expression threshold, allowing the differentiation between expressed and non-expressed genes in microarrays. We extracted the RNA from 16 children leukocyte samples (nine males and seven females, ages 6-10 years). An Affymetrix Gene Chip Human Gene 1.0 ST Array was carried out for each sample and the fluorescence of 124 genes of the Y chromosome was used to calculate the absolute gene expression threshold. After that, several expressed and non-expressed genes according to our absolute gene expression threshold were compared against the expression obtained using real-time quantitative polymerase chain reaction (RT-qPCR). From the 124 genes of the Y chromosome, three genes (DDX3Y, TXLNG2P and EIF1AY) that displayed significant differences between sexes were used to calculate the absolute gene expression threshold. Using this threshold, we selected 13 expressed and non-expressed genes and confirmed their expression level by RT-qPCR. Then, we selected the top 5% most expressed genes and found that several KEGG pathways were significantly enriched. Interestingly, these pathways were related to the typical functions of leukocytes cells, such as antigen processing and presentation and natural killer cell mediated cytotoxicity. We also applied this method to obtain the absolute gene expression threshold in already published microarray data of liver cells, where the top 5% expressed genes showed an enrichment of typical KEGG pathways for liver cells. Our results suggest that the three selected genes of the Y chromosome can be used to calculate an absolute gene expression threshold, allowing a transcriptome profiling of microarray data without the need of an additional reference experiment. Our approach based on the establishment of a threshold for absolute gene expression analysis will allow a new way to analyze thousands of microarrays from public databases. This allows the study of different human diseases without the need of having additional samples for relative expression experiments.

  20. Genetic Structures of Copy Number Variants Revealed by Genotyping Single Sperm

    PubMed Central

    Luo, Minjie; Cui, Xiangfeng; Fredman, David; Brookes, Anthony J.; Azaro, Marco A.; Greenawalt, Danielle M.; Hu, Guohong; Wang, Hui-Yun; Tereshchenko, Irina V.; Lin, Yong; Shentu, Yue; Gao, Richeng; Shen, Li; Li, Honghua

    2009-01-01

    Background Copy number variants (CNVs) occupy a significant portion of the human genome and may have important roles in meiotic recombination, human genome evolution and gene expression. Many genetic diseases may be underlain by CNVs. However, because of the presence of their multiple copies, variability in copy numbers and the diploidy of the human genome, detailed genetic structure of CNVs cannot be readily studied by available techniques. Methodology/Principal Findings Single sperm samples were used as the primary subjects for the study so that CNV haplotypes in the sperm donors could be studied individually. Forty-eight CNVs characterized in a previous study were analyzed using a microarray-based high-throughput genotyping method after multiplex amplification. Seventeen single nucleotide polymorphisms (SNPs) were also included as controls. Two single-base variants, either allelic or paralogous, could be discriminated for all markers. Microarray data were used to resolve SNP alleles and CNV haplotypes, to quantitatively assess the numbers and compositions of the paralogous segments in each CNV haplotype. Conclusions/Significance This is the first study of the genetic structure of CNVs on a large scale. Resulting information may help understand evolution of the human genome, gain insight into many genetic processes, and discriminate between CNVs and SNPs. The highly sensitive high-throughput experimental system with haploid sperm samples as subjects may be used to facilitate detailed large-scale CNV analysis. PMID:19384415

  1. Curation of microarray oligonucleotides and corresponding ESTs/cDNAs used for gene expression analysis in zebra finches.

    PubMed

    Lovell, Peter V; Huizinga, Nicole A; Getachew, Abel; Mees, Brianna; Friedrich, Samantha R; Wirthlin, Morgan; Mello, Claudio V

    2018-05-18

    Zebra finches are a major model organism for investigating mechanisms of vocal learning, a trait that enables spoken language in humans. The development of cDNA collections with expressed sequence tags (ESTs) and microarrays has allowed for extensive molecular characterizations of circuitry underlying vocal learning and production. However, poor database curation can lead to errors in transcriptome and bioinformatics analyses, limiting the impact of these resources. Here we used genomic alignments and synteny analysis for orthology verification to curate and reannotate ~ 35% of the oligonucleotides and corresponding ESTs/cDNAs that make-up Agilent microarrays for gene expression analysis in finches. We found that: (1) 5475 out of 43,084 oligos (a) failed to align to the zebra finch genome, (b) aligned to multiple loci, or (c) aligned to Chr_un only, and thus need to be flagged until a better genome assembly is available, or (d) reflect cloning artifacts; (2) Out of 9635 valid oligos examined further, 3120 were incorrectly named, including 1533 with no known orthologs; and (3) 2635 oligos required name update. The resulting curated dataset provides a reference for correcting gene identification errors in previous finch microarrays studies, and avoiding such errors in future studies.

  2. Spectral gene set enrichment (SGSE).

    PubMed

    Frost, H Robert; Li, Zhigang; Moore, Jason H

    2015-03-03

    Gene set testing is typically performed in a supervised context to quantify the association between groups of genes and a clinical phenotype. In many cases, however, a gene set-based interpretation of genomic data is desired in the absence of a phenotype variable. Although methods exist for unsupervised gene set testing, they predominantly compute enrichment relative to clusters of the genomic variables with performance strongly dependent on the clustering algorithm and number of clusters. We propose a novel method, spectral gene set enrichment (SGSE), for unsupervised competitive testing of the association between gene sets and empirical data sources. SGSE first computes the statistical association between gene sets and principal components (PCs) using our principal component gene set enrichment (PCGSE) method. The overall statistical association between each gene set and the spectral structure of the data is then computed by combining the PC-level p-values using the weighted Z-method with weights set to the PC variance scaled by Tracy-Widom test p-values. Using simulated data, we show that the SGSE algorithm can accurately recover spectral features from noisy data. To illustrate the utility of our method on real data, we demonstrate the superior performance of the SGSE method relative to standard cluster-based techniques for testing the association between MSigDB gene sets and the variance structure of microarray gene expression data. Unsupervised gene set testing can provide important information about the biological signal held in high-dimensional genomic data sets. Because it uses the association between gene sets and samples PCs to generate a measure of unsupervised enrichment, the SGSE method is independent of cluster or network creation algorithms and, most importantly, is able to utilize the statistical significance of PC eigenvalues to ignore elements of the data most likely to represent noise.

  3. Integration of Genome-Wide Computation DRE Search, AhR ChIP-chip and Gene Expression Analyses of TCDD-Elicited Responses in the Mouse Liver

    PubMed Central

    2011-01-01

    Background The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor (TF) that mediates responses to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Integration of TCDD-induced genome-wide AhR enrichment, differential gene expression and computational dioxin response element (DRE) analyses further elucidate the hepatic AhR regulatory network. Results Global ChIP-chip and gene expression analyses were performed on hepatic tissue from immature ovariectomized mice orally gavaged with 30 μg/kg TCDD. ChIP-chip analysis identified 14,446 and 974 AhR enriched regions (1% false discovery rate) at 2 and 24 hrs, respectively. Enrichment density was greatest in the proximal promoter, and more specifically, within ± 1.5 kb of a transcriptional start site (TSS). AhR enrichment also occurred distal to a TSS (e.g. intergenic DNA and 3' UTR), extending the potential gene expression regulatory roles of the AhR. Although TF binding site analyses identified over-represented DRE sequences within enriched regions, approximately 50% of all AhR enriched regions lacked a DRE core (5'-GCGTG-3'). Microarray analysis identified 1,896 number of TCDD-responsive genes (|fold change| ≥ 1.5, P1(t) > 0.999). Integrating this gene expression data with our ChIP-chip and DRE analyses only identified 625 differentially expressed genes that involved an AhR interaction at a DRE. Functional annotation analysis of differentially regulated genes associated with AhR enrichment identified overrepresented processes related to fatty acid and lipid metabolism and transport, and xenobiotic metabolism, which are consistent with TCDD-elicited steatosis in the mouse liver. Conclusions Details of the AhR regulatory network have been expanded to include AhR-DNA interactions within intragenic and intergenic genomic regions. Moreover, the AhR can interact with DNA independent of a DRE core suggesting there are alternative mechanisms of AhR-mediated gene regulation. PMID:21762485

  4. Toxicogenomic investigation of Tetrahymena thermophila exposed to dichlorodiphenyltrichloroethane (DDT), tributyltin (TBT), and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD).

    PubMed

    Chang, Yue; Feng, LiFang; Miao, Wei

    2011-07-01

    Dichlorodiphenyltrichloroethane (DDT), tributyltin (TBT), and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) are persistent in the environment and cause continuous toxic effects in humans and aquatic life. Tetrahymena thermophila has the potential for use as a model for research regarding toxicants. In this study, this organism was used to analyze a genome-wide microarray generated from cells exposed to DDT, TBT and TCDD. To accomplish this, genes differentially expressed when treated with each toxicant were identified, after which their functions were categorized using GO enrichment analysis. The results suggested that the responses of T. thermophila were similar to those of multicellular organisms. Additionally, the context likelihood of relatedness method (CLR) was applied to construct a TCDD-relevant network. The T-shaped network obtained could be functionally divided into two subnetworks. The general functions of both subnetworks were related to the epigenetic mechanism of TCDD. Based on analysis of the networks, a model of the TCDD effect on T. thermophila was inferred. Thus, Tetrahymena has the potential to be a good unicellular eukaryotic model for toxic mechanism research at the genome level.

  5. Sex genes for genomic analysis in human brain: internal controls for comparison of probe level data extraction.

    PubMed Central

    Galfalvy, Hanga C; Erraji-Benchekroun, Loubna; Smyrniotopoulos, Peggy; Pavlidis, Paul; Ellis, Steven P; Mann, J John; Sibille, Etienne; Arango, Victoria

    2003-01-01

    Background Genomic studies of complex tissues pose unique analytical challenges for assessment of data quality, performance of statistical methods used for data extraction, and detection of differentially expressed genes. Ideally, to assess the accuracy of gene expression analysis methods, one needs a set of genes which are known to be differentially expressed in the samples and which can be used as a "gold standard". We introduce the idea of using sex-chromosome genes as an alternative to spiked-in control genes or simulations for assessment of microarray data and analysis methods. Results Expression of sex-chromosome genes were used as true internal biological controls to compare alternate probe-level data extraction algorithms (Microarray Suite 5.0 [MAS5.0], Model Based Expression Index [MBEI] and Robust Multi-array Average [RMA]), to assess microarray data quality and to establish some statistical guidelines for analyzing large-scale gene expression. These approaches were implemented on a large new dataset of human brain samples. RMA-generated gene expression values were markedly less variable and more reliable than MAS5.0 and MBEI-derived values. A statistical technique controlling the false discovery rate was applied to adjust for multiple testing, as an alternative to the Bonferroni method, and showed no evidence of false negative results. Fourteen probesets, representing nine Y- and two X-chromosome linked genes, displayed significant sex differences in brain prefrontal cortex gene expression. Conclusion In this study, we have demonstrated the use of sex genes as true biological internal controls for genomic analysis of complex tissues, and suggested analytical guidelines for testing alternate oligonucleotide microarray data extraction protocols and for adjusting multiple statistical analysis of differentially expressed genes. Our results also provided evidence for sex differences in gene expression in the brain prefrontal cortex, supporting the notion of a putative direct role of sex-chromosome genes in differentiation and maintenance of sexual dimorphism of the central nervous system. Importantly, these analytical approaches are applicable to all microarray studies that include male and female human or animal subjects. PMID:12962547

  6. Sex genes for genomic analysis in human brain: internal controls for comparison of probe level data extraction.

    PubMed

    Galfalvy, Hanga C; Erraji-Benchekroun, Loubna; Smyrniotopoulos, Peggy; Pavlidis, Paul; Ellis, Steven P; Mann, J John; Sibille, Etienne; Arango, Victoria

    2003-09-08

    Genomic studies of complex tissues pose unique analytical challenges for assessment of data quality, performance of statistical methods used for data extraction, and detection of differentially expressed genes. Ideally, to assess the accuracy of gene expression analysis methods, one needs a set of genes which are known to be differentially expressed in the samples and which can be used as a "gold standard". We introduce the idea of using sex-chromosome genes as an alternative to spiked-in control genes or simulations for assessment of microarray data and analysis methods. Expression of sex-chromosome genes were used as true internal biological controls to compare alternate probe-level data extraction algorithms (Microarray Suite 5.0 [MAS5.0], Model Based Expression Index [MBEI] and Robust Multi-array Average [RMA]), to assess microarray data quality and to establish some statistical guidelines for analyzing large-scale gene expression. These approaches were implemented on a large new dataset of human brain samples. RMA-generated gene expression values were markedly less variable and more reliable than MAS5.0 and MBEI-derived values. A statistical technique controlling the false discovery rate was applied to adjust for multiple testing, as an alternative to the Bonferroni method, and showed no evidence of false negative results. Fourteen probesets, representing nine Y- and two X-chromosome linked genes, displayed significant sex differences in brain prefrontal cortex gene expression. In this study, we have demonstrated the use of sex genes as true biological internal controls for genomic analysis of complex tissues, and suggested analytical guidelines for testing alternate oligonucleotide microarray data extraction protocols and for adjusting multiple statistical analysis of differentially expressed genes. Our results also provided evidence for sex differences in gene expression in the brain prefrontal cortex, supporting the notion of a putative direct role of sex-chromosome genes in differentiation and maintenance of sexual dimorphism of the central nervous system. Importantly, these analytical approaches are applicable to all microarray studies that include male and female human or animal subjects.

  7. Genome-Wide Screening of Genes Showing Altered Expression in Liver Metastases of Human Colorectal Cancers by cDNA Microarray1

    PubMed Central

    Yanagawa, Rempei; Furukawa, Yoichi; Tsunoda, Tatsuhiko; Kitahara, Osamu; Kameyama, Masao; Murata, Kohei; Ishikawa, Osamu; Nakamura, Yusuke

    2001-01-01

    Abstract In spite of intensive and increasingly successful attempts to determine the multiple steps involved in colorectal carcinogenesis, the mechanisms responsible for metastasis of colorectal tumors to the liver remain to be clarified. To identify genes that are candidates for involvement in the metastatic process, we analyzed genome-wide expression profiles of 10 primary colorectal cancers and their corresponding metastatic lesions by means of a cDNA microarray consisting of 9121 human genes. This analysis identified 40 genes whose expression was commonly upregulated in metastatic lesions, and 7 that were commonly downregulated. The upregulated genes encoded proteins involved in cell adhesion, or remodeling of the actin cytoskeleton. Investigation of the functions of more of the altered genes should improve our understanding of metastasis and may identify diagnostic markers and/or novel molecular targets for prevention or therapy of metastatic lesions. PMID:11687950

  8. Genomic profiling of neutrophil transcripts in Asian Qigong practitioners: a pilot study in gene regulation by mind-body interaction.

    PubMed

    Li, Quan-Zhen; Li, Ping; Garcia, Gabriela E; Johnson, Richard J; Feng, Lili

    2005-02-01

    The great similarity of the genomes of humans and other species stimulated us to search for genes regulated by elements associated with human uniqueness, such as the mind-body interaction. DNA microarray technology offers the advantage of analyzing thousands of genes simultaneously, with the potential to determine healthy phenotypic changes in gene expression. The aim of this study was to determine the genomic profile and function of neutrophils in Falun Gong (FLG, an ancient Chinese Qigong) practitioners, with healthy subjects as controls. Six (6) Asian FLG practitioners and 6 Asian normal healthy controls were recruited for our study. The practitioners have practiced FLG for at least 1 year (range, 1-5 years). The practice includes daily reading of FLG books and daily practice of exercises lasting 1-2 hours. Selected normal healthy controls did not perform Qigong, yoga, t'ai chi, or any other type of mind-body practice, and had not followed any conventional physical exercise program for at least 1 year. Neutrophils were isolated from fresh blood and assayed for gene expression, using microarrays and RNase protection assay (RPA), as well as for function (phagocytosis) and survival (apoptosis). The changes in gene expression of FLG practitioners in contrast to normal healthy controls were characterized by enhanced immunity, downregulation of cellular metabolism, and alteration of apoptotic genes in favor of a rapid resolution of inflammation. The lifespan of normal neutrophils was prolonged, while the inflammatory neutrophils displayed accelerated cell death in FLG practitioners as determined by enzyme-linked immunosorbent assay. Correlating with enhanced immunity reflected by microarray data, neutrophil phagocytosis was significantly increased in Qigong practitioners. Some of the altered genes observed by microarray were confirmed by RPA. Qigong practice may regulate immunity, metabolic rate, and cell death, possibly at the transcriptional level. Our pilot study provides the first evidence that Qigong practice may exert transcriptional regulation at a genomic level. New approaches are needed to study how genes are regulated by elements associated with human uniqueness, such as consciousness, cognition, and spirituality.

  9. Development of an oligo DNA microarray for the European sea bass and its application to expression profiling of jaw deformity

    PubMed Central

    2010-01-01

    Background The European sea bass (Dicentrarchus labrax) is a marine fish of great importance for fisheries and aquaculture. Functional genomics offers the possibility to discover the molecular mechanisms underlying productive traits in farmed fish, and a step towards the application of marker assisted selection methods in this species. To this end, we report here on the development of an oligo DNA microarray for D. labrax. Results A database consisting of 19,048 unique transcripts was constructed, of which 12,008 (63%) could be annotated by similarity and 4,692 received a GO functional annotation. Two non-overlapping 60mer probes were designed for each unique transcript and in-situ synthesized on glass slides using Agilent SurePrint™ technology. Probe design was positively completed for 19,035 target clusters; the oligo microarray was then applied to profile gene expression in mandibles and whole-heads of fish affected by prognathism, a skeletal malformation that strongly affects sea bass production. Statistical analysis identified 242 transcripts that are significantly down-regulated in deformed individuals compared to normal fish, with a significant enrichment in genes related to nervous system development and functioning. A set of genes spanning a wide dynamic range in gene expression level were selected for quantitative RT-PCR validation. Fold change correlation between microarray and qPCR data was always significant. Conclusions The microarray platform developed for the European sea bass has a high level of flexibility, reliability, and reproducibility. Despite the well known limitations in achieving a proper functional annotation in non-model species, sufficient information was obtained to identify biological processes that are significantly enriched among differentially expressed genes. New insights were obtained on putative mechanisms involved on mandibular prognathism, suggesting that bone/nervous system development might play a role in this phenomenon. PMID:20525278

  10. Initial Genomics of the Human Nucleolus

    PubMed Central

    Németh, Attila; Conesa, Ana; Santoyo-Lopez, Javier; Medina, Ignacio; Montaner, David; Péterfia, Bálint; Solovei, Irina; Cremer, Thomas; Dopazo, Joaquin; Längst, Gernot

    2010-01-01

    We report for the first time the genomics of a nuclear compartment of the eukaryotic cell. 454 sequencing and microarray analysis revealed the pattern of nucleolus-associated chromatin domains (NADs) in the linear human genome and identified different gene families and certain satellite repeats as the major building blocks of NADs, which constitute about 4% of the genome. Bioinformatic evaluation showed that NAD–localized genes take part in specific biological processes, like the response to other organisms, odor perception, and tissue development. 3D FISH and immunofluorescence experiments illustrated the spatial distribution of NAD–specific chromatin within interphase nuclei and its alteration upon transcriptional changes. Altogether, our findings describe the nature of DNA sequences associated with the human nucleolus and provide insights into the function of the nucleolus in genome organization and establishment of nuclear architecture. PMID:20361057

  11. A microarray for assessing transcription from pelagic marine microbial taxa

    PubMed Central

    Shilova, Irina N; Robidart, Julie C; James Tripp, H; Turk-Kubo, Kendra; Wawrik, Boris; Post, Anton F; Thompson, Anne W; Ward, Bess; Hollibaugh, James T; Millard, Andy; Ostrowski, Martin; J Scanlan, David; Paerl, Ryan W; Stuart, Rhona; Zehr, Jonathan P

    2014-01-01

    Metagenomic approaches have revealed unprecedented genetic diversity within microbial communities across vast expanses of the world's oceans. Linking this genetic diversity with key metabolic and cellular activities of microbial assemblages is a fundamental challenge. Here we report on a collaborative effort to design MicroTOOLs (Microbiological Targets for Ocean Observing Laboratories), a high-density oligonucleotide microarray that targets functional genes of diverse taxa in pelagic and coastal marine microbial communities. MicroTOOLs integrates nucleotide sequence information from disparate data types: genomes, PCR-amplicons, metagenomes, and metatranscriptomes. It targets 19 400 unique sequences over 145 different genes that are relevant to stress responses and microbial metabolism across the three domains of life and viruses. MicroTOOLs was used in a proof-of-concept experiment that compared the functional responses of microbial communities following Fe and P enrichments of surface water samples from the North Pacific Subtropical Gyre. We detected transcription of 68% of the gene targets across major taxonomic groups, and the pattern of transcription indicated relief from Fe limitation and transition to N limitation in some taxa. Prochlorococcus (eHLI), Synechococcus (sub-cluster 5.3) and Alphaproteobacteria SAR11 clade (HIMB59) showed the strongest responses to the Fe enrichment. In addition, members of uncharacterized lineages also responded. The MicroTOOLs microarray provides a robust tool for comprehensive characterization of major functional groups of microbes in the open ocean, and the design can be easily amended for specific environments and research questions. PMID:24477198

  12. Gene expression profiles in Parkinson disease prefrontal cortex implicate FOXO1 and genes under its transcriptional regulation.

    PubMed

    Dumitriu, Alexandra; Latourelle, Jeanne C; Hadzi, Tiffany C; Pankratz, Nathan; Garza, Dan; Miller, John P; Vance, Jeffery M; Foroud, Tatiana; Beach, Thomas G; Myers, Richard H

    2012-06-01

    Parkinson disease (PD) is a complex neurodegenerative disorder with largely unknown genetic mechanisms. While the degeneration of dopaminergic neurons in PD mainly takes place in the substantia nigra pars compacta (SN) region, other brain areas, including the prefrontal cortex, develop Lewy bodies, the neuropathological hallmark of PD. We generated and analyzed expression data from the prefrontal cortex Brodmann Area 9 (BA9) of 27 PD and 26 control samples using the 44K One-Color Agilent 60-mer Whole Human Genome Microarray. All samples were male, without significant Alzheimer disease pathology and with extensive pathological annotation available. 507 of the 39,122 analyzed expression probes were different between PD and control samples at false discovery rate (FDR) of 5%. One of the genes with significantly increased expression in PD was the forkhead box O1 (FOXO1) transcription factor. Notably, genes carrying the FoxO1 binding site were significantly enriched in the FDR-significant group of genes (177 genes covered by 189 probes), suggesting a role for FoxO1 upstream of the observed expression changes. Single-nucleotide polymorphisms (SNPs) selected from a recent meta-analysis of PD genome-wide association studies (GWAS) were successfully genotyped in 50 out of the 53 microarray brains, allowing a targeted expression-SNP (eSNP) analysis for 52 SNPs associated with PD affection at genome-wide significance and the 189 probes from FoxO1 regulated genes. A significant association was observed between a SNP in the cyclin G associated kinase (GAK) gene and a probe in the spermine oxidase (SMOX) gene. Further examination of the FOXO1 region in a meta-analysis of six available GWAS showed two SNPs significantly associated with age at onset of PD. These results implicate FOXO1 as a PD-relevant gene and warrant further functional analyses of its transcriptional regulatory mechanisms.

  13. Gene Expression Profiles in Parkinson Disease Prefrontal Cortex Implicate FOXO1 and Genes under Its Transcriptional Regulation

    PubMed Central

    Dumitriu, Alexandra; Latourelle, Jeanne C.; Hadzi, Tiffany C.; Pankratz, Nathan; Garza, Dan; Miller, John P.; Vance, Jeffery M.; Foroud, Tatiana; Beach, Thomas G.; Myers, Richard H.

    2012-01-01

    Parkinson disease (PD) is a complex neurodegenerative disorder with largely unknown genetic mechanisms. While the degeneration of dopaminergic neurons in PD mainly takes place in the substantia nigra pars compacta (SN) region, other brain areas, including the prefrontal cortex, develop Lewy bodies, the neuropathological hallmark of PD. We generated and analyzed expression data from the prefrontal cortex Brodmann Area 9 (BA9) of 27 PD and 26 control samples using the 44K One-Color Agilent 60-mer Whole Human Genome Microarray. All samples were male, without significant Alzheimer disease pathology and with extensive pathological annotation available. 507 of the 39,122 analyzed expression probes were different between PD and control samples at false discovery rate (FDR) of 5%. One of the genes with significantly increased expression in PD was the forkhead box O1 (FOXO1) transcription factor. Notably, genes carrying the FoxO1 binding site were significantly enriched in the FDR–significant group of genes (177 genes covered by 189 probes), suggesting a role for FoxO1 upstream of the observed expression changes. Single-nucleotide polymorphisms (SNPs) selected from a recent meta-analysis of PD genome-wide association studies (GWAS) were successfully genotyped in 50 out of the 53 microarray brains, allowing a targeted expression–SNP (eSNP) analysis for 52 SNPs associated with PD affection at genome-wide significance and the 189 probes from FoxO1 regulated genes. A significant association was observed between a SNP in the cyclin G associated kinase (GAK) gene and a probe in the spermine oxidase (SMOX) gene. Further examination of the FOXO1 region in a meta-analysis of six available GWAS showed two SNPs significantly associated with age at onset of PD. These results implicate FOXO1 as a PD–relevant gene and warrant further functional analyses of its transcriptional regulatory mechanisms. PMID:22761592

  14. Stallion sperm transcriptome comprises functionally coherent coding and regulatory RNAs as revealed by microarray analysis and RNA-seq.

    PubMed

    Das, Pranab J; McCarthy, Fiona; Vishnoi, Monika; Paria, Nandina; Gresham, Cathy; Li, Gang; Kachroo, Priyanka; Sudderth, A Kendrick; Teague, Sheila; Love, Charles C; Varner, Dickson D; Chowdhary, Bhanu P; Raudsepp, Terje

    2013-01-01

    Mature mammalian sperm contain a complex population of RNAs some of which might regulate spermatogenesis while others probably play a role in fertilization and early development. Due to this limited knowledge, the biological functions of sperm RNAs remain enigmatic. Here we report the first characterization of the global transcriptome of the sperm of fertile stallions. The findings improved understanding of the biological significance of sperm RNAs which in turn will allow the discovery of sperm-based biomarkers for stallion fertility. The stallion sperm transcriptome was interrogated by analyzing sperm and testes RNA on a 21,000-element equine whole-genome oligoarray and by RNA-seq. Microarray analysis revealed 6,761 transcripts in the sperm, of which 165 were sperm-enriched, and 155 were differentially expressed between the sperm and testes. Next, 70 million raw reads were generated by RNA-seq of which 50% could be aligned with the horse reference genome. A total of 19,257 sequence tags were mapped to all horse chromosomes and the mitochondrial genome. The highest density of mapped transcripts was in gene-rich ECA11, 12 and 13, and the lowest in gene-poor ECA9 and X; 7 gene transcripts originated from ECAY. Structural annotation aligned sperm transcripts with 4,504 known horse and/or human genes, rRNAs and 82 miRNAs, whereas 13,354 sequence tags remained anonymous. The data were aligned with selected equine gene models to identify additional exons and splice variants. Gene Ontology annotations showed that sperm transcripts were associated with molecular processes (chemoattractant-activated signal transduction, ion transport) and cellular components (membranes and vesicles) related to known sperm functions at fertilization, while some messenger and micro RNAs might be critical for early development. The findings suggest that the rich repertoire of coding and non-coding RNAs in stallion sperm is not a random remnant from spermatogenesis in testes but a selectively retained and functionally coherent collection of RNAs.

  15. Stallion Sperm Transcriptome Comprises Functionally Coherent Coding and Regulatory RNAs as Revealed by Microarray Analysis and RNA-seq

    PubMed Central

    Das, Pranab J.; McCarthy, Fiona; Vishnoi, Monika; Paria, Nandina; Gresham, Cathy; Li, Gang; Kachroo, Priyanka; Sudderth, A. Kendrick; Teague, Sheila; Love, Charles C.; Varner, Dickson D.; Chowdhary, Bhanu P.; Raudsepp, Terje

    2013-01-01

    Mature mammalian sperm contain a complex population of RNAs some of which might regulate spermatogenesis while others probably play a role in fertilization and early development. Due to this limited knowledge, the biological functions of sperm RNAs remain enigmatic. Here we report the first characterization of the global transcriptome of the sperm of fertile stallions. The findings improved understanding of the biological significance of sperm RNAs which in turn will allow the discovery of sperm-based biomarkers for stallion fertility. The stallion sperm transcriptome was interrogated by analyzing sperm and testes RNA on a 21,000-element equine whole-genome oligoarray and by RNA-seq. Microarray analysis revealed 6,761 transcripts in the sperm, of which 165 were sperm-enriched, and 155 were differentially expressed between the sperm and testes. Next, 70 million raw reads were generated by RNA-seq of which 50% could be aligned with the horse reference genome. A total of 19,257 sequence tags were mapped to all horse chromosomes and the mitochondrial genome. The highest density of mapped transcripts was in gene-rich ECA11, 12 and 13, and the lowest in gene-poor ECA9 and X; 7 gene transcripts originated from ECAY. Structural annotation aligned sperm transcripts with 4,504 known horse and/or human genes, rRNAs and 82 miRNAs, whereas 13,354 sequence tags remained anonymous. The data were aligned with selected equine gene models to identify additional exons and splice variants. Gene Ontology annotations showed that sperm transcripts were associated with molecular processes (chemoattractant-activated signal transduction, ion transport) and cellular components (membranes and vesicles) related to known sperm functions at fertilization, while some messenger and micro RNAs might be critical for early development. The findings suggest that the rich repertoire of coding and non-coding RNAs in stallion sperm is not a random remnant from spermatogenesis in testes but a selectively retained and functionally coherent collection of RNAs. PMID:23409192

  16. Genome-wide RNA profiling of long-lasting stem cell-like memory CD8 T cells induced by Yellow Fever vaccination in humans.

    PubMed

    Fuertes Marraco, Silvia A; Soneson, Charlotte; Delorenzi, Mauro; Speiser, Daniel E

    2015-09-01

    The live-attenuated Yellow Fever (YF) vaccine YF-17D induces a broad and polyfunctional CD8 T cell response in humans. Recently, we identified a population of stem cell-like memory CD8 T cells induced by YF-17D that persists at stable frequency for at least 25 years after vaccination. The YF-17D is thus a model system of human CD8 T cell biology that furthermore allows to track and study long-lasting and antigen-specific human memory CD8 T cells. Here, we describe in detail the sample characteristics and preparation of a microarray dataset acquired for genome-wide gene expression profiling of long-lasting YF-specific stem cell-like memory CD8 T cells, compared to the reference CD8 T cell differentiation subsets from total CD8 T cells. We also describe the quality controls, annotations and exploratory analyses of the dataset. The microarray data is available from the Gene Expression Omnibus (GEO) public repository with accession number GSE65804.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    SacconePhD, Scott F; Chesler, Elissa J; Bierut, Laura J

    Commercial SNP microarrays now provide comprehensive and affordable coverage of the human genome. However, some diseases have biologically relevant genomic regions that may require additional coverage. Addiction, for example, is thought to be influenced by complex interactions among many relevant genes and pathways. We have assembled a list of 486 biologically relevant genes nominated by a panel of experts on addiction. We then added 424 genes that showed evidence of association with addiction phenotypes through mouse QTL mappings and gene co-expression analysis. We demonstrate that there are a substantial number of SNPs in these genes that are not well representedmore » by commercial SNP platforms. We address this problem by introducing a publicly available SNP database for addiction. The database is annotated using numeric prioritization scores indicating the extent of biological relevance. The scores incorporate a number of factors such as SNP/gene functional properties (including synonymy and promoter regions), data from mouse systems genetics and measures of human/mouse evolutionary conservation. We then used HapMap genotyping data to determine if a SNP is tagged by a commercial microarray through linkage disequilibrium. This combination of biological prioritization scores and LD tagging annotation will enable addiction researchers to supplement commercial SNP microarrays to ensure comprehensive coverage of biologically relevant regions.« less

  18. Ontology-based meta-analysis of global collections of high-throughput public data.

    PubMed

    Kupershmidt, Ilya; Su, Qiaojuan Jane; Grewal, Anoop; Sundaresh, Suman; Halperin, Inbal; Flynn, James; Shekar, Mamatha; Wang, Helen; Park, Jenny; Cui, Wenwu; Wall, Gregory D; Wisotzkey, Robert; Alag, Satnam; Akhtari, Saeid; Ronaghi, Mostafa

    2010-09-29

    The investigation of the interconnections between the molecular and genetic events that govern biological systems is essential if we are to understand the development of disease and design effective novel treatments. Microarray and next-generation sequencing technologies have the potential to provide this information. However, taking full advantage of these approaches requires that biological connections be made across large quantities of highly heterogeneous genomic datasets. Leveraging the increasingly huge quantities of genomic data in the public domain is fast becoming one of the key challenges in the research community today. We have developed a novel data mining framework that enables researchers to use this growing collection of public high-throughput data to investigate any set of genes or proteins. The connectivity between molecular states across thousands of heterogeneous datasets from microarrays and other genomic platforms is determined through a combination of rank-based enrichment statistics, meta-analyses, and biomedical ontologies. We address data quality concerns through dataset replication and meta-analysis and ensure that the majority of the findings are derived using multiple lines of evidence. As an example of our strategy and the utility of this framework, we apply our data mining approach to explore the biology of brown fat within the context of the thousands of publicly available gene expression datasets. Our work presents a practical strategy for organizing, mining, and correlating global collections of large-scale genomic data to explore normal and disease biology. Using a hypothesis-free approach, we demonstrate how a data-driven analysis across very large collections of genomic data can reveal novel discoveries and evidence to support existing hypothesis.

  19. Advantages of RNA-seq compared to RNA microarrays for transcriptome profiling of anterior cruciate ligament tears.

    PubMed

    Rai, Muhammad Farooq; Tycksen, Eric D; Sandell, Linda J; Brophy, Robert H

    2018-01-01

    Microarrays and RNA-seq are at the forefront of high throughput transcriptome analyses. Since these methodologies are based on different principles, there are concerns about the concordance of data between the two techniques. The concordance of RNA-seq and microarrays for genome-wide analysis of differential gene expression has not been rigorously assessed in clinically derived ligament tissues. To demonstrate the concordance between RNA-seq and microarrays and to assess potential benefits of RNA-seq over microarrays, we assessed differences in transcript expression in anterior cruciate ligament (ACL) tissues based on time-from-injury. ACL remnants were collected from patients with an ACL tear at the time of ACL reconstruction. RNA prepared from torn ACL remnants was subjected to Agilent microarrays (N = 24) and RNA-seq (N = 8). The correlation of biological replicates in RNA-seq and microarrays data was similar (0.98 vs. 0.97), demonstrating that each platform has high internal reproducibility. Correlations between the RNA-seq data and the individual microarrays were low, but correlations between the RNA-seq values and the geometric mean of the microarrays values were moderate. The cross-platform concordance for differentially expressed transcripts or enriched pathways was linearly correlated (r = 0.64). RNA-Seq was superior in detecting low abundance transcripts and differentiating biologically critical isoforms. Additional independent validation of transcript expression was undertaken using microfluidic PCR for selected genes. PCR data showed 100% concordance (in expression pattern) with RNA-seq and microarrays data. These findings demonstrate that RNA-seq has advantages over microarrays for transcriptome profiling of ligament tissues when available and affordable. Furthermore, these findings are likely transferable to other musculoskeletal tissues where tissue collection is challenging and cells are in low abundance. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:484-497, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  20. 4p terminal deletion and 11p subtelomeric duplication detected by genomic microarray in a patient with Wolf-Hirschhorn syndrome and an atypical phenotype.

    PubMed

    Stevenson, David A; Carey, John C; Cowley, Brett C; Bayrak-Toydemir, Pinar; Mao, Rong; Brothman, Arthur R

    2004-12-01

    We report a de novo cryptic 11p duplication found by genomic microarray with a cytogenetically detected 4p deletion. Terminal 4p deletions cause Wolf-Hirschhorn syndrome, but the phenotype probably was modified by the paternally derived 11p duplication. This emphasizes the clinical utility of genomic microarray.

  1. Divergence of Mammalian Higher Order Chromatin Structure Is Associated with Developmental Loci

    PubMed Central

    Chambers, Emily V.; Bickmore, Wendy A.; Semple, Colin A.

    2013-01-01

    Several recent studies have examined different aspects of mammalian higher order chromatin structure – replication timing, lamina association and Hi-C inter-locus interactions — and have suggested that most of these features of genome organisation are conserved over evolution. However, the extent of evolutionary divergence in higher order structure has not been rigorously measured across the mammalian genome, and until now little has been known about the characteristics of any divergent loci present. Here, we generate a dataset combining multiple measurements of chromatin structure and organisation over many embryonic cell types for both human and mouse that, for the first time, allows a comprehensive assessment of the extent of structural divergence between mammalian genomes. Comparison of orthologous regions confirms that all measurable facets of higher order structure are conserved between human and mouse, across the vast majority of the detectably orthologous genome. This broad similarity is observed in spite of many loci possessing cell type specific structures. However, we also identify hundreds of regions (from 100 Kb to 2.7 Mb in size) showing consistent evidence of divergence between these species, constituting at least 10% of the orthologous mammalian genome and encompassing many hundreds of human and mouse genes. These regions show unusual shifts in human GC content, are unevenly distributed across both genomes, and are enriched in human subtelomeric regions. Divergent regions are also relatively enriched for genes showing divergent expression patterns between human and mouse ES cells, implying these regions cause divergent regulation. Particular divergent loci are strikingly enriched in genes implicated in vertebrate development, suggesting important roles for structural divergence in the evolution of mammalian developmental programmes. These data suggest that, though relatively rare in the mammalian genome, divergence in higher order chromatin structure has played important roles during evolution. PMID:23592965

  2. Microarray Data Processing Techniques for Genome-Scale Network Inference from Large Public Repositories.

    PubMed

    Chockalingam, Sriram; Aluru, Maneesha; Aluru, Srinivas

    2016-09-19

    Pre-processing of microarray data is a well-studied problem. Furthermore, all popular platforms come with their own recommended best practices for differential analysis of genes. However, for genome-scale network inference using microarray data collected from large public repositories, these methods filter out a considerable number of genes. This is primarily due to the effects of aggregating a diverse array of experiments with different technical and biological scenarios. Here we introduce a pre-processing pipeline suitable for inferring genome-scale gene networks from large microarray datasets. We show that partitioning of the available microarray datasets according to biological relevance into tissue- and process-specific categories significantly extends the limits of downstream network construction. We demonstrate the effectiveness of our pre-processing pipeline by inferring genome-scale networks for the model plant Arabidopsis thaliana using two different construction methods and a collection of 11,760 Affymetrix ATH1 microarray chips. Our pre-processing pipeline and the datasets used in this paper are made available at http://alurulab.cc.gatech.edu/microarray-pp.

  3. Interim report on updated microarray probes for the LLNL Burkholderia pseudomallei SNP array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, S; Jaing, C

    2012-03-27

    The overall goal of this project is to forensically characterize 100 unknown Burkholderia isolates in the US-Australia collaboration. We will identify genome-wide single nucleotide polymorphisms (SNPs) from B. pseudomallei and near neighbor species including B. mallei, B. thailandensis and B. oklahomensis. We will design microarray probes to detect these SNP markers and analyze 100 Burkholderia genomic DNAs extracted from environmental, clinical and near neighbor isolates from Australian collaborators on the Burkholderia SNP microarray. We will analyze the microarray genotyping results to characterize the genetic diversity of these new isolates and triage the samples for whole genome sequencing. In this interimmore » report, we described the SNP analysis and the microarray probe design for the Burkholderia SNP microarray.« less

  4. Genome-Wide Prediction and Analysis of 3D-Domain Swapped Proteins in the Human Genome from Sequence Information.

    PubMed

    Upadhyay, Atul Kumar; Sowdhamini, Ramanathan

    2016-01-01

    3D-domain swapping is one of the mechanisms of protein oligomerization and the proteins exhibiting this phenomenon have many biological functions. These proteins, which undergo domain swapping, have acquired much attention owing to their involvement in human diseases, such as conformational diseases, amyloidosis, serpinopathies, proteionopathies etc. Early realisation of proteins in the whole human genome that retain tendency to domain swap will enable many aspects of disease control management. Predictive models were developed by using machine learning approaches with an average accuracy of 78% (85.6% of sensitivity, 87.5% of specificity and an MCC value of 0.72) to predict putative domain swapping in protein sequences. These models were applied to many complete genomes with special emphasis on the human genome. Nearly 44% of the protein sequences in the human genome were predicted positive for domain swapping. Enrichment analysis was performed on the positively predicted sequences from human genome for their domain distribution, disease association and functional importance based on Gene Ontology (GO). Enrichment analysis was also performed to infer a better understanding of the functional importance of these sequences. Finally, we developed hinge region prediction, in the given putative domain swapped sequence, by using important physicochemical properties of amino acids.

  5. The dynamics of pyrethroid resistance in Anopheles arabiensis from Zanzibar and an assessment of the underlying genetic basis

    PubMed Central

    2013-01-01

    Background The emergence of pyrethroid resistance in the malaria vector, Anopheles arabiensis, threatens to undermine the considerable gains made towards eliminating malaria on Zanzibar. Previously, resistance was restricted to the island of Pemba while mosquitoes from Unguja, the larger of the two islands of Zanzibar, were susceptible. Here, we characterised the mechanism(s) responsible for resistance on Zanzibar using a combination of gene expression and target-site mutation assays. Methods WHO resistance bioassays were conducted using 1-5d old adult Anopheles gambiae s.l. collected between 2011 and 2013 across the archipelago. Synergist assays with the P450 inhibitor piperonyl-butoxide were performed in 2013. Members of the An. gambiae complex were PCR-identified and screened for target-site mutations (kdr and Ace-1). Gene expression in pyrethroid resistant An. arabiensis from Pemba was analysed using whole-genome microarrays. Results Pyrethroid resistance is now present across the entire Zanzibar archipelago. Survival to the pyrethroid lambda-cyhalothrin in bioassays conducted in 2013 was 23.5-54.3% on Unguja and 32.9-81.7% on Pemba. We present evidence that resistance is mediated, in part at least, by elevated P450 monoxygenases. Whole-genome microarray scans showed that the most enriched gene terms in resistant An. arabiensis from Pemba were associated with P450 activity and synergist assays with PBO completely restored susceptibility to pyrethroids in both islands. CYP4G16 was the most consistently over-expressed gene in resistant mosquitoes compared with two susceptible strains from Unguja and Dar es Salaam. Expression of this P450 is enriched in the abdomen and it is thought to play a role in hydrocarbon synthesis. Microarray and qPCR detected several additional genes putatively involved in this pathway enriched in the Pemba pyrethroid resistant population and we hypothesise that resistance may be, in part, related to alterations in the structure of the mosquito cuticle. None of the kdr target-site mutations, associated with pyrethroid/DDT resistance in An. gambiae elsewhere in Africa, were found on the islands. Conclusion The consequences of this resistance phenotype are discussed in relation to future vector control strategies on Zanzibar to support the ongoing malaria elimination efforts on the islands. PMID:24314005

  6. Assessment of large copy number variants in patients with apparently isolated congenital left-sided cardiac lesions reveals clinically relevant genomic events.

    PubMed

    Hanchard, Neil A; Umana, Luis A; D'Alessandro, Lisa; Azamian, Mahshid; Poopola, Mojisola; Morris, Shaine A; Fernbach, Susan; Lalani, Seema R; Towbin, Jeffrey A; Zender, Gloria A; Fitzgerald-Butt, Sara; Garg, Vidu; Bowman, Jessica; Zapata, Gladys; Hernandez, Patricia; Arrington, Cammon B; Furthner, Dieter; Prakash, Siddharth K; Bowles, Neil E; McBride, Kim L; Belmont, John W

    2017-08-01

    Congenital left-sided cardiac lesions (LSLs) are a significant contributor to the mortality and morbidity of congenital heart disease (CHD). Structural copy number variants (CNVs) have been implicated in LSL without extra-cardiac features; however, non-penetrance and variable expressivity have created uncertainty over the use of CNV analyses in such patients. High-density SNP microarray genotyping data were used to infer large, likely-pathogenic, autosomal CNVs in a cohort of 1,139 probands with LSL and their families. CNVs were molecularly confirmed and the medical records of individual carriers reviewed. The gene content of novel CNVs was then compared with public CNV data from CHD patients. Large CNVs (>1 MB) were observed in 33 probands (∼3%). Six of these were de novo and 14 were not observed in the only available parent sample. Associated cardiac phenotypes spanned a broad spectrum without clear predilection. Candidate CNVs were largely non-recurrent, associated with heterozygous loss of copy number, and overlapped known CHD genomic regions. Novel CNV regions were enriched for cardiac development genes, including seven that have not been previously associated with human CHD. CNV analysis can be a clinically useful and molecularly informative tool in LSLs without obvious extra-cardiac defects, and may identify a clinically relevant genomic disorder in a small but important proportion of these individuals. © 2017 Wiley Periodicals, Inc.

  7. A novel approach for human whole transcriptome analysis based on absolute gene expression of microarray data

    PubMed Central

    Bikel, Shirley; Jacobo-Albavera, Leonor; Sánchez-Muñoz, Fausto; Cornejo-Granados, Fernanda; Canizales-Quinteros, Samuel; Soberón, Xavier; Sotelo-Mundo, Rogerio R.; del Río-Navarro, Blanca E.; Mendoza-Vargas, Alfredo; Sánchez, Filiberto

    2017-01-01

    Background In spite of the emergence of RNA sequencing (RNA-seq), microarrays remain in widespread use for gene expression analysis in the clinic. There are over 767,000 RNA microarrays from human samples in public repositories, which are an invaluable resource for biomedical research and personalized medicine. The absolute gene expression analysis allows the transcriptome profiling of all expressed genes under a specific biological condition without the need of a reference sample. However, the background fluorescence represents a challenge to determine the absolute gene expression in microarrays. Given that the Y chromosome is absent in female subjects, we used it as a new approach for absolute gene expression analysis in which the fluorescence of the Y chromosome genes of female subjects was used as the background fluorescence for all the probes in the microarray. This fluorescence was used to establish an absolute gene expression threshold, allowing the differentiation between expressed and non-expressed genes in microarrays. Methods We extracted the RNA from 16 children leukocyte samples (nine males and seven females, ages 6–10 years). An Affymetrix Gene Chip Human Gene 1.0 ST Array was carried out for each sample and the fluorescence of 124 genes of the Y chromosome was used to calculate the absolute gene expression threshold. After that, several expressed and non-expressed genes according to our absolute gene expression threshold were compared against the expression obtained using real-time quantitative polymerase chain reaction (RT-qPCR). Results From the 124 genes of the Y chromosome, three genes (DDX3Y, TXLNG2P and EIF1AY) that displayed significant differences between sexes were used to calculate the absolute gene expression threshold. Using this threshold, we selected 13 expressed and non-expressed genes and confirmed their expression level by RT-qPCR. Then, we selected the top 5% most expressed genes and found that several KEGG pathways were significantly enriched. Interestingly, these pathways were related to the typical functions of leukocytes cells, such as antigen processing and presentation and natural killer cell mediated cytotoxicity. We also applied this method to obtain the absolute gene expression threshold in already published microarray data of liver cells, where the top 5% expressed genes showed an enrichment of typical KEGG pathways for liver cells. Our results suggest that the three selected genes of the Y chromosome can be used to calculate an absolute gene expression threshold, allowing a transcriptome profiling of microarray data without the need of an additional reference experiment. Discussion Our approach based on the establishment of a threshold for absolute gene expression analysis will allow a new way to analyze thousands of microarrays from public databases. This allows the study of different human diseases without the need of having additional samples for relative expression experiments. PMID:29230367

  8. Hybrid selection for sequencing pathogen genomes from clinical samples

    PubMed Central

    2011-01-01

    We have adapted a solution hybrid selection protocol to enrich pathogen DNA in clinical samples dominated by human genetic material. Using mock mixtures of human and Plasmodium falciparum malaria parasite DNA as well as clinical samples from infected patients, we demonstrate an average of approximately 40-fold enrichment of parasite DNA after hybrid selection. This approach will enable efficient genome sequencing of pathogens from clinical samples, as well as sequencing of endosymbiotic organisms such as Wolbachia that live inside diverse metazoan phyla. PMID:21835008

  9. Bioinformatics analysis of differentially expressed gene profiles associated with systemic lupus erythematosus

    PubMed Central

    Wu, Chengjiang; Zhao, Yangjing; Lin, Yu; Yang, Xinxin; Yan, Meina; Min, Yujiao; Pan, Zihui; Xia, Sheng; Shao, Qixiang

    2018-01-01

    DNA microarray and high-throughput sequencing have been widely used to identify the differentially expressed genes (DEGs) in systemic lupus erythematosus (SLE). However, the big data from gene microarrays are also challenging to work with in terms of analysis and processing. The presents study combined data from the microarray expression profile (GSE65391) and bioinformatics analysis to identify the key genes and cellular pathways in SLE. Gene ontology (GO) and cellular pathway enrichment analyses of DEGs were performed to investigate significantly enriched pathways. A protein-protein interaction network was constructed to determine the key genes in the occurrence and development of SLE. A total of 310 DEGs were identified in SLE, including 193 upregulated genes and 117 downregulated genes. GO analysis revealed that the most significant biological process of DEGs was immune system process. Kyoto Encyclopedia of Genes and Genome pathway analysis showed that these DEGs were enriched in signaling pathways associated with the immune system, including the RIG-I-like receptor signaling pathway, intestinal immune network for IgA production, antigen processing and presentation and the toll-like receptor signaling pathway. The current study screened the top 10 genes with higher degrees as hub genes, which included 2′-5′-oligoadenylate synthetase 1, MX dynamin like GTPase 2, interferon induced protein with tetratricopeptide repeats 1, interferon regulatory factor 7, interferon induced with helicase C domain 1, signal transducer and activator of transcription 1, ISG15 ubiquitin-like modifier, DExD/H-box helicase 58, interferon induced protein with tetratricopeptide repeats 3 and 2′-5′-oligoadenylate synthetase 2. Module analysis revealed that these hub genes were also involved in the RIG-I-like receptor signaling, cytosolic DNA-sensing, toll-like receptor signaling and ribosome biogenesis pathways. In addition, these hub genes, from different probe sets, exhibited significant co-expressed tendency in multi-experiment microarray datasets (P<0.01). In conclusion, these key genes and cellular pathways may improve the current understanding of the underlying mechanism of development of SLE. These key genes may be potential biomarkers of diagnosis, therapy and prognosis for SLE. PMID:29257335

  10. Bioinformatics approaches for cross-species liver cancer analysis based on microarray gene expression profiling

    PubMed Central

    Fang, H; Tong, W; Perkins, R; Shi, L; Hong, H; Cao, X; Xie, Q; Yim, SH; Ward, JM; Pitot, HC; Dragan, YP

    2005-01-01

    Background The completion of the sequencing of human, mouse and rat genomes and knowledge of cross-species gene homologies enables studies of differential gene expression in animal models. These types of studies have the potential to greatly enhance our understanding of diseases such as liver cancer in humans. Genes co-expressed across multiple species are most likely to have conserved functions. We have used various bioinformatics approaches to examine microarray expression profiles from liver neoplasms that arise in albumin-SV40 transgenic rats to elucidate genes, chromosome aberrations and pathways that might be associated with human liver cancer. Results In this study, we first identified 2223 differentially expressed genes by comparing gene expression profiles for two control, two adenoma and two carcinoma samples using an F-test. These genes were subsequently mapped to the rat chromosomes using a novel visualization tool, the Chromosome Plot. Using the same plot, we further mapped the significant genes to orthologous chromosomal locations in human and mouse. Many genes expressed in rat 1q that are amplified in rat liver cancer map to the human chromosomes 10, 11 and 19 and to the mouse chromosomes 7, 17 and 19, which have been implicated in studies of human and mouse liver cancer. Using Comparative Genomics Microarray Analysis (CGMA), we identified regions of potential aberrations in human. Lastly, a pathway analysis was conducted to predict altered human pathways based on statistical analysis and extrapolation from the rat data. All of the identified pathways have been known to be important in the etiology of human liver cancer, including cell cycle control, cell growth and differentiation, apoptosis, transcriptional regulation, and protein metabolism. Conclusion The study demonstrates that the hepatic gene expression profiles from the albumin-SV40 transgenic rat model revealed genes, pathways and chromosome alterations consistent with experimental and clinical research in human liver cancer. The bioinformatics tools presented in this paper are essential for cross species extrapolation and mapping of microarray data, its analysis and interpretation. PMID:16026603

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Xiugong, E-mail: xiugong.gao@fda.hhs.gov; Sprando, Robert L.; Yourick, Jeffrey J.

    Developmental toxicity testing has traditionally relied on animal models which are costly, time consuming, and require the sacrifice of large numbers of animals. In addition, there are significant disparities between human beings and animals in their responses to chemicals. Thalidomide is a species-specific developmental toxicant that causes severe limb malformations in humans but not in mice. Here, we used microarrays to study transcriptomic changes induced by thalidomide in an in vitro model based on differentiation of mouse embryonic stem cells (mESCs). C57BL/6 mESCs were allowed to differentiate spontaneously and RNA was collected at 24, 48, and 72 h after exposuremore » to 0.25 mM thalidomide. Global gene expression analysis using microarrays revealed hundreds of differentially expressed genes upon thalidomide exposure that were enriched in gene ontology (GO) terms and canonical pathways associated with embryonic development and differentiation. In addition, many genes were found to be involved in small GTPases-mediated signal transduction, heart development, and inflammatory responses, which coincide with clinical evidences and may represent critical embryotoxicities of thalidomide. These results demonstrate that transcriptomics in combination with mouse embryonic stem cell differentiation is a promising alternative model for developmental toxicity assessment. - Highlights: • Studied genomic changes in mouse embryonic stem cells upon thalidomide exposure • Identified gene expression changes that may represent thalidomide embryotoxicity • The toxicogenomic changes coincide well with known thalidomide clinical outcomes. • The mouse embryonic stem cell model is suitable for developmental toxicity testing. • The model has the potential for high-throughput screening of a multitude of compounds.« less

  12. Genome-Scale Protein Microarray Comparison of Human Antibody Responses in Plasmodium vivax Relapse and Reinfection

    PubMed Central

    Chuquiyauri, Raul; Molina, Douglas M.; Moss, Eli L.; Wang, Ruobing; Gardner, Malcolm J.; Brouwer, Kimberly C.; Torres, Sonia; Gilman, Robert H.; Llanos-Cuentas, Alejandro; Neafsey, Daniel E.; Felgner, Philip; Liang, Xiaowu; Vinetz, Joseph M.

    2015-01-01

    Large scale antibody responses in Plasmodium vivax malaria remains unexplored in the endemic setting. Protein microarray analysis of asexual-stage P. vivax was used to identify antigens recognized in sera from residents of hypoendemic Peruvian Amazon. Over 24 months, of 106 participants, 91 had two symptomatic P. vivax malaria episodes, 11 had three episodes, 3 had four episodes, and 1 had five episodes. Plasmodium vivax relapse was distinguished from reinfection by a merozoite surface protein-3α restriction fragment length polymorphism polymerase chain reaction (MSP3α PCR-RFLP) assay. Notably, P. vivax reinfection subjects did not have higher reactivity to the entire set of recognized P. vivax blood-stage antigens than relapse subjects, regardless of the number of malaria episodes. The most highly recognized P. vivax proteins were MSP 4, 7, 8, and 10 (PVX_003775, PVX_082650, PVX_097625, and PVX_114145); sexual-stage antigen s16 (PVX_000930); early transcribed membrane protein (PVX_090230); tryptophan-rich antigen (Pv-fam-a) (PVX_092995); apical merozoite antigen 1 (PVX_092275); and proteins of unknown function (PVX_081830, PVX_117680, PVX_118705, PVX_121935, PVX_097730, PVX_110935, PVX_115450, and PVX_082475). Genes encoding reactive proteins exhibited a significant enrichment of non-synonymous nucleotide variation, an observation suggesting immune selection. These data identify candidates for seroepidemiological tools to support malaria elimination efforts in P. vivax-endemic regions. PMID:26149860

  13. Network-Based Integration of GWAS and Gene Expression Identifies a HOX-Centric Network Associated with Serous Ovarian Cancer Risk.

    PubMed

    Kar, Siddhartha P; Tyrer, Jonathan P; Li, Qiyuan; Lawrenson, Kate; Aben, Katja K H; Anton-Culver, Hoda; Antonenkova, Natalia; Chenevix-Trench, Georgia; Baker, Helen; Bandera, Elisa V; Bean, Yukie T; Beckmann, Matthias W; Berchuck, Andrew; Bisogna, Maria; Bjørge, Line; Bogdanova, Natalia; Brinton, Louise; Brooks-Wilson, Angela; Butzow, Ralf; Campbell, Ian; Carty, Karen; Chang-Claude, Jenny; Chen, Yian Ann; Chen, Zhihua; Cook, Linda S; Cramer, Daniel; Cunningham, Julie M; Cybulski, Cezary; Dansonka-Mieszkowska, Agnieszka; Dennis, Joe; Dicks, Ed; Doherty, Jennifer A; Dörk, Thilo; du Bois, Andreas; Dürst, Matthias; Eccles, Diana; Easton, Douglas F; Edwards, Robert P; Ekici, Arif B; Fasching, Peter A; Fridley, Brooke L; Gao, Yu-Tang; Gentry-Maharaj, Aleksandra; Giles, Graham G; Glasspool, Rosalind; Goode, Ellen L; Goodman, Marc T; Grownwald, Jacek; Harrington, Patricia; Harter, Philipp; Hein, Alexander; Heitz, Florian; Hildebrandt, Michelle A T; Hillemanns, Peter; Hogdall, Estrid; Hogdall, Claus K; Hosono, Satoyo; Iversen, Edwin S; Jakubowska, Anna; Paul, James; Jensen, Allan; Ji, Bu-Tian; Karlan, Beth Y; Kjaer, Susanne K; Kelemen, Linda E; Kellar, Melissa; Kelley, Joseph; Kiemeney, Lambertus A; Krakstad, Camilla; Kupryjanczyk, Jolanta; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D; Lee, Alice W; Lele, Shashi; Leminen, Arto; Lester, Jenny; Levine, Douglas A; Liang, Dong; Lissowska, Jolanta; Lu, Karen; Lubinski, Jan; Lundvall, Lene; Massuger, Leon; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R; McNeish, Iain A; Menon, Usha; Modugno, Francesmary; Moysich, Kirsten B; Narod, Steven A; Nedergaard, Lotte; Ness, Roberta B; Nevanlinna, Heli; Odunsi, Kunle; Olson, Sara H; Orlow, Irene; Orsulic, Sandra; Weber, Rachel Palmieri; Pearce, Celeste Leigh; Pejovic, Tanja; Pelttari, Liisa M; Permuth-Wey, Jennifer; Phelan, Catherine M; Pike, Malcolm C; Poole, Elizabeth M; Ramus, Susan J; Risch, Harvey A; Rosen, Barry; Rossing, Mary Anne; Rothstein, Joseph H; Rudolph, Anja; Runnebaum, Ingo B; Rzepecka, Iwona K; Salvesen, Helga B; Schildkraut, Joellen M; Schwaab, Ira; Shu, Xiao-Ou; Shvetsov, Yurii B; Siddiqui, Nadeem; Sieh, Weiva; Song, Honglin; Southey, Melissa C; Sucheston-Campbell, Lara E; Tangen, Ingvild L; Teo, Soo-Hwang; Terry, Kathryn L; Thompson, Pamela J; Timorek, Agnieszka; Tsai, Ya-Yu; Tworoger, Shelley S; van Altena, Anne M; Van Nieuwenhuysen, Els; Vergote, Ignace; Vierkant, Robert A; Wang-Gohrke, Shan; Walsh, Christine; Wentzensen, Nicolas; Whittemore, Alice S; Wicklund, Kristine G; Wilkens, Lynne R; Woo, Yin-Ling; Wu, Xifeng; Wu, Anna; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Sellers, Thomas A; Monteiro, Alvaro N A; Freedman, Matthew L; Gayther, Simon A; Pharoah, Paul D P

    2015-10-01

    Genome-wide association studies (GWAS) have so far reported 12 loci associated with serous epithelial ovarian cancer (EOC) risk. We hypothesized that some of these loci function through nearby transcription factor (TF) genes and that putative target genes of these TFs as identified by coexpression may also be enriched for additional EOC risk associations. We selected TF genes within 1 Mb of the top signal at the 12 genome-wide significant risk loci. Mutual information, a form of correlation, was used to build networks of genes strongly coexpressed with each selected TF gene in the unified microarray dataset of 489 serous EOC tumors from The Cancer Genome Atlas. Genes represented in this dataset were subsequently ranked using a gene-level test based on results for germline SNPs from a serous EOC GWAS meta-analysis (2,196 cases/4,396 controls). Gene set enrichment analysis identified six networks centered on TF genes (HOXB2, HOXB5, HOXB6, HOXB7 at 17q21.32 and HOXD1, HOXD3 at 2q31) that were significantly enriched for genes from the risk-associated end of the ranked list (P < 0.05 and FDR < 0.05). These results were replicated (P < 0.05) using an independent association study (7,035 cases/21,693 controls). Genes underlying enrichment in the six networks were pooled into a combined network. We identified a HOX-centric network associated with serous EOC risk containing several genes with known or emerging roles in serous EOC development. Network analysis integrating large, context-specific datasets has the potential to offer mechanistic insights into cancer susceptibility and prioritize genes for experimental characterization. ©2015 American Association for Cancer Research.

  14. Network-based integration of GWAS and gene expression identifies a HOX-centric network associated with serous ovarian cancer risk

    PubMed Central

    Kar, Siddhartha P.; Tyrer, Jonathan P.; Li, Qiyuan; Lawrenson, Kate; Aben, Katja K.H.; Anton-Culver, Hoda; Antonenkova, Natalia; Chenevix-Trench, Georgia; Baker, Helen; Bandera, Elisa V.; Bean, Yukie T.; Beckmann, Matthias W.; Berchuck, Andrew; Bisogna, Maria; Bjørge, Line; Bogdanova, Natalia; Brinton, Louise; Brooks-Wilson, Angela; Butzow, Ralf; Campbell, Ian; Carty, Karen; Chang-Claude, Jenny; Chen, Yian Ann; Chen, Zhihua; Cook, Linda S.; Cramer, Daniel; Cunningham, Julie M.; Cybulski, Cezary; Dansonka-Mieszkowska, Agnieszka; Dennis, Joe; Dicks, Ed; Doherty, Jennifer A.; Dörk, Thilo; du Bois, Andreas; Dürst, Matthias; Eccles, Diana; Easton, Douglas F.; Edwards, Robert P.; Ekici, Arif B.; Fasching, Peter A.; Fridley, Brooke L.; Gao, Yu-Tang; Gentry-Maharaj, Aleksandra; Giles, Graham G.; Glasspool, Rosalind; Goode, Ellen L.; Goodman, Marc T.; Grownwald, Jacek; Harrington, Patricia; Harter, Philipp; Hein, Alexander; Heitz, Florian; Hildebrandt, Michelle A.T.; Hillemanns, Peter; Hogdall, Estrid; Hogdall, Claus K.; Hosono, Satoyo; Iversen, Edwin S.; Jakubowska, Anna; Paul, James; Jensen, Allan; Ji, Bu-Tian; Karlan, Beth Y; Kjaer, Susanne K.; Kelemen, Linda E.; Kellar, Melissa; Kelley, Joseph; Kiemeney, Lambertus A.; Krakstad, Camilla; Kupryjanczyk, Jolanta; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D.; Lee, Alice W.; Lele, Shashi; Leminen, Arto; Lester, Jenny; Levine, Douglas A.; Liang, Dong; Lissowska, Jolanta; Lu, Karen; Lubinski, Jan; Lundvall, Lene; Massuger, Leon; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R.; McNeish, Iain A.; Menon, Usha; Modugno, Francesmary; Moysich, Kirsten B.; Narod, Steven A.; Nedergaard, Lotte; Ness, Roberta B.; Nevanlinna, Heli; Odunsi, Kunle; Olson, Sara H.; Orlow, Irene; Orsulic, Sandra; Weber, Rachel Palmieri; Pearce, Celeste Leigh; Pejovic, Tanja; Pelttari, Liisa M.; Permuth-Wey, Jennifer; Phelan, Catherine M.; Pike, Malcolm C.; Poole, Elizabeth M.; Ramus, Susan J.; Risch, Harvey A.; Rosen, Barry; Rossing, Mary Anne; Rothstein, Joseph H.; Rudolph, Anja; Runnebaum, Ingo B.; Rzepecka, Iwona K.; Salvesen, Helga B.; Schildkraut, Joellen M.; Schwaab, Ira; Shu, Xiao-Ou; Shvetsov, Yurii B; Siddiqui, Nadeem; Sieh, Weiva; Song, Honglin; Southey, Melissa C.; Sucheston-Campbell, Lara E.; Tangen, Ingvild L.; Teo, Soo-Hwang; Terry, Kathryn L.; Thompson, Pamela J; Timorek, Agnieszka; Tsai, Ya-Yu; Tworoger, Shelley S.; van Altena, Anne M.; Van Nieuwenhuysen, Els; Vergote, Ignace; Vierkant, Robert A.; Wang-Gohrke, Shan; Walsh, Christine; Wentzensen, Nicolas; Whittemore, Alice S.; Wicklund, Kristine G.; Wilkens, Lynne R.; Woo, Yin-Ling; Wu, Xifeng; Wu, Anna; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Sellers, Thomas A.; Monteiro, Alvaro N. A.; Freedman, Matthew L.; Gayther, Simon A.; Pharoah, Paul D. P.

    2015-01-01

    Background Genome-wide association studies (GWAS) have so far reported 12 loci associated with serous epithelial ovarian cancer (EOC) risk. We hypothesized that some of these loci function through nearby transcription factor (TF) genes and that putative target genes of these TFs as identified by co-expression may also be enriched for additional EOC risk associations. Methods We selected TF genes within 1 Mb of the top signal at the 12 genome-wide significant risk loci. Mutual information, a form of correlation, was used to build networks of genes strongly co-expressed with each selected TF gene in the unified microarray data set of 489 serous EOC tumors from The Cancer Genome Atlas. Genes represented in this data set were subsequently ranked using a gene-level test based on results for germline SNPs from a serous EOC GWAS meta-analysis (2,196 cases/4,396 controls). Results Gene set enrichment analysis identified six networks centered on TF genes (HOXB2, HOXB5, HOXB6, HOXB7 at 17q21.32 and HOXD1, HOXD3 at 2q31) that were significantly enriched for genes from the risk-associated end of the ranked list (P<0.05 and FDR<0.05). These results were replicated (P<0.05) using an independent association study (7,035 cases/21,693 controls). Genes underlying enrichment in the six networks were pooled into a combined network. Conclusion We identified a HOX-centric network associated with serous EOC risk containing several genes with known or emerging roles in serous EOC development. Impact Network analysis integrating large, context-specific data sets has the potential to offer mechanistic insights into cancer susceptibility and prioritize genes for experimental characterization. PMID:26209509

  15. MADGE: scalable distributed data management software for cDNA microarrays.

    PubMed

    McIndoe, Richard A; Lanzen, Aaron; Hurtz, Kimberly

    2003-01-01

    The human genome project and the development of new high-throughput technologies have created unparalleled opportunities to study the mechanism of diseases, monitor the disease progression and evaluate effective therapies. Gene expression profiling is a critical tool to accomplish these goals. The use of nucleic acid microarrays to assess the gene expression of thousands of genes simultaneously has seen phenomenal growth over the past five years. Although commercial sources of microarrays exist, investigators wanting more flexibility in the genes represented on the array will turn to in-house production. The creation and use of cDNA microarrays is a complicated process that generates an enormous amount of information. Effective data management of this information is essential to efficiently access, analyze, troubleshoot and evaluate the microarray experiments. We have developed a distributable software package designed to track and store the various pieces of data generated by a cDNA microarray facility. This includes the clone collection storage data, annotation data, workflow queues, microarray data, data repositories, sample submission information, and project/investigator information. This application was designed using a 3-tier client server model. The data access layer (1st tier) contains the relational database system tuned to support a large number of transactions. The data services layer (2nd tier) is a distributed COM server with full database transaction support. The application layer (3rd tier) is an internet based user interface that contains both client and server side code for dynamic interactions with the user. This software is freely available to academic institutions and non-profit organizations at http://www.genomics.mcg.edu/niddkbtc.

  16. Development of Transcriptomics-based Biomarkers for Selected Endocrine Disrupting Chemicals in Zebrafish (Danio rerio)

    EPA Science Inventory

    Genome-wide transcriptional profiling by microarrays provides a powerful platform for gene expression-based biomarker discovery. After their wide acceptance in human disease diagnosis, prognosis, and drug discovery, these gene signatures are increasingly being adopted for environ...

  17. Development of transcriptomics-based biomarkers for selected endocrine disrupting chemicals in zebrafish (Danio rerio)

    EPA Science Inventory

    Genome-wide transcriptional profiling by microarrays provides a powerful platform for gene expression-based biomarker discovery. After their wide acceptance in human disease diagnosis, prognosis, and drug discovery, these gene signatures are increasingly being adopted for environ...

  18. Placental Hypomethylation Is More Pronounced in Genomic Loci Devoid of Retroelements

    PubMed Central

    Chatterjee, Aniruddha; Macaulay, Erin C.; Rodger, Euan J.; Stockwell, Peter A.; Parry, Matthew F.; Roberts, Hester E.; Slatter, Tania L.; Hung, Noelyn A.; Devenish, Celia J.; Morison, Ian M.

    2016-01-01

    The human placenta is hypomethylated compared to somatic tissues. However, the degree and specificity of placental hypomethylation across the genome is unclear. We assessed genome-wide methylation of the human placenta and compared it to that of the neutrophil, a representative homogeneous somatic cell. We observed global hypomethylation in placenta (relative reduction of 22%) compared to neutrophils. Placental hypomethylation was pronounced in intergenic regions and gene bodies, while the unmethylated state of the promoter remained conserved in both tissues. For every class of repeat elements, the placenta showed lower methylation but the degree of hypomethylation differed substantially between these classes. However, some retroelements, especially the evolutionarily younger Alu elements, retained high levels of placental methylation. Surprisingly, nonretrotransposon-containing sequences showed a greater degree of placental hypomethylation than retrotransposons in every genomic element (intergenic, introns, and exons) except promoters. The differentially methylated fragments (DMFs) in placenta and neutrophils were enriched in gene-poor and CpG-poor regions. The placentally hypomethylated DMFs were enriched in genomic regions that are usually inactive, whereas hypermethylated DMFs were enriched in active regions. Hypomethylation of the human placenta is not specific to retroelements, indicating that the evolutionary advantages of placental hypomethylation go beyond those provided by expression of retrotransposons and retrogenes. PMID:27172225

  19. Ultrafiltration and Microarray for Detection of Microbial Source Tracking Marker and Pathogen Genes in Riverine and Marine Systems

    PubMed Central

    Li, Xiang; Harwood, Valerie J.; Nayak, Bina

    2016-01-01

    Pathogen identification and microbial source tracking (MST) to identify sources of fecal pollution improve evaluation of water quality. They contribute to improved assessment of human health risks and remediation of pollution sources. An MST microarray was used to simultaneously detect genes for multiple pathogens and indicators of fecal pollution in freshwater, marine water, sewage-contaminated freshwater and marine water, and treated wastewater. Dead-end ultrafiltration (DEUF) was used to concentrate organisms from water samples, yielding a recovery efficiency of >95% for Escherichia coli and human polyomavirus. Whole-genome amplification (WGA) increased gene copies from ultrafiltered samples and increased the sensitivity of the microarray. Viruses (adenovirus, bocavirus, hepatitis A virus, and human polyomaviruses) were detected in sewage-contaminated samples. Pathogens such as Legionella pneumophila, Shigella flexneri, and Campylobacter fetus were detected along with genes conferring resistance to aminoglycosides, beta-lactams, and tetracycline. Nonmetric dimensional analysis of MST marker genes grouped sewage-spiked freshwater and marine samples with sewage and apart from other fecal sources. The sensitivity (percent true positives) of the microarray probes for gene targets anticipated in sewage was 51 to 57% and was lower than the specificity (percent true negatives; 79 to 81%). A linear relationship between gene copies determined by quantitative PCR and microarray fluorescence was found, indicating the semiquantitative nature of the MST microarray. These results indicate that ultrafiltration coupled with WGA provides sufficient nucleic acids for detection of viruses, bacteria, protozoa, and antibiotic resistance genes by the microarray in applications ranging from beach monitoring to risk assessment. PMID:26729716

  20. The Diagnostic Yield of Array Comparative Genomic Hybridization Is High Regardless of Severity of Intellectual Disability/Developmental Delay in Children.

    PubMed

    D'Arrigo, Stefano; Gavazzi, Francesco; Alfei, Enrico; Zuffardi, Orsetta; Montomoli, Cristina; Corso, Barbara; Buzzi, Erika; Sciacca, Francesca L; Bulgheroni, Sara; Riva, Daria; Pantaleoni, Chiara

    2016-05-01

    Microarray-based comparative genomic hybridization is a method of molecular analysis that identifies chromosomal anomalies (or copy number variants) that correlate with clinical phenotypes. The aim of the present study was to apply a clinical score previously designated by de Vries to 329 patients with intellectual disability/developmental disorder (intellectual disability/developmental delay) referred to our tertiary center and to see whether the clinical factors are associated with a positive outcome of aCGH analyses. Another goal was to test the association between a positive microarray-based comparative genomic hybridization result and the severity of intellectual disability/developmental delay. Microarray-based comparative genomic hybridization identified structural chromosomal alterations responsible for the intellectual disability/developmental delay phenotype in 16% of our sample. Our study showed that causative copy number variants are frequently found even in cases of mild intellectual disability (30.77%). We want to emphasize the need to conduct microarray-based comparative genomic hybridization on all individuals with intellectual disability/developmental delay, regardless of the severity, because the degree of intellectual disability/developmental delay does not predict the diagnostic yield of microarray-based comparative genomic hybridization. © The Author(s) 2015.

  1. Genome Consortium for Active Teaching: Meeting the Goals of BIO2010

    PubMed Central

    Ledbetter, Mary Lee S.; Hoopes, Laura L.M.; Eckdahl, Todd T.; Heyer, Laurie J.; Rosenwald, Anne; Fowlks, Edison; Tonidandel, Scott; Bucholtz, Brooke; Gottfried, Gail

    2007-01-01

    The Genome Consortium for Active Teaching (GCAT) facilitates the use of modern genomics methods in undergraduate education. Initially focused on microarray technology, but with an eye toward diversification, GCAT is a community working to improve the education of tomorrow's life science professionals. GCAT participants have access to affordable microarrays, microarray scanners, free software for data analysis, and faculty workshops. Microarrays provided by GCAT have been used by 141 faculty on 134 campuses, including 21 faculty that serve large numbers of underrepresented minority students. An estimated 9480 undergraduates a year will have access to microarrays by 2009 as a direct result of GCAT faculty workshops. Gains for students include significantly improved comprehension of topics in functional genomics and increased interest in research. Faculty reported improved access to new technology and gains in understanding thanks to their involvement with GCAT. GCAT's network of supportive colleagues encourages faculty to explore genomics through student research and to learn a new and complex method with their undergraduates. GCAT is meeting important goals of BIO2010 by making research methods accessible to undergraduates, training faculty in genomics and bioinformatics, integrating mathematics into the biology curriculum, and increasing participation by underrepresented minority students. PMID:17548873

  2. Genome Consortium for Active Teaching: meeting the goals of BIO2010.

    PubMed

    Campbell, A Malcolm; Ledbetter, Mary Lee S; Hoopes, Laura L M; Eckdahl, Todd T; Heyer, Laurie J; Rosenwald, Anne; Fowlks, Edison; Tonidandel, Scott; Bucholtz, Brooke; Gottfried, Gail

    2007-01-01

    The Genome Consortium for Active Teaching (GCAT) facilitates the use of modern genomics methods in undergraduate education. Initially focused on microarray technology, but with an eye toward diversification, GCAT is a community working to improve the education of tomorrow's life science professionals. GCAT participants have access to affordable microarrays, microarray scanners, free software for data analysis, and faculty workshops. Microarrays provided by GCAT have been used by 141 faculty on 134 campuses, including 21 faculty that serve large numbers of underrepresented minority students. An estimated 9480 undergraduates a year will have access to microarrays by 2009 as a direct result of GCAT faculty workshops. Gains for students include significantly improved comprehension of topics in functional genomics and increased interest in research. Faculty reported improved access to new technology and gains in understanding thanks to their involvement with GCAT. GCAT's network of supportive colleagues encourages faculty to explore genomics through student research and to learn a new and complex method with their undergraduates. GCAT is meeting important goals of BIO2010 by making research methods accessible to undergraduates, training faculty in genomics and bioinformatics, integrating mathematics into the biology curriculum, and increasing participation by underrepresented minority students.

  3. The future of microarray technology: networking the genome search.

    PubMed

    D'Ambrosio, C; Gatta, L; Bonini, S

    2005-10-01

    In recent years microarray technology has been increasingly used in both basic and clinical research, providing substantial information for a better understanding of genome-environment interactions responsible for diseases, as well as for their diagnosis and treatment. However, in genomic research using microarray technology there are several unresolved issues, including scientific, ethical and legal issues. Networks of excellence like GA(2)LEN may represent the best approach for teaching, cost reduction, data repositories, and functional studies implementation.

  4. Improved porous silicon (P-Si) microarray based PSA (prostate specific antigen) immunoassay by optimized surface density of the capture antibody

    PubMed Central

    Lee, SangWook; Kim, Soyoun; Malm, Johan; Jeong, Ok Chan; Lilja, Hans; Laurell, Thomas

    2014-01-01

    Enriching the surface density of immobilized capture antibodies enhances the detection signal of antibody sandwich microarrays. In this study, we improved the detection sensitivity of our previously developed P-Si (porous silicon) antibody microarray by optimizing concentrations of the capturing antibody. We investigated immunoassays using a P-Si microarray at three different capture antibody (PSA - prostate specific antigen) concentrations, analyzing the influence of the antibody density on the assay detection sensitivity. The LOD (limit of detection) for PSA was 2.5ngmL−1, 80pgmL−1, and 800fgmL−1 when arraying the PSA antibody, H117 at the concentration 15µgmL−1, 35µgmL−1 and 154µgmL−1, respectively. We further investigated PSA spiked into human female serum in the range of 800fgmL−1 to 500ngmL−1. The microarray showed a LOD of 800fgmL−1 and a dynamic range of 800 fgmL−1 to 80ngmL−1 in serum spiked samples. PMID:24016590

  5. How Can We Use Bioinformatics to Predict Which Agents Will Cause Birth Defects?

    EPA Science Inventory

    The availability of genomic sequences from a growing number of human and model organisms has provided an explosion of data, information, and knowledge regarding biological systems and disease processes. High-throughput technologies such as DNA and protein microarray biochips are ...

  6. Analysis of Protein-DNA Interaction by Chromatin Immunoprecipitation and DNA Tiling Microarray (ChIP-on-chip).

    PubMed

    Gao, Hui; Zhao, Chunyan

    2018-01-01

    Chromatin immunoprecipitation (ChIP) has become the most effective and widely used tool to study the interactions between specific proteins or modified forms of proteins and a genomic DNA region. Combined with genome-wide profiling technologies, such as microarray hybridization (ChIP-on-chip) or massively parallel sequencing (ChIP-seq), ChIP could provide a genome-wide mapping of in vivo protein-DNA interactions in various organisms. Here, we describe a protocol of ChIP-on-chip that uses tiling microarray to obtain a genome-wide profiling of ChIPed DNA.

  7. Mechanistically Distinct Pathways of Divergent Regulatory DNA Creation Contribute to Evolution of Human-Specific Genomic Regulatory Networks Driving Phenotypic Divergence of Homo sapiens

    PubMed Central

    Glinsky, Gennadi V.

    2016-01-01

    Abstract Thousands of candidate human-specific regulatory sequences (HSRS) have been identified, supporting the hypothesis that unique to human phenotypes result from human-specific alterations of genomic regulatory networks. Collectively, a compendium of multiple diverse families of HSRS that are functionally and structurally divergent from Great Apes could be defined as the backbone of human-specific genomic regulatory networks. Here, the conservation patterns analysis of 18,364 candidate HSRS was carried out requiring that 100% of bases must remap during the alignments of human, chimpanzee, and bonobo sequences. A total of 5,535 candidate HSRS were identified that are: (i) highly conserved in Great Apes; (ii) evolved by the exaptation of highly conserved ancestral DNA; (iii) defined by either the acceleration of mutation rates on the human lineage or the functional divergence from non-human primates. The exaptation of highly conserved ancestral DNA pathway seems mechanistically distinct from the evolution of regulatory DNA segments driven by the species-specific expansion of transposable elements. Genome-wide proximity placement analysis of HSRS revealed that a small fraction of topologically associating domains (TADs) contain more than half of HSRS from four distinct families. TADs that are enriched for HSRS and termed rapidly evolving in humans TADs (revTADs) comprise 0.8–10.3% of 3,127 TADs in the hESC genome. RevTADs manifest distinct correlation patterns between placements of human accelerated regions, human-specific transcription factor-binding sites, and recombination rates. There is a significant enrichment within revTAD boundaries of hESC-enhancers, primate-specific CTCF-binding sites, human-specific RNAPII-binding sites, hCONDELs, and H3K4me3 peaks with human-specific enrichment at TSS in prefrontal cortex neurons (P < 0.0001 in all instances). Present analysis supports the idea that phenotypic divergence of Homo sapiens is driven by the evolution of human-specific genomic regulatory networks via at least two mechanistically distinct pathways of creation of divergent sequences of regulatory DNA: (i) recombination-associated exaptation of the highly conserved ancestral regulatory DNA segments; (ii) human-specific insertions of transposable elements. PMID:27503290

  8. CNV-ROC: A cost effective, computer-aided analytical performance evaluator of chromosomal microarrays

    PubMed Central

    Goodman, Corey W.; Major, Heather J.; Walls, William D.; Sheffield, Val C.; Casavant, Thomas L.; Darbro, Benjamin W.

    2016-01-01

    Chromosomal microarrays (CMAs) are routinely used in both research and clinical laboratories; yet, little attention has been given to the estimation of genome-wide true and false negatives during the assessment of these assays and how such information could be used to calibrate various algorithmic metrics to improve performance. Low-throughput, locus-specific methods such as fluorescence in situ hybridization (FISH), quantitative PCR (qPCR), or multiplex ligation-dependent probe amplification (MLPA) preclude rigorous calibration of various metrics used by copy number variant (CNV) detection algorithms. To aid this task, we have established a comparative methodology, CNV-ROC, which is capable of performing a high throughput, low cost, analysis of CMAs that takes into consideration genome-wide true and false negatives. CNV-ROC uses a higher resolution microarray to confirm calls from a lower resolution microarray and provides for a true measure of genome-wide performance metrics at the resolution offered by microarray testing. CNV-ROC also provides for a very precise comparison of CNV calls between two microarray platforms without the need to establish an arbitrary degree of overlap. Comparison of CNVs across microarrays is done on a per-probe basis and receiver operator characteristic (ROC) analysis is used to calibrate algorithmic metrics, such as log2 ratio threshold, to enhance CNV calling performance. CNV-ROC addresses a critical and consistently overlooked aspect of analytical assessments of genome-wide techniques like CMAs which is the measurement and use of genome-wide true and false negative data for the calculation of performance metrics and comparison of CNV profiles between different microarray experiments. PMID:25595567

  9. PhyloFlu, a DNA microarray for determining the phylogenetic origin of influenza A virus gene segments and the genomic fingerprint of viral strains.

    PubMed

    Paulin, Luis F; de los D Soto-Del Río, María; Sánchez, Iván; Hernández, Jesús; Gutiérrez-Ríos, Rosa M; López-Martínez, Irma; Wong-Chew, Rosa M; Parissi-Crivelli, Aurora; Isa, P; López, Susana; Arias, Carlos F

    2014-03-01

    Recent evidence suggests that most influenza A virus gene segments can contribute to the pathogenicity of the virus. In this regard, the hemagglutinin (HA) subtype of the circulating strains has been closely surveyed, but the reassortment of internal gene segments is usually not monitored as a potential source of an increased pathogenicity. In this work, an oligonucleotide DNA microarray (PhyloFlu) designed to determine the phylogenetic origins of the eight segments of the influenza virus genome was constructed and validated. Clades were defined for each segment and also for the 16 HA and 9 neuraminidase (NA) subtypes. Viral genetic material was amplified by reverse transcription-PCR (RT-PCR) with primers specific to the conserved 5' and 3' ends of the influenza A virus genes, followed by PCR amplification with random primers and Cy3 labeling. The microarray unambiguously determined the clades for all eight influenza virus genes in 74% (28/38) of the samples. The microarray was validated with reference strains from different animal origins, as well as from human, swine, and avian viruses from field or clinical samples. In most cases, the phylogenetic clade of each segment defined its animal host of origin. The genomic fingerprint deduced by the combined information of the individual clades allowed for the determination of the time and place that strains with the same genomic pattern were previously reported. PhyloFlu is useful for characterizing and surveying the genetic diversity and variation of animal viruses circulating in different environmental niches and for obtaining a more detailed surveillance and follow up of reassortant events that can potentially modify virus pathogenicity.

  10. Conserved noncoding sequences conserve biological networks and influence genome evolution.

    PubMed

    Xie, Jianbo; Qian, Kecheng; Si, Jingna; Xiao, Liang; Ci, Dong; Zhang, Deqiang

    2018-05-01

    Comparative genomics approaches have identified numerous conserved cis-regulatory sequences near genes in plant genomes. Despite the identification of these conserved noncoding sequences (CNSs), our knowledge of their functional importance and selection remains limited. Here, we used a combination of DNA methylome analysis, microarray expression analyses, and functional annotation to study these sequences in the model tree Populus trichocarpa. Methylation in CG contexts and non-CG contexts was lower in CNSs, particularly CNSs in the 5'-upstream regions of genes, compared with other sites in the genome. We observed that CNSs are enriched in genes with transcription and binding functions, and this also associated with syntenic genes and those from whole-genome duplications, suggesting that cis-regulatory sequences play a key role in genome evolution. We detected a significant positive correlation between CNS number and protein interactions, suggesting that CNSs may have roles in the evolution and maintenance of biological networks. The divergence of CNSs indicates that duplication-degeneration-complementation drives the subfunctionalization of a proportion of duplicated genes from whole-genome duplication. Furthermore, population genomics confirmed that most CNSs are under strong purifying selection and only a small subset of CNSs shows evidence of adaptive evolution. These findings provide a foundation for future studies exploring these key genomic features in the maintenance of biological networks, local adaptation, and transcription.

  11. In silico Microarray Probe Design for Diagnosis of Multiple Pathogens

    DTIC Science & Technology

    2008-10-21

    enhancements to an existing single-genome pipeline that allows for efficient design of microarray probes common to groups of target genomes. The...for tens or even hundreds of related genomes in a single run. Hybridization results with an unsequenced B. pseudomallei strain indicate that the

  12. QDMR: a quantitative method for identification of differentially methylated regions by entropy

    PubMed Central

    Zhang, Yan; Liu, Hongbo; Lv, Jie; Xiao, Xue; Zhu, Jiang; Liu, Xiaojuan; Su, Jianzhong; Li, Xia; Wu, Qiong; Wang, Fang; Cui, Ying

    2011-01-01

    DNA methylation plays critical roles in transcriptional regulation and chromatin remodeling. Differentially methylated regions (DMRs) have important implications for development, aging and diseases. Therefore, genome-wide mapping of DMRs across various temporal and spatial methylomes is important in revealing the impact of epigenetic modifications on heritable phenotypic variation. We present a quantitative approach, quantitative differentially methylated regions (QDMRs), to quantify methylation difference and identify DMRs from genome-wide methylation profiles by adapting Shannon entropy. QDMR was applied to synthetic methylation patterns and methylation profiles detected by methylated DNA immunoprecipitation microarray (MeDIP-chip) in human tissues/cells. This approach can give a reasonable quantitative measure of methylation difference across multiple samples. Then DMR threshold was determined from methylation probability model. Using this threshold, QDMR identified 10 651 tissue DMRs which are related to the genes enriched for cell differentiation, including 4740 DMRs not identified by the method developed by Rakyan et al. QDMR can also measure the sample specificity of each DMR. Finally, the application to methylation profiles detected by reduced representation bisulphite sequencing (RRBS) in mouse showed the platform-free and species-free nature of QDMR. This approach provides an effective tool for the high-throughput identification of potential functional regions involved in epigenetic regulation. PMID:21306990

  13. Cancer Biomarkers from Genome-Scale DNA Methylation: Comparison of Evolutionary and Semantic Analysis Methods

    PubMed Central

    Valavanis, Ioannis; Pilalis, Eleftherios; Georgiadis, Panagiotis; Kyrtopoulos, Soterios; Chatziioannou, Aristotelis

    2015-01-01

    DNA methylation profiling exploits microarray technologies, thus yielding a wealth of high-volume data. Here, an intelligent framework is applied, encompassing epidemiological genome-scale DNA methylation data produced from the Illumina’s Infinium Human Methylation 450K Bead Chip platform, in an effort to correlate interesting methylation patterns with cancer predisposition and, in particular, breast cancer and B-cell lymphoma. Feature selection and classification are employed in order to select, from an initial set of ~480,000 methylation measurements at CpG sites, predictive cancer epigenetic biomarkers and assess their classification power for discriminating healthy versus cancer related classes. Feature selection exploits evolutionary algorithms or a graph-theoretic methodology which makes use of the semantics information included in the Gene Ontology (GO) tree. The selected features, corresponding to methylation of CpG sites, attained moderate-to-high classification accuracies when imported to a series of classifiers evaluated by resampling or blindfold validation. The semantics-driven selection revealed sets of CpG sites performing similarly with evolutionary selection in the classification tasks. However, gene enrichment and pathway analysis showed that it additionally provides more descriptive sets of GO terms and KEGG pathways regarding the cancer phenotypes studied here. Results support the expediency of this methodology regarding its application in epidemiological studies. PMID:27600245

  14. Restriction Site Tiling Analysis: accurate discovery and quantitative genotyping of genome-wide polymorphisms using nucleotide arrays

    PubMed Central

    2010-01-01

    High-throughput genotype data can be used to identify genes important for local adaptation in wild populations, phenotypes in lab stocks, or disease-related traits in human medicine. Here we advance microarray-based genotyping for population genomics with Restriction Site Tiling Analysis. The approach simultaneously discovers polymorphisms and provides quantitative genotype data at 10,000s of loci. It is highly accurate and free from ascertainment bias. We apply the approach to uncover genomic differentiation in the purple sea urchin. PMID:20403197

  15. Pulling out the 1%: Whole-Genome Capture for the Targeted Enrichment of Ancient DNA Sequencing Libraries

    PubMed Central

    Carpenter, Meredith L.; Buenrostro, Jason D.; Valdiosera, Cristina; Schroeder, Hannes; Allentoft, Morten E.; Sikora, Martin; Rasmussen, Morten; Gravel, Simon; Guillén, Sonia; Nekhrizov, Georgi; Leshtakov, Krasimir; Dimitrova, Diana; Theodossiev, Nikola; Pettener, Davide; Luiselli, Donata; Sandoval, Karla; Moreno-Estrada, Andrés; Li, Yingrui; Wang, Jun; Gilbert, M. Thomas P.; Willerslev, Eske; Greenleaf, William J.; Bustamante, Carlos D.

    2013-01-01

    Most ancient specimens contain very low levels of endogenous DNA, precluding the shotgun sequencing of many interesting samples because of cost. Ancient DNA (aDNA) libraries often contain <1% endogenous DNA, with the majority of sequencing capacity taken up by environmental DNA. Here we present a capture-based method for enriching the endogenous component of aDNA sequencing libraries. By using biotinylated RNA baits transcribed from genomic DNA libraries, we are able to capture DNA fragments from across the human genome. We demonstrate this method on libraries created from four Iron Age and Bronze Age human teeth from Bulgaria, as well as bone samples from seven Peruvian mummies and a Bronze Age hair sample from Denmark. Prior to capture, shotgun sequencing of these libraries yielded an average of 1.2% of reads mapping to the human genome (including duplicates). After capture, this fraction increased substantially, with up to 59% of reads mapped to human and enrichment ranging from 6- to 159-fold. Furthermore, we maintained coverage of the majority of regions sequenced in the precapture library. Intersection with the 1000 Genomes Project reference panel yielded an average of 50,723 SNPs (range 3,062–147,243) for the postcapture libraries sequenced with 1 million reads, compared with 13,280 SNPs (range 217–73,266) for the precapture libraries, increasing resolution in population genetic analyses. Our whole-genome capture approach makes it less costly to sequence aDNA from specimens containing very low levels of endogenous DNA, enabling the analysis of larger numbers of samples. PMID:24568772

  16. Genomic approaches to identifying transcriptional regulators of osteoblast differentiation

    NASA Technical Reports Server (NTRS)

    Stains, Joseph P.; Civitelli, Roberto

    2003-01-01

    Recent microarray studies of mouse and human osteoblast differentiation in vitro have identified novel transcription factors that may be important in the establishment and maintenance of differentiation. These findings help unravel the pattern of gene-expression changes that underly the complex process of bone formation.

  17. Association of Childhood Chronic Physical Aggression with a DNA Methylation Signature in Adult Human T Cells

    PubMed Central

    Guillemin, Claire; Vitaro, Frank; Côté, Sylvana M.; Hallett, Michael; Tremblay, Richard E.; Szyf, Moshe

    2014-01-01

    Background Chronic physical aggression (CPA) is characterized by frequent use of physical aggression from early childhood to adolescence. Observed in approximately 5% of males, CPA is associated with early childhood adverse environments and long-term negative consequences. Alterations in DNA methylation, a covalent modification of DNA that regulates genome function, have been associated with early childhood adversity. Aims To test the hypothesis that a trajectory of chronic physical aggression during childhood is associated with a distinct DNA methylation profile during adulthood. Methods We analyzed genome-wide promoter DNA methylation profiles of T cells from two groups of adult males assessed annually for frequency of physical aggression between 6 and 15 years of age: a group with CPA and a control group. Methylation profiles covering the promoter regions of 20 000 genes and 400 microRNAs were generated using MeDIP followed by hybridization to microarrays. Results In total, 448 distinct gene promoters were differentially methylated in CPA. Functionally, many of these genes have previously been shown to play a role in aggression and were enriched in biological pathways affected by behavior. Their locations in the genome tended to form clusters spanning millions of bases in the genome. Conclusions This study provides evidence of clustered and genome-wide variation in promoter DNA methylation in young adults that associates with a history of chronic physical aggression from 6 to 15 years of age. However, longitudinal studies of methylation during early childhood will be necessary to determine if and how this methylation variation in T cells DNA plays a role in early development of chronic physical aggression. PMID:24691403

  18. The Pathway Coexpression Network: Revealing pathway relationships

    PubMed Central

    Tanzi, Rudolph E.

    2018-01-01

    A goal of genomics is to understand the relationships between biological processes. Pathways contribute to functional interplay within biological processes through complex but poorly understood interactions. However, limited functional references for global pathway relationships exist. Pathways from databases such as KEGG and Reactome provide discrete annotations of biological processes. Their relationships are currently either inferred from gene set enrichment within specific experiments, or by simple overlap, linking pathway annotations that have genes in common. Here, we provide a unifying interpretation of functional interaction between pathways by systematically quantifying coexpression between 1,330 canonical pathways from the Molecular Signatures Database (MSigDB) to establish the Pathway Coexpression Network (PCxN). We estimated the correlation between canonical pathways valid in a broad context using a curated collection of 3,207 microarrays from 72 normal human tissues. PCxN accounts for shared genes between annotations to estimate significant correlations between pathways with related functions rather than with similar annotations. We demonstrate that PCxN provides novel insight into mechanisms of complex diseases using an Alzheimer’s Disease (AD) case study. PCxN retrieved pathways significantly correlated with an expert curated AD gene list. These pathways have known associations with AD and were significantly enriched for genes independently associated with AD. As a further step, we show how PCxN complements the results of gene set enrichment methods by revealing relationships between enriched pathways, and by identifying additional highly correlated pathways. PCxN revealed that correlated pathways from an AD expression profiling study include functional clusters involved in cell adhesion and oxidative stress. PCxN provides expanded connections to pathways from the extracellular matrix. PCxN provides a powerful new framework for interrogation of global pathway relationships. Comprehensive exploration of PCxN can be performed at http://pcxn.org/. PMID:29554099

  19. Widespread of horizontal gene transfer in the human genome.

    PubMed

    Huang, Wenze; Tsai, Lillian; Li, Yulong; Hua, Nan; Sun, Chen; Wei, Chaochun

    2017-04-04

    A fundamental concept in biology is that heritable material is passed from parents to offspring, a process called vertical gene transfer. An alternative mechanism of gene acquisition is through horizontal gene transfer (HGT), which involves movement of genetic materials between different species. Horizontal gene transfer has been found prevalent in prokaryotes but very rare in eukaryote. In this paper, we investigate horizontal gene transfer in the human genome. From the pair-wise alignments between human genome and 53 vertebrate genomes, 1,467 human genome regions (2.6 M bases) from all chromosomes were found to be more conserved with non-mammals than with most mammals. These human genome regions involve 642 known genes, which are enriched with ion binding. Compared to known horizontal gene transfer regions in the human genome, there were few overlapping regions, which indicated horizontal gene transfer is more common than we expected in the human genome. Horizontal gene transfer impacts hundreds of human genes and this study provided insight into potential mechanisms of HGT in the human genome.

  20. Identification of human papillomavirus (HPV) 16 DNA integration and the ensuing patterns of methylation in HPV-associated head and neck squamous cell carcinoma cell lines.

    PubMed

    Hatano, Takashi; Sano, Daisuke; Takahashi, Hideaki; Hyakusoku, Hiroshi; Isono, Yasuhiro; Shimada, Shoko; Sawakuma, Kae; Takada, Kentaro; Oikawa, Ritsuko; Watanabe, Yoshiyuki; Yamamoto, Hiroyuki; Itoh, Fumio; Myers, Jeffrey N; Oridate, Nobuhiko

    2017-04-01

    Recent studies showed that human papillomavirus (HPV) integration contributes to the genomic instability seen in HPV-associated head and neck squamous cell carcinoma (HPV-HNSCC). However, the epigenetic alterations induced after HPV integration remains unclear. To identify the molecular details of HPV16 DNA integration and the ensuing patterns of methylation in HNSCC, we performed next-generation sequencing using a target-enrichment method for the effective identification of HPV16 integration breakpoints as well as the characterization of genomic sequences adjacent to HPV16 integration breakpoints with three HPV16-related HNSCC cell lines. The DNA methylation levels of the integrated HPV16 genome and that of the adjacent human genome were also analyzed by bisulfite pyrosequencing. We found various integration loci, including novel integration sites. Integration loci were located predominantly in the intergenic region, with a significant enrichment of the microhomologous sequences between the human and HPV16 genomes at the integration breakpoints. Furthermore, various levels of methylation within both the human genome and the integrated HPV genome at the integration breakpoints in each integrant were observed. Allele-specific methylation analysis suggested that the HPV16 integrants remained hypomethylated when the flanking host genome was hypomethylated. After integration into highly methylated human genome regions, however, the HPV16 DNA became methylated. In conclusion, we found novel integration sites and methylation patterns in HPV-HNSCC using our unique method. These findings may provide insights into understanding of viral integration mechanism and virus-associated carcinogenesis of HPV-HNSCC. © 2016 UICC.

  1. Genomic analysis of Fusarium verticillioides.

    PubMed

    Brown, D W; Butchko, R A E; Proctor, R H

    2008-09-01

    Fusarium verticillioides (teleomorph Gibberella moniliformis) can be either an endophyte of maize, causing no visible disease, or a pathogen-causing disease of ears, stalks, roots and seedlings. At any stage, this fungus can synthesize fumonisins, a family of mycotoxins structurally similar to the sphingolipid sphinganine. Ingestion of fumonisin-contaminated maize has been associated with a number of animal diseases, including cancer in rodents, and exposure has been correlated with human oesophageal cancer in some regions of the world, and some evidence suggests that fumonisins are a risk factor for neural tube defects. A primary goal of the authors' laboratory is to eliminate fumonisin contamination of maize and maize products. Understanding how and why these toxins are made and the F. verticillioides-maize disease process will allow one to develop novel strategies to limit tissue destruction (rot) and fumonisin production. To meet this goal, genomic sequence data, expressed sequence tags (ESTs) and microarrays are being used to identify F. verticillioides genes involved in the biosynthesis of toxins and plant pathogenesis. This paper describes the current status of F. verticillioides genomic resources and three approaches being used to mine microarray data from a wild-type strain cultured in liquid fumonisin production medium for 12, 24, 48, 72, 96 and 120h. Taken together, these approaches demonstrate the power of microarray technology to provide information on different biological processes.

  2. Translational analysis of mouse and human placental protein and mRNA reveals distinct molecular pathologies in human preeclampsia.

    PubMed

    Cox, Brian; Sharma, Parveen; Evangelou, Andreas I; Whiteley, Kathie; Ignatchenko, Vladimir; Ignatchenko, Alex; Baczyk, Dora; Czikk, Marie; Kingdom, John; Rossant, Janet; Gramolini, Anthony O; Adamson, S Lee; Kislinger, Thomas

    2011-12-01

    Preeclampsia (PE) adversely impacts ~5% of pregnancies. Despite extensive research, no consistent biomarkers or cures have emerged, suggesting that different molecular mechanisms may cause clinically similar disease. To address this, we undertook a proteomics study with three main goals: (1) to identify a panel of cell surface markers that distinguish the trophoblast and endothelial cells of the placenta in the mouse; (2) to translate this marker set to human via the Human Protein Atlas database; and (3) to utilize the validated human trophoblast markers to identify subgroups of human preeclampsia. To achieve these goals, plasma membrane proteins at the blood tissue interfaces were extracted from placentas using intravascular silica-bead perfusion, and then identified using shotgun proteomics. We identified 1181 plasma membrane proteins, of which 171 were enriched at the maternal blood-trophoblast interface and 192 at the fetal endothelial interface with a 70% conservation of expression in humans. Three distinct molecular subgroups of human preeclampsia were identified in existing human microarray data by using expression patterns of trophoblast-enriched proteins. Analysis of all misexpressed genes revealed divergent dysfunctions including angiogenesis (subgroup 1), MAPK signaling (subgroup 2), and hormone biosynthesis and metabolism (subgroup 3). Subgroup 2 lacked expected changes in known preeclampsia markers (sFLT1, sENG) and uniquely overexpressed GNA12. In an independent set of 40 banked placental specimens, GNA12 was overexpressed during preeclampsia when co-incident with chronic hypertension. In the current study we used a novel translational analysis to integrate mouse and human trophoblast protein expression with human microarray data. This strategy identified distinct molecular pathologies in human preeclampsia. We conclude that clinically similar preeclampsia patients exhibit divergent placental gene expression profiles thus implicating divergent molecular mechanisms in the origins of this disease.

  3. Genome image programs: visualization and interpretation of Escherichia coli microarray experiments.

    PubMed

    Zimmer, Daniel P; Paliy, Oleg; Thomas, Brian; Gyaneshwar, Prasad; Kustu, Sydney

    2004-08-01

    We have developed programs to facilitate analysis of microarray data in Escherichia coli. They fall into two categories: manipulation of microarray images and identification of known biological relationships among lists of genes. A program in the first category arranges spots from glass-slide DNA microarrays according to their position in the E. coli genome and displays them compactly in genome order. The resulting genome image is presented in a web browser with an image map that allows the user to identify genes in the reordered image. Another program in the first category aligns genome images from two or more experiments. These images assist in visualizing regions of the genome with common transcriptional control. Such regions include multigene operons and clusters of operons, which are easily identified as strings of adjacent, similarly colored spots. The images are also useful for assessing the overall quality of experiments. The second category of programs includes a database and a number of tools for displaying biological information about many E. coli genes simultaneously rather than one gene at a time, which facilitates identifying relationships among them. These programs have accelerated and enhanced our interpretation of results from E. coli DNA microarray experiments. Examples are given. Copyright 2004 Genetics Society of America

  4. Detection of Alicyclobacillus species in fruit juice using a random genomic DNA microarray chip.

    PubMed

    Jang, Jun Hyeong; Kim, Sun-Joong; Yoon, Bo Hyun; Ryu, Jee-Hoon; Gu, Man Bock; Chang, Hyo-Ihl

    2011-06-01

    This study describes a method using a DNA microarray chip to rapidly and simultaneously detect Alicyclobacillus species in orange juice based on the hybridization of genomic DNA with random probes. Three food spoilage bacteria were used in this study: Alicyclobacillus acidocaldarius, Alicyclobacillus acidoterrestris, and Alicyclobacillus cycloheptanicus. The three Alicyclobacillus species were adjusted to 2 × 10(3) CFU/ml and inoculated into pasteurized 100% pure orange juice. Cy5-dCTP labeling was used for reference signals, and Cy3-dCTP was labeled for target genomic DNA. The molar ratio of 1:1 of Cy3-dCTP and Cy5-dCTP was used. DNA microarray chips were fabricated using randomly fragmented DNA of Alicyclobacillus spp. and were hybridized with genomic DNA extracted from Bacillus spp. Genomic DNA extracted from Alicyclobacillus spp. showed a significantly higher hybridization rate compared with DNA of Bacillus spp., thereby distinguishing Alicyclobacillus spp. from Bacillus spp. The results showed that the microarray DNA chip containing randomly fragmented genomic DNA was specific and clearly identified specific food spoilage bacteria. This microarray system is a good tool for rapid and specific detection of thermophilic spoilage bacteria, mainly Alicyclobacillus spp., and is useful and applicable to the fruit juice industry.

  5. Detecting and Genotyping Escherichia coli O157:H7 using multiplexed PCR and nucleic acid microarrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Call, Douglas R.; Brockman, Fred J.; Chandler, Darrell P.

    2000-12-01

    Rapid detection and characterization of food borne pathogens such as Escherichia coli O157:H7 is crucial for epidemiological investigations and food safety surveillance. As an alternative to conventional technologies, we examined the sensitivity and specificity of nucleic acid microarrays for detecting and genotyping E. coli O157:H7. The array was composed of oligonucleotide probes (25-30 mer) complementary to four virulence loci (intimin, Shiga-like toxins I and II, and hemolysin A). Target DNA was amplified from whole cells or from purified DNA via single or multiplexed polymerase chain reaction (PCR), and PCR products were hybridized to the array without further modification or purification.more » The array was 32-fold more sensitive than gel electrophoresis and capable of detecting amplification products from < 1 cell equivalent of genomic DNA (1 fg). Immunomagnetic capture, PCR and a microarray were subsequently used to detect 55 CFU ml-1 (E. coli O157:H7) from chicken rinsate without the aid of pre-enrichment. Four isolates of E. coli O157:H7 and one isolate of O91:H2, for which genotypic data were available, were unambiguously genotyped with this array. Glass based microarrays are relatively simple to construct and provide a rapid and sensitive means to detect multiplexed PCR products and the system is amenable to automation.« less

  6. Detecting and genotyping Escherichia coli O157:H7 using multiplexed PCR and nucleic acid microarrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Call, Douglas R.; Brockman, Fred J.; Chandler, Darrell P.

    2001-07-05

    Rapid detection and characterization of food borne pathogens such as Escherichia coli O157:H7 is crucial for epidemiological investigations and food safety surveillance. As an alternative to conventional technologies, we examined the sensitivity and specificity of nucleic acid microarrays for detecting and genotyping E. coli O157:H7. The array was composed of oligonucleotide probes (25-30 mer) complementary to four virulence loci (intimin, Shiga-like toxins I and II, and hemolysin A). Target DNA was amplified from whole cells or from purified DNA via single or multiplexed polymerase chain reaction (PCR), and PCR products were hybridized to the array without further modification or purification.more » The array was 32-fold more sensitive than gel electrophoresis and capable of detecting amplification products from < 1 cell equivalent of genomic DNA (1 fg). Immunomagnetic capture, PCR and a microarray were subsequently used to detect 55 CFUs ml-1 (E. coli O157:H7) from chicken rinsate without the aid of pre-enrichment. Four isolates of E. coli O157:H7 and one isolate of O91:H2, for which genotypic data were available, were unambiguously genotyped with this array. Glass based microarrays are relatively simple to construct and provide a rapid and sensitive means to detect multiplexed PCR products and the system is amenable to automation.« less

  7. Genomic characterization of explant tumorgraft models derived from fresh patient tumor tissue

    PubMed Central

    2012-01-01

    Background There is resurgence within drug and biomarker development communities for the use of primary tumorgraft models as improved predictors of patient tumor response to novel therapeutic strategies. Despite perceived advantages over cell line derived xenograft models, there is limited data comparing the genotype and phenotype of tumorgrafts to the donor patient tumor, limiting the determination of molecular relevance of the tumorgraft model. This report directly compares the genomic characteristics of patient tumors and the derived tumorgraft models, including gene expression, and oncogenic mutation status. Methods Fresh tumor tissues from 182 cancer patients were implanted subcutaneously into immune-compromised mice for the development of primary patient tumorgraft models. Histological assessment was performed on both patient tumors and the resulting tumorgraft models. Somatic mutations in key oncogenes and gene expression levels of resulting tumorgrafts were compared to the matched patient tumors using the OncoCarta (Sequenom, San Diego, CA) and human gene microarray (Affymetrix, Santa Clara, CA) platforms respectively. The genomic stability of the established tumorgrafts was assessed across serial in vivo generations in a representative subset of models. The genomes of patient tumors that formed tumorgrafts were compared to those that did not to identify the possible molecular basis to successful engraftment or rejection. Results Fresh tumor tissues from 182 cancer patients were implanted into immune-compromised mice with forty-nine tumorgraft models that have been successfully established, exhibiting strong histological and genomic fidelity to the originating patient tumors. Comparison of the transcriptomes and oncogenic mutations between the tumorgrafts and the matched patient tumors were found to be stable across four tumorgraft generations. Not only did the various tumors retain the differentiation pattern, but supporting stromal elements were preserved. Those genes down-regulated specifically in tumorgrafts were enriched in biological pathways involved in host immune response, consistent with the immune deficiency status of the host. Patient tumors that successfully formed tumorgrafts were enriched for cell signaling, cell cycle, and cytoskeleton pathways and exhibited evidence of reduced immunogenicity. Conclusions The preservation of the patient’s tumor genomic profile and tumor microenvironment supports the view that primary patient tumorgrafts provide a relevant model to support the translation of new therapeutic strategies and personalized medicine approaches in oncology. PMID:22709571

  8. Genes misregulated in C. elegans deficient in Dicer, RDE-4, or RDE-1 are enriched for innate immunity genes.

    PubMed

    Welker, Noah C; Habig, Jeffrey W; Bass, Brenda L

    2007-07-01

    We describe the first microarray analysis of a whole animal containing a mutation in the Dicer gene. We used adult Caenorhabditis elegans and, to distinguish among different roles of Dicer, we also performed microarray analyses of animals with mutations in rde-4 and rde-1, which are involved in silencing by siRNA, but not miRNA. Surprisingly, we find that the X chromosome is greatly enriched for genes regulated by Dicer. Comparison of all three microarray data sets indicates the majority of Dicer-regulated genes are not dependent on RDE-4 or RDE-1, including the X-linked genes. However, all three data sets are enriched in genes important for innate immunity and, specifically, show increased expression of innate immunity genes.

  9. Genes misregulated in C. elegans deficient in Dicer, RDE-4, or RDE-1 are enriched for innate immunity genes

    PubMed Central

    Welker, Noah C.; Habig, Jeffrey W.; Bass, Brenda L.

    2007-01-01

    We describe the first microarray analysis of a whole animal containing a mutation in the Dicer gene. We used adult Caenorhabditis elegans and, to distinguish among different roles of Dicer, we also performed microarray analyses of animals with mutations in rde-4 and rde-1, which are involved in silencing by siRNA, but not miRNA. Surprisingly, we find that the X chromosome is greatly enriched for genes regulated by Dicer. Comparison of all three microarray data sets indicates the majority of Dicer-regulated genes are not dependent on RDE-4 or RDE-1, including the X-linked genes. However, all three data sets are enriched in genes important for innate immunity and, specifically, show increased expression of innate immunity genes. PMID:17526642

  10. Comprehensive viral enrichment enables sensitive respiratory virus genomic identification and analysis by next generation sequencing.

    PubMed

    O'Flaherty, Brigid M; Li, Yan; Tao, Ying; Paden, Clinton R; Queen, Krista; Zhang, Jing; Dinwiddie, Darrell L; Gross, Stephen M; Schroth, Gary P; Tong, Suxiang

    2018-06-01

    Next generation sequencing (NGS) technologies have revolutionized the genomics field and are becoming more commonplace for identification of human infectious diseases. However, due to the low abundance of viral nucleic acids (NAs) in relation to host, viral identification using direct NGS technologies often lacks sufficient sensitivity. Here, we describe an approach based on two complementary enrichment strategies that significantly improves the sensitivity of NGS-based virus identification. To start, we developed two sets of DNA probes to enrich virus NAs associated with respiratory diseases. The first set of probes spans the genomes, allowing for identification of known viruses and full genome sequencing, while the second set targets regions conserved among viral families or genera, providing the ability to detect both known and potentially novel members of those virus groups. Efficiency of enrichment was assessed by NGS testing reference virus and clinical samples with known infection. We show significant improvement in viral identification using enriched NGS compared to unenriched NGS. Without enrichment, we observed an average of 0.3% targeted viral reads per sample. However, after enrichment, 50%-99% of the reads per sample were the targeted viral reads for both the reference isolates and clinical specimens using both probe sets. Importantly, dramatic improvements on genome coverage were also observed following virus-specific probe enrichment. The methods described here provide improved sensitivity for virus identification by NGS, allowing for a more comprehensive analysis of disease etiology. © 2018 O'Flaherty et al.; Published by Cold Spring Harbor Laboratory Press.

  11. Refinement of light-responsive transcript lists using rice oligonucleotide arrays: evaluation of gene-redundancy.

    PubMed

    Jung, Ki-Hong; Dardick, Christopher; Bartley, Laura E; Cao, Peijian; Phetsom, Jirapa; Canlas, Patrick; Seo, Young-Su; Shultz, Michael; Ouyang, Shu; Yuan, Qiaoping; Frank, Bryan C; Ly, Eugene; Zheng, Li; Jia, Yi; Hsia, An-Ping; An, Kyungsook; Chou, Hui-Hsien; Rocke, David; Lee, Geun Cheol; Schnable, Patrick S; An, Gynheung; Buell, C Robin; Ronald, Pamela C

    2008-10-06

    Studies of gene function are often hampered by gene-redundancy, especially in organisms with large genomes such as rice (Oryza sativa). We present an approach for using transcriptomics data to focus functional studies and address redundancy. To this end, we have constructed and validated an inexpensive and publicly available rice oligonucleotide near-whole genome array, called the rice NSF45K array. We generated expression profiles for light- vs. dark-grown rice leaf tissue and validated the biological significance of the data by analyzing sources of variation and confirming expression trends with reverse transcription polymerase chain reaction. We examined trends in the data by evaluating enrichment of gene ontology terms at multiple false discovery rate thresholds. To compare data generated with the NSF45K array with published results, we developed publicly available, web-based tools (www.ricearray.org). The Oligo and EST Anatomy Viewer enables visualization of EST-based expression profiling data for all genes on the array. The Rice Multi-platform Microarray Search Tool facilitates comparison of gene expression profiles across multiple rice microarray platforms. Finally, we incorporated gene expression and biochemical pathway data to reduce the number of candidate gene products putatively participating in the eight steps of the photorespiration pathway from 52 to 10, based on expression levels of putatively functionally redundant genes. We confirmed the efficacy of this method to cope with redundancy by correctly predicting participation in photorespiration of a gene with five paralogs. Applying these methods will accelerate rice functional genomics.

  12. CNV-ROC: A cost effective, computer-aided analytical performance evaluator of chromosomal microarrays.

    PubMed

    Goodman, Corey W; Major, Heather J; Walls, William D; Sheffield, Val C; Casavant, Thomas L; Darbro, Benjamin W

    2015-04-01

    Chromosomal microarrays (CMAs) are routinely used in both research and clinical laboratories; yet, little attention has been given to the estimation of genome-wide true and false negatives during the assessment of these assays and how such information could be used to calibrate various algorithmic metrics to improve performance. Low-throughput, locus-specific methods such as fluorescence in situ hybridization (FISH), quantitative PCR (qPCR), or multiplex ligation-dependent probe amplification (MLPA) preclude rigorous calibration of various metrics used by copy number variant (CNV) detection algorithms. To aid this task, we have established a comparative methodology, CNV-ROC, which is capable of performing a high throughput, low cost, analysis of CMAs that takes into consideration genome-wide true and false negatives. CNV-ROC uses a higher resolution microarray to confirm calls from a lower resolution microarray and provides for a true measure of genome-wide performance metrics at the resolution offered by microarray testing. CNV-ROC also provides for a very precise comparison of CNV calls between two microarray platforms without the need to establish an arbitrary degree of overlap. Comparison of CNVs across microarrays is done on a per-probe basis and receiver operator characteristic (ROC) analysis is used to calibrate algorithmic metrics, such as log2 ratio threshold, to enhance CNV calling performance. CNV-ROC addresses a critical and consistently overlooked aspect of analytical assessments of genome-wide techniques like CMAs which is the measurement and use of genome-wide true and false negative data for the calculation of performance metrics and comparison of CNV profiles between different microarray experiments. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Aberrant expression of long noncoding RNAs in autistic brain.

    PubMed

    Ziats, Mark N; Rennert, Owen M

    2013-03-01

    The autism spectrum disorders (ASD) have a significant hereditary component, but the implicated genetic loci are heterogeneous and complex. Consequently, there is a gap in understanding how diverse genomic aberrations all result in one clinical ASD phenotype. Gene expression studies from autism brain tissue have demonstrated that aberrantly expressed protein-coding genes may converge onto common molecular pathways, potentially reconciling the strong heritability and shared clinical phenotypes with the genomic heterogeneity of the disorder. However, the regulation of gene expression is extremely complex and governed by many mechanisms, including noncoding RNAs. Yet no study in ASD brain tissue has assessed for changes in regulatory long noncoding RNAs (lncRNAs), which represent a large proportion of the human transcriptome, and actively modulate mRNA expression. To assess if aberrant expression of lncRNAs may play a role in the molecular pathogenesis of ASD, we profiled over 33,000 annotated lncRNAs and 30,000 mRNA transcripts from postmortem brain tissue of autistic and control prefrontal cortex and cerebellum by microarray. We detected over 200 differentially expressed lncRNAs in ASD, which were enriched for genomic regions containing genes related to neurodevelopment and psychiatric disease. Additionally, comparison of differences in expression of mRNAs between prefrontal cortex and cerebellum within individual donors showed ASD brains had more transcriptional homogeneity. Moreover, this was also true of the lncRNA transcriptome. Our results suggest that further investigation of lncRNA expression in autistic brain may further elucidate the molecular pathogenesis of this disorder.

  14. HPMCD: the database of human microbial communities from metagenomic datasets and microbial reference genomes.

    PubMed

    Forster, Samuel C; Browne, Hilary P; Kumar, Nitin; Hunt, Martin; Denise, Hubert; Mitchell, Alex; Finn, Robert D; Lawley, Trevor D

    2016-01-04

    The Human Pan-Microbe Communities (HPMC) database (http://www.hpmcd.org/) provides a manually curated, searchable, metagenomic resource to facilitate investigation of human gastrointestinal microbiota. Over the past decade, the application of metagenome sequencing to elucidate the microbial composition and functional capacity present in the human microbiome has revolutionized many concepts in our basic biology. When sufficient high quality reference genomes are available, whole genome metagenomic sequencing can provide direct biological insights and high-resolution classification. The HPMC database provides species level, standardized phylogenetic classification of over 1800 human gastrointestinal metagenomic samples. This is achieved by combining a manually curated list of bacterial genomes from human faecal samples with over 21000 additional reference genomes representing bacteria, viruses, archaea and fungi with manually curated species classification and enhanced sample metadata annotation. A user-friendly, web-based interface provides the ability to search for (i) microbial groups associated with health or disease state, (ii) health or disease states and community structure associated with a microbial group, (iii) the enrichment of a microbial gene or sequence and (iv) enrichment of a functional annotation. The HPMC database enables detailed analysis of human microbial communities and supports research from basic microbiology and immunology to therapeutic development in human health and disease. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Methylation-Sensitive Amplification Length Polymorphism (MS-AFLP) Microarrays for Epigenetic Analysis of Human Genomes.

    PubMed

    Alonso, Sergio; Suzuki, Koichi; Yamamoto, Fumiichiro; Perucho, Manuel

    2018-01-01

    Somatic, and in a minor scale also germ line, epigenetic aberrations are fundamental to carcinogenesis, cancer progression, and tumor phenotype. DNA methylation is the most extensively studied and arguably the best understood epigenetic mechanisms that become altered in cancer. Both somatic loss of methylation (hypomethylation) and gain of methylation (hypermethylation) are found in the genome of malignant cells. In general, the cancer cell epigenome is globally hypomethylated, while some regions-typically gene-associated CpG islands-become hypermethylated. Given the profound impact that DNA methylation exerts on the transcriptional profile and genomic stability of cancer cells, its characterization is essential to fully understand the complexity of cancer biology, improve tumor classification, and ultimately advance cancer patient management and treatment. A plethora of methods have been devised to analyze and quantify DNA methylation alterations. Several of the early-developed methods relied on the use of methylation-sensitive restriction enzymes, whose activity depends on the methylation status of their recognition sequences. Among these techniques, methylation-sensitive amplification length polymorphism (MS-AFLP) was developed in the early 2000s, and successfully adapted from its original gel electrophoresis fingerprinting format to a microarray format that notably increased its throughput and allowed the quantification of the methylation changes. This array-based platform interrogates over 9500 independent loci putatively amplified by the MS-AFLP technique, corresponding to the NotI sites mapped throughout the human genome.

  16. Planning the Human Variome Project: The Spain Report†

    PubMed Central

    Kaput, Jim; Cotton, Richard G. H.; Hardman, Lauren; Al Aqeel, Aida I.; Al-Aama, Jumana Y.; Al-Mulla, Fahd; Aretz, Stefan; Auerbach, Arleen D.; Axton, Myles; Bapat, Bharati; Bernstein, Inge T.; Bhak, Jong; Bleoo, Stacey L.; Blöcker, Helmut; Brenner, Steven E.; Burn, John; Bustamante, Mariona; Calzone, Rita; Cambon-Thomsen, Anne; Cargill, Michele; Carrera, Paola; Cavedon, Lawrence; Cho, Yoon Shin; Chung, Yeun-Jun; Claustres, Mireille; Cutting, Garry; Dalgleish, Raymond; den Dunnen, Johan T.; Díaz, Carlos; Dobrowolski, Steven; dos Santos, M. Rosário N.; Ekong, Rosemary; Flanagan, Simon B.; Flicek, Paul; Furukawa, Yoichi; Genuardi, Maurizio; Ghang, Ho; Golubenko, Maria V.; Greenblatt, Marc S.; Hamosh, Ada; Hancock, John M.; Hardison, Ross; Harrison, Terence M.; Hoffmann, Robert; Horaitis, Rania; Howard, Heather J.; Barash, Carol Isaacson; Izagirre, Neskuts; Jung, Jongsun; Kojima, Toshio; Laradi, Sandrine; Lee, Yeon-Su; Lee, Jong-Young; Gil-da-Silva-Lopes, Vera L.; Macrae, Finlay A.; Maglott, Donna; Marafie, Makia J.; Marsh, Steven G.E.; Matsubara, Yoichi; Messiaen, Ludwine M.; Möslein, Gabriela; Netea, Mihai G.; Norton, Melissa L.; Oefner, Peter J.; Oetting, William S.; O’Leary, James C.; de Ramirez, Ana Maria Oller; Paalman, Mark H.; Parboosingh, Jillian; Patrinos, George P.; Perozzi, Giuditta; Phillips, Ian R.; Povey, Sue; Prasad, Suyash; Qi, Ming; Quin, David J.; Ramesar, Rajkumar S.; Richards, C. Sue; Savige, Judith; Scheible, Dagmar G.; Scott, Rodney J.; Seminara, Daniela; Shephard, Elizabeth A.; Sijmons, Rolf H.; Smith, Timothy D.; Sobrido, María-Jesús; Tanaka, Toshihiro; Tavtigian, Sean V.; Taylor, Graham R.; Teague, Jon; Töpel, Thoralf; Ullman-Cullere, Mollie; Utsunomiya, Joji; van Kranen, Henk J.; Vihinen, Mauno; Watson, Michael; Webb, Elizabeth; Weber, Thomas K.; Yeager, Meredith; Yeom, Young I.; Yim, Seon-Hee; Yoo, Hyang-Sook

    2018-01-01

    The remarkable progress in characterizing the human genome sequence, exemplified by the Human Genome Project and the HapMap Consortium, has led to the perception that knowledge and the tools (e.g., microarrays) are sufficient for many if not most biomedical research efforts. A large amount of data from diverse studies proves this perception inaccurate at best, and at worst, an impediment for further efforts to characterize the variation in the human genome. Since variation in genotype and environment are the fundamental basis to understand phenotypic variability and heritability at the population level, identifying the range of human genetic variation is crucial to the development of personalized nutrition and medicine. The Human Variome Project (HVP; http://www.humanvariomeproject.org/) was proposed initially to systematically collect mutations that cause human disease and create a cyber infrastructure to link locus specific databases (LSDB). We report here the discussions and recommendations from the 2008 HVP planning meeting held in San Feliu de Guixols, Spain, in May 2008. PMID:19306394

  17. Planning the human variome project: the Spain report.

    PubMed

    Kaput, Jim; Cotton, Richard G H; Hardman, Lauren; Watson, Michael; Al Aqeel, Aida I; Al-Aama, Jumana Y; Al-Mulla, Fahd; Alonso, Santos; Aretz, Stefan; Auerbach, Arleen D; Bapat, Bharati; Bernstein, Inge T; Bhak, Jong; Bleoo, Stacey L; Blöcker, Helmut; Brenner, Steven E; Burn, John; Bustamante, Mariona; Calzone, Rita; Cambon-Thomsen, Anne; Cargill, Michele; Carrera, Paola; Cavedon, Lawrence; Cho, Yoon Shin; Chung, Yeun-Jun; Claustres, Mireille; Cutting, Garry; Dalgleish, Raymond; den Dunnen, Johan T; Díaz, Carlos; Dobrowolski, Steven; dos Santos, M Rosário N; Ekong, Rosemary; Flanagan, Simon B; Flicek, Paul; Furukawa, Yoichi; Genuardi, Maurizio; Ghang, Ho; Golubenko, Maria V; Greenblatt, Marc S; Hamosh, Ada; Hancock, John M; Hardison, Ross; Harrison, Terence M; Hoffmann, Robert; Horaitis, Rania; Howard, Heather J; Barash, Carol Isaacson; Izagirre, Neskuts; Jung, Jongsun; Kojima, Toshio; Laradi, Sandrine; Lee, Yeon-Su; Lee, Jong-Young; Gil-da-Silva-Lopes, Vera L; Macrae, Finlay A; Maglott, Donna; Marafie, Makia J; Marsh, Steven G E; Matsubara, Yoichi; Messiaen, Ludwine M; Möslein, Gabriela; Netea, Mihai G; Norton, Melissa L; Oefner, Peter J; Oetting, William S; O'Leary, James C; de Ramirez, Ana Maria Oller; Paalman, Mark H; Parboosingh, Jillian; Patrinos, George P; Perozzi, Giuditta; Phillips, Ian R; Povey, Sue; Prasad, Suyash; Qi, Ming; Quin, David J; Ramesar, Rajkumar S; Richards, C Sue; Savige, Judith; Scheible, Dagmar G; Scott, Rodney J; Seminara, Daniela; Shephard, Elizabeth A; Sijmons, Rolf H; Smith, Timothy D; Sobrido, María-Jesús; Tanaka, Toshihiro; Tavtigian, Sean V; Taylor, Graham R; Teague, Jon; Töpel, Thoralf; Ullman-Cullere, Mollie; Utsunomiya, Joji; van Kranen, Henk J; Vihinen, Mauno; Webb, Elizabeth; Weber, Thomas K; Yeager, Meredith; Yeom, Young I; Yim, Seon-Hee; Yoo, Hyang-Sook

    2009-04-01

    The remarkable progress in characterizing the human genome sequence, exemplified by the Human Genome Project and the HapMap Consortium, has led to the perception that knowledge and the tools (e.g., microarrays) are sufficient for many if not most biomedical research efforts. A large amount of data from diverse studies proves this perception inaccurate at best, and at worst, an impediment for further efforts to characterize the variation in the human genome. Because variation in genotype and environment are the fundamental basis to understand phenotypic variability and heritability at the population level, identifying the range of human genetic variation is crucial to the development of personalized nutrition and medicine. The Human Variome Project (HVP; http://www.humanvariomeproject.org/) was proposed initially to systematically collect mutations that cause human disease and create a cyber infrastructure to link locus specific databases (LSDB). We report here the discussions and recommendations from the 2008 HVP planning meeting held in San Feliu de Guixols, Spain, in May 2008. (c) 2009 Wiley-Liss, Inc.

  18. Using expression genetics to study the neurobiology of ethanol and alcoholism.

    PubMed

    Farris, Sean P; Wolen, Aaron R; Miles, Michael F

    2010-01-01

    Recent simultaneous progress in human and animal model genetics and the advent of microarray whole genome expression profiling have produced prodigious data sets on genetic loci, potential candidate genes, and differential gene expression related to alcoholism and ethanol behaviors. Validated target genes or gene networks functioning in alcoholism are still of meager proportions. Genetical genomics, which combines genetic analysis of both traditional phenotypes and whole genome expression data, offers a potential methodology for characterizing brain gene networks functioning in alcoholism. This chapter will describe concepts, approaches, and recent findings in the field of genetical genomics as it applies to alcohol research. Copyright 2010 Elsevier Inc. All rights reserved.

  19. Disruption of the ASTN2/TRIM32 locus at 9q33.1 is a risk factor in males for autism spectrum disorders, ADHD and other neurodevelopmental phenotypes.

    PubMed

    Lionel, Anath C; Tammimies, Kristiina; Vaags, Andrea K; Rosenfeld, Jill A; Ahn, Joo Wook; Merico, Daniele; Noor, Abdul; Runke, Cassandra K; Pillalamarri, Vamsee K; Carter, Melissa T; Gazzellone, Matthew J; Thiruvahindrapuram, Bhooma; Fagerberg, Christina; Laulund, Lone W; Pellecchia, Giovanna; Lamoureux, Sylvia; Deshpande, Charu; Clayton-Smith, Jill; White, Ann C; Leather, Susan; Trounce, John; Melanie Bedford, H; Hatchwell, Eli; Eis, Peggy S; Yuen, Ryan K C; Walker, Susan; Uddin, Mohammed; Geraghty, Michael T; Nikkel, Sarah M; Tomiak, Eva M; Fernandez, Bridget A; Soreni, Noam; Crosbie, Jennifer; Arnold, Paul D; Schachar, Russell J; Roberts, Wendy; Paterson, Andrew D; So, Joyce; Szatmari, Peter; Chrysler, Christina; Woodbury-Smith, Marc; Brian Lowry, R; Zwaigenbaum, Lonnie; Mandyam, Divya; Wei, John; Macdonald, Jeffrey R; Howe, Jennifer L; Nalpathamkalam, Thomas; Wang, Zhuozhi; Tolson, Daniel; Cobb, David S; Wilks, Timothy M; Sorensen, Mark J; Bader, Patricia I; An, Yu; Wu, Bai-Lin; Musumeci, Sebastiano Antonino; Romano, Corrado; Postorivo, Diana; Nardone, Anna M; Monica, Matteo Della; Scarano, Gioacchino; Zoccante, Leonardo; Novara, Francesca; Zuffardi, Orsetta; Ciccone, Roberto; Antona, Vincenzo; Carella, Massimo; Zelante, Leopoldo; Cavalli, Pietro; Poggiani, Carlo; Cavallari, Ugo; Argiropoulos, Bob; Chernos, Judy; Brasch-Andersen, Charlotte; Speevak, Marsha; Fichera, Marco; Ogilvie, Caroline Mackie; Shen, Yiping; Hodge, Jennelle C; Talkowski, Michael E; Stavropoulos, Dimitri J; Marshall, Christian R; Scherer, Stephen W

    2014-05-15

    Rare copy number variants (CNVs) disrupting ASTN2 or both ASTN2 and TRIM32 have been reported at 9q33.1 by genome-wide studies in a few individuals with neurodevelopmental disorders (NDDs). The vertebrate-specific astrotactins, ASTN2 and its paralog ASTN1, have key roles in glial-guided neuronal migration during brain development. To determine the prevalence of astrotactin mutations and delineate their associated phenotypic spectrum, we screened ASTN2/TRIM32 and ASTN1 (1q25.2) for exonic CNVs in clinical microarray data from 89 985 individuals across 10 sites, including 64 114 NDD subjects. In this clinical dataset, we identified 46 deletions and 12 duplications affecting ASTN2. Deletions of ASTN1 were much rarer. Deletions near the 3' terminus of ASTN2, which would disrupt all transcript isoforms (a subset of these deletions also included TRIM32), were significantly enriched in the NDD subjects (P = 0.002) compared with 44 085 population-based controls. Frequent phenotypes observed in individuals with such deletions include autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), speech delay, anxiety and obsessive compulsive disorder (OCD). The 3'-terminal ASTN2 deletions were significantly enriched compared with controls in males with NDDs, but not in females. Upon quantifying ASTN2 human brain RNA, we observed shorter isoforms expressed from an alternative transcription start site of recent evolutionary origin near the 3' end. Spatiotemporal expression profiling in the human brain revealed consistently high ASTN1 expression while ASTN2 expression peaked in the early embryonic neocortex and postnatal cerebellar cortex. Our findings shed new light on the role of the astrotactins in psychopathology and their interplay in human neurodevelopment.

  20. Transcriptional profiles of supragranular-enriched genes associate with corticocortical network architecture in the human brain

    PubMed Central

    Krienen, Fenna M.; Yeo, B. T. Thomas; Ge, Tian; Buckner, Randy L.; Sherwood, Chet C.

    2016-01-01

    The human brain is patterned with disproportionately large, distributed cerebral networks that connect multiple association zones in the frontal, temporal, and parietal lobes. The expansion of the cortical surface, along with the emergence of long-range connectivity networks, may be reflected in changes to the underlying molecular architecture. Using the Allen Institute’s human brain transcriptional atlas, we demonstrate that genes particularly enriched in supragranular layers of the human cerebral cortex relative to mouse distinguish major cortical classes. The topography of transcriptional expression reflects large-scale brain network organization consistent with estimates from functional connectivity MRI and anatomical tracing in nonhuman primates. Microarray expression data for genes preferentially expressed in human upper layers (II/III), but enriched only in lower layers (V/VI) of mouse, were cross-correlated to identify molecular profiles across the cerebral cortex of postmortem human brains (n = 6). Unimodal sensory and motor zones have similar molecular profiles, despite being distributed across the cortical mantle. Sensory/motor profiles were anticorrelated with paralimbic and certain distributed association network profiles. Tests of alternative gene sets did not consistently distinguish sensory and motor regions from paralimbic and association regions: (i) genes enriched in supragranular layers in both humans and mice, (ii) genes cortically enriched in humans relative to nonhuman primates, (iii) genes related to connectivity in rodents, (iv) genes associated with human and mouse connectivity, and (v) 1,454 gene sets curated from known gene ontologies. Molecular innovations of upper cortical layers may be an important component in the evolution of long-range corticocortical projections. PMID:26739559

  1. Transcriptional profiles of supragranular-enriched genes associate with corticocortical network architecture in the human brain.

    PubMed

    Krienen, Fenna M; Yeo, B T Thomas; Ge, Tian; Buckner, Randy L; Sherwood, Chet C

    2016-01-26

    The human brain is patterned with disproportionately large, distributed cerebral networks that connect multiple association zones in the frontal, temporal, and parietal lobes. The expansion of the cortical surface, along with the emergence of long-range connectivity networks, may be reflected in changes to the underlying molecular architecture. Using the Allen Institute's human brain transcriptional atlas, we demonstrate that genes particularly enriched in supragranular layers of the human cerebral cortex relative to mouse distinguish major cortical classes. The topography of transcriptional expression reflects large-scale brain network organization consistent with estimates from functional connectivity MRI and anatomical tracing in nonhuman primates. Microarray expression data for genes preferentially expressed in human upper layers (II/III), but enriched only in lower layers (V/VI) of mouse, were cross-correlated to identify molecular profiles across the cerebral cortex of postmortem human brains (n = 6). Unimodal sensory and motor zones have similar molecular profiles, despite being distributed across the cortical mantle. Sensory/motor profiles were anticorrelated with paralimbic and certain distributed association network profiles. Tests of alternative gene sets did not consistently distinguish sensory and motor regions from paralimbic and association regions: (i) genes enriched in supragranular layers in both humans and mice, (ii) genes cortically enriched in humans relative to nonhuman primates, (iii) genes related to connectivity in rodents, (iv) genes associated with human and mouse connectivity, and (v) 1,454 gene sets curated from known gene ontologies. Molecular innovations of upper cortical layers may be an important component in the evolution of long-range corticocortical projections.

  2. Genome engineering in human cells.

    PubMed

    Song, Minjung; Kim, Young-Hoon; Kim, Jin-Soo; Kim, Hyongbum

    2014-01-01

    Genome editing in human cells is of great value in research, medicine, and biotechnology. Programmable nucleases including zinc-finger nucleases, transcription activator-like effector nucleases, and RNA-guided engineered nucleases recognize a specific target sequence and make a double-strand break at that site, which can result in gene disruption, gene insertion, gene correction, or chromosomal rearrangements. The target sequence complexities of these programmable nucleases are higher than 3.2 mega base pairs, the size of the haploid human genome. Here, we briefly introduce the structure of the human genome and the characteristics of each programmable nuclease, and review their applications in human cells including pluripotent stem cells. In addition, we discuss various delivery methods for nucleases, programmable nickases, and enrichment of gene-edited human cells, all of which facilitate efficient and precise genome editing in human cells.

  3. Gene network and pathway analysis of mice with conditional ablation of Dicer in post-mitotic neurons.

    PubMed

    Dorval, Véronique; Smith, Pascal Y; Delay, Charlotte; Calvo, Ezequiel; Planel, Emmanuel; Zommer, Nadège; Buée, Luc; Hébert, Sébastien S

    2012-01-01

    The small non-protein-coding microRNAs (miRNAs) have emerged as critical regulators of neuronal differentiation, identity and survival. To date, however, little is known about the genes and molecular networks regulated by neuronal miRNAs in vivo, particularly in the adult mammalian brain. We analyzed whole genome microarrays from mice lacking Dicer, the enzyme responsible for miRNA production, specifically in postnatal forebrain neurons. A total of 755 mRNA transcripts were significantly (P<0.05, FDR<0.25) misregulated in the conditional Dicer knockout mice. Ten genes, including Tnrc6c, Dnmt3a, and Limk1, were validated by real time quantitative RT-PCR. Upregulated transcripts were enriched in nonneuronal genes, which is consistent with previous studies in vitro. Microarray data mining showed that upregulated genes were enriched in biological processes related to gene expression regulation, while downregulated genes were associated with neuronal functions. Molecular pathways associated with neurological disorders, cellular organization and cellular maintenance were altered in the Dicer mutant mice. Numerous miRNA target sites were enriched in the 3'untranslated region (3'UTR) of upregulated genes, the most significant corresponding to the miR-124 seed sequence. Interestingly, our results suggest that, in addition to miR-124, a large fraction of the neuronal miRNome participates, by order of abundance, in coordinated gene expression regulation and neuronal maintenance. Taken together, these results provide new clues into the role of specific miRNA pathways in the regulation of brain identity and maintenance in adult mice.

  4. The Porphyromonas gingivalis/Host Interactome Shows Enrichment in GWASdb Genes Related to Alzheimer's Disease, Diabetes and Cardiovascular Diseases

    PubMed Central

    Carter, Chris J.; France, James; Crean, StJohn; Singhrao, Sim K.

    2017-01-01

    Periodontal disease is of established etiology in which polymicrobial synergistic ecology has become dysbiotic under the influence of Porphyromonas gingivalis. Following breakdown of the host's protective oral tissue barriers, P. gingivalis migrates to developing inflammatory pathologies that associate with Alzheimer's disease (AD). Periodontal disease is a risk factor for cardiovascular disorders (CVD), type II diabetes mellitus (T2DM), AD and other chronic diseases, whilst T2DM exacerbates periodontitis. This study analyzed the relationship between the P. gingivalis/host interactome and the genes identified in genome-wide association studies (GWAS) for the aforementioned conditions using data from GWASdb (P < 1E-03) and, in some cases, from the NCBI/EBI GWAS database (P < 1E-05). Gene expression data from periodontitis or P. gingivalis microarray was compared to microarray datasets from the AD hippocampus and/or from carotid artery plaques. The results demonstrated that the host genes of the P. gingivalis interactome were significantly enriched in genes deposited in GWASdb genes related to cognitive disorders, AD and dementia, and its co-morbid conditions T2DM, obesity, and CVD. The P. gingivalis/host interactome was also enriched in GWAS genes from the more stringent NCBI-EBI database for AD, atherosclerosis and T2DM. The misregulated genes in periodontitis tissue or P. gingivalis infected macrophages also matched those in the AD hippocampus or atherosclerotic plaques. Together, these data suggest important gene/environment interactions between P. gingivalis and susceptibility genes or gene expression changes in conditions where periodontal disease is a contributory factor. PMID:29311898

  5. The Porphyromonas gingivalis/Host Interactome Shows Enrichment in GWASdb Genes Related to Alzheimer's Disease, Diabetes and Cardiovascular Diseases.

    PubMed

    Carter, Chris J; France, James; Crean, StJohn; Singhrao, Sim K

    2017-01-01

    Periodontal disease is of established etiology in which polymicrobial synergistic ecology has become dysbiotic under the influence of Porphyromonas gingivalis . Following breakdown of the host's protective oral tissue barriers, P. gingivalis migrates to developing inflammatory pathologies that associate with Alzheimer's disease (AD). Periodontal disease is a risk factor for cardiovascular disorders (CVD), type II diabetes mellitus (T2DM), AD and other chronic diseases, whilst T2DM exacerbates periodontitis. This study analyzed the relationship between the P. gingivalis /host interactome and the genes identified in genome-wide association studies (GWAS) for the aforementioned conditions using data from GWASdb ( P < 1E-03) and, in some cases, from the NCBI/EBI GWAS database ( P < 1E-05). Gene expression data from periodontitis or P. gingivalis microarray was compared to microarray datasets from the AD hippocampus and/or from carotid artery plaques. The results demonstrated that the host genes of the P. gingivalis interactome were significantly enriched in genes deposited in GWASdb genes related to cognitive disorders, AD and dementia, and its co-morbid conditions T2DM, obesity, and CVD. The P. gingivalis /host interactome was also enriched in GWAS genes from the more stringent NCBI-EBI database for AD, atherosclerosis and T2DM. The misregulated genes in periodontitis tissue or P. gingivalis infected macrophages also matched those in the AD hippocampus or atherosclerotic plaques. Together, these data suggest important gene/environment interactions between P. gingivalis and susceptibility genes or gene expression changes in conditions where periodontal disease is a contributory factor.

  6. Microarray analyses reveal novel targets of exercise-induced stress resistance in the dorsal raphe nucleus

    PubMed Central

    Loughridge, Alice B.; Greenwood, Benjamin N.; Day, Heidi E. W.; McQueen, Matthew B.; Fleshner, Monika

    2013-01-01

    Serotonin (5-HT) is implicated in the development of stress-related mood disorders in humans. Physical activity reduces the risk of developing stress-related mood disorders, such as depression and anxiety. In rats, 6 weeks of wheel running protects against stress-induced behaviors thought to resemble symptoms of human anxiety and depression. The mechanisms by which exercise confers protection against stress-induced behaviors, however, remain unknown. One way by which exercise could generate stress resistance is by producing plastic changes in gene expression in the dorsal raphe nucleus (DRN). The DRN has a high concentration of 5-HT neurons and is implicated in stress-related mood disorders. The goal of the current experiment was to identify changes in the expression of genes that could be novel targets of exercise-induced stress resistance in the DRN. Adult, male F344 rats were allowed voluntary access to running wheels for 6 weeks; exposed to inescapable stress or no stress; and sacrificed immediately and 2 h after stressor termination. Laser capture micro dissection selectively sampled the DRN. mRNA expression was measured using the whole genome Affymetrix microarray. Comprehensive data analyses of gene expression included differential gene expression, log fold change (LFC) contrast analyses with False Discovery Rate correction, KEGG and Wiki Web Gestalt pathway enrichment analyses, and Weighted Gene Correlational Network Analysis (WGCNA). Our results suggest that physically active rats exposed to stress modulate expression of twice the number of genes, and display a more rapid and strongly coordinated response, than sedentary rats. Bioinformatics analyses revealed several potential targets of stress resistance including genes that are related to immune processes, tryptophan metabolism, and circadian/diurnal rhythms. PMID:23717271

  7. The contribution of the DNA microarray technology to gene expression profiling in Leishmania spp.: a retrospective.

    PubMed

    Alonso, Ana; Larraga, Vicente; Alcolea, Pedro J

    2018-05-07

    The first genome project of any living organism excluding viruses, the gammaproteobacteria Haemophilus influenzae, was completed in 1995. Until the last decade, genome sequencing was very tedious because genome survey sequences (GSS) and/or expressed sequence tags (ESTs) belonging to plasmid, cosmid and artificial chromosome genome libraries had to be sequenced and assembled in silico. Nowadays, no genome is completely assembled actually, because gaps and unassembled contigs are always remaining. However, most represent the whole genome of the organism of origin from a practical point of view. The first genome sequencing projects of trypanosomatid parasites were completed in 2005 following those strategies, and belong to Leishmania major, Trypanosoma cruzi and T. brucei. The functional genomics era rapidly developed on the basis of the microarray technology and has been evolving. In the case of the genus Leishmania, substantial biological information about differentiation in the digenetic life cycle of the parasite has been obtained. Later on, next generation sequencing has revolutionized genome sequencing and functional genomics, leading to more sensitive, accurate results by using much less resources. This new technology is more advantageous, but does not invalidate microarray results. In fact, promising vaccine candidates and drug targets have been found on the basis of microarray-based screening and preliminary proof-of-concept tests. Copyright © 2018. Published by Elsevier B.V.

  8. Assessment of data processing to improve reliability of microarray experiments using genomic DNA reference.

    PubMed

    Yang, Yunfeng; Zhu, Mengxia; Wu, Liyou; Zhou, Jizhong

    2008-09-16

    Using genomic DNA as common reference in microarray experiments has recently been tested by different laboratories. Conflicting results have been reported with regard to the reliability of microarray results using this method. To explain it, we hypothesize that data processing is a critical element that impacts the data quality. Microarray experiments were performed in a gamma-proteobacterium Shewanella oneidensis. Pair-wise comparison of three experimental conditions was obtained either with two labeled cDNA samples co-hybridized to the same array, or by employing Shewanella genomic DNA as a standard reference. Various data processing techniques were exploited to reduce the amount of inconsistency between both methods and the results were assessed. We discovered that data quality was significantly improved by imposing the constraint of minimal number of replicates, logarithmic transformation and random error analyses. These findings demonstrate that data processing significantly influences data quality, which provides an explanation for the conflicting evaluation in the literature. This work could serve as a guideline for microarray data analysis using genomic DNA as a standard reference.

  9. Microarray Technology for the Diagnosis of Fetal Chromosomal Aberrations: Which Platform Should We Use?

    PubMed Central

    Karampetsou, Evangelia; Morrogh, Deborah; Chitty, Lyn

    2014-01-01

    The advantage of microarray (array) over conventional karyotype for the diagnosis of fetal pathogenic chromosomal anomalies has prompted the use of microarrays in prenatal diagnostics. In this review we compare the performance of different array platforms (BAC, oligonucleotide CGH, SNP) and designs (targeted, whole genome, whole genome, and targeted, custom) and discuss their advantages and disadvantages in relation to prenatal testing. We also discuss the factors to consider when implementing a microarray testing service for the diagnosis of fetal chromosomal aberrations. PMID:26237396

  10. TAM: a method for enrichment and depletion analysis of a microRNA category in a list of microRNAs.

    PubMed

    Lu, Ming; Shi, Bing; Wang, Juan; Cao, Qun; Cui, Qinghua

    2010-08-09

    MicroRNAs (miRNAs) are a class of important gene regulators. The number of identified miRNAs has been increasing dramatically in recent years. An emerging major challenge is the interpretation of the genome-scale miRNA datasets, including those derived from microarray and deep-sequencing. It is interesting and important to know the common rules or patterns behind a list of miRNAs, (i.e. the deregulated miRNAs resulted from an experiment of miRNA microarray or deep-sequencing). For the above purpose, this study presents a method and develops a tool (TAM) for annotations of meaningful human miRNAs categories. We first integrated miRNAs into various meaningful categories according to prior knowledge, such as miRNA family, miRNA cluster, miRNA function, miRNA associated diseases, and tissue specificity. Using TAM, given lists of miRNAs can be rapidly annotated and summarized according to the integrated miRNA categorical data. Moreover, given a list of miRNAs, TAM can be used to predict novel related miRNAs. Finally, we confirmed the usefulness and reliability of TAM by applying it to deregulated miRNAs in acute myocardial infarction (AMI) from two independent experiments. TAM can efficiently identify meaningful categories for given miRNAs. In addition, TAM can be used to identify novel miRNA biomarkers. TAM tool, source codes, and miRNA category data are freely available at http://cmbi.bjmu.edu.cn/tam.

  11. Genome-Scale Protein Microarray Comparison of Human Antibody Responses in Plasmodium vivax Relapse and Reinfection.

    PubMed

    Chuquiyauri, Raul; Molina, Douglas M; Moss, Eli L; Wang, Ruobing; Gardner, Malcolm J; Brouwer, Kimberly C; Torres, Sonia; Gilman, Robert H; Llanos-Cuentas, Alejandro; Neafsey, Daniel E; Felgner, Philip; Liang, Xiaowu; Vinetz, Joseph M

    2015-10-01

    Large scale antibody responses in Plasmodium vivax malaria remains unexplored in the endemic setting. Protein microarray analysis of asexual-stage P. vivax was used to identify antigens recognized in sera from residents of hypoendemic Peruvian Amazon. Over 24 months, of 106 participants, 91 had two symptomatic P. vivax malaria episodes, 11 had three episodes, 3 had four episodes, and 1 had five episodes. Plasmodium vivax relapse was distinguished from reinfection by a merozoite surface protein-3α restriction fragment length polymorphism polymerase chain reaction (MSP3α PCR-RFLP) assay. Notably, P. vivax reinfection subjects did not have higher reactivity to the entire set of recognized P. vivax blood-stage antigens than relapse subjects, regardless of the number of malaria episodes. The most highly recognized P. vivax proteins were MSP 4, 7, 8, and 10 (PVX_003775, PVX_082650, PVX_097625, and PVX_114145); sexual-stage antigen s16 (PVX_000930); early transcribed membrane protein (PVX_090230); tryptophan-rich antigen (Pv-fam-a) (PVX_092995); apical merozoite antigen 1 (PVX_092275); and proteins of unknown function (PVX_081830, PVX_117680, PVX_118705, PVX_121935, PVX_097730, PVX_110935, PVX_115450, and PVX_082475). Genes encoding reactive proteins exhibited a significant enrichment of non-synonymous nucleotide variation, an observation suggesting immune selection. These data identify candidates for seroepidemiological tools to support malaria elimination efforts in P. vivax-endemic regions. © The American Society of Tropical Medicine and Hygiene.

  12. Cloning of polymorphisms (COP): enrichment of polymorphic sequences from complex genomes

    PubMed Central

    Li, Jingfeng; Wang, Fuli; Zabarovska, Veronika; Wahlestedt, Claes; Zabarovsky, Eugene R.

    2000-01-01

    Here we describe a new procedure (cloning of polymorphisms, COP) for enrichment of single nucleotide polymorphisms (SNPs) that represent restriction fragment length polymorphisms (RFLPs). COP would be applicable to the isolation of SNPs from particular regions of the genome, e.g. CpG islands, chromosomal bands, YACs or PAC contigs. A combination of digestion with restriction enzymes, treatment with uracil-DNA glycosylase and mung bean nuclease, PCR amplification and purification with streptavidin magnetic beads was used to isolate polymorphic sequences from the genomes of two human samples. After only two cycles of enrichment, 80% of the isolated clones were found to contain RFLPs. A simple method for the PCR detection of these polymorphisms was also developed. PMID:10606669

  13. A global reference for human genetic variation

    PubMed Central

    2016-01-01

    The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping. We characterized a broad spectrum of genetic variation, in total over 88 million variants (84.7 million single nucleotide polymorphisms (SNPs), 3.6 million short insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications for common disease studies. PMID:26432245

  14. Surface invasive cleavage assay on a maskless light-directed diamond DNA microarray for genome-wide human SNP mapping.

    PubMed

    Nie, Bei; Yang, Min; Fu, Weiling; Liang, Zhiqing

    2015-07-07

    The surface invasive cleavage assay, because of its innate accuracy and ability for self-signal amplification, provides a potential route for the mapping of hundreds of thousands of human SNP sites. However, its performance on a high density DNA array has not yet been established, due to the unusual "hairpin" probe design on the microarray and the lack of chemical stability of commercially available substrates. Here we present an applicable method to implement a nanocrystalline diamond thin film as an alternative substrate for fabricating an addressable DNA array using maskless light-directed photochemistry, producing the most chemically stable and biocompatible system for genetic analysis and enzymatic reactions. The surface invasive cleavage reaction, followed by degenerated primer ligation and post-rolling circle amplification is consecutively performed on the addressable diamond DNA array, accurately mapping SNP sites from PCR-amplified human genomic target DNA. Furthermore, a specially-designed DNA array containing dual probes in the same pixel is fabricated by following a reverse light-directed DNA synthesis protocol. This essentially enables us to decipher thousands of SNP alleles in a single-pot reaction by the simple addition of enzyme, target and reaction buffers.

  15. GOEAST: a web-based software toolkit for Gene Ontology enrichment analysis.

    PubMed

    Zheng, Qi; Wang, Xiu-Jie

    2008-07-01

    Gene Ontology (GO) analysis has become a commonly used approach for functional studies of large-scale genomic or transcriptomic data. Although there have been a lot of software with GO-related analysis functions, new tools are still needed to meet the requirements for data generated by newly developed technologies or for advanced analysis purpose. Here, we present a Gene Ontology Enrichment Analysis Software Toolkit (GOEAST), an easy-to-use web-based toolkit that identifies statistically overrepresented GO terms within given gene sets. Compared with available GO analysis tools, GOEAST has the following improved features: (i) GOEAST displays enriched GO terms in graphical format according to their relationships in the hierarchical tree of each GO category (biological process, molecular function and cellular component), therefore, provides better understanding of the correlations among enriched GO terms; (ii) GOEAST supports analysis for data from various sources (probe or probe set IDs of Affymetrix, Illumina, Agilent or customized microarrays, as well as different gene identifiers) and multiple species (about 60 prokaryote and eukaryote species); (iii) One unique feature of GOEAST is to allow cross comparison of the GO enrichment status of multiple experiments to identify functional correlations among them. GOEAST also provides rigorous statistical tests to enhance the reliability of analysis results. GOEAST is freely accessible at http://omicslab.genetics.ac.cn/GOEAST/

  16. Comparison of microbial DNA enrichment tools for metagenomic whole genome sequencing.

    PubMed

    Thoendel, Matthew; Jeraldo, Patricio R; Greenwood-Quaintance, Kerryl E; Yao, Janet Z; Chia, Nicholas; Hanssen, Arlen D; Abdel, Matthew P; Patel, Robin

    2016-08-01

    Metagenomic whole genome sequencing for detection of pathogens in clinical samples is an exciting new area for discovery and clinical testing. A major barrier to this approach is the overwhelming ratio of human to pathogen DNA in samples with low pathogen abundance, which is typical of most clinical specimens. Microbial DNA enrichment methods offer the potential to relieve this limitation by improving this ratio. Two commercially available enrichment kits, the NEBNext Microbiome DNA Enrichment Kit and the Molzym MolYsis Basic kit, were tested for their ability to enrich for microbial DNA from resected arthroplasty component sonicate fluids from prosthetic joint infections or uninfected sonicate fluids spiked with Staphylococcus aureus. Using spiked uninfected sonicate fluid there was a 6-fold enrichment of bacterial DNA with the NEBNext kit and 76-fold enrichment with the MolYsis kit. Metagenomic whole genome sequencing of sonicate fluid revealed 13- to 85-fold enrichment of bacterial DNA using the NEBNext enrichment kit. The MolYsis approach achieved 481- to 9580-fold enrichment, resulting in 7 to 59% of sequencing reads being from the pathogens known to be present in the samples. These results demonstrate the usefulness of these tools when testing clinical samples with low microbial burden using next generation sequencing. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Whole mitochondrial genome sequencing of domestic horses reveals incorporation of extensive wild horse diversity during domestication

    PubMed Central

    2011-01-01

    Background DNA target enrichment by micro-array capture combined with high throughput sequencing technologies provides the possibility to obtain large amounts of sequence data (e.g. whole mitochondrial DNA genomes) from multiple individuals at relatively low costs. Previously, whole mitochondrial genome data for domestic horses (Equus caballus) were limited to only a few specimens and only short parts of the mtDNA genome (especially the hypervariable region) were investigated for larger sample sets. Results In this study we investigated whole mitochondrial genomes of 59 domestic horses from 44 breeds and a single Przewalski horse (Equus przewalski) using a recently described multiplex micro-array capture approach. We found 473 variable positions within the domestic horses, 292 of which are parsimony-informative, providing a well resolved phylogenetic tree. Our divergence time estimate suggests that the mitochondrial genomes of modern horse breeds shared a common ancestor around 93,000 years ago and no later than 38,000 years ago. A Bayesian skyline plot (BSP) reveals a significant population expansion beginning 6,000-8,000 years ago with an ongoing exponential growth until the present, similar to other domestic animal species. Our data further suggest that a large sample of wild horse diversity was incorporated into the domestic population; specifically, at least 46 of the mtDNA lineages observed in domestic horses (73%) already existed before the beginning of domestication about 5,000 years ago. Conclusions Our study provides a window into the maternal origins of extant domestic horses and confirms that modern domestic breeds present a wide sample of the mtDNA diversity found in ancestral, now extinct, wild horse populations. The data obtained allow us to detect a population expansion event coinciding with the beginning of domestication and to estimate both the minimum number of female horses incorporated into the domestic gene pool and the time depth of the domestic horse mtDNA gene pool. PMID:22082251

  18. USE OF COMPETITIVE GENOMIC HYBRIDIZATION TO ENRICH FOR GENOME-SPECIFIC DIFFERENCES BETWEEN TWO CLOSELY RELATED HUMAN FECAL INDICATOR BACTERIA

    EPA Science Inventory

    Enterococci are frequently used as indicators of fecal pollution in surface waters. To accelerate the identification of Enterococcus faecalis-specific DNA sequences, we employed a comparative genomic strategy utilizing a positive selection process to compare E. faec...

  19. Profiling ethanol-targeted transcription factors in human carcinoma cell-derived embryoid bodies.

    PubMed

    Mandal, Chanchal; Halder, Debasish; Chai, Jin Choul; Lee, Young Seek; Jung, Kyoung Hwa; Chai, Young Gyu

    2016-01-15

    Fetal alcohol spectrum disorder is a collective term that represents fetal abnormalities associated with maternal alcohol consumption. Prenatal alcohol exposure and related anomalies are well characterized, but the molecular mechanism behind this phenomenon is not yet understood. Few insights have been gained from genetic and epigenetic studies of fetal alcohol spectrum disorder. Our aim was to profile the important molecular regulators of ethanol-related alterations of the genome. For this purpose, we have analyzed the gene expression pattern of human carcinoma cell-derived embryoid bodies in the absence or presence of ethanol. A cDNA microarray analysis was used to profile mRNA expression in embryoid bodies at day 7 with or without ethanol treatment. A total of 493 differentially expressed genes were identified in response to 50 mM ethanol exposure. Of these, 111 genes were up-regulated, and 382 were down-regulated. Gene ontology term enrichment analysis revealed that these genes are involved in important biological processes: neurological system processes, cognition, behavior, sensory perception of smell, taste and chemical stimuli and synaptic transmission. Similarly, the enrichment of disease-related genes included relevant categories such as neurological diseases, developmental disorders, skeletal and muscular disorders, and connective tissue disorders. Furthermore, we have identified a group of 26 genes that encode transcription factors. We validated the relative gene expression of several transcription factors using quantitative real time PCR. We hope that our study substantially contributes to the understanding of the molecular mechanisms underlying the pathology of alcohol-mediated anomalies and facilitates further research. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. The Core and Accessory Genomes of Burkholderia pseudomallei: Implications for Human Melioidosis

    PubMed Central

    Lin, Chi Ho; Karuturi, R. Krishna M.; Wuthiekanun, Vanaporn; Tuanyok, Apichai; Chua, Hui Hoon; Ong, Catherine; Paramalingam, Sivalingam Suppiah; Tan, Gladys; Tang, Lynn; Lau, Gary; Ooi, Eng Eong; Woods, Donald; Feil, Edward; Peacock, Sharon J.; Tan, Patrick

    2008-01-01

    Natural isolates of Burkholderia pseudomallei (Bp), the causative agent of melioidosis, can exhibit significant ecological flexibility that is likely reflective of a dynamic genome. Using whole-genome Bp microarrays, we examined patterns of gene presence and absence across 94 South East Asian strains isolated from a variety of clinical, environmental, or animal sources. 86% of the Bp K96243 reference genome was common to all the strains representing the Bp “core genome”, comprising genes largely involved in essential functions (eg amino acid metabolism, protein translation). In contrast, 14% of the K96243 genome was variably present across the isolates. This Bp accessory genome encompassed multiple genomic islands (GIs), paralogous genes, and insertions/deletions, including three distinct lipopolysaccharide (LPS)-related gene clusters. Strikingly, strains recovered from cases of human melioidosis clustered on a tree based on accessory gene content, and were significantly more likely to harbor certain GIs compared to animal and environmental isolates. Consistent with the inference that the GIs may contribute to pathogenesis, experimental mutation of BPSS2053, a GI gene, reduced microbial adherence to human epithelial cells. Our results suggest that the Bp accessory genome is likely to play an important role in microbial adaptation and virulence. PMID:18927621

  1. Association of Protein Translation and Extracellular Matrix Gene Sets with Breast Cancer Metastasis: Findings Uncovered on Analysis of Multiple Publicly Available Datasets Using Individual Patient Data Approach.

    PubMed

    Chowdhury, Nilotpal; Sapru, Shantanu

    2015-01-01

    Microarray analysis has revolutionized the role of genomic prognostication in breast cancer. However, most studies are single series studies, and suffer from methodological problems. We sought to use a meta-analytic approach in combining multiple publicly available datasets, while correcting for batch effects, to reach a more robust oncogenomic analysis. The aim of the present study was to find gene sets associated with distant metastasis free survival (DMFS) in systemically untreated, node-negative breast cancer patients, from publicly available genomic microarray datasets. Four microarray series (having 742 patients) were selected after a systematic search and combined. Cox regression for each gene was done for the combined dataset (univariate, as well as multivariate - adjusted for expression of Cell cycle related genes) and for the 4 major molecular subtypes. The centre and microarray batch effects were adjusted by including them as random effects variables. The Cox regression coefficients for each analysis were then ranked and subjected to a Gene Set Enrichment Analysis (GSEA). Gene sets representing protein translation were independently negatively associated with metastasis in the Luminal A and Luminal B subtypes, but positively associated with metastasis in Basal tumors. Proteinaceous extracellular matrix (ECM) gene set expression was positively associated with metastasis, after adjustment for expression of cell cycle related genes on the combined dataset. Finally, the positive association of the proliferation-related genes with metastases was confirmed. To the best of our knowledge, the results depicting mixed prognostic significance of protein translation in breast cancer subtypes are being reported for the first time. We attribute this to our study combining multiple series and performing a more robust meta-analytic Cox regression modeling on the combined dataset, thus discovering 'hidden' associations. This methodology seems to yield new and interesting results and may be used as a tool to guide new research.

  2. Association of Protein Translation and Extracellular Matrix Gene Sets with Breast Cancer Metastasis: Findings Uncovered on Analysis of Multiple Publicly Available Datasets Using Individual Patient Data Approach

    PubMed Central

    Chowdhury, Nilotpal; Sapru, Shantanu

    2015-01-01

    Introduction Microarray analysis has revolutionized the role of genomic prognostication in breast cancer. However, most studies are single series studies, and suffer from methodological problems. We sought to use a meta-analytic approach in combining multiple publicly available datasets, while correcting for batch effects, to reach a more robust oncogenomic analysis. Aim The aim of the present study was to find gene sets associated with distant metastasis free survival (DMFS) in systemically untreated, node-negative breast cancer patients, from publicly available genomic microarray datasets. Methods Four microarray series (having 742 patients) were selected after a systematic search and combined. Cox regression for each gene was done for the combined dataset (univariate, as well as multivariate – adjusted for expression of Cell cycle related genes) and for the 4 major molecular subtypes. The centre and microarray batch effects were adjusted by including them as random effects variables. The Cox regression coefficients for each analysis were then ranked and subjected to a Gene Set Enrichment Analysis (GSEA). Results Gene sets representing protein translation were independently negatively associated with metastasis in the Luminal A and Luminal B subtypes, but positively associated with metastasis in Basal tumors. Proteinaceous extracellular matrix (ECM) gene set expression was positively associated with metastasis, after adjustment for expression of cell cycle related genes on the combined dataset. Finally, the positive association of the proliferation-related genes with metastases was confirmed. Conclusion To the best of our knowledge, the results depicting mixed prognostic significance of protein translation in breast cancer subtypes are being reported for the first time. We attribute this to our study combining multiple series and performing a more robust meta-analytic Cox regression modeling on the combined dataset, thus discovering 'hidden' associations. This methodology seems to yield new and interesting results and may be used as a tool to guide new research. PMID:26080057

  3. Mechanistically Distinct Pathways of Divergent Regulatory DNA Creation Contribute to Evolution of Human-Specific Genomic Regulatory Networks Driving Phenotypic Divergence of Homo sapiens.

    PubMed

    Glinsky, Gennadi V

    2016-09-19

    Thousands of candidate human-specific regulatory sequences (HSRS) have been identified, supporting the hypothesis that unique to human phenotypes result from human-specific alterations of genomic regulatory networks. Collectively, a compendium of multiple diverse families of HSRS that are functionally and structurally divergent from Great Apes could be defined as the backbone of human-specific genomic regulatory networks. Here, the conservation patterns analysis of 18,364 candidate HSRS was carried out requiring that 100% of bases must remap during the alignments of human, chimpanzee, and bonobo sequences. A total of 5,535 candidate HSRS were identified that are: (i) highly conserved in Great Apes; (ii) evolved by the exaptation of highly conserved ancestral DNA; (iii) defined by either the acceleration of mutation rates on the human lineage or the functional divergence from non-human primates. The exaptation of highly conserved ancestral DNA pathway seems mechanistically distinct from the evolution of regulatory DNA segments driven by the species-specific expansion of transposable elements. Genome-wide proximity placement analysis of HSRS revealed that a small fraction of topologically associating domains (TADs) contain more than half of HSRS from four distinct families. TADs that are enriched for HSRS and termed rapidly evolving in humans TADs (revTADs) comprise 0.8-10.3% of 3,127 TADs in the hESC genome. RevTADs manifest distinct correlation patterns between placements of human accelerated regions, human-specific transcription factor-binding sites, and recombination rates. There is a significant enrichment within revTAD boundaries of hESC-enhancers, primate-specific CTCF-binding sites, human-specific RNAPII-binding sites, hCONDELs, and H3K4me3 peaks with human-specific enrichment at TSS in prefrontal cortex neurons (P < 0.0001 in all instances). Present analysis supports the idea that phenotypic divergence of Homo sapiens is driven by the evolution of human-specific genomic regulatory networks via at least two mechanistically distinct pathways of creation of divergent sequences of regulatory DNA: (i) recombination-associated exaptation of the highly conserved ancestral regulatory DNA segments; (ii) human-specific insertions of transposable elements. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  4. Comparative analysis of gene expression profiles of hip articular cartilage between non-traumatic necrosis and osteoarthritis.

    PubMed

    Wang, Wenyu; Liu, Yang; Hao, Jingcan; Zheng, Shuyu; Wen, Yan; Xiao, Xiao; He, Awen; Fan, Qianrui; Zhang, Feng; Liu, Ruiyu

    2016-10-10

    Hip cartilage destruction is consistently observed in the non-traumatic osteonecrosis of femoral head (NOFH) and accelerates its bone necrosis. The molecular mechanism underlying the cartilage damage of NOFH remains elusive. In this study, we conducted a systematically comparative study of gene expression profiles between NOFH and osteoarthritis (OA). Hip articular cartilage specimens were collected from 12 NOFH patients and 12 controls with traumatic femoral neck fracture for microarray (n=4) and quantitative real-time PCR validation experiments (n=8). Gene expression profiling of articular cartilage was performed using Agilent Human 4×44K Microarray chip. The accuracy of microarray experiment was further validated by qRT-PCR. Gene expression results of OA hip cartilage were derived from previously published study. Significance Analysis of Microarrays (SAM) software was applied for identifying differently expressed genes. Gene ontology (GO) and pathway enrichment analysis were conducted by Gene Set Enrichment Analysis software and DAVID tool, respectively. Totally, 27 differently expressed genes were identified for NOFH. Comparing the gene expression profiles of NOFH cartilage and OA cartilage detected 8 common differently expressed genes, including COL5A1, OGN, ANGPTL4, CRIP1, NFIL3, METRNL, ID2 and STEAP1. GO comparative analysis identified 10 common significant GO terms, mainly implicated in apoptosis and development process. Pathway comparative analysis observed that ECM-receptor interaction pathway and focal adhesion pathway were enriched in the differently expressed genes of both NOFH and hip OA. In conclusion, we identified a set of differently expressed genes, GO and pathways for NOFH articular destruction, some of which were also involved in the hip OA. Our study results may help to reveal the pathogenetic similarities and differences of cartilage damage of NOFH and hip OA. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Genome-wide DNA methylation drives human embryonic stem cell erythropoiesis by remodeling gene expression dynamics.

    PubMed

    Liu, Zhijing; Feng, Qiang; Sun, Pengpeng; Lu, Yan; Yang, Minlan; Zhang, Xiaowei; Jin, Xiangshu; Li, Yulin; Lu, Shi-Jiang; Quan, Chengshi

    2017-12-01

    To investigate the role of DNA methylation during erythrocyte production by human embryonic stem cells (hESCs). We employed an erythroid differentiation model from hESCs, and then tracked the genome-wide DNA methylation maps and gene expression patterns through an Infinium HumanMethylation450K BeadChip and an Ilumina Human HT-12 v4 Expression Beadchip, respectively. A negative correlation between DNA methylation and gene expression was substantially enriched during the later differentiation stage and was present in both the promoter and the gene body. Moreover, erythropoietic genes with differentially methylated CpG sites that were primarily enriched in nonisland regions were upregulated, and demethylation of their gene bodies was associated with the presence of enhancers and DNase I hypersensitive sites. Finally, the components of JAK-STAT-NF-κB signaling were DNA hypomethylated and upregulated, which targets the key genes for erythropoiesis. Erythroid lineage commitment by hESCs requires genome-wide DNA methylation modifications to remodel gene expression dynamics.

  6. An integrated map of structural variation in 2,504 human genomes.

    PubMed

    Sudmant, Peter H; Rausch, Tobias; Gardner, Eugene J; Handsaker, Robert E; Abyzov, Alexej; Huddleston, John; Zhang, Yan; Ye, Kai; Jun, Goo; Fritz, Markus Hsi-Yang; Konkel, Miriam K; Malhotra, Ankit; Stütz, Adrian M; Shi, Xinghua; Casale, Francesco Paolo; Chen, Jieming; Hormozdiari, Fereydoun; Dayama, Gargi; Chen, Ken; Malig, Maika; Chaisson, Mark J P; Walter, Klaudia; Meiers, Sascha; Kashin, Seva; Garrison, Erik; Auton, Adam; Lam, Hugo Y K; Mu, Xinmeng Jasmine; Alkan, Can; Antaki, Danny; Bae, Taejeong; Cerveira, Eliza; Chines, Peter; Chong, Zechen; Clarke, Laura; Dal, Elif; Ding, Li; Emery, Sarah; Fan, Xian; Gujral, Madhusudan; Kahveci, Fatma; Kidd, Jeffrey M; Kong, Yu; Lameijer, Eric-Wubbo; McCarthy, Shane; Flicek, Paul; Gibbs, Richard A; Marth, Gabor; Mason, Christopher E; Menelaou, Androniki; Muzny, Donna M; Nelson, Bradley J; Noor, Amina; Parrish, Nicholas F; Pendleton, Matthew; Quitadamo, Andrew; Raeder, Benjamin; Schadt, Eric E; Romanovitch, Mallory; Schlattl, Andreas; Sebra, Robert; Shabalin, Andrey A; Untergasser, Andreas; Walker, Jerilyn A; Wang, Min; Yu, Fuli; Zhang, Chengsheng; Zhang, Jing; Zheng-Bradley, Xiangqun; Zhou, Wanding; Zichner, Thomas; Sebat, Jonathan; Batzer, Mark A; McCarroll, Steven A; Mills, Ryan E; Gerstein, Mark B; Bashir, Ali; Stegle, Oliver; Devine, Scott E; Lee, Charles; Eichler, Evan E; Korbel, Jan O

    2015-10-01

    Structural variants are implicated in numerous diseases and make up the majority of varying nucleotides among human genomes. Here we describe an integrated set of eight structural variant classes comprising both balanced and unbalanced variants, which we constructed using short-read DNA sequencing data and statistically phased onto haplotype blocks in 26 human populations. Analysing this set, we identify numerous gene-intersecting structural variants exhibiting population stratification and describe naturally occurring homozygous gene knockouts that suggest the dispensability of a variety of human genes. We demonstrate that structural variants are enriched on haplotypes identified by genome-wide association studies and exhibit enrichment for expression quantitative trait loci. Additionally, we uncover appreciable levels of structural variant complexity at different scales, including genic loci subject to clusters of repeated rearrangement and complex structural variants with multiple breakpoints likely to have formed through individual mutational events. Our catalogue will enhance future studies into structural variant demography, functional impact and disease association.

  7. Development and validation of a microarray for the investigation of the CAZymes encoded by the human gut microbiome.

    PubMed

    El Kaoutari, Abdessamad; Armougom, Fabrice; Leroy, Quentin; Vialettes, Bernard; Million, Matthieu; Raoult, Didier; Henrissat, Bernard

    2013-01-01

    Distal gut bacteria play a pivotal role in the digestion of dietary polysaccharides by producing a large number of carbohydrate-active enzymes (CAZymes) that the host otherwise does not produce. We report here the design of a custom microarray that we used to spot non-redundant DNA probes for more than 6,500 genes encoding glycoside hydrolases and lyases selected from 174 reference genomes from distal gut bacteria. The custom microarray was tested and validated by the hybridization of bacterial DNA extracted from the stool samples of lean, obese and anorexic individuals. Our results suggest that a microarray-based study can detect genes from low-abundance bacteria better than metagenomic-based studies. A striking example was the finding that a gene encoding a GH6-family cellulase was present in all subjects examined, whereas metagenomic studies have consistently failed to detect this gene in both human and animal gut microbiomes. In addition, an examination of eight stool samples allowed the identification of a corresponding CAZome core containing 46 families of glycoside hydrolases and polysaccharide lyases, which suggests the functional stability of the gut microbiota despite large taxonomical variations between individuals.

  8. Plastic Polymers for Efficient DNA Microarray Hybridization: Application to Microbiological Diagnostics▿

    PubMed Central

    Zhao, Zhengshan; Peytavi, Régis; Diaz-Quijada, Gerardo A.; Picard, Francois J.; Huletsky, Ann; Leblanc, Éric; Frenette, Johanne; Boivin, Guy; Veres, Teodor; Dumoulin, Michel M.; Bergeron, Michel G.

    2008-01-01

    Fabrication of microarray devices using traditional glass slides is not easily adaptable to integration into microfluidic systems. There is thus a need for the development of polymeric materials showing a high hybridization signal-to-background ratio, enabling sensitive detection of microbial pathogens. We have developed such plastic supports suitable for highly sensitive DNA microarray hybridizations. The proof of concept of this microarray technology was done through the detection of four human respiratory viruses that were amplified and labeled with a fluorescent dye via a sensitive reverse transcriptase PCR (RT-PCR) assay. The performance of the microarray hybridization with plastic supports made of PMMA [poly(methylmethacrylate)]-VSUVT or Zeonor 1060R was compared to that with high-quality glass slide microarrays by using both passive and microfluidic hybridization systems. Specific hybridization signal-to-background ratios comparable to that obtained with high-quality commercial glass slides were achieved with both polymeric substrates. Microarray hybridizations demonstrated an analytical sensitivity equivalent to approximately 100 viral genome copies per RT-PCR, which is at least 100-fold higher than the sensitivities of previously reported DNA hybridizations on plastic supports. Testing of these plastic polymers using a microfluidic microarray hybridization platform also showed results that were comparable to those with glass supports. In conclusion, PMMA-VSUVT and Zeonor 1060R are both suitable for highly sensitive microarray hybridizations. PMID:18784318

  9. Genomic imbalances in pediatric patients with chronic kidney disease.

    PubMed

    Verbitsky, Miguel; Sanna-Cherchi, Simone; Fasel, David A; Levy, Brynn; Kiryluk, Krzysztof; Wuttke, Matthias; Abraham, Alison G; Kaskel, Frederick; Köttgen, Anna; Warady, Bradley A; Furth, Susan L; Wong, Craig S; Gharavi, Ali G

    2015-05-01

    There is frequent uncertainty in the identification of specific etiologies of chronic kidney disease (CKD) in children. Recent studies indicate that chromosomal microarrays can identify rare genomic imbalances that can clarify the etiology of neurodevelopmental and cardiac disorders in children; however, the contribution of unsuspected genomic imbalance to the incidence of pediatric CKD is unknown. We performed chromosomal microarrays to detect genomic imbalances in children enrolled in the Chronic Kidney Disease in Children (CKiD) prospective cohort study, a longitudinal prospective multiethnic observational study of North American children with mild to moderate CKD. Patients with clinically detectable syndromic disease were excluded from evaluation. We compared 419 unrelated children enrolled in CKiD to multiethnic cohorts of 21,575 children and adults that had undergone microarray genotyping for studies unrelated to CKD. We identified diagnostic copy number disorders in 31 children with CKD (7.4% of the cohort). We detected 10 known pathogenic genomic disorders, including the 17q12 deletion HNF1 homeobox B (HNF1B) and triple X syndromes in 19 of 419 unrelated CKiD cases as compared with 98 of 21,575 control individuals (OR 10.8, P = 6.1 × 10⁻²⁰). In an additional 12 CKiD cases, we identified 12 likely pathogenic genomic imbalances that would be considered reportable in a clinical setting. These genomic imbalances were evenly distributed among patients diagnosed with congenital and noncongenital forms of CKD. In the vast majority of these cases, the genomic lesion was unsuspected based on the clinical assessment and either reclassified the disease or provided information that might have triggered additional clinical care, such as evaluation for metabolic or neuropsychiatric disease. A substantial proportion of children with CKD have an unsuspected genomic imbalance, suggesting genomic disorders as a risk factor for common forms of pediatric nephropathy. Detection of pathogenic imbalances has practical implications for personalized diagnosis and health monitoring in this population. ClinicalTrials.gov NCT00327860. This work was supported by the NIH, the National Institutes of Diabetes and Digestive and Kidney Diseases (NIDDK), the National Institute of Child Health and Human Development, and the National Heart, Lung, and Blood Institute.

  10. The PEPR GeneChip data warehouse, and implementation of a dynamic time series query tool (SGQT) with graphical interface.

    PubMed

    Chen, Josephine; Zhao, Po; Massaro, Donald; Clerch, Linda B; Almon, Richard R; DuBois, Debra C; Jusko, William J; Hoffman, Eric P

    2004-01-01

    Publicly accessible DNA databases (genome browsers) are rapidly accelerating post-genomic research (see http://www.genome.ucsc.edu/), with integrated genomic DNA, gene structure, EST/ splicing and cross-species ortholog data. DNA databases have relatively low dimensionality; the genome is a linear code that anchors all associated data. In contrast, RNA expression and protein databases need to be able to handle very high dimensional data, with time, tissue, cell type and genes, as interrelated variables. The high dimensionality of microarray expression profile data, and the lack of a standard experimental platform have complicated the development of web-accessible databases and analytical tools. We have designed and implemented a public resource of expression profile data containing 1024 human, mouse and rat Affymetrix GeneChip expression profiles, generated in the same laboratory, and subject to the same quality and procedural controls (Public Expression Profiling Resource; PEPR). Our Oracle-based PEPR data warehouse includes a novel time series query analysis tool (SGQT), enabling dynamic generation of graphs and spreadsheets showing the action of any transcript of interest over time. In this report, we demonstrate the utility of this tool using a 27 time point, in vivo muscle regeneration series. This data warehouse and associated analysis tools provides access to multidimensional microarray data through web-based interfaces, both for download of all types of raw data for independent analysis, and also for straightforward gene-based queries. Planned implementations of PEPR will include web-based remote entry of projects adhering to quality control and standard operating procedure (QC/SOP) criteria, and automated output of alternative probe set algorithms for each project (see http://microarray.cnmcresearch.org/pgadatatable.asp).

  11. The PEPR GeneChip data warehouse, and implementation of a dynamic time series query tool (SGQT) with graphical interface

    PubMed Central

    Chen, Josephine; Zhao, Po; Massaro, Donald; Clerch, Linda B.; Almon, Richard R.; DuBois, Debra C.; Jusko, William J.; Hoffman, Eric P.

    2004-01-01

    Publicly accessible DNA databases (genome browsers) are rapidly accelerating post-genomic research (see http://www.genome.ucsc.edu/), with integrated genomic DNA, gene structure, EST/ splicing and cross-species ortholog data. DNA databases have relatively low dimensionality; the genome is a linear code that anchors all associated data. In contrast, RNA expression and protein databases need to be able to handle very high dimensional data, with time, tissue, cell type and genes, as interrelated variables. The high dimensionality of microarray expression profile data, and the lack of a standard experimental platform have complicated the development of web-accessible databases and analytical tools. We have designed and implemented a public resource of expression profile data containing 1024 human, mouse and rat Affymetrix GeneChip expression profiles, generated in the same laboratory, and subject to the same quality and procedural controls (Public Expression Profiling Resource; PEPR). Our Oracle-based PEPR data warehouse includes a novel time series query analysis tool (SGQT), enabling dynamic generation of graphs and spreadsheets showing the action of any transcript of interest over time. In this report, we demonstrate the utility of this tool using a 27 time point, in vivo muscle regeneration series. This data warehouse and associated analysis tools provides access to multidimensional microarray data through web-based interfaces, both for download of all types of raw data for independent analysis, and also for straightforward gene-based queries. Planned implementations of PEPR will include web-based remote entry of projects adhering to quality control and standard operating procedure (QC/SOP) criteria, and automated output of alternative probe set algorithms for each project (see http://microarray.cnmcresearch.org/pgadatatable.asp). PMID:14681485

  12. Library of molecular associations: curating the complex molecular basis of liver diseases.

    PubMed

    Buchkremer, Stefan; Hendel, Jasmin; Krupp, Markus; Weinmann, Arndt; Schlamp, Kai; Maass, Thorsten; Staib, Frank; Galle, Peter R; Teufel, Andreas

    2010-03-20

    Systems biology approaches offer novel insights into the development of chronic liver diseases. Current genomic databases supporting systems biology analyses are mostly based on microarray data. Although these data often cover genome wide expression, the validity of single microarray experiments remains questionable. However, for systems biology approaches addressing the interactions of molecular networks comprehensive but also highly validated data are necessary. We have therefore generated the first comprehensive database for published molecular associations in human liver diseases. It is based on PubMed published abstracts and aimed to close the gap between genome wide coverage of low validity from microarray data and individual highly validated data from PubMed. After an initial text mining process, the extracted abstracts were all manually validated to confirm content and potential genetic associations and may therefore be highly trusted. All data were stored in a publicly available database, Library of Molecular Associations http://www.medicalgenomics.org/databases/loma/news, currently holding approximately 1260 confirmed molecular associations for chronic liver diseases such as HCC, CCC, liver fibrosis, NASH/fatty liver disease, AIH, PBC, and PSC. We furthermore transformed these data into a powerful resource for molecular liver research by connecting them to multiple biomedical information resources. Together, this database is the first available database providing a comprehensive view and analysis options for published molecular associations on multiple liver diseases.

  13. Microarray Analysis of Long Noncoding RNAs in Female Diabetic Peripheral Neuropathy Patients.

    PubMed

    Luo, Lin; Ji, Lin-Dan; Cai, Jiang-Jia; Feng, Mei; Zhou, Mi; Hu, Su-Pei; Xu, Jin; Zhou, Wen-Hua

    2018-01-01

    Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes mellitus (DM). Because of its controversial pathogenesis, DPN is still not diagnosed or managed properly in most patients. In this study, human lncRNA microarrays were used to identify the differentially expressed lncRNAs in DM and DPN patients, and some of the discovered lncRNAs were further validated in additional 78 samples by quantitative realtime PCR (qRT-PCR). The microarray analysis identified 446 and 1327 differentially expressed lncRNAs in DM and DPN, respectively. The KEGG pathway analysis further revealed that the differentially expressed lncRNA-coexpressed mRNAs between DPN and DM groups were significantly enriched in the MAPK signaling pathway. The lncRNA/mRNA coexpression network indicated that BDNF and TRAF2 correlated with 6 lncRNAs. The qRT-PCR confirmed the initial microarray results. These findings demonstrated that the interplay between lncRNAs and mRNA may be involved in the pathogenesis of DPN, especially the neurotrophin-MAPK signaling pathway, thus providing relevant information for future studies. © 2018 The Author(s). Published by S. Karger AG, Basel.

  14. Genome-wide copy number variant analysis for congenital ventricular septal defects in Chinese Han population.

    PubMed

    An, Yu; Duan, Wenyuan; Huang, Guoying; Chen, Xiaoli; Li, Li; Nie, Chenxia; Hou, Jia; Gui, Yonghao; Wu, Yiming; Zhang, Feng; Shen, Yiping; Wu, Bailin; Wang, Hongyan

    2016-01-08

    Ventricular septal defects (VSDs) constitute the most prevalent congenital heart disease (CHD), occurs either in isolation (isolated VSD) or in combination with other cardiac defects (complex VSD). Copy number variation (CNV) has been highlighted as a possible contributing factor to the etiology of many congenital diseases. However, little is known concerning the involvement of CNVs in either isolated or complex VSDs. We analyzed 154 unrelated Chinese individuals with VSD by chromosomal microarray analysis. The subjects were recruited from four hospitals across China. Each case underwent clinical assessment to define the type of VSD, either isolated or complex VSD. CNVs detected were categorized into syndrom related CNVs, recurrent CNVs and rare CNVs. Genes encompassed by the CNVs were analyzed using enrichment and pathway analysis. Among 154 probands, we identified 29 rare CNVs in 26 VSD patients (16.9 %, 26/154) and 8 syndrome-related CNVs in 8 VSD patients (5.2 %, 8/154). 12 of the detected 29 rare CNVs (41.3 %) were recurrently reported in DECIPHER or ISCA database as associated with either VSD or general heart disease. Fifteen genes (5 %, 15/285) within CNVs were associated with a broad spectrum of complicated CHD. Among these15 genes, 7 genes were in "abnormal interventricular septum morphology" derived from the MGI (mouse genome informatics) database, and nine genes were associated with cardiovascular system development (GO:0072538).We also found that these VSD-related candidate genes are enriched in chromatin binding and transcription regulation, which are the biological processes underlying heart development. Our study demonstrates the potential clinical diagnostic utility of genomic imbalance profiling in VSD patients. Additionally, gene enrichment and pathway analysis helped us to implicate VSD related candidate genes.

  15. Novel genetic tools for studying food-borne Salmonella.

    PubMed

    Andrews-Polymenis, Helene L; Santiviago, Carlos A; McClelland, Michael

    2009-04-01

    Nontyphoidal Salmonellae are highly prevalent food-borne pathogens. High-throughput sequencing of Salmonella genomes is expanding our knowledge of the evolution of serovars and epidemic isolates. Genome sequences have also allowed the creation of complete microarrays. Microarrays have improved the throughput of in vivo expression technology (IVET) used to uncover promoters active during infection. In another method, signature tagged mutagenesis (STM), pools of mutants are subjected to selection. Changes in the population are monitored on a microarray, revealing genes under selection. Complete genome sequences permit the construction of pools of targeted in-frame deletions that have improved STM by minimizing the number of clones and the polarity of each mutant. Together, genome sequences and the continuing development of new tools for functional genomics will drive a revolution in the understanding of Salmonellae in many different niches that are critical for food safety.

  16. Issues in the analysis of oligonucleotide tiling microarrays for transcript mapping

    NASA Technical Reports Server (NTRS)

    Royce, Thomas E.; Rozowsky, Joel S.; Bertone, Paul; Samanta, Manoj; Stolc, Viktor; Weissman, Sherman; Snyder, Michael; Gerstein, Mark

    2005-01-01

    Traditional microarrays use probes complementary to known genes to quantitate the differential gene expression between two or more conditions. Genomic tiling microarray experiments differ in that probes that span a genomic region at regular intervals are used to detect the presence or absence of transcription. This difference means the same sets of biases and the methods for addressing them are unlikely to be relevant to both types of experiment. We introduce the informatics challenges arising in the analysis of tiling microarray experiments as open problems to the scientific community and present initial approaches for the analysis of this nascent technology.

  17. Tracing phylogenomic events leading to diversity of Haemophilus influenzae and the emergence of Brazilian Purpuric Fever (BPF)-associated clones

    PubMed Central

    Papazisi, Leka; Ratnayake, Shashikala; Remortel, Brian G.; Bock, Geoffrey R.; Liang, Wei; Saeed, Alexander I.; Liu, Jia; Fleischmann, Robert D.; Kilian, Mogens; Peterson, Scott N.

    2010-01-01

    Here we report the use of a multi-genome DNA microarray to elucidate the genomic events associated with the emergence of the clonal variants of H. influenzae biogroup aegyptius causing Brazilian Purpuric Fever (BPF), an important pediatric disease with a high mortality rate. We performed directed genome sequencing of strain HK1212 unique loci to construct a species DNA microarray. Comparative genome hybridization using this microarray enabled us to determine and compare gene complements, and infer reliable phylogenomic relationships among members of the species. The higher genomic variability observed in the genomes of BPF-related strains (clones) and their close relatives may be characterized by significant gene flux related to a subset of functional role categories. We found that the acquisition of a large number of virulence determinants featuring numerous cell membrane proteins coupled to the loss of genes involved in transport, central biosynthetic pathways and in particular, energy production pathways to be characteristics of the BPF genomic variants. PMID:20654709

  18. Development of a Custom-Designed, Pan Genomic DNA Microarray to Characterize Strain-Level Diversity among Cronobacter spp.

    PubMed Central

    Tall, Ben Davies; Gangiredla, Jayanthi; Gopinath, Gopal R.; Yan, Qiongqiong; Chase, Hannah R.; Lee, Boram; Hwang, Seongeun; Trach, Larisa; Park, Eunbi; Yoo, YeonJoo; Chung, TaeJung; Jackson, Scott A.; Patel, Isha R.; Sathyamoorthy, Venugopal; Pava-Ripoll, Monica; Kotewicz, Michael L.; Carter, Laurenda; Iversen, Carol; Pagotto, Franco; Stephan, Roger; Lehner, Angelika; Fanning, Séamus; Grim, Christopher J.

    2015-01-01

    Cronobacter species cause infections in all age groups; however neonates are at highest risk and remain the most susceptible age group for life-threatening invasive disease. The genus contains seven species:Cronobacter sakazakii, Cronobacter malonaticus, Cronobacter turicensis, Cronobacter muytjensii, Cronobacter dublinensis, Cronobacter universalis, and Cronobacter condimenti. Despite an abundance of published genomes of these species, genomics-based epidemiology of the genus is not well established. The gene content of a diverse group of 126 unique Cronobacter and taxonomically related isolates was determined using a pan genomic-based DNA microarray as a genotyping tool and as a means to identify outbreak isolates for food safety, environmental, and clinical surveillance purposes. The microarray constitutes 19,287 independent genes representing 15 Cronobacter genomes and 18 plasmids and 2,371 virulence factor genes of phylogenetically related Gram-negative bacteria. The Cronobacter microarray was able to distinguish the seven Cronobacter species from one another and from non-Cronobacter species; and within each species, strains grouped into distinct clusters based on their genomic diversity. These results also support the phylogenic divergence of the genus and clearly highlight the genomic diversity among each member of the genus. The current study establishes a powerful platform for further genomics research of this diverse genus, an important prerequisite toward the development of future countermeasures against this foodborne pathogen in the food safety and clinical arenas. PMID:25984509

  19. Charting the map of life.

    PubMed Central

    Schmidt, C W

    2001-01-01

    Scientists expect that mapping the human genome will lead to a host of innovations in biology and research. For example, it may become possible to use DNA microarrays to accurately diagnose cancer and infectious disease subtypes and to predict clinical outcomes. Scientists might also use the genome to look at the interactions of the environment, genetic makeup, and toxic exposures, including the ability of certain beneficial genes to detoxify the body and resist disease. But despite the great potential of the field of genomics, scientists caution that public expectations need to be tempered by reality. People are as much a product of their environment as they are of their genes, say experts, and to suggest that genetics is the sole determinant that defines humans as individuals stretches the science beyond the current data. PMID:11171541

  20. The Utility of Chromosomal Microarray Analysis in Developmental and Behavioral Pediatrics

    ERIC Educational Resources Information Center

    Beaudet, Arthur L.

    2013-01-01

    Chromosomal microarray analysis (CMA) has emerged as a powerful new tool to identify genomic abnormalities associated with a wide range of developmental disabilities including congenital malformations, cognitive impairment, and behavioral abnormalities. CMA includes array comparative genomic hybridization (CGH) and single nucleotide polymorphism…

  1. geneCommittee: a web-based tool for extensively testing the discriminatory power of biologically relevant gene sets in microarray data classification.

    PubMed

    Reboiro-Jato, Miguel; Arrais, Joel P; Oliveira, José Luis; Fdez-Riverola, Florentino

    2014-01-30

    The diagnosis and prognosis of several diseases can be shortened through the use of different large-scale genome experiments. In this context, microarrays can generate expression data for a huge set of genes. However, to obtain solid statistical evidence from the resulting data, it is necessary to train and to validate many classification techniques in order to find the best discriminative method. This is a time-consuming process that normally depends on intricate statistical tools. geneCommittee is a web-based interactive tool for routinely evaluating the discriminative classification power of custom hypothesis in the form of biologically relevant gene sets. While the user can work with different gene set collections and several microarray data files to configure specific classification experiments, the tool is able to run several tests in parallel. Provided with a straightforward and intuitive interface, geneCommittee is able to render valuable information for diagnostic analyses and clinical management decisions based on systematically evaluating custom hypothesis over different data sets using complementary classifiers, a key aspect in clinical research. geneCommittee allows the enrichment of microarrays raw data with gene functional annotations, producing integrated datasets that simplify the construction of better discriminative hypothesis, and allows the creation of a set of complementary classifiers. The trained committees can then be used for clinical research and diagnosis. Full documentation including common use cases and guided analysis workflows is freely available at http://sing.ei.uvigo.es/GC/.

  2. The Diversity of REcent and Ancient huMan (DREAM): A New Microarray for Genetic Anthropology and Genealogy, Forensics, and Personalized Medicine

    PubMed Central

    Yusuf, Leeban; Anderson, Ainan I J; Pirooznia, Mehdi; Arnellos, Dimitrios; Vilshansky, Gregory; Ercal, Gunes; Lu, Yontao; Webster, Teresa; Baird, Michael L; Esposito, Umberto

    2017-01-01

    Abstract The human population displays wide variety in demographic history, ancestry, content of DNA derived from hominins or ancient populations, adaptation, traits, copy number variation, drug response, and more. These polymorphisms are of broad interest to population geneticists, forensics investigators, and medical professionals. Historically, much of that knowledge was gained from population survey projects. Although many commercial arrays exist for genome-wide single-nucleotide polymorphism genotyping, their design specifications are limited and they do not allow a full exploration of biodiversity. We thereby aimed to design the Diversity of REcent and Ancient huMan (DREAM)—an all-inclusive microarray that would allow both identification of known associations and exploration of standing questions in genetic anthropology, forensics, and personalized medicine. DREAM includes probes to interrogate ancestry informative markers obtained from over 450 human populations, over 200 ancient genomes, and 10 archaic hominins. DREAM can identify 94% and 61% of all known Y and mitochondrial haplogroups, respectively, and was vetted to avoid interrogation of clinically relevant markers. To demonstrate its capabilities, we compared its FST distributions with those of the 1000 Genomes Project and commercial arrays. Although all arrays yielded similarly shaped (inverse J) FST distributions, DREAM’s autosomal and X-chromosomal distributions had the highest mean FST, attesting to its ability to discern subpopulations. DREAM performances are further illustrated in biogeographical, identical by descent, and copy number variation analyses. In summary, with approximately 800,000 markers spanning nearly 2,000 genes, DREAM is a useful tool for genetic anthropology, forensic, and personalized medicine studies. PMID:29165562

  3. Gene expression profile of blood cells for the prediction of delayed cerebral ischemia after intracranial aneurysm rupture: a pilot study in humans.

    PubMed

    Baumann, Antoine; Devaux, Yvan; Audibert, Gérard; Zhang, Lu; Bracard, Serge; Colnat-Coulbois, Sophie; Klein, Olivier; Zannad, Faiez; Charpentier, Claire; Longrois, Dan; Mertes, Paul-Michel

    2013-01-01

    Delayed cerebral ischemia (DCI) is a potentially devastating complication after intracranial aneurysm rupture and its mechanisms remain poorly elucidated. Early identification of the patients prone to developing DCI after rupture may represent a major breakthrough in its prevention and treatment. The single gene approach of DCI has demonstrated interest in humans. We hypothesized that whole genome expression profile of blood cells may be useful for better comprehension and prediction of aneurysmal DCI. Over a 35-month period, 218 patients with aneurysm rupture were included in this study. DCI was defined as the occurrence of a new delayed neurological deficit occurring within 2 weeks after aneurysm rupture with evidence of ischemia either on perfusion-diffusion MRI, CT angiography or CT perfusion imaging, or with cerebral angiography. DCI patients were matched against controls based on 4 out of 5 criteria (age, sex, Fisher grade, aneurysm location and smoking status). Genome-wide expression analysis of blood cells obtained at admission was performed by microarrays. Transcriptomic analysis was performed using long oligonucleotide microarrays representing 25,000 genes. Quantitative PCR: 1 µg of total RNA extracted was reverse-transcribed, and the resulting cDNA was diluted 10-fold before performing quantitative PCR. Microarray data were first analyzed by 'Significance Analysis of Microarrays' software which includes the Benjamini correction for multiple testing. In a second step, microarray data fold change was compared using a two-tailed, paired t test. Analysis of receiver-operating characteristic (ROC) curves and the area under the ROC curves were used for prediction analysis. Logistic regression models were used to investigate the additive value of multiple biomarkers. A total of 16 patients demonstrated DCI. Significance Analysis of Microarrays software failed to retrieve significant genes, most probably because of the heterogeneity of the patients included in the microarray experiments and the small size of the DCI population sample. Standard two-tailed paired t test and C-statistic revealed significant associations between gene expression and the occurrence of DCI: in particular, the expression of neuroregulin 1 was 1.6-fold upregulated in patients with DCI (p = 0.01) and predicted DCI with an area under the ROC curve of 0.96. Logistic regression analyses revealed a significant association between neuroregulin 1 and DCI (odds ratio 1.46, 95% confidence interval 1.02-2.09, p = 0.02). This pilot study suggests that blood cells may be a reservoir of prognostic biomarkers of DCI in patients with intracranial aneurysm rupture. Despite an evident lack of power, this study elicited neuroregulin 1, a vasoreactivity-, inflammation- and angiogenesis-related gene, as a possible candidate predictor of DCI. Larger cohort studies are needed but genome-wide microarray-based studies are promising research tools for the understanding of DCI after intracranial aneurysm rupture. © 2013 S. Karger AG, Basel.

  4. Development and assessment of whole-genome oligonucleotide microarrays to analyze an anaerobic microbial community and its responses to oxidative stress.

    PubMed

    Scholten, Johannes C M; Culley, David E; Nie, Lei; Munn, Kyle J; Chow, Lely; Brockman, Fred J; Zhang, Weiwen

    2007-06-29

    The application of DNA microarray technology to investigate multiple-species microbial communities presents great challenges. In this study, we reported the design and quality assessment of four whole genome oligonucleotide microarrays for two syntroph bacteria, Desulfovibrio vulgaris and Syntrophobacter fumaroxidans, and two archaeal methanogens, Methanosarcina barkeri, and Methanospirillum hungatei, and their application to analyze global gene expression in a four-species microbial community in response to oxidative stress. In order to minimize the possibility of cross-hybridization, cross-genome comparison was performed to assure all probes unique to each genome so that the microarrays could provide species-level resolution. Microarray quality was validated by the good reproducibility of experimental measurements of multiple biological and analytical replicates. This study showed that S. fumaroxidans and M. hungatei responded to the oxidative stress with up-regulation of several genes known to be involved in reactive oxygen species (ROS) detoxification, such as catalase and rubrerythrin in S. fumaroxidans and thioredoxin and heat shock protein Hsp20 in M. hungatei. However, D. vulgaris seemed to be less sensitive to the oxidative stress as a member of a four-species community, since no gene involved in ROS detoxification was up-regulated. Our work demonstrated the successful application of microarrays to a multiple-species microbial community, and our preliminary results indicated that this approach could provide novel insights on the metabolism within microbial communities.

  5. Identification and validation of differentially expressed transcripts by RNA-sequencing of formalin-fixed, paraffin-embedded (FFPE) lung tissue from patients with Idiopathic Pulmonary Fibrosis.

    PubMed

    Vukmirovic, Milica; Herazo-Maya, Jose D; Blackmon, John; Skodric-Trifunovic, Vesna; Jovanovic, Dragana; Pavlovic, Sonja; Stojsic, Jelena; Zeljkovic, Vesna; Yan, Xiting; Homer, Robert; Stefanovic, Branko; Kaminski, Naftali

    2017-01-12

    Idiopathic Pulmonary Fibrosis (IPF) is a lethal lung disease of unknown etiology. A major limitation in transcriptomic profiling of lung tissue in IPF has been a dependence on snap-frozen fresh tissues (FF). In this project we sought to determine whether genome scale transcript profiling using RNA Sequencing (RNA-Seq) could be applied to archived Formalin-Fixed Paraffin-Embedded (FFPE) IPF tissues. We isolated total RNA from 7 IPF and 5 control FFPE lung tissues and performed 50 base pair paired-end sequencing on Illumina 2000 HiSeq. TopHat2 was used to map sequencing reads to the human genome. On average ~62 million reads (53.4% of ~116 million reads) were mapped per sample. 4,131 genes were differentially expressed between IPF and controls (1,920 increased and 2,211 decreased (FDR < 0.05). We compared our results to differentially expressed genes calculated from a previously published dataset generated from FF tissues analyzed on Agilent microarrays (GSE47460). The overlap of differentially expressed genes was very high (760 increased and 1,413 decreased, FDR < 0.05). Only 92 differentially expressed genes changed in opposite directions. Pathway enrichment analysis performed using MetaCore confirmed numerous IPF relevant genes and pathways including extracellular remodeling, TGF-beta, and WNT. Gene network analysis of MMP7, a highly differentially expressed gene in both datasets, revealed the same canonical pathways and gene network candidates in RNA-Seq and microarray data. For validation by NanoString nCounter® we selected 35 genes that had a fold change of 2 in at least one dataset (10 discordant, 10 significantly differentially expressed in one dataset only and 15 concordant genes). High concordance of fold change and FDR was observed for each type of the samples (FF vs FFPE) with both microarrays (r = 0.92) and RNA-Seq (r = 0.90) and the number of discordant genes was reduced to four. Our results demonstrate that RNA sequencing of RNA obtained from archived FFPE lung tissues is feasible. The results obtained from FFPE tissue are highly comparable to FF tissues. The ability to perform RNA-Seq on archived FFPE IPF tissues should greatly enhance the availability of tissue biopsies for research in IPF.

  6. Mapping of Variable DNA Methylation Across Multiple Cell Types Defines a Dynamic Regulatory Landscape of the Human Genome.

    PubMed

    Gu, Junchen; Stevens, Michael; Xing, Xiaoyun; Li, Daofeng; Zhang, Bo; Payton, Jacqueline E; Oltz, Eugene M; Jarvis, James N; Jiang, Kaiyu; Cicero, Theodore; Costello, Joseph F; Wang, Ting

    2016-04-07

    DNA methylation is an important epigenetic modification involved in many biological processes and diseases. Many studies have mapped DNA methylation changes associated with embryogenesis, cell differentiation, and cancer at a genome-wide scale. Our understanding of genome-wide DNA methylation changes in a developmental or disease-related context has been steadily growing. However, the investigation of which CpGs are variably methylated in different normal cell or tissue types is still limited. Here, we present an in-depth analysis of 54 single-CpG-resolution DNA methylomes of normal human cell types by integrating high-throughput sequencing-based methylation data. We found that the ratio of methylated to unmethylated CpGs is relatively constant regardless of cell type. However, which CpGs made up the unmethylated complement was cell-type specific. We categorized the 26,000,000 human autosomal CpGs based on their methylation levels across multiple cell types to identify variably methylated CpGs and found that 22.6% exhibited variable DNA methylation. These variably methylated CpGs formed 660,000 variably methylated regions (VMRs), encompassing 11% of the genome. By integrating a multitude of genomic data, we found that VMRs enrich for histone modifications indicative of enhancers, suggesting their role as regulatory elements marking cell type specificity. VMRs enriched for transcription factor binding sites in a tissue-dependent manner. Importantly, they enriched for GWAS variants, suggesting that VMRs could potentially be implicated in disease and complex traits. Taken together, our results highlight the link between CpG methylation variation, genetic variation, and disease risk for many human cell types. Copyright © 2016 Gu et al.

  7. Toward a Genome-Wide Systems Biology Analysis of Host-Pathogen Interactions in Group A Streptococcus

    PubMed Central

    Musser, James M.; DeLeo, Frank R.

    2005-01-01

    Genome-wide analysis of microbial pathogens and molecular pathogenesis processes has become an area of considerable activity in the last 5 years. These studies have been made possible by several advances, including completion of the human genome sequence, publication of genome sequences for many human pathogens, development of microarray technology and high-throughput proteomics, and maturation of bioinformatics. Despite these advances, relatively little effort has been expended in the bacterial pathogenesis arena to develop and use integrated research platforms in a systems biology approach to enhance our understanding of disease processes. This review discusses progress made in exploiting an integrated genome-wide research platform to gain new knowledge about how the human bacterial pathogen group A Streptococcus causes disease. Results of these studies have provided many new avenues for basic pathogenesis research and translational research focused on development of an efficacious human vaccine and novel therapeutics. One goal in summarizing this line of study is to bring exciting new findings to the attention of the investigative pathology community. In addition, we hope the review will stimulate investigators to consider using analogous approaches for analysis of the molecular pathogenesis of other microbes. PMID:16314461

  8. HOXB2, an adverse prognostic indicator for stage I lung adenocarcinomas, promotes invasion by transcriptional regulation of metastasis-related genes in HOP-62 non-small cell lung cancer cells.

    PubMed

    Inamura, Kentaro; Togashi, Yuki; Ninomiya, Hironori; Shimoji, Takashi; Noda, Tetsuo; Ishikawa, Yuichi

    2008-01-01

    Previously, using microarray and real-time RT-PCR analysis, we established that HOXB2 is an adverse prognostic indicator for Stage I lung adenocarcinomas. HOXB2 is one of the homeobox master development-controlling genes regulating morphogenesis and cell differentiation. The molecular functions of HOXB2 were analyzed with a small interfering RNA (siRNA) approach in HOP-62 human non-small cell lung cancer (NSCLC) cells featuring high HOXB2 expression. Matrigel invasion assays and microarray gene expression analysis were compared between the HOXB2-siRNA cells and the control cells. The Matrigel invasion assays showed attenuation of HOXB2 expression by siRNA to result in a significant decrease of invasiveness compared to the control cells (p = 0.0013, paired t-test). On microarray gene expression analysis, up-regulation of many metastasis-related genes and others correlating with HOXB2 expression was observed in the control case. With attenuation of HOXB2 expression, downregulation was noted for laminins alpha 4 and 5, involved in enriched signaling, and for Mac-2BP (Mac-2 binding protein) and integrin beta 4 amongst the genes having an enriched glycoprotein ontology. HOXB2 promotes invasion of lung cancer cells through the regulation of metastasis-related genes.

  9. Transcriptome Profiling of In-Vivo Produced Bovine Pre-implantation Embryos Using Two-color Microarray Platform.

    PubMed

    Salehi, Reza; Tsoi, Stephen C M; Colazo, Marcos G; Ambrose, Divakar J; Robert, Claude; Dyck, Michael K

    2017-01-30

    Early embryonic loss is a large contributor to infertility in cattle. Moreover, bovine becomes an interesting model to study human preimplantation embryo development due to their similar developmental process. Although genetic factors are known to affect early embryonic development, the discovery of such factors has been a serious challenge. Microarray technology allows quantitative measurement and gene expression profiling of transcript levels on a genome-wide basis. One of the main decisions that have to be made when planning a microarray experiment is whether to use a one- or two-color approach. Two-color design increases technical replication, minimizes variability, improves sensitivity and accuracy as well as allows having loop designs, defining the common reference samples. Although microarray is a powerful biological tool, there are potential pitfalls that can attenuate its power. Hence, in this technical paper we demonstrate an optimized protocol for RNA extraction, amplification, labeling, hybridization of the labeled amplified RNA to the array, array scanning and data analysis using the two-color analysis strategy.

  10. Mitochondrial damage and cytoskeleton reorganization in human dermal fibroblasts exposed to artificial visible light similar to screen-emitted light.

    PubMed

    Rascalou, Adeline; Lamartine, Jérôme; Poydenot, Pauline; Demarne, Frédéric; Bechetoille, Nicolas

    2018-05-05

    Artificial visible light is everywhere in modern life. Social communication confronts us with screens of all kinds, and their use is on the rise. We are therefore increasingly exposed to artificial visible light, the effects of which on skin are poorly known. The purpose of this study was to model the artificial visible light emitted by electronic devices and assess its effect on normal human fibroblasts. The spectral irradiance emitted by electronic devices was optically measured and equipment was developed to accurately reproduce such artificial visible light. Effects on normal human fibroblasts were analyzed on human genome microarray-based gene expression analysis. At cellular level, visualization and image analysis were performed on the mitochondrial network and F-actin cytoskeleton. Cell proliferation, ATP release and type I procollagen secretion were also measured. We developed a device consisting of 36 LEDs simultaneously emitting blue, green and red light at distinct wavelengths (450 nm, 525 nm and 625 nm) with narrow spectra and equivalent radiant power for the three colors. A dose of 99 J/cm 2 artificial visible light was selected so as not to induce cell mortality following exposure. Microarray analysis revealed 2984 light-modulated transcripts. Functional annotation of light-responsive genes revealed several enriched functions including, amongst others, the "mitochondria" and "integrin signaling" categories. Selected results were confirmed by real-time quantitative PCR, analyzing 24 genes representing these two categories. Analysis of micro-patterned culture plates showed marked fragmentation of the mitochondrial network and disorganization of the F-actin cytoskeleton following exposure. Functionally, there was considerable impairment of cell growth and spread, ATP release and type I procollagen secretion in exposed fibroblasts. Artificial visible light induces drastic molecular and cellular changes in normal human fibroblasts. This may impede normal cellular functions and contribute to premature skin aging. The present results extend our knowledge of the effects of the low-energy wavelengths that are increasingly used to treat skin disorders. Copyright © 2018 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  11. Metabolic Environments and Genomic Features Associated with Pathogenic and Mutualistic Interactions between Bacteria and Plants is accepted for publication in MPMI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karpinets, Tatiana V; Park, Byung H; Syed, Mustafa H

    Most bacterial symbionts of plants are phenotypically characterized by their parasitic or matualistic relationship with the host; however, the genomic characteristics that likely discriminate mutualistic symbionts from pathogens of plants are poorly understood. This study comparatively analyzed the genomes of 54 plant-symbiontic bacteria, 27 mutualists and 27 pathogens, to discover genomic determinants of their parasitic and mutualistic nature in terms of protein family domains, KEGG orthologous groups, metabolic pathways and families of carbohydrate-active enzymes (CAZymes). We further used all bacteria with sequenced genomesl, published microarrays and transcriptomics experimental datasets, and literature to validate and to explore results of the comparison.more » The analysis revealed that genomes of mutualists are larger in size and higher in GC content and encode greater molecular, functional and metabolic diversity than the investigated genomes of pathogens. This enriched molecular and functional enzyme diversity included constructive biosynthetic signatures of CAZymes and metabolic pathways in genomes of mutualists compared with catabolic signatures dominant in the genomes of pathogens. Another discriminative characteristic of mutualists is the co-occurence of gene clusters required for the expression and function of nitrogenase and RuBisCO. Analysis of previously published experimental data indicate that nitrogen-fixing mutualists may employ Rubisco to fix CO2 not in the canonical Calvin-Benson-Basham cycle but in a novel metabolic pathway, here called Rubisco-based glycolysis , to increase efficiency of sugar utilization during the symbiosis with plants. An important discriminative characteristic of plant pathogenic bacteria is two groups of genes likely encoding effector proteins involved in host invasion and a genomic locus encoding a putative secretion system that includes a DUF1525 domain protein conserved in pathogens of plants and of other organisms. The protein belongs to the same clan of thioredoxins as the circadian clock protein kaiB found in many mutualistic symbionts and highly abundant in blood cells colonized by a human pathogen, Salmonella enterica serotype Typhi, the cause of typhoid fever.« less

  12. VectorBase: a data resource for invertebrate vector genomics

    PubMed Central

    Lawson, Daniel; Arensburger, Peter; Atkinson, Peter; Besansky, Nora J.; Bruggner, Robert V.; Butler, Ryan; Campbell, Kathryn S.; Christophides, George K.; Christley, Scott; Dialynas, Emmanuel; Hammond, Martin; Hill, Catherine A.; Konopinski, Nathan; Lobo, Neil F.; MacCallum, Robert M.; Madey, Greg; Megy, Karine; Meyer, Jason; Redmond, Seth; Severson, David W.; Stinson, Eric O.; Topalis, Pantelis; Birney, Ewan; Gelbart, William M.; Kafatos, Fotis C.; Louis, Christos; Collins, Frank H.

    2009-01-01

    VectorBase (http://www.vectorbase.org) is an NIAID-funded Bioinformatic Resource Center focused on invertebrate vectors of human pathogens. VectorBase annotates and curates vector genomes providing a web accessible integrated resource for the research community. Currently, VectorBase contains genome information for three mosquito species: Aedes aegypti, Anopheles gambiae and Culex quinquefasciatus, a body louse Pediculus humanus and a tick species Ixodes scapularis. Since our last report VectorBase has initiated a community annotation system, a microarray and gene expression repository and controlled vocabularies for anatomy and insecticide resistance. We have continued to develop both the software infrastructure and tools for interrogating the stored data. PMID:19028744

  13. The Microarray Revolution: Perspectives from Educators

    ERIC Educational Resources Information Center

    Brewster, Jay L.; Beason, K. Beth; Eckdahl, Todd T.; Evans, Irene M.

    2004-01-01

    In recent years, microarray analysis has become a key experimental tool, enabling the analysis of genome-wide patterns of gene expression. This review approaches the microarray revolution with a focus upon four topics: 1) the early development of this technology and its application to cancer diagnostics; 2) a primer of microarray research,…

  14. APPLICATION OF DNA MICROARRAYS TO REPRODUCTIVE TOXICOLOGY AND THE DEVELOPMENT OF A TESTIS ARRAY

    EPA Science Inventory

    With the advent of sequence information for entire mammalian genomes, it is now possible to analyze gene expression and gene polymorphisms on a genomic scale. The primary tool for analysis of gene expression is the DNA microarray. We have used commercially available cDNA micro...

  15. Whole-Genome Sequences of Nonencapsulated Haemophilus influenzae Strains Isolated in Italy

    PubMed Central

    Giufrè, Maria; De Chiara, Matteo; Censini, Stefano; Guidotti, Silvia; Torricelli, Giulia; De Angelis, Gabriella; Cardines, Rita; Pizza, Mariagrazia; Muzzi, Alessandro; Soriani, Marco

    2015-01-01

    Haemophilus influenzae is an important human pathogen involved in invasive disease. Here, we report the whole-genome sequences of 11 nonencapsulated H. influenzae (ncHi) strains isolated from both invasive disease and healthy carriers in Italy. This genomic information will enrich our understanding of the molecular basis of ncHi pathogenesis. PMID:25814593

  16. Experimental annotation of the human genome using microarray technology.

    PubMed

    Shoemaker, D D; Schadt, E E; Armour, C D; He, Y D; Garrett-Engele, P; McDonagh, P D; Loerch, P M; Leonardson, A; Lum, P Y; Cavet, G; Wu, L F; Altschuler, S J; Edwards, S; King, J; Tsang, J S; Schimmack, G; Schelter, J M; Koch, J; Ziman, M; Marton, M J; Li, B; Cundiff, P; Ward, T; Castle, J; Krolewski, M; Meyer, M R; Mao, M; Burchard, J; Kidd, M J; Dai, H; Phillips, J W; Linsley, P S; Stoughton, R; Scherer, S; Boguski, M S

    2001-02-15

    The most important product of the sequencing of a genome is a complete, accurate catalogue of genes and their products, primarily messenger RNA transcripts and their cognate proteins. Such a catalogue cannot be constructed by computational annotation alone; it requires experimental validation on a genome scale. Using 'exon' and 'tiling' arrays fabricated by ink-jet oligonucleotide synthesis, we devised an experimental approach to validate and refine computational gene predictions and define full-length transcripts on the basis of co-regulated expression of their exons. These methods can provide more accurate gene numbers and allow the detection of mRNA splice variants and identification of the tissue- and disease-specific conditions under which genes are expressed. We apply our technique to chromosome 22q under 69 experimental condition pairs, and to the entire human genome under two experimental conditions. We discuss implications for more comprehensive, consistent and reliable genome annotation, more efficient, full-length complementary DNA cloning strategies and application to complex diseases.

  17. Feature co-localization landscape of the human genome

    PubMed Central

    Ng, Siu-Kin; Hu, Taobo; Long, Xi; Chan, Cheuk-Hin; Tsang, Shui-Ying; Xue, Hong

    2016-01-01

    Although feature co-localizations could serve as useful guide-posts to genome architecture, a comprehensive and quantitative feature co-localization map of the human genome has been lacking. Herein we show that, in contrast to the conventional bipartite division of genomic sequences into genic and inter-genic regions, pairwise co-localizations of forty-two genomic features in the twenty-two autosomes based on 50-kb to 2,000-kb sequence windows indicate a tripartite zonal architecture comprising Genic zones enriched with gene-related features and Alu-elements; Proximal zones enriched with MIR- and L2-elements, transcription-factor-binding-sites (TFBSs), and conserved-indels (CIDs); and Distal zones enriched with L1-elements. Co-localizations between single-nucleotide-polymorphisms (SNPs) and copy-number-variations (CNVs) reveal a fraction of sequence windows displaying steeply enhanced levels of SNPs, CNVs and recombination rates that point to active adaptive evolution in such pathways as immune response, sensory perceptions, and cognition. The strongest positive co-localization observed between TFBSs and CIDs suggests a regulatory role of CIDs in cooperation with TFBSs. The positive co-localizations of cancer somatic CNVs (CNVT) with all Proximal zone and most Genic zone features, in contrast to the distinctly more restricted co-localizations exhibited by germline CNVs (CNVG), reveal disparate distributions of CNVTs and CNVGs indicative of dissimilarity in their underlying mechanisms. PMID:26854351

  18. Identification of candidate genes in osteoporosis by integrated microarray analysis.

    PubMed

    Li, J J; Wang, B Q; Fei, Q; Yang, Y; Li, D

    2016-12-01

    In order to screen the altered gene expression profile in peripheral blood mononuclear cells of patients with osteoporosis, we performed an integrated analysis of the online microarray studies of osteoporosis. We searched the Gene Expression Omnibus (GEO) database for microarray studies of peripheral blood mononuclear cells in patients with osteoporosis. Subsequently, we integrated gene expression data sets from multiple microarray studies to obtain differentially expressed genes (DEGs) between patients with osteoporosis and normal controls. Gene function analysis was performed to uncover the functions of identified DEGs. A total of three microarray studies were selected for integrated analysis. In all, 1125 genes were found to be significantly differentially expressed between osteoporosis patients and normal controls, with 373 upregulated and 752 downregulated genes. Positive regulation of the cellular amino metabolic process (gene ontology (GO): 0033240, false discovery rate (FDR) = 1.00E + 00) was significantly enriched under the GO category for biological processes, while for molecular functions, flavin adenine dinucleotide binding (GO: 0050660, FDR = 3.66E-01) and androgen receptor binding (GO: 0050681, FDR = 6.35E-01) were significantly enriched. DEGs were enriched in many osteoporosis-related signalling pathways, including those of mitogen-activated protein kinase (MAPK) and calcium. Protein-protein interaction (PPI) network analysis showed that the significant hub proteins contained ubiquitin specific peptidase 9, X-linked (Degree = 99), ubiquitin specific peptidase 19 (Degree = 57) and ubiquitin conjugating enzyme E2 B (Degree = 57). Analysis of gene function of identified differentially expressed genes may expand our understanding of fundamental mechanisms leading to osteoporosis. Moreover, significantly enriched pathways, such as MAPK and calcium, may involve in osteoporosis through osteoblastic differentiation and bone formation.Cite this article: J. J. Li, B. Q. Wang, Q. Fei, Y. Yang, D. Li. Identification of candidate genes in osteoporosis by integrated microarray analysis. Bone Joint Res 2016;5:594-601. DOI: 10.1302/2046-3758.512.BJR-2016-0073.R1. © 2016 Fei et al.

  19. LS-CAP: an algorithm for identifying cytogenetic aberrations in hepatocellular carcinoma using microarray data.

    PubMed

    He, Xianmin; Wei, Qing; Sun, Meiqian; Fu, Xuping; Fan, Sichang; Li, Yao

    2006-05-01

    Biological techniques such as Array-Comparative genomic hybridization (CGH), fluorescent in situ hybridization (FISH) and affymetrix single nucleotide pleomorphism (SNP) array have been used to detect cytogenetic aberrations. However, on genomic scale, these techniques are labor intensive and time consuming. Comparative genomic microarray analysis (CGMA) has been used to identify cytogenetic changes in hepatocellular carcinoma (HCC) using gene expression microarray data. However, CGMA algorithm can not give precise localization of aberrations, fails to identify small cytogenetic changes, and exhibits false negatives and positives. Locally un-weighted smoothing cytogenetic aberrations prediction (LS-CAP) based on local smoothing and binomial distribution can be expected to address these problems. LS-CAP algorithm was built and used on HCC microarray profiles. Eighteen cytogenetic abnormalities were identified, among them 5 were reported previously, and 12 were proven by CGH studies. LS-CAP effectively reduced the false negatives and positives, and precisely located small fragments with cytogenetic aberrations.

  20. Orthology for comparative genomics in the mouse genome database.

    PubMed

    Dolan, Mary E; Baldarelli, Richard M; Bello, Susan M; Ni, Li; McAndrews, Monica S; Bult, Carol J; Kadin, James A; Richardson, Joel E; Ringwald, Martin; Eppig, Janan T; Blake, Judith A

    2015-08-01

    The mouse genome database (MGD) is the model organism database component of the mouse genome informatics system at The Jackson Laboratory. MGD is the international data resource for the laboratory mouse and facilitates the use of mice in the study of human health and disease. Since its beginnings, MGD has included comparative genomics data with a particular focus on human-mouse orthology, an essential component of the use of mouse as a model organism. Over the past 25 years, novel algorithms and addition of orthologs from other model organisms have enriched comparative genomics in MGD data, extending the use of orthology data to support the laboratory mouse as a model of human biology. Here, we describe current comparative data in MGD and review the history and refinement of orthology representation in this resource.

  1. Treatment of obstructive sleep apnea alters cancer-associated transcriptional signatures in circulating leukocytes.

    PubMed

    Gharib, Sina A; Seiger, Ashley N; Hayes, Amanda L; Mehra, Reena; Patel, Sanjay R

    2014-04-01

    Obstructive sleep apnea (OSA) has been associated with a number of chronic disorders that may improve with effective therapy. However, the molecular pathways affected by continuous positive airway pressure (CPAP) treatment are largely unknown. We sought to assess the system-wide consequences of CPAP therapy by transcriptionally profiling peripheral blood leukocytes (PBLs). Subjects in whom severe OSA was diagnosed were treated with CPAP, and whole-genome expression measurement of PBLs was performed at baseline and following therapy. We used gene set enrichment analysis (GSEA) to identify pathways that were differentially enriched. Network analysis was then applied to highlight key drivers of processes influenced by CPAP. Eighteen subjects with significant OSA underwent CPAP therapy and microarray analysis of their PBLs. Treatment with CPAP improved apnea-hypopnea index (AHI), daytime sleepiness, and blood pressure, but did not affect anthropometric measures. GSEA revealed a number of enriched gene sets, many of which were involved in neoplastic processes and displayed downregulated expression patterns in response to CPAP. Network analysis identified several densely connected genes that are important modulators of cancer and tumor growth. Effective therapy of OSA with CPAP is associated with alterations in circulating leukocyte gene expression. Functional enrichment and network analyses highlighted transcriptional suppression in cancer-related pathways, suggesting potentially novel mechanisms linking OSA with neoplastic signatures.

  2. Identification of Biological Targets of Therapeutic Intervention for Hepatocellular Carcinoma by Integrated Bioinformatical Analysis.

    PubMed

    Hu, Wei Qi; Wang, Wei; Fang, Di Long; Yin, Xue Feng

    2018-05-24

    BACKGROUND We screened the potential molecular targets and investigated the molecular mechanisms of hepatocellular carcinoma (HCC). MATERIAL AND METHODS Microarray data of GSE47786, including the 40 μM berberine-treated HepG2 human hepatoma cell line and 0.08% DMSO-treated as control cells samples, was downloaded from the GEO database. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) enrichment analyses were performed; the protein-protein interaction (PPI) networks were constructed using STRING database and Cytoscape; the genetic alteration, neighboring genes networks, and survival analysis of hub genes were explored by cBio portal; and the expression of mRNA level of hub genes was obtained from the Oncomine databases. RESULTS A total of 56 upregulated and 8 downregulated DEGs were identified. The GO analysis results were significantly enriched in cell-cycle arrest, regulation of transcription, DNA-dependent, protein amino acid phosphorylation, cell cycle, and apoptosis. The KEGG pathway analysis showed that DEGs were enriched in MAPK signaling pathway, ErbB signaling pathway, and p53 signaling pathway. JUN, EGR1, MYC, and CDKN1A were identified as hub genes in PPI networks. The genetic alteration of hub genes was mainly concentrated in amplification. TP53, NDRG1, and MAPK15 were found in neighboring genes networks. Altered genes had worse overall survival and disease-free survival than unaltered genes. The expressions of EGR1, MYC, and CDKN1A were significantly increased, but expression of JUN was not, in the Roessler Liver datasets. CONCLUSIONS We found that JUN, EGR1, MYC, and CDKN1A might be used as diagnostic and therapeutic molecular biomarkers and broaden our understanding of the molecular mechanisms of HCC.

  3. Tracing phylogenomic events leading to diversity of Haemophilus influenzae and the emergence of Brazilian Purpuric Fever (BPF)-associated clones.

    PubMed

    Papazisi, Leka; Ratnayake, Shashikala; Remortel, Brian G; Bock, Geoffrey R; Liang, Wei; Saeed, Alexander I; Liu, Jia; Fleischmann, Robert D; Kilian, Mogens; Peterson, Scott N

    2010-11-01

    Here we report the use of a multi-genome DNA microarray to elucidate the genomic events associated with the emergence of the clonal variants of Haemophilus influenzae biogroup aegyptius causing Brazilian Purpuric Fever (BPF), an important pediatric disease with a high mortality rate. We performed directed genome sequencing of strain HK1212 unique loci to construct a species DNA microarray. Comparative genome hybridization using this microarray enabled us to determine and compare gene complements, and infer reliable phylogenomic relationships among members of the species. The higher genomic variability observed in the genomes of BPF-related strains (clones) and their close relatives may be characterized by significant gene flux related to a subset of functional role categories. We found that the acquisition of a large number of virulence determinants featuring numerous cell membrane proteins coupled to the loss of genes involved in transport, central biosynthetic pathways and in particular, energy production pathways to be characteristics of the BPF genomic variants. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. The Candidate Cancer Gene Database: a database of cancer driver genes from forward genetic screens in mice.

    PubMed

    Abbott, Kenneth L; Nyre, Erik T; Abrahante, Juan; Ho, Yen-Yi; Isaksson Vogel, Rachel; Starr, Timothy K

    2015-01-01

    Identification of cancer driver gene mutations is crucial for advancing cancer therapeutics. Due to the overwhelming number of passenger mutations in the human tumor genome, it is difficult to pinpoint causative driver genes. Using transposon mutagenesis in mice many laboratories have conducted forward genetic screens and identified thousands of candidate driver genes that are highly relevant to human cancer. Unfortunately, this information is difficult to access and utilize because it is scattered across multiple publications using different mouse genome builds and strength metrics. To improve access to these findings and facilitate meta-analyses, we developed the Candidate Cancer Gene Database (CCGD, http://ccgd-starrlab.oit.umn.edu/). The CCGD is a manually curated database containing a unified description of all identified candidate driver genes and the genomic location of transposon common insertion sites (CISs) from all currently published transposon-based screens. To demonstrate relevance to human cancer, we performed a modified gene set enrichment analysis using KEGG pathways and show that human cancer pathways are highly enriched in the database. We also used hierarchical clustering to identify pathways enriched in blood cancers compared to solid cancers. The CCGD is a novel resource available to scientists interested in the identification of genetic drivers of cancer. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. EuPathDB: the eukaryotic pathogen genomics database resource

    PubMed Central

    Aurrecoechea, Cristina; Barreto, Ana; Basenko, Evelina Y.; Brestelli, John; Brunk, Brian P.; Cade, Shon; Crouch, Kathryn; Doherty, Ryan; Falke, Dave; Fischer, Steve; Gajria, Bindu; Harb, Omar S.; Heiges, Mark; Hertz-Fowler, Christiane; Hu, Sufen; Iodice, John; Kissinger, Jessica C.; Lawrence, Cris; Li, Wei; Pinney, Deborah F.; Pulman, Jane A.; Roos, David S.; Shanmugasundram, Achchuthan; Silva-Franco, Fatima; Steinbiss, Sascha; Stoeckert, Christian J.; Spruill, Drew; Wang, Haiming; Warrenfeltz, Susanne; Zheng, Jie

    2017-01-01

    The Eukaryotic Pathogen Genomics Database Resource (EuPathDB, http://eupathdb.org) is a collection of databases covering 170+ eukaryotic pathogens (protists & fungi), along with relevant free-living and non-pathogenic species, and select pathogen hosts. To facilitate the discovery of meaningful biological relationships, the databases couple preconfigured searches with visualization and analysis tools for comprehensive data mining via intuitive graphical interfaces and APIs. All data are analyzed with the same workflows, including creation of gene orthology profiles, so data are easily compared across data sets, data types and organisms. EuPathDB is updated with numerous new analysis tools, features, data sets and data types. New tools include GO, metabolic pathway and word enrichment analyses plus an online workspace for analysis of personal, non-public, large-scale data. Expanded data content is mostly genomic and functional genomic data while new data types include protein microarray, metabolic pathways, compounds, quantitative proteomics, copy number variation, and polysomal transcriptomics. New features include consistent categorization of searches, data sets and genome browser tracks; redesigned gene pages; effective integration of alternative transcripts; and a EuPathDB Galaxy instance for private analyses of a user's data. Forthcoming upgrades include user workspaces for private integration of data with existing EuPathDB data and improved integration and presentation of host–pathogen interactions. PMID:27903906

  6. Microarray platform for omics analysis

    NASA Astrophysics Data System (ADS)

    Mecklenburg, Michael; Xie, Bin

    2001-09-01

    Microarray technology has revolutionized genetic analysis. However, limitations in genome analysis has lead to renewed interest in establishing 'omic' strategies. As we enter the post-genomic era, new microarray technologies are needed to address these new classes of 'omic' targets, such as proteins, as well as lipids and carbohydrates. We have developed a microarray platform that combines self- assembling monolayers with the biotin-streptavidin system to provide a robust, versatile immobilization scheme. A hydrophobic film is patterned on the surface creating an array of tension wells that eliminates evaporation effects thereby reducing the shear stress to which biomolecules are exposed to during immobilization. The streptavidin linker layer makes it possible to adapt and/or develop microarray based assays using virtually any class of biomolecules including: carbohydrates, peptides, antibodies, receptors, as well as them ore traditional DNA based arrays. Our microarray technology is designed to furnish seamless compatibility across the various 'omic' platforms by providing a common blueprint for fabricating and analyzing arrays. The prototype microarray uses a microscope slide footprint patterned with 2 by 96 flat wells. Data on the microarray platform will be presented.

  7. A systematic analysis of genomic changes in Tg2576 mice.

    PubMed

    Tan, Lu; Wang, Xiong; Ni, Zhong-Fei; Zhu, Xiuming; Wu, Wei; Zhu, Ling-Qiang; Liu, Dan

    2013-06-01

    Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterized by intelligence decline, behavioral disorders and cognitive disability. The purpose of this study was to investigate gene expression in AD, based on published microarray data on Tg2576 mice. Hierarchical Cluster Analysis and Gene Ontology were employed to group genes together on the basis of their product characteristics and annotation data. Genes with prominent alterations were clustered into apoptosis and axon guidance pathways. Based on our findings and those of previous studies, we propose that the mitochondria-mediated apoptotic pathway plays a crucial role in the neuronal loss and synaptic dysfunction associated with AD. Furthermore, based on the findings of Positional Gene Enrichment analysis and Gene Set Enrichment analysis, we propose that the regulation of transcription of AD genes may be an important pathogenic factor in this neurodegenerative disease. Our results highlight the importance of genes that could subsequently be examined for their potential as prognostic markers for AD.

  8. Detecting cooperative sequences in the binding of RNA Polymerase-II

    NASA Astrophysics Data System (ADS)

    Glass, Kimberly; Rozenberg, Julian; Girvan, Michelle; Losert, Wolfgang; Ott, Ed; Vinson, Charles

    2008-03-01

    Regulation of the expression level of genes is a key biological process controlled largely by the 1000 base pair (bp) sequence preceding each gene (the promoter region). Within that region transcription factor binding sites (TFBS), 5-10 bp long sequences, act individually or cooperate together in the recruitment of, and therefore subsequent gene transcription by, RNA Polymerase-II (RNAP). We have measured the binding of RNAP to promoters on a genome-wide basis using Chromatin Immunoprecipitation (ChIP-on-Chip) microarray assays. Using all 8-base pair long sequences as a test set, we have identified the DNA sequences that are enriched in promoters with high RNAP binding values. We are able to demonstrate that virtually all sequences enriched in such promoters contain a CpG dinucleotide, indicating that TFBS that contain the CpG dinucleotide are involved in RNAP binding to promoters. Further analysis shows that the presence of pairs of CpG containing sequences cooperate to enhance the binding of RNAP to the promoter.

  9. A microarray-based genotyping and genetic mapping approach for highly heterozygous outcrossing species enables localization of a large fraction of the unassembled Populus trichocarpa genome sequence.

    PubMed

    Drost, Derek R; Novaes, Evandro; Boaventura-Novaes, Carolina; Benedict, Catherine I; Brown, Ryan S; Yin, Tongming; Tuskan, Gerald A; Kirst, Matias

    2009-06-01

    Microarrays have demonstrated significant power for genome-wide analyses of gene expression, and recently have also revolutionized the genetic analysis of segregating populations by genotyping thousands of loci in a single assay. Although microarray-based genotyping approaches have been successfully applied in yeast and several inbred plant species, their power has not been proven in an outcrossing species with extensive genetic diversity. Here we have developed methods for high-throughput microarray-based genotyping in such species using a pseudo-backcross progeny of 154 individuals of Populus trichocarpa and P. deltoides analyzed with long-oligonucleotide in situ-synthesized microarray probes. Our analysis resulted in high-confidence genotypes for 719 single-feature polymorphism (SFP) and 1014 gene expression marker (GEM) candidates. Using these genotypes and an established microsatellite (SSR) framework map, we produced a high-density genetic map comprising over 600 SFPs, GEMs and SSRs. The abundance of gene-based markers allowed us to localize over 35 million base pairs of previously unplaced whole-genome shotgun (WGS) scaffold sequence to putative locations in the genome of P. trichocarpa. A high proportion of sampled scaffolds could be verified for their placement with independently mapped SSRs, demonstrating the previously un-utilized power that high-density genotyping can provide in the context of map-based WGS sequence reassembly. Our results provide a substantial contribution to the continued improvement of the Populus genome assembly, while demonstrating the feasibility of microarray-based genotyping in a highly heterozygous population. The strategies presented are applicable to genetic mapping efforts in all plant species with similarly high levels of genetic diversity.

  10. Improvement of experimental testing and network training conditions with genome-wide microarrays for more accurate predictions of drug gene targets

    PubMed Central

    2014-01-01

    Background Genome-wide microarrays have been useful for predicting chemical-genetic interactions at the gene level. However, interpreting genome-wide microarray results can be overwhelming due to the vast output of gene expression data combined with off-target transcriptional responses many times induced by a drug treatment. This study demonstrates how experimental and computational methods can interact with each other, to arrive at more accurate predictions of drug-induced perturbations. We present a two-stage strategy that links microarray experimental testing and network training conditions to predict gene perturbations for a drug with a known mechanism of action in a well-studied organism. Results S. cerevisiae cells were treated with the antifungal, fluconazole, and expression profiling was conducted under different biological conditions using Affymetrix genome-wide microarrays. Transcripts were filtered with a formal network-based method, sparse simultaneous equation models and Lasso regression (SSEM-Lasso), under different network training conditions. Gene expression results were evaluated using both gene set and single gene target analyses, and the drug’s transcriptional effects were narrowed first by pathway and then by individual genes. Variables included: (i) Testing conditions – exposure time and concentration and (ii) Network training conditions – training compendium modifications. Two analyses of SSEM-Lasso output – gene set and single gene – were conducted to gain a better understanding of how SSEM-Lasso predicts perturbation targets. Conclusions This study demonstrates that genome-wide microarrays can be optimized using a two-stage strategy for a more in-depth understanding of how a cell manifests biological reactions to a drug treatment at the transcription level. Additionally, a more detailed understanding of how the statistical model, SSEM-Lasso, propagates perturbations through a network of gene regulatory interactions is achieved. PMID:24444313

  11. Genome-wide analysis of CNV (copy number variation) and their associations with narcolepsy in a Japanese population.

    PubMed

    Yamasaki, Maria; Miyagawa, Taku; Toyoda, Hiromi; Khor, Seik-Soon; Koike, Asako; Nitta, Aino; Akiyama, Kumi; Sasaki, Tsukasa; Honda, Yutaka; Honda, Makoto; Tokunaga, Katsushi

    2014-05-01

    In humans, narcolepsy with cataplexy (narcolepsy) is a sleep disorder that is characterized by sleepiness, cataplexy and rapid eye movement (REM) sleep abnormalities. Narcolepsy is caused by a reduction in the number of neurons that produce hypocretin (orexin) neuropeptide. Both genetic and environmental factors contribute to the development of narcolepsy.Rare and large copy number variations (CNVs) reportedly play a role in the etiology of a number of neuropsychiatric disorders. Narcolepsy is considered a neurological disorder; therefore, we sought to investigate any possible association between rare and large CNVs and human narcolepsy. We used DNA microarray data and a CNV detection software application, PennCNV-Affy, to detect CNVs in 426 Japanese narcoleptic patients and 562 healthy individuals. Overall, we found a significant enrichment of rare and large CNVs (frequency ≤1%, size ≥100 kb) in the patients (case-control ratio of CNV count=1.54, P=5.00 × 10(-4)). Next, we extended a region-based association analysis by including CNVs with its size ≥30 kb. Rare and large CNVs in PARK2 region showed a significant association with narcolepsy. Four patients were assessed to carry duplications of the gene region, whereas no controls carried the duplication, which was further confirmed by quantitative PCR assay. This duplication was also found in 2 essential hypersomnia (EHS) patients out of 171 patients. Furthermore, a pathway analysis revealed enrichments of gene disruptions by rare and large CNVs in immune response, acetyltransferase activity, cell cycle regulation and regulation of cell development. This study constitutes the first report on the risk association between multiple rare and large CNVs and the pathogenesis of narcolepsy. In the future, replication studies are needed to confirm the associations.

  12. BubbleGUM: automatic extraction of phenotype molecular signatures and comprehensive visualization of multiple Gene Set Enrichment Analyses.

    PubMed

    Spinelli, Lionel; Carpentier, Sabrina; Montañana Sanchis, Frédéric; Dalod, Marc; Vu Manh, Thien-Phong

    2015-10-19

    Recent advances in the analysis of high-throughput expression data have led to the development of tools that scaled-up their focus from single-gene to gene set level. For example, the popular Gene Set Enrichment Analysis (GSEA) algorithm can detect moderate but coordinated expression changes of groups of presumably related genes between pairs of experimental conditions. This considerably improves extraction of information from high-throughput gene expression data. However, although many gene sets covering a large panel of biological fields are available in public databases, the ability to generate home-made gene sets relevant to one's biological question is crucial but remains a substantial challenge to most biologists lacking statistic or bioinformatic expertise. This is all the more the case when attempting to define a gene set specific of one condition compared to many other ones. Thus, there is a crucial need for an easy-to-use software for generation of relevant home-made gene sets from complex datasets, their use in GSEA, and the correction of the results when applied to multiple comparisons of many experimental conditions. We developed BubbleGUM (GSEA Unlimited Map), a tool that allows to automatically extract molecular signatures from transcriptomic data and perform exhaustive GSEA with multiple testing correction. One original feature of BubbleGUM notably resides in its capacity to integrate and compare numerous GSEA results into an easy-to-grasp graphical representation. We applied our method to generate transcriptomic fingerprints for murine cell types and to assess their enrichments in human cell types. This analysis allowed us to confirm homologies between mouse and human immunocytes. BubbleGUM is an open-source software that allows to automatically generate molecular signatures out of complex expression datasets and to assess directly their enrichment by GSEA on independent datasets. Enrichments are displayed in a graphical output that helps interpreting the results. This innovative methodology has recently been used to answer important questions in functional genomics, such as the degree of similarities between microarray datasets from different laboratories or with different experimental models or clinical cohorts. BubbleGUM is executable through an intuitive interface so that both bioinformaticians and biologists can use it. It is available at http://www.ciml.univ-mrs.fr/applications/BubbleGUM/index.html .

  13. Identification of PblB mediating galactose-specific adhesion in a successful Streptococcus pneumoniae clone

    PubMed Central

    Hsieh, Yu-Chia; Lin, Tzu-Lung; Lin, Che-Ming; Wang, Jin-Town

    2015-01-01

    The pneumococcal genome is variable and there are minimal data on the influence of the accessory genome on phenotype. Pneumococcal serotype 14 sequence type (ST) 46 had been the most prevalent clone causing pneumonia in children in Taiwan. A microarray was constructed using the genomic DNA of a clinical strain (NTUH-P15) of serotype 14 ST46. Using DNA hybridization, genomic variations in NTUH-P15 were compared to those of 3 control strains. Microarray analysis identified 7 genomic regions that had significant increases in hybridization signals in the NTUH-P15 strain compared to control strains. One of these regions encoded PblB, a phage-encoded virulence factor implicated (in Streptococcus mitis) in infective endocarditis. The isogenic pblB mutant decreased adherence to A549 human lung epithelial cell compared to wild-type NTUH-P15 strain (P = 0.01). Complementation with pblB restored the adherence. PblB is predicted to contain a galactose-binding domain-like region. Preincubation of NTUH-P15 with D-galactose resulted in decreases of adherence to A549 cell in a dose-dependent manner. Challenge of mice with NTUH-P15, isogenic pblB mutant and pblB complementation strains determined that PblB was required for bacterial persistence in the nasopharynx and lung. PblB, as an adhesin mediating the galactose-specific adhesion activity of pneumococci, promote pneumococcal clonal success. PMID:26193794

  14. Cell Context Dependent p53 Genome-Wide Binding Patterns and Enrichment at Repeats

    DOE PAGES

    Botcheva, Krassimira; McCorkle, Sean R.

    2014-11-21

    The p53 ability to elicit stress specific and cell type specific responses is well recognized, but how that specificity is established remains to be defined. Whether upon activation p53 binds to its genomic targets in a cell type and stress type dependent manner is still an open question. Here we show that the p53 binding to the human genome is selective and cell context-dependent. We mapped the genomic binding sites for the endogenous wild type p53 protein in the human cancer cell line HCT116 and compared them to those we previously determined in the normal cell line IMR90. We reportmore » distinct p53 genome-wide binding landscapes in two different cell lines, analyzed under the same treatment and experimental conditions, using the same ChIP-seq approach. This is evidence for cell context dependent p53 genomic binding. The observed differences affect the p53 binding sites distribution with respect to major genomic and epigenomic elements (promoter regions, CpG islands and repeats). We correlated the high-confidence p53 ChIP-seq peaks positions with the annotated human repeats (UCSC Human Genome Browser) and observed both common and cell line specific trends. In HCT116, the p53 binding was specifically enriched at LINE repeats, compared to IMR90 cells. The p53 genome-wide binding patterns in HCT116 and IMR90 likely reflect the different epigenetic landscapes in these two cell lines, resulting from cancer-associated changes (accumulated in HCT116) superimposed on tissue specific differences (HCT116 has epithelial, while IMR90 has mesenchymal origin). In conclusion, our data support the model for p53 binding to the human genome in a highly selective manner, mobilizing distinct sets of genes, contributing to distinct pathways.« less

  15. Estimation of low-dose radiation-responsive proteins in the absence of genomic instability in normal human fibroblast cells.

    PubMed

    Yim, Ji-Hye; Yun, Jung Mi; Kim, Ji Young; Nam, Seon Young; Kim, Cha Soon

    2017-11-01

    Low-dose radiation has various biological effects such as adaptive responses, low-dose hypersensitivity, as well as beneficial effects. However, little is known about the particular proteins involved in these effects. Here, we sought to identify low-dose radiation-responsive phosphoproteins in normal fibroblast cells. We assessed genomic instability and proliferation of fibroblast cells after γ-irradiation by γ-H2AX foci and micronucleus formation analyses and BrdU incorporation assay, respectively. We screened fibroblast cells 8 h after low-dose (0.05 Gy) γ-irradiation using Phospho Explorer Antibody Microarray and validated two differentially expressed phosphoproteins using Western blotting. Cell proliferation proceeded normally in the absence of genomic instability after low-dose γ-irradiation. Phospho antibody microarray analysis and Western blotting revealed increased expression of two phosphoproteins, phospho-NFκB (Ser536) and phospho-P70S6K (Ser418), 8 h after low-dose radiation. Our findings suggest that low-dose radiation of normal fibroblast cells activates the expression of phospho-NFκB (Ser536) and phospho-P70S6K (Ser418) in the absence of genomic instability. Therefore, these proteins may be involved in DNA damage repair processes.

  16. Comprehensive performance comparison of high-resolution array platforms for genome-wide Copy Number Variation (CNV) analysis in humans.

    PubMed

    Haraksingh, Rajini R; Abyzov, Alexej; Urban, Alexander Eckehart

    2017-04-24

    High-resolution microarray technology is routinely used in basic research and clinical practice to efficiently detect copy number variants (CNVs) across the entire human genome. A new generation of arrays combining high probe densities with optimized designs will comprise essential tools for genome analysis in the coming years. We systematically compared the genome-wide CNV detection power of all 17 available array designs from the Affymetrix, Agilent, and Illumina platforms by hybridizing the well-characterized genome of 1000 Genomes Project subject NA12878 to all arrays, and performing data analysis using both manufacturer-recommended and platform-independent software. We benchmarked the resulting CNV call sets from each array using a gold standard set of CNVs for this genome derived from 1000 Genomes Project whole genome sequencing data. The arrays tested comprise both SNP and aCGH platforms with varying designs and contain between ~0.5 to ~4.6 million probes. Across the arrays CNV detection varied widely in number of CNV calls (4-489), CNV size range (~40 bp to ~8 Mbp), and percentage of non-validated CNVs (0-86%). We discovered strikingly strong effects of specific array design principles on performance. For example, some SNP array designs with the largest numbers of probes and extensive exonic coverage produced a considerable number of CNV calls that could not be validated, compared to designs with probe numbers that are sometimes an order of magnitude smaller. This effect was only partially ameliorated using different analysis software and optimizing data analysis parameters. High-resolution microarrays will continue to be used as reliable, cost- and time-efficient tools for CNV analysis. However, different applications tolerate different limitations in CNV detection. Our study quantified how these arrays differ in total number and size range of detected CNVs as well as sensitivity, and determined how each array balances these attributes. This analysis will inform appropriate array selection for future CNV studies, and allow better assessment of the CNV-analytical power of both published and ongoing array-based genomics studies. Furthermore, our findings emphasize the importance of concurrent use of multiple analysis algorithms and independent experimental validation in array-based CNV detection studies.

  17. Whole-Genome Sequencing of the World’s Oldest People

    PubMed Central

    Gierman, Hinco J.; Fortney, Kristen; Roach, Jared C.; Coles, Natalie S.; Li, Hong; Glusman, Gustavo; Markov, Glenn J.; Smith, Justin D.; Hood, Leroy; Coles, L. Stephen; Kim, Stuart K.

    2014-01-01

    Supercentenarians (110 years or older) are the world’s oldest people. Seventy four are alive worldwide, with twenty two in the United States. We performed whole-genome sequencing on 17 supercentenarians to explore the genetic basis underlying extreme human longevity. We found no significant evidence of enrichment for a single rare protein-altering variant or for a gene harboring different rare protein altering variants in supercentenarian compared to control genomes. We followed up on the gene most enriched for rare protein-altering variants in our cohort of supercentenarians, TSHZ3, by sequencing it in a second cohort of 99 long-lived individuals but did not find a significant enrichment. The genome of one supercentenarian had a pathogenic mutation in DSC2, known to predispose to arrhythmogenic right ventricular cardiomyopathy, which is recommended to be reported to this individual as an incidental finding according to a recent position statement by the American College of Medical Genetics and Genomics. Even with this pathogenic mutation, the proband lived to over 110 years. The entire list of rare protein-altering variants and DNA sequence of all 17 supercentenarian genomes is available as a resource to assist the discovery of the genetic basis of extreme longevity in future studies. PMID:25390934

  18. Whole-genome sequencing of the world's oldest people.

    PubMed

    Gierman, Hinco J; Fortney, Kristen; Roach, Jared C; Coles, Natalie S; Li, Hong; Glusman, Gustavo; Markov, Glenn J; Smith, Justin D; Hood, Leroy; Coles, L Stephen; Kim, Stuart K

    2014-01-01

    Supercentenarians (110 years or older) are the world's oldest people. Seventy four are alive worldwide, with twenty two in the United States. We performed whole-genome sequencing on 17 supercentenarians to explore the genetic basis underlying extreme human longevity. We found no significant evidence of enrichment for a single rare protein-altering variant or for a gene harboring different rare protein altering variants in supercentenarian compared to control genomes. We followed up on the gene most enriched for rare protein-altering variants in our cohort of supercentenarians, TSHZ3, by sequencing it in a second cohort of 99 long-lived individuals but did not find a significant enrichment. The genome of one supercentenarian had a pathogenic mutation in DSC2, known to predispose to arrhythmogenic right ventricular cardiomyopathy, which is recommended to be reported to this individual as an incidental finding according to a recent position statement by the American College of Medical Genetics and Genomics. Even with this pathogenic mutation, the proband lived to over 110 years. The entire list of rare protein-altering variants and DNA sequence of all 17 supercentenarian genomes is available as a resource to assist the discovery of the genetic basis of extreme longevity in future studies.

  19. Whole-genome comparison of meticillin-resistant Staphylococcus aureus CC22 SCCmecIV from people and their in-contact pets.

    PubMed

    Loeffler, Anette; McCarthy, Alex; Lloyd, David H; Musilová, Eva; Pfeiffer, Dirk U; Lindsay, Jodi A

    2013-10-01

    Meticillin-resistant Staphylococcus aureus (MRSA) infections remain important medical and veterinary challenges. The MRSA isolated from dogs and cats typically belong to dominant hospital-associated clones, in the UK mostly EMRSA-15 (CC22 SCCmecIV), suggesting original human-to-animal transmission. Nevertheless, little is known about host-specific genetic variation within the same S. aureus lineage. To identify host-specific variation amongst MRSA CC22 SCCmecIV by comparing isolates from pets with those from in-contact humans using whole-genome microarray. Six pairs of MRSA CC22 SCCmecIV from human carriers (owners and veterinary staff) and their respective infected in-contact pets were compared using a 62-strain whole-genome S. aureus microarray (SAM-62). The presence of putative host-specific genes was subsequently determined in a larger number of human (n = 47) and pet isolates (n = 93) by PCR screening. Variation in mobile genetic elements (MGEs) occurred frequently and appeared largely independent of host and in-contact pair. A plasmid (SAP078A) encoding heavy-metal resistance genes (arsR, arsA, cadA, cadC, mco and copB) was found in three of six human and none of six animal isolates. However, only two of four resistance genes were associated with human hosts (P = 0.015 for arsA and cadA). The variation found amongst MGEs highlights that genetic adaptation in MRSA continues. However, host-specific MGEs were not detected, which supports the hypothesis that pets may not be natural hosts of MRSA CC22 and emphasizes that rigorous hygiene measures are critical to prevent contamination and infection of dogs and cats. The host specificity of individual heavy-metal resistance genes warrants further investigation into different selection pressures in humans and animals. © 2013 ESVD and ACVD.

  20. The Diversity of REcent and Ancient huMan (DREAM): A New Microarray for Genetic Anthropology and Genealogy, Forensics, and Personalized Medicine.

    PubMed

    Elhaik, Eran; Yusuf, Leeban; Anderson, Ainan I J; Pirooznia, Mehdi; Arnellos, Dimitrios; Vilshansky, Gregory; Ercal, Gunes; Lu, Yontao; Webster, Teresa; Baird, Michael L; Esposito, Umberto

    2017-12-01

    The human population displays wide variety in demographic history, ancestry, content of DNA derived from hominins or ancient populations, adaptation, traits, copy number variation, drug response, and more. These polymorphisms are of broad interest to population geneticists, forensics investigators, and medical professionals. Historically, much of that knowledge was gained from population survey projects. Although many commercial arrays exist for genome-wide single-nucleotide polymorphism genotyping, their design specifications are limited and they do not allow a full exploration of biodiversity. We thereby aimed to design the Diversity of REcent and Ancient huMan (DREAM)-an all-inclusive microarray that would allow both identification of known associations and exploration of standing questions in genetic anthropology, forensics, and personalized medicine. DREAM includes probes to interrogate ancestry informative markers obtained from over 450 human populations, over 200 ancient genomes, and 10 archaic hominins. DREAM can identify 94% and 61% of all known Y and mitochondrial haplogroups, respectively, and was vetted to avoid interrogation of clinically relevant markers. To demonstrate its capabilities, we compared its FST distributions with those of the 1000 Genomes Project and commercial arrays. Although all arrays yielded similarly shaped (inverse J) FST distributions, DREAM's autosomal and X-chromosomal distributions had the highest mean FST, attesting to its ability to discern subpopulations. DREAM performances are further illustrated in biogeographical, identical by descent, and copy number variation analyses. In summary, with approximately 800,000 markers spanning nearly 2,000 genes, DREAM is a useful tool for genetic anthropology, forensic, and personalized medicine studies. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  1. Genome-Wide Association Study of a Validated Case Definition of Gulf War Illness in a Population-Representative Sample

    DTIC Science & Technology

    2013-09-01

    sequence dataset. All procedures were performed by personnel in the IIMT UT Southwestern Genomics and Microarray Core using standard protocols. More... sequencing run, samples were demultiplexed using standard algorithms in the Genomics and Microarray Core and processed into individual sample Illumina single... Sequencing (RNA-Seq), using Illumina’s multiplexing mRNA-Seq to generate full sequence libraries from the poly-A tailed RNA to a read depth of 30

  2. An object model and database for functional genomics.

    PubMed

    Jones, Andrew; Hunt, Ela; Wastling, Jonathan M; Pizarro, Angel; Stoeckert, Christian J

    2004-07-10

    Large-scale functional genomics analysis is now feasible and presents significant challenges in data analysis, storage and querying. Data standards are required to enable the development of public data repositories and to improve data sharing. There is an established data format for microarrays (microarray gene expression markup language, MAGE-ML) and a draft standard for proteomics (PEDRo). We believe that all types of functional genomics experiments should be annotated in a consistent manner, and we hope to open up new ways of comparing multiple datasets used in functional genomics. We have created a functional genomics experiment object model (FGE-OM), developed from the microarray model, MAGE-OM and two models for proteomics, PEDRo and our own model (Gla-PSI-Glasgow Proposal for the Proteomics Standards Initiative). FGE-OM comprises three namespaces representing (i) the parts of the model common to all functional genomics experiments; (ii) microarray-specific components; and (iii) proteomics-specific components. We believe that FGE-OM should initiate discussion about the contents and structure of the next version of MAGE and the future of proteomics standards. A prototype database called RNA And Protein Abundance Database (RAPAD), based on FGE-OM, has been implemented and populated with data from microbial pathogenesis. FGE-OM and the RAPAD schema are available from http://www.gusdb.org/fge.html, along with a set of more detailed diagrams. RAPAD can be accessed by registration at the site.

  3. Identifying novel glioma associated pathways based on systems biology level meta-analysis.

    PubMed

    Hu, Yangfan; Li, Jinquan; Yan, Wenying; Chen, Jiajia; Li, Yin; Hu, Guang; Shen, Bairong

    2013-01-01

    With recent advances in microarray technology, including genomics, proteomics, and metabolomics, it brings a great challenge for integrating this "-omics" data to analysis complex disease. Glioma is an extremely aggressive and lethal form of brain tumor, and thus the study of the molecule mechanism underlying glioma remains very important. To date, most studies focus on detecting the differentially expressed genes in glioma. However, the meta-analysis for pathway analysis based on multiple microarray datasets has not been systematically pursued. In this study, we therefore developed a systems biology based approach by integrating three types of omics data to identify common pathways in glioma. Firstly, the meta-analysis has been performed to study the overlapping of signatures at different levels based on the microarray gene expression data of glioma. Among these gene expression datasets, 12 pathways were found in GeneGO database that shared by four stages. Then, microRNA expression profiles and ChIP-seq data were integrated for the further pathway enrichment analysis. As a result, we suggest 5 of these pathways could be served as putative pathways in glioma. Among them, the pathway of TGF-beta-dependent induction of EMT via SMAD is of particular importance. Our results demonstrate that the meta-analysis based on systems biology level provide a more useful approach to study the molecule mechanism of complex disease. The integration of different types of omics data, including gene expression microarrays, microRNA and ChIP-seq data, suggest some common pathways correlated with glioma. These findings will offer useful potential candidates for targeted therapeutic intervention of glioma.

  4. Self-Directed Student Research through Analysis of Microarray Datasets: A Computer-Based Functional Genomics Practical Class for Masters-Level Students

    ERIC Educational Resources Information Center

    Grenville-Briggs, Laura J.; Stansfield, Ian

    2011-01-01

    This report describes a linked series of Masters-level computer practical workshops. They comprise an advanced functional genomics investigation, based upon analysis of a microarray dataset probing yeast DNA damage responses. The workshops require the students to analyse highly complex transcriptomics datasets, and were designed to stimulate…

  5. Homogeneous versus heterogeneous probes for microbial ecological microarrays.

    PubMed

    Bae, Jin-Woo; Park, Yong-Ha

    2006-07-01

    Microbial ecological microarrays have been developed for investigating the composition and functions of microorganism communities in environmental niches. These arrays include microbial identification microarrays, which use oligonucleotides, gene fragments or microbial genomes as probes. In this article, the advantages and disadvantages of each type of probe are reviewed. Oligonucleotide probes are currently useful for probing uncultivated bacteria that are not amenable to gene fragment probing, whereas the functional gene fragments amplified randomly from microbial genomes require phylogenetic and hierarchical categorization before use as microbial identification probes, despite their high resolution for both specificity and sensitivity. Until more bacteria are sequenced and gene fragment probes are thoroughly validated, heterogeneous bacterial genome probes will provide a simple, sensitive and quantitative tool for exploring the ecosystem structure.

  6. The Importance of Normalization on Large and Heterogeneous Microarray Datasets

    EPA Science Inventory

    DNA microarray technology is a powerful functional genomics tool increasingly used for investigating global gene expression in environmental studies. Microarrays can also be used in identifying biological networks, as they give insight on the complex gene-to-gene interactions, ne...

  7. Upstream mononucleotide A-repeats play a cis-regulatory role in mammals through the DICER1 and Ago proteins.

    PubMed

    Aporntewan, Chatchawit; Pin-on, Piyapat; Chaiyaratana, Nachol; Pongpanich, Monnat; Boonyaratanakornkit, Viroj; Mutirangura, Apiwat

    2013-10-01

    A-repeats are the simplest form of tandem repeats and are found ubiquitously throughout genomes. These mononucleotide repeats have been widely believed to be non-functional 'junk' DNA. However, studies in yeasts suggest that A-repeats play crucial biological functions, and their role in humans remains largely unknown. Here, we showed a non-random pattern of distribution of sense A- and T-repeats within 20 kb around transcription start sites (TSSs) in the human genome. Different distributions of these repeats are observed upstream and downstream of TSSs. Sense A-repeats are enriched upstream, whereas sense T-repeats are enriched downstream of TSSs. This enrichment directly correlates with repeat size. Genes with different functions contain different lengths of repeats. In humans, tissue-specific genes are enriched for short repeats of <10 bp, whereas housekeeping genes are enriched for long repeats of ≥10 bp. We demonstrated that DICER1 and Argonaute proteins are required for the cis-regulatory role of A-repeats. Moreover, in the presence of a synthetic polymer that mimics an A-repeat, protein binding to A-repeats was blocked, resulting in a dramatic change in the expression of genes containing upstream A-repeats. Our findings suggest a length-dependent cis-regulatory function of A-repeats and that Argonaute proteins serve as trans-acting factors, binding to A-repeats.

  8. Bacteria-Human Somatic Cell Lateral Gene Transfer Is Enriched in Cancer Samples

    PubMed Central

    Robinson, Kelly M.; White, James Robert; Ganesan, Ashwinkumar; Nourbakhsh, Syrus; Dunning Hotopp, Julie C.

    2013-01-01

    There are 10× more bacterial cells in our bodies from the microbiome than human cells. Viral DNA is known to integrate in the human genome, but the integration of bacterial DNA has not been described. Using publicly available sequence data from the human genome project, the 1000 Genomes Project, and The Cancer Genome Atlas (TCGA), we examined bacterial DNA integration into the human somatic genome. Here we present evidence that bacterial DNA integrates into the human somatic genome through an RNA intermediate, and that such integrations are detected more frequently in (a) tumors than normal samples, (b) RNA than DNA samples, and (c) the mitochondrial genome than the nuclear genome. Hundreds of thousands of paired reads support random integration of Acinetobacter-like DNA in the human mitochondrial genome in acute myeloid leukemia samples. Numerous read pairs across multiple stomach adenocarcinoma samples support specific integration of Pseudomonas-like DNA in the 5′-UTR and 3′-UTR of four proto-oncogenes that are up-regulated in their transcription, consistent with conversion to an oncogene. These data support our hypothesis that bacterial integrations occur in the human somatic genome and may play a role in carcinogenesis. We anticipate that the application of our approach to additional cancer genome projects will lead to the more frequent detection of bacterial DNA integrations in tumors that are in close proximity to the human microbiome. PMID:23840181

  9. Prediction of gene expression in embryonic structures of Drosophila melanogaster.

    PubMed

    Samsonova, Anastasia A; Niranjan, Mahesan; Russell, Steven; Brazma, Alvis

    2007-07-01

    Understanding how sets of genes are coordinately regulated in space and time to generate the diversity of cell types that characterise complex metazoans is a major challenge in modern biology. The use of high-throughput approaches, such as large-scale in situ hybridisation and genome-wide expression profiling via DNA microarrays, is beginning to provide insights into the complexities of development. However, in many organisms the collection and annotation of comprehensive in situ localisation data is a difficult and time-consuming task. Here, we present a widely applicable computational approach, integrating developmental time-course microarray data with annotated in situ hybridisation studies, that facilitates the de novo prediction of tissue-specific expression for genes that have no in vivo gene expression localisation data available. Using a classification approach, trained with data from microarray and in situ hybridisation studies of gene expression during Drosophila embryonic development, we made a set of predictions on the tissue-specific expression of Drosophila genes that have not been systematically characterised by in situ hybridisation experiments. The reliability of our predictions is confirmed by literature-derived annotations in FlyBase, by overrepresentation of Gene Ontology biological process annotations, and, in a selected set, by detailed gene-specific studies from the literature. Our novel organism-independent method will be of considerable utility in enriching the annotation of gene function and expression in complex multicellular organisms.

  10. Prediction of Gene Expression in Embryonic Structures of Drosophila melanogaster

    PubMed Central

    Samsonova, Anastasia A; Niranjan, Mahesan; Russell, Steven; Brazma, Alvis

    2007-01-01

    Understanding how sets of genes are coordinately regulated in space and time to generate the diversity of cell types that characterise complex metazoans is a major challenge in modern biology. The use of high-throughput approaches, such as large-scale in situ hybridisation and genome-wide expression profiling via DNA microarrays, is beginning to provide insights into the complexities of development. However, in many organisms the collection and annotation of comprehensive in situ localisation data is a difficult and time-consuming task. Here, we present a widely applicable computational approach, integrating developmental time-course microarray data with annotated in situ hybridisation studies, that facilitates the de novo prediction of tissue-specific expression for genes that have no in vivo gene expression localisation data available. Using a classification approach, trained with data from microarray and in situ hybridisation studies of gene expression during Drosophila embryonic development, we made a set of predictions on the tissue-specific expression of Drosophila genes that have not been systematically characterised by in situ hybridisation experiments. The reliability of our predictions is confirmed by literature-derived annotations in FlyBase, by overrepresentation of Gene Ontology biological process annotations, and, in a selected set, by detailed gene-specific studies from the literature. Our novel organism-independent method will be of considerable utility in enriching the annotation of gene function and expression in complex multicellular organisms. PMID:17658945

  11. Comparative Analysis of CNV Calling Algorithms: Literature Survey and a Case Study Using Bovine High-Density SNP Data.

    PubMed

    Xu, Lingyang; Hou, Yali; Bickhart, Derek M; Song, Jiuzhou; Liu, George E

    2013-06-25

    Copy number variations (CNVs) are gains and losses of genomic sequence between two individuals of a species when compared to a reference genome. The data from single nucleotide polymorphism (SNP) microarrays are now routinely used for genotyping, but they also can be utilized for copy number detection. Substantial progress has been made in array design and CNV calling algorithms and at least 10 comparison studies in humans have been published to assess them. In this review, we first survey the literature on existing microarray platforms and CNV calling algorithms. We then examine a number of CNV calling tools to evaluate their impacts using bovine high-density SNP data. Large incongruities in the results from different CNV calling tools highlight the need for standardizing array data collection, quality assessment and experimental validation. Only after careful experimental design and rigorous data filtering can the impacts of CNVs on both normal phenotypic variability and disease susceptibility be fully revealed.

  12. Detection of pathogenic Vibrio spp. in shellfish by using multiplex PCR and DNA microarrays.

    PubMed

    Panicker, Gitika; Call, Douglas R; Krug, Melissa J; Bej, Asim K

    2004-12-01

    This study describes the development of a gene-specific DNA microarray coupled with multiplex PCR for the comprehensive detection of pathogenic vibrios that are natural inhabitants of warm coastal waters and shellfish. Multiplex PCR with vvh and viuB for Vibrio vulnificus, with ompU, toxR, tcpI, and hlyA for V. cholerae, and with tlh, tdh, trh, and open reading frame 8 for V. parahaemolyticus helped to ensure that total and pathogenic strains, including subtypes of the three Vibrio spp., could be detected and discriminated. For DNA microarrays, oligonucleotide probes for these targeted genes were deposited onto epoxysilane-derivatized, 12-well, Teflon-masked slides by using a MicroGrid II arrayer. Amplified PCR products were hybridized to arrays at 50 degrees C and detected by using tyramide signal amplification with Alexa Fluor 546 fluorescent dye. Slides were imaged by using an arrayWoRx scanner. The detection sensitivity for pure cultures without enrichment was 10(2) to 10(3) CFU/ml, and the specificity was 100%. However, 5 h of sample enrichment followed by DNA extraction with Instagene matrix and multiplex PCR with microarray hybridization resulted in the detection of 1 CFU in 1 g of oyster tissue homogenate. Thus, enrichment of the bacterial pathogens permitted higher sensitivity in compliance with the Interstate Shellfish Sanitation Conference guideline. Application of the DNA microarray methodology to natural oysters revealed the presence of V. vulnificus (100%) and V. parahaemolyticus (83%). However, V. cholerae was not detected in natural oysters. An assay involving a combination of multiplex PCR and DNA microarray hybridization would help to ensure rapid and accurate detection of pathogenic vibrios in shellfish, thereby improving the microbiological safety of shellfish for consumers.

  13. Detection of Pathogenic Vibrio spp. in Shellfish by Using Multiplex PCR and DNA Microarrays

    PubMed Central

    Panicker, Gitika; Call, Douglas R.; Krug, Melissa J.; Bej, Asim K.

    2004-01-01

    This study describes the development of a gene-specific DNA microarray coupled with multiplex PCR for the comprehensive detection of pathogenic vibrios that are natural inhabitants of warm coastal waters and shellfish. Multiplex PCR with vvh and viuB for Vibrio vulnificus, with ompU, toxR, tcpI, and hlyA for V. cholerae, and with tlh, tdh, trh, and open reading frame 8 for V. parahaemolyticus helped to ensure that total and pathogenic strains, including subtypes of the three Vibrio spp., could be detected and discriminated. For DNA microarrays, oligonucleotide probes for these targeted genes were deposited onto epoxysilane-derivatized, 12-well, Teflon-masked slides by using a MicroGrid II arrayer. Amplified PCR products were hybridized to arrays at 50°C and detected by using tyramide signal amplification with Alexa Fluor 546 fluorescent dye. Slides were imaged by using an arrayWoRx scanner. The detection sensitivity for pure cultures without enrichment was 102 to 103 CFU/ml, and the specificity was 100%. However, 5 h of sample enrichment followed by DNA extraction with Instagene matrix and multiplex PCR with microarray hybridization resulted in the detection of 1 CFU in 1 g of oyster tissue homogenate. Thus, enrichment of the bacterial pathogens permitted higher sensitivity in compliance with the Interstate Shellfish Sanitation Conference guideline. Application of the DNA microarray methodology to natural oysters revealed the presence of V. vulnificus (100%) and V. parahaemolyticus (83%). However, V. cholerae was not detected in natural oysters. An assay involving a combination of multiplex PCR and DNA microarray hybridization would help to ensure rapid and accurate detection of pathogenic vibrios in shellfish, thereby improving the microbiological safety of shellfish for consumers. PMID:15574946

  14. Emerging Use of Gene Expression Microarrays in Plant Physiology

    DOE PAGES

    Wullschleger, Stan D.; Difazio, Stephen P.

    2003-01-01

    Microarrays have become an important technology for the global analysis of gene expression in humans, animals, plants, and microbes. Implemented in the context of a well-designed experiment, cDNA and oligonucleotide arrays can provide highthroughput, simultaneous analysis of transcript abundance for hundreds, if not thousands, of genes. However, despite widespread acceptance, the use of microarrays as a tool to better understand processes of interest to the plant physiologist is still being explored. To help illustrate current uses of microarrays in the plant sciences, several case studies that we believe demonstrate the emerging application of gene expression arrays in plant physiology weremore » selected from among the many posters and presentations at the 2003 Plant and Animal Genome XI Conference. Based on this survey, microarrays are being used to assess gene expression in plants exposed to the experimental manipulation of air temperature, soil water content and aluminium concentration in the root zone. Analysis often includes characterizing transcript profiles for multiple post-treatment sampling periods and categorizing genes with common patterns of response using hierarchical clustering techniques. In addition, microarrays are also providing insights into developmental changes in gene expression associated with fibre and root elongation in cotton and maize, respectively. Technical and analytical limitations of microarrays are discussed and projects attempting to advance areas of microarray design and data analysis are highlighted. Finally, although much work remains, we conclude that microarrays are a valuable tool for the plant physiologist interested in the characterization and identification of individual genes and gene families with potential application in the fields of agriculture, horticulture and forestry.« less

  15. Cloud-Scale Genomic Signals Processing for Robust Large-Scale Cancer Genomic Microarray Data Analysis.

    PubMed

    Harvey, Benjamin Simeon; Ji, Soo-Yeon

    2017-01-01

    As microarray data available to scientists continues to increase in size and complexity, it has become overwhelmingly important to find multiple ways to bring forth oncological inference to the bioinformatics community through the analysis of large-scale cancer genomic (LSCG) DNA and mRNA microarray data that is useful to scientists. Though there have been many attempts to elucidate the issue of bringing forth biological interpretation by means of wavelet preprocessing and classification, there has not been a research effort that focuses on a cloud-scale distributed parallel (CSDP) separable 1-D wavelet decomposition technique for denoising through differential expression thresholding and classification of LSCG microarray data. This research presents a novel methodology that utilizes a CSDP separable 1-D method for wavelet-based transformation in order to initialize a threshold which will retain significantly expressed genes through the denoising process for robust classification of cancer patients. Additionally, the overall study was implemented and encompassed within CSDP environment. The utilization of cloud computing and wavelet-based thresholding for denoising was used for the classification of samples within the Global Cancer Map, Cancer Cell Line Encyclopedia, and The Cancer Genome Atlas. The results proved that separable 1-D parallel distributed wavelet denoising in the cloud and differential expression thresholding increased the computational performance and enabled the generation of higher quality LSCG microarray datasets, which led to more accurate classification results.

  16. Mapping and analysis of Caenorhabditis elegans transcription factor sequence specificities

    PubMed Central

    Narasimhan, Kamesh; Lambert, Samuel A; Yang, Ally WH; Riddell, Jeremy; Mnaimneh, Sanie; Zheng, Hong; Albu, Mihai; Najafabadi, Hamed S; Reece-Hoyes, John S; Fuxman Bass, Juan I; Walhout, Albertha JM; Weirauch, Matthew T; Hughes, Timothy R

    2015-01-01

    Caenorhabditis elegans is a powerful model for studying gene regulation, as it has a compact genome and a wealth of genomic tools. However, identification of regulatory elements has been limited, as DNA-binding motifs are known for only 71 of the estimated 763 sequence-specific transcription factors (TFs). To address this problem, we performed protein binding microarray experiments on representatives of canonical TF families in C. elegans, obtaining motifs for 129 TFs. Additionally, we predict motifs for many TFs that have DNA-binding domains similar to those already characterized, increasing coverage of binding specificities to 292 C. elegans TFs (∼40%). These data highlight the diversification of binding motifs for the nuclear hormone receptor and C2H2 zinc finger families and reveal unexpected diversity of motifs for T-box and DM families. Motif enrichment in promoters of functionally related genes is consistent with known biology and also identifies putative regulatory roles for unstudied TFs. DOI: http://dx.doi.org/10.7554/eLife.06967.001 PMID:25905672

  17. Subcutaneous and gonadal adipose tissue transcriptome differences in lean and obese female dogs.

    PubMed

    Grant, Ryan W; Vester Boler, Brittany M; Ridge, Tonya K; Graves, Thomas K; Swanson, Kelly S

    2013-12-01

    Canine obesity leads to shortened life span and increased disease incidence. Adipose tissue depots are known to have unique metabolic and gene expression profiles in rodents and humans, but few comparisons of depot gene expression have been performed in the dog. Using microarray technology, our objective was to identify differentially expressed genes and enriched functional pathways between subcutaneous and gonadal adipose of lean and obese dogs to better understand the pathogenesis of obesity in the dog. Because no depot × body weight status interactions were identified in the microarray data, depot differences were the primary focus. A total of 946 and 703 transcripts were differentially expressed (FDR P < 0.05) between gonadal and subcutaneous adipose tissue in obese and lean dogs respectively. Of the adipose depot-specific differences in gene expression, 162 were present in both lean and obese dogs, with the majority (85%) expressed in the same direction. Both lean and obese dog gene lists had enrichment of the complement and coagulation cascade and systemic lupus erythematosus pathways. Obese dogs had enrichment of lysosome, extracellular matrix-receptor interaction, renin-angiotensin system and hematopoietic cell lineage pathways. Lean dogs had enrichment of glutathione metabolism and synthesis and degradation of ketone bodies. We have identified a core set of genes differentially expressed between subcutaneous and gonadal adipose tissue in dogs regardless of body weight. These genes contribute to depot-specific differences in immune function, extracellular matrix remodeling and lysosomal function and may contribute to the physiological differences noted between depots. © 2013 The Authors, Animal Genetics © 2013 Stichting International Foundation for Animal Genetics.

  18. Colorectal cancer cell lines are representative models of the main molecular subtypes of primary cancer.

    PubMed

    Mouradov, Dmitri; Sloggett, Clare; Jorissen, Robert N; Love, Christopher G; Li, Shan; Burgess, Antony W; Arango, Diego; Strausberg, Robert L; Buchanan, Daniel; Wormald, Samuel; O'Connor, Liam; Wilding, Jennifer L; Bicknell, David; Tomlinson, Ian P M; Bodmer, Walter F; Mariadason, John M; Sieber, Oliver M

    2014-06-15

    Human colorectal cancer cell lines are used widely to investigate tumor biology, experimental therapy, and biomarkers. However, to what extent these established cell lines represent and maintain the genetic diversity of primary cancers is uncertain. In this study, we profiled 70 colorectal cancer cell lines for mutations and DNA copy number by whole-exome sequencing and SNP microarray analyses, respectively. Gene expression was defined using RNA-Seq. Cell line data were compared with those published for primary colorectal cancers in The Cancer Genome Atlas. Notably, we found that exome mutation and DNA copy-number spectra in colorectal cancer cell lines closely resembled those seen in primary colorectal tumors. Similarities included the presence of two hypermutation phenotypes, as defined by signatures for defective DNA mismatch repair and DNA polymerase ε proofreading deficiency, along with concordant mutation profiles in the broadly altered WNT, MAPK, PI3K, TGFβ, and p53 pathways. Furthermore, we documented mutations enriched in genes involved in chromatin remodeling (ARID1A, CHD6, and SRCAP) and histone methylation or acetylation (ASH1L, EP300, EP400, MLL2, MLL3, PRDM2, and TRRAP). Chromosomal instability was prevalent in nonhypermutated cases, with similar patterns of chromosomal gains and losses. Although paired cell lines derived from the same tumor exhibited considerable mutation and DNA copy-number differences, in silico simulations suggest that these differences mainly reflected a preexisting heterogeneity in the tumor cells. In conclusion, our results establish that human colorectal cancer lines are representative of the main subtypes of primary tumors at the genomic level, further validating their utility as tools to investigate colorectal cancer biology and drug responses. ©2014 American Association for Cancer Research.

  19. Divergent genome evolution caused by regional variation in DNA gain and loss between human and mouse

    PubMed Central

    Kortschak, R. Daniel

    2018-01-01

    The forces driving the accumulation and removal of non-coding DNA and ultimately the evolution of genome size in complex organisms are intimately linked to genome structure and organisation. Our analysis provides a novel method for capturing the regional variation of lineage-specific DNA gain and loss events in their respective genomic contexts. To further understand this connection we used comparative genomics to identify genome-wide individual DNA gain and loss events in the human and mouse genomes. Focusing on the distribution of DNA gains and losses, relationships to important structural features and potential impact on biological processes, we found that in autosomes, DNA gains and losses both followed separate lineage-specific accumulation patterns. However, in both species chromosome X was particularly enriched for DNA gain, consistent with its high L1 retrotransposon content required for X inactivation. We found that DNA loss was associated with gene-rich open chromatin regions and DNA gain events with gene-poor closed chromatin regions. Additionally, we found that DNA loss events tended to be smaller than DNA gain events suggesting that they were able to accumulate in gene-rich open chromatin regions due to their reduced capacity to interrupt gene regulatory architecture. GO term enrichment showed that mouse loss hotspots were strongly enriched for terms related to developmental processes. However, these genes were also located in regions with a high density of conserved elements, suggesting that despite high levels of DNA loss, gene regulatory architecture remained conserved. This is consistent with a model in which DNA gain and loss results in turnover or “churning” in regulatory element dense regions of open chromatin, where interruption of regulatory elements is selected against. PMID:29677183

  20. Bacillus subtilis genome diversity.

    PubMed

    Earl, Ashlee M; Losick, Richard; Kolter, Roberto

    2007-02-01

    Microarray-based comparative genomic hybridization (M-CGH) is a powerful method for rapidly identifying regions of genome diversity among closely related organisms. We used M-CGH to examine the genome diversity of 17 strains belonging to the nonpathogenic species Bacillus subtilis. Our M-CGH results indicate that there is considerable genetic heterogeneity among members of this species; nearly one-third of Bsu168-specific genes exhibited variability, as measured by the microarray hybridization intensities. The variable loci include those encoding proteins involved in antibiotic production, cell wall synthesis, sporulation, and germination. The diversity in these genes may reflect this organism's ability to survive in diverse natural settings.

  1. Sequencing ebola and marburg viruses genomes using microarrays.

    PubMed

    Hardick, Justin; Woelfel, Roman; Gardner, Warren; Ibrahim, Sofi

    2016-08-01

    Periodic outbreaks of Ebola and Marburg hemorrhagic fevers have occurred in Africa over the past four decades with case fatality rates reaching as high as 90%. The latest Ebola outbreak in West Africa in 2014 raised concerns that these infections can spread across continents and pose serious health risks. Early and accurate identification of the causative agents is necessary to contain outbreaks. In this report, we describe sequencing-by-hybridization (SBH) technique using high density microarrays to identify Ebola and Marburg viruses. The microarrays were designed to interrogate the sequences of entire viral genomes, and were evaluated with three species of Ebolavirus (Reston, Sudan, and Zaire), and three strains of Marburgvirus (Angola, Musoke, and Ravn). The results showed that the consensus sequences generated with four or more hybridizations had 92.1-98.9% accuracy over 95-99% of the genomes. Additionally, with SBH microarrays it was possible to distinguish between different strains of the Lake Victoria Marburgvirus. J. Med. Virol. 88:1303-1308, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Applications of nanotechnology, next generation sequencing and microarrays in biomedical research.

    PubMed

    Elingaramil, Sauli; Li, Xiaolong; He, Nongyue

    2013-07-01

    Next-generation sequencing technologies, microarrays and advances in bio nanotechnology have had an enormous impact on research within a short time frame. This impact appears certain to increase further as many biomedical institutions are now acquiring these prevailing new technologies. Beyond conventional sampling of genome content, wide-ranging applications are rapidly evolving for next-generation sequencing, microarrays and nanotechnology. To date, these technologies have been applied in a variety of contexts, including whole-genome sequencing, targeted re sequencing and discovery of transcription factor binding sites, noncoding RNA expression profiling and molecular diagnostics. This paper thus discusses current applications of nanotechnology, next-generation sequencing technologies and microarrays in biomedical research and highlights the transforming potential these technologies offer.

  3. An Indian eye to personalized medicine.

    PubMed

    Jauhari, Shaurya; Rizvi, S A M

    2015-04-01

    Acknowledging the successful sequencing of the human genome and the valuable insights it has rendered, genetic drafting of non-human organisms can further enhance the understanding of modern biology. The price of sequencing technology has plummeted with time, and there is a noticeable enhancement in its implementation and recurrent usage. Sequenced genome information can be contained in a microarray chip, and then processed by a computer system for inferring analytics and predictions. Specifically, smart cards have been significantly applicable to assimilate and retrieve complex data, with ease and implicit mobility. Herein, we propose "The G-Card", a development with respect to the prevalent smart card, and an extension to the Electronic Health Record (EHR), that will hold the genome sequence of an individual, so that the medical practitioner can better investigate irregularities in a patient's health and hence recommend a precise prognosis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Brief Guide to Genomics: DNA, Genes and Genomes

    MedlinePlus

    ... Sheets A Brief Guide to Genomics About NHGRI Research About the International HapMap Project Biological Pathways Chromosome Abnormalities Chromosomes Cloning Comparative Genomics DNA Microarray Technology DNA Sequencing Deoxyribonucleic Acid ( ...

  5. Discovery and Characterization of Chromatin States for Systematic Annotation of the Human Genome

    NASA Astrophysics Data System (ADS)

    Ernst, Jason; Kellis, Manolis

    A plethora of epigenetic modifications have been described in the human genome and shown to play diverse roles in gene regulation, cellular differentiation and the onset of disease. Although individual modifications have been linked to the activity levels of various genetic functional elements, their combinatorial patterns are still unresolved and their potential for systematic de novo genome annotation remains untapped. Here, we use a multivariate Hidden Markov Model to reveal chromatin states in human T cells, based on recurrent and spatially coherent combinations of chromatin marks.We define 51 distinct chromatin states, including promoter-associated, transcription-associated, active intergenic, largescale repressed and repeat-associated states. Each chromatin state shows specific enrichments in functional annotations, sequence motifs and specific experimentally observed characteristics, suggesting distinct biological roles. This approach provides a complementary functional annotation of the human genome that reveals the genome-wide locations of diverse classes of epigenetic function.

  6. RNAi targeting GPR4 influences HMEC-1 gene expression by microarray analysis

    PubMed Central

    Ren, Juan; Zhang, Yuelang; Cai, Hui; Ma, Hongbing; Zhao, Dongli; Zhang, Xiaozhi; Li, Zongfang; Wang, Shufeng; Wang, Jiangsheng; Liu, Rui; Li, Yi; Qian, Jiansheng; Wei, Hongxia; Niu, Liying; Liu, Yan; Xiao, Lisha; Ding, Muyang; Jiang, Shiwen

    2014-01-01

    G-protein coupled receptor 4 (GPR4) belongs to a protein family comprised of 3 closely related G protein-coupled receptors. Recent studies have shown that GPR4 plays important roles in angiogenesis, proton sensing, and regulating tumor cells as an oncogenic gene. How GPR4 conducts its functions? Rare has been known. In order to detect the genes related to GPR4, microarray technology was employed. GPR4 is highly expressed in human vascular endothelial cell HMEC-1. Small interfering RNA against GPR4 was used to knockdown GPR4 expression in HMEC-1. Then RNA from the GPR4 knockdown cells and control cells were analyzed through genome microarray. Microarray results shown that among the whole genes and expressed sequence tags, 447 differentially expressed genes were identified, containing 318 up-regulated genes and 129 down-regulated genes. These genes whose expression dramatically changed may be involved in the GPR4 functions. These genes were related to cell apoptosis, cytoskeleton and signal transduction, cell proliferation, differentiation and cell-cycle regulation, gene transcription and translation and cell material and energy metabolism. PMID:24753754

  7. Genome-wide analysis of alternative splicing during human heart development

    NASA Astrophysics Data System (ADS)

    Wang, He; Chen, Yanmei; Li, Xinzhong; Chen, Guojun; Zhong, Lintao; Chen, Gangbing; Liao, Yulin; Liao, Wangjun; Bin, Jianping

    2016-10-01

    Alternative splicing (AS) drives determinative changes during mouse heart development. Recent high-throughput technological advancements have facilitated genome-wide AS, while its analysis in human foetal heart transition to the adult stage has not been reported. Here, we present a high-resolution global analysis of AS transitions between human foetal and adult hearts. RNA-sequencing data showed extensive AS transitions occurred between human foetal and adult hearts, and AS events occurred more frequently in protein-coding genes than in long non-coding RNA (lncRNA). A significant difference of AS patterns was found between foetal and adult hearts. The predicted difference in AS events was further confirmed using quantitative reverse transcription-polymerase chain reaction analysis of human heart samples. Functional foetal-specific AS event analysis showed enrichment associated with cell proliferation-related pathways including cell cycle, whereas adult-specific AS events were associated with protein synthesis. Furthermore, 42.6% of foetal-specific AS events showed significant changes in gene expression levels between foetal and adult hearts. Genes exhibiting both foetal-specific AS and differential expression were highly enriched in cell cycle-associated functions. In conclusion, we provided a genome-wide profiling of AS transitions between foetal and adult hearts and proposed that AS transitions and deferential gene expression may play determinative roles in human heart development.

  8. A technological update of molecular diagnostics for infectious diseases

    PubMed Central

    Liu, Yu-Tsueng

    2008-01-01

    Identification of a causative pathogen is essential for the choice of treatment for most infectious diseases. Many FDA approved molecular assays; usually more sensitive and specific compared to traditional tests, have been developed in the last decade. A new trend of high throughput and multiplexing assays are emerging thanks to technological developments for the human genome sequencing project. The applications of microarray and ultra high throughput sequencing technologies for diagnostic microbiology are reviewed. The race for the $1000 genome technology by 2014 will have a profound impact in diagnosis and treatment of infectious diseases in the near future. PMID:18782035

  9. NCBI GEO: archive for functional genomics data sets--10 years on.

    PubMed

    Barrett, Tanya; Troup, Dennis B; Wilhite, Stephen E; Ledoux, Pierre; Evangelista, Carlos; Kim, Irene F; Tomashevsky, Maxim; Marshall, Kimberly A; Phillippy, Katherine H; Sherman, Patti M; Muertter, Rolf N; Holko, Michelle; Ayanbule, Oluwabukunmi; Yefanov, Andrey; Soboleva, Alexandra

    2011-01-01

    A decade ago, the Gene Expression Omnibus (GEO) database was established at the National Center for Biotechnology Information (NCBI). The original objective of GEO was to serve as a public repository for high-throughput gene expression data generated mostly by microarray technology. However, the research community quickly applied microarrays to non-gene-expression studies, including examination of genome copy number variation and genome-wide profiling of DNA-binding proteins. Because the GEO database was designed with a flexible structure, it was possible to quickly adapt the repository to store these data types. More recently, as the microarray community switches to next-generation sequencing technologies, GEO has again adapted to host these data sets. Today, GEO stores over 20,000 microarray- and sequence-based functional genomics studies, and continues to handle the majority of direct high-throughput data submissions from the research community. Multiple mechanisms are provided to help users effectively search, browse, download and visualize the data at the level of individual genes or entire studies. This paper describes recent database enhancements, including new search and data representation tools, as well as a brief review of how the community uses GEO data. GEO is freely accessible at http://www.ncbi.nlm.nih.gov/geo/.

  10. IDENTIFICATION OF BACTERIAL DNA MARKERS FOR THE DETECTION OF HUMAN FECAL POLLUTION IN WATER

    EPA Science Inventory

    We used genome fragment enrichment and bioinformatics to identify several microbial DNA sequences with high potential for use as markers in PCR assays for detection of human fecal contamination in water. Following competitive solution-phase hybridization of total DNA from human a...

  11. Genetic dissection in a mouse model reveals interactions between carotenoids and lipid metabolism[S

    PubMed Central

    Palczewski, Grzegorz; Widjaja-Adhi, M. Airanthi K.; Amengual, Jaume; Golczak, Marcin; von Lintig, Johannes

    2016-01-01

    Carotenoids affect a rich variety of physiological functions in nature and are beneficial for human health. However, knowledge about their biological action and the consequences of their dietary accumulation in mammals is limited. Progress in this research field is limited by the expeditious metabolism of carotenoids in rodents and the confounding production of apocarotenoid signaling molecules. Herein, we established a mouse model lacking the enzymes responsible for carotenoid catabolism and apocarotenoid production, fed on either a β-carotene- or a zeaxanthin-enriched diet. Applying a genome wide microarray analysis, we assessed the effects of the parent carotenoids on the liver transcriptome. Our analysis documented changes in pathways for liver lipid metabolism and mitochondrial respiration. We biochemically defined these effects, and observed that β-carotene accumulation resulted in an elevation of liver triglycerides and liver cholesterol, while zeaxanthin accumulation increased serum cholesterol levels. We further show that carotenoids were predominantly transported within HDL particles in the serum of mice. Finally, we provide evidence that carotenoid accumulation influenced whole-body respiration and energy expenditure. Thus, we observed that accumulation of parent carotenoids interacts with lipid metabolism and that structurally related carotenoids display distinct biological functions in mammals. PMID:27389691

  12. Chromatin Immunoprecipitation and Microarray Analysis Suggest Functional Cooperation between Kaposi's Sarcoma-Associated Herpesvirus ORF57 and K-bZIP

    PubMed Central

    Hunter, Olga V.; Sei, Emi; Richardson, R. Blake

    2013-01-01

    The Kaposi's sarcoma-associated herpesvirus (KSHV) open reading frame 57 (ORF57)-encoded protein (Mta) is a multifunctional regulator of viral gene expression. ORF57 is essential for viral replication, so elucidation of its molecular mechanisms is important for understanding KSHV infection. ORF57 has been implicated in nearly every aspect of viral gene expression, including transcription, RNA stability, splicing, export, and translation. Here we demonstrate that ORF57 interacts with the KSHV K-bZIP protein in vitro and in cell extracts from lytically reactivated infected cells. To further test the biological relevance of the interaction, we performed a chromatin immunoprecipitation and microarray (ChIP-chip) analysis using anti-ORF57 antibodies and a KSHV tiling array. The results revealed four specific areas of enrichment, including the ORF4 and K8 (K-bZIP) promoters, as well as oriLyt, all of which interact with K-bZIP. In addition, ORF57 associated with DNA corresponding to the PAN RNA transcribed region, a known posttranscriptional target of ORF57. All of the peaks were RNase insensitive, demonstrating that ORF57 association with the viral genome is unlikely to be mediated exclusively by an RNA tether. Our data demonstrate that ORF57 associates with the viral genome by using at least two modes of recruitment, and they suggest that ORF57 and K-bZIP coregulate viral gene expression during lytic infection. PMID:23365430

  13. Disruption of the ASTN2/TRIM32 locus at 9q33.1 is a risk factor in males for autism spectrum disorders, ADHD and other neurodevelopmental phenotypes

    PubMed Central

    Lionel, Anath C.; Tammimies, Kristiina; Vaags, Andrea K.; Rosenfeld, Jill A.; Ahn, Joo Wook; Merico, Daniele; Noor, Abdul; Runke, Cassandra K.; Pillalamarri, Vamsee K.; Carter, Melissa T.; Gazzellone, Matthew J.; Thiruvahindrapuram, Bhooma; Fagerberg, Christina; Laulund, Lone W.; Pellecchia, Giovanna; Lamoureux, Sylvia; Deshpande, Charu; Clayton-Smith, Jill; White, Ann C.; Leather, Susan; Trounce, John; Melanie Bedford, H.; Hatchwell, Eli; Eis, Peggy S.; Yuen, Ryan K.C.; Walker, Susan; Uddin, Mohammed; Geraghty, Michael T.; Nikkel, Sarah M.; Tomiak, Eva M.; Fernandez, Bridget A.; Soreni, Noam; Crosbie, Jennifer; Arnold, Paul D.; Schachar, Russell J.; Roberts, Wendy; Paterson, Andrew D.; So, Joyce; Szatmari, Peter; Chrysler, Christina; Woodbury-Smith, Marc; Brian Lowry, R.; Zwaigenbaum, Lonnie; Mandyam, Divya; Wei, John; MacDonald, Jeffrey R.; Howe, Jennifer L.; Nalpathamkalam, Thomas; Wang, Zhuozhi; Tolson, Daniel; Cobb, David S.; Wilks, Timothy M.; Sorensen, Mark J.; Bader, Patricia I.; An, Yu; Wu, Bai-Lin; Musumeci, Sebastiano Antonino; Romano, Corrado; Postorivo, Diana; Nardone, Anna M.; Monica, Matteo Della; Scarano, Gioacchino; Zoccante, Leonardo; Novara, Francesca; Zuffardi, Orsetta; Ciccone, Roberto; Antona, Vincenzo; Carella, Massimo; Zelante, Leopoldo; Cavalli, Pietro; Poggiani, Carlo; Cavallari, Ugo; Argiropoulos, Bob; Chernos, Judy; Brasch-Andersen, Charlotte; Speevak, Marsha; Fichera, Marco; Ogilvie, Caroline Mackie; Shen, Yiping; Hodge, Jennelle C.; Talkowski, Michael E.; Stavropoulos, Dimitri J.; Marshall, Christian R.; Scherer, Stephen W.

    2014-01-01

    Rare copy number variants (CNVs) disrupting ASTN2 or both ASTN2 and TRIM32 have been reported at 9q33.1 by genome-wide studies in a few individuals with neurodevelopmental disorders (NDDs). The vertebrate-specific astrotactins, ASTN2 and its paralog ASTN1, have key roles in glial-guided neuronal migration during brain development. To determine the prevalence of astrotactin mutations and delineate their associated phenotypic spectrum, we screened ASTN2/TRIM32 and ASTN1 (1q25.2) for exonic CNVs in clinical microarray data from 89 985 individuals across 10 sites, including 64 114 NDD subjects. In this clinical dataset, we identified 46 deletions and 12 duplications affecting ASTN2. Deletions of ASTN1 were much rarer. Deletions near the 3′ terminus of ASTN2, which would disrupt all transcript isoforms (a subset of these deletions also included TRIM32), were significantly enriched in the NDD subjects (P = 0.002) compared with 44 085 population-based controls. Frequent phenotypes observed in individuals with such deletions include autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), speech delay, anxiety and obsessive compulsive disorder (OCD). The 3′-terminal ASTN2 deletions were significantly enriched compared with controls in males with NDDs, but not in females. Upon quantifying ASTN2 human brain RNA, we observed shorter isoforms expressed from an alternative transcription start site of recent evolutionary origin near the 3′ end. Spatiotemporal expression profiling in the human brain revealed consistently high ASTN1 expression while ASTN2 expression peaked in the early embryonic neocortex and postnatal cerebellar cortex. Our findings shed new light on the role of the astrotactins in psychopathology and their interplay in human neurodevelopment. PMID:24381304

  14. Integration of human pancreatic islet genomic data refines regulatory mechanisms at Type 2 Diabetes susceptibility loci

    PubMed Central

    Thurner, Matthias; van de Bunt, Martijn; Torres, Jason M; Mahajan, Anubha; Nylander, Vibe; Bennett, Amanda J; Gaulton, Kyle J; Barrett, Amy; Burrows, Carla; Bell, Christopher G; Lowe, Robert; Beck, Stephan; Rakyan, Vardhman K; Gloyn, Anna L

    2018-01-01

    Human genetic studies have emphasised the dominant contribution of pancreatic islet dysfunction to development of Type 2 Diabetes (T2D). However, limited annotation of the islet epigenome has constrained efforts to define the molecular mechanisms mediating the, largely regulatory, signals revealed by Genome-Wide Association Studies (GWAS). We characterised patterns of chromatin accessibility (ATAC-seq, n = 17) and DNA methylation (whole-genome bisulphite sequencing, n = 10) in human islets, generating high-resolution chromatin state maps through integration with established ChIP-seq marks. We found enrichment of GWAS signals for T2D and fasting glucose was concentrated in subsets of islet enhancers characterised by open chromatin and hypomethylation, with the former annotation predominant. At several loci (including CDC123, ADCY5, KLHDC5) the combination of fine-mapping genetic data and chromatin state enrichment maps, supplemented by allelic imbalance in chromatin accessibility pinpointed likely causal variants. The combination of increasingly-precise genetic and islet epigenomic information accelerates definition of causal mechanisms implicated in T2D pathogenesis. PMID:29412141

  15. Genome-Wide Analysis of Long Noncoding RNA (lncRNA) Expression in Hepatoblastoma Tissues

    PubMed Central

    Xue, Ping; Cui, Ximao; Li, Kai; Zheng, Shan; He, Xianghuo; Dong, Kuiran

    2014-01-01

    Long noncoding RNAs (lncRNAs) have crucial roles in cancer biology. We performed a genome-wide analysis of lncRNA expression in hepatoblastoma tissues to identify novel targets for further study of hepatoblastoma. Hepatoblastoma and normal liver tissue samples were obtained from hepatoblastoma patients. The genome-wide analysis of lncRNA expression in these tissues was performed using a 4×180 K lncRNA microarray and Sureprint G3 Human lncRNA Chips. Quantitative RT-PCR (qRT-PCR) was performed to confirm these results. The differential expressions of lncRNAs and mRNAs were identified through fold-change filtering. Gene Ontology (GO) and pathway analyses were performed using the standard enrichment computation method. Associations between lncRNAs and adjacent protein-coding genes were determined through complex transcriptional loci analysis. We found that 2736 lncRNAs were differentially expressed in hepatoblastoma tissues. Among these, 1757 lncRNAs were upregulated more than two-fold relative to normal tissues and 979 lncRNAs were downregulated. Moreover, in hepatoblastoma there were 420 matched lncRNA-mRNA pairs for 120 differentially expressed lncRNAs, and 167 differentially expressed mRNAs. The co-expression network analysis predicted 252 network nodes and 420 connections between 120 lncRNAs and 132 coding genes. Within this co-expression network, 369 pairs were positive, and 51 pairs were negative. Lastly, qRT-PCR data verified six upregulated and downregulated lncRNAs in hepatoblastoma, plus endothelial cell-specific molecule 1 (ESM1) mRNA. Our results demonstrated that expression of these aberrant lncRNAs could respond to hepatoblastoma development. Further study of these lncRNAs could provide useful insight into hepatoblastoma biology. PMID:24465615

  16. Microarray-Based Analysis of Subnanogram Quantities of Microbial Community DNAs by Using Whole-Community Genome Amplification†

    PubMed Central

    Wu, Liyou; Liu, Xueduan; Schadt, Christopher W.; Zhou, Jizhong

    2006-01-01

    Microarray technology provides the opportunity to identify thousands of microbial genes or populations simultaneously, but low microbial biomass often prevents application of this technology to many natural microbial communities. We developed a whole-community genome amplification-assisted microarray detection approach based on multiple displacement amplification. The representativeness of amplification was evaluated using several types of microarrays and quantitative indexes. Representative detection of individual genes or genomes was obtained with 1 to 100 ng DNA from individual or mixed genomes, in equal or unequal abundance, and with 1 to 500 ng community DNAs from groundwater. Lower concentrations of DNA (as low as 10 fg) could be detected, but the lower template concentrations affected the representativeness of amplification. Robust quantitative detection was also observed by significant linear relationships between signal intensities and initial DNA concentrations ranging from (i) 0.04 to 125 ng (r2 = 0.65 to 0.99) for DNA from pure cultures as detected by whole-genome open reading frame arrays, (ii) 0.1 to 1,000 ng (r2 = 0.91) for genomic DNA using community genome arrays, and (iii) 0.01 to 250 ng (r2 = 0.96 to 0.98) for community DNAs from ethanol-amended groundwater using 50-mer functional gene arrays. This method allowed us to investigate the oligotrophic microbial communities in groundwater contaminated with uranium and other metals. The results indicated that microorganisms containing genes involved in contaminant degradation and immobilization are present in these communities, that their spatial distribution is heterogeneous, and that microbial diversity is greatly reduced in the highly contaminated environment. PMID:16820490

  17. Identification of Therapeutic Targets of Inflammatory Monocyte Recruitment to Modulate the Allogeneic Injury to Donor Cornea.

    PubMed

    Lapp, Thabo; Zaher, Sarah S; Haas, Carolin T; Becker, David L; Thrasivoulou, Chris; Chain, Benjamin M; Larkin, Daniel F P; Noursadeghi, Mahdad

    2015-11-01

    We sought to test the hypothesis that monocytes contribute to the immunopathogenesis of corneal allograft rejection and identify therapeutic targets to inhibit monocyte recruitment. Monocytes and proinflammatory mediators within anterior chamber samples during corneal graft rejection were quantified by flow cytometry and multiplex protein assays. Lipopolysaccharide or IFN-γ stimulation of monocyte-derived macrophages (MDMs) was used to generate inflammatory conditioned media (CoM). Corneal endothelial viability was tested by nuclear counting, connexin 43, and propidium iodide staining. Chemokine and chemokine receptor expression in monocytes and MDMs was assessed in microarray transcriptomic data. The role of chemokine pathways in monocyte migration across microvascular endothelium was tested in vitro by chemokine depletion or chemokine receptor inhibitors. Inflammatory monocytes were significantly enriched in anterior chamber samples within 1 week of the onset of symptoms of corneal graft rejection. The MDM inflammatory CoM was cytopathic to transformed human corneal endothelia. This effect was also evident in endothelium of excised human cornea and increased in the presence of monocytes. Gene expression microarrays identified monocyte chemokine receptors and cognate chemokines in MDM inflammatory responses, which were also enriched in anterior chamber samples. Depletion of selected chemokines in MDM inflammatory CoM had no effect on monocyte transmigration across an endothelial blood-eye barrier, but selective chemokine receptor inhibition reduced monocyte recruitment significantly. We propose a role for inflammatory monocytes in endothelial cytotoxicity in corneal graft rejection. Therefore, targeting monocyte recruitment offers a putative novel strategy to reduce donor endothelial cell injury in survival of human corneal allografts.

  18. Transcriptome interrogation of human myometrium identifies differentially expressed sense-antisense pairs of protein-coding and long non-coding RNA genes in spontaneous labor at term.

    PubMed

    Romero, Roberto; Tarca, Adi L; Chaemsaithong, Piya; Miranda, Jezid; Chaiworapongsa, Tinnakorn; Jia, Hui; Hassan, Sonia S; Kalita, Cynthia A; Cai, Juan; Yeo, Lami; Lipovich, Leonard

    2014-09-01

    To identify differentially expressed long non-coding RNA (lncRNA) genes in human myometrium in women with spontaneous labor at term. Myometrium was obtained from women undergoing cesarean deliveries who were not in labor (n = 19) and women in spontaneous labor at term (n = 20). RNA was extracted and profiled using an Illumina® microarray platform. We have used computational approaches to bound the extent of long non-coding RNA representation on this platform, and to identify co-differentially expressed and correlated pairs of long non-coding RNA genes and protein-coding genes sharing the same genomic loci. We identified co-differential expression and correlation at two genomic loci that contain coding-lncRNA gene pairs: SOCS2-AK054607 and LMCD1-NR_024065 in women in spontaneous labor at term. This co-differential expression and correlation was validated by qRT-PCR, an experimental method completely independent of the microarray analysis. Intriguingly, one of the two lncRNA genes differentially expressed in term labor had a key genomic structure element, a splice site, that lacked evolutionary conservation beyond primates. We provide, for the first time, evidence for coordinated differential expression and correlation of cis-encoded antisense lncRNAs and protein-coding genes with known as well as novel roles in pregnancy in the myometrium of women in spontaneous labor at term.

  19. Microarrays

    ERIC Educational Resources Information Center

    Plomin, Robert; Schalkwyk, Leonard C.

    2007-01-01

    Microarrays are revolutionizing genetics by making it possible to genotype hundreds of thousands of DNA markers and to assess the expression (RNA transcripts) of all of the genes in the genome. Microarrays are slides the size of a postage stamp that contain millions of DNA sequences to which single-stranded DNA or RNA can hybridize. This…

  20. Transcriptome Profiling of Caco-2 Cancer Cell Line following Treatment with Extracts from Iodine-Biofortified Lettuce (Lactuca sativa L.)

    PubMed Central

    Koronowicz, Aneta A.; Kopeć, Aneta; Master, Adam; Smoleń, Sylwester; Piątkowska, Ewa; Bieżanowska-Kopeć, Renata; Ledwożyw-Smoleń, Iwona; Skoczylas, Łukasz; Rakoczy, Roksana; Leszczyńska, Teresa; Kapusta-Duch, Joanna; Pysz, Mirosław

    2016-01-01

    Although iodization of salt is the most common method used to obtain iodine-enriched food, iodine deficiency disorders are still a global health problem and profoundly affect the quality of human life. Iodine is required for the synthesis of thyroid hormones, which are crucial regulators of human metabolism, cell growth, proliferation, apoptosis and have been reported to be involved in carcinogenesis. In this study, for the first time, we evaluated the effect of iodine-biofortified lettuce on transcriptomic profile of Caco-2 cancer cell line by applying the Whole Human Genome Microarray assay. We showed 1326 differentially expressed Caco-2 transcripts after treatment with iodine-biofortified (BFL) and non-fortified (NFL) lettuce extracts. We analysed pathways, molecular functions, biological processes and protein classes based on comparison between BFL and NFL specific genes. Iodine, which was expected to act as a free ion (KI-NFL) or at least in part to be incorporated into lettuce macromolecules (BFL), differently regulated pathways of numerous transcription factors leading to different cellular effects. In this study we showed the inhibition of Caco-2 cells proliferation after treatment with BFL, but not potassium iodide (KI), and BFL-mediated induction of mitochondrial apoptosis and/or cell differentiation. Our results showed that iodine-biofortified plants can be effectively used by cells as an alternative source of this trace element. Moreover, the observed differences in action of both iodine sources may suggest a potential of BFL in cancer treatment. PMID:26799209

  1. Gene Chips: A New Tool for Biology

    NASA Astrophysics Data System (ADS)

    Botstein, David

    2005-03-01

    The knowledge of many complete genomic sequences has led to a ``grand unification of biology,'' consisting of direct evidence that most of the basic cellular functions of all organisms are carried out by genes and proteins whose primary sequences are directly related by descent (i.e. orthologs). Further, genome sequences have made it possible to study all the genes of a single organism simultaneously. We have been using DNA microarrays (sometime referred to as ``gene chips'') to study patterns of gene expression and genome rearrangement in yeast and human cells under a variety of conditions and in human tumors and normal tissues. These experiments produce huge volumes of data; new computational and statistical methods are required to analyze them properly. Examples from this work will be presented to illustrate how genome-scale experiments and analysis can result in new biological insights not obtainable by traditional analyses of genes and proteins one by one. For lymphomas, breast tumors, lung tumors, liver tumors, gastric tumors, brain tumors and soft tissue tumors we have been able, by the application of clustering algorithms, to subclassify tumors of similar anatomical origin on the basis of their gene expression patterns. These subclassifications appear to be reproducible and clinically as well as biologically meaningful. By studying synchronized cells growing in culture, we have identified many hundreds of yeast and human genes that are expressed periodically, at characteristically different points in the cell division cycle. In humans, it turns out that most of these genes are the same genes that comprise the ``proliferation cluster,'' i.e. the genes whose expression is specifically associated with the proliferativeness of tumors and tumor cell lines. Finally, we have been applying a variant of our DNA microarray technology (which we call ``array comparative hybridization'') to follow the DNA copy number of genes, both in tumors and in yeast cells undergoing adaptive evolution during hundreds of generations of growth in continuous culture. These studies suggest a basic similarity in mechanism between adaptive evolution in yeast and tumor progression in humans.

  2. Increasing Nucleosome Occupancy Is Correlated with an Increasing Mutation Rate so Long as DNA Repair Machinery Is Intact

    PubMed Central

    Taylor, Jared F.; Khattab, Omar S.; Chen, Yu-Han; Chen, Yumay; Jacobsen, Steven E.; Wang, Ping H.

    2015-01-01

    Deciphering the multitude of epigenomic and genomic factors that influence the mutation rate is an area of great interest in modern biology. Recently, chromatin has been shown to play a part in this process. To elucidate this relationship further, we integrated our own ultra-deep sequenced human nucleosomal DNA data set with a host of published human genomic and cancer genomic data sets. Our results revealed, that differences in nucleosome occupancy are associated with changes in base-specific mutation rates. Increasing nucleosome occupancy is associated with an increasing transition to transversion ratio and an increased germline mutation rate within the human genome. Additionally, cancer single nucleotide variants and microindels are enriched within nucleosomes and both the coding and non-coding cancer mutation rate increases with increasing nucleosome occupancy. There is an enrichment of cancer indels at the theoretical start (74 bp) and end (115 bp) of linker DNA between two nucleosomes. We then hypothesized that increasing nucleosome occupancy decreases access to DNA by DNA repair machinery and could account for the increasing mutation rate. Such a relationship should not exist in DNA repair knockouts, and we thus repeated our analysis in DNA repair machinery knockouts to test our hypothesis. Indeed, our results revealed no correlation between increasing nucleosome occupancy and increasing mutation rate in DNA repair knockouts. Our findings emphasize the linkage of the genome and epigenome through the nucleosome whose properties can affect genome evolution and genetic aberrations such as cancer. PMID:26308346

  3. [Oligonucleotide microarray for subtyping avian influenza virus].

    PubMed

    Xueqing, Han; Xiangmei, Lin; Yihong, Hou; Shaoqiang, Wu; Jian, Liu; Lin, Mei; Guangle, Jia; Zexiao, Yang

    2008-09-01

    Avian influenza viruses are important human and animal respiratory pathogens and rapid diagnosis of novel emerging avian influenza viruses is vital for effective global influenza surveillance. We developed an oligonucleotide microarray-based method for subtyping all avian influenza virus (16 HA and 9 NA subtypes). In total 25 pairs of primers specific for different subtypes and 1 pair of universal primers were carefully designed based on the genomic sequences of influenza A viruses retrieved from GenBank database. Several multiplex RT-PCR methods were then developed, and the target cDNAs of 25 subtype viruses were amplified by RT-PCR or overlapping PCR for evaluating the microarray. Further 52 oligonucleotide probes specific for all 25 subtype viruses were designed according to published gene sequences of avian influenza viruses in amplified target cDNAs domains, and a microarray for subtyping influenza A virus was developed. Then its specificity and sensitivity were validated by using different subtype strains and 2653 samples from 49 different areas. The results showed that all the subtypes of influenza virus could be identified simultaneously on this microarray with high sensitivity, which could reach to 2.47 pfu/mL virus or 2.5 ng target DNA. Furthermore, there was no cross reaction with other avian respiratory virus. An oligonucleotide microarray-based strategy for detection of avian influenza viruses has been developed. Such a diagnostic microarray will be useful in discovering and identifying all subtypes of avian influenza virus.

  4. The Urinary Bladder Transcriptome and Proteome Defined by Transcriptomics and Antibody-Based Profiling

    PubMed Central

    Habuka, Masato; Fagerberg, Linn; Hallström, Björn M.; Pontén, Fredrik; Yamamoto, Tadashi; Uhlen, Mathias

    2015-01-01

    To understand functions and diseases of urinary bladder, it is important to define its molecular constituents and their roles in urinary bladder biology. Here, we performed genome-wide deep RNA sequencing analysis of human urinary bladder samples and identified genes up-regulated in the urinary bladder by comparing the transcriptome data to those of all other major human tissue types. 90 protein-coding genes were elevated in the urinary bladder, either with enhanced expression uniquely in the urinary bladder or elevated expression together with at least one other tissue (group enriched). We further examined the localization of these proteins by immunohistochemistry and tissue microarrays and 20 of these 90 proteins were localized to the whole urothelium with a majority not yet described in the context of the urinary bladder. Four additional proteins were found specifically in the umbrella cells (Uroplakin 1a, 2, 3a, and 3b), and three in the intermediate/basal cells (KRT17, PCP4L1 and ATP1A4). 61 of the 90 elevated genes have not been previously described in the context of urinary bladder and the corresponding proteins are interesting targets for more in-depth studies. In summary, an integrated omics approach using transcriptomics and antibody-based profiling has been used to define a comprehensive list of proteins elevated in the urinary bladder. PMID:26694548

  5. Pathway and network-based analysis of genome-wide association studies and RT-PCR validation in polycystic ovary syndrome

    PubMed Central

    Shen, Haoran; Liang, Zhou; Zheng, Saihua; Li, Xuelian

    2017-01-01

    The purpose of this study was to identify promising candidate genes and pathways in polycystic ovary syndrome (PCOS). Microarray dataset GSE345269 obtained from the Gene Expression Omnibus database includes 7 granulosa cell samples from PCOS patients, and 3 normal granulosa cell samples. Differentially expressed genes (DEGs) were screened between PCOS and normal samples. Pathway enrichment analysis was conducted for DEGs using ClueGO and CluePedia plugin of Cytoscape. A Reactome functional interaction (FI) network of the DEGs was built using ReactomeFIViz, and then network modules were extracted, followed by pathway enrichment analysis for the modules. Expression of DEGs in granulosa cell samples was measured using quantitative RT-PCR. A total of 674 DEGs were retained, which were significantly enriched with inflammation and immune-related pathways. Eight modules were extracted from the Reactome FI network. Pathway enrichment analysis revealed significant pathways of each module: module 0, Regulation of RhoA activity and Signaling by Rho GTPases pathways shared ARHGAP4 and ARHGAP9; module 2, GlycoProtein VI-mediated activation cascade pathway was enriched with RHOG; module 3, Thromboxane A2 receptor signaling, Chemokine signaling pathway, CXCR4-mediated signaling events pathways were enriched with LYN, the hub gene of module 3. Results of RT-PCR confirmed the finding of the bioinformatic analysis that ARHGAP4, ARHGAP9, RHOG and LYN were significantly upregulated in PCOS. RhoA-related pathways, GlycoProtein VI-mediated activation cascade pathway, ARHGAP4, ARHGAP9, RHOG and LYN may be involved in the pathogenesis of PCOS. PMID:28949383

  6. Microarray analysis of potential genes in the pathogenesis of recurrent oral ulcer.

    PubMed

    Han, Jingying; He, Zhiwei; Li, Kun; Hou, Lu

    2015-01-01

    Recurrent oral ulcer seriously threatens patients' daily life and health. This study investigated potential genes and pathways that participate in the pathogenesis of recurrent oral ulcer by high throughput bioinformatic analysis. RT-PCR and Western blot were applied to further verify screened interleukins effect. Recurrent oral ulcer related genes were collected from websites and papers, and further found out from Human Genome 280 6.0 microarray data. Each pathway of recurrent oral ulcer related genes were got through chip hybridization. RT-PCR was applied to test four recurrent oral ulcer related genes to verify the microarray data. Data transformation, scatter plot, clustering analysis, and expression pattern analysis were used to analyze recurrent oral ulcer related gene expression changes. Recurrent oral ulcer gene microarray was successfully established. Microarray showed that 551 genes involved in recurrent oral ulcer activity and 196 genes were recurrent oral ulcer related genes. Of them, 76 genes up-regulated, 62 genes down-regulated, and 58 genes up-/down-regulated. Total expression level up-regulated 752 times (60%) and down-regulated 485 times (40%). IL-2 plays an important role in the occurrence, development and recurrence of recurrent oral ulcer on the mRNA and protein levels. Gene microarray can be used to analyze potential genes and pathways in recurrent oral ulcer. IL-2 may be involved in the pathogenesis of recurrent oral ulcer.

  7. Gene response profiles for Daphnia pulex exposed to the environmental stressor cadmium reveals novel crustacean metallothioneins.

    PubMed

    Shaw, Joseph R; Colbourne, John K; Davey, Jennifer C; Glaholt, Stephen P; Hampton, Thomas H; Chen, Celia Y; Folt, Carol L; Hamilton, Joshua W

    2007-12-21

    Genomic research tools such as microarrays are proving to be important resources to study the complex regulation of genes that respond to environmental perturbations. A first generation cDNA microarray was developed for the environmental indicator species Daphnia pulex, to identify genes whose regulation is modulated following exposure to the metal stressor cadmium. Our experiments revealed interesting changes in gene transcription that suggest their biological roles and their potentially toxicological features in responding to this important environmental contaminant. Our microarray identified genes reported in the literature to be regulated in response to cadmium exposure, suggested functional attributes for genes that share no sequence similarity to proteins in the public databases, and pointed to genes that are likely members of expanded gene families in the Daphnia genome. Genes identified on the microarray also were associated with cadmium induced phenotypes and population-level outcomes that we experimentally determined. A subset of genes regulated in response to cadmium exposure was independently validated using quantitative-realtime (Q-RT)-PCR. These microarray studies led to the discovery of three genes coding for the metal detoxication protein metallothionein (MT). The gene structures and predicted translated sequences of D. pulex MTs clearly place them in this gene family. Yet, they share little homology with previously characterized MTs. The genomic information obtained from this study represents an important first step in characterizing microarray patterns that may be diagnostic to specific environmental contaminants and give insights into their toxicological mechanisms, while also providing a practical tool for evolutionary, ecological, and toxicological functional gene discovery studies. Advances in Daphnia genomics will enable the further development of this species as a model organism for the environmental sciences.

  8. Gene response profiles for Daphnia pulex exposed to the environmental stressor cadmium reveals novel crustacean metallothioneins

    PubMed Central

    Shaw, Joseph R; Colbourne, John K; Davey, Jennifer C; Glaholt, Stephen P; Hampton, Thomas H; Chen, Celia Y; Folt, Carol L; Hamilton, Joshua W

    2007-01-01

    Background Genomic research tools such as microarrays are proving to be important resources to study the complex regulation of genes that respond to environmental perturbations. A first generation cDNA microarray was developed for the environmental indicator species Daphnia pulex, to identify genes whose regulation is modulated following exposure to the metal stressor cadmium. Our experiments revealed interesting changes in gene transcription that suggest their biological roles and their potentially toxicological features in responding to this important environmental contaminant. Results Our microarray identified genes reported in the literature to be regulated in response to cadmium exposure, suggested functional attributes for genes that share no sequence similarity to proteins in the public databases, and pointed to genes that are likely members of expanded gene families in the Daphnia genome. Genes identified on the microarray also were associated with cadmium induced phenotypes and population-level outcomes that we experimentally determined. A subset of genes regulated in response to cadmium exposure was independently validated using quantitative-realtime (Q-RT)-PCR. These microarray studies led to the discovery of three genes coding for the metal detoxication protein metallothionein (MT). The gene structures and predicted translated sequences of D. pulex MTs clearly place them in this gene family. Yet, they share little homology with previously characterized MTs. Conclusion The genomic information obtained from this study represents an important first step in characterizing microarray patterns that may be diagnostic to specific environmental contaminants and give insights into their toxicological mechanisms, while also providing a practical tool for evolutionary, ecological, and toxicological functional gene discovery studies. Advances in Daphnia genomics will enable the further development of this species as a model organism for the environmental sciences. PMID:18154678

  9. Integrated analysis of epigenomic and genomic changes by DNA methylation dependent mechanisms provides potential novel biomarkers for prostate cancer.

    PubMed

    White-Al Habeeb, Nicole M A; Ho, Linh T; Olkhov-Mitsel, Ekaterina; Kron, Ken; Pethe, Vaijayanti; Lehman, Melanie; Jovanovic, Lidija; Fleshner, Neil; van der Kwast, Theodorus; Nelson, Colleen C; Bapat, Bharati

    2014-09-15

    Epigenetic silencing mediated by CpG methylation is a common feature of many cancers. Characterizing aberrant DNA methylation changes associated with tumor progression may identify potential prognostic markers for prostate cancer (PCa). We treated two PCa cell lines, 22Rv1 and DU-145 with the demethylating agent 5-Aza 2'-deoxycitidine (DAC) and global methylation status was analyzed by performing methylation-sensitive restriction enzyme based differential methylation hybridization strategy followed by genome-wide CpG methylation array profiling. In addition, we examined gene expression changes using a custom microarray. Gene Set Enrichment Analysis (GSEA) identified the most significantly dysregulated pathways. In addition, we assessed methylation status of candidate genes that showed reduced CpG methylation and increased gene expression after DAC treatment, in Gleason score (GS) 8 vs. GS6 patients using three independent cohorts of patients; the publically available The Cancer Genome Atlas (TCGA) dataset, and two separate patient cohorts. Our analysis, by integrating methylation and gene expression in PCa cell lines, combined with patient tumor data, identified novel potential biomarkers for PCa patients. These markers may help elucidate the pathogenesis of PCa and represent potential prognostic markers for PCa patients.

  10. Copy-number and gene dependency analysis reveals partial copy loss of wild-type SF3B1 as a novel cancer vulnerability. | Office of Cancer Genomics

    Cancer.gov

    Genomic instability is a hallmark of human cancer, and results in widespread somatic copy number alterations. We used a genome-scale shRNA viability screen in human cancer cell lines to systematically identify genes that are essential in the context of particular copy-number alterations (copy-number associated gene dependencies). The most enriched class of copy-number associated gene dependencies was CYCLOPS (Copy-number alterations Yielding Cancer Liabilities Owing to Partial losS) genes, and spliceosome components were the most prevalent.

  11. Large-scale chromatin immunoprecipitation with promoter sequence microarray analysis of the interaction of the NSs protein of Rift Valley fever virus with regulatory DNA regions of the host genome.

    PubMed

    Benferhat, Rima; Josse, Thibaut; Albaud, Benoit; Gentien, David; Mansuroglu, Zeyni; Marcato, Vasco; Souès, Sylvie; Le Bonniec, Bernard; Bouloy, Michèle; Bonnefoy, Eliette

    2012-10-01

    Rift Valley fever virus (RVFV) is a highly pathogenic Phlebovirus that infects humans and ruminants. Initially confined to Africa, RVFV has spread outside Africa and presently represents a high risk to other geographic regions. It is responsible for high fatality rates in sheep and cattle. In humans, RVFV can induce hepatitis, encephalitis, retinitis, or fatal hemorrhagic fever. The nonstructural NSs protein that is the major virulence factor is found in the nuclei of infected cells where it associates with cellular transcription factors and cofactors. In previous work, we have shown that NSs interacts with the promoter region of the beta interferon gene abnormally maintaining the promoter in a repressed state. In this work, we performed a genome-wide analysis of the interactions between NSs and the host genome using a genome-wide chromatin immunoprecipitation combined with promoter sequence microarray, the ChIP-on-chip technique. Several cellular promoter regions were identified as significantly interacting with NSs, and the establishment of NSs interactions with these regions was often found linked to deregulation of expression of the corresponding genes. Among annotated NSs-interacting genes were present not only genes regulating innate immunity and inflammation but also genes regulating cellular pathways that have not yet been identified as targeted by RVFV. Several of these pathways, such as cell adhesion, axonal guidance, development, and coagulation were closely related to RVFV-induced disorders. In particular, we show in this work that NSs targeted and modified the expression of genes coding for coagulation factors, demonstrating for the first time that this hemorrhagic virus impairs the host coagulation cascade at the transcriptional level.

  12. Large-Scale Chromatin Immunoprecipitation with Promoter Sequence Microarray Analysis of the Interaction of the NSs Protein of Rift Valley Fever Virus with Regulatory DNA Regions of the Host Genome

    PubMed Central

    Benferhat, Rima; Josse, Thibaut; Albaud, Benoit; Gentien, David; Mansuroglu, Zeyni; Marcato, Vasco; Souès, Sylvie; Le Bonniec, Bernard

    2012-01-01

    Rift Valley fever virus (RVFV) is a highly pathogenic Phlebovirus that infects humans and ruminants. Initially confined to Africa, RVFV has spread outside Africa and presently represents a high risk to other geographic regions. It is responsible for high fatality rates in sheep and cattle. In humans, RVFV can induce hepatitis, encephalitis, retinitis, or fatal hemorrhagic fever. The nonstructural NSs protein that is the major virulence factor is found in the nuclei of infected cells where it associates with cellular transcription factors and cofactors. In previous work, we have shown that NSs interacts with the promoter region of the beta interferon gene abnormally maintaining the promoter in a repressed state. In this work, we performed a genome-wide analysis of the interactions between NSs and the host genome using a genome-wide chromatin immunoprecipitation combined with promoter sequence microarray, the ChIP-on-chip technique. Several cellular promoter regions were identified as significantly interacting with NSs, and the establishment of NSs interactions with these regions was often found linked to deregulation of expression of the corresponding genes. Among annotated NSs-interacting genes were present not only genes regulating innate immunity and inflammation but also genes regulating cellular pathways that have not yet been identified as targeted by RVFV. Several of these pathways, such as cell adhesion, axonal guidance, development, and coagulation were closely related to RVFV-induced disorders. In particular, we show in this work that NSs targeted and modified the expression of genes coding for coagulation factors, demonstrating for the first time that this hemorrhagic virus impairs the host coagulation cascade at the transcriptional level. PMID:22896612

  13. Interactome INSIDER: a structural interactome browser for genomic studies.

    PubMed

    Meyer, Michael J; Beltrán, Juan Felipe; Liang, Siqi; Fragoza, Robert; Rumack, Aaron; Liang, Jin; Wei, Xiaomu; Yu, Haiyuan

    2018-01-01

    We present Interactome INSIDER, a tool to link genomic variant information with structural protein-protein interactomes. Underlying this tool is the application of machine learning to predict protein interaction interfaces for 185,957 protein interactions with previously unresolved interfaces in human and seven model organisms, including the entire experimentally determined human binary interactome. Predicted interfaces exhibit functional properties similar to those of known interfaces, including enrichment for disease mutations and recurrent cancer mutations. Through 2,164 de novo mutagenesis experiments, we show that mutations of predicted and known interface residues disrupt interactions at a similar rate and much more frequently than mutations outside of predicted interfaces. To spur functional genomic studies, Interactome INSIDER (http://interactomeinsider.yulab.org) enables users to identify whether variants or disease mutations are enriched in known and predicted interaction interfaces at various resolutions. Users may explore known population variants, disease mutations, and somatic cancer mutations, or they may upload their own set of mutations for this purpose.

  14. Strand-specific transcriptome profiling with directly labeled RNA on genomic tiling microarrays

    PubMed Central

    2011-01-01

    Background With lower manufacturing cost, high spot density, and flexible probe design, genomic tiling microarrays are ideal for comprehensive transcriptome studies. Typically, transcriptome profiling using microarrays involves reverse transcription, which converts RNA to cDNA. The cDNA is then labeled and hybridized to the probes on the arrays, thus the RNA signals are detected indirectly. Reverse transcription is known to generate artifactual cDNA, in particular the synthesis of second-strand cDNA, leading to false discovery of antisense RNA. To address this issue, we have developed an effective method using RNA that is directly labeled, thus by-passing the cDNA generation. This paper describes this method and its application to the mapping of transcriptome profiles. Results RNA extracted from laboratory cultures of Porphyromonas gingivalis was fluorescently labeled with an alkylation reagent and hybridized directly to probes on genomic tiling microarrays specifically designed for this periodontal pathogen. The generated transcriptome profile was strand-specific and produced signals close to background level in most antisense regions of the genome. In contrast, high levels of signal were detected in the antisense regions when the hybridization was done with cDNA. Five antisense areas were tested with independent strand-specific RT-PCR and none to negligible amplification was detected, indicating that the strong antisense cDNA signals were experimental artifacts. Conclusions An efficient method was developed for mapping transcriptome profiles specific to both coding strands of a bacterial genome. This method chemically labels and uses extracted RNA directly in microarray hybridization. The generated transcriptome profile was free of cDNA artifactual signals. In addition, this method requires fewer processing steps and is potentially more sensitive in detecting small amount of RNA compared to conventional end-labeling methods due to the incorporation of more fluorescent molecules per RNA fragment. PMID:21235785

  15. Comparison of three microarray probe annotation pipelines: differences in strategies and their effect on downstream analysis

    PubMed Central

    Neerincx, Pieter BT; Casel, Pierrot; Prickett, Dennis; Nie, Haisheng; Watson, Michael; Leunissen, Jack AM; Groenen, Martien AM; Klopp, Christophe

    2009-01-01

    Background Reliable annotation linking oligonucleotide probes to target genes is essential for functional biological analysis of microarray experiments. We used the IMAD, OligoRAP and sigReannot pipelines to update the annotation for the ARK-Genomics Chicken 20 K array as part of a joined EADGENE/SABRE workshop. In this manuscript we compare their annotation strategies and results. Furthermore, we analyse the effect of differences in updated annotation on functional analysis for an experiment involving Eimeria infected chickens and finally we propose guidelines for optimal annotation strategies. Results IMAD, OligoRAP and sigReannot update both annotation and estimated target specificity. The 3 pipelines can assign oligos to target specificity categories although with varying degrees of resolution. Target specificity is judged based on the amount and type of oligo versus target-gene alignments (hits), which are determined by filter thresholds that users can adjust based on their experimental conditions. Linking oligos to annotation on the other hand is based on rigid rules, which differ between pipelines. For 52.7% of the oligos from a subset selected for in depth comparison all pipelines linked to one or more Ensembl genes with consensus on 44.0%. In 31.0% of the cases none of the pipelines could assign an Ensembl gene to an oligo and for the remaining 16.3% the coverage differed between pipelines. Differences in updated annotation were mainly due to different thresholds for hybridisation potential filtering of oligo versus target-gene alignments and different policies for expanding annotation using indirect links. The differences in updated annotation packages had a significant effect on GO term enrichment analysis with consensus on only 67.2% of the enriched terms. Conclusion In addition to flexible thresholds to determine target specificity, annotation tools should provide metadata describing the relationships between oligos and the annotation assigned to them. These relationships can then be used to judge the varying degrees of reliability allowing users to fine-tune the balance between reliability and coverage. This is important as it can have a significant effect on functional microarray analysis as exemplified by the lack of consensus on almost one third of the terms found with GO term enrichment analysis based on updated IMAD, OligoRAP or sigReannot annotation. PMID:19615109

  16. Comparison of three microarray probe annotation pipelines: differences in strategies and their effect on downstream analysis.

    PubMed

    Neerincx, Pieter Bt; Casel, Pierrot; Prickett, Dennis; Nie, Haisheng; Watson, Michael; Leunissen, Jack Am; Groenen, Martien Am; Klopp, Christophe

    2009-07-16

    Reliable annotation linking oligonucleotide probes to target genes is essential for functional biological analysis of microarray experiments. We used the IMAD, OligoRAP and sigReannot pipelines to update the annotation for the ARK-Genomics Chicken 20 K array as part of a joined EADGENE/SABRE workshop. In this manuscript we compare their annotation strategies and results. Furthermore, we analyse the effect of differences in updated annotation on functional analysis for an experiment involving Eimeria infected chickens and finally we propose guidelines for optimal annotation strategies. IMAD, OligoRAP and sigReannot update both annotation and estimated target specificity. The 3 pipelines can assign oligos to target specificity categories although with varying degrees of resolution. Target specificity is judged based on the amount and type of oligo versus target-gene alignments (hits), which are determined by filter thresholds that users can adjust based on their experimental conditions. Linking oligos to annotation on the other hand is based on rigid rules, which differ between pipelines.For 52.7% of the oligos from a subset selected for in depth comparison all pipelines linked to one or more Ensembl genes with consensus on 44.0%. In 31.0% of the cases none of the pipelines could assign an Ensembl gene to an oligo and for the remaining 16.3% the coverage differed between pipelines. Differences in updated annotation were mainly due to different thresholds for hybridisation potential filtering of oligo versus target-gene alignments and different policies for expanding annotation using indirect links. The differences in updated annotation packages had a significant effect on GO term enrichment analysis with consensus on only 67.2% of the enriched terms. In addition to flexible thresholds to determine target specificity, annotation tools should provide metadata describing the relationships between oligos and the annotation assigned to them. These relationships can then be used to judge the varying degrees of reliability allowing users to fine-tune the balance between reliability and coverage. This is important as it can have a significant effect on functional microarray analysis as exemplified by the lack of consensus on almost one third of the terms found with GO term enrichment analysis based on updated IMAD, OligoRAP or sigReannot annotation.

  17. Innovative approach for transcriptomic analysis of obligate intracellular pathogen: selective capture of transcribed sequences of Ehrlichia ruminantium

    PubMed Central

    2009-01-01

    Background Whole genome transcriptomic analysis is a powerful approach to elucidate the molecular mechanisms controlling the pathogenesis of obligate intracellular bacteria. However, the major hurdle resides in the low quantity of prokaryotic mRNAs extracted from host cells. Our model Ehrlichia ruminantium (ER), the causative agent of heartwater, is transmitted by tick Amblyomma variegatum. This bacterium affects wild and domestic ruminants and is present in Sub-Saharan Africa and the Caribbean islands. Because of its strictly intracellular location, which constitutes a limitation for its extensive study, the molecular mechanisms involved in its pathogenicity are still poorly understood. Results We successfully adapted the SCOTS method (Selective Capture of Transcribed Sequences) on the model Rickettsiales ER to capture mRNAs. Southern Blots and RT-PCR revealed an enrichment of ER's cDNAs and a diminution of ribosomal contaminants after three rounds of capture. qRT-PCR and whole-genome ER microarrays hybridizations demonstrated that SCOTS method introduced only a limited bias on gene expression. Indeed, we confirmed the differential gene expression between poorly and highly expressed genes before and after SCOTS captures. The comparative gene expression obtained from ER microarrays data, on samples before and after SCOTS at 96 hpi was significantly correlated (R2 = 0.7). Moreover, SCOTS method is crucial for microarrays analysis of ER, especially for early time points post-infection. There was low detection of transcripts for untreated samples whereas 24% and 70.7% were revealed for SCOTS samples at 24 and 96 hpi respectively. Conclusions We conclude that this SCOTS method has a key importance for the transcriptomic analysis of ER and can be potentially used for other Rickettsiales. This study constitutes the first step for further gene expression analyses that will lead to a better understanding of both ER pathogenicity and the adaptation of obligate intracellular bacteria to their environment. PMID:20034374

  18. miRNAs in human subcutaneous adipose tissue: Effects of weight loss induced by hypocaloric diet and exercise.

    PubMed

    Kristensen, Malene M; Davidsen, Peter K; Vigelsø, Andreas; Hansen, Christina N; Jensen, Lars J; Jessen, Niels; Bruun, Jens M; Dela, Flemming; Helge, Jørn W

    2017-03-01

    Obesity is central in the development of insulin resistance. However, the underlying mechanisms still need elucidation. Dysregulated microRNAs (miRNAs; post-transcriptional regulators) in adipose tissue may present an important link. The miRNA expression in subcutaneous adipose tissue from 19 individuals with severe obesity (10 women and 9 men) before and after a 15-week weight loss intervention was studied using genome-wide microarray analysis. The microarray results were validated with RT-qPCR, and pathway enrichment analysis of in silico predicted targets was performed to elucidate the biological consequences of the miRNA dysregulation. Lastly, the messenger RNA (mRNA) and/or protein expression of multiple predicted targets as well as several proteins involved in lipolysis were investigated. The intervention led to upregulation of miR-29a-3p and miR-29a-5p and downregulation of miR-20b-5p. The mRNA and protein expression of predicted targets was not significantly affected by the intervention. However, negative correlations between miR-20b-5p and the protein levels of its predicted target, acyl-CoA synthetase long-chain family member 1, were observed. Several other miRNA-target relationships correlated negatively, indicating possible miRNA regulation, including miR-29a-3p and lipoprotein lipase mRNA levels. Proteins involved in lipolysis were not affected by the intervention. Weight loss influenced several miRNAs, some of which were negatively correlated with predicted targets. These dysregulated miRNAs may affect adipocytokine signaling and forkhead box protein O signaling. © 2017 The Obesity Society.

  19. Microarray analysis and draft genomes of two Escherichia coli 0157:H7 lineage II cattle isolates FRIK966 and FRIK2000 investigating lack of Shiga toxin expression

    USDA-ARS?s Scientific Manuscript database

    The existence of two separate lineages of Escherichia coli O157:H7 has previously been reported, and research indicates that lineage I might be more pathogenic towards human hosts than lineage II. We have previously shown that lineage I expresses higher levels of Shiga toxin 2 (Stx2). To evaluate w...

  20. Is this the real time for genomics?

    PubMed

    Guarnaccia, Maria; Gentile, Giulia; Alessi, Enrico; Schneider, Claudio; Petralia, Salvatore; Cavallaro, Sebastiano

    2014-01-01

    In the last decades, molecular biology has moved from gene-by-gene analysis to more complex studies using a genome-wide scale. Thanks to high-throughput genomic technologies, such as microarrays and next-generation sequencing, a huge amount of information has been generated, expanding our knowledge on the genetic basis of various diseases. Although some of this information could be transferred to clinical diagnostics, the technologies available are not suitable for this purpose. In this review, we will discuss the drawbacks associated with the use of traditional DNA microarrays in diagnostics, pointing out emerging platforms that could overcome these obstacles and offer a more reproducible, qualitative and quantitative multigenic analysis. New miniaturized and automated devices, called Lab-on-Chip, begin to integrate PCR and microarray on the same platform, offering integrated sample-to-result systems. The introduction of this kind of innovative devices may facilitate the transition of genome-based tests into clinical routine. Copyright © 2014. Published by Elsevier Inc.

  1. GStream: Improving SNP and CNV Coverage on Genome-Wide Association Studies

    PubMed Central

    Alonso, Arnald; Marsal, Sara; Tortosa, Raül; Canela-Xandri, Oriol; Julià, Antonio

    2013-01-01

    We present GStream, a method that combines genome-wide SNP and CNV genotyping in the Illumina microarray platform with unprecedented accuracy. This new method outperforms previous well-established SNP genotyping software. More importantly, the CNV calling algorithm of GStream dramatically improves the results obtained by previous state-of-the-art methods and yields an accuracy that is close to that obtained by purely CNV-oriented technologies like Comparative Genomic Hybridization (CGH). We demonstrate the superior performance of GStream using microarray data generated from HapMap samples. Using the reference CNV calls generated by the 1000 Genomes Project (1KGP) and well-known studies on whole genome CNV characterization based either on CGH or genotyping microarray technologies, we show that GStream can increase the number of reliably detected variants up to 25% compared to previously developed methods. Furthermore, the increased genome coverage provided by GStream allows the discovery of CNVs in close linkage disequilibrium with SNPs, previously associated with disease risk in published Genome-Wide Association Studies (GWAS). These results could provide important insights into the biological mechanism underlying the detected disease risk association. With GStream, large-scale GWAS will not only benefit from the combined genotyping of SNPs and CNVs at an unprecedented accuracy, but will also take advantage of the computational efficiency of the method. PMID:23844243

  2. Identifying molecular features for prostate cancer with Gleason 7 based on microarray gene expression profiles.

    PubMed

    Bălăcescu, Loredana; Bălăcescu, O; Crişan, N; Fetica, B; Petruţ, B; Bungărdean, Cătălina; Rus, Meda; Tudoran, Oana; Meurice, G; Irimie, Al; Dragoş, N; Berindan-Neagoe, Ioana

    2011-01-01

    Prostate cancer represents the first leading cause of cancer among western male population, with different clinical behavior ranging from indolent to metastatic disease. Although many molecules and deregulated pathways are known, the molecular mechanisms involved in the development of prostate cancer are not fully understood. The aim of this study was to explore the molecular variation underlying the prostate cancer, based on microarray analysis and bioinformatics approaches. Normal and prostate cancer tissues were collected by macrodissection from prostatectomy pieces. All prostate cancer specimens used in our study were Gleason score 7. Gene expression microarray (Agilent Technologies) was used for Whole Human Genome evaluation. The bioinformatics and functional analysis were based on Limma and Ingenuity software. The microarray analysis identified 1119 differentially expressed genes between prostate cancer and normal prostate, which were up- or down-regulated at least 2-fold. P-values were adjusted for multiple testing using Benjamini-Hochberg method with a false discovery rate of 0.01. These genes were analyzed with Ingenuity Pathway Analysis software and were established 23 genetic networks. Our microarray results provide new information regarding the molecular networks in prostate cancer stratified as Gleason 7. These data highlighted gene expression profiles for better understanding of prostate cancer progression.

  3. Comparative genome analysis of a large Dutch Legionella pneumophila strain collection identifies five markers highly correlated with clinical strains

    PubMed Central

    2010-01-01

    Background Discrimination between clinical and environmental strains within many bacterial species is currently underexplored. Genomic analyses have clearly shown the enormous variability in genome composition between different strains of a bacterial species. In this study we have used Legionella pneumophila, the causative agent of Legionnaire's disease, to search for genomic markers related to pathogenicity. During a large surveillance study in The Netherlands well-characterized patient-derived strains and environmental strains were collected. We have used a mixed-genome microarray to perform comparative-genome analysis of 257 strains from this collection. Results Microarray analysis indicated that 480 DNA markers (out of in total 3360 markers) showed clear variation in presence between individual strains and these were therefore selected for further analysis. Unsupervised statistical analysis of these markers showed the enormous genomic variation within the species but did not show any correlation with a pathogenic phenotype. We therefore used supervised statistical analysis to identify discriminating markers. Genetic programming was used both to identify predictive markers and to define their interrelationships. A model consisting of five markers was developed that together correctly predicted 100% of the clinical strains and 69% of the environmental strains. Conclusions A novel approach for identifying predictive markers enabling discrimination between clinical and environmental isolates of L. pneumophila is presented. Out of over 3000 possible markers, five were selected that together enabled correct prediction of all the clinical strains included in this study. This novel approach for identifying predictive markers can be applied to all bacterial species, allowing for better discrimination between strains well equipped to cause human disease and relatively harmless strains. PMID:20630115

  4. Contribution of transposable elements and distal enhancers to evolution of human-specific features of interphase chromatin architecture in embryonic stem cells.

    PubMed

    Glinsky, Gennadi V

    2018-03-01

    Transposable elements have made major evolutionary impacts on creation of primate-specific and human-specific genomic regulatory loci and species-specific genomic regulatory networks (GRNs). Molecular and genetic definitions of human-specific changes to GRNs contributing to development of unique to human phenotypes remain a highly significant challenge. Genome-wide proximity placement analysis of diverse families of human-specific genomic regulatory loci (HSGRL) identified topologically associating domains (TADs) that are significantly enriched for HSGRL and designated rapidly evolving in human TADs. Here, the analysis of HSGRL, hESC-enriched enhancers, super-enhancers (SEs), and specific sub-TAD structures termed super-enhancer domains (SEDs) has been performed. In the hESC genome, 331 of 504 (66%) of SED-harboring TADs contain HSGRL and 68% of SEDs co-localize with HSGRL, suggesting that emergence of HSGRL may have rewired SED-associated GRNs within specific TADs by inserting novel and/or erasing existing non-coding regulatory sequences. Consequently, markedly distinct features of the principal regulatory structures of interphase chromatin evolved in the hESC genome compared to mouse: the SED quantity is 3-fold higher and the median SED size is significantly larger. Concomitantly, the overall TAD quantity is increased by 42% while the median TAD size is significantly decreased (p = 9.11E-37) in the hESC genome. Present analyses illustrate a putative global role for transposable elements and HSGRL in shaping the human-specific features of the interphase chromatin organization and functions, which are facilitated by accelerated creation of novel transcription factor binding sites and new enhancers driven by targeted placement of HSGRL at defined genomic coordinates. A trend toward the convergence of TAD and SED architectures of interphase chromatin in the hESC genome may reflect changes of 3D-folding patterns of linear chromatin fibers designed to enhance both regulatory complexity and functional precision of GRNs by creating predominantly a single gene (or a set of functionally linked genes) per regulatory domain structures. Collectively, present analyses reveal critical evolutionary contributions of transposable elements and distal enhancers to creation of thousands primate- and human-specific elements of a chromatin folding code, which defines the 3D context of interphase chromatin both restricting and facilitating biological functions of GRNs.

  5. Expansion of the CRISPR-Cas9 genome targeting space through the use of H1 promoter-expressed guide RNAs.

    PubMed

    Ranganathan, Vinod; Wahlin, Karl; Maruotti, Julien; Zack, Donald J

    2014-08-08

    The repurposed CRISPR-Cas9 system has recently emerged as a revolutionary genome-editing tool. Here we report a modification in the expression of the guide RNA (gRNA) required for targeting that greatly expands the targetable genome. gRNA expression through the commonly used U6 promoter requires a guanosine nucleotide to initiate transcription, thus constraining genomic-targeting sites to GN19NGG. We demonstrate the ability to modify endogenous genes using H1 promoter-expressed gRNAs, which can be used to target both AN19NGG and GN19NGG genomic sites. AN19NGG sites occur ~15% more frequently than GN19NGG sites in the human genome and the increase in targeting space is also enriched at human genes and disease loci. Together, our results enhance the versatility of the CRISPR technology by more than doubling the number of targetable sites within the human genome and other eukaryotic species.

  6. Species-Specific 5 mC and 5 hmC Genomic Landscapes Indicate Epigenetic Contribution to Human Brain Evolution

    PubMed Central

    Madrid, Andy; Chopra, Pankaj; Alisch, Reid S.

    2018-01-01

    Human evolution from non-human primates has seen substantial change in the central nervous system, with the molecular mechanisms underlying human brain evolution remaining largely unknown. Methylation of cytosine at the fifth carbon (5-methylcytosine; 5 mC) is an essential epigenetic mark linked to neurodevelopment, as well as neurological disease. The emergence of another modified form of cytosine (5-hydroxymethylcytosine; 5 hmC) that is enriched in the brain further substantiates a role for these epigenetic marks in neurodevelopment, yet little is known about the evolutionary importance of these marks in brain development. Here, human and monkey brain tissue were profiled, identifying 5,516 and 4,070 loci that were differentially methylated and hydroxymethylated, respectively, between the species. Annotation of these loci to the human genome revealed genes critical for the development of the nervous system and that are associated with intelligence and higher cognitive functioning, such as RELN and GNAS. Moreover, ontological analyses of these differentially methylated and hydroxymethylated genes revealed a significant enrichment of neuronal/immunological–related processes, including neurogenesis and axon development. Finally, the sequences flanking the differentially methylated/hydroxymethylated loci contained a significant enrichment of binding sites for neurodevelopmentally important transcription factors (e.g., OTX1 and PITX1), suggesting that DNA methylation may regulate gene expression by mediating transcription factor binding on these transcripts. Together, these data support dynamic species-specific epigenetic contributions in the evolution and development of the human brain from non-human primates. PMID:29491831

  7. The draft genome sequence of the ferret (Mustela putorius furo) facilitates study of human respiratory disease.

    PubMed

    Peng, Xinxia; Alföldi, Jessica; Gori, Kevin; Eisfeld, Amie J; Tyler, Scott R; Tisoncik-Go, Jennifer; Brawand, David; Law, G Lynn; Skunca, Nives; Hatta, Masato; Gasper, David J; Kelly, Sara M; Chang, Jean; Thomas, Matthew J; Johnson, Jeremy; Berlin, Aaron M; Lara, Marcia; Russell, Pamela; Swofford, Ross; Turner-Maier, Jason; Young, Sarah; Hourlier, Thibaut; Aken, Bronwen; Searle, Steve; Sun, Xingshen; Yi, Yaling; Suresh, M; Tumpey, Terrence M; Siepel, Adam; Wisely, Samantha M; Dessimoz, Christophe; Kawaoka, Yoshihiro; Birren, Bruce W; Lindblad-Toh, Kerstin; Di Palma, Federica; Engelhardt, John F; Palermo, Robert E; Katze, Michael G

    2014-12-01

    The domestic ferret (Mustela putorius furo) is an important animal model for multiple human respiratory diseases. It is considered the 'gold standard' for modeling human influenza virus infection and transmission. Here we describe the 2.41 Gb draft genome assembly of the domestic ferret, constituting 2.28 Gb of sequence plus gaps. We annotated 19,910 protein-coding genes on this assembly using RNA-seq data from 21 ferret tissues. We characterized the ferret host response to two influenza virus infections by RNA-seq analysis of 42 ferret samples from influenza time-course data and showed distinct signatures in ferret trachea and lung tissues specific to 1918 or 2009 human pandemic influenza virus infections. Using microarray data from 16 ferret samples reflecting cystic fibrosis disease progression, we showed that transcriptional changes in the CFTR-knockout ferret lung reflect pathways of early disease that cannot be readily studied in human infants with cystic fibrosis disease.

  8. The draft genome sequence of the ferret (Mustela putorius furo) facilitates study of human respiratory disease

    PubMed Central

    Peng, Xinxia; Alföldi, Jessica; Gori, Kevin; Eisfeld, Amie J.; Tyler, Scott R.; Tisoncik-Go, Jennifer; Brawand, David; Law, G. Lynn; Skunca, Nives; Hatta, Masato; Gasper, David J.; Kelly, Sara M.; Chang, Jean; Thomas, Matthew J.; Johnson, Jeremy; Berlin, Aaron M.; Lara, Marcia; Russell, Pamela; Swofford, Ross; Turner-Maier, Jason; Young, Sarah; Hourlier, Thibaut; Aken, Bronwen; Searle, Steve; Sun, Xingshen; Yi, Yaling; Suresh, M.; Tumpey, Terrence M.; Siepel, Adam; Wisely, Samantha M.; Dessimoz, Christophe; Kawaoka, Yoshihiro; Birren, Bruce W.; Lindblad-Toh, Kerstin; Di Palma, Federica; Engelhardt, John F.; Palermo, Robert E.; Katze, Michael G.

    2014-01-01

    The domestic ferret (Mustela putorius furo) is an important animal model for multiple human respiratory diseases. It is considered the ‘gold standard’ for modeling human influenza virus infection and transmission1–4. Here we describe the 2.41 Gb draft genome assembly of the domestic ferret, constituting 2.28 Gb of sequence plus gaps. We annotate 19,910 protein-coding genes on this assembly using RNA-seq data from 21 ferret tissues. We characterize the ferret host response to two influenza virus infections by RNA-seq analysis of 42 ferret samples from influenza time courses, and show distinct signatures in ferret trachea and lung tissues specific to 1918 or 2009 human pandemic influenza virus infections. Using microarray data from 16 ferret samples reflecting cystic fibrosis (CF) disease progression, we show that transcriptional changes in the CFTR-knockout ferret lung reflect pathways of early disease that cannot be readily studied in human infants with CF disease. PMID:25402615

  9. MobilomeFINDER: web-based tools for in silico and experimental discovery of bacterial genomic islands

    PubMed Central

    Ou, Hong-Yu; He, Xinyi; Harrison, Ewan M.; Kulasekara, Bridget R.; Thani, Ali Bin; Kadioglu, Aras; Lory, Stephen; Hinton, Jay C. D.; Barer, Michael R.; Rajakumar, Kumar

    2007-01-01

    MobilomeFINDER (http://mml.sjtu.edu.cn/MobilomeFINDER) is an interactive online tool that facilitates bacterial genomic island or ‘mobile genome’ (mobilome) discovery; it integrates the ArrayOme and tRNAcc software packages. ArrayOme utilizes a microarray-derived comparative genomic hybridization input data set to generate ‘inferred contigs’ produced by merging adjacent genes classified as ‘present’. Collectively these ‘fragments’ represent a hypothetical ‘microarray-visualized genome (MVG)’. ArrayOme permits recognition of discordances between physical genome and MVG sizes, thereby enabling identification of strains rich in microarray-elusive novel genes. Individual tRNAcc tools facilitate automated identification of genomic islands by comparative analysis of the contents and contexts of tRNA sites and other integration hotspots in closely related sequenced genomes. Accessory tools facilitate design of hotspot-flanking primers for in silico and/or wet-science-based interrogation of cognate loci in unsequenced strains and analysis of islands for features suggestive of foreign origins; island-specific and genome-contextual features are tabulated and represented in schematic and graphical forms. To date we have used MobilomeFINDER to analyse several Enterobacteriaceae, Pseudomonas aeruginosa and Streptococcus suis genomes. MobilomeFINDER enables high-throughput island identification and characterization through increased exploitation of emerging sequence data and PCR-based profiling of unsequenced test strains; subsequent targeted yeast recombination-based capture permits full-length sequencing and detailed functional studies of novel genomic islands. PMID:17537813

  10. High-throughput microarray technology in diagnostics of enterobacteria based on genome-wide probe selection and regression analysis.

    PubMed

    Friedrich, Torben; Rahmann, Sven; Weigel, Wilfried; Rabsch, Wolfgang; Fruth, Angelika; Ron, Eliora; Gunzer, Florian; Dandekar, Thomas; Hacker, Jörg; Müller, Tobias; Dobrindt, Ulrich

    2010-10-21

    The Enterobacteriaceae comprise a large number of clinically relevant species with several individual subspecies. Overlapping virulence-associated gene pools and the high overall genome plasticity often interferes with correct enterobacterial strain typing and risk assessment. Array technology offers a fast, reproducible and standardisable means for bacterial typing and thus provides many advantages for bacterial diagnostics, risk assessment and surveillance. The development of highly discriminative broad-range microbial diagnostic microarrays remains a challenge, because of marked genome plasticity of many bacterial pathogens. We developed a DNA microarray for strain typing and detection of major antimicrobial resistance genes of clinically relevant enterobacteria. For this purpose, we applied a global genome-wide probe selection strategy on 32 available complete enterobacterial genomes combined with a regression model for pathogen classification. The discriminative power of the probe set was further tested in silico on 15 additional complete enterobacterial genome sequences. DNA microarrays based on the selected probes were used to type 92 clinical enterobacterial isolates. Phenotypic tests confirmed the array-based typing results and corroborate that the selected probes allowed correct typing and prediction of major antibiotic resistances of clinically relevant Enterobacteriaceae, including the subspecies level, e.g. the reliable distinction of different E. coli pathotypes. Our results demonstrate that the global probe selection approach based on longest common factor statistics as well as the design of a DNA microarray with a restricted set of discriminative probes enables robust discrimination of different enterobacterial variants and represents a proof of concept that can be adopted for diagnostics of a wide range of microbial pathogens. Our approach circumvents misclassifications arising from the application of virulence markers, which are highly affected by horizontal gene transfer. Moreover, a broad range of pathogens have been covered by an efficient probe set size enabling the design of high-throughput diagnostics.

  11. NCBI GEO: archive for functional genomics data sets—10 years on

    PubMed Central

    Barrett, Tanya; Troup, Dennis B.; Wilhite, Stephen E.; Ledoux, Pierre; Evangelista, Carlos; Kim, Irene F.; Tomashevsky, Maxim; Marshall, Kimberly A.; Phillippy, Katherine H.; Sherman, Patti M.; Muertter, Rolf N.; Holko, Michelle; Ayanbule, Oluwabukunmi; Yefanov, Andrey; Soboleva, Alexandra

    2011-01-01

    A decade ago, the Gene Expression Omnibus (GEO) database was established at the National Center for Biotechnology Information (NCBI). The original objective of GEO was to serve as a public repository for high-throughput gene expression data generated mostly by microarray technology. However, the research community quickly applied microarrays to non-gene-expression studies, including examination of genome copy number variation and genome-wide profiling of DNA-binding proteins. Because the GEO database was designed with a flexible structure, it was possible to quickly adapt the repository to store these data types. More recently, as the microarray community switches to next-generation sequencing technologies, GEO has again adapted to host these data sets. Today, GEO stores over 20 000 microarray- and sequence-based functional genomics studies, and continues to handle the majority of direct high-throughput data submissions from the research community. Multiple mechanisms are provided to help users effectively search, browse, download and visualize the data at the level of individual genes or entire studies. This paper describes recent database enhancements, including new search and data representation tools, as well as a brief review of how the community uses GEO data. GEO is freely accessible at http://www.ncbi.nlm.nih.gov/geo/. PMID:21097893

  12. Overview of long non-coding RNA and mRNA expression in response to methamphetamine treatment in vitro.

    PubMed

    Xiong, Kun; Long, Lingling; Zhang, Xudong; Qu, Hongke; Deng, Haixiao; Ding, Yanjun; Cai, Jifeng; Wang, Shuchao; Wang, Mi; Liao, Lvshuang; Huang, Jufang; Yi, Chun-Xia; Yan, Jie

    2017-10-01

    Long non-coding RNAs (lncRNAs) display multiple functions including regulation of neuronal injury. However, their impact in methamphetamine (METH)-induced neurotoxicity has rarely been reported. Here, using microarray analysis, we investigated the expression profiling of lncRNAs and mRNAs in primary cultured prefrontal cortical neurons after METH treatment. We observed a difference in lncRNA and mRNA expression between the experimental and sham control groups. Using bioinformatics, we analyzed the highest enriched gene ontology (GO) terms of biological process, cellular component, and molecular function, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and pathway network analysis. Furthermore, an lncRNA-mRNA co-expression sub-network for aberrantly expressed terms revealed possible interactions of lncRNA NR_110713 and NR_027943 with their related genes. Afterwards, three lncRNAs (NR_110713, NR_027943, GAS5) and two mRNAs (Ddit3, Casp12) were targeted to validate the microarray data by qRT-PCR. This presented an overview of lncRNA and mRNA expression profiling and indicated that lncRNA might participate in METH-induced neuronal apoptosis by regulating the coding genes of neurons. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Manufacturing of microarrays.

    PubMed

    Petersen, David W; Kawasaki, Ernest S

    2007-01-01

    DNA microarray technology has become a powerful tool in the arsenal of the molecular biologist. Capitalizing on high precision robotics and the wealth of DNA sequences annotated from the genomes of a large number of organisms, the manufacture of microarrays is now possible for the average academic laboratory with the funds and motivation. Microarray production requires attention to both biological and physical resources, including DNA libraries, robotics, and qualified personnel. While the fabrication of microarrays is a very labor-intensive process, production of quality microarrays individually tailored on a project-by-project basis will help researchers shed light on future scientific questions.

  14. Multiplex amplification of large sets of human exons.

    PubMed

    Porreca, Gregory J; Zhang, Kun; Li, Jin Billy; Xie, Bin; Austin, Derek; Vassallo, Sara L; LeProust, Emily M; Peck, Bill J; Emig, Christopher J; Dahl, Fredrik; Gao, Yuan; Church, George M; Shendure, Jay

    2007-11-01

    A new generation of technologies is poised to reduce DNA sequencing costs by several orders of magnitude. But our ability to fully leverage the power of these technologies is crippled by the absence of suitable 'front-end' methods for isolating complex subsets of a mammalian genome at a scale that matches the throughput at which these platforms will routinely operate. We show that targeting oligonucleotides released from programmable microarrays can be used to capture and amplify approximately 10,000 human exons in a single multiplex reaction. Additionally, we show integration of this protocol with ultra-high-throughput sequencing for targeted variation discovery. Although the multiplex capture reaction is highly specific, we found that nonuniform capture is a key issue that will need to be resolved by additional optimization. We anticipate that highly multiplexed methods for targeted amplification will enable the comprehensive resequencing of human exons at a fraction of the cost of whole-genome resequencing.

  15. Comparative genomics of Burkholderia multivorans, a ubiquitous pathogen with a highly conserved genomic structure

    PubMed Central

    Cooper, Vaughn S.; Hatcher, Philip J.; Verheyde, Bart; Carlier, Aurélien; Vandamme, Peter

    2017-01-01

    The natural environment serves as a reservoir of opportunistic pathogens. A well-established method for studying the epidemiology of such opportunists is multilocus sequence typing, which in many cases has defined strains predisposed to causing infection. Burkholderia multivorans is an important pathogen in people with cystic fibrosis (CF) and its epidemiology suggests that strains are acquired from non-human sources such as the natural environment. This raises the central question of whether the isolation source (CF or environment) or the multilocus sequence type (ST) of B. multivorans better predicts their genomic content and functionality. We identified four pairs of B. multivorans isolates, representing distinct STs and consisting of one CF and one environmental isolate each. All genomes were sequenced using the PacBio SMRT sequencing technology, which resulted in eight high-quality B. multivorans genome assemblies. The present study demonstrated that the genomic structure of the examined B. multivorans STs is highly conserved and that the B. multivorans genomic lineages are defined by their ST. Orthologous protein families were not uniformly distributed among chromosomes, with core orthologs being enriched on the primary chromosome and ST-specific orthologs being enriched on the second and third chromosome. The ST-specific orthologs were enriched in genes involved in defense mechanisms and secondary metabolism, corroborating the strain-specificity of these virulence characteristics. Finally, the same B. multivorans genomic lineages occur in both CF and environmental samples and on different continents, demonstrating their ubiquity and evolutionary persistence. PMID:28430818

  16. DNA Repair and the Accumulation of Oxidatively Damaged DNA Are Affected by Fruit Intake in Mice

    PubMed Central

    Croteau, Deborah L.; de Souza-Pinto, Nadja C.; Harboe, Charlotte; Keijzers, Guido; Zhang, Yongqing; Becker, Kevin; Sheng, Shan

    2010-01-01

    AGING is associated with elevated oxidative stress and DNA damage. To achieve healthy aging, we must begin to understand how diet affects cellular processes. We postulated that fruit-enriched diets might initiate a program of enhanced DNA repair and thereby improve genome integrity. C57Bl/6 J mice were fed for 14 weeks a control diet or a diet with 8% peach or nectarine extract. The activities of DNA repair enzymes, the level of DNA damage, and gene expression changes were measured. Our study showed that repair of various oxidative DNA lesions was more efficient in liver extracts derived from mice fed fruit-enriched diets. In support of these findings, gas chromatography–mass spectrometry analysis revealed that there was a decrease in the levels of formamidopyrimidines in peach-fed mice compared with the controls. Additionally, microarray analysis revealed that NTH1 was upregulated in peach-fed mice. Taken together, these results suggest that an increased intake of fruits might modulate the efficiency of DNA repair, resulting in altered levels of DNA damage. PMID:20847039

  17. Discovery of common sequences absent in the human reference genome using pooled samples from next generation sequencing.

    PubMed

    Liu, Yu; Koyutürk, Mehmet; Maxwell, Sean; Xiang, Min; Veigl, Martina; Cooper, Richard S; Tayo, Bamidele O; Li, Li; LaFramboise, Thomas; Wang, Zhenghe; Zhu, Xiaofeng; Chance, Mark R

    2014-08-16

    Sequences up to several megabases in length have been found to be present in individual genomes but absent in the human reference genome. These sequences may be common in populations, and their absence in the reference genome may indicate rare variants in the genomes of individuals who served as donors for the human genome project. As the reference genome is used in probe design for microarray technology and mapping short reads in next generation sequencing (NGS), this missing sequence could be a source of bias in functional genomic studies and variant analysis. One End Anchor (OEA) and/or orphan reads from paired-end sequencing have been used to identify novel sequences that are absent in reference genome. However, there is no study to investigate the distribution, evolution and functionality of those sequences in human populations. To systematically identify and study the missing common sequences (micSeqs), we extended the previous method by pooling OEA reads from large number of individuals and applying strict filtering methods to remove false sequences. The pipeline was applied to data from phase 1 of the 1000 Genomes Project. We identified 309 micSeqs that are present in at least 1% of the human population, but absent in the reference genome. We confirmed 76% of these 309 micSeqs by comparison to other primate genomes, individual human genomes, and gene expression data. Furthermore, we randomly selected fifteen micSeqs and confirmed their presence using PCR validation in 38 additional individuals. Functional analysis using published RNA-seq and ChIP-seq data showed that eleven micSeqs are highly expressed in human brain and three micSeqs contain transcription factor (TF) binding regions, suggesting they are functional elements. In addition, the identified micSeqs are absent in non-primates and show dynamic acquisition during primate evolution culminating with most micSeqs being present in Africans, suggesting some micSeqs may be important sources of human diversity. 76% of micSeqs were confirmed by a comparative genomics approach. Fourteen micSeqs are expressed in human brain or contain TF binding regions. Some micSeqs are primate-specific, conserved and may play a role in the evolution of primates.

  18. A DNA microarray-based methylation-sensitive (MS)-AFLP hybridization method for genetic and epigenetic analyses.

    PubMed

    Yamamoto, F; Yamamoto, M

    2004-07-01

    We previously developed a PCR-based DNA fingerprinting technique named the Methylation Sensitive (MS)-AFLP method, which permits comparative genome-wide scanning of methylation status with a manageable number of fingerprinting experiments. The technique uses the methylation sensitive restriction enzyme NotI in the context of the existing Amplified Fragment Length Polymorphism (AFLP) method. Here we report the successful conversion of this gel electrophoresis-based DNA fingerprinting technique into a DNA microarray hybridization technique (DNA Microarray MS-AFLP). By performing a total of 30 (15 x 2 reciprocal labeling) DNA Microarray MS-AFLP hybridization experiments on genomic DNA from two breast and three prostate cancer cell lines in all pairwise combinations, and Southern hybridization experiments using more than 100 different probes, we have demonstrated that the DNA Microarray MS-AFLP is a reliable method for genetic and epigenetic analyses. No statistically significant differences were observed in the number of differences between the breast-prostate hybridization experiments and the breast-breast or prostate-prostate comparisons.

  19. Performance comparison of two microarray platforms to assess differential gene expression in human monocyte and macrophage cells

    PubMed Central

    Maouche, Seraya; Poirier, Odette; Godefroy, Tiphaine; Olaso, Robert; Gut, Ivo; Collet, Jean-Phillipe; Montalescot, Gilles; Cambien, François

    2008-01-01

    Background In this study we assessed the respective ability of Affymetrix and Illumina microarray methodologies to answer a relevant biological question, namely the change in gene expression between resting monocytes and macrophages derived from these monocytes. Five RNA samples for each type of cell were hybridized to the two platforms in parallel. In addition, a reference list of differentially expressed genes (DEG) was generated from a larger number of hybridizations (mRNA from 86 individuals) using the RNG/MRC two-color platform. Results Our results show an important overlap of the Illumina and Affymetrix DEG lists. In addition, more than 70% of the genes in these lists were also present in the reference list. Overall the two platforms had very similar performance in terms of biological significance, evaluated by the presence in the DEG lists of an excess of genes belonging to Gene Ontology (GO) categories relevant for the biology of monocytes and macrophages. Our results support the conclusion of the MicroArray Quality Control (MAQC) project that the criteria used to constitute the DEG lists strongly influence the degree of concordance among platforms. However the importance of prioritizing genes by magnitude of effect (fold change) rather than statistical significance (p-value) to enhance cross-platform reproducibility recommended by the MAQC authors was not supported by our data. Conclusion Functional analysis based on GO enrichment demonstrates that the 2 compared technologies delivered very similar results and identified most of the relevant GO categories enriched in the reference list. PMID:18578872

  20. An experimental loop design for the detection of constitutional chromosomal aberrations by array CGH

    PubMed Central

    2009-01-01

    Background Comparative genomic hybridization microarrays for the detection of constitutional chromosomal aberrations is the application of microarray technology coming fastest into routine clinical application. Through genotype-phenotype association, it is also an important technique towards the discovery of disease causing genes and genomewide functional annotation in human. When using a two-channel microarray of genomic DNA probes for array CGH, the basic setup consists in hybridizing a patient against a normal reference sample. Two major disadvantages of this setup are (1) the use of half of the resources to measure a (little informative) reference sample and (2) the possibility that deviating signals are caused by benign copy number variation in the "normal" reference instead of a patient aberration. Instead, we apply an experimental loop design that compares three patients in three hybridizations. Results We develop and compare two statistical methods (linear models of log ratios and mixed models of absolute measurements). In an analysis of 27 patients seen at our genetics center, we observed that the linear models of the log ratios are advantageous over the mixed models of the absolute intensities. Conclusion The loop design and the performance of the statistical analysis contribute to the quick adoption of array CGH as a routine diagnostic tool. They lower the detection limit of mosaicisms and improve the assignment of copy number variation for genetic association studies. PMID:19925645

  1. An experimental loop design for the detection of constitutional chromosomal aberrations by array CGH.

    PubMed

    Allemeersch, Joke; Van Vooren, Steven; Hannes, Femke; De Moor, Bart; Vermeesch, Joris Robert; Moreau, Yves

    2009-11-19

    Comparative genomic hybridization microarrays for the detection of constitutional chromosomal aberrations is the application of microarray technology coming fastest into routine clinical application. Through genotype-phenotype association, it is also an important technique towards the discovery of disease causing genes and genomewide functional annotation in human. When using a two-channel microarray of genomic DNA probes for array CGH, the basic setup consists in hybridizing a patient against a normal reference sample. Two major disadvantages of this setup are (1) the use of half of the resources to measure a (little informative) reference sample and (2) the possibility that deviating signals are caused by benign copy number variation in the "normal" reference instead of a patient aberration. Instead, we apply an experimental loop design that compares three patients in three hybridizations. We develop and compare two statistical methods (linear models of log ratios and mixed models of absolute measurements). In an analysis of 27 patients seen at our genetics center, we observed that the linear models of the log ratios are advantageous over the mixed models of the absolute intensities. The loop design and the performance of the statistical analysis contribute to the quick adoption of array CGH as a routine diagnostic tool. They lower the detection limit of mosaicisms and improve the assignment of copy number variation for genetic association studies.

  2. 5-Hydroxymethylcytosine Profiling in Human DNA.

    PubMed

    Thomson, John P; Nestor, Colm E; Meehan, Richard R

    2017-01-01

    Since its "re-discovery" in 2009, there has been significant interest in defining the genome-wide distribution of DNA marked by 5-hydroxymethylation at cytosine bases (5hmC). In recent years, technological advances have resulted in a multitude of unique strategies to map 5hmC across the human genome. Here we discuss the wide range of approaches available to map this modification and describe in detail the affinity based methods which result in the enrichment of 5hmC marked DNA for downstream analysis.

  3. Genome-Wide Identification of Regulatory Sequences Undergoing Accelerated Evolution in the Human Genome

    PubMed Central

    Dong, Xinran; Wang, Xiao; Zhang, Feng; Tian, Weidong

    2016-01-01

    Accelerated evolution of regulatory sequence can alter the expression pattern of target genes, and cause phenotypic changes. In this study, we used DNase I hypersensitive sites (DHSs) to annotate putative regulatory sequences in the human genome, and conducted a genome-wide analysis of the effects of accelerated evolution on regulatory sequences. Working under the assumption that local ancient repeat elements of DHSs are under neutral evolution, we discovered that ∼0.44% of DHSs are under accelerated evolution (ace-DHSs). We found that ace-DHSs tend to be more active than background DHSs, and are strongly associated with epigenetic marks of active transcription. The target genes of ace-DHSs are significantly enriched in neuron-related functions, and their expression levels are positively selected in the human brain. Thus, these lines of evidences strongly suggest that accelerated evolution on regulatory sequences plays important role in the evolution of human-specific phenotypes. PMID:27401230

  4. Aging and Gene Expression in the Primate Brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fraser, Hunter B.; Khaitovich, Philipp; Plotkin, Joshua B.

    2005-02-18

    It is well established that gene expression levels in many organisms change during the aging process, and the advent of DNA microarrays has allowed genome-wide patterns of transcriptional changes associated with aging to be studied in both model organisms and various human tissues. Understanding the effects of aging on gene expression in the human brain is of particular interest, because of its relation to both normal and pathological neurodegeneration. Here we show that human cerebral cortex, human cerebellum, and chimpanzee cortex each undergo different patterns of age-related gene expression alterations. In humans, many more genes undergo consistent expression changes inmore » the cortex than in the cerebellum; in chimpanzees, many genes change expression with age in cortex, but the pattern of changes in expression bears almost no resemblance to that of human cortex. These results demonstrate the diversity of aging patterns present within the human brain, as well as how rapidly genome-wide patterns of aging can evolve between species; they may also have implications for the oxidative free radical theory of aging, and help to improve our understanding of human neurodegenerative diseases.« less

  5. Common genomic features of Campylobacter jejuni subsp. doylei strains distinguish them from C. jejuni subsp. jejuni

    PubMed Central

    Parker, Craig T; Miller, William G; Horn, Sharon T; Lastovica, Albert J

    2007-01-01

    Background Campylobacter jejuni has been divided into two subspecies: C. jejuni subsp. jejuni (Cjj) and C. jejuni subsp. doylei (Cjd). Nearly all of the C. jejuni strains isolated are Cjj; nevertheless, although Cjd strains are isolated infrequently, they differ from Cjj in two key aspects: they are obtained primarily from human clinical samples and are associated often with bacteremia, in addition to gastroenteritis. In this study, we utilized multilocus sequence typing (MLST) and a DNA microarray-based comparative genomic indexing (CGI) approach to examine the genomic diversity and gene content of Cjd strains. Results A geographically diverse collection of eight Cjd strains was examined by MLST and determined to be phylogenetically distinct from Cjj strains. Microarray-based CGI approach also supported this. We were able to demonstrate that Cjd strains exhibited divergence from Cjj strains NCTC 11168 and RM1221 in many of the intraspecies hypervariable regions. Moreover, multiple metabolic, transport and virulence functions (e.g. cytolethal distending toxin) were shown to be absent in the Cjd strains examined. Conclusion Our data demonstrate that Cjd are phylogenetically distinct from Cjj strains. Using the CGI approach, we identified subsets of absent genes from amongst the C. jejuni genes that provide clues as to the potential evolutionary origin and unusual pathogenicity of Cjd. PMID:17535437

  6. Genomic and oncogenic preference of HBV integration in hepatocellular carcinoma

    PubMed Central

    Zhao, Ling-Hao; Liu, Xiao; Yan, He-Xin; Li, Wei-Yang; Zeng, Xi; Yang, Yuan; Zhao, Jie; Liu, Shi-Ping; Zhuang, Xue-Han; Lin, Chuan; Qin, Chen-Jie; Zhao, Yi; Pan, Ze-Ya; Huang, Gang; Liu, Hui; Zhang, Jin; Wang, Ruo-Yu; Yang, Yun; Wen, Wen; Lv, Gui-Shuai; Zhang, Hui-Lu; Wu, Han; Huang, Shuai; Wang, Ming-Da; Tang, Liang; Cao, Hong-Zhi; Wang, Ling; Lee, Tin-Lap; Jiang, Hui; Tan, Ye-Xiong; Yuan, Sheng-Xian; Hou, Guo-Jun; Tao, Qi-Fei; Xu, Qin-Guo; Zhang, Xiu-Qing; Wu, Meng-Chao; Xu, Xun; Wang, Jun; Yang, Huan-Ming; Zhou, Wei-Ping; Wang, Hong-Yang

    2016-01-01

    Hepatitis B virus (HBV) can integrate into the human genome, contributing to genomic instability and hepatocarcinogenesis. Here by conducting high-throughput viral integration detection and RNA sequencing, we identify 4,225 HBV integration events in tumour and adjacent non-tumour samples from 426 patients with HCC. We show that HBV is prone to integrate into rare fragile sites and functional genomic regions including CpG islands. We observe a distinct pattern in the preferential sites of HBV integration between tumour and non-tumour tissues. HBV insertional sites are significantly enriched in the proximity of telomeres in tumours. Recurrent HBV target genes are identified with few that overlap. The overall HBV integration frequency is much higher in tumour genomes of males than in females, with a significant enrichment of integration into chromosome 17. Furthermore, a cirrhosis-dependent HBV integration pattern is observed, affecting distinct targeted genes. Our data suggest that HBV integration has a high potential to drive oncogenic transformation. PMID:27703150

  7. An optimized methodology for whole genome sequencing of RNA respiratory viruses from nasopharyngeal aspirates.

    PubMed

    Goya, Stephanie; Valinotto, Laura E; Tittarelli, Estefania; Rojo, Gabriel L; Nabaes Jodar, Mercedes S; Greninger, Alexander L; Zaiat, Jonathan J; Marti, Marcelo A; Mistchenko, Alicia S; Viegas, Mariana

    2018-01-01

    Over the last decade, the number of viral genome sequences deposited in available databases has grown exponentially. However, sequencing methodology vary widely and many published works have relied on viral enrichment by viral culture or nucleic acid amplification with specific primers rather than through unbiased techniques such as metagenomics. The genome of RNA viruses is highly variable and these enrichment methodologies may be difficult to achieve or may bias the results. In order to obtain genomic sequences of human respiratory syncytial virus (HRSV) from positive nasopharyngeal aspirates diverse methodologies were evaluated and compared. A total of 29 nearly complete and complete viral genomes were obtained. The best performance was achieved with a DNase I treatment to the RNA directly extracted from the nasopharyngeal aspirate (NPA), sequence-independent single-primer amplification (SISPA) and library preparation performed with Nextera XT DNA Library Prep Kit with manual normalization. An average of 633,789 and 1,674,845 filtered reads per library were obtained with MiSeq and NextSeq 500 platforms, respectively. The higher output of NextSeq 500 was accompanied by the increasing of duplicated reads percentage generated during SISPA (from an average of 1.5% duplicated viral reads in MiSeq to an average of 74% in NextSeq 500). HRSV genome recovery was not affected by the presence or absence of duplicated reads but the computational demand during the analysis was increased. Considering that only samples with viral load ≥ E+06 copies/ml NPA were tested, no correlation between sample viral loads and number of total filtered reads was observed, nor with the mapped viral reads. The HRSV genomes showed a mean coverage of 98.46% with the best methodology. In addition, genomes of human metapneumovirus (HMPV), human rhinovirus (HRV) and human parainfluenza virus types 1-3 (HPIV1-3) were also obtained with the selected optimal methodology.

  8. Moving Toward Integrating Gene Expression Profiling into High-throughput Testing:A Gene Expression Biomarker Accurately Predicts Estrogen Receptor α Modulation in a Microarray Compendium

    EPA Science Inventory

    Microarray profiling of chemical-induced effects is being increasingly used in medium and high-throughput formats. In this study, we describe computational methods to identify molecular targets from whole-genome microarray data using as an example the estrogen receptor α (ERα), ...

  9. Quantitative proteomic analysis in breast cancer.

    PubMed

    Tabchy, A; Hennessy, B T; Gonzalez-Angulo, A M; Bernstam, F M; Lu, Y; Mills, G B

    2011-02-01

    Much progress has recently been made in the genomic and transcriptional characterization of tumors. However, historically the characterization of cells at the protein level has suffered limitations in reproducibility, scalability and robustness. Recent technological advances have made it possible to accurately and reproducibly portray the global levels and active states of cellular proteins. Protein microarrays examine the native post-translational conformations of proteins including activated phosphorylated states, in a comprehensive high-throughput mode, and can map activated pathways and networks of proteins inside the cells. The reverse-phase protein microarray (RPPA) offers a unique opportunity to study signal transduction networks in small biological samples such as human biopsy material and can provide critical information for therapeutic decision-making and the monitoring of patients for targeted molecular medicine. By providing the key missing link to the story generated from genomic and gene expression characterization efforts, functional proteomics offer the promise of a comprehensive understanding of cancer. Several initial successes in breast cancer are showing that such information is clinically relevant. Copyright 2011 Prous Science, S.A.U. or its licensors. All rights reserved.

  10. Methylation detection oligonucleotide microarray analysis: a high-resolution method for detection of CpG island methylation

    PubMed Central

    Kamalakaran, Sitharthan; Kendall, Jude; Zhao, Xiaoyue; Tang, Chunlao; Khan, Sohail; Ravi, Kandasamy; Auletta, Theresa; Riggs, Michael; Wang, Yun; Helland, Åslaug; Naume, Bjørn; Dimitrova, Nevenka; Børresen-Dale, Anne-Lise; Hicks, Jim; Lucito, Robert

    2009-01-01

    Methylation of CpG islands associated with genes can affect the expression of the proximal gene, and methylation of non-associated CpG islands correlates to genomic instability. This epigenetic modification has been shown to be important in many pathologies, from development and disease to cancer. We report the development of a novel high-resolution microarray that detects the methylation status of over 25 000 CpG islands in the human genome. Experiments were performed to demonstrate low system noise in the methodology and that the array probes have a high signal to noise ratio. Methylation measurements between different cell lines were validated demonstrating the accuracy of measurement. We then identified alterations in CpG islands, both those associated with gene promoters, as well as non-promoter-associated islands in a set of breast and ovarian tumors. We demonstrate that this methodology accurately identifies methylation profiles in cancer and in principle it can differentiate any CpG methylation alterations and can be adapted to analyze other species. PMID:19474344

  11. COMPARISON OF COMPARATIVE GENOMIC HYBRIDIZATIONS TECHNOLOGIES ACROSS MICROARRAY PLATFORMS

    EPA Science Inventory

    Comparative Genomic Hybridization (CGH) measures DNA copy number differences between a reference genome and a test genome. The DNA samples are differentially labeled and hybridized to an immobilized substrate. In early CGH experiments, the DNA targets were hybridized to metaphase...

  12. Computational Identification of Genomic Features That Influence 3D Chromatin Domain Formation.

    PubMed

    Mourad, Raphaël; Cuvier, Olivier

    2016-05-01

    Recent advances in long-range Hi-C contact mapping have revealed the importance of the 3D structure of chromosomes in gene expression. A current challenge is to identify the key molecular drivers of this 3D structure. Several genomic features, such as architectural proteins and functional elements, were shown to be enriched at topological domain borders using classical enrichment tests. Here we propose multiple logistic regression to identify those genomic features that positively or negatively influence domain border establishment or maintenance. The model is flexible, and can account for statistical interactions among multiple genomic features. Using both simulated and real data, we show that our model outperforms enrichment test and non-parametric models, such as random forests, for the identification of genomic features that influence domain borders. Using Drosophila Hi-C data at a very high resolution of 1 kb, our model suggests that, among architectural proteins, BEAF-32 and CP190 are the main positive drivers of 3D domain borders. In humans, our model identifies well-known architectural proteins CTCF and cohesin, as well as ZNF143 and Polycomb group proteins as positive drivers of domain borders. The model also reveals the existence of several negative drivers that counteract the presence of domain borders including P300, RXRA, BCL11A and ELK1.

  13. Computational Identification of Genomic Features That Influence 3D Chromatin Domain Formation

    PubMed Central

    Mourad, Raphaël; Cuvier, Olivier

    2016-01-01

    Recent advances in long-range Hi-C contact mapping have revealed the importance of the 3D structure of chromosomes in gene expression. A current challenge is to identify the key molecular drivers of this 3D structure. Several genomic features, such as architectural proteins and functional elements, were shown to be enriched at topological domain borders using classical enrichment tests. Here we propose multiple logistic regression to identify those genomic features that positively or negatively influence domain border establishment or maintenance. The model is flexible, and can account for statistical interactions among multiple genomic features. Using both simulated and real data, we show that our model outperforms enrichment test and non-parametric models, such as random forests, for the identification of genomic features that influence domain borders. Using Drosophila Hi-C data at a very high resolution of 1 kb, our model suggests that, among architectural proteins, BEAF-32 and CP190 are the main positive drivers of 3D domain borders. In humans, our model identifies well-known architectural proteins CTCF and cohesin, as well as ZNF143 and Polycomb group proteins as positive drivers of domain borders. The model also reveals the existence of several negative drivers that counteract the presence of domain borders including P300, RXRA, BCL11A and ELK1. PMID:27203237

  14. Autonomous system for Web-based microarray image analysis.

    PubMed

    Bozinov, Daniel

    2003-12-01

    Software-based feature extraction from DNA microarray images still requires human intervention on various levels. Manual adjustment of grid and metagrid parameters, precise alignment of superimposed grid templates and gene spots, or simply identification of large-scale artifacts have to be performed beforehand to reliably analyze DNA signals and correctly quantify their expression values. Ideally, a Web-based system with input solely confined to a single microarray image and a data table as output containing measurements for all gene spots would directly transform raw image data into abstracted gene expression tables. Sophisticated algorithms with advanced procedures for iterative correction function can overcome imminent challenges in image processing. Herein is introduced an integrated software system with a Java-based interface on the client side that allows for decentralized access and furthermore enables the scientist to instantly employ the most updated software version at any given time. This software tool is extended from PixClust as used in Extractiff incorporated with Java Web Start deployment technology. Ultimately, this setup is destined for high-throughput pipelines in genome-wide medical diagnostics labs or microarray core facilities aimed at providing fully automated service to its users.

  15. CoPub: a literature-based keyword enrichment tool for microarray data analysis.

    PubMed

    Frijters, Raoul; Heupers, Bart; van Beek, Pieter; Bouwhuis, Maurice; van Schaik, René; de Vlieg, Jacob; Polman, Jan; Alkema, Wynand

    2008-07-01

    Medline is a rich information source, from which links between genes and keywords describing biological processes, pathways, drugs, pathologies and diseases can be extracted. We developed a publicly available tool called CoPub that uses the information in the Medline database for the biological interpretation of microarray data. CoPub allows batch input of multiple human, mouse or rat genes and produces lists of keywords from several biomedical thesauri that are significantly correlated with the set of input genes. These lists link to Medline abstracts in which the co-occurring input genes and correlated keywords are highlighted. Furthermore, CoPub can graphically visualize differentially expressed genes and over-represented keywords in a network, providing detailed insight in the relationships between genes and keywords, and revealing the most influential genes as highly connected hubs. CoPub is freely accessible at http://services.nbic.nl/cgi-bin/copub/CoPub.pl.

  16. Genome-wide alteration in DNA hydroxymethylation in the sperm from bisphenol A-exposed men

    PubMed Central

    Li, De-kun; Yang, Fen; Pan, Hongjie; Li, Tianqi; Miao, Maohua; Li, Runsheng; Yuan, Wei

    2017-01-01

    Environmental BPA exposure has been shown to impact human sperm concentration and motility, as well as rodent spermatogenesis. However, it is unclear whether BPA exposure is associated with alteration in DNA hydroxymethylation, a marker for epigenetic modification, in human sperm. A genome-wide DNA hydroxymethylation study was performed using sperm samples of men who were occupationally exposed to BPA. Compared with controls who had no occupational BPA exposure, the total levels of 5-hydroxymethylcytosine (5hmc) increased significantly (19.37% increase) in BPA-exposed men, with 72.69% of genome regions harboring 5hmc. A total of 9,610 differential 5hmc regions (DhMRs) were revealed in BPA-exposed men relative to controls, which were mainly located in intergenic and intron regions. These DhMRs were composed of 8,670 hyper-hMRs and 940 hypo-hMRs, affecting 2,008 genes and the repetitive elements. The hyper-hMRs affected genes were enriched in pathways associated with nervous system, development, cardiovascular diseases and signal transduction. Additionally, enrichment of 5hmc was observed in the promoters of eight maternally expressed imprinted genes in BPA-exposed sperm. Some of the BPA-affected genes, for example, MLH1, CHD2, SPATA12 and SPATA20 might participate in the response to DNA damage in germ cells caused by BPA. Our analysis showed that enrichment of 5hmc both in promoters and gene bodies is higher in the genes whose expression has been detected in human sperm than those whose expression is absent. Importantly, we observed that BPA exposure affected the 5hmc level in 11.4% of these genes expressed in sperm, and in 6.85% of the sperm genome. Finally, we also observed that BPA exposure tends to change the 5hmc enrichment in the genes which was previously reported to be distributed with the trimethylated Histone 3 (H3K27me3, H3K4me2 or H3K4me3) in sperm. Thus, these results suggest that BPA exposure likely interferes with gene expression via affecting DNA hydroxymethylation in a way partially dependent on trimethylation of H3 in human spermatogenesis. Our current study reveals a new mechanism by which BPA exposure reduces human sperm quality. PMID:28582417

  17. Genome-wide alteration in DNA hydroxymethylation in the sperm from bisphenol A-exposed men.

    PubMed

    Zheng, Huajun; Zhou, Xiaoyu; Li, De-Kun; Yang, Fen; Pan, Hongjie; Li, Tianqi; Miao, Maohua; Li, Runsheng; Yuan, Wei

    2017-01-01

    Environmental BPA exposure has been shown to impact human sperm concentration and motility, as well as rodent spermatogenesis. However, it is unclear whether BPA exposure is associated with alteration in DNA hydroxymethylation, a marker for epigenetic modification, in human sperm. A genome-wide DNA hydroxymethylation study was performed using sperm samples of men who were occupationally exposed to BPA. Compared with controls who had no occupational BPA exposure, the total levels of 5-hydroxymethylcytosine (5hmc) increased significantly (19.37% increase) in BPA-exposed men, with 72.69% of genome regions harboring 5hmc. A total of 9,610 differential 5hmc regions (DhMRs) were revealed in BPA-exposed men relative to controls, which were mainly located in intergenic and intron regions. These DhMRs were composed of 8,670 hyper-hMRs and 940 hypo-hMRs, affecting 2,008 genes and the repetitive elements. The hyper-hMRs affected genes were enriched in pathways associated with nervous system, development, cardiovascular diseases and signal transduction. Additionally, enrichment of 5hmc was observed in the promoters of eight maternally expressed imprinted genes in BPA-exposed sperm. Some of the BPA-affected genes, for example, MLH1, CHD2, SPATA12 and SPATA20 might participate in the response to DNA damage in germ cells caused by BPA. Our analysis showed that enrichment of 5hmc both in promoters and gene bodies is higher in the genes whose expression has been detected in human sperm than those whose expression is absent. Importantly, we observed that BPA exposure affected the 5hmc level in 11.4% of these genes expressed in sperm, and in 6.85% of the sperm genome. Finally, we also observed that BPA exposure tends to change the 5hmc enrichment in the genes which was previously reported to be distributed with the trimethylated Histone 3 (H3K27me3, H3K4me2 or H3K4me3) in sperm. Thus, these results suggest that BPA exposure likely interferes with gene expression via affecting DNA hydroxymethylation in a way partially dependent on trimethylation of H3 in human spermatogenesis. Our current study reveals a new mechanism by which BPA exposure reduces human sperm quality.

  18. Radiation Fibrosis of the Vocal Fold: From Man to Mouse

    PubMed Central

    Johns, Michael M.; Kolachala, Vasantha; Berg, Eric; Muller, Susan; Creighton, Frances X.; Branski, Ryan C.

    2013-01-01

    Objectives To characterize fundamental late tissue effects in the human vocal fold following radiation therapy. To develop a murine model of radiation fibrosis to ultimately develop both treatment and prevention paradigms. Design Translational study using archived human and fresh murine irradiated vocal fold tissue. Methods 1) Irradiated vocal fold tissue from patients undergoing laryngectomy for loss of function from radiation fibrosis were identified from pathology archives. Histomorphometry, immunohistochemistry, and whole-genome microarray as well as real-time transcriptional analyses was performed. 2) Focused radiation to the head and neck was delivered to mice in a survival fashion. One month following radiation, vocal fold tissue was analyzed with histomorphometry, immunohistochemistry, and real-time PCR transcriptional analysis for selected markers of fibrosis. Results Human irradiated vocal folds demonstrated increased collagen transcription with increased deposition and disorganization of collagen in both the thyroarytenoid muscle and the superficial lamina propria. Fibronectin were increased in the superficial lamina propria. Laminin decreased in the thyroarytenoid muscle. Whole genome microarray analysis demonstrated increased transcription of markers for fibrosis, oxidative stress, inflammation, glycosaminoglycan production and apoptosis. Irradiated murine vocal folds demonstrated increases in collagen and fibronectin transcription and deposition in the lamina propria. Transforming growth factor (TGF)-β increased in the lamina propria. Conclusion Human irradiated vocal folds demonstrate molecular changes leading to fibrosis that underlie loss of vocal fold pliability that occurs in patients following laryngeal irradiation. Irradiated murine tissue demonstrates similar findings, and this mouse model may have utility in creating prevention and treatment strategies for vocal fold radiation fibrosis. PMID:23242839

  19. Inferring Selective Constraint from Population Genomic Data Suggests Recent Regulatory Turnover in the Human Brain

    PubMed Central

    Schrider, Daniel R.; Kern, Andrew D.

    2015-01-01

    The comparative genomics revolution of the past decade has enabled the discovery of functional elements in the human genome via sequence comparison. While that is so, an important class of elements, those specific to humans, is entirely missed by searching for sequence conservation across species. Here we present an analysis based on variation data among human genomes that utilizes a supervised machine learning approach for the identification of human-specific purifying selection in the genome. Using only allele frequency information from the complete low-coverage 1000 Genomes Project data set in conjunction with a support vector machine trained from known functional and nonfunctional portions of the genome, we are able to accurately identify portions of the genome constrained by purifying selection. Our method identifies previously known human-specific gains or losses of function and uncovers many novel candidates. Candidate targets for gain and loss of function along the human lineage include numerous putative regulatory regions of genes essential for normal development of the central nervous system, including a significant enrichment of gain of function events near neurotransmitter receptor genes. These results are consistent with regulatory turnover being a key mechanism in the evolution of human-specific characteristics of brain development. Finally, we show that the majority of the genome is unconstrained by natural selection currently, in agreement with what has been estimated from phylogenetic methods but in sharp contrast to estimates based on transcriptomics or other high-throughput functional methods. PMID:26590212

  20. The Changes of Gene Expression on Human Hair during Long-Spaceflight

    NASA Astrophysics Data System (ADS)

    Terada, Masahiro; Mukai, Chiaki; Ishioka, Noriaki; Majima, Hideyuki J.; Yamada, Shin; Seki, Masaya; Takahashi, Rika; Higashibata, Akira; Ohshima, Hiroshi; Sudoh, Masamichi; Minamisawa, Susumu

    Hair has many advantages as the experimental sample. In a hair follicle, hair matrix cells actively divide and these active changes sensitively reflect physical condition on human body. The hair shaft records the metabolic conditions of mineral elements in our body. From human hairs, we can detect physiological informations about the human health. Therefore, we focused on using hair root analysis to understand the effects of spaceflight on astronauts. In 2009, we started a research program focusing on the analysis of astronauts’ hairs to examine the effects of long-term spaceflight on the gene expression in the human body. We want to get basic information to invent the effectivly diagnostic methods to detect the health situations of astronauts during space flight by analyzing human hair. We extracted RNA form the collected samples. Then, these extracted RNA was amplified. Amplified RNA was processed and hybridized to the Whole Human Genome (4×44K) Oligo Microarray (Agilent Technologies) according to the manufacturer’s protocol. Slide scanning was performed using the Agilent DNA Microarray Scanner. Scanning data were normalized with Agilent’s Feature Extraction software. Data preprocessing and analysis were performed using GeneSpring software 11.0.1. Next, Synthesis of cDNA (1 mg) was carried out using the PrimeScript RT reagent Kit (TaKaRa Bio) following the manufacturer’s instructions. The qRT-PCR experiment was performed with SYBR Premix Ex Taq (TaKaRa Bio) using the 7500 Real-Time PCR system (Applied Biosystems). We detected the changes of some gene expressions during spaceflight from both microarray and qRT-PCR data. These genes seems to be related with the hair proliferation. We believe that these results will lead to the discovery of the important factor effected during space flight on the hair.

  1. Transcriptional Landscape of the Prenatal Human Brain

    PubMed Central

    Miller, Jeremy A.; Ding, Song-Lin; Sunkin, Susan M.; Smith, Kimberly A; Ng, Lydia; Szafer, Aaron; Ebbert, Amanda; Riley, Zackery L.; Aiona, Kaylynn; Arnold, James M.; Bennet, Crissa; Bertagnolli, Darren; Brouner, Krissy; Butler, Stephanie; Caldejon, Shiella; Carey, Anita; Cuhaciyan, Christine; Dalley, Rachel A.; Dee, Nick; Dolbeare, Tim A.; Facer, Benjamin A. C.; Feng, David; Fliss, Tim P.; Gee, Garrett; Goldy, Jeff; Gourley, Lindsey; Gregor, Benjamin W.; Gu, Guangyu; Howard, Robert E.; Jochim, Jayson M.; Kuan, Chihchau L.; Lau, Christopher; Lee, Chang-Kyu; Lee, Felix; Lemon, Tracy A.; Lesnar, Phil; McMurray, Bergen; Mastan, Naveed; Mosqueda, Nerick F.; Naluai-Cecchini, Theresa; Ngo, Nhan-Kiet; Nyhus, Julie; Oldre, Aaron; Olson, Eric; Parente, Jody; Parker, Patrick D.; Parry, Sheana E.; Player, Allison Stevens; Pletikos, Mihovil; Reding, Melissa; Royall, Joshua J.; Roll, Kate; Sandman, David; Sarreal, Melaine; Shapouri, Sheila; Shapovalova, Nadiya V.; Shen, Elaine H.; Sjoquist, Nathan; Slaughterbeck, Clifford R.; Smith, Michael; Sodt, Andy J.; Williams, Derric; Zöllei, Lilla; Fischl, Bruce; Gerstein, Mark B.; Geschwind, Daniel H.; Glass, Ian A.; Hawrylycz, Michael J.; Hevner, Robert F.; Huang, Hao; Jones, Allan R.; Knowles, James A.; Levitt, Pat; Phillips, John W.; Sestan, Nenad; Wohnoutka, Paul; Dang, Chinh; Bernard, Amy; Hohmann, John G.; Lein, Ed S.

    2014-01-01

    Summary The anatomical and functional architecture of the human brain is largely determined by prenatal transcriptional processes. We describe an anatomically comprehensive atlas of mid-gestational human brain, including de novo reference atlases, in situ hybridization, ultra-high resolution magnetic resonance imaging (MRI) and microarray analysis on highly discrete laser microdissected brain regions. In developing cerebral cortex, transcriptional differences are found between different proliferative and postmitotic layers, wherein laminar signatures reflect cellular composition and developmental processes. Cytoarchitectural differences between human and mouse have molecular correlates, including species differences in gene expression in subplate, although surprisingly we find minimal differences between the inner and human-expanded outer subventricular zones. Both germinal and postmitotic cortical layers exhibit fronto-temporal gradients, with particular enrichment in frontal lobe. Finally, many neurodevelopmental disorder and human evolution-related genes show patterned expression, potentially underlying unique features of human cortical formation. These data provide a rich, freely-accessible resource for understanding human brain development. PMID:24695229

  2. Comparison of genome degradation in Paratyphi A and Typhi, human-restricted serovars of Salmonella enterica that cause typhoid.

    PubMed

    McClelland, Michael; Sanderson, Kenneth E; Clifton, Sandra W; Latreille, Phil; Porwollik, Steffen; Sabo, Aniko; Meyer, Rekha; Bieri, Tamberlyn; Ozersky, Phil; McLellan, Michael; Harkins, C Richard; Wang, Chunyan; Nguyen, Christine; Berghoff, Amy; Elliott, Glendoria; Kohlberg, Sara; Strong, Cindy; Du, Feiyu; Carter, Jason; Kremizki, Colin; Layman, Dan; Leonard, Shawn; Sun, Hui; Fulton, Lucinda; Nash, William; Miner, Tracie; Minx, Patrick; Delehaunty, Kim; Fronick, Catrina; Magrini, Vincent; Nhan, Michael; Warren, Wesley; Florea, Liliana; Spieth, John; Wilson, Richard K

    2004-12-01

    Salmonella enterica serovars often have a broad host range, and some cause both gastrointestinal and systemic disease. But the serovars Paratyphi A and Typhi are restricted to humans and cause only systemic disease. It has been estimated that Typhi arose in the last few thousand years. The sequence and microarray analysis of the Paratyphi A genome indicates that it is similar to the Typhi genome but suggests that it has a more recent evolutionary origin. Both genomes have independently accumulated many pseudogenes among their approximately 4,400 protein coding sequences: 173 in Paratyphi A and approximately 210 in Typhi. The recent convergence of these two similar genomes on a similar phenotype is subtly reflected in their genotypes: only 30 genes are degraded in both serovars. Nevertheless, these 30 genes include three known to be important in gastroenteritis, which does not occur in these serovars, and four for Salmonella-translocated effectors, which are normally secreted into host cells to subvert host functions. Loss of function also occurs by mutation in different genes in the same pathway (e.g., in chemotaxis and in the production of fimbriae).

  3. Insights into TREM2 biology by network analysis of human brain gene expression data

    PubMed Central

    Forabosco, Paola; Ramasamy, Adaikalavan; Trabzuni, Daniah; Walker, Robert; Smith, Colin; Bras, Jose; Levine, Adam P.; Hardy, John; Pocock, Jennifer M.; Guerreiro, Rita; Weale, Michael E.; Ryten, Mina

    2013-01-01

    Rare variants in TREM2 cause susceptibility to late-onset Alzheimer's disease. Here we use microarray-based expression data generated from 101 neuropathologically normal individuals and covering 10 brain regions, including the hippocampus, to understand TREM2 biology in human brain. Using network analysis, we detect a highly preserved TREM2-containing module in human brain, show that it relates to microglia, and demonstrate that TREM2 is a hub gene in 5 brain regions, including the hippocampus, suggesting that it can drive module function. Using enrichment analysis we show significant overrepresentation of genes implicated in the adaptive and innate immune system. Inspection of genes with the highest connectivity to TREM2 suggests that it plays a key role in mediating changes in the microglial cytoskeleton necessary not only for phagocytosis, but also migration. Most importantly, we show that the TREM2-containing module is significantly enriched for genes genetically implicated in Alzheimer's disease, multiple sclerosis, and motor neuron disease, implying that these diseases share common pathways centered on microglia and that among the genes identified are possible new disease-relevant genes. PMID:23855984

  4. Next-generation sequencing strategies enable routine detection of balanced chromosome rearrangements for clinical diagnostics and genetic research.

    PubMed

    Talkowski, Michael E; Ernst, Carl; Heilbut, Adrian; Chiang, Colby; Hanscom, Carrie; Lindgren, Amelia; Kirby, Andrew; Liu, Shangtao; Muddukrishna, Bhavana; Ohsumi, Toshiro K; Shen, Yiping; Borowsky, Mark; Daly, Mark J; Morton, Cynthia C; Gusella, James F

    2011-04-08

    The contribution of balanced chromosomal rearrangements to complex disorders remains unclear because they are not detected routinely by genome-wide microarrays and clinical localization is imprecise. Failure to consider these events bypasses a potentially powerful complement to single nucleotide polymorphism and copy-number association approaches to complex disorders, where much of the heritability remains unexplained. To capitalize on this genetic resource, we have applied optimized sequencing and analysis strategies to test whether these potentially high-impact variants can be mapped at reasonable cost and throughput. By using a whole-genome multiplexing strategy, rearrangement breakpoints could be delineated at a fraction of the cost of standard sequencing. For rearrangements already mapped regionally by karyotyping and fluorescence in situ hybridization, a targeted approach enabled capture and sequencing of multiple breakpoints simultaneously. Importantly, this strategy permitted capture and unique alignment of up to 97% of repeat-masked sequences in the targeted regions. Genome-wide analyses estimate that only 3.7% of bases should be routinely omitted from genomic DNA capture experiments. Illustrating the power of these approaches, the rearrangement breakpoints were rapidly defined to base pair resolution and revealed unexpected sequence complexity, such as co-occurrence of inversion and translocation as an underlying feature of karyotypically balanced alterations. These findings have implications ranging from genome annotation to de novo assemblies and could enable sequencing screens for structural variations at a cost comparable to that of microarrays in standard clinical practice. Copyright © 2011 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  5. Evolutionary genomics of Staphylococcus aureus: insights into the origin of methicillin-resistant strains and the toxic shock syndrome epidemic.

    PubMed

    Fitzgerald, J R; Sturdevant, D E; Mackie, S M; Gill, S R; Musser, J M

    2001-07-17

    An emerging theme in medical microbiology is that extensive variation exists in gene content among strains of many pathogenic bacterial species. However, this topic has not been investigated on a genome scale with strains recovered from patients with well-defined clinical conditions. Staphylococcus aureus is a major human pathogen and also causes economically important infections in cows and sheep. A DNA microarray representing >90% of the S. aureus genome was used to characterize genomic diversity, evolutionary relationships, and virulence gene distribution among 36 strains of divergent clonal lineages, including methicillin-resistant strains and organisms causing toxic shock syndrome. Genetic variation in S. aureus is very extensive, with approximately 22% of the genome comprised of dispensable genetic material. Eighteen large regions of difference were identified, and 10 of these regions have genes that encode putative virulence factors or proteins mediating antibiotic resistance. We find that lateral gene transfer has played a fundamental role in the evolution of S. aureus. The mec gene has been horizontally transferred into distinct S. aureus chromosomal backgrounds at least five times, demonstrating that methicillin-resistant strains have evolved multiple independent times, rather than from a single ancestral strain. This finding resolves a long-standing controversy in S. aureus research. The epidemic of toxic shock syndrome that occurred in the 1970s was caused by a change in the host environment, rather than rapid geographic dissemination of a new hypervirulent strain. DNA microarray analysis of large samples of clinically characterized strains provides broad insights into evolution, pathogenesis, and disease emergence.

  6. On-Chip, Amplification-Free Quantification of Nucleic Acid for Point-of-Care Diagnosis

    NASA Astrophysics Data System (ADS)

    Yen, Tony Minghung

    This dissertation demonstrates three physical device concepts to overcome limitations in point-of-care quantification of nucleic acids. Enabling sensitive, high throughput nucleic acid quantification on a chip, outside of hospital and centralized laboratory setting, is crucial for improving pathogen detection and cancer diagnosis and prognosis. Among existing platforms, microarray have the advantages of being amplification free, low instrument cost, and high throughput, but are generally less sensitive compared to sequencing and PCR assays. To bridge this performance gap, this dissertation presents theoretical and experimental progress to develop a platform nucleic acid quantification technology that is drastically more sensitive than current microarrays while compatible with microarray architecture. The first device concept explores on-chip nucleic acid enrichment by natural evaporation of nucleic acid solution droplet. Using a micro-patterned super-hydrophobic black silicon array device, evaporative enrichment is coupled with nano-liter droplet self-assembly workflow to produce a 50 aM concentration sensitivity, 6 orders of dynamic range, and rapid hybridization time at under 5 minutes. The second device concept focuses on improving target copy number sensitivity, instead of concentration sensitivity. A comprehensive microarray physical model taking into account of molecular transport, electrostatic intermolecular interactions, and reaction kinetics is considered to guide device optimization. Device pattern size and target copy number are optimized based on model prediction to achieve maximal hybridization efficiency. At a 100-mum pattern size, a quantum leap in detection limit of 570 copies is achieved using black silicon array device with self-assembled pico-liter droplet workflow. Despite its merits, evaporative enrichment on black silicon device suffers from coffee-ring effect at 100-mum pattern size, and thus not compatible with clinical patient samples. The third device concept utilizes an integrated optomechanical laser system and a Cytop microarray device to reverse coffee-ring effect during evaporative enrichment at 100-mum pattern size. This method, named "laser-induced differential evaporation" is expected to enable 570 copies detection limit for clinical samples in near future. While the work is ongoing as of the writing of this dissertation, a clear research plan is in place to implement this method on microarray platform toward clinical sample testing for disease applications and future commercialization.

  7. Genome sequence and comparative microarray analysis of serotype M18 group A Streptococcus strains associated with acute rheumatic fever outbreaks.

    PubMed

    Smoot, James C; Barbian, Kent D; Van Gompel, Jamie J; Smoot, Laura M; Chaussee, Michael S; Sylva, Gail L; Sturdevant, Daniel E; Ricklefs, Stacy M; Porcella, Stephen F; Parkins, Larye D; Beres, Stephen B; Campbell, David S; Smith, Todd M; Zhang, Qing; Kapur, Vivek; Daly, Judy A; Veasy, L George; Musser, James M

    2002-04-02

    Acute rheumatic fever (ARF), a sequelae of group A Streptococcus (GAS) infection, is the most common cause of preventable childhood heart disease worldwide. The molecular basis of ARF and the subsequent rheumatic heart disease are poorly understood. Serotype M18 GAS strains have been associated for decades with ARF outbreaks in the U.S. As a first step toward gaining new insight into ARF pathogenesis, we sequenced the genome of strain MGAS8232, a serotype M18 organism isolated from a patient with ARF. The genome is a circular chromosome of 1,895,017 bp, and it shares 1.7 Mb of closely related genetic material with strain SF370 (a sequenced serotype M1 strain). Strain MGAS8232 has 178 ORFs absent in SF370. Phages, phage-like elements, and insertion sequences are the major sources of variation between the genomes. The genomes of strain MGAS8232 and SF370 encode many of the same proven or putative virulence factors. Importantly, strain MGAS8232 has genes encoding many additional secreted proteins involved in human-GAS interactions, including streptococcal pyrogenic exotoxin A (scarlet fever toxin) and two uncharacterized pyrogenic exotoxin homologues, all phage-associated. DNA microarray analysis of 36 serotype M18 strains from diverse localities showed that most regions of variation were phages or phage-like elements. Two epidemics of ARF occurring 12 years apart in Salt Lake City, UT, were caused by serotype M18 strains that were genetically identical, or nearly so. Our analysis provides a critical foundation for accelerated research into ARF pathogenesis and a molecular framework to study the plasticity of GAS genomes.

  8. Enhancing interdisciplinary mathematics and biology education: a microarray data analysis course bridging these disciplines.

    PubMed

    Tra, Yolande V; Evans, Irene M

    2010-01-01

    BIO2010 put forth the goal of improving the mathematical educational background of biology students. The analysis and interpretation of microarray high-dimensional data can be very challenging and is best done by a statistician and a biologist working and teaching in a collaborative manner. We set up such a collaboration and designed a course on microarray data analysis. We started using Genome Consortium for Active Teaching (GCAT) materials and Microarray Genome and Clustering Tool software and added R statistical software along with Bioconductor packages. In response to student feedback, one microarray data set was fully analyzed in class, starting from preprocessing to gene discovery to pathway analysis using the latter software. A class project was to conduct a similar analysis where students analyzed their own data or data from a published journal paper. This exercise showed the impact that filtering, preprocessing, and different normalization methods had on gene inclusion in the final data set. We conclude that this course achieved its goals to equip students with skills to analyze data from a microarray experiment. We offer our insight about collaborative teaching as well as how other faculty might design and implement a similar interdisciplinary course.

  9. Design of microarray experiments for genetical genomics studies.

    PubMed

    Bueno Filho, Júlio S S; Gilmour, Steven G; Rosa, Guilherme J M

    2006-10-01

    Microarray experiments have been used recently in genetical genomics studies, as an additional tool to understand the genetic mechanisms governing variation in complex traits, such as for estimating heritabilities of mRNA transcript abundances, for mapping expression quantitative trait loci, and for inferring regulatory networks controlling gene expression. Several articles on the design of microarray experiments discuss situations in which treatment effects are assumed fixed and without any structure. In the case of two-color microarray platforms, several authors have studied reference and circular designs. Here, we discuss the optimal design of microarray experiments whose goals refer to specific genetic questions. Some examples are used to illustrate the choice of a design for comparing fixed, structured treatments, such as genotypic groups. Experiments targeting single genes or chromosomic regions (such as with transgene research) or multiple epistatic loci (such as within a selective phenotyping context) are discussed. In addition, microarray experiments in which treatments refer to families or to subjects (within family structures or complex pedigrees) are presented. In these cases treatments are more appropriately considered to be random effects, with specific covariance structures, in which the genetic goals relate to the estimation of genetic variances and the heritability of transcriptional abundances.

  10. WebArray: an online platform for microarray data analysis

    PubMed Central

    Xia, Xiaoqin; McClelland, Michael; Wang, Yipeng

    2005-01-01

    Background Many cutting-edge microarray analysis tools and algorithms, including commonly used limma and affy packages in Bioconductor, need sophisticated knowledge of mathematics, statistics and computer skills for implementation. Commercially available software can provide a user-friendly interface at considerable cost. To facilitate the use of these tools for microarray data analysis on an open platform we developed an online microarray data analysis platform, WebArray, for bench biologists to utilize these tools to explore data from single/dual color microarray experiments. Results The currently implemented functions were based on limma and affy package from Bioconductor, the spacings LOESS histogram (SPLOSH) method, PCA-assisted normalization method and genome mapping method. WebArray incorporates these packages and provides a user-friendly interface for accessing a wide range of key functions of limma and others, such as spot quality weight, background correction, graphical plotting, normalization, linear modeling, empirical bayes statistical analysis, false discovery rate (FDR) estimation, chromosomal mapping for genome comparison. Conclusion WebArray offers a convenient platform for bench biologists to access several cutting-edge microarray data analysis tools. The website is freely available at . It runs on a Linux server with Apache and MySQL. PMID:16371165

  11. Enhancing Interdisciplinary Mathematics and Biology Education: A Microarray Data Analysis Course Bridging These Disciplines

    PubMed Central

    Evans, Irene M.

    2010-01-01

    BIO2010 put forth the goal of improving the mathematical educational background of biology students. The analysis and interpretation of microarray high-dimensional data can be very challenging and is best done by a statistician and a biologist working and teaching in a collaborative manner. We set up such a collaboration and designed a course on microarray data analysis. We started using Genome Consortium for Active Teaching (GCAT) materials and Microarray Genome and Clustering Tool software and added R statistical software along with Bioconductor packages. In response to student feedback, one microarray data set was fully analyzed in class, starting from preprocessing to gene discovery to pathway analysis using the latter software. A class project was to conduct a similar analysis where students analyzed their own data or data from a published journal paper. This exercise showed the impact that filtering, preprocessing, and different normalization methods had on gene inclusion in the final data set. We conclude that this course achieved its goals to equip students with skills to analyze data from a microarray experiment. We offer our insight about collaborative teaching as well as how other faculty might design and implement a similar interdisciplinary course. PMID:20810954

  12. DNA capture and next-generation sequencing can recover whole mitochondrial genomes from highly degraded samples for human identification

    PubMed Central

    2013-01-01

    Background Mitochondrial DNA (mtDNA) typing can be a useful aid for identifying people from compromised samples when nuclear DNA is too damaged, degraded or below detection thresholds for routine short tandem repeat (STR)-based analysis. Standard mtDNA typing, focused on PCR amplicon sequencing of the control region (HVS I and HVS II), is limited by the resolving power of this short sequence, which misses up to 70% of the variation present in the mtDNA genome. Methods We used in-solution hybridisation-based DNA capture (using DNA capture probes prepared from modern human mtDNA) to recover mtDNA from post-mortem human remains in which the majority of DNA is both highly fragmented (<100 base pairs in length) and chemically damaged. The method ‘immortalises’ the finite quantities of DNA in valuable extracts as DNA libraries, which is followed by the targeted enrichment of endogenous mtDNA sequences and characterisation by next-generation sequencing (NGS). Results We sequenced whole mitochondrial genomes for human identification from samples where standard nuclear STR typing produced only partial profiles or demonstrably failed and/or where standard mtDNA hypervariable region sequences lacked resolving power. Multiple rounds of enrichment can substantially improve coverage and sequencing depth of mtDNA genomes from highly degraded samples. The application of this method has led to the reliable mitochondrial sequencing of human skeletal remains from unidentified World War Two (WWII) casualties approximately 70 years old and from archaeological remains (up to 2,500 years old). Conclusions This approach has potential applications in forensic science, historical human identification cases, archived medical samples, kinship analysis and population studies. In particular the methodology can be applied to any case, involving human or non-human species, where whole mitochondrial genome sequences are required to provide the highest level of maternal lineage discrimination. Multiple rounds of in-solution hybridisation-based DNA capture can retrieve whole mitochondrial genome sequences from even the most challenging samples. PMID:24289217

  13. Using Informatics-, Bioinformatics- and Genomics-Based Approaches for the Molecular Surveillance and Detection of Biothreat Agents

    NASA Astrophysics Data System (ADS)

    Seto, Donald

    The convergence and wealth of informatics, bioinformatics and genomics methods and associated resources allow a comprehensive and rapid approach for the surveillance and detection of bacterial and viral organisms. Coupled with the continuing race for the fastest, most cost-efficient and highest-quality DNA sequencing technology, that is, "next generation sequencing", the detection of biological threat agents by `cheaper and faster' means is possible. With the application of improved bioinformatic tools for the understanding of these genomes and for parsing unique pathogen genome signatures, along with `state-of-the-art' informatics which include faster computational methods, equipment and databases, it is feasible to apply new algorithms to biothreat agent detection. Two such methods are high-throughput DNA sequencing-based and resequencing microarray-based identification. These are illustrated and validated by two examples involving human adenoviruses, both from real-world test beds.

  14. PGMapper: a web-based tool linking phenotype to genes.

    PubMed

    Xiong, Qing; Qiu, Yuhui; Gu, Weikuan

    2008-04-01

    With the availability of whole genome sequence in many species, linkage analysis, positional cloning and microarray are gradually becoming powerful tools for investigating the links between phenotype and genotype or genes. However, in these methods, causative genes underlying a quantitative trait locus, or a disease, are usually located within a large genomic region or a large set of genes. Examining the function of every gene is very time consuming and needs to retrieve and integrate the information from multiple databases or genome resources. PGMapper is a software tool for automatically matching phenotype to genes from a defined genome region or a group of given genes by combining the mapping information from the Ensembl database and gene function information from the OMIM and PubMed databases. PGMapper is currently available for candidate gene search of human, mouse, rat, zebrafish and 12 other species. Available online at http://www.genediscovery.org/pgmapper/index.jsp.

  15. Pathway and network-based analysis of genome-wide association studies and RT-PCR validation in polycystic ovary syndrome.

    PubMed

    Shen, Haoran; Liang, Zhou; Zheng, Saihua; Li, Xuelian

    2017-11-01

    The purpose of this study was to identify promising candidate genes and pathways in polycystic ovary syndrome (PCOS). Microarray dataset GSE345269 obtained from the Gene Expression Omnibus database includes 7 granulosa cell samples from PCOS patients, and 3 normal granulosa cell samples. Differentially expressed genes (DEGs) were screened between PCOS and normal samples. Pathway enrichment analysis was conducted for DEGs using ClueGO and CluePedia plugin of Cytoscape. A Reactome functional interaction (FI) network of the DEGs was built using ReactomeFIViz, and then network modules were extracted, followed by pathway enrichment analysis for the modules. Expression of DEGs in granulosa cell samples was measured using quantitative RT-PCR. A total of 674 DEGs were retained, which were significantly enriched with inflammation and immune-related pathways. Eight modules were extracted from the Reactome FI network. Pathway enrichment analysis revealed significant pathways of each module: module 0, Regulation of RhoA activity and Signaling by Rho GTPases pathways shared ARHGAP4 and ARHGAP9; module 2, GlycoProtein VI-mediated activation cascade pathway was enriched with RHOG; module 3, Thromboxane A2 receptor signaling, Chemokine signaling pathway, CXCR4-mediated signaling events pathways were enriched with LYN, the hub gene of module 3. Results of RT-PCR confirmed the finding of the bioinformatic analysis that ARHGAP4, ARHGAP9, RHOG and LYN were significantly upregulated in PCOS. RhoA-related pathways, GlycoProtein VI-mediated activation cascade pathway, ARHGAP4, ARHGAP9, RHOG and LYN may be involved in the pathogenesis of PCOS.

  16. Genome analysis of Legionella pneumophila strains using a mixed-genome microarray.

    PubMed

    Euser, Sjoerd M; Nagelkerke, Nico J; Schuren, Frank; Jansen, Ruud; Den Boer, Jeroen W

    2012-01-01

    Legionella, the causative agent for Legionnaires' disease, is ubiquitous in both natural and man-made aquatic environments. The distribution of Legionella genotypes within clinical strains is significantly different from that found in environmental strains. Developing novel genotypic methods that offer the ability to distinguish clinical from environmental strains could help to focus on more relevant (virulent) Legionella species in control efforts. Mixed-genome microarray data can be used to perform a comparative-genome analysis of strain collections, and advanced statistical approaches, such as the Random Forest algorithm are available to process these data. Microarray analysis was performed on a collection of 222 Legionella pneumophila strains, which included patient-derived strains from notified cases in The Netherlands in the period 2002-2006 and the environmental strains that were collected during the source investigation for those patients within the Dutch National Legionella Outbreak Detection Programme. The Random Forest algorithm combined with a logistic regression model was used to select predictive markers and to construct a predictive model that could discriminate between strains from different origin: clinical or environmental. Four genetic markers were selected that correctly predicted 96% of the clinical strains and 66% of the environmental strains collected within the Dutch National Legionella Outbreak Detection Programme. The Random Forest algorithm is well suited for the development of prediction models that use mixed-genome microarray data to discriminate between Legionella strains from different origin. The identification of these predictive genetic markers could offer the possibility to identify virulence factors within the Legionella genome, which in the future may be implemented in the daily practice of controlling Legionella in the public health environment.

  17. Epigenomics

    MedlinePlus

    ... Sheets A Brief Guide to Genomics About NHGRI Research About the International HapMap Project Biological Pathways Chromosome Abnormalities Chromosomes Cloning Comparative Genomics DNA Microarray Technology DNA Sequencing Deoxyribonucleic Acid ( ...

  18. Cloning

    MedlinePlus

    ... Sheets A Brief Guide to Genomics About NHGRI Research About the International HapMap Project Biological Pathways Chromosome Abnormalities Chromosomes Cloning Comparative Genomics DNA Microarray Technology DNA Sequencing Deoxyribonucleic Acid ( ...

  19. Chromosomes

    MedlinePlus

    ... Sheets A Brief Guide to Genomics About NHGRI Research About the International HapMap Project Biological Pathways Chromosome Abnormalities Chromosomes Cloning Comparative Genomics DNA Microarray Technology DNA Sequencing Deoxyribonucleic Acid ( ...

  20. Transcriptome

    MedlinePlus

    ... Sheets A Brief Guide to Genomics About NHGRI Research About the International HapMap Project Biological Pathways Chromosome Abnormalities Chromosomes Cloning Comparative Genomics DNA Microarray Technology DNA Sequencing Deoxyribonucleic Acid ( ...

  1. BRIC-17 Mapping Spaceflight-Induced Hypoxic Signaling and Response in Plants

    NASA Technical Reports Server (NTRS)

    Gilroy, Simon; Choi, Won-Gyu; Swanson, Sarah

    2012-01-01

    Goals of this work are: (1) Define global changes in gene expression patterns in Arabidopsis plants grown in microgravity using whole genome microarrays (2) Compare to mutants resistant to low oxygen challenge using whole genome microarrays Also measuring root and shoot size Outcomes from this research are: (1) Provide fundamental information on plant responses to the stresses inherent in spaceflight (2) Potential for informing on genetic strategies to engineer plants for optimal growth in space

  2. Improved analytical methods for microarray-based genome-composition analysis

    PubMed Central

    Kim, Charles C; Joyce, Elizabeth A; Chan, Kaman; Falkow, Stanley

    2002-01-01

    Background Whereas genome sequencing has given us high-resolution pictures of many different species of bacteria, microarrays provide a means of obtaining information on genome composition for many strains of a given species. Genome-composition analysis using microarrays, or 'genomotyping', can be used to categorize genes into 'present' and 'divergent' categories based on the level of hybridization signal. This typically involves selecting a signal value that is used as a cutoff to discriminate present (high signal) and divergent (low signal) genes. Current methodology uses empirical determination of cutoffs for classification into these categories, but this methodology is subject to several problems that can result in the misclassification of many genes. Results We describe a method that depends on the shape of the signal-ratio distribution and does not require empirical determination of a cutoff. Moreover, the cutoff is determined on an array-to-array basis, accounting for variation in strain composition and hybridization quality. The algorithm also provides an estimate of the probability that any given gene is present, which provides a measure of confidence in the categorical assignments. Conclusions Many genes previously classified as present using static methods are in fact divergent on the basis of microarray signal; this is corrected by our algorithm. We have reassigned hundreds of genes from previous genomotyping studies of Helicobacter pylori and Campylobacter jejuni strains, and expect that the algorithm should be widely applicable to genomotyping data. PMID:12429064

  3. Genomic paradigms for food-borne enteric pathogen analysis at the USFDA: case studies highlighting method utility, integration and resolution.

    PubMed

    Elkins, C A; Kotewicz, M L; Jackson, S A; Lacher, D W; Abu-Ali, G S; Patel, I R

    2013-01-01

    Modern risk control and food safety practices involving food-borne bacterial pathogens are benefiting from new genomic technologies for rapid, yet highly specific, strain characterisations. Within the United States Food and Drug Administration (USFDA) Center for Food Safety and Applied Nutrition (CFSAN), optical genome mapping and DNA microarray genotyping have been used for several years to quickly assess genomic architecture and gene content, respectively, for outbreak strain subtyping and to enhance retrospective trace-back analyses. The application and relative utility of each method varies with outbreak scenario and the suspect pathogen, with comparative analytical power enhanced by database scale and depth. Integration of these two technologies allows high-resolution scrutiny of the genomic landscapes of enteric food-borne pathogens with notable examples including Shiga toxin-producing Escherichia coli (STEC) and Salmonella enterica serovars from a variety of food commodities. Moreover, the recent application of whole genome sequencing technologies to food-borne pathogen outbreaks and surveillance has enhanced resolution to the single nucleotide scale. This new wealth of sequence data will support more refined next-generation custom microarray designs, targeted re-sequencing and "genomic signature recognition" approaches involving a combination of genes and single nucleotide polymorphism detection to distil strain-specific fingerprinting to a minimised scale. This paper examines the utility of microarrays and optical mapping in analysing outbreaks, reviews best practices and the limits of these technologies for pathogen differentiation, and it considers future integration with whole genome sequencing efforts.

  4. Genomic response of the nematode Caenorhabditis elegans to spaceflight

    PubMed Central

    Selch, Florian; Higashibata, Akira; Imamizo-Sato, Mari; Higashitani, Atsushi; Ishioka, Noriaki; Szewczyk, Nathaniel J.; Conley, Catharine A.

    2008-01-01

    On Earth, it is common to employ laboratory animals such as the nematode Caenorhabditis elegans to help understand human health concerns. Similar studies in Earth orbit should help understand and address the concerns associated with spaceflight. The “International Caenorhabditis elegans Experiment FIRST” (ICE FIRST), was carried out onboard the Dutch Taxiflight in April of 2004 by an international collaboration of laboratories in France, Canada, Japan and the United States. With the exception of a slight movement defect upon return to Earth, the result of altered muscle development, no significant abnormalities were detected in spaceflown C. elegans. Work from Japan revealed apoptosis proceeds normally and work from Canada revealed no significant increase in the rate of mutation. These results suggest that C. elegans can be used to study non-lethal responses to spaceflight and can possibly be developed as a biological sensor. To further our understanding of C. elegans response to spaceflight, we examined the gene transcription response to the 10 days in space using a near full genome microarray analysis. The transcriptional response is consistent with the observed normal developmental timing, apoptosis, DNA repair, and altered muscle development. The genes identified as altered in response to spaceflight are enriched for genes known to be regulated, in C. elegans, in response to altered environmental conditions (Insulin and TGF-β regulated). These results demonstrate C. elegans can be used to study the effects of altered gravity and suggest that C. elegans responds to spaceflight by altering the expression of at least some of the same metabolic genes that are altered in response to differing terrestrial environments. PMID:18392117

  5. Use of RecA protein to enrich for homologous genes in a genomic library

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taidi-Laskowski, B.; Grumet, F.C.; Tyan, D.

    1988-08-25

    RecA protein-coated probe has been utilized to enrich genomic digests for desired genes in order to facilitate cloning from genomic libraries. Using a previously cloned HLA-B27 gene as the recA-coated enrichment probe, the authors obtained a mean 108x increase in the ratio of specific to nonspecific plaques in lambda libraries screened for B27 variant alleles of estimated 99% homology to the probe. Class I genes of lesser homology were less enriched. Loss of genomic DNA during the enrichment procedure can, however, restrict application of this technique whenever starting genomic DNA is very limited. Nevertheless, the impressive reduction in cloning effortmore » and material makes recA enrichment a useful new tool for cloning homologous genes from genomic DNA.« less

  6. Genetic Markers of Human Evolution Are Enriched in Schizophrenia.

    PubMed

    Srinivasan, Saurabh; Bettella, Francesco; Mattingsdal, Morten; Wang, Yunpeng; Witoelar, Aree; Schork, Andrew J; Thompson, Wesley K; Zuber, Verena; Winsvold, Bendik S; Zwart, John-Anker; Collier, David A; Desikan, Rahul S; Melle, Ingrid; Werge, Thomas; Dale, Anders M; Djurovic, Srdjan; Andreassen, Ole A

    2016-08-15

    Why schizophrenia has accompanied humans throughout our history despite its negative effect on fitness remains an evolutionary enigma. It is proposed that schizophrenia is a by-product of the complex evolution of the human brain and a compromise for humans' language, creative thinking, and cognitive abilities. We analyzed recent large genome-wide association studies of schizophrenia and a range of other human phenotypes (anthropometric measures, cardiovascular disease risk factors, immune-mediated diseases) using a statistical framework that draws on polygenic architecture and ancillary information on genetic variants. We used information from the evolutionary proxy measure called the Neanderthal selective sweep (NSS) score. Gene loci associated with schizophrenia are significantly (p = 7.30 × 10(-9)) more prevalent in genomic regions that are likely to have undergone recent positive selection in humans (i.e., with a low NSS score). Variants in brain-related genes with a low NSS score confer significantly higher susceptibility than variants in other brain-related genes. The enrichment is strongest for schizophrenia, but we cannot rule out enrichment for other phenotypes. The false discovery rate conditional on the evolutionary proxy points to 27 candidate schizophrenia susceptibility loci, 12 of which are associated with schizophrenia and other psychiatric disorders or linked to brain development. Our results suggest that there is a polygenic overlap between schizophrenia and NSS score, a marker of human evolution, which is in line with the hypothesis that the persistence of schizophrenia is related to the evolutionary process of becoming human. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  7. Genomic profiling of rice sperm cell transcripts reveals conserved and distinct elements in the flowering plant male germ lineage.

    PubMed

    Russell, Scott D; Gou, Xiaoping; Wong, Chui E; Wang, Xinkun; Yuan, Tong; Wei, Xiaoping; Bhalla, Prem L; Singh, Mohan B

    2012-08-01

    Genomic assay of sperm cell RNA provides insight into functional control, modes of regulation, and contributions of male gametes to double fertilization. Sperm cells of rice (Oryza sativa) were isolated from field-grown, disease-free plants and RNA was processed for use with the full-genome Affymetrix microarray. Comparison with Gene Expression Omnibus (GEO) reference arrays confirmed expressionally distinct gene profiles. A total of 10,732 distinct gene sequences were detected in sperm cells, of which 1668 were not expressed in pollen or seedlings. Pathways enriched in male germ cells included ubiquitin-mediated pathways, pathways involved in chromatin modeling including histones, histone modification and nonhistone epigenetic modification, and pathways related to RNAi and gene silencing. Genome-wide expression patterns in angiosperm sperm cells indicate common and divergent themes in the male germline that appear to be largely self-regulating through highly up-regulated chromatin modification pathways. A core of highly conserved genes appear common to all sperm cells, but evidence is still emerging that another class of genes have diverged in expression between monocots and dicots since their divergence. Sperm cell transcripts present at fusion may be transmitted through plasmogamy during double fertilization to effect immediate post-fertilization expression of early embryo and (or) endosperm development. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  8. Genetic Mapping

    MedlinePlus

    ... Sheets A Brief Guide to Genomics About NHGRI Research About the International HapMap Project Biological Pathways Chromosome Abnormalities Chromosomes Cloning Comparative Genomics DNA Microarray Technology DNA Sequencing Deoxyribonucleic Acid ( ...

  9. Biological Pathways

    MedlinePlus

    ... Sheets A Brief Guide to Genomics About NHGRI Research About the International HapMap Project Biological Pathways Chromosome Abnormalities Chromosomes Cloning Comparative Genomics DNA Microarray Technology DNA Sequencing Deoxyribonucleic Acid ( ...

  10. DISC-BASED IMMUNOASSAY MICROARRAYS. (R825433)

    EPA Science Inventory

    Microarray technology as applied to areas that include genomics, diagnostics, environmental, and drug discovery, is an interesting research topic for which different chip-based devices have been developed. As an alternative, we have explored the principle of compact disc-based...

  11. Transcriptome analysis of the human T lymphocyte cell line Jurkat and human peripheral blood mononuclear cells exposed to deoxynivalenol (DON): New mechanistic insights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katika, Madhumohan R.; Department of Health Risk Analysis and Toxicology, Maastricht University; Netherlands Toxicogenomics Centre

    Deoxynivalenol (DON) or vomitoxin is a commonly encountered type-B trichothecene mycotoxin, produced by Fusarium species predominantly found in cereals and grains. DON is known to exert toxic effects on the gastrointestinal, reproductive and neuroendocrine systems, and particularly on the immune system. Depending on dose and exposure time, it can either stimulate or suppress immune function. The main objective of this study was to obtain a deeper insight into DON-induced effects on lymphoid cells. For this, we exposed the human T-lymphocyte cell line Jurkat and human peripheral blood mononuclear cells (PBMCs) to various concentrations of DON for various times and examinedmore » gene expression changes by DNA microarray analysis. Jurkat cells were exposed to 0.25 and 0.5 μM DON for 3, 6 and 24 h. Biological interpretation of the microarray data indicated that DON affects various processes in these cells: It upregulates genes involved in ribosome structure and function, RNA/protein synthesis and processing, endoplasmic reticulum (ER) stress, calcium-mediated signaling, mitochondrial function, oxidative stress, the NFAT and NF-κB/TNF-α pathways, T cell activation and apoptosis. The effects of DON on the expression of genes involved in ER stress, NFAT activation and apoptosis were confirmed by qRT-PCR. Other biochemical experiments confirmed that DON activates calcium-dependent proteins such as calcineurin and M-calpain that are known to be involved in T cell activation and apoptosis. Induction of T cell activation was also confirmed by demonstrating that DON activates NFATC1 and induces its translocation from the cytoplasm to the nucleus. For the gene expression profiling of PBMCs, cells were exposed to 2 and 4 μM DON for 6 and 24 h. Comparison of the Jurkat microarray data with those obtained with PBMCs showed that most of the processes affected by DON in the Jurkat cell line were also affected in the PBMCs. -- Highlights: ► The human T cell line Jurkat and human PBMCs were exposed to DON. ► Whole-genome microarray experiments were performed. ► Microarray data indicates that DON affects ribosome and RNA/protein synthesis. ► DON treatment induces ER stress, calcium mediated signaling, NFAT and NF-κB. ► Exposure to DON induces T cell activation, oxidative stress and apoptosis.« less

  12. Multiomics in Grape Berry Skin Revealed Specific Induction of the Stilbene Synthetic Pathway by Ultraviolet-C Irradiation1

    PubMed Central

    Suzuki, Mami; Nakabayashi, Ryo; Ogata, Yoshiyuki; Sakurai, Nozomu; Tokimatsu, Toshiaki; Goto, Susumu; Suzuki, Makoto; Jasinski, Michal; Martinoia, Enrico; Otagaki, Shungo; Matsumoto, Shogo; Saito, Kazuki; Shiratake, Katsuhiro

    2015-01-01

    Grape (Vitis vinifera) accumulates various polyphenolic compounds, which protect against environmental stresses, including ultraviolet-C (UV-C) light and pathogens. In this study, we looked at the transcriptome and metabolome in grape berry skin after UV-C irradiation, which demonstrated the effectiveness of omics approaches to clarify important traits of grape. We performed transcriptome analysis using a genome-wide microarray, which revealed 238 genes up-regulated more than 5-fold by UV-C light. Enrichment analysis of Gene Ontology terms showed that genes encoding stilbene synthase, a key enzyme for resveratrol synthesis, were enriched in the up-regulated genes. We performed metabolome analysis using liquid chromatography-quadrupole time-of-flight mass spectrometry, and 2,012 metabolite peaks, including unidentified peaks, were detected. Principal component analysis using the peaks showed that only one metabolite peak, identified as resveratrol, was highly induced by UV-C light. We updated the metabolic pathway map of grape in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and in the KaPPA-View 4 KEGG system, then projected the transcriptome and metabolome data on a metabolic pathway map. The map showed specific induction of the resveratrol synthetic pathway by UV-C light. Our results showed that multiomics is a powerful tool to elucidate the accumulation mechanisms of secondary metabolites, and updated systems, such as KEGG and KaPPA-View 4 KEGG for grape, can support such studies. PMID:25761715

  13. Multiomics in grape berry skin revealed specific induction of the stilbene synthetic pathway by ultraviolet-C irradiation.

    PubMed

    Suzuki, Mami; Nakabayashi, Ryo; Ogata, Yoshiyuki; Sakurai, Nozomu; Tokimatsu, Toshiaki; Goto, Susumu; Suzuki, Makoto; Jasinski, Michal; Martinoia, Enrico; Otagaki, Shungo; Matsumoto, Shogo; Saito, Kazuki; Shiratake, Katsuhiro

    2015-05-01

    Grape (Vitis vinifera) accumulates various polyphenolic compounds, which protect against environmental stresses, including ultraviolet-C (UV-C) light and pathogens. In this study, we looked at the transcriptome and metabolome in grape berry skin after UV-C irradiation, which demonstrated the effectiveness of omics approaches to clarify important traits of grape. We performed transcriptome analysis using a genome-wide microarray, which revealed 238 genes up-regulated more than 5-fold by UV-C light. Enrichment analysis of Gene Ontology terms showed that genes encoding stilbene synthase, a key enzyme for resveratrol synthesis, were enriched in the up-regulated genes. We performed metabolome analysis using liquid chromatography-quadrupole time-of-flight mass spectrometry, and 2,012 metabolite peaks, including unidentified peaks, were detected. Principal component analysis using the peaks showed that only one metabolite peak, identified as resveratrol, was highly induced by UV-C light. We updated the metabolic pathway map of grape in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and in the KaPPA-View 4 KEGG system, then projected the transcriptome and metabolome data on a metabolic pathway map. The map showed specific induction of the resveratrol synthetic pathway by UV-C light. Our results showed that multiomics is a powerful tool to elucidate the accumulation mechanisms of secondary metabolites, and updated systems, such as KEGG and KaPPA-View 4 KEGG for grape, can support such studies. © 2015 American Society of Plant Biologists. All Rights Reserved.

  14. Genome-wide polymorphisms and development of a microarray platform to detect genetic variations in Plasmodium yoelii.

    PubMed

    Nair, Sethu C; Pattaradilokrat, Sittiporn; Zilversmit, Martine M; Dommer, Jennifer; Nagarajan, Vijayaraj; Stephens, Melissa T; Xiao, Wenming; Tan, John C; Su, Xin-Zhuan

    2014-01-01

    The rodent malaria parasite Plasmodium yoelii is an important model for studying malaria immunity and pathogenesis. One approach for studying malaria disease phenotypes is genetic mapping, which requires typing a large number of genetic markers from multiple parasite strains and/or progeny from genetic crosses. Hundreds of microsatellite (MS) markers have been developed to genotype the P. yoelii genome; however, typing a large number of MS markers can be labor intensive, time consuming, and expensive. Thus, development of high-throughput genotyping tools such as DNA microarrays that enable rapid and accurate large-scale genotyping of the malaria parasite will be highly desirable. In this study, we sequenced the genomes of two P. yoelii strains (33X and N67) and obtained a large number of single nucleotide polymorphisms (SNPs). Based on the SNPs obtained, we designed sets of oligonucleotide probes to develop a microarray that could interrogate ∼11,000 SNPs across the 14 chromosomes of the parasite in a single hybridization. Results from hybridizations of DNA samples of five P. yoelii strains or cloned lines (17XNL, YM, 33X, N67 and N67C) and two progeny from a genetic cross (N67×17XNL) to the microarray showed that the array had a high call rate (∼97%) and accuracy (99.9%) in calling SNPs, providing a simple and reliable tool for typing the P. yoelii genome. Our data show that the P. yoelii genome is highly polymorphic, although isogenic pairs of parasites were also detected. Additionally, our results indicate that the 33X parasite is a progeny of 17XNL (or YM) and an unknown parasite. The highly accurate and reliable microarray developed in this study will greatly facilitate our ability to study the genetic basis of important traits and the disease it causes. Published by Elsevier B.V.

  15. A Java-based tool for the design of classification microarrays.

    PubMed

    Meng, Da; Broschat, Shira L; Call, Douglas R

    2008-08-04

    Classification microarrays are used for purposes such as identifying strains of bacteria and determining genetic relationships to understand the epidemiology of an infectious disease. For these cases, mixed microarrays, which are composed of DNA from more than one organism, are more effective than conventional microarrays composed of DNA from a single organism. Selection of probes is a key factor in designing successful mixed microarrays because redundant sequences are inefficient and limited representation of diversity can restrict application of the microarray. We have developed a Java-based software tool, called PLASMID, for use in selecting the minimum set of probe sequences needed to classify different groups of plasmids or bacteria. The software program was successfully applied to several different sets of data. The utility of PLASMID was illustrated using existing mixed-plasmid microarray data as well as data from a virtual mixed-genome microarray constructed from different strains of Streptococcus. Moreover, use of data from expression microarray experiments demonstrated the generality of PLASMID. In this paper we describe a new software tool for selecting a set of probes for a classification microarray. While the tool was developed for the design of mixed microarrays-and mixed-plasmid microarrays in particular-it can also be used to design expression arrays. The user can choose from several clustering methods (including hierarchical, non-hierarchical, and a model-based genetic algorithm), several probe ranking methods, and several different display methods. A novel approach is used for probe redundancy reduction, and probe selection is accomplished via stepwise discriminant analysis. Data can be entered in different formats (including Excel and comma-delimited text), and dendrogram, heat map, and scatter plot images can be saved in several different formats (including jpeg and tiff). Weights generated using stepwise discriminant analysis can be stored for analysis of subsequent experimental data. Additionally, PLASMID can be used to construct virtual microarrays with genomes from public databases, which can then be used to identify an optimal set of probes.

  16. Isolation of human simple repeat loci by hybridization selection.

    PubMed

    Armour, J A; Neumann, R; Gobert, S; Jeffreys, A J

    1994-04-01

    We have isolated short tandem repeat arrays from the human genome, using a rapid method involving filter hybridization to enrich for tri- or tetranucleotide tandem repeats. About 30% of clones from the enriched library cross-hybridize with probes containing trimeric or tetrameric tandem arrays, facilitating the rapid isolation of large numbers of clones. In an initial analysis of 54 clones, 46 different tandem arrays were identified. Analysis of these tandem repeat loci by PCR showed that 24 were polymorphic in length; substantially higher levels of polymorphism were displayed by the tetrameric repeat loci isolated than by the trimeric repeats. Primary mapping of these loci by linkage analysis showed that they derive from 17 chromosomes, including the X chromosome. We anticipate the use of this strategy for the efficient isolation of tandem repeats from other sources of genomic DNA, including DNA from flow-sorted chromosomes, and from other species.

  17. Microarray Meta-Analysis Identifies Acute Lung Injury Biomarkers in Donor Lungs That Predict Development of Primary Graft Failure in Recipients

    PubMed Central

    Haitsma, Jack J.; Furmli, Suleiman; Masoom, Hussain; Liu, Mingyao; Imai, Yumiko; Slutsky, Arthur S.; Beyene, Joseph; Greenwood, Celia M. T.; dos Santos, Claudia

    2012-01-01

    Objectives To perform a meta-analysis of gene expression microarray data from animal studies of lung injury, and to identify an injury-specific gene expression signature capable of predicting the development of lung injury in humans. Methods We performed a microarray meta-analysis using 77 microarray chips across six platforms, two species and different animal lung injury models exposed to lung injury with or/and without mechanical ventilation. Individual gene chips were classified and grouped based on the strategy used to induce lung injury. Effect size (change in gene expression) was calculated between non-injurious and injurious conditions comparing two main strategies to pool chips: (1) one-hit and (2) two-hit lung injury models. A random effects model was used to integrate individual effect sizes calculated from each experiment. Classification models were built using the gene expression signatures generated by the meta-analysis to predict the development of lung injury in human lung transplant recipients. Results Two injury-specific lists of differentially expressed genes generated from our meta-analysis of lung injury models were validated using external data sets and prospective data from animal models of ventilator-induced lung injury (VILI). Pathway analysis of gene sets revealed that both new and previously implicated VILI-related pathways are enriched with differentially regulated genes. Classification model based on gene expression signatures identified in animal models of lung injury predicted development of primary graft failure (PGF) in lung transplant recipients with larger than 80% accuracy based upon injury profiles from transplant donors. We also found that better classifier performance can be achieved by using meta-analysis to identify differentially-expressed genes than using single study-based differential analysis. Conclusion Taken together, our data suggests that microarray analysis of gene expression data allows for the detection of “injury" gene predictors that can classify lung injury samples and identify patients at risk for clinically relevant lung injury complications. PMID:23071521

  18. Microarray expression profile of circular RNAs in chronic thromboembolic pulmonary hypertension

    PubMed Central

    Miao, Ran; Wang, Ying; Wan, Jun; Leng, Dong; Gong, Juanni; Li, Jifeng; Liang, Yan; Zhai, Zhenguo; Yang, Yuanhua

    2017-01-01

    Abstract Background: Chronic thromboembolic pulmonary hypertension (CTEPH) is a rare but debilitating and life-threatening complication of acute pulmonary embolism. Circular RNAs (circRNAs), presenting as covalently closed continuous loops, are RNA molecules with covalently joined 3′- and 5′-ends formed by back-splicing events. circRNAs may be significant biological molecules to understand disease mechanisms and to identify biomarkers for disease diagnosis and therapy. The aim of this study was to investigate the potential roles of circRNAs in CTEPH. Methods: Ten human blood samples (5 each from CTEPH and control groups) were included in the Agilent circRNA chip. The differentially expressed circRNAs were evaluated using t test, with significance set at a P value of < .05. A functional enrichment analysis for differentially expressed circRNAs was performed using DAVID online tools, and a Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis for target genes of miRNAs was performed using the R package clusterProfiler. Furthermore, miRNAs that interacted with differentially expressed circRNAs were predicted using the miRanda package. mRNAs that had clear biological functions and were regulated by miRNAs were predicted using miRWalk2.0 and then combined into a circRNA–miRNA–mRNA network. Results: In total, 351 differentially expressed circRNAs (122 upregulated and 229 downregulated) between CTEPH and control groups were obtained; among these circRNAs, hsa_circ_0002062 and hsa_circ_0022342 might be important because they can regulate 761 (e.g., hsa-miR-942–5p) and 453 (e.g., hsa-miR-940) miRNAs, respectively. Target genes (e.g., cyclin-dependent kinase 6) of hsa-miR-942–5p were mainly enriched in cancer-related pathways, whereas target genes (e.g., CRK-Like Proto-Oncogene, Adaptor Protein) of hsa-miR-940 were enriched in the ErbB signaling pathway. Therefore, these pathways are potentially important in CTEPH. Conclusions: Our findings suggested that hsa_circ_0002062 and hsa_circ_0022342 may be key circRNAs for CTEPH development and that their targeted regulation may be an effective approach for treating CTEPH. PMID:28682884

  19. Genetic dissection in a mouse model reveals interactions between carotenoids and lipid metabolism.

    PubMed

    Palczewski, Grzegorz; Widjaja-Adhi, M Airanthi K; Amengual, Jaume; Golczak, Marcin; von Lintig, Johannes

    2016-09-01

    Carotenoids affect a rich variety of physiological functions in nature and are beneficial for human health. However, knowledge about their biological action and the consequences of their dietary accumulation in mammals is limited. Progress in this research field is limited by the expeditious metabolism of carotenoids in rodents and the confounding production of apocarotenoid signaling molecules. Herein, we established a mouse model lacking the enzymes responsible for carotenoid catabolism and apocarotenoid production, fed on either a β-carotene- or a zeaxanthin-enriched diet. Applying a genome wide microarray analysis, we assessed the effects of the parent carotenoids on the liver transcriptome. Our analysis documented changes in pathways for liver lipid metabolism and mitochondrial respiration. We biochemically defined these effects, and observed that β-carotene accumulation resulted in an elevation of liver triglycerides and liver cholesterol, while zeaxanthin accumulation increased serum cholesterol levels. We further show that carotenoids were predominantly transported within HDL particles in the serum of mice. Finally, we provide evidence that carotenoid accumulation influenced whole-body respiration and energy expenditure. Thus, we observed that accumulation of parent carotenoids interacts with lipid metabolism and that structurally related carotenoids display distinct biological functions in mammals. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  20. Genome-wide Screening Identifies Phosphotransferase System Permease BepA to Be Involved in Enterococcus faecium Endocarditis and Biofilm Formation.

    PubMed

    Paganelli, Fernanda L; Huebner, Johannes; Singh, Kavindra V; Zhang, Xinglin; van Schaik, Willem; Wobser, Dominique; Braat, Johanna C; Murray, Barbara E; Bonten, Marc J M; Willems, Rob J L; Leavis, Helen L

    2016-07-15

    Enterococcus faecium is a common cause of nosocomial infections, of which infective endocarditis is associated with substantial mortality. In this study, we used a microarray-based transposon mapping (M-TraM) approach to evaluate a rat endocarditis model and identified a gene, originally annotated as "fruA" and renamed "bepA," putatively encoding a carbohydrate phosphotransferase system (PTS) permease (biofilm and endocarditis-associated permease A [BepA]), as important in infective endocarditis. This gene is highly enriched in E. faecium clinical isolates and absent in commensal isolates that are not associated with infection. Confirmation of the phenotype was established in a competition experiment of wild-type and a markerless bepA mutant in a rat endocarditis model. In addition, deletion of bepA impaired biofilm formation in vitro in the presence of 100% human serum and metabolism of β-methyl-D-glucoside. β-glucoside metabolism has been linked to the metabolism of glycosaminoglycans that are exposed on injured heart valves, where bacteria attach and form vegetations. Therefore, we propose that the PTS permease BepA is directly implicated in E. faecium pathogenesis. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  1. Allele-Skewed DNA Modification in the Brain: Relevance to a Schizophrenia GWAS

    PubMed Central

    Gagliano, Sarah A.; Ptak, Carolyn; Mak, Denise Y.F.; Shamsi, Mehrdad; Oh, Gabriel; Knight, Joanne; Boutros, Paul C.; Petronis, Arturas

    2016-01-01

    Numerous recent studies have suggested that phenotypic effects of DNA sequence variants can be mediated or modulated by their epigenetic marks, such as allele-skewed DNA modification (ASM). Using Affymetrix SNP microarrays, we performed a comprehensive search of ASM effects in human post-mortem brain and sperm samples (total n = 256) from individuals with major psychosis and control individuals. Depending on the phenotypic category of the brain samples, 1.4%–7.5% of interrogated SNPs exhibited ASM effects. Next, we investigated ASM in the context of genetic studies of schizophrenia and detected that brain ASM SNPs were significantly overrepresented among sub-threshold SNPs from a schizophrenia genome-wide association study (GWAS). Brain ASM SNPs showed a much stronger enrichment in a schizophrenia GWAS than in 17 large GWASs of non-psychiatric diseases and traits, arguing that ASM effects are at least partially tissue specific. Studies of germline and control brain ASM SNPs supported a causal association between ASM and schizophrenia. Finally, significantly higher proportions of ASM SNPs than of non-ASM SNPs were detected at loci exhibiting epigenetic signatures of enhancers and promoters, and they were overrepresented within transcription factor binding regions and DNase I hypersensitive sites. All of these findings collectively indicate that ASM SNPs should be prioritized in follow-up GWASs. PMID:27087318

  2. DNA Microarray Wet Lab Simulation Brings Genomics into the High School Curriculum

    ERIC Educational Resources Information Center

    Campbell, A. Malcolm; Zanta, Carolyn A.; Heyer, Laurie J.; Kittinger, Ben; Gabric, Kathleen M.; Adler, Leslie

    2006-01-01

    We have developed a wet lab DNA microarray simulation as part of a complete DNA microarray module for high school students. The wet lab simulation has been field tested with high school students in Illinois and Maryland as well as in workshops with high school teachers from across the nation. Instead of using DNA, our simulation is based on pH…

  3. Transcriptomic profile of host response in mouse brain after exposure to plant toxin abrin.

    PubMed

    Bhaskar, A S Bala; Gupta, Nimesh; Rao, P V Lakshmana

    2012-09-04

    Abrin toxin is a plant glycoprotein, which is similar in structure and properties to ricin and is obtained from the seeds of Abrus precatorius (jequirity bean). Abrin is highly toxic, with an estimated human fatal dose of 0.1-1 μg/kg, and has caused death after accidental and intentional poisoning. Abrin is a potent biological toxin warfare agent. There are no chemical antidotes available against the toxin. Neurological symptoms like delirium, hallucinations, reduced consciousness and generalized seizures were reported in human poisoning cases. Death of a patient with symptoms of acute demyelinating encephalopathy with gastrointestinal bleeding due to ingestion of abrin seeds was reported in India. The aim of this study was to examine both dose and time-dependent transcriptional responses induced by abrin in the adult mouse brain. Mice (n=6) were exposed to 1 and 2 LD50 (2.83 and 5.66 μg/kg respectively) dose of abrin by intraperitoneal route and observed over 3 days. A subset of animals (n=3) were sacrificed at 1 and 2 day intervals for microarray and histopathology analysis. None of the 2 LD50 exposed animals survived till 3 days. The histopathological analysis showed the severe damage in brain and the infiltration of inflammatory cells in a dose and time dependent manner. The abrin exposure resulted in the induction of rapid immune and inflammatory response in brain. Clinical biochemistry parameters like lactate dehydrogenase, aspartate aminotransferase, urea and creatinine showed significant increase at 2-day 2 LD50 exposure. The whole genome microarray data revealed the significant regulation of various pathways like MAPK pathway, cytokine-cytokine receptor interaction, calcium signaling pathway, Jak-STAT signaling pathway and natural killer cell mediated toxicity. The comparison of differential gene expression at both the doses showed dose dependent effects of abrin toxicity. The real-time qRT-PCR analysis of selected genes supported the microarray data. This is the first report on host-gene response using whole genome microarray in an animal model after abrin exposure. The data generated provides leads for developing suitable medical counter measures against abrin poisoning. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  4. Screening of potential genes contributing to the macrocycle drug resistance of C. albicans via microarray analysis

    PubMed Central

    Yang, Jing; Zhang, Wei; Sun, Jian; Xi, Zhiqin; Qiao, Zusha; Zhang, Jinyu; Wang, Yan; Ji, Ying; Feng, Wenli

    2017-01-01

    The aim of the present study was to investigate the potential genes involved in drug resistance of Candida albicans (C. albicans) by performing microarray analysis. The gene expression profile of GSE65396 was downloaded from the Gene Expression Omnibus, including a control, 15-min and 45-min macrocyclic compound RF59-treated group with three repeats for each. Following preprocessing using RAM, the differentially expressed genes (DEGs) were screened using the Limma package. Subsequently, the Kyoto Encyclopedia of Genes and Genomes pathways of these genes were analyzed using the Database for Annotation, Visualization and Integrated Discovery. Based on interactions estimated by the Search Tool for Retrieval of Interacting Gene, the protein-protein interaction (PPI) network was visualized using Cytoscape. Subnetwork analysis was performed using ReactomeFI. A total of 154 upregulated and 27 downregulated DEGs were identified in the 15-min treated group, compared with the control, and 235 upregulated and 233 downregulated DEGs were identified in the 45-min treated group, compared with the control. The upregulated DEGs were significantly enriched in the ribosome pathway. Based on the PPI network, PRP5, RCL1, NOP13, NOP4 and MRT4 were the top five nodes in the 15-min treated comparison. GIS2, URA3, NOP58, ELP3 and PLP7 were the top five nodes in the 45-min treated comparison, and its subnetwork was significantly enriched in the ribosome pathway. The macrocyclic compound RF59 had a notable effect on the ribosome and its associated pathways of C. albicans. RCL1, NOP4, MRT4, GIS2 and NOP58 may be important in RF59-resistance. PMID:28944888

  5. Functional genomics annotation of a statistical epistasis network associated with bladder cancer susceptibility.

    PubMed

    Hu, Ting; Pan, Qinxin; Andrew, Angeline S; Langer, Jillian M; Cole, Michael D; Tomlinson, Craig R; Karagas, Margaret R; Moore, Jason H

    2014-04-11

    Several different genetic and environmental factors have been identified as independent risk factors for bladder cancer in population-based studies. Recent studies have turned to understanding the role of gene-gene and gene-environment interactions in determining risk. We previously developed the bioinformatics framework of statistical epistasis networks (SEN) to characterize the global structure of interacting genetic factors associated with a particular disease or clinical outcome. By applying SEN to a population-based study of bladder cancer among Caucasians in New Hampshire, we were able to identify a set of connected genetic factors with strong and significant interaction effects on bladder cancer susceptibility. To support our statistical findings using networks, in the present study, we performed pathway enrichment analyses on the set of genes identified using SEN, and found that they are associated with the carcinogen benzo[a]pyrene, a component of tobacco smoke. We further carried out an mRNA expression microarray experiment to validate statistical genetic interactions, and to determine if the set of genes identified in the SEN were differentially expressed in a normal bladder cell line and a bladder cancer cell line in the presence or absence of benzo[a]pyrene. Significant nonrandom sets of genes from the SEN were found to be differentially expressed in response to benzo[a]pyrene in both the normal bladder cells and the bladder cancer cells. In addition, the patterns of gene expression were significantly different between these two cell types. The enrichment analyses and the gene expression microarray results support the idea that SEN analysis of bladder in population-based studies is able to identify biologically meaningful statistical patterns. These results bring us a step closer to a systems genetic approach to understanding cancer susceptibility that integrates population and laboratory-based studies.

  6. SAR405838: A novel and potent inhibitor of the MDM2:p53 axis for the treatment of dedifferentiated liposarcoma

    PubMed Central

    Bill, Kate Lynn J.; Garnett, Jeannine; Meaux, Isabelle; Ma, XiaoYen; Creighton, Chad J.; Bolshakov, Svetlana; Barriere, Cedric; Debussche, Laurent; Lazar, Alexander J.; Prudner, Bethany C.; Casadei, Lucia; Braggio, Danielle; Lopez, Gonzalo; Zewdu, Abbie; Bid, Hemant; Lev, Dina; Pollock, Raphael E.

    2016-01-01

    Purpose Dedifferentiated liposarcoma (DDLPS) is an aggressive malignancy that can recur locally or disseminate even after multidisciplinary care. Genetically amplified and expressed MDM2, often referred to as a “hallmark” of DDLPS, mostly sustains a wild-type p53 genotype, substantiating the p53-MDM2 axis as a potential therapeutic target for DDLPS. Here we report on the preclinical effects of SAR405838, a novel and highly selective MDM2 small-molecule inhibitor, in both in vitro and in vivo DDLPS models. Experimental Design The therapeutic effectiveness of SAR405838 was compared to the known MDM2 antagonists Nutlin-3a and MI-219. The effects of MDM2 inhibition were assessed in both in vitro and in vivo. In vitro and in vivo microarray analyses were performed to assess differentially expressed genes induced by SAR405838, as well as the pathways that these modulated genes enriched. Results SAR405838 effectively stabilized p53 and activated the p53 pathway, resulting in abrogated cellular proliferation, cell cycle arrest, and apoptosis. Similar results were observed with Nutlin-3a and MI-219; however, significantly higher concentrations were required. In vitro effectiveness of SAR405838 activity was recapitulated in DDLPS xenograft models where significant decreases in tumorigenicity were observed. Microarray analyses revealed genes enriching the p53 signaling pathway as well as genomic stability and DNA damage following SAR405838 treatment. Conclusion SAR405838 is currently in early phase clinical trials for a number of malignancies, including sarcoma, and our in vitro and in vivo results support its use as a potential therapeutic strategy for the treatment of DDLPS. PMID:26475335

  7. SAR405838: A Novel and Potent Inhibitor of the MDM2:p53 Axis for the Treatment of Dedifferentiated Liposarcoma.

    PubMed

    Bill, Kate Lynn J; Garnett, Jeannine; Meaux, Isabelle; Ma, XiaoYen; Creighton, Chad J; Bolshakov, Svetlana; Barriere, Cedric; Debussche, Laurent; Lazar, Alexander J; Prudner, Bethany C; Casadei, Lucia; Braggio, Danielle; Lopez, Gonzalo; Zewdu, Abbie; Bid, Hemant; Lev, Dina; Pollock, Raphael E

    2016-03-01

    Dedifferentiated liposarcoma (DDLPS) is an aggressive malignancy that can recur locally or disseminate even after multidisciplinary care. Genetically amplified and expressed MDM2, often referred to as a "hallmark" of DDLPS, mostly sustains a wild-type p53 genotype, substantiating the MDM2:p53 axis as a potential therapeutic target for DDLPS. Here, we report on the preclinical effects of SAR405838, a novel and highly selective MDM2 small-molecule inhibitor, in both in vitro and in vivo DDLPS models. The therapeutic effectiveness of SAR405838 was compared with the known MDM2 antagonists Nutlin-3a and MI-219. The effects of MDM2 inhibition were assessed in both in vitro and in vivo. In vitro and in vivo microarray analyses were performed to assess differentially expressed genes induced by SAR405838, as well as the pathways that these modulated genes enriched. SAR405838 effectively stabilized p53 and activated the p53 pathway, resulting in abrogated cellular proliferation, cell-cycle arrest, and apoptosis. Similar results were observed with Nutlin-3a and MI-219; however, significantly higher concentrations were required. In vitro effectiveness of SAR405838 activity was recapitulated in DDLPS xenograft models where significant decreases in tumorigenicity were observed. Microarray analyses revealed genes enriching the p53 signaling pathway as well as genomic stability and DNA damage following SAR405838 treatment. SAR405838 is currently in early-phase clinical trials for a number of malignancies, including sarcoma, and our in vitro and in vivo results support its use as a potential therapeutic strategy for the treatment of DDLPS. ©2015 American Association for Cancer Research.

  8. Cytokinin induces genome-wide binding of the type-B response regulator ARR10 to regulate growth and development in Arabidopsis

    PubMed Central

    Zubo, Yan O.; Blakley, Ivory Clabaugh; Yamburenko, Maria V.; Worthen, Jennifer M.; Street, Ian H.; Franco-Zorrilla, José M.; Zhang, Wenjing; Raines, Tracy; Kieber, Joseph J.; Loraine, Ann E.

    2017-01-01

    The plant hormone cytokinin affects a diverse array of growth and development processes and responses to the environment. How a signaling molecule mediates such a diverse array of outputs and how these response pathways are integrated with other inputs remain fundamental questions in plant biology. To this end, we characterized the transcriptional network initiated by the type-B ARABIDOPSIS RESPONSE REGULATORs (ARRs) that mediate the cytokinin primary response, making use of chromatin immunoprecipitation sequencing (ChIP-seq), protein-binding microarrays, and transcriptomic approaches. By ectopic overexpression of ARR10, Arabidopsis lines hypersensitive to cytokinin were generated and used to clarify the role of cytokinin in regulation of various physiological responses. ChIP-seq was used to identify the cytokinin-dependent targets for ARR10, thereby defining a crucial link between the cytokinin primary-response pathway and the transcriptional changes that mediate physiological responses to this phytohormone. Binding of ARR10 was induced by cytokinin with binding sites enriched toward the transcriptional start sites for both induced and repressed genes. Three type-B ARR DNA-binding motifs, determined by use of protein-binding microarrays, were enriched at ARR10 binding sites, confirming their physiological relevance. WUSCHEL was identified as a direct target of ARR10, with its cytokinin-enhanced expression resulting in enhanced shooting in tissue culture. Results from our analyses shed light on the physiological role of the type-B ARRs in regulating the cytokinin response, mechanism of type-B ARR activation, and basis by which cytokinin regulates diverse aspects of growth and development as well as responses to biotic and abiotic factors. PMID:28673986

  9. Transcript copy number estimation using a mouse whole-genome oligonucleotide microarray

    PubMed Central

    Carter, Mark G; Sharov, Alexei A; VanBuren, Vincent; Dudekula, Dawood B; Carmack, Condie E; Nelson, Charlie; Ko, Minoru SH

    2005-01-01

    The ability to quantitatively measure the expression of all genes in a given tissue or cell with a single assay is an exciting promise of gene-expression profiling technology. An in situ-synthesized 60-mer oligonucleotide microarray designed to detect transcripts from all mouse genes was validated, as well as a set of exogenous RNA controls derived from the yeast genome (made freely available without restriction), which allow quantitative estimation of absolute endogenous transcript abundance. PMID:15998450

  10. Comparative Genome Analysis of Trichophyton rubrum and Related Dermatophytes Reveals Candidate Genes Involved in Infection

    PubMed Central

    Martinez, Diego A.; Oliver, Brian G.; Gräser, Yvonne; Goldberg, Jonathan M.; Li, Wenjun; Martinez-Rossi, Nilce M.; Monod, Michel; Shelest, Ekaterina; Barton, Richard C.; Birch, Elizabeth; Brakhage, Axel A.; Chen, Zehua; Gurr, Sarah J.; Heiman, David; Heitman, Joseph; Kosti, Idit; Rossi, Antonio; Saif, Sakina; Samalova, Marketa; Saunders, Charles W.; Shea, Terrance; Summerbell, Richard C.; Xu, Jun; Young, Sarah; Zeng, Qiandong; Birren, Bruce W.; Cuomo, Christina A.; White, Theodore C.

    2012-01-01

    ABSTRACT The major cause of athlete’s foot is Trichophyton rubrum, a dermatophyte or fungal pathogen of human skin. To facilitate molecular analyses of the dermatophytes, we sequenced T. rubrum and four related species, Trichophyton tonsurans, Trichophyton equinum, Microsporum canis, and Microsporum gypseum. These species differ in host range, mating, and disease progression. The dermatophyte genomes are highly colinear yet contain gene family expansions not found in other human-associated fungi. Dermatophyte genomes are enriched for gene families containing the LysM domain, which binds chitin and potentially related carbohydrates. These LysM domains differ in sequence from those in other species in regions of the peptide that could affect substrate binding. The dermatophytes also encode novel sets of fungus-specific kinases with unknown specificity, including nonfunctional pseudokinases, which may inhibit phosphorylation by competing for kinase sites within substrates, acting as allosteric effectors, or acting as scaffolds for signaling. The dermatophytes are also enriched for a large number of enzymes that synthesize secondary metabolites, including dermatophyte-specific genes that could synthesize novel compounds. Finally, dermatophytes are enriched in several classes of proteases that are necessary for fungal growth and nutrient acquisition on keratinized tissues. Despite differences in mating ability, genes involved in mating and meiosis are conserved across species, suggesting the possibility of cryptic mating in species where it has not been previously detected. These genome analyses identify gene families that are important to our understanding of how dermatophytes cause chronic infections, how they interact with epithelial cells, and how they respond to the host immune response. PMID:22951933

  11. Developmental genes significantly afflicted by aberrant promoter methylation and somatic mutation predict overall survival of late-stage colorectal cancer

    PubMed Central

    An, Ning; Yang, Xue; Cheng, Shujun; Wang, Guiqi; Zhang, Kaitai

    2015-01-01

    Carcinogenesis is an exceedingly complicated process, which involves multi-level dysregulations, including genomics (majorly caused by somatic mutation and copy number variation), DNA methylomics, and transcriptomics. Therefore, only looking into one molecular level of cancer is not sufficient to uncover the intricate underlying mechanisms. With the abundant resources of public available data in the Cancer Genome Atlas (TCGA) database, an integrative strategy was conducted to systematically analyze the aberrant patterns of colorectal cancer on the basis of DNA copy number, promoter methylation, somatic mutation and gene expression. In this study, paired samples in each genomic level were retrieved to identify differentially expressed genes with corresponding genetic or epigenetic dysregulations. Notably, the result of gene ontology enrichment analysis indicated that the differentially expressed genes with corresponding aberrant promoter methylation or somatic mutation were both functionally concentrated upon developmental process, suggesting the intimate association between development and carcinogenesis. Thus, by means of random walk with restart, 37 significant development-related genes were retrieved from a priori-knowledge based biological network. In five independent microarray datasets, Kaplan–Meier survival and Cox regression analyses both confirmed that the expression of these genes was significantly associated with overall survival of Stage III/IV colorectal cancer patients. PMID:26691761

  12. Developmental genes significantly afflicted by aberrant promoter methylation and somatic mutation predict overall survival of late-stage colorectal cancer.

    PubMed

    An, Ning; Yang, Xue; Cheng, Shujun; Wang, Guiqi; Zhang, Kaitai

    2015-12-22

    Carcinogenesis is an exceedingly complicated process, which involves multi-level dysregulations, including genomics (majorly caused by somatic mutation and copy number variation), DNA methylomics, and transcriptomics. Therefore, only looking into one molecular level of cancer is not sufficient to uncover the intricate underlying mechanisms. With the abundant resources of public available data in the Cancer Genome Atlas (TCGA) database, an integrative strategy was conducted to systematically analyze the aberrant patterns of colorectal cancer on the basis of DNA copy number, promoter methylation, somatic mutation and gene expression. In this study, paired samples in each genomic level were retrieved to identify differentially expressed genes with corresponding genetic or epigenetic dysregulations. Notably, the result of gene ontology enrichment analysis indicated that the differentially expressed genes with corresponding aberrant promoter methylation or somatic mutation were both functionally concentrated upon developmental process, suggesting the intimate association between development and carcinogenesis. Thus, by means of random walk with restart, 37 significant development-related genes were retrieved from a priori-knowledge based biological network. In five independent microarray datasets, Kaplan-Meier survival and Cox regression analyses both confirmed that the expression of these genes was significantly associated with overall survival of Stage III/IV colorectal cancer patients.

  13. Current and Emerging Technologies for the Analysis of the Genome-Wide and Locus-Specific DNA Methylation Patterns.

    PubMed

    Tost, Jörg

    2016-01-01

    DNA methylation is the most studied epigenetic modification, and altered DNA methylation patterns have been identified in cancer and more recently also in many other complex diseases. Furthermore, DNA methylation is influenced by a variety of environmental factors, and the analysis of DNA methylation patterns might allow deciphering previous exposure. Although a large number of techniques to study DNA methylation either genome-wide or at specific loci have been devised, they all are based on a limited number of principles for differentiating the methylation state, viz., methylation-specific/methylation-dependent restriction enzymes, antibodies or methyl-binding proteins, chemical-based enrichment, or bisulfite conversion. Second-generation sequencing has largely replaced microarrays as readout platform and is also becoming more popular for locus-specific DNA methylation analysis. In this chapter, the currently used methods for both genome-wide and locus-specific analysis of 5-methylcytosine and as its oxidative derivatives, such as 5-hydroxymethylcytosine, are reviewed in detail, and the advantages and limitations of each approach are discussed. Furthermore, emerging technologies avoiding PCR amplification and allowing a direct readout of DNA methylation are summarized, together with novel applications, such as the detection of DNA methylation in single cells or in circulating cell-free DNA.

  14. Using microarrays to identify positional candidate genes for QTL: the case study of ACTH response in pigs.

    PubMed

    Jouffe, Vincent; Rowe, Suzanne; Liaubet, Laurence; Buitenhuis, Bart; Hornshøj, Henrik; SanCristobal, Magali; Mormède, Pierre; de Koning, D J

    2009-07-16

    Microarray studies can supplement QTL studies by suggesting potential candidate genes in the QTL regions, which by themselves are too large to provide a limited selection of candidate genes. Here we provide a case study where we explore ways to integrate QTL data and microarray data for the pig, which has only a partial genome sequence. We outline various procedures to localize differentially expressed genes on the pig genome and link this with information on published QTL. The starting point is a set of 237 differentially expressed cDNA clones in adrenal tissue from two pig breeds, before and after treatment with adrenocorticotropic hormone (ACTH). Different approaches to localize the differentially expressed (DE) genes to the pig genome showed different levels of success and a clear lack of concordance for some genes between the various approaches. For a focused analysis on 12 genes, overlapping QTL from the public domain were presented. Also, differentially expressed genes underlying QTL for ACTH response were described. Using the latest version of the draft sequence, the differentially expressed genes were mapped to the pig genome. This enabled co-location of DE genes and previously studied QTL regions, but the draft genome sequence is still incomplete and will contain many errors. A further step to explore links between DE genes and QTL at the pathway level was largely unsuccessful due to the lack of annotation of the pig genome. This could be improved by further comparative mapping analyses but this would be time consuming. This paper provides a case study for the integration of QTL data and microarray data for a species with limited genome sequence information and annotation. The results illustrate the challenges that must be addressed but also provide a roadmap for future work that is applicable to other non-model species.

  15. The zebrafish reference genome sequence and its relationship to the human genome.

    PubMed

    Howe, Kerstin; Clark, Matthew D; Torroja, Carlos F; Torrance, James; Berthelot, Camille; Muffato, Matthieu; Collins, John E; Humphray, Sean; McLaren, Karen; Matthews, Lucy; McLaren, Stuart; Sealy, Ian; Caccamo, Mario; Churcher, Carol; Scott, Carol; Barrett, Jeffrey C; Koch, Romke; Rauch, Gerd-Jörg; White, Simon; Chow, William; Kilian, Britt; Quintais, Leonor T; Guerra-Assunção, José A; Zhou, Yi; Gu, Yong; Yen, Jennifer; Vogel, Jan-Hinnerk; Eyre, Tina; Redmond, Seth; Banerjee, Ruby; Chi, Jianxiang; Fu, Beiyuan; Langley, Elizabeth; Maguire, Sean F; Laird, Gavin K; Lloyd, David; Kenyon, Emma; Donaldson, Sarah; Sehra, Harminder; Almeida-King, Jeff; Loveland, Jane; Trevanion, Stephen; Jones, Matt; Quail, Mike; Willey, Dave; Hunt, Adrienne; Burton, John; Sims, Sarah; McLay, Kirsten; Plumb, Bob; Davis, Joy; Clee, Chris; Oliver, Karen; Clark, Richard; Riddle, Clare; Elliot, David; Eliott, David; Threadgold, Glen; Harden, Glenn; Ware, Darren; Begum, Sharmin; Mortimore, Beverley; Mortimer, Beverly; Kerry, Giselle; Heath, Paul; Phillimore, Benjamin; Tracey, Alan; Corby, Nicole; Dunn, Matthew; Johnson, Christopher; Wood, Jonathan; Clark, Susan; Pelan, Sarah; Griffiths, Guy; Smith, Michelle; Glithero, Rebecca; Howden, Philip; Barker, Nicholas; Lloyd, Christine; Stevens, Christopher; Harley, Joanna; Holt, Karen; Panagiotidis, Georgios; Lovell, Jamieson; Beasley, Helen; Henderson, Carl; Gordon, Daria; Auger, Katherine; Wright, Deborah; Collins, Joanna; Raisen, Claire; Dyer, Lauren; Leung, Kenric; Robertson, Lauren; Ambridge, Kirsty; Leongamornlert, Daniel; McGuire, Sarah; Gilderthorp, Ruth; Griffiths, Coline; Manthravadi, Deepa; Nichol, Sarah; Barker, Gary; Whitehead, Siobhan; Kay, Michael; Brown, Jacqueline; Murnane, Clare; Gray, Emma; Humphries, Matthew; Sycamore, Neil; Barker, Darren; Saunders, David; Wallis, Justene; Babbage, Anne; Hammond, Sian; Mashreghi-Mohammadi, Maryam; Barr, Lucy; Martin, Sancha; Wray, Paul; Ellington, Andrew; Matthews, Nicholas; Ellwood, Matthew; Woodmansey, Rebecca; Clark, Graham; Cooper, James D; Cooper, James; Tromans, Anthony; Grafham, Darren; Skuce, Carl; Pandian, Richard; Andrews, Robert; Harrison, Elliot; Kimberley, Andrew; Garnett, Jane; Fosker, Nigel; Hall, Rebekah; Garner, Patrick; Kelly, Daniel; Bird, Christine; Palmer, Sophie; Gehring, Ines; Berger, Andrea; Dooley, Christopher M; Ersan-Ürün, Zübeyde; Eser, Cigdem; Geiger, Horst; Geisler, Maria; Karotki, Lena; Kirn, Anette; Konantz, Judith; Konantz, Martina; Oberländer, Martina; Rudolph-Geiger, Silke; Teucke, Mathias; Lanz, Christa; Raddatz, Günter; Osoegawa, Kazutoyo; Zhu, Baoli; Rapp, Amanda; Widaa, Sara; Langford, Cordelia; Yang, Fengtang; Schuster, Stephan C; Carter, Nigel P; Harrow, Jennifer; Ning, Zemin; Herrero, Javier; Searle, Steve M J; Enright, Anton; Geisler, Robert; Plasterk, Ronald H A; Lee, Charles; Westerfield, Monte; de Jong, Pieter J; Zon, Leonard I; Postlethwait, John H; Nüsslein-Volhard, Christiane; Hubbard, Tim J P; Roest Crollius, Hugues; Rogers, Jane; Stemple, Derek L

    2013-04-25

    Zebrafish have become a popular organism for the study of vertebrate gene function. The virtually transparent embryos of this species, and the ability to accelerate genetic studies by gene knockdown or overexpression, have led to the widespread use of zebrafish in the detailed investigation of vertebrate gene function and increasingly, the study of human genetic disease. However, for effective modelling of human genetic disease it is important to understand the extent to which zebrafish genes and gene structures are related to orthologous human genes. To examine this, we generated a high-quality sequence assembly of the zebrafish genome, made up of an overlapping set of completely sequenced large-insert clones that were ordered and oriented using a high-resolution high-density meiotic map. Detailed automatic and manual annotation provides evidence of more than 26,000 protein-coding genes, the largest gene set of any vertebrate so far sequenced. Comparison to the human reference genome shows that approximately 70% of human genes have at least one obvious zebrafish orthologue. In addition, the high quality of this genome assembly provides a clearer understanding of key genomic features such as a unique repeat content, a scarcity of pseudogenes, an enrichment of zebrafish-specific genes on chromosome 4 and chromosomal regions that influence sex determination.

  16. The zebrafish reference genome sequence and its relationship to the human genome

    PubMed Central

    Howe, Kerstin; Clark, Matthew D.; Torroja, Carlos F.; Torrance, James; Berthelot, Camille; Muffato, Matthieu; Collins, John E.; Humphray, Sean; McLaren, Karen; Matthews, Lucy; McLaren, Stuart; Sealy, Ian; Caccamo, Mario; Churcher, Carol; Scott, Carol; Barrett, Jeffrey C.; Koch, Romke; Rauch, Gerd-Jörg; White, Simon; Chow, William; Kilian, Britt; Quintais, Leonor T.; Guerra-Assunção, José A.; Zhou, Yi; Gu, Yong; Yen, Jennifer; Vogel, Jan-Hinnerk; Eyre, Tina; Redmond, Seth; Banerjee, Ruby; Chi, Jianxiang; Fu, Beiyuan; Langley, Elizabeth; Maguire, Sean F.; Laird, Gavin K.; Lloyd, David; Kenyon, Emma; Donaldson, Sarah; Sehra, Harminder; Almeida-King, Jeff; Loveland, Jane; Trevanion, Stephen; Jones, Matt; Quail, Mike; Willey, Dave; Hunt, Adrienne; Burton, John; Sims, Sarah; McLay, Kirsten; Plumb, Bob; Davis, Joy; Clee, Chris; Oliver, Karen; Clark, Richard; Riddle, Clare; Eliott, David; Threadgold, Glen; Harden, Glenn; Ware, Darren; Mortimer, Beverly; Kerry, Giselle; Heath, Paul; Phillimore, Benjamin; Tracey, Alan; Corby, Nicole; Dunn, Matthew; Johnson, Christopher; Wood, Jonathan; Clark, Susan; Pelan, Sarah; Griffiths, Guy; Smith, Michelle; Glithero, Rebecca; Howden, Philip; Barker, Nicholas; Stevens, Christopher; Harley, Joanna; Holt, Karen; Panagiotidis, Georgios; Lovell, Jamieson; Beasley, Helen; Henderson, Carl; Gordon, Daria; Auger, Katherine; Wright, Deborah; Collins, Joanna; Raisen, Claire; Dyer, Lauren; Leung, Kenric; Robertson, Lauren; Ambridge, Kirsty; Leongamornlert, Daniel; McGuire, Sarah; Gilderthorp, Ruth; Griffiths, Coline; Manthravadi, Deepa; Nichol, Sarah; Barker, Gary; Whitehead, Siobhan; Kay, Michael; Brown, Jacqueline; Murnane, Clare; Gray, Emma; Humphries, Matthew; Sycamore, Neil; Barker, Darren; Saunders, David; Wallis, Justene; Babbage, Anne; Hammond, Sian; Mashreghi-Mohammadi, Maryam; Barr, Lucy; Martin, Sancha; Wray, Paul; Ellington, Andrew; Matthews, Nicholas; Ellwood, Matthew; Woodmansey, Rebecca; Clark, Graham; Cooper, James; Tromans, Anthony; Grafham, Darren; Skuce, Carl; Pandian, Richard; Andrews, Robert; Harrison, Elliot; Kimberley, Andrew; Garnett, Jane; Fosker, Nigel; Hall, Rebekah; Garner, Patrick; Kelly, Daniel; Bird, Christine; Palmer, Sophie; Gehring, Ines; Berger, Andrea; Dooley, Christopher M.; Ersan-Ürün, Zübeyde; Eser, Cigdem; Geiger, Horst; Geisler, Maria; Karotki, Lena; Kirn, Anette; Konantz, Judith; Konantz, Martina; Oberländer, Martina; Rudolph-Geiger, Silke; Teucke, Mathias; Osoegawa, Kazutoyo; Zhu, Baoli; Rapp, Amanda; Widaa, Sara; Langford, Cordelia; Yang, Fengtang; Carter, Nigel P.; Harrow, Jennifer; Ning, Zemin; Herrero, Javier; Searle, Steve M. J.; Enright, Anton; Geisler, Robert; Plasterk, Ronald H. A.; Lee, Charles; Westerfield, Monte; de Jong, Pieter J.; Zon, Leonard I.; Postlethwait, John H.; Nüsslein-Volhard, Christiane; Hubbard, Tim J. P.; Crollius, Hugues Roest; Rogers, Jane; Stemple, Derek L.

    2013-01-01

    Zebrafish have become a popular organism for the study of vertebrate gene function1,2. The virtually transparent embryos of this species, and the ability to accelerate genetic studies by gene knockdown or overexpression, have led to the widespread use of zebrafish in the detailed investigation of vertebrate gene function and increasingly, the study of human genetic disease3–5. However, for effective modelling of human genetic disease it is important to understand the extent to which zebrafish genes and gene structures are related to orthologous human genes. To examine this, we generated a high-quality sequence assembly of the zebrafish genome, made up of an overlapping set of completely sequenced large-insert clones that were ordered and oriented using a high-resolution high-density meiotic map. Detailed automatic and manual annotation provides evidence of more than 26,000 protein-coding genes6, the largest gene set of any vertebrate so far sequenced. Comparison to the human reference genome shows that approximately 70% of human genes have at least one obvious zebrafish orthologue. In addition, the high quality of this genome assembly provides a clearer understanding of key genomic features such as a unique repeat content, a scarcity of pseudogenes, an enrichment of zebrafish-specific genes on chromosome 4 and chromosomal regions that influence sex determination. PMID:23594743

  17. Integrative Genome Comparison of Primary and Metastatic Melanomas

    PubMed Central

    Feng, Bin; Nazarian, Rosalynn M.; Bosenberg, Marcus; Wu, Min; Scott, Kenneth L.; Kwong, Lawrence N.; Xiao, Yonghong; Cordon-Cardo, Carlos; Granter, Scott R.; Ramaswamy, Sridhar; Golub, Todd; Duncan, Lyn M.; Wagner, Stephan N.; Brennan, Cameron; Chin, Lynda

    2010-01-01

    A cardinal feature of malignant melanoma is its metastatic propensity. An incomplete view of the genetic events driving metastatic progression has been a major barrier to rational development of effective therapeutics and prognostic diagnostics for melanoma patients. In this study, we conducted global genomic characterization of primary and metastatic melanomas to examine the genomic landscape associated with metastatic progression. In addition to uncovering three genomic subclasses of metastastic melanomas, we delineated 39 focal and recurrent regions of amplification and deletions, many of which encompassed resident genes that have not been implicated in cancer or metastasis. To identify progression-associated metastasis gene candidates, we applied a statistical approach, Integrative Genome Comparison (IGC), to define 32 genomic regions of interest that were significantly altered in metastatic relative to primary melanomas, encompassing 30 resident genes with statistically significant expression deregulation. Functional assays on a subset of these candidates, including MET, ASPM, AKAP9, IMP3, PRKCA, RPA3, and SCAP2, validated their pro-invasion activities in human melanoma cells. Validity of the IGC approach was further reinforced by tissue microarray analysis of Survivin showing significant increased protein expression in thick versus thin primary cutaneous melanomas, and a progression correlation with lymph node metastases. Together, these functional validation results and correlative analysis of human tissues support the thesis that integrated genomic and pathological analyses of staged melanomas provide a productive entry point for discovery of melanoma metastases genes. PMID:20520718

  18. Analysis of disease-associated objects at the Rat Genome Database

    PubMed Central

    Wang, Shur-Jen; Laulederkind, Stanley J. F.; Hayman, G. T.; Smith, Jennifer R.; Petri, Victoria; Lowry, Timothy F.; Nigam, Rajni; Dwinell, Melinda R.; Worthey, Elizabeth A.; Munzenmaier, Diane H.; Shimoyama, Mary; Jacob, Howard J.

    2013-01-01

    The Rat Genome Database (RGD) is the premier resource for genetic, genomic and phenotype data for the laboratory rat, Rattus norvegicus. In addition to organizing biological data from rats, the RGD team focuses on manual curation of gene–disease associations for rat, human and mouse. In this work, we have analyzed disease-associated strains, quantitative trait loci (QTL) and genes from rats. These disease objects form the basis for seven disease portals. Among disease portals, the cardiovascular disease and obesity/metabolic syndrome portals have the highest number of rat strains and QTL. These two portals share 398 rat QTL, and these shared QTL are highly concentrated on rat chromosomes 1 and 2. For disease-associated genes, we performed gene ontology (GO) enrichment analysis across portals using RatMine enrichment widgets. Fifteen GO terms, five from each GO aspect, were selected to profile enrichment patterns of each portal. Of the selected biological process (BP) terms, ‘regulation of programmed cell death’ was the top enriched term across all disease portals except in the obesity/metabolic syndrome portal where ‘lipid metabolic process’ was the most enriched term. ‘Cytosol’ and ‘nucleus’ were common cellular component (CC) annotations for disease genes, but only the cancer portal genes were highly enriched with ‘nucleus’ annotations. Similar enrichment patterns were observed in a parallel analysis using the DAVID functional annotation tool. The relationship between the preselected 15 GO terms and disease terms was examined reciprocally by retrieving rat genes annotated with these preselected terms. The individual GO term–annotated gene list showed enrichment in physiologically related diseases. For example, the ‘regulation of blood pressure’ genes were enriched with cardiovascular disease annotations, and the ‘lipid metabolic process’ genes with obesity annotations. Furthermore, we were able to enhance enrichment of neurological diseases by combining ‘G-protein coupled receptor binding’ annotated genes with ‘protein kinase binding’ annotated genes. Database URL: http://rgd.mcw.edu PMID:23794737

  19. Genome-Wide Identification of Regulatory Sequences Undergoing Accelerated Evolution in the Human Genome.

    PubMed

    Dong, Xinran; Wang, Xiao; Zhang, Feng; Tian, Weidong

    2016-10-01

    Accelerated evolution of regulatory sequence can alter the expression pattern of target genes, and cause phenotypic changes. In this study, we used DNase I hypersensitive sites (DHSs) to annotate putative regulatory sequences in the human genome, and conducted a genome-wide analysis of the effects of accelerated evolution on regulatory sequences. Working under the assumption that local ancient repeat elements of DHSs are under neutral evolution, we discovered that ∼0.44% of DHSs are under accelerated evolution (ace-DHSs). We found that ace-DHSs tend to be more active than background DHSs, and are strongly associated with epigenetic marks of active transcription. The target genes of ace-DHSs are significantly enriched in neuron-related functions, and their expression levels are positively selected in the human brain. Thus, these lines of evidences strongly suggest that accelerated evolution on regulatory sequences plays important role in the evolution of human-specific phenotypes. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  20. Genome editing for human gene therapy.

    PubMed

    Meissner, Torsten B; Mandal, Pankaj K; Ferreira, Leonardo M R; Rossi, Derrick J; Cowan, Chad A

    2014-01-01

    The rapid advancement of genome-editing techniques holds much promise for the field of human gene therapy. From bacteria to model organisms and human cells, genome editing tools such as zinc-finger nucleases (ZNFs), TALENs, and CRISPR/Cas9 have been successfully used to manipulate the respective genomes with unprecedented precision. With regard to human gene therapy, it is of great interest to test the feasibility of genome editing in primary human hematopoietic cells that could potentially be used to treat a variety of human genetic disorders such as hemoglobinopathies, primary immunodeficiencies, and cancer. In this chapter, we explore the use of the CRISPR/Cas9 system for the efficient ablation of genes in two clinically relevant primary human cell types, CD4+ T cells and CD34+ hematopoietic stem and progenitor cells. By using two guide RNAs directed at a single locus, we achieve highly efficient and predictable deletions that ablate gene function. The use of a Cas9-2A-GFP fusion protein allows FACS-based enrichment of the transfected cells. The ease of designing, constructing, and testing guide RNAs makes this dual guide strategy an attractive approach for the efficient deletion of clinically relevant genes in primary human hematopoietic stem and effector cells and enables the use of CRISPR/Cas9 for gene therapy.

  1. DNA methylation at hepatitis B viral integrants is associated with methylation at flanking human genomic sequences

    PubMed Central

    Watanabe, Yoshiyuki; Yamamoto, Hiroyuki; Oikawa, Ritsuko; Toyota, Minoru; Yamamoto, Masakazu; Kokudo, Norihiro; Tanaka, Shinji; Arii, Shigeki; Yotsuyanagi, Hiroshi; Koike, Kazuhiko; Itoh, Fumio

    2015-01-01

    Integration of DNA viruses into the human genome plays an important role in various types of tumors, including hepatitis B virus (HBV)–related hepatocellular carcinoma. However, the molecular details and clinical impact of HBV integration on either human or HBV epigenomes are unknown. Here, we show that methylation of the integrated HBV DNA is related to the methylation status of the flanking human genome. We developed a next-generation sequencing-based method for structural methylation analysis of integrated viral genomes (denoted G-NaVI). This method is a novel approach that enables enrichment of viral fragments for sequencing using unique baits based on the sequence of the HBV genome. We detected integrated HBV sequences in the genome of the PLC/PRF/5 cell line and found variable levels of methylation within the integrated HBV genomes. Allele-specific methylation analysis revealed that the HBV genome often became significantly methylated when integrated into highly methylated host sites. After integration into unmethylated human genome regions such as promoters, however, the HBV DNA remains unmethylated and may eventually play an important role in tumorigenesis. The observed dynamic changes in DNA methylation of the host and viral genomes may functionally affect the biological behavior of HBV. These findings may impact public health given that millions of people worldwide are carriers of HBV. We also believe our assay will be a powerful tool to increase our understanding of the various types of DNA virus-associated tumorigenesis. PMID:25653310

  2. Interpretation of Genomic Data Questions and Answers

    PubMed Central

    Simon, Richard

    2008-01-01

    Using a question and answer format we describe important aspects of using genomic technologies in cancer research. The main challenges are not managing the mass of data, but rather the design, analysis and accurate reporting of studies that result in increased biological knowledge and medical utility. Many analysis issues address the use of expression microarrays but are also applicable to other whole genome assays. Microarray based clinical investigations have generated both unrealistic hyperbole and excessive skepticism. Genomic technologies are tremendously powerful and will play instrumental roles in elucidating the mechanisms of oncogenesis and in devlopingan era of predictive medicine in which treatments are tailored to individual tumors. Achieving these goals involves challenges in re-thinking many paradigms for the conduct of basic and clinical cancer research and for the organization of interdisciplinary collaboration. PMID:18582627

  3. Integrating Microarray Data and GRNs.

    PubMed

    Koumakis, L; Potamias, G; Tsiknakis, M; Zervakis, M; Moustakis, V

    2016-01-01

    With the completion of the Human Genome Project and the emergence of high-throughput technologies, a vast amount of molecular and biological data are being produced. Two of the most important and significant data sources come from microarray gene-expression experiments and respective databanks (e,g., Gene Expression Omnibus-GEO (http://www.ncbi.nlm.nih.gov/geo)), and from molecular pathways and Gene Regulatory Networks (GRNs) stored and curated in public (e.g., Kyoto Encyclopedia of Genes and Genomes-KEGG (http://www.genome.jp/kegg/pathway.html), Reactome (http://www.reactome.org/ReactomeGWT/entrypoint.html)) as well as in commercial repositories (e.g., Ingenuity IPA (http://www.ingenuity.com/products/ipa)). The association of these two sources aims to give new insight in disease understanding and reveal new molecular targets in the treatment of specific phenotypes.Three major research lines and respective efforts that try to utilize and combine data from both of these sources could be identified, namely: (1) de novo reconstruction of GRNs, (2) identification of Gene-signatures, and (3) identification of differentially expressed GRN functional paths (i.e., sub-GRN paths that distinguish between different phenotypes). In this chapter, we give an overview of the existing methods that support the different types of gene-expression and GRN integration with a focus on methodologies that aim to identify phenotype-discriminant GRNs or subnetworks, and we also present our methodology.

  4. Genomic profiling of a Hepatocyte growth factor-dependent signature for MET-targeted therapy in glioblastoma.

    PubMed

    Johnson, Jennifer; Ascierto, Maria Libera; Mittal, Sandeep; Newsome, David; Kang, Liang; Briggs, Michael; Tanner, Kirk; Marincola, Francesco M; Berens, Michael E; Vande Woude, George F; Xie, Qian

    2015-09-17

    Constitutive MET signaling promotes invasiveness in most primary and recurrent GBM. However, deployment of available MET-targeting agents is confounded by lack of effective biomarkers for selecting suitable patients for treatment. Because endogenous HGF overexpression often causes autocrine MET activation, and also indicates sensitivity to MET inhibitors, we investigated whether it drives the expression of distinct genes which could serve as a signature indicating vulnerability to MET-targeted therapy in GBM. Interrogation of genomic data from TCGA GBM (Student's t test, GBM patients with high and low HGF expression, p ≤ 0.00001) referenced against patient-derived xenograft (PDX) models (Student's t test, sensitive vs. insensitive models, p ≤ 0.005) was used to identify the HGF-dependent signature. Genomic analysis of GBM xenograft models using both human and mouse gene expression microarrays (Student's t test, treated vs. vehicle tumors, p ≤ 0.01) were performed to elucidate the tumor and microenvironment cross talk. A PDX model with EGFR(amp) was tested for MET activation as a mechanism of erlotinib resistance. We identified a group of 20 genes highly associated with HGF overexpression in GBM and were up- or down-regulated only in tumors sensitive to MET inhibitor. The MET inhibitors regulate tumor (human) and host (mouse) cells within the tumor via distinct molecular processes, but overall impede tumor growth by inhibiting cell cycle progression. EGFR (amp) tumors undergo erlotinib resistance responded to a combination of MET and EGFR inhibitors. Combining TCGA primary tumor datasets (human) and xenograft tumor model datasets (human tumor grown in mice) using therapeutic efficacy as an endpoint may serve as a useful approach to discover and develop molecular signatures as therapeutic biomarkers for targeted therapy. The HGF dependent signature may serve as a candidate predictive signature for patient enrollment in clinical trials using MET inhibitors. Human and mouse microarrays maybe used to dissect the tumor-host interactions. Targeting MET in EGFR (amp) GBM may delay the acquired resistance developed during treatment with erlotinib.

  5. Bacterial identification and subtyping using DNA microarray and DNA sequencing.

    PubMed

    Al-Khaldi, Sufian F; Mossoba, Magdi M; Allard, Marc M; Lienau, E Kurt; Brown, Eric D

    2012-01-01

    The era of fast and accurate discovery of biological sequence motifs in prokaryotic and eukaryotic cells is here. The co-evolution of direct genome sequencing and DNA microarray strategies not only will identify, isotype, and serotype pathogenic bacteria, but also it will aid in the discovery of new gene functions by detecting gene expressions in different diseases and environmental conditions. Microarray bacterial identification has made great advances in working with pure and mixed bacterial samples. The technological advances have moved beyond bacterial gene expression to include bacterial identification and isotyping. Application of new tools such as mid-infrared chemical imaging improves detection of hybridization in DNA microarrays. The research in this field is promising and future work will reveal the potential of infrared technology in bacterial identification. On the other hand, DNA sequencing by using 454 pyrosequencing is so cost effective that the promise of $1,000 per bacterial genome sequence is becoming a reality. Pyrosequencing technology is a simple to use technique that can produce accurate and quantitative analysis of DNA sequences with a great speed. The deposition of massive amounts of bacterial genomic information in databanks is creating fingerprint phylogenetic analysis that will ultimately replace several technologies such as Pulsed Field Gel Electrophoresis. In this chapter, we will review (1) the use of DNA microarray using fluorescence and infrared imaging detection for identification of pathogenic bacteria, and (2) use of pyrosequencing in DNA cluster analysis to fingerprint bacterial phylogenetic trees.

  6. sigReannot: an oligo-set re-annotation pipeline based on similarities with the Ensembl transcripts and Unigene clusters.

    PubMed

    Casel, Pierrot; Moreews, François; Lagarrigue, Sandrine; Klopp, Christophe

    2009-07-16

    Microarray is a powerful technology enabling to monitor tens of thousands of genes in a single experiment. Most microarrays are now using oligo-sets. The design of the oligo-nucleotides is time consuming and error prone. Genome wide microarray oligo-sets are designed using as large a set of transcripts as possible in order to monitor as many genes as possible. Depending on the genome sequencing state and on the assembly state the knowledge of the existing transcripts can be very different. This knowledge evolves with the different genome builds and gene builds. Once the design is done the microarrays are often used for several years. The biologists working in EADGENE expressed the need of up-to-dated annotation files for the oligo-sets they share including information about the orthologous genes of model species, the Gene Ontology, the corresponding pathways and the chromosomal location. The results of SigReannot on a chicken micro-array used in the EADGENE project compared to the initial annotations show that 23% of the oligo-nucleotide gene annotations were not confirmed, 2% were modified and 1% were added. The interest of this up-to-date annotation procedure is demonstrated through the analysis of real data previously published. SigReannot uses the oligo-nucleotide design procedure criteria to validate the probe-gene link and the Ensembl transcripts as reference for annotation. It therefore produces a high quality annotation based on reference gene sets.

  7. Immune-modulatory genomic properties differentiate gut microbiota of infants with and without eczema.

    PubMed

    Oh, Seungdae; Yap, Gaik Chin; Hong, Pei-Ying; Huang, Chiung-Hui; Aw, Marion M; Shek, Lynette Pei-Chi; Liu, Wen-Tso; Lee, Bee Wah

    2017-01-01

    Gut microbiota play an important role in human immunological processes, potentially affecting allergic diseases such as eczema. The diversity and structure of gut microbiota in infants with eczema have been previously documented. This study aims to evaluate by comparative metagenomics differences in genetic content in gut microbiota of infants with eczema and their matched controls. Stools were collected at the age of one month old from twelve infants from an at risk birth cohort in a case control manner. Clinical follow up for atopic outcomes were carried out at the age of 12 and 24 months. Microbial genomic DNA were extracted from stool samples and used for shotgun sequencing. Comparative metagenomic analysis showed that immune-regulatory TCAAGCTTGA motifs were significantly enriched in the six healthy controls (C) communities compared to the six eczema subjects (E), with many encoded by Bifidobacterium (38% of the total motifs in the C communities). Draft genomes of five Bifidobacterium species populations (B. longum, B. bifidum, B. breve, B. dentium, and B. pseudocatenulatum) were recovered from metagenomic datasets. The B. longum BFN-121-2 genome encoded more TCAAGCTTGA motifs (4.2 copies per one million genome sequence) than other Bifidobacterium genomes. Additionally, the communities in the stool of controls (C) were also significantly enriched in functions associated with tetrapyrrole biosynthesis compared to those of eczema (E). Our results show distinct immune-modulatory genomic properties of gut microbiota in infants associated with eczema and provide new insights into potential role of gut microbiota in affecting human immune homeostasis.

  8. Immune-modulatory genomic properties differentiate gut microbiota of infants with and without eczema

    PubMed Central

    Oh, Seungdae; Yap, Gaik Chin; Hong, Pei-Ying; Huang, Chiung-Hui; Aw, Marion M.; Shek, Lynette Pei-Chi; Liu, Wen-Tso; Lee, Bee Wah

    2017-01-01

    Gut microbiota play an important role in human immunological processes, potentially affecting allergic diseases such as eczema. The diversity and structure of gut microbiota in infants with eczema have been previously documented. This study aims to evaluate by comparative metagenomics differences in genetic content in gut microbiota of infants with eczema and their matched controls. Stools were collected at the age of one month old from twelve infants from an at risk birth cohort in a case control manner. Clinical follow up for atopic outcomes were carried out at the age of 12 and 24 months. Microbial genomic DNA were extracted from stool samples and used for shotgun sequencing. Comparative metagenomic analysis showed that immune-regulatory TCAAGCTTGA motifs were significantly enriched in the six healthy controls (C) communities compared to the six eczema subjects (E), with many encoded by Bifidobacterium (38% of the total motifs in the C communities). Draft genomes of five Bifidobacterium species populations (B. longum, B. bifidum, B. breve, B. dentium, and B. pseudocatenulatum) were recovered from metagenomic datasets. The B. longum BFN-121-2 genome encoded more TCAAGCTTGA motifs (4.2 copies per one million genome sequence) than other Bifidobacterium genomes. Additionally, the communities in the stool of controls (C) were also significantly enriched in functions associated with tetrapyrrole biosynthesis compared to those of eczema (E). Our results show distinct immune-modulatory genomic properties of gut microbiota in infants associated with eczema and provide new insights into potential role of gut microbiota in affecting human immune homeostasis. PMID:29049378

  9. Mapping the zebrafish brain methylome using reduced representation bisulfite sequencing

    PubMed Central

    Chatterjee, Aniruddha; Ozaki, Yuichi; Stockwell, Peter A; Horsfield, Julia A; Morison, Ian M; Nakagawa, Shinichi

    2013-01-01

    Reduced representation bisulfite sequencing (RRBS) has been used to profile DNA methylation patterns in mammalian genomes such as human, mouse and rat. The methylome of the zebrafish, an important animal model, has not yet been characterized at base-pair resolution using RRBS. Therefore, we evaluated the technique of RRBS in this model organism by generating four single-nucleotide resolution DNA methylomes of adult zebrafish brain. We performed several simulations to show the distribution of fragments and enrichment of CpGs in different in silico reduced representation genomes of zebrafish. Four RRBS brain libraries generated 98 million sequenced reads and had higher frequencies of multiple mapping than equivalent human RRBS libraries. The zebrafish methylome indicates there is higher global DNA methylation in the zebrafish genome compared with its equivalent human methylome. This observation was confirmed by RRBS of zebrafish liver. High coverage CpG dinucleotides are enriched in CpG island shores more than in the CpG island core. We found that 45% of the mapped CpGs reside in gene bodies, and 7% in gene promoters. This analysis provides a roadmap for generating reproducible base-pair level methylomes for zebrafish using RRBS and our results provide the first evidence that RRBS is a suitable technique for global methylation analysis in zebrafish. PMID:23975027

  10. Detection of cryptic pathogenic copy number variations and constitutional loss of heterozygosity using high resolution SNP microarray analysis in 117 patients referred for cytogenetic analysis and impact on clinical practice.

    PubMed

    Bruno, D L; Ganesamoorthy, D; Schoumans, J; Bankier, A; Coman, D; Delatycki, M; Gardner, R J M; Hunter, M; James, P A; Kannu, P; McGillivray, G; Pachter, N; Peters, H; Rieubland, C; Savarirayan, R; Scheffer, I E; Sheffield, L; Tan, T; White, S M; Yeung, A; Bowman, Z; Ngo, C; Choy, K W; Cacheux, V; Wong, L; Amor, D J; Slater, H R

    2009-02-01

    Microarray genome analysis is realising its promise for improving detection of genetic abnormalities in individuals with mental retardation and congenital abnormality. Copy number variations (CNVs) are now readily detectable using a variety of platforms and a major challenge is the distinction of pathogenic from ubiquitous, benign polymorphic CNVs. The aim of this study was to investigate replacement of time consuming, locus specific testing for specific microdeletion and microduplication syndromes with microarray analysis, which theoretically should detect all known syndromes with CNV aetiologies as well as new ones. Genome wide copy number analysis was performed on 117 patients using Affymetrix 250K microarrays. 434 CNVs (195 losses and 239 gains) were found, including 18 pathogenic CNVs and 9 identified as "potentially pathogenic". Almost all pathogenic CNVs were larger than 500 kb, significantly larger than the median size of all CNVs detected. Segmental regions of loss of heterozygosity larger than 5 Mb were found in 5 patients. Genome microarray analysis has improved diagnostic success in this group of patients. Several examples of recently discovered "new syndromes" were found suggesting they are more common than previously suspected and collectively are likely to be a major cause of mental retardation. The findings have several implications for clinical practice. The study revealed the potential to make genetic diagnoses that were not evident in the clinical presentation, with implications for pretest counselling and the consent process. The importance of contributing novel CNVs to high quality databases for genotype-phenotype analysis and review of guidelines for selection of individuals for microarray analysis is emphasised.

  11. The human vascular endothelial cell line HUV-EC-C harbors the integrated HHV-6B genome which remains stable in long term culture.

    PubMed

    Shioda, Setsuko; Kasai, Fumio; Ozawa, Midori; Hirayama, Noriko; Satoh, Motonobu; Kameoka, Yousuke; Watanabe, Ken; Shimizu, Norio; Tang, Huamin; Mori, Yasuko; Kohara, Arihiro

    2018-02-01

    Human herpes virus 6 (HHV-6) is a common human pathogen that is most often detected in hematopoietic cells. Although human cells harboring chromosomally integrated HHV-6 can be generated in vitro, the availability of such cell lines originating from in vivo tissues is limited. In this study, chromosomally integrated HHV-6B has been identified in a human vascular endothelial cell line, HUV-EC-C (IFO50271), derived from normal umbilical cord tissue. Sequence analysis revealed that the viral genome was similar to the HHV-6B HST strain. FISH analysis using a HHV-6 DNA probe showed one signal in each cell, detected at the distal end of the long arm of chromosome 9. This was consistent with a digital PCR assay, validating one copy of the viral DNA. Because exposure of HUV-EC-C to chemicals did not cause viral reactivation, long term cell culture of HUV-EC-C was carried out to assess the stability of viral integration. The growth rate was altered depending on passage numbers, and morphology also changed during culture. SNP microarray profiles showed some differences between low and high passages, implying that the HUV-EC-C genome had changed during culture. However, no detectable change was observed in chromosome 9, where HHV-6B integration and the viral copy number remained unchanged. Our results suggest that integrated HHV-6B is stable in HUV-EC-C despite genome instability.

  12. Influence of Light and Temperature on Gene Expression Leading to Accumulation of Specific Flavonol Glycosides and Hydroxycinnamic Acid Derivatives in Kale (Brassica oleracea var. sabellica).

    PubMed

    Neugart, Susanne; Krumbein, Angelika; Zrenner, Rita

    2016-01-01

    Light intensity and temperature are very important signals for the regulation of plant growth and development. Plants subjected to less favorable light or temperature conditions often respond with accumulation of secondary metabolites. Some of these metabolites have been identified as bioactive compounds, considered to exert positive effects on human health when consumed regularly. In order to test a typical range of growth parameters for the winter crop Brassica oleracea var. sabellica, plants were grown either at 400 μmol m(-2) s(-1) or 100 μmol m(-2) s(-1) at 10°C, or at 400 μmol m(-2) s(-1) with 5 or 15°C. The higher light intensity overall increased flavonol content of leaves, favoring the main quercetin glycosides, a caffeic acid monoacylated kaempferol triglycoside, and disinapoyl-gentiobiose. The higher temperature mainly increased the hydroxycinnamic acid derivative disinapoyl-gentiobiose, while at lower temperature synthesis is in favor of very complex sinapic acid acylated flavonol tetraglycosides such as kaempferol-3-O-sinapoyl-sophoroside-7-O-diglucoside. A global analysis of light and temperature dependent alterations of gene expression in B. oleracea var. sabellica leaves was performed with the most comprehensive Brassica microarray. When compared to the light experiment much less genes were differentially expressed in kale leaves grown at 5 or 15°C. A structured evaluation of differentially expressed genes revealed the expected enrichment in the functional categories of e.g. protein degradation at different light intensities or phytohormone metabolism at different temperature. Genes of the secondary metabolism namely phenylpropanoids are significantly enriched with both treatments. Thus, the genome of B. oleracea was screened for predicted genes putatively involved in the biosynthesis of flavonoids and hydroxycinnamic acid derivatives. All identified B. oleracea genes were analyzed for their most specific 60-mer oligonucleotides present on the 2 × 105 K format Brassica microarray. Expression differences were correlated to the structure-dependent response of flavonoid glycosides and hydroxycinnamic acid derivatives to alterations in either light or temperature. The altered metabolite accumulation was mainly reflected on gene expression level of core biosynthetic pathway genes and gave further hints to an isoform specific functional specialization.

  13. Influence of Light and Temperature on Gene Expression Leading to Accumulation of Specific Flavonol Glycosides and Hydroxycinnamic Acid Derivatives in Kale (Brassica oleracea var. sabellica)

    PubMed Central

    Neugart, Susanne; Krumbein, Angelika; Zrenner, Rita

    2016-01-01

    Light intensity and temperature are very important signals for the regulation of plant growth and development. Plants subjected to less favorable light or temperature conditions often respond with accumulation of secondary metabolites. Some of these metabolites have been identified as bioactive compounds, considered to exert positive effects on human health when consumed regularly. In order to test a typical range of growth parameters for the winter crop Brassica oleracea var. sabellica, plants were grown either at 400 μmol m−2 s−1 or 100 μmol m−2 s−1 at 10°C, or at 400 μmol m−2 s−1 with 5 or 15°C. The higher light intensity overall increased flavonol content of leaves, favoring the main quercetin glycosides, a caffeic acid monoacylated kaempferol triglycoside, and disinapoyl-gentiobiose. The higher temperature mainly increased the hydroxycinnamic acid derivative disinapoyl-gentiobiose, while at lower temperature synthesis is in favor of very complex sinapic acid acylated flavonol tetraglycosides such as kaempferol-3-O-sinapoyl-sophoroside-7-O-diglucoside. A global analysis of light and temperature dependent alterations of gene expression in B. oleracea var. sabellica leaves was performed with the most comprehensive Brassica microarray. When compared to the light experiment much less genes were differentially expressed in kale leaves grown at 5 or 15°C. A structured evaluation of differentially expressed genes revealed the expected enrichment in the functional categories of e.g. protein degradation at different light intensities or phytohormone metabolism at different temperature. Genes of the secondary metabolism namely phenylpropanoids are significantly enriched with both treatments. Thus, the genome of B. oleracea was screened for predicted genes putatively involved in the biosynthesis of flavonoids and hydroxycinnamic acid derivatives. All identified B. oleracea genes were analyzed for their most specific 60-mer oligonucleotides present on the 2 × 105 K format Brassica microarray. Expression differences were correlated to the structure-dependent response of flavonoid glycosides and hydroxycinnamic acid derivatives to alterations in either light or temperature. The altered metabolite accumulation was mainly reflected on gene expression level of core biosynthetic pathway genes and gave further hints to an isoform specific functional specialization. PMID:27066016

  14. Differential gene expression profiles of peripheral blood mononuclear cells in childhood asthma.

    PubMed

    Kong, Qian; Li, Wen-Jing; Huang, Hua-Rong; Zhong, Ying-Qiang; Fang, Jian-Pei

    2015-05-01

    Asthma is a common childhood disease with strong genetic components. This study compared whole-genome expression differences between asthmatic young children and healthy controls to identify gene signatures of childhood asthma. Total RNA extracted from peripheral blood mononuclear cells (PBMC) was subjected to microarray analysis. QRT-PCR was performed to verify the microarray results. Classification and functional characterization of differential genes were illustrated by hierarchical clustering and gene ontology analysis. Multiple logistic regression (MLR) analysis, receiver operating characteristic (ROC) curve analysis, and discriminate power were used to scan asthma-specific diagnostic markers. For fold-change>2 and p < 0.05, there were 758 named differential genes. The results of QRT-PCR confirmed successfully the array data. Hierarchical clustering divided 29 highly possible genes into seven categories and the genes in the same cluster were likely to possess similar expression patterns or functions. Gene ontology analysis presented that differential genes primarily enriched in immune response, response to stress or stimulus, and regulation of apoptosis in biological process. MLR and ROC curve analysis revealed that the combination of ADAM33, Smad7, and LIGHT possessed excellent discriminating power. The combination of ADAM33, Smad7, and LIGHT would be a reliable and useful childhood asthma model for prediction and diagnosis.

  15. Application of nanostructured biochips for efficient cell transfection microarrays

    NASA Astrophysics Data System (ADS)

    Akkamsetty, Yamini; Hook, Andrew L.; Thissen, Helmut; Hayes, Jason P.; Voelcker, Nicolas H.

    2007-01-01

    Microarrays, high-throughput devices for genomic analysis, can be further improved by developing materials that are able to manipulate the interfacial behaviour of biomolecules. This is achieved both spatially and temporally by smart materials possessing both switchable and patterned surface properties. A system had been developed to spatially manipulate both DNA and cell growth based upon the surface modification of highly doped silicon by plasma polymerisation and polyethylene grafting followed by masked laser ablation for formation of a pattered surface with both bioactive and non-fouling regions. This platform has been successfully applied to transfected cell microarray applications with the parallel expression of genes by utilising its ability to direct and limit both DNA and cell attachment to specific sites. One of the greatest advantages of this system is its application to reverse transfection, whereupon by utilising the switchable adsorption and desorption of DNA using a voltage bias, the efficiency of cell transfection can be enhanced. However, it was shown that application of a voltage also reduces the viability of neuroblastoma cells grown on a plasma polymer surface, but not human embryonic kidney cells. This suggests that the application of a voltage may not only result in the desorption of bound DNA but may also affect attached cells. The characterisation of a DNA microarray by contact printing has also been investigated.

  16. Aberrant methylation patterns affect the molecular pathogenesis of rheumatoid arthritis.

    PubMed

    Lin, Yang; Luo, Zhengqiang

    2017-05-01

    This study aims to investigate DNA methylation signatures in fibroblast-like synoviocytes (FLS) from patients with rheumatoid arthritis (RA), and to explore the relationship with transcription factors (TFs) that help to distinguish RA from osteoarthritis (OA). Microarray dataset of GSE46346, including six FLS samples from patients with RA and five FLS samples from patients with OA, was downloaded from the Gene Expression Omnibus database. RA and OA samples were screened for differentially methylated loci (DMLs). The corresponding differentially methylated genes (DMGs) were identified, followed by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) enrichment analysis. A transcriptional regulatory network was built with TFs and their corresponding DMGs. Overall, 280 hypomethylated loci and 561 hypermethylated loci were screened. Genes containing hypermethylated loci were enriched in pathways in cancer, ECM-receptor interaction, focal adhesion and neurotrophin signaling pathways. Genes containing hypomethylated loci were enriched in the neurotrophin signaling pathway. Moreover, we found that CCCTC-binding factor (CTCF), Yin Yang 1 (YY1), v-myc avian myelocytomatosis viral oncogene homolog (c-MYC), and early growth response 1 (EGR1) were important TFs in the transcriptional regulatory network. Therefore, DMGs might participate in the neurotrophin signaling pathway, pathways in cancer, ECM-receptor interaction and focal adhesion pathways in RA. Furthermore, CTCF, c-MYC, YY1, and EGR1 may play important roles in RA through regulating DMGs. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Transcription Factor Binding Site Enrichment Analysis in Co-Expression Modules in Celiac Disease

    PubMed Central

    Romero-Garmendia, Irati; Jauregi-Miguel, Amaia; Plaza-Izurieta, Leticia; Cros, Marie-Pierre; Legarda, Maria; Irastorza, Iñaki; Herceg, Zdenko; Fernandez-Jimenez, Nora

    2018-01-01

    The aim of this study was to construct celiac co-expression patterns at a whole genome level and to identify transcription factors (TFs) that could drive the gliadin-related changes in coordination of gene expression observed in celiac disease (CD). Differential co-expression modules were identified in the acute and chronic responses to gliadin using expression data from a previous microarray study in duodenal biopsies. Transcription factor binding site (TFBS) and Gene Ontology (GO) annotation enrichment analyses were performed in differentially co-expressed genes (DCGs) and selection of candidate regulators was performed. Expression of candidates was measured in clinical samples and the activation of the TFs was further characterized in C2BBe1 cells upon gliadin challenge. Enrichment analyses of the DCGs identified 10 TFs and five were selected for further investigation. Expression changes related to active CD were detected in four TFs, as well as in several of their in silico predicted targets. The activation of TFs was further characterized in C2BBe1 cells upon gliadin challenge, and an increase in nuclear translocation of CAMP Responsive Element Binding Protein 1 (CREB1) and IFN regulatory factor-1 (IRF1) in response to gliadin was observed. Using transcriptome-wide co-expression analyses we are able to propose novel genes involved in CD pathogenesis that respond upon gliadin stimulation, also in non-celiac models. PMID:29748492

  18. Transcription Factor Binding Site Enrichment Analysis in Co-Expression Modules in Celiac Disease.

    PubMed

    Romero-Garmendia, Irati; Garcia-Etxebarria, Koldo; Hernandez-Vargas, Hector; Santin, Izortze; Jauregi-Miguel, Amaia; Plaza-Izurieta, Leticia; Cros, Marie-Pierre; Legarda, Maria; Irastorza, Iñaki; Herceg, Zdenko; Fernandez-Jimenez, Nora; Bilbao, Jose Ramon

    2018-05-10

    The aim of this study was to construct celiac co-expression patterns at a whole genome level and to identify transcription factors (TFs) that could drive the gliadin-related changes in coordination of gene expression observed in celiac disease (CD). Differential co-expression modules were identified in the acute and chronic responses to gliadin using expression data from a previous microarray study in duodenal biopsies. Transcription factor binding site (TFBS) and Gene Ontology (GO) annotation enrichment analyses were performed in differentially co-expressed genes (DCGs) and selection of candidate regulators was performed. Expression of candidates was measured in clinical samples and the activation of the TFs was further characterized in C2BBe1 cells upon gliadin challenge. Enrichment analyses of the DCGs identified 10 TFs and five were selected for further investigation. Expression changes related to active CD were detected in four TFs, as well as in several of their in silico predicted targets. The activation of TFs was further characterized in C2BBe1 cells upon gliadin challenge, and an increase in nuclear translocation of CAMP Responsive Element Binding Protein 1 (CREB1) and IFN regulatory factor-1 (IRF1) in response to gliadin was observed. Using transcriptome-wide co-expression analyses we are able to propose novel genes involved in CD pathogenesis that respond upon gliadin stimulation, also in non-celiac models.

  19. Conserved gene regulation during acute inflammation between zebrafish and mammals

    PubMed Central

    Forn-Cuní, G.; Varela, M.; Pereiro, P.; Novoa, B.; Figueras, A.

    2017-01-01

    Zebrafish (Danio rerio), largely used as a model for studying developmental processes, has also emerged as a valuable system for modelling human inflammatory diseases. However, in a context where even mice have been questioned as a valid model for these analysis, a systematic study evaluating the reproducibility of human and mammalian inflammatory diseases in zebrafish is still lacking. In this report, we characterize the transcriptomic regulation to lipopolysaccharide in adult zebrafish kidney, liver, and muscle tissues using microarrays and demonstrate how the zebrafish genomic responses can effectively reproduce the mammalian inflammatory process induced by acute endotoxin stress. We provide evidence that immune signaling pathways and single gene expression is well conserved throughout evolution and that the zebrafish and mammal acute genomic responses after lipopolysaccharide stimulation are highly correlated despite the differential susceptibility between species to that compound. Therefore, we formally confirm that zebrafish inflammatory models are suited to study the basic mechanisms of inflammation in human inflammatory diseases, with great translational impact potential. PMID:28157230

  20. Studies of the expression of human poly(ADP-ribose) polymerase-1 in Saccharomyces cerevisiae and identification of PARP-1 substrates by yeast proteome microarray screening.

    PubMed

    Tao, Zhihua; Gao, Peng; Liu, Hung-Wen

    2009-12-15

    Poly(ADP-ribosyl)ation of various nuclear proteins catalyzed by a family of NAD(+)-dependent enzymes, poly(ADP-ribose) polymerases (PARPs), is an important posttranslational modification reaction. PARP activity has been demonstrated in all types of eukaryotic cells with the exception of yeast, in which the expression of human PARP-1 was shown to lead to retarded cell growth. We investigated the yeast growth inhibition caused by human PARP-1 expression in Saccharomyces cerevisiae. Flow cytometry analysis reveals that PARP-1-expressing yeast cells accumulate in the G(2)/M stage of the cell cycle. Confocal microscopy analysis shows that human PARP-1 is distributed throughout the nucleus of yeast cells but is enriched in the nucleolus. Utilizing yeast proteome microarray screening, we identified 33 putative PARP-1 substrates, six of which are known to be involved in ribosome biogenesis. The poly(ADP-ribosyl)ation of three of these yeast proteins, together with two human homologues, was confirmed by an in vitro PARP-1 assay. Finally, a polysome profile analysis using sucrose gradient ultracentrifugation demonstrated that the ribosome levels in yeast cells expressing PARP-1 are lower than those in control yeast cells. Overall, our data suggest that human PARP-1 may affect ribosome biogenesis by modifying certain nucleolar proteins in yeast. The artificial PARP-1 pathway in yeast may be used as a simple platform to identify substrates and verify function of this important enzyme.

  1. Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine.

    PubMed

    Song, Chun-Xiao; Szulwach, Keith E; Fu, Ye; Dai, Qing; Yi, Chengqi; Li, Xuekun; Li, Yujing; Chen, Chih-Hsin; Zhang, Wen; Jian, Xing; Wang, Jing; Zhang, Li; Looney, Timothy J; Zhang, Baichen; Godley, Lucy A; Hicks, Leslie M; Lahn, Bruce T; Jin, Peng; He, Chuan

    2011-01-01

    In contrast to 5-methylcytosine (5-mC), which has been studied extensively, little is known about 5-hydroxymethylcytosine (5-hmC), a recently identified epigenetic modification present in substantial amounts in certain mammalian cell types. Here we present a method for determining the genome-wide distribution of 5-hmC. We use the T4 bacteriophage β-glucosyltransferase to transfer an engineered glucose moiety containing an azide group onto the hydroxyl group of 5-hmC. The azide group can be chemically modified with biotin for detection, affinity enrichment and sequencing of 5-hmC-containing DNA fragments in mammalian genomes. Using this method, we demonstrate that 5-hmC is present in human cell lines beyond those previously recognized. We also find a gene expression level-dependent enrichment of intragenic 5-hmC in mouse cerebellum and an age-dependent acquisition of this modification in specific gene bodies linked to neurodegenerative disorders.

  2. The yak genome and adaptation to life at high altitude.

    PubMed

    Qiu, Qiang; Zhang, Guojie; Ma, Tao; Qian, Wubin; Wang, Junyi; Ye, Zhiqiang; Cao, Changchang; Hu, Quanjun; Kim, Jaebum; Larkin, Denis M; Auvil, Loretta; Capitanu, Boris; Ma, Jian; Lewin, Harris A; Qian, Xiaoju; Lang, Yongshan; Zhou, Ran; Wang, Lizhong; Wang, Kun; Xia, Jinquan; Liao, Shengguang; Pan, Shengkai; Lu, Xu; Hou, Haolong; Wang, Yan; Zang, Xuetao; Yin, Ye; Ma, Hui; Zhang, Jian; Wang, Zhaofeng; Zhang, Yingmei; Zhang, Dawei; Yonezawa, Takahiro; Hasegawa, Masami; Zhong, Yang; Liu, Wenbin; Zhang, Yan; Huang, Zhiyong; Zhang, Shengxiang; Long, Ruijun; Yang, Huanming; Wang, Jian; Lenstra, Johannes A; Cooper, David N; Wu, Yi; Wang, Jun; Shi, Peng; Wang, Jian; Liu, Jianquan

    2012-07-01

    Domestic yaks (Bos grunniens) provide meat and other necessities for Tibetans living at high altitude on the Qinghai-Tibetan Plateau and in adjacent regions. Comparison between yak and the closely related low-altitude cattle (Bos taurus) is informative in studying animal adaptation to high altitude. Here, we present the draft genome sequence of a female domestic yak generated using Illumina-based technology at 65-fold coverage. Genomic comparisons between yak and cattle identify an expansion in yak of gene families related to sensory perception and energy metabolism, as well as an enrichment of protein domains involved in sensing the extracellular environment and hypoxic stress. Positively selected and rapidly evolving genes in the yak lineage are also found to be significantly enriched in functional categories and pathways related to hypoxia and nutrition metabolism. These findings may have important implications for understanding adaptation to high altitude in other animal species and for hypoxia-related diseases in humans.

  3. Comparative Methylome Analyses Identify Epigenetic Regulatory Loci of Human Brain Evolution

    PubMed Central

    Mendizabal, Isabel; Shi, Lei; Keller, Thomas E.; Konopka, Genevieve; Preuss, Todd M.; Hsieh, Tzung-Fu; Hu, Enzhi; Zhang, Zhe; Su, Bing; Yi, Soojin V.

    2016-01-01

    How do epigenetic modifications change across species and how do these modifications affect evolution? These are fundamental questions at the forefront of our evolutionary epigenomic understanding. Our previous work investigated human and chimpanzee brain methylomes, but it was limited by the lack of outgroup data which is critical for comparative (epi)genomic studies. Here, we compared whole genome DNA methylation maps from brains of humans, chimpanzees and also rhesus macaques (outgroup) to elucidate DNA methylation changes during human brain evolution. Moreover, we validated that our approach is highly robust by further examining 38 human-specific DMRs using targeted deep genomic and bisulfite sequencing in an independent panel of 37 individuals from five primate species. Our unbiased genome-scan identified human brain differentially methylated regions (DMRs), irrespective of their associations with annotated genes. Remarkably, over half of the newly identified DMRs locate in intergenic regions or gene bodies. Nevertheless, their regulatory potential is on par with those of promoter DMRs. An intriguing observation is that DMRs are enriched in active chromatin loops, suggesting human-specific evolutionary remodeling at a higher-order chromatin structure. These findings indicate that there is substantial reprogramming of epigenomic landscapes during human brain evolution involving noncoding regions. PMID:27563052

  4. Extending Immunological Profiling in the Gilthead Sea Bream, Sparus aurata, by Enriched cDNA Library Analysis, Microarray Design and Initial Studies upon the Inflammatory Response to PAMPs.

    PubMed

    Boltaña, Sebastian; Castellana, Barbara; Goetz, Giles; Tort, Lluis; Teles, Mariana; Mulero, Victor; Novoa, Beatriz; Figueras, Antonio; Goetz, Frederick W; Gallardo-Escarate, Cristian; Planas, Josep V; Mackenzie, Simon

    2017-02-03

    This study describes the development and validation of an enriched oligonucleotide-microarray platform for Sparus aurata (SAQ) to provide a platform for transcriptomic studies in this species. A transcriptome database was constructed by assembly of gilthead sea bream sequences derived from public repositories of mRNA together with reads from a large collection of expressed sequence tags (EST) from two extensive targeted cDNA libraries characterizing mRNA transcripts regulated by both bacterial and viral challenge. The developed microarray was further validated by analysing monocyte/macrophage activation profiles after challenge with two Gram-negative bacterial pathogen-associated molecular patterns (PAMPs; lipopolysaccharide (LPS) and peptidoglycan (PGN)). Of the approximately 10,000 EST sequenced, we obtained a total of 6837 EST longer than 100 nt, with 3778 and 3059 EST obtained from the bacterial-primed and from the viral-primed cDNA libraries, respectively. Functional classification of contigs from the bacterial- and viral-primed cDNA libraries by Gene Ontology (GO) showed that the top five represented categories were equally represented in the two libraries: metabolism (approximately 24% of the total number of contigs), carrier proteins/membrane transport (approximately 15%), effectors/modulators and cell communication (approximately 11%), nucleoside, nucleotide and nucleic acid metabolism (approximately 7.5%) and intracellular transducers/signal transduction (approximately 5%). Transcriptome analyses using this enriched oligonucleotide platform identified differential shifts in the response to PGN and LPS in macrophage-like cells, highlighting responsive gene-cassettes tightly related to PAMP host recognition. As observed in other fish species, PGN is a powerful activator of the inflammatory response in S. aurata macrophage-like cells. We have developed and validated an oligonucleotide microarray (SAQ) that provides a platform enriched for the study of gene expression in S. aurata with an emphasis upon immunity and the immune response.

  5. Microarray-based Comparative Genomic Indexing of the Cronobacter genus (Enterobacter sakazakii)

    USDA-ARS?s Scientific Manuscript database

    Cronobacter is a recently defined genus synonymous with Enterobacter sakazakii. This new genus currently comprises 6 genomospecies. To extend our understanding of the genetic relationship between Cronobacter sakazakii BAA-894 and the other species of this genus, microarray-based comparative genomi...

  6. Recent Coselection in Human Populations Revealed by Protein–Protein Interaction Network

    PubMed Central

    Qian, Wei; Zhou, Hang; Tang, Kun

    2015-01-01

    Genome-wide scans for signals of natural selection in human populations have identified a large number of candidate loci that underlie local adaptations. This is surprising given the relatively short evolutionary time since the divergence of the human population. One hypothesis that has not been formally examined is whether and how the recent human evolution may have been shaped by coselection in the context of complex molecular interactome. In this study, genome-wide signals of selection were scanned in East Asians, Europeans, and Africans using 1000 Genome data, and subsequently mapped onto the protein–protein interaction (PPI) network. We found that the candidate genes of recent positive selection localized significantly closer to each other on the PPI network than expected, revealing substantial clustering of selected genes. Furthermore, gene pairs of shorter PPI network distances showed higher similarities of their recent evolutionary paths than those further apart. Last, subnetworks enriched with recent coselection signals were identified, which are substantially overrepresented in biological pathways related to signal transduction, neurogenesis, and immune function. These results provide the first genome-wide evidence for association of recent selection signals with the PPI network, shedding light on the potential mechanisms of recent coselection in the human genome. PMID:25532814

  7. Hyb-Seq: combining target enrichment and genome skimming for plant phylogenomics

    Treesearch

    Kevin Weitemier; Shannon C.K. Straub; Richard C. Cronn; Mark Fishbein; Roswitha Schmickl; Angela McDonnell; Aaron Liston

    2014-01-01

    • Premise of the study: Hyb-Seq, the combination of target enrichment and genome skimming, allows simultaneous data collection for low-copy nuclear genes and high-copy genomic targets for plant systematics and evolution studies. • Methods and Results: Genome and transcriptome assemblies for milkweed ( Asclepias syriaca ) were used to design enrichment probes for 3385...

  8. A Human Lectin Microarray for Sperm Surface Glycosylation Analysis *

    PubMed Central

    Sun, Yangyang; Cheng, Li; Gu, Yihua; Xin, Aijie; Wu, Bin; Zhou, Shumin; Guo, Shujuan; Liu, Yin; Diao, Hua; Shi, Huijuan; Wang, Guangyu; Tao, Sheng-ce

    2016-01-01

    Glycosylation is one of the most abundant and functionally important protein post-translational modifications. As such, technology for efficient glycosylation analysis is in high demand. Lectin microarrays are a powerful tool for such investigations and have been successfully applied for a variety of glycobiological studies. However, most of the current lectin microarrays are primarily constructed from plant lectins, which are not well suited for studies of human glycosylation because of the extreme complexity of human glycans. Herein, we constructed a human lectin microarray with 60 human lectin and lectin-like proteins. All of the lectins and lectin-like proteins were purified from yeast, and most showed binding to human glycans. To demonstrate the applicability of the human lectin microarray, human sperm were probed on the microarray and strong bindings were observed for several lectins, including galectin-1, 7, 8, GalNAc-T6, and ERGIC-53 (LMAN1). These bindings were validated by flow cytometry and fluorescence immunostaining. Further, mass spectrometry analysis showed that galectin-1 binds several membrane-associated proteins including heat shock protein 90. Finally, functional assays showed that binding of galectin-8 could significantly enhance the acrosome reaction within human sperms. To our knowledge, this is the first construction of a human lectin microarray, and we anticipate it will find wide use for a range of human or mammalian studies, alone or in combination with plant lectin microarrays. PMID:27364157

  9. Analysis of developmental gene conservation in the Actinomycetales using DNA/DNA microarray comparisons.

    PubMed

    Kirby, Ralph; Herron, Paul; Hoskisson, Paul

    2011-02-01

    Based on available genome sequences, Actinomycetales show significant gene synteny across a wide range of species and genera. In addition, many genera show varying degrees of complex morphological development. Using the presence of gene synteny as a basis, it is clear that an analysis of gene conservation across the Streptomyces and various other Actinomycetales will provide information on both the importance of genes and gene clusters and the evolution of morphogenesis in these bacteria. Genome sequencing, although becoming cheaper, is still relatively expensive for comparing large numbers of strains. Thus, a heterologous DNA/DNA microarray hybridization dataset based on a Streptomyces coelicolor microarray allows a cheaper and greater depth of analysis of gene conservation. This study, using both bioinformatical and microarray approaches, was able to classify genes previously identified as involved in morphogenesis in Streptomyces into various subgroups in terms of conservation across species and genera. This will allow the targeting of genes for further study based on their importance at the species level and at higher evolutionary levels.

  10. Evaluation of chronic lymphocytic leukemia by oligonucleotide-based microarray analysis uncovers novel aberrations not detected by FISH or cytogenetic analysis

    PubMed Central

    2011-01-01

    Background Cytogenetic evaluation is a key component of the diagnosis and prognosis of chronic lymphocytic leukemia (CLL). We performed oligonucleotide-based comparative genomic hybridization microarray analysis on 34 samples with CLL and known abnormal karyotypes previously determined by cytogenetics and/or fluorescence in situ hybridization (FISH). Results Using a custom designed microarray that targets >1800 genes involved in hematologic disease and other malignancies, we identified additional cryptic aberrations and novel findings in 59% of cases. These included gains and losses of genes associated with cell cycle regulation, apoptosis and susceptibility loci on 3p21.31, 5q35.2q35.3, 10q23.31q23.33, 11q22.3, and 22q11.23. Conclusions Our results show that microarray analysis will detect known aberrations, including microscopic and cryptic alterations. In addition, novel genomic changes will be uncovered that may become important prognostic predictors or treatment targets for CLL in the future. PMID:22087757

  11. The genome-wide expression profile of Curcuma longa-treated cisplatin-stimulated HEK293 cells

    PubMed Central

    Sohn, Sung-Hwa; Ko, Eunjung; Chung, Hwan-Suck; Lee, Eun-Young; Kim, Sung-Hoon; Shin, Minkyu; Hong, Moochang; Bae, Hyunsu

    2010-01-01

    AIM The rhizome of turmeric, Curcuma longa (CL), is a herbal medicine used in many traditional prescriptions. It has previously been shown that CL treatment showed greater than 47% recovery from cisplatin-induced cell damage in human kidney HEK 293 cells. This study was conducted to evaluate the recovery mechanisms of CL that occur during cisplatin induced nephrotoxicity by examining the genome wide mRNA expression profiles of HEK 293 -cells. METHOD Recovery mechanisms of CL that occur during cisplatin-induced nephrotoxicity were determined by microarray, real-time PCR, immunofluorescent confocal microscopy and Western blot analysis. RESULTS The results of microarray analysis and real-time PCR revealed that NFκB pathway-related genes and apoptosis-related genes were down-regulated in CL-treated HEK 293 cells. In addition, immunofluorescent confocal microscopy and Western blot analysis revealed that NFκB p65 nuclear translocation was inhibited in CL-treated HEK 293 cells. Therefore, the mechanism responsible for the effects of CL on HEK 293 cells is closely associated with regulation of the NFκB pathway. CONCLUSION CL possesses novel therapeutic agents that can be used for the prevention or treatment of cisplatin-induced renal disorders. PMID:20840446

  12. BμG@Sbase—a microbial gene expression and comparative genomic database

    PubMed Central

    Witney, Adam A.; Waldron, Denise E.; Brooks, Lucy A.; Tyler, Richard H.; Withers, Michael; Stoker, Neil G.; Wren, Brendan W.; Butcher, Philip D.; Hinds, Jason

    2012-01-01

    The reducing cost of high-throughput functional genomic technologies is creating a deluge of high volume, complex data, placing the burden on bioinformatics resources and tool development. The Bacterial Microarray Group at St George's (BμG@S) has been at the forefront of bacterial microarray design and analysis for over a decade and while serving as a hub of a global network of microbial research groups has developed BμG@Sbase, a microbial gene expression and comparative genomic database. BμG@Sbase (http://bugs.sgul.ac.uk/bugsbase/) is a web-browsable, expertly curated, MIAME-compliant database that stores comprehensive experimental annotation and multiple raw and analysed data formats. Consistent annotation is enabled through a structured set of web forms, which guide the user through the process following a set of best practices and controlled vocabulary. The database currently contains 86 expertly curated publicly available data sets (with a further 124 not yet published) and full annotation information for 59 bacterial microarray designs. The data can be browsed and queried using an explorer-like interface; integrating intuitive tree diagrams to present complex experimental details clearly and concisely. Furthermore the modular design of the database will provide a robust platform for integrating other data types beyond microarrays into a more Systems analysis based future. PMID:21948792

  13. BμG@Sbase--a microbial gene expression and comparative genomic database.

    PubMed

    Witney, Adam A; Waldron, Denise E; Brooks, Lucy A; Tyler, Richard H; Withers, Michael; Stoker, Neil G; Wren, Brendan W; Butcher, Philip D; Hinds, Jason

    2012-01-01

    The reducing cost of high-throughput functional genomic technologies is creating a deluge of high volume, complex data, placing the burden on bioinformatics resources and tool development. The Bacterial Microarray Group at St George's (BμG@S) has been at the forefront of bacterial microarray design and analysis for over a decade and while serving as a hub of a global network of microbial research groups has developed BμG@Sbase, a microbial gene expression and comparative genomic database. BμG@Sbase (http://bugs.sgul.ac.uk/bugsbase/) is a web-browsable, expertly curated, MIAME-compliant database that stores comprehensive experimental annotation and multiple raw and analysed data formats. Consistent annotation is enabled through a structured set of web forms, which guide the user through the process following a set of best practices and controlled vocabulary. The database currently contains 86 expertly curated publicly available data sets (with a further 124 not yet published) and full annotation information for 59 bacterial microarray designs. The data can be browsed and queried using an explorer-like interface; integrating intuitive tree diagrams to present complex experimental details clearly and concisely. Furthermore the modular design of the database will provide a robust platform for integrating other data types beyond microarrays into a more Systems analysis based future.

  14. A Mismatch EndoNuclease Array-Based Methodology (MENA) for Identifying Known SNPs or Novel Point Mutations.

    PubMed

    Comeron, Josep M; Reed, Jordan; Christie, Matthew; Jacobs, Julia S; Dierdorff, Jason; Eberl, Daniel F; Manak, J Robert

    2016-04-05

    Accurate and rapid identification or confirmation of single nucleotide polymorphisms (SNPs), point mutations and other human genomic variation facilitates understanding the genetic basis of disease. We have developed a new methodology (called MENA (Mismatch EndoNuclease Array)) pairing DNA mismatch endonuclease enzymology with tiling microarray hybridization in order to genotype both known point mutations (such as SNPs) as well as identify previously undiscovered point mutations and small indels. We show that our assay can rapidly genotype known SNPs in a human genomic DNA sample with 99% accuracy, in addition to identifying novel point mutations and small indels with a false discovery rate as low as 10%. Our technology provides a platform for a variety of applications, including: (1) genotyping known SNPs as well as confirming newly discovered SNPs from whole genome sequencing analyses; (2) identifying novel point mutations and indels in any genomic region from any organism for which genome sequence information is available; and (3) screening panels of genes associated with particular diseases and disorders in patient samples to identify causative mutations. As a proof of principle for using MENA to discover novel mutations, we report identification of a novel allele of the beethoven (btv) gene in Drosophila, which encodes a ciliary cytoplasmic dynein motor protein important for auditory mechanosensation.

  15. Specific Transcriptome Changes Associated with Blood Pressure Reduction in Hypertensive Patients After Relaxation Response Training.

    PubMed

    Bhasin, Manoj K; Denninger, John W; Huffman, Jeff C; Joseph, Marie G; Niles, Halsey; Chad-Friedman, Emma; Goldman, Roberta; Buczynski-Kelley, Beverly; Mahoney, Barbara A; Fricchione, Gregory L; Dusek, Jeffery A; Benson, Herbert; Zusman, Randall M; Libermann, Towia A

    2018-05-01

    Mind-body practices that elicit the relaxation response (RR) have been demonstrated to reduce blood pressure (BP) in essential hypertension (HTN) and may be an adjunct to antihypertensive drug therapy. However, the molecular mechanisms by which the RR reduces BP remain undefined. Genomic determinants associated with responsiveness to an 8-week RR-based mind-body intervention for lowering HTN in 13 stage 1 hypertensive patients classified as BP responders and 11 as nonresponders were identified. Transcriptome analysis in peripheral blood mononuclear cells identified 1771 genes regulated by the RR in responders. Biological process- and pathway-based analysis of transcriptome data demonstrated enrichment in the following gene categories: immune regulatory pathways and metabolism (among downregulated genes); glucose metabolism, cardiovascular system development, and circadian rhythm (among upregulated genes). Further in silico estimation of cell abundance from the microarray data showed enrichment of the anti-inflammatory M2 subtype of macrophages in BP responders. Nuclear factor-κB, vascular endothelial growth factor, and insulin were critical molecules emerging from interactive network analysis. These findings provide the first insights into the molecular mechanisms that are associated with the beneficial effects of the RR on HTN.

  16. Specific Transcriptome Changes Associated with Blood Pressure Reduction in Hypertensive Patients After Relaxation Response Training

    PubMed Central

    Bhasin, Manoj K.; Denninger, John W.; Huffman, Jeff C.; Joseph, Marie G.; Niles, Halsey; Chad-Friedman, Emma; Goldman, Roberta; Buczynski-Kelley, Beverly; Mahoney, Barbara A.; Fricchione, Gregory L.; Dusek, Jeffery A.; Benson, Herbert; Zusman, Randall M.

    2018-01-01

    Abstract Objective: Mind–body practices that elicit the relaxation response (RR) have been demonstrated to reduce blood pressure (BP) in essential hypertension (HTN) and may be an adjunct to antihypertensive drug therapy. However, the molecular mechanisms by which the RR reduces BP remain undefined. Design: Genomic determinants associated with responsiveness to an 8-week RR-based mind–body intervention for lowering HTN in 13 stage 1 hypertensive patients classified as BP responders and 11 as nonresponders were identified. Results: Transcriptome analysis in peripheral blood mononuclear cells identified 1771 genes regulated by the RR in responders. Biological process- and pathway-based analysis of transcriptome data demonstrated enrichment in the following gene categories: immune regulatory pathways and metabolism (among downregulated genes); glucose metabolism, cardiovascular system development, and circadian rhythm (among upregulated genes). Further in silico estimation of cell abundance from the microarray data showed enrichment of the anti-inflammatory M2 subtype of macrophages in BP responders. Nuclear factor-κB, vascular endothelial growth factor, and insulin were critical molecules emerging from interactive network analysis. Conclusions: These findings provide the first insights into the molecular mechanisms that are associated with the beneficial effects of the RR on HTN. PMID:29616846

  17. A tool for identification of genes expressed in patterns of interest using the Allen Brain Atlas

    PubMed Central

    Davis, Fred P.; Eddy, Sean R.

    2009-01-01

    Motivation: Gene expression patterns can be useful in understanding the structural organization of the brain and the regulatory logic that governs its myriad cell types. A particularly rich source of spatial expression data is the Allen Brain Atlas (ABA), a comprehensive genome-wide in situ hybridization study of the adult mouse brain. Here, we present an open-source program, ALLENMINER, that searches the ABA for genes that are expressed, enriched, patterned or graded in a user-specified region of interest. Results: Regionally enriched genes identified by ALLENMINER accurately reflect the in situ data (95–99% concordance with manual curation) and compare with regional microarray studies as expected from previous comparisons (61–80% concordance). We demonstrate the utility of ALLENMINER by identifying genes that exhibit patterned expression in the caudoputamen and neocortex. We discuss general characteristics of gene expression in the mouse brain and the potential application of ALLENMINER to design strategies for specific genetic access to brain regions and cell types. Availability: ALLENMINER is freely available on the Internet at http://research.janelia.org/davis/allenminer. Contact: davisf@janelia.hhmi.org Supplementary information: Supplementary data are available at Bioinformatics online. PMID:19414530

  18. Prediction of Human Disease Genes by Human-Mouse Conserved Coexpression Analysis

    PubMed Central

    Grassi, Elena; Damasco, Christian; Silengo, Lorenzo; Oti, Martin; Provero, Paolo; Di Cunto, Ferdinando

    2008-01-01

    Background Even in the post-genomic era, the identification of candidate genes within loci associated with human genetic diseases is a very demanding task, because the critical region may typically contain hundreds of positional candidates. Since genes implicated in similar phenotypes tend to share very similar expression profiles, high throughput gene expression data may represent a very important resource to identify the best candidates for sequencing. However, so far, gene coexpression has not been used very successfully to prioritize positional candidates. Methodology/Principal Findings We show that it is possible to reliably identify disease-relevant relationships among genes from massive microarray datasets by concentrating only on genes sharing similar expression profiles in both human and mouse. Moreover, we show systematically that the integration of human-mouse conserved coexpression with a phenotype similarity map allows the efficient identification of disease genes in large genomic regions. Finally, using this approach on 850 OMIM loci characterized by an unknown molecular basis, we propose high-probability candidates for 81 genetic diseases. Conclusion Our results demonstrate that conserved coexpression, even at the human-mouse phylogenetic distance, represents a very strong criterion to predict disease-relevant relationships among human genes. PMID:18369433

  19. The tissue-engineered human cornea as a model to study expression of matrix metalloproteinases during corneal wound healing.

    PubMed

    Couture, Camille; Zaniolo, Karine; Carrier, Patrick; Lake, Jennifer; Patenaude, Julien; Germain, Lucie; Guérin, Sylvain L

    2016-02-01

    Corneal injuries remain a major cause of consultation in the ophthalmology clinics worldwide. Repair of corneal wounds is a complex mechanism that involves cell death, migration, proliferation, differentiation, and extracellular matrix (ECM) remodeling. In the present study, we used a tissue-engineered, two-layers (epithelium and stroma) human cornea as a biomaterial to study both the cellular and molecular mechanisms of wound healing. Gene profiling on microarrays revealed important alterations in the pattern of genes expressed by tissue-engineered corneas in response to wound healing. Expression of many MMPs-encoding genes was shown by microarray and qPCR analyses to increase in the migrating epithelium of wounded corneas. Many of these enzymes were converted into their enzymatically active form as wound closure proceeded. In addition, expression of MMPs by human corneal epithelial cells (HCECs) was affected both by the stromal fibroblasts and the collagen-enriched ECM they produce. Most of all, results from mass spectrometry analyses provided evidence that a fully stratified epithelium is required for proper synthesis and organization of the ECM on which the epithelial cells adhere. In conclusion, and because of the many characteristics it shares with the native cornea, this human two layers corneal substitute may prove particularly useful to decipher the mechanistic details of corneal wound healing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Functional and Genomic Features of Human Genes Mutated in Neuropsychiatric Disorders.

    PubMed

    Forero, Diego A; Prada, Carlos F; Perry, George

    2016-01-01

    In recent years, a large number of studies around the world have led to the identification of causal genes for hereditary types of common and rare neurological and psychiatric disorders. To explore the functional and genomic features of known human genes mutated in neuropsychiatric disorders. A systematic search was used to develop a comprehensive catalog of genes mutated in neuropsychiatric disorders (NPD). Functional enrichment and protein-protein interaction analyses were carried out. A false discovery rate approach was used for correction for multiple testing. We found several functional categories that are enriched among NPD genes, such as gene ontologies, protein domains, tissue expression, signaling pathways and regulation by brain-expressed miRNAs and transcription factors. Sixty six of those NPD genes are known to be druggable. Several topographic parameters of protein-protein interaction networks and the degree of conservation between orthologous genes were identified as significant among NPD genes. These results represent one of the first analyses of enrichment of functional categories of genes known to harbor mutations for NPD. These findings could be useful for a future creation of computational tools for prioritization of novel candidate genes for NPD.

  1. Functional and Genomic Features of Human Genes Mutated in Neuropsychiatric Disorders

    PubMed Central

    Forero, Diego A.; Prada, Carlos F.; Perry, George

    2016-01-01

    Background: In recent years, a large number of studies around the world have led to the identification of causal genes for hereditary types of common and rare neurological and psychiatric disorders. Objective: To explore the functional and genomic features of known human genes mutated in neuropsychiatric disorders. Methods: A systematic search was used to develop a comprehensive catalog of genes mutated in neuropsychiatric disorders (NPD). Functional enrichment and protein-protein interaction analyses were carried out. A false discovery rate approach was used for correction for multiple testing. Results: We found several functional categories that are enriched among NPD genes, such as gene ontologies, protein domains, tissue expression, signaling pathways and regulation by brain-expressed miRNAs and transcription factors. Sixty six of those NPD genes are known to be druggable. Several topographic parameters of protein-protein interaction networks and the degree of conservation between orthologous genes were identified as significant among NPD genes. Conclusion: These results represent one of the first analyses of enrichment of functional categories of genes known to harbor mutations for NPD. These findings could be useful for a future creation of computational tools for prioritization of novel candidate genes for NPD. PMID:27990183

  2. Identification of transcriptional factors and key genes in primary osteoporosis by DNA microarray.

    PubMed

    Xie, Wengui; Ji, Lixin; Zhao, Teng; Gao, Pengfei

    2015-05-09

    A number of genes have been identified to be related with primary osteoporosis while less is known about the comprehensive interactions between regulating genes and proteins. We aimed to identify the differentially expressed genes (DEGs) and regulatory effects of transcription factors (TFs) involved in primary osteoporosis. The gene expression profile GSE35958 was obtained from Gene Expression Omnibus database, including 5 primary osteoporosis and 4 normal bone tissues. The differentially expressed genes between primary osteoporosis and normal bone tissues were identified by the same package in R language. The TFs of these DEGs were predicted with the Essaghir A method. DAVID (The Database for Annotation, Visualization and Integrated Discovery) was applied to perform the GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis of DEGs. After analyzing regulatory effects, a regulatory network was built between TFs and the related DEGs. A total of 579 DEGs was screened, including 310 up-regulated genes and 269 down-regulated genes in primary osteoporosis samples. In GO terms, more up-regulated genes were enriched in transcription regulator activity, and secondly in transcription factor activity. A total 10 significant pathways were enriched in KEGG analysis, including colorectal cancer, Wnt signaling pathway, Focal adhesion, and MAPK signaling pathway. Moreover, total 7 TFs were enriched, of which CTNNB1, SP1, and TP53 regulated most up-regulated DEGs. The discovery of the enriched TFs might contribute to the understanding of the mechanism of primary osteoporosis. Further research on genes and TFs related to the WNT signaling pathway and MAPK pathway is urgent for clinical diagnosis and directing treatment of primary osteoporosis.

  3. Genome-Wide Identification and Immune Response Analysis of Serine Protease Inhibitor Genes in the Silkworm, Bombyx mori

    PubMed Central

    Duan, Jun; Wang, Genhong; Wang, Lingyan; Li, Youshan; Xiang, Zhonghuai; Xia, Qingyou

    2012-01-01

    In most insect species, a variety of serine protease inhibitors (SPIs) have been found in multiple tissues, including integument, gonad, salivary gland, and hemolymph, and are required for preventing unwanted proteolysis. These SPIs belong to different families and have distinct inhibitory mechanisms. Herein, we predicted and characterized potential SPI genes based on the genome sequences of silkworm, Bombyx mori. As a result, a total of eighty SPI genes were identified in B. mori. These SPI genes contain 10 kinds of SPI domains, including serpin, Kunitz_BPTI, Kazal, TIL, amfpi, Bowman-Birk, Antistasin, WAP, Pacifastin, and alpha-macroglobulin. Sixty-three SPIs contain single SPI domain while the others have at least two inhibitor units. Some SPIs also contain non-inhibitor domains for protein-protein interactions, including EGF, ADAM_spacer, spondin_N, reeler, TSP_1 and other modules. Microarray analysis showed that fourteen SPI genes from lineage-specific TIL family and Group F of serpin family had enriched expression in the silk gland. The roles of SPIs in resisting pathogens were investigated in silkworms when they were infected by four pathogens. Microarray and qRT-PCR experiments revealed obvious up-regulation of 8, 4, 3 and 3 SPI genes after infection with Escherichia coli, Bacillus bombysepticus, Beauveria bassiana or B. mori nuclear polyhedrosis virus (BmNPV), respectively. On the contrary, 4, 11, 7 and 9 SPI genes were down-regulated after infection with E. coli, B. bombysepticus, B. bassiana or BmNPV, respectively. These results suggested that these SPI genes may be involved in resistance to pathogenic microorganisms. These findings may provide valuable information for further clarifying the roles of SPIs in the development, immune defence, and efficient synthesis of silk gland protein. PMID:22348050

  4. Impact of Upfront Cellular Enrichment by Laser Capture Microdissection on Protein and Phosphoprotein Drug Target Signaling Activation Measurements in Human Lung Cancer: Implications for Personalized Medicine

    PubMed Central

    Elisa, Baldelli; B., Haura Eric; Lucio, Crinò; Douglas, Cress W.; Vienna, Ludovini; B., Schabath Matthew; A., Liotta Lance; F., Petricoin Emanuel; Mariaelena, Pierobon

    2015-01-01

    Purpose The aim of this study was to evaluate whether upfront cellular enrichment via laser capture microdissection is necessary for accurately quantifying predictive biomarkers in non-small cell lung cancer tumors. Experimental design Fifteen snap frozen surgical biopsies were analyzed. Whole tissue lysate and matched highly enriched tumor epithelium via laser capture microdissection (LCM) were obtained for each patient. The expression and activation/phosphorylation levels of 26 proteins were measured by reverse phase protein microarray. Differences in signaling architecture of dissected and undissected matched pairs were visualized using unsupervised clustering analysis, bar graphs, and scatter plots. Results Overall patient matched LCM and undissected material displayed very distinct and differing signaling architectures with 93% of the matched pairs clustering separately. These differences were seen regardless of the amount of starting tumor epithelial content present in the specimen. Conclusions and clinical relevance These results indicate that LCM driven upfront cellular enrichment is necessary to accurately determine the expression/activation levels of predictive protein signaling markers although results should be evaluated in larger clinical settings. Upfront cellular enrichment of the target cell appears to be an important part of the workflow needed for the accurate quantification of predictive protein signaling biomarkers. Larger independent studies are warranted. PMID:25676683

  5. Investigating the Genome Diversity of B. cereus and Evolutionary Aspects of B. anthracis Emergence

    PubMed Central

    Papazisi, Leka; Rasko, David A.; Ratnayake, Shashikala; Bock, Geoff R.; Remortel, Brian G.; Appalla, Lakshmi; Liu, Jia; Dracheva, Tatiana; Braisted, John C.; Shallom, Shamira; Jarrahi, Benham; Snesrud, Erik; Ahn, Susie; Sun, Qiang; Rilstone, Jenifer; Økstad, Ole Andreas; Kolstø, Anne-Brit; Fleischmann, Robert D.; Peterson, Scott N.

    2011-01-01

    Here we report the use of a multi-genome DNA microarray to investigate the genome diversity of Bacillus cereus group members and elucidate the events associated with the emergence of B. anthracis the causative agent of anthrax–a lethal zoonotic disease. We initially performed directed genome sequencing of seven diverse B. cereus strains to identify novel sequences encoded in those genomes. The novel genes identified, combined with those publicly available, allowed the design of a “species” DNA microarray. Comparative genomic hybridization analyses of 41 strains indicates that substantial heterogeneity exists with respect to the genes comprising functional role categories. While the acquisition of the plasmid-encoded pathogenicity island (pXO1) and capsule genes (pXO2) represent a crucial landmark dictating the emergence of B. anthracis, the evolution of this species and its close relatives was associated with an overall a shift in the fraction of genes devoted to energy metabolism, cellular processes, transport, as well as virulence. PMID:21447378

  6. Transcriptome interrogation of human myometrium identifies differentially expressed sense-antisense pairs of protein-coding and long non-coding RNA genes in spontaneous labor at term

    PubMed Central

    Romero, Roberto; Tarca, Adi; Chaemsaithong, Piya; Miranda, Jezid; Chaiworapongsa, Tinnakorn; Jia, Hui; Hassan, Sonia S.; Kalita, Cynthia A.; Cai, Juan; Yeo, Lami; Lipovich, Leonard

    2014-01-01

    Objective The mechanisms responsible for normal and abnormal parturition are poorly understood. Myometrial activation leading to regular uterine contractions is a key component of labor. Dysfunctional labor (arrest of dilatation and/or descent) is a leading indication for cesarean delivery. Compelling evidence suggests that most of these disorders are functional in nature, and not the result of cephalopelvic disproportion. The methodology and the datasets afforded by the post-genomic era provide novel opportunities to understand and target gene functions in these disorders. In 2012, the ENCODE Consortium elucidated the extraordinary abundance and functional complexity of long non-coding RNA genes in the human genome. The purpose of the study was to identify differentially expressed long non-coding RNA genes in human myometrium in women in spontaneous labor at term. Materials and Methods Myometrium was obtained from women undergoing cesarean deliveries who were not in labor (n=19) and women in spontaneous labor at term (n=20). RNA was extracted and profiled using an Illumina® microarray platform. The analysis of the protein coding genes from this study has been previously reported. Here, we have used computational approaches to bound the extent of long non-coding RNA representation on this platform, and to identify co-differentially expressed and correlated pairs of long non-coding RNA genes and protein-coding genes sharing the same genomic loci. Results Upon considering more than 18,498 distinct lncRNA genes compiled nonredundantly from public experimental data sources, and interrogating 2,634 that matched Illumina microarray probes, we identified co-differential expression and correlation at two genomic loci that contain coding-lncRNA gene pairs: SOCS2-AK054607 and LMCD1-NR_024065 in women in spontaneous labor at term. This co-differential expression and correlation was validated by qRT-PCR, an independent experimental method. Intriguingly, one of the two lncRNA genes differentially expressed in term labor had a key genomic structure element, a splice site that lacked evolutionary conservation beyond primates. Conclusions We provide for the first time evidence for coordinated differential expression and correlation of cis-encoded antisense lncRNAs and protein-coding genes with known, as well as novel roles in pregnancy in the myometrium of women in spontaneous labor at term. PMID:24168098

  7. Efficient mutation identification in zebrafish by microarray capturing and next generation sequencing.

    PubMed

    Bontems, Franck; Baerlocher, Loic; Mehenni, Sabrina; Bahechar, Ilham; Farinelli, Laurent; Dosch, Roland

    2011-02-18

    Fish models like medaka, stickleback or zebrafish provide a valuable resource to study vertebrate genes. However, finding genetic variants e.g. mutations in the genome is still arduous. Here we used a combination of microarray capturing and next generation sequencing to identify the affected gene in the mozartkugelp11cv (mzlp11cv) mutant zebrafish. We discovered a 31-bp deletion in macf1 demonstrating the potential of this technique to efficiently isolate mutations in a vertebrate genome. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Imputation-Based Genomic Coverage Assessments of Current Human Genotyping Arrays

    PubMed Central

    Nelson, Sarah C.; Doheny, Kimberly F.; Pugh, Elizabeth W.; Romm, Jane M.; Ling, Hua; Laurie, Cecelia A.; Browning, Sharon R.; Weir, Bruce S.; Laurie, Cathy C.

    2013-01-01

    Microarray single-nucleotide polymorphism genotyping, combined with imputation of untyped variants, has been widely adopted as an efficient means to interrogate variation across the human genome. “Genomic coverage” is the total proportion of genomic variation captured by an array, either by direct observation or through an indirect means such as linkage disequilibrium or imputation. We have performed imputation-based genomic coverage assessments of eight current genotyping arrays that assay from ~0.3 to ~5 million variants. Coverage was determined separately in each of the four continental ancestry groups in the 1000 Genomes Project phase 1 release. We used the subset of 1000 Genomes variants present on each array to impute the remaining variants and assessed coverage based on correlation between imputed and observed allelic dosages. More than 75% of common variants (minor allele frequency > 0.05) are covered by all arrays in all groups except for African ancestry, and up to ~90% in all ancestries for the highest density arrays. In contrast, less than 40% of less common variants (0.01 < minor allele frequency < 0.05) are covered by low density arrays in all ancestries and 50–80% in high density arrays, depending on ancestry. We also calculated genome-wide power to detect variant-trait association in a case-control design, across varying sample sizes, effect sizes, and minor allele frequency ranges, and compare these array-based power estimates with a hypothetical array that would type all variants in 1000 Genomes. These imputation-based genomic coverage and power analyses are intended as a practical guide to researchers planning genetic studies. PMID:23979933

  9. Comparison of Comparative Genomic Hybridization Technologies across Microarray Platforms

    EPA Science Inventory

    In the 2007 Association of Biomolecular Resource Facilities (ABRF) Microarray Research Group (MARG) project, we analyzed HL-60 DNA with five platforms: Agilent, Affymetrix 500K, Affymetrix U133 Plus 2.0, Illumina, and RPCI 19K BAC arrays. Copy number variation (CNV) was analyzed ...

  10. Development of the first oligonucleotide microarray for global gene expression profiling in guinea pigs: defining the transcription signature of infectious diseases.

    PubMed

    Jain, Ruchi; Dey, Bappaditya; Tyagi, Anil K

    2012-10-02

    The Guinea pig (Cavia porcellus) is one of the most extensively used animal models to study infectious diseases. However, despite its tremendous contribution towards understanding the establishment, progression and control of a number of diseases in general and tuberculosis in particular, the lack of fully annotated guinea pig genome sequence as well as appropriate molecular reagents has severely hampered detailed genetic and immunological analysis in this animal model. By employing the cross-species hybridization technique, we have developed an oligonucleotide microarray with 44,000 features assembled from different mammalian species, which to the best of our knowledge is the first attempt to employ microarray to study the global gene expression profile in guinea pigs. To validate and demonstrate the merit of this microarray, we have studied, as an example, the expression profile of guinea pig lungs during the advanced phase of M. tuberculosis infection. A significant upregulation of 1344 genes and a marked down regulation of 1856 genes in the lungs identified a disease signature of pulmonary tuberculosis infection. We report the development of first comprehensive microarray for studying the global gene expression profile in guinea pigs and validation of its usefulness with tuberculosis as a case study. An important gap in the area of infectious diseases has been addressed and a valuable molecular tool is provided to optimally harness the potential of guinea pig model to develop better vaccines and therapies against human diseases.

  11. Expression quantitative trait loci (eQTL) mapping in Puerto Rican children.

    PubMed

    Chen, Wei; Brehm, John M; Lin, Jerome; Wang, Ting; Forno, Erick; Acosta-Pérez, Edna; Boutaoui, Nadia; Canino, Glorisa; Celedón, Juan C

    2015-01-01

    Expression quantitative trait loci (eQTL) have been identified using tissue or cell samples from diverse human populations, thus enhancing our understanding of regulation of gene expression. However, few studies have attempted to identify eQTL in racially admixed populations such as Hispanics. We performed a systematic eQTL study to identify regulatory variants of gene expression in whole blood from 121 Puerto Rican children with (n = 63) and without (n = 58) asthma. Genome-wide genotyping was conducted using the Illumina Omni2.5M Bead Chip, and gene expression was assessed using the Illumina HT-12 microarray. After completing quality control, we performed a pair-wise genome analysis of ~15 K transcripts and ~1.3 M SNPs for both local and distal effects. This analysis was conducted under a regression framework adjusting for age, gender and principal components derived from both genotypic and mRNA data. We used a false discovery rate (FDR) approach to identify significant eQTL signals, which were next compared to top eQTL signals from existing eQTL databases. We then performed a pathway analysis for our top genes. We identified 36,720 local pairs in 3,391 unique genes and 1,851 distal pairs in 446 unique genes at FDR <0.05, corresponding to unadjusted P values lower than 1.5x10-4 and 4.5x10-9, respectively. A significant proportion of genes identified in our study overlapped with those identified in previous studies. We also found an enrichment of disease-related genes in our eQTL list. We present results from the first eQTL study in Puerto Rican children, who are members of a unique Hispanic cohort disproportionately affected with asthma, prematurity, obesity and other common diseases. Our study confirmed eQTL signals identified in other ethnic groups, while also detecting additional eQTLs unique to our study population. The identified eQTLs will help prioritize findings from future genome-wide association studies in Puerto Ricans.

  12. Diagnostic Peptide Discovery: Prioritization of Pathogen Diagnostic Markers Using Multiple Features

    PubMed Central

    Carmona, Santiago J.; Sartor, Paula A.; Leguizamón, María S.; Campetella, Oscar E.; Agüero, Fernán

    2012-01-01

    The availability of complete pathogen genomes has renewed interest in the development of diagnostics for infectious diseases. Synthetic peptide microarrays provide a rapid, high-throughput platform for immunological testing of potential B-cell epitopes. However, their current capacity prevent the experimental screening of complete “peptidomes”. Therefore, computational approaches for prediction and/or prioritization of diagnostically relevant peptides are required. In this work we describe a computational method to assess a defined set of molecular properties for each potential diagnostic target in a reference genome. Properties such as sub-cellular localization or expression level were evaluated for the whole protein. At a higher resolution (short peptides), we assessed a set of local properties, such as repetitive motifs, disorder (structured vs natively unstructured regions), trans-membrane spans, genetic polymorphisms (conserved vs. divergent regions), predicted B-cell epitopes, and sequence similarity against human proteins and other potential cross-reacting species (e.g. other pathogens endemic in overlapping geographical locations). A scoring function based on these different features was developed, and used to rank all peptides from a large eukaryotic pathogen proteome. We applied this method to the identification of candidate diagnostic peptides in the protozoan Trypanosoma cruzi, the causative agent of Chagas disease. We measured the performance of the method by analyzing the enrichment of validated antigens in the high-scoring top of the ranking. Based on this measure, our integrative method outperformed alternative prioritizations based on individual properties (such as B-cell epitope predictors alone). Using this method we ranked 10 million 12-mer overlapping peptides derived from the complete T. cruzi proteome. Experimental screening of 190 high-scoring peptides allowed the identification of 37 novel epitopes with diagnostic potential, while none of the low scoring peptides showed significant reactivity. Many of the metrics employed are dependent on standard bioinformatic tools and data, so the method can be easily extended to other pathogen genomes. PMID:23272069

  13. Enrichment of statistical power for genome-wide association studies

    USDA-ARS?s Scientific Manuscript database

    The inheritance of most human diseases and agriculturally important traits is controlled by many genes with small effects. Identifying these genes, while simultaneously controlling false positives, is challenging. Among available statistical methods, the mixed linear model (MLM) has been the most fl...

  14. Development of Rapid Canine Fecal Source Identification PCR-based Assays

    EPA Science Inventory

    The extent to which dogs contribute to aquatic fecal contamination is unknown despite the potential for zoonotic transfer of harmful human pathogens. We used Genome Fragment Enrichment (GFE) to identify novel non-ribosomal microbial genetic markers potentially useful for detectin...

  15. Mining biological databases for candidate disease genes

    NASA Astrophysics Data System (ADS)

    Braun, Terry A.; Scheetz, Todd; Webster, Gregg L.; Casavant, Thomas L.

    2001-07-01

    The publicly-funded effort to sequence the complete nucleotide sequence of the human genome, the Human Genome Project (HGP), has currently produced more than 93% of the 3 billion nucleotides of the human genome into a preliminary `draft' format. In addition, several valuable sources of information have been developed as direct and indirect results of the HGP. These include the sequencing of model organisms (rat, mouse, fly, and others), gene discovery projects (ESTs and full-length), and new technologies such as expression analysis and resources (micro-arrays or gene chips). These resources are invaluable for the researchers identifying the functional genes of the genome that transcribe and translate into the transcriptome and proteome, both of which potentially contain orders of magnitude more complexity than the genome itself. Preliminary analyses of this data identified approximately 30,000 - 40,000 human `genes.' However, the bulk of the effort still remains -- to identify the functional and structural elements contained within the transcriptome and proteome, and to associate function in the transcriptome and proteome to genes. A fortuitous consequence of the HGP is the existence of hundreds of databases containing biological information that may contain relevant data pertaining to the identification of disease-causing genes. The task of mining these databases for information on candidate genes is a commercial application of enormous potential. We are developing a system to acquire and mine data from specific databases to aid our efforts to identify disease genes. A high speed cluster of Linux of workstations is used to analyze sequence and perform distributed sequence alignments as part of our data mining and processing. This system has been used to mine GeneMap99 sequences within specific genomic intervals to identify potential candidate disease genes associated with Bardet-Biedle Syndrome (BBS).

  16. The FDA's Experience with Emerging Genomics Technologies-Past, Present, and Future.

    PubMed

    Xu, Joshua; Thakkar, Shraddha; Gong, Binsheng; Tong, Weida

    2016-07-01

    The rapid advancement of emerging genomics technologies and their application for assessing safety and efficacy of FDA-regulated products require a high standard of reliability and robustness supporting regulatory decision-making in the FDA. To facilitate the regulatory application, the FDA implemented a novel data submission program, Voluntary Genomics Data Submission (VGDS), and also to engage the stakeholders. As part of the endeavor, for the past 10 years, the FDA has led an international consortium of regulatory agencies, academia, pharmaceutical companies, and genomics platform providers, which was named MicroArray Quality Control Consortium (MAQC), to address issues such as reproducibility, precision, specificity/sensitivity, and data interpretation. Three projects have been completed so far assessing these genomics technologies: gene expression microarrays, whole genome genotyping arrays, and whole transcriptome sequencing (i.e., RNA-seq). The resultant studies provide the basic parameters for fit-for-purpose application of these new data streams in regulatory environments, and the solutions have been made available to the public through peer-reviewed publications. The latest MAQC project is also called the SEquencing Quality Control (SEQC) project focused on next-generation sequencing. Using reference samples with built-in controls, SEQC studies have demonstrated that relative gene expression can be measured accurately and reliably across laboratories and RNA-seq platforms. Besides prediction performance comparable to microarrays in clinical settings and safety assessments, RNA-seq is shown to have better sensitivity for low expression and reveal novel transcriptomic features. Future effort of MAQC will be focused on quality control of whole genome sequencing and targeted sequencing.

  17. The FDA’s Experience with Emerging Genomics Technologies—Past, Present, and Future

    PubMed Central

    Xu, Joshua; Thakkar, Shraddha; Gong, Binsheng; Tong, Weida

    2016-01-01

    The rapid advancement of emerging genomics technologies and their application for assessing safety and efficacy of FDA-regulated products require a high standard of reliability and robustness supporting regulatory decision-making in the FDA. To facilitate the regulatory application, the FDA implemented a novel data submission program, Voluntary Genomics Data Submission (VGDS), and also to engage the stakeholders. As part of the endeavor, for the past 10 years, the FDA has led an international consortium of regulatory agencies, academia, pharmaceutical companies, and genomics platform providers, which was named MicroArray Quality Control Consortium (MAQC), to address issues such as reproducibility, precision, specificity/sensitivity, and data interpretation. Three projects have been completed so far assessing these genomics technologies: gene expression microarrays, whole genome genotyping arrays, and whole transcriptome sequencing (i.e., RNA-seq). The resultant studies provide the basic parameters for fit-for-purpose application of these new data streams in regulatory environments, and the solutions have been made available to the public through peer-reviewed publications. The latest MAQC project is also called the SEquencing Quality Control (SEQC) project focused on next-generation sequencing. Using reference samples with built-in controls, SEQC studies have demonstrated that relative gene expression can be measured accurately and reliably across laboratories and RNA-seq platforms. Besides prediction performance comparable to microarrays in clinical settings and safety assessments, RNA-seq is shown to have better sensitivity for low expression and reveal novel transcriptomic features. Future effort of MAQC will be focused on quality control of whole genome sequencing and targeted sequencing. PMID:27116022

  18. The developmental transcriptome of Drosophila melanogaster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    University of Connecticut; Graveley, Brenton R.; Brooks, Angela N.

    Drosophila melanogaster is one of the most well studied genetic model organisms; nonetheless, its genome still contains unannotated coding and non-coding genes, transcripts, exons and RNA editing sites. Full discovery and annotation are pre-requisites for understanding how the regulation of transcription, splicing and RNA editing directs the development of this complex organism. Here we used RNA-Seq, tiling microarrays and cDNA sequencing to explore the transcriptome in 30 distinct developmental stages. We identified 111,195 new elements, including thousands of genes, coding and non-coding transcripts, exons, splicing and editing events, and inferred protein isoforms that previously eluded discovery using established experimental, predictionmore » and conservation-based approaches. These data substantially expand the number of known transcribed elements in the Drosophila genome and provide a high-resolution view of transcriptome dynamics throughout development. Drosophila melanogaster is an important non-mammalian model system that has had a critical role in basic biological discoveries, such as identifying chromosomes as the carriers of genetic information and uncovering the role of genes in development. Because it shares a substantial genic content with humans, Drosophila is increasingly used as a translational model for human development, homeostasis and disease. High-quality maps are needed for all functional genomic elements. Previous studies demonstrated that a rich collection of genes is deployed during the life cycle of the fly. Although expression profiling using microarrays has revealed the expression of, 13,000 annotated genes, it is difficult to map splice junctions and individual base modifications generated by RNA editing using such approaches. Single-base resolution is essential to define precisely the elements that comprise the Drosophila transcriptome. Estimates of the number of transcript isoforms are less accurate than estimates of the number of genes. Whereas, 20% of Drosophila genes are annotated as encoding alternatively spliced premRNAs, splice-junction microarray experiments indicate that this number is at least 40% (ref. 7). Determining the diversity of mRNAs generated by alternative promoters, alternative splicing and RNA editing will substantially increase the inferred protein repertoire. Non-coding RNA genes (ncRNAs) including short interfering RNAs (siRNAs) and microRNAS (miRNAs) (reviewed in ref. 10), and longer ncRNAs such as bxd (ref. 11) and rox (ref. 12), have important roles in gene regulation, whereas others such as small nucleolar RNAs (snoRNAs)and small nuclear RNAs (snRNAs) are important components of macromolecular machines such as the ribosome and spliceosome. The transcription and processing of these ncRNAs must also be fully documented and mapped. As part of the modENCODE project to annotate the functional elements of the D. melanogaster and Caenorhabditis elegans genomes, we used RNA-Seq and tiling microarrays to sample the Drosophila transcriptome at unprecedented depth throughout development from early embryo to ageing male and female adults. We report on a high-resolution view of the discovery, structure and dynamic expression of the D. melanogaster transcriptome.« less

  19. Transcriptional landscape of the prenatal human brain.

    PubMed

    Miller, Jeremy A; Ding, Song-Lin; Sunkin, Susan M; Smith, Kimberly A; Ng, Lydia; Szafer, Aaron; Ebbert, Amanda; Riley, Zackery L; Royall, Joshua J; Aiona, Kaylynn; Arnold, James M; Bennet, Crissa; Bertagnolli, Darren; Brouner, Krissy; Butler, Stephanie; Caldejon, Shiella; Carey, Anita; Cuhaciyan, Christine; Dalley, Rachel A; Dee, Nick; Dolbeare, Tim A; Facer, Benjamin A C; Feng, David; Fliss, Tim P; Gee, Garrett; Goldy, Jeff; Gourley, Lindsey; Gregor, Benjamin W; Gu, Guangyu; Howard, Robert E; Jochim, Jayson M; Kuan, Chihchau L; Lau, Christopher; Lee, Chang-Kyu; Lee, Felix; Lemon, Tracy A; Lesnar, Phil; McMurray, Bergen; Mastan, Naveed; Mosqueda, Nerick; Naluai-Cecchini, Theresa; Ngo, Nhan-Kiet; Nyhus, Julie; Oldre, Aaron; Olson, Eric; Parente, Jody; Parker, Patrick D; Parry, Sheana E; Stevens, Allison; Pletikos, Mihovil; Reding, Melissa; Roll, Kate; Sandman, David; Sarreal, Melaine; Shapouri, Sheila; Shapovalova, Nadiya V; Shen, Elaine H; Sjoquist, Nathan; Slaughterbeck, Clifford R; Smith, Michael; Sodt, Andy J; Williams, Derric; Zöllei, Lilla; Fischl, Bruce; Gerstein, Mark B; Geschwind, Daniel H; Glass, Ian A; Hawrylycz, Michael J; Hevner, Robert F; Huang, Hao; Jones, Allan R; Knowles, James A; Levitt, Pat; Phillips, John W; Sestan, Nenad; Wohnoutka, Paul; Dang, Chinh; Bernard, Amy; Hohmann, John G; Lein, Ed S

    2014-04-10

    The anatomical and functional architecture of the human brain is mainly determined by prenatal transcriptional processes. We describe an anatomically comprehensive atlas of the mid-gestational human brain, including de novo reference atlases, in situ hybridization, ultra-high-resolution magnetic resonance imaging (MRI) and microarray analysis on highly discrete laser-microdissected brain regions. In developing cerebral cortex, transcriptional differences are found between different proliferative and post-mitotic layers, wherein laminar signatures reflect cellular composition and developmental processes. Cytoarchitectural differences between human and mouse have molecular correlates, including species differences in gene expression in subplate, although surprisingly we find minimal differences between the inner and outer subventricular zones even though the outer zone is expanded in humans. Both germinal and post-mitotic cortical layers exhibit fronto-temporal gradients, with particular enrichment in the frontal lobe. Finally, many neurodevelopmental disorder and human-evolution-related genes show patterned expression, potentially underlying unique features of human cortical formation. These data provide a rich, freely-accessible resource for understanding human brain development.

  20. Comparison of Gene Expression by Sheep and Human Blood Stimulated with the TLR4 Agonists Lipopolysaccharide and Monophosphoryl Lipid A

    PubMed Central

    Enkhbaatar, Perenlei; Nelson, Christina; Salsbury, John R.; Carmical, Joseph R.; Torres, Karen E. O.; Herndon, David; Prough, Donald S.; Luan, Liming; Sherwood, Edward R.

    2015-01-01

    Background Animal models that mimic human biology are important for successful translation of basic science discoveries into the clinical practice. Recent studies in rodents have demonstrated the efficacy of TLR4 agonists as immunomodulators in models of infection. However, rodent models have been criticized for not mimicking important characteristics of the human immune response to microbial products. The goal of this study was to compare genomic responses of human and sheep blood to the TLR4 agonists lipopolysaccharide (LPS) and monophosphoryl lipid A (MPLA). Methods Venous blood, withdrawn from six healthy human adult volunteers (~ 28 years old) and six healthy adult female sheep (~3 years old), was mixed with 30 μL of PBS, LPS (1μg/mL) or MPLA (10μg/mL) and incubated at room temperature for 90 minutes on a rolling rocker. After incubation, 2.5 mL of blood was transferred to Paxgene Blood RNA tubes. Gene expression analysis was performed using an Agilent Bioanalyzer with the RNA6000 Nano Lab Chip. Agilent gene expression microarrays were scanned with a G2565 Microarray Scanner. Differentially expressed genes were identified. Results 11,431 human and 4,992 sheep probes were detected above background. Among them 1,029 human and 175 sheep genes were differentially expressed at a stringency of 1.5-fold change (p<0.05). Of the 175 sheep genes, 54 had a known human orthologue. Among those genes, 22 had > 1.5-fold changes in human samples. Genes of major inflammatory mediators, such as IL-1, IL-6 and IL-8, TNF alpha, NF-kappaB, ETS2, PTGS2, PTX3, CXCL16, KYNU, and CLEC4E were similarly (>2-fold) upregulated by LPS and MPLA in both species. Conclusion The genomic responses of peripheral blood to LPS and MPLA in sheep are quite similar to those observed in humans, supporting the use of the ovine model for translational studies that mimic human inflammatory diseases and the study of TLR-based immunomodulators. PMID:26640957

Top