Ren, Ze; Wang, Fang; Qu, Xiaodong; Elser, James J.; Liu, Yang; Chu, Limin
2017-01-01
Understanding microbial communities in terms of taxon and function is essential to decipher the biogeochemical cycling in aquatic ecosystems. Lakes and their input streams are highly linked. However, the differences between microbial assemblages in streams and lakes are still unclear. In this study, we conducted an intensive field sampling of microbial communities from lake water and stream biofilms in the Qinghai Lake watershed, the largest lake in China. We determined bacterial communities using high-throughput 16S rRNA gene sequencing and predicted functional profiles using PICRUSt to determine the taxonomic and functional differences between microbial communities in stream biofilms and lake water. The results showed that stream biofilms and lake water harbored distinct microbial communities. The microbial communities were different taxonomically and functionally between stream and lake. Moreover, streams biofilms had a microbial network with higher connectivity and modularity than lake water. Functional beta diversity was strongly correlated with taxonomic beta diversity in both the stream and lake microbial communities. Lake microbial assemblages displayed greater predicted metabolic potentials of many metabolism pathways while the microbial assemblages in stream biofilms were more abundant in xenobiotic biodegradation and metabolism and lipid metabolism. Furthermore, lake microbial assemblages had stronger predicted metabolic potentials in amino acid metabolism, carbon fixation, and photosynthesis while stream microbial assemblages were higher in carbohydrate metabolism, oxidative phosphorylation, and nitrogen metabolism. This study adds to our knowledge of stream-lake linkages from the functional and taxonomic composition of microbial assemblages. PMID:29213266
Terroir is a key driver of seed-associated microbial assemblages.
Klaedtke, Stephanie; Jacques, Marie-Agnès; Raggi, Lorenzo; Préveaux, Anne; Bonneau, Sophie; Negri, Valeria; Chable, Véronique; Barret, Matthieu
2016-06-01
Seeds have evolved in association with diverse microbial assemblages that may influence plant growth and health. However, little is known about the composition of seed-associated microbial assemblages and the ecological processes shaping their structures. In this work, we monitored the relative influence of the host genotypes and terroir on the structure of the seed microbiota through metabarcoding analysis of different microbial assemblages associated to five different bean cultivars harvested in two distinct farms. Overall, few bacterial and fungal operational taxonomic units (OTUs) were conserved across all seed samples. The lack of shared OTUs between samples is explained by a significant effect of the farm site on the structure of microbial assemblage, which explained 12.2% and 39.7% of variance in bacterial and fungal diversity across samples. This site-specific effect is reflected by the significant enrichment of 70 OTUs in Brittany and 88 OTUs in Luxembourg that lead to differences in co-occurrence patterns. In contrast, variance in microbial assemblage structure was not explained by host genotype. Altogether, these results suggest that seed-associated microbial assemblage is determined by niche-based processes and that the terroir is a key driver of these selective forces. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.
Methane Seep Carbonates Host Distinct, Diverse, and Dynamic Microbial Assemblages
Pasulka, Alexis L.; Marlow, Jeffrey J.; Grupe, Benjamin M.; Levin, Lisa A.
2015-01-01
ABSTRACT Marine methane seeps are globally distributed geologic features in which reduced fluids, including methane, are advected upward from the subsurface. As a result of alkalinity generation during sulfate-coupled methane oxidation, authigenic carbonates form slabs, nodules, and extensive pavements. These carbonates shape the landscape within methane seeps, persist long after methane flux is diminished, and in some cases are incorporated into the geologic record. In this study, microbial assemblages from 134 native and experimental samples across 5,500 km, representing a range of habitat substrates (carbonate nodules and slabs, sediment, bottom water, and wood) and seepage conditions (active and low activity), were analyzed to address two fundamental questions of seep microbial ecology: (i) whether carbonates host distinct microbial assemblages and (ii) how sensitive microbial assemblages are to habitat substrate type and temporal shifts in methane seepage flux. Through massively parallel 16S rRNA gene sequencing and statistical analysis, native carbonates are shown to be reservoirs of distinct and highly diverse seep microbial assemblages. Unique coupled transplantation and colonization experiments on the seafloor demonstrated that carbonate-associated microbial assemblages are resilient to seep quiescence and reactive to seep activation over 13 months. Various rates of response to simulated seep quiescence and activation are observed among similar phylogenies (e.g., Chloroflexi operational taxonomic units) and similar metabolisms (e.g., putative S oxidizers), demonstrating the wide range of microbial sensitivity to changes in seepage flux. These results imply that carbonates do not passively record a time-integrated history of seep microorganisms but rather host distinct, diverse, and dynamic microbial assemblages. PMID:26695630
Litter Breakdown and Microbial Succession on Two Submerged Leaf Species in a Small Forested Stream
Newman, Molli M.; Liles, Mark R.; Feminella, Jack W.
2015-01-01
Microbial succession during leaf breakdown was investigated in a small forested stream in west-central Georgia, USA, using multiple culture-independent techniques. Red maple (Acer rubrum) and water oak (Quercus nigra) leaf litter were incubated in situ for 128 days, and litter breakdown was quantified by ash-free dry mass (AFDM) method and microbial assemblage composition using phospholipid fatty acid analysis (PLFA), ribosomal intergenic spacer analysis (RISA), denaturing gradient gel electrophoresis (DGGE), and bar-coded next-generation sequencing of 16S rRNA gene amplicons. Leaf breakdown was faster for red maple than water oak. PLFA revealed a significant time effect on microbial lipid profiles for both leaf species. Microbial assemblages on maple contained a higher relative abundance of bacterial lipids than oak, and oak microbial assemblages contained higher relative abundance of fungal lipids than maple. RISA showed that incubation time was more important in structuring bacterial assemblages than leaf physicochemistry. DGGE profiles revealed high variability in bacterial assemblages over time, and sequencing of DGGE-resolved amplicons indicated several taxa present on degrading litter. Next-generation sequencing revealed temporal shifts in dominant taxa within the phylum Proteobacteria, whereas γ-Proteobacteria dominated pre-immersion and α- and β-Proteobacteria dominated after 1 month of instream incubation; the latter groups contain taxa that are predicted to be capable of using organic material to fuel further breakdown. Our results suggest that incubation time is more important than leaf species physicochemistry in influencing leaf litter microbial assemblage composition, and indicate the need for investigation into seasonal and temporal dynamics of leaf litter microbial assemblage succession. PMID:26098687
Rezki, Samir; Campion, Claire; Iacomi-Vasilescu, Beatrice; Preveaux, Anne; Toualbia, Youness; Bonneau, Sophie; Briand, Martial; Laurent, Emmanuelle; Hunault, Gilles; Simoneau, Philippe; Jacques, Marie-Agnès; Barret, Matthieu
2016-01-01
Seeds are involved in the vertical transmission of microorganisms from one plant generation to another and consequently act as reservoirs for the plant microbiota. However, little is known about the structure of seed-associated microbial assemblages and the regulators of assemblage structure. In this work, we have assessed the response of seed-associated microbial assemblages of Raphanus sativus to invading phytopathogenic agents, the bacterial strain Xanthomonas campestris pv. campestris (Xcc) 8004 and the fungal strain Alternaria brassicicola Abra43. According to the indicators of bacterial (16S rRNA gene and gyrB sequences) and fungal (ITS1) diversity employed in this study, seed transmission of the bacterial strain Xcc 8004 did not change the overall composition of resident microbial assemblages. In contrast seed transmission of Abra43 strongly modified the richness and structure of fungal assemblages without affecting bacterial assemblages. The sensitivity of seed-associated fungal assemblage to Abra43 is mostly related to changes in relative abundance of closely related fungal species that belong to the Alternaria genus. Variation in stability of the seed microbiota in response to Xcc and Abra43 invasions could be explained by differences in seed transmission pathways employed by these micro-organisms, which ultimately results in divergence in spatio-temporal colonization of the seed habitat.
Rezki, Samir; Campion, Claire; Iacomi-Vasilescu, Beatrice; Preveaux, Anne; Toualbia, Youness; Bonneau, Sophie; Briand, Martial; Laurent, Emmanuelle; Hunault, Gilles; Simoneau, Philippe; Jacques, Marie-Agnès
2016-01-01
Seeds are involved in the vertical transmission of microorganisms from one plant generation to another and consequently act as reservoirs for the plant microbiota. However, little is known about the structure of seed-associated microbial assemblages and the regulators of assemblage structure. In this work, we have assessed the response of seed-associated microbial assemblages of Raphanus sativus to invading phytopathogenic agents, the bacterial strain Xanthomonas campestris pv. campestris (Xcc) 8004 and the fungal strain Alternaria brassicicola Abra43. According to the indicators of bacterial (16S rRNA gene and gyrB sequences) and fungal (ITS1) diversity employed in this study, seed transmission of the bacterial strain Xcc 8004 did not change the overall composition of resident microbial assemblages. In contrast seed transmission of Abra43 strongly modified the richness and structure of fungal assemblages without affecting bacterial assemblages. The sensitivity of seed-associated fungal assemblage to Abra43 is mostly related to changes in relative abundance of closely related fungal species that belong to the Alternaria genus. Variation in stability of the seed microbiota in response to Xcc and Abra43 invasions could be explained by differences in seed transmission pathways employed by these micro-organisms, which ultimately results in divergence in spatio-temporal colonization of the seed habitat. PMID:27077013
Exploring coral microbiome assemblages in the South China Sea.
Cai, Lin; Tian, Ren-Mao; Zhou, Guowei; Tong, Haoya; Wong, Yue Him; Zhang, Weipeng; Chui, Apple Pui Yi; Xie, James Y; Qiu, Jian-Wen; Ang, Put O; Liu, Sheng; Huang, Hui; Qian, Pei-Yuan
2018-02-05
Coral reefs are significant ecosystems. The ecological success of coral reefs relies on not only coral-algal symbiosis but also coral-microbial partnership. However, microbiome assemblages in the South China Sea corals remain largely unexplored. Here, we compared the microbiome assemblages of reef-building corals Galaxea (G. fascicularis) and Montipora (M. venosa, M. peltiformis, M. monasteriata) collected from five different locations in the South China Sea using massively-parallel sequencing of 16S rRNA gene and multivariate analysis. The results indicated that microbiome assemblages for each coral species were unique regardless of location and were different from the corresponding seawater. Host type appeared to drive the coral microbiome assemblages rather than location and seawater. Network analysis was employed to explore coral microbiome co-occurrence patterns, which revealed 61 and 80 co-occurring microbial species assembling the Galaxea and Montipora microbiomes, respectively. Most of these co-occurring microbial species were commonly found in corals and were inferred to play potential roles in host nutrient metabolism; carbon, nitrogen, sulfur cycles; host detoxification; and climate change. These findings suggest that the co-occurring microbial species explored might be essential to maintain the critical coral-microbial partnership. The present study provides new insights into coral microbiome assemblages in the South China Sea.
USDA-ARS?s Scientific Manuscript database
Identification of microbial assemblages predominant under natural extreme climatic events will aid in our understanding of the resilience and resistance of microbial communities to climate change. From November 2010 to August 2011, the Southern High Plains (SHP) of Texas, U.S., received only 39.6 mm...
Synthetic microbial ecology and the dynamic interplay between microbial genotypes.
Dolinšek, Jan; Goldschmidt, Felix; Johnson, David R
2016-11-01
Assemblages of microbial genotypes growing together can display surprisingly complex and unexpected dynamics and result in community-level functions and behaviors that are not readily expected from analyzing each genotype in isolation. This complexity has, at least in part, inspired a discipline of synthetic microbial ecology. Synthetic microbial ecology focuses on designing, building and analyzing the dynamic behavior of ‘ecological circuits’ (i.e. a set of interacting microbial genotypes) and understanding how community-level properties emerge as a consequence of those interactions. In this review, we discuss typical objectives of synthetic microbial ecology and the main advantages and rationales of using synthetic microbial assemblages. We then summarize recent findings of current synthetic microbial ecology investigations. In particular, we focus on the causes and consequences of the interplay between different microbial genotypes and illustrate how simple interactions can create complex dynamics and promote unexpected community-level properties. We finally propose that distinguishing between active and passive interactions and accounting for the pervasiveness of competition can improve existing frameworks for designing and predicting the dynamics of microbial assemblages.
Microbial Community Patterns Associated with Automated Teller Machine Keypads in New York City.
Bik, Holly M; Maritz, Julia M; Luong, Albert; Shin, Hakdong; Dominguez-Bello, Maria Gloria; Carlton, Jane M
2016-01-01
In densely populated urban environments, the distribution of microbes and the drivers of microbial community assemblages are not well understood. In sprawling metropolitan habitats, the "urban microbiome" may represent a mix of human-associated and environmental taxa. Here we carried out a baseline study of automated teller machine (ATM) keypads in New York City (NYC). Our goal was to describe the biodiversity and biogeography of both prokaryotic and eukaryotic microbes in an urban setting while assessing the potential source of microbial assemblages on ATM keypads. Microbial swab samples were collected from three boroughs (Manhattan, Queens, and Brooklyn) during June and July 2014, followed by generation of Illumina MiSeq datasets for bacterial (16S rRNA) and eukaryotic (18S rRNA) marker genes. Downstream analysis was carried out in the QIIME pipeline, in conjunction with neighborhood metadata (ethnicity, population, age groups) from the NYC Open Data portal. Neither the 16S nor 18S rRNA datasets showed any clustering patterns related to geography or neighborhood demographics. Bacterial assemblages on ATM keypads were dominated by taxonomic groups known to be associated with human skin communities ( Actinobacteria , Bacteroides , Firmicutes , and Proteobacteria ), although SourceTracker analysis was unable to identify the source habitat for the majority of taxa. Eukaryotic assemblages were dominated by fungal taxa as well as by a low-diversity protist community containing both free-living and potentially pathogenic taxa ( Toxoplasma , Trichomonas ). Our results suggest that ATM keypads amalgamate microbial assemblages from different sources, including the human microbiome, eukaryotic food species, and potentially novel extremophilic taxa adapted to air or surfaces in the built environment. DNA obtained from ATM keypads may thus provide a record of both human behavior and environmental sources of microbes. IMPORTANCE Automated teller machine (ATM) keypads represent a specific and unexplored microhabitat for microbial communities. Although the number of built environment and urban microbial ecology studies has expanded greatly in recent years, the majority of research to date has focused on mass transit systems, city soils, and plumbing and ventilation systems in buildings. ATM surfaces, potentially retaining microbial signatures of human inhabitants, including both commensal taxa and pathogens, are interesting from both a biodiversity perspective and a public health perspective. By focusing on ATM keypads in different geographic areas of New York City with distinct population demographics, we aimed to characterize the diversity and distribution of both prokaryotic and eukaryotic microbes, thus making a unique contribution to the growing body of work focused on the "urban microbiome." In New York City, the surface area of urban surfaces in Manhattan far exceeds the geographic area of the island itself. We have only just begun to describe the vast array of microbial taxa that are likely to be present across diverse types of urban habitats.
Smith, H J; Dieser, M; McKnight, D M; SanClements, M D; Foreman, C M
2018-05-14
Vast expanses of Earth's surface are covered by ice, with microorganisms in these systems affecting local and global biogeochemical cycles. We examined microbial assemblages from habitats fed by glacial meltwater within the McMurdo Dry Valleys, Antarctica, and on the west Greenland Ice Sheet, (GrIS) evaluating potential physicochemical factors explaining trends in community structure. Microbial assemblages present in the different Antarctic dry valley habitats were dominated by Sphingobacteria and Flavobacteria, while Gammaproteobacteria and Sphingobacteria prevailed in west GrIS supraglacial environments. Microbial assemblages clustered by location (Canada Glacier, Cotton Glacier, west GrIS) and were separated by habitat type (i.e. ice, cryoconite holes, supraglacial lakes, sediment, and stream water). Community dissimilarities were strongly correlated with dissolved organic matter (DOM) quality. Microbial meltwater assemblages were most closely associated with different protein-like components of the DOM pool. Microbes in environments with mineral particles (i.e. stream sediments, cryoconite holes) were linked to DOM containing more humic-like fluorescence. Our results demonstrate the establishment of distinct microbial communities within ephemeral glacial meltwater habitats, with DOM-microbe interactions playing an integral role in shaping communities on local and polar spatial scales.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Dongfang; Voigt, Thomas B.; Kent, Angela D.
Here, bacterial assemblages, especially diazotroph assemblages residing in the rhizomes and the rhizosphere soil of Miscanthus × giganteus, contribute to plant growth and nitrogen use efficiency. However, the composition of these microbial communities has not been adequately explored nor have the potential ecological drivers for these communities been sufficiently studied. This knowledge is needed for understanding and potentially improving M. × giganteus – microbe interactions, and further enhancing sustainability of M. × giganteus production. In this study, cultivated M. × giganteus from four sites in Illinois, Kentucky, Nebraska, and New Jersey were collected to examine the relative influences of soilmore » conditions and plant compartments on assembly of the M. × giganteus-associated microbiome. Automated ribosomal intergenic spacer (ARISA) and terminal restriction fragment length polymorphism (T-RFLP) targeting the nifH gene were applied to examine the total bacterial communities and diazotroph assemblages that reside in the rhizomes and the rhizosphere. Distinct microbial assemblages were detected in the endophytic and rhizosphere compartments. Site soil conditions had strong correlation with both total bacterial and diazotroph assemblages, but in different ways. Nitrogen treatments showed no significant effect on the composition of diazotroph assemblages in most sites. Endophytic compartments of different M. × giganteus plants tended to harbor similar microbial communities across all sites, whereas the rhizosphere soil of different plant tended to harbor diverse microbial assemblages that were distinct among sites. These observations offer insight into better understanding of the associative interactions between M. × giganteus and diazotrophs, and how this relationship is influenced by agronomic and edaphic factors.« less
Microbial Community Patterns Associated with Automated Teller Machine Keypads in New York City
Maritz, Julia M.; Luong, Albert
2016-01-01
ABSTRACT In densely populated urban environments, the distribution of microbes and the drivers of microbial community assemblages are not well understood. In sprawling metropolitan habitats, the “urban microbiome” may represent a mix of human-associated and environmental taxa. Here we carried out a baseline study of automated teller machine (ATM) keypads in New York City (NYC). Our goal was to describe the biodiversity and biogeography of both prokaryotic and eukaryotic microbes in an urban setting while assessing the potential source of microbial assemblages on ATM keypads. Microbial swab samples were collected from three boroughs (Manhattan, Queens, and Brooklyn) during June and July 2014, followed by generation of Illumina MiSeq datasets for bacterial (16S rRNA) and eukaryotic (18S rRNA) marker genes. Downstream analysis was carried out in the QIIME pipeline, in conjunction with neighborhood metadata (ethnicity, population, age groups) from the NYC Open Data portal. Neither the 16S nor 18S rRNA datasets showed any clustering patterns related to geography or neighborhood demographics. Bacterial assemblages on ATM keypads were dominated by taxonomic groups known to be associated with human skin communities (Actinobacteria, Bacteroides, Firmicutes, and Proteobacteria), although SourceTracker analysis was unable to identify the source habitat for the majority of taxa. Eukaryotic assemblages were dominated by fungal taxa as well as by a low-diversity protist community containing both free-living and potentially pathogenic taxa (Toxoplasma, Trichomonas). Our results suggest that ATM keypads amalgamate microbial assemblages from different sources, including the human microbiome, eukaryotic food species, and potentially novel extremophilic taxa adapted to air or surfaces in the built environment. DNA obtained from ATM keypads may thus provide a record of both human behavior and environmental sources of microbes. IMPORTANCE Automated teller machine (ATM) keypads represent a specific and unexplored microhabitat for microbial communities. Although the number of built environment and urban microbial ecology studies has expanded greatly in recent years, the majority of research to date has focused on mass transit systems, city soils, and plumbing and ventilation systems in buildings. ATM surfaces, potentially retaining microbial signatures of human inhabitants, including both commensal taxa and pathogens, are interesting from both a biodiversity perspective and a public health perspective. By focusing on ATM keypads in different geographic areas of New York City with distinct population demographics, we aimed to characterize the diversity and distribution of both prokaryotic and eukaryotic microbes, thus making a unique contribution to the growing body of work focused on the “urban microbiome.” In New York City, the surface area of urban surfaces in Manhattan far exceeds the geographic area of the island itself. We have only just begun to describe the vast array of microbial taxa that are likely to be present across diverse types of urban habitats. PMID:27904880
Microbial decomposition is highly sensitive to leaf litter emersion in a permanent temperate stream.
Mora-Gómez, Juanita; Duarte, Sofia; Cássio, Fernanda; Pascoal, Cláudia; Romaní, Anna M
2018-04-15
Drought frequency and intensity in some temperate regions are forecasted to increase under the ongoing global change, which might expose permanent streams to intermittence and have severe repercussions on stream communities and ecosystem processes. In this study, we investigated the effect of drought duration on microbial decomposition of Populus nigra leaf litter in a temperate permanent stream (Oliveira, NW Portugal). Specifically, we measured the response of the structural (assemblage composition, bacterial and fungal biomass) and functional (leaf litter decomposition, extracellular enzyme activities (EEA), and fungal sporulation) parameters of fungal and bacterial communities on leaf litter exposed to emersion during different time periods (7, 14 and 21d). Emersion time affected microbial assemblages and litter decomposition, but the response differed among variables. Leaf decomposition rates and the activity of β-glucosidase, cellobiohydrolase and phosphatase were gradually reduced with increasing emersion time, while β-xylosidase reduction was similar when emersion last for 7 or more days, and the phenol oxidase reduction was similar at 14 and 21days of leaf emersion. Microbial biomass and fungal sporulation were reduced after 21days of emersion. The structure of microbial assemblages was affected by the duration of the emersion period. The shifts in fungal assemblages were correlated with a decreased microbial capacity to degrade lignin and hemicellulose in leaf litter exposed to emersion. Additionally, some resilience was observed in leaf litter mass loss, bacterial biomass, some enzyme activities and structure of fungal assemblages. Our study shows that drought can strongly alter structural and functional aspects of microbial decomposers. Therefore, the exposure of leaf litter to increasing emersion periods in temperate streams is expected to affect decomposer communities and overall decomposition of plant material by decelerating carbon cycling in streams. Copyright © 2017 Elsevier B.V. All rights reserved.
Li, Dongfang; Voigt, Thomas B.; Kent, Angela D.
2015-02-11
Here, bacterial assemblages, especially diazotroph assemblages residing in the rhizomes and the rhizosphere soil of Miscanthus × giganteus, contribute to plant growth and nitrogen use efficiency. However, the composition of these microbial communities has not been adequately explored nor have the potential ecological drivers for these communities been sufficiently studied. This knowledge is needed for understanding and potentially improving M. × giganteus – microbe interactions, and further enhancing sustainability of M. × giganteus production. In this study, cultivated M. × giganteus from four sites in Illinois, Kentucky, Nebraska, and New Jersey were collected to examine the relative influences of soilmore » conditions and plant compartments on assembly of the M. × giganteus-associated microbiome. Automated ribosomal intergenic spacer (ARISA) and terminal restriction fragment length polymorphism (T-RFLP) targeting the nifH gene were applied to examine the total bacterial communities and diazotroph assemblages that reside in the rhizomes and the rhizosphere. Distinct microbial assemblages were detected in the endophytic and rhizosphere compartments. Site soil conditions had strong correlation with both total bacterial and diazotroph assemblages, but in different ways. Nitrogen treatments showed no significant effect on the composition of diazotroph assemblages in most sites. Endophytic compartments of different M. × giganteus plants tended to harbor similar microbial communities across all sites, whereas the rhizosphere soil of different plant tended to harbor diverse microbial assemblages that were distinct among sites. These observations offer insight into better understanding of the associative interactions between M. × giganteus and diazotrophs, and how this relationship is influenced by agronomic and edaphic factors.« less
Li, Dongfang; Voigt, Thomas B.; Kent, Angela D.
2015-04-30
Here, bacterial assemblages, especially diazotroph assemblages residing in the rhizomes and the rhizosphere soil of Miscanthus × giganteus, contribute to plant growth and nitrogen use efficiency. However, the composition of these microbial communities has not been adequately explored nor have the potential ecological drivers for these communities been sufficiently studied. This knowledge is needed for understanding and potentially improving M. × giganteus – microbe interactions, and further enhancing sustainability of M. × giganteus production. In this study, cultivated M. × giganteus from four sites in Illinois, Kentucky, Nebraska, and New Jersey were collected to examine the relative influences of soilmore » conditions and plant compartments on assembly of the M. × giganteus-associated microbiome. Automated ribosomal intergenic spacer (ARISA) and terminal restriction fragment length polymorphism (T-RFLP) targeting the nifH gene were applied to examine the total bacterial communities and diazotroph assemblages that reside in the rhizomes and the rhizosphere. Distinct microbial assemblages were detected in the endophytic and rhizosphere compartments. Site soil conditions had strong correlation with both total bacterial and diazotroph assemblages, but in different ways. Nitrogen treatments showed no significant effect on the composition of diazotroph assemblages in most sites. Endophytic compartments of different M. × giganteus plants tended to harbor similar microbial communities across all sites, whereas the rhizosphere soil of different plant tended to harbor diverse microbial assemblages that were distinct among sites. These observations offer insight into better understanding of the associative interactions between M. × giganteus and diazotrophs, and how this relationship is influenced by agronomic and edaphic factors.« less
Light-Dependant Biostabilisation of Sediments by Stromatolite Assemblages
Paterson, David M.; Aspden, Rebecca J.; Visscher, Pieter T.; Consalvey, Mireille; Andres, Miriam S.; Decho, Alan W.; Stolz, John; Reid, R. Pamela
2008-01-01
For the first time we have investigated the natural ecosystem engineering capacity of stromatolitic microbial assemblages. Stromatolites are laminated sedimentary structures formed by microbial activity and are considered to have dominated the shallows of the Precambrian oceans. Their fossilised remains are the most ancient unambiguous record of early life on earth. Stromatolites can therefore be considered as the first recognisable ecosystems on the planet. However, while many discussions have taken place over their structure and form, we have very little information on their functional ecology and how such assemblages persisted despite strong eternal forcing from wind and waves. The capture and binding of sediment is clearly a critical feature for the formation and persistence of stromatolite assemblages. Here, we investigated the ecosystem engineering capacity of stromatolitic microbial assemblages with respect to their ability to stabilise sediment using material from one of the few remaining living stromatolite systems (Highborne Cay, Bahamas). It was shown that the most effective assemblages could produce a rapid (12–24 h) and significant increase in sediment stability that continued in a linear fashion over the period of the experimentation (228 h). Importantly, it was also found that light was required for the assemblages to produce this stabilisation effect and that removal of assemblage into darkness could lead to a partial reversal of the stabilisation. This was attributed to the breakdown of extracellular polymeric substances under anaerobic conditions. These data were supported by microelectrode profiling of oxygen and calcium. The structure of the assemblages as they formed was visualised by low-temperature scanning electron microscopy and confocal laser microscopy. These results have implications for the understanding of early stromatolite development and highlight the potential importance of the evolution of photosynthesis in the mat forming process. The evolution of photosynthesis may have provided an important advance for the niche construction activity of microbial systems and the formation and persistence of the stromatolites which came to dominate shallow coastal environments for 80% of the biotic history of the earth. PMID:18781202
Light-dependant biostabilisation of sediments by stromatolite assemblages.
Paterson, David M; Aspden, Rebecca J; Visscher, Pieter T; Consalvey, Mireille; Andres, Miriam S; Decho, Alan W; Stolz, John; Reid, R Pamela
2008-09-10
For the first time we have investigated the natural ecosystem engineering capacity of stromatolitic microbial assemblages. Stromatolites are laminated sedimentary structures formed by microbial activity and are considered to have dominated the shallows of the Precambrian oceans. Their fossilised remains are the most ancient unambiguous record of early life on earth. Stromatolites can therefore be considered as the first recognisable ecosystems on the planet. However, while many discussions have taken place over their structure and form, we have very little information on their functional ecology and how such assemblages persisted despite strong eternal forcing from wind and waves. The capture and binding of sediment is clearly a critical feature for the formation and persistence of stromatolite assemblages. Here, we investigated the ecosystem engineering capacity of stromatolitic microbial assemblages with respect to their ability to stabilise sediment using material from one of the few remaining living stromatolite systems (Highborne Cay, Bahamas). It was shown that the most effective assemblages could produce a rapid (12-24 h) and significant increase in sediment stability that continued in a linear fashion over the period of the experimentation (228 h). Importantly, it was also found that light was required for the assemblages to produce this stabilisation effect and that removal of assemblage into darkness could lead to a partial reversal of the stabilisation. This was attributed to the breakdown of extracellular polymeric substances under anaerobic conditions. These data were supported by microelectrode profiling of oxygen and calcium. The structure of the assemblages as they formed was visualised by low-temperature scanning electron microscopy and confocal laser microscopy. These results have implications for the understanding of early stromatolite development and highlight the potential importance of the evolution of photosynthesis in the mat forming process. The evolution of photosynthesis may have provided an important advance for the niche construction activity of microbial systems and the formation and persistence of the stromatolites which came to dominate shallow coastal environments for 80% of the biotic history of the earth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fontanez, Kristina M.; Eppley, John M.; Samo, Ty J.
Sinking particles mediate the transport of carbon and energy to the deep-sea, yet the specific microbes associated with sedimenting particles in the ocean's interior remain largely uncharacterized. In this study, we used particle interceptor traps (PITs) to assess the nature of particle-associated microbial communities collected at a variety of depths in the North Pacific Subtropical Gyre. Comparative metagenomics was used to assess differences in microbial taxa and functional gene repertoires in PITs containing a preservative (poisoned traps) compared to preservative-free traps where growth was allowed to continue in situ (live traps). Live trap microbial communities shared taxonomic and functional similaritiesmore » with bacteria previously reported to be enriched in dissolved organic matter (DOM) microcosms (e.g., Alteromonas and Methylophaga), in addition to other particle and eukaryote-associated bacteria (e.g., Flavobacteriales and Pseudoalteromonas). Poisoned trap microbial assemblages were enriched in Vibrio and Campylobacterales likely associated with eukaryotic surfaces and intestinal tracts as symbionts, pathogens, or saprophytes. The functional gene content of microbial assemblages in poisoned traps included a variety of genes involved in virulence, anaerobic metabolism, attachment to chitinaceaous surfaces, and chitin degradation. The presence of chitinaceaous surfaces was also accompanied by the co-existence of bacteria which encoded the capacity to attach to, transport and metabolize chitin and its derivatives. Distinctly different microbial assemblages predominated in live traps, which were largely represented by copiotrophs and eukaryote-associated bacterial communities. Predominant sediment trap-assocaited eukaryotic phyla included Dinoflagellata, Metazoa (mostly copepods), Protalveolata, Retaria, and Stramenopiles. In conclusion, these data indicate the central role of eukaryotic taxa in structuring sinking particle microbial assemblages, as well as the rapid responses of indigenous microbial species in the degradation of marine particulate organic matter (POM) in situ in the ocean's interior.« less
Fontanez, Kristina M.; Eppley, John M.; Samo, Ty J.; ...
2015-05-19
Sinking particles mediate the transport of carbon and energy to the deep-sea, yet the specific microbes associated with sedimenting particles in the ocean's interior remain largely uncharacterized. In this study, we used particle interceptor traps (PITs) to assess the nature of particle-associated microbial communities collected at a variety of depths in the North Pacific Subtropical Gyre. Comparative metagenomics was used to assess differences in microbial taxa and functional gene repertoires in PITs containing a preservative (poisoned traps) compared to preservative-free traps where growth was allowed to continue in situ (live traps). Live trap microbial communities shared taxonomic and functional similaritiesmore » with bacteria previously reported to be enriched in dissolved organic matter (DOM) microcosms (e.g., Alteromonas and Methylophaga), in addition to other particle and eukaryote-associated bacteria (e.g., Flavobacteriales and Pseudoalteromonas). Poisoned trap microbial assemblages were enriched in Vibrio and Campylobacterales likely associated with eukaryotic surfaces and intestinal tracts as symbionts, pathogens, or saprophytes. The functional gene content of microbial assemblages in poisoned traps included a variety of genes involved in virulence, anaerobic metabolism, attachment to chitinaceaous surfaces, and chitin degradation. The presence of chitinaceaous surfaces was also accompanied by the co-existence of bacteria which encoded the capacity to attach to, transport and metabolize chitin and its derivatives. Distinctly different microbial assemblages predominated in live traps, which were largely represented by copiotrophs and eukaryote-associated bacterial communities. Predominant sediment trap-assocaited eukaryotic phyla included Dinoflagellata, Metazoa (mostly copepods), Protalveolata, Retaria, and Stramenopiles. In conclusion, these data indicate the central role of eukaryotic taxa in structuring sinking particle microbial assemblages, as well as the rapid responses of indigenous microbial species in the degradation of marine particulate organic matter (POM) in situ in the ocean's interior.« less
Jassey, Vincent E J; Gilbert, Daniel; Binet, Philippe; Toussaint, Marie-Laure; Chiapusio, Geneviève
2011-03-01
Microbial communities living in Sphagnum are known to constitute early indicators of ecosystem disturbances, but little is known about their response (including their trophic relationships) to climate change. A microcosm experiment was designed to test the effects of a temperature gradient (15, 20, and 25°C) on microbial communities including different trophic groups (primary producers, decomposers, and unicellular predators) in Sphagnum segments (0-3 cm and 3-6 cm of the capitulum). Relationships between microbial communities and abiotic factors (pH, conductivity, temperature, and polyphenols) were also studied. The density and the biomass of testate amoebae in Sphagnum upper segments increased and their community structure changed in heated treatments. The biomass of testate amoebae was linked to the biomass of bacteria and to the total biomass of other groups added and, thus, suggests that indirect effects on the food web structure occurred. Redundancy analysis revealed that microbial assemblages differed strongly in Sphagnum upper segments along a temperature gradient in relation to abiotic factors. The sensitivity of these assemblages made them interesting indicators of climate change. Phenolic compounds represented an important explicative factor in microbial assemblages and outlined the potential direct and (or) indirect effects of phenolics on microbial communities.
Shabarova, Tanja; Widmer, Franco; Pernthaler, Jakob
2013-09-01
We investigated the transformations of the microbial communities in epiphreatic karst cave pools with different flooding frequencies. Fingerprinting of 16S rRNA genes was combined with microscopic and sequence analysis to examine if source water would transport comparable microbial inocula into the pools at consecutive flood events, and to assess possible effects of residence time on the microbial assemblages during stagnant periods. Variability in the concentrations of dissolved organic carbon and conductivity indicated differences between floods and changes of pool water over time. High numbers of Betaproteobacteria affiliated with Methylophilaceae and Comamonadaceae were introduced into the pools during floodings. While the former persisted in the pools, the latter exhibited considerable microdiversification. These Betaproteobacteria might thus represent core microbial groups in karst water. A decrease in the estimated total diversity of the remaining bacterial taxa was apparent after a few weeks of residence: Some were favoured by stagnant conditions, whereas the majority was rapidly outcompeted. Thus, the microbial communities consisted of different components governed by complementary assembly mechanisms (dispersal versus environmental filtering) upon introduction into the pools. High overlap of temporary and persistent community members between samplings from two winters, moreover, reflected the seasonal recurrence of the studied microbial assemblages. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.
Huggett, Megan J; Kavazos, Christopher R J; Bernasconi, Rachele; Czarnik, Robert; Horwitz, Pierre
2017-06-01
The factors that shape microbial community assembly in aquatic ecosystems have been widely studied; yet it is still unclear how distinct communities within a connected landscape influence one another. Coastal lakes are recipients of, and thus are connected to, both marine and terrestrial environments. Thus, they may host microbial assemblages that reflect the relative degree of influence by, and connectivity to, either system. In order to address this idea, we interrogated microbial community diversity at 49 sites in seven ponds in two seasons in the Lake MacLeod basin, a system fed by seawater flowing inland through underground karst. Environmental and spatial variation within ponds explain <9% of the community structure, while identity of the pond that samples were taken from explains 50% of community variation. That is, ponds each host distinct assemblages despite similarities in size, environment and position in the landscape, indicating a dominant role for local species sorting. The ponds contain a substantial amount of previously unknown microbial taxa, reflecting the unusual nature of this inland system. Rare marine taxa, possibly dispersed from seawater assemblages via the underground karst connection, are abundant within the inland system, suggesting an important role for regional dispersal within the metacommunities. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Planktonic food webs revisited: Reanalysis of results from the linear inverse approach
NASA Astrophysics Data System (ADS)
Hlaili, Asma Sakka; Niquil, Nathalie; Legendre, Louis
2014-01-01
Identification of the trophic pathway that dominates a given planktonic assemblage is generally based on the distribution of biomasses among food-web compartments, or better, the flows of materials or energy among compartments. These flows are obtained by field observations and a posteriori analyses, including the linear inverse approach. In the present study, we re-analysed carbon flows obtained by inverse analysis at 32 stations in the global ocean and one large lake. Our results do not support two "classical" views of plankton ecology, i.e. that the herbivorous food web is dominated by mesozooplankton grazing on large phytoplankton, and the microbial food web is based on microzooplankton significantly consuming bacteria; our results suggest instead that phytoplankton are generally grazed by microzooplankton, of which they are the main food source. Furthermore, we identified the "phyto-microbial food web", where microzooplankton largely feed on phytoplankton, in addition to the already known "poly-microbial food web", where microzooplankton consume more or less equally various types of food. These unexpected results led to a (re)definition of the conceptual models corresponding to the four trophic pathways we found to exist in plankton, i.e. the herbivorous, multivorous, and two types of microbial food web. We illustrated the conceptual trophic pathways using carbon flows that were actually observed at representative stations. The latter can be calibrated to correspond to any field situation. Our study also provides researchers and managers with operational criteria for identifying the dominant trophic pathway in a planktonic assemblage, these criteria being based on the values of two carbon ratios that could be calculated from flow values that are relatively easy to estimate in the field.
Microplastic-associated bacterial assemblages in the intertidal zone of the Yangtze Estuary.
Jiang, Peilin; Zhao, Shiye; Zhu, Lixin; Li, Daoji
2018-05-15
Plastic trash is common in oceans. Terrestrial and marine ecosystem interactions occur in the intertidal zone where accumulation of plastic frequently occurs. However, knowledge of the plastic-associated microbial community (the plastisphere) in the intertidal zone is scanty. We used high-throughput sequencing to profile the bacterial communities attached to microplastic samples from intertidal locations around the Yangtze estuary in China. The structure and composition of plastisphere communities varied significantly among the locations. We found the taxonomic composition on microplastic samples was related to their sedimentary and aquatic origins. Correlation network analysis was used to identify keystone bacterial genera (e.g. Rhodobacterales, Sphingomonadales and Rhizobiales), which represented important microbial associations within the plastisphere community. Other species (i.e. potential pathogens) were considered as hitchhikers in the plastic attached microbial communities. Metabolic pathway analysis suggested adaptations of these bacterial assemblages to the plastic surface-colonization lifestyle. These adaptations included reduced "cell motility" and greater "xenobiotics biodegradation and metabolism." The findings illustrate the diverse microbial assemblages that occur on microplastic and increase our understanding of plastisphere ecology. Copyright © 2017 Elsevier B.V. All rights reserved.
Bell, Terrence H; Stefani, Franck O P; Abram, Katrina; Champagne, Julie; Yergeau, Etienne; Hijri, Mohamed; St-Arnaud, Marc
2016-09-15
Soil microbiome modification may alter system function, which may enhance processes like bioremediation. In this study, we filled microcosms with gamma-irradiated soil that was reinoculated with the initial soil or cultivated bacterial subsets obtained on regular media (REG-M) or media containing crude oil (CO-M). We allowed 8 weeks for microbiome stabilization, added crude oil and monoammonium phosphate, incubated the microcosms for another 6 weeks, and then measured the biodegradation of crude oil components, bacterial taxonomy, and functional gene composition. We hypothesized that the biodegradation of targeted crude oil components would be enhanced by limiting the microbial taxa competing for resources and by specifically selecting bacteria involved in crude oil biodegradation (i.e., CO-M). Postincubation, large differences in taxonomy and functional gene composition between the three microbiome types remained, indicating that purposeful soil microbiome structuring is feasible. Although phylum-level bacterial taxonomy was constrained, operational taxonomic unit composition varied between microbiome types. Contrary to our hypothesis, the biodegradation of C10 to C50 hydrocarbons was highest when the original microbiome was reinoculated, despite a higher relative abundance of alkane hydroxylase genes in the CO-M microbiomes and of carbon-processing genes in the REG-M microbiomes. Despite increases in the relative abundances of genes potentially linked to hydrocarbon processing in cultivated subsets of the microbiome, reinoculation of the initial microbiome led to maximum biodegradation. In this study, we show that it is possible to sustainably modify microbial assemblages in soil. This has implications for biotechnology, as modification of gut microbial assemblages has led to improved treatments for diseases like Clostridium difficile infection. Although the soil environment determined which major phylogenetic groups of bacteria would dominate the assemblage, we saw differences at lower levels of taxonomy and in functional gene composition (e.g., genes related to hydrocarbon degradation). Further studies are needed to determine the success of such an approach in nonsterile environments. Although the biodegradation of certain crude oil fractions was still the highest when we inoculated with the diverse initial microbiome, the possibility of discovering and establishing microbiomes that are more efficient in crude oil degradation is not precluded. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Mnemiopsis leidyi Gut Harbors Seasonally Variant and Commensal Microbial Assemblages
NASA Astrophysics Data System (ADS)
Mariita, R. M.; Hossain, M. J.; Liles, M. R.; Moss, A.
2016-02-01
Studies have shown that with widespread use of antibiotics in human and domestic animal populations, antibiotic resistance becomes increasingly common in the environment. Estuaries provide ideal conditions for acquisition and dissemination of drug resistance genes because they serve as sinks for pollution. This study aimed to identify M. leidyi microbial diversity and richness and their potential to act as vectors for antibiotic resistance determinants (ARDs). M. leidyi, although native to study area are highly invasive. Metagenomic analyses indicate that there are temporal variations of bacterioplankton assemblages in M. leidyi gut. Overall, Proteobacteria and Actinobacteria are the most abundant phyla. Despite the temporal dynamics in the microbial assemblages in M. leidyi gut, they seem to retain Propionibacterium acnes (gut microbiota in some insects) and select proteobacteria across all seasons. The results contradict previous studies that suggest that M. leidyi does not have constant a microbiota, but only seasonally variant microbial assemblages. Here we reveal the presence of M. leidyi gut ARDs in winter and summer, probably because of the ctenophores' positive geotaxis during rough surface conditions. Genes responsible for resistance to fluoroquinolones, multidrug resistance efflux pumps, mercuric reductase, copper homeostasis and blaR1 genes were observed. This is the first study to demonstrate that M. leidyi harbors constant microbiota and provides a baseline for understanding M. leidyi gut microbial and ARDs ecology. It also suggests that M. leidyi bacterial taxonomic and functional dynamics is influenced by season. Funding: Alabama EPSCoR GRSP fellowship, AU-CMB fellowship, NSF EPS-1158862, USDA-Hatch 370225-310100 (AGM, ML).
Marine heatwaves and optimal temperatures for microbial assemblage activity.
Joint, Ian; Smale, Dan A
2017-02-01
The response of microbial assemblages to instantaneous temperature change was measured in a seasonal study of the coastal waters of the western English Channel. On 18 occasions between November 1999 and December 2000, bacterial abundance was assessed and temperature responses determined from the incorporation of 3 H leucine, measured in a temperature gradient from 5°C to 38°C. Q 10 values varied, being close to 2 in spring and summer but were >3 in autumn. There was a seasonal pattern in the assemblage optimum temperature (T opt ), which was out of phase with sea surface temperature. In July, highest 3 H-leucine incorporation rates were measured at temperatures that were only 2.8°C greater than ambient sea surface temperature but in winter, T opt was ∼20°C higher than the ambient sea surface temperature. Sea surface temperatures for the adjacent English Channel and Celtic Sea for 1982-2014 have periodically been >3°C higher than climatological mean temperatures. This suggests that discrete periods of anomalously high temperatures might be close to, or exceed, temperatures at which maximum microbial assemblage activity occurs. The frequency and magnitude of marine heatwaves are likely to increase as a consequence of anthropogenic climate change and extreme temperatures may influence the role of bacterial assemblages in biogeochemical processes. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Sinbuathong, Nusara; Sirirote, Pramote; Liengcharernsit, Winai; Khaodhiar, Sutha; Watts, Daniel J
2009-01-01
Mixed-microbial assemblages enriched from a septic tank, coastal sediment samples, the digester sludge of a brewery wastewater treatment plant and acidic sulfate soil samples were compared on the basis of growth rate, waste and sulfate reduction rate under sulfate reducing conditions at 30 degrees C. The specific growth rate of various cultures was in the range 0.0013-0.0022 hr(-1). Estimates of waste and sulfate reduction rate were obtained by fitting substrate depletion and sulfate reduction data with the Michaelis-Menten equation. The waste reduction rates were in the range 4x10(-8)-1x10(-7) I mg(-1) hr(-1) and generally increased in the presence of copper, likely by copper sulfide precipitation that reduced sulfide and copper toxicity and thus protected the anaerobic microbes. Anaerobic microorganisms from a brewery digester sludge were found to be the most appropriate culture for the treatment of wastewater with high sulfate and heavy metal content due to their growth rate, and waste and sulfate reduction rate.
Microbial Biogeography on the Legacies of Historical Events in the Arctic Subsurface Sediments
NASA Astrophysics Data System (ADS)
Han, Dukki; Nam, Seung-Il; Hur, Hor-Gil
2017-04-01
The Arctic marine environment consists of various microbial habitats. The niche preference of microbial assemblages in the Arctic Ocean has been surveyed with the modern environmental change by oceanographic traits such as sea-ice dynamics, current circulation, and sedimentation. The North Pacific inflow from the shallow and narrow Bering Strait is highly susceptible to sea-level fluctuations, and thus the water mass exchange mediated by the history of sea-ice between the North Pacific and the Chukchi Sea in the Arctic Ocean. Over geological timescale, the climate change may provide putative evidences for ecological niche for the Arctic microbial assemblages as well as geological records in response to the paleoclimate change. In the present study, the multidisciplinary approach, based on microbiology, geology, and geochemistry, was applied to survey the microbial assemblages in the Arctic subsurface sediments and help further integrate the microbial biogeography and biogeochemical patterns in the Arctic subsurface biosphere. Our results describe microbial assemblages with high-resolution paleoceanographic records in the Chukchi Sea sediment core (ARA02B/01A-GC; 5.4 mbsf) to show the processes that drive microbial biogeographic patterns in the Arctic subsurface sediments. We found microbial habitat preferences closely linked to Holocene paleoclimate records as well as geological, geochemical, and microbiological evidence for the inference of the sulphate-methane transition zone (SMTZ) in the Chukchi Sea. Especially, the vertically distributed predominant populations of Gammaproteobacteria and Marine Group II Euryarchaeota in the ARA02B/01A-GC consistent with the patterns of the known global SMTZs and Holocene sedimentary records, suggesting that in-depth microbiological profiles integrated with geological records may be indirectly useful for reconstructing Arctic paleoclimate changes. In the earliest phase of Mid Holocene in the ARA02B/01A-GC with concentrated crenarchaeol (a unique biomarker for Marine Group I Thaumarchaea), the most abundant archaeal population was Marine Group II Euryarchaeota rather than Marine Group I Thaumarchaea, suggesting that the interpretation of archaeal tetraether lipids in subsurface sediments needs careful consideration for paleoceanography. In conclusion, our findings have important implications for the availability of microbial biogeography in the sedimentary record. The present study offers a deeper understanding of the legacies of historical events during the Holocene and implies that the survey of microbial biogeography may be an appropriate tool to monitor potential effects from the climate change in the Arctic Ocean.
Wang, Jiali; Wang, Fang; Chu, Limin; Wang, Hao; Zhong, Zhiping; Liu, Zhipei; Gao, Jianyong; Duan, Hairong
2014-01-01
Saline lakes are intriguing ecosystems harboring extremely productive microbial communities in spite of their extreme environmental conditions. We performed a comprehensive analysis of the genetic diversity (18S rRNA gene) of the planktonic microbial eukaryotes (nano- and picoeukaryotes) in six different inland saline lakes located in the Qaidam Basin. The novelty level are high, with about 11.23% of the whole dataset showing <90% identity to any previously reported sequence in GenBank. At least 4 operational taxonomic units (OTUs) in mesosaline lakes, while up to eighteen OTUs in hypersaline lakes show very low CCM and CEM scores, indicating that these sequences are highly distantly related to any existing sequence. Most of the 18S rRNA gene sequence reads obtained in investigated mesosaline lakes is closely related to Holozoa group (48.13%), whereas Stramenopiles (26.65%) and Alveolates (10.84%) are the next most common groups. Hypersaline lakes in the Qaidam Basin are also dominated by Holozoa group, accounting for 26.65% of the total number of sequence reads. Notably, Chlorophyta group are only found in high abundance in Lake Gasikule (28.00%), whereas less represented in other hypersaline lakes such as Gahai (0.50%) and Xiaochaidan (1.15%). Further analysis show that the compositions of planktonic eukaryotic assemblages are also most variable between different sampling sites in the same lake. Out of the parameters, four show significant correlation to this CCA: altitude, calcium, sodium and potassium concentrations. Overall, this study shows important gaps in the current knowledge about planktonic microbial eukaryotes inhabiting Qaidam Basin (hyper) saline water bodies. The identified diversity and novelty patterns among eukaryotic plankton assemblages in saline lake are of great importance for understanding and interpreting their ecology and evolution. PMID:25401703
Biological Diversity Comprising Microbial Structures of Antarctic Ice Covered Lakes
NASA Astrophysics Data System (ADS)
Matys, E. D.
2015-12-01
Analysis of microbial membrane lipids is a rapid and non-selective method for evaluating the composition of microbial communities. To fully realise the diagnostic potential of these lipids, we must first understand their structural diversity, biological sources, physiological functions, and pathways of preservation. Particular environmental conditions likely prompt the production of different membrane lipid structures. Antarctica's McMurdo Dry Valleys host numerous ice-covered lakes with sharp chemical gradients that vary in illumination, geochemical structure, and benthic mat morphologies that are structured by nutrient availability and water chemistry. The lipid contents of these benthic mats have not received extensive study nor have the communities yet been thoroughly characterized. Accordingly, a combination of lipid biomarker and nucleic acid sequence data provides the means of assessing species diversity and environmental controls on the composition and diversity of membrane lipid assemblages. We investigated the richness and diversity of benthic microbial communities and accumulated organic matter in Lake Vanda of the McMurdo Dry Valleys. We have identified diverse glycolipids, aminolipids, and phospholipids in addition to many unknown compounds that may be specific to these particular environments. Light levels fluctuate seasonally, favoring low-light-tolerant cyanobacteria and specific lipid assemblages. Adaptations to nutrient limitations are reflected in contrasting intact polar lipid assemblages. For example, under P-limiting conditions, phospholipids are subsidiary to membrane-forming lipids that do not contain P (i.e. ornithine, betaine, and sulfolipids). The bacteriohopanepolyol (BHP) composition is dominated by bacteriohopanetetrol (BHT), a ubiquitous BHP, and 2-methylhopanoids. The relative abundance of 2-methylhopanoids is unprecedented and may reflect the unusual seasonal light regime of this polar environment. By establishing correlations between environmental conditions, microbial community composition and the lipid assemblages of microbial structures in ice-covered lakes of Antarctica's McMurdo Dry Valleys, our data provides important ecological and evolutionary insights into these unusual environments.
Spaulding, S.A.; McKnight, Diane M.; Stoermer, E.F.; Doran, P.T.
1997-01-01
Diatom assemblages in surficial sediments, sediment cores, sediment traps, and inflowing streams of perennially ice-covered Lake Hore, South Victorialand, Antarctica were examined to determine the distribution of diatom taxa, and to ascertain if diatom species composition has changed over time. Lake Hoare is a closed-basin lake with an area of 1.8 km2, maximum depth of 34 m, and mean depth of 14 m, although lake level has been rising at a rate of 0.09 m yr-1 in recent decades. The lake has an unusual regime of sediment deposition: coarse grained sediments accumulate on the ice surface and are deposited episodically on the lake bottom. Benthic microbial mats are covered in situ by the coarse episodic deposits, and the new surfaces are recolonized. Ice cover prevents wind-induced mixing, creating the unique depositional environment in which sediment cores record the history of a particular site, rather than a lake=wide integration. Shallow-water (<1 m) diatom assemblages (Stauroneis anceps, Navicula molesta, Diadesmis contenta var. parallela, Navicula peraustralis) were distinct from mid-depth (4-16 m) assemblages (Diadesmis contenta, Luticola muticopsis fo. reducta, Stauroneis anceps, Diadesmis contenta var. parallela, Luticola murrayi) and deep-water (2-31 m) assemblages (Luticola murrayi, Luticola muticopsis fo. reducta, Navicula molesta. Analysis of a sediment core (30 cm long, from 11 m water depth) from Lake Hoare revealed two abrupt changes in diatom assemblages. The upper section of the sediment core contained the greatest biomass of benthic microbial mat, as well as the greatest total abundance and diversity of diatoms. Relative abundances of diatoms in this section are similar to the surficial samples from mid-depths. An intermediate zone contained less organic material and lower densities of diatoms. The bottom section of core contained the least amount of microbial mat and organic material, and the lowest density of diatoms. The dominant process influencing species composition and abundance of diatom assemblages in the benthic microbial mats is episodic deposition of coarse sediment from the ice surface.
Heterogeneity of Vaginal Microbial Communities within Individuals▿ #
Kim, Tae Kyung; Thomas, Susan M.; Ho, Mengfei; Sharma, Shobha; Reich, Claudia I.; Frank, Jeremy A.; Yeater, Kathleen M.; Biggs, Diana R.; Nakamura, Noriko; Stumpf, Rebecca; Leigh, Steven R.; Tapping, Richard I.; Blanke, Steven R.; Slauch, James M.; Gaskins, H. Rex; Weisbaum, Jon S.; Olsen, Gary J.; Hoyer, Lois L.; Wilson, Brenda A.
2009-01-01
Recent culture-independent studies have revealed that a healthy vaginal ecosystem harbors a surprisingly complex assemblage of microorganisms. However, the spatial distribution and composition of vaginal microbial populations have not been investigated using molecular methods. Here, we evaluated site-specific microbial composition within the vaginal ecosystem and examined the influence of sampling technique in detection of the vaginal microbiota. 16S rRNA gene clone libraries were prepared from samples obtained from different locations (cervix, fornix, outer vaginal canal) and by different methods (swabbing, scraping, lavaging) from the vaginal tracts of eight clinically healthy, asymptomatic women. The data reveal that the vaginal microbiota is not homogenous throughout the vaginal tract but differs significantly within an individual with regard to anatomical site and sampling method used. Thus, this study illuminates the complex structure of the vaginal ecosystem and calls for the consideration of microenvironments when sampling vaginal microbiota as a clinical predictor of vaginal health. PMID:19158255
Microbial Potential for Ecosystem N Loss Is Increased by Experimental N Deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freedman, Zachary B.; Upchurch, Rima A.; Zak, Donald R.
Fossil fuel combustion and fertilizer use has increased the amount of biologically available N entering terrestrial ecosystems. Nonetheless, our understanding of how anthropogenic N may alter the physiological mechanisms by which soil microorganisms cycle N in soil is still developing. Here, we applied shotgun metagenomics to a replicated long-term field experiment to determine how two decades of experimental N deposition, at a rate expected by mid-century, has affected the genetic potential of the soil microbial community to cycle N in soils. Experimental N deposition lead to a significant and persistent increase in functional assemblages mediating N cycle transformations associated withmore » ecosystem N loss (i.e., denitrification and nitrification), whereas functional assemblages associated with N input and retention (i.e., N fixation and microbial N assimilation) were less positively affected. Furthermore, the abundance and composition of microbial taxa, as well as functional assemblages involved in housekeeping functions (i.e., DNA replication) were unaffected by experimental N deposition. Here taken together, our results suggest that functional genes and gene pathways associated with ecosystem N loss have been favored by experimental N deposition, which may represent a genetic mechanism fostering increased N loss as anthropogenic N deposition increases in the future.« less
Microbial Potential for Ecosystem N Loss Is Increased by Experimental N Deposition
Freedman, Zachary B.; Upchurch, Rima A.; Zak, Donald R.; ...
2016-10-13
Fossil fuel combustion and fertilizer use has increased the amount of biologically available N entering terrestrial ecosystems. Nonetheless, our understanding of how anthropogenic N may alter the physiological mechanisms by which soil microorganisms cycle N in soil is still developing. Here, we applied shotgun metagenomics to a replicated long-term field experiment to determine how two decades of experimental N deposition, at a rate expected by mid-century, has affected the genetic potential of the soil microbial community to cycle N in soils. Experimental N deposition lead to a significant and persistent increase in functional assemblages mediating N cycle transformations associated withmore » ecosystem N loss (i.e., denitrification and nitrification), whereas functional assemblages associated with N input and retention (i.e., N fixation and microbial N assimilation) were less positively affected. Furthermore, the abundance and composition of microbial taxa, as well as functional assemblages involved in housekeeping functions (i.e., DNA replication) were unaffected by experimental N deposition. Here taken together, our results suggest that functional genes and gene pathways associated with ecosystem N loss have been favored by experimental N deposition, which may represent a genetic mechanism fostering increased N loss as anthropogenic N deposition increases in the future.« less
Bacterial Biogeography across the Amazon River-Ocean Continuum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doherty, Mary; Yager, Patricia L.; Moran, Mary Ann
Spatial and temporal patterns in microbial biodiversity across the Amazon river-ocean continuum were investigated along ~675 km of the lower Amazon River mainstem, in the Tapajos River tributary, and in the plume and coastal ocean during low and high river discharge using amplicon sequencing of 16S rRNA genes in whole water and size-fractionated samples (0.2-2.0 μm and >2.0 μm). River communities varied among tributaries, but mainstem communities were spatially homogeneous and tracked seasonal changes in river discharge and co-varying factors. Co-occurrence network analysis identified strongly interconnected river assemblages during high (May) and low (December) discharge periods, and weakly interconnected transitionalmore » assemblages in September, suggesting that this system supports two seasonal microbial communities linked to river discharge. In contrast, plume communities showed little seasonal differences and instead varied spatially tracking salinity. However, salinity explained only a small fraction of community variability, and plume communities in blooms of diatom-diazotroph assemblages were strikingly different than those in other high salinity plume samples. This suggests that while salinity physically structures plumes through buoyancy and mixing, the composition of plume-specific communities is controlled by other factors including nutrients, phytoplankton community composition, and dissolved organic matter chemistry. Co-occurrence networks identified interconnected assemblages associated with the highly productive low salinity nearshore region, diatom-diazotroph blooms, and the plume edge region, and weakly interconnected assemblages in high salinity regions. This suggests that the plume supports a transitional community influenced by immigration of ocean bacteria from the plume edge, and by species sorting as these communities adapt to local environmental conditions. Few studies have explored patterns of microbial diversity in tropical rivers and coastal oceans. Comparison of Amazon continuum microbial communities to those from temperate and arctic systems suggest that river discharge and salinity are master variables structuring a range of environmental conditions that control bacterial communities across the river-ocean continuum.« less
Bacterial Biogeography across the Amazon River-Ocean Continuum.
Doherty, Mary; Yager, Patricia L; Moran, Mary Ann; Coles, Victoria J; Fortunato, Caroline S; Krusche, Alex V; Medeiros, Patricia M; Payet, Jérôme P; Richey, Jeffrey E; Satinsky, Brandon M; Sawakuchi, Henrique O; Ward, Nicholas D; Crump, Byron C
2017-01-01
Spatial and temporal patterns in microbial biodiversity across the Amazon river-ocean continuum were investigated along ∼675 km of the lower Amazon River mainstem, in the Tapajós River tributary, and in the plume and coastal ocean during low and high river discharge using amplicon sequencing of 16S rRNA genes in whole water and size-fractionated samples (0.2-2.0 μm and >2.0 μm). River communities varied among tributaries, but mainstem communities were spatially homogeneous and tracked seasonal changes in river discharge and co-varying factors. Co-occurrence network analysis identified strongly interconnected river assemblages during high (May) and low (December) discharge periods, and weakly interconnected transitional assemblages in September, suggesting that this system supports two seasonal microbial communities linked to river discharge. In contrast, plume communities showed little seasonal differences and instead varied spatially tracking salinity. However, salinity explained only a small fraction of community variability, and plume communities in blooms of diatom-diazotroph assemblages were strikingly different than those in other high salinity plume samples. This suggests that while salinity physically structures plumes through buoyancy and mixing, the composition of plume-specific communities is controlled by other factors including nutrients, phytoplankton community composition, and dissolved organic matter chemistry. Co-occurrence networks identified interconnected assemblages associated with the highly productive low salinity near-shore region, diatom-diazotroph blooms, and the plume edge region, and weakly interconnected assemblages in high salinity regions. This suggests that the plume supports a transitional community influenced by immigration of ocean bacteria from the plume edge, and by species sorting as these communities adapt to local environmental conditions. Few studies have explored patterns of microbial diversity in tropical rivers and coastal oceans. Comparison of Amazon continuum microbial communities to those from temperate and arctic systems suggest that river discharge and salinity are master variables structuring a range of environmental conditions that control bacterial communities across the river-ocean continuum.
Bacterial Biogeography across the Amazon River-Ocean Continuum
Doherty, Mary; Yager, Patricia L.; Moran, Mary Ann; ...
2017-05-23
Spatial and temporal patterns in microbial biodiversity across the Amazon river-ocean continuum were investigated along ~675 km of the lower Amazon River mainstem, in the Tapajos River tributary, and in the plume and coastal ocean during low and high river discharge using amplicon sequencing of 16S rRNA genes in whole water and size-fractionated samples (0.2-2.0 μm and >2.0 μm). River communities varied among tributaries, but mainstem communities were spatially homogeneous and tracked seasonal changes in river discharge and co-varying factors. Co-occurrence network analysis identified strongly interconnected river assemblages during high (May) and low (December) discharge periods, and weakly interconnected transitionalmore » assemblages in September, suggesting that this system supports two seasonal microbial communities linked to river discharge. In contrast, plume communities showed little seasonal differences and instead varied spatially tracking salinity. However, salinity explained only a small fraction of community variability, and plume communities in blooms of diatom-diazotroph assemblages were strikingly different than those in other high salinity plume samples. This suggests that while salinity physically structures plumes through buoyancy and mixing, the composition of plume-specific communities is controlled by other factors including nutrients, phytoplankton community composition, and dissolved organic matter chemistry. Co-occurrence networks identified interconnected assemblages associated with the highly productive low salinity nearshore region, diatom-diazotroph blooms, and the plume edge region, and weakly interconnected assemblages in high salinity regions. This suggests that the plume supports a transitional community influenced by immigration of ocean bacteria from the plume edge, and by species sorting as these communities adapt to local environmental conditions. Few studies have explored patterns of microbial diversity in tropical rivers and coastal oceans. Comparison of Amazon continuum microbial communities to those from temperate and arctic systems suggest that river discharge and salinity are master variables structuring a range of environmental conditions that control bacterial communities across the river-ocean continuum.« less
Bacterial Biogeography across the Amazon River-Ocean Continuum
Doherty, Mary; Yager, Patricia L.; Moran, Mary Ann; Coles, Victoria J.; Fortunato, Caroline S.; Krusche, Alex V.; Medeiros, Patricia M.; Payet, Jérôme P.; Richey, Jeffrey E.; Satinsky, Brandon M.; Sawakuchi, Henrique O.; Ward, Nicholas D.; Crump, Byron C.
2017-01-01
Spatial and temporal patterns in microbial biodiversity across the Amazon river-ocean continuum were investigated along ∼675 km of the lower Amazon River mainstem, in the Tapajós River tributary, and in the plume and coastal ocean during low and high river discharge using amplicon sequencing of 16S rRNA genes in whole water and size-fractionated samples (0.2–2.0 μm and >2.0 μm). River communities varied among tributaries, but mainstem communities were spatially homogeneous and tracked seasonal changes in river discharge and co-varying factors. Co-occurrence network analysis identified strongly interconnected river assemblages during high (May) and low (December) discharge periods, and weakly interconnected transitional assemblages in September, suggesting that this system supports two seasonal microbial communities linked to river discharge. In contrast, plume communities showed little seasonal differences and instead varied spatially tracking salinity. However, salinity explained only a small fraction of community variability, and plume communities in blooms of diatom-diazotroph assemblages were strikingly different than those in other high salinity plume samples. This suggests that while salinity physically structures plumes through buoyancy and mixing, the composition of plume-specific communities is controlled by other factors including nutrients, phytoplankton community composition, and dissolved organic matter chemistry. Co-occurrence networks identified interconnected assemblages associated with the highly productive low salinity near-shore region, diatom-diazotroph blooms, and the plume edge region, and weakly interconnected assemblages in high salinity regions. This suggests that the plume supports a transitional community influenced by immigration of ocean bacteria from the plume edge, and by species sorting as these communities adapt to local environmental conditions. Few studies have explored patterns of microbial diversity in tropical rivers and coastal oceans. Comparison of Amazon continuum microbial communities to those from temperate and arctic systems suggest that river discharge and salinity are master variables structuring a range of environmental conditions that control bacterial communities across the river-ocean continuum. PMID:28588561
Forest soil microbial communities: Using metagenomic approaches to survey permanent plots
Amy L. Ross-Davis; Jane E. Stewart; John W. Hanna; John D. Shaw; Andrew T. Hudak; Theresa B. Jain; Robert J. Denner; Russell T. Graham; Deborah S. Page-Dumroese; Joanne M. Tirocke; Mee-Sook Kim; Ned B. Klopfenstein
2014-01-01
Forest soil ecosystems include some of the most complex microbial communities on Earth (Fierer et al. 2012). These assemblages of archaea, bacteria, fungi, and protists play essential roles in biogeochemical cycles (van der Heijden et al. 2008) and account for considerable terrestrial biomass (Nielsen et al. 2011). Yet, determining the microbial composition of forest...
Groundwater Ecosystems Vary with Land Use across a Mixed Agricultural Landscape.
Korbel, K L; Hancock, P J; Serov, P; Lim, R P; Hose, G C
2013-01-01
Changes in surface land use may threaten groundwater quality and ecosystem integrity, particularly in shallow aquifers where links between groundwater and surface activities are most intimate. In this study we examine the response of groundwater ecosystem to agricultural land uses in the shallow alluvial aquifer of the Gwydir River valley, New South Wales, Australia. We compared groundwater quality and microbial and stygofauna assemblages among sites under irrigated cropping, non-irrigated cropping and grazing land uses. Stygofauna abundance and richness was greatest at irrigated sites, with the composition of the assemblage suggestive of disturbance. Microbial assemblages and water quality also varied with land use. Our study demonstrates significant differences in the composition of groundwater ecosystems in areas with different surface land use, and highlights the utility of groundwater biota for biomonitoring, particularly in agricultural landscapes. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Airborne bacterial assemblage in a zero carbon building: A case study.
Leung, M H Y; Tong, X; Tong, J C K; Lee, P K H
2018-01-01
Currently, there is little information pertaining to the airborne bacterial communities of green buildings. In this case study, the air bacterial community of a zero carbon building (ZCB) in Hong Kong was characterized by targeting the bacterial 16S rRNA gene. Bacteria associated with the outdoor environment dominated the indoor airborne bacterial assemblage, with a modest contribution from bacteria associated with human skin. Differences in overall community diversity, membership, and composition associated with short (day-to-day) and long-term temporal properties were detected, which may have been driven by specific environmental genera and taxa. Furthermore, time-decay relationships in community membership (based on unweighted UniFrac distances) and composition (based on weighted UniFrac distances) differed depending on the season and sampling location. A Bayesian source-tracking approach further supported the importance of adjacent outdoor air bacterial assemblage in sourcing the ZCB indoor bioaerosol. Despite the unique building attributes, the ZCB microbial assemblage detected and its temporal characteristics were not dissimilar to that of conventional built environments investigated previously. Future controlled experiments and microbial assemblage investigations of other ZCBs will undoubtedly uncover additional knowledge related to how airborne bacteria in green buildings may be influenced by their distinctive architectural attributes. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Reintroduction of locally extinct vertebrates impacts arid soil fungal communities.
Clarke, Laurence J; Weyrich, Laura S; Cooper, Alan
2015-06-01
Introduced species have contributed to extinction of native vertebrates in many parts of the world. Changes to vertebrate assemblages are also likely to alter microbial communities through coextinction of some taxa and the introduction of others. Many attempts to restore degraded habitats involve removal of exotic vertebrates (livestock and feral animals) and reintroduction of locally extinct species, but the impact of such reintroductions on microbial communities is largely unknown. We used high-throughput DNA sequencing of the fungal internal transcribed spacer I (ITS1) region to examine whether replacing exotic vertebrates with reintroduced native vertebrates led to changes in soil fungal communities at a reserve in arid central Australia. Soil fungal diversity was significantly different between dune and swale (interdune) habitats. Fungal communities also differed significantly between sites with exotic or reintroduced native vertebrates after controlling for the effect of habitat. Several fungal operational taxonomic units (OTUs) found exclusively inside the reserve were present in scats from reintroduced native vertebrates, providing a direct link between the vertebrate assemblage and soil microbial communities. Our results show that changes to vertebrate assemblages through local extinctions and the invasion of exotic species can alter soil fungal communities. If local extinction of one or several species results in the coextinction of microbial taxa, the full complement of ecological interactions may never be restored. © 2015 John Wiley & Sons Ltd.
Kinetics of Mixed Microbial Assemblages Enhance Removal of Highly Dilute Organic Substrates
Lewis, David L.; Hodson, Robert E.; Hwang, Huey-Min
1988-01-01
Our experiments with selected organic substrates reveal that the rate-limiting process governing microbial degradation rates changes with substrate concentration, S, in such a manner that substrate removal is enhanced at lower values of S. This enhancement is the result of the dominance of very efficient systems for substrate removal at low substrate concentrations. The variability of dominant kinetic parameters over a range of S causes the kinetics of complex assemblages to be profoundly dissimilar to those of systems possessing a single set of kinetic parameters; these findings necessitate taking a new approach to predicting substrate removal rates over wide ranges of S. PMID:16347715
Wu, Wencheng; Dong, Changxun; Wu, Jiahui; Liu, Xiaowen; Wu, Yingxin; Chen, Xianbin; Yu, Shixiao
2017-12-01
Soil microbes play vital roles in ecosystem functions, and soil microbial communities may be strongly structured by land use patterns associated with electronic waste (e-waste) recycling activities, which can increase the heavy metal concentration in soils. In this study, a suite of soils from five land use types (paddy field, vegetable field, dry field, forest field, and e-waste recycling site) were collected in Longtang Town, Guangdong Province, South China. Soil physicochemical properties and heavy metal concentrations were measured, and the indigenous microbial assemblages were profiled using 16S rRNA high-throughput sequencing and clone library analyses. The results showed that mercury concentration was positively correlated with both Faith's PD and Chao1 estimates, suggesting that the soil microbial alpha diversity was predominantly regulated by mercury. In addition, redundancy analysis indicated that available phosphorus, soil moisture, and mercury were the three major drivers affecting the microbial assemblages. Overall, the microbial composition was determined primarily by land use patterns, and this study provides a novel insight on the composition and diversity of microbial communities in soils associated with e-waste recycling activities. Copyright © 2017 Elsevier B.V. All rights reserved.
Effects of Non-Indigenous Oysters on Microbial Diversity and Ecosystem Functioning
Green, Dannielle S.; Boots, Bas; Crowe, Tasman P.
2012-01-01
Invasive ecosystem engineers can physically and chemically alter the receiving environment, thereby affecting biodiversity and ecosystem functioning. The Pacific oyster, Crassostrea gigas, invasive throughout much of the world, can establish dense populations monopolising shorelines and possibly altering ecosystem processes including decomposition and nutrient cycling. The effects of increasing cover of invasive C. gigas on ecosystem processes and associated microbial assemblages in mud-flats were tested experimentally in the field. Pore-water nutrients (NH4 + and total oxidised nitrogen), sediment chlorophyll content, microbial activity, total carbon and nitrogen, and community respiration (CO2 and CH4) were measured to assess changes in ecosystem functioning. Assemblages of bacteria and functionally important microbes, including methanogens, methylotrophs and ammonia-oxidisers were assessed in the oxic and anoxic layers of sediment using terminal restriction length polymorphism of the bacterial 16S rRNA, mxaF, amoA and archaeal mcrA genes respectively. At higher covers (40 and 80%) of oysters there was significantly greater microbial activity, increased chlorophyll content, CO2 (13 fold greater) and CH4 (6 fold greater) emission from the sediment compared to mud-flats without C. gigas. At 10% cover, C. gigas increased the concentration of total oxidised nitrogen and altered the assemblage structure of ammonia-oxidisers and methanogens. Concentrations of pore-water NH4 + were increased by C. gigas regardless of cover. Invasive species can alter ecosystem functioning not only directly, but also indirectly, by affecting microbial communities vital for the maintenance of ecosystem processes, but the nature and magnitude of these effects can be non-linear, depending on invader abundance. PMID:23144762
NASA Astrophysics Data System (ADS)
Finley, B. K.; Schwartz, E.; Koch, B.; Dijkstra, P.; Hungate, B. A.
2017-12-01
The interactions between soil mineral assemblages and microbial communities are important drivers of soil organic carbon (SOC) cycling and storage, although the mechanisms driving these interactions remain unclear. There is increasing evidence supporting the importance of associations with poorly crystalline, short-range order (SRO) minerals in protection of SOC from microbial utilization. However, how the microbial processing of SRO-associated SOC may be influenced by fresh organic matter inputs (priming) remains poorly understood. The influence on SRO minerals on soil microbial community dynamics is uncertain as well. Therefore, we conducted a priming incubation by adding either a simulated root exudate mixture or conifer needle litter to three soils from a mixed-conifer ecosystem. The parent material of the soils were andesite, basalt, and granite and decreased in SRO mineral content, respectively. We also conducted a parallel quantitative stable isotope probing incubation by adding 18O-labelled water to the soils to isotopically label microbial DNA in situ. This allowed us to characterize and identify the active bacterial and archaeal community and taxon-specific growth under fresh organic matter input. While the granite soil (lowest SRO content), had the largest total mineralization, the least priming occurred. The andesite and basalt soils (greater SRO content) had lower total respiration, but greater priming. Across all treatments, the granite soil, while having the lowest species richness of the entire community (249 taxa, both active and inactive), had a larger active community (90%) in response to new SOC input. The andesite and basalt soils, while having greater total species richness of the entire community at 333 and 325 taxa, respectively, had fewer active taxa in response to new C compared to the granite soil (30% and 49% taxa, respectively). These findings suggest that the soil mineral assemblage is an important driver on SOC cycling under fresh organic matter inputs, as well as on the activity and diversity of the microbial community. Often, microbial diversity is associated with function. Our results suggest that the soil environment, in this case SRO mineral content, may be more important on SOC cycling and storage than microbial diversity alone.
Storrie-Lombardi, Michael C; Sattler, Birgit
2009-09-01
Laser-induced fluorescence emission (L.I.F.E.) images were obtained in situ following 532 nm excitation of cryoconite assemblages in the ice covers of annual and perennially frozen Antarctic lakes during the 2008 Tawani International Expedition to Schirmacher Oasis and Lake Untersee in Dronning Maud Land, Antarctica. Laser targeting of a single millimeter-scale cryoconite results in multiple neighboring excitation events secondary to ice/air interface reflection and refraction in the bubbles surrounding the primary target. Laser excitation at 532 nm of cyanobacteria-dominated assemblages produced red and infrared autofluorescence activity attributed to the presence of phycoerythrin photosynthetic pigments. The method avoids destruction of individual target organisms and does not require the disruption of either the structure of the microbial community or the surrounding ice matrix. L.I.F.E. survey strategies described may be of interest for orbital monitoring of photosynthetic primary productivity in polar and alpine glaciers, ice sheets, snow, and lake ice of Earth's cryosphere. The findings open up the possibility of searching from either a rover or from orbit for signs of life in the polar regions of Mars and the frozen regions of exoplanets in neighboring star systems.
Cury, Juliano C.; Araujo, Fabio V.; Coelho-Souza, Sergio A.; Peixoto, Raquel S.; Oliveira, Joana A. L.; Santos, Henrique F.; Dávila, Alberto M. R.; Rosado, Alexandre S.
2011-01-01
Background Upwelling systems are characterised by an intense primary biomass production in the surface (warmest) water after the outcrop of the bottom (coldest) water, which is rich in nutrients. Although it is known that the microbial assemblage plays an important role in the food chain of marine systems and that the upwelling systems that occur in southwest Brazil drive the complex dynamics of the food chain, little is known about the microbial composition present in this region. Methodology/Principal Findings We carried out a molecular survey based on SSU rRNA gene from the three domains of the phylogenetic tree of life present in a tropical upwelling region (Arraial do Cabo, Rio de Janeiro, Brazil). The aim was to analyse the horizontal and vertical variations of the microbial composition in two geographically close areas influenced by anthropogenic activity (sewage disposal/port activity) and upwelling phenomena, respectively. A lower estimated diversity of microorganisms of the three domains of the phylogenetic tree of life was found in the water of the area influenced by anthropogenic activity compared to the area influenced by upwelling phenomena. We observed a heterogenic distribution of the relative abundance of taxonomic groups, especially in the Archaea and Eukarya domains. The bacterial community was dominated by Proteobacteria, Cyanobacteria and Bacteroidetes phyla, whereas the microeukaryotic community was dominated by Metazoa, Fungi, Alveolata and Stramenopile. The estimated archaeal diversity was the lowest of the three domains and was dominated by uncharacterised marine Crenarchaeota that were most closely related to Marine Group I. Conclusions/Significance The variety of conditions and the presence of different microbial assemblages indicated that the area of Arraial do Cabo can be used as a model for detailed studies that contemplate the correlation between pollution-indicating parameters and the depletion of microbial diversity in areas close to anthropogenic activity; functional roles and geochemical processes; phylogeny of the uncharacterised diversity; and seasonal variations of the microbial assemblages. PMID:21304582
Casey, Jordan M.; Connolly, Sean R.; Ainsworth, Tracy D.
2015-01-01
By cultivating turf algae and aggressively defending their territories, territorial damselfishes in the genus Stegastes play a major role in shaping coral-algal dynamics on coral reefs. The epilithic algal matrix (EAM) inside Stegastes’ territories is known to harbor high abundances of potential coral disease pathogens. To determine the impact of territorial grazers on coral microbial assemblages, we established a coral transplant inside and outside of Stegastes’ territories. Over the course of one year, the percent mortality of transplanted corals was monitored and coral samples were collected for microbial analysis. As compared to outside damselfish territories, Stegastes were associated with a higher rate of mortality of transplanted corals. However, 16S rDNA sequencing revealed that territorial grazers do not differentially impact the microbial assemblage of corals exposed to the EAM. Regardless of Stegastes presence or absence, coral transplantation resulted in a shift in the coral-associated microbial community and an increase in coral disease associated potential pathogens. Further, transplanted corals that suffer low to high mortality undergo a microbial transition from a microbiome similar to that of healthy corals to that resembling the EAM. These findings demonstrate that coral transplantation significantly impacts coral microbial communities, and transplantation may increase susceptibility to coral disease. PMID:26144865
Liu, Jun; He, Xiao-Xin; Lin, Xue-Rui; Chen, Wen-Ce; Zhou, Qi-Xing; Shu, Wen-Sheng; Huang, Li-Nan
2015-06-02
The crude processing of electronic waste (e-waste) has led to serious contamination in soils. While microorganisms may play a key role in remediation of the contaminated soils, the ecological effects of combined pollution (heavy metals, polychlorinated biphenyls, and polybrominated diphenyl ethers) on the composition and diversity of microbial communities remain unknown. In this study, a suite of e-waste contaminated soils were collected from Guiyu, China, and the indigenous microbial assemblages were profiled by 16S rRNA high-throughput sequencing and clone library analysis. Our data revealed significant differences in microbial taxonomic composition between the contaminated and the reference soils, with Proteobacteria, Acidobacteria, Bacteroidetes, and Firmicutes dominating the e-waste-affected communities. Genera previously identified as organic pollutants-degrading bacteria, such as Acinetobacter, Pseudomonas, and Alcanivorax, were frequently detected. Canonical correspondence analysis revealed that approximately 70% of the observed variation in microbial assemblages in the contaminated soils was explained by eight environmental variables (including soil physiochemical parameters and organic pollutants) together, among which moisture content, decabromodiphenyl ether (BDE-209), and copper were the major factors. These results provide the first detailed phylogenetic look at the microbial communities in e-waste contaminated soils, demonstrating that the complex combined pollution resulting from improper e-waste recycling may significantly alter soil microbiota.
Kaster, Krista M; Bonaunet, Kristin; Berland, Harald; Kjeilen-Eilertsen, Grethe; Brakstad, Odd Gunnar
2009-11-01
Recent studies have indicated that oil reservoirs harbour diverse microbial communities. Culture-dependent and culture-independent methods were used to evaluate the microbial diversity in produced water samples of the Ekofisk oil field, a high temperature, and fractured chalk reservoir in the North Sea. DGGE analyses of 16S rRNA gene fragments were used to assess the microbial diversity of both archaeal and bacterial communities in produced water samples and enrichment cultures from 4 different wells (B-08, X-08, X-18 and X-25). Low diversity communities were found when 16S rDNA libraries of bacterial and archaeal assemblages were generated from total community DNA obtained from produced water samples and enrichment cultures. Sequence analysis of the clones indicated close matches to microbes associated with high-temperature oil reservoirs or other similar environments. Sequences were found to be similar to members of the genera Thermotoga, Caminicella, Thermoanaerobacter, Archaeoglobus, Thermococcus, and Methanobulbus. Enrichment cultures obtained from the produced water samples were dominated by sheathed rods. Sequence analyses of the cultures indicated predominance of the genera Petrotoga, Arcobacter, Archaeoglobus and Thermococcus. The communities of both produced water and enrichment cultures appeared to be dominated by thermophilic fermenters capable of reducing sulphur compounds. These results suggest that the biochemical processes in the Ekofisk chalk reservoir are similar to those observed in high-temperature sandstone reservoirs.
Liu, Jun; Hua, Zheng-Shuang; Chen, Lin-Xing; Kuang, Jia-Liang; Li, Sheng-Jin; Shu, Wen-Sheng
2014-01-01
Recent molecular surveys have advanced our understanding of the forces shaping the large-scale ecological distribution of microbes in Earth's extreme habitats, such as hot springs and acid mine drainage. However, few investigations have attempted dense spatial analyses of specific sites to resolve the local diversity of these extraordinary organisms and how communities are shaped by the harsh environmental conditions found there. We have applied a 16S rRNA gene-targeted 454 pyrosequencing approach to explore the phylogenetic differentiation among 90 microbial communities from a massive copper tailing impoundment generating acidic drainage and coupled these variations in community composition with geochemical parameters to reveal ecological interactions in this extreme environment. Our data showed that the overall microbial diversity estimates and relative abundances of most of the dominant lineages were significantly correlated with pH, with the simplest assemblages occurring under extremely acidic conditions and more diverse assemblages associated with neutral pHs. The consistent shifts in community composition along the pH gradient indicated that different taxa were involved in the different acidification stages of the mine tailings. Moreover, the effect of pH in shaping phylogenetic structure within specific lineages was also clearly evident, although the phylogenetic differentiations within the Alphaproteobacteria, Deltaproteobacteria, and Firmicutes were attributed to variations in ferric and ferrous iron concentrations. Application of the microbial assemblage prediction model further supported pH as the major factor driving community structure and demonstrated that several of the major lineages are readily predictable. Together, these results suggest that pH is primarily responsible for structuring whole communities in the extreme and heterogeneous mine tailings, although the diverse microbial taxa may respond differently to various environmental conditions. PMID:24727268
Militon, Cécile; Jézéquel, Ronan; Gilbert, Franck; Corsellis, Yannick; Sylvi, Léa; Cravo-Laureau, Cristiana; Duran, Robert; Cuny, Philippe
2015-10-01
To study the impact of oxygen regimes on the removal of polycylic aromatic hydrocarbons (PAHs) in oil-spill-affected coastal marine sediments, we used a thin-layer incubation method to ensure that the incubated sediment was fully oxic, anoxic, or was influenced by oxic-anoxic switches without sediment stirring. Hydrocarbon content and microbial assemblages were followed during 60 days to determine PAH degradation kinetics and microbial community dynamics according to the oxygenation regimes. The highest PAH removal, with 69 % reduction, was obtained at the end of the experiment under oxic conditions, whereas weaker removals were obtained under oscillating and anoxic conditions (18 and 12 %, respectively). Bacterial community structure during the experiment was determined using a dual 16S rRNA genes/16S rRNA transcripts approach, allowing the characterization of metabolically active bacteria responsible for the functioning of the bacterial community in the contaminated sediment. The shift of the metabolically active bacterial communities showed that the selection of first responders belonged to Pseudomonas spp. and Labrenzia sp. and included an unidentified Deltaproteobacteria-irrespective of the oxygen regime-followed by the selection of late responders adapted to the oxygen regime. A novel unaffiliated phylotype (B38) was highly active during the last stage of the experiment, at which time, the low-molecular-weight (LMW) PAH biodegradation rates were significant for permanent oxic- and oxygen-oscillating conditions, suggesting that this novel phylotype plays an active role during the restoration phase of the studied ecosystem.
We compared extracellular enzyme activity (EEA) of microbial assemblages in river sediments at 447 sites along the Upper Mississippi, Missouri, and Ohio Rivers with sediment and water chemistry, atmospheric deposition of nitrogen and sulfate, and catchment land uses. The sites re...
NASA Astrophysics Data System (ADS)
Myers, E.; Summons, R. E.; Schubotz, F.; Matys, E. D.
2015-12-01
Stromatolites that are biogenic in origin, a characteristic that can be determined by the coexistence of microbial mats (active microbial communities) and stromatolites (lithified structures) like in Hamelin Pool, comprise one of the best modern analogs to ancient microbial community assemblages. Comprehensive lipid biomarker profiles that include lipids of varying persistence in the rock record can help determine how previously living microbial communities are represented in lithified stromatolites. To create these profiles, the samples analyzed included non-lithified smooth, pustular, and colloform microbial mats, as well as smooth and colloform stromatolites. Select samples were separated into upper and lower layers of 5cm depth each. Intact polar lipids, glycerol dialkyl glycerol tetraethers, and bacteriohopanepolyols were analyzed via liquid chromatography-mass spectrometry (LC-MS) coupled to a Quadropole Time-of-Flight (QTOF) mass spectrometer; additionally, fatty acids from each sample were analyzed using gas chromatography-mass spectrometry (GC-MS) to prove consistent signatures with those determined by Allen et al. in 2010 for similar microbial mat samples. In accordance with those findings, 2-methylhopanoids were detected, as well as limited signals from higher (vascular) plants, the latter of which suggests terrestrial inputs, potentially from runoff. The rarely detected presence of 3-methylhopanoids appears in a significant portion of the samples, though further isolations of the molecule are needed to confirm. While all lipid profiles were relatively similar, certain differences in relative composition are likely attributable to morphological differences of the mats, some of which allow deeper oxygen and/or sunlight penetration, which influence the microbial community. However, overall similarities of transient and persistent lipids suggest that the microbial communities of both the non-lithified microbial mats and stromatolites are similar.
NASA Astrophysics Data System (ADS)
Friedline, C. J.; Franklin, R. B.; McCallister, S. L.; Rivera, M. C.
2012-06-01
Microbial communities are recognized as major drivers of the biogeochemical processes in the oceans. However, the genetic diversity and composition of those communities is poorly understood. The aim of this study is to investigate the composition of bacterial assemblages in three different water layer habitats: surface (2-20 m), deep chlorophyll maximum (DCM; 28-90 m), and deep (100-4600 m) at nine stations along the eastern Atlantic Ocean from 42.8° N to 23.7° S. The sampling of three discrete, predefined habitat types from different depths, Longhurstian provinces, and geographical locations allowed us to investigate whether marine bacterial assemblages show spatial variation and to determine if the observed spatial variation is influenced by current environmental conditions, historical/geographical contingencies, or both. The PCR amplicons of the V6 region of the 16S rRNA from 16 microbial assemblages were pyrosequenced, generating a total of 352 029 sequences; after quality filtering and processing, 257 260 sequences were clustered into 2871 normalized operational taxonomic units (OTU) using a definition of 97% sequence identity. Community ecology statistical analyses demonstrate that the eastern Atlantic Ocean bacterial assemblages are vertically stratified and associated with water layers characterized by unique environmental signals (e.g., temperature, salinity, and nutrients). Genetic compositions of bacterial assemblages from the same water layer are more similar to each other than to assemblages from different water layers. The observed clustering of samples by water layer allows us to conclude that contemporary environments are influencing the observed biogeographic patterns. Moreover, the implementation of a novel Bayesian inference approach that allows a more efficient and explicit use of all the OTU abundance data shows a distance effect suggesting the influence of historical contingencies on the composition of bacterial assemblages. Surface bacterial communities displayed a general congruency with the ecological provinces as defined by Longhurst with modest exceptions usually associated with unique hydrographic and biogeochemical features. Collectively, our findings suggest that vertical (habitat) and latitudinal (distance) biogeographic signatures are present and that both environmental parameters and ecological provinces drive the composition of bacterial assemblages in the eastern Atlantic Ocean.
NASA Astrophysics Data System (ADS)
Connell, Paige E.; Campbell, Victoria; Gellene, Alyssa G.; Hu, Sarah K.; Caron, David A.
2017-03-01
The grazing activities of phagotrophic protists on various microbial assemblages play key roles in determining the amount of carbon available for higher trophic levels and for export out of the photic zone. However, comparisons of the proportion of carbon consumed from the phytoplankton (cyanobacteria+photosynthetic eukaryotes) and heterotrophic bacteria (bacteria+archaea, excluding cyanobacteria) are rare. In this study, microbial community composition, phytoplankton growth and mortality rates (total chlorophyll a, Synechococcus, Prochlorococcus, and photosynthetic picoeukaryotes), and bacterial mortality rates were measured seasonally from 2012 to 2014 in the surface waters of three environmentally distinct sites in the San Pedro Channel, off the coast of southern CA, USA. Higher nutrient concentrations at the nearshore site supported community standing stocks that were 1.3-4.5x those found offshore, yet average growth and grazing rates of the phytoplankton and bacterial assemblages were generally similar between sites and across seasons. Thus, the amount of carbon consumed by the grazer assemblage was largely dictated by prey standing stocks. Heterotrophic bacteria constituted an important source of carbon for microbial consumers, particularly at the two offshore sites where bacterial carbon consumed was roughly equivalent to the amount of phytoplankton carbon consumed. Carbon removal by grazers at the nearshore station was predominantly from the diatoms, which were the primary component of the photosynthetic community at that site. This study highlights the significant contribution of protistan-bacterial trophic interactions to planktonic food webs and provides unique community composition and turnover data to inform biogeochemical models.
Liu, Jun; Chen, Xi; Shu, Hao-Yue; Lin, Xue-Rui; Zhou, Qi-Xing; Bramryd, Torleif; Shu, Wen-Sheng; Huang, Li-Nan
2018-04-01
The release of toxic organic pollutants and heavy metals by primitive electronic waste (e-waste) processing to waterways has raised significant concerns, but little is known about their potential ecological effects on aquatic biota especially microorganisms. We characterized the microbial community composition and diversity in sediments sampled along two rivers consistently polluted by e-waste, and explored how community functions may respond to the complex combined pollution. High-throughput 16S rRNA gene sequencing showed that Proteobacteria (particularly Deltaproteobacteria) dominated the sediment microbial assemblages followed by Bacteroidetes, Acidobacteria, Chloroflexi and Firmicutes. PICRUSt metagenome inference provided an initial insight into the metabolic potentials of these e-waste affected communities, speculating that organic pollutants degradation in the sediment might be mainly performed by some of the dominant genera (such as Sulfuricurvum, Thiobacillus and Burkholderia) detected in situ. Statistical analyses revealed that toxic organic compounds contributed more to the observed variations in sediment microbial community structure and predicted functions (24.68% and 8.89%, respectively) than heavy metals (12.18% and 4.68%), and Benzo(a)pyrene, bioavailable lead and electrical conductivity were the key contributors. These results have shed light on the microbial assemblages in e-waste contaminated river sediments, indicating a potential influence of e-waste pollution on the microbial community structure and function in aquatic ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mora-Gómez, Juanita; Elosegi, Arturo; Duarte, Sofia; Cássio, Fernanda; Pascoal, Cláudia; Romaní, Anna M
2016-08-01
Microorganisms are key drivers of leaf litter decomposition; however, the mechanisms underlying the dynamics of different microbial groups are poorly understood. We investigated the effects of seasonal variation and invertebrates on fungal and bacterial dynamics, and on leaf litter decomposition. We followed the decomposition of Populus nigra litter in a Mediterranean stream through an annual cycle, using fine and coarse mesh bags. Irrespective of the season, microbial decomposition followed two stages. Initially, bacterial contribution to total microbial biomass was higher compared to later stages, and it was related to disaccharide and lignin degradation; in a later stage, bacteria were less important and were associated with hemicellulose and cellulose degradation, while fungi were related to lignin decomposition. The relevance of microbial groups in decomposition differed among seasons: fungi were more important in spring, whereas in summer, water quality changes seemed to favour bacteria and slowed down lignin and hemicellulose degradation. Invertebrates influenced litter-associated microbial assemblages (especially bacteria), stimulated enzyme efficiencies and reduced fungal biomass. We conclude that bacterial and fungal assemblages play distinctive roles in microbial decomposition and differ in their sensitivity to environmental changes, ultimately affecting litter decomposition, which might be particularly relevant in highly seasonal ecosystems, such as intermittent streams. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Spatial Molecular Architecture of the Microbial Community of a Peltigera Lichen.
Garg, Neha; Zeng, Yi; Edlund, Anna; Melnik, Alexey V; Sanchez, Laura M; Mohimani, Hosein; Gurevich, Alexey; Miao, Vivian; Schiffler, Stefan; Lim, Yan Wei; Luzzatto-Knaan, Tal; Cai, Shengxin; Rohwer, Forest; Pevzner, Pavel A; Cichewicz, Robert H; Alexandrov, Theodore; Dorrestein, Pieter C
2016-01-01
Microbes are commonly studied as individual species, but they exist as mixed assemblages in nature. At present, we know very little about the spatial organization of the molecules, including natural products that are produced within these microbial networks. Lichens represent a particularly specialized type of symbiotic microbial assemblage in which the component microorganisms exist together. These composite microbial assemblages are typically comprised of several types of microorganisms representing phylogenetically diverse life forms, including fungi, photosymbionts, bacteria, and other microbes. Here, we employed matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) imaging mass spectrometry to characterize the distributions of small molecules within a Peltigera lichen. In order to probe how small molecules are organized and localized within the microbial consortium, analytes were annotated and assigned to their respective producer microorganisms using mass spectrometry-based molecular networking and metagenome sequencing. The spatial analysis of the molecules not only reveals an ordered layering of molecules within the lichen but also supports the compartmentalization of unique functions attributed to various layers. These functions include chemical defense (e.g., antibiotics), light-harvesting functions associated with the cyanobacterial outer layer (e.g., chlorophyll), energy transfer (e.g., sugars) surrounding the sun-exposed cyanobacterial layer, and carbohydrates that may serve a structural or storage function and are observed with higher intensities in the non-sun-exposed areas (e.g., complex carbohydrates). IMPORTANCE Microbial communities have evolved over centuries to live symbiotically. The direct visualization of such communities at the chemical and functional level presents a challenge. Overcoming this challenge may allow one to visualize the spatial distributions of specific molecules involved in symbiosis and to define their functional roles in shaping the community structure. In this study, we examined the diversity of microbial genes and taxa and the presence of biosynthetic gene clusters by metagenomic sequencing and the compartmentalization of organic chemical components within a lichen using mass spectrometry. This approach allowed the identification of chemically distinct sections within this composite organism. Using our multipronged approach, various fungal natural products, not previously reported from lichens, were identified and two different fungal layers were visualized at the chemical level.
Spatial Molecular Architecture of the Microbial Community of a Peltigera Lichen
Garg, Neha; Zeng, Yi; Edlund, Anna; Melnik, Alexey V.; Mohimani, Hosein; Gurevich, Alexey; Miao, Vivian; Schiffler, Stefan; Lim, Yan Wei; Luzzatto-Knaan, Tal; Cai, Shengxin; Rohwer, Forest; Pevzner, Pavel A.; Cichewicz, Robert H.; Alexandrov, Theodore
2016-01-01
ABSTRACT Microbes are commonly studied as individual species, but they exist as mixed assemblages in nature. At present, we know very little about the spatial organization of the molecules, including natural products that are produced within these microbial networks. Lichens represent a particularly specialized type of symbiotic microbial assemblage in which the component microorganisms exist together. These composite microbial assemblages are typically comprised of several types of microorganisms representing phylogenetically diverse life forms, including fungi, photosymbionts, bacteria, and other microbes. Here, we employed matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) imaging mass spectrometry to characterize the distributions of small molecules within a Peltigera lichen. In order to probe how small molecules are organized and localized within the microbial consortium, analytes were annotated and assigned to their respective producer microorganisms using mass spectrometry-based molecular networking and metagenome sequencing. The spatial analysis of the molecules not only reveals an ordered layering of molecules within the lichen but also supports the compartmentalization of unique functions attributed to various layers. These functions include chemical defense (e.g., antibiotics), light-harvesting functions associated with the cyanobacterial outer layer (e.g., chlorophyll), energy transfer (e.g., sugars) surrounding the sun-exposed cyanobacterial layer, and carbohydrates that may serve a structural or storage function and are observed with higher intensities in the non-sun-exposed areas (e.g., complex carbohydrates). IMPORTANCE Microbial communities have evolved over centuries to live symbiotically. The direct visualization of such communities at the chemical and functional level presents a challenge. Overcoming this challenge may allow one to visualize the spatial distributions of specific molecules involved in symbiosis and to define their functional roles in shaping the community structure. In this study, we examined the diversity of microbial genes and taxa and the presence of biosynthetic gene clusters by metagenomic sequencing and the compartmentalization of organic chemical components within a lichen using mass spectrometry. This approach allowed the identification of chemically distinct sections within this composite organism. Using our multipronged approach, various fungal natural products, not previously reported from lichens, were identified and two different fungal layers were visualized at the chemical level. PMID:28028548
Yang, Jinying; Li, Jing; Luan, Xiwu; Zhang, Yunbo; Gu, Guizhou; Xue, Rongrong; Zong, Mingyue; Klotz, Martin G.
2013-01-01
The South China Sea (SCS), the largest marginal sea in the Western Pacific Ocean, is a huge oligotrophic water body with very limited influx of nitrogenous nutrients. This suggests that sediment microbial N2 fixation plays an important role in the production of bioavailable nitrogen. To test the molecular underpinning of this hypothesis, the diversity, abundance, biogeographical distribution, and community structure of the sediment diazotrophic microbiota were investigated at 12 sampling sites, including estuarine, coastal, offshore, deep-sea, and methane hydrate reservoirs or their prospective areas by targeting nifH and some other functional biomarker genes. Diverse and novel nifH sequences were obtained, significantly extending the evolutionary complexity of extant nifH genes. Statistical analyses indicate that sediment in situ temperature is the most significant environmental factor influencing the abundance, community structure, and spatial distribution of the sediment nifH-harboring microbial assemblages in the northern SCS (nSCS). The significantly positive correlation of the sediment pore water NH4+ concentration with the nifH gene abundance suggests that the nSCS sediment nifH-harboring microbiota is active in N2 fixation and NH4+ production. Several other environmental factors, including sediment pore water PO43− concentration, sediment organic carbon, nitrogen and phosphorus levels, etc., are also important in influencing the community structure, spatial distribution, or abundance of the nifH-harboring microbial assemblages. We also confirmed that the nifH genes encoded by archaeal diazotrophs in the ANME-2c subgroup occur exclusively in the deep-sea methane seep areas, providing for the possibility to develop ANME-2c nifH genes as a diagnostic tool for deep-sea methane hydrate reservoir discovery. PMID:23064334
Authigenic carbonate precipitation in Lake Acigöl, a hypersaline lake in southwestern Turkey
NASA Astrophysics Data System (ADS)
Balci, Nurgul; Menekse, Meryem; Gül Karagüler, Nevin; Seref Sönmez, M.; Meister, Patrick
2014-05-01
Lake Acigöl (Bitter Lake) is a hypersaline lake in southwestern Turkey at an elevation of 836 m above sea level showing authigenic precipitation of several different carbonate mineral phases. It is a perennial lake and closed drainage basin where a semiarid continental climate dominates. Due to the extreme water chemistry (salinity 8-200 mg/l; SO4 112-15232 mg/l; Cl 290-35320 mg/l; Mg, 82-3425 mg/l; Ca 102-745 mg/l) unique microorganisms flourish in the lake. We studied microbial diversity from enrichment cultures and performed precipitation experiments using similar water chemistry and adding bacterial enrichment cultures from lake sediments in order to elucidate whether the mineral assemblages found in the lake can be reproduced. Experiments using moderately halophilic bacteria obtained from the lake sediments demonstrate the formation of various calcium-/magnesium-carbonates: hydromagnesite, dypingite, huntite, monohydrocalcite and aragonite. The relative amounts of different mineral phases, particularly monohydrocalcite, hydromagnesite and dypingite, could be controlled by varying the sulphate concentration in the media from 0 to 56 mM. The similar mineral assemblages identified in the sediments of Lake Acigöl and in the experiments point to similar thermodynamic conditions and kinetics of crystal growth. In particular, the similar spherical morphology points to a rapid crystal growth under strong kinetic inhibition, possibly by organic polymers that are commonly produced by microbial communities. Our results demonstrate that the authigenic carbonate paragenesis of hypersaline lakes as Lake Acigöl can be reproduced in halophilic bacterial cultures. The exact thermodynamic conditions and precipitation kinetics under seasonally changing water chemistry or in batch experiment, however, still have to be constrained in order to establish a microbial model for carbonate precipitation in such environments.
NASA Astrophysics Data System (ADS)
Nowak, Martin E.; Schwab, Valérie F.; Lazar, Cassandre S.; Behrendt, Thomas; Kohlhepp, Bernd; Totsche, Kai Uwe; Küsel, Kirsten; Trumbore, Susan E.
2017-08-01
Isotopes of dissolved inorganic carbon (DIC) are used to indicate both transit times and biogeochemical evolution of groundwaters. These signals can be complicated in carbonate aquifers, as both abiotic (i.e., carbonate equilibria) and biotic factors influence the δ13C and 14C of DIC. We applied a novel graphical method for tracking changes in the δ13C and 14C of DIC in two distinct aquifer complexes identified in the Hainich Critical Zone Exploratory (CZE), a platform to study how water transport links surface and shallow groundwaters in limestone and marlstone rocks in central Germany. For more quantitative estimates of contributions of different biotic and abiotic carbon sources to the DIC pool, we used the NETPATH geochemical modeling program, which accounts for changes in dissolved ions in addition to C isotopes. Although water residence times in the Hainich CZE aquifers based on hydrogeology are relatively short (years or less), DIC isotopes in the shallow, mostly anoxic, aquifer assemblage (HTU) were depleted in 14C compared to a deeper, oxic, aquifer complex (HTL). Carbon isotopes and chemical changes in the deeper HTL wells could be explained by interaction of recharge waters equilibrated with post-bomb 14C sources with carbonates. However, oxygen depletion and δ13C and 14C values of DIC below those expected from the processes of carbonate equilibrium alone indicate considerably different biogeochemical evolution of waters in the upper aquifer assemblage (HTU wells). Changes in 14C and 13C in the upper aquifer complexes result from a number of biotic and abiotic processes, including oxidation of 14C-depleted OM derived from recycled microbial carbon and sedimentary organic matter as well as water-rock interactions. The microbial pathways inferred from DIC isotope shifts and changes in water chemistry in the HTU wells were supported by comparison with in situ microbial community structure based on 16S rRNA analyses. Our findings demonstrate the large variation in the importance of biotic as well as abiotic controls on 13C and 14C of DIC in closely related aquifer assemblages. Further, they support the importance of subsurface-derived carbon sources like DIC for chemolithoautotrophic microorganisms as well as rock-derived organic matter for supporting heterotrophic groundwater microbial communities and indicate that even shallow aquifers have microbial communities that use a variety of subsurface-derived carbon sources.
Colonization of overlaying water by bacteria from dry river sediments.
Fazi, Stefano; Amalfitano, Stefano; Piccini, Claudia; Zoppini, Annamaria; Puddu, Alberto; Pernthaler, Jakob
2008-10-01
We studied the diversity, community composition and activity of the primary microbial colonizers of the water above freshly re-wetted sediments from a temporary river. Dried sediments, collected from Mulargia River (Sardinia, Italy), were covered with sterile freshwater in triplicate microcosms, and changes of the planktonic microbial assemblage were monitored over a 48 h period. During the first 9 h bacterial abundance was low (1.5 x 10(4) cells ml(-1)); it increased to 3.4 x 10(6) cells ml(-1) after 28 h and did not change thereafter. Approximately 20% of bacteria exhibited DNA de novo synthesis already after 9 h of incubation. Changes of the ratios of (3)H-leucine to (3)H-thymidine incorporation rates indicated a shift of growth patterns during the experiment. Extracellular enzyme activity showed a maximum at 48 h with aminopeptidase activity (430.8 +/- 22.6 nmol MCA l(-1) h(-1)) significantly higher than alkaline phosphatase (98.6 +/- 4.3 nmol MUF l(-1) h(-1)). The primary microbial colonizers of the overlaying water - as determined by 16S rRNA gene sequence analysis - were related to at least six different phylogenetic lineages of Bacilli and to Alphaproteobacteria (Brevundimonas spp. and Caulobacter spp.). Large bacterial cells affiliated to one clade of Bacillus sp. were rare in the dried sediments, but constituted the majority of the planktonic microbial assemblage and of cells with detectable DNA-synthesis until 28 h after re-wetting. Their community contribution decreased in parallel with a rise of flagellated and ciliated protists. Estimates based on cell production rates suggested that the rapidly enriched Bacillus sp. suffered disproportionally high loss rates from selective predation, thus favouring the establishment of a more heterogenic assemblage of microbes (consisting of Proteobacteria, Actinobacteria and Cytophaga-Flavobacteria). Our results suggest that the primary microbial colonizers of the water above dried sediments are passively released into the plankton and that their high growth potential is counteracted by the activity of bacterivorous protists.
Lindh, Markus V; Maillot, Brianne M; Smith, Craig R; Church, Matthew J
2018-04-01
Deep-sea mining of commercially valuable polymetallic nodule fields will generate a seabed sediment plume into the water column. Yet, the response of bacterioplankton communities, critical in regulating energy and matter fluxes in marine ecosystems, to such disturbances is unknown. Metacommunity theory, traditionally used in general ecology for macroorganisms, offers mechanistic understanding on the relative role of spatial differences compared with local environmental conditions (habitat filtering) for community assembly. We examined bacterioplankton metacommunities using 16S rRNA amplicons from the Clarion-Clipperton Zone (CCZ) in the eastern Pacific Ocean and in global ocean transect samples to determine sensitivity of these assemblages to environmental perturbations. Habitat filtering was the main assembly mechanism of bacterioplankton community composition in the epi- and mesopelagic waters of the CCZ and the Tara Oceans transect. Bathy- and abyssopelagic bacterioplankton assemblages were mainly assembled by undetermined metacommunity types or neutral and dispersal-driven patch-dynamics for the CCZ and the Malaspina transect. Environmental disturbances may alter the structure of upper-ocean microbial assemblages, with potentially even more substantial, yet unknown, impact on deep-sea communities. Predicting such responses in bacterioplankton assemblage dynamics can improve our understanding of microbially-mediated regulation of ecosystem services in the abyssal seabed likely to be exploited by future deep-sea mining operations. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.
Towards a universal microbial inoculum for dissolved organic carbon degradation experiments
NASA Astrophysics Data System (ADS)
Pastor, Ada; Catalán, Núria; Gutiérrez, Carmen; Nagar, Nupur; Casas-Ruiz, Joan P.; Obrador, Biel; von Schiller, Daniel; Sabater, Sergi; Petrovic, Mira; Borrego, Carles M.; Marcé, Rafael
2017-04-01
Dissolved organic carbon (DOC) is the largest biologically available pool of organic carbon in aquatic ecosystems and its degradation along the land-to-ocean continuum has implications for carbon cycling from local to global scales. DOC biodegradability is usually assessed by incubating filtered water inoculated with native microbial assemblages in the laboratory. However, the use of a native inoculum from several freshwaters, without having a microbial-tailored design, hampers our ability to tease apart the relative contribution of the factors driving DOC degradation from the effects of local microbial communities. The use of a standard microbial inoculum would allow researchers to disentangle the drivers of DOC degradation from the metabolic capabilities of microbial communities operating in situ. With this purpose, we designed a bacterial inoculum to be used in experiments of DOC degradation in freshwater habitats. The inoculum is composed of six bacterial strains that easily grow under laboratory conditions, possess a versatile metabolism and are able to grow under both aerobic and anaerobic conditions. The mixed inoculum showed higher DOC degradation rates than those from their isolated bacterial components and the consumption of organic substrates was consistently replicated. Moreover, DOC degradation rates obtained using the designed inoculum were responsive across a wide range of natural water types differing in DOC concentration and composition. Overall, our results show the potential of the designed inoculum as a tool to discriminate between the effects of environmental drivers and intrinsic properties of DOC on degradation dynamics.
Microplastic-associated Bacterial Assemblages in the Intertidal Zone
NASA Astrophysics Data System (ADS)
Jiang, P.; Zhao, S.; Zhu, L.; Li, D.
2017-12-01
Plastic debris is posing a planetary-scale threat. As a zone where terrestrial and marine ecosystems interactions occur, the accumulation of plastic marine debris (PMD) in intertidal environments has been well documented. But the information of plastic-associated microbial community (the "Plastisphere") in the intertidal zone is scanty. Utilizing the high-throughput sequencing, we profiled the bacterial communities attached to microplastic samples from the intertidal locations around Yangtze estuary. The structure and composition of Plastisphere communities in current study varied significantly with geographical stations. The taxonomic composition on microplastic samples implied their sedimental and aquatic origins. Some members of hydrocarbon degrading microorganisms and potential pathogens were detected on microplastic. Overall, our findings fuel the evidence for the occurrence of diverse microbial assemblages on PMD and improving our understanding of Plastisphere ecology, which could support the management action and policy change related to PMD.
Leal, Miguel Costa; Sheridan, Christopher; Osinga, Ronald; Dionísio, Gisela; Rocha, Rui Jorge Miranda; Silva, Bruna; Rosa, Rui; Calado, Ricardo
2014-01-01
The chemical diversity associated with marine natural products (MNP) is unanimously acknowledged as the “blue gold” in the urgent quest for new drugs. Consequently, a significant increase in the discovery of MNP published in the literature has been observed in the past decades, particularly from marine invertebrates. However, it remains unclear whether target metabolites originate from the marine invertebrates themselves or from their microbial symbionts. This issue underlines critical challenges associated with the lack of biomass required to supply the early stages of the drug discovery pipeline. The present review discusses potential solutions for such challenges, with particular emphasis on innovative approaches to culture invertebrate holobionts (microorganism-invertebrate assemblages) through in toto aquaculture, together with methods for the discovery and initial production of bioactive compounds from these microbial symbionts. PMID:24983638
Dense water plumes modulate richness and productivity of deep sea microbes.
Luna, Gian Marco; Chiggiato, Jacopo; Quero, Grazia Marina; Schroeder, Katrin; Bongiorni, Lucia; Kalenitchenko, Dimitri; Galand, Pierre E
2016-12-01
Growing evidence indicates that dense water formation and flow over the continental shelf is a globally relevant oceanographic process, potentially affecting microbial assemblages down to the deep ocean. However, the extent and consequences of this influence have yet to be investigated. Here it is shown that dense water propagation to the deep ocean increases the abundance of prokaryotic plankton, and stimulates carbon production and organic matter degradation rates. Dense waters spilling off the shelf modifies community composition of deep sea microbial assemblages, leading to the increased relevance of taxa likely originating from the sea surface and the seafloor. This phenomenon can be explained by a combination of factors that interplay during the dense waters propagation, such as the transport of surface microbes to the ocean floor (delivering in our site 0.1 megatons of C), the stimulation of microbial metabolism due to increased ventilation and nutrients availability, the sediment re-suspension, and the mixing with ambient waters along the path. Thus, these results highlight a hitherto unidentified role for dense currents flowing over continental shelves in influencing deep sea microbes. In light of climate projections, this process will affect significantly the microbial functioning and biogeochemical cycling of large sectors of the ocean interior. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
Bacterial community dynamics in aerated cow manure slurry at different aeration intensities.
Hanajima, D; Fukumoto, Y; Yasuda, T; Suzuki, K; Maeda, K; Morioka, R
2011-12-01
This study aimed to characterize microbial community dynamics in aerated cow manure slurry at different aeration intensities. Batch aerobic treatments were set up in 5-l jar fermentor, each containing 3 l of manure slurry; the slurries were subjected to low, medium and high (50, 150 and 250 ml min(-1), respectively) aeration for 9 days. Microbial community composition was determined using terminal restriction fragment length polymorphism and a clone library targeting 16S rRNA genes. High and medium aeration accelerated organic carbon degradation in parallel with the degree of aeration intensity; however, 90% of the initial total organic carbon was retained during low-aeration treatment. During the active stages of organic carbon decomposition, clones belonging to the class Bacilli accumulated. Moreover, Bacilli accumulation occurred earlier under high aeration than under medium aeration. Organic matter degradation was mainly governed by a common microbial assemblage consisting of many lineages belonging to the class Bacilli. The timing of community development differed depending on aeration intensity. This study reports on changes in several environmentally important parameters and the principal microbial assemblage during the pollution-reducing phase of cattle manure aeration treatment. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.
NASA Astrophysics Data System (ADS)
Hunter, W. R.; Raich, M.; Wanek, W.; Battin, T. J.
2013-12-01
Inland waters are of global biogeochemical importance. They receive carbon inputs of ~ 4.8 Pg C/ y of which, 12 % is buried, 18 % transported to the oceans, and 70 % supports aquatic secondary production. However, the mechanisms that determine the fate of organic matter (OM) in these systems are poorly defined. One aspect of this is the formation of organo-mineral complexes in aquatic systems and their potential as a route for OM transport and burial vs. their use as carbon (C) and nitrogen (N) sources within aquatic systems. Organo-mineral particles form by sorption of dissolved OM to freshly eroded mineral surfaces and may contribute to ecosystem-scale particulate OM fluxes. We experimentally tested the availability of mineral-sorbed OM as a C & N source for streamwater microbial assemblages and streambed biofilms. Organo-mineral particles were constructed in vitro by sorption of 13C:15N-labelled amino acids to hydrated kaolin particles, and microbial degradation of these particles compared with equivalent doses of 13C:15N-labelled free amino acids. Experiments were conducted in 120 ml mesocosms over 7 days using biofilms and water sampled from the Oberer Seebach stream (Austria). Each incubation experienced a 16:8 light:dark regime, with metabolism monitored via changes in oxygen concentrations between photoperiods. The relative fate of the organo-mineral particles was quantified by tracing the mineralization of the 13C and 15N labels and their incorporation into microbial biomass. Here we present the initial results of 13C-label mineralization, incorporation and retention within dissolved organic carbon pool. The results indicate that 514 (× 219) μmol/ mmol of the 13:15N labeled free amino acids were mineralized over the 7-day incubations. By contrast, 186 (× 97) μmol/ mmol of the mineral-sorbed amino acids were mineralized over a similar period. Thus, organo-mineral complexation reduced amino acid mineralization by ~ 60 %, with no differences observed between the streamwater and biofilm assemblages. Throughout the incubations, biofilms were observed to leach dissolved organic carbon (DOC). However, within the streamwater assemblage the presence of both organo-mineral particles and kaolin particles was associated with significant DOC removal (-1.7 % and -7.5 % respectively). Consequently, the study demonstrates that mineral and organo-mineral particles can limit the availability of DOC in aquatic systems, providing nucleation sites for flocculation and fresh mineral surfaces, which facilitate OM-sorption. The formation of these organo-mineral particles subsequently restricts microbial OM degradation, potentially altering the transport and facilitating the burial of OM within streams.
NASA Technical Reports Server (NTRS)
Altermann, W.; Schopf, J. W.
1995-01-01
The oldest filament- and colonial coccoid-containing microbial fossil assemblage now known is described here from drill core samples of stromatolitic cherty limestones of the Neoarchean, approximately 2600-Ma-old Campbell Group (Ghaap Plateau Dolomite, Lime Acres Member) obtained at Lime Acres, northern Cape Province, South Africa. The assemblage is biologically diverse, including entophysalidacean (Eoentophysalis sp.), probable chroococcacean (unnamed colonial coccoids), and oscillatoriacean cyanobacteria (Eomycetopsis cf. filiformis, and Siphonophycus transvaalensis), as well as filamentous fossil bacteria (Archaeotrichion sp.); filamentous possible microfossils (unnamed hematitic filaments) also occur. The Campbell Group microorganisms contributed to the formation of stratiform and domical to columnar stromatolitic reefs in shallow subtidal to intertidal environments of the Transvaal intracratonic sea. Although only moderately to poorly preserved, they provide new evidence regarding the paleoenvironmental setting of the Campbell Group sediments, extend the known time-range of entophysalidacean cyanobacteria by more than 400 million years, substantiate the antiquity and role in stromatolite formation of Archean oscillatoriacean cyanobacteria, and document the exceedingly slow (hypobradytelic) evolutionary rate characteristic of this early evolving prokaryotic lineage.
Structure, inter-annual recurrence, and global-scale connectivity of airborne microbial communities.
Barberán, Albert; Henley, Jessica; Fierer, Noah; Casamayor, Emilio O
2014-07-15
Dust coming from the large deserts on Earth, such as the Sahara, can travel long distances and be dispersed over thousands of square kilometers. Remote dust deposition rates are increasing as a consequence of global change and may represent a mechanism for intercontinental microbial dispersal. Remote oligotrophic alpine lakes are particularly sensitive to dust inputs and can serve as sentinels of airborne microbial transport and the ecological consequences of accelerated intercontinental microbial migration. In this study, we applied high-throughput sequencing techniques (16S rRNA amplicon pyrosequencing) to characterize the microbial communities of atmospheric deposition collected in the Central Pyrenees (NE Spain) along three years. Additionally, bacteria from soils in Mauritania and from the air-water interface of high altitude Pyrenean lakes were also examined. Communities in aerosol deposition varied in time with a strong seasonal component of interannual similarity. Communities from the same season tended to resemble more each other than those from different seasons. Samples from disparate dates, in turn, slightly tended to have more dissimilar microbial assemblages (i.e., temporal distance decay), overall suggesting that atmospheric deposition may influence sink habitats in a temporally predictable manner. The three habitats examined (soil, deposition, and air-water interface) harbored distinct microbial communities, although airborne samples collected in the Pyrenees during Saharan dust outbreaks were closer to Mauritian soil samples than those collected during no Saharan dust episodes. The three habitats shared c.a. 1.4% of the total number of microbial sequences in the dataset. Such successful immigrants were spread in different bacterial classes. Overall, this study suggests that local and regional features may generate global trends in the dynamics and distribution of airborne microbial assemblages, and that the diversity of viable cells in the high atmosphere is likely higher than previously expected. Copyright © 2014 Elsevier B.V. All rights reserved.
A microbial ecosystem beneath the West Antarctic ice sheet.
Christner, Brent C; Priscu, John C; Achberger, Amanda M; Barbante, Carlo; Carter, Sasha P; Christianson, Knut; Michaud, Alexander B; Mikucki, Jill A; Mitchell, Andrew C; Skidmore, Mark L; Vick-Majors, Trista J
2014-08-21
Liquid water has been known to occur beneath the Antarctic ice sheet for more than 40 years, but only recently have these subglacial aqueous environments been recognized as microbial ecosystems that may influence biogeochemical transformations on a global scale. Here we present the first geomicrobiological description of water and surficial sediments obtained from direct sampling of a subglacial Antarctic lake. Subglacial Lake Whillans (SLW) lies beneath approximately 800 m of ice on the lower portion of the Whillans Ice Stream (WIS) in West Antarctica and is part of an extensive and evolving subglacial drainage network. The water column of SLW contained metabolically active microorganisms and was derived primarily from glacial ice melt with solute sources from lithogenic weathering and a minor seawater component. Heterotrophic and autotrophic production data together with small subunit ribosomal RNA gene sequencing and biogeochemical data indicate that SLW is a chemosynthetically driven ecosystem inhabited by a diverse assemblage of bacteria and archaea. Our results confirm that aquatic environments beneath the Antarctic ice sheet support viable microbial ecosystems, corroborating previous reports suggesting that they contain globally relevant pools of carbon and microbes that can mobilize elements from the lithosphere and influence Southern Ocean geochemical and biological systems.
Uria, Naroa; Ferrera, Isabel; Mas, Jordi
2017-10-18
Microbial fuel cells (MFCs) operating with complex microbial communities have been extensively reported in the past, and are commonly used in applications such as wastewater treatment, bioremediation or in-situ powering of environmental sensors. However, our knowledge on how the composition of the microbial community and the different types of electron transfer to the anode affect the performance of these bioelectrochemical systems is far from complete. To fill this gap of knowledge, we designed a set of three MFCs with different constrains limiting direct and mediated electron transfer to the anode. The results obtained indicate that MFCs with a naked anode on which a biofilm was allowed unrestricted development (MFC-A) had the most diverse archaeal and bacterial community, and offered the best performance. In this MFC both, direct and mediated electron transfer, occurred simultaneously, but direct electron transfer was the predominant mechanism. Microbial fuel cells in which the anode was enclosed in a dialysis membrane and biofilm was not allowed to develop (MFC-D), had a much lower power output (about 60% lower), and a prevalence of dissolved redox species that acted as putative electron shuttles. In the anolyte of this MFC, Arcobacter and Methanosaeta were the prevalent bacteria and archaea respectively. In the third MFC, in which the anode had been covered by a cation selective nafion membrane (MFC-N), power output decreased a further 5% (95% less than MFC-A). In this MFC, conventional organic electron shuttles could not operate and the low power output obtained was presumably attributed to fermentation end-products produced by some of the organisms present in the anolyte, probably Pseudomonas or Methanosaeta. Electron transfer mechanisms have an impact on the development of different microbial communities and in turn on MFC performance. Although a stable current was achieved in all cases, direct electron transfer MFC showed the best performance concluding that biofilms are the major contributors to current production in MFCs. Characterization of the complex microbial assemblages in these systems may help us to unveil new electrogenic microorganisms and improve our understanding on their role to the functioning of MFCs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zehr, J.P.; Mellon, M.T.; Zani, S.
1998-09-01
Oligotrophic oceanic waters of the central ocean gyres typically have extremely low dissolved fixed inorganic nitrogen concentrations, but few nitrogen-fixing microorganisms from the oceanic environment have been cultivated. Nitrogenase gene (nifH) sequences amplified directly from oceanic waters showed that the open ocean contains more diverse diazotrophic microbial populations and more diverse habitats for nitrogen fixers than previously observed by classical microbiological techniques. Nitrogenase genes derived from unicellular and filamentous cyanobacteria, as well as from the {alpha} and {gamma} subdivisions of the class Proteobacteria, were found in both the Atlantic and Pacific oceans. nifH sequences that cluster phylogenetically with sequences frommore » sulfate reducers or clostridia were found associated with planktonic crustaceans. Nitrogenase sequence types obtained from invertebrates represented phylotypes distinct from the phylotypes detected in the picoplankton size fraction. The results indicate that there are in the oceanic environment several distinct potentially nitrogen-fixing microbial assemblages that include representatives of diverse phylotypes.« less
Freshwater processing of terrestrial dissolved organic matter: What governs lability?
NASA Astrophysics Data System (ADS)
D'Andrilli, J.; Smith, H. J.; Junker, J. R.; Scholl, E. A.; Foreman, C. M.
2016-12-01
Aquatic and terrestrial ecosystems are linked through the transfer of energy and materials. Allochthonous organic matter (OM) is central to freshwater ecosystem function, influencing local food webs, trophic state, and nutrient availability. In order to understand the nature and fate of OM from inland headwaters to the open ocean, it is imperative to understand the links between OM lability and ecosystem function. Thus, biological, chemical, and physical factors need to be evaluated together to inform our understanding of environmental lability. We performed a laboratory processing experiment on naturally occurring OM leachates from riparian leaves, grasses, and pine needles. Measures of water chemistry, OM optical and molecular characterization, bacterial abundances, microbial assemblage composition, respiration, and C:N:P were integrated to discern the nature and fate of labile and recalcitrant OM in a freshwater stream. Peak processing of all OM sources in the stream water occurred after two days, with spikes in bacterial cell abundances, respiration rates, microbial assemblage shifts, and maximum C utilization. Respiration rates and microbial assemblages were dependent on the degree of lability of the OM molecular composition. Within the first few days, no differences in respiration rates were observed between leachate sources, however, beyond day five, the rates diverged with C processing efficiency correlated with OM lability. Originally comprised of amino acid-like, labile fluorescent species, the inoculated stream water OM became more recalcitrant after 16 days, indicating humification processing over time. Our study highlights the importance of interdisciplinary approaches for understanding the processing and fate of OM in aquatic ecosystems.
Aydin, Sevcan
2016-06-01
As a result of developments in molecular technologies and the use of sequencing technologies, the analyses of the anaerobic microbial community in biological treatment process has become increasingly prevalent. This review examines the ways in which microbial sequencing methods can be applied to achieve an extensive understanding of the phylogenetic and functional characteristics of microbial assemblages in anaerobic reactor if the substrate is contaminated by antibiotics which is one of the most important toxic compounds. It will discuss some of the advantages and disadvantages associated with microbial sequencing techniques that are more commonly employed and will assess how a combination of the existing methods may be applied to develop a more comprehensive understanding of microbial communities and improve the validity and depth of the results for the enhancement of the stability of anaerobic reactors.
Matheus Carnevali, Paula B; Herbold, Craig W; Hand, Kevin P; Priscu, John C; Murray, Alison E
2018-01-01
Developing a microbial ecological understanding of Arctic thermokarst lake sediments in a geochemical context is an essential first step toward comprehending the contributions of these systems to greenhouse gas emissions, and understanding how they may shift as a result of long term changes in climate. In light of this, we set out to study microbial diversity and structure in sediments from four shallow thermokarst lakes in the Arctic Coastal Plain of Alaska. Sediments from one of these lakes (Sukok) emit methane (CH 4 ) of thermogenic origin, as expected for an area with natural gas reserves. However, sediments from a lake 10 km to the North West (Siqlukaq) produce CH 4 of biogenic origin. Sukok and Siqlukaq were chosen among the four lakes surveyed to test the hypothesis that active CH 4 -producing organisms (methanogens) would reflect the distribution of CH 4 gas levels in the sediments. We first examined the structure of the little known microbial community inhabiting the thaw bulb of arctic thermokarst lakes near Barrow, AK. Molecular approaches (PCR-DGGE and iTag sequencing) targeting the SSU rRNA gene and rRNA molecule were used to profile diversity, assemblage structure, and identify potentially active members of the microbial assemblages. Overall, the potentially active (rRNA dominant) fraction included taxa that have also been detected in other permafrost environments (e.g., Bacteroidetes, Actinobacteria, Nitrospirae, Chloroflexi, and others). In addition, Siqlukaq sediments were unique compared to the other sites, in that they harbored CH 4 -cycling organisms (i.e., methanogenic Archaea and methanotrophic Bacteria), as well as bacteria potentially involved in N cycling (e.g., Nitrospirae) whereas Sukok sediments were dominated by taxa typically involved in photosynthesis and biogeochemical sulfur (S) transformations. This study revealed a high degree of archaeal phylogenetic diversity in addition to CH 4 -producing archaea, which spanned nearly the phylogenetic extent of currently recognized Archaea phyla (e.g., Euryarchaeota, Bathyarchaeota, Thaumarchaeota, Woesearchaeota, Pacearchaeota, and others). Together these results shed light on expansive bacterial and archaeal diversity in Arctic thermokarst lakes and suggest important differences in biogeochemical potential in contrasting Arctic thermokarst lake sediment ecosystems.
Microbial Ecology and Evolution in the Acid Mine Drainage Model System.
Huang, Li-Nan; Kuang, Jia-Liang; Shu, Wen-Sheng
2016-07-01
Acid mine drainage (AMD) is a unique ecological niche for acid- and toxic-metals-adapted microorganisms. These low-complexity systems offer a special opportunity for the ecological and evolutionary analyses of natural microbial assemblages. The last decade has witnessed an unprecedented interest in the study of AMD communities using 16S rRNA high-throughput sequencing and community genomic and postgenomic methodologies, significantly advancing our understanding of microbial diversity, community function, and evolution in acidic environments. This review describes new data on AMD microbial ecology and evolution, especially dynamics of microbial diversity, community functions, and population genomes, and further identifies gaps in our current knowledge that future research, with integrated applications of meta-omics technologies, will fill. Copyright © 2016 Elsevier Ltd. All rights reserved.
Opportunistic pathogens enriched in showerhead biofilms
Feazel, Leah M.; Baumgartner, Laura K.; Peterson, Kristen L.; Frank, Daniel N.; Harris, J. Kirk; Pace, Norman R.
2009-01-01
The environments we humans encounter daily are sources of exposure to diverse microbial communities, some of potential concern to human health. In this study, we used culture-independent technology to investigate the microbial composition of biofilms inside showerheads as ecological assemblages in the human indoor environment. Showers are an important interface for human interaction with microbes through inhalation of aerosols, and showerhead waters have been implicated in disease. Although opportunistic pathogens commonly are cultured from shower facilities, there is little knowledge of either their prevalence or the nature of other microorganisms that may be delivered during shower usage. To determine the composition of showerhead biofilms and waters, we analyzed rRNA gene sequences from 45 showerhead sites around the United States. We find that variable and complex, but specific, microbial assemblages occur inside showerheads. Particularly striking was the finding that sequences representative of non-tuberculous mycobacteria (NTM) and other opportunistic human pathogens are enriched to high levels in many showerhead biofilms, >100-fold above background water contents. We conclude that showerheads may present a significant potential exposure to aerosolized microbes, including documented opportunistic pathogens. The health risk associated with showerhead microbiota needs investigation in persons with compromised immune or pulmonary systems. PMID:19805310
Ecology and Evolution of the Human Microbiota: Fire, Farming and Antibiotics
Gillings, Michael R.; Paulsen, Ian T.; Tetu, Sasha G.
2015-01-01
Human activities significantly affect all ecosystems on the planet, including the assemblages that comprise our own microbiota. Over the last five million years, various evolutionary and ecological drivers have altered the composition of the human microbiota, including the use of fire, the invention of agriculture, and the increasing availability of processed foods after the Industrial Revolution. However, no factor has had a faster or more direct effect than antimicrobial agents. Biocides, disinfectants and antibiotics select for individual cells that carry resistance genes, immediately reducing both overall microbial diversity and within-species genetic diversity. Treated individuals may never recover their original diversity, and repeated treatments lead to a series of genetic bottlenecks. The sequential introduction of diverse antimicrobial agents has selected for increasingly complex DNA elements that carry multiple resistance genes, and has fostered their spread through the human microbiota. Practices that interfere with microbial colonization, such as sanitation, Caesarian births and bottle-feeding, exacerbate the effects of antimicrobials, generating species-poor and less resilient microbial assemblages in the developed world. More and more evidence is accumulating that these perturbations to our internal ecosystems lie at the heart of many diseases whose frequency has shown a dramatic increase over the last half century. PMID:26371047
Ecology and Evolution of the Human Microbiota: Fire, Farming and Antibiotics.
Gillings, Michael R; Paulsen, Ian T; Tetu, Sasha G
2015-09-08
Human activities significantly affect all ecosystems on the planet, including the assemblages that comprise our own microbiota. Over the last five million years, various evolutionary and ecological drivers have altered the composition of the human microbiota, including the use of fire, the invention of agriculture, and the increasing availability of processed foods after the Industrial Revolution. However, no factor has had a faster or more direct effect than antimicrobial agents. Biocides, disinfectants and antibiotics select for individual cells that carry resistance genes, immediately reducing both overall microbial diversity and within-species genetic diversity. Treated individuals may never recover their original diversity, and repeated treatments lead to a series of genetic bottlenecks. The sequential introduction of diverse antimicrobial agents has selected for increasingly complex DNA elements that carry multiple resistance genes, and has fostered their spread through the human microbiota. Practices that interfere with microbial colonization, such as sanitation, Caesarian births and bottle-feeding, exacerbate the effects of antimicrobials, generating species-poor and less resilient microbial assemblages in the developed world. More and more evidence is accumulating that these perturbations to our internal ecosystems lie at the heart of many diseases whose frequency has shown a dramatic increase over the last half century.
NASA Astrophysics Data System (ADS)
Seabrook, S.; Thurber, A. R.; Embley, R. W.; Raineault, N.; Baumberger, T.; Merle, S. G.
2016-12-01
Methane seeps provide biogeochemical and microbial heterogeneity in deep-sea habitats. In June of 2016 the E/V Nautilus, exploring for methane seeps along the Cascadia continental margin, discovered over 450 bubble streams, indicative of active seepage, and collected biological samples at 6 of the resulting newly discovered seeps. These seeps covered a range of depths, latitudes, habitat types and biogeochemical environments and included: Juan de Fuca (150m), Astoria canyon (800m and 500m), Nehalem Bank (185m), Heceta SW (1200m), SW Coquille Bank (600m), and Klamath Knoll seep (700m). Geologic environment types included continental shelf, canyons and slopes, and these sites spanned the zone of hydrate stability and the Oxygen Minimum Zone. A range of seep-specific habitat were found and sampled including: reduced sediments, microbial mats, methane hydrates, clam beds (Calyptogena spp.), Siboglinidae tubeworm assemblages and sparse assemblages of stalked barnacles. Here, we present an initial characterization of the microbial communities collected via push cores by a remotely operated vehicle (ROV) at the six aforementioned sites. With high throughput amplicon sequencing of the V4-V5 region of the 16S rRNA gene, we characterize the diversity and microbial composition of the seep sites sampled. This characterization is furthered with digital drop PCR of the pmoA gene (involved with aerobic methanotrophy) to allow for a comparison of the community composition with functional gene abundance of critical microbial processes. These data will be placed in the greater biogeochemical context of the region, including direct comparison with paired gas-tight sampling at key locations. The results of these analyses will provide the first microbial description of this broad range of seep ecosystems along the Cascadia Margin adding to our overall understanding of microbial diversity, the dominant physiological processes at seep ecosystems, and the connection between community structure, function and biogeochemistry in habitats which we are just starting to appreciate for their ubiquity in marine environments.
NASA Astrophysics Data System (ADS)
Bouvy, M.; Got, P.; Domaizon, I.; Pagano, M.; Leboulanger, C.; Bouvier, C.; Carré, C.; Roques, C.; Dupuy, C.
2016-04-01
Coral reef environments are generally recognized as being the most threatened of marine ecosystems. However, it is extremely difficult to distinguish the effects of climate change from other forcing factors, mainly because it is difficult to study ecosystems that are isolated from human pressure. The five Iles Eparses (Scattered Islands) are located in the Western Indian Ocean (WIO) and can be considered to be "pristine" ecosystems not subject to anthropogenic pressure. This study characterized their plankton assemblages for the first time, by determining the abundances of microbial (virus, bacteria, heterotrophic protists and phytoplankton) and metazooplankton communities in various lagoon and ocean sites around each island. The Europa lagoon has extensive, productive mangrove forests, which have the highest nutrient concentrations (nitrogen forms, dissolved organic carbon) and whose microbial communities present a peculiar structure and functioning. By means of bioassay experiments, we observed that bacterial production and growth rates are higher in Europa than those reported for the other islands. Tromelin, which lies outside the Mozambique Channel, had the lowest biological productivity, nutrient concentrations, and bacterial growth rates. Multivariate analysis indicated that distinct microbial assemblages occur in association to varying nutrient concentrations. Molecular fingerprinting showed clear discrimination of the structure of the archaea, bacteria and eukaryotes community between the sites. Our results suggest that the geographical distance can influence the diversity of dominant microbial taxa in the WIO.
Hanson, Roger B.; Lowery, H. Kenneth
1985-01-01
We examined the spatial distributions of picoplankton, nanoplankton, and microplankton biomass and physiological state relative to the hydrography of the Southern Ocean along 90° W longitude and across the Drake Passage in the late austral winter. The eastern South Pacific Ocean showed some large-scale biogeographical differences and size class variability. Microbial ATP biomass was greatest in euphotic surface waters. The horizontal distributions of microbial biomass and physiological state (adenylate energy charge ratio) coincided with internal currents (fronts) of the Antarctic Circumpolar Current. In the Drake Passage, the biological scales in the euphotic and aphotic zones were complex, and ATP, total adenylate, and adenylate energy charge ratio isopleths were compressed due to the extension of the sea ice from Antarctica and constriction of the Circumpolar Current through the narrow passage. The physiological state of microbial assemblages and biomass were much higher in the Drake Passage than in the eastern South Pacific Ocean. The temperature of Antarctic waters, not dissolved organic carbon, was the major variable controlling picoplankton growth. Estimates of picoplankton production based on ATP increments with time suggest that production under reduced predation pressure was 1 to 10 μg of carbon per liter per day. Our results demonstrate the influence of large-scale hydrographic processes on the distribution and structure of microplankton, nanoplankton, and picoplankton across the Southern Ocean. PMID:16346777
NASA Astrophysics Data System (ADS)
Caron, David A.; Connell, Paige E.; Schaffner, Rebecca A.; Schnetzer, Astrid; Fuhrman, Jed A.; Countway, Peter D.; Kim, Diane Y.
2017-03-01
Biogeochemistry in marine plankton communities is strongly influenced by the activities of microbial species. Understanding the composition and dynamics of these assemblages is essential for modeling emergent community-level processes, yet few studies have examined all of the biological assemblages present in the plankton, and benchmark data of this sort from time-series studies are rare. Abundance and biomass of the entire microbial assemblage and mesozooplankton (>200 μm) were determined vertically, monthly and seasonally over a 3-year period at a coastal time-series station in the San Pedro Basin off the southwestern coast of the USA. All compartments of the planktonic community were enumerated (viruses in the femtoplankton size range [0.02-0.2 μm], bacteria + archaea and cyanobacteria in the picoplankton size range [0.2-2.0 μm], phototrophic and heterotrophic protists in the nanoplanktonic [2-20 μm] and microplanktonic [20-200 μm] size ranges, and mesozooplankton [>200 μm]. Carbon biomass of each category was estimated using standard conversion factors. Plankton abundances varied over seven orders of magnitude across all categories, and total carbon biomass averaged approximately 60 μg C l-1 in surface waters of the 890 m water column over the study period. Bacteria + archaea comprised the single largest component of biomass (>1/3 of the total), with the sum of phototrophic protistan biomass making up a similar proportion. Temporal variability at this subtropical station was not dramatic. Monthly depth-specific and depth-integrated biomass varied 2-fold at the station, while seasonal variances were generally <50%. This study provides benchmark information for investigating long-term environmental forcing on the composition and dynamics of the microbes that dominate food web structure and function at this coastal observatory.
Organo-mineral complexation alters carbon and nitrogen cycling in stream microbial assemblages
NASA Astrophysics Data System (ADS)
Hunter, William Ross; Wanek, Wolfgang; Prommer, Judith; Mooshammer, Maria; Battin, Tom
2014-05-01
Inland waters are of global biogeochemical importance receiving carbon inputs of ~ 4.8 Pg C y-1. Of this 12 % is buried, 18 % transported to the oceans, and 70 % supports aquatic secondary production. However, the mechanisms that determine the fate of organic matter (OM) in these systems are poorly defined. One important aspect is the formation of organo-mineral complexes in aquatic systems and their potential as a route for OM transport and burial vs. microbial utilization as organic carbon (C) and nitrogen (N) sources. Organo-mineral particles form by sorption of dissolved OM to freshly eroded mineral surfaces and may contribute to ecosystem-scale particulate OM fluxes. We tested the availability of mineral-sorbed OM as a C & N source for streamwater microbial assemblages and streambed biofilms. Organo-mineral particles were constructed in vitro by sorption of 13C:15N-labelled amino acids to hydrated kaolin particles, and microbial degradation of these particles compared with equivalent doses of 13C:15N-labelled free amino acids. Experiments were conducted in 120 ml mesocosms over 7 days using biofilms and streamwater sampled from the Oberer Seebach stream (Austria), tracing assimilation and mineralization of 13C and 15N labels from mineral-sorbed and dissolved amino acids. Here we present data on the effects of organo-mineral sorption upon amino acid mineralization and its C:N stoichiometry. Organo-mineral sorption had a significant effect upon microbial activity, restricting C and N mineralization by both the biofilm and streamwater treatments. Distinct differences in community response were observed, with both dissolved and mineral-stabilized amino acids playing an enhanced role in the metabolism of the streamwater microbial community. Mineral-sorption of amino acids differentially affected C & N mineralization and reduced the C:N ratio of the dissolved amino acid pool. The present study demonstrates that organo-mineral complexes restrict microbial degradation of OM and may, consequently, alter the carbon and nitrogen cycling dynamics within aquatic ecosystems.
A systems framework for identifying candidate microbial assemblages for disease management
USDA-ARS?s Scientific Manuscript database
Network models of soil and plant microbiomes present new opportunities for enhancing disease management, but also challenges for interpretation. We present a framework for interpreting microbiome networks, illustrating how the observed structure of networks can be used to generate testable hypothese...
Coupled biotic-abiotic oxidation of organic matter by biogenic MnO_{2}
NASA Astrophysics Data System (ADS)
Gonzalez, Julia; Peña, Jasquelin
2016-04-01
Some reactive soil minerals are strongly implicated in stabilising organic matter. However, others can play an active role in the oxidation of organic molecules. In natural systems, layer-type manganese oxide minerals (MnO2) typically occur as biomineral assemblages consisting of mineral particles and microbial biomass. Both the mineral and biological fractions of the assemblage can be powerful oxidants of organic C. The biological compartment relies on a set of enzymes to drive oxidative transformations of reduced C-substrates, whereas MnO2 minerals are strong, less specific abiotic oxidants that are assumed to rely on interfacial interactions between C-substrates and the mineral surface. This project aims to understand the coupling between microbial C mineralization and abiotic C oxidation mediated by MnO2 in bacterial-MnO2 assemblages. Specifically, under conditions of high C turnover, microbial respiration can significantly alter local pH, dissolved oxygen and pool of available reductants, which may modify rates and mechanism of C oxidation by biotic and abiotic components. We first investigated changes in the solution chemistry of Pseudomonas putida suspensions exposed to varying concentrations of glucose, chosen to represent readily bioavailable substrates in soils. Glucose concentrations tested ranged between 0 and 5.5mM and changes in pH, dissolved oxygen and dissolved organic and inorganic carbon were tracked over 48h. We then combined literature review and wet-chemical experiments to compile the pH dependence of rates of organic substrate oxidation by MnO2, including glucose. Our results demonstrate a strong pH dependence for these abiotic reactions. In assemblages of P. putida - MnO2, kinetic limitations for abiotic C oxidation by MnO2 are overcome by changes in biogeochemical conditions that result from bacterial C metabolism. When extrapolated to a soil solution confronted to an input of fresh dissolved organic matter, bacterial C metabolism of the labile fraction may lower solution pH into a regime that favours abiotic oxidation of recalcitrant C by MnO2. This project demonstrates that the co-occurrence of mineral particles with metabolically active cells provides a direct link between the C and Mn cycles.
Liu, Jingjing; Wu, Weixiang; Chen, Chongjun; Sun, Faqian; Chen, Yingxu
2011-09-01
In order to obtain insight into the prokaryotic diversity and community in leachate sediment, a culture-independent DNA-based molecular phylogenetic approach was performed with archaeal and bacterial 16S rRNA gene clone libraries derived from leachate sediment of an aged landfill. A total of 59 archaeal and 283 bacterial rDNA phylotypes were identified in 425 archaeal and 375 bacterial analyzed clones. All archaeal clones distributed within two archaeal phyla of the Euryarchaeota and Crenarchaeota, and well-defined methanogen lineages, especially Methanosaeta spp., are the most numerically dominant species of the archaeal community. Phylogenetic analysis of the bacterial library revealed a variety of pollutant-degrading and biotransforming microorganisms, including 18 distinct phyla. A substantial fraction of bacterial clones showed low levels of similarity with any previously documented sequences and thus might be taxonomically new. Chemical characteristics and phylogenetic inferences indicated that (1) ammonium-utilizing bacteria might form consortia to alleviate or avoid the negative influence of high ammonium concentration on other microorganisms, and (2) members of the Crenarchaeota found in the sediment might be involved in ammonium oxidation. This study is the first to report the composition of the microbial assemblages and phylogenetic characteristics of prokaryotic populations extant in leachate sediment. Additional work on microbial activity and contaminant biodegradation remains to be explored.
NASA Astrophysics Data System (ADS)
Jungbluth, S.; Bowers, R.; Lin, H.; Hsieh, C.; Cowen, J. P.; Rappé, M.
2012-12-01
Three generations of sampling and instrumentation platforms known as Circulation Obviation Retrofit Kit (CORK) observatories affixed to Ocean Drilling Program (ODP) and Integrated Ocean Drilling Program (IODP) boreholes are providing unrivaled access to fluids originating from 1.2-3.5 million-years (Myr) old basaltic crust of the eastern flank of the Juan de Fuca ridge. Borehole fluid samples obtained via a custom seafloor fluid pumping and sampling system coupled to CORK continuous fluid delivery lines are yielding critical insights into the biogeochemistry and nature of microbial life inhabiting the sediment-covered basement environment. Direct microscopic enumeration revealed microbial cell abundances that are 2-41% of overlying bottom seawater. Snapshots of basement fluid microbial diversity and community structure have been obtained through small subunit ribosomal RNA (SSU rRNA) gene cloning and sequencing from five boreholes that access a range of basement ages and temperatures at the sediment-basement interface. SSU rRNA gene clones were derived from four different CORK installations (1026B, 1301A, 1362A, and 1362B) accessing relatively warmer (65°C) and older (3.5 Myr) ridge flank, and one location (1025C) accessing relatively cooler (39°C) and younger (1.2 Myr) ridge flank, revealing that warmer basement fluids had higher microbial diversity. A sampling time-series collected from borehole 1301A has revealed a microbial community that is temporally variable, with the dominant lineages changing between years. Each of the five boreholes sampled contained a unique microbial assemblage, however, common members are found from both cultivated and uncultivated lineages within the archaeal and bacterial domains, including meso- and thermophilic microbial lineages involved with sulfur cycling (e.g Thiomicrospira, Sulfurimonas, Desulfocapsa, Desulfobulbus). In addition, borehole fluid environmental gene clones were also closely related to uncultivated lineages recovered from both terrestrial and marine hydrothermal systems (e.g. Candidatus Desulforudis, Candidate Phylum OP8) as well as globally distributed marine sediments (e.g. Miscellaneous Crenarchaeotic Group, JTB35). This analysis provides a framework for future research investigating the evolutionary and functional diversity, population genetics, and activity of the poorly understood habitat. These ongoing sampling expeditions greatly benefit from improvements to both CORK observatories and evolving sampling equipment including microbiologically-friendly materials and dependable access to pristine fluids from the ocean crust.
Boots, B; Lillis, L; Clipson, N; Petrie, K; Kenny, D A; Boland, T M; Doyle, E
2013-03-01
Anaerobic rumen fungi (Neocallimastigales) play important roles in the breakdown of complex, cellulose-rich material. Subsequent decomposition products are utilized by other microbes, including methanogens. The aim of this study was to determine the effects of dietary changes on anaerobic rumen fungi diversity. Altered diets through increasing concentrate/forage (50 : 50 vs 90 : 10) ratios and/or the addition of 6% soya oil were offered to steers and the Neocallimastigales community was assessed by PCR-based fingerprinting with specific primers within the barcode region. Both a decrease in fibre content and the addition of 6% soya oil affected Neocallimastigales diversity within solid and liquid rumen phases. The addition of 6% soya oil decreased species richness. Assemblages were strongly affected by the addition of 6% soya oil, whereas unexpectedly, the fibre decrease had less effect. Differences in volatile fatty acid contents (acetate, propionate and butyrate) were significantly associated with changes in Neocallimastigales assemblages between the treatments. Diet clearly influences Neocallimastigales assemblages. The data are interpreted in terms of interactions with other microbial groups involved in fermentation processes within the rumen. Knowledge on the influence of diet on anaerobic fungi is necessary to understand changes in microbial processes occurring within the rumen as this may impact on other rumen processes such as methane production. © 2012 The Society for Applied Microbiology.
Soto Cárdenas, Carolina; Gerea, Marina; Queimaliños, Claudia; Ribeiro Guevara, Sergio; Diéguez, María C
2018-05-01
Microbial assemblages are typical of deep ultraoligotrophic Andean Patagonian lakes and comprise picoplankton and protists (phytoflagellates and mixotrophic ciliates), having a central role in the C cycle, primary production and in the incorporation of dissolved inorganic mercury (Hg 2+ ) into lake food webs. In this study we evaluated the mechanisms of Hg 2+ incorporation in hetero- and autotrophic bacteria, in the autotrophic dinoflagellate (Gymnodinium paradoxum) and in two mixotrophic ciliates (Stentor araucanus and Ophrydium naumanni) dominating the planktonic microbial assemblage. The radioisotope 197 Hg was used to trace the Hg 2+ incorporation in microbiota. Hg uptake was analyzed as a function of cell abundance (BCF: bioconcentration factor), cell surface (SCF: surface concentration factor) and cell volume (VCF: volume concentration factor). Overall, the results obtained showed that these organisms incorporate substantial amounts of dissolved Hg 2+ passively (adsorption) and actively (bacteria consumption or attachment), displaying different Hg internalization and therefore, varying potential for Hg transfer. Surface area and quality, and surface:volume ratio (S:V) control the passive uptake in all the organisms. Active incorporation depends on bacteria consumption in the mixotrophic ciliates, or on bacteria association to surface in the autotrophic dinoflagellate. Hg bioaccumulated by pelagic protists can be transferred to higher trophic levels through plankton and fish feeding, regenerated to the dissolved phase by excretion, and/or transferred to the sediments by particle sinking. In ultraoligotrophic Andean Patagonian lakes, picoplankton and planktonic protists are key components of lake food webs, linking the pelagic and benthic Hg pathways, and thereby playing a central role in Hg trophodynamics. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Montanié, Hélène; Ory, Pascaline; Orvain, Francis; Delmas, Daniel; Dupuy, Christine; Hartmann, Hans J.
2014-09-01
In shallow macrotidal ecosystems with large intertidal mudflats, the sediment-water coupling plays a crucial role in structuring the pelagic microbial food web functioning, since inorganic and organic matter and microbial components (viruses and microbes) of the microphytobenthic biofilm can be suspended toward the water column. Two experimental bioassays were conducted in March and July 2008 to investigate the importance of biofilm input for the pelagic microbial and viral loops. Pelagic inocula (< 0.6 μ- and < 10 μ filtrates) were diluted either with < 30 kDa-ultrafiltered seawater or with this ultrafiltrate enriched with the respective size-fractionated benthic biofilm or with < 30 kDa-benthic compounds (BC). The kinetics of heterotrophic nanoflagellates (HNF), bacteria and viruses were assessed together with bacterial and viral genomic fingerprints, bacterial enzymatic activities and viral life strategies. The experimental design allowed us to evaluate the effect of BC modulated by those of benthic size-fractionated microorganisms (virus + bacteria, + HNF). BC presented (1) in March, a positive effect on viruses and bacteria weakened by pelagic HNF. Benthic microorganisms consolidated this negative effect and sustained the viral production together with a relatively diverse and uneven bacterial assemblage structure; (2) in July, no direct impact on viruses but a positive effect on bacteria modulated by HNF, which indirectly enhanced viral multiplication. Both effects were intensified by benthic microorganisms and bacterial assemblage structure became more even. HNF indirectly profited from BC more in March than in July. The microbial loop would be stimulated by biofilm during periods of high resources (March) and the viral loop during periods of depleted resources (July).
Differences in Intertidal Microbial Assemblages on Urban Structures and Natural Rocky Reef
Tan, Elisa L.-Y.; Mayer-Pinto, Mariana; Johnston, Emma L.; Dafforn, Katherine A.
2015-01-01
Global seascapes are increasingly modified to support high levels of human activity in the coastal zone. Modifications include the addition of defense structures and boating infrastructure, such as seawalls and marinas that replace natural habitats. Artificial structures support different macrofaunal communities to those found on natural rocky shores; however, little is known about differences in microbial community structure or function in urban seascapes. Understanding how artificial constructions in marine environments influence microbial communities is important as these assemblages contribute to many basic ecological processes. In this study, the bacterial communities of intertidal biofilms were compared between artificial structures (seawalls) and natural habitats (rocky shores) within Sydney Harbour. Plots were cleared on each type of habitat at eight locations. After 3 weeks the newly formed biofilm was sampled and the 16S rRNA gene sequenced using the Illumina Miseq platform. To account for differences in orientation and substrate material between seawalls and rocky shores that might have influenced our survey, we also deployed recruitment blocks next to the habitats at all locations for 3 weeks and then sampled and sequenced their microbial communities. Intertidal bacterial community structure sampled from plots differed between seawalls and rocky shores, but when substrate material, age and orientation were kept constant (with recruitment blocks) then bacterial communities were similar in composition and structure among habitats. This suggests that changes in bacterial communities on seawalls are not related to environmental differences between locations, but may be related to other intrinsic factors that differ between the habitats such as orientation, complexity, or predation. This is one of the first comparisons of intertidal microbial communities on natural and artificial surfaces and illustrates substantial ecological differences with potential consequences for biofilm function and the recruitment of macrofauna. PMID:26635747
Biofilms Reduce Solar Disinfection of Cryptosporidium parvum Oocysts
Hargreaves, B. R.; Jellison, K. L.
2012-01-01
Solar radiation reduces Cryptosporidium infectivity. Biofilms grown from stream microbial assemblages inoculated with oocysts were exposed to solar radiation. The infectivity of oocysts attached at the biofilm surface and oocysts suspended in water was about half that of oocysts attached at the base of a 32-μm biofilm. PMID:22467508
Interplay Between Innate Immunity and the Plant Microbiota.
Hacquard, Stéphane; Spaepen, Stijn; Garrido-Oter, Ruben; Schulze-Lefert, Paul
2017-08-04
The innate immune system of plants recognizes microbial pathogens and terminates their growth. However, recent findings suggest that at least one layer of this system is also engaged in cooperative plant-microbe interactions and influences host colonization by beneficial microbial communities. This immune layer involves sensing of microbe-associated molecular patterns (MAMPs) by pattern recognition receptors (PRRs) that initiate quantitative immune responses to control host-microbial load, whereas diversification of MAMPs and PRRs emerges as a mechanism that locally sculpts microbial assemblages in plant populations. This suggests a more complex microbial management role of the innate immune system for controlled accommodation of beneficial microbes and in pathogen elimination. The finding that similar molecular strategies are deployed by symbionts and pathogens to dampen immune responses is consistent with this hypothesis but implies different selective pressures on the immune system due to contrasting outcomes on plant fitness. The reciprocal interplay between microbiota and the immune system likely plays a critical role in shaping beneficial plant-microbiota combinations and maintaining microbial homeostasis.
Rattanachomsri, Ukrit; Kanokratana, Pattanop; Eurwilaichitr, Lily; Igarashi, Yasuo; Champreda, Verawat
2011-01-01
Sugarcane bagasse is an important lignocellulosic by-product with potential for conversion to biofuels and chemicals in biorefinery. As a step towards an understanding of microbial diversity and the processes existing in bagasse collection sites, the microbial community in industrial bagasse feedstock piles was investigated. Molecular biodiversity analysis of 16S rDNA sequences revealed the presence of a complex bacterial community. A diverse group of mainly aerobic and facultative anaerobic bacteria was identified reflecting the aerobic and high temperature microenvironmental conditions under the pile surface. The major bacterial taxa present were identified as Firmicutes, Alpha- and Gammaproteobacteria, Acidobacteria, Bacteroidetes, and Actinobacteria. Analysis of the eukaryotic microbial assemblage based on an internal transcribed spacer revealed the predominance of diverse cellulolytic and hemicellulolytic ascomycota. A microbial interaction model is proposed, focusing on lignocellulose degradation and methane metabolism. The insights into the microbial community in this study provide a basis for efficient utilization of bagasse in lignocellulosic biomass-based industries.
Barberán, Albert; McGuire, Krista L; Wolf, Jeffrey A; Jones, F Andrew; Wright, Stuart Joseph; Turner, Benjamin L; Essene, Adam; Hubbell, Stephen P; Faircloth, Brant C; Fierer, Noah
2015-12-01
The complexities of the relationships between plant and soil microbial communities remain unresolved. We determined the associations between plant aboveground and belowground (root) distributions and the communities of soil fungi and bacteria found across a diverse tropical forest plot. Soil microbial community composition was correlated with the taxonomic and phylogenetic structure of the aboveground plant assemblages even after controlling for differences in soil characteristics, but these relationships were stronger for fungi than for bacteria. In contrast to expectations, the species composition of roots in our soil core samples was a poor predictor of microbial community composition perhaps due to the patchy, ephemeral, and highly overlapping nature of fine root distributions. Our ability to predict soil microbial composition was not improved by incorporating information on plant functional traits suggesting that the most commonly measured plant traits are not particularly useful for predicting the plot-level variability in belowground microbial communities. © 2015 John Wiley & Sons Ltd/CNRS.
Landone Vescovo, Ignacio A; Golemba, Marcelo D; Di Lello, Federico A; Culasso, Andrés C A; Levin, Gustavo; Ruberto, Lucas; Mac Cormack, Walter P; López, José L
2014-01-01
Bacterial richness in maritime Antarctica has been poorly described to date. Phylogenetic affiliation of seawater free-living microbial assemblages was studied from three locations near the Argentinean Jubany Station during two Antarctic summers. Sixty 16S RNA cloned sequences were phylogenetically affiliated to Alphaproteobacteria (30/60 clones), Gammaproteobacteria(19/60 clones), Betaproteobacteria and Cytophaga-Flavobacteriia-Bacteroides (CFB), which were (2/60) and (3/60) respectively. Furthermore, six out of 60 clones could not be classified. Both, Alphaproteobacteria and Gammaproteobacteria, showed several endemic and previously undescribed sequences. Moreover, the absence of Cyanobacteria sequences in our samples is remarkable. In conclusion, we are reporting a rich sequence assemblage composed of widely divergent isolates among themselves and distant from the most closely related sequences currently deposited in data banks. Copyright © 2014 Asociación Argentina de Microbiología. Publicado por Elsevier España. All rights reserved.
Morrow, Kathleen M.; Ritson-Williams, Raphael; Ross, Cliff; Liles, Mark R.; Paul, Valerie J.
2012-01-01
Benthic macroalgae can be abundant on present-day coral reefs, especially where rates of herbivory are low and/or dissolved nutrients are high. This study investigated the impact of macroalgal extracts on both coral-associated bacterial assemblages and sublethal stress response of corals. Crude extracts and live algal thalli from common Caribbean macroalgae were applied onto the surface of Montastraea faveolata and Porites astreoides corals on reefs in both Florida and Belize. Denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene amplicons was used to examine changes in the surface mucus layer (SML) bacteria in both coral species. Some of the extracts and live algae induced detectable shifts in coral-associated bacterial assemblages. However, one aqueous extract caused the bacterial assemblages to shift to an entirely new state (Lobophora variegata), whereas other organic extracts had little to no impact (e.g. Dictyota sp.). Macroalgal extracts more frequently induced sublethal stress responses in M. faveolata than in P. astreoides corals, suggesting that cellular integrity can be negatively impacted in selected corals when comparing co-occurring species. As modern reefs experience phase-shifts to a higher abundance of macroalgae with potent chemical defenses, these macroalgae are likely impacting the composition of microbial assemblages associated with corals and affecting overall reef health in unpredicted and unprecedented ways. PMID:23028648
Morrow, Kathleen M; Ritson-Williams, Raphael; Ross, Cliff; Liles, Mark R; Paul, Valerie J
2012-01-01
Benthic macroalgae can be abundant on present-day coral reefs, especially where rates of herbivory are low and/or dissolved nutrients are high. This study investigated the impact of macroalgal extracts on both coral-associated bacterial assemblages and sublethal stress response of corals. Crude extracts and live algal thalli from common Caribbean macroalgae were applied onto the surface of Montastraea faveolata and Porites astreoides corals on reefs in both Florida and Belize. Denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene amplicons was used to examine changes in the surface mucus layer (SML) bacteria in both coral species. Some of the extracts and live algae induced detectable shifts in coral-associated bacterial assemblages. However, one aqueous extract caused the bacterial assemblages to shift to an entirely new state (Lobophora variegata), whereas other organic extracts had little to no impact (e.g. Dictyota sp.). Macroalgal extracts more frequently induced sublethal stress responses in M. faveolata than in P. astreoides corals, suggesting that cellular integrity can be negatively impacted in selected corals when comparing co-occurring species. As modern reefs experience phase-shifts to a higher abundance of macroalgae with potent chemical defenses, these macroalgae are likely impacting the composition of microbial assemblages associated with corals and affecting overall reef health in unpredicted and unprecedented ways.
Pan, Yao; Abell, Guy C J; Bodelier, Paul L E; Meima-Franke, Marion; Sessitsch, Angela; Bodrossy, Levente
2014-08-01
Little is understood about the relationship between microbial assemblage history, the composition and function of specific functional guilds and the ecosystem functions they provide. To learn more about this relationship we used methane oxidizing bacteria (MOB) as model organisms and performed soil microcosm experiments comprised of identical soil substrates, hosting distinct overall microbial diversities(i.e., full, reduced and zero total microbial and MOB diversities). After inoculation with undisturbed soil, the recovery of MOB activity, MOB diversity and total bacterial diversity were followed over 3 months by methane oxidation potential measurements and analyses targeting pmoA and 16S rRNA genes. Measurement of methane oxidation potential demonstrated different recovery rates across the different treatments. Despite different starting microbial diversities, the recovery and succession of the MOB communities followed a similar pattern across the different treatment microcosms. In this study we found that edaphic parameters were the dominant factor shaping microbial communities over time and that the starting microbial community played only a minor role in shaping MOB microbial community.
NASA Astrophysics Data System (ADS)
Moss, Joseph A.; McCurry, Chelsea; Tominack, Sarah; Romero, Isabel C.; Hollander, David; Jeffrey, Wade H.; Snyder, Richard A.
2015-12-01
Benthic marine protists have been well documented from shallow marine benthic habitats but remain understudied in deeper habitats on continental shelves and slopes, particularly in the Northeastern Gulf of Mexico (NEGOM). This region was affected by a deep water oil well failure (BP-Deepwater Horizon, 2010). The combination of a lack of information on deep sea microbenthic communities and the potential for benthic microbial petroleum mineralization prompted this investigation. Water column and nepheloid layer samples were obtained via Niskin bottles and a multicorer respectively at stations across the NEGOM to: (1) determine whether nepheloid and water column communities are distinct and (2) assess benthic species richness relative to sediment PAH contamination. Phylum specific 18S rRNA gene amplification was used to construct clone libraries of ciliate assemblages. BLAST searches in the NCBI database indicated that a majority (~75%) of the clone sequences corresponded (94-100% similarity) with listed, yet unclassified sequences. Several putative species were common at most site locations and depths. Many known benthic ciliates, such as Uronychia transfuga, Uronychia setigera, and Spirotrachelostyla tani, were common in the nepheloid layer samples and not recovered in water column samples. Ciliated protist species richness increased with PAH levels found in surface sediments, suggesting a positive microbial response to petroleum enrichment of the benthos. The presence of previously unknown microbenthic communites in the nephaloid layer over oceanic clay-silt muds alters our view of microbial processes in the deep sea and merits investigation of the microbial processes and rates of microbial mineralization and biomass production important to global biogeochemistry.
Mills, Heath J.; Martinez, Robert J.; Story, Sandra; Sobecky, Patricia A.
2005-01-01
The characterization of microbial assemblages within solid gas hydrate, especially those that may be physiologically active under in situ hydrate conditions, is essential to gain a better understanding of the effects and contributions of microbial activities in Gulf of Mexico (GoM) hydrate ecosystems. In this study, the composition of the Bacteria and Archaea communities was determined by 16S rRNA phylogenetic analyses of clone libraries derived from RNA and DNA extracted from sediment-entrained hydrate (SEH) and interior hydrate (IH). The hydrate was recovered from an exposed mound located in the northern GoM continental slope with a hydrate chipper designed for use on the manned-submersible Johnson Sea Link (water depth, 550 m). Previous geochemical analyses indicated that there was increased metabolic activity in the SEH compared to the IH layer (B. N. Orcutt, A. Boetius, S. K. Lugo, I. R. Macdonald, V. A. Samarkin, and S. Joye, Chem. Geol. 205:239-251). Phylogenetic analysis of RNA- and DNA-derived clones indicated that there was greater diversity in the SEH libraries than in the IH libraries. A majority of the clones obtained from the metabolically active fraction of the microbial community were most closely related to putative sulfate-reducing bacteria and anaerobic methane-oxidizing archaea. Several novel bacterial and archaeal phylotypes for which there were no previously identified closely related cultured isolates were detected in the RNA- and DNA-derived clone libraries. This study was the first phylogenetic analysis of the metabolically active fraction of the microbial community extant in the distinct SEH and IH layers of GoM gas hydrate. PMID:15933026
Melanie Hodel; Martin Schütz; Martijn L. Vandegehuchte; Beat Frey; Matthias Albrecht; Matt D. Busse; Anita C. Risch
2014-01-01
Grassland ecosystems support large communities of aboveground herbivores that can alter ecosystem processes. Thus, grazing by herbivores can directly and indirectly affect belowground properties such as the microbial community structure and diversity. Even though multiple species of functionally different herbivores coexist in grassland ecosystems, most studies have...
USDA-ARS?s Scientific Manuscript database
Insect guts harbor diverse microbial assemblages that can be influenced by multiple factors, including gut physiology and interactions by the host with its environment. The Asian longhorned beetle (ALB; Anoplophora glabripennis) is an invasive tree–killing insect, which harbors a diverse consortium ...
Microbenthic distribution of Proterozoic tidal flats: environmental and taphonomic considerations
NASA Technical Reports Server (NTRS)
Kah, L. C.; Knoll, A. H.
1996-01-01
Silicified carbonates of the late Mesoproterozoic to early Neoproterozoic Society Cliffs Formation, Baffin Island, contain distinctive microfabrics and microbenthic assemblages whose paleo-environmental distribution within the formation parallels the distribution of these elements through Proterozoic time. In the Society Cliffs Formation, restricted carbonates--including microdigitate stromatolites, laminated tufa, and tufted microbial mats--consist predominantly of synsedimentary cements; these facies and the cyanobacterial fossils they contain are common in Paleoproterozoic successions but rare in Neoproterozoic and younger rocks. Less restricted tidal-flat facies in the formation are composed of laminated microbialites dominated by micritic carbonate lithified early, yet demonstrably after compaction; these strata contain cyanobacteria that are characteristic in Neoproterozoic rocks. Within the formation, the facies-dependent distribution of microbial populations reflects both the style and timing of carbonate deposition because of the strong substrate specificity of benthic cyanobacteria. A reasonable conclusion is that secular changes in microbenthic assemblages through Proterozoic time reflect a decrease in the overall representation of rapidly lithified carbonate substrates in younger peritidal environments, as well as concomitant changes in the taphonomic window of silicification through which early life is observed.
[Influences of biochar and nitrogen fertilizer on soil nematode assemblage of upland red soil].
Lu, Yan-yan; Wang, Ming-wei; Chen, Xiao-vun; Liu, Man-qiang; Chen, Xiao-min; Cheng, Yan-hong; Huang, Qian-ru; Hu, Feng
2016-01-01
The use of biochar as soil remediation amendment has received more and more concerns, but little attention has been paid to its effect on soil fauna. Based on the field experiment in an upland red soil, we studied the influences of different application rates of biochar (0, 10, 20, 30, 40 t · hm⁻²) and nitrogen fertilizer (60, 90, 120 kg N · hm⁻²) on soil basic properties and nematode assemblages during drought and wet periods. Our results showed that the biochar amendment significantly affect soil moisture and pH regardless of drought or wet period. With the increasing of biochar application, soil pH significantly increased, while soil moisture increased first and then decreased. Soil microbial properties (microbial biomass C, microbial biomass N, microbial biomass C/N, basal respiration) were also significantly affected by the application of biochar and N fertilizer. Low doses of biochar could stimulate the microbial activity, while high doses depressed microbial activity. For example, averaged across different N application rates, biochar amendment at less than 30 t · hm⁻² could increase microbial activity in the drought and wet periods. Besides, the effects of biochar also depended on wet or drought period. When the biochar application rate higher than 30 t · hm⁻², the microbial biomass C was significantly higher in the drought period than the control, but no differences were observed in the wet period. On the contrary, microbial biomass N showed a reverse pattern. Dissolved organic matter and mineral N were affected by biochar and N fertilizer significantly in the drought period, however, in the wet period they were only affected by N fertilizer rather than biochar. There was significant interaction between biochar and N fertilizer on soil nematode abundance and nematode trophic composition independent of sampling period. Combined high doses of both biochar and N fertilization promoted soil nematode abundance. Moreover, the biochar amendment increased the proportion of fungivores especially in the drought period, suggesting the biochar was the preferred fungal energy channel in comparison to soil without biochar addition. In summary, complex patterns occurred not only due to the application rate of biochar as well as their interactions with N fertilization but also due to the drought and wet periods. It is, therefore, necessary to consider different ecological factors when evaluating the effects of biochar in future.
Jones, Adriane Clark; Hambright, K David; Caron, David A
2018-05-01
Microbial communities are comprised of complex assemblages of highly interactive taxa. We employed network analyses to identify and describe microbial interactions and co-occurrence patterns between microbial eukaryotes and bacteria at two locations within a low salinity (0.5-3.5 ppt) lake over an annual cycle. We previously documented that the microbial diversity and community composition within Lake Texoma, southwest USA, were significantly affected by both seasonal forces and a site-specific bloom of the harmful alga, Prymnesium parvum. We used network analyses to answer ecological questions involving both the bacterial and microbial eukaryotic datasets and to infer ecological relationships within the microbial communities. Patterns of connectivity at both locations reflected the seasonality of the lake including a large rain disturbance in May, while a comparison of the communities between locations revealed a localized response to the algal bloom. A network built from shared nodes (microbial operational taxonomic units and environmental variables) and correlations identified conserved associations at both locations within the lake. Using network analyses, we were able to detect disturbance events, characterize the ecological extent of a harmful algal bloom, and infer ecological relationships not apparent from diversity statistics alone.
NASA Astrophysics Data System (ADS)
Gilbertson, M.; Harrison, B. K.; Flood, B. E.; Myrbo, A.; Bailey, J. V.
2013-12-01
The characterization of microbial communities within urban lake sediments may offer a promising method to observe changes in lake geochemistry due to human impact. By mapping the abundances and diversity of microorganisms through the uppermost meter of sediment in three distinctive Minneapolis-St. Paul lakes (Brownie Lake and Twin Lake, both meromictic, and oligomictic Lake McCarrons) using 16S rRNA characterization, our aim was to observe changes in microbial populations across steep geochemical and lithological gradients. Lake McCarrons underwent a process of eutrophication and a shift to bottom water anoxia beginning around 1910 due mostly to agricultural run-off. This shift greatly increased the preservation potential of seasonal sedimentation and finely laminated varve accumulation. The onset of meromixis in Brownie Lake in ~1915 is abrupt and has been attributed to a sudden drop in water level. Twin Lake is perennially meromictic due to the topography of the watershed. The three lakes were sampled by collecting freeze cores in July, 2012 (McCarrons, Brownie) and February, 2013 (Twin) at the deepest locations beneath anoxic to hypoxic bottom waters. The cores were then subsampled with high resolution techniques at places of interest: within individual lamina, across mass flow deposits, and near the onset of laminae preservation (beginning of oxygen-depleted bottom waters). Terminal Restriction Fragment Length Polymorphism (T-RFLP) allows for comparison of the microbial assemblages throughout the sediment columns of each lake and from lake to lake, with a focus on the horizons mentioned previously. The microbial assemblages present in specific horizons are often introduced via sedimentation and are partially derived from community composition at the time of sedimentation. T-RFLP analyses are complemented by mineralogical and lithological descriptions. The lakes have each been subject to their own set of variables and inputs. Brownie Lake contains high levels of Fe and Mn (measured up to 78 and 6 mg/l in bottom waters, respectively, US EPA STORET). The ecology of McCarrons has been greatly disturbed most recently when the lake was targeted by a 2004 aluminum sulfate treatment to counteract high phosphorous levels. Twin Lake has mass flow deposits nearly 5 cm thick, similar to turbidites, likely caused by increased sedimentation from large housing developments on the lake shores. The microbial community in each of the lakes is impacted by these distinct parameters. This study examines variability in microbial community assemblages through time and space within these lake sediments. Changes seen in the ecology of the communities are related to changes in chemical and physical parameters, namely, shifts in lithology and sediment accumulation via the onset of meromixis. Freeze coring exceptionally allows super-high resolution subsampling techniques to identify differences across geochemical gradients and between individual seasonal laminae within each lake and from lake to lake.
Sun, Xin; Jayakumar, Amal; Ward, Bess B.
2017-01-01
The ozone-depleting and greenhouse gas, nitrous oxide (N2O), is mainly consumed by the microbially mediated anaerobic process, denitrification. N2O consumption is the last step in canonical denitrification, and is also the least O2 tolerant step. Community composition of total and active N2O consuming bacteria was analyzed based on total (DNA) and transcriptionally active (RNA) nitrous oxide reductase (nosZ) genes using a functional gene microarray. The total and active nosZ communities were dominated by a limited number of nosZ archetypes, affiliated with bacteria from marine, soil and marsh environments. In addition to nosZ genes related to those of known marine denitrifiers, atypical nosZ genes, related to those of soil bacteria that do not possess a complete denitrification pathway, were also detected, especially in surface waters. The community composition of the total nosZ assemblage was significantly different from the active assemblage. The community composition of the total nosZ assemblage was significantly different between coastal and off-shore stations. The low oxygen assemblages from both stations were similar to each other, while the higher oxygen assemblages were more variable. Community composition of the active nosZ assemblage was also significantly different between stations, and varied with N2O concentration but not O2. Notably, nosZ assemblages were not only present but also active in oxygenated seawater: the abundance of total and active nosZ bacteria from oxygenated surface water (indicated by nosZ gene copy number) was similar to or even larger than in anoxic waters, implying the potential for N2O consumption even in the oxygenated surface water. PMID:28702012
Sun, Xin; Jayakumar, Amal; Ward, Bess B
2017-01-01
The ozone-depleting and greenhouse gas, nitrous oxide (N 2 O), is mainly consumed by the microbially mediated anaerobic process, denitrification. N 2 O consumption is the last step in canonical denitrification, and is also the least O 2 tolerant step. Community composition of total and active N 2 O consuming bacteria was analyzed based on total (DNA) and transcriptionally active (RNA) nitrous oxide reductase ( nosZ ) genes using a functional gene microarray. The total and active nosZ communities were dominated by a limited number of nosZ archetypes, affiliated with bacteria from marine, soil and marsh environments. In addition to nosZ genes related to those of known marine denitrifiers, atypical nosZ genes, related to those of soil bacteria that do not possess a complete denitrification pathway, were also detected, especially in surface waters. The community composition of the total nosZ assemblage was significantly different from the active assemblage. The community composition of the total nosZ assemblage was significantly different between coastal and off-shore stations. The low oxygen assemblages from both stations were similar to each other, while the higher oxygen assemblages were more variable. Community composition of the active nosZ assemblage was also significantly different between stations, and varied with N 2 O concentration but not O 2 . Notably, nosZ assemblages were not only present but also active in oxygenated seawater: the abundance of total and active nosZ bacteria from oxygenated surface water (indicated by nosZ gene copy number) was similar to or even larger than in anoxic waters, implying the potential for N 2 O consumption even in the oxygenated surface water.
Williams, Alicia K; McInnes, Allison S; Rooker, Jay R; Quigg, Antonietta
2015-01-01
Mesoscale circulation generated by the Loop Current in the Northern Gulf of Mexico (NGOM) delivers growth-limiting nutrients to the microbial plankton of the euphotic zone. Consequences of physicochemically driven community shifts on higher order consumers and subsequent impacts on the biological carbon pump remain poorly understood. This study evaluates microbial plankton <10 μm abundance and community structure across both cyclonic and anti-cyclonic circulation features in the NGOM using flow cytometry (SYBR Green I and autofluorescence parameters). Non-parametric multivariate hierarchical cluster analyses indicated that significant spatial variability in community structure exists such that stations that clustered together were defined as having a specific 'microbial signature' (i.e. statistically homogeneous community structure profiles based on relative abundance of microbial groups). Salinity and a combination of sea surface height anomaly and sea surface temperature were determined by distance based linear modeling to be abiotic predictor variables significantly correlated to changes in microbial signatures. Correlations between increased microbial abundance and availability of nitrogen suggest nitrogen-limitation of microbial plankton in this open ocean area. Regions of combined coastal water entrainment and mesoscale convergence corresponded to increased heterotrophic prokaryote abundance relative to autotrophic plankton. The results provide an initial assessment of how mesoscale circulation potentially influences microbial plankton abundance and community structure in the NGOM.
Lapakko, Kim A.; Wenz, Zachary J.; Olson, Michael C.; Roepke, Elizabeth W.; Novak, Paige J.; Bailey, Jake V.
2017-01-01
ABSTRACT The Duluth Complex in northeastern Minnesota hosts economically significant deposits of copper, nickel, and platinum group elements (PGEs). The primary sulfide mineralogy of these deposits includes the minerals pyrrhotite, chalcopyrite, pentlandite, and cubanite, and weathering experiments show that most sulfide-bearing rock from the Duluth Complex generates moderately acidic leachate (pH 4 to 6). Microorganisms are important catalysts for metal sulfide oxidation and could influence the quality of water from mines in the Duluth Complex. Nevertheless, compared with that of extremely acidic environments, much less is known about the microbial ecology of moderately acidic sulfide-bearing mine waste, and so existing information may have little relevance to those microorganisms catalyzing oxidation reactions in the Duluth Complex. Here, we characterized the microbial communities in decade-long weathering experiments (kinetic tests) conducted on crushed rock and tailings from the Duluth Complex. Analyses of 16S rRNA genes and transcripts showed that differences among microbial communities correspond to pH, rock type, and experimental treatment. Moreover, microbial communities from the weathered Duluth Complex rock were dominated by taxa that are not typically associated with acidic mine waste. The most abundant operational taxonomic units (OTUs) were from the genera Meiothermus and Sulfuriferula, as well as from diverse clades of uncultivated Chloroflexi, Acidobacteria, and Betaproteobacteria. Specific taxa, including putative sulfur-oxidizing Sulfuriferula spp., appeared to be primarily associated with Duluth Complex rock, but not pyrite-bearing rocks subjected to the same experimental treatment. We discuss the implications of these results for the microbial ecology of moderately acidic mine waste with low sulfide content, as well as for kinetic testing of mine waste. IMPORTANCE Economic sulfide mineral deposits in the Duluth Complex may represent the largest undeveloped source of copper and nickel on Earth. Microorganisms are important catalysts for sulfide mineral oxidation, and research on extreme acidophiles has improved our ability to manage and remediate mine wastes. We found that the microbial assemblages associated with weathered rock from the Duluth Complex are dominated by organisms not widely associated with mine waste or mining-impacted environments, and we describe geochemical and experimental influences on community composition. This report will be a useful foundation for understanding the microbial biogeochemistry of moderately acidic mine waste from these and similar deposits. PMID:28600313
Jones, Daniel S; Lapakko, Kim A; Wenz, Zachary J; Olson, Michael C; Roepke, Elizabeth W; Sadowsky, Michael J; Novak, Paige J; Bailey, Jake V
2017-08-15
The Duluth Complex in northeastern Minnesota hosts economically significant deposits of copper, nickel, and platinum group elements (PGEs). The primary sulfide mineralogy of these deposits includes the minerals pyrrhotite, chalcopyrite, pentlandite, and cubanite, and weathering experiments show that most sulfide-bearing rock from the Duluth Complex generates moderately acidic leachate (pH 4 to 6). Microorganisms are important catalysts for metal sulfide oxidation and could influence the quality of water from mines in the Duluth Complex. Nevertheless, compared with that of extremely acidic environments, much less is known about the microbial ecology of moderately acidic sulfide-bearing mine waste, and so existing information may have little relevance to those microorganisms catalyzing oxidation reactions in the Duluth Complex. Here, we characterized the microbial communities in decade-long weathering experiments (kinetic tests) conducted on crushed rock and tailings from the Duluth Complex. Analyses of 16S rRNA genes and transcripts showed that differences among microbial communities correspond to pH, rock type, and experimental treatment. Moreover, microbial communities from the weathered Duluth Complex rock were dominated by taxa that are not typically associated with acidic mine waste. The most abundant operational taxonomic units (OTUs) were from the genera Meiothermus and Sulfuriferula , as well as from diverse clades of uncultivated Chloroflexi , Acidobacteria , and Betaproteobacteria Specific taxa, including putative sulfur-oxidizing Sulfuriferula spp., appeared to be primarily associated with Duluth Complex rock, but not pyrite-bearing rocks subjected to the same experimental treatment. We discuss the implications of these results for the microbial ecology of moderately acidic mine waste with low sulfide content, as well as for kinetic testing of mine waste. IMPORTANCE Economic sulfide mineral deposits in the Duluth Complex may represent the largest undeveloped source of copper and nickel on Earth. Microorganisms are important catalysts for sulfide mineral oxidation, and research on extreme acidophiles has improved our ability to manage and remediate mine wastes. We found that the microbial assemblages associated with weathered rock from the Duluth Complex are dominated by organisms not widely associated with mine waste or mining-impacted environments, and we describe geochemical and experimental influences on community composition. This report will be a useful foundation for understanding the microbial biogeochemistry of moderately acidic mine waste from these and similar deposits. Copyright © 2017 American Society for Microbiology.
Kumar, Niraj; Palmer, Gerald R; Shah, Vishal; Walker, Virginia K
2014-01-01
The impact of silver nanoparticles (NPs) and microparticles (MPs) on bacterial and fungal assemblages was studied in soils collected from a low arctic site. Two different concentrations (0.066% and 6.6%) of Ag NPs and Ag MPs were tested in microcosms that were exposed to temperatures mimicking a winter to summer transition. Toxicity was monitored by differential respiration, phospholipid fatty acid analysis, polymerase chain reaction-denaturing gradient gel electrophoresis and DNA sequencing. Notwithstanding the effect of Ag MPs, nanosilver had an obvious, additional impact on the microbial community, underscoring the importance of particle size in toxicity. This impact was evidenced by levels of differential respiration in 0.066% Ag NP-treated soil that were only half that of control soils, a decrease in signature bacterial fatty acids, and changes in both richness and evenness in bacterial and fungal DNA sequence assemblages. Prominent after Ag NP-treatment were Hypocreales fungi, which increased to 70%, from only 1% of fungal sequences under control conditions. Genera within this Order known for their antioxidant properties (Cordyceps/Isaria) dominated the fungal assemblage after NP addition. In contrast, sequences attributed to the nitrogen-fixing Rhizobiales bacteria appeared vulnerable to Ag NP-mediated toxicity. This combination of physiological, biochemical and molecular studies clearly demonstrate that Ag NPs can severely disrupt the natural seasonal progression of tundra assemblages.
Hernández-Hernández, R M; Roldán, A; Caravaca, F; Rodriguez-Caballero, G; Torres, M P; Maestre, F T; Alguacil, M M
2017-01-01
Knowledge of the arbuscular mycorrhizal fungal assemblages in the Trachypogon savanna ecosystems is very important to a better understanding of the ecological processes mediated by this soil microbial group that affects multiple ecosystem functions. Considering the hypothesis that the biocrusts can be linked to vegetation through the arbuscular fungi mycelial network, the objectives proposed in this study were to determine (i) whether there are arbuscular mycorrhizal fungi (AMF) in the biocrusts (ii) whether arbuscular mycorrhizal fungal assemblages are linked to the Trachypogon patches, and (iii) whether the composition of the assemblages is related to soil properties affected by microbiological activity. The community structure of the AMF was investigated in three habitats: rhizospheric soil and roots of Trachypogon vestitus, biological soil crusts, and bare soil. The canonical correspondence analysis showed that two soil properties related to enzymatic activity (protease and β-glucosidase) significantly affected the community composition of the AMF. The biocrusts in the Venezuelan savanna are colonized by an AM fungal community linked to that of the bare soil and significantly different from that hosted by the roots of the surrounding T. vestitus, suggesting that assemblages of AMF in biocrusts might be related more closely to those of annual plant species appearing in favorable conditions. Copyright © 2016 Elsevier B.V. All rights reserved.
Distinct bacterial assemblages reside at different depths in Arctic multiyear sea ice.
Hatam, Ido; Charchuk, Rhianna; Lange, Benjamin; Beckers, Justin; Haas, Christian; Lanoil, Brian
2014-10-01
Bacterial communities in Arctic sea ice play an important role in the regulation of nutrient and energy dynamics in the Arctic Ocean. Sea ice has vertical gradients in temperature, brine salinity and volume, and light and UV levels. Multiyear ice (MYI) has at least two distinct ice layers: old fresh ice with limited permeability, and new saline ice, and may also include a surface melt pond layer. Here, we determine whether bacterial communities (1) differ with ice depth due to strong physical and chemical gradients, (2) are relatively homogenous within a layer, but differ between layers, or (3) do not vary with ice depth. Cores of MYI off northern Ellesmere Island, NU, Canada, were subsectioned in 30-cm intervals, and the bacterial assemblage structure was characterized using 16S rRNA gene pyrotag sequencing. Assemblages clustered into three distinct groups: top (0-30 cm); middle (30-150 cm); and bottom (150-236 cm). These layers correspond to the occurrence of refrozen melt pond ice, at least 2-year-old ice, and newly grown first-year ice at the bottom of the ice sheet, respectively. Thus, MYI houses multiple distinct bacterial assemblages, and in situ conditions appear to play a less important role in structuring microbial assemblages than the age or conditions of the ice at the time of formation. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Lowell, Jennifer L; Gordon, Nathan; Engstrom, Dale; Stanford, Jack A; Holben, William E; Gannon, James E
2009-10-01
The Nyack floodplain is located on the Middle Fork of the Flathead River, an unregulated, pristine, fifth-order stream in Montana, USA, bordering Glacier National Park. The hyporheic zone is a nutritionally heterogeneous floodplain component harboring a diverse array of microbial assemblages essential in fluvial biogeochemical cycling, riverine ecosystem productivity, and trophic interactions. Despite these functions, microbial community structure in pristine hyporheic systems is not well characterized. The current study was designed to assess whether physical habitat heterogeneity within the hyporheic zone of the Nyack floodplain was sufficient to drive bacterial beta diversity between three different hyporheic flow path locations. Habitat heterogeneity was assessed by measuring soluble reactive phosphorous, nitrate, dissolved organic carbon, dissolved oxygen, and soluble total nitrogen levels seasonally at surface water infiltration, advection, and exfiltration zones. Significant spatial differences were detected in dissolved oxygen and nitrate levels, and seasonal differences were detected in dissolved oxygen, nitrate, and dissolved organic carbon levels. Denaturing gradient gel electrophoresis (DGGE) and cell counts indicated that bacterial diversity increased with abundance, and DGGE fingerprints covaried with nitrate levels where water infiltrated the hyporheic zone. The ribosomal gene phylogeny revealed that hyporheic habitat heterogeneity was sufficient to drive beta diversity between bacterial assemblages. Phylogenetic (P) tests detected sequence disparity between the flow path locations. Small distinct lineages of Firmicutes, Actinomycetes, Planctomycetes, and Acidobacteria defined the infiltration zone and alpha- and beta-proteobacterial lineages delineated the exfiltration and advection zone communities. These data suggest that spatial habitat heterogeneity drives hyporheic microbial community development and that attempts to understand functional differences between bacteria inhabiting nutritionally heterogeneous hyporheic environments might begin by focusing on the biology of these taxa.
Bacterial diversity patterns of the intertidal biofilm in urban beaches of Río de la Plata.
Piccini, C; García-Alonso, J
2015-02-28
Intertidal benthic ecosystems in estuaries are productive sites where microbial processes play critical roles in nutrients mineralization, primary production and trophic web. In this groundwork study we analyzed the bacterial community of intertidal biofilms from Río de la Plata beaches with different anthropogenic impacts. Several environmental parameters were measured and bacterial assemblages were analyzed by 16S-rDNA pyrosequencing. The average OTU found per sample was 527.3±122.5, showing similar richness and diversity among them. However, sites having the highest and lowest salinity displayed higher bacterial diversity. Assemblages from a site nearby an oil refinery, showing the lowest salinity and oxygen concentration, were clearly distinct from the rest. The weight of this splitting relied on OTUs belonging to Thauera, known by its ability to metabolize aromatic compounds. Our results suggest that intertidal bacterial assemblages would be structured by major estuarine variables such as salinity, and that anthropogenic-induced environmental parameters might also be relevant. Copyright © 2014 Elsevier Ltd. All rights reserved.
Transported biofilms and their influence on subsequent macrofouling colonization.
Sweat, L Holly; Swain, Geoffrey W; Hunsucker, Kelli Z; Johnson, Kevin B
2017-05-01
Biofilm organisms such as diatoms are potential regulators of global macrofouling dispersal because they ubiquitously colonize submerged surfaces, resist antifouling efforts and frequently alter larval recruitment. Although ships continually deliver biofilms to foreign ports, it is unclear how transport shapes biofilm microbial structure and subsequent macrofouling colonization. This study demonstrates that different ship hull coatings and transport methods change diatom assemblage composition in transported coastal marine biofilms. Assemblages carried on the hull experienced significant cell losses and changes in composition through hydrodynamic stress, whereas those that underwent sheltered transport, even through freshwater, were largely unaltered. Coatings and their associated biofilms shaped distinct macrofouling communities and affected recruitment for one third of all species, while biofilms from different transport treatments had little effect on macrofouling colonization. These results demonstrate that transport conditions can shape diatom assemblages in biofilms carried by ships, but the properties of the underlying coatings are mainly responsible for subsequent macrofouling. The methods by which organisms colonize and are transferred by ships have implications for their distribution, establishment and invasion success.
Microbial biogeography of wine grapes is conditioned by cultivar, vintage, and climate
Bokulich, Nicholas A.; Thorngate, John H.; Richardson, Paul M.; Mills, David A.
2014-01-01
Wine grapes present a unique biogeography model, wherein microbial biodiversity patterns across viticultural zones not only answer questions of dispersal and community maintenance, they are also an inherent component of the quality, consumer acceptance, and economic appreciation of a culturally important food product. On their journey from the vineyard to the wine bottle, grapes are transformed to wine through microbial activity, with indisputable consequences for wine quality parameters. Wine grapes harbor a wide range of microbes originating from the surrounding environment, many of which are recognized for their role in grapevine health and wine quality. However, determinants of regional wine characteristics have not been identified, but are frequently assumed to stem from viticultural or geological factors alone. This study used a high-throughput, short-amplicon sequencing approach to demonstrate that regional, site-specific, and grape-variety factors shape the fungal and bacterial consortia inhabiting wine-grape surfaces. Furthermore, these microbial assemblages are correlated to specific climatic features, suggesting a link between vineyard environmental conditions and microbial inhabitation patterns. Taken together, these factors shape the unique microbial inputs to regional wine fermentations, posing the existence of nonrandom “microbial terroir” as a determining factor in regional variation among wine grapes. PMID:24277822
Microbial biogeography of wine grapes is conditioned by cultivar, vintage, and climate.
Bokulich, Nicholas A; Thorngate, John H; Richardson, Paul M; Mills, David A
2014-01-07
Wine grapes present a unique biogeography model, wherein microbial biodiversity patterns across viticultural zones not only answer questions of dispersal and community maintenance, they are also an inherent component of the quality, consumer acceptance, and economic appreciation of a culturally important food product. On their journey from the vineyard to the wine bottle, grapes are transformed to wine through microbial activity, with indisputable consequences for wine quality parameters. Wine grapes harbor a wide range of microbes originating from the surrounding environment, many of which are recognized for their role in grapevine health and wine quality. However, determinants of regional wine characteristics have not been identified, but are frequently assumed to stem from viticultural or geological factors alone. This study used a high-throughput, short-amplicon sequencing approach to demonstrate that regional, site-specific, and grape-variety factors shape the fungal and bacterial consortia inhabiting wine-grape surfaces. Furthermore, these microbial assemblages are correlated to specific climatic features, suggesting a link between vineyard environmental conditions and microbial inhabitation patterns. Taken together, these factors shape the unique microbial inputs to regional wine fermentations, posing the existence of nonrandom "microbial terroir" as a determining factor in regional variation among wine grapes.
Schuelke, Taruna; Pereira, Tiago José; Hardy, Sarah M; Bik, Holly M
2018-04-01
Studies of host-associated microbes are critical for advancing our understanding of ecology and evolution across diverse taxa and ecosystems. Nematode worms are ubiquitous across most habitats on earth, yet little is known about host-associated microbial assemblages within the phylum. Free-living nematodes are globally abundant and diverse in marine sediments, with species exhibiting distinct buccal cavity (mouth) morphologies that are thought to play an important role in feeding ecology and life history strategies. Here, we investigated patterns in marine nematode microbiomes, by characterizing host-associated microbial taxa in 281 worms isolated from a range of habitat types (deep-sea, shallow water, methane seeps, Lophelia coral mounds, kelp holdfasts) across three distinct geographic regions (Arctic, Southern California and Gulf of Mexico). Microbiome profiles were generated from single worms spanning 33 distinct morphological genera, using a two-gene metabarcoding approach to amplify the V4 region of the 16S ribosomal RNA (rRNA) gene targeting bacteria/archaea and the V1-V2 region of the 18S rRNA gene targeting microbial eukaryotes. Contrary to our expectations, nematode microbiome profiles demonstrated no distinct patterns either globally (across depths and ocean basins) or locally (within site); prokaryotic and eukaryotic microbial assemblages did not correlate with nematode feeding morphology, host phylogeny or morphological identity, ocean region or marine habitat type. However, fine-scale analysis of nematode microbiomes revealed a variety of novel ecological interactions, including putative parasites and symbionts, and potential associations with bacterial/archaeal taxa involved in nitrogen and methane cycling. Our results suggest that in marine habitats, free-living nematodes may utilize diverse and generalist foraging strategies that are not correlated with host genotype or feeding morphology. Furthermore, some abiotic factors such as geographic region and habitat type do not appear to play an obvious role in structuring host-microbe associations or feeding preferences. © 2018 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Rowe, A. R.; Wanger, G. P.; Bhartia, R.
2017-12-01
The Cedars, an area of active serpentinization located in the Russian River area of Northern California, represents one of the few terrestrial areas on Earth undergoing active serpentinization. One of the products of the serpentinization reaction is the formation of hydroxyl radicals making the springs of the Cedars some of the most alkaline natural waters on Earth. These waters, with very high pH (pH>11), low EH and, low concentrations of electron acceptors are extremely inhospitible; however microbial life has found a way to thrive and a distinct microbial community is observed in the spring waters. Previous work with environmental samples and pure culture isolates [3] derived from The Cedars has suggested the importance of minearal association to these characteristic microbes. Here we show the results combined spectroscopic and molecular studies on aseries of mineral colonization experiemnts performed with a pure culture Cedar's isolate (Serpentenamonas str. A1) and in situ at CS spring. Centimeter scale, polished coupons of a variety of mminerals were prepared in the lab, spectroscopically characterized (Green Raman, DUV Raman, and DUV Fluorescence maps) and deployed into the springs for three months. The coupons were recovered and the distribution of the microbes on the minerals was mapped using a deep-UV native fluorescent mapping sustem that allows for non-destructive mapping of organics and microbes on surfaces. Subsequently the DNA from the minerals was extracted for community structure analysis. The MOSAIC (i.e. deep UV Fluorescence) showed extensicve colonization of the minerals and in some cases we were able to correlate microbial assemblages with specific geological features. In one example, organisms tended to associate strongly with carbonate features on Chromite mineral surfaces (Figure 1). The 16s rDNA revealed the microbial assemblages from each slide was dominated by active Cedars community memebers (i.e., Serpentinamonas and Silanimonas species), however the relative distribution oc bacterial types varied across mineral type and from the original spring community itself.
NASA Astrophysics Data System (ADS)
Olóriz, Federico; Reolid, Matías; Rodríguez-Tovar, Francisco J.
2006-11-01
The palaeoenvironmental conditions and trophic structure of a mid-outer neritic biota (microfossils, mainly forams, and macroinvertebrate assemblages) have been approached in middle Oxfordian-lowermost Kimmeridgian deposits from the Prebetic Zone (Betic Cordillera) in south-eastern Spain. According to relationships between fossil assemblages and lithofacies, a general seaward trend is identified which displays decreasing sedimentation rates and nutrient inputs, but increasing substrate consistency and presumably depth. Midshelf, terrigenous-rich deposits in the External Prebetic relate to the highest sedimentation rates and nutrient availability. These two parameters correlate with the highest content in vagile-benthic, calcareous perforate, epifaunal forams, as well as with potentially deep infaunal forams and infaunal macroinvertebrates. Outer-shelf lumpy deposits in the Internal Prebetic show the lowest sedimentation rates and nutrient availability and the highest records for macro-micro nektonics and planktics. In contrast, vagile-benthic, calcareous perforate epifaunal and potentially deep infaunal forams are scarcer in the midshelf environments. Colonial encrusting forams, benthic microbial communities and sessile benthic macro-invertebrates increase from the middle to outer shelf. Trophic-analysis structuring through the integration of benthic microbial communities, foraminiferal and macroinvertebrate fossil assemblages makes it possible to interpret: (a) a trophic-level frame composed of producers and primary and secondary consumers; (b) a main trophic-group differentiation in suspension-feeders, detritus-feeders, browsers, grazers, carnivores and scavengers; (c) a preliminary approach to food-chain structure supported by suspension-feeders, deposit-feeders and predators (active prey-selection carnivores); and (d) a food-pyramid model, which takes into account both recorded fossils and envisaged —i.e., ecologically inferred-organisms.
Back to the future of soil metagenomics
Nesme, Joseph; Achouak, Wafa; Agathos, Spiros N.; ...
2016-02-10
Here, direct extraction and characterization of microbial community DNA through PCR amplicon surveys and metagenomics has revolutionized the study of environmental microbiology and microbial ecology. In particular, metagenomic analysis of nucleic acids provides direct access to the genomes of the “uncultivated majority.” Accelerated by advances in sequencing technology, microbiologists have discovered more novel phyla, classes, genera, and genes from microorganisms in the first decade and a half of the twenty-first century than since these “many very little living animalcules” were first discovered by van Leeuwenhoek (Table 1). The unsurpassed diversity of soils promises continued exploration of a range of industrial,more » agricultural, and environmental functions. The ability to explore soil microbial communities with increasing capacity offers the highest promise for answering many outstanding who, what, where, when, why, and with whom questions such as: Which microorganisms are linked to which soil habitats? How do microbial abundances change with changing edaphic conditions? How do microbial assemblages interact and influence one another synergistically or antagonistically? What is the full extent of soil microbial diversity, both functionally and phylogenetically? What are the dynamics of microbial communities in space and time? How sensitive are microbial communities to a changing climate? What is the role of horizontal gene transfer in the stability of microbial communities? Do highly diverse microbial communities confer resistance and resilience in soils?« less
Back to the future of soil metagenomics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nesme, Joseph; Achouak, Wafa; Agathos, Spiros N.
Here, direct extraction and characterization of microbial community DNA through PCR amplicon surveys and metagenomics has revolutionized the study of environmental microbiology and microbial ecology. In particular, metagenomic analysis of nucleic acids provides direct access to the genomes of the “uncultivated majority.” Accelerated by advances in sequencing technology, microbiologists have discovered more novel phyla, classes, genera, and genes from microorganisms in the first decade and a half of the twenty-first century than since these “many very little living animalcules” were first discovered by van Leeuwenhoek (Table 1). The unsurpassed diversity of soils promises continued exploration of a range of industrial,more » agricultural, and environmental functions. The ability to explore soil microbial communities with increasing capacity offers the highest promise for answering many outstanding who, what, where, when, why, and with whom questions such as: Which microorganisms are linked to which soil habitats? How do microbial abundances change with changing edaphic conditions? How do microbial assemblages interact and influence one another synergistically or antagonistically? What is the full extent of soil microbial diversity, both functionally and phylogenetically? What are the dynamics of microbial communities in space and time? How sensitive are microbial communities to a changing climate? What is the role of horizontal gene transfer in the stability of microbial communities? Do highly diverse microbial communities confer resistance and resilience in soils?« less
Izawa, M R M; Banerjee, Neil R; Osinski, G R; Flemming, R L; Parnell, J; Cockell, C S
2011-01-01
Meteorite impacts are among the very few processes common to all planetary bodies with solid surfaces. Among the effects of impact on water-bearing targets is the formation of post-impact hydrothermal systems and associated mineral deposits. The Haughton impact structure (Devon Island, Nunavut, Canada, 75.2 °N, 89.5 °W) hosts a variety of hydrothermal mineral deposits that preserve assemblages of primary hydrothermal minerals commonly associated with secondary oxidative/hydrous weathering products. Hydrothermal mineral deposits at Haughton include intra-breccia calcite-marcasite vugs, small intra-breccia calcite or quartz vugs, intra-breccia gypsum megacryst vugs, hydrothermal pipe structures and associated surface "gossans," banded Fe-oxyhydroxide deposits, and calcite and quartz veins and coatings in shattered target rocks. Of particular importance are sulfide-rich deposits and their associated assemblage of weathering products. Hydrothermal mineral assemblages were characterized structurally, texturally, and geochemically with X-ray diffraction, micro X-ray diffraction, optical and electron microscopy, and inductively coupled plasma atomic emission spectroscopy. Primary sulfides (marcasite and pyrite) are commonly associated with alteration minerals, including jarosite (K,Na,H(3)O)Fe(3)(SO(4))(2)(OH)(6), rozenite FeSO(4)·4(H(2)O), copiapite (Fe,Mg)Fe(4)(SO(4))(6)(OH)(2)·20(H(2)O), fibroferrite Fe(SO(4))(OH)·5(H(2)O), melanterite FeSO(4)·7(H(2)O), szomolnokite FeSO(4)·H(2)O, goethite α-FeO(OH), lepidocrocite γ-FeO(OH) and ferrihydrite Fe(2)O(3)·0.5(H(2)O). These alteration assemblages are consistent with geochemical conditions that were locally very different from the predominantly circumneutral, carbonate-buffered environment at Haughton. Mineral assemblages associated with primary hydrothermal activity, and the weathering products of such deposits, provide constraints on possible microbial activity in the post-impact environment. The initial period of active hydrothermal circulation produced primary mineral assemblages, including Fe sulfides, and was succeeded by a period dominated by oxidation and low-temperature hydration of primary minerals by surface waters. Active hydrothermal circulation can enable the rapid delivery of nutrients to microbes. Nutrient availability following the cessation of hydrothermal circulation is likely more restricted; therefore, the biological importance of chemical energy from hydrothermal mineral deposits increases with time. Weathering of primary hydrothermal deposits and dissolution and reprecipitation of mobile weathering products also create many potential habitats for endolithic microbes. They also provide a mechanism that may preserve biological materials, potentially over geological timescales. © Mary Ann Liebert, Inc.
Karayanni, Hera; Meziti, Alexandra; Spatharis, Sofie; Genitsaris, Savvas; Courties, Claude; Kormas, Konstantinos A.
2017-01-01
Microbes are considered to have a global distribution due to their high dispersal capabilities. However, our knowledge of the way geographically distant microbial communities assemble after dispersal in a new environment is limited. In this study, we examined whether communities would converge because similar taxa would be selected under the same environmental conditions, or would diverge because of initial community composition, after artificial dispersal. To this aim, a microcosm experiment was performed, in which the temporal changes in the composition and diversity of different prokaryoplankton assemblages from three distant geographic coastal areas (Banyuls-sur-Mer in northwest Mediterranean Sea, Pagasitikos Gulf in northeast Mediterranean and Woods Hole, MA, USA in the northwest Atlantic), were studied. Diversity was investigated using amplicon pyrosequencing of the V1–V3 hypervariable regions of the 16S rRNA. The three assemblages were grown separately in particle free and autoclaved Banyuls-sur-mer seawater at 18 °C in the dark. We found that the variability of prokaryoplankton community diversity (expressed as richness, evenness and dominance) as well as the composition were driven by patterns observed in Bacteria. Regarding community composition, similarities were found between treatments at family level. However, at the OTU level microbial communities from the three different original locations diverge rather than converge during incubation. It is suggested that slight differences in the composition of the initial prokaryoplankton communities, resulted in separate clusters the following days even when growth took place under identical abiotic conditions. PMID:28587211
Microbial eukaryotic distributions and diversity patterns in a deep-sea methane seep ecosystem.
Pasulka, Alexis L; Levin, Lisa A; Steele, Josh A; Case, David H; Landry, Michael R; Orphan, Victoria J
2016-09-01
Although chemosynthetic ecosystems are known to support diverse assemblages of microorganisms, the ecological and environmental factors that structure microbial eukaryotes (heterotrophic protists and fungi) are poorly characterized. In this study, we examined the geographic, geochemical and ecological factors that influence microbial eukaryotic composition and distribution patterns within Hydrate Ridge, a methane seep ecosystem off the coast of Oregon using a combination of high-throughput 18S rRNA tag sequencing, terminal restriction fragment length polymorphism fingerprinting, and cloning and sequencing of full-length 18S rRNA genes. Microbial eukaryotic composition and diversity varied as a function of substrate (carbonate versus sediment), activity (low activity versus active seep sites), sulfide concentration, and region (North versus South Hydrate Ridge). Sulfide concentration was correlated with changes in microbial eukaryotic composition and richness. This work also revealed the influence of oxygen content in the overlying water column and water depth on microbial eukaryotic composition and diversity, and identified distinct patterns from those previously observed for bacteria, archaea and macrofauna in methane seep ecosystems. Characterizing the structure of microbial eukaryotic communities in response to environmental variability is a key step towards understanding if and how microbial eukaryotes influence seep ecosystem structure and function. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
Thompson, Grant L.; Kao-Kniffin, Jenny
2016-01-01
Urban grasslands, landscapes dominated by turfgrasses for aesthetic or recreational groundcovers, are rapidly expanding in the United States and globally. These managed ecosystems are often less diverse than the natural or agricultural lands they replace, leading to potential losses in ecosystem functioning. Research in non-urban systems has provided evidence for increases in multiple ecosystem functions associated with greater plant diversity. To test if biodiversity-ecosystem function findings are applicable to urban grasslands, we examined the effect of plant species and genotypic diversity on three ecosystem functions, using grassland assemblages of increasing diversity that were grown within a controlled environment facility. We found positive effects of plant diversity on reduced nitrate leaching and plant productivity. Soil microbial diversity (Mean Shannon Diversity, H’) of bacteria and fungi were also enhanced in multi-species plantings, suggesting that moderate increments in plant diversity influence the composition of soil biota. The results from this study indicate that plant diversity impacts multiple functions that are important in urban ecosystems; therefore, further tests of urban grassland biodiversity should be examined in situ to determine the feasibility of manipulating plant diversity as an explicit landscape design and function trait. PMID:27243768
Microplastic is an abundant and distinct microbial habitat in an urban river.
McCormick, Amanda; Hoellein, Timothy J; Mason, Sherri A; Schluep, Joseph; Kelly, John J
2014-10-21
Recent research has documented microplastic particles (< 5 mm in diameter) in ocean habitats worldwide and in the Laurentian Great Lakes. Microplastic interacts with biota, including microorganisms, in these habitats, raising concerns about its ecological effects. Rivers may transport microplastic to marine habitats and the Great Lakes, but data on microplastic in rivers is limited. In a highly urbanized river in Chicago, Illinois, USA, we measured concentrations of microplastic that met or exceeded those measured in oceans and the Great Lakes, and we demonstrated that wastewater treatment plant effluent was a point source of microplastic. Results from high-throughput sequencing showed that bacterial assemblages colonizing microplastic within the river were less diverse and were significantly different in taxonomic composition compared to those from the water column and suspended organic matter. Several taxa that include plastic decomposing organisms and pathogens were more abundant on microplastic. These results demonstrate that microplastic in rivers are a distinct microbial habitat and may be a novel vector for the downstream transport of unique bacterial assemblages. In addition, this study suggests that urban rivers are an overlooked and potentially significant component of the global microplastic life cycle.
NASA Astrophysics Data System (ADS)
Vuillemin, Aurele; Ariztegui, Daniel; Leavitt, Peter R.; Bunting, Lynda
2014-05-01
Laguna Potrok Aike is a closed basin located in the southern hemisphere's mid-latitudes (52°S) where paleoenvironmental conditions were recorded as temporal sedimentary sequences resulting from variations in the regional hydrological regime and geology of the catchment. The interpretation of the limnogeological multiproxy record developed during the ICDP-PASADO project allowed the identification of contrasting time windows associated with the fluctuations of Southern Westerly Winds. In the framework of this project, a 100-m-long core was also dedicated to a detailed geomicrobiological study which aimed at a thorough investigation of the lacustrine subsurface biosphere. Indeed, aquatic sediments do not only record past climatic conditions, but also provide a wide range of ecological niches for microbes. In this context, the influence of environmental features upon microbial development and survival remained still unexplored for the deep lacustrine realm. Therefore, we investigated living microbes throughout the sedimentary sequence using in situ ATP assays and DAPI cell count. These results, compiled with pore water analysis, SEM microscopy of authigenic concretions and methane and fatty acid biogeochemistry, provided evidence for a sustained microbial activity in deep sediments and pinpointed the substantial role of microbial processes in modifying initial organic and mineral fractions. Finally, because the genetic material associated with microorganisms can be preserved in sediments over millennia, we extracted environmental DNA from Laguna Potrok Aike sediments and established 16S rRNA bacterial and archaeal clone libraries to better define the use of DNA-based techniques in reconstructing past environments. We focused on two sedimentary horizons both displaying in situ microbial activity, respectively corresponding to the Holocene and Last Glacial Maximum periods. Sequences recovered from the productive Holocene record revealed a microbial community adapted to subsaline conditions producing methane with a high potential of organic matter degradation. In contrast, sediments rich in volcanic detritus from the Last Glacial Maximum showed a substantial presence of lithotrophic microorganisms and sulphate-reducing bacteria mediating authigenic minerals. Together, these features suggested that microbial communities developed in response to climatic control of lake and catchment productivity at the time of sediment deposition. Prevailing climatic conditions exerted a hierarchical control on the microbial composition of lake sediments by regulating the influx of organic and inorganic material to the lake basin, which in turn determined water column chemistry, production and sedimentation of particulate material, resulting in the different niches sheltering these microbial assemblages. Moreover, it demonstrated that environmental DNA can constitute sedimentary archives of phylogenetic diversity and diagenetic processes over tens of millennia.
Ji, Yosep; Park, Soyoung; Park, Haryung; Hwang, Eunchong; Shin, Hyeunkil; Pot, Bruno; Holzapfel, Wilhelm H
2018-01-01
Gut microbiota play a key role in the development of metabolic disorders. Defining and correlating structural shifts in gut microbial assemblages with conditions related to metabolic syndrome have, however, been proven difficult. Results from 16S genomic DNA and 16S ribosomal RNA analyses of fecal samples may differ widely, leading to controversial information on the whole microbial community and metabolically active microbiota. Using a C57BL/6J murine model, we compared data from 16S genomic DNA and ribosomal RNA of the fecal microbiota. The study included three groups of experimental animals comprising two groups with high fat diet induced obesity (DIO) while a third group (control) received a low fat diet. One of the DIO groups was treated with the probiotic Lactobacillus rhamnosus GG (LGG). Compared to the data obtained by DNA analysis, a significantly higher abundance of OTUs was accounted for by RNA analysis. Moreover, rRNA based analysis showed a modulation of the active gut microbial population in the DIO group receiving LGG, thus reflecting a change in the induced obesity status of the host. As one of the most widely studied probiotics the functionality of LGG has been linked to the alleviation of metabolic syndrome, and, in some cases, to an impact on the microbiome. Yet, it appears that no study has reported thus far on modulation of the active microbiota by LGG treatment. It is postulated that the resulting impact on calorie consumption affects weight gain concomitantly with modulation of the functional structure of the gut microbial population. Using the 16S rRNA based approach therefore decisively increased the precision of gut microbiota metagenome analysis.
Inorganic species distribution and microbial diversity within high Arctic cryptoendolithic habitats.
Omelon, Christopher R; Pollard, Wayne H; Ferris, F Grant
2007-11-01
Cryptoendolithic habitats in the Canadian high Arctic are associated with a variety of microbial community assemblages, including cyanobacteria, algae, and fungi. These habitats were analyzed for the presence of metal ions by sequential extraction and evaluated for relationships between these and the various microorganisms found at each site using multivariate statistical methods. Cyanobacteria-dominated communities exist under higher pH conditions with elevated concentrations of calcium and magnesium, whereas communities dominated by fungi and algae are characterized by lower pH conditions and higher concentrations of iron, aluminum, and silicon in the overlying surfaces. These results suggest that the activity of the dominant microorganisms controls the pH of the surrounding environment, which in turn dictates rates of weathering or the possibility for surface crust formation, both ultimately deciding the structure of microbial diversity for each cryptoendolithic habitat.
Formation of recent Pb-Ag-Au mineralization by potential sub-surface microbial activity
NASA Astrophysics Data System (ADS)
Tornos, Fernando; Velasco, Francisco; Menor-Salván, César; Delgado, Antonio; Slack, John F.; Escobar, Juan Manuel
2014-08-01
Las Cruces is a base-metal deposit in the Iberian Pyrite Belt, one of the world’s best-known ore provinces. Here we report the occurrence of major Pb-Ag-Au mineralization resulting from recent sub-surface replacement of supergene oxyhydroxides by carbonate and sulphide minerals. This is probably the largest documented occurrence of recent microbial activity producing an ore assemblage previously unknown in supergene mineralizing environments. The presence of microbial features in the sulphides suggests that these may be the first-described natural bacteriomorphs of galena. The low δ13C values of the carbonate minerals indicate formation by deep anaerobic microbial processes. Sulphur isotope values of sulphides are interpreted here as reflecting microbial reduction in a system impoverished in sulphate. We suggest that biogenic activity has produced around 3.1 × 109 moles of reduced sulphur and 1010 moles of CO2, promoting the formation of ca. 1.19 Mt of carbonates, 114,000 t of galena, 638 t of silver sulphides and 6.5 t of gold.
Williams, Alicia K.; McInnes, Allison S.; Rooker, Jay R.; Quigg, Antonietta
2015-01-01
Mesoscale circulation generated by the Loop Current in the Northern Gulf of Mexico (NGOM) delivers growth-limiting nutrients to the microbial plankton of the euphotic zone. Consequences of physicochemically driven community shifts on higher order consumers and subsequent impacts on the biological carbon pump remain poorly understood. This study evaluates microbial plankton <10 μm abundance and community structure across both cyclonic and anti-cyclonic circulation features in the NGOM using flow cytometry (SYBR Green I and autofluorescence parameters). Non-parametric multivariate hierarchical cluster analyses indicated that significant spatial variability in community structure exists such that stations that clustered together were defined as having a specific ‘microbial signature’ (i.e. statistically homogeneous community structure profiles based on relative abundance of microbial groups). Salinity and a combination of sea surface height anomaly and sea surface temperature were determined by distance based linear modeling to be abiotic predictor variables significantly correlated to changes in microbial signatures. Correlations between increased microbial abundance and availability of nitrogen suggest nitrogen-limitation of microbial plankton in this open ocean area. Regions of combined coastal water entrainment and mesoscale convergence corresponded to increased heterotrophic prokaryote abundance relative to autotrophic plankton. The results provide an initial assessment of how mesoscale circulation potentially influences microbial plankton abundance and community structure in the NGOM. PMID:26375709
Duran, Robert; Cravo-Laureau, Cristiana
2016-01-01
Polycyclic aromatic hydrocarbons (PAHs) are widespread in marine ecosystems and originate from natural sources and anthropogenic activities. PAHs enter the marine environment in two main ways, corresponding to chronic pollution or acute pollution by oil spills. The global PAH fluxes in marine environments are controlled by the microbial degradation and the biological pump, which plays a role in particle settling and in sequestration through bioaccumulation. Due to their low water solubility and hydrophobic nature, PAHs tightly adhere to sediments leading to accumulation in coastal and deep sediments. Microbial assemblages play an important role in determining the fate of PAHs in water and sediments, supporting the functioning of biogeochemical cycles and the microbial loop. This review summarises the knowledge recently acquired in terms of both chronic and acute PAH pollution. The importance of the microbial ecology in PAH-polluted marine ecosystems is highlighted as well as the importance of gaining further in-depth knowledge of the environmental services provided by microorganisms. PMID:28201512
van der Heijden, Marcel G A; de Bruin, Susanne; Luckerhoff, Ludo; van Logtestijn, Richard S P; Schlaeppi, Klaus
2016-02-01
Highly diverse microbial assemblages colonize plant roots. It is still poorly understood whether different members of this root microbiome act synergistically by supplying different services (for example, different limiting nutrients) to plants and plant communities. In order to test this, we manipulated the presence of two widespread plant root symbionts, arbuscular mycorrhizal fungi and nitrogen-fixing rhizobia bacteria in model grassland communities established in axenic microcosms. Here, we demonstrate that both symbionts complement each other resulting in increased plant diversity, enhanced seedling recruitment and improved nutrient acquisition compared with a single symbiont situation. Legume seedlings obtained up to 15-fold higher productivity if they formed an association with both symbionts, opposed to productivity they reached with only one symbiont. Our results reveal the importance of functional diversity of symbionts and demonstrate that different members of the root microbiome can complement each other in acquiring different limiting nutrients and in driving important ecosystem functions.
Environmental Factors Support the Formation of Specific Bacterial Assemblages on Microplastics
Oberbeckmann, Sonja; Kreikemeyer, Bernd; Labrenz, Matthias
2018-01-01
While the global distribution of microplastics (MP) in the marine environment is currently being critically evaluated, the potential role of MP as a vector for distinct microbial assemblages or even pathogenic bacteria is hardly understood. To gain a deeper understanding, we investigated how different in situ conditions contribute to the composition and specificity of MP-associated bacterial communities in relation to communities on natural particles. Polystyrene (PS), polyethylene (PE), and wooden pellets were incubated for 2 weeks along an environmental gradient, ranging from marine (coastal Baltic Sea) to freshwater (waste water treatment plant, WWTP) conditions. The associated assemblages as well as the water communities were investigated applying high-throughput 16S rRNA gene sequencing. Our setup allowed for the first time to determine MP-dependent and -independent assemblage factors as subject to different environmental conditions in one system. Most importantly, plastic-specific assemblages were found to develop solely under certain conditions, such as lower nutrient concentration and higher salinity, while the bacterial genus Erythrobacter, known for the ability to utilize polycyclic aromatic hydrocarbons (PAH), was found specifically on MP across a broader section of the gradient. We discovered no enrichment of potential pathogens on PE or PS; however, the abundant colonization of MP in a WWTP by certain bacteria commonly associated with antibiotic resistance suggests MP as a possible hotspot for horizontal gene transfer. Taken together, our study clarifies that the surrounding environment prevailingly shapes the biofilm communities, but that MP-specific assemblage factors exist. These findings point to the ecological significance of specific MP-promoted bacterial populations in aquatic environments and particularly in plastic accumulation zones. PMID:29403454
Frank-Fahle, Béatrice A.; Yergeau, Étienne; Greer, Charles W.; Lantuit, Hugues; Wagner, Dirk
2014-01-01
Permafrost-affected soils are among the most obvious ecosystems in which current microbial controls on organic matter decomposition are changing as a result of global warming. Warmer conditions in polygonal tundra will lead to a deepening of the seasonal active layer, provoking changes in microbial processes and possibly resulting in exacerbated carbon degradation under increasing anoxic conditions. To identify current microbial assemblages in carbon rich, water saturated permafrost environments, four polygonal tundra sites were investigated on Herschel Island and the Yukon Coast, Western Canadian Arctic. Ion Torrent sequencing of bacterial and archaeal 16S rRNA amplicons revealed the presence of all major microbial soil groups and indicated a local, vertical heterogeneity of the polygonal tundra soil community with increasing depth. Microbial diversity was found to be highest in the surface layers, decreasing towards the permafrost table. Quantitative PCR analysis of functional genes involved in carbon and nitrogen-cycling revealed a high functional potential in the surface layers, decreasing with increasing active layer depth. We observed that soil properties driving microbial diversity and functional potential varied in each study site. These results highlight the small-scale heterogeneity of geomorphologically comparable sites, greatly restricting generalizations about the fate of permafrost-affected environments in a warming Arctic. PMID:24416279
Lenchi, Nesrine; İnceoğlu, Özgül; Kebbouche-Gana, Salima; Gana, Mohamed Lamine; Llirós, Marc; Servais, Pierre; García-Armisen, Tamara
2013-01-01
The microorganisms inhabiting many petroleum reservoirs are multi-extremophiles capable of surviving in environments with high temperature, pressure and salinity. Their activity influences oil quality and they are an important reservoir of enzymes of industrial interest. To study these microbial assemblages and to assess any modifications that may be caused by industrial practices, the bacterial and archaeal communities in waters from four Algerian oilfields were described and compared. Three different types of samples were analyzed: production waters from flooded wells, production waters from non-flooded wells and injection waters used for flooding (water-bearing formations). Microbial communities of production and injection waters appeared to be significantly different. From a quantitative point of view, injection waters harbored roughly ten times more microbial cells than production waters. Bacteria dominated in injection waters, while Archaea dominated in production waters. Statistical analysis based on the relative abundance and bacterial community composition (BCC) revealed significant differences between production and injection waters at both OTUs0.03 and phylum level. However, no significant difference was found between production waters from flooded and non-flooded wells, suggesting that most of the microorganisms introduced by the injection waters were unable to survive in the production waters. Furthermore, a Venn diagram generated to compare the BCC of production and injection waters of one flooded well revealed only 4% of shared bacterial OTUs. Phylogenetic analysis of bacterial sequences indicated that Alpha-, Beta- and Gammaproteobacteria were the main classes in most of the water samples. Archaeal sequences were only obtained from production wells and each well had a unique archaeal community composition, mainly belonging to Methanobacteria, Methanomicrobia, Thermoprotei and Halobacteria classes. Many of the bacterial genera retrieved had already been reported as degraders of complex organic molecules and pollutants. Nevertheless, a large number of unclassified bacterial and archaeal sequences were found in the analyzed samples, indicating that subsurface waters in oilfields could harbor new and still-non-described microbial species. PMID:23805243
Cunha, Marina R.; Matos, Fábio L.; Génio, Luciana; Hilário, Ana; Moura, Carlos J.; Ravara, Ascensão; Rodrigues, Clara F.
2013-01-01
Organic falls create localised patches of organic enrichment and disturbance where enhanced degradation is mediated by diversified microbial assemblages and specialized fauna. The view of organic falls as “stepping stones” for the colonization of deep-sea reducing environments has been often loosely used, but much remains to be proven concerning their capability to bridge dispersal among such environments. Aiming the clarification of this issue, we used an experimental approach to answer the following questions: Are relatively small organic falls in the deep sea capable of sustaining taxonomically and trophically diverse assemblages over demographically relevant temporal scales? Are there important depth- or site-related sources of variability for the composition and structure of these assemblages? Is the proximity of other reducing environments influential for their colonization? We analysed the taxonomical and trophic diversity patterns and partitioning (α- and β-diversity) of the macrofaunal assemblages recruited in small colonization devices with organic and inorganic substrata after 1-2 years of deployment on mud volcanoes of the Gulf of Cádiz. Our results show that small organic falls can sustain highly diverse and trophically coherent assemblages for time periods allowing growth to reproductive maturity, and successive generations of dominant species. The composition and structure of the assemblages showed variability consistent with their biogeographic and bathymetric contexts. However, the proximity of cold seeps had limited influence on the similarity between the assemblages of these two habitats and organic falls sustained a distinctive fauna with dominant substrate-specific taxa. We conclude that it is unlikely that small organic falls may regularly ensure population connectivity among cold seeps and vents. They may be a recurrent source of evolutionary candidates for the colonization of such ecosystems. However, there may be a critical size of organic fall to create the necessary intense and persistent reducing conditions for sustaining typical chemosymbiotic vent and seep organisms. PMID:24098550
Brine assemblages of ultrasmall microbial cells within the ice cover of Lake Vida, Antarctica.
Kuhn, Emanuele; Ichimura, Andrew S; Peng, Vivian; Fritsen, Christian H; Trubl, Gareth; Doran, Peter T; Murray, Alison E
2014-06-01
The anoxic and freezing brine that permeates Lake Vida's perennial ice below 16 m contains an abundance of very small (≤0.2-μm) particles mixed with a less abundant population of microbial cells ranging from >0.2 to 1.5 μm in length. Fluorescent DNA staining, electron microscopy (EM) observations, elemental analysis, and extraction of high-molecular-weight genomic DNA indicated that a significant portion of these ultrasmall particles are cells. A continuous electron-dense layer surrounding a less electron-dense region was observed by EM, indicating the presence of a biological membrane surrounding a cytoplasm. The ultrasmall cells are 0.192 ± 0.065 μm, with morphology characteristic of coccoid and diplococcic bacterial cells, often surrounded by iron-rich capsular structures. EM observations also detected the presence of smaller unidentified nanoparticles of 0.020 to 0.140 μm among the brine cells. A 16S rRNA gene clone library from the brine 0.1- to 0.2-μm-size fraction revealed a relatively low-diversity assemblage of Bacteria sequences distinct from the previously reported >0.2-μm-cell-size Lake Vida brine assemblage. The brine 0.1- to 0.2-μm-size fraction was dominated by the Proteobacteria-affiliated genera Herbaspirillum, Pseudoalteromonas, and Marinobacter. Cultivation efforts of the 0.1- to 0.2-μm-size fraction led to the isolation of Actinobacteria-affiliated genera Microbacterium and Kocuria. Based on phylogenetic relatedness and microscopic observations, we hypothesize that the ultrasmall cells in Lake Vida brine are ultramicrocells that are likely in a reduced size state as a result of environmental stress or life cycle-related conditions.
Brine Assemblages of Ultrasmall Microbial Cells within the Ice Cover of Lake Vida, Antarctica
Kuhn, Emanuele; Ichimura, Andrew S.; Peng, Vivian; Fritsen, Christian H.; Trubl, Gareth; Doran, Peter T.
2014-01-01
The anoxic and freezing brine that permeates Lake Vida's perennial ice below 16 m contains an abundance of very small (≤0.2-μm) particles mixed with a less abundant population of microbial cells ranging from >0.2 to 1.5 μm in length. Fluorescent DNA staining, electron microscopy (EM) observations, elemental analysis, and extraction of high-molecular-weight genomic DNA indicated that a significant portion of these ultrasmall particles are cells. A continuous electron-dense layer surrounding a less electron-dense region was observed by EM, indicating the presence of a biological membrane surrounding a cytoplasm. The ultrasmall cells are 0.192 ± 0.065 μm, with morphology characteristic of coccoid and diplococcic bacterial cells, often surrounded by iron-rich capsular structures. EM observations also detected the presence of smaller unidentified nanoparticles of 0.020 to 0.140 μm among the brine cells. A 16S rRNA gene clone library from the brine 0.1- to 0.2-μm-size fraction revealed a relatively low-diversity assemblage of Bacteria sequences distinct from the previously reported >0.2-μm-cell-size Lake Vida brine assemblage. The brine 0.1- to 0.2-μm-size fraction was dominated by the Proteobacteria-affiliated genera Herbaspirillum, Pseudoalteromonas, and Marinobacter. Cultivation efforts of the 0.1- to 0.2-μm-size fraction led to the isolation of Actinobacteria-affiliated genera Microbacterium and Kocuria. Based on phylogenetic relatedness and microscopic observations, we hypothesize that the ultrasmall cells in Lake Vida brine are ultramicrocells that are likely in a reduced size state as a result of environmental stress or life cycle-related conditions. PMID:24727273
Comparative thermometry on pelitic rocks and marbles of the Llano uplift, Texas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Letargo, C.M.R.; Lamb, W.M.
1992-01-01
The Llano Uplift in central Texas is a Grenville-aged metamorphic complex consisting of amphibolite facies assemblages whose development has been attributed to the emplacement of granite plutons between 1.0--1.1 Ga. Temperatures have been obtained from garnet-biotite, garnet-ilmenite, and calcite-dolomite pairs as well as from various silicate equilibria. Application of these geothermometers yield consistent results and are thus indicative of peak conditions attending the amphibolite facies metamorphism. Temperature determined using garnet-biotite and garnet-ilmenite thermometry compare favorably with calcite-dolomite temperatures obtained from marbles in contact with granite plutons in the southeastern part of the uplift. The highest calcite-dolomite temperatures of [approximately]600 Cmore » are obtained from marbles containing an isobarically invariant assemblage consisting of calcite + dolomite + diopside + tremolite + forsterite. At pressures of 2--3 kbar, this isobarically invariant assemblage will be stable at a temperature range of [approximately]600--650 C. Also in close proximity to granites in the southeast uplift is the assemblage muscovite + quartz + k-feldspar + sillimanite [approximately] andalusite which indicate T 650 C and P 2.5 kbar. Assemblages consisting of garnet + sillimanite + quartz + plagioclase (GASP) and garnet + rutile + ilmenite + plagioclase + quartz (GRIPS) are currently being studied to provide additional constraints on pressures of amphibolite facies metamorphism.« less
Human gut microbiome viewed across age and geography
Yatsunenko, Tanya; Rey, Federico E.; Manary, Mark J.; Trehan, Indi; Dominguez-Bello, Maria Gloria; Contreras, Monica; Magris, Magda; Hidalgo, Glida; Baldassano, Robert N.; Anokhin, Andrey P.; Heath, Andrew C.; Warner, Barbara; Reeder, Jens; Kuczynski, Justin; Caporaso, J. Gregory; Lozupone, Catherine A.; Lauber, Christian; Clemente, Jose Carlos; Knights, Dan; Knight, Rob; Gordon, Jeffrey I.
2012-01-01
Gut microbial communities represent one source of human genetic and metabolic diversity. To examine how gut microbiomes differ between human populations when viewed from the perspective of component microbial lineages, encoded metabolic functions, stage of postnatal development, and environmental exposures, we characterized bacterial species present in fecal samples obtained from 531 individuals representing healthy Amerindians from the Amazonas of Venezuela, residents of rural Malawian communities, and inhabitants of USA metropolitan areas, as well as the gene content of 110 of their microbiomes. This cohort encompassed infants, children, teenagers and adults, parents and offspring, and included mono- and dizygotic twins. Shared features of the functional maturation of the gut microbiome were identified during the first three years of life in all three populations, including age-associated changes in the representation of genes involved in vitamin biosynthesis and metabolism. Pronounced differences in bacterial species assemblages and functional gene repertoires were noted between individuals residing in the USA compared to the other two countries. These distinctive features are evident in early infancy as well as adulthood. In addition, the similarity of fecal microbiomes among family members extends across cultures. These findings underscore the need to consider the microbiome when evaluating human development, nutritional needs, physiological variations, and the impact of Westernization. PMID:22699611
The Effect of Dilution on the Structure of Microbial Communities
NASA Technical Reports Server (NTRS)
Mills, Aaron L.
2000-01-01
To determine how dilution of microbial communities affects the diversity of the diluted assemblage a series of numerical simulations were conducted that determined the theoretical change in diversity, richness, and evenness of the community with serial dilution. The results of the simulation suggested that the effects are non linear with a high degree of dependence on the initial evenness of the community being diluted. A series of incubation experiments using a range of dilutions of raw sewage as an inoculum into sterile sewage was used for comparison to the simulations. The diluted communities were maintained in batch fed reactors (three day retention time) for nine days. The communities were harvested and examined by conventional plating and by molecular analysis of the whole-community DNA using AFLP and T-RFLP. Additional, CLPP analysis was also applied. The effects on richness predicted by the numerical simulations were confirmed by the analyses used. The diluted communities fell into three groups, a low dilution, intermediate dilution, and high dilution group, which corresponded well with the groupings obtained for community richness in simulation. The grouping demonstrated the non-linear nature of dilution of whole communities. Furthermore, the results implied that the undiluted community consisted of a few dominant types accompanied by a number of rare (low abundance) types as is typical in unevenly distributed communities.
NASA Astrophysics Data System (ADS)
Veiga, P.; Rubal, M.; Vieira, R.; Arenas, F.; Sousa-Pinto, I.
2013-03-01
Natural assemblages are variable in space and time; therefore, quantification of their variability is imperative to identify relevant scales for investigating natural or anthropogenic processes shaping these assemblages. We studied the variability of intertidal macroalgal assemblages on the North Portuguese coast, considering three spatial scales (from metres to 10 s of kilometres) following a hierarchical design. We tested the hypotheses that (1) spatial pattern will be invariant at all the studied scales and (2) spatial variability of macroalgal assemblages obtained by using species will be consistent with that obtained using functional groups. This was done considering as univariate variables: total biomass and number of taxa as well as biomass of the most important species and functional groups and as multivariate variables the structure of macroalgal assemblages, both considering species and functional groups. Most of the univariate results confirmed the first hypothesis except for the total number of taxa and foliose macroalgae that showed significant variability at the scale of site and area, respectively. In contrast, when multivariate patterns were examined, the first hypothesis was rejected except at the scale of 10 s of kilometres. Both uni- and multivariate results indicated that variation was larger at the smallest scale, and thus, small-scale processes seem to have more effect on spatial variability patterns. Macroalgal assemblages, both considering species and functional groups as surrogate, showed consistent spatial patterns, and therefore, the second hypothesis was confirmed. Consequently, functional groups may be considered a reliable biological surrogate to study changes on macroalgal assemblages at least along the investigated Portuguese coastline.
TNT Biodegradation by Natural Microbial Assemblages at Estuarine Frontal Boundaries
2012-07-02
component acid, aldehyde , and ketone phenols after microwave assisted CuO-oxidation (Louchouarn et al. 2000, Goni and Montgomery 2000). Phenols...Oahu, HI, USA (20 July 2010). vii LIST OF ACRONYMS Ac:Ad: Ratio of Acid to Aldehyde Moieties ASI: Air-Sea Interface BIX: Biological... aldehyde moieties for vanillyl phenols (Ac:Alv), an index of oxidative degradation for lignin, was positively correlated with fraction of C1 in the
Athletic equipment microbiota are shaped by interactions with human skin
Wood, Mariah; Gibbons, Sean M.; Lax, Simon; ...
2015-06-19
Background: Americans spend the vast majority of their lives in built environments. Even traditionally outdoor pursuits, such as exercising, are often now performed indoors. Bacteria that colonize these indoor ecosystems are primarily derived from the human microbiome. The modes of human interaction with indoor surfaces and the physical conditions associated with each surface type determine the steady-state ecology of the microbial community. Results: Bacterial assemblages associated with different surfaces in three athletic facilities, including floors, mats, benches, free weights, and elliptical handles, were sampled every other hour (8 am to 6 pm) for 2 days. Surface and equipment type hadmore » a stronger influence on bacterial community composition than the facility in which they were housed. Surfaces that were primarily in contact with human skin exhibited highly dynamic bacterial community composition and non-random co-occurrence patterns, suggesting that different host microbiomes—shaped by selective forces—were being deposited on these surfaces through time. Bacterial assemblages found on the floors and mats changed less over time, and species co-occurrence patterns appeared random, suggesting more neutral community assembly. Conclusions: These longitudinal patterns highlight the dramatic turnover of microbial communities on surfaces in regular contact with human skin. By uncovering these longitudinal patterns, this study promotes a better understanding of microbe-human interactions within the built environment.« less
Meltwater export of prokaryotic cells from the Greenland ice sheet.
Cameron, Karen A; Stibal, Marek; Hawkings, Jon R; Mikkelsen, Andreas B; Telling, Jon; Kohler, Tyler J; Gözdereliler, Erkin; Zarsky, Jakub D; Wadham, Jemma L; Jacobsen, Carsten S
2017-02-01
Microorganisms are flushed from the Greenland Ice Sheet (GrIS) where they may contribute towards the nutrient cycling and community compositions of downstream ecosystems. We investigate meltwater microbial assemblages as they exit the GrIS from a large outlet glacier, and as they enter a downstream river delta during the record melt year of 2012. Prokaryotic abundance, flux and community composition was studied, and factors affecting community structures were statistically considered. The mean concentration of cells exiting the ice sheet was 8.30 × 10 4 cells mL -1 and we estimate that ∼1.02 × 10 21 cells were transported to the downstream fjord in 2012, equivalent to 30.95 Mg of carbon. Prokaryotic microbial assemblages were dominated by Proteobacteria, Bacteroidetes, and Actinobacteria. Cell concentrations and community compositions were stable throughout the sample period, and were statistically similar at both sample sites. Based on our observations, we argue that the subglacial environment is the primary source of the river-transported microbiota, and that cell export from the GrIS is dependent on discharge. We hypothesise that the release of subglacial microbiota to downstream ecosystems will increase as freshwater flux from the GrIS rises in a warming world. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
Virioplankton Assemblage Structure in the Lower River and Ocean Continuum of the Amazon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silva, Bruno S. de O.; Coutinho, Felipe H.; Gregoracci, Gustavo B.
ABSTRACT The Amazon River watershed and its associated plume comprise a vast continental and oceanic area. The microbial activities along this continuum contribute substantially to global carbon and nutrient cycling, and yet there is a dearth of information on the diversity, abundance, and possible roles of viruses in this globally important river. The aim of this study was to elucidate the diversity and structure of virus assemblages of the Amazon River-ocean continuum. Environmental viral DNA sequences were obtained for 12 locations along the river’s lower reach (n= 5) and plume (n= 7). Sequence assembly yielded 29,358 scaffolds, encoding 82,546 viralmore » proteins, with 15 new complete viral genomes. Despite the spatial connectivity mediated by the river, virome analyses and physical-chemical water parameters clearly distinguished river and plume ecosystems. Bacteriophages were ubiquitous in the continuum and were more abundant in the transition region. Eukaryotic viruses occurred mostly in the river, while the plume had more viruses of autotrophic organisms (Prochlorococcus,Synechococcus) and heterotrophic bacteria (Pelagibacter). The viral familiesMicroviridaeandMyoviridaewere the most abundant and occurred throughout the continuum. The major functions of the genes in the continuum involved viral structures and life cycles, and viruses from plume locations and Tapajós River showed the highest levels of functional diversity. The distribution patterns of the viral assemblages were defined not only by the occurrence of possible hosts but also by water physical and chemical parameters, especially salinity. The findings presented here help to improve understanding of the possible roles of viruses in the organic matter cycle along the river-ocean continuum. IMPORTANCEThe Amazon River forms a vast plume in the Atlantic Ocean that can extend for more than 1,000 km. Microbial communities promote a globally relevant carbon sink system in the plume. Despite the importance of viruses for the global carbon cycle, the diversity and the possible roles of viruses in the Amazon are poorly understood. The present work assesses, for the first time, the abundance and diversity of viruses simultaneously in the river and ocean in order to elucidate their possible roles. DNA sequence assembly yielded 29,358 scaffolds, encoding 82,546 viral proteins, with 15 new complete viral genomes from the 12 river and ocean locations. Viral diversity was clearly distinguished by river and ocean. Bacteriophages were the most abundant and occurred throughout the continuum. Viruses that infect eukaryotes were more abundant in the river, whereas phages appeared to have strong control over the host prokaryotic populations in the plume.« less
Virioplankton Assemblage Structure in the Lower River and Ocean Continuum of the Amazon.
Silva, Bruno S de O; Coutinho, Felipe H; Gregoracci, Gustavo B; Leomil, Luciana; de Oliveira, Louisi S; Fróes, Adriana; Tschoeke, Diogo; Soares, Ana Carolina; Cabral, Anderson S; Ward, Nicholas D; Richey, Jeffrey E; Krusche, Alex V; Yager, Patricia L; de Rezende, Carlos Eduardo; Thompson, Cristiane C; Thompson, Fabiano L
2017-01-01
The Amazon River watershed and its associated plume comprise a vast continental and oceanic area. The microbial activities along this continuum contribute substantially to global carbon and nutrient cycling, and yet there is a dearth of information on the diversity, abundance, and possible roles of viruses in this globally important river. The aim of this study was to elucidate the diversity and structure of virus assemblages of the Amazon River-ocean continuum. Environmental viral DNA sequences were obtained for 12 locations along the river's lower reach ( n = 5) and plume ( n = 7). Sequence assembly yielded 29,358 scaffolds, encoding 82,546 viral proteins, with 15 new complete viral genomes. Despite the spatial connectivity mediated by the river, virome analyses and physical-chemical water parameters clearly distinguished river and plume ecosystems. Bacteriophages were ubiquitous in the continuum and were more abundant in the transition region. Eukaryotic viruses occurred mostly in the river, while the plume had more viruses of autotrophic organisms ( Prochlorococcus , Synechococcus ) and heterotrophic bacteria ( Pelagibacter ). The viral families Microviridae and Myoviridae were the most abundant and occurred throughout the continuum. The major functions of the genes in the continuum involved viral structures and life cycles, and viruses from plume locations and Tapajós River showed the highest levels of functional diversity. The distribution patterns of the viral assemblages were defined not only by the occurrence of possible hosts but also by water physical and chemical parameters, especially salinity. The findings presented here help to improve understanding of the possible roles of viruses in the organic matter cycle along the river-ocean continuum. IMPORTANCE The Amazon River forms a vast plume in the Atlantic Ocean that can extend for more than 1,000 km. Microbial communities promote a globally relevant carbon sink system in the plume. Despite the importance of viruses for the global carbon cycle, the diversity and the possible roles of viruses in the Amazon are poorly understood. The present work assesses, for the first time, the abundance and diversity of viruses simultaneously in the river and ocean in order to elucidate their possible roles. DNA sequence assembly yielded 29,358 scaffolds, encoding 82,546 viral proteins, with 15 new complete viral genomes from the 12 river and ocean locations. Viral diversity was clearly distinguished by river and ocean. Bacteriophages were the most abundant and occurred throughout the continuum. Viruses that infect eukaryotes were more abundant in the river, whereas phages appeared to have strong control over the host prokaryotic populations in the plume.
Virioplankton Assemblage Structure in the Lower River and Ocean Continuum of the Amazon
Silva, Bruno S. de O.; Coutinho, Felipe H.; Gregoracci, Gustavo B.; Leomil, Luciana; de Oliveira, Louisi S.; Fróes, Adriana; Tschoeke, Diogo; Soares, Ana Carolina; Cabral, Anderson S.; Ward, Nicholas D.; Richey, Jeffrey E.; Krusche, Alex V.; Yager, Patricia L.; de Rezende, Carlos Eduardo; Thompson, Cristiane C.
2017-01-01
ABSTRACT The Amazon River watershed and its associated plume comprise a vast continental and oceanic area. The microbial activities along this continuum contribute substantially to global carbon and nutrient cycling, and yet there is a dearth of information on the diversity, abundance, and possible roles of viruses in this globally important river. The aim of this study was to elucidate the diversity and structure of virus assemblages of the Amazon River-ocean continuum. Environmental viral DNA sequences were obtained for 12 locations along the river’s lower reach (n = 5) and plume (n = 7). Sequence assembly yielded 29,358 scaffolds, encoding 82,546 viral proteins, with 15 new complete viral genomes. Despite the spatial connectivity mediated by the river, virome analyses and physical-chemical water parameters clearly distinguished river and plume ecosystems. Bacteriophages were ubiquitous in the continuum and were more abundant in the transition region. Eukaryotic viruses occurred mostly in the river, while the plume had more viruses of autotrophic organisms (Prochlorococcus, Synechococcus) and heterotrophic bacteria (Pelagibacter). The viral families Microviridae and Myoviridae were the most abundant and occurred throughout the continuum. The major functions of the genes in the continuum involved viral structures and life cycles, and viruses from plume locations and Tapajós River showed the highest levels of functional diversity. The distribution patterns of the viral assemblages were defined not only by the occurrence of possible hosts but also by water physical and chemical parameters, especially salinity. The findings presented here help to improve understanding of the possible roles of viruses in the organic matter cycle along the river-ocean continuum. IMPORTANCE The Amazon River forms a vast plume in the Atlantic Ocean that can extend for more than 1,000 km. Microbial communities promote a globally relevant carbon sink system in the plume. Despite the importance of viruses for the global carbon cycle, the diversity and the possible roles of viruses in the Amazon are poorly understood. The present work assesses, for the first time, the abundance and diversity of viruses simultaneously in the river and ocean in order to elucidate their possible roles. DNA sequence assembly yielded 29,358 scaffolds, encoding 82,546 viral proteins, with 15 new complete viral genomes from the 12 river and ocean locations. Viral diversity was clearly distinguished by river and ocean. Bacteriophages were the most abundant and occurred throughout the continuum. Viruses that infect eukaryotes were more abundant in the river, whereas phages appeared to have strong control over the host prokaryotic populations in the plume. PMID:28989970
Diversity and Activity of Communities Inhabiting Plastic Debris in the North Pacific Gyre.
Bryant, Jessica A; Clemente, Tara M; Viviani, Donn A; Fong, Allison A; Thomas, Kimberley A; Kemp, Paul; Karl, David M; White, Angelicque E; DeLong, Edward F
2016-01-01
Marine plastic debris has become a significant concern in ocean ecosystems worldwide. Little is known, however, about its influence on microbial community structure and function. In 2008, we surveyed microbial communities and metabolic activities in seawater and on plastic on an oceanographic expedition through the "great Pacific garbage patch." The concentration of plastic particles in surface seawater within different size classes (2 to 5 mm and >5 mm) ranged from 0.35 to 3.7 particles m -3 across sampling stations. These densities and the particle size distribution were consistent with previous values reported in the North Pacific Ocean. Net community oxygen production (NCP = gross primary production - community respiration) on plastic debris was positive and so net autotrophic, whereas NCP in bulk seawater was close to zero. Scanning electron microscopy and metagenomic sequencing of plastic-attached communities revealed the dominance of a few metazoan taxa and a diverse assemblage of photoautotrophic and heterotrophic protists and bacteria. Bryozoa , Cyanobacteria , Alphaproteobacteria , and Bacteroidetes dominated all plastic particles, regardless of particle size. Bacteria inhabiting plastic were taxonomically distinct from the surrounding picoplankton and appeared well adapted to a surface-associated lifestyle. Genes with significantly higher abundances among plastic-attached bacteria included che genes, secretion system genes, and nifH genes, suggesting enrichment for chemotaxis, frequent cell-to-cell interactions, and nitrogen fixation. In aggregate, our findings suggest that plastic debris forms a habitat for complex microbial assemblages that have lifestyles, metabolic pathways, and biogeochemical activities that are distinct from those of free-living planktonic microbial communities. IMPORTANCE Marine plastic debris is a growing concern that has captured the general public's attention. While the negative impacts of plastic debris on oceanic macrobiota, including mammals and birds, are well documented, little is known about its influence on smaller marine residents, including microbes that have key roles in ocean biogeochemistry. Our work provides a new perspective on microbial communities inhabiting microplastics that includes its effect on microbial biogeochemical activities and a description of the cross-domain communities inhabiting plastic particles. This study is among the first molecular ecology, plastic debris biota surveys in the North Pacific Subtropical Gyre. It has identified fundamental differences in the functional potential and taxonomic composition of plastic-associated microbes versus planktonic microbes found in the surrounding open-ocean habitat. Author Video : An author video summary of this article is available.
Hua, Zheng-Shuang; Han, Yu-Jiao; Chen, Lin-Xing; Liu, Jun; Hu, Min; Li, Sheng-Jin; Kuang, Jia-Liang; Chain, Patrick S G; Huang, Li-Nan; Shu, Wen-Sheng
2015-06-01
High-throughput sequencing is expanding our knowledge of microbial diversity in the environment. Still, understanding the metabolic potentials and ecological roles of rare and uncultured microbes in natural communities remains a major challenge. To this end, we applied a 'divide and conquer' strategy that partitioned a massive metagenomic data set (>100 Gbp) into subsets based on K-mer frequency in sequence assembly to a low-diversity acid mine drainage (AMD) microbial community and, by integrating with an additional metatranscriptomic assembly, successfully obtained 11 draft genomes most of which represent yet uncultured and/or rare taxa (relative abundance <1%). We report the first genome of a naturally occurring Ferrovum population (relative abundance >90%) and its metabolic potentials and gene expression profile, providing initial molecular insights into the ecological role of these lesser known, but potentially important, microorganisms in the AMD environment. Gene transcriptional analysis of the active taxa revealed major metabolic capabilities executed in situ, including carbon- and nitrogen-related metabolisms associated with syntrophic interactions, iron and sulfur oxidation, which are key in energy conservation and AMD generation, and the mechanisms of adaptation and response to the environmental stresses (heavy metals, low pH and oxidative stress). Remarkably, nitrogen fixation and sulfur oxidation were performed by the rare taxa, indicating their critical roles in the overall functioning and assembly of the AMD community. Our study demonstrates the potential of the 'divide and conquer' strategy in high-throughput sequencing data assembly for genome reconstruction and functional partitioning analysis of both dominant and rare species in natural microbial assemblages.
Effects of warming and nutrients on the microbial food web in shallow lake mesocosms.
Zingel, Priit; Cremona, Fabien; Nõges, Tiina; Cao, Yu; Neif, Érika M; Coppens, Jan; Işkın, Uğur; Lauridsen, Torben L; Davidson, Thomas A; Søndergaard, Martin; Beklioglu, Meryem; Jeppesen, Erik
2018-06-01
We analysed changes in the abundance, biomass and cell size of the microbial food web community (bacteria, heterotrophic nanoflagellates, ciliates) at contrasting nutrient concentrations and temperatures during a simulated heat wave. We used 24 mesocosms mimicking shallow lakes in which two nutrient levels (unenriched and enriched by adding nitrogen and phosphorus) and three different temperature scenarios (ambient, IPCC A2 scenario and A2+%50) are simulated (4 replicates of each). Experiments using the mesocosms have been running un-interrupted since 2003. A 1-month heat wave was imitated by an extra 5 °C increase in the previously heated mesocosms (from 1st July to 1st August 2014). Changes in water temperature induced within a few days a strong effect on the microbial food web functioning, demonstrating a quick response of microbial communities to the changes in environment, due to their short generation times. Warming and nutrients showed synergistic effects. Microbial assemblages of heterotrophic nanoflagellates and ciliates responded positively to the heating, the increase being largest in the enriched mesocosms. The results indicate that warming and nutrients in combination can set off complex interactions in the microbial food web functioning. Copyright © 2018 Elsevier GmbH. All rights reserved.
Oates, Lawrence G.; Duncan, David S.; Sanford, Gregg R.; ...
2016-10-03
The choice of crops and their management can strongly influence soil microbial communities and their processes. Here, we used lipid biomarker profiling to characterize how soil microbial composition of five potential bioenergy cropping systems diverged from a common baseline five years after they were established. The cropping systems we studied included an annual system (continuous no-till corn) and four perennial crops (switchgrass, miscanthus, hybrid poplar, and restored prairie). Partial- and no-stover removal were compared for the corn system, while N-additions were compared to unfertilized plots for the perennial cropping systems. Arbuscular mycorrhizal fungi (AMF) and Gram-negative biomass was higher inmore » unfertilized perennial grass systems, especially in switchgrass and prairie. Gram-positive bacterial biomass decreased in all systems relative to baseline values in surface soils (0–10 cm), but not subsurface soils (10–25 cm). Overall microbial composition was similar between the two soil depths. Our findings demonstrate the capacity of unfertilized perennial cropping systems to recreate microbial composition found in undisturbed soil environments and indicate how strongly agroecosystem management decisions such as N addition and plant community composition can influence soil microbial assemblages.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oates, Lawrence G.; Duncan, David S.; Sanford, Gregg R.
The choice of crops and their management can strongly influence soil microbial communities and their processes. Here, we used lipid biomarker profiling to characterize how soil microbial composition of five potential bioenergy cropping systems diverged from a common baseline five years after they were established. The cropping systems we studied included an annual system (continuous no-till corn) and four perennial crops (switchgrass, miscanthus, hybrid poplar, and restored prairie). Partial- and no-stover removal were compared for the corn system, while N-additions were compared to unfertilized plots for the perennial cropping systems. Arbuscular mycorrhizal fungi (AMF) and Gram-negative biomass was higher inmore » unfertilized perennial grass systems, especially in switchgrass and prairie. Gram-positive bacterial biomass decreased in all systems relative to baseline values in surface soils (0–10 cm), but not subsurface soils (10–25 cm). Overall microbial composition was similar between the two soil depths. Our findings demonstrate the capacity of unfertilized perennial cropping systems to recreate microbial composition found in undisturbed soil environments and indicate how strongly agroecosystem management decisions such as N addition and plant community composition can influence soil microbial assemblages.« less
Microbial co-occurrence patterns in deep Precambrian bedrock fracture fluids
NASA Astrophysics Data System (ADS)
Purkamo, Lotta; Bomberg, Malin; Kietäväinen, Riikka; Salavirta, Heikki; Nyyssönen, Mari; Nuppunen-Puputti, Maija; Ahonen, Lasse; Kukkonen, Ilmo; Itävaara, Merja
2016-05-01
The bacterial and archaeal community composition and the possible carbon assimilation processes and energy sources of microbial communities in oligotrophic, deep, crystalline bedrock fractures is yet to be resolved. In this study, intrinsic microbial communities from groundwater of six fracture zones from 180 to 2300 m depths in Outokumpu bedrock were characterized using high-throughput amplicon sequencing and metagenomic prediction. Comamonadaceae-, Anaerobrancaceae- and Pseudomonadaceae-related operational taxonomic units (OTUs) form the core community in deep crystalline bedrock fractures in Outokumpu. Archaeal communities were mainly composed of Methanobacteriaceae-affiliating OTUs. The predicted bacterial metagenomes showed that pathways involved in fatty acid and amino sugar metabolism were common. In addition, relative abundance of genes coding the enzymes of autotrophic carbon fixation pathways in predicted metagenomes was low. This indicates that heterotrophic carbon assimilation is more important for microbial communities of the fracture zones. Network analysis based on co-occurrence of OTUs revealed possible "keystone" genera of the microbial communities belonging to Burkholderiales and Clostridiales. Bacterial communities in fractures resemble those found in oligotrophic, hydrogen-enriched environments. Serpentinization reactions of ophiolitic rocks in Outokumpu assemblage may provide a source of energy and organic carbon compounds for the microbial communities in the fractures. Sulfate reducers and methanogens form a minority of the total microbial communities, but OTUs forming these minor groups are similar to those found in other deep Precambrian terrestrial bedrock environments.
Linkages between benthic macroinvertebrate assemblages and landscape stressors in the US Great Lakes
We used multiple linear regression analysis to investigate relationships between benthic macroinvertebrate assemblages in the nearshore region of the Laurentian Great Lakes and landscape characteristics in adjacent watersheds. Benthic invertebrate data were obtained from the 201...
Changes in deep-sea carbonate-hosted microbial communities associated with high and low methane flux
NASA Astrophysics Data System (ADS)
Case, D. H.; Steele, J. A.; Chadwick, G.; Mendoza, G. F.; Levin, L. A.; Orphan, V. J.
2012-12-01
Methane seeps on continental shelves are rich in authigenic carbonates built of methane-derived carbon. These authigenic carbonates are home to micro- and macroscopic communities whose compositions are thus far poorly constrained but are known to broadly depend on local methane flux. The formation of authigenic carbonates is itself a result of microbial metabolic activity, as associations of anaerobic methane oxidizing archaea (ANME) and sulfate reducing bacteria (SRB) in the sediment subsurface increase both dissolved inorganic carbon (DIC) and alkalinity in pore waters. This 1:1 increase in DIC and alkalinity promotes the precipitation of authigenic carbonates. In this study, we performed in situ manipulations to test the response of micro- and macrofaunal communities to a change in methane flux. Methane-derived authigenic carbonates from two locations at Hydrate Ridge, OR, USA (depth range 595-604 mbsl), were transplanted from "active" cold seep sites (high methane flux) to "inactive" background sites (low methane flux), and vise versa, for one year. Community diversity surveys using T-RFLP and 16S rRNA clone libraries revealed how both bacterial and archaeal assemblages respond to this change in local environment, specifically demonstrating reproducible shifts in different ANME groups (ANME-1 vs. ANME-2). Animal assemblage composition also shifted during transplantation; gastropod representation increased (relative to control rocks) when substrates were moved from inactive to active sites and polychaete, crustacean and echinoderm representation increased when substrates were moved from active to inactive sites. Combined with organic and inorganic carbon δ13C measurements and mineralogy, this unique in situ experiment demonstrates that authigenic carbonates are viable habitats, hosting microbial and macrofaunal communities capable of responding to changes in external environment over relatively short time periods.
NASA Astrophysics Data System (ADS)
Grim, S. L.; Dick, G.
2015-12-01
Oxygenic photosynthetic (OP) cyanobacteria were responsible for the production of O2 during the Proterozoic. However, the extent and degree of oxygenation of the atmosphere and oceans varied for over 2 Ga after OP cyanobacteria first appeared in the geologic record. Cyanobacteria capable of anoxygenic photosynthesis (AP) may have altered the trajectory of oxygenation, yet the scope of their role in the Proterozoic is not well known. Modern cyanobacterial populations from Middle Island Sinkhole (MIS), Michigan and a handful of cultured cyanobacterial strains, are capable of OP and AP. With their metabolic versatility, these microbes may approximate ancient cyanobacterial assemblages that mediated Earth's oxygenation. To better characterize the taxonomic and genetic signatures of these modern AP/OP cyanobacteria, we sequenced 16S rRNA genes and conducted 'omics analyses on cultured strains, lab mesocosms, and MIS cyanobacterial mat samples collected over multiple years from May to September. Diversity in the MIS cyanobacterial mat is low, with one member of Oscillatoriales dominating at all times. However, Planktothrix members are more abundant in the cyanobacterial community in late summer and fall. The shift in cyanobacterial community composition may be linked to seasonally changing light intensity. In lab mesocosms of MIS microbial mat, we observed a shift in dominant cyanobacterial groups as well as the emergence of Chlorobium, bacteria that specialize in AP. These shifts in microbial community composition and metabolism are likely in response to changing environmental parameters such as the availability of light and sulfide. Further research is needed to understand the impacts of the changing photosynthetic community on oxygen production and the entire microbial consortium. Our study connects genes and genomes of AP cyanobacteria to their environment, and improves understanding of cyanobacterial metabolic strategies that may have shaped Earth's redox evolution.
Rodil, Iván F; Fernandes, Joana P; Mucha, Ana P
2015-12-01
Wrack detritus plays a significant role in shaping community dynamics and food-webs on sandy beaches. Macroalgae is the most abundant beach wrack, and it is broken down by the combination of environmental processes, macrofauna grazing, and microbial degradation before returning to the sea as nutrients. The role of solar radiation, algal species and beach macrofauna as ecological drivers for bacterial assemblages associated to wrack was investigated by experimental manipulation of Laminaria ochroleuca and Sargassum muticum. We examined the effects of changes in solar radiation on wrack-associated bacterial assemblages by using cut-off filters: PAR + UVA + UVB (280-700 nm; PAB), PAR + UVA (320-700 nm; PA), PAR (400-700 nm; P), and a control with no filter (C). Results showed that moderate changes in UVR are capable to promote substantial differences on bacterial assemblages so that wrack patches exposed to full sunlight treatments (C and PAB) showed more similar assemblages among them than compared to patches exposed to treatments that blocked part of the solar radiation (P and PA). Our findings also suggested that specific algal nutrient quality-related variables (i.e. nitrogen, C:N ratio and phlorotannins) are main determinants of bacterial dynamics on wrack deposits. We showed a positive relationship between beach macrofauna, especially the most abundant and active wrack-users, the amphipod Talitrus saltator and the coleopteran Phaleria cadaverina, and both bacterial abundance and richness. Moderate variations in natural solar radiation and shifts in the algal species entering beach ecosystems can modify the role of wrack in the energy-flow of nearshore environments with unknown ecological implications for coastal ecosystems. Copyright © 2015 Elsevier Ltd. All rights reserved.
The diversity and distribution of fungi on residential surfaces.
Adams, Rachel I; Miletto, Marzia; Taylor, John W; Bruns, Thomas D
2013-01-01
The predominant hypothesis regarding the composition of microbial assemblages in indoor environments is that fungal assemblages are structured by outdoor air with a moderate contribution by surface growth, whereas indoor bacterial assemblages represent a mixture of bacteria entered from outdoor air, shed by building inhabitants, and grown on surfaces. To test the fungal aspect of this hypothesis, we sampled fungi from three surface types likely to support growth and therefore possible contributors of fungi to indoor air: drains in kitchens and bathrooms, sills beneath condensation-prone windows, and skin of human inhabitants. Sampling was done in replicated units of a university-housing complex without reported mold problems, and sequences were analyzed using both QIIME and the new UPARSE approach to OTU-binning, to the same result. Surfaces demonstrated a mycological profile similar to that of outdoor air from the same locality, and assemblages clustered by surface type. "Weedy" genera typical of indoor air, such as Cladosporium and Cryptococcus, were abundant on sills, as were a diverse set of fungi of likely outdoor origin. Drains supported more depauperate assemblages than the other surfaces and contained thermotolerant genera such as Exophiala, Candida, and Fusarium. Most surprising was the composition detected on residents' foreheads. In addition to harboring Malassezia, a known human commensal, skin also possessed a surprising richness of non-resident fungi, including plant pathogens such as ergot (Claviceps purperea). Overall, fungal richness across indoor surfaces was high, but based on known autecologies, most of these fungi were unlikely to be growing on surfaces. We conclude that while some endogenous fungal growth on typical household surfaces does occur, particularly on drains and skin, all residential surfaces appear - to varying degrees - to be passive collectors of airborne fungi of putative outdoor origin, a view of the origins of the indoor microbiome quite different from bacteria.
Corinaldesi, Cinzia; Dell'Anno, Antonio; Danovaro, Roberto
2012-06-01
Mud volcanoes are geological structures in the oceans that have key roles in the functioning of the global ecosystem. Information on the dynamics of benthic viruses and their interactions with prokaryotes in mud volcano ecosystems is still completely lacking. We investigated the impact of viral infection on the mortality and assemblage structure of benthic prokaryotes of five mud volcanoes in the Mediterranean Sea. Mud volcano sediments promote high rates of viral production (1.65-7.89 × 10(9) viruses g(-1) d(-1)), viral-induced prokaryotic mortality (VIPM) (33% cells killed per day) and heterotrophic prokaryotic production (3.0-8.3 μgC g(-1) d(-1)) when compared with sediments outside the mud volcano area. The viral shunt (that is, the microbial biomass converted into dissolved organic matter as a result of viral infection, and thus diverted away from higher trophic levels) provides 49 mgC m(-2) d(-1), thus fuelling the metabolism of uninfected prokaryotes and contributing to the total C budget. Bacteria are the dominant components of prokaryotic assemblages in surface sediments of mud volcanoes, whereas archaea dominate the subsurface sediment layers. Multivariate multiple regression analyses show that prokaryotic assemblage composition is not only dependant on the geochemical features and processes of mud volcano ecosystems but also on synergistic interactions between bottom-up (that is, trophic resources) and top-down (that is, VIPM) controlling factors. Overall, these findings highlight the significant role of the viral shunt in sustaining the metabolism of prokaryotes and shaping their assemblage structure in mud volcano sediments, and they provide new clues for our understanding of the functioning of cold-seep ecosystems.
Corinaldesi, Cinzia; Dell'Anno, Antonio; Danovaro, Roberto
2012-01-01
Mud volcanoes are geological structures in the oceans that have key roles in the functioning of the global ecosystem. Information on the dynamics of benthic viruses and their interactions with prokaryotes in mud volcano ecosystems is still completely lacking. We investigated the impact of viral infection on the mortality and assemblage structure of benthic prokaryotes of five mud volcanoes in the Mediterranean Sea. Mud volcano sediments promote high rates of viral production (1.65–7.89 × 109 viruses g−1 d−1), viral-induced prokaryotic mortality (VIPM) (33% cells killed per day) and heterotrophic prokaryotic production (3.0–8.3 μgC g−1 d−1) when compared with sediments outside the mud volcano area. The viral shunt (that is, the microbial biomass converted into dissolved organic matter as a result of viral infection, and thus diverted away from higher trophic levels) provides 49 mgC m−2 d−1, thus fuelling the metabolism of uninfected prokaryotes and contributing to the total C budget. Bacteria are the dominant components of prokaryotic assemblages in surface sediments of mud volcanoes, whereas archaea dominate the subsurface sediment layers. Multivariate multiple regression analyses show that prokaryotic assemblage composition is not only dependant on the geochemical features and processes of mud volcano ecosystems but also on synergistic interactions between bottom-up (that is, trophic resources) and top-down (that is, VIPM) controlling factors. Overall, these findings highlight the significant role of the viral shunt in sustaining the metabolism of prokaryotes and shaping their assemblage structure in mud volcano sediments, and they provide new clues for our understanding of the functioning of cold-seep ecosystems. PMID:22170423
Sexually transmitted bacteria affect female cloacal assemblages in a wild bird
White, Joël; Mirleau, Pascal; Danchin, Etienne; Mulard, Hervé; Hatch, Scott A.; Heeb, Phillipp; Wagner, Richard H.
2010-01-01
Sexual transmission is an important mode of disease propagation, yet its mechanisms remain largely unknown in wild populations. Birds comprise an important model for studying sexually transmitted microbes because their cloaca provides a potential for both gastrointestinal pathogens and endosymbionts to become incorporated into ejaculates. We experimentally demonstrate in a wild population of kittiwakes (Rissa tridactyla) that bacteria are transmitted during copulation and affect the composition and diversity of female bacterial communities. We used an anti-insemination device attached to males in combination with a molecular technique (automated ribosomal intergenic spacer analysis) that describes bacterial communities. After inseminations were experimentally blocked, the cloacal communities of mates became increasingly dissimilar. Moreover, female cloacal diversity decreased and the extinction of mate-shared bacteria increased, indicating that female cloacal assemblages revert to their pre-copulatory state and that the cloaca comprises a resilient microbial ecosystem.
Nontronite and Montmorillonite as Nutrient Sources for Life on Mars
NASA Technical Reports Server (NTRS)
Craig, P. I.; Mickol, R. L.; Archer, P. D.; Kral, T. A.
2017-01-01
Clay minerals have been identified on Mars' oldest (Noachian) terrain and their presence suggests long-term water-rock interactions. The most commonly identified clay minerals on Mars to date are nontronite (Fe-smectite) and montmorillonite (Al-smectite) [1], both of which contain variable amounts of water both adsorbed on their surface and within their structural layers. Over Mars' history, these clay miner-al-water assemblages may have served as nutrient sources for microbial life.
2017-06-20
that would pose an unacceptable ecological or human health risk. Recent work by our group and others has focused on determining energetic degradation...Eastern North Carolina, USA). J. Water Health 6:473-482. 59 Derrien, D., Plain, C., Courty, P.E., Gelhaye, L., Moerdijk-Poortvliet, T.C., Thomas, F...sediment enrichments. Biodegradation 24(2):179-190. Fenner, K., Canonica, S., Wackett, L.P., and M.Els ner. 2013. Evaluating pesticide
2014-06-26
general features that can be used to bound these variables for a given ecosystem type ( biome ). Navy underwater coastal UXO sites can be categorized for...potentially mitigate the ecological risk associated with exposure of marine biota to these compounds. In addition, as part of these surveys, the most rapid RDX...biogeochemical parameters and aromatic contaminant biodegradation amongst various ecosystem ( biome ) types may allow the determination of attenuation
2006-05-10
nifH encoding plasmids of diazotrophic bacteria isolated from roots of a salt marsh grass. Meeting Abstract, 105th General Meeting of the American...When the method was applied to 100 endogenous plasmids isolated from cultivated marine diazotrophs from salt marsh grass rhizoplane niches remarkably...Beeson, K.E., D.L. Erdner, C.E. Bagwell, C.R. Lovell, and P.A. Sobecky. 2002. Differentiation of plasmids in marine diazotroph assemblages
Ayayee, Paul A; Ondrejech, Andrew; Keeney, George; Muñoz-Garcia, Agustí
2018-01-01
Insect gut microbiota contribute significantly to host nutritional ecology. Disrupting insect gut microbial assemblages impacts nutrient provisioning functions, and can potentially affect host standard metabolic rate (SMR), a measure of host energy balance. In this study, we evaluated the effect of disrupting gut microbial assemblages on the SMR of female Periplaneta americana cockroaches fed dog food (DF, high protein/carbohydrate (p/c) ratio), and cellulose-amended dog food (CADF, 30% dog food, 70% cellulose, low p/c ratio) diets, supplemented with none, low, or high antibiotic doses. Bacterial loads decreased significantly between diet types ( P = 0.04) and across antibiotic doses ( P = 0.04). There was a significant diet type x antibiotic dose interaction on SMR of females on both diets ( P = 0.05) by the end of the seven-day experimental period. In CADF-fed females, SMR decreased linearly with decreasing bacterial load. However, SMR of DF-fed females on the low dose was significantly higher than those in the control and high dose groups. This is interpreted as a diet-dependent response by low dose DF-fed females to the loss of nutritional services provided by gut bacteria. Severe reductions in bacterial load at high doses reduced SMR of females on both diet types. This study provides insights into the potential role of gut bacteria as modulators of host energy expenditure under varying dietary conditions.
Organically preserved microbial endoliths from the late Proterozoic of East Greenland
NASA Technical Reports Server (NTRS)
Knoll, A. H.; Golubic, S.; Green, J.; Swett, K.
1986-01-01
Diverse microorganisms ranging from cyanobacteria to eukaryotic algae and fungi live endolithically within ooids, hardgrounds and invertebrate shells on the present-day sea floor. These organisms are involved in the mechanical destruction of carbonates, and are useful ecological indicators of water depth and pollution. The Phanerozoic history of microbial endoliths has been elucidated through the study of microborings (the trace fossils of endolithic microorganisms) and rare cellularly preserved individuals, but nothing was known of the possible Precambrian evolution of comparable microorganisms until Campbell documented the occurrence of microborings in late Proterozoic ooids from central East Greenland. We now report the discovery of large populations of organically preserved endolithic microorganisms in silicified pisolites from 700-800-Myr-old Limestone-Dolomite Series of East Greenland. This fossil assemblage is significant for three reasons: (1) It confirms the prediction that oolites, pisolites and hardgrounds--the substrates for pre-Phanerozoic endoliths--provide a hitherto poorly explored but rewarding set of environments into which the search for early microfossils must be broadened; (2) the assemblage is diverse, containing about 12 taxa of morphologically distinct and previously unknown endolithic cyanobacteria, plus associated epilithic and interstitial populations; and (3) at least six of the fossil populations are indistinguishable in morphology, pattern of development, reproductive biology and inferred ecology from distinctive cyanobacterial species that bore ooids today in the Bahama Banks.
Wilson, Sandra L; Frazer, Corey; Cumming, Brian F; Nuin, Paulo A S; Walker, Virginia K
2012-11-01
Osmotic stress can accompany increases in solute concentrations because of freezing or high-salt environments. Consequently, microorganisms from environments with a high-osmotic potential may exhibit cross-tolerance to freeze stress. To test this hypothesis, enrichments derived from the sediment and water of temperate lakes with a range of salt concentrations were subjected to multiple freeze-thaw cycles. Surviving isolates were identified and metagenomes were sampled prior to and following selection. Enrichments from alkali lakes were typically the most freeze-thaw resistant with only 100-fold losses in cell viability, and those from freshwater lakes were most susceptible, with cell numbers reduced at least 100,000-fold. Metagenomic analysis suggested that selection reduced assemblage diversity more in freshwater samples than in those from saline lakes. Survivors included known psychro-, halo- and alkali-tolerant bacteria. Characterization of freeze-thaw-resistant isolates from brine and alkali lakes showed that few isolates had ice-associating activities such as antifreeze or ice nucleation properties. However, all brine- and alkali-derived isolates had high intracellular levels of osmolytes and/or appeared more likely to form biofilms. Conversely, these phenotypes were infrequent amongst the freshwater-derived isolates. These observations are consistent with microbial cross-tolerance between osmotic and freeze-thaw stresses. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Urbach, E.; Vergin, K.L.; Larson, G.L.; Giovannoni, S.J.
2007-01-01
The distribution of bacterial and archaeal species in Crater Lake plankton varies dramatically over depth and with time, as assessed by hybridization of group-specific oligonucleotides to RNA extracted from lakewater. Nonmetric, multidimensional scaling (MDS) analysis of relative bacterial phylotype densities revealed complex relationships among assemblages sampled from depth profiles in July, August and September of 1997 through 1999. CL500-11 green nonsulfur bacteria (Phylum Chloroflexi) and marine Group I crenarchaeota are consistently dominant groups in the oxygenated deep waters at 300 and 500 m. Other phylotypes found in the deep waters are similar to surface and mid-depth populations and vary with time. Euphotic zone assemblages are dominated either by ??-proteobacteria or CL120-10 verrucomicrobia, and ACK4 actinomycetes. MDS analyses of euphotic zone populations in relation to environmental variables and phytoplankton and zooplankton population structures reveal apparent links between Daphnia pulicaria zooplankton population densities and microbial community structure. These patterns may reflect food web interactions that link kokanee salmon population densities to community structure of the bacterioplankton, via fish predation on Daphnia with cascading consequences to Daphnia bacterivory and predation on bacterivorous protists. These results demonstrate a stable bottom-water microbial community. They also extend previous observations of food web-driven changes in euphotic zone bacterioplankton community structure to an oligotrophic setting. ?? 2007 Springer Science+Business Media B.V.
Microbial community composition along a 50 000-year lacustrine sediment sequence
Ariztegui, Daniel; Horn, Fabian; Kallmeyer, Jens; Orsi, William D
2018-01-01
Abstract For decades, microbial community composition in subseafloor sediments has been the focus of extensive studies. In deep lacustrine sediments, however, the taxonomic composition of microbial communities remains undercharacterized. Greater knowledge on microbial diversity in lacustrine sediments would improve our understanding of how environmental factors, and resulting selective pressures, shape subsurface biospheres in marine and freshwater sediments. Using high-throughput sequencing of 16S rRNA genes across high-resolution climate intervals covering the last 50 000 years in Laguna Potrok Aike, Argentina, we identified changes in microbial populations in response to both past environmental conditions and geochemical changes of the sediment during burial. Microbial communities in Holocene sediments were most diverse, reflecting a layering of taxa linked to electron acceptors availability. In deeper intervals, the data show that salinity, organic matter and the depositional conditions over the Last Glacial-interglacial cycle were all selective pressures in the deep lacustrine assemblage resulting in a genetically distinct biosphere from the surface dominated primarily by Bathyarchaeota and Atribacteria groups. However, similar to marine sediments, some dominant taxa in the shallow subsurface persisted into the subsurface as minor fraction of the community. The subsequent establishment of a deep subsurface community likely results from a combination of paleoenvironmental factors that have shaped the pool of available substrates, together with substrate depletion and/or reworking of organic matter with depth. PMID:29471361
NASA Astrophysics Data System (ADS)
Purkamo, L.; Bomberg, M.; Kietäväinen, R.; Salavirta, H.; Nyyssönen, M.; Nuppunen-Puputti, M.; Ahonen, L.; Kukkonen, I.; Itävaara, M.
2015-11-01
The bacterial and archaeal community composition and the possible carbon assimilation processes and energy sources of microbial communities in oligotrophic, deep, crystalline bedrock fractures is yet to be resolved. In this study, intrinsic microbial communities from six fracture zones from 180-2300 m depths in Outokumpu bedrock were characterized using high-throughput amplicon sequencing and metagenomic prediction. Comamonadaceae-, Anaerobrancaceae- and Pseudomonadaceae-related OTUs form the core community in deep crystalline bedrock fractures in Outokumpu. Archaeal communities were mainly composed of Methanobacteraceae-affiliating OTUs. The predicted bacterial metagenomes showed that pathways involved in fatty acid and amino sugar metabolism were common. In addition, relative abundance of genes coding the enzymes of autotrophic carbon fixation pathways in predicted metagenomes was low. This indicates that heterotrophic carbon assimilation is more important for microbial communities of the fracture zones. Network analysis based on co-occurrence of OTUs revealed the keystone genera of the microbial communities belonging to Burkholderiales and Clostridiales. Bacterial communities in fractures resemble those found from oligotrophic, hydrogen-enriched environments. Serpentinization reactions of ophiolitic rocks in Outokumpu assemblage may provide a source of energy and organic carbon compounds for the microbial communities in the fractures. Sulfate reducers and methanogens form a minority of the total microbial communities, but OTUs forming these minor groups are similar to those found from other deep Precambrian terrestrial bedrock environments.
Danczak, Robert E.; Sawyer, Audrey H.; Williams, Kenneth H.; ...
2016-12-03
Riverbed microbial communities play an oversized role in many watershed ecosystem functions, including the processing of organic carbon, cycling of nitrogen, and alterations to metal mobility. The structure and activity of microbial assemblages depend in part on geochemical conditions set by river-groundwater exchange or hyporheic exchange. In order to assess how seasonal changes in river-groundwater mixing affect these populations in a snowmelt-dominated fluvial system, vertical sediment and pore water profiles were sampled at three time points at one location in the hyporheic zone of the Colorado River and analyzed by using geochemical measurements, 16S rRNA gene sequencing, and ecological modeling.more » Oxic river water penetrated deepest into the subsurface during peak river discharge, while under base flow conditions, anoxic groundwater dominated shallower depths. Over a 70 cm thick interval, riverbed sediments were therefore exposed to seasonally fluctuating redox conditions and hosted microbial populations statistically different from those at both shallower and deeper locations. Additionally, microbial populations within this zone were shown to be the most dynamic across sampling time points, underlining the critical role that hyporheic mixing plays in constraining microbial abundances. Given such mixing effects, we anticipate that future changes in river discharge in mountainous, semiarid western U.S. watersheds may affect microbial community structure and function in riverbed environments, with potential implications for biogeochemical processes in riparian regions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Danczak, Robert E.; Sawyer, Audrey H.; Williams, Kenneth H.
Riverbed microbial communities play an oversized role in many watershed ecosystem functions, including the processing of organic carbon, cycling of nitrogen, and alterations to metal mobility. The structure and activity of microbial assemblages depend in part on geochemical conditions set by river-groundwater exchange or hyporheic exchange. In order to assess how seasonal changes in river-groundwater mixing affect these populations in a snowmelt-dominated fluvial system, vertical sediment and pore water profiles were sampled at three time points at one location in the hyporheic zone of the Colorado River and analyzed by using geochemical measurements, 16S rRNA gene sequencing, and ecological modeling.more » Oxic river water penetrated deepest into the subsurface during peak river discharge, while under base flow conditions, anoxic groundwater dominated shallower depths. Over a 70 cm thick interval, riverbed sediments were therefore exposed to seasonally fluctuating redox conditions and hosted microbial populations statistically different from those at both shallower and deeper locations. Additionally, microbial populations within this zone were shown to be the most dynamic across sampling time points, underlining the critical role that hyporheic mixing plays in constraining microbial abundances. Given such mixing effects, we anticipate that future changes in river discharge in mountainous, semiarid western U.S. watersheds may affect microbial community structure and function in riverbed environments, with potential implications for biogeochemical processes in riparian regions.« less
NASA Astrophysics Data System (ADS)
Danczak, Robert E.; Sawyer, Audrey H.; Williams, Kenneth H.; Stegen, James C.; Hobson, Chad; Wilkins, Michael J.
2016-12-01
Riverbed microbial communities play an oversized role in many watershed ecosystem functions, including the processing of organic carbon, cycling of nitrogen, and alterations to metal mobility. The structure and activity of microbial assemblages depend in part on geochemical conditions set by river-groundwater exchange or hyporheic exchange. To assess how seasonal changes in river-groundwater mixing affect these populations in a snowmelt-dominated fluvial system, vertical sediment and pore water profiles were sampled at three time points at one location in the hyporheic zone of the Colorado River and analyzed by using geochemical measurements, 16S rRNA gene sequencing, and ecological modeling. Oxic river water penetrated deepest into the subsurface during peak river discharge, while under base flow conditions, anoxic groundwater dominated shallower depths. Over a 70 cm thick interval, riverbed sediments were therefore exposed to seasonally fluctuating redox conditions and hosted microbial populations statistically different from those at both shallower and deeper locations. Additionally, microbial populations within this zone were shown to be the most dynamic across sampling time points, underlining the critical role that hyporheic mixing plays in constraining microbial abundances. Given such mixing effects, we anticipate that future changes in river discharge in mountainous, semiarid western U.S. watersheds may affect microbial community structure and function in riverbed environments, with potential implications for biogeochemical processes in riparian regions.
Heterotrophic Protists in Hypersaline Microbial Mats and Deep Hypersaline Basin Water Columns
Edgcomb, Virginia P.; Bernhard, Joan M.
2013-01-01
Although hypersaline environments pose challenges to life because of the low water content (water activity), many such habitats appear to support eukaryotic microbes. This contribution presents brief reviews of our current knowledge on eukaryotes of water-column haloclines and brines from Deep Hypersaline Anoxic Basins (DHABs) of the Eastern Mediterranean, as well as shallow-water hypersaline microbial mats in solar salterns of Guerrero Negro, Mexico and benthic microbialite communities from Hamelin Pool, Shark Bay, Western Australia. New data on eukaryotic diversity from Shark Bay microbialites indicates eukaryotes are more diverse than previously reported. Although this comparison shows that eukaryotic communities in hypersaline habitats with varying physicochemical characteristics are unique, several groups are commonly found, including diverse alveolates, strameonopiles, and fungi, as well as radiolaria. Many eukaryote sequences (SSU) in both regions also have no close homologues in public databases, suggesting that these environments host unique microbial eukaryote assemblages with the potential to enhance our understanding of the capacity of eukaryotes to adapt to hypersaline conditions. PMID:25369746
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anantharaman, Karthik; Brown, Christopher T.; Hug, Laura A.
The subterranean world hosts up to one-fifth of all biomass, including microbial communities that drive transformations central to Earth's biogeochemical cycles. However, little is known about how complex microbial communities in such environments are structured, and how inter-organism interactions shape ecosystem function. Here we apply terabase-scale cultivation-independent metagenomics to aquifer sediments and groundwater, and reconstruct 2,540 draft-quality, near-complete and complete strain-resolved genomes that represent the majority of known bacterial phyla as well as 47 newly discovered phylum-level lineages. Metabolic analyses spanning this vast phylogenetic diversity and representing up to 36% of organisms detected in the system are used to documentmore » the distribution of pathways in coexisting organisms. Consistent with prior findings indicating metabolic handoffs in simple consortia, we find that few organisms within the community can conduct multiple sequential redox transformations. As environmental conditions change, different assemblages of organisms are selected for, altering linkages among the major biogeochemical cycles.« less
Anantharaman, Karthik; Brown, Christopher T.; Hug, Laura A.; ...
2016-10-24
The subterranean world hosts up to one-fifth of all biomass, including microbial communities that drive transformations central to Earth's biogeochemical cycles. However, little is known about how complex microbial communities in such environments are structured, and how inter-organism interactions shape ecosystem function. Here we apply terabase-scale cultivation-independent metagenomics to aquifer sediments and groundwater, and reconstruct 2,540 draft-quality, near-complete and complete strain-resolved genomes that represent the majority of known bacterial phyla as well as 47 newly discovered phylum-level lineages. Metabolic analyses spanning this vast phylogenetic diversity and representing up to 36% of organisms detected in the system are used to documentmore » the distribution of pathways in coexisting organisms. Consistent with prior findings indicating metabolic handoffs in simple consortia, we find that few organisms within the community can conduct multiple sequential redox transformations. As environmental conditions change, different assemblages of organisms are selected for, altering linkages among the major biogeochemical cycles.« less
Anantharaman, Karthik; Brown, Christopher T.; Hug, Laura A.; Sharon, Itai; Castelle, Cindy J.; Probst, Alexander J.; Thomas, Brian C.; Singh, Andrea; Wilkins, Michael J.; Karaoz, Ulas; Brodie, Eoin L.; Williams, Kenneth H.; Hubbard, Susan S.; Banfield, Jillian F.
2016-01-01
The subterranean world hosts up to one-fifth of all biomass, including microbial communities that drive transformations central to Earth's biogeochemical cycles. However, little is known about how complex microbial communities in such environments are structured, and how inter-organism interactions shape ecosystem function. Here we apply terabase-scale cultivation-independent metagenomics to aquifer sediments and groundwater, and reconstruct 2,540 draft-quality, near-complete and complete strain-resolved genomes that represent the majority of known bacterial phyla as well as 47 newly discovered phylum-level lineages. Metabolic analyses spanning this vast phylogenetic diversity and representing up to 36% of organisms detected in the system are used to document the distribution of pathways in coexisting organisms. Consistent with prior findings indicating metabolic handoffs in simple consortia, we find that few organisms within the community can conduct multiple sequential redox transformations. As environmental conditions change, different assemblages of organisms are selected for, altering linkages among the major biogeochemical cycles. PMID:27774985
NASA Astrophysics Data System (ADS)
Anantharaman, Karthik; Brown, Christopher T.; Hug, Laura A.; Sharon, Itai; Castelle, Cindy J.; Probst, Alexander J.; Thomas, Brian C.; Singh, Andrea; Wilkins, Michael J.; Karaoz, Ulas; Brodie, Eoin L.; Williams, Kenneth H.; Hubbard, Susan S.; Banfield, Jillian F.
2016-10-01
The subterranean world hosts up to one-fifth of all biomass, including microbial communities that drive transformations central to Earth's biogeochemical cycles. However, little is known about how complex microbial communities in such environments are structured, and how inter-organism interactions shape ecosystem function. Here we apply terabase-scale cultivation-independent metagenomics to aquifer sediments and groundwater, and reconstruct 2,540 draft-quality, near-complete and complete strain-resolved genomes that represent the majority of known bacterial phyla as well as 47 newly discovered phylum-level lineages. Metabolic analyses spanning this vast phylogenetic diversity and representing up to 36% of organisms detected in the system are used to document the distribution of pathways in coexisting organisms. Consistent with prior findings indicating metabolic handoffs in simple consortia, we find that few organisms within the community can conduct multiple sequential redox transformations. As environmental conditions change, different assemblages of organisms are selected for, altering linkages among the major biogeochemical cycles.
van der Heijden, Marcel GA; Bruin, Susanne de; Luckerhoff, Ludo; van Logtestijn, Richard SP; Schlaeppi, Klaus
2016-01-01
Highly diverse microbial assemblages colonize plant roots. It is still poorly understood whether different members of this root microbiome act synergistically by supplying different services (for example, different limiting nutrients) to plants and plant communities. In order to test this, we manipulated the presence of two widespread plant root symbionts, arbuscular mycorrhizal fungi and nitrogen-fixing rhizobia bacteria in model grassland communities established in axenic microcosms. Here, we demonstrate that both symbionts complement each other resulting in increased plant diversity, enhanced seedling recruitment and improved nutrient acquisition compared with a single symbiont situation. Legume seedlings obtained up to 15-fold higher productivity if they formed an association with both symbionts, opposed to productivity they reached with only one symbiont. Our results reveal the importance of functional diversity of symbionts and demonstrate that different members of the root microbiome can complement each other in acquiring different limiting nutrients and in driving important ecosystem functions. PMID:26172208
Mandakovic, Dinka; Rojas, Claudia; Maldonado, Jonathan; Latorre, Mauricio; Travisany, Dante; Delage, Erwan; Bihouée, Audrey; Jean, Géraldine; Díaz, Francisca P; Fernández-Gómez, Beatriz; Cabrera, Pablo; Gaete, Alexis; Latorre, Claudio; Gutiérrez, Rodrigo A; Maass, Alejandro; Cambiazo, Verónica; Navarrete, Sergio A; Eveillard, Damien; González, Mauricio
2018-04-12
Understanding the factors that modulate bacterial community assembly in natural soils is a longstanding challenge in microbial community ecology. In this work, we compared two microbial co-occurrence networks representing bacterial soil communities from two different sections of a pH, temperature and humidity gradient occurring along a western slope of the Andes in the Atacama Desert. In doing so, a topological graph alignment of co-occurrence networks was used to determine the impact of a shift in environmental variables on OTUs taxonomic composition and their relationships. We observed that a fraction of association patterns identified in the co-occurrence networks are persistent despite large environmental variation. This apparent resilience seems to be due to: (1) a proportion of OTUs that persist across the gradient and maintain similar association patterns within the community and (2) bacterial community ecological rearrangements, where an important fraction of the OTUs come to fill the ecological roles of other OTUs in the other network. Actually, potential functional features suggest a fundamental role of persistent OTUs along the soil gradient involving nitrogen fixation. Our results allow identifying factors that induce changes in microbial assemblage configuration, altering specific bacterial soil functions and interactions within the microbial communities in natural environments.
Influence of geogenic factors on microbial communities in metallogenic Australian soils
Reith, Frank; Brugger, Joel; Zammit, Carla M; Gregg, Adrienne L; Goldfarb, Katherine C; Andersen, Gary L; DeSantis, Todd Z; Piceno, Yvette M; Brodie, Eoin L; Lu, Zhenmei; He, Zhili; Zhou, Jizhong; Wakelin, Steven A
2012-01-01
Links between microbial community assemblages and geogenic factors were assessed in 187 soil samples collected from four metal-rich provinces across Australia. Field-fresh soils and soils incubated with soluble Au(III) complexes were analysed using three-domain multiplex-terminal restriction fragment length polymorphism, and phylogenetic (PhyloChip) and functional (GeoChip) microarrays. Geogenic factors of soils were determined using lithological-, geomorphological- and soil-mapping combined with analyses of 51 geochemical parameters. Microbial communities differed significantly between landforms, soil horizons, lithologies and also with the occurrence of underlying Au deposits. The strongest responses to these factors, and to amendment with soluble Au(III) complexes, was observed in bacterial communities. PhyloChip analyses revealed a greater abundance and diversity of Alphaproteobacteria (especially Sphingomonas spp.), and Firmicutes (Bacillus spp.) in Au-containing and Au(III)-amended soils. Analyses of potential function (GeoChip) revealed higher abundances of metal-resistance genes in metal-rich soils. For example, genes that hybridised with metal-resistance genes copA, chrA and czcA of a prevalent aurophillic bacterium, Cupriavidus metallidurans CH34, occurred only in auriferous soils. These data help establish key links between geogenic factors and the phylogeny and function within soil microbial communities. In particular, the landform, which is a crucial factor in determining soil geochemistry, strongly affected microbial community structures. PMID:22673626
Influence of geogenic factors on microbial communities in metallogenic Australian soils.
Reith, Frank; Brugger, Joel; Zammit, Carla M; Gregg, Adrienne L; Goldfarb, Katherine C; Andersen, Gary L; DeSantis, Todd Z; Piceno, Yvette M; Brodie, Eoin L; Lu, Zhenmei; He, Zhili; Zhou, Jizhong; Wakelin, Steven A
2012-11-01
Links between microbial community assemblages and geogenic factors were assessed in 187 soil samples collected from four metal-rich provinces across Australia. Field-fresh soils and soils incubated with soluble Au(III) complexes were analysed using three-domain multiplex-terminal restriction fragment length polymorphism, and phylogenetic (PhyloChip) and functional (GeoChip) microarrays. Geogenic factors of soils were determined using lithological-, geomorphological- and soil-mapping combined with analyses of 51 geochemical parameters. Microbial communities differed significantly between landforms, soil horizons, lithologies and also with the occurrence of underlying Au deposits. The strongest responses to these factors, and to amendment with soluble Au(III) complexes, was observed in bacterial communities. PhyloChip analyses revealed a greater abundance and diversity of Alphaproteobacteria (especially Sphingomonas spp.), and Firmicutes (Bacillus spp.) in Au-containing and Au(III)-amended soils. Analyses of potential function (GeoChip) revealed higher abundances of metal-resistance genes in metal-rich soils. For example, genes that hybridised with metal-resistance genes copA, chrA and czcA of a prevalent aurophillic bacterium, Cupriavidus metallidurans CH34, occurred only in auriferous soils. These data help establish key links between geogenic factors and the phylogeny and function within soil microbial communities. In particular, the landform, which is a crucial factor in determining soil geochemistry, strongly affected microbial community structures.
Chen, Lin-xing; Hu, Min; Huang, Li-nan; Hua, Zheng-shuang; Kuang, Jia-liang; Li, Sheng-jin; Shu, Wen-sheng
2015-07-01
The microbial communities in acid mine drainage have been extensively studied to reveal their roles in acid generation and adaption to this environment. Lacking, however, are integrated community- and organism-wide comparative gene transcriptional analyses that could reveal the response and adaptation mechanisms of these extraordinary microorganisms to different environmental conditions. In this study, comparative metagenomics and metatranscriptomics were performed on microbial assemblages collected from four geochemically distinct acid mine drainage (AMD) sites. Taxonomic analysis uncovered unexpectedly high microbial biodiversity of these extremely acidophilic communities, and the abundant taxa of Acidithiobacillus, Leptospirillum and Acidiphilium exhibited high transcriptional activities. Community-wide comparative analyses clearly showed that the AMD microorganisms adapted to the different environmental conditions via regulating the expression of genes involved in multiple in situ functional activities, including low-pH adaptation, carbon, nitrogen and phosphate assimilation, energy generation, environmental stress resistance, and other functions. Organism-wide comparative analyses of the active taxa revealed environment-dependent gene transcriptional profiles, especially the distinct strategies used by Acidithiobacillus ferrivorans and Leptospirillum ferrodiazotrophum in nutrients assimilation and energy generation for survival under different conditions. Overall, these findings demonstrate that the gene transcriptional profiles of AMD microorganisms are closely related to the site physiochemical characteristics, providing clues into the microbial response and adaptation mechanisms in the oligotrophic, extremely acidic environments.
Liu, Jingjing; Sun, Faqian; Wang, Liang; Ju, Xi; Wu, Weixiang; Chen, Yingxu
2014-01-01
Methane can be used as an alternative carbon source in biological denitrification because it is nontoxic, widely available and relatively inexpensive. A microbial consortium involved in methane oxidation coupled to denitrification (MOD) was enriched with nitrite and nitrate as electron acceptors under micro-aerobic conditions. The 16S rRNA gene combined with pmoA phylogeny of methanotrophs and nirK phylogeny of denitrifiers were analysed to reveal the dominant microbial populations and functional microorganisms. Real-time quantitative polymerase chain reaction results showed high numbers of methanotrophs and denitrifiers in the enriched consortium. The 16S rRNA gene clone library revealed that Methylococcaceae and Methylophilaceae were the dominant populations in the MOD ecosystem. Phylogenetic analyses of pmoA gene clone libraries indicated that all methanotrophs belonged to Methylococcaceae, a type I methanotroph employing the ribulose monophosphate pathway for methane oxidation. Methylotrophic denitrifiers of the Methylophilaceae that can utilize organic intermediates (i.e. formaldehyde, citrate and acetate) released from the methanotrophs played a vital role in aerobic denitrification. This study is the first report to confirm micro-aerobic denitrification and to make phylogenetic and functional assignments for some members of the microbial assemblages involved in MOD. © 2013 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
Microbial Diversity of Impact-Generated Habitats
NASA Astrophysics Data System (ADS)
Pontefract, Alexandra; Osinski, Gordon R.; Cockell, Charles S.; Southam, Gordon; McCausland, Phil J. A.; Umoh, Joseph; Holdsworth, David W.
2016-10-01
Impact-generated lithologies have recently been identified as viable and important microbial habitats, especially within cold and arid regions such as the polar deserts on Earth. These unique habitats provide protection from environmental stressors, such as freeze-thaw events, desiccation, and UV radiation, and act to trap aerially deposited detritus within the fissures and pore spaces, providing necessary nutrients for endoliths. This study provides the first culture-independent analysis of the microbial community structure within impact-generated lithologies in a Mars analog environment, involving the analysis of 44,534 16S rRNA sequences from an assemblage of 21 rock samples that comprises three shock metamorphism categories. We find that species diversity increases (H = 2.4-4.6) with exposure to higher shock pressures, which leads to the development of three distinct populations. In each population, Actinobacteria were the most abundant (41%, 65%, and 59%), and the dominant phototrophic taxa came from the Chloroflexi. Calculated porosity (a function of shock metamorphism) for these samples correlates (R2 = 0.62) with inverse Simpson indices, accounting for overlap in populations in the higher shock levels. The results of our study show that microbial diversity is tied to the amount of porosity in the target substrate (as a function of shock metamorphism), resulting in the formation of distinct microbial populations.
The Middle Jurassic microflora from El Maghara N° 4 borehole, Northern Sinai, Egypt
NASA Astrophysics Data System (ADS)
Mohsen, Sayed Abdel
The coal bearing formation in El Maghara area, northern Sinai, yielded abundant, diverse and generally well preserved spores, pollen and marine microflora. The palynological analysis of the fine clastic sediments in this formation yielded (71) species related to (44) genera. Three different palynological assemblage zones can be distinguished. The sediments which contain lower and the upper assemblage zones bearing the coal seems, were deposited in non-marine (swamp) environment. In the middle assemblage zone few marine microflora can be identified, indicating a coastal near shore marine environment. Compared with other palynologic data obtained from Egypt and other countries, the three described assemblage zones belong to Middle Jurassic (Bathonian) age.
Canter, Erin J; Cuellar-Gempeler, Catalina; Pastore, Abigail I; Miller, Thomas E; Mason, Olivia U
2018-03-01
The importance of predators in influencing community structure is a well-studied area of ecology. However, few studies test ecological hypotheses of predation in multi-predator microbial communities. The phytotelmic community found within the water-filled leaves of the pitcher plant, Sarracenia purpurea, exhibits a simple trophic structure that includes multiple protozoan predators and microbial prey. Using this system, we sought to determine whether different predators target distinct microorganisms, how interactions among protozoans affect resource (microorganism) use, and how predator diversity affects prey community diversity. In particular, we endeavored to determine if protozoa followed known ecological patterns such as keystone predation or generalist predation. For these experiments, replicate inquiline microbial communities were maintained for seven days with five protozoan species. Microbial community structure was determined by 16S rRNA gene amplicon sequencing (iTag) and analysis. Compared to the control (no protozoa), two ciliates followed patterns of keystone predation by increasing microbial evenness. In pairwise competition treatments with a generalist flagellate, prey communities resembled the microbial communities of the respective keystone predator in monoculture. The relative abundance of the most common bacterial Operational Taxonomic Unit (OTU) in our system decreased compared to the control in the presence of these ciliates. This OTU was 98% similar to a known chitin degrader and nitrate reducer, important functions for the microbial community and the plant host. Collectively, the data demonstrated that predator identity had a greater effect on prey diversity and composition than overall predator diversity. © 2018 by the Ecological Society of America.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hua, Zheng-Shuang; Han, Yu-Jiao; Chen, Lin-Xing
Here we report that high-throughput sequencing is expanding our knowledge of microbial diversity in the environment. Still, understanding the metabolic potentials and ecological roles of rare and uncultured microbes in natural communities remains a major challenge. To this end, we applied a ‘divide and conquer’ strategy that partitioned a massive metagenomic data set (>100 Gbp) into subsets based on K-mer frequency in sequence assembly to a low-diversity acid mine drainage (AMD) microbial community and, by integrating with an additional metatranscriptomic assembly, successfully obtained 11 draft genomes most of which represent yet uncultured and/or rare taxa (relative abundance <1%). We reportmore » the first genome of a naturally occurring Ferrovum population (relative abundance >90%) and its metabolic potentials and gene expression profile, providing initial molecular insights into the ecological role of these lesser known, but potentially important, microorganisms in the AMD environment. Gene transcriptional analysis of the active taxa revealed major metabolic capabilities executed in situ, including carbon- and nitrogen-related metabolisms associated with syntrophic interactions, iron and sulfur oxidation, which are key in energy conservation and AMD generation, and the mechanisms of adaptation and response to the environmental stresses (heavy metals, low pH and oxidative stress). Remarkably, nitrogen fixation and sulfur oxidation were performed by the rare taxa, indicating their critical roles in the overall functioning and assembly of the AMD community. Finally, our study demonstrates the potential of the ‘divide and conquer’ strategy in high-throughput sequencing data assembly for genome reconstruction and functional partitioning analysis of both dominant and rare species in natural microbial assemblages.« less
NASA Astrophysics Data System (ADS)
Pastor, L.; Toffin, L.; Decker, C.; Olu, K.; Cathalot, C.; Lesongeur, F.; Caprais, J.-C.; Bessette, S.; Brandily, C.; Taillefert, M.; Rabouille, C.
2017-08-01
Geochemical profiles (SO42-, H2S, CH4, δ13CH4) and phylogenetic diversity of Archaea and Bacteria from two oceanographic cruises dedicated to the lobes sediments of the Congo deep-sea fan are presented in this paper. In this area, organic-rich turbidites reach 5000 m and allow the establishment of patchy cold-seep-like habitats including microbial mats, reduced sediments, and vesicomyid bivalves assemblages. These bivalves live in endosymbiosis with sulfur-oxidizing bacteria and use sulfides to perform chemosynthesis. In these habitats, unlike classical abyssal sediments, anoxic processes are dominant. Total oxygen uptake fluxes and methane fluxes measured with benthic chambers are in the same range as those of active cold-seep environments, and oxygen is mainly used for reoxidation of reduced compounds, especially in bacterial mats and reduced sediments. High concentrations of methane and sulfate co-exist in the upper 20 cm of sediments, and evidence indicates that sulfate-reducing microorganisms and methanogens co-occur in the shallow layers of these sediments. Simultaneously, anaerobic oxidation of methane (AOM) with sulfate as the electron acceptor is evidenced by the presence of ANMEs (ANaerobic MEthanotroph). Dissolved sulfide produced through the reduction of sulfate is reoxidized through several pathways depending on the habitat. These pathways include vesicomyid bivalves uptake (adults or juveniles in the bacterial mats habitats), reoxidation by oxygen or iron phases within the reduced sediment, or reoxidation by microbial mats. Sulfide uptake rates by vesicomyids measured in sulfide-rich sea water (90±18 mmol S m-2 d-1) were similar to sulfide production rates obtained by modelling the sulfate profile with different bioirrigation constants, highlighting the major control of vesicomyids on sulfur cycle in their habitats.
Hua, Zheng-Shuang; Han, Yu-Jiao; Chen, Lin-Xing; ...
2014-11-07
Here we report that high-throughput sequencing is expanding our knowledge of microbial diversity in the environment. Still, understanding the metabolic potentials and ecological roles of rare and uncultured microbes in natural communities remains a major challenge. To this end, we applied a ‘divide and conquer’ strategy that partitioned a massive metagenomic data set (>100 Gbp) into subsets based on K-mer frequency in sequence assembly to a low-diversity acid mine drainage (AMD) microbial community and, by integrating with an additional metatranscriptomic assembly, successfully obtained 11 draft genomes most of which represent yet uncultured and/or rare taxa (relative abundance <1%). We reportmore » the first genome of a naturally occurring Ferrovum population (relative abundance >90%) and its metabolic potentials and gene expression profile, providing initial molecular insights into the ecological role of these lesser known, but potentially important, microorganisms in the AMD environment. Gene transcriptional analysis of the active taxa revealed major metabolic capabilities executed in situ, including carbon- and nitrogen-related metabolisms associated with syntrophic interactions, iron and sulfur oxidation, which are key in energy conservation and AMD generation, and the mechanisms of adaptation and response to the environmental stresses (heavy metals, low pH and oxidative stress). Remarkably, nitrogen fixation and sulfur oxidation were performed by the rare taxa, indicating their critical roles in the overall functioning and assembly of the AMD community. Finally, our study demonstrates the potential of the ‘divide and conquer’ strategy in high-throughput sequencing data assembly for genome reconstruction and functional partitioning analysis of both dominant and rare species in natural microbial assemblages.« less
Chen, Mingna; Li, Xiao; Yang, Qingli; Chi, Xiaoyuan; Pan, Lijuan; Chen, Na; Yang, Zhen; Wang, Tong; Wang, Mian; Yu, Shanlin
2014-01-01
Plant health and soil fertility are affected by plant–microbial interactions in soils. Peanut is an important oil crop worldwide and shows considerable adaptability, but growth and yield are negatively affected by continuous cropping. In this study, 16S rRNA gene clone library analyses were used to study the succession of soil bacterial communities under continuous peanut cultivation. Six libraries were constructed for peanut over three continuous cropping cycles and during its seedling and pod-maturing growth stages. Cluster analyses indicated that soil bacterial assemblages obtained from the same peanut cropping cycle were similar, regardless of growth period. The diversity of bacterial sequences identified in each growth stage library of the three peanut cropping cycles was high and these sequences were affiliated with 21 bacterial groups. Eight phyla: Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Gemmatimonadetes, Planctomycetes, Proteobacteria and Verrucomicrobia were dominant. The related bacterial phylotypes dynamic changed during continuous cropping progress of peanut. This study demonstrated that the bacterial populations especially the beneficial populations were positively selected. The simplification of the beneficial microbial communities such as the phylotypes of Alteromonadales, Burkholderiales, Flavobacteriales, Pseudomonadales, Rhizobiales and Rhodospirillales could be important factors contributing to the decline in peanut yield under continuous cropping. The microbial phylotypes that did not successively changed with continuous cropping, such as populations related to Rhizobiales and Rhodospirillales, could potentially resist stress due to continuous cropping and deserve attention. In addition, some phylotypes, such as Acidobacteriales, Chromatiales and Gemmatimonadales, showed a contrary tendency, their abundance or diversity increased with continuous peanut cropping progress. Some bacterial phylotypes including Acidobacteriales, Burkholderiales, Bdellovibrionales, and so on, also were affected by plant age. PMID:25010658
Discovery of a chemosynthesis-based community in the western South Atlantic Ocean
NASA Astrophysics Data System (ADS)
Giongo, Adriana; Haag, Taiana; Simão, Taiz L. Lopes; Medina-Silva, Renata; Utz, Laura R. P.; Bogo, Maurício R.; Bonatto, Sandro L.; Zamberlan, Priscilla M.; Augustin, Adolpho H.; Lourega, Rogério V.; Rodrigues, Luiz F.; Sbrissa, Gesiane F.; Kowsmann, Renato O.; Freire, Antonio F. M.; Miller, Dennis J.; Viana, Adriano R.; Ketzer, João M. M.; Eizirik, Eduardo
2016-06-01
Chemosynthetic communities have been described from a variety of deep-sea environments across the world's oceans. They constitute very interesting biological systems in terms of their ecology, evolution and biogeography, and also given their potential as indicators of the presence and abundance of consistent hydrocarbon-based nutritional sources. Up to now such peculiar biotic assemblages have not been reported for the western South Atlantic Ocean, leaving this large region undocumented with respect to the presence, composition and history of such communities. Here we report on the presence of a chemosynthetic community off the coast of southern Brazil, in an area where high-levels of methane and the presence of gas hydrates have been detected. We performed metagenomic analyses of the microbial community present at this site, and also employed molecular approaches to identify components of its benthic fauna. We conducted phylogenetic analyses comparing the components of this assemblage to those found elsewhere in the world, which allowed a historical assessment of the structure and dynamics of these systems. Our results revealed that the microbial community at this site is quite diverse, and contains many components that are very closely related to lineages previously sampled in ecologically similar environments across the globe. Anaerobic methanotrophic (ANME) archaeal groups were found to be very abundant at this site, suggesting that methane is indeed an important source of nutrition for this community. In addition, we document the presence at this site of a vestimentiferan siboglinid polychaete and the bivalve Acharax sp., both of which are typical components of deep-sea chemosynthetic communities. The remarkable similarity in biotic composition between this area and other deep-sea communities across the world supports the interpretation that these assemblages are historically connected across the global oceans, undergoing colonization from distant sites and influenced by local ecological features that select a stereotyped suite of specifically adapted organisms.
Rosa, Bruce A; Supali, Taniawati; Gankpala, Lincoln; Djuardi, Yenny; Sartono, Erliyani; Zhou, Yanjiao; Fischer, Kerstin; Martin, John; Tyagi, Rahul; Bolay, Fatorma K; Fischer, Peter U; Yazdanbakhsh, Maria; Mitreva, Makedonka
2018-02-28
The human intestine and its microbiota is the most common infection site for soil-transmitted helminths (STHs), which affect the well-being of ~ 1.5 billion people worldwide. The complex cross-kingdom interactions are not well understood. A cross-sectional analysis identified conserved microbial signatures positively or negatively associated with STH infections across Liberia and Indonesia, and longitudinal samples analysis from a double-blind randomized trial showed that the gut microbiota responds to deworming but does not transition closer to the uninfected state. The microbiomes of individuals able to self-clear the infection had more alike microbiome assemblages compared to individuals who remained infected. One bacterial taxon (Lachnospiracae) was negatively associated with infection in both countries, and 12 bacterial taxa were significantly associated with STH infection in both countries, including Olsenella (associated with reduced gut inflammation), which also significantly reduced in abundance following clearance of infection. Microbial community gene abundances were also affected by deworming. Functional categories identified as associated with STH infection included arachidonic acid metabolism; arachidonic acid is the precursor for pro-inflammatory leukotrienes that threaten helminth survival, and our findings suggest that some modulation of arachidonic acid activity in the STH-infected gut may occur through the increase of arachidonic acid metabolizing bacteria. For the first time, we identify specific members of the gut microbiome that discriminate between moderately/heavily STH-infected and non-infected states across very diverse geographical regions using two different statistical methods. We also identify microbiome-encoded biological functions associated with the STH infections, which are associated potentially with STH survival strategies, and changes in the host environment. These results provide a novel insight of the cross-kingdom interactions in the human gut ecosystem by unlocking the microbiome assemblages at taxonomic, genetic, and functional levels so that advances towards key mechanistic studies can be made.
NASA Astrophysics Data System (ADS)
Preziosi, Elisabetta; Amalfitano, Stefano; Di Lorenzo, Tiziana; Parrone, Daniele; Rossi, David; Ghergo, Stefano; Lungarini, Silvia; Zoppini, Anna Maria
2015-04-01
The tight links between chemical and ecological status are largely acknowledged as for surface water bodies, while aquifers are still considered as hidden groundwater reservoirs, rather than ecosystems to be preserved. Geochemical and biological interactions play a key role in all subterranean processes, including the dynamics of the fate of anthropogenic contaminants. Studies on groundwater dependent ecosystems (GDE) were mainly focused on karst aquifers so far, but an increased awareness on the importance of water-rock interactions and methodological improvements in microbial ecology are rapidly increasing the level of characterization of groundwater ecosystems in various hydrogeological contexts. Similarly, knowledge about groundwater biodiversity is still limited, especially if porous habitats are concerned. Yet, groundwater and GDEs are populated by a diverse and highly adapted biota, dominated by crustaceans, which provide important ecosystem services and act as biological indicators of chemical and quantitative impact on groundwater resources. In a previous research (Amalfitano et al. 2014), we reported that the microbial community heterogeneity may reflect the lithological and hydrogeological complexity within volcanic and alluvial facies transition in a groundwater body. The quantitative tracking of the microbial community structure allowed disentangling the natural biogeochemical processes evolving within the aquifer flow path. The analyses of groundwater crustaceans assemblages may contribute to shed more light upon the state and dynamics of such ecosystems. In the present research, a comprehensive study of a water table aquifer flowing through a quaternary volcanic district is being performed, including the geochemical (inorganic) composition, the microbial composition, and the analysis of crustacean assemblages . Groundwater samples are periodically collected from private wells and springs under a low anthropic impact. The key issues within the sampling area are related to occurrence of arsenic from natural sources, fluoride and coliforms, which make the water resource unsuitable for human consumption. The aim of this work is to present the first outcomes of this activity. References Amalfitano S, Del Bon A, Zoppini AM, Ghergo S, Fazi S, Parrone D, Casella P, Stano F, Preziosi E (2014) Groundwater geochemistry and microbial community structure in the aquifer transition from volcanic to alluvial areas. Water Research, 65 (2014) 384-394. Doi http://dx.doi.org/10.1016/j.watres.2014.08.004
Diversity and Activity of Communities Inhabiting Plastic Debris in the North Pacific Gyre
Bryant, Jessica A.; Clemente, Tara M.; Viviani, Donn A.; Fong, Allison A.; Thomas, Kimberley A.; Kemp, Paul; Karl, David M.; White, Angelicque E.
2016-01-01
ABSTRACT Marine plastic debris has become a significant concern in ocean ecosystems worldwide. Little is known, however, about its influence on microbial community structure and function. In 2008, we surveyed microbial communities and metabolic activities in seawater and on plastic on an oceanographic expedition through the “great Pacific garbage patch.” The concentration of plastic particles in surface seawater within different size classes (2 to 5 mm and >5 mm) ranged from 0.35 to 3.7 particles m−3 across sampling stations. These densities and the particle size distribution were consistent with previous values reported in the North Pacific Ocean. Net community oxygen production (NCP = gross primary production − community respiration) on plastic debris was positive and so net autotrophic, whereas NCP in bulk seawater was close to zero. Scanning electron microscopy and metagenomic sequencing of plastic-attached communities revealed the dominance of a few metazoan taxa and a diverse assemblage of photoautotrophic and heterotrophic protists and bacteria. Bryozoa, Cyanobacteria, Alphaproteobacteria, and Bacteroidetes dominated all plastic particles, regardless of particle size. Bacteria inhabiting plastic were taxonomically distinct from the surrounding picoplankton and appeared well adapted to a surface-associated lifestyle. Genes with significantly higher abundances among plastic-attached bacteria included che genes, secretion system genes, and nifH genes, suggesting enrichment for chemotaxis, frequent cell-to-cell interactions, and nitrogen fixation. In aggregate, our findings suggest that plastic debris forms a habitat for complex microbial assemblages that have lifestyles, metabolic pathways, and biogeochemical activities that are distinct from those of free-living planktonic microbial communities. IMPORTANCE Marine plastic debris is a growing concern that has captured the general public’s attention. While the negative impacts of plastic debris on oceanic macrobiota, including mammals and birds, are well documented, little is known about its influence on smaller marine residents, including microbes that have key roles in ocean biogeochemistry. Our work provides a new perspective on microbial communities inhabiting microplastics that includes its effect on microbial biogeochemical activities and a description of the cross-domain communities inhabiting plastic particles. This study is among the first molecular ecology, plastic debris biota surveys in the North Pacific Subtropical Gyre. It has identified fundamental differences in the functional potential and taxonomic composition of plastic-associated microbes versus planktonic microbes found in the surrounding open-ocean habitat. Author Video: An author video summary of this article is available. PMID:27822538
NASA Astrophysics Data System (ADS)
Kotas, Petr; Šantrůčková, Hana; Elster, Josef; Kaštovská, Eva
2018-03-01
The unique and fragile High Arctic ecosystems are vulnerable to global climate warming. The elucidation of factors driving microbial distribution and activity in arctic soils is essential for a comprehensive understanding of ecosystem functioning and its response to environmental change. The goals of this study were to investigate microbial biomass and activity, microbial community structure (MCS), and their environmental controls in soils along three elevational transects in the coastal mountains of Billefjorden, central Svalbard. Soils from four different altitudes (25, 275, 525 and 765 m above sea level) were analyzed for a suite of characteristics including temperature regimes, organic matter content, base cation availability, moisture, pH, potential respiration, and microbial biomass and community structure using phospholipid fatty acids (PLFAs). We observed significant spatial heterogeneity of edaphic properties among transects, resulting in transect-specific effects of altitude on most soil parameters. We did not observe any clear elevation pattern in microbial biomass, and microbial activity revealed contrasting elevational patterns between transects. We found relatively large horizontal variability in MCS (i.e., between sites of corresponding elevation in different transects), mainly due to differences in the composition of bacterial PLFAs, but also a systematic altitudinal shift in MCS related to different habitat preferences of fungi and bacteria, which resulted in high fungi-to-bacteria ratios at the most elevated sites. The biological soil crusts on these most elevated, unvegetated sites can host microbial assemblages of a size and activity comparable to those of the arctic tundra ecosystem. The key environmental factors determining horizontal and vertical changes in soil microbial properties were soil pH, organic carbon content, soil moisture and Mg2+ availability.
Filthy lucre: A metagenomic pilot study of microbes found on circulating currency in New York City
Maritz, Julia M.; Sullivan, Steven A.; Prill, Robert J.; Aksoy, Emre; Scheid, Paul; Carlton, Jane M.
2017-01-01
Background Paper currency by its very nature is frequently transferred from one person to another and represents an important medium for human contact with—and potential exchange of—microbes. In this pilot study, we swabbed circulating $1 bills obtained from a New York City bank in February (Winter) and June (Summer) 2013 and used shotgun metagenomic sequencing to profile the communities found on their surface. Using basic culture conditions, we also tested whether viable microbes could be recovered from bills. Results Shotgun metagenomics identified eukaryotes as the most abundant sequences on money, followed by bacteria, viruses and archaea. Eukaryotic assemblages were dominated by human, other metazoan and fungal taxa. The currency investigated harbored a diverse microbial population that was dominated by human skin and oral commensals, including Propionibacterium acnes, Staphylococcus epidermidis and Micrococcus luteus. Other taxa detected not associated with humans included Lactococcus lactis and Streptococcus thermophilus, microbes typically associated with dairy production and fermentation. Culturing results indicated that viable microbes can be isolated from paper currency. Conclusions We conducted the first metagenomic characterization of the surface of paper money in the United States, establishing a baseline for microbes found on $1 bills circulating in New York City. Our results suggest that money amalgamates DNA from sources inhabiting the human microbiome, food, and other environmental inputs, some of which can be recovered as viable organisms. These monetary communities may be maintained through contact with human skin, and DNA obtained from money may provide a record of human behavior and health. Understanding these microbial profiles is especially relevant to public health as money could potentially mediate interpersonal transfer of microbes. PMID:28384336
Microbial physiology-based model of ethanol metabolism in subsurface sediments
NASA Astrophysics Data System (ADS)
Jin, Qusheng; Roden, Eric E.
2011-07-01
A biogeochemical reaction model was developed based on microbial physiology to simulate ethanol metabolism and its influence on the chemistry of anoxic subsurface environments. The model accounts for potential microbial metabolisms that degrade ethanol, including those that oxidize ethanol directly or syntrophically by reducing different electron acceptors. Out of the potential metabolisms, those that are active in the environment can be inferred by fitting the model to experimental observations. This approach was applied to a batch sediment slurry experiment that examined ethanol metabolism in uranium-contaminated aquifer sediments from Area 2 at the U.S. Department of Energy Field Research Center in Oak Ridge, TN. According to the simulation results, complete ethanol oxidation by denitrification, incomplete ethanol oxidation by ferric iron reduction, ethanol fermentation to acetate and H 2, hydrogenotrophic sulfate reduction, and acetoclastic methanogenesis: all contributed significantly to the degradation of ethanol in the aquifer sediments. The assemblage of the active metabolisms provides a frame work to explore how ethanol amendment impacts the chemistry of the environment, including the occurrence and levels of uranium. The results can also be applied to explore how diverse microbial metabolisms impact the progress and efficacy of bioremediation strategies.
Ramond, J-B; Makhalanyane, T P; Tuffin, M I; Cowan, D A
2015-04-01
Normalization is a procedure classically employed to detect rare sequences in cellular expression profiles (i.e. cDNA libraries). Here, we present a normalization protocol involving the direct treatment of extracted environmental metagenomic DNA with S1 nuclease, referred to as normalization of metagenomic DNA: NmDNA. We demonstrate that NmDNA, prior to post hoc PCR-based experiments (16S rRNA gene T-RFLP fingerprinting and clone library), increased the diversity of sequences retrieved from environmental microbial communities by detection of rarer sequences. This approach could be used to enhance the resolution of detection of ecologically relevant rare members in environmental microbial assemblages and therefore is promising in enabling a better understanding of ecosystem functioning. This study is the first testing 'normalization' on environmental metagenomic DNA (mDNA). The aim of this procedure was to improve the identification of rare phylotypes in environmental communities. Using hypoliths as model systems, we present evidence that this post-mDNA extraction molecular procedure substantially enhances the detection of less common phylotypes and could even lead to the discovery of novel microbial genotypes within a given environment. © 2014 The Society for Applied Microbiology.
Deciphering microbial interactions in synthetic human gut microbiome communities.
Venturelli, Ophelia S; Carr, Alex C; Fisher, Garth; Hsu, Ryan H; Lau, Rebecca; Bowen, Benjamin P; Hromada, Susan; Northen, Trent; Arkin, Adam P
2018-06-21
The ecological forces that govern the assembly and stability of the human gut microbiota remain unresolved. We developed a generalizable model-guided framework to predict higher-dimensional consortia from time-resolved measurements of lower-order assemblages. This method was employed to decipher microbial interactions in a diverse human gut microbiome synthetic community. We show that pairwise interactions are major drivers of multi-species community dynamics, as opposed to higher-order interactions. The inferred ecological network exhibits a high proportion of negative and frequent positive interactions. Ecological drivers and responsive recipient species were discovered in the network. Our model demonstrated that a prevalent positive and negative interaction topology enables robust coexistence by implementing a negative feedback loop that balances disparities in monospecies fitness levels. We show that negative interactions could generate history-dependent responses of initial species proportions that frequently do not originate from bistability. Measurements of extracellular metabolites illuminated the metabolic capabilities of monospecies and potential molecular basis of microbial interactions. In sum, these methods defined the ecological roles of major human-associated intestinal species and illuminated design principles of microbial communities. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.
Liu, Jingjing; Sun, Faqian; Wang, Liang; Ju, Xi; Wu, Weixiang; Chen, Yingxu
2014-01-01
Methane can be used as an alternative carbon source in biological denitrification because it is nontoxic, widely available and relatively inexpensive. A microbial consortium involved in methane oxidation coupled to denitrification (MOD) was enriched with nitrite and nitrate as electron acceptors under micro-aerobic conditions. The 16S rRNA gene combined with pmoA phylogeny of methanotrophs and nirK phylogeny of denitrifiers were analysed to reveal the dominant microbial populations and functional microorganisms. Real-time quantitative polymerase chain reaction results showed high numbers of methanotrophs and denitrifiers in the enriched consortium. The 16S rRNA gene clone library revealed that Methylococcaceae and Methylophilaceae were the dominant populations in the MOD ecosystem. Phylogenetic analyses of pmoA gene clone libraries indicated that all methanotrophs belonged to Methylococcaceae, a type I methanotroph employing the ribulose monophosphate pathway for methane oxidation. Methylotrophic denitrifiers of the Methylophilaceae that can utilize organic intermediates (i.e. formaldehyde, citrate and acetate) released from the methanotrophs played a vital role in aerobic denitrification. This study is the first report to confirm micro-aerobic denitrification and to make phylogenetic and functional assignments for some members of the microbial assemblages involved in MOD. PMID:24245852
Bourque, Jill R.; Robertson, Craig M.; Brooke, Sandra; Demopoulos, Amanda W.J.
2016-01-01
Hydrocarbon seeps support distinct benthic communities capable of tolerating extreme environmental conditions and utilizing reduced chemical compounds for nutrition. In recent years, several locations of methane seepage have been mapped along the U.S. Atlantic continental slope. In 2012 and 2013, two newly discovered seeps were investigated in this region: a shallow site near Baltimore Canyon (BCS, 366–412 m) and a deep site near Norfolk Canyon (NCS, 1467–1602 m), with both sites containing extensive chemosynthetic mussel bed and microbial mat habitats. Sediment push cores, suction samples, and Ekman box cores were collected to quantify the abundance, diversity, and community structure of benthic macrofauna (>300 μm) in mussel beds, mats, and slope habitats at both sites. Community data from the deep site were also assessed in relation to the associated sediment environment (organic carbon and nitrogen, stable carbon and nitrogen isotopes, grain size, and depth). Infaunal assemblages and densities differed both between depths and among habitat types. Macrofaunal densities in microbial mats were four times greater than those present in mussel beds and slope sediments and were dominated by the annelid families Dorvilleidae, Capitellidae, and Tubificidae, while mussel habitats had higher proportions of crustaceans. Diversity was lower in BCS microbial mat habitats, but higher in mussel and slope sediments compared to NCS habitats. Multivariate statistical analysis revealed specific sediment properties as important for distinguishing the macrofaunal communities, including larger grain sizes present within NCS microbial mat habitats and depleted stable carbon isotopes (δ13C) in sediments present at mussel beds. These results suggest that habitat differences in the quality and source of organic matter are driving the observed patterns in the infaunal assemblages, including high β diversity and high variability in the macrofaunal community composition. This study is the first investigation of seep infauna along the U.S. Atlantic slope north of the Blake Ridge Diapir and provides a baseline for future regional comparisons to other seep habitats along the Atlantic margin.
NASA Astrophysics Data System (ADS)
Bourque, Jill R.; Robertson, Craig M.; Brooke, Sandra; Demopoulos, Amanda W. J.
2017-03-01
Hydrocarbon seeps support distinct benthic communities capable of tolerating extreme environmental conditions and utilizing reduced chemical compounds for nutrition. In recent years, several locations of methane seepage have been mapped along the U.S. Atlantic continental slope. In 2012 and 2013, two newly discovered seeps were investigated in this region: a shallow site near Baltimore Canyon (BCS, 366-412 m) and a deep site near Norfolk Canyon (NCS, 1467-1602 m), with both sites containing extensive chemosynthetic mussel bed and microbial mat habitats. Sediment push cores, suction samples, and Ekman box cores were collected to quantify the abundance, diversity, and community structure of benthic macrofauna (>300 μm) in mussel beds, mats, and slope habitats at both sites. Community data from the deep site were also assessed in relation to the associated sediment environment (organic carbon and nitrogen, stable carbon and nitrogen isotopes, grain size, and depth). Infaunal assemblages and densities differed both between depths and among habitat types. Macrofaunal densities in microbial mats were four times greater than those present in mussel beds and slope sediments and were dominated by the annelid families Dorvilleidae, Capitellidae, and Tubificidae, while mussel habitats had higher proportions of crustaceans. Diversity was lower in BCS microbial mat habitats, but higher in mussel and slope sediments compared to NCS habitats. Multivariate statistical analysis revealed specific sediment properties as important for distinguishing the macrofaunal communities, including larger grain sizes present within NCS microbial mat habitats and depleted stable carbon isotopes (δ13C) in sediments present at mussel beds. These results suggest that habitat differences in the quality and source of organic matter are driving the observed patterns in the infaunal assemblages, including high β diversity and high variability in the macrofaunal community composition. This study is the first investigation of seep infauna along the U.S. Atlantic slope north of the Blake Ridge Diapir and provides a baseline for future regional comparisons to other seep habitats along the Atlantic margin.
Microbiota within the perennial ice cover of Lake Vida, Antarctica.
Mosier, Annika C; Murray, Alison E; Fritsen, Christian H
2007-02-01
Lake Vida, located in the McMurdo Dry Valleys, Antarctica, is an 'ice-sealed' lake with approximately 19 m of ice covering a highly saline water column (approximately 245 ppt). The lower portions of the ice cover and the lake beneath have been isolated from the atmosphere and land for circa 2800 years. Analysis of microbial assemblages within the perennial ice cover of the lake revealed a diverse array of bacteria and eukarya. Bacterial and eukaryal denaturing gradient gel electrophoresis phylotype profile similarities were low (<59%) between all of the depths compared (five depths spanning 11 m of the ice cover), with the greatest differences occurring between surface and deep ice. The majority of bacterial 16S rRNA gene sequences in the surface ice were related to Actinobacteria (42%) while Gammaproteobacteria (52%) dominated the deep ice community. Comparisons of assemblage composition suggest differences in ice habitability and organismal origin in the upper and lower portions of ice cover. Specifically, the upper ice cover microbiota likely reflect the modern day transport and colonization of biota from the terrestrial landscape, whereas assemblages in the deeper ice are more likely to be persistent remnant biota that originated from the ancient liquid water column of the lake that froze.
Universality of human microbial dynamics
NASA Astrophysics Data System (ADS)
Bashan, Amir; Gibson, Travis E.; Friedman, Jonathan; Carey, Vincent J.; Weiss, Scott T.; Hohmann, Elizabeth L.; Liu, Yang-Yu
2016-06-01
Human-associated microbial communities have a crucial role in determining our health and well-being, and this has led to the continuing development of microbiome-based therapies such as faecal microbiota transplantation. These microbial communities are very complex, dynamic and highly personalized ecosystems, exhibiting a high degree of inter-individual variability in both species assemblages and abundance profiles. It is not known whether the underlying ecological dynamics of these communities, which can be parameterized by growth rates, and intra- and inter-species interactions in population dynamics models, are largely host-independent (that is, universal) or host-specific. If the inter-individual variability reflects host-specific dynamics due to differences in host lifestyle, physiology or genetics, then generic microbiome manipulations may have unintended consequences, rendering them ineffective or even detrimental. Alternatively, microbial ecosystems of different subjects may exhibit universal dynamics, with the inter-individual variability mainly originating from differences in the sets of colonizing species. Here we develop a new computational method to characterize human microbial dynamics. By applying this method to cross-sectional data from two large-scale metagenomic studies—the Human Microbiome Project and the Student Microbiome Project—we show that gut and mouth microbiomes display pronounced universal dynamics, whereas communities associated with certain skin sites are probably shaped by differences in the host environment. Notably, the universality of gut microbial dynamics is not observed in subjects with recurrent Clostridium difficile infection but is observed in the same set of subjects after faecal microbiota transplantation. These results fundamentally improve our understanding of the processes that shape human microbial ecosystems, and pave the way to designing general microbiome-based therapies.
Exploring Biogeochemistry and Microbial Diversity of Extant Microbialites in Mexico and Cuba
Valdespino-Castillo, Patricia M.; Hu, Ping; Merino-Ibarra, Martín; López-Gómez, Luz M.; Cerqueda-García, Daniel; González-De Zayas, Roberto; Pi-Puig, Teresa; Lestayo, Julio A.; Holman, Hoi-Ying; Falcón, Luisa I.
2018-01-01
Microbialites are modern analogs of ancient microbial consortia that date as far back as the Archaean Eon. Microbialites have contributed to the geochemical history of our planet through their diverse metabolic capacities that mediate mineral precipitation. These mineral-forming microbial assemblages accumulate major ions, trace elements and biomass from their ambient aquatic environments; their role in the resulting chemical structure of these lithifications needs clarification. We studied the biogeochemistry and microbial structure of microbialites collected from diverse locations in Mexico and in a previously undescribed microbialite in Cuba. We examined their structure, chemistry and mineralogy at different scales using an array of nested methods including 16S rRNA gene high-throughput sequencing, elemental analysis, X-Ray fluorescence (XRF), X-Ray diffraction (XRD), Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS), Fourier Transformed Infrared (FTIR) spectroscopy and Synchrotron Radiation-based Fourier Transformed Infrared (SR-FTIR) spectromicroscopy. The resulting data revealed high biological and chemical diversity among microbialites and specific microbe to chemical correlations. Regardless of the sampling site, Proteobacteria had the most significant correlations with biogeochemical parameters such as organic carbon (Corg), nitrogen and Corg:Ca ratio. Biogeochemically relevant bacterial groups (dominant phototrophs and heterotrophs) showed significant correlations with major ion composition, mineral type and transition element content, such as cadmium, cobalt, chromium, copper and nickel. Microbial-chemical relationships were discussed in reference to microbialite formation, microbial metabolic capacities and the role of transition elements as enzyme cofactors. This paper provides an analytical baseline to drive our understanding of the links between microbial diversity with the chemistry of their lithified precipitations. PMID:29666607
Exploring Biogeochemistry and Microbial Diversity of Extant Microbialites in Mexico and Cuba.
Valdespino-Castillo, Patricia M; Hu, Ping; Merino-Ibarra, Martín; López-Gómez, Luz M; Cerqueda-García, Daniel; González-De Zayas, Roberto; Pi-Puig, Teresa; Lestayo, Julio A; Holman, Hoi-Ying; Falcón, Luisa I
2018-01-01
Microbialites are modern analogs of ancient microbial consortia that date as far back as the Archaean Eon. Microbialites have contributed to the geochemical history of our planet through their diverse metabolic capacities that mediate mineral precipitation. These mineral-forming microbial assemblages accumulate major ions, trace elements and biomass from their ambient aquatic environments; their role in the resulting chemical structure of these lithifications needs clarification. We studied the biogeochemistry and microbial structure of microbialites collected from diverse locations in Mexico and in a previously undescribed microbialite in Cuba. We examined their structure, chemistry and mineralogy at different scales using an array of nested methods including 16S rRNA gene high-throughput sequencing, elemental analysis, X-Ray fluorescence (XRF), X-Ray diffraction (XRD), Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS), Fourier Transformed Infrared (FTIR) spectroscopy and Synchrotron Radiation-based Fourier Transformed Infrared (SR-FTIR) spectromicroscopy. The resulting data revealed high biological and chemical diversity among microbialites and specific microbe to chemical correlations. Regardless of the sampling site, Proteobacteria had the most significant correlations with biogeochemical parameters such as organic carbon (C org ), nitrogen and C org :Ca ratio. Biogeochemically relevant bacterial groups (dominant phototrophs and heterotrophs) showed significant correlations with major ion composition, mineral type and transition element content, such as cadmium, cobalt, chromium, copper and nickel. Microbial-chemical relationships were discussed in reference to microbialite formation, microbial metabolic capacities and the role of transition elements as enzyme cofactors. This paper provides an analytical baseline to drive our understanding of the links between microbial diversity with the chemistry of their lithified precipitations.
Dynamics of an experimental microbial invasion
Acosta, Francisco; Zamor, Richard M.; Najar, Fares Z.; Roe, Bruce A.; Hambright, K. David
2015-01-01
The ecological dynamics underlying species invasions have been a major focus of research in macroorganisms for the last five decades. However, we still know little about the processes behind invasion by unicellular organisms. To expand our knowledge of microbial invasions, we studied the roles of propagule pressure, nutrient supply, and biotic resistance in the invasion success of a freshwater invasive alga, Prymnesium parvum, using microcosms containing natural freshwater microbial assemblages. Microcosms were subjected to a factorial design with two levels of nutrient-induced diversity and three levels of propagule pressure, and incubated for 7 d, during which P. parvum densities and microbial community composition were tracked. Successful invasion occurred in microcosms receiving high propagule pressure whereas nutrients or community diversity played no role in invasion success. Invaded communities experienced distinctive changes in composition compared with communities where the invasion was unsuccessful. Successfully invaded microbial communities had an increased abundance of fungi and ciliates, and decreased abundances of diatoms and cercozoans. Many of these changes mirrored the microbial community changes detected during a natural P. parvum bloom in the source system. This role of propagule pressure is particularly relevant for P. parvum in the reservoir-dominated southern United States because this species can form large, sustained blooms that can generate intense propagule pressures for downstream sites. Human impact and global climate change are currently causing widespread environmental changes in most southern US freshwater systems that may facilitate P. parvum establishment and, when coupled with strong propagule pressure, could put many more systems at risk for invasion. PMID:26324928
A microarray for assessing transcription from pelagic marine microbial taxa
Shilova, Irina N; Robidart, Julie C; James Tripp, H; Turk-Kubo, Kendra; Wawrik, Boris; Post, Anton F; Thompson, Anne W; Ward, Bess; Hollibaugh, James T; Millard, Andy; Ostrowski, Martin; J Scanlan, David; Paerl, Ryan W; Stuart, Rhona; Zehr, Jonathan P
2014-01-01
Metagenomic approaches have revealed unprecedented genetic diversity within microbial communities across vast expanses of the world's oceans. Linking this genetic diversity with key metabolic and cellular activities of microbial assemblages is a fundamental challenge. Here we report on a collaborative effort to design MicroTOOLs (Microbiological Targets for Ocean Observing Laboratories), a high-density oligonucleotide microarray that targets functional genes of diverse taxa in pelagic and coastal marine microbial communities. MicroTOOLs integrates nucleotide sequence information from disparate data types: genomes, PCR-amplicons, metagenomes, and metatranscriptomes. It targets 19 400 unique sequences over 145 different genes that are relevant to stress responses and microbial metabolism across the three domains of life and viruses. MicroTOOLs was used in a proof-of-concept experiment that compared the functional responses of microbial communities following Fe and P enrichments of surface water samples from the North Pacific Subtropical Gyre. We detected transcription of 68% of the gene targets across major taxonomic groups, and the pattern of transcription indicated relief from Fe limitation and transition to N limitation in some taxa. Prochlorococcus (eHLI), Synechococcus (sub-cluster 5.3) and Alphaproteobacteria SAR11 clade (HIMB59) showed the strongest responses to the Fe enrichment. In addition, members of uncharacterized lineages also responded. The MicroTOOLs microarray provides a robust tool for comprehensive characterization of major functional groups of microbes in the open ocean, and the design can be easily amended for specific environments and research questions. PMID:24477198
Predicting taxonomic and functional structure of microbial communities in acid mine drainage
Kuang, Jialiang; Huang, Linan; He, Zhili; Chen, Linxing; Hua, Zhengshuang; Jia, Pu; Li, Shengjin; Liu, Jun; Li, Jintian; Zhou, Jizhong; Shu, Wensheng
2016-01-01
Predicting the dynamics of community composition and functional attributes responding to environmental changes is an essential goal in community ecology but remains a major challenge, particularly in microbial ecology. Here, by targeting a model system with low species richness, we explore the spatial distribution of taxonomic and functional structure of 40 acid mine drainage (AMD) microbial communities across Southeast China profiled by 16S ribosomal RNA pyrosequencing and a comprehensive microarray (GeoChip). Similar environmentally dependent patterns of dominant microbial lineages and key functional genes were observed regardless of the large-scale geographical isolation. Functional and phylogenetic β-diversities were significantly correlated, whereas functional metabolic potentials were strongly influenced by environmental conditions and community taxonomic structure. Using advanced modeling approaches based on artificial neural networks, we successfully predicted the taxonomic and functional dynamics with significantly higher prediction accuracies of metabolic potentials (average Bray–Curtis similarity 87.8) as compared with relative microbial abundances (similarity 66.8), implying that natural AMD microbial assemblages may be better predicted at the functional genes level rather than at taxonomic level. Furthermore, relative metabolic potentials of genes involved in many key ecological functions (for example, nitrogen and phosphate utilization, metals resistance and stress response) were extrapolated to increase under more acidic and metal-rich conditions, indicating a critical strategy of stress adaptation in these extraordinary communities. Collectively, our findings indicate that natural selection rather than geographic distance has a more crucial role in shaping the taxonomic and functional patterns of AMD microbial community that readily predicted by modeling methods and suggest that the model-based approach is essential to better understand natural acidophilic microbial communities. PMID:26943622
Predicting taxonomic and functional structure of microbial communities in acid mine drainage.
Kuang, Jialiang; Huang, Linan; He, Zhili; Chen, Linxing; Hua, Zhengshuang; Jia, Pu; Li, Shengjin; Liu, Jun; Li, Jintian; Zhou, Jizhong; Shu, Wensheng
2016-06-01
Predicting the dynamics of community composition and functional attributes responding to environmental changes is an essential goal in community ecology but remains a major challenge, particularly in microbial ecology. Here, by targeting a model system with low species richness, we explore the spatial distribution of taxonomic and functional structure of 40 acid mine drainage (AMD) microbial communities across Southeast China profiled by 16S ribosomal RNA pyrosequencing and a comprehensive microarray (GeoChip). Similar environmentally dependent patterns of dominant microbial lineages and key functional genes were observed regardless of the large-scale geographical isolation. Functional and phylogenetic β-diversities were significantly correlated, whereas functional metabolic potentials were strongly influenced by environmental conditions and community taxonomic structure. Using advanced modeling approaches based on artificial neural networks, we successfully predicted the taxonomic and functional dynamics with significantly higher prediction accuracies of metabolic potentials (average Bray-Curtis similarity 87.8) as compared with relative microbial abundances (similarity 66.8), implying that natural AMD microbial assemblages may be better predicted at the functional genes level rather than at taxonomic level. Furthermore, relative metabolic potentials of genes involved in many key ecological functions (for example, nitrogen and phosphate utilization, metals resistance and stress response) were extrapolated to increase under more acidic and metal-rich conditions, indicating a critical strategy of stress adaptation in these extraordinary communities. Collectively, our findings indicate that natural selection rather than geographic distance has a more crucial role in shaping the taxonomic and functional patterns of AMD microbial community that readily predicted by modeling methods and suggest that the model-based approach is essential to better understand natural acidophilic microbial communities.
Takai, Ken; Hirayama, Hisako; Sakihama, Yuri; Inagaki, Fumio; Yamato, Yu; Horikoshi, Koki
2002-01-01
Culture-dependent and -independent techniques were combined to characterize the physiological properties and the ecological impacts of culture-resistant phylotypes of thermophiles within the order Aquificales from a subsurface hot aquifer of a Japanese gold mine. Thermophilic bacteria phylogenetically associated with previously uncultured phylotypes of Aquificales were successfully isolated. 16S ribosomal DNA clone analysis of the entire microbial DNA assemblage and fluorescence in situ whole-cell hybridization analysis indicated that the isolates dominated the microbial population in the subsurface aquifer. The isolates were facultatively anaerobic, hydrogen- or sulfur/thiosulfate-oxidizing, thermophilic chemolithoautotrophs utilizing molecular oxygen, nitrate, ferric iron, arsenate, selenate, and selenite as electron acceptors. Their versatile energy-generating systems may reflect the geochemical conditions of their habitat in the geothermally active subsurface gold mine. PMID:12039766
Durigan, Mauricio; Abreu, Aluana Gonçalves; Zucchi, Maria Imaculada; Franco, Regina Maura Bueno; de Souza, Anete Pereira
2014-01-01
Background Giardia duodenalis is a flagellate protozoan that parasitizes humans and several other mammals. Protozoan contamination has been regularly documented at important environmental sites, although most of these studies were performed at the species level. There is a lack of studies that correlate environmental contamination and clinical infections in the same region. The aim of this study is to evaluate the genetic diversity of a set of clinical and environmental samples and to use the obtained data to characterize the genetic profile of the distribution of G. duodenalis and the potential for zoonotic transmission in a metropolitan region of Brazil. Methodology/Principal Findings The genetic assemblages and subtypes of G. duodenalis isolates obtained from hospitals, a veterinary clinic, a day-care center and important environmental sites were determined via multilocus sequence-based genotyping using three unlinked gene loci. Cysts of Giardia were detected at all of the environmental sites. Mixed assemblages were detected in 25% of the total samples, and an elevated number of haplotypes was identified. The main haplotypes were shared among the groups, and new subtypes were identified at all loci. Ten multilocus genotypes were identified: 7 for assemblage A and 3 for assemblage B. Conclusions/Significance There is persistent G. duodenalis contamination at important environmental sites in the city. The identified mixed assemblages likely represent mixed infections, suggesting high endemicity of Giardia in these hosts. Most Giardia isolates obtained in this study displayed zoonotic potential. The high degree of genetic diversity in the isolates obtained from both clinical and environmental samples suggests that multiple sources of infection are likely responsible for the detected contamination events. The finding that many multilocus genotypes (MLGs) and haplotypes are shared by different groups suggests that these sources of infection may be related and indicates that there is a notable risk of human infection caused by Giardia in this region. PMID:25536055
Rodriguez-Lanetty, Mauricio; Granados-Cifuentes, Camila; Barberan, Albert; Bellantuono, Anthony J; Bastidas, Carolina
2013-08-01
The functional role of the bacterial organisms in the reef ecosystem and their contribution to the coral well-being remain largely unclear. The first step in addressing this gap of knowledge relies on in-depth characterization of the coral microbial community and its changes in diversity across coral species, space and time. In this study, we focused on the exploration of microbial community assemblages associated with an ecologically important Caribbean scleractinian coral, Porites astreoides, using Illumina high-throughput sequencing of the V5 fragment of 16S rRNA gene. We collected data from a large set of biological replicates, allowing us to detect patterns of geographical structure and resolve co-occurrence patterns using network analyses. The taxonomic analysis of the resolved diversity showed consistent and dominant presence of two OTUs affiliated with the order Oceanospirillales, which corroborates a specific pattern of bacterial association emerging for this coral species and for many other corals within the genus Porites. We argue that this specific association might indicate a symbiotic association with the adult coral partner. Furthermore, we identified a highly diverse rare bacterial 'biosphere' (725 OTUs) also living along with the dominant bacterial symbionts, but the assemblage of this biosphere is significantly structured along the geographical scale. We further discuss that some of these rare bacterial members show significant association with other members of the community reflecting the complexity of the networked consortia within the coral holobiont. © 2013 John Wiley & Sons Ltd.
Valdespino-Castillo, Patricia M; Alcántara-Hernández, Rocío J; Merino-Ibarra, Martín; Alcocer, Javier; Macek, Miroslav; Moreno-Guillén, Octavio A; Falcón, Luisa I
2017-02-01
Microbes can modulate ecosystem function since they harbor a vast genetic potential for biogeochemical cycling. The spatial and temporal dynamics of this genetic diversity should be acknowledged to establish a link between ecosystem function and community structure. In this study, we analyzed the genetic diversity of bacterial phosphorus utilization genes in two microbial assemblages, microbialites and bacterioplankton of Lake Alchichica, a semiclosed (i.e., endorheic) system with marked seasonality that varies in nutrient conditions, temperature, dissolved oxygen, and water column stability. We focused on dissolved organic phosphorus (DOP) utilization gene dynamics during contrasting mixing and stratification periods. Bacterial alkaline phosphatases (phoX and phoD) and alkaline beta-propeller phytases (bpp) were surveyed. DOP utilization genes showed different dynamics evidenced by a marked change within an intra-annual period and a differential circadian pattern of expression. Although Lake Alchichica is a semiclosed system, this dynamic turnover of phylotypes (from lake circulation to stratification) points to a different potential of DOP utilization by the microbial communities within periods. DOP utilization gene dynamics was different among genetic markers and among assemblages (microbialite vs. bacterioplankton). As estimated by the system's P mass balance, P inputs and outputs were similar in magnitude (difference was <10 %). A theoretical estimation of water column P monoesters was used to calculate the potential P fraction that can be remineralized on an annual basis. Overall, bacterial groups including Proteobacteria (Alpha and Gamma) and Bacteroidetes seem to be key participants in DOP utilization responses.
Glamoclija, Mihaela; Andrew Steele,; Marc Fries,; Juergen Schieber,; Voytek, Mary A.; Charles S. Cockell,
2015-01-01
We combined microbial paleontology and molecular biology methods to study the Eyreville B drill core from the 35.3-Ma-old Chesapeake Bay impact structure,Virginia, USA. The investigated sample is a pyrite vein collected from the 1353.81-1353.89 m depth interval, located within a section of biotite granite. The granite is a pre-impact rock that was disrupted by the impact event. A search for inorganic (mineral) biosignatures revealed the presence of micron-size rod morphologies of anatase (TiO2) embedded in chlorite coatings on pyrite grains. Neither the Acridine Orange microbial probe nor deoxyribonucleic acid (DNA) extraction followed by polymerase chain reaction (PCR) amplifi cation showed the presence of DNA or ribonucleic acid (RNA) at the location of anatase rods, implying the absence of viable cells in the investigated area. A Nile Red microbial probe revealed the presence of lipids in the rods. Because most of the lipids are resistant over geologic time spans, they are good biomarkers, and they are an indicator of biogenicity for these possibly 35-Ma-old microbial fossils. The mineral assemblage suggests that rod morphologies are associated with low-temperature (<100 °C) hydrothermal alteration that involved aqueous fl uids. The temporal constraints on the anatase fossils are still uncertain because pre-impact alteration of the granite and postimpact heating may have provided identical conditions for anatase precipitation and microbial preservation.
O'Rorke, Richard; Cobian, Gerald M; Holland, Brenden S; Price, Melissa R; Costello, Vincent; Amend, Anthony S
2015-05-01
Achatinella mustelina is a critically endangered tree snail that subsists entirely by grazing microbes from leaf surfaces of native trees. Little is known about the fundamental aspects of these microbe assemblages: not taxonomic composition, how this varies with host plant or location, nor whether snails selectively consume microbes. To address these questions, we collected 102 snail faecal samples as a proxy for diet, and 102 matched-leaf samples from four locations. We used Illumina amplicon sequencing to determine bacterial and fungal community composition. Microbial community structure was significantly distinct between snail faeces and leaf samples, but the same microbes occurred in both. We conclude that snails are not 'picky' eaters at the microbial level, but graze the surface of whatever plant they are on. In a second experiment, the gut was dissected from non-endangered native tree snails in the same family as Achatinella to confirm that faecal samples reflect gut contents. Over 60% of fungal reads were shared between faeces, gut and leaf samples. Overall, location, sample type (faeces or leaf) and host plant identity all significantly explained the community composition and variation among samples. Understanding the microbial ecology of microbes grazed by tree snails enables effective management when conservation requires captive breeding or field relocation. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.
Gabín-García, Luis B; Bartolomé, Carolina; Abal-Fabeiro, José L; Méndez, Santiago; Llovo, José; Maside, Xulio
2017-03-01
We report a survey of genetic variation at three coding loci in Giardia duodenalis of assemblages A and B obtained from stool samples of patients from Santiago de Compostela (Galicia, NW-Iberian Peninsula). The mean pooled synonymous diversity for assemblage A was nearly five times lower than for assemblage B (0.77%±0.30% and 4.14%±1.65%, respectively). Synonymous variation in both assemblages was in mutation-drift equilibrium and an excess of low-frequency nonsynonymous variants suggested the action of purifying selection at the three loci. Differences between isolates contributed to 40% and 60% of total genetic variance in assemblages A and B, respectively, which revealed a significant genetic structure. These results, together with the lack of evidence for recombination, support that (i) Giardia assemblages A and B are in demographic equilibrium and behave as two genetically isolated populations, (ii) infections are initiated by a reduced number of individuals, which may be genetically diverse and even belong to different assemblages, and (iii) parasites reproduce clonally within the host. However, the observation of invariant loci in some isolates means that mechanisms for the homogenization of the genetic content of the two diploid nuclei in each individual must exist. Copyright © 2016 Elsevier B.V. All rights reserved.
Microbial alignment in flow changes ocean light climate.
Marcos; Seymour, Justin R; Luhar, Mitul; Durham, William M; Mitchell, James G; Macke, Andreas; Stocker, Roman
2011-03-08
The growth of microbial cultures in the laboratory often is assessed informally with a quick flick of the wrist: dense suspensions of microorganisms produce translucent "swirls" when agitated. Here, we rationalize the mechanism behind this phenomenon and show that the same process may affect the propagation of light through the upper ocean. Analogous to the shaken test tubes, the ocean can be characterized by intense fluid motion and abundant microorganisms. We demonstrate that the swirl patterns arise when elongated microorganisms align preferentially in the direction of fluid flow and alter light scattering. Using a combination of experiments and mathematical modeling, we find that this phenomenon can be recurrent under typical marine conditions. Moderate shear rates (0.1 s(-1)) can increase optical backscattering of natural microbial assemblages by more than 20%, and even small shear rates (0.001 s(-1)) can increase backscattering from blooms of large phytoplankton by more than 30%. These results imply that fluid flow, currently neglected in models of marine optics, may exert an important control on light propagation, influencing rates of global carbon fixation and how we estimate these rates via remote sensing.
The Diversity and Distribution of Fungi on Residential Surfaces
Adams, Rachel I.; Miletto, Marzia; Taylor, John W.; Bruns, Thomas D.
2013-01-01
The predominant hypothesis regarding the composition of microbial assemblages in indoor environments is that fungal assemblages are structured by outdoor air with a moderate contribution by surface growth, whereas indoor bacterial assemblages represent a mixture of bacteria entered from outdoor air, shed by building inhabitants, and grown on surfaces. To test the fungal aspect of this hypothesis, we sampled fungi from three surface types likely to support growth and therefore possible contributors of fungi to indoor air: drains in kitchens and bathrooms, sills beneath condensation-prone windows, and skin of human inhabitants. Sampling was done in replicated units of a university-housing complex without reported mold problems, and sequences were analyzed using both QIIME and the new UPARSE approach to OTU-binning, to the same result. Surfaces demonstrated a mycological profile similar to that of outdoor air from the same locality, and assemblages clustered by surface type. “Weedy” genera typical of indoor air, such as Cladosporium and Cryptococcus, were abundant on sills, as were a diverse set of fungi of likely outdoor origin. Drains supported more depauperate assemblages than the other surfaces and contained thermotolerant genera such as Exophiala, Candida, and Fusarium. Most surprising was the composition detected on residents’ foreheads. In addition to harboring Malassezia, a known human commensal, skin also possessed a surprising richness of non-resident fungi, including plant pathogens such as ergot (Claviceps purperea). Overall, fungal richness across indoor surfaces was high, but based on known autecologies, most of these fungi were unlikely to be growing on surfaces. We conclude that while some endogenous fungal growth on typical household surfaces does occur, particularly on drains and skin, all residential surfaces appear – to varying degrees – to be passive collectors of airborne fungi of putative outdoor origin, a view of the origins of the indoor microbiome quite different from bacteria. PMID:24223861
Zhang, Zhimin; Li, Dapeng
2018-05-31
Adoption of thermal processing of the diet drives human evolution and gut microbiota diversity changes in a dietary habit-dependent manner. However, whether thermal processing of food triggers gut microbial variation remains unknown. Herein, we compared the microbiota of non-thermally processed and thermally processed food (NF and TF) and investigated gut microbiota associated with NF and TF in catfish Silurus meridionalis and C57BL/6 mice to assess effects of thermal processing of food on gut microbiota and to further identify the differences in host responses. We found no differences in overall microbial composition and structure in the pairwise NF and TF, but identified differential microbial communities between food and gut. Both fish and mice fed TF had significantly lower gut microbial diversity than those fed NF. Moreover, thermal processing of food triggered the changes in their microbial communities. Comparative host studies further indicated host species determined gut microbial assemblies, even if fed with the same food. Fusobacteria was the most abundant phylum in the fish, and Bacteroidetes and Firmicutes dominated in the mice. Besides the consistent reduction of Bacteroidetes and the balanced Protebacteria, the response of other dominated gut microbiota in the fish and mice to TF was taxonomically opposite at the phylum level, and those further found at the genus level. Our results reveal that thermal processing of food strongly contributes to the reduction of gut microbial diversity and differentially drives microbial alterations in a host-dependent manner, suggesting specific adaptations of host-gut microbiota in vertebrates responding to thermal processing of food. These findings open a window of opportunity to understand the decline in gut microbial diversity and the community variation in human evolution and provide new insights into the host-specific microbial assemblages associated with the use of processing techniques in food preparation in humans and domesticated animals.
The Arctic Soil Bacterial Communities in the Vicinity of a Little Auk Colony
Zielińska, Sylwia; Kidawa, Dorota; Stempniewicz, Lech; Łoś, Marcin; Łoś, Joanna M.
2016-01-01
Due to deposition of birds' guano, eggshells or feathers, the vicinity of a large seabirds' breeding colony is expected to have a substantial impact on the soil's physicochemical features as well as on diversity of vegetation and the soil invertebrates. Consequently, due to changing physicochemical features the structure of bacterial communities might fluctuate in different soil environments. The aim of this study was to investigate the bacterial assemblages in the Arctic soil within the area of a birds' colony and in a control sample from a topographically similar location but situated away from the colony's impact area. A high number of OTUs found in both areas indicates a highly complex microbial populations structure. The most abundant phyla in both of the tested samples were: Proteobacteria, Acidobacteria, Actinobacteria, and Chloroflexi, with different proportions in the total share. Despite differences in the physicochemical soil characteristics, the soil microbial community structures at the phylum level were similar to some extent in the two samples. The only share that was significantly higher in the control area when compared to the sample obtained within the birds' colony, belonged to the Actinobacteria phylum. Moreover, when analyzing the class level for each phylum, several differences between the samples were observed. Furthermore, lower proportions of Proteobacteria and Acidobacteria were observed in the soil sample under the influence of the bird's colony, which most probably could be linked to higher nitrogen concentrations in that sample. PMID:27667982
Biostratigraphy and foraminiferal Assemblages of the West Siberian Albian
NASA Astrophysics Data System (ADS)
Podobina, V. M.
2017-12-01
New data of the Biostratigraphy and Albian foraminiferal assemblages from the sections of newly drilled wells in the Yamal peninsula have been obtained. This territory is assigned by the author to the Northern palaeobiogeographical district, the southern border of which goes along the latitudinal flow of the Ob River. The most diverse Albian foraminiferal assemblages have been discovered in the section of borehole 50 of the Malyginskaya area as well as in the sections of borehole 124 of the West-Tambeiskaya, boreholes, 201, 205 of the North-Tambeiskaya areas. Somewhat similar Albian foraminiferal assemblages were earlier studied by the author in 10 sections of the boreholes of the Samatlor area in the latitudinal Ob River Region. The Middle Albian assemblage is the most stable and diverse in its specific respect. It was discovered not only in the identified sections in the Yamal wells but also southwards in the earlier explored areas. The Albian foraminiferal species of the Yamal peninsula are illustrated in 5 photos and 1 drawing.
Genotyping of Giardia lamblia isolates from humans in China and Korea using ribosomal DNA Sequences.
Yong, T S; Park, S J; Hwang, U W; Yang, H W; Lee, K W; Min, D Y; Rim, H J; Wang, Y; Zheng, F
2000-08-01
Genetic characterization of a total of 15 Giardia lamblia isolates, 8 from Anhui Province, China (all from purified cysts) and 7 from Seoul, Korea (2 from axenic cultures and 5 from purified cysts), was performed by polymerase chain reaction amplification and sequencing of a 295-bp region near the 5' end of the small subunit ribosomal DNA (eukaryotic 16S rDNA). Phylogenetic analyses were subsequently conducted using sequence data obtained in this study, as well as sequences published from other Giardia isolates. The maximum parsimony method revealed that G. lamblia isolates from humans in China and Korea are divided into 2 major lineages, assemblages A and B. All 7 Korean isolates were grouped into assemblage A, whereas 4 Chinese isolates were grouped into assemblage A and 4 into assemblage B. Two Giardia microti isolates and 2 dog-derived Giardia isolates also grouped into assemblage B, whereas Giardia ardeae and Giardia muris were unique.
Nematode assemblages in the deep-sea benthos of the Norwegian Sea
NASA Astrophysics Data System (ADS)
Jensen, Preben
1988-07-01
The deep-sea benthos of the Norwegian Sea contains 20-204 nematodes per 10 cm 2 down to 3 cm depth at seven stations sampled between 970 and 3294 m water depth. The majority of nematodes occur in the uppermost cm. Biomass varies from 3 to 73 μg C per 10 cm 2. Individual adult weight of the most dominant species differs by a factor of almost 1000, i.e. from 3-4 ng C to 3400 ng C; however, the majority of the nematodes is small-sized. Species diversity and evenness are high at all stations and each station harbours its specific fauna with little overlap between stations. Analysis of trophic group composition suggests that microbial feeding types (deposit and epistrate feeders) prevail in the deep-sea benthos; predators and scavengers are scarce. It is concluded that the nematode assemblage at each station consists of a mosaic of many microhabitats. The small nematode body weight probably results from limited food supply and/or poor food quality.
Microbial diversity and activity of an aged soil contaminated by polycyclic aromatic hydrocarbons.
Zhao, Xiaohui; Fan, Fuqiang; Zhou, Huaidong; Zhang, Panwei; Zhao, Gaofeng
2018-06-01
In-depth understanding of indigenous microbial assemblages resulted from aged contamination by polycyclic aromatic hydrocarbons (PAHs) is of vital importance in successful in situ bioremediation treatments. Soil samples of three boreholes were collected at 12 different vertical depths. Overall, the dominating three-ring PAHs (76.2%) were closely related to distribution patterns of soil dehydrogenase activity, microbial cell numbers, and Shannon biodiversity index (H') of indigenous microorganisms. High-molecular-weight PAHs tend to yield more diverse communities. Results from 16S rRNA analysis indicated that possible functional groups of PAH degradation include three species in Bacillus cereus group, Bacillus sp. SA Ant14, Nocardioides sp., and Ralstonia pickettii. Principal component analysis indicates significant positive correlations between the content of high-molecular-weight PAHs and the distribution of Bacillus weihenstephanensis KBAB4 and Nocardioides sp. The species B. cereus 03BB102, Bacillus thuringiensis, B. weihenstephanensis KBAB4, and Nocardioides sp. were recognized as main PAH degraders and thus recommended to be utilized in further bioremediation applications. The vertical distribution characteristics of PAHs in soil profiles (1-12 m) and the internal relationship between the transport mechanisms of PAHs and the response of soil biological properties help further understand the microbial diversity and activity in an aged site.
Koopman, Margaret M; Fuselier, Danielle M; Hird, Sarah; Carstens, Bryan C
2010-03-01
The ability of American carnivorous pitcher plants (Sarracenia) to digest insect prey is facilitated by microbial associations. Knowledge of the details surrounding this interaction has been limited by our capability to characterize bacterial diversity in this system. To describe microbial diversity within and between pitchers of one species, Sarracenia alata, and to explore how these communities change over time as pitchers accumulate and digest insect prey, we collected and analyzed environmental sequence tag (454 pyrosequencing) and genomic fingerprint (automated ribosomal intergenic spacer analysis and terminal restriction fragment length polymorphism) data. Microbial richness associated with pitcher plant fluid is high; more than 1,000 unique phylogroups were identified across at least seven phyla and 50 families. We documented an increase in bacterial diversity and abundance with time and observed repeated changes in bacterial community composition. Pitchers from different plants harbored significantly more similar bacterial communities at a given time point than communities coming from the same genetic host over time. The microbial communities in pitcher plant fluid also differ significantly from those present in the surrounding soil. These findings indicate that the bacteria associated with pitcher plant leaves are far from random assemblages and represent an important step toward understanding this unique plant-microbe interaction.
Koopman, Margaret M.; Fuselier, Danielle M.; Hird, Sarah; Carstens, Bryan C.
2010-01-01
The ability of American carnivorous pitcher plants (Sarracenia) to digest insect prey is facilitated by microbial associations. Knowledge of the details surrounding this interaction has been limited by our capability to characterize bacterial diversity in this system. To describe microbial diversity within and between pitchers of one species, Sarracenia alata, and to explore how these communities change over time as pitchers accumulate and digest insect prey, we collected and analyzed environmental sequence tag (454 pyrosequencing) and genomic fingerprint (automated ribosomal intergenic spacer analysis and terminal restriction fragment length polymorphism) data. Microbial richness associated with pitcher plant fluid is high; more than 1,000 unique phylogroups were identified across at least seven phyla and 50 families. We documented an increase in bacterial diversity and abundance with time and observed repeated changes in bacterial community composition. Pitchers from different plants harbored significantly more similar bacterial communities at a given time point than communities coming from the same genetic host over time. The microbial communities in pitcher plant fluid also differ significantly from those present in the surrounding soil. These findings indicate that the bacteria associated with pitcher plant leaves are far from random assemblages and represent an important step toward understanding this unique plant-microbe interaction. PMID:20097807
Effect of rhizosphere on soil microbial community and in-situ pyrene biodegradation
Su, Y.; Yang, X.; Chiou, C.T.
2008-01-01
To access the influence of a vegetation on soil microorganisms toward organic pollutant biogegration, this study examined the rhizospheric effects of four plant species (sudan grass, white clover, alfalfa, and fescue) on the soil microbial community and in-situ pyrene (PYR) biodegradation. The results indicated that the spiked PYR levels in soils decreased substantially compared to the control soil without planting. With equal planted densities, the efficiencies of PYR degradation in rhizosphere with sudan grass, white clover, alfalfa and fescue were 34.0%, 28.4%, 27.7%, and 9.9%, respectively. However, on the basis of equal root biomass the efficiencies were in order of white clover >> alfalfa > sudan > fescue. The increased PYR biodegradation was attributed to the enhanced bacterial population and activity induced by plant roots in the rhizosphere. Soil microbial species and biomasses were elucidated in terms of microbial phospholipid ester-linked fatty acid (PLFA) biomarkers. The principal component analysis (PCA) revealed significant changes in PLFA pattern in planted and non-planted soils spiked with PYR. Total PLFAs in planted soils were all higher than those in non-planted soils. PLFA assemblages indicated that bacteria were the primary PYR degrading microorganisms, and that Gram-positive bacteria exhibited higher tolerance to PYR than Gram-negative bacteria did. ?? 2008 Higher Education Press and Springer-Verlag GmbH.
Hydraulic fracturing offers view of microbial life in the deep terrestrial subsurface.
Mouser, Paula J; Borton, Mikayla; Darrah, Thomas H; Hartsock, Angela; Wrighton, Kelly C
2016-11-01
Horizontal drilling and hydraulic fracturing are increasingly used for recovering energy resources in black shales across the globe. Although newly drilled wells are providing access to rocks and fluids from kilometer depths to study the deep biosphere, we have much to learn about microbial ecology of shales before and after 'fracking'. Recent studies provide a framework for considering how engineering activities alter this rock-hosted ecosystem. We first provide data on the geochemical environment and microbial habitability in pristine shales. Next, we summarize data showing the same pattern across fractured shales: diverse assemblages of microbes are introduced into the subsurface, eventually converging to a low diversity, halotolerant, bacterial and archaeal community. Data we synthesized show that the shale microbial community predictably shifts in response to temporal changes in geochemistry, favoring conservation of key microorganisms regardless of inputs, shale location or operators. We identified factors that constrain diversity in the shale and inhibit biodegradation at the surface, including salinity, biocides, substrates and redox. Continued research in this engineered ecosystem is required to assess additive biodegradability, quantify infrastructure biocorrosion, treat wastewaters that return to the surface and potentially enhance energy production through in situ methanogenesis. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Large variability of bathypelagic microbial eukaryotic communities across the world's oceans.
Pernice, Massimo C; Giner, Caterina R; Logares, Ramiro; Perera-Bel, Júlia; Acinas, Silvia G; Duarte, Carlos M; Gasol, Josep M; Massana, Ramon
2016-04-01
In this work, we study the diversity of bathypelagic microbial eukaryotes (0.8-20 μm) in the global ocean. Seawater samples from 3000 to 4000 m depth from 27 stations in the Atlantic, Pacific and Indian Oceans were analyzed by pyrosequencing the V4 region of the 18S ribosomal DNA. The relative abundance of the most abundant operational taxonomic units agreed with the results of a parallel metagenomic analysis, suggesting limited PCR biases in the tag approach. Although rarefaction curves for single stations were seldom saturated, the global analysis of all sequences together suggested an adequate recovery of bathypelagic diversity. Community composition presented a large variability among samples, which was poorly explained by linear geographic distance. In fact, the similarity between communities was better explained by water mass composition (26% of the variability) and the ratio in cell abundance between prokaryotes and microbial eukaryotes (21%). Deep diversity appeared dominated by four taxonomic groups (Collodaria, Chrysophytes, Basidiomycota and MALV-II) appearing in different proportions in each sample. Novel diversity amounted to 1% of the pyrotags and was lower than expected. Our study represents an essential step in the investigation of bathypelagic microbial eukaryotes, indicating dominating taxonomic groups and suggesting idiosyncratic assemblages in distinct oceanic regions.
Vitamin and Amino Acid Auxotrophy in Anaerobic Consortia Operating under Methanogenic Conditions
Hubalek, Valerie; Buck, Moritz; Tan, BoonFei; Foght, Julia; Wendeberg, Annelie; Berry, David; Bertilsson, Stefan
2017-01-01
ABSTRACT Syntrophy among Archaea and Bacteria facilitates the anaerobic degradation of organic compounds to CH4 and CO2. Particularly during aliphatic and aromatic hydrocarbon mineralization, as in the case of crude oil reservoirs and petroleum-contaminated sediments, metabolic interactions between obligate mutualistic microbial partners are of central importance. Using micromanipulation combined with shotgun metagenomic approaches, we describe the genomes of complex consortia within short-chain alkane-degrading cultures operating under methanogenic conditions. Metabolic reconstruction revealed that only a small fraction of genes in the metagenome-assembled genomes encode the capacity for fermentation of alkanes facilitated by energy conservation linked to H2 metabolism. Instead, the presence of inferred lifestyles based on scavenging anabolic products and intermediate fermentation products derived from detrital biomass was a common feature. Additionally, inferred auxotrophy for vitamins and amino acids suggests that the hydrocarbon-degrading microbial assemblages are structured and maintained by multiple interactions beyond the canonical H2-producing and syntrophic alkane degrader-methanogen partnership. Compared to previous work, our report points to a higher order of complexity in microbial consortia engaged in anaerobic hydrocarbon transformation. IMPORTANCE Microbial interactions between Archaea and Bacteria mediate many important chemical transformations in the biosphere from degrading abundant polymers to synthesis of toxic compounds. Two of the most pressing issues in microbial interactions are how consortia are established and how we can modulate these microbial communities to express desirable functions. Here, we propose that public goods (i.e., metabolites of high energy demand in biosynthesis) facilitate energy conservation for life under energy-limited conditions and determine the assembly and function of the consortia. Our report suggests that an understanding of public good dynamics could result in new ways to improve microbial pollutant degradation in anaerobic systems. PMID:29104938
NASA Astrophysics Data System (ADS)
Ramírez Rojas, Irene; Perez Fernandez, María; Moreno Gallardo, Laura; Lechuga Ordoñez, Victor; Linares, Juan Carlos
2016-04-01
Several environmental traits might change the abundance and the function of soil microorganisms in forest soils by plant-mediated reactions. Few studies have related the landscape-scale forest structural diversity with the micro-scale distribution of microorganism and their activities. High mountain environments harbor ecosystems that are very sensitive to global change and hence highly vulnerable, as those of Atlantic cedar. Altitudinal gradients in mountains are orrelated with changes in vegetation. We propose that altitudinal gradients drive shifts in microbial communities and are correlated with land uses. Thus, the latitudinal and longitudinal pattern of abundance and activity of soil micro-organisms was studied in an intercontinental comparison. We investigate soil extractable organic carbon (EOC) and nitrogen and carbon, microbial biomass and microbial metabolic activities at eight different sites along the latitudinal range of Cedrus atlantica, covering different altitudes and soils characteristics both in Southern Spain and Northern Morocco. Analyses of the abundances of total bacteria, (16S rRNA gene), was conducted using the Ilumina metagenomics technique. Results show that the stands at the highest altitudes had distinct microbial and biochemical characteristics compared with other areas. Overall, microbial activity, as measured by soil respiration, is higher in forests subjected to lower human pressure than in stands highly degraded, probably reflecting the quality of litter input that results of the influence of local assemblage of different tree, shrub and annual species, though changes in the soil N and C contents. Indeed, total soil C and N contents explained the microbial properties at every scale. Our results suggest that in contrast to the observed pronounced altitudinal changes, the kind of human-mediate land management has a stronger role in defining changes in microbial composition and activities in the investigated forest systems.
Genome Informed Trait-Based Models
NASA Astrophysics Data System (ADS)
Karaoz, U.; Cheng, Y.; Bouskill, N.; Tang, J.; Beller, H. R.; Brodie, E.; Riley, W. J.
2013-12-01
Trait-based approaches are powerful tools for representing microbial communities across both spatial and temporal scales within ecosystem models. Trait-based models (TBMs) represent the diversity of microbial taxa as stochastic assemblages with a distribution of traits constrained by trade-offs between these traits. Such representation with its built-in stochasticity allows the elucidation of the interactions between the microbes and their environment by reducing the complexity of microbial community diversity into a limited number of functional ';guilds' and letting them emerge across spatio-temporal scales. From the biogeochemical/ecosystem modeling perspective, the emergent properties of the microbial community could be directly translated into predictions of biogeochemical reaction rates and microbial biomass. The accuracy of TBMs depends on the identification of key traits of the microbial community members and on the parameterization of these traits. Current approaches to inform TBM parameterization are empirical (i.e., based on literature surveys). Advances in omic technologies (such as genomics, metagenomics, metatranscriptomics, and metaproteomics) pave the way to better-initialize models that can be constrained in a generic or site-specific fashion. Here we describe the coupling of metagenomic data to the development of a TBM representing the dynamics of metabolic guilds from an organic carbon stimulated groundwater microbial community. Illumina paired-end metagenomic data were collected from the community as it transitioned successively through electron-accepting conditions (nitrate-, sulfate-, and Fe(III)-reducing), and used to inform estimates of growth rates and the distribution of metabolic pathways (i.e., aerobic and anaerobic oxidation, fermentation) across a spatially resolved TBM. We use this model to evaluate the emergence of different metabolisms and predict rates of biogeochemical processes over time. We compare our results to observational outputs.
NASA Astrophysics Data System (ADS)
Blanco, A.; Maurrasse, F. J.; Hernández-Ávila, J.; Ángeles-Trigueros, S. A.; García-Cabrera, M. E.
2013-05-01
We document petrographic evidence of microbial mats in the Upper Cretaceous Agua Nueva Formation in the area of Xilitla (San Luis Potosí, Central Mexico), located in the southern part of the Tampico-Misantla basin. The sequence consists predominantly of alternating decimeter-thick beds of fossiliferous dark laminated limestone (C-org > 1.0wt%), and light gray, bioturbated limestone (C-org < 1.0wt%), with occasional brown shale and green bentonite layers. Well-preserved fossil-fish assemblages occur in the laminated dark limestone beds, which include shark teeth (cf. Ptychodus), scales of teleosteans (Ichthyodectiformes), as well as skeletal remains of holosteans (Nursallia. sp), and teleosteans (cf. Rhynchodercetis, Tselfatia, and unidentified Enchodontids). Thin section and SEM analyses of the laminated, dark limestones, reveal a micritic matrix consisting of dark and light sub-parallel wavy laminae, continuous and discontinuous folded laminae with shreds of organic matter, filaments, oncoids, and interlocking structures. The structures are identical to those previously described for the Cenomanian-Turonian Indidura Fm at Parras de la Fuente (Coahuila state) demonstrated to be of microbial origin (Duque-Botero and Maurrasse, 2005; 2008). These structures are also analogous to microbial mats in present environments, and Devonian deposits (Kremer, 2006). In addition, the laminae at Xilitla include filamentous bacterial structures, as thin and segmented red elements. In some thin sections, filaments appear to be embedded within the crinkly laminae and shreds showing the same pattern of folding, suggestive of biomorphic elements that represent the main producers of the organic matter associated with the laminae. Thus, exceptional bacterial activity characterizes sedimentation during the accumulation of the Agua Nueva Formation. Oxygen-deficient conditions related to the microbial mats were an important element in the mass mortality and preservation of the fish assemblages. Absence of bioturbation, pervasive framboidal pyrite, and the high concentration of organic matter (TOC ranges from 1.2% to 8wt%) in the dark limestones are consistent with persistent recurring dysoxic/anoxic conditions, and the light-gray bioturbated limestones represent relatively well-oxygenated episodes. Planktonic foraminifera (Rotalipora cushmani) and Inoceramu labiatus indicate a time interval from the latest Cenomanian through the earliest Turonian, thus this long interval of severe oxygen deficiency is coeval with Oceanic Anoxic Event 2 (OAE-2). [Duque-Botero and Maurrasse. 2005. Jour. Iberian Geology (31), 85-98; 2008. Cret. Res., 29, 957-964; Kremer. 2006. Acta Palaeontologica Polonica (51, 1), 143-154
The biogeography of the atlantic salmon (Salmo salar) gut microbiome.
Llewellyn, Martin S; McGinnity, Philip; Dionne, Melanie; Letourneau, Justine; Thonier, Florian; Carvalho, Gary R; Creer, Simon; Derome, Nicolas
2016-05-01
Although understood in many vertebrate systems, the natural diversity of host-associated microbiota has been little studied in teleosts. For migratory fishes, successful exploitation of multiple habitats may affect and be affected by the composition of the intestinal microbiome. We collected 96 Salmo salar from across the Atlantic encompassing both freshwater and marine phases. Dramatic differences between environmental and gut bacterial communities were observed. Furthermore, community composition was not significantly impacted by geography. Instead life-cycle stage strongly defined both the diversity and identity of microbial assemblages in the gut, with evidence for community destabilisation in migratory phases. Mycoplasmataceae phylotypes were abundantly recovered in all life-cycle stages. Patterns of Mycoplasmataceae phylotype recruitment to the intestinal microbial community among sites and life-cycle stages support a dual role for deterministic and stochastic processes in defining the composition of the S. salar gut microbiome.
The biogeography of the atlantic salmon (Salmo salar) gut microbiome
Llewellyn, Martin S; McGinnity, Philip; Dionne, Melanie; Letourneau, Justine; Thonier, Florian; Carvalho, Gary R; Creer, Simon; Derome, Nicolas
2016-01-01
Although understood in many vertebrate systems, the natural diversity of host-associated microbiota has been little studied in teleosts. For migratory fishes, successful exploitation of multiple habitats may affect and be affected by the composition of the intestinal microbiome. We collected 96 Salmo salar from across the Atlantic encompassing both freshwater and marine phases. Dramatic differences between environmental and gut bacterial communities were observed. Furthermore, community composition was not significantly impacted by geography. Instead life-cycle stage strongly defined both the diversity and identity of microbial assemblages in the gut, with evidence for community destabilisation in migratory phases. Mycoplasmataceae phylotypes were abundantly recovered in all life-cycle stages. Patterns of Mycoplasmataceae phylotype recruitment to the intestinal microbial community among sites and life-cycle stages support a dual role for deterministic and stochastic processes in defining the composition of the S. salar gut microbiome. PMID:26517698
Fish intestinal microbiome: diversity and symbiosis unravelled by metagenomics.
Tarnecki, A M; Burgos, F A; Ray, C L; Arias, C R
2017-02-07
The gut microbiome of vertebrates plays an integral role in host health by stimulating development of the immune system, aiding in nutrient acquisition and outcompeting opportunistic pathogens. Development of next-generation sequencing technologies allows researchers to survey complex communities of microorganisms within the microbiome at great depth with minimal costs, resulting in a surge of studies investigating bacterial diversity of fishes. Many of these studies have focused on the microbial structure of economically significant aquaculture species with the goal of manipulating the microbes to increase feed efficiency and decrease disease susceptibility. The unravelling of intricate host-microbe symbioses and identification of core microbiome functions is essential to our ability to use the benefits of a healthy microbiome to our advantage in fish culture, as well as gain deeper understanding of bacterial roles in vertebrate health. This review aims to summarize the available knowledge on fish gastrointestinal communities obtained from metagenomics, including biases from sample processing, factors influencing assemblage structure, intestinal microbiology of important aquaculture species and description of the teleostean core microbiome. Journal of Applied Microbiology © 2017 The Society for Applied Microbiology.
Oldham, Athenia L; Drilling, Heather S; Stamps, Blake W; Stevenson, Bradley S; Duncan, Kathleen E
2012-11-20
The analysis of microbial assemblages in industrial, marine, and medical systems can inform decisions regarding quality control or mitigation. Modern molecular approaches to detect, characterize, and quantify microorganisms provide rapid and thorough measures unbiased by the need for cultivation. The requirement of timely extraction of high quality nucleic acids for molecular analysis is faced with specific challenges when used to study the influence of microorganisms on oil production. Production facilities are often ill equipped for nucleic acid extraction techniques, making the preservation and transportation of samples off-site a priority. As a potential solution, the possibility of extracting nucleic acids on-site using automated platforms was tested. The performance of two such platforms, the Fujifilm QuickGene-Mini80™ and Promega Maxwell®16 was compared to a widely used manual extraction kit, MOBIO PowerBiofilm™ DNA Isolation Kit, in terms of ease of operation, DNA quality, and microbial community composition. Three pipeline biofilm samples were chosen for these comparisons; two contained crude oil and corrosion products and the third transported seawater. Overall, the two more automated extraction platforms produced higher DNA yields than the manual approach. DNA quality was evaluated for amplification by quantitative PCR (qPCR) and end-point PCR to generate 454 pyrosequencing libraries for 16S rRNA microbial community analysis. Microbial community structure, as assessed by DGGE analysis and pyrosequencing, was comparable among the three extraction methods. Therefore, the use of automated extraction platforms should enhance the feasibility of rapidly evaluating microbial biofouling at remote locations or those with limited resources.
2012-01-01
The analysis of microbial assemblages in industrial, marine, and medical systems can inform decisions regarding quality control or mitigation. Modern molecular approaches to detect, characterize, and quantify microorganisms provide rapid and thorough measures unbiased by the need for cultivation. The requirement of timely extraction of high quality nucleic acids for molecular analysis is faced with specific challenges when used to study the influence of microorganisms on oil production. Production facilities are often ill equipped for nucleic acid extraction techniques, making the preservation and transportation of samples off-site a priority. As a potential solution, the possibility of extracting nucleic acids on-site using automated platforms was tested. The performance of two such platforms, the Fujifilm QuickGene-Mini80™ and Promega Maxwell®16 was compared to a widely used manual extraction kit, MOBIO PowerBiofilm™ DNA Isolation Kit, in terms of ease of operation, DNA quality, and microbial community composition. Three pipeline biofilm samples were chosen for these comparisons; two contained crude oil and corrosion products and the third transported seawater. Overall, the two more automated extraction platforms produced higher DNA yields than the manual approach. DNA quality was evaluated for amplification by quantitative PCR (qPCR) and end-point PCR to generate 454 pyrosequencing libraries for 16S rRNA microbial community analysis. Microbial community structure, as assessed by DGGE analysis and pyrosequencing, was comparable among the three extraction methods. Therefore, the use of automated extraction platforms should enhance the feasibility of rapidly evaluating microbial biofouling at remote locations or those with limited resources. PMID:23168231
NASA Astrophysics Data System (ADS)
Greenberger, Rebecca N.; Mustard, John F.; Osinski, Gordon R.; Tornabene, Livio L.; Pontefract, Alexandra J.; Marion, Cassandra L.; Flemming, Roberta L.; Wilson, Janette H.; Cloutis, Edward A.
2016-12-01
Meteorite impacts on Earth and Mars can generate hydrothermal systems that alter the primary mineralogies of rocks and provide suitable environments for microbial colonization. We investigate a calcite-marcasite-bearing vug at the 23 km diameter Haughton impact structure, Devon Island, Nunavut, Canada, using imaging spectroscopy of the outcrop in the field (0.65-1.1 μm) and samples in the laboratory (0.4-2.5 μm), point spectroscopy (0.35-2.5 μm), major element chemistry, and X-ray diffraction analyses. The mineral assemblages mapped at the outcrop include marcasite; marcasite with minor gypsum and jarosite; fibroferrite and copiapite with minor gypsum and melanterite; gypsum, Fe3+ oxides, and jarosite; and calcite, gypsum, clay, microcline, and quartz. Hyperspectral mapping of alteration phases shows spatial patterns that illuminate changes in alteration conditions and formation of specific mineral phases. Marcasite formed from the postimpact hydrothermal system under reducing conditions, while subsequent weathering oxidized the marcasite at low temperatures and water/rock ratios. The acidic fluids resulting from the oxidation collected on flat-lying portions of the outcrop, precipitating fibroferrite + copiapite. That assemblage then likely dissolved, and the changing chemistry and pH resulting from interaction with the calcite-rich host rock formed gypsum-bearing red coatings. These results have implications for understanding water-rock interactions and habitabilities at this site and on Mars.
Identifying the core seed bank of a complex boreal bacterial metacommunity.
Ruiz-González, Clara; Niño-García, Juan Pablo; Kembel, Steven W; Del Giorgio, Paul A
2017-09-01
Seed banks are believed to contribute to compositional changes within and across microbial assemblages, but the application of this concept to natural communities remains challenging. Here we describe the core seed bank of a bacterial metacommunity from a boreal watershed, using the spatial distribution of bacterial operational taxonomic units (OTUs) across 223 heterogeneous terrestrial, aquatic and phyllosphere bacterial assemblages. Taxa were considered potential seeds if they transitioned from rare to abundant somewhere within the metacommunity and if they were ubiquitous and able to persist under unfavorable conditions, the latter assessed by checking their presence in three deeply sequenced samples (one soil, one river and one lake, 2.2-3 million reads per sample). We show that only a small fraction (13%) of all detected OTUs constitute a metacommunity seed bank that is shared between all terrestrial and aquatic communities, but not by phyllosphere assemblages, which seem to recruit from a different taxa pool. Our results suggest directional recruitment driven by the flow of water in the landscape, since most aquatic sequences were associated to OTUs found in a single deeply-sequenced soil sample, but only 45% of terrestrial sequences belonged to OTUs found in the two deeply-sequenced aquatic communities. Finally, we hypothesize that extreme rarity, and its interplay with water residence time and growth rates, may further constrain the size of the potential seed bank.
Yakimov, Michail M; Giuliano, Laura; Cappello, Simone; Denaro, Renata; Golyshin, Peter N
2007-04-01
The composition of a metabolically active prokaryotic community thriving in hydrothermal mud fluids of the deep-sea hypersaline anoxic Western Urania Basin was characterized using rRNA-based phylogenetic analysis of a clone library. The physiologically active prokaryotic assemblage in this extreme environment showed a great genetic diversity. Most members of the microbial community appeared to be affiliated to yet uncultured organisms from similar ecosystems, i.e., deep-sea hypersaline basins and hydrothermal vents. The bacterial clone library was dominated by phylotypes affiliated with the epsilon-Proteobacteria subdivision recognized as an ecologically significant group of bacteria inhabiting deep-sea hydrothermal environments. Almost 18% of all bacterial clones were related to delta-Proteobacteria, suggesting that sulfate reduction is one of the dominant metabolic processes occurring in warm mud fluids. The remaining bacterial phylotypes were related to alpha- and beta-Proteobacteria, Actinobacteria, Bacteroides, Deinococcus-Thermus, KB1 and OP-11 candidate divisions. Moreover, a novel monophyletic clade, deeply branched with unaffiliated 16S rDNA clones was also retrieved from deep-sea sediments and halocline of Urania Basin. Archaeal diversity was much lower and detected phylotypes included organisms affiliated exclusively with the Euryarchaeota. More than 96% of the archaeal clones belonged to the MSBL-1 candidate order recently found in hypersaline anoxic environments, such as endoevaporitic microbial mats, Mediterranean deep-sea mud volcanoes and anoxic basins. Two phylotypes, represented by single clones were related to uncultured groups DHVE-1 and ANME-1. Thus, the hydrothermal mud of hypersaline Urania Basin seems to contain new microbial diversity. The prokaryotic community was significantly different from that occurring in the upper layers of the Urania Basin since 60% of all bacterial and 40% of all archaeal phylotypes were obtained only from mud fluids. The uniqueness of the composition of the active prokaryotic community could be explained by the complex environmental conditions at the site. The interaction of oxygenated warm mud fluids with the cold hypersaline brine of the Urania Basin seems to simultaneously select for various metabolic processes, such as aerobic and anaerobic heterotrophy, sulfide- and methane-dependent chemotrophy along with anaerobic oxidation of methane, sulfate- and metal-reduction.
Hassa, Julia; Maus, Irena; Off, Sandra; Pühler, Alfred; Scherer, Paul; Klocke, Michael; Schlüter, Andreas
2018-06-01
The production of biogas by anaerobic digestion (AD) of agricultural residues, organic wastes, animal excrements, municipal sludge, and energy crops has a firm place in sustainable energy production and bio-economy strategies. Focusing on the microbial community involved in biomass conversion offers the opportunity to control and engineer the biogas process with the objective to optimize its efficiency. Taxonomic profiling of biogas producing communities by means of high-throughput 16S rRNA gene amplicon sequencing provided high-resolution insights into bacterial and archaeal structures of AD assemblages and their linkages to fed substrates and process parameters. Commonly, the bacterial phyla Firmicutes and Bacteroidetes appeared to dominate biogas communities in varying abundances depending on the apparent process conditions. Regarding the community of methanogenic Archaea, their diversity was mainly affected by the nature and composition of the substrates, availability of nutrients and ammonium/ammonia contents, but not by the temperature. It also appeared that a high proportion of 16S rRNA sequences can only be classified on higher taxonomic ranks indicating that many community members and their participation in AD within functional networks are still unknown. Although cultivation-based approaches to isolate microorganisms from biogas fermentation samples yielded hundreds of novel species and strains, this approach intrinsically is limited to the cultivable fraction of the community. To obtain genome sequence information of non-cultivable biogas community members, metagenome sequencing including assembly and binning strategies was highly valuable. Corresponding research has led to the compilation of hundreds of metagenome-assembled genomes (MAGs) frequently representing novel taxa whose metabolism and lifestyle could be reconstructed based on nucleotide sequence information. In contrast to metagenome analyses revealing the genetic potential of microbial communities, metatranscriptome sequencing provided insights into the metabolically active community. Taking advantage of genome sequence information, transcriptional activities were evaluated considering the microorganism's genetic background. Metaproteome studies uncovered enzyme profiles expressed by biogas community members. Enzymes involved in cellulose and hemicellulose decomposition and utilization of other complex biopolymers were identified. Future studies on biogas functional microbial networks will increasingly involve integrated multi-omics analyses evaluating metagenome, transcriptome, proteome, and metabolome datasets.
2013-01-01
Background Understanding the biological mechanisms used by microorganisms for plant biomass degradation is of considerable biotechnological interest. Despite of the growing number of sequenced (meta)genomes of plant biomass-degrading microbes, there is currently no technique for the systematic determination of the genomic components of this process from these data. Results We describe a computational method for the discovery of the protein domains and CAZy families involved in microbial plant biomass degradation. Our method furthermore accurately predicts the capability to degrade plant biomass for microbial species from their genome sequences. Application to a large, manually curated data set of microbial degraders and non-degraders identified gene families of enzymes known by physiological and biochemical tests to be implicated in cellulose degradation, such as GH5 and GH6. Additionally, genes of enzymes that degrade other plant polysaccharides, such as hemicellulose, pectins and oligosaccharides, were found, as well as gene families which have not previously been related to the process. For draft genomes reconstructed from a cow rumen metagenome our method predicted Bacteroidetes-affiliated species and a relative to a known plant biomass degrader to be plant biomass degraders. This was supported by the presence of genes encoding enzymatically active glycoside hydrolases in these genomes. Conclusions Our results show the potential of the method for generating novel insights into microbial plant biomass degradation from (meta-)genome data, where there is an increasing production of genome assemblages for uncultured microbes. PMID:23414703
Glamoclija, M.; Steele, A.; Fries, M.; Schieber, J.; Voytek, M.A.; Cockell, C.S.
2009-01-01
We combined microbial paleontology and molecular biology methods to study the Eyreville B drill core from the 35.3-Ma-old Chesapeake Bay impact structure, Virginia, USA. The investigated sample is a pyrite vein collected from the 1353.81- 1353.89 m depth interval, located within a section of biotite granite. The granite is a pre-impact rock that was disrupted by the impact event. A search for inorganic (mineral) biosignatures revealed the presence of micron-size rod morphologies of anatase (TiO2) embedded in chlorite coatings on pyrite grains. Neither the Acridine Orange microbial probe nor deoxyribonucleic acid (DNA) extraction followed by polymerase chain reaction (PCR) amplifi cation showed the presence of DNA or ribonucleic acid (RNA) at the location of anatase rods, implying the absence of viable cells in the investigated area. A Nile Red microbial probe revealed the presence of lipids in the rods. Because most of the lipids are resistant over geologic time spans, they are good biomarkers, and they are an indicator of biogenicity for these possibly 35-Ma-old microbial fossils. The mineral assemblage suggests that rod morphologies are associated with low-temperature (<100 ??C) hydrothermal alteration that involved aqueous fluids. The temporal constraints on the anatase fossils are still uncertain because pre-impact alteration of the granite and postimpact heating may have provided identical conditions for anatase precipitation and microbial preservation. ?? 2009 The Geological Society of America.
New insight into stratification of anaerobic methanotrophs in cold seep sediments.
Roalkvam, Irene; Jørgensen, Steffen Leth; Chen, Yifeng; Stokke, Runar; Dahle, Håkon; Hocking, William Peter; Lanzén, Anders; Haflidason, Haflidi; Steen, Ida Helene
2011-11-01
Methane seepages typically harbor communities of anaerobic methane oxidizers (ANME); however, knowledge about fine-scale vertical variation of ANME in response to geochemical gradients is limited. We investigated microbial communities in sediments below a white microbial mat in the G11 pockmark at Nyegga by 16S rRNA gene tag pyrosequencing and real-time quantitative PCR. A vertical stratification of dominating ANME communities was observed at 4 cmbsf (cm below seafloor) and below in the following order: ANME-2a/b, ANME-1 and ANME-2c. The ANME-1 community was most numerous and comprised single or chains of cells with typical rectangular morphology, accounting up to 89.2% of the retrieved 16S rRNA gene sequences. Detection rates for sulfate-reducing Deltaproteobacteria possibly involved in anaerobic oxidation of methane were low throughout the core. However, a correlation in the abundance of Candidate division JS-1 with ANME-2 was observed, indicating involvement in metabolisms occurring in ANME-2-dominated horizons. The white microbial mat and shallow sediments were dominated by organisms affiliated with Sulfurovum (Epsilonproteobacteria) and Methylococcales (Gammaproteobacteria), suggesting that aerobic oxidation of sulfur and methane is taking place. In intermediate horizons, typical microbial groups associated with methane seeps were recovered. The data are discussed with respect to co-occurring microbial assemblages and interspecies interactions. FEMS Microbiology Ecology © 2011 Federation of Microbiological Societies. Published by Blackwell Publishing Ltd. No claim to original Norwegian works.
Hu, Hang-Wei; Chen, Deli; He, Ji-Zheng
2015-09-01
The continuous increase of the greenhouse gas nitrous oxide (N2O) in the atmosphere due to increasing anthropogenic nitrogen input in agriculture has become a global concern. In recent years, identification of the microbial assemblages responsible for soil N2O production has substantially advanced with the development of molecular technologies and the discoveries of novel functional guilds and new types of metabolism. However, few practical tools are available to effectively reduce in situ soil N2O flux. Combating the negative impacts of increasing N2O fluxes poses considerable challenges and will be ineffective without successfully incorporating microbially regulated N2O processes into ecosystem modeling and mitigation strategies. Here, we synthesize the latest knowledge of (i) the key microbial pathways regulating N2O production and consumption processes in terrestrial ecosystems and the critical environmental factors influencing their occurrence, and (ii) the relative contributions of major biological pathways to soil N2O emissions by analyzing available natural isotopic signatures of N2O and by using stable isotope enrichment and inhibition techniques. We argue that it is urgently necessary to incorporate microbial traits into biogeochemical ecosystem modeling in order to increase the estimation reliability of N2O emissions. We further propose a molecular methodology oriented framework from gene to ecosystem scales for more robust prediction and mitigation of future N2O emissions. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Temporal assessment of microbial communities in soils of two contrasting mangroves.
Rigonato, Janaina; Kent, Angela D; Gumiere, Thiago; Branco, Luiz Henrique Zanini; Andreote, Fernando Dini; Fiore, Marli Fátima
Variations in microbial communities promoted by alterations in environmental conditions are reflected in similarities/differences both at taxonomic and functional levels. Here we used a natural gradient within mangroves from seashore to upland, to contrast the natural variability in bacteria, cyanobacteria and diazotroph assemblages in a pristine area compared to an oil polluted area along a timespan of three years, based on ARISA (bacteria and cyanobacteria) and nifH T-RFLP (diazotrophs) fingerprinting. The data presented herein indicated that changes in all the communities evaluated were mainly driven by the temporal effect in the contaminated area, while local effects were dominant on the pristine mangrove. A positive correlation of community structure between diazotrophs and cyanobacteria was observed, suggesting the functional importance of this phylum as nitrogen fixers in mangroves soils. Different ecological patterns explained the microbial behavior in the pristine and polluted mangroves. Stochastic models in the pristine mangrove indicate that there is not a specific environmental factor that determines the bacterial distribution, while cyanobacteria and diazotrophs better fitted in deterministic model in the same area. For the contaminated mangrove site, deterministic models better represented the variations in the communities, suggesting that the presence of oil might change the microbial ecological structures over time. Mangroves represent a unique environment threatened by global change, and this study contributed to the knowledge of the microbial distribution in such areas and its response on persistent contamination historic events. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.
Indoor-Air Microbiome in an Urban Subway Network: Diversity and Dynamics
Leung, Marcus H. Y.; Wilkins, David; Li, Ellen K. T.; Kong, Fred K. F.
2014-01-01
Subway systems are indispensable for urban societies, but microbiological characteristics of subway aerosols are relatively unknown. Previous studies investigating microbial compositions in subways employed methodologies that underestimated the diversity of microbial exposure for commuters, with little focus on factors governing subway air microbiology, which may have public health implications. Here, a culture-independent approach unraveling the bacterial diversity within the urban subway network in Hong Kong is presented. Aerosol samples from multiple subway lines and outdoor locations were collected. Targeting the 16S rRNA gene V4 region, extensive taxonomic diversity was found, with the most common bacterial genera in the subway environment among those associated with skin. Overall, subway lines harbored different phylogenetic communities based on α- and β-diversity comparisons, and closer inspection suggests that each community within a line is dependent on architectural characteristics, nearby outdoor microbiomes, and connectedness with other lines. Microbial diversities and assemblages also varied depending on the day sampled, as well as the time of day, and changes in microbial communities between peak and nonpeak commuting hours were attributed largely to increases in skin-associated genera in peak samples. Microbial diversities within the subway were influenced by temperature and relative humidity, while carbon dioxide levels showed a positive correlation with abundances of commuter-associated genera. This Hong Kong data set and communities from previous studies conducted in the United States formed distinct community clusters, indicating that additional work is required to unravel the mechanisms that shape subway microbiomes around the globe. PMID:25172855
Microbial Mat Communities along an Oxygen Gradient in a Perennially Ice-Covered Antarctic Lake
Hawes, Ian; Mackey, Tyler J.; Krusor, Megan; Doran, Peter T.; Sumner, Dawn Y.; Eisen, Jonathan A.; Hillman, Colin; Goroncy, Alexander K.
2015-01-01
Lake Fryxell is a perennially ice-covered lake in the McMurdo Dry Valleys, Antarctica, with a sharp oxycline in a water column that is density stabilized by a gradient in salt concentration. Dissolved oxygen falls from 20 mg liter−1 to undetectable over one vertical meter from 8.9- to 9.9-m depth. We provide the first description of the benthic mat community that falls within this oxygen gradient on the sloping floor of the lake, using a combination of micro- and macroscopic morphological descriptions, pigment analysis, and 16S rRNA gene bacterial community analysis. Our work focused on three macroscopic mat morphologies that were associated with different parts of the oxygen gradient: (i) “cuspate pinnacles” in the upper hyperoxic zone, which displayed complex topography and were dominated by phycoerythrin-rich cyanobacteria attributable to the genus Leptolyngbya and a diverse but sparse assemblage of pennate diatoms; (ii) a less topographically complex “ridge-pit” mat located immediately above the oxic-anoxic transition containing Leptolyngbya and an increasing abundance of diatoms; and (iii) flat prostrate mats in the upper anoxic zone, dominated by a green cyanobacterium phylogenetically identified as Phormidium pseudopriestleyi and a single diatom, Diadesmis contenta. Zonation of bacteria was by lake depth and by depth into individual mats. Deeper mats had higher abundances of bacteriochlorophylls and anoxygenic phototrophs, including Chlorobi and Chloroflexi. This suggests that microbial communities form assemblages specific to niche-like locations. Mat morphologies, underpinned by cyanobacterial and diatom composition, are the result of local habitat conditions likely defined by irradiance and oxygen and sulfide concentrations. PMID:26567300
Coral, Thomas; Descostes, Michaël; De Boissezon, Hélène; Bernier-Latmani, Rizlan; de Alencastro, Luiz Felippe; Rossi, Pierre
2018-07-01
A large fraction (47%) of the world's uranium is mined by a technique called "In Situ Recovery" (ISR). This mining technique involves the injection of a leaching fluid (acidic or alkaline) into a uranium-bearing aquifer and the pumping of the resulting solution through cation exchange columns for the recovery of dissolved uranium. The present study reports the in-depth alterations brought to autochthonous microbial communities during acidic ISR activities. Water samples were collected from a uranium roll-front deposit that is part of an ISR mine in operation (Tortkuduk, Kazakhstan). Water samples were obtained at a depth of ca 500 m below ground level from several zones of the Uyuk aquifer following the natural redox zonation inherited from the roll front deposit, including the native mineralized orebody and both upstream and downstream adjacent locations. Samples were collected equally from both the entrance and the exit of the uranium concentration plant. Next-generation sequencing data showed that the redox gradient shaped the community structures, within the anaerobic, reduced, and oligotrophic habitats of the native aquifer zones. Acid injection induced drastic changes in the structures of these communities, with a large decrease in both cell numbers and diversity. Communities present in the acidified (pH values < 2) mining areas exhibited similarities to those present in acid mine drainage, with the dominance of Sulfobacillus sp., Leptospirillum sp. and Acidithiobacillus sp., as well as the archaean Ferroplasma sp. Communities located up- and downstream of the mineralized zone under ISR and affected by acidic fluids were blended with additional facultative anaerobic and acidophilic microorganisms. These mixed biomes may be suitable communities for the natural attenuation of ISR mining-affected subsurface through the reduction of metals and sulfate. Assessing the effect of acidification on the microbial community is critical to evaluating the potential for natural attenuation or active bioremediation strategies. Copyright © 2018 Elsevier B.V. All rights reserved.
Excess density compensation of island herpetofaunal assemblages
Rodda, G.H.; Dean-Bradley, K.
2002-01-01
Aim Some species reach extraordinary densities on islands. Island assemblages have fewer species, however, and it is possible that island species differ from their mainland counterparts in average mass. Island assemblages could be partitioned differently (fewer species or smaller individuals) from mainland sites without differing in aggregate biomass (density compensation). Our objective was to determine the generality of excess density compensation in island herpetofaunal assemblages.Location Our bounded removal plot data were obtained from Pacific Island sites (Guam, Saipan and Rota), the West Indies (British Virgin Islands), and the Indian Ocean (Ile aux Aigrettes off Mauritius). The literature values were taken from several locales. Other island locations included Barro Colorado Island, Bonaire, Borneo, Philippine Islands, Seychelle Islands, Barrow Island (Australia), North Brother Island (New Zealand), Dominica and Puerto Rico. Mainland sites included Costa Rica, Ivory Coast, Cameroon, Australia, Thailand, Peru, Brazil, Panama and the USA.Method We added our thirty-nine bounded total removal plots from sixteen island habitats to fifteen literature records to obtain seventy-five venues with estimable density and biomass of arboreal or terrestrial herpetofaunal assemblages. These biomass estimates were evaluated geographically and in relation to sampling method, insularity, latitude, disturbance regime, seasonality, community richness, vegetative structure and climate. Direct data on trophic interactions (food availability, parasitism and predation pressure) were generally unavailable. Sampling problems were frequent for arboreal, cryptic and evasive species.Results and main conclusions We found strong evidence that herpetofaunal assemblages on small islands (mostly lizards) exhibit a much greater aggregate density of biomass (kg ha−1) than those of larger islands or mainland assemblages (small islands show excess density compensation). High aggregate biomass density was more strongly associated with the degree of species impoverishment on islands than it was on island area or insularity per se. High aggregate biomass density was not strongly associated with latitude, precipitation, canopy height or a variety of other physical characteristics of the study sites. The association between high aggregate biomass density and species-poor islands is consistent with the effects of a reduced suite of predators on depauperate islands, but other features may also contribute to excess density compensation.
Techtmann, Stephen M; Fortney, Julian L; Ayers, Kati A; Joyner, Dominique C; Linley, Thomas D; Pfiffner, Susan M; Hazen, Terry C
2015-01-01
The waters of the Eastern Mediterranean are characterized by unique physical and chemical properties within separate water masses occupying different depths. Distinct water masses are present throughout the oceans, which drive thermohaline circulation. These water masses may contain specific microbial assemblages. The goal of this study was to examine the effect of physical and geological phenomena on the microbial community of the Eastern Mediterranean water column. Chemical measurements were combined with phospholipid fatty acid (PLFA) analysis and high-throughput 16S rRNA sequencing to characterize the microbial community in the water column at five sites. We demonstrate that the chemistry and microbial community of the water column were stratified into three distinct water masses. The salinity and nutrient concentrations vary between these water masses. Nutrient concentrations increased with depth, and salinity was highest in the intermediate water mass. Our PLFA analysis indicated different lipid classes were abundant in each water mass, suggesting that distinct groups of microbes inhabit these water masses. 16S rRNA gene sequencing confirmed the presence of distinct microbial communities in each water mass. Taxa involved in autotrophic nitrogen cycling were enriched in the intermediate water mass suggesting that microbes in this water mass may be important to the nitrogen cycle of the Eastern Mediterranean. The Eastern Mediterranean also contains numerous active hydrocarbon seeps. We sampled above the North Alex Mud Volcano, in order to test the effect of these geological features on the microbial community in the adjacent water column. The community in the waters overlaying the mud volcano was distinct from other communities collected at similar depths and was enriched in known hydrocarbon degrading taxa. Our results demonstrate that physical phenomena such stratification as well as geological phenomena such as mud volcanoes strongly affect microbial community structure in the Eastern Mediterranean water column.
Techtmann, Stephen M.; Fortney, Julian L.; Ayers, Kati A.; Joyner, Dominique C.; Linley, Thomas D.; Pfiffner, Susan M.; Hazen, Terry C.
2015-01-01
The waters of the Eastern Mediterranean are characterized by unique physical and chemical properties within separate water masses occupying different depths. Distinct water masses are present throughout the oceans, which drive thermohaline circulation. These water masses may contain specific microbial assemblages. The goal of this study was to examine the effect of physical and geological phenomena on the microbial community of the Eastern Mediterranean water column. Chemical measurements were combined with phospholipid fatty acid (PLFA) analysis and high-throughput 16S rRNA sequencing to characterize the microbial community in the water column at five sites. We demonstrate that the chemistry and microbial community of the water column were stratified into three distinct water masses. The salinity and nutrient concentrations vary between these water masses. Nutrient concentrations increased with depth, and salinity was highest in the intermediate water mass. Our PLFA analysis indicated different lipid classes were abundant in each water mass, suggesting that distinct groups of microbes inhabit these water masses. 16S rRNA gene sequencing confirmed the presence of distinct microbial communities in each water mass. Taxa involved in autotrophic nitrogen cycling were enriched in the intermediate water mass suggesting that microbes in this water mass may be important to the nitrogen cycle of the Eastern Mediterranean. The Eastern Mediterranean also contains numerous active hydrocarbon seeps. We sampled above the North Alex Mud Volcano, in order to test the effect of these geological features on the microbial community in the adjacent water column. The community in the waters overlaying the mud volcano was distinct from other communities collected at similar depths and was enriched in known hydrocarbon degrading taxa. Our results demonstrate that physical phenomena such stratification as well as geological phenomena such as mud volcanoes strongly affect microbial community structure in the Eastern Mediterranean water column. PMID:25807542
NASA Astrophysics Data System (ADS)
Araujo, Adriana V.; Dias, Cristina O.; Bonecker, Sérgio L. C.
2017-07-01
We examined changes in the functioning of copepod assemblages with increasing pollution in estuaries, using sampling standardization of the salinity range to enable comparisons. Copepod assemblages were analyzed in four southeast Brazilian estuaries with different water quality levels and hydrodynamic characteristics over two years. We obtained mesozooplankton samples together with environmental and water quality parameters in the estuaries, every two months under predetermined salinities ranging from 15 to 25. The values of parameters, except species size, associated with the functioning of the copepod assemblages (biomass, productivity, and turnover rate) did not differ among estuaries. However, in the more polluted estuaries, the biomass and productivity of copepod assemblages of mesozooplankton were negatively correlated with concentration of pollution indicator parameters. Conversely, in the less polluted estuaries some degree of enrichment still seems to increase the system biomass and productivity, as these parameters were inversely related to indicators of improved water quality. The pollution level of estuaries distorted the relationship between temperature and the efficiency of converting energy to organic matter. In the less polluted estuaries, the relationship between turnover rate and temperature was over 70%, while in the most polluted estuaries, this relationship was only approximately 50%. Our results demonstrated that the functioning of assemblages in the estuaries was affected differently by increasing pollution depending on the water quality level of the system. Thus, investigating the functioning of assemblages can be a useful tool for the analysis of estuarine conditions.
Bacteria beneath the West Antarctic ice sheet.
Lanoil, Brian; Skidmore, Mark; Priscu, John C; Han, Sukkyun; Foo, Wilson; Vogel, Stefan W; Tulaczyk, Slawek; Engelhardt, Hermann
2009-03-01
Subglacial environments, particularly those that lie beneath polar ice sheets, are beginning to be recognized as an important part of Earth's biosphere. However, except for indirect indications of microbial assemblages in subglacial Lake Vostok, Antarctica, no sub-ice sheet environments have been shown to support microbial ecosystems. Here we report 16S rRNA gene and isolate diversity in sediments collected from beneath the Kamb Ice Stream, West Antarctic Ice Sheet and stored for 15 months at 4 degrees C. This is the first report of microbes in samples from the sediment environment beneath the Antarctic Ice Sheet. The cells were abundant ( approximately 10(7) cells g(-1)) but displayed low diversity (only five phylotypes), likely as a result of enrichment during storage. Isolates were cold tolerant and the 16S rRNA gene diversity was a simplified version of that found in subglacial alpine and Arctic sediments and water. Although in situ cell abundance and the extent of wet sediments beneath the Antarctic ice sheet can only be roughly extrapolated on the basis of this sample, it is clear that the subglacial ecosystem contains a significant and previously unrecognized pool of microbial cells and associated organic carbon that could potentially have significant implications for global geochemical processes.
Mushroom speleothems: Stromatolites that formed in the absence of phototrophs
NASA Astrophysics Data System (ADS)
Bontognali, Tomaso; D'Angeli, Ilenia; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano; Gonzales, Esteban; DeWaele, Jo
2016-04-01
Unusual speleothems resembling giant mushrooms occur in Santa Catalina Cave, Cuba. Although these mineral buildups are considered a natural heritage, their composition and formation mechanism remain poorly understood. Here we characterize their morphology and mineralogy and present a model for their genesis. We propose that the mushrooms, which are mainly comprised of calcite and aragonite, formed during four different phases within an evolving cave environment. The stipe of the mushroom is an assemblage of three well-known speleothems: a stalagmite surrounded by calcite rafts that were subsequently encrusted by cave clouds (mammilaries). More peculiar is the cap of the mushroom, which is morphologically similar to cerebroid stromatolites and thrombolites of microbial origin occurring in marine environments. Scanning electron microscopy investigations of this last unit revealed the presence of fossilized extracellular polymeric substances (EPS) - the constituents of biofilms and microbial mats. These organic microstructures are mineralized with Ca-carbonate, suggesting that the mushroom cap formed through a microbially-influenced mineralization process. The existence of cerebroid Ca-carbonate buildups forming in dark caves (i.e., in the absence of phototrophs) has interesting implications for the study of fossil microbialites preserved in ancient rocks, which are today considered as one of the earliest evidence for life on Earth.
Hu, Sarah K; Campbell, Victoria; Connell, Paige; Gellene, Alyssa G; Liu, Zhenfeng; Terrado, Ramon; Caron, David A
2016-04-01
Microbial eukaryotes fulfill key ecological positions in marine food webs. Molecular approaches that connect protistan diversity and biogeography to their diverse metabolisms will greatly improve our understanding of marine ecosystem function. The majority of molecular-based studies to date use 18S rRNA gene sequencing to characterize natural microbial assemblages, but this approach does not necessarily discriminate between active and non-active cells. We incorporated RNA sequencing into standard 18S rRNA gene sequence surveys with the purpose of assessing those members of the protistan community contributing to biogeochemical cycling (active organisms), using the ratio of cDNA (reverse transcribed from total RNA) to 18S rRNA gene sequences within major protistan taxonomic groups. Trophically important phytoplankton, such as diatoms and chlorophytes exhibited seasonal trends in relative activity. Additionally, both radiolaria and ciliates displayed previously unreported high relative activities below the euphotic zone. This study sheds new light on the relative metabolic activity of specific protistan groups and how microbial communities respond to changing environmental conditions. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Stewart, C. L.; Schrenk, M.
2017-12-01
Ultramafic-hosted hydrothermal systems associated with slow-spreading mid ocean ridges emit copious amounts of hydrogen and methane into the deep-sea, generated through a process known as serpentinization. Hydrothermal plumes carrying the reduced products of water-rock interaction dissipate and mix with deep seawater, and potentially harbor microbial communities adapted to these conditions. Methane and hydrogen enriched hydrothermal plumes were sampled from 3 sites near the Atlantis Massif (30°N, Mid Atlantic Ridge) during IODP Expedition 357 and used to initiate cultivation experiments targeting methanotrophic and hydrogenotrophic microorganisms. One set of experiments incubated the cultures at in situ hydrostatic pressures and gas concentrations resulting in the enrichment of gammaproteobacterial assemblages, including Marinobacter spp. That may be involved in hydrocarbon degradation. A second set of experiments pursued the anaerobic enrichment of microbial communities on solid media, resulting in the enrichment of alphaproteobacteria related to Ruegeria. The most prodigious growth in both case occurred in methane-enriched media, which may play a role as both an energy and carbon source. Ongoing work is evaluating the physiological characteristics of these isolates, including their metabolic outputs under different physical-chemical conditions. In addition to providing novel isolates from hydrothermal habitats near the Lost City Hydrothermal Field, these experiments will provide insight into the ecology of microbial communities from serpentinization influenced hydrothermal systems that may aid in future exploration of these sites.
Is the genetic landscape of the deep subsurface biosphere affected by viruses?
Anderson, Rika E; Brazelton, William J; Baross, John A
2011-01-01
Viruses are powerful manipulators of microbial diversity, biogeochemistry, and evolution in the marine environment. Viruses can directly influence the genetic capabilities and the fitness of their hosts through the use of fitness factors and through horizontal gene transfer. However, the impact of viruses on microbial ecology and evolution is often overlooked in studies of the deep subsurface biosphere. Subsurface habitats connected to hydrothermal vent systems are characterized by constant fluid flux, dynamic environmental variability, and high microbial diversity. In such conditions, high adaptability would be an evolutionary asset, and the potential for frequent host-virus interactions would be high, increasing the likelihood that cellular hosts could acquire novel functions. Here, we review evidence supporting this hypothesis, including data indicating that microbial communities in subsurface hydrothermal fluids are exposed to a high rate of viral infection, as well as viral metagenomic data suggesting that the vent viral assemblage is particularly enriched in genes that facilitate horizontal gene transfer and host adaptability. Therefore, viruses are likely to play a crucial role in facilitating adaptability to the extreme conditions of these regions of the deep subsurface biosphere. We also discuss how these results might apply to other regions of the deep subsurface, where the nature of virus-host interactions would be altered, but possibly no less important, compared to more energetic hydrothermal systems.
Is the Genetic Landscape of the Deep Subsurface Biosphere Affected by Viruses?
Anderson, Rika E.; Brazelton, William J.; Baross, John A.
2011-01-01
Viruses are powerful manipulators of microbial diversity, biogeochemistry, and evolution in the marine environment. Viruses can directly influence the genetic capabilities and the fitness of their hosts through the use of fitness factors and through horizontal gene transfer. However, the impact of viruses on microbial ecology and evolution is often overlooked in studies of the deep subsurface biosphere. Subsurface habitats connected to hydrothermal vent systems are characterized by constant fluid flux, dynamic environmental variability, and high microbial diversity. In such conditions, high adaptability would be an evolutionary asset, and the potential for frequent host–virus interactions would be high, increasing the likelihood that cellular hosts could acquire novel functions. Here, we review evidence supporting this hypothesis, including data indicating that microbial communities in subsurface hydrothermal fluids are exposed to a high rate of viral infection, as well as viral metagenomic data suggesting that the vent viral assemblage is particularly enriched in genes that facilitate horizontal gene transfer and host adaptability. Therefore, viruses are likely to play a crucial role in facilitating adaptability to the extreme conditions of these regions of the deep subsurface biosphere. We also discuss how these results might apply to other regions of the deep subsurface, where the nature of virus–host interactions would be altered, but possibly no less important, compared to more energetic hydrothermal systems. PMID:22084639
Microbial Growth under Supercritical CO2
Peet, Kyle C.; Freedman, Adam J. E.; Hernandez, Hector H.; Britto, Vanya; Boreham, Chris; Ajo-Franklin, Jonathan B.
2015-01-01
Growth of microorganisms in environments containing CO2 above its critical point is unexpected due to a combination of deleterious effects, including cytoplasmic acidification and membrane destabilization. Thus, supercritical CO2 (scCO2) is generally regarded as a sterilizing agent. We report isolation of bacteria from three sites targeted for geologic carbon dioxide sequestration (GCS) that are capable of growth in pressurized bioreactors containing scCO2. Analysis of 16S rRNA genes from scCO2 enrichment cultures revealed microbial assemblages of varied complexity, including representatives of the genus Bacillus. Propagation of enrichment cultures under scCO2 headspace led to isolation of six strains corresponding to Bacillus cereus, Bacillus subterraneus, Bacillus amyloliquefaciens, Bacillus safensis, and Bacillus megaterium. Isolates are spore-forming, facultative anaerobes and capable of germination and growth under an scCO2 headspace. In addition to these isolates, several Bacillus type strains grew under scCO2, suggesting that this may be a shared feature of spore-forming Bacillus spp. Our results provide direct evidence of microbial activity at the interface between scCO2 and an aqueous phase. Since microbial activity can influence the key mechanisms for permanent storage of sequestered CO2 (i.e., structural, residual, solubility, and mineral trapping), our work suggests that during GCS microorganisms may grow and catalyze biological reactions that influence the fate and transport of CO2 in the deep subsurface. PMID:25681188
Novel microbial assemblages inhabiting crustal fluids within mid-ocean ridge flank subsurface basalt
Jungbluth, Sean P; Bowers, Robert M; Lin, Huei-Ting; Cowen, James P; Rappé, Michael S
2016-01-01
Although little is known regarding microbial life within our planet's rock-hosted deep subseafloor biosphere, boreholes drilled through deep ocean sediment and into the underlying basaltic crust provide invaluable windows of access that have been used previously to document the presence of microorganisms within fluids percolating through the deep ocean crust. In this study, the analysis of 1.7 million small subunit ribosomal RNA genes amplified and sequenced from marine sediment, bottom seawater and basalt-hosted deep subseafloor fluids that span multiple years and locations on the Juan de Fuca Ridge flank was used to quantitatively delineate a subseafloor microbiome comprised of distinct bacteria and archaea. Hot, anoxic crustal fluids tapped by newly installed seafloor sampling observatories at boreholes U1362A and U1362B contained abundant bacterial lineages of phylogenetically unique Nitrospirae, Aminicenantes, Calescamantes and Chloroflexi. Although less abundant, the domain Archaea was dominated by unique, uncultivated lineages of marine benthic group E, the Terrestrial Hot Spring Crenarchaeotic Group, the Bathyarchaeota and relatives of cultivated, sulfate-reducing Archaeoglobi. Consistent with recent geochemical measurements and bioenergetic predictions, the potential importance of methane cycling and sulfate reduction were imprinted within the basalt-hosted deep subseafloor crustal fluid microbial community. This unique window of access to the deep ocean subsurface basement reveals a microbial landscape that exhibits previously undetected spatial heterogeneity. PMID:26872042
Trembath-Reichert, Elizabeth; Morono, Yuki; Ijiri, Akira; Hoshino, Tatsuhiko; Dawson, Katherine S; Inagaki, Fumio; Orphan, Victoria J
2017-10-31
The past decade of scientific ocean drilling has revealed seemingly ubiquitous, slow-growing microbial life within a range of deep biosphere habitats. Integrated Ocean Drilling Program Expedition 337 expanded these studies by successfully coring Miocene-aged coal beds 2 km below the seafloor hypothesized to be "hot spots" for microbial life. To characterize the activity of coal-associated microorganisms from this site, a series of stable isotope probing (SIP) experiments were conducted using intact pieces of coal and overlying shale incubated at in situ temperatures (45 °C). The 30-month SIP incubations were amended with deuterated water as a passive tracer for growth and different combinations of 13 C- or 15 N-labeled methanol, methylamine, and ammonium added at low (micromolar) concentrations to investigate methylotrophy in the deep subseafloor biosphere. Although the cell densities were low (50-2,000 cells per cubic centimeter), bulk geochemical measurements and single-cell-targeted nanometer-scale secondary ion mass spectrometry demonstrated active metabolism of methylated substrates by the thermally adapted microbial assemblage, with differing substrate utilization profiles between coal and shale incubations. The conversion of labeled methylamine and methanol was predominantly through heterotrophic processes, with only minor stimulation of methanogenesis. These findings were consistent with in situ and incubation 16S rRNA gene surveys. Microbial growth estimates in the incubations ranged from several months to over 100 y, representing some of the slowest direct measurements of environmental microbial biosynthesis rates. Collectively, these data highlight a small, but viable, deep coal bed biosphere characterized by extremely slow-growing heterotrophs that can utilize a diverse range of carbon and nitrogen substrates.
NASA Technical Reports Server (NTRS)
Jahnke, Linda; Orphan, Victoria; Turk, Kendra; Embaye, Tsegereda; Kubo, Mike; Summons, Roger
2005-01-01
Lipid biomarkers for discrete microbial groups are a valuable tool for establishing links to ancient microbial ecosystems. Lipid biomarkers can establish organism source and function in contemporary microbial ecosystems (membrane lipids) and by analogy, potential relevance to the fossilized carbon skeletons (geolipids) extracted from ancient sedimentary rock. The Mars Exploration Rovers have provided clear evidence for an early wet Mars and the presence of hypersaline evaporitic basins. Ongoing work on an early Earth analog, the hypersaline benthic mats in Guerrero Negro, Baja California Sur, may provide clues to what may have evolved and flourished on an early wet Mars, if only for a short period. Cyanobacterial mats are a pertinent early Earth analog for consideration of evolutionary and microbial processes within the aerobic photosynthetic and adjacent anoxic layers. Fluctuations in physio-chemical parameters associated with spatial and temporal scales are expressed through vast microbial metabolic diversity. Our recent work hopes to establish the dynamic of archaeal diversity, particularly as it relates to methane production in this high sulfate environment, through the use of lipid biomarker and phylogenetic analyses. Archaeal 16s rRNA and mcrA gene assemblages, demonstrated distinct spatial separation over the 130 mm core of at least three distinct genera within the order Methanosarcinales, as well as an abundance of uncultured members of the Thermoplasmales and Crenarchaeota. Ether-bound lipid analysis identified abundant 0-alkyl and 0-isopranyl chains throughout the core, and the presence of sn-2 hydroxyarchaeol, a biomarker for methylotrophic methanogens. A unique ether isoprenoid chain, a C30:1 , possibly related to the geolipid squalane, a paleobiomarker associated with hypersaline environments, was most abundant within the oxic-anoxic transition zone.
Microbial Communities Associated with Phosphorite-bearing Sediments
NASA Astrophysics Data System (ADS)
Zoss, R.; Bailey, J.; Flood, B.; Jones, D. S.
2016-12-01
Phosphorus is a limiting nutrient in the environment and is an important component of many biological molecules. Calcium phosphate mineral deposits known as phosphorites, are also the primary source of P for agriculture. Understanding phosphorite formation may improve management of P resources. However, the processes that mediate calcium phosphate mineral precipitation in certain marine pore waters remain poorly understood. Phosphogenesis occurs in sediments beneath some oceanic upwelling zones that harbor polyphosphate-accumulating giant sulfur bacteria (GSB). These bacteria may concentrate phosphate in sediment pore waters - creating supersaturated conditions with respect to apatite. However, the relationship between microbes and phosphogenesis is not fully resolved. To further study this relationship, we examined microbial communities from two sources: sediment cores recovered from the shelf of the Benguela region, and DNA extracted from washed phosphorites recovered from those same sediments. We used itag and clone library sequencing of the 16S rRNA gene to examine the microbial communities and their relationship with the environment. We found that many of our sediments shared large numbers of phylotypes with one another, and that the same metabolic guilds were represented at localities across the shelf. Sulfur-reducing bacteria and sulfur-oxidizing bacteria were abundant in our datasets. Phylotypes that are known to carry out nitrification and/or anammox (anaerobic ammonia oxidation) were also well-represented. Our phosphorite extraction, however, contained a distinct microbial community from those observed in the modern sediments. We observed both an enrichment of certain common microbial classes and a complete absence of others. These results could represent an ancient microbial assemblage that was present when the apatite precipitated. While these taxa may or may not have contributed to apatite precipitation, several groups represented in the phosphorite dataset have the genetic potential, as determined through the analysis of published genomes, to synthesize, and perhaps accumulate, polyphosphate.
Trembath-Reichert, Elizabeth; Morono, Yuki; Ijiri, Akira; Hoshino, Tatsuhiko; Dawson, Katherine S.; Inagaki, Fumio
2017-01-01
The past decade of scientific ocean drilling has revealed seemingly ubiquitous, slow-growing microbial life within a range of deep biosphere habitats. Integrated Ocean Drilling Program Expedition 337 expanded these studies by successfully coring Miocene-aged coal beds 2 km below the seafloor hypothesized to be “hot spots” for microbial life. To characterize the activity of coal-associated microorganisms from this site, a series of stable isotope probing (SIP) experiments were conducted using intact pieces of coal and overlying shale incubated at in situ temperatures (45 °C). The 30-month SIP incubations were amended with deuterated water as a passive tracer for growth and different combinations of 13C- or 15N-labeled methanol, methylamine, and ammonium added at low (micromolar) concentrations to investigate methylotrophy in the deep subseafloor biosphere. Although the cell densities were low (50–2,000 cells per cubic centimeter), bulk geochemical measurements and single-cell–targeted nanometer-scale secondary ion mass spectrometry demonstrated active metabolism of methylated substrates by the thermally adapted microbial assemblage, with differing substrate utilization profiles between coal and shale incubations. The conversion of labeled methylamine and methanol was predominantly through heterotrophic processes, with only minor stimulation of methanogenesis. These findings were consistent with in situ and incubation 16S rRNA gene surveys. Microbial growth estimates in the incubations ranged from several months to over 100 y, representing some of the slowest direct measurements of environmental microbial biosynthesis rates. Collectively, these data highlight a small, but viable, deep coal bed biosphere characterized by extremely slow-growing heterotrophs that can utilize a diverse range of carbon and nitrogen substrates. PMID:29078310
NASA Astrophysics Data System (ADS)
Jin, V. L.; Schaeffer, S. M.; Ziegler, S. E.; Evans, R. D.
2011-06-01
Changes in the rates of nitrogen (N) cycling, microbial carbon (C) substrate use, and extracellular enzyme activities in a Mojave Desert ecosystem exposed to elevated atmospheric CO2 suggest shifts in the size and/or functional characteristics of microbial assemblages in two dominant soil microsites: plant interspaces and under the dominant shrub Larrea tridentata. We used ester-linked phospholipid fatty acid (PLFA) biomarkers as a proxy for microbial biomass to quantify spatial and temporal differences in soil microbial communities from February 2003 to May 2005. Further, we used the 13C signature of the fossil CO2 source for elevated CO2 plots to trace recent plant C inputs into soil organic matter (SOM) and broad microbial groups using δ13C (‰). Differences between individual δ13CPLFA and δ13CSOM for fungal biomarkers indicated active metabolism of newer C in elevated CO2 soils. Total PLFA-C was greater in shrub microsites compared to plant interspaces, and CO2 treatment differences within microsites increased under higher soil water availability. Total, fungal, and bacterial PLFA-C increased with decreasing soil volumetric water content (VWC) in both microsites, suggesting general adaptations to xeric desert conditions. Increases in fungal-to-bacterial PLFA-C ratio with decreasing VWC reflected functional group-specific responses to changing soil water availability. While temporal and spatial extremes in resource availability in desert ecosystems contribute to the difficulty in identifying common trends or mechanisms driving microbial responses in less extreme environments, we found that soil water availability and soil microsite interacted with elevated CO2 to shift fungal and bacterial biomarker abundances in Mojave Desert soils.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Techtmann, Stephen M.; Fortney, Julian L.; Ayers, Kati A.
The waters of the Eastern Mediterranean are characterized by unique physical and chemical properties within separate water masses occupying different depths. Distinct water masses are present throughout the oceans, which drive thermohaline circulation. These water masses may contain specific microbial assemblages. The goal of this study was to examine the effect of physical and geological phenomena on the microbial community of the Eastern Mediterranean water column. Chemical measurements were combined with phospholipid fatty acid (PLFA) analysis and high-throughput 16S rRNA sequencing to characterize the microbial community in the water column at five sites. We demonstrate that the chemistry and microbialmore » community of the water column were stratified into three distinct water masses. The salinity and nutrient concentrations vary between these water masses. Nutrient concentrations increased with depth, and salinity was highest in the intermediate water mass. Our PLFA analysis indicated different lipid classes were abundant in each water mass, suggesting that distinct groups of microbes inhabit these water masses. 16S rRNA gene sequencing confirmed the presence of distinct microbial communities in each water mass. Taxa involved in autotrophic nitrogen cycling were enriched in the intermediate water mass suggesting that microbes in this water mass may be important to the nitrogen cycle of the Eastern Mediterranean. The Eastern Mediterranean also contains numerous active hydrocarbon seeps. We sampled above the North Alex Mud Volcano, in order to test the effect of these geological features on the microbial community in the adjacent water column. The community in the waters overlaying the mud volcano was distinct from other communities collected at similar depths and was enriched in known hydrocarbon degrading taxa. Furthermore, our results demonstrate that physical phenomena such stratification as well as geological phenomena such as mud volcanoes strongly affect microbial community structure in the Eastern Mediterranean water column.« less
NASA Technical Reports Server (NTRS)
Hoover, Richard B.; Pikuta, Elena V.
2004-01-01
We model the thermal history of a cometary body, regarded as an assemblage of boulders, dust, ices and organics, as it approaches a perihelion distance of - IAU. The transfer of incident energy h m sunlight into the interior leads to the melting of ices under tens of meters of stable crust, providing possible habitats for a wide range of microorganisms. We consider the icediatoms, snow algae and cyanobacteria, bacteria and yeast of cryoconite communities which are encountered in liquid wafer pools (meltwater) surrounding dark rocks in glaciers and the polar ice sheets as excellent analogs for the microbial ecosystems that might possibly exist on some comets.
Assembling the Marine Metagenome, One Cell at a Time
Woyke, Tanja; Xie, Gary; Copeland, Alex; González, José M.; Han, Cliff; Kiss, Hajnalka; Saw, Jimmy H.; Senin, Pavel; Yang, Chi; Chatterji, Sourav; Cheng, Jan-Fang; Eisen, Jonathan A.; Sieracki, Michael E.; Stepanauskas, Ramunas
2009-01-01
The difficulty associated with the cultivation of most microorganisms and the complexity of natural microbial assemblages, such as marine plankton or human microbiome, hinder genome reconstruction of representative taxa using cultivation or metagenomic approaches. Here we used an alternative, single cell sequencing approach to obtain high-quality genome assemblies of two uncultured, numerically significant marine microorganisms. We employed fluorescence-activated cell sorting and multiple displacement amplification to obtain hundreds of micrograms of genomic DNA from individual, uncultured cells of two marine flavobacteria from the Gulf of Maine that were phylogenetically distant from existing cultured strains. Shotgun sequencing and genome finishing yielded 1.9 Mbp in 17 contigs and 1.5 Mbp in 21 contigs for the two flavobacteria, with estimated genome recoveries of about 91% and 78%, respectively. Only 0.24% of the assembling sequences were contaminants and were removed from further analysis using rigorous quality control. In contrast to all cultured strains of marine flavobacteria, the two single cell genomes were excellent Global Ocean Sampling (GOS) metagenome fragment recruiters, demonstrating their numerical significance in the ocean. The geographic distribution of GOS recruits along the Northwest Atlantic coast coincided with ocean surface currents. Metabolic reconstruction indicated diverse potential energy sources, including biopolymer degradation, proteorhodopsin photometabolism, and hydrogen oxidation. Compared to cultured relatives, the two uncultured flavobacteria have small genome sizes, few non-coding nucleotides, and few paralogous genes, suggesting adaptations to narrow ecological niches. These features may have contributed to the abundance of the two taxa in specific regions of the ocean, and may have hindered their cultivation. We demonstrate the power of single cell DNA sequencing to generate reference genomes of uncultured taxa from a complex microbial community of marine bacterioplankton. A combination of single cell genomics and metagenomics enabled us to analyze the genome content, metabolic adaptations, and biogeography of these taxa. PMID:19390573
Mn cycling in marine biofilms: effect on the rate of localized corrosion.
Dexter, S C; Xu, K; Luther, G L
2003-04-01
Microelectrodes of the Au-Hg amalgam type have been used together with square wave voltammetry to measure profiles of oxygen, peroxide, Fe, Mn and sulfur chemical species through the thickness of natural assemblage marine biofilms grown on stainless steel alloy Nitronic 50 (UNS S20910). The data show Mn+2 and peroxide together at locations where the dissolved oxygen concentration was low. Oxidized species of Fe were also found at some locations. Sulfur species (predominantly S-2) was often found at locations where the dissolved oxygen concentration was below the detectable limit. Confocal scanning laser microscopy was used to image the microbial assemblage at the locations of the chemical profile data. Organisms with a filamentous morphology were found in consortia with rod and coccoidal shaped microbes at locations where dissolved Mn and peroxide were measured. The filamentous forms were usually absent at locations where Mn was not detected. It is suggested that the filamentous organisms may be Mn metabolizers, and that peroxidatic Mn re-oxidation may be taking place within the biofilm.
Tait, R D; Maxon, C L; Parr, T D; Newton, F C
2016-09-15
The effects of linear alpha olefin (LAO) nonaqueous drilling fluid on benthic macrofauna were assessed over a six year period at a southern Caspian Sea petroleum exploration site. A wide-ranging, pre-drilling survey identified a relatively diverse shelf-depth macrofauna numerically dominated by amphipods, cumaceans, and gastropods that transitioned to a less diverse assemblage dominated by hypoxia-tolerant annelid worms and motile ostracods with increasing depth. After drilling, a similar transition in macrofauna assemblage was observed with increasing concentration of LAO proximate to the shelf-depth well site. Post-drilling results were consistent with a hypothesis of hypoxia from microbial degradation of LAO, supported by the presence of bacterial mats and lack of oxygen penetration in surface sediment. Chemical and biological recoveries at ≥200m distance from the well site were evident 33months after drilling ceased. Our findings show the importance of monitoring recovery over time and understanding macrofauna community structure prior to drilling. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Fong, A. A.; Waite, A.; Rost, B.; Richter, K. U.
2016-02-01
Measurements of biological nitrogen fixation are typically conducted in oligotrophic subtropical and tropical marine environments where concentrations of fixed inorganic nitrogen are low. To date, only a handful of nitrogen fixation studies have been conducted in high latitude marine environments, but further investigation is needed to resolve the distribution of cold ocean diazotrophic assemblages. Nitrogen fixation rates and nifH gene distributions were measured at seven stations from 5°E to 20°E, north of 81°N in the Arctic Ocean at the onset of summer 2015. Discrete water samples in ice-covered regions were collected from the sea surface to 200 m for 15N2-tracer additions and targeted nifH gene and transcript analyses. Previous work suggests that heterotrophic bacteria dominate diazotrophic communities in the Arctic Ocean. Therefore, additional nifH gene surveys of sinking particles were conducted to test for enrichment on organic matter-rich microenvironments. Together, these measurements aim to reconcile diazotrophic activity with microbial community composition, further elucidating how nitrogen fixers could impact current concepts in polar carbon and nutrient cycling.
NASA Astrophysics Data System (ADS)
Bonin, Aurélie; Pucéat, Emmanuelle; Vennin, Emmanuelle; Mattioli, Emanuela; Aurell, Marcos; Joachimski, Michael; Barbarin, Nicolas; Laffont, Rémi
2016-01-01
The Early Aptian encountered several crises in neritic and pelagic carbonate production, major perturbations in the carbon cycle, and an oceanic anoxic event (OAE1a). Yet the causal links between these perturbations and climate changes remain poorly understood, partly because temperature records spanning the Early Aptian interval are still scant. We present new δ18O data from well-preserved bivalves from a carbonate platform of the Galve subbasin (Spain) that document a major cooling event postdating most of OAE1a. Our data show that cooling postdates the global platform demise and cannot have triggered this event that occurred during the warmest interval. The warmest temperatures coincide with the time equivalent of OAE1a and with platform biotic assemblages dominated by microbialites at Aliaga as well as on other Tethyan platforms. Coral-dominated assemblages then replace microbialites during the subsequent cooling. Nannoconids are absent during most of the time equivalent of the OAE1a, probably related to the well-known crisis affecting this group. Yet they present a transient recovery in the upper part of this interval with an increase in both size and abundance during the cool interval portion that postdates OAE1a. An evolution toward cooler and drier climatic conditions may have induced the regional change from microbial to coral assemblages as well as nannoconids size and abundance increase by limiting continent-derived input of nutrients.
NASA Astrophysics Data System (ADS)
Levin, Lisa A.; Mendoza, Guillermo F.; Konotchick, Talina; Lee, Raymond
2009-09-01
Hydrothermal fluids passing through sediments create a habitat hypothesized to influence the community structure of infaunal macrobenthos. Here we characterize the density, biomass, species composition, diversity, distributions, lifestyle, and nutritional sources of macroinfauna in hydrothermal sediments in NE and SW Pacific settings, and draw comparisons in search of faunal attributes characteristic of this habitat. There is increasing likelihood that seafloor massive sulfide deposits, associated with active and inactive hydrothermal venting, will be mined commercially. This creates a growing imperative for a more thorough understanding of the structure, dynamics, and resilience of the associated sediment faunas, and has stimulated the research presented here. Macrobenthic assemblages were studied at Manus Basin (1430-1634 m, Papua New Guinea [PNG]) as a function of location (South Su vs. Solwara 1), and hydrothermal activity (active vs. inactive), and at Middle Valley (2406-2411 m, near Juan de Fuca Ridge) as a function of habitat (active clam bed, microbial mat, hot mud, inactive background sediment). The studies conducted in PNG formed part of the environmental impact assessment work for the Solwara 1 Project of Nautilus Minerals Niugini Limited. We hypothesized that hydrothermally active sites should support (a) higher densities and biomass, (b) greater dominance and lower diversity, (c) a higher fraction of deposit feeders, and (d) greater isotopic evidence for chemosynthetic food sources than inactive sites. Manus Basin macrofauna generally had low density (<1000 ind. m -2) and low biomass (0.1-1.07 g m -2), except for the South Su active site, which had higher density (3494 ind. m -2) and biomass (11.94 g m -2), greater dominance (R1D=76%), lower diversity and more spatial (between-core) homogeneity than the Solwara 1 and South Su inactive sites. Dominant taxa at Manus Basin were Spionidae ( Prionospio sp.) in active sediments, and tanaids and deposit-feeding nuculanoid bivalves in active and inactive sediments. At Middle Valley, hot mud sediments supported few animals (1011 ind m -2) and low biomass (1.34 g m -2), while active clam bed sediments supported a high-density (19,984 ind m -2), high-biomass (4.46 g m -2), low-diversity assemblage comprised of largely orbiniid and syllid polychaetes. Microbial mat sediments had the most diverse assemblage (mainly orbiniid, syllid, dorvilleid, and ampharetid polychaetes) with intermediate densities (8191 ind m -2) and high biomass (4.23 g m -2). Fauna at both Manus Basin active sites had heavy δ 13C signatures (-17‰ to -13‰) indicative of chemosynthetic, TCA-cycle microbes at the base of the food chain. In contrast, photosynthesis and sulfide oxidation appear to fuel most of the fauna at Manus Basin inactive sites (δ 13C=-29‰ to -20‰) and Middle Valley active clam beds and microbial mats (δ 13C=-36‰ to -20‰). The two hydrothermal regions, located at opposite ends of the Pacific Ocean, supported different habitats, sharing few taxa at the generic or family level, but both exhibited elevated infaunal density and high dominance at selected sites. Subsurface-deposit feeding and bacterivory were prevalent feeding modes. Both the Manus Basin and Middle Valley assemblages exhibit significant within-region heterogeneity, apparently conferred by variations in hydrothermal activity and associated biogenic habitats.
Einstein-Podolsky-Rosen steering: Its geometric quantification and witness
NASA Astrophysics Data System (ADS)
Ku, Huan-Yu; Chen, Shin-Liang; Budroni, Costantino; Miranowicz, Adam; Chen, Yueh-Nan; Nori, Franco
2018-02-01
We propose a measure of quantum steerability, namely, a convex steering monotone, based on the trace distance between a given assemblage and its corresponding closest assemblage admitting a local-hidden-state (LHS) model. We provide methods to estimate such a quantity, via lower and upper bounds, based on semidefinite programming. One of these upper bounds has a clear geometrical interpretation as a linear function of rescaled Euclidean distances in the Bloch sphere between the normalized quantum states of (i) a given assemblage and (ii) an LHS assemblage. For a qubit-qubit quantum state, these ideas also allow us to visualize various steerability properties of the state in the Bloch sphere via the so-called LHS surface. In particular, some steerability properties can be obtained by comparing such an LHS surface with a corresponding quantum steering ellipsoid. Thus, we propose a witness of steerability corresponding to the difference of the volumes enclosed by these two surfaces. This witness (which reveals the steerability of a quantum state) enables one to find an optimal measurement basis, which can then be used to determine the proposed steering monotone (which describes the steerability of an assemblage) optimized over all mutually unbiased bases.
García-Bonilla, Erika; Brandão, Pedro F B; Pérez, Thierry; Junca, Howard
2018-05-15
Sponges harbor characteristic microbiomes derived from symbiotic relationships shaping their lifestyle and survival. Haliclona fulva is encrusting marine sponge species dwelling in coralligenous accretions or semidark caves of the Mediterranean Sea and the near Atlantic Ocean. In this work, we characterized the abundance and core microbial community composition found in specimens of H. fulva by means of electron microscopy and 16S amplicon Illumina sequencing. We provide evidence of its low microbial abundance (LMA) nature. We found that the H. fulva core microbiome is dominated by sequences belonging to the orders Nitrosomonadales and Cenarchaeales. Seventy percent of the reads assigned to these phylotypes grouped in a very small number of high-frequency operational taxonomic units, representing niche-specific species Cenarchaeum symbiosum and uncultured Betaproteobacteria HF1, a new eubacterial ribotype variant found in H. fulva. The microbial composition of H. fulva is quite distinct from those reported in sponge species of the same Haliclona genus. We also detected evidence of an excretion/capturing loop between these abundant microorganisms and planktonic microbes by analyzing shifts in seawater planktonic microbial content exposed to healthy sponge specimens maintained in aquaria. Our results suggest that horizontal transmission is very likely the main mechanism for symbionts' acquisition by H. fulva. So far, this is the first shallow water sponge species harboring such a specific and predominant assemblage composed of these eubacterial and archaeal ribotypes. Our data suggests that this symbiotic relationship is very stable over time, indicating that the identified core microbial symbionts may play key roles in the holobiont functioning.
Indoor-air microbiome in an urban subway network: diversity and dynamics.
Leung, Marcus H Y; Wilkins, David; Li, Ellen K T; Kong, Fred K F; Lee, Patrick K H
2014-11-01
Subway systems are indispensable for urban societies, but microbiological characteristics of subway aerosols are relatively unknown. Previous studies investigating microbial compositions in subways employed methodologies that underestimated the diversity of microbial exposure for commuters, with little focus on factors governing subway air microbiology, which may have public health implications. Here, a culture-independent approach unraveling the bacterial diversity within the urban subway network in Hong Kong is presented. Aerosol samples from multiple subway lines and outdoor locations were collected. Targeting the 16S rRNA gene V4 region, extensive taxonomic diversity was found, with the most common bacterial genera in the subway environment among those associated with skin. Overall, subway lines harbored different phylogenetic communities based on α- and β-diversity comparisons, and closer inspection suggests that each community within a line is dependent on architectural characteristics, nearby outdoor microbiomes, and connectedness with other lines. Microbial diversities and assemblages also varied depending on the day sampled, as well as the time of day, and changes in microbial communities between peak and nonpeak commuting hours were attributed largely to increases in skin-associated genera in peak samples. Microbial diversities within the subway were influenced by temperature and relative humidity, while carbon dioxide levels showed a positive correlation with abundances of commuter-associated genera. This Hong Kong data set and communities from previous studies conducted in the United States formed distinct community clusters, indicating that additional work is required to unravel the mechanisms that shape subway microbiomes around the globe. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
NASA Astrophysics Data System (ADS)
Hatton, Pierre-Joseph; Remusat, Laurent; Brewer, Elizabeth; Derrien, Delphine
2014-05-01
While soil microorganisms are increasingly seen as shaping stable soil organic matter (OM) formation, the mechanisms controlling the attachment of microbial metabolites to soil particles are not fully understood yet. We investigate the spatial distribution of freshly produced microbial products among density-isolated fractions of soil using stable C and N isotopes and Nano-scale secondary ion mass spectrometry (NanoSIMS). A surface forest soil was amended with uniformly 13C/15N labeled glycine and incubated for 8 hours in gamma-irradiated and non-sterile soils. Sequential density fractionation was then performed to isolate various classes of aggregates and of single mineral particles. Eight hours after the labeled glycine addition, 7 % of the 13C and 15N was tightly bound to soil assemblages. Comparison of sterile and non-sterile treatments revealed that microbial activity was almost completely responsible for this rapid association (>85 %). The distributions of glycine-derived 13C and 15N, considered as markers of new microbial products, were mapped on particles of the non-sterile treatment using NanoSIMS. New microbial products were heterogeneously distributed and spatially decoupled at the surface of on soil particles. 13C microbial products were scarce and presumably within or in the vicinity of microbial cells. In contrast, 15N microbial products seemed evenly spread at the surface of soil particles, likely as soluble exoenzymes diffusing away from their parent cell. Macroscopic measurements among density fractions suggested that the diffusion of such 15N microbial products was spatially limited yet, because of pore space architecture. NanoSIMS images further allowed gaining insight into the attachment of the new microbial products on particle surfaces already covered by OM, in a multilayer fashion. Using an internal calibration method to determine C/N ratios of NanoSIMS images, we showed the preferential attachment of soluble microbial N-metabolites to N-rich mineral-attached OM (C/N ratios mostly < 16). Exceptions were found in dense particles, supposed to contained aluminium and iron (hydr)oxides, with the microbial N-metabolites apparently preferentially attached to C-rich mineral-attached OM (C/N ratios > 80). This work provided visual evidences that the attachment of new microbial products to the soil matrix is mediated by distinct processes for N-rich and C-rich metabolites. It also demonstrated that the pore space architecture has impact on the formation of stable OM by limiting the diffusion of soluble microbial metabolites and their access to reactive and stabilising surfaces.
Thompson, Robert S.; Anderson, Katherine H.; Pelltier, Richard T.; Strickland, Laura E.; Shafer, Sarah L.; Bartlein, Patrick J.
2012-01-01
Vegetation inventories (plant taxa present in a vegetation assemblage at a given site) can be used to estimate climatic parameters based on the identification of the range of a given parameter where all taxa in an assemblage overlap ("Mutual Climatic Range"). For the reconstruction of past climates from fossil or subfossil plant assemblages, we assembled the data necessary for such analyses for 530 woody plant taxa and eight climatic parameters in North America. Here we present examples of how these data can be used to obtain paleoclimatic estimates from botanical data in a straightforward, simple, and robust fashion. We also include matrices of climate parameter versus occurrence or nonoccurrence of the individual taxa. These relations are depicted graphically as histograms of the population distributions of the occurrences of a given taxon plotted against a given climatic parameter. This provides a new method for quantification of paleoclimatic parameters from fossil plant assemblages.
NASA Astrophysics Data System (ADS)
Diaz, Frédéric; Naudin, Jean-Jacques; Courties, Claude; Rimmelin, Peggy; Oriol, Louise
2008-07-01
A quasi-synoptic survey of a eulerian small grid was carried out twice during mid-spring 2002 in the Gulf of Lions, NW Mediterranean Sea. Analysis of hydrological core parameters reveal for the first time, in the region of freshwater influence (ROFI) of the Rhone River, the presence of low-salinity water (LSW) lenses. The present work details the biogeochemical and ecological functioning of the two LSW lenses from a combined analysis of nutrients and organic matter content, taxonomic assemblages of phytoplankton, primary productivity measurements and nitrogen regeneration fluxes. During the first survey, the lens observed is only detached in part from the Rhone River plume and is considered as a juvenile lens. In contrast, the second lens is totally detached from the plume forming a confined 3D structure with a large vertical development and is considered as having a more advanced maturity. A second survey, 4 days later, provided the opportunity to propose a complete sequence of ecological functioning of the LSW lenses, from their formation to a late stage of maturity just before dispersion. Nitrate contents and dissolved organic matter remain in high concentrations during the juvenile stages while the little available phosphate is rapidly exhausted. In such, an unbalanced-nutrient environment picoplankton appear to out-compete bacterioplankton for phosphate and other resources such as ammonium. In turn, the dominance of such prokaryotic assemblages could have involved the rapid development of microzooplankton. The sudden increase in phosphate observed in a more advanced stage of lens maturity is attributed to intense P-regeneration driven by the large abundance of microzooplankton. This top-down control does not seem to enable the prokaryotic assemblages to bloom again but the high concentrations of phosphate and nitrate favour the development of larger phytoplankton. These autotrophic communities rapidly exhaust nutrients and then decline in the confined ecosystem of the LSW lens that subsequently evolves towards oligotrophic conditions. In the observed last stage, small-sized phytoplankton again dominates the microbial assemblages and the trophic regime is mainly based on regenerated production. The long lifetime of the LSW lens compared to that of the Rhone River plume enables a deep transformation of the initial characteristics of the Rhone River freshwaters both in terms of nutrients balance and microbial food webs, especially through trophic cascading effects. Hence, we show that the LSW lenses have the potential to transfer nutrients and organic matter offshore but the nature (inorganic vs. organic) of the dominant compound exported will depend on the maturity of the lens at the time of its dispersion.
NASA Astrophysics Data System (ADS)
Polley, W.; Derner, J. D.; Jackson, R. B.; Gill, R. A.; Procter, A.; Fay, P. A.
2014-12-01
Rising atmospheric CO2 concentration may change the isotopic signature of plant N by altering plant and microbial processes involved in the N cycle. Isotope fractionation theory and limited experimental evidence indicate that CO2 may increase leaf δ15N by increasing plant community productivity, C input to soil, and, ultimately, microbial mineralization of old, 15N-enriched organic matter. We predicted that foliar δ15N values would increase as a positive function of the CO2 effect on aboveground productivity (ANPP) of two grassland communities, a pasture dominated by a C4 exotic grass and assemblages of native tallgrass prairie species, the latter grown on each of three soils, a clay, sandy loam, and silty clay. Both grasslands are located in Texas, USA and were exposed to a pre-industrial to elevated CO2 gradient for four years. CO2 enrichment did not consistently increase both ANPP and δ15N. Increased CO2 stimulated ANPP of pasture and of prairie assemblages on each of the three soils. However, CO2 increased leaf δ15N only for prairie plants grown on a silty clay soil. CO2 enrichment led to a shift in dominance from a mid-grass (Bouteloua curtipendula) to a tallgrass prairie species (Sorghastrum nutans) that contributed to increased leaf δ15N on the silty clay soil by increasing ANPP and apparently stimulating mineralization of recalcitrant organic matter. By contrast, CO2 enrichment favored a forb species (Solanum dimidiatum) with higher δ15N values than the dominant grass (Bothriochloa ischaemum) in pasture. Results highlight the role of changes in community composition in CO2 effects on grassland δ15N values.
Wood, R; Curtis, A
2015-03-01
We describe new, ecologically complex reef types from the Ediacaran Nama Group, Namibia, dated at ~548 million years ago (Ma), where the earliest known skeletal metazoans, Cloudina riemkeae and Namacalathus, formed extensive reefs up to 20 m in height and width. C. riemkeae formed densely aggregating assemblages associated with microbialite and thrombolite, each from 30 to 100 mm high, which successively colonised former generations to create stacked laminar or columnar reef frameworks. C. riemkeae individuals show budding, multiple, radiating attachment sites and cementation between individuals. Isolated Namacalathus either intergrew with C. riemkeae or formed dense, monospecific aggregations succeeding C. riemkeae frameworks, providing a potential example of environmentally mediated ecological succession. Cloudina and Namacalathus also grow cryptically, either as pendent aggregations from laminar crypt ceilings in microbial framework reefs or as clusters associated with thrombolite attached to neptunian dyke walls. These reefs are notable for their size, exceeding that of the succeeding Lower Cambrian archaeocyath-microbial communities. The repeated colonisation shown by C. riemkeae of former assemblages implies philopatric larval aggregation to colonise limited favourable substrates. As such, not only were skeletal metazoans more important contributors to reef building in the Ediacaran, but there were also more variable reef types with more complex ecologies, than previously thought. Such an abundance of inferred suspension feeders with biomineralised skeletons indicates the efficient exploitation of new resources, more active carbon removal with a strengthened energy flow between planktic and benthic realms, and the rise of biological control over benthic carbonate production. These mark the prelude to the Cambrian Explosion and the modernisation of the global carbon cycle. © 2014 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Barretto, K. M.; Kalmbach, A. J.; de la Torre, J. R.; Falcón, L. I.; Carpenter, E. J.
2016-02-01
The McMurdo Dry Valleys (MDV) in Antarctica present unique research opportunities, both because of the understudied biogeochemical impact of their microbial communities, and their sensitivity to climate change. Despite harsh desiccation, pH, and salinity stress, summer glacial melt water supports life in the MDV in the form of algal mats. These mat communities are complex in structure, with a network of dominant cyanobacteria interspersed with heterotrophic diazotrophs, smaller photoautotrophs, and thick extracellular polymeric substances. Due to their complexity, standard microscopy yields a limited understanding of community assemblages. Our previous high throughput sequencing (HTS) approaches focusing on 16S rRNA have profiled communities with understudied photosynthetic phyla such as Acidobacteria, Gemmatimonadetes, and Chloroflexi. To characterize these phototrophic communities, we are interested in (1) understanding their temporal dynamics and how the dominant cyanobacterial species influence community composition, (2) modeling how pH, nutrients, soil wetness, and temperature act as multivariate drivers of community composition, and (3) establishing a pipeline for HTS of the rbcL gene - which encodes the large subunit of the ubiquitous photosynthetic protein RuBisCO. Our initial screening of community DNA from MDV algal mats has shown the presence of Form IA, IB, and IC cbbL (an rbcL ortholog), and Form ID rbcL - indicating a relatively high degree of photoautotrophic diversity. Soil wetness drives anoxic conditions and we see that it shifts overall microbial composition - we expect photoautotrophs to respond similarly. We also expect photoautotrophic assemblages to shift with pH and soil nutrients. Our deep sequencing efforts suggest an inconsistency between indexing primers and algal DNA that could underestimate cyanobacterial and overestimate eukaryotic abundance. Resolving these issues with new approaches will allow us to more fully understand the dynamics of the MDV.
NASA Astrophysics Data System (ADS)
Hamilton, T. L.; Havig, J. R.
2016-12-01
The majority of geomicrobiological research conducted on glacial systems to date have focused on glaciers that override primarily carbonate or granitic bedrock types, with little known of the processes that support microbial life in glacial systems overriding volcanic terrains (e.g., basalt or andesite). To better constrain the role of the supraglacial ecosystems in the carbon and nitrogen cycles, to gain insight into microbiome composition and function in alpine glacial systems overriding volcanic terrains, and to constrain potential elemental sequestration or release through weathering processes associated with snow algae communities, we examined the microbial community structure and primary productivity in snow on and near alpine glaciers on stratovolcanoes in the Cascade Range of the Pacific Northwest. Here we present the first published values for carbon fixation rates of snow algae communities on alpine glaciers in the Pacific Northwest. We observed varying levels of light-dependent carbon fixation on snowfields on or near glaciers on Mt Hood, Mt Adams and North Sister. Recovery of algal 18S rRNA transcripts is consistent with previous studies indicating the majority of primary productivity on snow and ice can be attributed to photoautotrophic algae. In contrast to previous observations of glacial ecosystems, our geochemical, isotopic and microcosm data suggest these assemblages are not limited by phosphorus or fixed nitrogen availability. Furthermore, our data indicate these snow assemblages actively sequester Fe, Mn, and P leached from minerals sourced from the local rocks. Our observations of light-dependent primary productivity on snow are consistent with similar studies in polar ecosystems; however, our data underscore the need for similar studies on glacier surfaces and seasonal snowfields to better constrain the role of local bedrock and nutrient delivery on carbon fixation and biogeochemical cycling in these ecosystems.
Microbial Mat Communities along an Oxygen Gradient in a Perennially Ice-Covered Antarctic Lake.
Jungblut, Anne D; Hawes, Ian; Mackey, Tyler J; Krusor, Megan; Doran, Peter T; Sumner, Dawn Y; Eisen, Jonathan A; Hillman, Colin; Goroncy, Alexander K
2016-01-15
Lake Fryxell is a perennially ice-covered lake in the McMurdo Dry Valleys, Antarctica, with a sharp oxycline in a water column that is density stabilized by a gradient in salt concentration. Dissolved oxygen falls from 20 mg liter(-1) to undetectable over one vertical meter from 8.9- to 9.9-m depth. We provide the first description of the benthic mat community that falls within this oxygen gradient on the sloping floor of the lake, using a combination of micro- and macroscopic morphological descriptions, pigment analysis, and 16S rRNA gene bacterial community analysis. Our work focused on three macroscopic mat morphologies that were associated with different parts of the oxygen gradient: (i) "cuspate pinnacles" in the upper hyperoxic zone, which displayed complex topography and were dominated by phycoerythrin-rich cyanobacteria attributable to the genus Leptolyngbya and a diverse but sparse assemblage of pennate diatoms; (ii) a less topographically complex "ridge-pit" mat located immediately above the oxic-anoxic transition containing Leptolyngbya and an increasing abundance of diatoms; and (iii) flat prostrate mats in the upper anoxic zone, dominated by a green cyanobacterium phylogenetically identified as Phormidium pseudopriestleyi and a single diatom, Diadesmis contenta. Zonation of bacteria was by lake depth and by depth into individual mats. Deeper mats had higher abundances of bacteriochlorophylls and anoxygenic phototrophs, including Chlorobi and Chloroflexi. This suggests that microbial communities form assemblages specific to niche-like locations. Mat morphologies, underpinned by cyanobacterial and diatom composition, are the result of local habitat conditions likely defined by irradiance and oxygen and sulfide concentrations. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Polley, H Wayne; Derner, Justin D; Jackson, Robert B; Gill, Richard A; Procter, Andrew C; Fay, Philip A
2015-06-01
Rising atmospheric CO2 concentration may change the isotopic signature of plant N by altering plant and microbial processes involved in the N cycle. CO2 may increase leaf δ(15)N by increasing plant community productivity, C input to soil, and, ultimately, microbial mineralization of old, (15)N-enriched organic matter. We predicted that CO2 would increase aboveground productivity (ANPP; g biomass m(-2)) and foliar δ(15)N values of two grassland communities in Texas, USA: (1) a pasture dominated by a C4 exotic grass, and (2) assemblages of tallgrass prairie species, the latter grown on clay, sandy loam, and silty clay soils. Grasslands were exposed in separate experiments to a pre-industrial to elevated CO2 gradient for 4 years. CO2 stimulated ANPP of pasture and of prairie assemblages on each of the three soils, but increased leaf δ(15)N only for prairie plants on a silty clay. δ(15)N increased linearly as mineral-associated soil C declined on the silty clay. Mineral-associated C declined as ANPP increased. Structural equation modeling indicted that CO2 increased ANPP partly by favoring a tallgrass (Sorghastrum nutans) over a mid-grass species (Bouteloua curtipendula). CO2 may have increased foliar δ(15)N on the silty clay by reducing fractionation during N uptake and assimilation. However, we interpret the soil-specific, δ(15)N-CO2 response as resulting from increased ANPP that stimulated mineralization from recalcitrant organic matter. By contrast, CO2 favored a forb species (Solanum dimidiatum) with higher δ(15)N than the dominant grass (Bothriochloa ischaemum) in pasture. CO2 enrichment changed grassland δ(15)N by shifting species relative abundances.
Alt, J.C.; Shanks, Wayne C.
1998-01-01
The mineralogy, contents, and isotopic compositions of sulfur in oceanic serpentinites reflect variations in temperatures and fluid fluxes. Serpentinization of <1 Ma peridotites at Hess Deep occurred at high temperatures (200??-400??C) and low water/rock ratios. Oxidation of ferrous iron to magnetite maintained low fO2and produced a reduced, low-sulfur assemblage including NiFe alloy. Small amounts of sulfate reduction by thermophilic microbes occurred as the system cooled, producing low-??34S sulfide (1.5??? to -23.7???). In contrast, serpentinization of Iberian Margin peridotites occurred at low temperatures (???20??-200??C) and high water/rock ratios. Complete serpentinization and consumption of ferrous iron allowed evolution to higher fO2. Microbial reduction of seawater sulfate resulted in addition of low-??34S sulfide (-15 to -43???) and formation of higher-sulfur assemblages that include valleriite and pyrite. The high SO4/total S ratio of Hess Deep serpentinites (0.89) results in an increase of total sulfur and high ??34S of total sulfur (mean ??? 8???). In contrast, Iberian Margin serpentinites gained large amounts of 34S-poor sulfide (mean total S = 3800 ppm), and the high sulfide/total S ratio (0.61) results in a net decrease in ??34S of total sulfur (mean ??? -5???). Thus serpentinization is a net sink for seawater sulfur, but the amount fixed and its isotopic composition vary significantly. Serpentinization may result in uptake of 0.4-14 ?? 1012 g S yr-1 from the oceans, comparable to isotopic exchange in mafic rocks of seafloor hydrothermal systems and approaching global fluxes of riverine sulfate input and sedimentary sulfide output.
Wang, Yu; Zhang, Rui; He, Zhili; Van Nostrand, Joy D.; Zheng, Qiang; Zhou, Jizhong; Jiao, Nianzhi
2017-01-01
Microbes play crucial roles in various biogeochemical processes in the ocean, including carbon (C), nitrogen (N), and phosphorus (P) cycling. Functional gene diversity and the structure of the microbial community determines its metabolic potential and therefore its ecological function in the marine ecosystem. However, little is known about the functional gene composition and metabolic potential of bacterioplankton in estuary areas. The East China Sea (ECS) is a dynamic marginal ecosystem in the western Pacific Ocean that is mainly affected by input from the Changjiang River and the Kuroshio Current. Here, using a high-throughput functional gene microarray (GeoChip), we analyzed the functional gene diversity, composition, structure, and metabolic potential of microbial assemblages in different ECS water masses. Four water masses determined by temperature and salinity relationship showed different patterns of functional gene diversity and composition. Generally, functional gene diversity [Shannon–Weaner’s H and reciprocal of Simpson’s 1/(1-D)] in the surface water masses was higher than that in the bottom water masses. The different presence and proportion of functional genes involved in C, N, and P cycling among the bacteria of the different water masses showed different metabolic preferences of the microbial populations in the ECS. Genes involved in starch metabolism (amyA and nplT) showed higher proportion in microbial communities of the surface water masses than of the bottom water masses. In contrast, a higher proportion of genes involved in chitin degradation was observed in microorganisms of the bottom water masses. Moreover, we found a higher proportion of nitrogen fixation (nifH), transformation of hydroxylamine to nitrite (hao) and ammonification (gdh) genes in the microbial communities of the bottom water masses compared with those of the surface water masses. The spatial variation of microbial functional genes was significantly correlated with salinity, temperature, and chlorophyll based on canonical correspondence analysis, suggesting a significant influence of hydrologic conditions on water microbial communities. Our data provide new insights into better understanding of the functional potential of microbial communities in the complex estuarine-coastal environmental gradient of the ECS. PMID:28680420
Understanding the holobiont: the interdependence of plants and their microbiome.
Sánchez-Cañizares, Carmen; Jorrín, Beatriz; Poole, Philip S; Tkacz, Andrzej
2017-08-01
The holobiont is composed by the plant and its microbiome. In a similar way to ecological systems of higher organisms, the holobiont shows interdependent and complex dynamics [1,2]. While plants originate from seeds, the microbiome has a multitude of sources. The assemblage of these communities depends on the interaction between the emerging seedling and its surrounding environment, with soil being the main source. These microbial communities are controlled by the plant through different strategies, such as the specific profile of root exudates and its immune system. Despite this control, the microbiome is still able to adapt and thrive. The molecular knowledge behind these interactions and microbial '-omic' technologies are developing to the point of enabling holobiont engineering. For a long time microorganisms were in the background of plant biology but new multidisciplinary approaches have led to an appreciation of the importance of the holobiont, where plants and microbes are interdependent. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Ciliates in chalk-stream habitats congregate in biodiversity hot spots.
Bradley, Mark W; Esteban, Genoveva F; Finlay, Bland J
2010-09-01
Free-living ciliates are a diverse group of microbial eukaryotes that inhabit aquatic environments. They have a vital role within the 'microbial loop', being consumers of microscopic prey such as bacteria, micro-algae, and flagellates, and representing a link between the microscopic and macroscopic components of aquatic food webs. This investigation describes the ciliate communities of four habitats located in the catchment of the River Frome, the major chalk-stream in southern Britain. The ciliate communities were characterised in terms of community assemblage, species abundance and size classes. The ciliate communities investigated proved to be highly diverse, yielding a total of 114 active species. An additional 15 'cryptic' ciliate species were also uncovered. Heterogeneity in the ciliate communities was evident at multiple spatial scales, revealing hot spots of species richness, both within and between habitats. The ciliate communities of habitats with flowing water were composed of smaller ciliates compared to the still-water habitats examined. Copyright 2010 Elsevier Masson SAS. All rights reserved.
Jaraula, Caroline M B; Kenig, Fabien; Doran, Peter T; Priscu, John C; Welch, Kathleen A
2009-04-15
A helicopter crashed in January 2003 on the 5 m-thick perennial ice cover of Lake Fryxell, spilling synthetic turbine oil Aeroshell 500. Molecular compositions of the oils were analyzed by gas chromatography-mass spectrometry and compared to the composition of contaminants in ice, meltwater, and sediments collected a year after the accident. Aeroshell 500 is based on C20-C33 Pentaerythritol triesters (PET) with C5-C10 fatty acids susbstituents and contain a number of antioxidant additives, such as tricresyl phosphates. Biodegradation of this oil in the ice cover occurs when sediments are present PETs with short fatty acids substituents are preferentially degraded, whereas long chain fatty acids seem to hinder esters from hydrolysis by esterase derived from the microbial assemblage. It remains to be seen if the microbial ecosystem can degrade tricresyl phosphates. These more recalcitrant PET species and tricresyl phosphates are likely to persist and comprise the contaminants that may eventually cross the ice cover to reach the pristine lake water.
Techtmann, Stephen M.; Fortney, Julian L.; Ayers, Kati A.; ...
2015-03-25
The waters of the Eastern Mediterranean are characterized by unique physical and chemical properties within separate water masses occupying different depths. Distinct water masses are present throughout the oceans, which drive thermohaline circulation. These water masses may contain specific microbial assemblages. The goal of this study was to examine the effect of physical and geological phenomena on the microbial community of the Eastern Mediterranean water column. Chemical measurements were combined with phospholipid fatty acid (PLFA) analysis and high-throughput 16S rRNA sequencing to characterize the microbial community in the water column at five sites. We demonstrate that the chemistry and microbialmore » community of the water column were stratified into three distinct water masses. The salinity and nutrient concentrations vary between these water masses. Nutrient concentrations increased with depth, and salinity was highest in the intermediate water mass. Our PLFA analysis indicated different lipid classes were abundant in each water mass, suggesting that distinct groups of microbes inhabit these water masses. 16S rRNA gene sequencing confirmed the presence of distinct microbial communities in each water mass. Taxa involved in autotrophic nitrogen cycling were enriched in the intermediate water mass suggesting that microbes in this water mass may be important to the nitrogen cycle of the Eastern Mediterranean. The Eastern Mediterranean also contains numerous active hydrocarbon seeps. We sampled above the North Alex Mud Volcano, in order to test the effect of these geological features on the microbial community in the adjacent water column. The community in the waters overlaying the mud volcano was distinct from other communities collected at similar depths and was enriched in known hydrocarbon degrading taxa. Furthermore, our results demonstrate that physical phenomena such stratification as well as geological phenomena such as mud volcanoes strongly affect microbial community structure in the Eastern Mediterranean water column.« less
Beaton, E. D.; Stevenson, Bradley S.; King-Sharp, Karen J.; Stamps, Blake W.; Nunn, Heather S.; Stuart, Marilyne
2016-01-01
Microorganisms found in terrestrial subsurface environments make up a large proportion of the Earth’s biomass. Biogeochemical cycles catalyzed by subsurface microbes have the potential to influence the speciation and transport of radionuclides managed in geological repositories. To gain insight on factors that constrain microbial processes within a formation with restricted groundwater flow we performed a meta-community analysis on groundwater collected from multiple discrete fractures underlying the Chalk River Laboratories site (located in Ontario, Canada). Bacterial taxa were numerically dominant in the groundwater. Although these were mainly uncultured, the closest cultivated representatives were from the phenotypically diverse Betaproteobacteria, Deltaproteobacteria, Bacteroidetes, Actinobacteria, Nitrospirae, and Firmicutes. Hundreds of taxa were identified but only a few were found in abundance (>1%) across all assemblages. The remainder of the taxa were low abundance. Within an ecological framework of selection, dispersal and drift, the local and regional diversity revealed fewer taxa within each assemblage relative to the meta-community, but the taxa that were present were more related than predicted by chance. The combination of dispersion at one phylogenetic depth and clustering at another phylogenetic depth suggest both niche (dispersion) and filtering (clustering) as drivers of local assembly. Distance decay of similarity reveals apparent biogeography of 1.5 km. Beta diversity revealed greater influence of selection at shallow sampling locations while the influences of dispersal limitation and randomness were greater at deeper sampling locations. Although selection has shaped each assemblage, the spatial scale of groundwater sampling favored detection of neutral processes over selective processes. Dispersal limitation between assemblages combined with local selection means the meta-community is subject to drift, and therefore, likely reflects the differential historical events that have influenced the current bacterial composition. Categorizing the study site into smaller regions of interest of more closely spaced fractures, or of potentially hydraulically connected fractures, might improve the resolution of an analysis to reveal environmental influences that have shaped these bacterial communities. PMID:27999569
Beaton, E D; Stevenson, Bradley S; King-Sharp, Karen J; Stamps, Blake W; Nunn, Heather S; Stuart, Marilyne
2016-01-01
Microorganisms found in terrestrial subsurface environments make up a large proportion of the Earth's biomass. Biogeochemical cycles catalyzed by subsurface microbes have the potential to influence the speciation and transport of radionuclides managed in geological repositories. To gain insight on factors that constrain microbial processes within a formation with restricted groundwater flow we performed a meta-community analysis on groundwater collected from multiple discrete fractures underlying the Chalk River Laboratories site (located in Ontario, Canada). Bacterial taxa were numerically dominant in the groundwater. Although these were mainly uncultured, the closest cultivated representatives were from the phenotypically diverse Betaproteobacteria, Deltaproteobacteria, Bacteroidetes, Actinobacteria, Nitrospirae, and Firmicutes. Hundreds of taxa were identified but only a few were found in abundance (>1%) across all assemblages. The remainder of the taxa were low abundance. Within an ecological framework of selection, dispersal and drift, the local and regional diversity revealed fewer taxa within each assemblage relative to the meta-community, but the taxa that were present were more related than predicted by chance. The combination of dispersion at one phylogenetic depth and clustering at another phylogenetic depth suggest both niche (dispersion) and filtering (clustering) as drivers of local assembly. Distance decay of similarity reveals apparent biogeography of 1.5 km. Beta diversity revealed greater influence of selection at shallow sampling locations while the influences of dispersal limitation and randomness were greater at deeper sampling locations. Although selection has shaped each assemblage, the spatial scale of groundwater sampling favored detection of neutral processes over selective processes. Dispersal limitation between assemblages combined with local selection means the meta-community is subject to drift, and therefore, likely reflects the differential historical events that have influenced the current bacterial composition. Categorizing the study site into smaller regions of interest of more closely spaced fractures, or of potentially hydraulically connected fractures, might improve the resolution of an analysis to reveal environmental influences that have shaped these bacterial communities.
NASA Astrophysics Data System (ADS)
Ling, Y.; Lin, L.; Wang, P.; Sun, C.
2009-12-01
In subsurface environments, the mineralization of organic carbon involves complex interactions among geological and microbial processes. As the most reduced form and the shortest hydrocarbon chain, methane, is the final product of both microbial degradation and thermal-cracking of organic matter, it serves as the connection of carbon cycles between different reservoirs. Of various mechanisms for methane formation, microbial methane constitutes 85% of the total methane inventory investigated by far. However, the mechanisms and resultant carbon isotope fingerprints of methanogenesis in environments still remained largely unknown. The types of precursors and temperature might be the most critical factors governing methanogenesis. Lots of studies have been investigating the mechanisms responsible for methanogenesis by pure cultures, but it still remains obscure with regard to which precursors are predominantly utilized by methanogens in natural settings. The effect of temperature is especially prominent for anoxic sediments within which the temperature increases with depth in accordance with the local geotherm. Commonly observed temperatures for methanogenesis span from ambient temperature to 90OC, a temperature range for most diagenetic reactions. In order to address how different precursors would be activated for microbially catalytic methane formation upon different temperatures, we incubated the sediments collected from Kuan-Tzu-Ling hot spring at temperatures up to 90OC. Five precursors including acetate, formate, methanol, methylamine, and hydrogen were added with the inocula to stimulate methanogenesis and inhibit fermentation, and were monitored together with methane production through time. Results of this experiments indicated that methanogenesis was positive at temperatures from room temperature to 80OC and precursors investigated despite substantial variations in the maximum rates and yields. In the experiment supplied with hydrogen and formate, methanogenic rates were rapid at all temperatures. Maximum methane production rates occurred at 40~50OC for incubations with methanol, 40~60OC for incubation with acetate, and 50OC for those with methylamine. The patterns of carbon isotopic compositions on methane were either consistent with the prediction of the Rayleigh fractionation in a closed system, trending toward more depleted through time or invariant through time, suggesting variable physiological responses and microbial assemblages to precursor additions. The obtained ɛ values were 0~-12‰ for incubations with acetate, -16~-45‰ for incubations with hydrogen, -50~-80‰ for incubations with methanol, and -87~-115‰ for incubations with methylamine. Acetoclastic methanogenesis appears to fractionate carbon isotopes at the smallest magnitude. This when combined with the results from positive controls and the field observation suggests that acetoclastic methanogenesis produced methane with isotopic signatures comparable with those with thermogenic in origin and contributed significantly to the total methane inventory in the Kuan-Tzu-Ling hotspring area.
Oceanographic structure drives the assembly processes of microbial eukaryotic communities.
Monier, Adam; Comte, Jérôme; Babin, Marcel; Forest, Alexandre; Matsuoka, Atsushi; Lovejoy, Connie
2015-03-17
Arctic Ocean microbial eukaryote phytoplankton form subsurface chlorophyll maximum (SCM), where much of the annual summer production occurs. This SCM is particularly persistent in the Western Arctic Ocean, which is strongly salinity stratified. The recent loss of multiyear sea ice and increased particulate-rich river discharge in the Arctic Ocean results in a greater volume of fresher water that may displace nutrient-rich saltier waters to deeper depths and decrease light penetration in areas affected by river discharge. Here, we surveyed microbial eukaryotic assemblages in the surface waters, and within and below the SCM. In most samples, we detected the pronounced SCM that usually occurs at the interface of the upper mixed layer and Pacific Summer Water (PSW). Poorly developed SCM was seen under two conditions, one above PSW and associated with a downwelling eddy, and the second in a region influenced by the Mackenzie River plume. Four phylogenetically distinct communities were identified: surface, pronounced SCM, weak SCM and a deeper community just below the SCM. Distance-decay relationships and phylogenetic structure suggested distinct ecological processes operating within these communities. In the pronounced SCM, picophytoplanktons were prevalent and community assembly was attributed to water mass history. In contrast, environmental filtering impacted the composition of the weak SCM communities, where heterotrophic Picozoa were more numerous. These results imply that displacement of Pacific waters to greater depth and increased terrigenous input may act as a control on SCM development and result in lower net summer primary production with a more heterotroph dominated eukaryotic microbial community.
Casey, Jordan M.; Ainsworth, Tracy D.; Choat, J. Howard; Connolly, Sean R.
2014-01-01
Microbial community structure on coral reefs is strongly influenced by coral–algae interactions; however, the extent to which this influence is mediated by fishes is unknown. By excluding fleshy macroalgae, cultivating palatable filamentous algae and engaging in frequent aggression to protect resources, territorial damselfish (f. Pomacentridae), such as Stegastes, mediate macro-benthic dynamics on coral reefs and may significantly influence microbial communities. To elucidate how Stegastes apicalis and Stegastes nigricans may alter benthic microbial assemblages and coral health, we determined the benthic community composition (epilithic algal matrix and prokaryotes) and coral disease prevalence inside and outside of damselfish territories in the Great Barrier Reef, Australia. 16S rDNA sequencing revealed distinct bacterial communities associated with turf algae and a two to three times greater relative abundance of phylotypes with high sequence similarity to potential coral pathogens inside Stegastes's territories. These potentially pathogenic phylotypes (totalling 30.04% of the community) were found to have high sequence similarity to those amplified from black band disease (BBD) and disease affected corals worldwide. Disease surveys further revealed a significantly higher occurrence of BBD inside S. nigricans's territories. These findings demonstrate the first link between fish behaviour, reservoirs of potential coral disease pathogens and the prevalence of coral disease. PMID:24966320
Beloqui, Ana; Nechitaylo, Taras Y.; López-Cortés, Nieves; Ghazi, Azam; Guazzaroni, María-Eugenia; Polaina, Julio; Strittmatter, Axel W.; Reva, Oleg; Waliczek, Agnes; Yakimov, Michail M.; Golyshina, Olga V.; Ferrer, Manuel; Golyshin, Peter N.
2010-01-01
The guts and casts of earthworms contain microbial assemblages that process large amounts of organic polymeric substrates from plant litter and soil; however, the enzymatic potential of these microbial communities remains largely unexplored. In the present work, we retrieved carbohydrate-modifying enzymes through the activity screening of metagenomic fosmid libraries from cellulose-depleting microbial communities established with the fresh casts of two earthworm species, Aporrectodea caliginosa and Lumbricus terrestris, as inocula. Eight glycosyl hydrolases (GHs) from the A. caliginosa-derived community were multidomain endo-β-glucanases, β-glucosidases, β-cellobiohydrolases, β-galactosidase, and β-xylosidases of known GH families. In contrast, two GHs derived from the L. terrestris microbiome had no similarity to any known GHs and represented two novel families of β-galactosidases/α-arabinopyranosidases. Members of these families were annotated in public databases as conserved hypothetical proteins, with one being structurally related to isomerases/dehydratases. This study provides insight into their biochemistry, domain structures, and active-site architecture. The two communities were similar in bacterial composition but significantly different with regard to their eukaryotic inhabitants. Further sequence analysis of fosmids and plasmids bearing the GH-encoding genes, along with oligonucleotide usage pattern analysis, suggested that those apparently originated from Gammaproteobacteria (pseudomonads and Cellvibrio-like organisms), Betaproteobacteria (Comamonadaceae), and Alphaproteobacteria (Rhizobiales). PMID:20622123
Logares, Ramiro; Tesson, Sylvie V M; Canbäck, Björn; Pontarp, Mikael; Hedlund, Katarina; Rengefors, Karin
2018-05-04
Whether or not communities of microbial eukaryotes are structured in the same way as bacteria is a general and poorly explored question in ecology. Here, we investigated this question in a set of planktonic lake microbiotas in Eastern Antarctica that represent a natural community ecology experiment. Most of the analysed lakes emerged from the sea during the last 6,000 years, giving rise to waterbodies that originally contained marine microbiotas and that subsequently evolved into habitats ranging from freshwater to hypersaline. We show that habitat diversification has promoted selection driven by the salinity gradient in bacterial communities (explaining ∼72% of taxa turnover), while microeukaryotic counterparts were predominantly structured by ecological drift (∼72% of the turnover). Nevertheless, we also detected a number of microeukaryotes with specific responses to salinity, indicating that albeit minor, selection has had a role in the structuring of specific members of their communities. In sum, we conclude that microeukaryotes and bacteria inhabiting the same communities can be structured predominantly by different processes. This should be considered in future studies aiming to understand the mechanisms that shape microbial assemblages. This article is protected by copyright. All rights reserved. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.
In situ grazing experiments apply new technology to gain insights into deep-sea microbial food webs
NASA Astrophysics Data System (ADS)
Pachiadaki, Maria G.; Taylor, Craig; Oikonomou, Andreas; Yakimov, Michail M.; Stoeck, Thorsten; Edgcomb, Virginia
2016-07-01
Predation by grazing protists in aquatic habitats can influence prokaryotic community structure and provides a source of new, labile organic matter. Due to methodological difficulties associated with studies of deep-sea (below photic zone) microbiota, trophic interactions between eukaryotes and prokaryotes in mesopelagic and bathypelagic realms are largely obscured. Further complicating matters, examinations of trophic interactions using water samples that have been exposed to upwards of hundreds of atmospheres of pressure change prior to initiating experiments can potentially introduce significant artifacts. Here we present results of the first study of protistan grazing in water layers ranging from the euphotic zone to the bathypelagic, utilizing the Microbial Sampler-Submersible Incubation Device (MS-SID) that makes possible in situ studies of microbial activities. Protistan grazing in the mesopelagic and bathypelagic realm of the East Mediterranean Sea was quantified using fluorescently labeled prokaryotes (FLP) prepared from the naturally-occurring prokaryotic assemblages. These studies reveal daily prokaryotic removal due to grazing ranging from 31.3±5.9% at 40 m depth to 0.5±0.3% at 950 m. At 3540 m depth, where a chemocline habitat exists with abundant and active prokaryotes above Urania basin, the daily consumption of prokaryotes by protists was 19.9±6.6% of the in situ abundance.
Chiu, Chun-Huo; Chao, Anne
2014-01-01
Hill numbers (or the “effective number of species”) are increasingly used to characterize species diversity of an assemblage. This work extends Hill numbers to incorporate species pairwise functional distances calculated from species traits. We derive a parametric class of functional Hill numbers, which quantify “the effective number of equally abundant and (functionally) equally distinct species” in an assemblage. We also propose a class of mean functional diversity (per species), which quantifies the effective sum of functional distances between a fixed species to all other species. The product of the functional Hill number and the mean functional diversity thus quantifies the (total) functional diversity, i.e., the effective total distance between species of the assemblage. The three measures (functional Hill numbers, mean functional diversity and total functional diversity) quantify different aspects of species trait space, and all are based on species abundance and species pairwise functional distances. When all species are equally distinct, our functional Hill numbers reduce to ordinary Hill numbers. When species abundances are not considered or species are equally abundant, our total functional diversity reduces to the sum of all pairwise distances between species of an assemblage. The functional Hill numbers and the mean functional diversity both satisfy a replication principle, implying the total functional diversity satisfies a quadratic replication principle. When there are multiple assemblages defined by the investigator, each of the three measures of the pooled assemblage (gamma) can be multiplicatively decomposed into alpha and beta components, and the two components are independent. The resulting beta component measures pure functional differentiation among assemblages and can be further transformed to obtain several classes of normalized functional similarity (or differentiation) measures, including N-assemblage functional generalizations of the classic Jaccard, Sørensen, Horn and Morisita-Horn similarity indices. The proposed measures are applied to artificial and real data for illustration. PMID:25000299
Chiu, Chun-Huo; Chao, Anne
2014-01-01
Hill numbers (or the "effective number of species") are increasingly used to characterize species diversity of an assemblage. This work extends Hill numbers to incorporate species pairwise functional distances calculated from species traits. We derive a parametric class of functional Hill numbers, which quantify "the effective number of equally abundant and (functionally) equally distinct species" in an assemblage. We also propose a class of mean functional diversity (per species), which quantifies the effective sum of functional distances between a fixed species to all other species. The product of the functional Hill number and the mean functional diversity thus quantifies the (total) functional diversity, i.e., the effective total distance between species of the assemblage. The three measures (functional Hill numbers, mean functional diversity and total functional diversity) quantify different aspects of species trait space, and all are based on species abundance and species pairwise functional distances. When all species are equally distinct, our functional Hill numbers reduce to ordinary Hill numbers. When species abundances are not considered or species are equally abundant, our total functional diversity reduces to the sum of all pairwise distances between species of an assemblage. The functional Hill numbers and the mean functional diversity both satisfy a replication principle, implying the total functional diversity satisfies a quadratic replication principle. When there are multiple assemblages defined by the investigator, each of the three measures of the pooled assemblage (gamma) can be multiplicatively decomposed into alpha and beta components, and the two components are independent. The resulting beta component measures pure functional differentiation among assemblages and can be further transformed to obtain several classes of normalized functional similarity (or differentiation) measures, including N-assemblage functional generalizations of the classic Jaccard, Sørensen, Horn and Morisita-Horn similarity indices. The proposed measures are applied to artificial and real data for illustration.
NASA Astrophysics Data System (ADS)
Kilmer, Brian R.; Eberl, Timothy C.; Cunderla, Brent; Chen, Fei; Clark, Benton C.; Schneegurt, Mark A.
2014-01-01
Hot Lake (Oroville, WA) is an athalassohaline epsomite lake that can have precipitating concentrations of MgSO4 salts, mainly epsomite. Little biotic study has been done on epsomite lakes and it was unclear whether microbes isolated from epsomite lakes and their margins would fall within recognized halotolerant genera, common soil genera or novel phyla. Our initial study cultivated and characterized epsotolerant bacteria from the lake and its margins. Approximately 100 aerobic heterotrophic microbial isolates were obtained by repetitive streak-plating in high-salt media including either 10% NaCl or 2 M MgSO4. The collected isolates were all bacteria, nearly evenly divided between Gram-positive and Gram-negative clades, the most abundant genera being Halomonas, Idiomarina, Marinobacter, Marinococcus, Nesterenkonia, Nocardiopsis and Planococcus. Bacillus, Corynebacterium, Exiguobacterium, Kocuria and Staphylococcus also were cultured. This initial study included culture-independent community analysis of direct DNA extracts of lake margin soil using PCR-based clone libraries and 16S rRNA gene phylogeny. Clones assigned to Gram-positive bacterial clades (70% of total clones) were dominated by sequences related to uncultured actinobacteria. There were abundant Deltaproteobacteria clones related to bacterial sulphur metabolisms and clones of Legionella and Coxiella. These epsomite lake microbial communities seem to be divided between bacteria primarily associated with hyperhaline environments rich in NaCl and salinotolerant relatives of common soil organisms. Archaea appear to be in low abundance and none were isolated, despite near-saturated salinities. Growth of microbes at very high concentrations of magnesium and other sulphates has relevance to planetary protection and life-detection missions to Mars, where scant liquid water may form as deliquescent brines and appear as eutectic liquids.
Küng, Denise; Bigler, Laurent; Davis, Leyla R.; Gratwicke, Brian; Griffith, Edgardo; Woodhams, Douglas C.
2014-01-01
Microbial communities can augment host immune responses and probiotic therapies are under development to prevent or treat diseases of humans, crops, livestock, and wildlife including an emerging fungal disease of amphibians, chytridiomycosis. However, little is known about the stability of host-associated microbiota, or how the microbiota is structured by innate immune factors including antimicrobial peptides (AMPs) abundant in the skin secretions of many amphibians. Thus, conservation medicine including therapies targeting the skin will benefit from investigations of amphibian microbial ecology that provide a model for vertebrate host-symbiont interactions on mucosal surfaces. Here, we tested whether the cutaneous microbiota of Panamanian rocket frogs, Colostethus panamansis, was resistant to colonization or altered by treatment. Under semi-natural outdoor mesocosm conditions in Panama, we exposed frogs to one of three treatments including: (1) probiotic - the potentially beneficial bacterium Lysinibacillus fusiformis, (2) transplant – skin washes from the chytridiomycosis-resistant glass frog Espadarana prosoblepon, and (3) control – sterile water. Microbial assemblages were analyzed by a culture-independent T-RFLP analysis. We found that skin microbiota of C. panamansis was resistant to colonization and did not differ among treatments, but shifted through time in the mesocosms. We describe regulation of host AMPs that may function to maintain microbial community stability. Colonization resistance was metabolically costly and microbe-treated frogs lost 7–12% of body mass. The discovery of strong colonization resistance of skin microbiota suggests a well-regulated, rather than dynamic, host-symbiont relationship, and suggests that probiotic therapies aiming to enhance host immunity may require an approach that circumvents host mechanisms maintaining equilibrium in microbial communities. PMID:24489847
Horrocks, Nicholas P C; Hegemann, Arne; Matson, Kevin D; Hine, Kathryn; Jaquier, Sophie; Shobrak, Mohammed; Williams, Joseph B; Tinbergen, Joost M; Tieleman, B Irene
2012-01-01
Immune defense may vary as a result of trade-offs with other life-history traits or in parallel with variation in antigen levels in the environment. We studied lark species (Alaudidae) in the Arabian Desert and temperate Netherlands to test opposing predictions from these two hypotheses. Based on their slower pace of life, the trade-off hypothesis predicts relatively stronger immune defenses in desert larks compared with temperate larks. However, as predicted by the antigen exposure hypothesis, reduced microbial abundances in deserts should result in desert-living larks having relatively weaker immune defenses. We quantified host-independent and host-dependent microbial abundances of culturable microbes in ambient air and from the surfaces of birds. We measured components of immunity by quantifying concentrations of the acute-phase protein haptoglobin, natural antibody-mediated agglutination titers, complement-mediated lysis titers, and the microbicidal ability of whole blood. Desert-living larks were exposed to significantly lower concentrations of airborne microbes than temperate larks, and densities of some bird-associated microbes were also lower in desert species. Haptoglobin concentrations and lysis titers were also significantly lower in desert-living larks, but other immune indexes did not differ. Thus, contrary to the trade-off hypothesis, we found little evidence that a slow pace of life predicted increased immunological investment. In contrast, and in support of the antigen exposure hypothesis, associations between microbial exposure and some immune indexes were apparent. Measures of antigen exposure, including assessment of host-independent and host-dependent microbial assemblages, can provide novel insights into the mechanisms underlying immunological variation.
Roder, Cornelia; Arif, Chatchanit; Daniels, Camille; Weil, Ernesto; Voolstra, Christian R
2014-01-01
Coral diseases are characterized by microbial community shifts in coral mucus and tissue, but causes and consequences of these changes are vaguely understood due to the complexity and dynamics of coral-associated bacteria. We used 16S rRNA gene microarrays to assay differences in bacterial assemblages of healthy and diseased colonies displaying White Plague Disease (WPD) signs from two closely related Caribbean coral species, Orbicella faveolata and Orbicella franksi. Analysis of differentially abundant operational taxonomic units (OTUs) revealed strong differences between healthy and diseased specimens, but not between coral species. A subsequent comparison to data from two Indo-Pacific coral species (Pavona duerdeni and Porites lutea) revealed distinct microbial community patterns associated with ocean basin, coral species and health state. Coral species were clearly separated by site, but also, the relatedness of the underlying bacterial community structures resembled the phylogenetic relationship of the coral hosts. In diseased samples, bacterial richness increased and putatively opportunistic bacteria were consistently more abundant highlighting the role of opportunistic conditions in structuring microbial community patterns during disease. Our comparative analysis shows that it is possible to derive conserved bacterial footprints of diseased coral holobionts that might help in identifying key bacterial species related to the underlying etiopathology. Furthermore, our data demonstrate that similar-appearing disease phenotypes produce microbial community patterns that are consistent over coral species and oceans, irrespective of the putative underlying pathogen. Consequently, profiling coral diseases by microbial community structure over multiple coral species might allow the development of a comparative disease framework that can inform on cause and relatedness of coral diseases. PMID:24350609
NASA Astrophysics Data System (ADS)
Wang, F.; Liang, Q.
2016-12-01
Marine sediment contains large amount of methane, estimated approximately 500-2500 gigatonnes of dissolved and hydrated methane carbon stored therein, mainly in continental margins. In localized specific areas named cold seeps, hydrocarbon (mainly methane) containing fluids rise to the seafloor, and support oases of ecosystem composed of various microorganisms and faunal assemblages. South China Sea (SCS) is surrounded by passive continental margins in the west and north and convergent margins in the south and east. Thick organic-rich sediments have accumulated in the SCS since the late Mesozoic, which are continuing sources to form gas hydrates in the sediments of SCS. Here, Microbial ecosystems, particularly those involved in methane transformations were investigated in the cold seep areas (Qiongdongnan, Shenhu, and Dongsha) in the northern continental shelf of SCS. Multiple interdisciplinary analytic tools such as stable isotope probing, geochemical analysis, and molecular ecology, were applied for a comprehensive understanding of the microbe mediated methane transformation in this project. A variety of sediments cores have been collected, the geochemical profiles and the associated microbial distribution along the sediment cores were recorded. The major microbial groups involved in the methane transformation in these sediment cores were revealed, known methane producing and oxidizing archaea including Methanosarcinales, anaerobic methane oxidizing groups ANME-1, ANME-2 and their niche preference in the SCS sediments were found. In-depth comparative analysis revealed the presence of SCS-specific archaeal subtypes which probably reflected the evolution and adaptation of these methane metabolizing microbes to the SCS environmental conditions. Our work represents the first comprehensive analysis of the methane metabolizing microbial communities in the cold seep areas along the northern continental shelf of South China Sea, would provide new insight into the mechanisms of methane biotransformation.
Klein, Frieder; Humphris, Susan E; Guo, Weifu; Schubotz, Florence; Schwarzenbach, Esther M; Orsi, William D
2015-09-29
Subseafloor mixing of reduced hydrothermal fluids with seawater is believed to provide the energy and substrates needed to support deep chemolithoautotrophic life in the hydrated oceanic mantle (i.e., serpentinite). However, geosphere-biosphere interactions in serpentinite-hosted subseafloor mixing zones remain poorly constrained. Here we examine fossil microbial communities and fluid mixing processes in the subseafloor of a Cretaceous Lost City-type hydrothermal system at the magma-poor passive Iberia Margin (Ocean Drilling Program Leg 149, Hole 897D). Brucite-calcite mineral assemblages precipitated from mixed fluids ca. 65 m below the Cretaceous paleo-seafloor at temperatures of 31.7 ± 4.3 °C within steep chemical gradients between weathered, carbonate-rich serpentinite breccia and serpentinite. Mixing of oxidized seawater and strongly reducing hydrothermal fluid at moderate temperatures created conditions capable of supporting microbial activity. Dense microbial colonies are fossilized in brucite-calcite veins that are strongly enriched in organic carbon (up to 0.5 wt.% of the total carbon) but depleted in (13)C (δ(13)C(TOC) = -19.4‰). We detected a combination of bacterial diether lipid biomarkers, archaeol, and archaeal tetraethers analogous to those found in carbonate chimneys at the active Lost City hydrothermal field. The exposure of mantle rocks to seawater during the breakup of Pangaea fueled chemolithoautotrophic microbial communities at the Iberia Margin, possibly before the onset of seafloor spreading. Lost City-type serpentinization systems have been discovered at midocean ridges, in forearc settings of subduction zones, and at continental margins. It appears that, wherever they occur, they can support microbial life, even in deep subseafloor environments.
Klein, Frieder; Humphris, Susan E.; Guo, Weifu; Schubotz, Florence; Schwarzenbach, Esther M.; Orsi, William D.
2015-01-01
Subseafloor mixing of reduced hydrothermal fluids with seawater is believed to provide the energy and substrates needed to support deep chemolithoautotrophic life in the hydrated oceanic mantle (i.e., serpentinite). However, geosphere-biosphere interactions in serpentinite-hosted subseafloor mixing zones remain poorly constrained. Here we examine fossil microbial communities and fluid mixing processes in the subseafloor of a Cretaceous Lost City-type hydrothermal system at the magma-poor passive Iberia Margin (Ocean Drilling Program Leg 149, Hole 897D). Brucite−calcite mineral assemblages precipitated from mixed fluids ca. 65 m below the Cretaceous paleo-seafloor at temperatures of 31.7 ± 4.3 °C within steep chemical gradients between weathered, carbonate-rich serpentinite breccia and serpentinite. Mixing of oxidized seawater and strongly reducing hydrothermal fluid at moderate temperatures created conditions capable of supporting microbial activity. Dense microbial colonies are fossilized in brucite−calcite veins that are strongly enriched in organic carbon (up to 0.5 wt.% of the total carbon) but depleted in 13C (δ13CTOC = −19.4‰). We detected a combination of bacterial diether lipid biomarkers, archaeol, and archaeal tetraethers analogous to those found in carbonate chimneys at the active Lost City hydrothermal field. The exposure of mantle rocks to seawater during the breakup of Pangaea fueled chemolithoautotrophic microbial communities at the Iberia Margin, possibly before the onset of seafloor spreading. Lost City-type serpentinization systems have been discovered at midocean ridges, in forearc settings of subduction zones, and at continental margins. It appears that, wherever they occur, they can support microbial life, even in deep subseafloor environments. PMID:26324888
Kumar, Swatantar; Herrmann, Martina; Thamdrup, Bo; Schwab, Valérie F.; Geesink, Patricia; Trumbore, Susan E.; Totsche, Kai-Uwe; Küsel, Kirsten
2017-01-01
Despite the high relevance of anaerobic ammonium oxidation (anammox) for nitrogen loss from marine systems, its relative importance compared to denitrification has less been studied in freshwater ecosystems, and our knowledge is especially scarce for groundwater. Surprisingly, phospholipid fatty acids (PLFA)-based studies identified zones with potentially active anammox bacteria within two superimposed pristine limestone aquifer assemblages of the Hainich Critical Zone Exploratory (CZE; Germany). We found anammox to contribute an estimated 83% to total nitrogen loss in suboxic groundwaters of these aquifer assemblages at rates of 3.5–4.7 nmol L−1 d−1, presumably favored over denitrification by low organic carbon availability. Transcript abundances of hzsA genes encoding hydrazine synthase exceeded nirS and nirK transcript abundances encoding denitrifier nitrite reductase by up to two orders of magnitude, providing further support of a predominance of anammox. Anammox bacteria, dominated by groups closely related to Cand. Brocadia fulgida, constituted up to 10.6% of the groundwater microbial community and were ubiquitously present across the two aquifer assemblages with indication of active anammox bacteria even in the presence of 103 μmol L−1 oxygen. Co-occurrence of hzsA and amoA gene transcripts encoding ammonia mono-oxygenase suggested coupling between aerobic and anaerobic ammonium oxidation under suboxic conditions. These results clearly demonstrate the relevance of anammox as a key process driving nitrogen loss from oligotrophic groundwater environments, which might further be enhanced through coupling with incomplete nitrification. PMID:29067012
Gómez-Gutiérrez, Jaime; López-Cortés, Alejandro; Aguilar-Méndez, Mario J; Del Angel-Rodríguez, Jorge A; Tremblay, Nelly; Zenteno-Savín, Tania; Robinson, Carlos J
2015-10-27
Histophagous ciliates of the genus Pseudocollinia cause epizootic events that kill adult female krill (Euphausiacea), but their mode of transmission is unknown. We compared 16S rRNA sequences of bacterial strains isolated from stomachs of healthy krill Nyctiphanes simplex specimens with sequences of bacterial isolates and sequences of natural bacterial communities from the hemocoel of N. simplex specimens infected with P. brintoni to determine possible transmission pathways. All P. brintoni endoparasitic life stages and the transmission tomite stage (outside the host) were associated with bacterial assemblages. 16S rRNA sequences from isolated bacterial strains showed that Photobacterium spp. and Pseudoalteromonas spp. were dominant members of the bacterial assemblages during all life phases of P. brintoni and potential pathobionts. They were apparently unaffected by the krill's immune system or the histophagous activity of P. brintoni. However, other bacterial strains were found only in certain P. brintoni life phases, indicating that as the infection progressed, microhabitat conditions and microbial interactions may have become unfavorable for some strains of bacteria. Trophic infection is the most parsimonious explanation for how P. brintoni infects krill. We estimated N. simplex vulnerability to P. brintoni infection during more than three-fourths of their life span, infecting mostly adult females. The ciliates have relatively high prevalence levels (albeit at <10% of sampled stations) and a short life cycle (estimated <7 d). Histophagous ciliate-krill interactions may occur in other krill species, particularly those that form dense swarms and attain high population densities that potentially enhance trophic transmission and allow completion of the Pseudocollinia spp. life cycle.
Bagella, Simonetta; Filigheddu, Rossella; Caria, Maria Carmela; Girlanda, Mariangela; Roggero, Pier Paolo
2014-12-01
The aims of this paper were (i) to define how contrasting land uses affected plant biodiversity in Mediterranean agro-silvo-pastoral-systems across a gradient of disturbance regimes: cork oak forests, secondary grasslands, hay crops, grass covered vineyards, tilled vineyards; (ii) to determine whether these patterns mirrored those of below-ground microorganisms and whether the components of γ-diversity followed a similar model. The disturbance regimes affected plant assemblage composition. Species richness decreased with increasing land use intensity, the Shannon index showed the highest values in grasslands and hay crops. Plant assemblage composition patterns mirrored those of Basidiomycota and Ascomycota. Richness in Basidiomycota, denitrifying bacteria and microbial biomass showed the same trend as that observed for vascular plant richness. The Shannon index pattern of below-ground microorganisms was different from that of plants. The plant γ-diversity component model weakly mirrored those of Ascomycota. Patchy diversity patterns suggest that the maintenance of contrasting land uses associated with different productions typical of agro-silvo-pastoral-systems can guarantee the conservation of biodiversity. Copyright © 2014 Académie des sciences. Published by Elsevier SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Bell, James B.; Aquilina, Alfred; Woulds, Clare; Glover, Adrian G.; Little, Crispin T. S.; Reid, William D. K.; Hepburn, Laura E.; Newton, Jason; Mills, Rachel A.
2016-09-01
Despite a number of studies in areas of focused methane seepage, the extent of transitional sediments of more diffuse methane seepage, and their influence upon biological communities is poorly understood. We investigated an area of reducing sediments with elevated levels of methane on the South Georgia margin around 250 m depth and report data from a series of geochemical and biological analyses. Here, the geochemical signatures were consistent with weak methane seepage and the role of sub-surface methane consumption was clearly very important, preventing gas emissions into bottom waters. As a result, the contribution of methane-derived carbon to the microbial and metazoan food webs was very limited, although sulfur isotopic signatures indicated a wider range of dietary contributions than was apparent from carbon isotope ratios. Macrofaunal assemblages had high dominance and were indicative of reducing sediments, with many taxa common to other similar environments and no seep-endemic fauna, indicating transitional assemblages. Also similar to other cold seep areas, there were samples of authigenic carbonate, but rather than occurring as pavements or sedimentary concretions, these carbonates were restricted to patches on the shells of Axinulus antarcticus (Bivalvia, Thyasiridae), which is suggestive of microbe-metazoan interactions.
Macroecological patterns of phytoplankton in the northwestern North Atlantic Ocean.
Li, W K W
2002-09-12
Many issues in biological oceanography are regional or global in scope; however, there are not many data sets of extensive areal coverage for marine plankton. In microbial ecology, a fruitful approach to large-scale questions is comparative analysis wherein statistical data patterns are sought from different ecosystems, frequently assembled from unrelated studies. A more recent approach termed macroecology characterizes phenomena emerging from large numbers of biological units by emphasizing the shapes and boundaries of statistical distributions, because these reflect the constraints on variation. Here, I use a set of flow cytometric measurements to provide macroecological perspectives on North Atlantic phytoplankton communities. Distinct trends of abundance in picophytoplankton and both small and large nanophytoplankton underlaid two patterns. First, total abundance of the three groups was related to assemblage mean-cell size according to the 3/4 power law of allometric scaling in biology. Second, cytometric diversity (an ataxonomic measure of assemblage entropy) was maximal at intermediate levels of water column stratification. Here, intermediate disturbance shapes diversity through an equitable distribution of cells in size classes, from which arises a high overall biomass. By subsuming local fluctuations, macroecology reveals meaningful patterns of phytoplankton at large scales.
Aquilina, Alfred; Woulds, Clare; Glover, Adrian G.; Little, Crispin T. S.; Hepburn, Laura E.; Newton, Jason; Mills, Rachel A.
2016-01-01
Despite a number of studies in areas of focused methane seepage, the extent of transitional sediments of more diffuse methane seepage, and their influence upon biological communities is poorly understood. We investigated an area of reducing sediments with elevated levels of methane on the South Georgia margin around 250 m depth and report data from a series of geochemical and biological analyses. Here, the geochemical signatures were consistent with weak methane seepage and the role of sub-surface methane consumption was clearly very important, preventing gas emissions into bottom waters. As a result, the contribution of methane-derived carbon to the microbial and metazoan food webs was very limited, although sulfur isotopic signatures indicated a wider range of dietary contributions than was apparent from carbon isotope ratios. Macrofaunal assemblages had high dominance and were indicative of reducing sediments, with many taxa common to other similar environments and no seep-endemic fauna, indicating transitional assemblages. Also similar to other cold seep areas, there were samples of authigenic carbonate, but rather than occurring as pavements or sedimentary concretions, these carbonates were restricted to patches on the shells of Axinulus antarcticus (Bivalvia, Thyasiridae), which is suggestive of microbe–metazoan interactions. PMID:27703692
Duran, Robert; Bielen, Ana; Paradžik, Tina; Gassie, Claire; Pustijanac, Emina; Cagnon, Christine; Hamer, Bojan; Vujaklija, Dušica
2015-10-01
The exploration of marine Actinobacteria has as major challenge to answer basic questions of microbial ecology that, in turn, will provide useful information to exploit Actinobacteria metabolisms in biotechnological processes. The ecological functions performed by Actinobacteria in marine sediments are still unclear and belongs to the most burning basic questions. The comparison of Actinobacteria communities inhabiting marine sediments that are under the influence of different contamination types will provide valuable information in the adaptation capacities of Actinobacteria to colonize specific ecological niche. In the present study, the characterization of different Actinobacteria assemblages according to contamination type revealed the ecological importance of Actinobacteria for maintaining both general biogeochemical functions through a "core" Actinobacteria community and specific roles associated with the presence of contaminants. Indeed, the results allowed to distinguish Actinobacteria genera and species operational taxonomic units (OTUs) able to cope with the presence of either (i) As, (ii) metals Ni, Fe, V, Cr, and Mn, or (iii) polycyclic aromatic hydrocarbons (PAHs) and toxic metals (Hg, Cd, Cu, Pb, and Zn). Such observations highlighted the metabolic capacities of Actinobacteria and their potential that should be taken into consideration and advantage during the implementation of bioremediation processes in marine ecosystems.
NASA Astrophysics Data System (ADS)
Hewson, Ian; Fuhrman, Jed A.
2007-05-01
Viruses are hypothesized to maintain diversity in microbial assemblages by regulating the abundance of dominant competitors and thereby allowing less-dominant competitors to persist in assemblages; however, there have been few empirical data sets to support this idea. In this study, we examined the relationship between the ratio of viral abundance to bacterial abundance, viral production, and the relative richness and diversity of bacterial assemblage fingerprints, in samples taken from geographically widespread locations (North Pacific gyre, the Amazon River plume and adjacent North Atlantic gyre, Gulf of Mexico, Southern California Bight and Arafura—Coral Seas) which are oligo- to mesotrophic. Bacterial assemblage richness and diversity as measured by automated rRNA intergenic spacer (ARISA) fingerprinting were significantly and positively correlated with the ratio of virus abundance to bacteria abundance (VBR) and to the rate of virus production only in the oligotrophic North Pacific gyre. ARISA fingerprint richness/diversity were not significantly correlated to viral parameters when assessed across all samples in surface waters, suggesting there is not a singular global quantitative relationship between viral pressure and host diversity within well evolved host/virus systems in different geographic locations in plankton. In sediments off Southern California, viral parameters significantly and negatively correlated with ARISA diversity, suggesting strong viral interactions in this habitat. To examine covariation of viral parameters and the relative abundance and diversity of rarer bacterial taxa (i.e., less-dominant competitor), the richness and diversity of diazotroph communities was measured using terminal restriction fragment length polymorphism (TRFLP) of a portion ( nifH) of the nitrogenase gene. The richness and diversity of diazotrophic communities were significantly and negatively correlated with viral parameters across all locations. Since diazotrophs include many opportunistic taxa (e.g. Vibrionaceae), and because these bacteria may be more susceptible to viral attack due to enhanced resource uptake abilities and potentially rapid localized growth, it is possible that this negative effect was due to enhanced viral lysis. Consequently, virus infection may have positive effects upon bacterioplankton diversity in the oligotrophic ocean, by regulating the abundance of dominant competitors, and allowing rarer taxa to coexist; however, some rarer taxa (such as diazotrophs) may be more susceptible to viral attack due to opportunistic lifestyles.
Smith, Maria W.; Herfort, Lydie; Tyrol, Kaitlin; Suciu, Dominic; Campbell, Victoria; Crump, Byron C.; Peterson, Tawnya D.; Zuber, Peter; Baptista, Antonio M.; Simon, Holly M.
2010-01-01
Through their metabolic activities, microbial populations mediate the impact of high gradient regions on ecological function and productivity of the highly dynamic Columbia River coastal margin (CRCM). A 2226-probe oligonucleotide DNA microarray was developed to investigate expression patterns for microbial genes involved in nitrogen and carbon metabolism in the CRCM. Initial experiments with the environmental microarrays were directed toward validation of the platform and yielded high reproducibility in multiple tests. Bioinformatic and experimental validation also indicated that >85% of the microarray probes were specific for their corresponding target genes and for a few homologs within the same microbial family. The validated probe set was used to query gene expression responses by microbial assemblages to environmental variability. Sixty-four samples from the river, estuary, plume, and adjacent ocean were collected in different seasons and analyzed to correlate the measured variability in chemical, physical and biological water parameters to differences in global gene expression profiles. The method produced robust seasonal profiles corresponding to pre-freshet spring (April) and late summer (August). Overall relative gene expression was high in both seasons and was consistent with high microbial abundance measured by total RNA, heterotrophic bacterial production, and chlorophyll a. Both seasonal patterns involved large numbers of genes that were highly expressed relative to background, yet each produced very different gene expression profiles. April patterns revealed high differential gene expression in the coastal margin samples (estuary, plume and adjacent ocean) relative to freshwater, while little differential gene expression was observed along the river-to-ocean transition in August. Microbial gene expression profiles appeared to relate, in part, to seasonal differences in nutrient availability and potential resource competition. Furthermore, our results suggest that highly-active particle-attached microbiota in the Columbia River water column may perform dissimilatory nitrate reduction (both dentrification and DNRA) within anoxic particle microniches. PMID:20967204
Natural Microbial Assemblages Reflect Distinct Organismal and Functional Partitioning
NASA Astrophysics Data System (ADS)
Wilmes, P.; Andersson, A.; Kalnejais, L. H.; Verberkmoes, N. C.; Lefsrud, M. G.; Wexler, M.; Singer, S. W.; Shah, M.; Bond, P. L.; Thelen, M. P.; Hettich, R. L.; Banfield, J. F.
2007-12-01
The ability to link microbial community structure to function has long been a primary focus of environmental microbiology. With the advent of community genomic and proteomic techniques, along with advances in microscopic imaging techniques, it is now possible to gain insights into the organismal and functional makeup of microbial communities. Biofilms growing within highly acidic solutions inside the Richmond Mine (Iron Mountain, Redding, California) exhibit distinct macro- and microscopic morphologies. They are composed of microorganisms belonging to the three domains of life, including archaea, bacteria and eukarya. The proportion of each organismal type depends on sampling location and developmental stage. For example, mature biofilms floating on top of acid mine drainage (AMD) pools exhibit layers consisting of a densely packed bottom layer of the chemoautolithotroph Leptospirillum group II, a less dense top layer composed mainly of archaea, and fungal filaments spanning across the entire biofilm. The expression of cytochrome 579 (the most highly abundant protein in the biofilm, believed to be central to iron oxidation and encoded by Leptospirillum group II) is localized at the interface of the biofilm with the AMD solution, highlighting that biofilm architecture is reflected at the functional gene expression level. Distinct functional partitioning is also apparent in a biological wastewater treatment system that selects for distinct polyphosphate accumulating organisms. Community genomic data from " Candidatus Accumulibacter phosphatis" dominated activated sludge has enabled high mass-accuracy shotgun proteomics for identification of key metabolic pathways. Comprehensive genome-wide alignment of orthologous proteins suggests distinct partitioning of protein variants involved in both core-metabolism and specific metabolic pathways among the dominant population and closely related species. In addition, strain- resolved proteogenomic analysis of the AMD biofilms also highlights the importance of strain heterogeneity for the maintenance of community structure and function. These findings explain the importance of genetic diversity in facilitating the stable performance of complex microbial processes. Furthermore, although very different in terms of habitat, both microbial communities exhibit distinct functional compartmentalization and demonstrate its role in sustaining microbial community structure.
Microbial biogeography of a university campus.
Ross, Ashley A; Neufeld, Josh D
2015-12-01
Microorganisms are distributed on surfaces within homes, workplaces, and schools, with the potential to impact human health and disease. University campuses represent a unique opportunity to explore the distribution of microorganisms within built environments because of high human population densities, throughput, and variable building usage. For example, the main campus of the University of Waterloo spans four square kilometres, hosts over 40,000 individuals daily, and is comprised of a variety of buildings, including lecture halls, gyms, restaurants, residences, and a daycare. Representative left and right entrance door handles from each of the 65 buildings at the University of Waterloo were swabbed at three time points during an academic term in order to determine if microbial community assemblages coincided with building usage and whether these communities are stable temporally. Across all door handles, the dominant phyla were Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes, which comprised 89.0 % of all reads. A total of 713 genera were observed, 16 of which constituted a minimum of 1 % of the 2,458,094 classified and rarefied reads. Archaea were found in low abundance (~0.03 %) but were present on 42.8 % of the door handles on 96 % of buildings across all time points, indicating that they are ubiquitous at very low levels on door handle surfaces. Although inter-handle variability was high, several individual building entrances harbored distinct microbial communities that were consistent over time. The presence of visible environmental debris on a subset of handles was associated with distinct microbial communities (beta diversity), increased richness (alpha diversity), and higher biomass (adenosine 5'-triphosphate; ATP). This study demonstrates highly variable microbial communities associated with frequently contacted door handles on a university campus. Nonetheless, the data also revealed several building-specific and temporally stable bacterial and archaeal community patterns, with a potential impact of accumulated debris, a possible result of low human throughput, on detected microbial communities.
Seasonal changes in fish assemblage structure at a shallow seamount in the Gulf of California.
Jorgensen, Salvador J; Klimley, A Peter; Muhlia-Melo, Arturo; Morgan, Steven G
2016-01-01
Seamounts have generally been identified as locations that can promote elevated productivity, biomass and predator biodiversity. These properties attract seamount-associated fisheries where elevated harvests can be obtained relative to surrounding areas. There exists large variation in the geological and oceanographic environment among the thousands of locations that fall within the broad definition of seamount. Global seamount surveys have revealed that not all seamounts are hotspots of biodiversity, and there remains a strong need to understand the mechanisms that underlie variation in species richness observed. We examined the process of fish species assembly at El Bajo Espiritu Santo (EBES) seamount in the Gulf of California over a five-year study period. To effectively quantify the relative abundance of fast-moving and schooling fishes in a 'blue water' habitat, we developed a simplified underwater visual census (UVC) methodology and analysis framework suitable for this setting and applicable to future studies in similar environments. We found correlations between seasonally changing community structure and variability in oceanographic conditions. Individual species responses to thermal habitat at EBES revealed three distinct assemblages, a 'fall assemblage' tracking warmer overall temperature, a 'spring assemblage' correlated with cooler temperature, and a 'year-round assemblage' with no significant response to temperature. Species richness was greatest in spring, when cool and warm water masses stratified the water column and a greater number of species from all three assemblages co-occurred. We discuss our findings in the context of potential mechanisms that could account for predator biodiversity at shallow seamounts.
Miller, Joshua H.
2011-01-01
Natural accumulations of skeletal material (death assemblages) have the potential to provide historical data on species diversity and population structure for regions lacking decades of wildlife monitoring, thereby contributing valuable baseline data for conservation and management strategies. Previous studies of the ecological and temporal resolutions of death assemblages from terrestrial large-mammal communities, however, have largely focused on broad patterns of community composition in tropical settings. Here, I expand the environmental sampling of large-mammal death assemblages into a temperate biome and explore more demanding assessments of ecological fidelity by testing their capacity to record past population fluctuations of individual species in the well-studied ungulate community of Yellowstone National Park (Yellowstone). Despite dramatic ecological changes following the 1988 wildfires and 1995 wolf re-introduction, the Yellowstone death assemblage is highly faithful to the living community in species richness and community structure. These results agree with studies of tropical death assemblages and establish the broad capability of vertebrate remains to provide high-quality ecological data from disparate ecosystems and biomes. Importantly, the Yellowstone death assemblage also correctly identifies species that changed significantly in abundance over the last 20 to ∼80 years and the directions of those shifts (including local invasions and extinctions). The relative frequency of fresh versus weathered bones for individual species is also consistent with documented trends in living population sizes. Radiocarbon dating verifies the historical source of bones from Equus caballus (horse): a functionally extinct species. Bone surveys are a broadly valuable tool for obtaining population trends and baseline shifts over decadal-to-centennial timescales. PMID:21464921
Velasco Ayuso, Sergio; Giraldo Silva, Ana; Nelson, Corey; Barger, Nichole N.
2016-01-01
ABSTRACT Biological soil crusts (biocrusts) are slow-growing, phototroph-based microbial assemblages that develop on the topsoils of drylands. Biocrusts help maintain soil fertility and reduce erosion. Because their loss through human activities has negative ecological and environmental health consequences, biocrust restoration is of interest. Active soil inoculation with biocrust microorganisms can be an important tool in this endeavor. We present a culture-independent, two-step process to grow multispecies biocrusts in open greenhouse nursery facilities, based on the inoculation of local soils with local biocrust remnants and incubation under seminatural conditions that maintain the essence of the habitat but lessen its harshness. In each of four U.S. Southwest sites, we tested and deployed combinations of factors that maximized growth (gauged as chlorophyll a content) while minimizing microbial community shifts (assessed by 16S rRNA sequencing and bioinformatics), particularly for crust-forming cyanobacteria. Generally, doubling the frequency of natural wetting events, a 60% reduction in sunlight, and inoculation by slurry were optimal. Nutrient addition effects were site specific. In 4 months, our approach yielded crusts of high inoculum quality reared on local soil exposed to locally matched climates, acclimated to desiccation, and containing communities minimally shifted in composition from local ones. Our inoculum contained abundant crust-forming cyanobacteria and no significant numbers of allochthonous phototrophs, and it was sufficient to treat ca. 6,000 m2 of degraded dryland soils at 1 to 5% of the typical crust biomass concentration, having started from a natural crust remnant as small as 6 to 30 cm2. IMPORTANCE Soil surface crusts can protect dryland soils from erosion, but they are often negatively impacted by human activities. Their degradation causes a loss of fertility, increased production of fugitive dust and intensity of dust storms with associated traffic problems, and provokes general public health hazards. Our results constitute an advance in the quest to actively restore biological soil covers by providing a means to obtain high-quality inoculum within a reasonable time (a few months), thereby allowing land managers to recover essential, but damaged, ecosystem services in a sustainable, self-perpetuating way as provided by biocrust communities. PMID:27864178
Ampe, Frédéric; ben Omar, Nabil; Moizan, Claire; Wacher, Carmen; Guyot, Jean-Pierre
1999-01-01
The distribution of microorganisms in pozol balls, a fermented maize dough, was investigated by a polyphasic approach in which we used both culture-dependent and culture-independent methods, including microbial enumeration, fermentation product analysis, quantification of microbial taxa with 16S rRNA-targeted oligonucleotide probes, determination of microbial fingerprints by denaturing gradient gel electrophoresis (DGGE), and 16S ribosomal DNA gene sequencing. Our results demonstrate that DGGE fingerprinting and rRNA quantification should allow workers to precisely and rapidly characterize the microbial assemblage in a spontaneous lactic acid fermented food. Lactic acid bacteria (LAB) accounted for 90 to 97% of the total active microflora; no streptococci were isolated, although members of the genus Streptococcus accounted for 25 to 50% of the microflora. Lactobacillus plantarum and Lactobacillus fermentum, together with members of the genera Leuconostoc and Weissella, were the other dominant organisms. The overall activity was more important at the periphery of a ball, where eucaryotes, enterobacteria, and bacterial exopolysacharide producers developed. Our results also showed that the metabolism of heterofermentative LAB was influenced in situ by the distribution of the LAB in the pozol ball, whereas homolactic fermentation was controlled primarily by sugar limitation. We propose that starch is first degraded by amylases from LAB and that the resulting sugars, together with the lactate produced, allow a secondary flora to develop in the presence of oxygen. Our results strongly suggest that cultivation-independent methods should be used to study traditional fermented foods. PMID:10584005
Oceanographic structure drives the assembly processes of microbial eukaryotic communities
Monier, Adam; Comte, Jérôme; Babin, Marcel; Forest, Alexandre; Matsuoka, Atsushi; Lovejoy, Connie
2015-01-01
Arctic Ocean microbial eukaryote phytoplankton form subsurface chlorophyll maximum (SCM), where much of the annual summer production occurs. This SCM is particularly persistent in the Western Arctic Ocean, which is strongly salinity stratified. The recent loss of multiyear sea ice and increased particulate-rich river discharge in the Arctic Ocean results in a greater volume of fresher water that may displace nutrient-rich saltier waters to deeper depths and decrease light penetration in areas affected by river discharge. Here, we surveyed microbial eukaryotic assemblages in the surface waters, and within and below the SCM. In most samples, we detected the pronounced SCM that usually occurs at the interface of the upper mixed layer and Pacific Summer Water (PSW). Poorly developed SCM was seen under two conditions, one above PSW and associated with a downwelling eddy, and the second in a region influenced by the Mackenzie River plume. Four phylogenetically distinct communities were identified: surface, pronounced SCM, weak SCM and a deeper community just below the SCM. Distance–decay relationships and phylogenetic structure suggested distinct ecological processes operating within these communities. In the pronounced SCM, picophytoplanktons were prevalent and community assembly was attributed to water mass history. In contrast, environmental filtering impacted the composition of the weak SCM communities, where heterotrophic Picozoa were more numerous. These results imply that displacement of Pacific waters to greater depth and increased terrigenous input may act as a control on SCM development and result in lower net summer primary production with a more heterotroph dominated eukaryotic microbial community. PMID:25325383
Rodríguez-Marconi, Susana; De la Iglesia, Rodrigo; Díez, Beatriz; Fonseca, Cássio A; Hajdu, Eduardo; Trefault, Nicole
2015-01-01
Sponge-associated microbial communities include members from the three domains of life. In the case of bacteria, they are diverse, host specific and different from the surrounding seawater. However, little is known about the diversity and specificity of Eukarya and Archaea living in association with marine sponges. This knowledge gap is even greater regarding sponges from regions other than temperate and tropical environments. In Antarctica, marine sponges are abundant and important members of the benthos, structuring the Antarctic marine ecosystem. In this study, we used high throughput ribosomal gene sequencing to investigate the three-domain diversity and community composition from eight different Antarctic sponges. Taxonomic identification reveals that they belong to families Acarnidae, Chalinidae, Hymedesmiidae, Hymeniacidonidae, Leucettidae, Microcionidae, and Myxillidae. Our study indicates that there are different diversity and similarity patterns between bacterial/archaeal and eukaryote microbial symbionts from these Antarctic marine sponges, indicating inherent differences in how organisms from different domains establish symbiotic relationships. In general, when considering diversity indices and number of phyla detected, sponge-associated communities are more diverse than the planktonic communities. We conclude that three-domain microbial communities from Antarctic sponges are different from surrounding planktonic communities, expanding previous observations for Bacteria and including the Antarctic environment. Furthermore, we reveal differences in the composition of the sponge associated bacterial assemblages between Antarctic and tropical-temperate environments and the presence of a highly complex microbial eukaryote community, suggesting a particular signature for Antarctic sponges, different to that reported from other ecosystems.
Sinkhole-like structures as bioproductivity hotspots in the Abrolhos Bank
NASA Astrophysics Data System (ADS)
Cavalcanti, Giselle S.; Gregoracci, Gustavo B.; Longo, Leila de L.; Bastos, Alex C.; Ferreira, Camilo M.; Francini-Filho, Ronaldo B.; Paranhos, Rodolfo; Ghisolfi, Renato D.; Krüger, Ricardo; Güth, Arthur Z.; Sumida, Paulo Y. G.; Bruce, Thiago; Maia-Neto, Oswaldo; de O. Santos, Eidy; Iida, Tetsuya; Moura, Rodrigo L.; Amado-Filho, Gilberto M.; Thompson, Fabiano L.
2013-11-01
We performed a biological survey in the novel system of sinkhole-like structures ("buracas") of the Abrolhos Bank, Brazil. We found dissimilar benthic assemblages and higher nutrient concentration, microbial abundance (and activity) and fish abundance inside the buracas than in the surrounding rhodolith beds. Our results support the view that these cup-shaped structures trap and accumulate organic matter, functioning as productivity hotspots in the mid and outer shelf of the central portion of the Abrolhos Bank shelf, where they aggregate biomass of commercially important fishes. This distinctive system is being increasingly pressured by commercial fisheries and needs urgent management measures such as fishing effort control and representation in the network of Marine Protected Areas (MPAS).
Reassessing the chronology of the archaeological site of Anzick.
Becerra-Valdivia, Lorena; Waters, Michael R; Stafford, Thomas W; Anzick, Sarah L; Comeskey, Daniel; Devièse, Thibaut; Higham, Thomas
2018-06-18
Found in 1968, the archaeological site of Anzick, Montana, contains the only known Clovis burial. Here, the partial remains of a male infant, Anzick-1, were found in association with a Clovis assemblage of over 100 lithic and osseous artifacts-all red-stained with ochre. The incomplete, unstained cranium of an unassociated, geologically younger individual, Anzick-2, was also recovered. Previous chronometric work has shown an age difference between Anzick-1 and the Clovis assemblage (represented by dates from two antler rod samples). This discrepancy has led to much speculation, with some discounting Anzick-1 as Clovis. To resolve this issue, we present the results of a comprehensive radiocarbon dating program that utilized different pretreatment methods on osseous material from the site. Through this comparative approach, we obtained a robust chronometric dataset that suggests that Anzick-1 is temporally coeval with the dated antler rods. This implies that the individual is indeed temporally associated with the Clovis assemblage.
Benthic and Plankton Foraminifers in Hydrothermally Active Zones of the Mid-Atlantic Ridge (MAR)
NASA Astrophysics Data System (ADS)
Khusid, T. A.; Os'kina, N. S.; Lukashina, N. P.; Gablina, I. F.; Libina, N. V.; Matul, A. G.
2018-01-01
Comparison of benthic foraminiferal assemblages from the core obtained within the Peterburgskoe ore field (Mid-Atlantic Ridge) and from the core taken five kilometers away from the ore field revealed evident differences in their composition, in the appearance of their shells, and also in the benthic-plankton species ratio. It was noted that the foraminiferal assemblage from the ore-bearing sediments of the Petersburg field was characterized by a higher relative content of benthic species and a large number of chemically altered and broken shells. The first occurrence of the species Osangularia umbonifera, which is able to exist in lowoxygen and CaCO3-undersaturated bottom waters at the boundary of biogenic sediments surrounding the ore field and in the ore-bearing sediments, was established. In the core section sampled beyond the ore field, the composition of foraminiferal assemblages differs insignificantly from typical oceanic ones.
Molecular identification of Giardia and Cryptosporidium from dogs and cats
Sotiriadou, Isaia; Pantchev, Nikola; Gassmann, Doreen; Karanis, Panagiotis
2013-01-01
The aim of the present study was to diagnose the presence of Giardia cysts and Cryptosporidium oocysts in household animals using nested polymerase chain reaction (PCR) and sequence analysis. One hundred faecal samples obtained from 81 dogs and 19 cats were investigated. The Cryptosporidium genotypes were determined by sequencing a fragment of the small subunit (SSU) rRNA gene, while the Giardia Assemblages were determined through analysis of the glutamate dehydrogenase (GDH) locus. Isolates from five dogs and two cats were positive by PCR for the presence of Giardia, and their sequences matched the zoonotic Assemblage A of Giardia. Cryptosporidium spp. isolated from one dog and one cat were both found to be C. parvum. One dog isolate harboured a mixed infection of C. parvum and Giardia Assemblage A. These findings support the growing evidence that household animals are potential reservoirs of the zoonotic pathogens Giardia spp. and Cryptosporidium spp. for infections in humans. PMID:23477297
Short-term response of testate amoebae to wildfire
NASA Astrophysics Data System (ADS)
Qin, Yangmin
2016-04-01
Many peatlands are exposed to intermittent burning but the implications of this burning for microbial communities have been little studied. Here we consider the impacts of burning on the dominant protists of peatland ecosystems, the testate amoebae. To do this we use a 'natural experiment'; a peatland exposed to wildfire where fire-fighting activity left a combination of unburned and heavily burned areas in close proximity. We assessed the change in testate amoebae three days after the end of the fire. We find that burning led to a large change in assemblage composition, primarily noted by a shift from taxa with tests constructed of idiosomes to those constructed of xenosomes. The most likely explanation for this change is the direct destruction of idiosome tests by extreme heat. Although we did not differentiate live individuals from empty tests it is probable that the fire has led to significant change in the amoeba community. This change may have interesting implications for the structure of the microbial foodweb, for silica cycling and for palaeoecological reconstruction in burned peatlands. This is clearly a topic which deserves more research attention.
Microbial ecology of deep-sea hypersaline anoxic basins.
Merlino, Giuseppe; Barozzi, Alan; Michoud, Grégoire; Ngugi, David Kamanda; Daffonchio, Daniele
2018-07-01
Deep hypersaline anoxic basins (DHABs) are unique water bodies occurring within fractures at the bottom of the sea, where the dissolution of anciently buried evaporites created dense anoxic brines that are separated by a chemocline/pycnocline from the overlying oxygenated deep-seawater column. DHABs have been described in the Gulf of Mexico, the Mediterranean Sea, the Black Sea and the Red Sea. They are characterized by prolonged historical separation of the brines from the upper water column due to lack of mixing and by extreme conditions of salinity, anoxia, and relatively high hydrostatic pressure and temperatures. Due to these combined selection factors, unique microbial assemblages thrive in these polyextreme ecosystems. The topological localization of the different taxa in the brine-seawater transition zone coupled with the metabolic interactions and niche adaptations determine the metabolic functioning and biogeochemistry of DHABs. In particular, inherent metabolic strategies accompanied by genetic adaptations have provided insights on how prokaryotic communities can adapt to salt-saturated conditions. Here, we review the current knowledge of the diversity, genomics, metabolisms and ecology of prokaryotes in DHABs.
Geological and Geochemical Controls on Subsurface Microbial Life in the Samail Ophiolite, Oman.
Rempfert, Kaitlin R; Miller, Hannah M; Bompard, Nicolas; Nothaft, Daniel; Matter, Juerg M; Kelemen, Peter; Fierer, Noah; Templeton, Alexis S
2017-01-01
Microbial abundance and diversity in deep subsurface environments is dependent upon the availability of energy and carbon. However, supplies of oxidants and reductants capable of sustaining life within mafic and ultramafic continental aquifers undergoing low-temperature water-rock reaction are relatively unknown. We conducted an extensive analysis of the geochemistry and microbial communities recovered from fluids sampled from boreholes hosted in peridotite and gabbro in the Tayin block of the Samail Ophiolite in the Sultanate of Oman. The geochemical compositions of subsurface fluids in the ophiolite are highly variable, reflecting differences in host rock composition and the extent of fluid-rock interaction. Principal component analysis of fluid geochemistry and geologic context indicate the presence of at least four fluid types in the Samail Ophiolite ("gabbro," "alkaline peridotite," "hyperalkaline peridotite," and "gabbro/peridotite contact") that vary strongly in pH and the concentrations of H 2 , CH 4 , Ca 2+ , Mg 2+ , [Formula: see text], [Formula: see text], trace metals, and DIC. Geochemistry of fluids is strongly correlated with microbial community composition; similar microbial assemblages group according to fluid type. Hyperalkaline fluids exhibit low diversity and are dominated by taxa related to the Deinococcus-Thermus genus Meiothermus , candidate phyla OP1, and the family Thermodesulfovibrionaceae. Gabbro- and alkaline peridotite- aquifers harbor more diverse communities and contain abundant microbial taxa affiliated with Nitrospira , Nitrosospharaceae, OP3, Parvarcheota, and OP1 order Acetothermales. Wells that sit at the contact between gabbro and peridotite host microbial communities distinct from all other fluid types, with an enrichment in betaproteobacterial taxa. Together the taxonomic information and geochemical data suggest that several metabolisms may be operative in subsurface fluids, including methanogenesis, acetogenesis, and fermentation, as well as the oxidation of methane, hydrogen and small molecular weight organic acids utilizing nitrate and sulfate as electron acceptors. Dynamic nitrogen cycling may be especially prevalent in gabbro and alkaline peridotite fluids. These data suggest water-rock reaction, as controlled by lithology and hydrogeology, constrains the distribution of life in terrestrial ophiolites.
Changes in coral-associated microbial communities during a bleaching event.
Bourne, David; Iida, Yuki; Uthicke, Sven; Smith-Keune, Carolyn
2008-04-01
Environmental stressors such as increased sea surface temperatures are well-known for contributing to coral bleaching; however, the effect of increased temperatures and subsequent bleaching on coral-associated microbial communities is poorly understood. Colonies of the hard coral Acropora millepora were tagged on a reef flat off Magnetic Island (Great Barrier Reef) and surveyed over 2.5 years, which included a severe bleaching event in January/February 2002. Daily average water temperatures exceeded the previous 10-year average by more than 1 degrees C for extended periods with field-based visual surveys recording all tagged colonies displaying signs of bleaching. During the bleaching period, direct counts of coral zooxanthellae densities decreased by approximately 64%, before recovery to pre-bleaching levels after the thermal stress event. A subset of three tagged coral colonies were sampled through the bleaching event and changes in the microbial community elucidated. Denaturing gradient gel electrophoresis (DGGE) analysis demonstrated conserved bacterial banding profiles between the three coral colonies, confirming previous studies highlighting specific microbial associations. As coral colonies bleached, the microbial community shifted and redundancy analysis (RDA) of DGGE banding patterns revealed a correlation of increasing temperature with the appearance of Vibrio-affiliated sequences. Interestingly, this shift to a Vibrio-dominated community commenced prior to visual signs of bleaching. Clone libraries hybridized with Vibrio-specific oligonucleotide probes confirmed an increase in the fraction of Vibrio-affiliated clones during the bleaching period. Post bleaching, the coral microbial associations again shifted, returning to a profile similar to the fingerprints prior to bleaching. This provided further evidence for corals selecting and shaping their microbial partners. For non-bleached samples, a close association with Spongiobacter-related sequences were revealed by both clone libraries and DGGE profiling. Despite Vibrio species being previously implicated in bleaching of specific coral species, it is unsure if the relative increase in retrieved Vibrio sequences is due to bacterial infection or an opportunistic response to compromised health and changing environmental parameters of the coral host. This study provides the first molecular-based study demonstrating changes in coral-associated bacterial assemblages during a bleaching event on a natural reef system.
Key Concepts in Microbial Oceanography
NASA Astrophysics Data System (ADS)
Bruno, B. C.; Achilles, K.; Walker, G.; Weersing, K.; Team, A
2008-12-01
The Center for Microbial Oceanography: Research and Education (C-MORE) is a multi-institution Science and Technology Center, established by the National Science Foundation in 2006. C-MORE's research mission is to facilitate a more comprehensive understanding of the diverse assemblages of microorganisms in the sea, ranging from the genetic basis of marine microbial biogeochemistry including the metabolic regulation and environmental controls of gene expression, to the processes that underpin the fluxes of carbon, related bioelements, and energy in the marine environment. The C-MORE education and outreach program is focused on increasing scientific literacy in microbial oceanography among students, educators, and the general public. A first step toward this goal is defining the key concepts that constitute microbial oceanography. After lengthy discussions with scientists and educators, both within and outside C-MORE, we have arrived at six key concepts: 1) Marine microbes are very small and have been around for a long time; 2) Life on Earth could not exist without microbes; 3) Most marine microbes are beneficial; 4) Microbes are everywhere: they are extremely abundant and diverse; 5) Microbes significantly impact our global climate; and 6) There are new discoveries every day in the field of microbial oceanography. A C-MORE-produced brochure on these six key concepts will be distributed at the meeting. Advanced copies may be requested by email or downloaded from the C-MORE web site(http://cmore.soest.hawaii.edu/downloads/MO_key_concepts_hi-res.pdf). This brochure also includes information on career pathways in microbial oceanography, with the aim of broadening participation in the field. C-MORE is eager to work in partnership to incorporate these key concepts into other science literacy publications, particularly those involving ocean and climate literacy. We thank the following contributors and reviewers: P Chisholm, A Dolberry, and A Thompson (MIT); N Lawrence (Santa Cruz Boardwalk); R Foster, S Mansergh and P Moisander (UC Santa Cruz); A Culley, K Doggett, J Edmonds, A Eiler, A Fong, D Hayakawa, D Karl, P Kemp, B Li, N Puniwai, B Wai, and S Wilson (U Hawaii); J Becker and M Nieto-Cid (WHOI); M McCaffrey (CIRES).
Geological and geochemical controls on subsurface microbial life in the Samail Ophiolite, Oman
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rempfert, Kaitlin R.; Miller, Hannah M.; Bompard, Nicolas
Microbial abundance and diversity in deep subsurface environments is dependent upon the availability of energy and carbon. However, supplies of oxidants and reductants capable of sustaining life within mafic and ultramafic continental aquifers undergoing low-temperature water-rock reaction are relatively unknown. We conducted an extensive analysis of the geochemistry and microbial communities recovered from fluids sampled from boreholes hosted in peridotite and gabbro in the Tayin block of the Samail Ophiolite in the Sultanate of Oman. The geochemical compositions of subsurface fluids in the ophiolite are highly variable, reflecting differences in host rock composition and the extent of fluid-rock interaction. Principal component analysis of fluid geochemistry and geologic context indicate the presence of at least four fluid types in the Samail Ophiolite (“gabbro,” “alkaline peridotite,” “hyperalkaline peridotite,” and “gabbro/peridotite contact”) that vary strongly in pH and the concentrations of H 2, CH 4, Ca 2+, Mg 2+, NO 3 more » $-$, SO$$2-\\atop{4}$$, trace metals, and DIC. Geochemistry of fluids is strongly correlated with microbial community composition; similar microbial assemblages group according to fluid type. Hyperalkaline fluids exhibit low diversity and are dominated by taxa related to the Deinococcus-Thermus genus Meiothermus, candidate phyla OP1, and the family Thermodesulfovibrionaceae. Gabbro- and alkaline peridotite- aquifers harbor more diverse communities and contain abundant microbial taxa affiliated with Nitrospira, Nitrosospharaceae, OP3, Parvarcheota, and OP1 order Acetothermales. Wells that sit at the contact between gabbro and peridotite host microbial communities distinct from all other fluid types, with an enrichment in betaproteobacterial taxa. Together the taxonomic information and geochemical data suggest that several metabolisms may be operative in subsurface fluids, including methanogenesis, acetogenesis, and fermentation, as well as the oxidation of methane, hydrogen and small molecular weight organic acids utilizing nitrate and sulfate as electron acceptors. Dynamic nitrogen cycling may be especially prevalent in gabbro and alkaline peridotite fluids. As a result, these data suggest water-rock reaction, as controlled by lithology and hydrogeology, constrains the distribution of life in terrestrial ophiolites.« less
Geological and Geochemical Controls on Subsurface Microbial Life in the Samail Ophiolite, Oman
Rempfert, Kaitlin R.; Miller, Hannah M.; Bompard, Nicolas; Nothaft, Daniel; Matter, Juerg M.; Kelemen, Peter; Fierer, Noah; Templeton, Alexis S.
2017-01-01
Microbial abundance and diversity in deep subsurface environments is dependent upon the availability of energy and carbon. However, supplies of oxidants and reductants capable of sustaining life within mafic and ultramafic continental aquifers undergoing low-temperature water-rock reaction are relatively unknown. We conducted an extensive analysis of the geochemistry and microbial communities recovered from fluids sampled from boreholes hosted in peridotite and gabbro in the Tayin block of the Samail Ophiolite in the Sultanate of Oman. The geochemical compositions of subsurface fluids in the ophiolite are highly variable, reflecting differences in host rock composition and the extent of fluid-rock interaction. Principal component analysis of fluid geochemistry and geologic context indicate the presence of at least four fluid types in the Samail Ophiolite (“gabbro,” “alkaline peridotite,” “hyperalkaline peridotite,” and “gabbro/peridotite contact”) that vary strongly in pH and the concentrations of H2, CH4, Ca2+, Mg2+, NO3-, SO42-, trace metals, and DIC. Geochemistry of fluids is strongly correlated with microbial community composition; similar microbial assemblages group according to fluid type. Hyperalkaline fluids exhibit low diversity and are dominated by taxa related to the Deinococcus-Thermus genus Meiothermus, candidate phyla OP1, and the family Thermodesulfovibrionaceae. Gabbro- and alkaline peridotite- aquifers harbor more diverse communities and contain abundant microbial taxa affiliated with Nitrospira, Nitrosospharaceae, OP3, Parvarcheota, and OP1 order Acetothermales. Wells that sit at the contact between gabbro and peridotite host microbial communities distinct from all other fluid types, with an enrichment in betaproteobacterial taxa. Together the taxonomic information and geochemical data suggest that several metabolisms may be operative in subsurface fluids, including methanogenesis, acetogenesis, and fermentation, as well as the oxidation of methane, hydrogen and small molecular weight organic acids utilizing nitrate and sulfate as electron acceptors. Dynamic nitrogen cycling may be especially prevalent in gabbro and alkaline peridotite fluids. These data suggest water-rock reaction, as controlled by lithology and hydrogeology, constrains the distribution of life in terrestrial ophiolites. PMID:28223966
Geological and geochemical controls on subsurface microbial life in the Samail Ophiolite, Oman
Rempfert, Kaitlin R.; Miller, Hannah M.; Bompard, Nicolas; ...
2017-02-07
Microbial abundance and diversity in deep subsurface environments is dependent upon the availability of energy and carbon. However, supplies of oxidants and reductants capable of sustaining life within mafic and ultramafic continental aquifers undergoing low-temperature water-rock reaction are relatively unknown. We conducted an extensive analysis of the geochemistry and microbial communities recovered from fluids sampled from boreholes hosted in peridotite and gabbro in the Tayin block of the Samail Ophiolite in the Sultanate of Oman. The geochemical compositions of subsurface fluids in the ophiolite are highly variable, reflecting differences in host rock composition and the extent of fluid-rock interaction. Principal component analysis of fluid geochemistry and geologic context indicate the presence of at least four fluid types in the Samail Ophiolite (“gabbro,” “alkaline peridotite,” “hyperalkaline peridotite,” and “gabbro/peridotite contact”) that vary strongly in pH and the concentrations of H 2, CH 4, Ca 2+, Mg 2+, NO 3 more » $-$, SO$$2-\\atop{4}$$, trace metals, and DIC. Geochemistry of fluids is strongly correlated with microbial community composition; similar microbial assemblages group according to fluid type. Hyperalkaline fluids exhibit low diversity and are dominated by taxa related to the Deinococcus-Thermus genus Meiothermus, candidate phyla OP1, and the family Thermodesulfovibrionaceae. Gabbro- and alkaline peridotite- aquifers harbor more diverse communities and contain abundant microbial taxa affiliated with Nitrospira, Nitrosospharaceae, OP3, Parvarcheota, and OP1 order Acetothermales. Wells that sit at the contact between gabbro and peridotite host microbial communities distinct from all other fluid types, with an enrichment in betaproteobacterial taxa. Together the taxonomic information and geochemical data suggest that several metabolisms may be operative in subsurface fluids, including methanogenesis, acetogenesis, and fermentation, as well as the oxidation of methane, hydrogen and small molecular weight organic acids utilizing nitrate and sulfate as electron acceptors. Dynamic nitrogen cycling may be especially prevalent in gabbro and alkaline peridotite fluids. As a result, these data suggest water-rock reaction, as controlled by lithology and hydrogeology, constrains the distribution of life in terrestrial ophiolites.« less
Saura, Santiago; Rondinini, Carlo
2016-01-01
One of the biggest challenges in large-scale conservation is quantifying connectivity at broad geographic scales and for a large set of species. Because connectivity analyses can be computationally intensive, and the planning process quite complex when multiple taxa are involved, assessing connectivity at large spatial extents for many species turns to be often intractable. Such limitation results in that conducted assessments are often partial by focusing on a few key species only, or are generic by considering a range of dispersal distances and a fixed set of areas to connect that are not directly linked to the actual spatial distribution or mobility of particular species. By using a graph theory framework, here we propose an approach to reduce computational effort and effectively consider large assemblages of species in obtaining multi-species connectivity priorities. We demonstrate the potential of the approach by identifying defragmentation priorities in the Italian road network focusing on medium and large terrestrial mammals. We show that by combining probabilistic species graphs prior to conducting the network analysis (i) it is possible to analyse connectivity once for all species simultaneously, obtaining conservation or restoration priorities that apply for the entire species assemblage; and that (ii) those priorities are well aligned with the ones that would be obtained by aggregating the results of separate connectivity analysis for each of the individual species. This approach offers great opportunities to extend connectivity assessments to large assemblages of species and broad geographic scales. PMID:27768718
Quaternary paleoceanography of the deep Arctic Ocean based on quantitative analysis of Ostracoda
Cronin, T. M.; Holtz, T.R.; Whatley, R.C.
1994-01-01
Ostracodes were studied from deep Arctic Ocean cores obtained during the Arctic 91 expedition of the Polarstern to the Nansen, Amundsen and Makarov Basins, the Lomonosov Ridge, Morris Jesup Rise and Yermak Plateau, in order to investigate their distribution in Arctic Ocean deep water (AODW) and apply these data to paleoceanographic reconstruction of bottom water masses during the Quaternary. Analyses of coretop assemblages from Arctic 91 boxcores indicate the following: ostracodes are common at all depths between 1000 and 4500 m, and species distribution is strongly influenced by water mass characteristics and bathymetry; quantitative analyses comparing Eurasian and Canada Basin assemblages indicate that distinct assemblages inhabit regions east and west of the Lomonosov Ridge, a barrier especially important to species living in lower AODW; deep Eurasian Basin assemblages are more similar to those living in Greenland Sea deep water (GSDW) than those in Canada Basin deep water; two upper AODW assemblages were recognized throughout the Arctic Ocean, one living between 1000 and 1500 m, and the other, having high species diversity, at 1500-3000 m. Downcore quantitative analyses of species' abundances and the squared chord distance coefficient of similarity reveals a distinct series of abundance peaks in key indicator taxa interpreted to signify the following late Quaternary deep water history of the Eurasian Basin. During the Last Glacial Maximum (LGM), a GSDW/AODW assemblage, characteristic of cold, well oxygenated deep water > 3000 m today, inhabited the Lomonosov Ridge to depths as shallow as 1000 m, perhaps indicating the influence of GSDW at mid-depths in the central Arctic Ocean. During Termination 1, a period of high organic productivity associated with a strong inflowing warm North Atlantic layer occurred. During the mid-Holocene, several key faunal events indicate a period of warming and/or enhanced flow between the Canada and Eurasian Basins. A long-term record of ostracode assemblages from kastenlot core PS2200-5 (1073 m water depth) from the Morris Jesup Rise indicates a quasi-cyclic pattern of water mass changes during the last 300 kyr. Interglacial ostracode assemblages corresponding to oxygen isotope stages 1, 5, and 7 indicate rapid changes in dissolved oxygen and productivity during glacial-interglacial transitions. ?? 1994.
Jiménez, Juan J; Decaëns, Thibaud; Lavelle, Patrick; Rossi, Jean-Pierre
2014-12-05
Studying the drivers and determinants of species, population and community spatial patterns is central to ecology. The observed structure of community assemblages is the result of deterministic abiotic (environmental constraints) and biotic factors (positive and negative species interactions), as well as stochastic colonization events (historical contingency). We analyzed the role of multi-scale spatial component of soil environmental variability in structuring earthworm assemblages in a gallery forest from the Colombian "Llanos". We aimed to disentangle the spatial scales at which species assemblages are structured and determine whether these scales matched those expressed by soil environmental variables. We also tested the hypothesis of the "single tree effect" by exploring the spatial relationships between root-related variables and soil nutrient and physical variables in structuring earthworm assemblages. Multivariate ordination techniques and spatially explicit tools were used, namely cross-correlograms, Principal Coordinates of Neighbor Matrices (PCNM) and variation partitioning analyses. The relationship between the spatial organization of earthworm assemblages and soil environmental parameters revealed explicitly multi-scale responses. The soil environmental variables that explained nested population structures across the multi-spatial scale gradient differed for earthworms and assemblages at the very-fine- (<10 m) to medium-scale (10-20 m). The root traits were correlated with areas of high soil nutrient contents at a depth of 0-5 cm. Information on the scales of PCNM variables was obtained using variogram modeling. Based on the size of the plot, the PCNM variables were arbitrarily allocated to medium (>30 m), fine (10-20 m) and very fine scales (<10 m). Variation partitioning analysis revealed that the soil environmental variability explained from less than 1% to as much as 48% of the observed earthworm spatial variation. A large proportion of the spatial variation did not depend on the soil environmental variability for certain species. This finding could indicate the influence of contagious biotic interactions, stochastic factors, or unmeasured relevant soil environmental variables.
Copernicus crater central peak: lunar mountain of unique composition.
Pieters, C M
1982-01-01
Olivine is identified as the major mafic mineral in a central peak of Copernicus crater. Information on the mineral assemblages of such unsampled lunar surface material is provided by near infrared reflectance spectra (0.7 to 2.5 micrometers) obtained with Earth-based telescopes. The composition of the deep-seated material comprising the Copernicus central peak is unique among measured areas. Other lunar terra areas and the wall of Copernicus exhibit spectral characteristics of mineral assemblages comparable to the feldspathic breccias returned by the Apollo missions, with low-calcium orthopyroxene being the major mafic mineral.
The 'North American shale composite' - Its compilation, major and trace element characteristics
NASA Technical Reports Server (NTRS)
Gromet, L. P.; Dymek, R. F.; Haskin, L. A.; Korotev, R. L.
1984-01-01
North American shale composite (NASC) major element composition and compilation are presented, together with rare earth element (REE) redeterminations obtained by high precision analytical methods. The major element composition of the NASC compares closely with other average shale compositions, and significant portions of the REE and some other trace elements are contained in minor phases. The uneven REE distribution in NASC powder appears to yield the heterogeneity in analyzed aliquants. REE distributions of detrital sediments may to some extent be dependent on their minor mineral assemblages and the sedimentological factors controlling these assemblages.
Reanalysis of porous chondritic cosmic dust particles
NASA Astrophysics Data System (ADS)
Kapisinsky, I.; Figusch, V.; Ivan, J.; Izdinsky, K.; Zemankova, M.
2001-10-01
The particles reanalysed in this study were obtained from the NASA Johnson Space Center (JSC) Cosmic Dust Collection. The reanalysis of the particle L2008 P9 indicates typical assemblage of olivine - pyroxene. This sample can be classified as a chondritic porous IDP with the metallic phase grain containing essential amount of nickel and copper (the latter element is most probably due to instrumental artefact). The chemical composition of the particle L2011 S5 corresponds mostly to an assemblage of pyroxene phase - (Mg,Fe,Ni)SiO_3 roughly 75 wt.% and a sulphide phase - probably pyrrhotite (Fe,Ni)S about 25 wt.%.
Copernicus crater central peak - Lunar mountain of unique composition
NASA Technical Reports Server (NTRS)
Pieters, C. M.
1982-01-01
Olivine is identified as the major mafic mineral in a central peak of Copernicus crater. Information on the mineral assemblages of such unsampled lunar surface material is provided by near infrared reflectance spectra (0.7 to 2.5 micrometers) obtained with earth-based telescopes. The composition of the deep-seated material comprising the Copernicus central peak is unique among measured areas. Other lunar terra areas and the wall of Copernicus exhibit spectral characteristics of mineral assemblages comparable to the feldspathic breccias returned by the Apollo missions, with low-calcium orthopyroxene being the major mafic mineral.
Larson, Gary L.; McIntire, C.D.; Jacobs, Ruth W.; Truitt, R.
1999-01-01
A synoptic inventory of physical and chemical properties and plankton assemblages of 27 mountain lakes was conducted at Mount Rainier National Park in 1988. From 1990–1993, die opportunity was presented to resurvey six of these lakes to determine inter-annual change within die set of characteristics surveyed in 1988. If changes were evident, a second objective was to provide guidance to park management about the value of a long-term lake monitoring program.Secchi-disk clarity, water temperature, and pH of the lakes in 1988 were within the range of values obtained between 1990 and 1993. Conductivities and concentration of nutrients in some lakes were not consistent in 1990–1993 with the values recorded in 1988. Although the dominant phytoplankton taxa in die lakes varied among years, die taxa in individual lakes were in consistent among years, with die exception of two lakes. Rotifer assemblages were consistent among years, but most of die lakes exhibited dramatic changes in some years, as did crustacean zooplankton assemblages. Suggestions were made about die need for a long-term monitoring program to evaluate die status and trends of park lakes.
Metabolic stratification driven by surface and subsurface interactions in a terrestrial mud volcano.
Cheng, Ting-Wen; Chang, Yung-Hsin; Tang, Sen-Lin; Tseng, Ching-Hung; Chiang, Pei-Wen; Chang, Kai-Ti; Sun, Chih-Hsien; Chen, Yue-Gau; Kuo, Hung-Chi; Wang, Chun-Ho; Chu, Pao-Hsuan; Song, Sheng-Rong; Wang, Pei-Ling; Lin, Li-Hung
2012-12-01
Terrestrial mud volcanism represents the prominent surface geological feature, where fluids and hydrocarbons are discharged along deeply rooted structures in tectonically active regimes. Terrestrial mud volcanoes (MVs) directly emit the major gas phase, methane, into the atmosphere, making them important sources of greenhouse gases over geological time. Quantification of methane emission would require detailed insights into the capacity and efficiency of microbial metabolisms either consuming or producing methane in the subsurface, and establishment of the linkage between these methane-related metabolisms and other microbial or abiotic processes. Here we conducted geochemical, microbiological and genetic analyses of sediments, gases, and pore and surface fluids to characterize fluid processes, community assemblages, functions and activities in a methane-emitting MV of southwestern Taiwan. Multiple lines of evidence suggest that aerobic/anaerobic methane oxidation, sulfate reduction and methanogenesis are active and compartmentalized into discrete, stratified niches, resembling those in marine settings. Surface evaporation and oxidation of sulfide minerals are required to account for the enhanced levels of sulfate that fuels subsurface sulfate reduction and anaerobic methanotrophy. Methane flux generated by in situ methanogenesis appears to alter the isotopic compositions and abundances of thermogenic methane migrating from deep sources, and to exceed the capacity of microbial consumption. This metabolic stratification is sustained by chemical disequilibria induced by the mixing between upward, anoxic, methane-rich fluids and downward, oxic, sulfate-rich fluids.
A Comparison of Microbial Communities from Deep Igneous Crust
NASA Astrophysics Data System (ADS)
Smith, A. R.; Flores, G. E.; Fisk, M. R.; Colwell, F. S.; Thurber, A. R.; Mason, O. U.; Popa, R.
2013-12-01
Recent investigations of life in Earth's crust have revealed common themes in organism function, taxonomy, and diversity. Capacities for hydrogen oxidation, carbon fixation, methanogenesis and methanotrophy, iron and sulfur metabolisms, and hydrocarbon degradation often predominate in deep life communities, and crustal mineralogy has been hypothesized as a driving force for determining deep life community assemblages. Recently, we found that minerals characteristic of the igneous crust harbored unique communities when incubated in the Juan de Fuca Ridge flank borehole IODP 1301A. Here we present attached mineral biofilm morphologies and a comparison of our mineral communities to those from a variety of locations, contamination states, and igneous crustal or mineralogical types. We found that differences in borehole mineral communities were reflected in biofilm morphologies. Olivine biofilms were thick, carbon-rich films with embedded cells of uniform size and shape and often contained secondary minerals. Encrusted cells, spherical and rod-shaped cells, and tubes were indicative of glass surfaces. We also found that the attached communities from incubated borehole minerals were taxonomically more similar to native, attached communities from marine and continental crust than to communities from the aquifer water that seeded it. Our findings further support the hypothesis that mineralogy selects for microbial communities that have distinct phylogenetic, morphological, and potentially functional, signatures. This has important implications for resolving ecosystem function and microbial distributions in igneous crust, the largest deep habitat on Earth.
Jungblut, Anne D; Hawes, Ian
2017-06-28
Evidence of climate-driven environmental change is increasing in Antarctica, and with it comes concern that this will propagate to impacts on biological communities. Recognition and prediction of change needs to incorporate the extent and timescales over which communities vary under extant conditions. However, few observations of Antarctic microbial communities, which dominate inland habitats, allow this. We therefore carried out the first molecular comparison of Cyanobacteria in historic herbarium microbial mats from freshwater ecosystems on Ross Island and the McMurdo Ice Shelf, collected by Captain R.F. Scott's 'Discovery' Expedition (1902-1903), with modern samples from those areas. Using 16S rRNA gene surveys, we found that modern and historic cyanobacteria assemblages showed some variation in community structure but were dominated by the same genotypes. Modern communities had a higher richness, including genotypes not found in historic samples, but they had the highest similarity to other cyanobacteria sequences from Antarctica. The results imply slow cyanobacterial 16S rRNA gene genotype turnover and considerable community stability within Antarctic microbial mats. We suggest that this relates to Antarctic freshwater 'organisms requiring a capacity to withstand diverse stresses, and that this could also provide a degree of resistance and resilience to future climatic-driven environmental change in Antarctica. © 2017 The Author(s).
Metabolic stratification driven by surface and subsurface interactions in a terrestrial mud volcano
Cheng, Ting-Wen; Chang, Yung-Hsin; Tang, Sen-Lin; Tseng, Ching-Hung; Chiang, Pei-Wen; Chang, Kai-Ti; Sun, Chih-Hsien; Chen, Yue-Gau; Kuo, Hung-Chi; Wang, Chun-Ho; Chu, Pao-Hsuan; Song, Sheng-Rong; Wang, Pei-Ling; Lin, Li-Hung
2012-01-01
Terrestrial mud volcanism represents the prominent surface geological feature, where fluids and hydrocarbons are discharged along deeply rooted structures in tectonically active regimes. Terrestrial mud volcanoes (MVs) directly emit the major gas phase, methane, into the atmosphere, making them important sources of greenhouse gases over geological time. Quantification of methane emission would require detailed insights into the capacity and efficiency of microbial metabolisms either consuming or producing methane in the subsurface, and establishment of the linkage between these methane-related metabolisms and other microbial or abiotic processes. Here we conducted geochemical, microbiological and genetic analyses of sediments, gases, and pore and surface fluids to characterize fluid processes, community assemblages, functions and activities in a methane-emitting MV of southwestern Taiwan. Multiple lines of evidence suggest that aerobic/anaerobic methane oxidation, sulfate reduction and methanogenesis are active and compartmentalized into discrete, stratified niches, resembling those in marine settings. Surface evaporation and oxidation of sulfide minerals are required to account for the enhanced levels of sulfate that fuels subsurface sulfate reduction and anaerobic methanotrophy. Methane flux generated by in situ methanogenesis appears to alter the isotopic compositions and abundances of thermogenic methane migrating from deep sources, and to exceed the capacity of microbial consumption. This metabolic stratification is sustained by chemical disequilibria induced by the mixing between upward, anoxic, methane-rich fluids and downward, oxic, sulfate-rich fluids. PMID:22739492
Plant microbial diversity is suggested as the key to future biocontrol and health trends.
Berg, Gabriele; Köberl, Martina; Rybakova, Daria; Müller, Henry; Grosch, Rita; Smalla, Kornelia
2017-05-01
The microbiome of plants plays a crucial role in both plant and ecosystem health. Rapid advances in multi-omics tools are dramatically increasing access to the plant microbiome and consequently to the identification of its links with diseases and to the control of those diseases. Recent insights reveal a close, often symbiotic relationship between microorganisms and plants. Microorganisms can stimulate germination and plant growth, prevent diseases, and promote stress resistance and general fitness. Plants and their associated microorganisms form a holobiont and have to be considered as co-evolved species assemblages consisting of bacterial, archaeal and diverse eukaryotic species. The beneficial interplay of the host and its microbiome is responsible for maintaining the health of the holobiont, while diseases are often correlated with microbial dysbioses. Microbial diversity was identified as a key factor in preventing diseases and can be implemented as a biomarker in plant protection strategies. Targeted and predictive biocontrol approaches are possible by developing microbiome-based solutions. Moreover, combined breeding and biocontrol strategies maintaining diversity and ecosystem health are required. The analysis of plant microbiome data has brought about a paradigm shift in our understanding of its role in health and disease and has substantial consequences for biocontrol and health issues. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Li, Pan; Liang, Hebin; Lin, Wei-Tie; Feng, Feng
2015-01-01
Traditional Chinese solid-state fermented cereal starters contain highly complex microbial communities and enzymes. Very little is known, however, about the microbial dynamics related to environmental conditions, and cellulolytic communities have never been proposed to exist during cereal starter fermentation. In this study, we performed Illumina MiSeq sequencing combined with PCR-denaturing gradient gel electrophoresis to investigate microbiota, coupled with clone library construction to trace cellulolytic communities in both fermentation stages. A succession of microbial assemblages was observed during the fermentation of starters. Lactobacillales and Saccharomycetales dominated the initial stages, with a continuous decline in relative abundance. However, thermotolerant and drought-resistant Bacillales, Eurotiales, and Mucorales were considerably accelerated during the heating stages, and these organisms dominated until the end of fermentation. Enterobacteriales were consistently ubiquitous throughout the process. For the cellulolytic communities, only the genera Sanguibacter, Beutenbergia, Agrobacterium, and Erwinia dominated the initial fermentation stages. In contrast, stages at high incubation temperature induced the appearance and dominance of Bacillus, Aspergillus, and Mucor. The enzymatic dynamics of amylase and glucoamylase also showed a similar trend, with the activities clearly increased in the first 7 days and subsequently decreased until the end of fermentation. Furthermore, β-glucosidase activity continuously and significantly increased during the fermentation process. Evidently, cellulolytic potential can adapt to environmental conditions by changes in the community structure during the fermentation of starters. PMID:26002897
Casey, Jordan M; Ainsworth, Tracy D; Choat, J Howard; Connolly, Sean R
2014-08-07
Microbial community structure on coral reefs is strongly influenced by coral-algae interactions; however, the extent to which this influence is mediated by fishes is unknown. By excluding fleshy macroalgae, cultivating palatable filamentous algae and engaging in frequent aggression to protect resources, territorial damselfish (f. Pomacentridae), such as Stegastes, mediate macro-benthic dynamics on coral reefs and may significantly influence microbial communities. To elucidate how Stegastes apicalis and Stegastes nigricans may alter benthic microbial assemblages and coral health, we determined the benthic community composition (epilithic algal matrix and prokaryotes) and coral disease prevalence inside and outside of damselfish territories in the Great Barrier Reef, Australia. 16S rDNA sequencing revealed distinct bacterial communities associated with turf algae and a two to three times greater relative abundance of phylotypes with high sequence similarity to potential coral pathogens inside Stegastes's territories. These potentially pathogenic phylotypes (totalling 30.04% of the community) were found to have high sequence similarity to those amplified from black band disease (BBD) and disease affected corals worldwide. Disease surveys further revealed a significantly higher occurrence of BBD inside S. nigricans's territories. These findings demonstrate the first link between fish behaviour, reservoirs of potential coral disease pathogens and the prevalence of coral disease. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
NASA Astrophysics Data System (ADS)
Nigro, O. D.; Rappe, M. S.; Jungbluth, S.; Lin, H. T.; Steward, G.
2015-12-01
Fluids contained in the basalt-hosted deep subsurface of the world's oceans represent one of the most inaccessible and understudied biospheres on earth. Recent improvements in sampling infrastructure have allowed us to collect large volumes of crustal fluids (~104 L) from Circulation Obviation Retrofit Kits (CORKs) placed in boreholes located on the eastern flank of the Juan de Fuca Ridge (JdFR). We detected viruses within these fluids by TEM and epifluorescence microscopy in samples collected from 2010 to 2014. Viral abundance, determined by epifluorescence counts, indicated that concentrations of viruses in subsurface basement fluids (~105 ml-1) are lower than the overlying seawater, but are higher in abundance than microbial cells in the same samples. Analysis of TEM images revealed distinct viral morphologies (rod and spindle-shaped) that resemble the morphologies of viral families infecting archaea. There are very few, if any, direct observations of these viral morphologies in marine samples, although they have been observed in enrichment cultures and their signature genes detected in metagenomic studies from hydrothermal vents and marine sediments. Analysis of metagenomes from the JdFR crustal fluids revealed sequences with homology to archaeal viruses from the rudiviridae, bicaudaviridae and fuselloviridae. Prokaryotic communities in fluids percolating through the basaltic basement rock of the JdFR flank are distinct from those inhabiting the overlying sediments and seawater. Similarly, our data support the idea that the viral assemblage in these fluids is distinct from viral assemblages in other marine and terrestrial aquatic environments. Our data also suggest that viruses contribute to the mortality of deep subsurface prokaryotes through cell lysis, and viruses may alter the genetic potential of their hosts through the processes of lysogenic conversion and horizontal gene transfer.
Wang, Pei-Ling; Chiu, Yi-Ping; Cheng, Ting-Wen; Chang, Yung-Hsin; Tu, Wei-Xain; Lin, Li-Hung
2014-01-01
This study analyzed cored sediments retrieved from sites distributed across a transect of the Lei-Gong-Hou mud volcanoes in eastern Taiwan to uncover the spatial distributions of biogeochemical processes and community assemblages involved in methane cycling. The profiles of methane concentration and carbon isotopic composition revealed various orders of the predominance of specific methane-related metabolisms along depth. At a site proximal to the bubbling pool, the methanogenic zone was sandwiched by the anaerobic methanotrophic zones. For two sites distributed toward the topographic depression, the methanogenic zone overlaid the anaerobic methanotrophic zone. The predominance of anaerobic methanotrophy at specific depth intervals is supported by the enhanced copy numbers of the ANME-2a 16S rRNA gene and coincides with high dissolved Fe/Mn concentrations and copy numbers of the Desulfuromonas/Pelobacter 16S rRNA gene. Assemblages of 16S rRNA and mcrA genes revealed that methanogenesis was mediated by Methanococcoides and Methanosarcina. pmoA genes and a few 16S rRNA genes related to aerobic methanotrophs were detected in limited numbers of subsurface samples. While dissolved Fe/Mn signifies the presence of anaerobic metabolisms near the surface, the correlations between geochemical characteristics and gene abundances, and the absence of aerobic methanotrophs in top sediments suggest that anaerobic methanotrophy is potentially dependent on iron/manganese reduction and dominates over aerobic methanotrophy for the removal of methane produced in situ or from a deep source. Near-surface methanogenesis contributes to the methane emissions from mud platform. The alternating arrangements of methanogenic and methanotrophic zones at different sites suggest that the interactions between mud deposition, evaporation, oxidation and fluid transport modulate the assemblages of microbial communities and methane cycling in different compartments of terrestrial mud volcanoes.
Geochemical and physical drivers of microbial community structure in hot spring ecosystems
NASA Astrophysics Data System (ADS)
Havig, J. R.; Hamilton, T. L.; Boyd, E. S.; Meyer-Dombard, D. R.; Shock, E.
2012-12-01
Microbial communities in natural systems are typically characterized using samples collected from a single time point, thereby neglecting the temporal dynamics that characterize natural systems. The composition of these communities obtained from single point samples is then related to the geochemistry and physical parameters of the environment. Since most microbial life is adapted to a relatively narrow ecological niche (multiplicity of physical and chemical parameters that characterize a local habitat), these assessments provide only modest insight into the controls on community composition. Temporal variation in temperature or geochemical composition would be expected to add another dimension to the complexity of niche space available to support microbial diversity, with systems that experience greater variation supporting a greater biodiversity until a point where the variability is too extreme. . Hot springs often exhibit significant temporal variation, both in physical as well as chemical characteristics. This is a result of subsurface processes including boiling, phase separation, and differential mixing of liquid and vapor phase constituents. These characteristics of geothermal systems, which vary significantly over short periods of time, provide ideal natural laboratories for investigating how i) the extent of microbial community biodiversity and ii) the composition of those communities are shaped by temporal fluctuations in geochemistry. Geochemical and molecular samples were collected from 17 temporally variable hot springs across Yellowstone National Park, Wyoming. Temperature measurements using data-logging thermocouples, allowing accurate determination of temperature maximums, minimums, and ranges for each collection site, were collected in parallel, along with multiple geochemical characterizations as conditions varied. There were significant variations in temperature maxima (54.5 to 90.5°C), minima (12.5 to 82.5°C), and range (3.5 to 77.5°C) for the hot spring environments that spanned ranges of pH values (2.2 to 9.0) and geochemical compositions. We characterized the abundance, composition, and phylogenetic diversity of bacterial and archaeal 16S rRNA gene assemblages in sediment/biofilm samples collected from each site. 16S data can be used as proxy for metabolic dissimilarity. We predict that temporally fluctuating environments should provide additional complexity to the system (additional niche space) capable of supporting additional taxa, which should lead to greater 16S rRNA gene diversity. However, systems with too much variability should collapse the diversity. Thus, one would expect an optimal system for variability, with respect to 16S phylogenetic diversity. Community ecology tools were then applied to model the relative influence of physical and chemical characteristics (including temperature dynamics) on the local biodiversity. The results reveal unique insight into the role of temporal environmental variation in the development of biodiverse communities and provide a platform for predicting the response of an ecosystem to temperature perturbation.
Microfossils' diversity from the Proterozoic Taoudeni Basin, Mauritania
NASA Astrophysics Data System (ADS)
Beghin, Jérémie; Houzay, Jean-Pierre; Blanpied, Christian; Javaux, Emmanuelle
2014-05-01
Prokaryotes and microscopic eukaryotes are known to have appeared well before the Cambrian's adaptative radiation which flourished perceptibly as a generalized macroscopic world. What do we know about the trigger events which stimulated eukaryotic diversification during the Proterozoic? Biological innovations or environmental changes, and indeed probably both (Knoll et al., 2006), played a fundamental role controlling this important step of life's evolution on Earth. Javaux (2011), proposed a diversification pattern of early eukaryotes divided into three steps and focusing on different taxonomic levels, from stem group to within crown group, of the domain Eukarya. Here, we present a new, exquisitely preserved and morphologically diverse assemblage of organic-walled microfossils from the 1.1 Ga El Mreiti Group of the Taoudeni Basin (Mauritania). The assemblage includes beautifully preserved microbial mats comprising pyritized filaments, prokaryotic filamentous sheaths and filaments, microfossils of uncertain biological affinity including smooth isolated and colonial sphaeromorphs (eukaryotes and/or prokaryotes), diverse protists (ornamented and process-bearing acritarchs), as well multicellular microfossils interpreted in the literature as possible xanthophyte algae. Several taxa are reported for the first time in Africa, but are known worldwide. This study improves microfossil diversity previously reported by Amard (1986) and shows purported xanthophyte algae contrary to a previous biomarker study suggesting the absence of eukaryotic algae, other than acritarchs, in the basin (Blumenberg et al., 2012). This new microfossil assemblage and others provide, all together, evidences of early and worldwide diversification of eukaryotes. Thereby, those first qualitative results also provide a basis for further and larger quantitative studies on the Taoudeni Basin. To better understand the palaeobiology (stem or crown group, aerobic or anaerobic metabolism) and palaeoecology (habitat diversity) of early eukaryotes, we are combining morphological, microchemical and ultrastructural studies of microfossils, with high-resolution palaeoenvironmental and palaeoredox characterization. References: Amard B. (1986) Microfossiles (Acritarches) du Protérozoïque supérieur dans les shales de la formation d'Atar (Mauritanie). Precambrian Research 31: 69-95. Blumenberg M, Thiel V, Riegel W, et al. (2012) Biomarkers of black shales formed by microbial mats, Late Mesoproterozoic (1.1 Ga) Taoudeni Basin, Mauritania. Precambrian Research 196-197: 113-127. Javaux EJ. (2011) Early eukaryotes in Precambrian oceans. Origins and Evolution of Life. An Astrobiological Perspective. Cambridge University Press, 414-449. Knoll AH, Javaux EJ, Hewitt D, et al. (2006) Eukaryotic organisms in Proterozoic oceans. Philosophical Transactions of the Royal Society B: Biological Sciences 361: 1023-1038.
Research advances on microbial genetics in China in 2015.
Xie, Jian-ping; Han, Yu-bo; Liu, Gang; Bai, Lin-quan
2016-09-01
In 2015, there are significant progresses in many aspects of the microbial genetics in China. To showcase the contribution of Chinese scientists in microbial genetics, this review surveys several notable progresses in microbial genetics made largely by Chinese scientists, and some key findings are highlighted. For the basic microbial genetics, the components, structures and functions of many macromolecule complexes involved in gene expression regulation have been elucidated. Moreover, the molecular basis underlying the recognition of foreign nucleic acids by microbial immune systems was unveiled. We also illustrated the biosynthetic pathways and regulators of multiple microbial compounds, novel enzyme reactions, and new mechanisms regulating microbial gene expression. And new findings were obtained in the microbial development, evolution and population genetics. For the industrial microbiology, more understanding on the molecular basis of the microbial factory has been gained. For the pathogenic microbiology, the genetic circuits of several pathogens were depicted, and significant progresses were achieved for understanding the pathogen-host interaction and revealing the genetic mechanisms underlying antimicrobial resistance, emerging pathogens and environmental microorganisms at the genomic level. In future, the genetic diversity of microbes can be used to obtain specific products, while gut microbiome is gathering momentum.
Long-term variation in a central California pelagic forage assemblage
NASA Astrophysics Data System (ADS)
Ralston, Stephen; Field, John C.; Sakuma, Keith M.
2015-06-01
A continuous 23 year midwater trawl survey (1990-2012) of the epipelagic forage assemblage off the coast of central California (lat. 36°30‧-38°20‧ N) is described and analyzed. Twenty taxa occurred in ≥ 10% of the 2037 trawls that were completed at 40 distinct station locations. The dominant taxa sampled by the 9.5 mm mesh net included a suite of young-of-the-year (YOY) groundfish, including rockfish (Sebastes spp.) and Pacific hake (Merluccius productus), two clupeoids (Engraulis mordax and Sardinops sagax), krill (Euphausiacea), cephalopods (Doryteuthis opalescens and Octopus sp.), and a variety of mesopelagic species, i.e., Diaphus theta, Tarltonbeania crenularis, "other" lanternfish (Myctophidae), deep-sea smelts (Bathylagidae), and sergestid shrimp. Annual abundance estimates of the 20 taxa were obtained from analysis of variance models, which included year and station as main effects. Principal components analysis of the abundance estimates revealed that 61% of assemblage variance was explained by the first three components. The first component revealed a strong contrast in the abundance of: (a) YOY groundfish, market squid (D. opalescens), and krill with (b) mesopelagics and clupeoids; the second component was associated with long-term trends in abundance. An evaluation of 10 different published oceanographic data sets and CTD data collected during the survey indicated that seawater properties encountered each year were significantly correlated with abundance patterns, as were annual sea-level anomalies obtained from an analysis of AVISO satellite information. A comparison of our findings with several other recent studies of biological communities occurring in the California Current revealed a consistent structuring of forage assemblages, which we conjecture is primarily attributable to large-scale advection patterns in the California Current ecosystem.
Paleoenvironmental recovery from the Chesapeake Bay bolide impact: The benthic foraminiferal record
Poag, C.W.
2009-01-01
The late Eocene Chesapeake Bay bolide impact transformed its offshore target site from an outer neritic, midshelf seafl oor into a bathyal crater basin. To obtain a depositional record from one of the deepest parts of this basin, the U.S. Geological Survey (USGS) and the International Continental Scientifi c Drilling Program (ICDP) drilled a 1.76-km-deep core hole near Eyreville, Virginia. The Eyreville core and eight previously cored boreholes contain a rarely obtainable record of marine deposition and microfossil assemblages that characterize the transition from synimpact to postimpact paleoenvironments inside and near a submarine impact crater. I used depositional style and benthic foraminiferal assemblages to recognize a four-step transitional succession, with emphasis on the Eyreville core. Step 1 is represented by small-scale, silt-rich turbidites, devoid of indigenous microfossils, which lie directly above the crater-fi lling Exmore breccia. Step 2 is represented by very thin, parallel, silt and clay laminae, which accumulated on a relatively tranquil and stagnant seafl oor. This stagnation created a dead zone, which excluded seafl oor biota, and it lasted ~3-5 ka. Step 3 is an interval of marine clay deposition, accompanied by a burst of microfaunal activity, as a species-rich pioneer community of benthic foraminifera repopulated the impact site. The presence of a diagnostic suite of agglutinated foraminifera during step 3 indicates that paleoenvironmental stress related to the impact lasted from ~9 ka to 400 ka at different locations inside the crater. During step 4, the agglutinated assemblage disappeared, and an equilibrium foraminiferal community developed that contained nearly 100% calcareous species. In contrast to intracrater localities, core sites outside and near the crater rim show neither evidence of the agglutinated assemblage, nor other indications of long-term biotic disruption from the bolide impact.
Nüsslein, Klaus; Tiedje, James M.
1999-01-01
The change in vegetative cover of a Hawaiian soil from forest to pasture led to significant changes in the composition of the soil bacterial community. DNAs were extracted from both soil habitats and compared for the abundance of guanine-plus-cytosine (G+C) content, by analysis of abundance of phylotypes of small-subunit ribosomal DNA (SSU rDNA) amplified from fractions with 63 and 35% G+C contents, and by phylogenetic analysis of the dominant rDNA clones in the 63% G+C content fraction. All three methods showed differences between the forest and pasture habitats, providing evidence that vegetation had a strong influence on microbial community composition at three levels of taxon resolution. The forest soil DNA had a peak in G+C content of 61%, while the DNA of the pasture soil had a peak in G+C content of 67%. None of the dominant phylotypes found in the forest soil were detected in the pasture soil. For the 63% G+C fraction SSU rDNA sequence analysis of the three most dominant members revealed that their phyla changed from Fibrobacter and Syntrophomonas assemblages in the forest soil to Burkholderia and Rhizobium–Agrobacterium assemblages in the pasture soil. PMID:10427058
Competition and niche separation of pelagic bacteria in freshwater habitats.
Pernthaler, Jakob
2017-06-01
Freshwater bacterioplankton assemblages are composed of sympatric populations that can be delineated, for example, by ribosomal RNA gene relatedness and that differ in key ecophysiological properties. They may be free-living or attached, specialized for particular concentrations or subsets of substrates, or invest a variable amount of their resources in defence traits against protistan predators and viruses. Some may be motile and tactic whereas others are not, with far-reaching implications for their respective life styles and niche partitioning. The co-occurrence of competitors with overlapping growth requirements has profound consequences for the stability of community functions; it can to some extent be explained by habitat factors such as the microscale complexity and spatiotemporal variability of the lacustrine environments. On the other hand, the composition and diversity of freshwater microbial assemblages also reflects non-equilibrium states, dispersal and the stochasticity of community assembly processes. This review synoptically discusses the competition and niche separation of heterotrophic bacterial populations (defined at various levels of phylogenetic resolution) in the pelagic zone of inland surface waters from a variety of angles, focusing on habitat heterogeneity and the resulting biogeographic distribution patterns, the ecophysiological adaptations to the substrate field and the interactions of prokaryotes with predators and viruses. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
Dust Rains Deliver Diverse Assemblages of Microorganisms to the Eastern Mediterranean
Itani, Ghida Nouhad; Smith, Colin Andrew
2016-01-01
Dust rains may be particularly effective at delivering microorganisms, yet their biodiversities have been seldom examined. During 2011 and 2012 in Beirut, Lebanon, 16 of 21 collected rainfalls appeared dusty. Trajectory modelling of air mass origins was consistent with North African sources and at least one Southwest Asian source. As much as ~4 g particulate matter, ~20 μg DNA, and 50 million colony forming units were found deposited per square meter during rainfalls each lasting less than one day. Sequencing of 93 bacteria and 25 fungi cultured from rain samples revealed diverse bacterial phyla, both Gram positive and negative, and Ascomycota fungi. Denaturing Gradient Gel Electrophoresis of amplified 16S rDNA of 13 rains revealed distinct and diverse assemblages of bacteria. Dust rain 16S libraries yielded 131 sequences matching, in decreasing order of abundance, Betaproteobacteria, Alphaproteobacteria, Firmicutes, Actinobacteria, Bacteroidetes, Cyanobacteria, Epsilonproteobacteria, Gammaproteobacteria, and Deltaproteobacteria. Clean rain 16S libraries yielded 33 sequences matching only Betaproteobacteria family Oxalobacteraceae. Microbial composition varied between dust rains, and more diverse and different microbes were found in dust rains than clean rains. These results show that dust rains deliver diverse communities of microorganisms that may be complex products of revived desert soil species and fertilized cloud species. PMID:26939571
NASA Technical Reports Server (NTRS)
Sergeev, V. N.; Knoll, A. H. (Principal Investigator)
1994-01-01
A diverse assemblage of well-preserved microorganisms has been detected in black cherts from the approximately 1200 Ma-old Avzyan Formation (Suite) of the southern Ural Mountains, Russian Federation. The lower Kataskin Member contains a diverse, abundant microbiota dominated by mat-forming filamentous cyanobacteria, several types of colonial unicells, and morphologically distinctive stalked cyanobacteria. The upper Revet Member contains a less diverse biota dominated by unicellular cyanobacteria. Palaeoecological evidence indicates that the microbial community of the Kataskin Member inhabited a shallow water, presumably marine, carbonate environment. Revet microorganisms possibly lived in restricted peritidal environments. The biostratigraphic significance of the Avzyan microbiota is limited. Many of the taxa are long-ranging; they were already abundant in Palaeoproterozoic successions and continue into the Neoproterozoic. Nevertheless, in many respects, the Kataskin assemblage is comparable to those reported from the Middle-Late Riphean deposits of Northern America, Australia and Eurasia. The following taxa are here described: Chroococcaceae-Eogloeocapsa avzyanica Sergeev, Gloeodiniopsis lamellosa Schopf emend. Knoll et Golubic; Entophysalidaceae-Eoentophysalis belcherensis Hofmann; Dermocarpaceae-Polybessurus bipartitus Fairchild ex Green et al.; Nostocaceae-Eosphaeronostoc kataskinicum Sergeev; Nostocaceae or Oscillatoriaceae-Siphonophycus robustum (Schopf) emend. Knoll et Golubic emend. Knoll et al., Siphonophycus sp.; Incertae sedis-Eosynechococcus amadeus Knoll et Golubic.
Dust Rains Deliver Diverse Assemblages of Microorganisms to the Eastern Mediterranean
NASA Astrophysics Data System (ADS)
Itani, Ghida Nouhad; Smith, Colin Andrew
2016-03-01
Dust rains may be particularly effective at delivering microorganisms, yet their biodiversities have been seldom examined. During 2011 and 2012 in Beirut, Lebanon, 16 of 21 collected rainfalls appeared dusty. Trajectory modelling of air mass origins was consistent with North African sources and at least one Southwest Asian source. As much as ~4 g particulate matter, ~20 μg DNA, and 50 million colony forming units were found deposited per square meter during rainfalls each lasting less than one day. Sequencing of 93 bacteria and 25 fungi cultured from rain samples revealed diverse bacterial phyla, both Gram positive and negative, and Ascomycota fungi. Denaturing Gradient Gel Electrophoresis of amplified 16S rDNA of 13 rains revealed distinct and diverse assemblages of bacteria. Dust rain 16S libraries yielded 131 sequences matching, in decreasing order of abundance, Betaproteobacteria, Alphaproteobacteria, Firmicutes, Actinobacteria, Bacteroidetes, Cyanobacteria, Epsilonproteobacteria, Gammaproteobacteria, and Deltaproteobacteria. Clean rain 16S libraries yielded 33 sequences matching only Betaproteobacteria family Oxalobacteraceae. Microbial composition varied between dust rains, and more diverse and different microbes were found in dust rains than clean rains. These results show that dust rains deliver diverse communities of microorganisms that may be complex products of revived desert soil species and fertilized cloud species.
Psychrophiles and astrobiology: microbial life of frozen worlds
NASA Astrophysics Data System (ADS)
Pikuta, Elena V.; Hoover, Richard B.
2003-01-01
Most bodies of our Solar System are "Frozen Worlds" where the prevailing surface temperature remains at or below freezing. On Earth there are vast permanently frozen regions of permafrost, polar ice sheets, and glaciers and the deep oceans and deep-sea marine sediments have remained at 2 - 4°C for eons. Psychrophilic and psychrotrophic microbiota that inhabit these regimes provide analogs for microbial life that might inhabit ice sheets and permafrost of Mars, comets, or the ice/water interfaces or sediments deep beneath the icy crusts of Europa, Callisto, or Ganymede. Cryopreserved micro-organisms can remain viable (in a deep anabiotic state) for millions of years frozen in permafrost and ice. Psychrophilic and psychrotrophic (cold-loving) microbes can carry out metabolic processes in water films and brine, acidic, or alkaline chanels in permafrost or ice at temperatures far below 0°C. These microbes of the cryosphere help define the thermal and temporal limits of life on Earth and may provide clues to where and how to search for evidence of life elsewhere in the Cosmos. Astrobiologists at the NASA Marshall Space Flight Center have collected microbial extremophiles from the Pleistocene ice wedges and frozen thermokarst ponds from the Fox Permafrost Tunnel of Alaska. Microbes have also been isolated from samples of Magellanic Penguin guano from Patagonia; deep-sea marine muds near hydrothermal vents; snow and permafrost from Siberia, and deep ice cores, ice-bubble and cryoconite rocks of the Central Antarctic Ice Sheet. These samples have yielded microbial extremophiles representing a wide variety of anaerobic bacteria and archaea. These microbes have been isolated, cultured, characterized and analyzed by phylogenetic and genomic methods. Images were obtained by Phase Contrast, Environmental, Field Emission Scanning and Transmission Electron Microscopes to study the ultra-microstructure and elemental distribution in the composition of these micro-organisms. We consider the Astrobiological significance of the Fox Tunnel with its rich assemblage of frozen microbes as proxy for developing techniques that may help optimize the search for evidence of life in the permafrost of Mars. We provide images of a novel anaerobic, heterotrophic, psychrotrophic bacterium (str.FTR1) isolated in pure culture from the Fox Tunnel. We also describe novel psychrotrophs isolated from guano of the Magellanic penguin (Spheniscus magellanicus) from the southern tip of Patagonia. These strains PmagG1 and PPP2) represent new species and genera of anaerobic microbes that grow at very low temperatures. The lowest limit for growth without morphological changes of str.PmagG1 is -4°C.
Binga, Erik K; Lasken, Roger S; Neufeld, Josh D
2008-03-01
Microbial ecology is a field that applies molecular techniques to analyze genes and communities associated with a plethora of unique environments on this planet. In the past, low biomass and the predominance of a few abundant community members have impeded the application of techniques such as PCR, microarray analysis and metagenomics to complex microbial populations. In the absence of suitable cultivation methods, it was not possible to obtain DNA samples from individual microorganisms. Recently, a method called multiple displacement amplification (MDA) has been used to circumvent these limitations by amplifying DNA from microbial communities in low-biomass environments, individual cells from uncultivated microbial species and active organisms obtained through stable isotope probing incubations. This review describes the development and applications of MDA, discusses its strengths and limitations and highlights the impact of MDA on the field of microbial ecology. Whole genome amplification via MDA has increased access to the genomic DNA of uncultivated microorganisms and low-biomass environments and represents a 'power tool' in the molecular toolbox of microbial ecologists.
Poretsky, Rachel S; Hewson, Ian; Sun, Shulei; Allen, Andrew E; Zehr, Jonathan P; Moran, Mary Ann
2009-06-01
Metatranscriptomic analyses of microbial assemblages (< 5 microm) from surface water at the Hawaiian Ocean Time-Series (HOT) revealed community-wide metabolic activities and day/night patterns of differential gene expression. Pyrosequencing produced 75 558 putative mRNA reads from a day transcriptome and 75 946 from a night transcriptome. Taxonomic binning of annotated mRNAs indicated that Cyanobacteria contributed a greater percentage of the transcripts (54% of annotated sequences) than expected based on abundance (35% of cell counts and 21% 16S rRNA of libraries), and may represent the most actively transcribing cells in this surface ocean community in both the day and night. Major heterotrophic taxa contributing to the community transcriptome included alpha-Proteobacteria (19% of annotated sequences, most of which were SAR11-related) and gamma-Proteobacteria (4%). The composition of transcript pools was consistent with models of prokaryotic gene expression, including operon-based transcription patterns and an abundance of genes predicted to be highly expressed. Metabolic activities that are shared by many microbial taxa (e.g. glycolysis, citric acid cycle, amino acid biosynthesis and transcription and translation machinery) were well represented among the community transcripts. There was an overabundance of transcripts for photosynthesis, C1 metabolism and oxidative phosphorylation in the day compared with night, and evidence that energy acquisition is coordinated with solar radiation levels for both autotrophic and heterotrophic microbes. In contrast, housekeeping activities such as amino acid biosynthesis, membrane synthesis and repair, and vitamin biosynthesis were overrepresented in the night transcriptome. Direct sequencing of these environmental transcripts has provided detailed information on metabolic and biogeochemical responses of a microbial community to solar forcing.
Microbial diversity and dynamics during methane production from municipal solid waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bareither, Christopher A., E-mail: christopher.bareither@colostate.edu; Geological Engineering, University of Wisconsin-Madison, Madison, WI 53706; Wolfe, Georgia L., E-mail: gwolfe@wisc.edu
2013-10-15
Highlights: ► Similar bacterial communities developed following different start-up operation. ► Total methanogens in leachate during the decelerated methane phase reflected overall methane yield. ► Created correlations between methanogens, methane yield, and available substrate. ► Predominant bacteria identified with syntrophic polysaccharide degraders. ► Hydrogenotrophic methanogens were dominant in the methane generation process. - Abstract: The objectives of this study were to characterize development of bacterial and archaeal populations during biodegradation of municipal solid waste (MSW) and to link specific methanogens to methane generation. Experiments were conducted in three 0.61-m-diameter by 0.90-m-tall laboratory reactors to simulate MSW bioreactor landfills. Pyrosequencing ofmore » 16S rRNA genes was used to characterize microbial communities in both leachate and solid waste. Microbial assemblages in effluent leachate were similar between reactors during peak methane generation. Specific groups within the Bacteroidetes and Thermatogae phyla were present in all samples and were particularly abundant during peak methane generation. Microbial communities were not similar in leachate and solid fractions assayed at the end of reactor operation; solid waste contained a more abundant bacterial community of cellulose-degrading organisms (e.g., Firmicutes). Specific methanogen populations were assessed using quantitative polymerase chain reaction. Methanomicrobiales, Methanosarcinaceae, and Methanobacteriales were the predominant methanogens in all reactors, with Methanomicrobiales consistently the most abundant. Methanogen growth phases coincided with accelerated methane production, and cumulative methane yield increased with increasing total methanogen abundance. The difference in methanogen populations and corresponding methane yield is attributed to different initial cellulose and hemicellulose contents of the MSW. Higher initial cellulose and hemicellulose contents supported growth of larger methanogen populations that resulted in higher methane yield.« less
NASA Astrophysics Data System (ADS)
Cameron, K. A.; Dieser, M.; Choquette, K.; Christner, B. C.; Hagedorn, B.; Harrold, Z.; Liu, L.; Sletten, R. S.; Junge, K.
2012-12-01
The melting of the Greenland Ice Sheet provides direct connections between atmospheric, supraglacial and subglacial environments. The intraglacial hydrological pathways that result are believed to accommodate the microbial colonization of subglacial environments; however, little is known about the abundance, diversity and activity of microorganisms within these niches. The Greenland Ice Sheet (1.7 million square kilometers) and its associated surpaglacial and subglacial ecosystems may contribute significantly to biogeochemical cycling processes. We analyzed subglacial microbial assemblages in subglacial outflows, near Thule and Kangerlussuaq, West Greenland. The investigative approach included correlating microbial diversity, inferred function, abundance, melt water chemistry, O-18 water isotope ratios, alkalinity and sediment load. Using Illumina sequencing, bacterial small subunit ribosomal RNA hypervariable regions have been targeted and amplified from both extracted DNA and reverse transcribed rRNA. Over 3 billion sequence reads have been generated to create a comprehensive diversity profile. Total abundances ranged from 2.24E+04 to 1.58E+06 cells mL-1. In comparison, the total abundance of supraglacial early season snow samples ranged from 3.35E+02 to 2.8E+04 cells mL-1. 65 % of samples incubated with cyano ditoyl tetrazolium chloride (CTC), used to identify actively respiring cells, contained CTC-positive cells. On average, these cells represented 1.9 % of the estimated total abundance (1.86E+02 to 2.19E+03 CTC positive cells mL-1; 1.39E+03 cells mL-1 standard deviation); comparative to those measured in temperate freshwater lakes. The overarching objective of our research is to provide data that indicates the role of microbial communities, associated with ice sheets, in elemental cycling and in the release of biomass and nutrients to the surrounding marine biome.
Woycheese, Kristin M.; Meyer-Dombard, D'Arcy R.; Cardace, Dawn; Argayosa, Anacleto M.; Arcilla, Carlo A.
2015-01-01
In the Zambales ophiolite range, terrestrial serpentinizing fluid seeps host diverse microbial assemblages. The fluids fall within the profile of Ca2+-OH−-type waters, indicative of active serpentinization, and are low in dissolved inorganic carbon (DIC) (<0.5 ppm). Influx of atmospheric carbon dioxide (CO2) affects the solubility of calcium carbonate as distance from the source increases, triggering the formation of meter-scale travertine terraces. Samples were collected at the source and along the outflow channel to determine subsurface microbial community response to surface exposure. DNA was extracted and submitted for high-throughput 16S rRNA gene sequencing on the Illumina MiSeq platform. Taxonomic assignment of the sequence data indicates that 8.1% of the total sequence reads at the source of the seep affiliate with the genus Methanobacterium. Other major classes detected at the source include anaerobic taxa such as Bacteroidetes (40.7% of total sequence reads) and Firmicutes (19.1% of total reads). Hydrogenophaga spp. increase in relative abundance as redox potential increases. At the carbonate terrace, 45% of sequence reads affiliate with Meiothermus spp. Taxonomic observations and geochemical data suggest that several putative metabolisms may be favorable, including hydrogen oxidation, H2-associated sulfur cycling, methanogenesis, methanotrophy, nitrogen fixation, ammonia oxidation, denitrification, nitrate respiration, methylotrophy, carbon monoxide respiration, and ferrous iron oxidation, based on capabilities of nearest known neighbors. Scanning electron microscopy and energy dispersive X-ray spectroscopy suggest that microbial activity produces chemical and physical traces in the precipitated carbonates forming downstream of the seep's source. These data provide context for future serpentinizing seep ecosystem studies, particularly with regards to tropical biomes. PMID:25745416
Phylogenetic Diversity and Metabolic Potential Revealed in a Glacier Ice Metagenome▿ †
Simon, Carola; Wiezer, Arnim; Strittmatter, Axel W.; Daniel, Rolf
2009-01-01
The largest part of the Earth's microbial biomass is stored in cold environments, which represent almost untapped reservoirs of novel species, processes, and genes. In this study, the first metagenomic survey of the metabolic potential and phylogenetic diversity of a microbial assemblage present in glacial ice is presented. DNA was isolated from glacial ice of the Northern Schneeferner, Germany. Pyrosequencing of this DNA yielded 1,076,539 reads (239.7 Mbp). The phylogenetic composition of the prokaryotic community was assessed by evaluation of a pyrosequencing-derived data set and sequencing of 16S rRNA genes. The Proteobacteria (mainly Betaproteobacteria), Bacteroidetes, and Actinobacteria were the predominant phylogenetic groups. In addition, isolation of psychrophilic microorganisms was performed, and 13 different bacterial isolates were recovered. Analysis of the 16S rRNA gene sequences of the isolates revealed that all were affiliated to the predominant groups. As expected for microorganisms residing in a low-nutrient environment, a high metabolic versatility with respect to degradation of organic substrates was detected by analysis of the pyrosequencing-derived data set. The presence of autotrophic microorganisms was indicated by identification of genes typical for different ways of carbon fixation. In accordance with the results of the phylogenetic studies, in which mainly aerobic and facultative aerobic bacteria were detected, genes typical for central metabolism of aerobes were found. Nevertheless, the capability of growth under anaerobic conditions was indicated by genes involved in dissimilatory nitrate/nitrite reduction. Numerous characteristics for metabolic adaptations associated with a psychrophilic lifestyle, such as formation of cryoprotectants and maintenance of membrane fluidity by the incorporation of unsaturated fatty acids, were detected. Thus, analysis of the glacial metagenome provided insights into the microbial life in frozen habitats on Earth, thereby possibly shedding light onto microbial life in analogous extraterrestrial environments. PMID:19801459
Woycheese, Kristin M; Meyer-Dombard, D'Arcy R; Cardace, Dawn; Argayosa, Anacleto M; Arcilla, Carlo A
2015-01-01
In the Zambales ophiolite range, terrestrial serpentinizing fluid seeps host diverse microbial assemblages. The fluids fall within the profile of Ca(2+)-OH(-)-type waters, indicative of active serpentinization, and are low in dissolved inorganic carbon (DIC) (<0.5 ppm). Influx of atmospheric carbon dioxide (CO2) affects the solubility of calcium carbonate as distance from the source increases, triggering the formation of meter-scale travertine terraces. Samples were collected at the source and along the outflow channel to determine subsurface microbial community response to surface exposure. DNA was extracted and submitted for high-throughput 16S rRNA gene sequencing on the Illumina MiSeq platform. Taxonomic assignment of the sequence data indicates that 8.1% of the total sequence reads at the source of the seep affiliate with the genus Methanobacterium. Other major classes detected at the source include anaerobic taxa such as Bacteroidetes (40.7% of total sequence reads) and Firmicutes (19.1% of total reads). Hydrogenophaga spp. increase in relative abundance as redox potential increases. At the carbonate terrace, 45% of sequence reads affiliate with Meiothermus spp. Taxonomic observations and geochemical data suggest that several putative metabolisms may be favorable, including hydrogen oxidation, H2-associated sulfur cycling, methanogenesis, methanotrophy, nitrogen fixation, ammonia oxidation, denitrification, nitrate respiration, methylotrophy, carbon monoxide respiration, and ferrous iron oxidation, based on capabilities of nearest known neighbors. Scanning electron microscopy and energy dispersive X-ray spectroscopy suggest that microbial activity produces chemical and physical traces in the precipitated carbonates forming downstream of the seep's source. These data provide context for future serpentinizing seep ecosystem studies, particularly with regards to tropical biomes.
Gong, Jun; Qing, Yao; Zou, Songbao; Fu, Rao; Su, Lei; Zhang, Xiaoli; Zhang, Qianqian
2016-01-01
Protistan bacterivory, a microbial process involving ingestion and digestion, is ecologically important in the microbial loop in aquatic and terrestrial ecosystems. While bacterial resistance to protistan ingestion has been relatively well understood, little is known about protistan digestion in which some ingested bacteria could not be digested in cells of major protistan grazers in the natural environment. Here we report the phylogenetic identities of digestion-resistant bacteria (DRB) that could survive starvation and form relatively stable associations with 11 marine and one freshwater ciliate species. Using clone library and sequencing of 16S rRNA genes, we found that the protistan predators could host a high diversity of DRB, most of which represented novel bacterial taxa that have not been cultivated. The localization inside host cells, quantity, and viability of these bacteria were checked using fluorescence in situ hybridization. The DRB were affiliated with Actinobacteria, Bacteroidetes, Firmicutes, Parcubacteria (OD1), Planctomycetes, and Proteobacteria, with Gammaproteobacteria and Alphaproteobacteria being the most frequently occurring classes. The dominance of Gamma- and Alphaproteobacteria corresponds well to a previous study of Global Ocean Sampling metagenomic data showing the widespread types of bacterial type VI and IV secretion systems (T6SS and T4SS) in these two taxa, suggesting a putatively significant role of secretion systems in promoting marine protist-bacteria associations. In the DRB assemblages, opportunistic bacteria such as Alteromonadaceae, Pseudoalteromonadaceae, and Vibrionaceae often presented with high proportions, indicating these bacteria could evade protistan grazing thus persist and accumulate in the community, which, however, contrasts with their well-known rarity in nature. This begs the question whether viral lysis is significant in killing these indigestible bacteria in microbial communities. Taken together, our study on the identity of DRB sheds new light on microbial interactions and generates further hypotheses including the potential importance of bacterial protein secretion systems in structuring bacterial community composition and functioning of “microbial black box” in aquatic environments. PMID:27148188
Tadonléké, R D; Jugnia, L B; Sime-Ngando, T; Devaux, J; Romagoux, J C
2002-01-01
Phytoplankton dynamics, bacterial standing stocks and living microbial biomass (derived from ATP measurements, 0.7-200 mm size class) were examined in 1996 in the newly flooded (1995) Sep Reservoir ('Massif Central,' France), for evidence of the importance of the microbial food web relative to the traditional food chain. Phosphate concentrations were low, N:P ratios were high, and phosphate losses converted into carbon accounted for <50% of phytoplankton biomass and production, indicating that P was limiting phytoplankton development during the study. The observed low availability of P contrasts with the high release of "directly" assimilable P often reported in newly flooded reservoirs, suggesting that factors determining nutrient dynamics in such ecosystems are complex. The phosphate availability, but also the water column stability, seemed to be among the major factors determining phytoplankton dynamics, as (i) large-size phytoplankton species were prominent during the period of increasing water column stability, whereas small-size species dominated phytoplankton assemblages during the period of decreasing stability, and (ii) a Dinobryon divergens bloom occurred during a period when inorganic P was undetectable, coinciding with the lowest values of bacterial standing stocks. Indication of grazing limitation of bacterial populations by the mixotrophic chrysophyte D. divergens (in late spring) and by other potential grazers (mainly rotifers in summer) seemed to be confirmed by the Model II or functional slopes of the bacterial vs phytoplankton regressions, which were always <0.63. Phytoplankton biomass was not correlated with phosphorus sources and its contribution was remarkably low relative to the living microbial biomass which, in contrast, was positively correlated with total phosphorus in summer. We conclude that planktonic microheterotrophs are strongly implicated in the phosphorus dynamics in the Sep Reservoir, and thus support the idea that an important amount of matter and energy flows through the "microbial loop" and food web, shortly after the flooding of a reservoir.
Effects of Coral Reef Benthic Primary Producers on Dissolved Organic Carbon and Microbial Activity
Haas, Andreas F.; Nelson, Craig E.; Wegley Kelly, Linda; Carlson, Craig A.; Rohwer, Forest; Leichter, James J.; Wyatt, Alex; Smith, Jennifer E.
2011-01-01
Benthic primary producers in marine ecosystems may significantly alter biogeochemical cycling and microbial processes in their surrounding environment. To examine these interactions, we studied dissolved organic matter release by dominant benthic taxa and subsequent microbial remineralization in the lagoonal reefs of Moorea, French Polynesia. Rates of photosynthesis, respiration, and dissolved organic carbon (DOC) release were assessed for several common benthic reef organisms from the backreef habitat. We assessed microbial community response to dissolved exudates of each benthic producer by measuring bacterioplankton growth, respiration, and DOC drawdown in two-day dark dilution culture incubations. Experiments were conducted for six benthic producers: three species of macroalgae (each representing a different algal phylum: Turbinaria ornata – Ochrophyta; Amansia rhodantha – Rhodophyta; Halimeda opuntia – Chlorophyta), a mixed assemblage of turf algae, a species of crustose coralline algae (Hydrolithon reinboldii) and a dominant hermatypic coral (Porites lobata). Our results show that all five types of algae, but not the coral, exuded significant amounts of labile DOC into their surrounding environment. In general, primary producers with the highest rates of photosynthesis released the most DOC and yielded the greatest bacterioplankton growth; turf algae produced nearly twice as much DOC per unit surface area than the other benthic producers (14.0±2.8 µmol h−1 dm−2), stimulating rapid bacterioplankton growth (0.044±0.002 log10 cells h−1) and concomitant oxygen drawdown (0.16±0.05 µmol L−1 h−1 dm−2). Our results demonstrate that benthic reef algae can release a significant fraction of their photosynthetically-fixed carbon as DOC, these release rates vary by species, and this DOC is available to and consumed by reef associated microbes. These data provide compelling evidence that benthic primary producers differentially influence reef microbial dynamics and biogeochemical parameters (i.e., DOC and oxygen availability, bacterial abundance and metabolism) in coral reef communities. PMID:22125645
Marlow, Jeffery; Skennerton, Connor T.; Li, Zhou; ...
2016-04-29
Marine methane seep habitats represent an important control on the global flux of methane between the subsurface and water column reservoirs. Meta-omics studies have begun to outline community-wide metabolic potential, but expression patterns of proteins that enact sulfate-mediated anaerobic methane oxidation in seeps are poorly characterized. Proteomic stable isotope probing (proteomic SIP) offers an additional layer of information for characterizing phylogenetically specific, functionally relevant activity in mixed microbial communities. Here we applied proteomic SIP to 15NH4+ and CH4 amended seep sediment microcosms in an attempt to track the protein synthesis of slow-growing, low-energy microbial systems. Across all samples, 3495 proteinsmore » were identified, 21% of which were 15N-labeled. We observed active synthesis (15N enrichment) of all proteins believed to be involved in sulfate reduction and reverse methanogenesis including methylenetetrahydromethanopterin reductase (Mer). The abundance and phylogenetic range of methyl-coenzyme M reductase (Mcr) orthologs produced during incubation experiments suggests that seeps provide sufficient niches for multiple organisms performing analogous metabolisms. Twenty-eight previously unreported post-translational modifications of McrA were measured, indicating dynamic enzymatic machinery and offering a dimension of functional diversity beyond gene-dictated sequence. RNA polymerase associated with putative sulfur-oxidizing Epsilonproteobacteria and aerobic Gammaproteobacteria were more abundant among pre-incubation proteins, suggesting diminished metabolic activity in long-term anoxic, sulfidic experimental incubations. Twenty-six proteins of unknown function were detected in all proteomic experiments and actively expressed in labeled experiments, suggesting that they play important roles in methane seep ecosystems. The addition of stable isotope probing to environmental proteomics experiments provides a mechanism to begin to assess the degree to which diagnostic meatbolic proteins are long-lived or acively synthesized in complex, slow-growing microbial communities. Our work here demonstrates that sediment-hosted microbial assemblages in marine methane seeps are dynamic, heterogeneous systems with broad functional diversity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marlow, Jeffery; Skennerton, Connor T.; Li, Zhou
Marine methane seep habitats represent an important control on the global flux of methane between the subsurface and water column reservoirs. Meta-omics studies have begun to outline community-wide metabolic potential, but expression patterns of proteins that enact sulfate-mediated anaerobic methane oxidation in seeps are poorly characterized. Proteomic stable isotope probing (proteomic SIP) offers an additional layer of information for characterizing phylogenetically specific, functionally relevant activity in mixed microbial communities. Here we applied proteomic SIP to 15NH4+ and CH4 amended seep sediment microcosms in an attempt to track the protein synthesis of slow-growing, low-energy microbial systems. Across all samples, 3495 proteinsmore » were identified, 21% of which were 15N-labeled. We observed active synthesis (15N enrichment) of all proteins believed to be involved in sulfate reduction and reverse methanogenesis including methylenetetrahydromethanopterin reductase (Mer). The abundance and phylogenetic range of methyl-coenzyme M reductase (Mcr) orthologs produced during incubation experiments suggests that seeps provide sufficient niches for multiple organisms performing analogous metabolisms. Twenty-eight previously unreported post-translational modifications of McrA were measured, indicating dynamic enzymatic machinery and offering a dimension of functional diversity beyond gene-dictated sequence. RNA polymerase associated with putative sulfur-oxidizing Epsilonproteobacteria and aerobic Gammaproteobacteria were more abundant among pre-incubation proteins, suggesting diminished metabolic activity in long-term anoxic, sulfidic experimental incubations. Twenty-six proteins of unknown function were detected in all proteomic experiments and actively expressed in labeled experiments, suggesting that they play important roles in methane seep ecosystems. The addition of stable isotope probing to environmental proteomics experiments provides a mechanism to begin to assess the degree to which diagnostic meatbolic proteins are long-lived or acively synthesized in complex, slow-growing microbial communities. Our work here demonstrates that sediment-hosted microbial assemblages in marine methane seeps are dynamic, heterogeneous systems with broad functional diversity.« less
NASA Astrophysics Data System (ADS)
Srivastava, Jatin K.; Chandra, Harish; Kalra, Swinder J. S.; Mishra, Pratibha; Khan, Hena; Yadav, Poonam
2017-06-01
Microbial assemblage as biofilm around the aquatic plant forms a firm association that largely depends upon the mutual supplies of nutrients, e.g., microbes interact with plants in an aquatic system most likely for organic carbon and oxygen, whereas plants receive defensive immunity and mineral exchange. Apart from the mutual benefits, plant-microbe interactions also influence the water quality especially at rhizosphere providing inherent ability to the aquatic system for the mitigation of pollution from the water column. The review presents and in-depth information along with certain research advancements made in the field of ecological and bio/chemical aspects of plant-microbe interactions and the underlying potential to improve water quality.
Kristensen, Esben Astrup; Baattrup-Pedersen, Annette; Andersen, Hans Estrup
2012-03-01
Increasing human impact on stream ecosystems has resulted in a growing need for tools helping managers to develop conservations strategies, and environmental monitoring is crucial for this development. This paper describes the development of models predicting the presence of fish assemblages in lowland streams using solely cost-effective GIS-derived land use variables. Three hundred thirty-five stream sites were separated into two groups based on size. Within each group, fish abundance data and cluster analysis were used to determine the composition of fish assemblages. The occurrence of assemblages was predicted using a dataset containing land use variables at three spatial scales (50 m riparian corridor, 500 m riparian corridor and the entire catchment) supplemented by a dataset on in-stream variables. The overall classification success varied between 66.1-81.1% and was only marginally better when using in-stream variables than when applying only GIS variables. Also, the prediction power of a model combining GIS and in-stream variables was only slightly better than prediction based solely on GIS variables. The possibility of obtaining precise predictions without using costly in-stream variables offers great potential in the design of monitoring programmes as the distribution of monitoring sites along a gradient in ecological quality can be done at a low cost.
González-Sansón, Gaspar; Aguilar, Consuelo; Hernández, Ivet; Cabrera, Yureidy; Suarez-Montes, Noelis; Bretos, Fernando; Guggenheim, David
2009-09-01
The main goal of the study was to obtain field data to build a baseline of fish assemblage composition that can be used comparatively for future analyses of the impact of human actions in the region. A basic network of 68 sampling stations was defined for the entire region (4,050 km2). Fish assemblage species and size composition was estimated using visual census methods at three different spatial scales: a) entire region, b) inside the main reef area and c) along a human impact coastal gradient. Multivariate numerical analyses revealed habitat type as the main factor inducing spatial variability of fish community composition, while the level of human impact appears to play the main role in fish assemblage composition changes along the coast. A trend of decreasing fish size toward the east supports the theory of more severe human impact due to overfishing and higher urban pollution in that direction. This is the first detailed study along the northwest coast of Cuba that focuses on fish community structure and the natural and human-induced variations at different spatial scales for the entire NW shelf. This research also provides input for a more comprehensive understanding of coastal marine fish communities' status in the Gulf of Mexico basin.
Control of microbial contamination.
NASA Technical Reports Server (NTRS)
Mcdade, J. J.
1971-01-01
Two specific applications are discussed of microbial contamination control in planetary quarantine. Under the first concept, using the clean room to control environmental microorganisms, the objective is to reduce the microbial species and keep the numbers of microorganisms within an enclosure at a low level. The clean room concept is aimed at obtaining a product that has a controlled and reduced level of microbial contamination. Under the second concept, using the microbiological barrier to control microbial contamination of a specific product, the barrier techniques are designed to prevent the entry of any microorganisms into a sterile work area. Thus the assembly of space flight hardware within the confines of a microbiological barrier is aimed at obtaining a sterile product. In theory and practice, both approaches are shown to be applicable to the planetary quarantine program.
Narasimhan, Srinivasan; Maheshwaran, Shanmugam; Abu-Yousef, Imad A; Majdalawieh, Amin F; Rethavathi, Janarthanam; Das, Prince Edwin; Poltronieri, Palmiro
2017-02-12
The microbial contamination in food packaging has been a major concern that has paved the way to search for novel, natural anti-microbial agents, such as modified α-mangostin. In the present study, twelve synthetic analogs were obtained through semi-synthetic modification of α-mangostin by Ritter reaction, reduction by palladium-carbon (Pd-C), alkylation, and acetylation. The evaluation of the anti-microbial potential of the synthetic analogs showed higher bactericidal activity than the parent molecule. The anti-microbial studies proved that I E showed high anti-bacterial activity whereas I I showed the highest anti-fungal activity. Due to their microbicidal potential, modified α-mangostin derivatives could be utilized as active anti-microbial agents in materials for the biomedical and food industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trembath-Reichert, Elizabeth; Case, David H.; Orphan, Victoria J.
Methane seep systems along continental margins host diverse and dynamic microbial assemblages, sustained in large part through the microbially mediated process of sulfate-coupled Anaerobic Oxidation of Methane (AOM). This methanotrophic metabolism has been linked to consortia of anaerobic methane-oxidizing archaea (ANME) and sulfate-reducing bacteria (SRB). These two groups are the focus of numerous studies; however, less is known about the wide diversity of other seep associated microorganisms. We selected a hierarchical set of FISH probes targeting a range ofDeltaproteobacteriadiversity. Using the Magneto-FISH enrichment technique, we then magnetically captured CARD-FISH hybridized cells and their physically associated microorganisms from a methane seepmore » sediment incubation. DNA from nested Magneto-FISH experiments was analyzed using Illumina tag 16S rRNA gene sequencing (iTag). Enrichment success and potential bias with iTag was evaluated in the context of full-length 16S rRNA gene clone libraries, CARD-FISH, functional gene clone libraries, and iTag mock communities. We determined commonly used Earth Microbiome Project (EMP) iTAG primers introduced bias in some common methane seep microbial taxa that reduced the ability to directly compare OTU relative abundances within a sample, but comparison of relative abundances between samples (in nearly all cases) and whole community-based analyses were robust. The iTag dataset was subjected to statistical co-occurrence measures of the most abundant OTUs to determine which taxa in this dataset were most correlated across all samples. In addition, many non-canonical microbial partnerships were statistically significant in our co-occurrence network analysis, most of which were not recovered with conventional clone library sequencing, demonstrating the utility of combining Magneto-FISH and iTag sequencing methods for hypothesis generation of associations within complex microbial communities. Network analysis pointed to many co-occurrences containing putatively heterotrophic, candidate phyla such as OD1, Atribacteria, MBG-B, and Hyd24-12 and the potential for complex sulfur cycling involving Epsilon-, Delta-, and Gammaproteobacteria in methane seep ecosystems.« less
Trembath-Reichert, Elizabeth; Case, David H.; Orphan, Victoria J.
2016-04-18
Methane seep systems along continental margins host diverse and dynamic microbial assemblages, sustained in large part through the microbially mediated process of sulfate-coupled Anaerobic Oxidation of Methane (AOM). This methanotrophic metabolism has been linked to consortia of anaerobic methane-oxidizing archaea (ANME) and sulfate-reducing bacteria (SRB). These two groups are the focus of numerous studies; however, less is known about the wide diversity of other seep associated microorganisms. We selected a hierarchical set of FISH probes targeting a range ofDeltaproteobacteriadiversity. Using the Magneto-FISH enrichment technique, we then magnetically captured CARD-FISH hybridized cells and their physically associated microorganisms from a methane seepmore » sediment incubation. DNA from nested Magneto-FISH experiments was analyzed using Illumina tag 16S rRNA gene sequencing (iTag). Enrichment success and potential bias with iTag was evaluated in the context of full-length 16S rRNA gene clone libraries, CARD-FISH, functional gene clone libraries, and iTag mock communities. We determined commonly used Earth Microbiome Project (EMP) iTAG primers introduced bias in some common methane seep microbial taxa that reduced the ability to directly compare OTU relative abundances within a sample, but comparison of relative abundances between samples (in nearly all cases) and whole community-based analyses were robust. The iTag dataset was subjected to statistical co-occurrence measures of the most abundant OTUs to determine which taxa in this dataset were most correlated across all samples. In addition, many non-canonical microbial partnerships were statistically significant in our co-occurrence network analysis, most of which were not recovered with conventional clone library sequencing, demonstrating the utility of combining Magneto-FISH and iTag sequencing methods for hypothesis generation of associations within complex microbial communities. Network analysis pointed to many co-occurrences containing putatively heterotrophic, candidate phyla such as OD1, Atribacteria, MBG-B, and Hyd24-12 and the potential for complex sulfur cycling involving Epsilon-, Delta-, and Gammaproteobacteria in methane seep ecosystems.« less
Ocean acidification reduces induction of coral settlement by crustose coralline algae.
Webster, Nicole S; Uthicke, Sven; Botté, Emanuelle S; Flores, Florita; Negri, Andrew P
2013-01-01
Crustose coralline algae (CCA) are a critical component of coral reefs as they accrete carbonate for reef structure and act as settlement substrata for many invertebrates including corals. CCA host a diversity of microorganisms that can also play a role in coral settlement and metamorphosis processes. Although the sensitivity of CCA to ocean acidification (OA) is well established, the response of their associated microbial communities to reduced pH and increased CO2 was previously not known. Here we investigate the sensitivity of CCA-associated microbial biofilms to OA and determine whether or not OA adversely affects the ability of CCA to induce coral larval metamorphosis. We experimentally exposed the CCA Hydrolithon onkodes to four pH/pCO2 conditions consistent with current IPCC predictions for the next few centuries (pH: 8.1, 7.9, 7.7, 7.5, pCO2 : 464, 822, 1187, 1638 μatm). Settlement and metamorphosis of coral larvae was reduced on CCA pre-exposed to pH 7.7 (pCO2 = 1187 μatm) and below over a 6-week period. Additional experiments demonstrated that low pH treatments did not directly affect the ability of larvae to settle, but instead most likely altered the biochemistry of the CCA or its microbial associates. Detailed microbial community analysis of the CCA revealed diverse bacterial assemblages that altered significantly between pH 8.1 (pCO2 = 464 μatm) and pH 7.9 (pCO2 = 822 μatm) with this trend continuing at lower pH/higher pCO2 treatments. The shift in microbial community composition primarily comprised changes in the abundance of the dominant microbes between the different pH treatments and the appearance of new (but rare) microbes at pH 7.5. Microbial shifts and the concomitant reduced ability of CCA to induce coral settlement under OA conditions projected to occur by 2100 is a significant concern for the development, maintenance and recovery of reefs globally. © 2012 Blackwell Publishing Ltd.
Trembath-Reichert, Elizabeth; Case, David H; Orphan, Victoria J
2016-01-01
Methane seep systems along continental margins host diverse and dynamic microbial assemblages, sustained in large part through the microbially mediated process of sulfate-coupled Anaerobic Oxidation of Methane (AOM). This methanotrophic metabolism has been linked to consortia of anaerobic methane-oxidizing archaea (ANME) and sulfate-reducing bacteria (SRB). These two groups are the focus of numerous studies; however, less is known about the wide diversity of other seep associated microorganisms. We selected a hierarchical set of FISH probes targeting a range of Deltaproteobacteria diversity. Using the Magneto-FISH enrichment technique, we then magnetically captured CARD-FISH hybridized cells and their physically associated microorganisms from a methane seep sediment incubation. DNA from nested Magneto-FISH experiments was analyzed using Illumina tag 16S rRNA gene sequencing (iTag). Enrichment success and potential bias with iTag was evaluated in the context of full-length 16S rRNA gene clone libraries, CARD-FISH, functional gene clone libraries, and iTag mock communities. We determined commonly used Earth Microbiome Project (EMP) iTAG primers introduced bias in some common methane seep microbial taxa that reduced the ability to directly compare OTU relative abundances within a sample, but comparison of relative abundances between samples (in nearly all cases) and whole community-based analyses were robust. The iTag dataset was subjected to statistical co-occurrence measures of the most abundant OTUs to determine which taxa in this dataset were most correlated across all samples. Many non-canonical microbial partnerships were statistically significant in our co-occurrence network analysis, most of which were not recovered with conventional clone library sequencing, demonstrating the utility of combining Magneto-FISH and iTag sequencing methods for hypothesis generation of associations within complex microbial communities. Network analysis pointed to many co-occurrences containing putatively heterotrophic, candidate phyla such as OD1, Atribacteria, MBG-B, and Hyd24-12 and the potential for complex sulfur cycling involving Epsilon-, Delta-, and Gammaproteobacteria in methane seep ecosystems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shirish Patil; Abhijit Dandekar; Mary Beth Leigh
2008-12-31
A large proportion of Alaska North Slope (ANS) oil exists in the form of viscous deposits, which cannot be produced entirely using conventional methods. Microbially enhanced oil recovery (MEOR) is a promising approach for improving oil recovery for viscous deposits. MEOR can be achieved using either ex situ approaches such as flooding with microbial biosurfactants or injection of exogenous surfactant-producing microbes into the reservoir, or by in situ approaches such as biostimulation of indigenous surfactant-producing microbes in the oil. Experimental work was performed to analyze the potential application of MEOR to the ANS oil fields through both ex situ andmore » in situ approaches. A microbial formulation containing a known biosurfactant-producing strain of Bacillus licheniformis was developed in order to simulate MEOR. Coreflooding experiments were performed to simulate MEOR and quantify the incremental oil recovery. Properties like viscosity, density, and chemical composition of oil were monitored to propose a mechanism for oil recovery. The microbial formulation significantly increased incremental oil recovery, and molecular biological analyses indicated that the strain survived during the shut-in period. The indigenous microflora of ANS heavy oils was investigated to characterize the microbial communities and test for surfactant producers that are potentially useful for biostimulation. Bacteria that reduce the surface tension of aqueous media were isolated from one of the five ANS oils (Milne Point) and from rock oiled by the Exxon Valdez oil spill (EVOS), and may prove valuable for ex situ MEOR strategies. The total bacterial community composition of the six different oils was evaluated using molecular genetic tools, which revealed that each oil tested possessed a unique fingerprint indicating a diverse bacterial community and varied assemblages. Collectively we have demonstrated that there is potential for in situ and ex situ MEOR of ANS oils. Future work should focus on lab and field-scale testing of ex situ MEOR using Bacillus licheniformis as well as the biosurfactant-producing strains we have newly isolated from the Milne Point reservoir and the EVOS environment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Tao; Kukkadapu, Ravi K.; Griffin, Aron M.
Fe(III)-oxides and Fe(III)-bearing phyllosilicates are the two major iron sources utilized as electron acceptors by dissimilatory iron-reducing bacteria (DIRB) in anoxic soils and sediments. Although there have been many studies of microbial Fe(III)-oxide and Fe(III)-phyllosilicate reduction with both natural and specimen materials, no controlled experimental information is available on the interaction between these two phases when both are available for microbial reduction. In this study, the model DIRB Geobacter sulfurreducens was used to examine the pathways of Fe(III) reduction in Fe(III)-oxide stripped subsurface sediment that was coated with different amounts of synthetic high surface area goethite. Cryogenic (12K) 57Fe Mössbauermore » spectroscopy was used to determine changes in the relative abundances of Fe(III)-oxide, Fe(III)-phyllosilicate, and phyllosilicate-associated Fe(II) (Fe(II)-phyllosilicate) in bioreduced samples. Analogous Mössbauer analyses were performed on samples from abiotic Fe(II) sorption experiments in which sediments were exposed to a quantity of exogenous soluble Fe(II) (FeCl22H2O) comparable to the amount of Fe(II) produced during microbial reduction. A Fe partitioning model was developed to analyze the fate of Fe(II) and assess the potential for abiotic Fe(II)-catalyzed reduction of Fe(III)-phyllosilicatesilicates. The microbial reduction experiments indicated that although reduction of Fe(III)-oxide accounted for virtually all of the observed bulk Fe(III) reduction activity, there was no significant abiotic electron transfer between oxide-derived Fe(II) and Fe(III)-phyllosilicatesilicates, with 26-87% of biogenic Fe(II) appearing as sorbed Fe(II) in the Fe(II)-phyllosilicate pool. In contrast, the abiotic Fe(II) sorption experiments showed that 41 and 24% of the added Fe(II) engaged in electron transfer to Fe(III)-phyllosilicate surfaces in synthetic goethite-coated and uncoated sediment. Differences in the rate of Fe(II) addition and system redox potential may account for the microbial and abiotic reaction systems. Our experiments provide new insight into pathways for Fe(III) reduction in mixed Fe(III)-oxide/Fe(III)-phyllosilicate assemblages, and provide key mechanistic insight for interpreting microbial reduction experiments and field data from complex natural soils and sediments.« less
Adhesive foot pads: an adaptation to climbing? An ecological survey in hunting spiders.
Wolff, Jonas O; Gorb, Stanislav N
2015-02-01
Hairy pads relying on dry adhesion are fascinating structures that convergently evolved among spiders and lizards. Numerous studies underline the functional aspects leading to their strong adhesion to smooth surfaces, but rarely has their role been studied in the context of natural habitats and surfaces that animals are faced with. In hunting spiders, the hairy foot pads (claw tufts) underneath the paired claws are assumed to be an adaptation to a climbing lifestyle, particularly on smooth plant surfaces. However, surfaces that are too smooth for claws to generate a sufficient grip are rather rare in natural habitats and above-ground habitats are occupied by hunting spiders both with and without claw tufts. In this study we estimated the proportion of claw tuft-bearing hunting spiders (ct+ ratio) among microhabitat-specific assemblages by conducting both a field study and a meta-analysis approach. The effect of surface characteristics, structure fragmentation and altitude of the microhabitat niche on the ct+ ratio was analyzed. We hypothesized that the ct+ ratio will be higher in (i) hunting spider assemblages obtained from microhabitats above the ground than from those at the ground and (ii) in hunting spider assemblages obtained from microhabitats with smoother surfaces (tree foliage) than those with rougher surfaces (barks, stones), and lower in (iii) hunting spider assemblages obtained from microhabitats with more fragmented structures (small leaves) than in those with comparable but less fragmented structures (large leaves). We found the ct+ ratio to be significantly affected by the microhabitat's distance from the ground, whereas surface characteristics and fragmentation of the substrates were of minor importance. This suggests that claw tufts are highly beneficial when the microhabitat's height exceeds a value where the additional pad-related costs are exceeded by the costs of dropping. We assume the benefit to be mainly due to gaining a high safety factor at a lower energy demand if compared to alternative attachment devices (claws, silk). The previously presumed enhanced access to new microhabitat sites may play only a minor role as hunting spiders without claw tufts are present in most microhabitats. Copyright © 2014 Elsevier GmbH. All rights reserved.
Cilleros, Kévin; Valentini, Alice; Allard, Luc; Dejean, Tony; Etienne, Roselyne; Grenouillet, Gaël; Iribar, Amaia; Taberlet, Pierre; Vigouroux, Régis; Brosse, Sébastien
2018-05-16
Determining the species compositions of local assemblages is a prerequisite to understanding how anthropogenic disturbances affect biodiversity. However, biodiversity measurements often remain incomplete due to the limited efficiency of sampling methods. This is particularly true in freshwater tropical environments that host rich fish assemblages, for which assessments are uncertain and often rely on destructive methods. Developing an efficient and non-destructive method to assess biodiversity in tropical freshwaters is highly important. In this study, we tested the efficiency of environmental DNA (eDNA) metabarcoding to assess the fish diversity of 39 Guianese sites. We compared the diversity and composition of assemblages obtained using traditional and metabarcoding methods. More than 7,000 individual fish belonging to 203 Guianese fish species were collected by traditional sampling methods, and ~17 million reads were produced by metabarcoding, among which ~8 million reads were assigned to 148 fish taxonomic units, including 132 fish species. The two methods detected a similar number of species at each site, but the species identities partially matched. The assemblage compositions from the different drainage basins were better discriminated using metabarcoding, revealing that while traditional methods provide a more complete but spatially limited inventory of fish assemblages, metabarcoding provides a more partial but spatially extensive inventory. eDNA metabarcoding can therefore be used for rapid and large-scale biodiversity assessments, while at a local scale, the two approaches are complementary and enable an understanding of realistic fish biodiversity. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Megabenthic assemblages at the Hudson Canyon head (NW Atlantic margin): Habitat-faunal relationships
NASA Astrophysics Data System (ADS)
Pierdomenico, Martina; Gori, Andrea; Guida, Vincent G.; Gili, Josep-Maria
2017-09-01
The distribution of megabenthic communities at the head of Hudson Canyon and adjacent continental shelf was studied by means of underwater video transects and still photo imagery collected using a towed camera system. The goal was to explore the relationships between faunal distribution and physical seafloor conditions and to test the hypothesis that increased seafloor heterogeneity in the Hudson Canyon supports a larger diversity of benthic communities, compared with the adjacent continental shelf. Hierarchical cluster analysis was performed to identify benthic assemblages as defined in imagery. The BIO-ENV procedure and the Canonical Correspondence Analysis were carried out to elucidate species groupings in relation to terrain variables extracted from bathymetric data. Species accumulation curves were generated to evaluate species turn over in and out of Hudson Canyon. The results indicate that seafloor morphology is the main physical factor related to benthic community composition and distribution. Assemblages dominated by sponges, zoanthids and cup corals colonized the canyon margins and flanks, and were associated with coarse-grained sediments, while sea pen assemblages were observed along muddy seafloor within the thalweg. An assemblage dominated by sea stars occurred on the shelf, associated with a sandy seafloor. Some assemblages were exclusively observed in the canyon area, suggesting that the increased variability of seafloor composition, together with the oceanographic processes specific to the canyon area, enhance beta diversity. The colonization by benthic suspension feeders within the canyon, in contrast to shelf assemblages, mainly composed of carnivores and detritus feeders could be favored the intense hydrodynamics at the canyon head that increase the availability of suspended organic matter. From the perspective of management and conservation of marine resources, the results obtained support the relevance of Hudson Canyon as a biodiversity hotspot. Such results are of particular significance in light of the recent action promoted by the Mid-Atlantic Fisheries Management Council, that restricts bottom trawling in most of the submarine canyons of the US Atlantic margin, including the Hudson Canyon, to protect cold-water corals from damage by fishing gear.
NASA Astrophysics Data System (ADS)
Arnosti, Carol; Ziervogel, Kai; Yang, Tingting; Teske, Andreas
2016-07-01
Aggregates generated in the laboratory from incubations of seawater and surface-water oil collected in the initial phase of the Deepwater Horizon oil spill resemble the oil-aggregates observed in situ. Here, we investigated the enzyme activities and microbial community composition of laboratory generated oil-aggregates, focusing on the abilities of these communities to degrade polysaccharides, which are major components of marine organic matter and are abundant constituents of exopolymeric substances (EPS) generated by oil-associated bacteria in response to the presence of oil. The patterns of polysaccharide-hydrolyzing enzyme activities in oil aggregates were very different from those in the water surrounding the aggregates after formation, and in the surface water that did not contain the oil. Specific oil aggregate-associated hydrolysis rates were also considerably higher than in the water surrounding the aggregates. The differences in initial hydrolysis profiles, and in evolution of these profiles with time, points to specialized metabolic abilities among the oil-aggregate communities compared to oil-water and ambient water communities. The composition of the oil-aggregate community indicates a multifunctional microbial assemblage containing primary oil-degrading and exopolysaccharide-producing members of the Gammaproteobacteria, and diverse members of the Alphaproteobacteria, Bacteroidetes and Planktomycetales that most likely participate in the breakdown of oil-derived bacterial biopolymers. Formation and aging of oil-aggregates encourages the growth and transformation of microbial communities that are specialized in degradation of petroleum, as well as their secondary degradation products.
Methane-Oxidizing Bacteria Shunt Carbon to Microbial Mats at a Marine Hydrocarbon Seep
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul, Blair G.; Ding, Haibing; Bagby, Sarah C.
The marine subsurface is a reservoir of the greenhouse gas methane. While microorganisms living in water column and seafloor ecosystems are known to be a major sink limiting net methane transport from the marine subsurface to the atmosphere, few studies have assessed the flow of methane-derived carbon through the benthic mat communities that line the seafloor on the continental shelf where methane is emitted. We analyzed the abundance and isotope composition of fatty acids in microbial mats grown in the shallow Coal Oil Point seep field off Santa Barbara, CA, USA, where seep gas is a mixture of methane andmore » CO 2. We further used stable isotope probing (SIP) to track methane incorporation into mat biomass. We found evidence that multiple allochthonous substrates supported the rich growth of these mats, with notable contributions from bacterial methanotrophs and sulfur-oxidizers as well as eukaryotic phototrophs. Fatty acids characteristic of methanotrophs were shown to be abundant and 13C-enriched in SIP samples, and DNA-SIP identified members of the methanotrophic family Methylococcaceae as major 13CH 4 consumers. Members of Sulfuricurvaceae, Sulfurospirillaceae, and Sulfurovumaceae are implicated in fixation of seep CO 2. The mats’ autotrophs support a diverse assemblage of co-occurring bacteria and protozoa, with Methylophaga as key consumers of methane-derived organic matter. This study identifies the taxa contributing to the flow of seep-derived carbon through microbial mat biomass, revealing the bacterial and eukaryotic diversity of these remarkable ecosystems.« less
Methane-Oxidizing Bacteria Shunt Carbon to Microbial Mats at a Marine Hydrocarbon Seep
Paul, Blair G.; Ding, Haibing; Bagby, Sarah C.; ...
2017-02-27
The marine subsurface is a reservoir of the greenhouse gas methane. While microorganisms living in water column and seafloor ecosystems are known to be a major sink limiting net methane transport from the marine subsurface to the atmosphere, few studies have assessed the flow of methane-derived carbon through the benthic mat communities that line the seafloor on the continental shelf where methane is emitted. We analyzed the abundance and isotope composition of fatty acids in microbial mats grown in the shallow Coal Oil Point seep field off Santa Barbara, CA, USA, where seep gas is a mixture of methane andmore » CO 2. We further used stable isotope probing (SIP) to track methane incorporation into mat biomass. We found evidence that multiple allochthonous substrates supported the rich growth of these mats, with notable contributions from bacterial methanotrophs and sulfur-oxidizers as well as eukaryotic phototrophs. Fatty acids characteristic of methanotrophs were shown to be abundant and 13C-enriched in SIP samples, and DNA-SIP identified members of the methanotrophic family Methylococcaceae as major 13CH 4 consumers. Members of Sulfuricurvaceae, Sulfurospirillaceae, and Sulfurovumaceae are implicated in fixation of seep CO 2. The mats’ autotrophs support a diverse assemblage of co-occurring bacteria and protozoa, with Methylophaga as key consumers of methane-derived organic matter. This study identifies the taxa contributing to the flow of seep-derived carbon through microbial mat biomass, revealing the bacterial and eukaryotic diversity of these remarkable ecosystems.« less
Li, Pan; Liang, Hebin; Lin, Wei-Tie; Feng, Feng; Luo, Lixin
2015-08-01
Traditional Chinese solid-state fermented cereal starters contain highly complex microbial communities and enzymes. Very little is known, however, about the microbial dynamics related to environmental conditions, and cellulolytic communities have never been proposed to exist during cereal starter fermentation. In this study, we performed Illumina MiSeq sequencing combined with PCR-denaturing gradient gel electrophoresis to investigate microbiota, coupled with clone library construction to trace cellulolytic communities in both fermentation stages. A succession of microbial assemblages was observed during the fermentation of starters. Lactobacillales and Saccharomycetales dominated the initial stages, with a continuous decline in relative abundance. However, thermotolerant and drought-resistant Bacillales, Eurotiales, and Mucorales were considerably accelerated during the heating stages, and these organisms dominated until the end of fermentation. Enterobacteriales were consistently ubiquitous throughout the process. For the cellulolytic communities, only the genera Sanguibacter, Beutenbergia, Agrobacterium, and Erwinia dominated the initial fermentation stages. In contrast, stages at high incubation temperature induced the appearance and dominance of Bacillus, Aspergillus, and Mucor. The enzymatic dynamics of amylase and glucoamylase also showed a similar trend, with the activities clearly increased in the first 7 days and subsequently decreased until the end of fermentation. Furthermore, β-glucosidase activity continuously and significantly increased during the fermentation process. Evidently, cellulolytic potential can adapt to environmental conditions by changes in the community structure during the fermentation of starters. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Methane-Oxidizing Bacteria Shunt Carbon to Microbial Mats at a Marine Hydrocarbon Seep
Paul, Blair G.; Ding, Haibing; Bagby, Sarah C.; Kellermann, Matthias Y.; Redmond, Molly C.; Andersen, Gary L.; Valentine, David L.
2017-01-01
The marine subsurface is a reservoir of the greenhouse gas methane. While microorganisms living in water column and seafloor ecosystems are known to be a major sink limiting net methane transport from the marine subsurface to the atmosphere, few studies have assessed the flow of methane-derived carbon through the benthic mat communities that line the seafloor on the continental shelf where methane is emitted. We analyzed the abundance and isotope composition of fatty acids in microbial mats grown in the shallow Coal Oil Point seep field off Santa Barbara, CA, USA, where seep gas is a mixture of methane and CO2. We further used stable isotope probing (SIP) to track methane incorporation into mat biomass. We found evidence that multiple allochthonous substrates supported the rich growth of these mats, with notable contributions from bacterial methanotrophs and sulfur-oxidizers as well as eukaryotic phototrophs. Fatty acids characteristic of methanotrophs were shown to be abundant and 13C-enriched in SIP samples, and DNA-SIP identified members of the methanotrophic family Methylococcaceae as major 13CH4 consumers. Members of Sulfuricurvaceae, Sulfurospirillaceae, and Sulfurovumaceae are implicated in fixation of seep CO2. The mats’ autotrophs support a diverse assemblage of co-occurring bacteria and protozoa, with Methylophaga as key consumers of methane-derived organic matter. This study identifies the taxa contributing to the flow of seep-derived carbon through microbial mat biomass, revealing the bacterial and eukaryotic diversity of these remarkable ecosystems. PMID:28289403
NASA Astrophysics Data System (ADS)
Karaoz, U.; Couradeau, E.; da Rocha, U. N.; Chien Lim, H.; Garcia-Pichel, F.; Northen, T.; Brodie, E.
2016-12-01
Biological soil crusts (biocrusts), critical components of dryland ecosystem, successionally develop to deliver a suite of ecosystem services. Biocrust assemblages are extremely well adapted to survive desiccation and then take advantage of pulses of precipitation typical of arid climate, yet we know little about how these microbial communities of different developmental stages respond to wetup. Here we focus on the wetup response of incipient cyanobacterial crusts as they progress from "light" to "dark". We sampled a cyanobacterial biocrust chronosequence pre- (dry) and post-wetup within a day, and used high-throughput 16S rRNA sequencing to decipher wetup response of microbial communities. Overall, changes in phylogenetic beta-diversity attributable to crust successional stage were at least as large as those for wetup. Notably, more mature crusts showed significantly higher resistance to pulse hydration. Taxonomically, a drastic bloom of handful Firmicutes taxa, primarily from Bacillales order was apparent 18 hrs. after wetup. The wetup response of filamentous cyanobacteria was variable across the successional gradient, with populations collapsing in less developed light crusts but rising in dark crusts. Strong phylogenetic clustering that significantly increased with crust development and wetup suggested conservation and an evolutionary basis for the response of biocrust microbial communities to wetup. The consistent Bacillales bloom accompanied by the variable collapse of the Microcoleus we documented across the successional gradient suggests that the cumulative effects of increased precipitation frequencies on C cycling will depend on crust maturity.
Patterns of rare and abundant marine microbial eukaryotes.
Logares, Ramiro; Audic, Stéphane; Bass, David; Bittner, Lucie; Boutte, Christophe; Christen, Richard; Claverie, Jean-Michel; Decelle, Johan; Dolan, John R; Dunthorn, Micah; Edvardsen, Bente; Gobet, Angélique; Kooistra, Wiebe H C F; Mahé, Frédéric; Not, Fabrice; Ogata, Hiroyuki; Pawlowski, Jan; Pernice, Massimo C; Romac, Sarah; Shalchian-Tabrizi, Kamran; Simon, Nathalie; Stoeck, Thorsten; Santini, Sébastien; Siano, Raffaele; Wincker, Patrick; Zingone, Adriana; Richards, Thomas A; de Vargas, Colomban; Massana, Ramon
2014-04-14
Biological communities are normally composed of a few abundant and many rare species. This pattern is particularly prominent in microbial communities, in which most constituent taxa are usually extremely rare. Although abundant and rare subcommunities may present intrinsic characteristics that could be crucial for understanding community dynamics and ecosystem functioning, microbiologists normally do not differentiate between them. Here, we investigate abundant and rare subcommunities of marine microbial eukaryotes, a crucial group of organisms that remains among the least-explored biodiversity components of the biosphere. We surveyed surface waters of six separate coastal locations in Europe, independently considering the picoplankton, nanoplankton, and microplankton/mesoplankton organismal size fractions. Deep Illumina sequencing of the 18S rRNA indicated that the abundant regional community was mostly structured by organismal size fraction, whereas the rare regional community was mainly structured by geographic origin. However, some abundant and rare taxa presented similar biogeography, pointing to spatiotemporal structure in the rare microeukaryote biosphere. Abundant and rare subcommunities presented regular proportions across samples, indicating similar species-abundance distributions despite taxonomic compositional variation. Several taxa were abundant in one location and rare in other locations, suggesting large oscillations in abundance. The substantial amount of metabolically active lineages found in the rare biosphere suggests that this subcommunity constitutes a diversity reservoir that can respond rapidly to environmental change. We propose that marine planktonic microeukaryote assemblages incorporate dynamic and metabolically active abundant and rare subcommunities, with contrasting structuring patterns but fairly regular proportions, across space and time. Copyright © 2014 Elsevier Ltd. All rights reserved.
The ecological significance of biofilm formation by plant-associated bacteria.
Morris, Cindy E; Monier, Jean-Michel
2003-01-01
Bacteria associated with plants have been observed frequently to form assemblages referred to as aggregates, microcolonies, symplasmata, or biofilms on leaves and on root surfaces and within intercellular spaces of plant tissues. In a wide range of habitats, biofilms are purported to be microniches of conditions markedly different from those of the ambient environment and drive microbial cells to effect functions not possible alone or outside of biofilms. This review constructs a portrait of how biofilms associated with leaves, roots and within intercellular spaces influence the ecology of the bacteria they harbor and the relationship of bacteria with plants. We also consider how biofilms may enhance airborne dissemination, ubiquity and diversification of plant-associated bacteria and may influence strategies for biological control of plant disease and for assuring food safety. Trapped by a nexus, coordinates uncertain Ever expanding or contracting Cannibalistic and scavenging sorties Excavations through signs of past alliances Consensus signals sound revelry Then time warped by viscosity Genomes showing codependence A virtual microbial beach party With no curfew and no time-out A few estranged cells seeking exit options, Looking for another menagerie. David Sands, Montana State University, Bozeman, February 2003
The nature of organic records in impact excavated rocks on Mars
NASA Astrophysics Data System (ADS)
Montgomery, W.; Bromiley, G. D.; Sephton, M. A.
2016-08-01
Impact ejected rocks are targets for life detection missions to Mars. The Martian subsurface is more favourable to organic preservation than the surface owing to an attenuation of radiation and physical separation from oxidising materials with increasing depth. Impact events bring materials to the surface where they may be accessed without complicated drilling procedures. On Earth, different assemblages of organic matter types are derived from varying depositional environments. Here we assess whether these different types of organic materials can survive impact events without corruption. We subjected four terrestrial organic matter types to elevated pressures and temperatures in piston-cylinder experiments followed by chemical characterisation using whole-rock pyrolysis-gas chromatography-mass spectrometry. Our data reveal that long chain hydrocarbon-dominated organic matter (types I and II; mainly microbial or algal) are unresistant to pressure whereas aromatic hydrocarbon-dominated organic matter types (types III and IV; mainly land plant, metamorphosed or degraded, displaying some superficial chemical similarities to abiotic meteoritic organic matter) are relatively resistant. This suggests that the impact excavated record of potential biology on Mars will be unavoidably biased, with microbial organic matter underrepresented while metamorphosed, degraded or abiotic meteoritic organic matter types will be selectively preserved.
The nature of organic records in impact excavated rocks on Mars.
Montgomery, W; Bromiley, G D; Sephton, M A
2016-08-05
Impact ejected rocks are targets for life detection missions to Mars. The Martian subsurface is more favourable to organic preservation than the surface owing to an attenuation of radiation and physical separation from oxidising materials with increasing depth. Impact events bring materials to the surface where they may be accessed without complicated drilling procedures. On Earth, different assemblages of organic matter types are derived from varying depositional environments. Here we assess whether these different types of organic materials can survive impact events without corruption. We subjected four terrestrial organic matter types to elevated pressures and temperatures in piston-cylinder experiments followed by chemical characterisation using whole-rock pyrolysis-gas chromatography-mass spectrometry. Our data reveal that long chain hydrocarbon-dominated organic matter (types I and II; mainly microbial or algal) are unresistant to pressure whereas aromatic hydrocarbon-dominated organic matter types (types III and IV; mainly land plant, metamorphosed or degraded, displaying some superficial chemical similarities to abiotic meteoritic organic matter) are relatively resistant. This suggests that the impact excavated record of potential biology on Mars will be unavoidably biased, with microbial organic matter underrepresented while metamorphosed, degraded or abiotic meteoritic organic matter types will be selectively preserved.
Poudel, R; Jumpponen, A; Schlatter, D C; Paulitz, T C; Gardener, B B McSpadden; Kinkel, L L; Garrett, K A
2016-10-01
Network models of soil and plant microbiomes provide new opportunities for enhancing disease management, but also challenges for interpretation. We present a framework for interpreting microbiome networks, illustrating how observed network structures can be used to generate testable hypotheses about candidate microbes affecting plant health. The framework includes four types of network analyses. "General network analysis" identifies candidate taxa for maintaining an existing microbial community. "Host-focused analysis" includes a node representing a plant response such as yield, identifying taxa with direct or indirect associations with that node. "Pathogen-focused analysis" identifies taxa with direct or indirect associations with taxa known a priori as pathogens. "Disease-focused analysis" identifies taxa associated with disease. Positive direct or indirect associations with desirable outcomes, or negative associations with undesirable outcomes, indicate candidate taxa. Network analysis provides characterization not only of taxa with direct associations with important outcomes such as disease suppression, biofertilization, or expression of plant host resistance, but also taxa with indirect associations via their association with other key taxa. We illustrate the interpretation of network structure with analyses of microbiomes in the oak phyllosphere, and in wheat rhizosphere and bulk soil associated with the presence or absence of infection by Rhizoctonia solani.
Cleanliness in context: reconciling hygiene with a modern microbial perspective.
Vandegrift, Roo; Bateman, Ashley C; Siemens, Kyla N; Nguyen, May; Wilson, Hannah E; Green, Jessica L; Van Den Wymelenberg, Kevin G; Hickey, Roxana J
2017-07-14
The concept of hygiene is rooted in the relationship between cleanliness and the maintenance of good health. Since the widespread acceptance of the germ theory of disease, hygiene has become increasingly conflated with sterilization. In reviewing studies across the hygiene literature (most often hand hygiene), we found that nearly all studies of hand hygiene utilize bulk reduction in bacterial load as a proxy for reduced transmission of pathogenic organisms. This treatment of hygiene may be insufficient in light of recent microbial ecology research, which has demonstrated that humans have intimate and evolutionarily significant relationships with a diverse assemblage of microorganisms (our microbiota). The human skin is home to a diverse and specific community of microorganisms, which include members that exist across the ecological spectrum from pathogen through commensal to mutualist. Most evidence suggests that the skin microbiota is likely of direct benefit to the host and only rarely exhibits pathogenicity. This complex ecological context suggests that the conception of hygiene as a unilateral reduction or removal of microbes has outlived its usefulness. As such, we suggest the explicit definition of hygiene as "those actions and practices that reduce the spread or transmission of pathogenic microorganisms, and thus reduce the incidence of disease."
Moreno-Pino, Mario; De la Iglesia, Rodrigo; Valdivia, Nelson; Henríquez-Castilo, Carlos; Galán, Alexander; Díez, Beatriz; Trefault, Nicole
2016-07-01
Spatial environmental heterogeneity influences diversity of organisms at different scales. Environmental filtering suggests that local environmental conditions provide habitat-specific scenarios for niche requirements, ultimately determining the composition of local communities. In this work, we analyze the spatial variation of microbial communities across environmental gradients of sea surface temperature, salinity and photosynthetically active radiation and spatial distance in Fildes Bay, King George Island, Antarctica. We hypothesize that environmental filters are the main control of the spatial variation of these communities. Thus, strong relationships between community composition and environmental variation and weak relationships between community composition and spatial distance are expected. Combining physical characterization of the water column, cell counts by flow cytometry, small ribosomal subunit genes fingerprinting and next generation sequencing, we contrast the abundance and composition of photosynthetic eukaryotes and heterotrophic bacterial local communities at a submesoscale. Our results indicate that the strength of the environmental controls differed markedly between eukaryotes and bacterial communities. Whereas eukaryotic photosynthetic assemblages responded weakly to environmental variability, bacteria respond promptly to fine-scale environmental changes in this polar marine system. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Woo, Seonock; Yang, Shan-Hua; Chen, Hsing-Ju; Tseng, Yu-Fang; Hwang, Sung-Jin; De Palmas, Stephane; Denis, Vianney; Imahara, Yukimitsu; Iwase, Fumihito; Yum, Seungshic; Tang, Sen-Lin
2017-01-01
Environmental impacts can alter relationships between a coral and its symbiotic microbial community. Furthermore, changes in the microbial community associated with increased seawater temperatures can cause opportunistic infections, coral disease and death. Interactions between soft corals and their associated microbes are not well understood. The species Scleronephthya gracillimum is distributed in tropical to temperate zones in coral assemblages along the Kuroshio Current region. In this study we collected S. gracillimum from various sites at different latitudes, and compared composition of their bacterial communities using Next Generation Sequencing. Coral samples from six geographically distinct areas (two sites each in Taiwan, Japan, and Korea) had considerable variation in their associated bacterial communities and diversity. Endozoicimonaceae was the dominant group in corals from Korea and Japan, whereas Mycoplasma was dominant in corals from Taiwan corals. Interestingly, the latter corals had lower relative abundance of Endozoicimonaceae, but greater diversity. These biogeographic differences in bacterial composition may have been due to varying environmental conditions among study locations, or because of host responses to prevailing environmental conditions. This study provided a baseline for future studies of soft coral microbiomes, and assessment of functions of host metabolites and soft coral holobionts.
Biodiversity hot spot on a hot spot: novel extremophile diversity in Hawaiian fumaroles.
Wall, Kate; Cornell, Jennifer; Bizzoco, Richard W; Kelley, Scott T
2015-01-06
Fumaroles (steam vents) are the most common, yet least understood, microbial habitat in terrestrial geothermal settings. Long believed too extreme for life, recent advances in sample collection and DNA extraction methods have found that fumarole deposits and subsurface waters harbor a considerable diversity of viable microbes. In this study, we applied culture-independent molecular methods to explore fumarole deposit microbial assemblages in 15 different fumaroles in four geographic locations on the Big Island of Hawai'i. Just over half of the vents yielded sufficient high-quality DNA for the construction of 16S ribosomal RNA gene sequence clone libraries. The bacterial clone libraries contained sequences belonging to 11 recognized bacterial divisions and seven other division-level phylogenetic groups. Archaeal sequences were less numerous, but similarly diverse. The taxonomic composition among fumarole deposits was highly heterogeneous. Phylogenetic analysis found cloned fumarole sequences were related to microbes identified from a broad array of globally distributed ecotypes, including hot springs, terrestrial soils, and industrial waste sites. Our results suggest that fumarole deposits function as an "extremophile collector" and may be a hot spot of novel extremophile biodiversity. © 2015 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
Microbial communities and bioactive compounds in marine sponges of the family irciniidae-a review.
Hardoim, Cristiane C P; Costa, Rodrigo
2014-09-30
Marine sponges harbour complex microbial communities of ecological and biotechnological importance. Here, we propose the application of the widespread sponge family Irciniidae as an appropriate model in microbiology and biochemistry research. Half a gram of one Irciniidae specimen hosts hundreds of bacterial species-the vast majority of which are difficult to cultivate-and dozens of fungal and archaeal species. The structure of these symbiont assemblages is shaped by the sponge host and is highly stable over space and time. Two types of quorum-sensing molecules have been detected in these animals, hinting at microbe-microbe and host-microbe signalling being important processes governing the dynamics of the Irciniidae holobiont. Irciniids are vulnerable to disease outbreaks, and concerns have emerged about their conservation in a changing climate. They are nevertheless amenable to mariculture and laboratory maintenance, being attractive targets for metabolite harvesting and experimental biology endeavours. Several bioactive terpenoids and polyketides have been retrieved from Irciniidae sponges, but the actual producer (host or symbiont) of these compounds has rarely been clarified. To tackle this, and further pertinent questions concerning the functioning, resilience and physiology of these organisms, truly multi-layered approaches integrating cutting-edge microbiology, biochemistry, genetics and zoology research are needed.
The nature of organic records in impact excavated rocks on Mars
Montgomery, W.; Bromiley, G. D.; Sephton, M. A.
2016-01-01
Impact ejected rocks are targets for life detection missions to Mars. The Martian subsurface is more favourable to organic preservation than the surface owing to an attenuation of radiation and physical separation from oxidising materials with increasing depth. Impact events bring materials to the surface where they may be accessed without complicated drilling procedures. On Earth, different assemblages of organic matter types are derived from varying depositional environments. Here we assess whether these different types of organic materials can survive impact events without corruption. We subjected four terrestrial organic matter types to elevated pressures and temperatures in piston-cylinder experiments followed by chemical characterisation using whole-rock pyrolysis-gas chromatography-mass spectrometry. Our data reveal that long chain hydrocarbon-dominated organic matter (types I and II; mainly microbial or algal) are unresistant to pressure whereas aromatic hydrocarbon-dominated organic matter types (types III and IV; mainly land plant, metamorphosed or degraded, displaying some superficial chemical similarities to abiotic meteoritic organic matter) are relatively resistant. This suggests that the impact excavated record of potential biology on Mars will be unavoidably biased, with microbial organic matter underrepresented while metamorphosed, degraded or abiotic meteoritic organic matter types will be selectively preserved. PMID:27492071
Biodiversity hot spot on a hot spot: novel extremophile diversity in Hawaiian fumaroles
Wall, Kate; Cornell, Jennifer; Bizzoco, Richard W; Kelley, Scott T
2015-01-01
Fumaroles (steam vents) are the most common, yet least understood, microbial habitat in terrestrial geothermal settings. Long believed too extreme for life, recent advances in sample collection and DNA extraction methods have found that fumarole deposits and subsurface waters harbor a considerable diversity of viable microbes. In this study, we applied culture-independent molecular methods to explore fumarole deposit microbial assemblages in 15 different fumaroles in four geographic locations on the Big Island of Hawai'i. Just over half of the vents yielded sufficient high-quality DNA for the construction of 16S ribosomal RNA gene sequence clone libraries. The bacterial clone libraries contained sequences belonging to 11 recognized bacterial divisions and seven other division-level phylogenetic groups. Archaeal sequences were less numerous, but similarly diverse. The taxonomic composition among fumarole deposits was highly heterogeneous. Phylogenetic analysis found cloned fumarole sequences were related to microbes identified from a broad array of globally distributed ecotypes, including hot springs, terrestrial soils, and industrial waste sites. Our results suggest that fumarole deposits function as an “extremophile collector” and may be a hot spot of novel extremophile biodiversity. PMID:25565172
Chen, Hsing-Ju; Tseng, Yu-Fang; Hwang, Sung-Jin; De Palmas, Stephane; Denis, Vianney; Imahara, Yukimitsu; Iwase, Fumihito; Yum, Seungshic; Tang, Sen-Lin
2017-01-01
Environmental impacts can alter relationships between a coral and its symbiotic microbial community. Furthermore, changes in the microbial community associated with increased seawater temperatures can cause opportunistic infections, coral disease and death. Interactions between soft corals and their associated microbes are not well understood. The species Scleronephthya gracillimum is distributed in tropical to temperate zones in coral assemblages along the Kuroshio Current region. In this study we collected S. gracillimum from various sites at different latitudes, and compared composition of their bacterial communities using Next Generation Sequencing. Coral samples from six geographically distinct areas (two sites each in Taiwan, Japan, and Korea) had considerable variation in their associated bacterial communities and diversity. Endozoicimonaceae was the dominant group in corals from Korea and Japan, whereas Mycoplasma was dominant in corals from Taiwan corals. Interestingly, the latter corals had lower relative abundance of Endozoicimonaceae, but greater diversity. These biogeographic differences in bacterial composition may have been due to varying environmental conditions among study locations, or because of host responses to prevailing environmental conditions. This study provided a baseline for future studies of soft coral microbiomes, and assessment of functions of host metabolites and soft coral holobionts. PMID:28859111
NASA Astrophysics Data System (ADS)
Schrenk, M. O.; Brazelton, W. J.; Woodruff, Q.; Szponar, N.; Morrill, P. L.
2010-12-01
The aqueous alteration of ultramafic rocks (serpentinization) has been suggested to be a favorable process for the habitability of astrobodies in our solar system including subsurface environments of Mars and Europa. Serpentinization produces copious quantities of hydrogen and small organic molecules, and leads to highly reducing, highly alkaline conditions (up to pH 12) and a lack of dissolved inorganic carbon, which both stimulates and challenges microbial activities. Several environments on Earth provide insight into the relationships between serpentinization and microbial life including slow-spreading mid-ocean ridges, subduction zones, and ophiolite materials emplaced along continental margins. The Tablelands, an ophiolite in western Newfoundland, Canada provides an opportunity to carefully document and map the relationships between geochemical energy, microbial growth, and physiology. Alkaline fluids at the Tablelands originate from 500-million year old oceanic crust and accumulate in shallow pools or seep from beneath serpentinized talus. Fluids, rocks, and gases were collected from the Tablelands during a series of field excursions in 2009 and 2010, and geochemical, microscopic, molecular, and cultivation-based approaches were used to study the serpentinite microbial ecosystem. These samples provide an opportunity to generate a comprehensive map of microbial communities and their activities in space and time. Data indicate that a low but detectable stock of microorganisms inhabit high pH pools associated with end-member serpentinite fluids. Enrichment cultures yielded brightly pigmented colonies related to Alphaproteobacteria, presumably carrying out anoxygenic photosynthesis, and Firmicutes, presumably catalyzing the fermentation of organic matter. Culture-independent analyses of SSU rRNA using T-RFLP indicated low diversity communities of Firmicutes and Archaea in standing alkaline pools, communities of Beta- and Gammaproteobacteria at high pH seeps, and assemblages consisting of diverse taxa at neutral pH background sites. Terrestrial serpentinite-hosted microbial ecosystems with their accessibility, their low phylogenetic diversity, and limited range of energetic resources provide an excellent opportunity to explore the interplay between geochemical energy and life and to elucidate the native serpentinite subsurface biosphere. From the perspective of Mars exploration, studies of serpentinite ecosystems provide the opportunity to pinpoint the organisms and physiological adaptations specifically associated with serpentinization and to directly measure their geochemical impacts. Both of these results will inform modeling and life detection efforts of the Martian subsurface environment.
Thompson, R.S.; Anderson, K.H.; Bartlein, P.J.
2008-01-01
The method of modern analogs is widely used to obtain estimates of past climatic conditions from paleobiological assemblages, and despite its frequent use, this method involved so-far untested assumptions. We applied four analog approaches to a continental-scale set of bioclimatic and plant-distribution presence/absence data for North America to assess how well this method works under near-optimal modern conditions. For each point on the grid, we calculated the similarity between its vegetation assemblage and those of all other points on the grid (excluding nearby points). The climate of the points with the most similar vegetation was used to estimate the climate at the target grid point. Estimates based the use of the Jaccard similarity coefficient had smaller errors than those based on the use of a new similarity coefficient, although the latter may be more robust because it does not assume that the "fossil" assemblage is complete. The results of these analyses indicate that presence/absence vegetation assemblages provide a valid basis for estimating bioclimates on the continental scale. However, the accuracy of the estimates is strongly tied to the number of species in the target assemblage, and the analog method is necessarily constrained to produce estimates that fall within the range of observed values. We applied the four modern analog approaches and the mutual overlap (or "mutual climatic range") method to estimate bioclimatic conditions represented by the plant macrofossil assemblage from a packrat midden of Last Glacial Maximum age from southern Nevada. In general, the estimation approaches produced similar results in regard to moisture conditions, but there was a greater range of estimates for growing-degree days. Despite its limitations, the modern analog technique can provide paleoclimatic reconstructions that serve as the starting point to the interpretation of past climatic conditions.
Metal silicate mixtures - Spectral properties and applications to asteroid taxonomy
NASA Technical Reports Server (NTRS)
Cloutis, Edward A.; Smith, Dorian G. W.; Lambert, Richard St. J.; Gaffey, Michael J.
1990-01-01
The reflectance spectra of combinations of olivine, orthopyroxene, and iron meteorite metal are experimentally studied, and the obtained variations in spectral properties are used to constrain the physical and chemical properties of the assemblages. The presence of metal most noticeably affects band area ratios, peak-to-peak and peak-to-minimum reflectance ratios, and band widths. Band width and band areas are useful for determining metal abundance in olivine and metal and orthopyroxene and metal assemblages, respectively. Mafic silicate grain size variations are best determined using band depth criteria. Band centers are most useful for determining mafic silicate composition. An application of these parameters to the S-class asteroid Flora is presented.
Velasco Ayuso, Sergio; Giraldo Silva, Ana; Nelson, Corey; Barger, Nichole N; Garcia-Pichel, Ferran
2017-02-01
Biological soil crusts (biocrusts) are slow-growing, phototroph-based microbial assemblages that develop on the topsoils of drylands. Biocrusts help maintain soil fertility and reduce erosion. Because their loss through human activities has negative ecological and environmental health consequences, biocrust restoration is of interest. Active soil inoculation with biocrust microorganisms can be an important tool in this endeavor. We present a culture-independent, two-step process to grow multispecies biocrusts in open greenhouse nursery facilities, based on the inoculation of local soils with local biocrust remnants and incubation under seminatural conditions that maintain the essence of the habitat but lessen its harshness. In each of four U.S. Southwest sites, we tested and deployed combinations of factors that maximized growth (gauged as chlorophyll a content) while minimizing microbial community shifts (assessed by 16S rRNA sequencing and bioinformatics), particularly for crust-forming cyanobacteria. Generally, doubling the frequency of natural wetting events, a 60% reduction in sunlight, and inoculation by slurry were optimal. Nutrient addition effects were site specific. In 4 months, our approach yielded crusts of high inoculum quality reared on local soil exposed to locally matched climates, acclimated to desiccation, and containing communities minimally shifted in composition from local ones. Our inoculum contained abundant crust-forming cyanobacteria and no significant numbers of allochthonous phototrophs, and it was sufficient to treat ca. 6,000 m 2 of degraded dryland soils at 1 to 5% of the typical crust biomass concentration, having started from a natural crust remnant as small as 6 to 30 cm 2 IMPORTANCE: Soil surface crusts can protect dryland soils from erosion, but they are often negatively impacted by human activities. Their degradation causes a loss of fertility, increased production of fugitive dust and intensity of dust storms with associated traffic problems, and provokes general public health hazards. Our results constitute an advance in the quest to actively restore biological soil covers by providing a means to obtain high-quality inoculum within a reasonable time (a few months), thereby allowing land managers to recover essential, but damaged, ecosystem services in a sustainable, self-perpetuating way as provided by biocrust communities. Copyright © 2017 American Society for Microbiology.
Stressmann, Franziska A.; Couve-Deacon, Elodie; Chainier, Delphine; Chauhan, Ashwini; Wessel, Aimee; Durand-Fontanier, Sylvaine; Escande, Marie-Christine; Kriegel, Irène; Francois, Bruno; Ploy, Marie-Cécile
2017-01-01
ABSTRACT Totally implanted venous access ports (TIVAPs) are commonly used catheters for the management of acute or chronic pathologies. Although these devices improve health care, repeated use of this type of device for venous access over long periods of time is also associated with risk of colonization and infection by pathogenic bacteria, often originating from skin. However, although the skin microbiota is composed of both pathogenic and nonpathogenic bacteria, the extent and the consequences of TIVAP colonization by nonpathogenic bacteria have rarely been studied. Here, we used culture-dependent and 16S rRNA gene-based culture-independent approaches to identify differences in bacterial colonization of TIVAPs obtained from two French hospitals. To explore the relationships between nonpathogenic organisms colonizing TIVAPs and the potential risk of infection, we analyzed the bacterial community parameters between TIVAPs suspected (symptomatic) or not (asymptomatic) of infection. Although we did not find a particular species assemblage or community marker to distinguish infection risk on an individual sample level, we identified differences in bacterial community composition, diversity, and structure between clinically symptomatic and asymptomatic TIVAPs that could be explored further. This study therefore provides a new view of bacterial communities and colonization patterns in intravascular TIVAPs and suggests that microbial ecology approaches could improve our understanding of device-associated infections and could be a prognostic tool to monitor the evolution of bacterial communities in implants and their potential susceptibility to infections. IMPORTANCE Totally implanted venous access ports (TIVAPs) are commonly used implants for the management of acute or chronic pathologies. Although their use improves the patient’s health care and quality of life, they are associated with a risk of infection and subsequent clinical complications, often leading to implant removal. While all TIVAPs appear to be colonized, only a fraction become infected, and the relationship between nonpathogenic organisms colonizing TIVAPs and the potential risk of infection is unknown. We explored bacteria present on TIVAPs implanted in patients with or without signs of TIVAP infection and identified differences in phylum composition and community structure. Our data suggest that the microbial ecology of intravascular devices could be predictive of TIVAP infection status and that ultimately a microbial ecological signature could be identified as a tool to predict TIVAP infection susceptibility and improve clinical management. PMID:28959736
Benthic assemblages of mega epifauna on the Oregon continental margin
NASA Astrophysics Data System (ADS)
Hemery, Lenaïg G.; Henkel, Sarah K.; Cochrane, Guy R.
2018-05-01
Environmental assessment studies are usually required by a country's administration before issuing permits for any industrial activities. One of the goals of such environmental assessment studies is to highlight species assemblages and habitat composition that could make the targeted area unique. A section of the Oregon continental slope that had not been previously explored was targeted for the deployment of floating wind turbines. We carried out an underwater video survey, using a towed camera sled, to describe its benthic assemblages. Organisms were identified to the lowest taxonomic level possible and assemblages described related to the nature of the seafloor and the depth. We highlighted six invertebrate assemblages and three fish assemblages. For the invertebrates within flat soft sediments areas we defined three different assemblages based on primarily depth: a broad mid-depth (98-315 m) assemblage dominated by red octopus, sea pens and pink shrimps; a narrower mid-depth (250-270 m) assemblage dominated by box crabs and various other invertebrates; and a deeper (310-600 m) assemblage dominated by sea urchins, sea anemones, various snails and zoroasterid sea stars. The invertebrates on mixed sediments also were divided into three different assemblages: a shallow ( 100 m deep) assemblage dominated by plumose sea anemones, broad mid-depth (170-370 m) assemblage dominated by sea cucumbers and various other invertebrates; and, again, a narrower mid-depth (230-270 m) assemblage, dominated by crinoids and encrusting invertebrates. For the fish, we identified a rockfish assemblage on coarse mixed sediments at 170-370 m and another fish assemblage on smaller mixed sediments within that depth range (250-370 m) dominated by thornyheads, poachers and flatfishes; and we identified a wide depth-range (98-600 m) fish assemblage on flat soft sediments dominated by flatfishes, eelpouts and thornyheads. Three of these assemblages (the two broad fish assemblages and the deep flat soft sediments invertebrate assemblage) seem to represent deeper examples of assemblages already known on the Oregon continental shelf, especially on soft sediments, while the assemblages in the pockmarks habitat (the narrower depth ranges) might be unique to the area. This diversity of assemblages in a relatively small section of the Oregon continental upper slope and shelf shows the importance of environmental assessment studies in helping limit future impacts of industrial activities on benthic communities.
de Andrade, Roberto R S; Vaslin, Maite F S
2014-03-07
Next-generation parallel sequencing (NGS) allows the identification of viral pathogens by sequencing the small RNAs of infected hosts. Thus, viral genomes may be assembled from host immune response products without prior virus enrichment, amplification or purification. However, mapping of the vast information obtained presents a bioinformatics challenge. In order to by pass the need of line command and basic bioinformatics knowledge, we develop a mapping software with a graphical interface to the assemblage of viral genomes from small RNA dataset obtained by NGS. SearchSmallRNA was developed in JAVA language version 7 using NetBeans IDE 7.1 software. The program also allows the analysis of the viral small interfering RNAs (vsRNAs) profile; providing an overview of the size distribution and other features of the vsRNAs produced in infected cells. The program performs comparisons between each read sequenced present in a library and a chosen reference genome. Reads showing Hamming distances smaller or equal to an allowed mismatched will be selected as positives and used to the assemblage of a long nucleotide genome sequence. In order to validate the software, distinct analysis using NGS dataset obtained from HIV and two plant viruses were used to reconstruct viral whole genomes. SearchSmallRNA program was able to reconstructed viral genomes using NGS of small RNA dataset with high degree of reliability so it will be a valuable tool for viruses sequencing and discovery. It is accessible and free to all research communities and has the advantage to have an easy-to-use graphical interface. SearchSmallRNA was written in Java and is freely available at http://www.microbiologia.ufrj.br/ssrna/.
2014-01-01
Background Next-generation parallel sequencing (NGS) allows the identification of viral pathogens by sequencing the small RNAs of infected hosts. Thus, viral genomes may be assembled from host immune response products without prior virus enrichment, amplification or purification. However, mapping of the vast information obtained presents a bioinformatics challenge. Methods In order to by pass the need of line command and basic bioinformatics knowledge, we develop a mapping software with a graphical interface to the assemblage of viral genomes from small RNA dataset obtained by NGS. SearchSmallRNA was developed in JAVA language version 7 using NetBeans IDE 7.1 software. The program also allows the analysis of the viral small interfering RNAs (vsRNAs) profile; providing an overview of the size distribution and other features of the vsRNAs produced in infected cells. Results The program performs comparisons between each read sequenced present in a library and a chosen reference genome. Reads showing Hamming distances smaller or equal to an allowed mismatched will be selected as positives and used to the assemblage of a long nucleotide genome sequence. In order to validate the software, distinct analysis using NGS dataset obtained from HIV and two plant viruses were used to reconstruct viral whole genomes. Conclusions SearchSmallRNA program was able to reconstructed viral genomes using NGS of small RNA dataset with high degree of reliability so it will be a valuable tool for viruses sequencing and discovery. It is accessible and free to all research communities and has the advantage to have an easy-to-use graphical interface. Availability and implementation SearchSmallRNA was written in Java and is freely available at http://www.microbiologia.ufrj.br/ssrna/. PMID:24607237
Herfort, Lydie; Crump, Byron C; Fortunato, Caroline S; McCue, Lee Ann; Campbell, Victoria; Simon, Holly M; Baptista, António M; Zuber, Peter
2017-12-01
Estuarine turbidity maxima (ETM) function as hotspots of microbial activity and diversity in estuaries, yet, little is known about the temporal and spatial variability in ETM bacterial community composition. To determine which environmental factors affect ETM bacterial populations in the Columbia River estuary, we analyzed ETM bacterial community composition (Sanger sequencing and amplicon pyrosequencing of 16S rRNA gene) and bulk heterotrophic production ( 3 H-leucine incorporation rates). We collected water 20 times to cover five ETM events and obtained 42 samples characterized by different salinities, turbidities, seasons, coastal regimes (upwelling vs. downwelling), locations, and particle size. Spring and summer populations were distinct. All May samples had similar bacterial community composition despite having different salinities (1-24 PSU), but summer non-ETM bacteria separated into marine, freshwater, and brackish assemblages. Summer ETM bacterial communities varied depending on coastal upwelling or downwelling conditions and on the sampling site location with respect to tidal intrusion during the previous neap tide. In contrast to ETM, whole (>0.2 μm) and free-living (0.2-3 μm) assemblages of non-ETM waters were similar to each other, indicating that particle-attached (>3 μm) non-ETM bacteria do not develop a distinct community. Brackish water type (ETM or non-ETM) is thus a major factor affecting particle-attached bacterial communities. Heterotrophic production was higher in particle-attached than free-living fractions in all brackish waters collected throughout the water column during the rise to decline of turbidity through an ETM event (i.e., ETM-impacted waters). However, free-living communities showed higher productivity prior to or after an ETM event (i.e., non-ETM-impacted waters). This study has thus found that Columbia River ETM bacterial communities vary based on seasons, salinity, sampling location, and particle size, with the existence of three particle types characterized by different bacterial communities in ETM, ETM-impacted, and non-ETM-impacted brackish waters. Taxonomic analysis suggests that ETM key biological function is to remineralize organic matter. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
Lebbad, Marianne; Petersson, Ingvor; Karlsson, Lillemor; Botero-Kleiven, Silvia; Andersson, Jan O; Svenungsson, Bo; Svärd, Staffan G
2011-08-01
Giardia intestinalis is one of the most common diarrhea-related parasites in humans, where infection ranges from asymptomatic to acute or chronic disease. G. intestinalis consists of eight genetically distinct genotypes or assemblages, designated A-H, and assemblages A and B can infect humans. Giardiasis has been classified as a possible zoonotic disease but the role of animals in human disease transmission still needs to be proven. We tried to link different assemblages and sub-assemblages of G. intestinalis isolates from Swedish human patients to clinical symptoms and zoonotic transmission. Multilocus sequence-based genotyping of 207 human Giardia isolates using three gene loci: ß-giardin, glutamate dehydrogenase (gdh), and triose phosphate isomerase (tpi) was combined with assemblage-specific tpi PCRs. This analysis identified 73 patients infected with assemblage A, 128 with assemblage B, and six with mixed assemblages A+B. Multilocus genotypes (MLGs) were easily determined for the assemblage A isolates, and most patients with this genotype had apparently been infected through anthroponotic transmission. However, we also found evidence of limited zoonotic transmission of Giardia in Sweden, since a few domestic human infections involved the same assemblage A MLGs previously reported in Swedish cats and ruminants. Assemblage B was detected more frequently than assemblage A and it was also more common in patients with suspected treatment failure. However, a large genetic variability made determination of assemblage B MLGs problematic. Correlation between symptoms and assemblages was found only for flatulence, which was significantly more common in children less than six years of age infected with assemblage B. This study shows that certain assemblage A subtypes are potentially zoonotic and that flatulence is connected to assemblage B infections in young children. Determination of MLGs from assemblages A and B can be a valuable tool in outbreak situations and to help identify possible zoonotic transmission.
Lebbad, Marianne; Petersson, Ingvor; Karlsson, Lillemor; Botero-Kleiven, Silvia; Andersson, Jan O.; Svenungsson, Bo; Svärd, Staffan G.
2011-01-01
Background Giardia intestinalis is one of the most common diarrhea-related parasites in humans, where infection ranges from asymptomatic to acute or chronic disease. G. intestinalis consists of eight genetically distinct genotypes or assemblages, designated A–H, and assemblages A and B can infect humans. Giardiasis has been classified as a possible zoonotic disease but the role of animals in human disease transmission still needs to be proven. We tried to link different assemblages and sub-assemblages of G. intestinalis isolates from Swedish human patients to clinical symptoms and zoonotic transmission. Methodology/Principal Findings Multilocus sequence-based genotyping of 207 human Giardia isolates using three gene loci: ß-giardin, glutamate dehydrogenase (gdh), and triose phosphate isomerase (tpi) was combined with assemblage-specific tpi PCRs. This analysis identified 73 patients infected with assemblage A, 128 with assemblage B, and six with mixed assemblages A+B. Multilocus genotypes (MLGs) were easily determined for the assemblage A isolates, and most patients with this genotype had apparently been infected through anthroponotic transmission. However, we also found evidence of limited zoonotic transmission of Giardia in Sweden, since a few domestic human infections involved the same assemblage A MLGs previously reported in Swedish cats and ruminants. Assemblage B was detected more frequently than assemblage A and it was also more common in patients with suspected treatment failure. However, a large genetic variability made determination of assemblage B MLGs problematic. Correlation between symptoms and assemblages was found only for flatulence, which was significantly more common in children less than six years of age infected with assemblage B. Conclusions/Significance This study shows that certain assemblage A subtypes are potentially zoonotic and that flatulence is connected to assemblage B infections in young children. Determination of MLGs from assemblages A and B can be a valuable tool in outbreak situations and to help identify possible zoonotic transmission. PMID:21829745
Single chamber microbial fuel cell with Ni-Co cathode
NASA Astrophysics Data System (ADS)
Włodarczyk, Barbara; Włodarczyk, Paweł P.; Kalinichenko, Antonina
2017-10-01
The possibility of wastewater treatment and the parallel energy production using the Ni-Co alloy as cathode catalyst for single chamber microbial fuel cells is presented in this research. The research included a preparation of catalyst and comparison of COD, NH4+ and NO3- reduction in the reactor without aeration, with aeration and with using a single chamber microbial fuel cell with Ni-Co cathode. The reduction time for COD with the use of microbial fuel cell with the Ni-Co catalyst is similar to the reduction time with aeration. The current density (2.4 A·m-2) and amount of energy (0.48 Wh) obtained in MFC is low, but the obtained amount of energy allows elimination of the energy needed for reactor aeration. It has been shown that the Ni-Co can be used as cathode catalyst in single chamber microbial fuel cells.
Nelson, S.M.; Thullen, J.S.
2008-01-01
Culm processing characteristics were associated with differences in invertebrate density in a study of invertebrates and senesced culm packs in a constructed treatment wetland. Invertebrate abundance differed by location within the wetland and there were differences between the two study years that appeared to be related to water quality and condition of culm material. Open areas in the wetland appeared to be critical in providing dissolved oxygen (DO) and food (plankton) to the important invertebrate culm processor, Glyptotendipes. As culm packs aged, invertebrate assemblages became less diverse and eventually supported mostly tubificid worms and leeches. It appears from this study that wetland design is vital to processing of plant material and that designs that encourage production and maintenance of high DO's will encourage microbial and invertebrate processing of material.
NASA Astrophysics Data System (ADS)
Yun, Suk Min; Lee, Taehee; Jung, Seung Won; Park, Joon Sang; Lee, Jin Hwan
2017-09-01
The fossil diatom assemblage record from two sediment cores obtained from the Ulleung Basin, East Sea, Republic of Korea, revealed changes in the diatom assemblage zones in PG1 and PD3 core samples. The two sediment cores were δC14 dated and approximately represented the late Pleistocene-Holocene. The analysis of age zones in the PG1 core and PD3 core was assessed based on the frequency of variations, and occurrences of biostratigraphical fossil diatom species. During the Last Glacial Maximum (LGM), the sea level was lower than that at present and the Ulleung Basin became isolated from the Pacific Ocean. As a result, there would have been a limited Tsushima Warm Current (TWC) influence, and salinity would have decreased resulting in increased freshwater and coastal diatoms. The distribution pattern of diatoms presented in the cores was associated with changes in water temperature and salinity and the adding of terrigenous material brought about by the input of freshwater. Changes in the abundance of a tychopelagic diatom, Paralia sulcata, reflected the effect of the water currents. Diatom temperature (Td) values and the ratio of centric/pennate diatoms provided evidence of limited influences of the TWC and freshwater inflow. It is thought that all assemblage zones were influenced by the TWC, which had an important effect on the distribution and composition of fossil diatoms.
Consequences of organ choice in describing bacterial pathogen assemblages in a rodent population.
Villette, P; Afonso, E; Couval, G; Levret, A; Galan, M; Tatard, C; Cosson, J F; Giraudoux, P
2017-10-01
High-throughput sequencing technologies now allow for rapid cost-effective surveys of multiple pathogens in many host species including rodents, but it is currently unclear if the organ chosen for screening influences the number and identity of bacteria detected. We used 16S rRNA amplicon sequencing to identify bacterial pathogens in the heart, liver, lungs, kidneys and spleen of 13 water voles (Arvicola terrestris) collected in Franche-Comté, France. We asked if bacterial pathogen assemblages within organs are similar and if all five organs are necessary to detect all of the bacteria present in an individual animal. We identified 24 bacteria representing 17 genera; average bacterial richness for each organ ranged from 1·5 ± 0·4 (mean ± standard error) to 2·5 ± 0·4 bacteria/organ and did not differ significantly between organs. The average bacterial richness when organ assemblages were pooled within animals was 4·7 ± 0·6 bacteria/animal; Operational Taxonomic Unit accumulation analysis indicates that all five organs are required to obtain this. Organ type influences bacterial assemblage composition in a systematic way (PERMANOVA, 999 permutations, pseudo-F 4,51 = 1·37, P = 0·001). Our results demonstrate that the number of organs sampled influences the ability to detect bacterial pathogens, which can inform sampling decisions in public health and wildlife ecology.
Grindberg, Rashel V.; Ishoey, Thomas; Brinza, Dumitru; Esquenazi, Eduardo; Coates, R. Cameron; Liu, Wei-ting; Gerwick, Lena; Dorrestein, Pieter C.; Pevzner, Pavel; Lasken, Roger; Gerwick, William H.
2011-01-01
Filamentous marine cyanobacteria are extraordinarily rich sources of structurally novel, biomedically relevant natural products. To understand their biosynthetic origins as well as produce increased supplies and analog molecules, access to the clustered biosynthetic genes that encode for the assembly enzymes is necessary. Complicating these efforts is the universal presence of heterotrophic bacteria in the cell wall and sheath material of cyanobacteria obtained from the environment and those grown in uni-cyanobacterial culture. Moreover, the high similarity in genetic elements across disparate secondary metabolite biosynthetic pathways renders imprecise current gene cluster targeting strategies and contributes sequence complexity resulting in partial genome coverage. Thus, it was necessary to use a dual-method approach of single-cell genomic sequencing based on multiple displacement amplification (MDA) and metagenomic library screening. Here, we report the identification of the putative apratoxin. A biosynthetic gene cluster, a potent cancer cell cytotoxin with promise for medicinal applications. The roughly 58 kb biosynthetic gene cluster is composed of 12 open reading frames and has a type I modular mixed polyketide synthase/nonribosomal peptide synthetase (PKS/NRPS) organization and features loading and off-loading domain architecture never previously described. Moreover, this work represents the first successful isolation of a complete biosynthetic gene cluster from Lyngbya bouillonii, a tropical marine cyanobacterium renowned for its production of diverse bioactive secondary metabolites. PMID:21533272
King, Gary M.; Judd, Craig; Kuske, Cheryl R.; Smith, Conor
2012-01-01
We used high throughput pyrosequencing to characterize stomach and gut content microbiomes of Crassostrea virginica, the Easter oyster, obtained from two sites, one in Barataria Bay (Hackberry Bay) and the other in Terrebonne Bay (Lake Caillou), Louisiana, USA. Stomach microbiomes in oysters from Hackberry Bay were overwhelmingly dominated by Mollicutes most closely related to Mycoplasma; a more rich community dominated by Planctomyctes occurred in Lake Caillou oyster stomachs. Gut communities for oysters from both sites differed from stomach communities, and harbored a relatively diverse assemblage of phylotypes. Phylotypes most closely related to Shewanella and a Chloroflexi strain dominated the Lake Caillou and Hackberry Bay gut microbiota, respectively. While many members of the stomach and gut microbiomes appeared to be transients or opportunists, a putative core microbiome was identified based on phylotypes that occurred in all stomach or gut samples only. The putative core stomach microbiome comprised 5 OTUs in 3 phyla, while the putative core gut microbiome contained 44 OTUs in 12 phyla. These results collectively revealed novel microbial communities within the oyster digestive system, the functions of the oyster microbiome are largely unknown. A comparison of microbiomes from Louisiana oysters with bacterial communities reported for other marine invertebrates and fish indicated that molluscan microbiomes were more similar to each other than to microbiomes of polychaetes, decapods and fish. PMID:23251548
King, Gary M.; Judd, Craig; Kuske, Cheryl R.; ...
2012-12-12
In this paper, we used high throughput pyrosequencing to characterize stomach and gut content microbiomes of Crassostrea virginica, the Easter oyster, obtained from two sites, one in Barataria Bay (Hackberry Bay) and the other in Terrebonne Bay (Lake Caillou), Louisiana, USA. Stomach microbiomes in oysters from Hackberry Bay were overwhelmingly dominated by Mollicutes most closely related to Mycoplasma; a more rich community dominated by Planctomyctes occurred in Lake Caillou oyster stomachs. Gut communities for oysters from both sites differed from stomach communities, and harbored a relatively diverse assemblage of phylotypes. Phylotypes most closely related to Shewanella and a Chloroflexi strainmore » dominated the Lake Caillou and Hackberry Bay gut microbiota, respectively. While many members of the stomach and gut microbiomes appeared to be transients or opportunists, a putative core microbiome was identified based on phylotypes that occurred in all stomach or gut samples only. The putative core stomach microbiome comprised 5 OTUs in 3 phyla, while the putative core gut microbiome contained 44 OTUs in 12 phyla. These results collectively revealed novel microbial communities within the oyster digestive system, the functions of the oyster microbiome are largely unknown. Finally, a comparison of microbiomes from Louisiana oysters with bacterial communities reported for other marine invertebrates and fish indicated that molluscan microbiomes were more similar to each other than to microbiomes of polychaetes, decapods and fish.« less
Microfluidics microFACS for Life Detection
NASA Technical Reports Server (NTRS)
Platt, Donald W.; Hoover, Richard B.
2010-01-01
A prototype micro-scale Fluorescent Activated Cell Sorter (microFACS) for life detection has been built and is undergoing testing. A functional miniature microfluidics instrument with the ability to remotely distinguish live or dead bacterial cells from abiotic particulates in ice or permafrost of icy bodies of the solar system would be of fundamental value to NASA. The use of molecular probes to obtain the bio-signature of living or dead cells could answer the most fundamental question of Astrobiology: Does life exist beyond Earth? The live-dead fluorescent stains to be used in the microFACS instrument function only with biological cell walls. The detection of the cell membranes of living or dead bacteria (unlike PAH's and many other Biomarkers) would provide convincing evidence of present or past life. This miniature device rapidly examine large numbers of particulates from a polar ice or permafrost sample and distinguish living from dead bacteria cells and biological cells from mineral grains and abiotic particulates and sort the cells and particulates based on a staining system. Any sample found to exhibit fluorescence consistent with living cells could then be used in conjunction with a chiral labeled release experiment or video microscopy system to seek addition evidence for cellular metabolism or motility. Results of preliminary testing and calibration of the microFACS prototype instrument system with pure cultures and enrichment assemblages of microbial extremophiles will be reported.
Horak, Rachel E A; Qin, Wei; Schauer, Andy J; Armbrust, E Virginia; Ingalls, Anitra E; Moffett, James W; Stahl, David A; Devol, Allan H
2013-01-01
Archaeal ammonia oxidizers (AOAs) are increasingly recognized as prominent members of natural microbial assemblages. Evidence that links the presence of AOA with in situ ammonia oxidation activity is limited, and the abiotic factors that regulate the distribution of AOA natural assemblages are not well defined. We used quantitative PCR to enumerate amoA (encodes α-subunit of ammonia monooxygenase) abundances; AOA amoA gene copies greatly outnumbered ammonia-oxidizing bacteria and amoA transcripts were derived primarily from AOA throughout the water column of Hood Canal, Puget Sound, WA, USA. We generated a Michaelis–Menten kinetics curve for ammonia oxidation by the natural community and found that the measured Km of 98±14 nmol l−1 was close to that for cultivated AOA representative Nitrosopumilus maritimus SCM1. Temperature did not have a significant effect on ammonia oxidation rates for incubation temperatures ranging from 8 to 20 °C, which is within the temperature range for depths of measurable ammonia oxidation at the site. This study provides substantial evidence, through both amoA gene copies and transcript abundances and the kinetics response, that AOA are the dominant active ammonia oxidizers in this marine environment. We propose that future ammonia oxidation experiments use a Km for the natural community to better constrain ammonia oxidation rates determined with the commonly used 15NH4+ dilution technique. PMID:23657360
Geographic and Environmental Sources of Variation in Lake Bacterial Community Composition†
Yannarell, Anthony C.; Triplett, Eric W.
2005-01-01
This study used a genetic fingerprinting technique (automated ribosomal intergenic spacer analysis [ARISA]) to characterize microbial communities from a culture-independent perspective and to identify those environmental factors that influence the diversity of bacterial assemblages in Wisconsin lakes. The relationships between bacterial community composition and 11 environmental variables for a suite of 30 lakes from northern and southern Wisconsin were explored by canonical correspondence analysis (CCA). In addition, the study assessed the influences of ARISA fragment detection threshold (sensitivity) and the quantitative, semiquantitative, and binary (presence-absence) use of ARISA data. It was determined that the sensitivity of ARISA was influential only when presence-absence-transformed data were used. The outcomes of analyses depended somewhat on the data transformation applied to ARISA data, but there were some features common to all of the CCA models. These commonalities indicated that differences in bacterial communities were best explained by regional (i.e., northern versus southern Wisconsin lakes) and landscape level (i.e., seepage lakes versus drainage lakes) factors. ARISA profiles from May samples were consistently different from those collected in other months. In addition, communities varied along gradients of pH and water clarity (Secchi depth) both within and among regions. The results demonstrate that environmental, temporal, regional, and landscape level features interact to determine the makeup of bacterial assemblages in northern temperate lakes. PMID:15640192
Horak, Rachel E A; Qin, Wei; Schauer, Andy J; Armbrust, E Virginia; Ingalls, Anitra E; Moffett, James W; Stahl, David A; Devol, Allan H
2013-10-01
Archaeal ammonia oxidizers (AOAs) are increasingly recognized as prominent members of natural microbial assemblages. Evidence that links the presence of AOA with in situ ammonia oxidation activity is limited, and the abiotic factors that regulate the distribution of AOA natural assemblages are not well defined. We used quantitative PCR to enumerate amoA (encodes α-subunit of ammonia monooxygenase) abundances; AOA amoA gene copies greatly outnumbered ammonia-oxidizing bacteria and amoA transcripts were derived primarily from AOA throughout the water column of Hood Canal, Puget Sound, WA, USA. We generated a Michaelis-Menten kinetics curve for ammonia oxidation by the natural community and found that the measured Km of 98±14 nmol l(-1) was close to that for cultivated AOA representative Nitrosopumilus maritimus SCM1. Temperature did not have a significant effect on ammonia oxidation rates for incubation temperatures ranging from 8 to 20 °C, which is within the temperature range for depths of measurable ammonia oxidation at the site. This study provides substantial evidence, through both amoA gene copies and transcript abundances and the kinetics response, that AOA are the dominant active ammonia oxidizers in this marine environment. We propose that future ammonia oxidation experiments use a Km for the natural community to better constrain ammonia oxidation rates determined with the commonly used (15)NH4(+) dilution technique.
Diffendorfer, James E.; Richards, Paul M.; Dalrymple, George H.; DeAngelis, Donald L.
2001-01-01
We present the application of Linear Programming for estimating biomass fluxes in ecosystem and food web models. We use the herpetological assemblage of the Everglades as an example. We developed food web structures for three common Everglades freshwater habitat types: marsh, prairie, and upland. We obtained a first estimate of the fluxes using field data, literature estimates, and professional judgment. Linear programming was used to obtain a consistent and better estimate of the set of fluxes, while maintaining mass balance and minimizing deviations from point estimates. The results support the view that the Everglades is a spatially heterogeneous system, with changing patterns of energy flux, species composition, and biomasses across the habitat types. We show that a food web/ecosystem perspective, combined with Linear Programming, is a robust method for describing food webs and ecosystems that requires minimal data, produces useful post-solution analyses, and generates hypotheses regarding the structure of energy flow in the system.
NASA Astrophysics Data System (ADS)
Xi, Dangpeng; Qu, Haiying; Shi, Zhongye; Wan, Xiaoqiao
2017-04-01
Songliao Basin is one of the biggest lacustrine systems in Asia during Cretaceous age. Widespread deposits in the basin are mainly composed of clastic sediments which contain abundant fossils including gastropod, bivalves, ostracods, vertebrates and others. These well preserved ostracod fossils provide us valuable information about past climate changes and biotic responses in a greenhouse environment.The Cretaceous Continental Scientific Drilling in the Songliao Basin (SK1) offers a rare opportunity to study Late Cretaceous non-marine ostracod. The SK1 was drilled separately in two boreholes: the lower 959.55-meter-thick south core (SK1(s)), and the upper 1636.72-meter-thick north core (SK1 (n)), containing the Upper Quantou, Qingshankou, Yaojia, Nenjiang Formation, Sifangtai, Mingshui and lower Taikang formations. Here we establish high-resolution non-marine ostracod biostratigraphy based on SK1. 80 species belonging to 12 genera in the SK1(S) and 45 species assigned to 20 genera in the SK1(n) have been recovered. Nineteen ostracod assemblage zones have been recognized: 1. Mongolocypris longicaudata-Cypridea Assemblage Zone, 2.Triangulicypris torsuosus-Triangulicypris torsuosus. nota Assemblage Zone, 3. Cypridea dekhoinensis-Cypridea gibbosa Assemblage Zone, 4.Cypridea nota-Sunliavia tumida Assemblage Zone, 5.Cypridea edentula-Lycopterocypris grandis Assemblage Zone, 6.Cypridea fuyuensis-Triangulicypris symmetrica Assemblage Zone, 7.Triangulicypris vestilus-Triangulicypris fusiformis-Triangulicypris pumilis Assemblage Zone, 8.Cypridea panda-Mongolocypris obscura Assemblage Zone, 9. Cypridea exornata-Cypridea dongfangensis Assemblage Zone, 10.Cypridea favosa-Mongolocypris tabulata Assemblage Zone, 11.Cypridea formosa-Cypridea sunghuajiangensis Assemblage Zone, 12. Cypridea anonyma-Candona fabiforma Assemblage Zone, 13.Cypridea gracila-Cypridea gunsulinensis Assemblage Zone, 14.Mongolocypris magna-Mongolocypris heiluntszianensis Assemblage Zone, 15.Cypridea liaukhenensis-Cypridea stellata Assemblage Zone, 16. Ilyocyprimorpha-Limnocypridea sunliaonensis-Periacanthella Assemblage Zone, 17. Strumosia inandita Asemblage-Zone, 18.Talicypridea amoena-Metacypris kaitunensis-Ziziphocypris simakovi Assemblage Zone, 19.Ilyocypris Assemblage Zone. Assemblage Zone 1 to 18 are belong to late Cretaceous, but 19 might constrained to the Latest Maastrichtian to the Earliset Danian.
Benthic assemblages of mega epifauna on the Oregon continental margin
Hemery, Lenaïg G.; Henkel, Sarah K.; Cochrane, Guy R.
2018-01-01
Environmental assessment studies are usually required by a country's administration before issuing permits for any industrial activities. One of the goals of such environmental assessment studies is to highlight species assemblages and habitat composition that could make the targeted area unique. A section of the Oregon continental slope that had not been previously explored was targeted for the deployment of floating wind turbines. We carried out an underwater video survey, using a towed camera sled, to describe its benthic assemblages. Organisms were identified to the lowest taxonomic level possible and assemblages described related to the nature of the seafloor and the depth. We highlighted six invertebrate assemblages and three fish assemblages. For the invertebrates within flat soft sediments areas we defined three different assemblages based on primarily depth: a broad mid-depth (98–315 m) assemblage dominated by red octopus, sea pens and pink shrimps; a narrower mid-depth (250–270 m) assemblage dominated by box crabs and various other invertebrates; and a deeper (310–600 m) assemblage dominated by sea urchins, sea anemones, various snails and zoroasterid sea stars. The invertebrates on mixed sediments also were divided into three different assemblages: a shallow (~100 m deep) assemblage dominated by plumose sea anemones, broad mid-depth (170–370 m) assemblage dominated by sea cucumbers and various other invertebrates; and, again, a narrower mid-depth (230–270 m) assemblage, dominated by crinoids and encrusting invertebrates. For the fish, we identified a rockfish assemblage on coarse mixed sediments at 170–370 m and another fish assemblage on smaller mixed sediments within that depth range (250–370 m) dominated by thornyheads, poachers and flatfishes; and we identified a wide depth-range (98–600 m) fish assemblage on flat soft sediments dominated by flatfishes, eelpouts and thornyheads. Three of these assemblages (the two broad fish assemblages and the deep flat soft sediments invertebrate assemblage) seem to represent deeper examples of assemblages already known on the Oregon continental shelf, especially on soft sediments, while the assemblages in the pockmarks habitat (the narrower depth ranges) might be unique to the area. This diversity of assemblages in a relatively small section of the Oregon continental upper slope and shelf shows the importance of environmental assessment studies in helping limit future impacts of industrial activities on benthic communities.
Microdistribution of Faunal Assemblages at Deep-Sea Hydrothermal Vents in the Southern Ocean
Marsh, Leigh; Copley, Jonathan T.; Huvenne, Veerle A. I.; Linse, Katrin; Reid, William D. K.; Rogers, Alex D.; Sweeting, Christopher J.; Tyler, Paul A.
2012-01-01
Chemosynthetic primary production by microbes supports abundant faunal assemblages at deep-sea hydrothermal vents, with zonation of invertebrate species typically occurring along physico-chemical gradients. Recently discovered vent fields on the East Scotia Ridge (ESR) in the Southern Ocean represent a new province of vent biogeography, but the spatial dynamics of their distinct fauna have yet to be elucidated. This study determines patterns of faunal zonation, species associations, and relationships between faunal microdistribution and hydrothermal activity in a vent field at a depth of 2,400 m on the ESR. Remotely operated vehicle (ROV) dives obtained high-definition imagery of three chimney structures with varying levels of hydrothermal activity, and a mosaic image of >250 m2 of seafloor co-registered with temperature measurements. Analysis of faunal microdistribution within the mosaiced seafloor reveals a consistent pattern of faunal zonation with increasing distance from vent sources and peak temperatures. Assemblages closest to vent sources are visibly dominated by a new species of anomuran crab, Kiwa n. sp. (abundance >700 individuals m−2), followed by a peltospiroid gastropod (>1,500 individuals m−2), eolepadid barnacle (>1,500 individuals m−2), and carnivorous actinostolid anemone (>30 individuals m−2). Peripheral fauna are not dominated by a single taxon, but include predatory and scavenger taxa such as stichasterid seastars, pycnogonids and octopus. Variation in faunal microdistribution on chimneys with differing levels of activity suggests a possible successional sequence for vent fauna in this new biogeographic province. An increase in δ34S values of primary consumers with distance from vent sources, and variation in their δ13C values also indicate possible zonation of nutritional modes of the vent fauna. By using ROV videography to obtain a high-resolution representation of a vent environment over a greater extent than previous studies, these results provide a baseline for determining temporal change and investigations of processes structuring faunal assemblages at Southern Ocean vents. PMID:23144754
NASA Astrophysics Data System (ADS)
Dumon, M.; Van Ranst, E.
2016-01-01
This paper presents a free and open-source program called PyXRD (short for Python X-ray diffraction) to improve the quantification of complex, poly-phasic mixed-layer phyllosilicate assemblages. The validity of the program was checked by comparing its output with Sybilla v2.2.2, which shares the same mathematical formalism. The novelty of this program is the ab initio incorporation of the multi-specimen method, making it possible to share phases and (a selection of) their parameters across multiple specimens. PyXRD thus allows for modelling multiple specimens side by side, and this approach speeds up the manual refinement process significantly. To check the hypothesis that this multi-specimen set-up - as it effectively reduces the number of parameters and increases the number of observations - can also improve automatic parameter refinements, we calculated X-ray diffraction patterns for four theoretical mineral assemblages. These patterns were then used as input for one refinement employing the multi-specimen set-up and one employing the single-pattern set-ups. For all of the assemblages, PyXRD was able to reproduce or approximate the input parameters with the multi-specimen approach. Diverging solutions only occurred in single-pattern set-ups, which do not contain enough information to discern all minerals present (e.g. patterns of heated samples). Assuming a correct qualitative interpretation was made and a single pattern exists in which all phases are sufficiently discernible, the obtained results indicate a good quantification can often be obtained with just that pattern. However, these results from theoretical experiments cannot automatically be extrapolated to all real-life experiments. In any case, PyXRD has proven to be useful when X-ray diffraction patterns are modelled for complex mineral assemblages containing mixed-layer phyllosilicates with a multi-specimen approach.
Monis, P T; Andrews, R H; Mayrhofer, G; Mackrill, J; Kulda, J; Isaac-Renton, J L; Ey, P L
1998-01-01
Infection of suckling mice with Giardia trophozoites recovered from the intestines of 11 dogs autopsied in Central and Southern Australia in each case produced an established isolate. In contrast, only 1 isolate was obtained by inoculation of faecal cysts. The organisms grew poorly in comparison with isolates from humans or non-canine animal hosts. Light microscopy revealed that the trophozoites had median bodies with the 'claw hammer' appearance typical of G. intestinalis (syn. G. duodenalis, G. lamblia) but that they differed in shape and nuclear morphology from axenic isolates of human or canine origin. Allozymic analysis of electrophoretic data representing 26 loci and phylogenetic analysis of nucleotide sequences obtained from DNA amplified from the glutamate dehydrogenase locus showed that the 11 isolates examined from Australian dogs were genetically distinct from all isolates of G. intestinalis that have been established previously from humans and animals, and also from G. muris. Both analytical methods placed 10 of the Australian canine isolates into a unique genetic lineage (designated Assemblage C) and the eleventh into a deep-rooted second branch (designated Assemblage D), each well separated from the 2 lineages (Assemblages A and B) of G. intestinalis that encompass all the genotypes known to infect humans. In contrast, 4 axenic isolates derived from dogs in Canada and Europe (the only other isolates to have been established from dogs) have genotypes characteristic of genetic Assemblages A or B. The findings indicate that the novel Giardia identified in these rural Australian dogs have a restricted host range, possibly confined to canine species. The poor success rate in establishing Giardia from dogs in vitro suggests, further, that similar genotypes may predominate as canine parasites world-wide. The absence of such organisms among isolates of Giardia that have been established from humans by propagation in suckling mice indicates that they are unlikely to infect humans. However, infection of humans by those dog-derived genotypes that grow in vitro cannot be excluded.
NASA Astrophysics Data System (ADS)
Guinda, Xabier; Juanes, José Antonio; Puente, Araceli; Echavarri-Erasun, Beatriz
2012-01-01
The extensive field work carried out over the last century has allowed the worldwide description of general distribution patterns and specific composition of rocky intertidal communities. However, the information concerning subtidal communities on hard substrates is more recent and scarce due to the difficulties associated with working in such environments. In this work, a non-destructive method is applied to the study and mapping of subtidal rocky bottom macroalgae assemblages on the coast of Cantabria (N Spain) which is quick, easy and economical. Gelidium corneum and Cystoseira baccata were the dominant species, however, the composition and coverage of macroalgae assemblages varied significantly at different locations and depth ranges. The high presence of Laminaria ochroleuca and Saccorhiza polyschides, characteristic of colder waters, shows the transitional character of this coastal area. The results obtained throughout this study have been very useful to the application of the European Water Framework Directive (WFD 2000/60/EC) and could be of great interest for the future conservation and management of these ecosystems (e.g. Habitats Directive 92/43/EEC).
Berger, B.R.; King, T.V.V.; Morath, L.C.; Phillips, J.D.
2003-01-01
Synoptic views of hydrothermal alteration assemblages are of considerable utility in regional-scale minerals exploration. Recent advances in data acquisition and analysis technologies have greatly enhanced the usefulness of remotely sensed imaging spectroscopy for reliable alteration mineral assemblages mapping. Using NASA's Airborne Visible Infrared Imaging Spectrometer (AVIRIS) sensor, this study mapped large areas of advanced argillic and phyllic-argillic alteration assemblages in the southeastern Santa Rita and northern Patagonia mountains, Arizona. Two concealed porphyry copper deposits have been identified during past exploration, the Red Mountain and Sunnyside deposits, and related published hydrothermal alteration zoning studies allow the comparison of the results obtained from AVIRIS data to the more traditional field mapping approaches. The AVIRIS mapping compares favorably with field-based studies. An analysis of iron-bearing oxide minerals above a concealed supergene chalcocite deposit at Red Mountain also indicates that remotely sensed data can be of value in the interpretation of leached caps above porphyry copper deposits. In conjunction with other types of geophysical data, AVIRIS mineral maps can be used to discriminate different exploration targets within a region.
Monis, Paul T; Andrews, Ross H; Mayrhofer, Graham; Ey, Peter L
2003-05-01
A genetic analysis of Giardia intestinalis, a parasitic protozoan species that is ubiquitous in mammals worldwide, was undertaken using organisms derived from a variety of mammalian hosts in different geographical locations. The test panel of 53 Giardia isolates comprised 48 samples of G. intestinalis, including representatives of all known genetic subgroups, plus an isolate of G. ardeae and four isolates of G. muris. The isolates were compared by allozymic analysis of electrophoretic data obtained for 21 cytosolic enzymes, representing 23 gene loci. Neighbour Joining analysis of the allelic profiles supported the monophyly of G. intestinalis but showed that the species encompasses a rich population substructure. Seven major clusters were evident within G. intestinalis, corresponding to lineages designated previously as genetic assemblages A-G. Some genotypes, e.g. those defining assemblage A, are found in divergent host species and may be zoonotic. However other genotypes, e.g. those defining assemblages C-G, appear to be confined to particular hosts or host groups. The findings reinforce other evidence that G. intestinalis, which was defined on the basis of morphological criteria only, is a species complex.
Wang, Pei-Ling; Chiu, Yi-Ping; Cheng, Ting-Wen; Chang, Yung-Hsin; Tu, Wei-Xain; Lin, Li-Hung
2014-01-01
This study analyzed cored sediments retrieved from sites distributed across a transect of the Lei-Gong-Hou mud volcanoes in eastern Taiwan to uncover the spatial distributions of biogeochemical processes and community assemblages involved in methane cycling. The profiles of methane concentration and carbon isotopic composition revealed various orders of the predominance of specific methane-related metabolisms along depth. At a site proximal to the bubbling pool, the methanogenic zone was sandwiched by the anaerobic methanotrophic zones. For two sites distributed toward the topographic depression, the methanogenic zone overlaid the anaerobic methanotrophic zone. The predominance of anaerobic methanotrophy at specific depth intervals is supported by the enhanced copy numbers of the ANME-2a 16S rRNA gene and coincides with high dissolved Fe/Mn concentrations and copy numbers of the Desulfuromonas/Pelobacter 16S rRNA gene. Assemblages of 16S rRNA and mcrA genes revealed that methanogenesis was mediated by Methanococcoides and Methanosarcina. pmoA genes and a few 16S rRNA genes related to aerobic methanotrophs were detected in limited numbers of subsurface samples. While dissolved Fe/Mn signifies the presence of anaerobic metabolisms near the surface, the correlations between geochemical characteristics and gene abundances, and the absence of aerobic methanotrophs in top sediments suggest that anaerobic methanotrophy is potentially dependent on iron/manganese reduction and dominates over aerobic methanotrophy for the removal of methane produced in situ or from a deep source. Near-surface methanogenesis contributes to the methane emissions from mud platform. The alternating arrangements of methanogenic and methanotrophic zones at different sites suggest that the interactions between mud deposition, evaporation, oxidation and fluid transport modulate the assemblages of microbial communities and methane cycling in different compartments of terrestrial mud volcanoes. PMID:24723919
NASA Astrophysics Data System (ADS)
Rovira, Pere; Grasset, Laurent
2015-04-01
Plant- versus microbial signature in densimetric fractions of mediterranean forest soils: a study by thermochemolysis gas chromatography mass spectrometry The ageing of a given organic substrate decomposing in soil is strongly dependant of its microbial utilization and transformation (reworking) by the soil microflora. How far a given substrate or soil fraction has gone in this evolution is usually measured by means of molecular signatures, ratios between organic compounds which enlighten us about the origin and/or the degree of microbial reworking of a specific group of compounds: lipids, proteins, lignin, carbohydrates, etc. Owing to the biochemical heterogeneity of decomposing substrates it is unlikely that the degree of microbial reworking can be approached with a single signature. Applying a couple of them is much better, but obtaining a wide collection of molecular signatures can be time consuming. Here, instead of applying specific methods to obtain a collection of specific signatures, we apply TMAH-thermochemolysis to obtain a panoramic view of the biochemical composition of a series of densimetric fractions of soils. From the compounds identified after TMAH-thermochemolysis, a collection of indicators was obtained: (a) ratio between short and long-chained linear alkanoic acids; (b) ratio between branched and long-chained linear alkanoic acids; (c) ratio between C16 and total alpha-omega-alkanedioic acids; (d) ratio microbial to plant-derived 1-methoxyalkanes; (e) ratio syringyl to total lignin-derived phenolic compounds; (f) vanillic acid to vanillin ratio; (g) fucose/glucose ratio; and (h) xylose/glucose ratio. From these indicators a single numerical value is distilled, allowing to order a couple of densimetric fractions of soil organic matter according to its degree of microbial reworking. This approach was applied to the comparison of a couple of densimetric fractions of soil organic matter of three organic H horizons from mediterranean forest soils. Fractions were obtained by a sequential extraction with sodium polytungstate (NaPT) at density 1.6, 1.8 and 2.0, after ultrasonic disintegration of the sample. Before ultrasonic treatment, a previous extraction was done with NaPT d = 1.6, to isolate the free light fraction. Results were overall consistent in the sense that occluded fractions of density <1.8, and particularly those of density < 1.6, appear as the most microbially evolved. The free light fraction was overall the most fresh-, least evolved fraction. The dense fraction (d > 2.0), made of organomineral complexes with fine silt plus clay, was overall fresh and poorly microbially reworked. Our future work will be the application of this approach to the study of complete soil profiles and soil fractions, thus allowing to obtain a panoramic view of the stabilization of soil organic matter at different depths.
Biologically agglutinated eukaryotic microfossil from Cryogenian cap carbonates.
Moore, K R; Bosak, T; Macdonald, F A; Lahr, D J G; Newman, S; Settens, C; Pruss, S B
2017-07-01
Cryogenian cap carbonates that overlie Sturtian glacial deposits were formed during a post-glacial transgression. Here, we describe microfossils from the Kakontwe Formation of Zambia and the Taishir Formation of Mongolia-both Cryogenian age, post-Sturtian cap carbonates-and investigate processes involved in their formation and preservation. We compare microfossils from these two localities to an assemblage of well-documented microfossils previously described in the post-Sturtian Rasthof Formation of Namibia. Microfossils from both new localities have 10 ± 1 μm-thick walls composed of carbonaceous matter and aluminosilicate minerals. Those found in the Kakontwe Formation are spherical or ovoid and 90 ± 5 μm to 200 ± 5 μm wide. Structures found in the Taishir Formation are mostly spherical, 50 ± 5 μm to 140 ± 5 μm wide, with distinct features such as blunt or concave edges. Chemical and mineralogical analyses show that the walled structures and the clay fraction extracted from the surrounding sediments are composed of clay minerals, especially muscovite and illite, as well as quartz, iron and titanium oxides, and some dolomite and feldspar. At each locality, the mineralogy of the microfossil walls matched that of the clay fractions of the surrounding sediment. The abundance of these minerals in the walled microfossils relative to the surrounding carbonate matrix and microbial laminae, and the presence of minerals that cannot precipitate from solution (titanium oxide and feldspar), suggests that the composition represents the original mineralogy of the structures. Furthermore, the consistency in mineralogy of both microfossils and sediments across the three basins, and the uniformity of size and shape among mineral grains in the fossil walls indicate that these organisms incorporated these minerals by primary biological agglutination. The discovery of new, mineral-rich microfossil assemblages in microbially laminated and other fine-grained facies of Cryogenian cap carbonates from multiple localities on different palaeocontinents demonstrates that agglutinating eukaryotes were widespread in carbonate-dominated marine environments in the aftermath of the Sturtian glaciation. © 2017 John Wiley & Sons Ltd.
Coastal Bacterioplankton Community Dynamics in Response to a Natural Disturbance
Rappé, Michael S.
2013-01-01
In order to characterize how disturbances to microbial communities are propagated over temporal and spatial scales in aquatic environments, the dynamics of bacterial assemblages throughout a subtropical coastal embayment were investigated via SSU rRNA gene analyses over an 8-month period, which encompassed a large storm event. During non-perturbed conditions, sampling sites clustered into three groups based on their microbial community composition: an offshore oceanic group, a freshwater group, and a distinct and persistent coastal group. Significant differences in measured environmental parameters or in the bacterial community due to the storm event were found only within the coastal cluster of sampling sites, and only at 5 of 12 locations; three of these sites showed a significant response in both environmental and bacterial community characteristics. These responses were most pronounced at sites close to the shoreline. During the storm event, otherwise common bacterioplankton community members such as marine Synechococcus sp. and members of the SAR11 clade of Alphaproteobacteria decreased in relative abundance in the affected coastal zone, whereas several lineages of Gammaproteobacteria, Betaproteobacteria, and members of the Roseobacter clade of Alphaproteobacteria increased. The complex spatial patterns in both environmental conditions and microbial community structure related to freshwater runoff and wind convection during the perturbation event leads us to conclude that spatial heterogeneity was an important factor influencing both the dynamics and the resistance of the bacterioplankton communities to disturbances throughout this complex subtropical coastal system. This heterogeneity may play a role in facilitating a rapid rebound of regions harboring distinctly coastal bacterioplankton communities to their pre-disturbed taxonomic composition. PMID:23409156
Drgon, Tomás; Saito, Keiko; Gillevet, Patrick M.; Sikaroodi, Masoumeh; Whitaker, Brent; Krupatkina, Danara N.; Argemi, Federico; Vasta, Gerardo R.
2005-01-01
The ichthyocidal activity of Pfiesteria piscicida dinospores was examined in an aquarium bioassay format by exposing fish to either Pfiesteria-containing environmental sediments or clonal P. piscicida. The presence of Pfiesteria spp. and the complexity of the microbial assemblage in the bioassay were assessed by molecular approaches. Cell-free water from bioassays that yielded significant fish mortality failed to show ichthyocidal activity. Histopathological examination of moribund and dead fish failed to reveal the skin lesions reported elsewhere. Fish larvae within “cages” of variable mesh sizes were killed in those where the pore size exceeded that of Pfiesteria dinospores. In vitro exposure of fish larvae to clonal P. piscicida indicated that fish mortality was directly proportional to the dinospore cell density. Dinospores clustered around the mouth, eyes, and operculi, suggesting that fish health may be affected by their direct interaction with skin, gill epithelia, or mucous surfaces. Molecular fingerprinting revealed the presence of a very diverse microbial community of bacteria, protists, and fungi within bioassay aquaria containing environmental sediments. Some components of the microbial community were identified as potential fish pathogens, preventing the rigorous identification of Pfiesteria spp. as the only cause of fish death. In summary, our results strongly suggest (i) that this aquarium bioassay format, which has been extensively reported in the literature, is unsuitable to accurately assess the ichthyocidal activity of Pfiesteria spp. and (ii) that the ichthyocidal activity of Pfiesteria spp. is mostly due to direct interactions of the zoospores with fish skin and gill epithelia rather than to soluble factors. PMID:15640229
Spatial and temporal dynamics of the microbial community in the Hanford unconfined aquifer
Lin, Xueju; McKinley, James; Resch, Charles T; Kaluzny, Rachael; Lauber, Christian L; Fredrickson, James; Knight, Rob; Konopka, Allan
2012-01-01
Pyrosequencing analysis of 16S rRNA genes was used to study temporal dynamics of groundwater bacteria and archaea over 10 months within three well clusters separated by ∼30 m and located 250 m from the Columbia River on the Hanford Site, WA. Each cluster contained three wells screened at different depths ranging from 10 to 17 m that differed in hydraulic conductivities. Representative samples were selected for analyses of prokaryotic 16S and eukaryotic 18S rRNA gene copy numbers. Temporal changes in community composition occurred in all nine wells over the 10-month sampling period. However, there were particularly strong effects near the top of the water table when the seasonal rise in the Columbia River caused river water intrusion at the top of the aquifer. The occurrence and disappearance of some microbial assemblages (such as Actinobacteria ACK-M1) were correlated with river water intrusion. This seasonal impact on microbial community structure was greater in the shallow saturated zone than deeper zone in the aquifer. Spatial and temporal patterns for several 16S rRNA gene operational taxonomic units associated with particular physiological functions (for example, methane oxidizers and metal reducers) suggests dynamic changes in fluxes of electron donors and acceptors over an annual cycle. In addition, temporal dynamics in eukaryotic 18S rRNA gene copies and the dominance of protozoa in 18S clone libraries suggest that bacterial community dynamics could be affected not only by the physical and chemical environment but also by top-down biological control. PMID:22456444
Spatial and temporal dynamics of the microbial community in the Hanford unconfined aquifer.
Lin, Xueju; McKinley, James; Resch, Charles T; Kaluzny, Rachael; Lauber, Christian L; Fredrickson, James; Knight, Rob; Konopka, Allan
2012-09-01
Pyrosequencing analysis of 16S rRNA genes was used to study temporal dynamics of groundwater bacteria and archaea over 10 months within three well clusters separated by ~30 m and located 250 m from the Columbia River on the Hanford Site, WA. Each cluster contained three wells screened at different depths ranging from 10 to 17 m that differed in hydraulic conductivities. Representative samples were selected for analyses of prokaryotic 16S and eukaryotic 18S rRNA gene copy numbers. Temporal changes in community composition occurred in all nine wells over the 10-month sampling period. However, there were particularly strong effects near the top of the water table when the seasonal rise in the Columbia River caused river water intrusion at the top of the aquifer. The occurrence and disappearance of some microbial assemblages (such as Actinobacteria ACK-M1) were correlated with river water intrusion. This seasonal impact on microbial community structure was greater in the shallow saturated zone than deeper zone in the aquifer. Spatial and temporal patterns for several 16S rRNA gene operational taxonomic units associated with particular physiological functions (for example, methane oxidizers and metal reducers) suggests dynamic changes in fluxes of electron donors and acceptors over an annual cycle. In addition, temporal dynamics in eukaryotic 18S rRNA gene copies and the dominance of protozoa in 18S clone libraries suggest that bacterial community dynamics could be affected not only by the physical and chemical environment but also by top-down biological control.
Contrasting taxonomic stratification of microbial communities in two hypersaline meromictic lakes
Andrei, Adrian-Ştefan; Robeson, Michael S; Baricz, Andreea; Coman, Cristian; Muntean, Vasile; Ionescu, Artur; Etiope, Giuseppe; Alexe, Mircea; Sicora, Cosmin Ionel; Podar, Mircea; Banciu, Horia Leonard
2015-01-01
Hypersaline meromictic lakes are extreme environments in which water stratification is associated with powerful physicochemical gradients and high salt concentrations. Furthermore, their physical stability coupled with vertical water column partitioning makes them important research model systems in microbial niche differentiation and biogeochemical cycling. Here, we compare the prokaryotic assemblages from Ursu and Fara Fund hypersaline meromictic lakes (Transylvanian Basin, Romania) in relation to their limnological factors and infer their role in elemental cycling by matching taxa to known taxon-specific biogeochemical functions. To assess the composition and structure of prokaryotic communities and the environmental factors that structure them, deep-coverage small subunit (SSU) ribosomal RNA (rDNA) amplicon sequencing, community domain-specific quantitative PCR and physicochemical analyses were performed on samples collected along depth profiles. The analyses showed that the lakes harbored multiple and diverse prokaryotic communities whose distribution mirrored the water stratification patterns. Ursu Lake was found to be dominated by Bacteria and to have a greater prokaryotic diversity than Fara Fund Lake that harbored an increased cell density and was populated mostly by Archaea within oxic strata. In spite of their contrasting diversity, the microbial populations indigenous to each lake pointed to similar physiological functions within carbon degradation and sulfate reduction. Furthermore, the taxonomy results coupled with methane detection and its stable C isotope composition indicated the presence of a yet-undescribed methanogenic group in the lakes' hypersaline monimolimnion. In addition, ultrasmall uncultivated archaeal lineages were detected in the chemocline of Fara Fund Lake, where the recently proposed Nanohaloarchaeota phylum was found to thrive. PMID:25932617
Nanba, K.; King, G. M.; Dunfield, K.
2004-01-01
A 492- to 495-bp fragment of the gene coding for the large subunit of the form I ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) (rbcL) was amplified by PCR from facultatively lithotrophic aerobic CO-oxidizing bacteria, colorless and purple sulfide-oxidizing microbial mats, and genomic DNA extracts from tephra and ash deposits from Kilauea volcano, for which atmospheric CO and hydrogen have been previously documented as important substrates. PCR products from the mats and volcanic sites were used to construct rbcL clone libraries. Phylogenetic analyses showed that the rbcL sequences from all isolates clustered with form IC rbcL sequences derived from facultative lithotrophs. In contrast, the microbial mat clone sequences clustered with sequences from obligate lithotrophs representative of form IA rbcL. Clone sequences from volcanic sites fell within the form IC clade, suggesting that these sites were dominated by facultative lithotrophs, an observation consistent with biogeochemical patterns at the sites. Based on phylogenetic and statistical analyses, clone libraries differed significantly among volcanic sites, indicating that they support distinct lithotrophic assemblages. Although some of the clone sequences were similar to known rbcL sequences, most were novel. Based on nucleotide diversity and average pairwise difference, a forested site and an 1894 lava flow were found to support the most diverse and least diverse lithotrophic populations, respectively. These indices of diversity were not correlated with rates of atmospheric CO and hydrogen uptake but were correlated with estimates of respiration and microbial biomass. PMID:15066819
Nanba, K; King, G M; Dunfield, K
2004-04-01
A 492- to 495-bp fragment of the gene coding for the large subunit of the form I ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) (rbcL) was amplified by PCR from facultatively lithotrophic aerobic CO-oxidizing bacteria, colorless and purple sulfide-oxidizing microbial mats, and genomic DNA extracts from tephra and ash deposits from Kilauea volcano, for which atmospheric CO and hydrogen have been previously documented as important substrates. PCR products from the mats and volcanic sites were used to construct rbcL clone libraries. Phylogenetic analyses showed that the rbcL sequences from all isolates clustered with form IC rbcL sequences derived from facultative lithotrophs. In contrast, the microbial mat clone sequences clustered with sequences from obligate lithotrophs representative of form IA rbcL. Clone sequences from volcanic sites fell within the form IC clade, suggesting that these sites were dominated by facultative lithotrophs, an observation consistent with biogeochemical patterns at the sites. Based on phylogenetic and statistical analyses, clone libraries differed significantly among volcanic sites, indicating that they support distinct lithotrophic assemblages. Although some of the clone sequences were similar to known rbcL sequences, most were novel. Based on nucleotide diversity and average pairwise difference, a forested site and an 1894 lava flow were found to support the most diverse and least diverse lithotrophic populations, respectively. These indices of diversity were not correlated with rates of atmospheric CO and hydrogen uptake but were correlated with estimates of respiration and microbial biomass.
James M. Slavicek; John Podgwaite; Carita Lanner-Herrera
1992-01-01
Two Lymantria dispar nuclear polyhedrosis virus isolates, 5-6 and A2-1, differing in the phenotypic characteristic of the number of viral occlusions in infected cells, were obtained from a production lot of the microbial pesticide Gypchek and several of their replication properties were investigated and compared. Budded virus titer produced in cell...
Li, Haibo; Xu, Zhiqiang; Zhang, Wuchang; Wang, Shaoqing; Zhang, Guangtao; Xiao, Tian
2016-01-01
Tintinnids are planktonic ciliates that play an important role in marine ecosystem. According to their distribution in the world oceans, tintinnid genera were divided into several biogeographical types such as boreal, warm water, austral and neritic. Therefore, the oceanic tintinnid assemblage could be correspondingly divided into boreal assemblage, warm water assemblage and austral assemblage. The purpose of this study was to investigate the characteristics of boreal tintinnid assemblage in the Northwest Pacific and the Arctic, and to identify the connection between boreal tintinnid assemblage and neighboring assemblages. Surface water samples were collected along a transect from the East China Sea to the Chukchi Sea in summer 2014. According to the presence of boreal genera and warm water genera, three tintinnid assemblages (the East China Sea neritic assemblage, the Japan Sea warm water assemblage, and the boreal assemblage) were identified along the transect. The boreal assemblage extended from the Chukchi Sea to the waters north of the Sōya Strait. Densities peaks occurred at stations in the two branches of the Alaska Current and decreased both northward and southward. The densities were <10 ind./dm3 at most stations in Arctic region. The dominant genera (Acanthostomella, Codonellopsis, Parafavella, and Ptychocylis) accounted for 79.07±29.67% (n = 49) of the abundance in the boreal assemblage. The densities of the dominant genera covaried with strongly significant positive correlations. Tintinnids with lorica oral diameter of 22-26 μm and 38-42 μm were dominant and contributed 67.35% and 15.13%, respectively, to the total abundance in the boreal assemblage. The distribution and densities of tintinnids in the study area suggest that the Sōya Strait might be a geographical barrier for tintinnids expansion.
Littoral zone fish assemblages of northern Cayuga Lake.
McKenna, James E.
2001-01-01
Fish assemblages from northern Cayuga Lake were examined for patterns in temporal structure. Fish assemblages changed significantly between seasons. Bluegill (Lepomis macrochirus), bluntnose minnow (Pimephales notatus), and smallmouth bass (Micropterus dolomieu) formed the basis for most assemblages, but the spring assemblage was dominated by common carp (Cyprinus carpio). Correlations between community structure and abiotic factors were identified. Ten abiotic factors strongly influenced species assemblages, including phosphorus concentration, but could not fully explain differences between assemblages. Results indicate that the seasonal pattern of fish assemblage structure and abundance of fish that tend to feed in the water column were related to the annual cycle of productivity in the lake and behavioral adaptations of the fish.
Intensive parameters of enstatite chondrite metamorphism
NASA Technical Reports Server (NTRS)
Fogel, Robert A.; Hess, Paul C.; Rutherford, Malcolm J.
1989-01-01
A geothermometer based on the assemblage kamacite-quartz-enstatite-oldhamite-troilite found in enstatite chondrites is described. Data obtained with the geothermometer reveal that the EL6 meteorites experienced temperatures exceeding 1000 C. These temperatures imply a metal-sulfide melting event that may have fractionated the melt from the source region.
Mineralogy by X-ray Diffraction on Mars: The Chemin Instrument on Mars Science Laboratory
NASA Technical Reports Server (NTRS)
Vaniman, D. T.; Bristow, T. F.; Bish, D. L.; Ming, D. W.; Blake, D. F.; Morris, R. V.; Rampe, E. B.; Chipera, S. J.; Treiman, A. H.; Morrison, S. M.;
2014-01-01
To obtain detailed mineralogy information, the Mars Science Laboratory rover Curiosity carries CheMin, the first X-ray diffraction (XRD) instrument used on a planet other than Earth. CheMin has provided the first in situ XRD analyses of full phase assemblages on another planet.
Szymcek, Phillip; Ishman, Scott E.; Domack, Eugene W.; Leventer, Amy
2007-01-01
fusiformis assemblages. Most agglutinated forms tend to decrease downcore, and comparisons to modern analogues imply post-depositional disintegration, while calcareous taxa indicate non-corrosive bottom waters. The lower to middle Holocene Vega Drift sediments are characterized by the calcareous S. fusiformis assemblage and glacial plume sediments. This assemblage is characterized by calcareous forms including Globocassidulina biora, G. subglobosa, and Nonionella iridea. The planktic species Neogloboquadrina pachyderma is associated with the S. fusiformis assemblage. The S. fusiformis assemblage is faunally similar to assemblages described in fjords of the western Antarctic Peninsula and indicates non-corrosive bottom water. Sediments of the mid to upper Holocene interval are characterized by the T. wiesneri and M. arenacea assemblages and indicate the presence of Hyper Saline Shelf Water. These assemblages are similar to modern assemblages directly to the south in the Prince Gustav Channel. The upper Holocene is marked by several small intervals with taxonomic characteristics similar to the S. fusiformis assemblage, indicating periodic introduction of non-corrosive bottom water to the Vega Drift
NASA Astrophysics Data System (ADS)
Mondav, Rhiannon; McCalley, Carmody; Hodgkins, Suzanne; Rich, Virginia; Frolking, Steve; Saleska, Scott; Barnes, Andrew; Chanton, Jeff; Crill, Patrick
2014-05-01
Thawing permafrost is a potentially significant source of radiative forcing feedback due to increased emissions of methane, a biogenic greenhouse gas (GHG). This study investigated changes in the microbial community along a permafrost thaw gradient at Stordalen Mire, Sweden using 16S rRNA gene amplicon and metagenomic methods. In situ measurements of geochemical parameters, including CH4 and C isotopes, enabled linkage of community dynamics to significant shifts in C balance. The thaw gradient ranged from intact at a palsa (low productivity and GHG emissions), through partially thawed in a bog (high productivity, low GHG emissions) to a completely thawed fen (high productivity and GHG emissions). Microbial assemblages in both the palsa and fen were highly diverse (in both richness and evenness), consistent with climax communities. The microbial community in the bog had distinctly lower diversity, characteristic of ecosystem disturbance. The palsa community was dominated by Acidobacteria and Proteobacteria, as is typical of a range of soils including permafrost. Methanogens dominated both the bog and fen and were most abundant within the zone of water table fluctuation. Inferring methanogens' production pathway from phylogeny showed a shift from mostly hydrogenotrophic methanogens in the bog towards acetotrophic methanogens in the fen. This corroborated porewater and flux emitted CH4 and CO2 carbon isotopic 13C signatures of CH4 and CO2. The fen, where the highest CH4 flux was recorded, was significantly richer in methanogenic archaea. A novel archaea, Candidatus Methanoflorens stordalenmirensis, was present at up to 70% relative abundance in the bog, enabling recovery of a population genome. The genome (and associated metaproteome) of 'M. stordalenmirensis' indicates that hydrogenotrophic methane production is its main energy conservation pathway. 'Methanoflorens' may be an indicator species of permafrost thaw, it is globally ubiquitous, and appears a major contributor to global methane production. Our results revealed a distinct difference in the microbial community structure and membership at each site, which can be directly associated with increasing methane emission and thaw state.
Brown, Tanya; Otero, Christopher; Grajales, Alejandro; Rodriguez, Estefania
2017-01-01
Examination of host-microbe interactions in early diverging metazoans, such as cnidarians, is of great interest from an evolutionary perspective to understand how host-microbial consortia have evolved. To address this problem, we analyzed whether the bacterial community associated with the cosmopolitan and model sea anemone Exaiptasia pallida shows specific patterns across worldwide populations ranging from the Caribbean Sea, and the Atlantic and Pacific oceans. By comparing sequences of the V1–V3 hypervariable regions of the bacterial 16S rRNA gene, we revealed that anemones host a complex and diverse microbial community. When examined at the phylum level, bacterial diversity and abundance associated with E. pallida are broadly conserved across geographic space with samples, containing largely Proteobacteria and Bacteroides. However, the species-level makeup within these phyla differs drastically across space suggesting a high-level core microbiome with local adaptation of the constituents. Indeed, no bacterial OTU was ubiquitously found in all anemones samples. We also revealed changes in the microbial community structure after rearing anemone specimens in captivity within a period of four months. Furthermore, the variation in bacterial community assemblages across geographical locations did not correlate with the composition of microalgal Symbiodinium symbionts. Our findings contrast with the postulation that cnidarian hosts might actively select and maintain species-specific microbial communities that could have resulted from an intimate co-evolution process. The fact that E. pallida is likely an introduced species in most sampled localities suggests that this microbial turnover is a relatively rapid process. Our findings suggest that environmental settings, not host specificity, seem to dictate bacterial community structure associated with this sea anemone. More than maintaining a specific composition of bacterial species some cnidarians associate with a wide range of bacterial species as long as they provide the same physiological benefits towards the maintenance of a healthy host. The examination of the previously uncharacterized bacterial community associated with the cnidarian sea anemone model E. pallida is the first global-scale study of its kind. PMID:28533949
Bromhall, Katrina; Motti, Cherie A.; Munn, Colin B.; Bourne, David G.
2016-01-01
ABSTRACT Pervasive environmental stressors on coral reefs are attributed with shifting the competitive balance in favor of alternative dominants, such as macroalgae. Previous studies have demonstrated that macroalgae compete with corals via a number of mechanisms, including the production of potent primary and secondary metabolites that can influence coral-associated microbial communities. The present study investigates the effects of the Pacific brown macroalga Lobophora sp. (due to the shifting nature of the Lobophora species complex, it will be referred to here as Lobophora sp.) on coral bacterial isolates, coral larvae, and the microbiome associated with the coral Porites cylindrica. Crude aqueous and organic macroalgal extracts were found to inhibit the growth of coral-associated bacteria. Extracts and fractions were also shown to inhibit coral larval settlement and cause mortality at concentrations lower (<0.3 mg · ml−1) than calculated natural concentrations (4.4 mg · ml−1). Microbial communities associated with coral tissues exposed to aqueous (e.g., hydrophilic) crude extracts demonstrated a significant shift to Vibrio dominance and a loss of sequences related to the putative coral bacterial symbiont, Endozoicomonas sp., based on 16S rRNA amplicon sequencing. This study contributes to growing evidence that macroalgal allelochemicals, dissolved organic material, and native macroalgal microbial assemblages all play a role in shifting the microbial equilibrium of the coral holobiont away from a beneficial state, contributing to a decline in coral fitness and a shift in ecosystem structure. IMPORTANCE Diverse microbial communities associate with coral tissues and mucus, providing important protective and nutritional services, but once disturbed, the microbial equilibrium may shift from a beneficial state to one that is detrimental or pathogenic. Macroalgae (e.g., seaweeds) can physically and chemically interact with corals, causing abrasion, bleaching, and overall stress. This study contributes to a growing body of evidence suggesting that macroalgae play a critical role in shifting the coral holobiont equilibrium, which may promote the invasion of opportunistic pathogens and cause coral mortality, facilitating additional macroalgal growth and invasion in the reef. Thus, macroalgae not only contribute to a decline in coral fitness but also influence coral reef ecosystem structure. PMID:27795310
Morrow, Kathleen M; Bromhall, Katrina; Motti, Cherie A; Munn, Colin B; Bourne, David G
2017-01-01
Pervasive environmental stressors on coral reefs are attributed with shifting the competitive balance in favor of alternative dominants, such as macroalgae. Previous studies have demonstrated that macroalgae compete with corals via a number of mechanisms, including the production of potent primary and secondary metabolites that can influence coral-associated microbial communities. The present study investigates the effects of the Pacific brown macroalga Lobophora sp. (due to the shifting nature of the Lobophora species complex, it will be referred to here as Lobophora sp.) on coral bacterial isolates, coral larvae, and the microbiome associated with the coral Porites cylindrica. Crude aqueous and organic macroalgal extracts were found to inhibit the growth of coral-associated bacteria. Extracts and fractions were also shown to inhibit coral larval settlement and cause mortality at concentrations lower (<0.3 mg · ml -1 ) than calculated natural concentrations (4.4 mg · ml -1 ). Microbial communities associated with coral tissues exposed to aqueous (e.g., hydrophilic) crude extracts demonstrated a significant shift to Vibrio dominance and a loss of sequences related to the putative coral bacterial symbiont, Endozoicomonas sp., based on 16S rRNA amplicon sequencing. This study contributes to growing evidence that macroalgal allelochemicals, dissolved organic material, and native macroalgal microbial assemblages all play a role in shifting the microbial equilibrium of the coral holobiont away from a beneficial state, contributing to a decline in coral fitness and a shift in ecosystem structure. Diverse microbial communities associate with coral tissues and mucus, providing important protective and nutritional services, but once disturbed, the microbial equilibrium may shift from a beneficial state to one that is detrimental or pathogenic. Macroalgae (e.g., seaweeds) can physically and chemically interact with corals, causing abrasion, bleaching, and overall stress. This study contributes to a growing body of evidence suggesting that macroalgae play a critical role in shifting the coral holobiont equilibrium, which may promote the invasion of opportunistic pathogens and cause coral mortality, facilitating additional macroalgal growth and invasion in the reef. Thus, macroalgae not only contribute to a decline in coral fitness but also influence coral reef ecosystem structure. © Crown copyright 2016.
Barillé, Laurent; Le Bris, Anthony; Méléder, Vona; Launeau, Patrick; Robin, Marc; Louvrou, Ioanna; Ribeiro, Lourenço
2017-01-01
The Pacific oyster, Crassostrea gigas (Thunberg), is the main bivalve species cultivated in the world. With global warming enabling its reproduction and larval survival at higher latitudes, this species is now recognized as invasive and creates wild oyster reefs globally. In this study, the spatial distribution of photosynthetic assemblages colonizing the shells of wild C. gigas was investigated on both a large scale (two contrasting types of reefs found in mudflats and rocky areas) and a small scale (within individual shells) using a hyperspectral imager. The microspatial distribution of all phototrophs was obtained by mapping the Normalized Difference Vegetation Index (NDVI). Second derivative (δδ) analyses of hyperspectral images at 462, 524, 571 and 647 nm were subsequently applied to map diatoms, cyanobacteria, rhodophytes and chlorophytes, respectively. A concomitant pigment analysis was carried out by high performance liquid chromatography and completed by taxonomic observations. This study showed that there was high microalgal diversity associated with wild oyster shells and that there were differences in the structure of the phototropic assemblages depending on the type of reef. Namely, vertically-growing oysters in mudflat areas had a higher biomass of epizoic diatoms (hyperspectral proxy at δδ462 nm) and were mainly colonized by species of the genera Navicula, Nitzschia and Hippodonta, which are epipelic or motile epipsammic. The assemblages on the horizontal oysters contained more tychoplanktonic diatoms (e.g. Thalassiosira pseudonana, T. proschkinae and Plagiogrammopsis vanheurckii). Three species of boring cyanobacteria were observed for both types of reef: Mastigocoleus testarum, Leptolyngbya terrebrans, and Hyella caespistosa, but the second derivative analysis at 524 nm showed a significantly higher biomass for the horizontally-growing oysters. There was no biomass difference for the boring chlorophyte assemblages (δδ647 nm), with two species: Eugomontia testarum and Ostreobium quekettii observed for both types of reef. This study shows that oyster shells are an idiosyncratic but ubiquitous habitat for phototrophic assemblages. The contribution of these assemblages in terms of biomass and production to the functioning of coastal areas, and particularly to shellfish ecosystems, remains to be evaluated.
Le Bris, Anthony; Méléder, Vona; Launeau, Patrick; Robin, Marc; Louvrou, Ioanna; Ribeiro, Lourenço
2017-01-01
The Pacific oyster, Crassostrea gigas (Thunberg), is the main bivalve species cultivated in the world. With global warming enabling its reproduction and larval survival at higher latitudes, this species is now recognized as invasive and creates wild oyster reefs globally. In this study, the spatial distribution of photosynthetic assemblages colonizing the shells of wild C. gigas was investigated on both a large scale (two contrasting types of reefs found in mudflats and rocky areas) and a small scale (within individual shells) using a hyperspectral imager. The microspatial distribution of all phototrophs was obtained by mapping the Normalized Difference Vegetation Index (NDVI). Second derivative (δδ) analyses of hyperspectral images at 462, 524, 571 and 647 nm were subsequently applied to map diatoms, cyanobacteria, rhodophytes and chlorophytes, respectively. A concomitant pigment analysis was carried out by high performance liquid chromatography and completed by taxonomic observations. This study showed that there was high microalgal diversity associated with wild oyster shells and that there were differences in the structure of the phototropic assemblages depending on the type of reef. Namely, vertically-growing oysters in mudflat areas had a higher biomass of epizoic diatoms (hyperspectral proxy at δδ462 nm) and were mainly colonized by species of the genera Navicula, Nitzschia and Hippodonta, which are epipelic or motile epipsammic. The assemblages on the horizontal oysters contained more tychoplanktonic diatoms (e.g. Thalassiosira pseudonana, T. proschkinae and Plagiogrammopsis vanheurckii). Three species of boring cyanobacteria were observed for both types of reef: Mastigocoleus testarum, Leptolyngbya terrebrans, and Hyella caespistosa, but the second derivative analysis at 524 nm showed a significantly higher biomass for the horizontally-growing oysters. There was no biomass difference for the boring chlorophyte assemblages (δδ647 nm), with two species: Eugomontia testarum and Ostreobium quekettii observed for both types of reef. This study shows that oyster shells are an idiosyncratic but ubiquitous habitat for phototrophic assemblages. The contribution of these assemblages in terms of biomass and production to the functioning of coastal areas, and particularly to shellfish ecosystems, remains to be evaluated. PMID:28934317
Molecular genotyping of Giardia duodenalis in children from Behbahan, southwestern Iran.
Kasaei, Raziyeh; Carmena, David; Jelowdar, Ali; Beiromvand, Molouk
2018-05-01
Giardia duodenalis is an intestinal flagellated protozoan that infects humans and several animal species. Giardiasis causing more than 200 million symptomatic infections globally is one of the most common causes of diarrhea in developing countries. Based on molecular studies mainly targeting the small-subunit (SSU) rRNA gene locus of the parasite, eight assemblages (A to H) have been identified in humans and other animal species. The aim of the current study was to evaluate the frequency and molecular diversity of G. duodenalis in children from rural and urban day care centers from Behbahan, southwestern Iran. This cross-sectional study was based on a concentration method for the microscopic detection of G. duodenalis in stool samples of 450 children, aged 1-7 years, in Behbahan, southwestern Iran. The survey was conducted from December 2015 to May 2016. PCR methods targeting the SSU rRNA and triose phosphate isomerase (TPI) genes of G. duodenalis were used for the identification and genotyping of the parasite isolates. Based on sucrose flotation and microscopy techniques, 2.7% (12/450) of children were infected with G. duodenalis, of which six (50.0%) were males and the other six (50.0%) were females. Overall, 91.7% (11/12) of the infections were detected in children from rural areas. The SSU rRNA and TPI genes were amplified successfully in nine and eight, respectively, of the Giardia-positive samples at microscopy. Among the eight TPI sequences, assemblage A, sub-assemblage AII, was identified in five of the isolates. The sequences of the three remaining samples were untypable. Although no significantly statistical difference between genotype and clinical symptoms was found, five out of the eight isolates identified as assemblage A were obtained in asymptomatic children. Giardia duodenalis infections were more prevalent in children from rural day care schools, and the predominant assemblage was A, sub-assemblage AII. The higher prevalence of giardiasis in rural areas might be related to differences in personal hygiene habits, parents' education level, source of drinking water, and inadequate hygienic toilet facilities in rural areas.
Testing Two Methods that Relate Herbivorous Insects to Host Plants
White, Peter J. T.
2013-01-01
Insect herbivores are integral to terrestrial ecosystems. They provide essential food for higher trophic levels and aid in nutrient cycling. In general, research tends to relate individual insect herbivore species to host plant identity, where a species will show preference for one host over another. In contrast, insect herbivore assemblages are often related to host plant richness where an area with a higher richness of hosts will also have a higher richness of herbivores. In this study, the ability of these two approaches (host plant identity/abundance vs. host plant richness) to describe the diversity, richness, and abundance of an herbivorous Lepidoptera assemblage in temperate forest fragments in southern Canada is tested. Analyses indicated that caterpillar diversity, richness, and abundance were better described by quadrat-scale host plant identity and abundance than by host plant richness. Most host plant-herbivore studies to date have only considered investigating host plant preferences at a species level; the type of assemblage level preference shown in this study has been rarely considered. In addition, host plant replacement simulations indicate that increasing the abundance of preferred host plants could increase Lepidoptera richness and abundance by as much as 30% and 40% respectively in disturbed remnant forest fragments. This differs from traditional thinking that suggests higher levels of insect richness can be best obtained by maximizing plant richness. Host plant species that are highly preferred by the forest-dwelling caterpillar assemblage should be given special management and conservation considerations to maximize biodiversity in forest communities. PMID:24205830
Holocene Ostracoda from the Herald Canyon, Eastern Siberian Sea from the SWERUS-C3 Expedition 2014
NASA Astrophysics Data System (ADS)
Gemery, L.; Cronin, T. M.; Jakobsson, M.; Barrientos, N.; O'Regan, M.; Muschitiello, F.; Koshurnikov, A.; Gukov, A.
2015-12-01
We analyzed Arctic benthic ostracode assemblages from two piston cores (PC) and their complementary multicores from Herald Canyon in the Eastern Siberian Sea. The cores (SWERUS-L2-2-PC1 [8.1 m], 2-MUC4, 71.7 m water depth, and SWERUS-L2-4-PC1 [6.2 m], 4-MUC4, 119.7 m water depth) were collected during Leg 2 of the 2014 SWERUS-C3 Expedition. Radiocarbon dates on mollusks indicate that sediments from 2-PC1 and 4-PC1 were deposited over the last 5,000 and 10,000 years respectively. The dominant ostracode species include: Acanthocythereis dunelmensis, Cytheropteron elaeni, Elofsonella concinna, Kotoracythere janae, Normanicythere leioderma, Semicytherura complanata. Based on species' distributions obtained from a 1,200-sample modern ostracode database, these species are known to be typical of shallow mid- to outer-continental shelf environments in the modern Arctic Ocean. The abundant and diverse benthic ostracode assemblages found in these cores suggest the influence of nutrient-rich Pacific water flowing in through the Bering Strait. The faunal assemblages are fairly uniform throughout 2-PC1, suggesting minimal variability in Pacific water inflow since at least 5 ka. In the lower section of 4-PC1, there is a major change to ostracode assemblages containing typical inner shelf, often brackish-water species, such as Cytheromorpha macchesneyi, and associated shallow Arctic shelf species (Sarsicytheridea punctillata and several Cytheropteron species), reflecting a period of lower, deglacial sea level.
Resistance, resilience and recovery: aquatic bacterial dynamics after water column disturbance.
Shade, Ashley; Read, Jordan S; Welkie, David G; Kratz, Timothy K; Wu, Chin H; McMahon, Katherine D
2011-10-01
For lake microbes, water column mixing acts as a disturbance because it homogenizes thermal and chemical gradients known to define the distributions of microbial taxa. Our first objective was to isolate hypothesized drivers of lake bacterial response to water column mixing. To accomplish this, we designed an enclosure experiment with three treatments to independently test key biogeochemical changes induced by mixing: oxygen addition to the hypolimnion, nutrient addition to the epilimnion, and full water column mixing. We used molecular fingerprinting to observe bacterial community dynamics in the treatment and control enclosures, and in ambient lake water. We found that oxygen and nutrient amendments simulated the physical-chemical water column environment following mixing and resulted in similar bacterial communities to the mixing treatment, affirming that these were important drivers of community change. These results demonstrate that specific environmental changes can replicate broad disturbance effects on microbial communities. Our second objective was to characterize bacterial community stability by quantifying community resistance, recovery and resilience to an episodic disturbance. The communities in the nutrient and oxygen amendments changed quickly (had low resistance), but generally matched the control composition by the 10th day after treatment, exhibiting resilience. These results imply that aquatic bacterial assemblages are generally stable in the face of disturbance. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.
Diversity, specificity, co-occurrence and hub taxa of the bacterial-fungal pollen microbiome.
Manirajan, Binoy Ambika; Maisinger, Corinna; Ratering, Stefan; Rusch, Volker; Schwiertz, Andreas; Cardinale, Massimiliano; Schnell, Sylvia
2018-06-06
Flower pollen represents a unique microbial habitat, however the factors driving microbial assemblages and microbe-microbe interactions remain largely unexplored. Here we compared the structure and diversity of the bacterial-fungal microbiome between eight different pollen species (four wind-pollinated and four insect-pollinated) from close geographical locations, using high-throughput sequencing of a 16S the rRNA gene fragment (bacteria) and the internal transcribed spacer 2 (ITS2, fungi). Proteobacteria and Ascomycota were the most abundant bacterial and fungal phyla, respectively. Pseudomonas (bacterial) and Cladosporium (fungal) were the most abundant genera. Both bacterial and fungal microbiota were significantly influenced by plant species and pollination type, but showed a core microbiome consisting of 12 bacterial and 33 fungal genera. Co-occurrence analysis highlighted significant inter- and intra-kingdom interactions, and the interaction network was shaped by four bacterial hub taxa: Methylobacterium (two OTUs), Friedmanniella and Rosenbergiella. Rosenbergiella prevailed in insect-pollinated pollen and was negatively correlated with the other hubs, indicating habitat complementarity. Inter-kingdom co-occurrence showed a predominant effect of fungal on bacterial taxa. This study enhances our basic knowledge of pollen microbiota, and poses the basis for further inter- and intra-kingdom interaction studies in the plant reproductive organs.
Shabarova, Tanja; Villiger, Jörg; Morenkov, Oleg; Niggemann, Jutta; Dittmar, Thorsten; Pernthaler, Jakob
2014-07-01
Bacterial diversity, community assembly, and the composition of the dissolved organic matter (DOM) were studied in three temporary subsurface karst pools with different flooding regimes. We tested the hypothesis that microorganisms introduced to the pools during floods faced environmental filtering toward a 'typical' karst water community, and we investigated whether DOM composition was related to floodings and the residence time of water in stagnant pools. As predicted, longer water residence consistently led to a decline of bacterial diversity. The microbial assemblages in the influx water harbored more 'exotic' lineages with large distances to known genotypes, yet these initial communities already appeared to be shaped by selective processes. β-Proteobacterial operational taxonomic units (OTUs) closely related to microbes from subsurface or surface aquatic environments were mainly responsible for the clustering of samples according to water residence time in the pools. By contrast, several Cytophagaceae and Flavobacteriaceae OTUs were related to different floodings, which were also the main determinants of DOM composition. A subset of compounds distinguishable by molecular mass and O/C content were characteristic for individual floods. Moreover, there was a transformation of DOM in stagnant pools toward smaller and more aromatic compounds, potentially also reflecting microbial utilization. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Phylogenetic Diversity of Bacteria Associated with the Marine Sponge Rhopaloeides odorabile†
Webster, Nicole S.; Wilson, Kate J.; Blackall, Linda L.; Hill, Russell T.
2001-01-01
Molecular techniques were employed to document the microbial diversity associated with the marine sponge Rhopaloeides odorabile. The phylogenetic affiliation of sponge-associated bacteria was assessed by 16S rRNA sequencing of cloned DNA fragments. Fluorescence in situ hybridization (FISH) was used to confirm the presence of the predominant groups indicated by 16S rDNA analysis. The community structure was extremely diverse with representatives of the Actinobacteria, low-G+C gram-positive bacteria, the β- and γ-subdivisions of the Proteobacteria, Cytophaga/Flavobacterium, green sulfur bacteria, green nonsulfur bacteria, planctomycetes, and other sequence types with no known close relatives. FISH probes revealed the spatial location of these bacteria within the sponge tissue, in some cases suggesting possible symbiotic functions. The high proportion of 16S rRNA sequences derived from novel actinomycetes is good evidence for the presence of an indigenous marine actinomycete assemblage in R. odorabile. High microbial diversity was inferred from low duplication of clones in a library with 70 representatives. Determining the phylogenetic affiliation of sponge-associated microorganisms by 16S rRNA analysis facilitated the rational selection of culture media and isolation conditions to target specific groups of well-represented bacteria for laboratory culture. Novel media incorporating sponge extracts were used to isolate bacteria not previously recovered from this sponge. PMID:11133476
Microbial Communities and Bioactive Compounds in Marine Sponges of the Family Irciniidae—A Review
Hardoim, Cristiane C. P.; Costa, Rodrigo
2014-01-01
Marine sponges harbour complex microbial communities of ecological and biotechnological importance. Here, we propose the application of the widespread sponge family Irciniidae as an appropriate model in microbiology and biochemistry research. Half a gram of one Irciniidae specimen hosts hundreds of bacterial species—the vast majority of which are difficult to cultivate—and dozens of fungal and archaeal species. The structure of these symbiont assemblages is shaped by the sponge host and is highly stable over space and time. Two types of quorum-sensing molecules have been detected in these animals, hinting at microbe-microbe and host-microbe signalling being important processes governing the dynamics of the Irciniidae holobiont. Irciniids are vulnerable to disease outbreaks, and concerns have emerged about their conservation in a changing climate. They are nevertheless amenable to mariculture and laboratory maintenance, being attractive targets for metabolite harvesting and experimental biology endeavours. Several bioactive terpenoids and polyketides have been retrieved from Irciniidae sponges, but the actual producer (host or symbiont) of these compounds has rarely been clarified. To tackle this, and further pertinent questions concerning the functioning, resilience and physiology of these organisms, truly multi-layered approaches integrating cutting-edge microbiology, biochemistry, genetics and zoology research are needed. PMID:25272328
Deterministic Assembly of Complex Bacterial Communities in Guts of Germ-Free Cockroaches
Mikaelyan, Aram; Thompson, Claire L.; Hofer, Markus J.
2015-01-01
The gut microbiota of termites plays important roles in the symbiotic digestion of lignocellulose. However, the factors shaping the microbial community structure remain poorly understood. Because termites cannot be raised under axenic conditions, we established the closely related cockroach Shelfordella lateralis as a germ-free model to study microbial community assembly and host-microbe interactions. In this study, we determined the composition of the bacterial assemblages in cockroaches inoculated with the gut microbiota of termites and mice using pyrosequencing analysis of their 16S rRNA genes. Although the composition of the xenobiotic communities was influenced by the lineages present in the foreign inocula, their structure resembled that of conventional cockroaches. Bacterial taxa abundant in conventional cockroaches but rare in the foreign inocula, such as Dysgonomonas and Parabacteroides spp., were selectively enriched in the xenobiotic communities. Donor-specific taxa, such as endomicrobia or spirochete lineages restricted to the gut microbiota of termites, however, either were unable to colonize germ-free cockroaches or formed only small populations. The exposure of xenobiotic cockroaches to conventional adults restored their normal microbiota, which indicated that autochthonous lineages outcompete foreign ones. Our results provide experimental proof that the assembly of a complex gut microbiota in insects is deterministic. PMID:26655763
Li, Sha; Li, Pan; Liu, Xiong; Luo, Lixin; Lin, Weifeng
2016-05-01
Solid-state acetic acid fermentation (AAF), a natural or semi-controlled fermentation process driven by reproducible microbial communities, is an important technique to produce traditional Chinese cereal vinegars. Highly complex microbial communities and metabolites are involved in traditional Chinese solid-state AAF, but the association between microbiota and metabolites during this process are still poorly understood. In this study, we performed amplicon 16S rRNA gene sequencing on the Illumina MiSeq platform, PCR-denaturing gradient gel electrophoresis, and metabolite analysis to trace the bacterial dynamics and metabolite changes under AAF process. A succession of bacterial assemblages was observed during the AAF process. Lactobacillales dominated all the stages. However, Acetobacter species in Rhodospirillales were considerably accelerated during AAF until the end of fermentation. Quantitative PCR results indicated that the biomass of total bacteria showed a "system microbe self-domestication" process in the first 3 days, and then peaked at the seventh day before gradually decreasing until the end of AAF. Moreover, a total of 88 metabolites, including 8 organic acids, 16 free amino acids, and 66 aroma compounds were detected during AAF. Principal component analysis and cluster analyses revealed the high correlation between the dynamics of bacterial community and metabolites.
Ulrich, Nikea; Kirchner, Veronica; Drucker, Rebecca; Wright, Justin R; McLimans, Christopher J; Hazen, Terry C; Campa, Maria F; Grant, Christopher J; Lamendella, Regina
2018-04-09
Horizontal drilling and hydraulic fracturing extraction procedures have become increasingly present in Pennsylvania where the Marcellus Shale play is largely located. The potential for long-term environmental impacts to nearby headwater stream ecosystems and aquatic bacterial assemblages is still incompletely understood. Here, we perform high-throughput sequencing of the 16 S rRNA gene to characterize the bacterial community structure of water, sediment, and other environmental samples (n = 189) from 31 headwater stream sites exhibiting different histories of fracking activity in northwestern Pennsylvania over five years (2012-2016). Stream pH was identified as a main driver of bacterial changes within the streams and fracking activity acted as an environmental selector for certain members at lower taxonomic levels within stream sediment. Methanotrophic and methanogenic bacteria (i.e. Methylocystaceae, Beijerinckiaceae, and Methanobacterium) were significantly enriched in sites exhibiting Marcellus shale activity (MSA+) compared to MSA- streams. This study highlighted potential sentinel taxa associated with nascent Marcellus shale activity and some of these taxa remained as stable biomarkers across this five-year study. Identifying the presence and functionality of specific microbial consortia within fracking-impacted streams will provide a clearer understanding of the natural microbial community's response to fracking and inform in situ remediation strategies.
NASA Astrophysics Data System (ADS)
Muehlenbachs, K.; Banerjee, N. R.; Furnes, H.; Staudigel, H.; de Wit, M.
2004-05-01
We have discovered biosignatures in the formerly glassy rims of pillow lavas from the Mesoarchean Barberton Greenstone Belt (BGB) in South Africa. Over the last decade, bioalteration of basaltic glass in pillow lavas and volcaniclastic rocks has been well documented from in-situ oceanic crust and well-preserved Phanerozoic ophiolites. Much of the debate regarding the biogenicity of purported microfossils of early life centers on the interpretation of the host rocks' protoliths. To date, most protoliths have been interpreted to be of sedimentary origin. Some workers have proposed alternate origins for these substrates, including hydrothermal and even volcanic derivation, to cast doubt on their putative biogenicity. Hence studies documenting evidence for early life have proven to be controversial. Here we document evidence for microbial activity in ~3.5 Ga subaqueous volcanic rocks that represent a new, unambiguous geological setting in the search for early life on Earth. The BGB magmatic sequence is dominated by mafic to ultramafic pillow lavas, sheet flows, and intrusions interpreted to represent 3480- to 3220-million-year-old oceanic crust and island arc assemblages. The BGB pillow lavas are exceptionally well-preserved and represent unequivocal evidence that these rocks were erupted in a subaqueous environment. The formerly glassy rims of the BGB pillow lavas contain micron-sized, microbially generated, tubular structures consisting of titanite. These structures are interpreted to have formed during microbial etching of the originally glassy pillow rims and were subsequently mineralized by titanite during greenschist facies seafloor hydrothermal alteration. Overlapping metamorphic and magmatic dates from the pillow lavas suggest this process occurred soon after eruption of the pillow lavas on the seafloor. X-ray mapping has revealed the presence of carbon along the margins of the tubular structures. Disseminated carbonates within the microbially altered BGB pillow rims have C-isotope values depleted by as much as -16 per mil, which is consistent with microbial oxidation of organic matter. In contrast, the crystalline pillow interiors exhibit C-isotope values bracketed between Archean marine carbonate (~0 per mil) and mantle CO2 (-5 to -7 per mil). On the basis of the observed textural and geochemical signatures we propose that the glassy rims of the BGB pillow lavas hosted microbial life almost 3.5 billion years ago. Remnants of Archean oceanic crust may therefore be one of the most promising places to search for vestiges of early life on Earth.
Rúa, Megan A.; Wilson, Emily C.; Steele, Sarah; Munters, Arielle R.; Hoeksema, Jason D.; Frank, Anna C.
2016-01-01
Studies of the ecological and evolutionary relationships between plants and their associated microbes have long been focused on single microbes, or single microbial guilds, but in reality, plants associate with a diverse array of microbes from a varied set of guilds. As such, multitrophic interactions among plant-associated microbes from multiple guilds represent an area of developing research, and can reveal how complex microbial communities are structured around plants. Interactions between coniferous plants and their associated microbes provide a good model system for such studies, as conifers host a suite of microorganisms including mutualistic ectomycorrhizal (ECM) fungi and foliar bacterial endophytes. To investigate the potential role ECM fungi play in structuring foliar bacterial endophyte communities, we sampled three isolated, native populations of Monterey pine (Pinus radiata), and used constrained analysis of principal coordinates to relate the community matrices of the ECM fungi and bacterial endophytes. Our results suggest that ECM fungi may be important factors for explaining variation in bacterial endophyte communities but this effect is influenced by population and environmental characteristics, emphasizing the potential importance of other factors — biotic or abiotic — in determining the composition of bacterial communities. We also classified ECM fungi into categories based on known fungal traits associated with substrate exploration and nutrient mobilization strategies since variation in these traits allows the fungi to acquire nutrients across a wide range of abiotic conditions and may influence the outcome of multi-species interactions. Across populations and environmental factors, none of the traits associated with fungal foraging strategy types significantly structured bacterial assemblages, suggesting these ECM fungal traits are not important for understanding endophyte-ECM interactions. Overall, our results suggest that both biotic species interactions and environmental filtering are important for structuring microbial communities but emphasize the need for more research into these interactions. PMID:27065966
Penny, A M; Wood, R A; Zhuravlev, A Yu; Curtis, A; Bowyer, F; Tostevin, R
2017-01-01
Namacalathus hermanastes is one of the oldest known skeletal metazoans, found in carbonate settings of the terminal Ediacaran (~550-541 million years ago [Ma]). The palaeoecology of this widespread, goblet-shaped, benthic organism is poorly constrained yet critical for understanding the dynamics of the earliest metazoan communities. Analysis of in situ assemblages from the Nama Group, Namibia (~548-541 Ma), shows that Namacalathus exhibited size variation in response to differing water depths, hydrodynamic conditions and substrate types. In low-energy, inner ramp environments, Namacalathus attains the largest average sizes but grew in transient, loosely aggregating, monospecific aggregations attached to microbial mats. In high-energy mid-ramp reefs, Namacalathus spatially segregated into different palaeoecological habitats with distinct size distributions. In outer ramp environments, individuals were small and formed patchy, dense, monospecific aggregations attached to thin microbial mats. Asexual budding is common in all settings. We infer that variations in size distribution in Namacalathus reflect differences in habitat heterogeneity and stability, including the longevity of mechanically stable substrates and oxic conditions. In the Nama Group, long-lived skeletal metazoan communities developed within topographically heterogeneous mid-ramp reefs, which provided diverse mechanically stable microbial substrates in persistently oxic waters, while inner and outer ramp communities were often ephemeral, developing during fleeting episodes of either oxia and/or substrate stability. We conclude that Namacalathus, which forms a component of these communities in the Nama Group, was a generalist that adapted to various palaeoecological habitats within a heterogeneous ecosystem landscape where favourable conditions persisted, and was also able to opportunistically colonise transiently hospitable environments. These early skeletal metazoans colonised previously unoccupied substrates in thrombolitic reefs and other microbial carbonate settings, and while they experienced relatively low levels of interspecific competition, they were nonetheless adapted to the diverse environments and highly dynamic redox conditions present in the terminal Ediacaran. © 2016 John Wiley & Sons Ltd.
Leulier, François; MacNeil, Lesley T; Lee, Won-Jae; Rawls, John F; Cani, Patrice D; Schwarzer, Martin; Zhao, Liping; Simpson, Stephen J
2017-03-07
Nutrition is paramount in shaping all aspects of animal biology. In addition, the influence of the intestinal microbiota on physiology is now widely recognized. Given that diet also shapes the intestinal microbiota, this raises the question of how the nutritional environment and microbial assemblages together influence animal physiology. This research field constitutes a new frontier in the field of organismal biology that needs to be addressed. Here we review recent studies using animal models and humans and propose an integrative framework within which to define the study of the diet-physiology-microbiota systems and ultimately link it to human health. Nutritional Geometry sits centrally in the proposed framework and offers means to define diet compositions that are optimal for individuals and populations. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Siddiqui, Khawar S.; Williams, Timothy J.; Wilkins, David; Yau, Sheree; Allen, Michelle A.; Brown, Mark V.; Lauro, Federico M.; Cavicchioli, Ricardo
2013-05-01
Psychrophilic (cold-adapted) microorganisms make a major contribution to Earth's biomass and perform critical roles in global biogeochemical cycles. The vast extent and environmental diversity of Earth's cold biosphere has selected for equally diverse microbial assemblages that can include archaea, bacteria, eucarya, and viruses. Underpinning the important ecological roles of psychrophiles are exquisite mechanisms of physiological adaptation. Evolution has also selected for cold-active traits at the level of molecular adaptation, and enzymes from psychrophiles are characterized by specific structural, functional, and stability properties. These characteristics of enzymes from psychrophiles not only manifest in efficient low-temperature activity, but also result in a flexible protein structure that enables biocatalysis in nonaqueous solvents. In this review, we examine the ecology of Antarctic psychrophiles, physiological adaptation of psychrophiles, and properties of cold-adapted proteins, and we provide a view of how these characteristics inform studies of astrobiology.
The Personal Human Oral Microbiome Obscures the Effects of Treatment on Periodontal Disease
Schwarzberg, Karen; Le, Rosalin; Bharti, Balambal; Lindsay, Suzanne; Casaburi, Giorgio; Salvatore, Francesco; Saber, Mohamed H.; Alonaizan, Faisal; Slots, Jørgen; Gottlieb, Roberta A.; Caporaso, J. Gregory; Kelley, Scott T.
2014-01-01
Periodontitis is a progressive disease of the periodontium with a complex, polymicrobial etiology. Recent Next-Generation Sequencing (NGS) studies of the microbial diversity associated with periodontitis have revealed strong, community-level differences in bacterial assemblages associated with healthy or diseased periodontal sites. In this study, we used NGS approaches to characterize changes in periodontal pocket bacterial diversity after standard periodontal treatment. Despite consistent changes in the abundance of certain taxa in individuals whose condition improved with treatment, post-treatment samples retained the highest similarity to pre-treatment samples from the same individual. Deeper phylogenetic analysis of periodontal pathogen-containing genera Prevotella and Fusobacterium found both unexpected diversity and differential treatment response among species. Our results highlight how understanding interpersonal variability among microbiomes is necessary for determining how polymicrobial diseases respond to treatment and disturbance. PMID:24489772
Organic carbon, and not copper, controls denitrification in oxygen minimum zones of the ocean
NASA Astrophysics Data System (ADS)
Ward, Bess B.; Tuit, Caroline B.; Jayakumar, Amal; Rich, Jeremy J.; Moffett, James; Naqvi, S. Wajih A.
2008-12-01
Incubation experiments under trace metal clean conditions and ambient oxygen concentrations were used to investigate the response of microbial assemblages in oxygen minimum zones (OMZs) to additions of organic carbon and copper, two factors that might be expected to limit denitrification in the ocean. In the OMZs of the Eastern Tropical North and South Pacific, denitrification appeared to be limited by organic carbon; exponential cell growth and rapid nitrate and nitrite depletion occurred upon the addition of small amounts of carbon, but copper had no effect. In the OMZ of the Arabian Sea, neither carbon nor copper appeared to be limiting. We hypothesize that denitrification is variable in time and space in the OMZs in ways that may be predictable based on links to the episodic supply of organic substrates from overlying productive surface waters.