Sample records for microbial cell counts

  1. Changes in intestinal microbiota in HIV-1-infected subjects following cART initiation: influence of CD4+ T cell count.

    PubMed

    Ji, Yongjia; Zhang, Fengdi; Zhang, Renfang; Shen, Yinzhong; Liu, Li; Wang, Jiangrong; Yang, Junyang; Tang, Qi; Xun, Jingna; Qi, Tangkai; Wang, Zhenyan; Song, Wei; Tang, Yang; Chen, Jun; Lu, Hongzhou

    2018-06-22

    The roles of immunodeficiency and combined antiretroviral therapy (cART) in shaping the gut microbiota in HIV-1-infected subjects (HISs) have not been described thoroughly by time-series investigations. In this study, 36 antiretroviral-naïve HISs were enrolled to prospectively assess alterations in the fecal microbiota and plasma markers of microbial translocation and inflammation with cART. At baseline, the species α-diversity of the fecal microbiota was significantly lower in HISs with a CD4 + T cell count <300/mm 3 than in HISs with a CD4 + T cell count >300/mm 3 (Shannon index: Median 2.557 vs. 2.981, P = 0.006; Simpson index: Median 0.168 vs. 0.096, P = 0.004). Additionally, the baseline α-diversity indices correlated with CD4 + T cell counts (Shannon index: r = 0.474, P = 0.004; Simpson index: r = -0.467, P = 0.004) and the specific plasma biomarkers for microbial translocation and inflammation. After cART introduction, the species α-diversity of fecal microbiota in HISs with CD4 + T cell counts <300/mm 3 was significantly restored (Shannon index: Median 2.557 vs. 2.791, P = 0.007; Simpson index: Median 0.168 vs. 0.112, P = 0.004), while the variances were insignificant among HISs with CD4+ T cell counts >300/mm 3 (Shannon index: Median 2.981 vs. 2.934, P = 0.179; Simpson index: Median 0.096 vs. 0.119, P = 0.082). Meanwhile, with cART introduction, alterations in the gut microbial composition were more significant in the subgroup with CD4 + T cell counts >300/mm 3 , corresponding to increases in the specific plasma inflammatory markers. These findings implicated the interactive roles of immunodeficiency and cART for affecting gut microbiota in HIV-1-infected individuals, providing new insights into intestinal microbiome dysbiosis related to HIV-1 infection.

  2. Microbial assessment of cabin air quality on commercial airliners

    NASA Technical Reports Server (NTRS)

    La Duc, Myron T.; Stuecker, Tara; Bearman, Gregory; Venkateswaran, Kasthuri

    2005-01-01

    The microbial burdens of 69 cabin air samples collected from commercial airliners were assessed via conventional culture-dependent, and molecular-based microbial enumeration assays. Cabin air samples from each of four separate flights aboard two different carriers were collected via air-impingement. Microbial enumeration techniques targeting DNA, ATP, and endotoxin were employed to estimate total microbial burden. The total viable microbial population ranged from 0 to 3.6 x10 4 cells per 100 liters of air, as assessed by the ATP-assay. When these same samples were plated on R2A minimal medium, anywhere from 2% to 80% of these viable populations were cultivable. Five of the 29 samples examined exhibited higher cultivable counts than ATP derived viable counts, perhaps a consequence of the dormant nature (and thus lower concentration of intracellular ATP) of cells inhabiting these air cabin samples. Ribosomal RNA gene sequence analysis showed these samples to consist of a moderately diverse group of bacteria, including human pathogens. Enumeration of ribosomal genes via quantitative-PCR indicated that population densities ranged from 5 x 10 1 ' to IO 7 cells per 100 liters of air. Each of the aforementioned strategies for assessing overall microbial burden has its strengths and weaknesses; this publication serves as a testament to the power of their use in concert.

  3. Surface Enhanced Raman Spectroscopy for the Rapid Detection and Identification of Microbial Pathogens in Human Serum

    DTIC Science & Technology

    2014-12-11

    and 1 mm depth. Bacterial culture and cell count determination Bacterial species of Acinetobacter baumannii (A. baumannii, ST-3), Escherichia coli...remove all broth components followed by a final resuspension of the pellet in ddH2O back to 1 OD. Cell count was determined by plating the 10 4 , 10 3...10 2 and 10 1 cell dilutions on TSB Nutrient Agar media. Colony forming units (CFU) were counted the following day to confirm bacterial species

  4. Quick counting method for estimating the number of viable microbes on food and food processing equipment.

    PubMed

    Winter, F H; York, G K; el-Nakhal, H

    1971-07-01

    A rapid method for estimating the extent of microbial contamination on food and on food processing equipment is described. Microbial cells are rinsed from food or swab samples with sterile diluent and concentrated on the surface of membrane filters. The filters are incubated on a suitable bacteriological medium for 4 hr at 30 C, heated at 105 C for 5 min, and stained. The membranes are then dried at 60 C for 15 min, rendered transparent with immersion oil, and examined microscopically. Data obtained by the rapid method were compared with counts of the same samples determined by the standard plate count method. Over 60 comparisons resulted in a correlation coefficient of 0.906. Because the rapid technique can provide reliable microbiological count information in extremely short times, it can be a most useful tool in the routine evaluation of microbial contamination of food processing facilities and for some foods.

  5. A microbiology-based multi-parametric approach towards assessing biological stability in drinking water distribution networks.

    PubMed

    Lautenschlager, Karin; Hwang, Chiachi; Liu, Wen-Tso; Boon, Nico; Köster, Oliver; Vrouwenvelder, Hans; Egli, Thomas; Hammes, Frederik

    2013-06-01

    Biological stability of drinking water implies that the concentration of bacterial cells and composition of the microbial community should not change during distribution. In this study, we used a multi-parametric approach that encompasses different aspects of microbial water quality including microbial growth potential, microbial abundance, and microbial community composition, to monitor biological stability in drinking water of the non-chlorinated distribution system of Zürich. Drinking water was collected directly after treatment from the reservoir and in the network at several locations with varied average hydraulic retention times (6-52 h) over a period of four months, with a single repetition two years later. Total cell concentrations (TCC) measured with flow cytometry remained remarkably stable at 9.5 (± 0.6) × 10(4) cells/ml from water in the reservoir throughout most of the distribution network, and during the whole time period. Conventional microbial methods like heterotrophic plate counts, the concentration of adenosine tri-phosphate, total organic carbon and assimilable organic carbon remained also constant. Samples taken two years apart showed more than 80% similarity for the microbial communities analysed with denaturing gradient gel electrophoresis and 454 pyrosequencing. Only the two sampling locations with the longest water retention times were the exceptions and, so far for unknown reasons, recorded a slight but significantly higher TCC (1.3 (± 0.1) × 10(5) cells/ml) compared to the other locations. This small change in microbial abundance detected by flow cytometry was also clearly observed in a shift in the microbial community profiles to a higher abundance of members from the Comamonadaceae (60% vs. 2% at other locations). Conventional microbial detection methods were not able to detect changes as observed with flow cytometric cell counts and microbial community analysis. Our findings demonstrate that the multi-parametric approach used provides a powerful and sensitive tool to assess and evaluate biological stability and microbial processes in drinking water distribution systems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Relationships Among Microbial Communities, Maternal Cells, Oligosaccharides, and Macronutrients in Human Milk.

    PubMed

    Williams, Janet E; Price, William J; Shafii, Bahman; Yahvah, Katherine M; Bode, Lars; McGuire, Mark A; McGuire, Michelle K

    2017-08-01

    Human milk provides all essential nutrients necessary for early life and is rich in nonnutrients, maternally derived (host) cells, and bacteria, but almost nothing is known about the interplay among these components. Research aim: The primary objective of this research was to characterize relationships among macronutrients, maternal cells, and bacteria in milk. Milk samples were collected from 16 women and analyzed for protein, lipid, fatty acid, lactose, and human milk oligosaccharide concentrations. Concentrations of maternal cells were determined using microscopy, and somatic cell counts were enumerated. Microbial ecologies were characterized using culture-independent methods. Absolute and relative concentrations of maternal cells were mostly consistent within each woman as were relative abundances of bacterial genera, and there were many apparent relationships between these factors. For instance, relative abundance of Serratia was negatively associated with somatic cell counts ( r = -.47, p < .0001) and neutrophil concentration ( r = -.38, p < .0006). Concentrations of several oligosaccharides were correlated with maternally derived cell types as well as somatic cell counts; for example, lacto-N-tetraose and lacto-N-neotetraose were inversely correlated with somatic cell counts ( r = -.64, p = .0082; r = -.52, p = .0387, respectively), and relative abundance of Staphylococcus was positively associated with total oligosaccharide concentration ( r = .69, p = .0034). Complex relationships between milk nutrients and bacterial community profile, maternal cells, and milk oligosaccharides were also apparent. These data support the possibility that profiles of maternally derived cells, nutrient concentrations, and the microbiome of human milk might be interrelated.

  7. Cell abundance and microbial community composition along a complete oil sand mining and reclamation process

    NASA Astrophysics Data System (ADS)

    Lappé, M.; Schneider, B.; Kallmeyer, J.

    2012-12-01

    Hydrocarbons constitute an important energy source for microbes but can also be of environmental concern. Microbial activity causes hydrocarbon degradation and thereby loss of economical value, but also helps to remove hydrocarbons from the environment. The present study characterizes the abundance of microbes along the oil sand mining process in Alberta, Canada, as a first approach to assess the impact of mining and oil extraction on the microbial population. After mining the oil is extracted from the sediment by a hot-water extraction (50-60°C), resulting in three major fractions: crude oil, tailings sand and fine tailings. The tailings sand is used as substratum for newly developing soils on the reclamation areas. The very liquid fine tailings still have a TOC content of about 4.3% and are pumped into tailings ponds, where they need up to three decades to settle and solidify. After deposition, these mature fine tailings (MFTs) are enriched in organics (TOC content between 9.6 and 16.8%) and dredged out of the ponds and put on dumps for several years for dewatering. Finally they are brought out onto the reclamation sites and deposited below the sand layer. Cells were extracted from oily sediments according to the protocol of Lappé and Kallmeyer (2011), stained with SYBR Green I and counted by fluorescence microscopy. Cell abundance in the unprocessed oil sand is around 1.6 x 107 cells cm-3. After processing the fresh fine tailings still contain around 1.6 x 107 cells cm-3. Cell counts in the processed MFTs are 5.8 x 107 cells cm-3, whereas in the sand used as substratum for newly developing soils, they are twice as high (1.4 x 108). In root-bearing horizons, cell counts reach 1.1 x 109 cell cm-3. Cell numbers calculated from cultivation experiments are in the same range. Higher cell counts in the tailings sand are probably due to a higher nitrogen supply through the addition of a 35 cm top layer of a peat-mineral mix. In the sand nitrate concentrations are high (~0.37 mmol/L), whereas in the MFTs nitrate concentrations are much lower (~0.04 mmol/L). In some MFT samples sulphate appears to be the most abundant electron acceptor (up to 94 mmol/L) but no hydrogen sulphide could be detected. High cell counts in root-bearing layers might be related to a supply with otherwise unavailable nutrients, especially phosphorus. Another plausible explanation is that the cells are brought in the sand with the peat-mineral mix, because it seems that the mix contains a significant amount of roots. Samples with low amounts or no roots showed lower cell abundances. Sand and MFTs also differ in the microbial community composition. Molecular analysis of bacterial isolates of samples with different oil content show that β-Proteobacteria dominate the cultivable bacterial population in substrates with a high residual content of oil, whereas in the low oil content sand they play a minor role. The data of corresponding metagenomic analyses confirm these results. In MFTs β-Proteobacteria make up about 80% of the total bacterial population. The surprisingly stable cell abundance indicates that microbial processes take place throughout the entire production process. Rising cell numbers in root-bearing horizons show that a plant cover fosters microbial abundance and diversity, helping to restore full ecosystem functionality.

  8. Responses of Escherichia coli, Listeria monocytogenes, and Staphylococcus aureus to Simulated Food Processing Treatments, Determined Using Fluorescence-Activated Cell Sorting and Plate Counting▿

    PubMed Central

    Kennedy, Deirdre; Cronin, Ultan P.; Wilkinson, Martin G.

    2011-01-01

    Three common food pathogenic microorganisms were exposed to treatments simulating those used in food processing. Treated cell suspensions were then analyzed for reduction in growth by plate counting. Flow cytometry (FCM) and fluorescence-activated cell sorting (FACS) were carried out on treated cells stained for membrane integrity (Syto 9/propidium iodide) or the presence of membrane potential [DiOC2(3)]. For each microbial species, representative cells from various subpopulations detected by FCM were sorted onto selective and nonselective agar and evaluated for growth and recovery rates. In general, treatments giving rise to the highest reductions in counts also had the greatest effects on cell membrane integrity and membrane potential. Overall, treatments that impacted cell membrane permeability did not necessarily have a comparable effect on membrane potential. In addition, some bacterial species with extensively damaged membranes, as detected by FCM, appeared to be able to replicate and grow after sorting. Growth of sorted cells from various subpopulations was not always reflected in plate counts, and in some cases the staining protocol may have rendered cells unculturable. Optimized FCM protocols generated a greater insight into the extent of the heterogeneous bacterial population responses to food control measures than did plate counts. This study underlined the requirement to use FACS to relate various cytometric profiles generated by various staining protocols with the ability of cells to grow on microbial agar plates. Such information is a prerequisite for more-widespread adoption of FCM as a routine microbiological analytical technique. PMID:21602370

  9. Lipid biomarker analysis for the quantitative analysis of airborne microorganisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macnaughton, S.J.; Jenkins, T.L.; Cormier, M.R.

    1997-08-01

    There is an ever increasing concern regarding the presence of airborne microbial contaminants within indoor air environments. Exposure to such biocontaminants can give rise to large numbers of different health effects including infectious diseases, allergenic responses and respiratory problems, Biocontaminants typically round in indoor air environments include bacteria, fungi, algae, protozoa and dust mites. Mycotoxins, endotoxins, pollens and residues of organisms are also known to cause adverse health effects. A quantitative detection/identification technique independent of culturability that assays both culturable and non culturable biomass including endotoxin is critical in defining risks from indoor air biocontamination. Traditionally, methods employed for themore » monitoring of microorganism numbers in indoor air environments involve classical culture based techniques and/or direct microscopic counting. It has been repeatedly documented that viable microorganism counts only account for between 0.1-10% of the total community detectable by direct counting. The classic viable microbiologic approach doe`s not provide accurate estimates of microbial fragments or other indoor air components that can act as antigens and induce or potentiate allergic responses. Although bioaerosol samplers are designed to damage the microbes as little as possible, microbial stress has been shown to result from air sampling, aerosolization and microbial collection. Higher collection efficiency results in greater cell damage while less cell damage often results in lower collection efficiency. Filtration can collect particulates at almost 100% efficiency, but captured microorganisms may become dehydrated and damaged resulting in non-culturability, however, the lipid biomarker assays described herein do not rely on cell culture. Lipids are components that are universally distributed throughout cells providing a means to assess independent of culturability.« less

  10. The plasma levels of soluble ST2 as a marker of gut mucosal damage in early HIV infection

    PubMed Central

    Mehraj, Vikram; Jenabian, Mohammad-Ali; Ponte, Rosalie; Lebouché, Bertrand; Costiniuk, Cecilia; Thomas, Réjean; Baril, Jean-Guy; LeBlanc, Roger; Cox, Joseph; Tremblay, Cécile; Routy, Jean-Pierre

    2016-01-01

    Objective: Following tissue barrier breaches, interleukin-33 (IL-33) is released as an ‘alarmin’ to induce inflammation. Soluble suppression of tumorigenicity 2 (sST2), as an IL-33 decoy receptor, contributes to limit inflammation. We assessed the relationship between the IL-33/ST2 axis and markers of gut mucosal damage in patients with early (EHI) and chronic HIV infection (CHI) and elite controllers. Design: Analyses on patients with EHI and CHI were conducted to determine IL-33/sST2 changes over time. Methods: IL-33 and sST2 levels were measured in plasma. Correlations between sST2 levels and plasma viral load, CD4+ and CD8+ T-cell counts, expression of T-cell activation/exhaustion markers, gut mucosal damage, microbial translocation and inflammation markers, as well as kynurenine/tryptophan ratio were assessed. Results: Plasma sST2 levels were elevated in EHI compared with untreated CHI and uninfected controls, whereas IL-33 levels were comparable in all groups. In EHI, sST2 levels were positively correlated with the CD8+ T-cell count and the percentage of T cells expressing activation and exhaustion markers, but not with viral load or CD4+ T-cell count. Plasma sST2 levels also correlated with plasma levels of gut mucosal damage, microbial translocation and kynurenine/tryptophan ratio and for some markers of inflammation. Prospective analyses showed that early antiretroviral therapy had no impact on sST2 levels, whereas longer treatment duration initiated during CHI normalized sST2. Conclusion: As sST2 levels were elevated in EHI and were correlated with CD8+ T-cell count, immune activation, and microbial translocation, sST2 may serve as a marker of disease progression, gut damage and may directly contribute to HIV pathogenesis. PMID:27045377

  11. Impact of HIV Infection and Anti-Retroviral Therapy on the Immune Profile of and Microbial Translocation in HIV-Infected Children in Vietnam.

    PubMed

    Bi, Xiuqiong; Ishizaki, Azumi; Nguyen, Lam Van; Matsuda, Kazunori; Pham, Hung Viet; Phan, Chung Thi Thu; Ogata, Kiyohito; Giang, Thuy Thi Thanh; Phung, Thuy Thi Bich; Nguyen, Tuyen Thi; Tokoro, Masaharu; Pham, An Nhat; Khu, Dung Thi Khanh; Ichimura, Hiroshi

    2016-08-02

    CD4⁺ T-lymphocyte destruction, microbial translocation, and systemic immune activation are the main mechanisms of the pathogenesis of human immunodeficiency virus type 1 (HIV) infection. To investigate the impact of HIV infection and antiretroviral therapy (ART) on the immune profile of and microbial translocation in HIV-infected children, 60 HIV vertically infected children (31 without ART: HIV(+) and 29 with ART: ART(+)) and 20 HIV-uninfected children (HIV(-)) aged 2-12 years were recruited in Vietnam, and their blood samples were immunologically and bacteriologically analyzed. Among the HIV(+) children, the total CD4⁺-cell and their subset (type 1 helper T-cell (Th1)/Th2/Th17) counts were inversely correlated with age (all p < 0.05), whereas regulatory T-cell (Treg) counts and CD4/CD8 ratios had become lower, and the CD38⁺HLA (human leukocyte antigen)-DR⁺CD8⁺- (activated CD8⁺) cell percentage and plasma soluble CD14 (sCD14, a monocyte activation marker) levels had become higher than those of HIV(-) children by the age of 2 years; the CD4/CD8 ratio was inversely correlated with the plasma HIV RNA load and CD8⁺-cell activation status. Among the ART(+) children, the total CD4⁺-cell and Th2/Th17/Treg-subset counts and the CD4/CD8 ratio gradually increased, with estimated ART periods of normalization being 4.8-8.3 years, whereas Th1 counts and the CD8⁺-cell activation status normalized within 1 year of ART initiation. sCD14 levels remained high even after ART initiation. The detection frequency of bacterial 16S/23S ribosomal DNA/RNA in blood did not differ between HIV-infected and -uninfected children. Thus, in children, HIV infection caused a rapid decrease in Treg counts and the early activation of CD8⁺ cells and monocytes, and ART induced rapid Th1 recovery and early CD8⁺-cell activation normalization but had little effect on monocyte activation. The CD4/CD8 ratio could therefore be an additional marker for ART monitoring.

  12. Optimization of hot water treatment for removing microbial colonies on fresh blueberry surface.

    PubMed

    Kim, Tae Jo; Corbitt, Melody P; Silva, Juan L; Wang, Dja Shin; Jung, Yean-Sung; Spencer, Barbara

    2011-08-01

    Blueberries for the frozen market are washed but this process sometimes is not effective or further contaminates the berries. This study was designed to optimize conditions for hot water treatment (temperature, time, and antimicrobial concentration) to remove biofilm and decrease microbial load on blueberries. Scanning electron microscopy (SEM) image showed a well-developed microbial biofilm on blueberries dipped in room temperature water. The biofilm consisted of yeast and bacterial cells attached to the berry surface in the form of microcolonies, which produced exopolymer substances between or upon the cells. Berry exposure to 75 and 90 °C showed little to no microorganisms on the blueberry surface; however, the sensory quality (wax/bloom) of berries at those temperatures was unacceptable. Response surface plots showed that increasing temperature was a significant factor on reduction of aerobic plate counts (APCs) and yeast/mold counts (YMCs) while adding Boxyl® did not have significant effect on APC. Overlaid contour plots showed that treatments of 65 to 70 °C for 10 to 15 s showed maximum reductions of 1.5 and 2.0 log CFU/g on APCs and YMCs, respectively; with acceptable level of bloom/wax score on fresh blueberries. This study showed that SEM, response surface, and overlaid contour plots proved successful in arriving at optima to reduce microbial counts while maintaining bloom/wax on the surface of the blueberries. Since chemical sanitizing treatments such as chlorine showed ineffectiveness to reduce microorganisms loaded on berry surface (Beuchat and others 2001, Sapers 2001), hot water treatment on fresh blueberries could maximize microbial reduction with acceptable quality of fresh blueberries. © 2011 Institute of Food Technologists®

  13. Influence of raw milk quality on fluid milk shelf life.

    PubMed

    Barbano, D M; Ma, Y; Santos, M V

    2006-03-01

    Pasteurized fluid milk shelf life is influenced by raw milk quality. The microbial count and somatic cell count (SCC) determine the load of heat-resistant enzymes in milk. Generally, high levels of psychrotrophic bacteria in raw milk are required to contribute sufficient quantities of heat-stable proteases and lipases to cause breakdown of protein and fat after pasteurization. Sanitation, refrigeration, and the addition of CO2 to milk are used to control both total and psychrotrophic bacteria count. It is not uncommon for total bacterial counts of raw milk to be < 10,000 cfu/mL. In the past, fluid milk processors have not focused much attention on milk SCC. Increased SCC is correlated with increased amounts of heat-stable protease (plasmin) and lipase (lipoprotein lipase) in milk. When starting with raw milk that has a low bacterial count, and in the absence of microbial growth in pasteurized milk, enzymes associated with high SCC will cause protein and fat degradation during refrigerated storage, and produce off-flavors. As the ability to kill, remove, or control microbial growth in pasteurized refrigerated milk continues to improve, the original milk SCC will be the factor limiting the time of refrigerated storage before development of an off-flavor in milk. Most healthy cows in a dairy herd have a milk SCC < 50,000 cell/mL. Bulk tank SCC > 200,000 cell/mL are usually due to the contribution of high SCC milk from a small number of cows in the herd. Technology to identify these cows and keep their milk out of the bulk tank could substantially increase the value of the remaining milk for use in fluid milk processing. To achieve a 60- to 90-d shelf life of refrigerated fluid milk, fluid processors and dairy farmers need to work together to structure economic incentives that allow farmers to produce milk with the SCC needed for extended refrigerated shelf life.

  14. Rapid detection of microbial cell abundance in aquatic systems

    DOE PAGES

    Rocha, Andrea M.; Yuan, Quan; Close, Dan M.; ...

    2016-06-01

    The detection and quantification of naturally occurring microbial cellular densities is an essential component of environmental systems monitoring. While there are a number of commonly utilized approaches for monitoring microbial abundance, capacitance-based biosensors represent a promising approach because of their low-cost and label-free detection of microbial cells, but are not as well characterized as more traditional methods. Here, we investigate the applicability of enhanced alternating current electrokinetics (ACEK) capacitive sensing as a new application for rapidly detecting and quantifying microbial cellular densities in cultured and environmentally sourced aquatic samples. ACEK capacitive sensor performance was evaluated using two distinct and dynamicmore » systems the Great Australian Bight and groundwater from the Oak Ridge Reservation in Oak Ridge, TN. Results demonstrate that ACEK capacitance-based sensing can accurately determine microbial cell counts throughout cellular concentrations typically encountered in naturally occurring microbial communities (10 3 – 10 6 cells/mL). A linear relationship was observed between cellular density and capacitance change correlations, allowing a simple linear curve fitting equation to be used for determining microbial abundances in unknown samples. As a result, this work provides a foundation for understanding the limits of capacitance-based sensing in natural environmental samples and supports future efforts focusing on evaluating the robustness ACEK capacitance-based within aquatic environments.« less

  15. Rapid detection of microbial cell abundance in aquatic systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rocha, Andrea M.; Yuan, Quan; Close, Dan M.

    The detection and quantification of naturally occurring microbial cellular densities is an essential component of environmental systems monitoring. While there are a number of commonly utilized approaches for monitoring microbial abundance, capacitance-based biosensors represent a promising approach because of their low-cost and label-free detection of microbial cells, but are not as well characterized as more traditional methods. Here, we investigate the applicability of enhanced alternating current electrokinetics (ACEK) capacitive sensing as a new application for rapidly detecting and quantifying microbial cellular densities in cultured and environmentally sourced aquatic samples. ACEK capacitive sensor performance was evaluated using two distinct and dynamicmore » systems the Great Australian Bight and groundwater from the Oak Ridge Reservation in Oak Ridge, TN. Results demonstrate that ACEK capacitance-based sensing can accurately determine microbial cell counts throughout cellular concentrations typically encountered in naturally occurring microbial communities (10 3 – 10 6 cells/mL). A linear relationship was observed between cellular density and capacitance change correlations, allowing a simple linear curve fitting equation to be used for determining microbial abundances in unknown samples. As a result, this work provides a foundation for understanding the limits of capacitance-based sensing in natural environmental samples and supports future efforts focusing on evaluating the robustness ACEK capacitance-based within aquatic environments.« less

  16. Evaluation of Kefir as a New Anodic Biocatalyst Consortium for Microbial Fuel Cell.

    PubMed

    Silveira, Gustavo; Schneedorf, José Maurício

    2018-02-21

    Kefir, a combined consortium of bacteria and yeast encapsulated by a polymeric matrix of exopolysaccharides, was used as anodic biocatalyst in a two-chamber microbial fuel cell (MFC). Fermentation was followed during 72 h and polarization curves were obtained from linear sweep voltammetry. The effect of methylene blue as charge-transfer mediator in the kefir metabolism was evaluated. UV/Vis spectrophotometry and cyclic voltammetry were applied to evaluate the redox state of the mediator and to characterize the electrochemical activity, whereas current interruption was used for internal resistance determination. Aiming to establish a relationship between the microbial development inside the anodic chamber with the generated power in the MFC, total titratable acidity, pH, viscosity, carbohydrate assimilation, and microbial counting were assayed. The kefir-based MFC demonstrated a maximum power density of 54 mW m -2 after 24 h fermentation, revealing the potential use of kefir as a biocatalyst for microbial fuel cells.

  17. Microbial quality of soft drinks served by the dispensing machines in fast food restaurants and convenience stores in Griffin, Georgia, and surrounding areas.

    PubMed

    Park, Yoen Ju; Chen, Jinru

    2009-12-01

    This study was undertaken to evaluate the microbial quality of the soft drinks served by fast food restaurants and gas station convenience stores in Griffin, GA, and surrounding areas. The soft drinks were collected from the dispensing machines in 8 fast food restaurants or gas station convenience stores in 2005 (n = 25) and in 10 fast food restaurants or gas station convenience stores in 2006 (n = 43) and 2007 (n = 43). One hundred milliliters of each soft drink was filtered through a hydrophobic grid membrane filter. The remaining portion of the soft drink was kept at room temperature for 4 h before sampling in order to mimic the possible holding time between purchase and consumption. The membrane filters were sampled for total aerobic bacteria, Enterobacteriaceae, lactic acid bacteria, and yeasts and molds. The microbial counts in the 2006 samples were numerically higher than the counts in the 2007 samples except for the average lactic acid bacteria counts, and were either significantly or numerically higher than the counts in the 2005 samples. Soft drinks sampled after the 4-h holding period had relatively higher counts than those sampled initially, with a few exceptions. Some soft drinks had over 4 log CFU/100 ml of total aerobic bacteria, Enterobacteriaceae, lactic acid bacteria, and yeast and mold cells. The study revealed the microbial quality of soft drinks served by dispensing machines in Griffin, GA, and surrounding areas, emphasizing the importance of effective sanitizing practice in retail settings.

  18. Microbial biodiversity, quality and shelf life of microfiltered and pasteurized extended shelf life (ESL) milk from Germany, Austria and Switzerland.

    PubMed

    Schmidt, Verena S J; Kaufmann, Veronika; Kulozik, Ulrich; Scherer, Siegfried; Wenning, Mareike

    2012-03-01

    Information on factors limiting the shelf life of extended shelf life (ESL) milk produced by microfiltration and subsequent pasteurization is very limited. In this study, three different batches of ESL milk were analyzed at different stages of the production process and during storage at 4 °C, 8 °C and 10 °C in order to evaluate the changes in bacterial cell counts, microbial diversity and enzymatic quality. Additionally, detailed biodiversity analyses of 250 retail ESL milk packages produced by five manufacturers in Germany, Austria and Switzerland were performed at the end of shelf life. It was observed that microfiltration decreased the microbial loads by 5-6 log₁₀ units to lower than 1 CFU/mL. However, bacterial counts at the end of shelf life were extremely variable and ranged between <1 and 8 log₁₀ CFU/mL. 8% of all samples showed spoilage indicated by cell counts higher than 6 log₁₀ CFU/mL. The main spoilage groups of bacteria were Gram-negative post-process recontaminants (Acinetobacter, Chryseobacterium, Psychrobacter, Sphingomonas) and the spore formers Paenibacillus and Bacillus cereus, while other spore formers and Microbacterium spp. did not reach spoilage levels. Paenibacillus spp. and B. cereus apparently influenced enzymatic spoilage, as indicated by increased free fatty acid production, pH 4.6 soluble peptide fractions and off-flavors. In some cases, enzymatic spoilage was observed although microbial counts were well below 6 log₁₀ CFU/mL. Thirteen B. cereus isolates were characterized for their toxin profiles and psychrotolerance. Hbl, nhe, and cytK toxin genes were detected in ten, thirteen, and four isolates, respectively, whereas the ces gene was always absent. Interestingly, only three of the thirteen isolates could be allocated to psychrotolerant genotypes, as indicated by the major cold shock cspA gene signature. Generally, large discrepancies in microbial loads and biodiversity were observed at the end of shelf life, even among packages of the same production batch. We suggest that such unexpected differences may be due to very low cell counts after ESL treatment, causing stochastic variations of initial species distributions in individual packages. This would result in the development of significantly different bacterial populations during cold storage, including the occasional development of high numbers of pathogenic species such as B. cereus or Acinetobacter. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Quantitative microbiome profiling links gut community variation to microbial load.

    PubMed

    Vandeputte, Doris; Kathagen, Gunter; D'hoe, Kevin; Vieira-Silva, Sara; Valles-Colomer, Mireia; Sabino, João; Wang, Jun; Tito, Raul Y; De Commer, Lindsey; Darzi, Youssef; Vermeire, Séverine; Falony, Gwen; Raes, Jeroen

    2017-11-23

    Current sequencing-based analyses of faecal microbiota quantify microbial taxa and metabolic pathways as fractions of the sample sequence library generated by each analysis. Although these relative approaches permit detection of disease-associated microbiome variation, they are limited in their ability to reveal the interplay between microbiota and host health. Comparative analyses of relative microbiome data cannot provide information about the extent or directionality of changes in taxa abundance or metabolic potential. If microbial load varies substantially between samples, relative profiling will hamper attempts to link microbiome features to quantitative data such as physiological parameters or metabolite concentrations. Saliently, relative approaches ignore the possibility that altered overall microbiota abundance itself could be a key identifier of a disease-associated ecosystem configuration. To enable genuine characterization of host-microbiota interactions, microbiome research must exchange ratios for counts. Here we build a workflow for the quantitative microbiome profiling of faecal material, through parallelization of amplicon sequencing and flow cytometric enumeration of microbial cells. We observe up to tenfold differences in the microbial loads of healthy individuals and relate this variation to enterotype differentiation. We show how microbial abundances underpin both microbiota variation between individuals and covariation with host phenotype. Quantitative profiling bypasses compositionality effects in the reconstruction of gut microbiota interaction networks and reveals that the taxonomic trade-off between Bacteroides and Prevotella is an artefact of relative microbiome analyses. Finally, we identify microbial load as a key driver of observed microbiota alterations in a cohort of patients with Crohn's disease, here associated with a low-cell-count Bacteroides enterotype (as defined through relative profiling).

  20. Anaerobic Oxidation of Methane at a Marine Methane Seep in a Forearc Sediment Basin off Sumatra, Indian Ocean

    PubMed Central

    Siegert, Michael; Krüger, Martin; Teichert, Barbara; Wiedicke, Michael; Schippers, Axel

    2011-01-01

    A cold methane seep was discovered in a forearc sediment basin off the island Sumatra, exhibiting a methane-seep adapted microbial community. A defined seep center of activity, like in mud volcanoes, was not discovered. The seep area was rather characterized by a patchy distribution of active spots. The relevance of anaerobic oxidation of methane (AOM) was reflected by 13C-depleted isotopic signatures of dissolved inorganic carbon. The anaerobic conversion of methane to CO2 was confirmed in a 13C-labeling experiment. Methane fueled a vital microbial community with cell numbers of up to 4 × 109 cells cm−3 sediment. The microbial community was analyzed by total cell counting, catalyzed reporter deposition–fluorescence in situ hybridization (CARD–FISH), quantitative real-time PCR (qPCR), and denaturing gradient gel electrophoresis (DGGE). CARD–FISH cell counts and qPCR measurements showed the presence of Bacteria and Archaea, but only small numbers of Eukarya. The archaeal community comprised largely members of ANME-1 and ANME-2. Furthermore, members of the Crenarchaeota were frequently detected in the DGGE analysis. Three major bacterial phylogenetic groups (δ-Proteobacteria, candidate division OP9, and Anaerolineaceae) were abundant across the study area. Several of these sequences were closely related to the genus Desulfococcus of the family Desulfobacteraceae, which is in good agreement with previously described AOM sites. In conclusion, the majority of the microbial community at the seep consisted of AOM-related microorganisms, while the relevance of higher hydrocarbons as microbial substrates was negligible. PMID:22207865

  1. Anaerobic Oxidation of Methane at a Marine Methane Seep in a Forearc Sediment Basin off Sumatra, Indian Ocean.

    PubMed

    Siegert, Michael; Krüger, Martin; Teichert, Barbara; Wiedicke, Michael; Schippers, Axel

    2011-01-01

    A cold methane seep was discovered in a forearc sediment basin off the island Sumatra, exhibiting a methane-seep adapted microbial community. A defined seep center of activity, like in mud volcanoes, was not discovered. The seep area was rather characterized by a patchy distribution of active spots. The relevance of anaerobic oxidation of methane (AOM) was reflected by (13)C-depleted isotopic signatures of dissolved inorganic carbon. The anaerobic conversion of methane to CO(2) was confirmed in a (13)C-labeling experiment. Methane fueled a vital microbial community with cell numbers of up to 4 × 10(9) cells cm(-3) sediment. The microbial community was analyzed by total cell counting, catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH), quantitative real-time PCR (qPCR), and denaturing gradient gel electrophoresis (DGGE). CARD-FISH cell counts and qPCR measurements showed the presence of Bacteria and Archaea, but only small numbers of Eukarya. The archaeal community comprised largely members of ANME-1 and ANME-2. Furthermore, members of the Crenarchaeota were frequently detected in the DGGE analysis. Three major bacterial phylogenetic groups (δ-Proteobacteria, candidate division OP9, and Anaerolineaceae) were abundant across the study area. Several of these sequences were closely related to the genus Desulfococcus of the family Desulfobacteraceae, which is in good agreement with previously described AOM sites. In conclusion, the majority of the microbial community at the seep consisted of AOM-related microorganisms, while the relevance of higher hydrocarbons as microbial substrates was negligible.

  2. Identification of microbes from the surfaces of food-processing lines based on the flow cytometric evaluation of cellular metabolic activity combined with cell sorting.

    PubMed

    Juzwa, W; Duber, A; Myszka, K; Białas, W; Czaczyk, K

    2016-09-01

    In this study the design of a flow cytometry-based procedure to facilitate the detection of adherent bacteria from food-processing surfaces was evaluated. The measurement of the cellular redox potential (CRP) of microbial cells was combined with cell sorting for the identification of microorganisms. The procedure enhanced live/dead cell discrimination owing to the measurement of the cell physiology. The microbial contamination of the surface of a stainless steel conveyor used to process button mushrooms was evaluated in three independent experiments. The flow cytometry procedure provided a step towards monitoring of contamination and enabled the assessment of microbial food safety hazards by the discrimination of active, mid-active and non-active bacterial sub-populations based on determination of their cellular vitality and subsequently single cell sorting to isolate microbial strains from discriminated sub-populations. There was a significant correlation (r = 0.97; p < 0.05) between the bacterial cell count estimated by the pour plate method and flow cytometry, despite there being differences in the absolute number of cells detected. The combined approach of flow cytometric CRP measurement and cell sorting allowed an in situ analysis of microbial cell vitality and the identification of species from defined sub-populations, although the identified microbes were limited to culturable cells.

  3. A vegan or vegetarian diet substantially alters the human colonic faecal microbiota.

    PubMed

    Zimmer, J; Lange, B; Frick, J-S; Sauer, H; Zimmermann, K; Schwiertz, A; Rusch, K; Klosterhalfen, S; Enck, P

    2012-01-01

    Consisting of ≈10(14) microbial cells, the intestinal microbiota represents the largest and the most complex microbial community inhabiting the human body. However, the influence of regular diets on the microbiota is widely unknown. We examined faecal samples of vegetarians (n=144), vegans (n=105) and an equal number of control subjects consuming ordinary omnivorous diet who were matched for age and gender. We used classical bacteriological isolation, identification and enumeration of the main anaerobic and aerobic bacterial genera and computed absolute and relative numbers that were compared between groups. Total counts of Bacteroides spp., Bifidobacterium spp., Escherichia coli and Enterobacteriaceae spp. were significantly lower (P=0.001, P=0.002, P=0.006 and P=0.008, respectively) in vegan samples than in controls, whereas others (E. coli biovars, Klebsiella spp., Enterobacter spp., other Enterobacteriaceae, Enterococcus spp., Lactobacillus spp., Citrobacter spp. and Clostridium spp.) were not. Subjects on a vegetarian diet ranked between vegans and controls. The total microbial count did not differ between the groups. In addition, subjects on a vegan or vegetarian diet showed significantly (P=0.0001) lower stool pH than did controls, and stool pH and counts of E. coli and Enterobacteriaceae were significantly correlated across all subgroups. Maintaining a strict vegan or vegetarian diet results in a significant shift in the microbiota while total cell numbers remain unaltered.

  4. A Microbial Community in Sediments Beneath the Western Antarctic Ice Sheet, Ice Stream C (Kamb)

    NASA Astrophysics Data System (ADS)

    Skidmore, M.; Han, S.; Foo, W.; Bui, D.; Lanoil, B.

    2004-12-01

    In 2000, an ice-drilling project focusing on the "sticky spot" of Ice Stream C recovered cores of sub-glacial sediments from beneath the Western Antarctic Ice Sheet. We have characterized several chemical and microbiological parameters of the sole intact sediment core. Pore waters extracted from these sediments were brackish and some were supersaturated with respect to calcite. Ion chromatography demonstrated the presence of several organic acids at low, but detectable, levels in the pore water. DAPI direct cell counts were approximately 107 cells g-1. Aerobic viable plate counts were much lower than direct cell counts; however, they were two orders of magnitude higher on plates incubated at low temperature (4 ° C; 3.63 x 105 CFU ml-1) than at higher temperatures (ca. 22° C; 1.5 x 103 CFU ml-1); no colonies were detected on plates incubated anaerobically at either temperature. 16S rDNA clone library analysis indicates extremely limited bacterial diversity in these samples: six phylogenetic clades were detected. The three dominant bacterial phylogenetic clades in the clone libraries (252 clones total) were most closely related to Thiobacillus thioparus (180 clones), Polaromonas vacuolata (34 clones), and Gallionella ferruginea (35 clones) and their relatives; one clone each represented the other three phylogenetic clades (most closely related to Ralstonia pickettii, Lysobacter antibioticus, and Xylella fastidiosa, respectively). These sequences match closely with sequences previously obtained from other subglacial environments in Alaska, Ellesmere Island, Canada and New Zealand. Implications of this microbial community to subglacial chemistry and microbial biogeography will be discussed.

  5. High virus-to-cell ratios indicate ongoing production of viruses in deep subsurface sediments.

    PubMed

    Engelhardt, Tim; Kallmeyer, Jens; Cypionka, Heribert; Engelen, Bert

    2014-07-01

    Marine sediments cover two-thirds of our planet and harbor huge numbers of living prokaryotes. Long-term survival of indigenous microorganisms within the deep subsurface is still enigmatic, as sources of organic carbon are vanishingly small. To better understand controlling factors of microbial life, we have analyzed viral abundance within a comprehensive set of globally distributed subsurface sediments. Phages were detected by electron microscopy in deep (320 m below seafloor), ancient (∼14 Ma old) and the most oligotrophic subsurface sediments of the world's oceans (South Pacific Gyre (SPG)). The numbers of viruses (10(4)-10(9) cm(-3), counted by epifluorescence microscopy) generally decreased with sediment depth, but always exceeded the total cell counts. The enormous numbers of viruses indicate their impact as a controlling factor for prokaryotic mortality in the marine deep biosphere. The virus-to-cell ratios increased in deeper and more oligotrophic layers, exhibiting values of up to 225 in the deep subsurface of the SPG. High numbers of phages might be due to absorption onto the sediment matrix and a diminished degradation by exoenzymes. However, even in the oldest sediments, microbial communities are capable of maintaining viral populations, indicating an ongoing viral production and thus, viruses provide an independent indicator for microbial life in the marine deep biosphere.

  6. Microbial Metabolism in Serpentinite Fluids

    NASA Astrophysics Data System (ADS)

    Crespo-Medina, M.; Brazelton, W. J.; Twing, K. I.; Kubo, M.; Hoehler, T. M.; Schrenk, M. O.

    2013-12-01

    Serpentinization is the process in which ultramafic rocks, characteristic of the upper mantle, react with water liberating mantle carbon and reducing power to potenially support chemosynthetic microbial communities. These communities may be important mediators of carbon and energy exchange between the deep Earth and the surface biosphere. Our work focuses on the Coast Range Ophiolite Microbial Observatory (CROMO) in Northern California where subsurface fluids are accessible through a series of wells. Preliminary analyses indicate that the highly basic fluids (pH 9-12) have low microbial diversity, but there is limited knowledge about the metabolic capabilities of these communties. Metagenomic data from similar serpentine environments [1] have identified Betaproteobacteria belonging to the order Burkholderiales and Gram-positive bacteria from the order Clostridiales as key components of the serpentine microbiome. In an effort to better characterize the microbial community, metabolism, and geochemistry at CROMO, fluids from two representative wells (N08B and CSWold) were sampled during recent field campaigns. Geochemical characterization of the fluids includes measurements of dissolved gases (H2, CO, CH4), dissolved inorganic and organic carbon, volatile fatty acids, and nutrients. The wells selected can be differentiated in that N08B had higher pH (10-11), lower dissolved oxygen, and cell counts ranging from 105-106 cells mL-1 of fluid, with an abundance of the betaproteobacterium Hydrogenophaga. In contrast, fluids from CSWold have slightly lower pH (9-9.5), DO, and conductivity, as well as higher TDN and TDP. CSWold fluid is also characterized for having lower cell counts (~103 cells mL-1) and an abundance of Dethiobacter, a taxon within the phylum Clostridiales. Microcosm experiments were conducted with the purpose of monitoring carbon fixation, methanotrophy and metabolism of small organic compounds, such as acetate and formate, while tracing changes in fluid chemistry and microbial community composition. These experiments are expected to provide insight into the biogeochemical dynamics of the serpentinite subsurface at CROMO and represent a first step for developing metatranscriptomic and RNA-based Stable Isotope Probing (RNA-SIP) experiments to trace microbial activity at this site. [1] Brazelton et al. (2012) Frontiers in Microbiology 2:268

  7. Bovine mastitis may be associated with the deprivation of gut Lactobacillus.

    PubMed

    Ma, C; Zhao, J; Xi, X; Ding, J; Wang, H; Zhang, H; Kwok, L Y

    2016-02-01

    Bovine mastitis is an economical important microbial disease in dairy industry. Some recent human clinical trials have shown that oral probiotics supplementation could effectively control clinical mastitis, suggesting that the mechanism of mastitis protection might be achieved via the host gut microbiota. We aimed to test our hypothesis that bovine mastitis was related to changes in both the mammary and gut microbial profiles. By quantitative PCR, the milk and faecal microbial profiles of cows with low (<3×10 5 cells/ml) and high (>1×10 6 cells/ml) somatic cell count (SCC) were compared. Firstly, we observed drastic differences in both the milk and faecal microbial compositions at genus and Lactobacillus-species levels between the two groups. Secondly, the pattern of faecal microbial community changes of mastitis cows was similar to that of the milk, characterised by a general increase in the mastitis pathogens (Enterococcus, Streptococcus and Staphylococcus) and deprivation of Lactobacillus and its members (L. salivarius, L. sakei, L. ruminis, L. delbrueckii, L. buchneri, and L. acidophilus). Thirdly, only the faecal lactobacilli, but not bifidobacteria correlated with the milk microbial communities and SCC. Our data together hint to a close association between bovine mastitis, the host gut and milk microbiota.

  8. Online fluorescence spectroscopy for the real-time evaluation of the microbial quality of drinking water.

    PubMed

    Sorensen, J P R; Vivanco, A; Ascott, M J; Gooddy, D C; Lapworth, D J; Read, D S; Rushworth, C M; Bucknall, J; Herbert, K; Karapanos, I; Gumm, L P; Taylor, R G

    2018-06-15

    We assessed the utility of online fluorescence spectroscopy for the real-time evaluation of the microbial quality of untreated drinking water. Online fluorimeters were installed on the raw water intake at four groundwater-derived UK public water supplies alongside existing turbidity sensors that are used to forewarn of the presence of microbial contamination in the water industry. The fluorimeters targeted fluorescent dissolved organic matter (DOM) peaks at excitation/emission wavelengths of 280/365 nm (tryptophan-like fluorescence, TLF) and 280/450 nm (humic-like fluorescence, HLF). Discrete samples were collected for Escherichia coli, total bacterial cell counts by flow cytometry, and laboratory-based fluorescence and absorbance. Both TLF and HLF were strongly correlated with E. coli (ρ = 0.71-0.77) and total bacterial cell concentrations (ρ = 0.73-0.76), whereas the correlations between turbidity and E. coli (ρ = 0.48) and total bacterial cell counts (ρ = 0.40) were much weaker. No clear TLF peak was observed at the sites and all apparent TLF was considered to be optical bleed-through from the neighbouring HLF peak. Therefore, a HLF fluorimeter alone would be sufficient to evaluate the microbial water quality at these sources. Fluorescent DOM was also influenced by site operations such as pump start-up and the precipitation of cations on the sensor windows. Online fluorescent DOM sensors are a better indicator of the microbial quality of untreated drinking water than turbidity and they have wide-ranging potential applications within the water industry. Copyright © 2018 British Geological Survey, a component institute of NERC - 'BGS © NERC 2018'. Published by Elsevier Ltd.. All rights reserved.

  9. Composition, indigenous proteolytic enzymes and coagulating behaviour of ewe milk as affected by somatic cell count.

    PubMed

    Albenzio, Marzia; Santillo, Antonella; Caroprese, Mariangela; Schena, Laura; Russo, Donatella Esterina; Sevi, Agostino

    2011-11-01

    This study was undertaken to assess the effect of somatic cell count in ewe milk on i) composition and hygienic traits; ii) plasmin, cathepsin and elastase activities; iii) leukocyte differential count; iv) renneting parameters. Individual ewe milk samples were grouped according to somatic cell count (SCC) into five classes: SC300 (<300 000 cells/ml), SC500 (from 301 000 to 500 000 cells/ml), SC1000 (from 501 000 to 1 000 000 cells/ml), SC2000 (from 1 001 000 to 2 000 000 cells/ml) and SC>2000 (>2 001 000 cells/ml). Individual milk samples were analysed for pH, chemical composition, microbial features, indigenous proteolytic enzymes, differential leukocyte population, and renneting parameters. Milk yield, lactose, protein, non casein nitrogen, microbial features were affected by SCC level. Plasmin and elastase activities were the highest in samples with more than 1 000 000 cells/ml; plasmin had intermediate values in samples with 300 000 to 1 000 000 cells/ml and the lowest in samples with less than 300 000 cells/ml of milk. Cathepsin D showed significantly lower values in SC300 and SC1000 classes than in SC500, SC2000 and SC>2000 classes. The highest percentages of lymphocyte were found in samples with less than 1 000 000 cells/ml, while the highest levels of polymorphonuclear leukocyte were found in samples with more than 1 000 000 cells/ml of milk. Longer clotting time was found in SC>2000 samples, while reduced clot firmness was observed in SC500 and SC>2000 samples. Results on milk yield and on compositional parameters evidenced an impairment of udder efficiency in ewe milk samples starting from 300 000 cells/ml. Plasmin activity in milk can be considered as a marker of the synthetic and secreting ability of the mammary gland; furthermore plasmin and elastase were consistent with the health status of the udder. Finally cathepsin D played a role in the worsening of renneting properties of ewe milk.

  10. Biology Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1979

    1979-01-01

    Organized by topic is a reading list for A- and S-level biology. Described are experiments for measuring rate of water uptake in a shoot; questions to aid students in designing experiments; rise of overhead projection to demonstrate osmosis and blood cell counting; and microbial manufacture of vinegar. (CS)

  11. Toxic effect of two kinds of mineral collectors on soil microbial richness and activity: analysis by microcalorimetry, microbial count, and enzyme activity assay.

    PubMed

    Bararunyeretse, Prudence; Yao, Jun; Dai, Yunrong; Bigawa, Samuel; Guo, Zunwei; Zhu, Mijia

    2017-01-01

    Flotation reagents are hugely and increasingly used in mining and other industrial and economic activities from which an important part is discharged into the environment. China could be the most affected country by the resulting pollution. However, their ecotoxicological dimension is still less addressed and understood. This study aimed to analyze the toxic effect of sodium isobutyl xanthate (SIBX) and sodium isopropyl xanthate (SIPX) to soil microbial richness and activity and to make a comparison between the two compounds in regard to their effects on soil microbial and enzymes activities. Different methods, including microcalorimetry, viable cell counts, cell density, and catalase and fluorescein diacetate (FDA) hydrololase activities measurement, were applied. The two chemicals exhibited a significant inhibitory effect (P < 0.05 or P < 0.01) to all parameters, SIPX being more adverse than SIBX. As the doses of SIBX and SIPX increased from 5 to 300 μg g -1 soil, their inhibitory ratio ranged from 4.84 to 45.16 % and from 16.13 to 69.68 %, respectively. All parameters fluctuated with the incubation time (10-day period). FDA hydrolysis was more directly affected but was relatively more resilient than catalase activity. Potential changes of those chemicals in the experimental media and complementarity between experimental techniques were justified.

  12. Effect of high pressure treatment on liquid whole egg

    NASA Astrophysics Data System (ADS)

    Németh, Csaba; Dalmadi, István; Mráz, Balázs; Friedrich, László; Zeke, Ildikó; Juhász, Réka; Suhajda, Ágnes; Balla, Csaba

    2012-06-01

    In our tests, we artificially infected liquid whole egg samples with Salmonella enteritidis, Listeria monocytogenes, and Staphylococcus aureus bacteria, and then treated the samples in "Food Lab900" high hydrostatic pressure (HHP) instrument for 3-17 min at 200-400 MPa. Subsequently, the change of the viable cell count of the specific bacteria has been tested. In addition to the samples infected with various bacteria, non-infected samples were also treated in each test and the change in viable cell count, colour and viscosity of the samples upon the effect of the treatment. In summary, it can be concluded that in each test of our investigations, the viable cell count of S. enteritidis critical for egg products is reduced significantly, while the reduction of the total viable cell count was around two magnitudes. Additionally, based on our results, microbial destruction, reduction of enthalpy (denaturation of egg white) caused by the treatment at HPP, and colour change are primarily affected by the pressure level, while the changes in rheological properties are also significantly affected by the duration of high pressure treatment (p<0.05).

  13. In situ DNA hybridized chain reaction (FISH-HCR) as a better method for quantification of bacteria and archaea within marine sediment

    NASA Astrophysics Data System (ADS)

    Buongiorno, J.; Lloyd, K. G.; Shumaker, A.; Schippers, A.; Webster, G.; Weightman, A.; Turner, S.

    2015-12-01

    Nearly 75% of the Earth's surface is covered by marine sediment that is home to an estimated 2.9 x 1029 microbial cells. A substantial impediment to understanding the abundance and distribution of cells within marine sediment is the lack of a consistent and reliable method for their taxon-specific quantification. Catalyzed reporter fluorescent in situ hybridization (CARD-FISH) provides taxon-specific enumeration, but this process requires passing a large enzyme through cell membranes, decreasing its precision relative to general cell counts using a small DNA stain. In 2015, Yamaguchi et al. developed FISH hybridization chain reaction (FISH-HCR) as an in situ whole cell detection method for environmental microorganisms. FISH-HCR amplifies the fluorescent signal, as does CARD-FISH, but it allows for milder cell permeation methods that might prevent yield loss. To compare FISH-HCR to CARD-FISH, we examined bacteria and archaea cell counts within two sediment cores, Lille Belt (~78 meters deep) and Landsort Deep (90 meters deep), which were retrieved from the Baltic Sea Basin during IODP Expedition 347. Preliminary analysis shows that CARD-FISH counts are below the quantification limit for most depths across both cores. By contrast, quantification of cells was possible with FISH-HCR in all examined depths. When quantification with CARD-FISH was above the limit of detection, counts with FISH-HCR were up to 11 fold higher for Bacteria and 3 fold higher for Archaea from the same sediment sample. Further, FISH-HCR counts follow the trends of on board counts nicely, indicating that FISH-HCR may better reflect the cellular abundance within marine sediment than other quantification methods, including qPCR. Using FISH-HCR, we found that archaeal cell counts were on average greater than bacterial cell counts, but within the same order of magnitude.

  14. The water kefir grain inoculum determines the characteristics of the resulting water kefir fermentation process.

    PubMed

    Laureys, D; De Vuyst, L

    2017-03-01

    To investigate the influence of the water kefir grain inoculum on the characteristics of the water kefir fermentation process. Three water kefir fermentation processes were started with different water kefir grain inocula and followed as a function of time regarding microbial species diversity, community dynamics, substrate consumption profile and metabolite production course. The inoculum determined the water kefir grain growth, the viable counts on the grains, the time until total carbohydrate exhaustion, the final metabolite concentrations and the microbial species diversity. There were always 2-10 lactic acid bacterial cells for every yeast cell and the majority of these micro-organisms was always present on the grains. Lactobacillus paracasei, Lactobacillus hilgardii, Lactobacillus nagelii and Saccharomyces cerevisiae were always present and may be the key micro-organisms during water kefir fermentation. Low water kefir grain growth was associated with small grains with high viable counts of micro-organisms, fast fermentation and low pH values, and was not caused by the absence of exopolysaccharide-producing lactic acid bacteria. The water kefir grain inoculum influences the microbial species diversity and characteristics of the fermentation process. A select group of key micro-organisms was always present during fermentation. This study allows a rational selection of a water kefir grain inoculum. © 2016 The Society for Applied Microbiology.

  15. Whey protein isolate/cellulose nanofibre/TiO2 nanoparticle/rosemary essential oil nanocomposite film: Its effect on microbial and sensory quality of lamb meat and growth of common foodborne pathogenic bacteria during refrigeration.

    PubMed

    Alizadeh Sani, Mahmood; Ehsani, Ali; Hashemi, Mohammad

    2017-06-19

    The use of biodegradable nanocomposite films in active packaging is of great importance since they can have a controlled release of antimicrobial compounds. This study was conducted to evaluate the efficacy of whey protein isolate (WPI)/cellulose nanofibre (CNF) nanocomposite films containing 1.0% (w/w) titanium dioxide (TiO 2 ) and 2.0% (w/v) rosemary essential oil (REO) in preserving the microbial and sensory quality of lamb meat during the storage at 4±1°C. Initially, the best concentration of each compound to be added to the film was determined by micro-dilution and disc diffusion methods. The microbial and sensory properties of lamb meat were controlled in two groups (control and treatment) over 15days of storage. Then, the samples were analysed for total viable count (TVC), Pseudomonas spp. count, Enterobacteriaceae count, Lactic acid bacteria (LAB) count, inoculated Staphylococcus aureus count, Listeria monocytogenes count, and Escherichia coli O 157 :H 7 count. Microbial analysis and nine-point hedonic scale was applied for the sensory analysis. Results indicated that the use of nanocomposite films significantly reduced the bacterial counts of treatment group. Higher inhibition effect was observed on Gram-positive bacteria than on Gram-negative bacteria (P<0.05). The microbial and sensory evaluations also showed that the use of nanocomposite films significantly increased the shelf life of treated meat (15days) compared to the control meat (6days). Based on the results of this study, the edible nanocomposite films were effective in preserving the microbial and sensory qualities of lamb meat; therefore, this application is recommended in meat especially red meat. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Modified wound dressing with phyto-nanostructured coating to prevent staphylococcal and pseudomonal biofilm development

    NASA Astrophysics Data System (ADS)

    Anghel, Ion; Holban, Alina Maria; Grumezescu, Alexandru Mihai; Andronescu, Ecaterina; Ficai, Anton; Anghel, Alina Georgiana; Maganu, Maria; Lazǎr, Veronica; Chifiriuc, Mariana Carmen

    2012-12-01

    This paper reports a newly fabricated nanophyto-modified wound dressing with microbicidal and anti-adherence properties. Nanofluid-based magnetite doped with eugenol or limonene was used to fabricate modified wound dressings. Nanostructure coated materials were characterized by TEM, XRD, and FT-IR. For the quantitative measurement of biofilm-embedded microbial cells, a culture-based method for viable cell count was used. The optimized textile dressing samples proved to be more resistant to staphylococcal and pseudomonal colonization and biofilm formation compared to the uncoated controls. The functionalized surfaces for wound dressing seems to be a very useful tool for the prevention of wound microbial contamination on viable tissues.

  17. Modified wound dressing with phyto-nanostructured coating to prevent staphylococcal and pseudomonal biofilm development

    PubMed Central

    2012-01-01

    This paper reports a newly fabricated nanophyto-modified wound dressing with microbicidal and anti-adherence properties. Nanofluid-based magnetite doped with eugenol or limonene was used to fabricate modified wound dressings. Nanostructure coated materials were characterized by TEM, XRD, and FT-IR. For the quantitative measurement of biofilm-embedded microbial cells, a culture-based method for viable cell count was used. The optimized textile dressing samples proved to be more resistant to staphylococcal and pseudomonal colonization and biofilm formation compared to the uncoated controls. The functionalized surfaces for wound dressing seems to be a very useful tool for the prevention of wound microbial contamination on viable tissues. PMID:23272823

  18. Modified wound dressing with phyto-nanostructured coating to prevent staphylococcal and pseudomonal biofilm development.

    PubMed

    Anghel, Ion; Holban, Alina Maria; Grumezescu, Alexandru Mihai; Andronescu, Ecaterina; Ficai, Anton; Anghel, Alina Georgiana; Maganu, Maria; Laz R, Veronica; Chifiriuc, Mariana Carmen

    2012-12-31

    This paper reports a newly fabricated nanophyto-modified wound dressing with microbicidal and anti-adherence properties. Nanofluid-based magnetite doped with eugenol or limonene was used to fabricate modified wound dressings. Nanostructure coated materials were characterized by TEM, XRD, and FT-IR. For the quantitative measurement of biofilm-embedded microbial cells, a culture-based method for viable cell count was used. The optimized textile dressing samples proved to be more resistant to staphylococcal and pseudomonal colonization and biofilm formation compared to the uncoated controls. The functionalized surfaces for wound dressing seems to be a very useful tool for the prevention of wound microbial contamination on viable tissues.

  19. Experimental and numerical study of heterogeneous pressure-temperature-induced lethal and sublethal injury of Lactococcus lactis in a medium scale high-pressure autoclave.

    PubMed

    Kilimann, K V; Kitsubun, P; Delgado, A; Gänzle, M G; Chapleau, N; Le Bail, A; Hartmann, C

    2006-07-05

    The present contribution is dedicated to experimental and theoretical assessment of microbiological process heterogeneities of the high-pressure (HP) inactivation of Lactococcus lactis ssp. cremoris MG 1363. The inactivation kinetics are determined in dependence of pressure, process time, temperature and absence or presence of co-solutes in the buffer system namely 4 M sodium chloride and 1.5 M sucrose. The kinetic analysis is carried out in a 0.1-L autoclave in order to minimise thermal and convective effects. Upon these data, a deterministic inactivation model is formulated with the logistic equation. Its independent variables represent the counts of viable cells (viable but injured) and of the stress-resistant cells (viable and not injured). This model is then coupled to a thermo-fluiddynamical simulation method, high-pressure computer fluid dynamics technique (HP-CFD), which yields spatiotemporal temperature and flow fields occurring during the HP application inside any considered autoclave. Besides the thermo-fluiddynamic quantities, the coupled model predicts also the spatiotemporal distribution of both viable (VC) and stress-resistant cell counts (SRC). In order to assess the process non-uniformity of the microbial inactivation in a 3.3-L autoclave experimentally, microbial samples are placed at two distinct locations and are exposed to various process conditions. It can be shown with both, experimental and theoretical models that thermal heterogeneities induce process non-uniformities of more than one decimal power in the counts of the viable cells at the end of the treatment. (c) 2006 Wiley Periodicals, Inc.

  20. Effect of sodium alginate coating incorporated with nisin, Cinnamomum zeylanicum, and rosemary essential oils on microbial quality of chicken meat and fate of Listeria monocytogenes during refrigeration.

    PubMed

    Raeisi, Mojtaba; Tabaraei, Alijan; Hashemi, Mohammad; Behnampour, Nasser

    2016-12-05

    The present study was conducted to preserve the microbial quality of chicken meat fillets during storage time by using sodium alginate active coating solutions incorporated with different natural antimicrobials including nisin, Cinnamomum zeylanicum (cinnamon), and rosemary essential oils (EOs) which were added individually and in combination. The samples were stored in refrigeration condition for 15days and were analyzed for total viable count, Enterobacteriaceae count, lactic acid bacteria count, Pseudomonas spp. count, psychrotrophic count, and yeast and mold count, as well as fate of inoculated Listeria monocytogenes at 3-day intervals. Results indicated that values of tested microbial indicators in all samples increased during storage. Antimicrobial agents, when used in combination, had stronger effect in preserving the microbial quality of chicken meat samples rather than their individual use and the strongest effect was observed in samples coated with alginate solution containing both cinnamon and rosemary EOs (CEO+REO). However, all treatments significantly inhibited microbial growth when compared to the control (P<0.05). Therefore, based on the results of this study, application of alginate coating solutions containing nisin, cinnamon, and rosemary EOs as natural preservatives is recommended in meat products especially in chicken meats. Copyright © 2016. Published by Elsevier B.V.

  1. Suitability of different Escherichia coli enumeration techniques to assess the microbial quality of different irrigation water sources.

    PubMed

    Truchado, P; Lopez-Galvez, F; Gil, M I; Pedrero-Salcedo, F; Alarcón, J J; Allende, A

    2016-09-01

    The use of fecal indicators such as Escherichia coli has been proposed as a potential tool to characterize microbial contamination of irrigation water. Recently, not only the type of microbial indicator but also the methodologies used for enumeration have been called into question. The goal of this study was to assess the microbial quality of different water sources for irrigation of zucchini plants by using E. coli as an indicator of fecal contamination and the occurrence of foodborne pathogens. Three water sources were evaluated including reclaimed secondary treated water (RW-2), reclaimed tertiary UV-C treated water (RW-3) and surface water (SW). The suitability of two E. coli quantification techniques (plate count and qPCR) was examined for irrigation water and fresh produce. E. coli levels using qPCR assay were significantly higher than that obtained by plate count in all samples of irrigation water and fresh produce. The microbial quality of water samples from RW-2 was well predicted by qPCR, as the presence of foodborne pathogens were positively correlated with high E. coli levels. However, differences in the water characteristics influenced the suitability of qPCR as a tool to predict potential contamination in irrigation water. No significant differences were obtained between the number of cells of E. coli from RW-2 and RW-3, probably due to the fact that qPCR assay cannot distinguish between viable and dead cells. These results indicated that the selection of the most suitable technique for enumeration of indicator microorganisms able to predict potential presence of fecal contamination might be influenced by the water characteristics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Quantification of Microbial Communities in Subsurface Marine Sediments of the Black Sea and off Namibia.

    PubMed

    Schippers, Axel; Kock, Dagmar; Höft, Carmen; Köweker, Gerrit; Siegert, Michael

    2012-01-01

    Organic-rich subsurface marine sediments were taken by gravity coring up to a depth of 10 m below seafloor at six stations from the anoxic Black Sea and the Benguela upwelling system off Namibia during the research cruises Meteor 72-5 and 76-1, respectively. The quantitative microbial community composition at various sediment depths was analyzed using total cell counting, catalyzed reporter deposition - fluorescence in situ hybridization (CARD-FISH) and quantitative real-time PCR (Q-PCR). Total cell counts decreased with depths from 10(9) to 10(10) cells/mL at the sediment surface to 10(7)-10(9) cells/mL below one meter depth. Based on CARD-FISH and Q-PCR analyses overall similar proportions of Bacteria and Archaea were found. The down-core distribution of prokaryotic and eukaryotic small subunit ribosomal RNA genes (16S and 18S rRNA) as well as functional genes involved in different biogeochemical processes was quantified using Q-PCR. Crenarchaeota and the bacterial candidate division JS-1 as well as the classes Anaerolineae and Caldilineae of the phylum Chloroflexi were highly abundant. Less abundant but detectable in most of the samples were Eukarya as well as the metal and sulfate-reducing Geobacteraceae (only in the Benguela upwelling influenced sediments). The functional genes cbbL, encoding for the large subunit of RuBisCO, the genes dsrA and aprA, indicative of sulfate-reducers as well as the mcrA gene of methanogens were detected in the Benguela upwelling and Black Sea sediments. Overall, the high organic carbon content of the sediments goes along with high cell counts and high gene copy numbers, as well as an equal abundance of Bacteria and Archaea.

  3. Overnight stagnation of drinking water in household taps induces microbial growth and changes in community composition.

    PubMed

    Lautenschlager, Karin; Boon, Nico; Wang, Yingying; Egli, Thomas; Hammes, Frederik

    2010-09-01

    Drinking water quality is routinely monitored in the distribution network but not inside households at the point of consumption. Fluctuating temperatures, residence times (stagnation), pipe materials and decreasing pipe diameters can promote bacterial growth in buildings. To test the influence of stagnation in households on the bacterial cell concentrations and composition, water was sampled from 10 separate households after overnight stagnation and after flushing the taps. Cell concentrations, measured by flow cytometry, increased (2-3-fold) in all water samples after stagnation. This increase was also observed in adenosine tri-phosphate (ATP) concentrations (2-18-fold) and heterotrophic plate counts (4-580-fold). An observed increase in cell biovolume and ATP-per-cell concentrations furthermore suggests that the increase in cell concentrations was due to microbial growth. After 5 min flushing of the taps, cell concentrations and water temperature decreased to the level generally found in the drinking water network. Denaturing gradient gel electrophoresis also showed a change in the microbial composition after stagnation. This study showed that water stagnation in household pipes results in considerable microbial changes. While hygienic risk was not directly assessed, it emphasizes the need for the development of good material validation methods, recommendations and spot tests for in-house water installations. However, a simple mitigation strategy would be a short flushing of taps prior to use. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Changes in Microbial Energy Metabolism Measured by Nanocalorimetry during Growth Phase Transitions

    PubMed Central

    Robador, Alberto; LaRowe, Douglas E.; Finkel, Steven E.; Amend, Jan P.; Nealson, Kenneth H.

    2018-01-01

    Calorimetric measurements of the change in heat due to microbial metabolic activity convey information about the kinetics, as well as the thermodynamics, of all chemical reactions taking place in a cell. Calorimetric measurements of heat production made on bacterial cultures have recorded the energy yields of all co-occurring microbial metabolic reactions, but this is a complex, composite signal that is difficult to interpret. Here we show that nanocalorimetry can be used in combination with enumeration of viable cell counts, oxygen consumption rates, cellular protein content, and thermodynamic calculations to assess catabolic rates of an isolate of Shewanella oneidensis MR-1 and infer what fraction of the chemical energy is assimilated by the culture into biomass and what fraction is dissipated in the form of heat under different limiting conditions. In particular, our results demonstrate that catabolic rates are not necessarily coupled to rates of cell division, but rather, to physiological rearrangements of S. oneidensis MR-1 upon growth phase transitions. In addition, we conclude that the heat released by growing microorganisms can be measured in order to understand the physiochemical nature of the energy transformation and dissipation associated with microbial metabolic activity in conditions approaching those found in natural systems. PMID:29449836

  5. Good Manufacturing Practices and Microbial Contamination Sources in Orange Fleshed Sweet Potato Puree Processing Plant in Kenya

    PubMed Central

    Abong', George Ooko

    2018-01-01

    Limited information exists on the status of hygiene and probable sources of microbial contamination in Orange Fleshed Sweet Potato (OFSP) puree processing. The current study is aimed at determining the level of compliance to Good Manufacturing Practices (GMPs), hygiene, and microbial quality in OFSP puree processing plant in Kenya. Intensive observation and interviews using a structured GMPs checklist, environmental sampling, and microbial analysis by standard microbiological methods were used in data collection. The results indicated low level of compliance to GMPs with an overall compliance score of 58%. Microbial counts on food equipment surfaces, installations, and personnel hands and in packaged OFSP puree were above the recommended microbial safety and quality legal limits. Steaming significantly (P < 0.05) reduced microbial load in OFSP cooked roots but the counts significantly (P < 0.05) increased in the puree due to postprocessing contamination. Total counts, yeasts and molds, Enterobacteriaceae, total coliforms, and E. coli and S. aureus counts in OFSP puree were 8.0, 4.0, 6.6, 5.8, 4.8, and 5.9 log10 cfu/g, respectively. In conclusion, equipment surfaces, personnel hands, and processing water were major sources of contamination in OFSP puree processing and handling. Plant hygiene inspection, environmental monitoring, and food safety trainings are recommended to improve hygiene, microbial quality, and safety of OFSP puree. PMID:29808161

  6. Good Manufacturing Practices and Microbial Contamination Sources in Orange Fleshed Sweet Potato Puree Processing Plant in Kenya.

    PubMed

    Malavi, Derick Nyabera; Muzhingi, Tawanda; Abong', George Ooko

    2018-01-01

    Limited information exists on the status of hygiene and probable sources of microbial contamination in Orange Fleshed Sweet Potato (OFSP) puree processing. The current study is aimed at determining the level of compliance to Good Manufacturing Practices (GMPs), hygiene, and microbial quality in OFSP puree processing plant in Kenya. Intensive observation and interviews using a structured GMPs checklist, environmental sampling, and microbial analysis by standard microbiological methods were used in data collection. The results indicated low level of compliance to GMPs with an overall compliance score of 58%. Microbial counts on food equipment surfaces, installations, and personnel hands and in packaged OFSP puree were above the recommended microbial safety and quality legal limits. Steaming significantly ( P < 0.05) reduced microbial load in OFSP cooked roots but the counts significantly ( P < 0.05) increased in the puree due to postprocessing contamination. Total counts, yeasts and molds, Enterobacteriaceae, total coliforms, and E. coli and S. aureus counts in OFSP puree were 8.0, 4.0, 6.6, 5.8, 4.8, and 5.9 log 10 cfu/g, respectively. In conclusion, equipment surfaces, personnel hands, and processing water were major sources of contamination in OFSP puree processing and handling. Plant hygiene inspection, environmental monitoring, and food safety trainings are recommended to improve hygiene, microbial quality, and safety of OFSP puree.

  7. Bacterial community shift and incurred performance in response to in situ microbial self-assembly graphene and polarity reversion in microbial fuel cell.

    PubMed

    Chen, Junfeng; Zhang, Lihua; Hu, Yongyou; Huang, Wantang; Niu, Zhuyu; Sun, Jian

    2017-10-01

    In this work, bacterial community shift and incurred performance of graphene modified bioelectrode (GM-BE) in microbial fuel cell (MFC) were illustrated by high throughput sequencing technology and electrochemical analysis. The results showed that Firmicutes occupied 48.75% in graphene modified bioanode (GM-BA), while Proteobacteria occupied 62.99% in graphene modified biocathode (GM-BC), both were dominant bacteria in phylum level respectively. Typical exoelectrogens, including Geobacter, Clostridium, Pseudomonas, Geothrix and Hydrogenophaga, were counted 26.66% and 17.53% in GM-BA and GM-BC. GM-BE was tended to decrease the bacterial diversity and enrich the dominant species. Because of the enrichment of exoelectrogens and excellent electrical conductivity of graphene, the maximum power density of MFC with GM-BA and GM-BC increased 33.1% and 21.6% respectively, and the transfer resistance decreased 83.8% and 73.6% compared with blank bioelectrode. This study aimed to enrich the microbial study in MFC and broaden the development and application for bioelectrode. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Quantitative Microbial Community Analysis of Three Different Sulfidic Mine Tailing Dumps Generating Acid Mine Drainage▿

    PubMed Central

    Kock, Dagmar; Schippers, Axel

    2008-01-01

    The microbial communities of three different sulfidic and acidic mine waste tailing dumps located in Botswana, Germany, and Sweden were quantitatively analyzed using quantitative real-time PCR (Q-PCR), fluorescence in situ hybridization (FISH), catalyzed reporter deposition-FISH (CARD-FISH), Sybr green II direct counting, and the most probable number (MPN) cultivation technique. Depth profiles of cell numbers showed that the compositions of the microbial communities are greatly different at the three sites and also strongly varied between zones of oxidized and unoxidized tailings. Maximum cell numbers of up to 109 cells g−1 dry weight were determined in the pyrite or pyrrhotite oxidation zones, whereas cell numbers in unoxidized tailings were significantly lower. Bacteria dominated over Archaea and Eukarya at all tailing sites. The acidophilic Fe(II)- and/or sulfur-oxidizing Acidithiobacillus spp. dominated over the acidophilic Fe(II)-oxidizing Leptospirillum spp. among the Bacteria at two sites. The two genera were equally abundant at the third site. The acidophilic Fe(II)- and sulfur-oxidizing Sulfobacillus spp. were generally less abundant. The acidophilic Fe(III)-reducing Acidiphilium spp. could be found at only one site. The neutrophilic Fe(III)-reducing Geobacteraceae as well as the dsrA gene of sulfate reducers were quantifiable at all three sites. FISH analysis provided reliable data only for tailing zones with high microbial activity, whereas CARD-FISH, Q-PCR, Sybr green II staining, and MPN were suitable methods for a quantitative microbial community analysis of tailings in general. PMID:18586975

  9. Quantitative microbial community analysis of three different sulfidic mine tailing dumps generating acid mine drainage.

    PubMed

    Kock, Dagmar; Schippers, Axel

    2008-08-01

    The microbial communities of three different sulfidic and acidic mine waste tailing dumps located in Botswana, Germany, and Sweden were quantitatively analyzed using quantitative real-time PCR (Q-PCR), fluorescence in situ hybridization (FISH), catalyzed reporter deposition-FISH (CARD-FISH), Sybr green II direct counting, and the most probable number (MPN) cultivation technique. Depth profiles of cell numbers showed that the compositions of the microbial communities are greatly different at the three sites and also strongly varied between zones of oxidized and unoxidized tailings. Maximum cell numbers of up to 10(9) cells g(-1) dry weight were determined in the pyrite or pyrrhotite oxidation zones, whereas cell numbers in unoxidized tailings were significantly lower. Bacteria dominated over Archaea and Eukarya at all tailing sites. The acidophilic Fe(II)- and/or sulfur-oxidizing Acidithiobacillus spp. dominated over the acidophilic Fe(II)-oxidizing Leptospirillum spp. among the Bacteria at two sites. The two genera were equally abundant at the third site. The acidophilic Fe(II)- and sulfur-oxidizing Sulfobacillus spp. were generally less abundant. The acidophilic Fe(III)-reducing Acidiphilium spp. could be found at only one site. The neutrophilic Fe(III)-reducing Geobacteraceae as well as the dsrA gene of sulfate reducers were quantifiable at all three sites. FISH analysis provided reliable data only for tailing zones with high microbial activity, whereas CARD-FISH, Q-PCR, Sybr green II staining, and MPN were suitable methods for a quantitative microbial community analysis of tailings in general.

  10. Maintenance and assessment of cell viability in formulation of non-sporulating bacterial inoculants.

    PubMed

    Berninger, Teresa; González López, Óscar; Bejarano, Ana; Preininger, Claudia; Sessitsch, Angela

    2018-03-01

    The application of beneficial, plant-associated microorganisms is a sustainable approach to improving crop performance in agriculture. However, microbial inoculants are often susceptible to prolonged periods of storage and deleterious environmental factors, which negatively impact their viability and ultimately limit efficacy in the field. This particularly concerns non-sporulating bacteria. To overcome this challenge, the availability of protective formulations is crucial. Numerous parameters influence the viability of microbial cells, with drying procedures generally being among the most critical ones. Thus, technological advances to attenuate the desiccation stress imposed on living cells are key to successful formulation development. In this review, we discuss the core aspects important to consider when aiming at high cell viability of non-sporulating bacteria to be applied as microbial inoculants in agriculture. We elaborate the suitability of commonly applied drying methods (freeze-drying, vacuum-drying, spray-drying, fluidized bed-drying, air-drying) and potential measures to prevent cell damage from desiccation (externally applied protectants, stress pre-conditioning, triggering of exopolysaccharide secretion, 'helper' strains). Furthermore, we point out methods for assessing bacterial viability, such as colony counting, spectrophotometry, microcalorimetry, flow cytometry and viability qPCR. Choosing appropriate technologies for maintenance of cell viability and evaluation thereof will render formulation development more efficient. This in turn will aid in utilizing the vast potential of promising, plant beneficial bacteria as sustainable alternatives to standard agrochemicals. © 2018 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  11. Measures of Microbial Biomass for Soil Carbon Decomposition Models

    NASA Astrophysics Data System (ADS)

    Mayes, M. A.; Dabbs, J.; Steinweg, J. M.; Schadt, C. W.; Kluber, L. A.; Wang, G.; Jagadamma, S.

    2014-12-01

    Explicit parameterization of the decomposition of plant inputs and soil organic matter by microbes is becoming more widely accepted in models of various complexity, ranging from detailed process models to global-scale earth system models. While there are multiple ways to measure microbial biomass, chloroform fumigation-extraction (CFE) is commonly used to parameterize models.. However CFE is labor- and time-intensive, requires toxic chemicals, and it provides no specific information about the composition or function of the microbial community. We investigated correlations between measures of: CFE; DNA extraction yield; QPCR base-gene copy numbers for Bacteria, Fungi and Archaea; phospholipid fatty acid analysis; and direct cell counts to determine the potential for use as proxies for microbial biomass. As our ultimate goal is to develop a reliable, more informative, and faster methods to predict microbial biomass for use in models, we also examined basic soil physiochemical characteristics including texture, organic matter content, pH, etc. to identify multi-factor predictive correlations with one or more measures of the microbial community. Our work will have application to both microbial ecology studies and the next generation of process and earth system models.

  12. Long-Term Bacterial Dynamics in a Full-Scale Drinking Water Distribution System

    PubMed Central

    Prest, E. I.; Weissbrodt, D. G.; Hammes, F.; van Loosdrecht, M. C. M.; Vrouwenvelder, J. S.

    2016-01-01

    Large seasonal variations in microbial drinking water quality can occur in distribution networks, but are often not taken into account when evaluating results from short-term water sampling campaigns. Temporal dynamics in bacterial community characteristics were investigated during a two-year drinking water monitoring campaign in a full-scale distribution system operating without detectable disinfectant residual. A total of 368 water samples were collected on a biweekly basis at the water treatment plant (WTP) effluent and at one fixed location in the drinking water distribution network (NET). The samples were analysed for heterotrophic plate counts (HPC), Aeromonas plate counts, adenosine-tri-phosphate (ATP) concentrations, and flow cytometric (FCM) total and intact cell counts (TCC, ICC), water temperature, pH, conductivity, total organic carbon (TOC) and assimilable organic carbon (AOC). Multivariate analysis of the large dataset was performed to explore correlative trends between microbial and environmental parameters. The WTP effluent displayed considerable seasonal variations in TCC (from 90 × 103 cells mL-1 in winter time up to 455 × 103 cells mL-1 in summer time) and in bacterial ATP concentrations (<1–3.6 ng L-1), which were congruent with water temperature variations. These fluctuations were not detected with HPC and Aeromonas counts. The water in the network was predominantly influenced by the characteristics of the WTP effluent. The increase in ICC between the WTP effluent and the network sampling location was small (34 × 103 cells mL-1 on average) compared to seasonal fluctuations in ICC in the WTP effluent. Interestingly, the extent of bacterial growth in the NET was inversely correlated to AOC concentrations in the WTP effluent (Pearson’s correlation factor r = -0.35), and positively correlated with water temperature (r = 0.49). Collecting a large dataset at high frequency over a two year period enabled the characterization of previously undocumented seasonal dynamics in the distribution network. Moreover, high-resolution FCM data enabled prediction of bacterial cell concentrations at specific water temperatures and time of year. The study highlights the need to systematically assess temporal fluctuations in parallel to spatial dynamics for individual drinking water distribution systems. PMID:27792739

  13. Long-Term Bacterial Dynamics in a Full-Scale Drinking Water Distribution System.

    PubMed

    Prest, E I; Weissbrodt, D G; Hammes, F; van Loosdrecht, M C M; Vrouwenvelder, J S

    2016-01-01

    Large seasonal variations in microbial drinking water quality can occur in distribution networks, but are often not taken into account when evaluating results from short-term water sampling campaigns. Temporal dynamics in bacterial community characteristics were investigated during a two-year drinking water monitoring campaign in a full-scale distribution system operating without detectable disinfectant residual. A total of 368 water samples were collected on a biweekly basis at the water treatment plant (WTP) effluent and at one fixed location in the drinking water distribution network (NET). The samples were analysed for heterotrophic plate counts (HPC), Aeromonas plate counts, adenosine-tri-phosphate (ATP) concentrations, and flow cytometric (FCM) total and intact cell counts (TCC, ICC), water temperature, pH, conductivity, total organic carbon (TOC) and assimilable organic carbon (AOC). Multivariate analysis of the large dataset was performed to explore correlative trends between microbial and environmental parameters. The WTP effluent displayed considerable seasonal variations in TCC (from 90 × 103 cells mL-1 in winter time up to 455 × 103 cells mL-1 in summer time) and in bacterial ATP concentrations (<1-3.6 ng L-1), which were congruent with water temperature variations. These fluctuations were not detected with HPC and Aeromonas counts. The water in the network was predominantly influenced by the characteristics of the WTP effluent. The increase in ICC between the WTP effluent and the network sampling location was small (34 × 103 cells mL-1 on average) compared to seasonal fluctuations in ICC in the WTP effluent. Interestingly, the extent of bacterial growth in the NET was inversely correlated to AOC concentrations in the WTP effluent (Pearson's correlation factor r = -0.35), and positively correlated with water temperature (r = 0.49). Collecting a large dataset at high frequency over a two year period enabled the characterization of previously undocumented seasonal dynamics in the distribution network. Moreover, high-resolution FCM data enabled prediction of bacterial cell concentrations at specific water temperatures and time of year. The study highlights the need to systematically assess temporal fluctuations in parallel to spatial dynamics for individual drinking water distribution systems.

  14. Estimating and comparing microbial diversity in the presence of sequencing errors

    PubMed Central

    Chiu, Chun-Huo

    2016-01-01

    Estimating and comparing microbial diversity are statistically challenging due to limited sampling and possible sequencing errors for low-frequency counts, producing spurious singletons. The inflated singleton count seriously affects statistical analysis and inferences about microbial diversity. Previous statistical approaches to tackle the sequencing errors generally require different parametric assumptions about the sampling model or about the functional form of frequency counts. Different parametric assumptions may lead to drastically different diversity estimates. We focus on nonparametric methods which are universally valid for all parametric assumptions and can be used to compare diversity across communities. We develop here a nonparametric estimator of the true singleton count to replace the spurious singleton count in all methods/approaches. Our estimator of the true singleton count is in terms of the frequency counts of doubletons, tripletons and quadrupletons, provided these three frequency counts are reliable. To quantify microbial alpha diversity for an individual community, we adopt the measure of Hill numbers (effective number of taxa) under a nonparametric framework. Hill numbers, parameterized by an order q that determines the measures’ emphasis on rare or common species, include taxa richness (q = 0), Shannon diversity (q = 1, the exponential of Shannon entropy), and Simpson diversity (q = 2, the inverse of Simpson index). A diversity profile which depicts the Hill number as a function of order q conveys all information contained in a taxa abundance distribution. Based on the estimated singleton count and the original non-singleton frequency counts, two statistical approaches (non-asymptotic and asymptotic) are developed to compare microbial diversity for multiple communities. (1) A non-asymptotic approach refers to the comparison of estimated diversities of standardized samples with a common finite sample size or sample completeness. This approach aims to compare diversity estimates for equally-large or equally-complete samples; it is based on the seamless rarefaction and extrapolation sampling curves of Hill numbers, specifically for q = 0, 1 and 2. (2) An asymptotic approach refers to the comparison of the estimated asymptotic diversity profiles. That is, this approach compares the estimated profiles for complete samples or samples whose size tends to be sufficiently large. It is based on statistical estimation of the true Hill number of any order q ≥ 0. In the two approaches, replacing the spurious singleton count by our estimated count, we can greatly remove the positive biases associated with diversity estimates due to spurious singletons and also make fair comparisons across microbial communities, as illustrated in our simulation results and in applying our method to analyze sequencing data from viral metagenomes. PMID:26855872

  15. Enumeration of viruses and prokaryotes in deep-sea sediments and cold seeps of the Gulf of Mexico

    USGS Publications Warehouse

    Kellogg, Christina A.

    2010-01-01

    Little is known about the distribution and abundance of viruses in deep-sea cold-seep environments. Like hydrothermal vents, seeps support communities of macrofauna that are sustained by chemosynthetic bacteria. Sediments close to these communities are hypothesized to be more microbiologically active and therefore to host higher numbers of viruses than non-seep areas. Push cores were taken at five types of Gulf of Mexico habitats at water depths below 1000 m using a remotely operated vehicle (ROV). The habitats included non-seep reference sediment, brine seeps, a microbial mat, an urchin field, and a pogonophoran worm community. Samples were processed immediately for enumeration of viruses and prokaryotes without the addition of a preservative. Prokaryote counts were an order of magnitude lower in sediments directly in contact with macrofauna (urchins, pogonophorans) compared to all other samples (107 vs. 108 cells g-1 dry weight) and were highest in areas of elevated salinity (brine seeps). Viral-Like Particle (VLP) counts were lowest in the reference sediments and pogonophoran cores (108 VLP g-1 dry wt), higher in brine seeps (109 VLP g-1 dry wt), and highest in the microbial mats (1010 VLP g-1 dry wt). Virus-prokaryote ratios (VPR) ranged from <5 in the reference sediment to >30 in the microbial mats and >60 in the urchin field. VLP counts and VPR were all significantly greater than those reported from sediments in the deep Mediterranean Sea and in most cases were higher than recent data from a cold-seep site near Japan. The high VPR suggest that greater microbial activity in or near cold-seep environments results in greater viral production and therefore higher numbers of viruses.

  16. Enumeration of viruses and prokaryotes in deep-sea sediments and cold seeps of the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Kellogg, Christina A.

    2010-11-01

    Little is known about the distribution and abundance of viruses in deep-sea cold-seep environments. Like hydrothermal vents, seeps support communities of macrofauna that are sustained by chemosynthetic bacteria. Sediments close to these communities are hypothesized to be more microbiologically active and therefore to host higher numbers of viruses than non-seep areas. Push cores were taken at five types of Gulf of Mexico habitats at water depths below 1000 m using a remotely operated vehicle (ROV). The habitats included non-seep reference sediment, brine seeps, a microbial mat, an urchin field, and a pogonophoran worm community. Samples were processed immediately for enumeration of viruses and prokaryotes without the addition of a preservative. Prokaryote counts were an order of magnitude lower in sediments directly in contact with macrofauna (urchins, pogonophorans) compared to all other samples (107 vs. 108 cells g-1 dry weight) and were highest in areas of elevated salinity (brine seeps). Viral-Like Particle (VLP) counts were lowest in the reference sediments and pogonophoran cores (108 VLP g-1 dry wt), higher in brine seeps (109 VLP g-1 dry wt), and highest in the microbial mats (1010 VLP g-1 dry wt). Virus-prokaryote ratios (VPR) ranged from <5 in the reference sediment to >30 in the microbial mats and >60 in the urchin field. VLP counts and VPR were all significantly greater than those reported from sediments in the deep Mediterranean Sea and in most cases were higher than recent data from a cold-seep site near Japan. The high VPR suggest that greater microbial activity in or near cold-seep environments results in greater viral production and therefore higher numbers of viruses.

  17. Microbial Characterization of Qatari Barchan Sand Dunes

    PubMed Central

    Chatziefthimiou, Aspassia D.; Nguyen, Hanh; Richer, Renee; Louge, Michel; Sultan, Ali A.; Schloss, Patrick; Hay, Anthony G.

    2016-01-01

    This study represents the first characterization of sand microbiota in migrating barchan sand dunes. Bacterial communities were studied through direct counts and cultivation, as well as 16S rRNA gene and metagenomic sequence analysis to gain an understanding of microbial abundance, diversity, and potential metabolic capabilities. Direct on-grain cell counts gave an average of 5.3 ± 0.4 x 105 cells g-1 of sand. Cultured isolates (N = 64) selected for 16S rRNA gene sequencing belonged to the phyla Actinobacteria (58%), Firmicutes (27%) and Proteobacteria (15%). Deep-sequencing of 16S rRNA gene amplicons from 18 dunes demonstrated a high relative abundance of Proteobacteria, particularly enteric bacteria, and a dune-specific-pattern of bacterial community composition that correlated with dune size. Shotgun metagenome sequences of two representative dunes were analyzed and found to have similar relative bacterial abundance, though the relative abundances of eukaryotic, viral and enterobacterial sequences were greater in sand from the dune closer to a camel-pen. Functional analysis revealed patterns similar to those observed in desert soils; however, the increased relative abundance of genes encoding sporulation and dormancy are consistent with the dune microbiome being well-adapted to the exceptionally hyper-arid Qatari desert. PMID:27655399

  18. Necromass as a source of energy to microorganisms in marine sediments.

    NASA Astrophysics Data System (ADS)

    Bradley, J.; Amend, J.; LaRowe, D.

    2017-12-01

    Marine sediments constitute one of the largest, most energy-limited biospheres on Earth. Despite increasing exploration and interest characterizing microbial communities in marine sediments, the production and role of microbial dead-matter (necromass) has largely been overlooked. Necromass is produced on a global scale, yet its significance as a power source to heterotrophic microorganisms remains unknown. We developed a physical, bio-energetic and geochemical model to quantify the total power supply from necromass oxidation and the total power demand of living microorganisms in marine sediments. This model is first applied to sediments from the oligotrophic South Pacific Gyre (SPG), where organic carbon and biomass concentrations are extremely low, yet microorganisms persist for millions of years in some of the lowest energy states on Earth. We show that necromass does not supply sufficient power to support the total demands of the living community (<39%) at SPG. Application of our model on a global scale, however, shows that necromass produced and subsequently oxidized can provide sufficient power to satisfy the maintenance demands of microorganisms in marine sediments for up to 60,000 years following burial. Our model assumes that all counted cells are viable. Yet, if only a fraction of counted cells are alive, the role of necromass as an electron donor in fueling microbial metabolisms is even greater. This new insight requires a reassessment of carbon fluxes in the deep biosphere. By extension, we also demonstrate a mechanism for microbial communities to persist by oxidizing necromass over geological timescales, and thereby endure unfavorable, low-energy settings that might be analogous to conditions on early Earth and on other planetary bodies.

  19. Microbiology and Crew Medical Events on the International Space Station

    NASA Technical Reports Server (NTRS)

    Oubre, Cherie M.; Charvat, Jacqueline M.; Kadwa, Biniafer; Taiym, Wafa; Ott, C. Mark; Pierson, Duane; Baalen, Mary Van

    2014-01-01

    The closed environment of the International Space Station (ISS) creates an ideal environment for microbial growth. Previous studies have identified the ubiquitous nature of microorganisms throughout the space station environment. To ensure safety of the crew, microbial monitoring of air and surface within ISS began in December 2000 and continues to be monitored on a quarterly basis. Water monitoring began in 2009 when the potable water dispenser was installed on ISS. However, it is unknown if high microbial counts are associated with inflight medical events. The microbial counts are determined for the air, surface, and water samples collected during flight operations and samples are returned to the Microbiology laboratory at the Johnson Space Center for identification. Instances of microbial counts above the established microbial limit requirements were noted and compared inflight medical events (any non-injury event such as illness, rashes, etc.) that were reported during the same calendar-quarter. Data were analyzed using repeated measures logistic regression for the forty-one US astronauts flew on ISS between 2000 and 2012. In that time frame, instances of microbial counts being above established limits were found for 10 times for air samples, 22 times for surface samples and twice for water. Seventy-eight inflight medical events were reported among the astronauts. A three times greater risk of a medical event was found when microbial samples were found to be high (OR = 3.01; p =.007). Engineering controls, crew training, and strict microbial limits have been established to mitigate the crew medical events and environmental risks. Due to the timing issues of sampling and the samples return to earth, identification of particular microorganisms causing a particular inflight medical event is difficult. Further analyses are underway.

  20. Microbial lipid extraction from Lipomyces starkeyi using irreversible electroporation.

    PubMed

    Karim, Ahasanul; Yousuf, Abu; Islam, M Amirul; Naif, Yasir H; Faizal, Che Ku Mohammad; Alam, Md Zahangir; Pirozzi, Domenico

    2018-02-21

    The aim of the study was to investigate the feasibility of using irreversible electroporation (EP) as a microbial cell disruption technique to extract intracellular lipid within short time and in an eco-friendly manner. An EP circuit was designed and fabricated to obtain 4 kV with frequency of 100 Hz of square waves. The yeast cells of Lipomyces starkeyi (L. starkeyi) were treated by EP for 2-10 min where the distance between electrodes was maintained at 2, 4, and 6 cm. Colony forming units (CFU) were counted to observe the cell viability under the high voltage electric field. The forces of the pulsing electric field caused significant damage to the cell wall of L. starkeyi and the disruption of microbial cells was visualized by field emission scanning electron microscopic (FESEM) image. After breaking the cell wall, lipid was extracted and measured to assess the efficiency of EP over other techniques. The extent of cell inactivation was up to 95% when the electrodes were placed at the distance of 2 cm, which provided high treatment intensity (36.7 kWh m -3 ). At this condition, maximum lipid (63 mg g -1 ) was extracted when the biomass was treated for 10 min. During the comparison, EP could extract 31.88% lipid while the amount was 11.89% for ultrasonic and 16.8% for Fenton's reagent. The results recommend that the EP is a promising technique for lowering the time and solvent usage for lipid extraction from microbial biomass. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018. © 2018 American Institute of Chemical Engineers.

  1. Efficacy and Stability studies of microbial folate fortified fruit juices prepared using probiotic microorganism.

    PubMed

    Deep, S; Ojha, S; Kundu, S

    2017-07-31

    Folate, natural form of water soluble vitamin folic acid, is significant for humans as involved in most important metabolic reactions i.e. nucleotide synthesis and amino acid inter conversions. Thus its deficiency causes neural tube defects in newborns and cardiovascular diseases, and cancers. Humans cannot synthesize folate de novo so consumption through diet is essential. Natural food sources, supplements and fortified food products are the choices available to complete the Daily recommended intake. However microbial fortification using probiotics recently gained wide attention due to dual advantage of natural food matrix with enhanced folate content along with the probiotics benefits. Current study was focused on the microbial fortification of fruit juices and their efficacy and stability studies. Freshly filtered orange and tomato juice was prepared and inoculated with Streptococcus thermophilus NCIM 2904. Incubation was done at 40°C and samples were collected at different time interval. Folate extraction was done using human plasma and content was measured by microbiological assay using Lactobacillus casei NCIM No. 2364. Efficacy and stability studies were carried out to ensure the quality of juices to be consumed in terms of folate content, viable cell count and pH after 4 weeks of storage at low temperature. Positive results were observed as folate content was quite stable whereas viable cell count was also found to be significant till some time without adding any preservatives. The results indicated that fortified fruit juices could be used as probiotic beverages with enhanced folate content.

  2. Variation in antibiotic-induced microbial recolonization impacts on the host metabolic phenotypes of rats.

    PubMed

    Swann, Jonathan R; Tuohy, Kieran M; Lindfors, Peter; Brown, Duncan T; Gibson, Glenn R; Wilson, Ian D; Sidaway, James; Nicholson, Jeremy K; Holmes, Elaine

    2011-08-05

    The interaction between the gut microbiota and their mammalian host is known to have far-reaching consequences with respect to metabolism and health. We investigated the effects of eight days of oral antibiotic exposure (penicillin and streptomycin sulfate) on gut microbial composition and host metabolic phenotype in male Han-Wistar rats (n = 6) compared to matched controls. Early recolonization was assessed in a third group exposed to antibiotics for four days followed by four days recovery (n = 6). Fluorescence in situ hybridization analysis of the intestinal contents collected at eight days showed a significant reduction in all bacterial groups measured (control, 10(10.7) cells/g feces; antibiotic-treated, 10(8.4)). Bacterial suppression reduced the excretion of mammalian-microbial urinary cometabolites including hippurate, phenylpropionic acid, phenylacetylglycine and indoxyl-sulfate whereas taurine, glycine, citrate, 2-oxoglutarate, and fumarate excretion was elevated. While total bacterial counts remained notably lower in the recolonized animals (10(9.1) cells/g faeces) compared to the controls, two cage-dependent subgroups emerged with Lactobacillus/Enterococcus probe counts dominant in one subgroup. This dichotomous profile manifested in the metabolic phenotypes with subgroup differences in tricarboxylic acid cycle metabolites and indoxyl-sulfate excretion. Fecal short chain fatty acids were diminished in all treated animals. Antibiotic treatment induced a profound effect on the microbiome structure, which was reflected in the metabotype. Moreover, the recolonization process was sensitive to the microenvironment, which may impact on understanding downstream consequences of antibiotic consumption in human populations.

  3. Prevention of microbial hazard on fresh-cut lettuce through adoption of food safety and hygienic practices by lettuce farmers.

    PubMed

    Oyinlola, Lateefah A; Obadina, Adewale O; Omemu, Adebukunola M; Oyewole, Olusola B

    2017-01-01

    Lettuce is consumed raw in salads and is susceptible to microbial contamination through environment, agricultural practices, and its morphology, thus, a potential vehicle for food-borne illness. This study investigated the effect of adoption of food safety and hygienic practices by lettuce farmers on the microbial safety of field sourced lettuce in Lagos State, Nigeria. Ten structured questionnaires were administered randomly to 10 lettuce farmers to assess food safety and hygienic practices (FSH). Two farmers who practice FSH and two farmers who do not practice NFSH were finally used for this study. Samples of ready-to-harvest lettuce, manure applied, and irrigation water were obtained for a period of five months (August - December 2013) and analyzed for total plate count (TPC), total coliform count (TCC), Escherichia coli, Listeria spp., Salmonella spp., and Shigella spp . counts. Result of microbial analyses of lettuce samples was compared with international microbiological specification for ready-to-eat foods. Results showed that the range of TPC on lettuce was 6.00 to 8.11 LogCFU/g from FSH farms and TPC of lettuce samples from NFSH farms ranged from 6.66 to 13.64 LogCFU/g. 1.49 to 4.85LogCFU/g were TCC ranges from lettuce samples obtained from FSH farms while NFSH farms had TCC ranging between 3.95 and 10.86 LogCFU/g, respectively. The range of isolated pathogen count on lettuce from FSH and NFSH farms exceeded the international safety standard; there was a significant difference in the microbial count of lettuce from FSH farms and NFSH farms. This study concludes that the lettuce samples obtained did not pass the international microbial safety standards. FSH compliance is a major determinant of the microbial safety of lettuce. Hence, the institution of FSH on farm to improve microbial safety of lettuce produced for public consumption is emphasized.

  4. Purifying, Separating, and Concentrating Cells From a Sample Low in Biomass

    NASA Technical Reports Server (NTRS)

    Benardini, James N.; LaDuc, Myron T.; Diamond, Rochelle

    2012-01-01

    Frequently there is an inability to process and analyze samples of low biomass due to limiting amounts of relevant biomaterial in the sample. Furthermore, molecular biological protocols geared towards increasing the density of recovered cells and biomolecules of interest, by their very nature, also concentrate unwanted inhibitory humic acids and other particulates that have an adversarial effect on downstream analysis. A novel and robust fluorescence-activated cell-sorting (FACS)-based technology has been developed for purifying (removing cells from sampling matrices), separating (based on size, density, morphology), and concentrating cells (spores, prokaryotic, eukaryotic) from a sample low in biomass. The technology capitalizes on fluorescent cell-sorting technologies to purify and concentrate bacterial cells from a low-biomass, high-volume sample. Over the past decade, cell-sorting detection systems have undergone enhancements and increased sensitivity, making bacterial cell sorting a feasible concept. Although there are many unknown limitations with regard to the applicability of this technology to environmental samples (smaller cells, few cells, mixed populations), dogmatic principles support the theoretical effectiveness of this technique upon thorough testing and proper optimization. Furthermore, the pilot study from which this report is based proved effective and demonstrated this technology capable of sorting and concentrating bacterial endospore and bacterial cells of varying size and morphology. Two commercial off-the-shelf bacterial counting kits were used to optimize a bacterial stain/dye FACS protocol. A LIVE/DEAD BacLight Viability and Counting Kit was used to distinguish between the live and dead cells. A Bacterial Counting Kit comprising SYTO BC (mixture of SYTO dyes) was employed as a broad-spectrum bacterial counting agent. Optimization using epifluorescence microscopy was performed with these two dye/stains. This refined protocol was further validated using varying ratios and mixtures of cells to ensure homogenous staining compared to that of individual cells, and were utilized for flow analyzer and FACS labeling. This technology focuses on the purification and concentration of cells from low-biomass spacecraft assembly facility samples. Currently, purification and concentration of low-biomass samples plague planetary protection downstream analyses. Having a capability to use flow cytometry to concentrate cells out of low-biomass, high-volume spacecraft/ facility sample extracts will be of extreme benefit to the fields of planetary protection and astrobiology. Successful research and development of this novel methodology will significantly increase the knowledge base for designing more effective cleaning protocols, and ultimately lead to a more empirical and true account of the microbial diversity present on spacecraft surfaces. Refined cleaning and an enhanced ability to resolve microbial diversity may decrease the overall cost of spacecraft assembly and/or provide a means to begin to assess challenging planetary protection missions.

  5. Epifluorescent direct counts of bacteria and viruses from topsoil of various desert dust storm regions

    USGS Publications Warehouse

    Gonzalez-Martin, Cristina; Teigell-Perez, Nuria; Lyles, Mark; Valladares, Basilio; Griffin, Dale W.

    2013-01-01

    Topsoil from arid regions is the main source of dust clouds that move through the earth's atmosphere, and microbial communities within these soils can survive long-range dispersion. Microbial abundance and chemical composition were analyzed in topsoil from various desert regions. Statistical analyses showed that microbial direct counts were strongly positively correlated with calcium concentrations and negatively correlated with silicon concentrations. While variance between deserts was expected, it was interesting to note differences between sample sites within a given desert region, illustrating the 'patchy' nature of microbial communities in desert environments.

  6. Methods for assessing long-term mean pathogen count in drinking water and risk management implications.

    PubMed

    Englehardt, James D; Ashbolt, Nicholas J; Loewenstine, Chad; Gadzinski, Erik R; Ayenu-Prah, Albert Y

    2012-06-01

    Recently pathogen counts in drinking and source waters were shown theoretically to have the discrete Weibull (DW) or closely related discrete growth distribution (DGD). The result was demonstrated versus nine short-term and three simulated long-term water quality datasets. These distributions are highly skewed such that available datasets seldom represent the rare but important high-count events, making estimation of the long-term mean difficult. In the current work the methods, and data record length, required to assess long-term mean microbial count were evaluated by simulation of representative DW and DGD waterborne pathogen count distributions. Also, microbial count data were analyzed spectrally for correlation and cycles. In general, longer data records were required for more highly skewed distributions, conceptually associated with more highly treated water. In particular, 500-1,000 random samples were required for reliable assessment of the population mean ±10%, though 50-100 samples produced an estimate within one log (45%) below. A simple correlated first order model was shown to produce count series with 1/f signal, and such periodicity over many scales was shown in empirical microbial count data, for consideration in sampling. A tiered management strategy is recommended, including a plan for rapid response to unusual levels of routinely-monitored water quality indicators.

  7. Microbial processing of carbon in hydrothermal systems (Invited)

    NASA Astrophysics Data System (ADS)

    LaRowe, D.; Amend, J. P.

    2013-12-01

    Microorganisms are known to be active in hydrothermal systems. They catalyze reactions that consume and produce carbon compounds as a result of their efforts to gain energy, grow and replace biomass. However, the rates of these processes, as well as the size of the active component of microbial populations, are poorly constrained in hydrothermal environments. In order to better characterize biogeochemical processes in these settings, a quantitative relationship between rates of microbial catalysis, energy supply and demand and population size is presented. Within this formulation, rates of biomass change are determined as a function of the proportion of catabolic power that is converted into biomass - either new microorganisms or the replacement of existing cell components - and the amount of energy that is required to synthesize biomass. The constraints that hydrothermal conditions place on power supply and demand are explicitly taken into account. The chemical composition, including the concentrations of organic compounds, of diffuse and focused flow hydrothermal fluids, hydrothermally influenced sediment pore water and fluids from the oceanic lithosphere are used in conjunction with cell count data and the model described above to constrain the rates of microbial processes that influence the carbon cycle in the Juan de Fuca hydrothermal system.

  8. Subseafloor Microbial Life in Venting Fluids from the Mid Cayman Rise Hydrothermal System

    NASA Astrophysics Data System (ADS)

    Huber, J. A.; Reveillaud, J.; Reddington, E.; McDermott, J. M.; Sylva, S. P.; Breier, J. A.; German, C. R.; Seewald, J.

    2012-12-01

    In hard rock seafloor environments, fluids emanating from hydrothermal vents are one of the best windows into the subseafloor and its resident microbial community. The functional consequences of an extensive population of microbes living in the subseafloor remains unknown, as does our understanding of how these organisms interact with one another and influence the biogeochemistry of the oceans. Here we report the abundance, activity, and diversity of microbes in venting fluids collected from two newly discovered deep-sea hydrothermal vents along the ultra-slow spreading Mid-Cayman Rise (MCR). Fluids for geochemical and microbial analysis were collected from the Von Damm and Piccard vent fields, which are located within 20 km of one another, yet have extremely different thermal, geological, and depth regimes. Geochemical data indicates that both fields are highly enriched in volatiles, in particular hydrogen and methane, important energy sources for and by-products of microbial metabolism. At both sites, total microbial cell counts in the fluids ranged in concentration from 5 x 10 4 to 3 x 10 5 cells ml-1 , with background seawater concentrations of 1-2 x 10 4 cells ml-1 . In addition, distinct cell morphologies and clusters of cells not visible in background seawater were seen, including large filaments and mineral particles colonized by microbial cells. These results indicate local enrichments of microbial communities in the venting fluids, distinct from background populations, and are consistent with previous enumerations of microbial cells in venting fluids. Stable isotope tracing experiments were used to detect utilization of acetate, formate, and dissolve inorganic carbon and generation of methane at 70 °C under anaerobic conditions. At Von Damm, a putatively ultra-mafic hosted site located at ~2200 m with a maximum temperature of 226 °C, stable isotope tracing experiments indicate methanogenesis is occurring in most fluid samples. No activity was detected in Piccard vent fluids, a basalt-hosted black smoker site located at ~4950 m with a maximum temperature of 403 °C. However, hyperthermophilic and thermophilic heterotrophs of the genus Thermococcus were isolated from Piccard vent fluids, but not Von Damm. These obligate anaerobes, growing optimally at 55-90 °C, are ubiquitous at hydrothermal systems and serve as a readily cultivable indicator organism of subseafloor populations. Finally, molecular analysis of vent fluids is on-going and will define the microbial population structure in this novel ecosystem and allow for direct comparisons with other deep-sea and subsurface habitats as part of our continuing efforts to explore the deep microbial biosphere on Earth.

  9. Estimation method for serial dilution experiments.

    PubMed

    Ben-David, Avishai; Davidson, Charles E

    2014-12-01

    Titration of microorganisms in infectious or environmental samples is a corner stone of quantitative microbiology. A simple method is presented to estimate the microbial counts obtained with the serial dilution technique for microorganisms that can grow on bacteriological media and develop into a colony. The number (concentration) of viable microbial organisms is estimated from a single dilution plate (assay) without a need for replicate plates. Our method selects the best agar plate with which to estimate the microbial counts, and takes into account the colony size and plate area that both contribute to the likelihood of miscounting the number of colonies on a plate. The estimate of the optimal count given by our method can be used to narrow the search for the best (optimal) dilution plate and saves time. The required inputs are the plate size, the microbial colony size, and the serial dilution factors. The proposed approach shows relative accuracy well within ±0.1log10 from data produced by computer simulations. The method maintains this accuracy even in the presence of dilution errors of up to 10% (for both the aliquot and diluent volumes), microbial counts between 10(4) and 10(12) colony-forming units, dilution ratios from 2 to 100, and plate size to colony size ratios between 6.25 to 200. Published by Elsevier B.V.

  10. Microbial counts of mealworm larvae (Tenebrio molitor) and crickets (Acheta domesticus and Gryllodes sigillatus) from different rearing companies and different production batches.

    PubMed

    Vandeweyer, D; Crauwels, S; Lievens, B; Van Campenhout, L

    2017-02-02

    The rising interest in insects for human consumption and the changing regulations in Europe require a profound insight into the food safety of insects reared and sold in Western society. The microbial quality of edible insects has only been studied occasionally. This study aimed at generating an overview of intrinsic parameters (pH, water activity and moisture content) and microbial quality of fresh mealworm larvae and crickets for several rearing companies and for several batches per rearer. In total, 21 batches obtained from 7 rearing companies were subjected to analysis of intrinsic parameters, a range of plate counts and presence-absence tests for Salmonella spp. and Listeria monocytogenes. The microbial counts of the fresh insects were generally high. Different rearing batches from a single rearing company showed differences in microbial counts which could not be explained by variations in intrinsic properties. The largest variations were found in numbers of bacterial endospores, psychrotrophs and fungi. Salmonella spp. and L. monocytogenes were not detected in any of the samples. Altogether, our study shows that large variations were found between batches from individual rearers. As a consequence, no overall differences between rearers could be observed. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Microbial colonization in diverse surface soil types in Surtsey and diversity analysis of its subsurface microbiota

    NASA Astrophysics Data System (ADS)

    Marteinsson, V.; Klonowski, A.; Reynisson, E.; Vannier, P.; Sigurdsson, B. D.; Ólafsson, M.

    2015-02-01

    Colonization of life on Surtsey has been observed systematically since the formation of the island 50 years ago. Although the first colonisers were prokaryotes, such as bacteria and blue-green algae, most studies have been focused on the settlement of plants and animals but less on microbial succession. To explore microbial colonization in diverse soils and the influence of associated vegetation and birds on numbers of environmental bacteria, we collected 45 samples from different soil types on the surface of the island. Total viable bacterial counts were performed with the plate count method at 22, 30 and 37 °C for all soil samples, and the amount of organic matter and nitrogen (N) was measured. Selected samples were also tested for coliforms, faecal coliforms and aerobic and anaerobic bacteria. The subsurface biosphere was investigated by collecting liquid subsurface samples from a 181 m borehole with a special sampler. Diversity analysis of uncultivated biota in samples was performed by 16S rRNA gene sequences analysis and cultivation. Correlation was observed between nutrient deficits and the number of microorganisms in surface soil samples. The lowest number of bacteria (1 × 104-1 × 105 cells g-1) was detected in almost pure pumice but the count was significantly higher (1 × 106-1 × 109 cells g-1) in vegetated soil or pumice with bird droppings. The number of faecal bacteria correlated also to the total number of bacteria and type of soil. Bacteria belonging to Enterobacteriaceae were only detected in vegetated samples and samples containing bird droppings. The human pathogens Salmonella, Campylobacter and Listeria were not in any sample. Both thermophilic bacteria and archaea 16S rDNA sequences were found in the subsurface samples collected at 145 and 172 m depth at 80 and 54 °C, respectively, but no growth was observed in enrichments. The microbiota sequences generally showed low affiliation to any known 16S rRNA gene sequences.

  12. Characterization of Volume F Trash from Four Recent STS Missions: Microbial Occurrence, Numbers, and Identifications

    NASA Technical Reports Server (NTRS)

    Strayer, Richard F.; Hummerick, Mary E.; Richards, Jeffrey T.; McCoy, LaShelle E.; Roberts, Michael S.; Wheeler, Raymond M.

    2011-01-01

    The fate of space-generated solid wastes, including trash, for future missions is under consideration by NASA. Several potential treatment options are under active technology development. Potential fates for space-generated solid wastes: Storage without treatment; storage after treatment(s) including volume reduction, water recovery, sterilization, and recovery plus recycling of waste materials. For this study, a microbial characterization was made on trash returned from four recent STS missions. The material analyzed were 'Volume F' trash and other bags of accompanying trash. This is the second of two submitted papers on these wastes. This first one covered trash content, weight and water content. Upon receipt, usually within 2 days of landing, trash contents were catalogued and placed into categories: drink containers, food waste, personal hygiene items, and packaging materials, i.e., plastic film and duct tape. Microbial counts were obtained with cultivatable counts on agar media and direct counts using Acridine Orange fluorescent stain (AODC). Trash bag surfaces, 25 square cm , were also sampled. Direct counts were approximately 1 x 10(exp 6) microbes/square cm and cultivatable counts ranged from 1 x 10 to 1 X 10(exp 4) microbes/ square cm-2. Aerobic microbes, aerobic sporeformers, and yeasts plus molds were common for all four missions. Waste items from each category were placed into sterile ziplock bags and 1.5 L sterile DI water added. These were then dispersed by hand shaking for 2 min. prior to inoculation of count media or determining AODC. In general, cultivatable microbes were found in drinks, food wastes, and personal hygiene items. Direct counts were usually higher than cultivatable counts. Some pathogens were found: Staphylococcus auerus, Escherichia coli (fecal wastes). Count ranges: drink pouches - AODC 2 x 10(exp 6) to 1 X 10(exp 8) g(sub fw) (exp -1); cultivatable counts variable between missions; food wastes: Direct counts were close to aerobic plate counts. Counts ranged from 10(exp 6) to 10(exp 9) per g(sub fw). Identities of isolates from cultivation media were obtained using a Biolog Microbial ID System or microSEQ molecular ID methodology using an ABI3130 gene analyzer.

  13. Statistical analysis of environmental monitoring data: does a worst case time for monitoring clean rooms exist?

    PubMed

    Cundell, A M; Bean, R; Massimore, L; Maier, C

    1998-01-01

    To determine the relationship between the sampling time of the environmental monitoring, i.e., viable counts, in aseptic filling areas and the microbial count and frequency of alerts for air, surface and personnel microbial monitoring, statistical analyses were conducted on 1) the frequency of alerts versus the time of day for routine environmental sampling conducted in calendar year 1994, and 2) environmental monitoring data collected at 30-minute intervals during routine aseptic filling operations over two separate days in four different clean rooms with multiple shifts and equipment set-ups at a parenteral manufacturing facility. Statistical analyses showed, except for one floor location that had significantly higher number of counts but no alert or action level samplings in the first two hours of operation, there was no relationship between the number of counts and the time of sampling. Further studies over a 30-day period at the floor location showed no relationship between time of sampling and microbial counts. The conclusion reached in the study was that there is no worst case time for environmental monitoring at that facility and that sampling any time during the aseptic filling operation will give a satisfactory measure of the microbial cleanliness in the clean room during the set-up and aseptic filling operation.

  14. Microbial composition in bioaerosols of a high-throughput chicken-slaughtering facility.

    PubMed

    Lues, J F R; Theron, M M; Venter, P; Rasephei, M H R

    2007-01-01

    The microbial composition of the air in various areas of a high-throughput chicken-slaughtering facility was investigated. Over a 4-mo period, 6 processing areas were sampled, and the influence of environmental factors was monitored. The highest counts of microorganisms were recorded in the initial stages of processing, comprising the receiving-killing and defeathering areas, whereas counts decreased toward the evisceration, air-chilling, packaging, and dispatch areas. Maximum microbial counts were as follows: coliforms, 4.9 x 10(3) cfu/m(3); Escherichia coli 3.4 x 10(3) cfu/m(3); Bacillus cereus, 5.0 x 10(4) cfu/m(3); Staphylococcus aureus, 1.6 x 10(4) cfu/m(3); Pseudomonas aeruginosa, 7.0 x 10(4) cfu/m(3); presumptive Salmonella spp., 1.5 x 10(4) cfu/m(3); Listeria monocytogenes, 1.6 x 10(4) cfu/m(3); and fungi, 1.4 x 10(4) cfu/m(3). Higher counts of airborne microorganisms found in the receiving-killing and defeathering areas indicate the importance of controlling microbial levels before processing to prevent the spread of organisms downstream. This should limit the risk of carrying over contaminants from areas known to generate high counts to areas where the final food product is exposed to air and surface contamination.

  15. Biofilms associated with poultry processing equipment.

    PubMed

    Lindsay, D; Geornaras, I; von Holy, A

    1996-01-01

    Aerobic and Gram-negative bacteria were enumerated on non-metallic surfaces and stainless steel test pieces attached to equipment surfaces by swabbing and a mechanical dislodging procedure, respectively, in a South African grade B poultry processing plant. Changes in bacterial numbers were also monitored over time on metal test pieces. The highest bacterial counts were obtained from non-metallic surfaces such as rubber fingered pluckers and plastic defeathering curtains which exceeded the highest counts found on the metal surfaces by at least 1 log CFU cm-2. Gram-negative bacterial counts on all non-metallic surface types were at least 2 log CFU cm-2 lower than corresponding aerobic plate counts. On metal surfaces, the highest microbial numbers were obtained after 14 days exposure, with aerobic plate counts ranging from 3.57 log CFU cm-2 to 5.13 log CFU cm-2, and Gram-negative counts from 0.70 log CFU cm-2 to 3.31 log CFU cm-2. Scanning electron microscopy confirmed the presence of bacterial cells on non-metallic and metallic surfaces associated with poultry processing. Rubber 'fingers', plastic curtains, conveyor belt material and stainless steel test surfaces placed on the scald tank overflow and several chutes revealed extensive and often confluent bacterial biofilms. Extracellular polymeric substances, but few bacterial cells were visible on test pieces placed on evisceration equipment, spinchiller blades and the spinchiller outlet.

  16. Application of Quercus infectoria extract as a natural antimicrobial agent for chicken egg decontamination.

    PubMed

    Tayel, Ahmed A; El-Sedfy, Mahmoud A; Ibrahim, Ahmed I; Moussa, Shaaban H

    2018-04-21

    Egg contamination with microbial pathogens is an enduring worldwide concern. Natural products are frequently recommended as ideal alternatives to substitute synthetic and chemical antimicrobials. Oak galls (Quercus infectoria) are aberrant growths on oak trees that have many medicinal and pharmaceutical applications. Q. infectoria extract (QIE) antimicrobial action was assessed against many microbial species, and used for eggshell decontamination. QIE antimicrobial activity was evidenced against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Salmonella Typhimurium and Candida albicans, using different assay methods. Disinfection of eggshell microbial contamination, by immersion in 1% QIE solution, sharply reduced total colony count, yeasts and molds, Enterobacteriaceae. E. coli and S. aureus were completely inhibited after 60min of immersion in QIE. QIE biochemical analysis revealed elevated contents of phenolic and flavonoid compounds. The captured micrographs of S. aureus cells treated with QIE showed strong alterations in cell morphology; cells were entirely lysed and ruptured after 6h of treatment. QIE can be recommended as an effective and natural disinfectant for decontaminating eggshells from pathogenic microorganisms. Copyright © 2018 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  17. Microbial cell preparation in enteral feeding in critically ill patients: A randomized, double-blind, placebo-controlled clinical trial.

    PubMed

    Malik, Ausama A; Rajandram, Retnagowri; Tah, Pei Chien; Hakumat-Rai, Vineya-Rai; Chin, Kin-Fah

    2016-04-01

    Gut failure is a common condition in critically ill patients in the intensive care unit (ICU). Enteral feeding is usually the first line of choice for nutrition support in critically ill patients. However, enteral feeding has its own set of complications such as alterations in gut transit time and composition of gut eco-culture. The primary aim of this study was to investigate the effect of microbial cell preparation on the return of gut function, white blood cell count, C-reactive protein levels, number of days on mechanical ventilation, and length of stay in ICU. A consecutive cohort of 60 patients admitted to the ICU in University Malaya Medical Centre requiring enteral feeding were prospectively randomized to receive either treatment (n = 30) or placebo (n = 30). Patients receiving enteral feeding supplemented with a course of treatment achieved a faster return of gut function and required shorter duration of mechanical ventilation and shorter length of stay in the ICU. However, inflammatory markers did not show any significant change in the pretreatment and posttreatment groups. Overall, it can be concluded that microbial cell preparation enhances gut function and the overall clinical outcome of critically ill patients receiving enteral feeding in the ICU. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Use of simulation tools to illustrate the effect of data management practices for low and negative plate counts on the estimated parameters of microbial reduction models.

    PubMed

    Garcés-Vega, Francisco; Marks, Bradley P

    2014-08-01

    In the last 20 years, the use of microbial reduction models has expanded significantly, including inactivation (linear and nonlinear), survival, and transfer models. However, a major constraint for model development is the impossibility to directly quantify the number of viable microorganisms below the limit of detection (LOD) for a given study. Different approaches have been used to manage this challenge, including ignoring negative plate counts, using statistical estimations, or applying data transformations. Our objective was to illustrate and quantify the effect of negative plate count data management approaches on parameter estimation for microbial reduction models. Because it is impossible to obtain accurate plate counts below the LOD, we performed simulated experiments to generate synthetic data for both log-linear and Weibull-type microbial reductions. We then applied five different, previously reported data management practices and fit log-linear and Weibull models to the resulting data. The results indicated a significant effect (α = 0.05) of the data management practices on the estimated model parameters and performance indicators. For example, when the negative plate counts were replaced by the LOD for log-linear data sets, the slope of the subsequent log-linear model was, on average, 22% smaller than for the original data, the resulting model underpredicted lethality by up to 2.0 log, and the Weibull model was erroneously selected as the most likely correct model for those data. The results demonstrate that it is important to explicitly report LODs and related data management protocols, which can significantly affect model results, interpretation, and utility. Ultimately, we recommend using only the positive plate counts to estimate model parameters for microbial reduction curves and avoiding any data value substitutions or transformations when managing negative plate counts to yield the most accurate model parameters.

  19. Role of the microbial population on the flavor of the soft-bodied cheese Torta del Casar.

    PubMed

    Ordiales, Elena; Martín, Alberto; Benito, María José; Hernández, Alejandro; Ruiz-Moyano, Santiago; Córdoba, María de Guía

    2013-09-01

    The purpose of this work was to investigate the influence of the spontaneous microbial population on the flavor of Torta del Casar cheese. A total of 16 batches of cheeses with different microbial qualities were used. Their physicochemical and microbial characteristics were evaluated during ripening and then related with the volatile compounds, taste, and flavor properties of the finished cheeses. Acids were the most abundant volatile compounds, followed by alcohols and carbonyls. The amount of acetic acid and several alcohols were linked to cheeses with higher counts of lactic acid bacteria (LAB), whereas Enterobacteriaceae counts were associated with semivolatile fatty acids. The gram-positive catalase-positive cocci counts were correlated with esters and methyl ketones. Although the role of the LAB in the flavor development of Torta del Casar is the most relevant, other microbial groups are necessary to impart the flavor of the cheese and to minimize the possible off-flavor derived from excessive concentrations of LAB metabolites, such as acetic acid. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Effects of Jet Fuel Spills on the Microbial Community of Soil †

    PubMed Central

    Song, Hong-Gyu; Bartha, Richard

    1990-01-01

    Hydrocarbon residues, microbial numbers, and microbial activity were measured and correlated in loam soil contaminated by jet fuel spills resulting in 50 and 135 mg of hydrocarbon g of soil−1. Contaminated soil was incubated at 27°C either as well-aerated surface soil or as poorly aerated subsurface soil. In the former case, the effects of bioremediation treatment on residues, microbial numbers, and microbial activity were also assessed. Hydrocarbon residues were measured by quantitative gas chromatography. Enumerations included direct counts of metabolically active bacteria, measurement of mycelial length, plate counts of aerobic heterotrophs, and most probable numbers of hydrocarbon degraders. Activity was assessed by fluorescein diacetate (FDA) hydrolysis. Jet fuel disappeared much more rapidly from surface soil than it did from subsurface soil. In surface soil, microbial numbers and mycelial length were increased by 2 to 2.5 orders of magnitude as a result of jet fuel contamination alone and by 3 to 4 orders of magnitude as a result of the combination of jet fuel contamination and bioremediation. FDA hydrolysis was stimulated by jet fuel and bioremediation, but was inhibited by jet fuel alone. The latter was traced to an inhibition of the FDA assay by jet fuel biodegradation products. In subsurface soil, oxygen limitation strongly attenuated microbial responses to jet fuel. An increase in the most probable numbers of hydrocarbon degraders was accompanied by a decline in other aerobic heterotrophs, so that total plate counts changed little. The correlations between hydrocarbon residues, microbial numbers, and microbial activity help in elucidating microbial contributions to jet fuel elimination from soil. PMID:16348138

  1. ATP as a biomarker of viable microorganisms in clean-room facilities

    NASA Technical Reports Server (NTRS)

    Venkateswaran, Kasthuri; Hattori, Noriaki; La Duc, Myron T.; Kern, Roger

    2003-01-01

    A new firefly luciferase bioluminescence assay method that differentiates free extracellular ATP (dead cells, etc.) from intracellular ATP (viable microbes) was used to determine the viable microbial cleanliness of various clean-room facilities. For comparison, samples were taken from both clean-rooms, where the air was filtered to remove particles >0.5 microm, and ordinary rooms with unfiltered air. The intracellular ATP was determined after enzymatically degrading the sample's free ATP. Also for comparison, cultivable microbial populations were counted on nutrient-rich trypticase soy agar (TSA) plates. Both the cultivable and ATP-based determinations indicate that the microbial burden was lower in clean-room facilities than in ordinary rooms. However, there was no direct correlation between the two sets of measurements because the two assays measured very different populations. A large fraction of the samples yielded no colony formers on TSA, but were positive for intracellular ATP. Subsequently, genomic DNA was isolated directly from selected samples and 16S rDNA fragments were cloned and sequenced, identifying nearest neighbors, many of which are known to be noncultivable in the media employed. It was concluded that viable microbial contamination can be reliably monitored by measurement of intracellular ATP, and that this method may be considered superior to cultivable colony counts due to its speed and its ability to report the presence of viable but noncultivable organisms. When the detection of nonviable microbes is of interest, the ATP assay can be supplemented with DNA analysis.

  2. ATP as a biomarker of viable microorganisms in clean-room facilities.

    PubMed

    Venkateswaran, Kasthuri; Hattori, Noriaki; La Duc, Myron T; Kern, Roger

    2003-03-01

    A new firefly luciferase bioluminescence assay method that differentiates free extracellular ATP (dead cells, etc.) from intracellular ATP (viable microbes) was used to determine the viable microbial cleanliness of various clean-room facilities. For comparison, samples were taken from both clean-rooms, where the air was filtered to remove particles >0.5 microm, and ordinary rooms with unfiltered air. The intracellular ATP was determined after enzymatically degrading the sample's free ATP. Also for comparison, cultivable microbial populations were counted on nutrient-rich trypticase soy agar (TSA) plates. Both the cultivable and ATP-based determinations indicate that the microbial burden was lower in clean-room facilities than in ordinary rooms. However, there was no direct correlation between the two sets of measurements because the two assays measured very different populations. A large fraction of the samples yielded no colony formers on TSA, but were positive for intracellular ATP. Subsequently, genomic DNA was isolated directly from selected samples and 16S rDNA fragments were cloned and sequenced, identifying nearest neighbors, many of which are known to be noncultivable in the media employed. It was concluded that viable microbial contamination can be reliably monitored by measurement of intracellular ATP, and that this method may be considered superior to cultivable colony counts due to its speed and its ability to report the presence of viable but noncultivable organisms. When the detection of nonviable microbes is of interest, the ATP assay can be supplemented with DNA analysis.

  3. Effect of supplements: Probiotics and probiotic plus honey on blood cell counts and serum IgA in patients receiving pelvic radiotherapy.

    PubMed

    Mansouri-Tehrani, Hajar-Alsadat; Rabbani-Khorasgani, Mohammad; Hosseini, Sayyed Mohsen; Mokarian, Fariborz; Mahdavi, Hoda; Roayaei, Mahnaz

    2015-07-01

    Radiotherapy is frequently used in treatment approaches of pelvic malignancies. Nevertheless, it has some known systemic effects on blood cells and the immune system that possibly results in their susceptibility to infection. Probiotics are live microbial food ingredients that provide a health advantage to the consumer. Honey has prebiotic properties. The aim of this clinical trial was to investigate probable effects of probiotic or probiotics plus honey on blood cell counts and serum IgA levels in patients receiving pelvic radiotherapy. Sixty-seven adult patients with pelvic cancer were enrolled. Patients were randomized to receive either: (1) Probiotic capsules (including: Lactobacillus casei, Lactobacillus acidophilus, Lactobacillus rhamnosus, Lactobacillus bulgaricus, Bifidobacterium breve, Bifidobacterium longum, and Streptococcus thermophiles) (n = 22), (2) probiotic capsules plus honey (n = 21) or (3) placebo capsules (n = 24) all for 6 weeks. Blood and serum samples were collected for one week before radiotherapy and 24-72 h after the end of radiotherapy. White blood cells (WBC), red blood cells (RBC), platelet counts, and serum IgA level were not significantly changed in patients taking probiotic (alone or plus honey) during pelvic radiotherapy. The mean decrease in RBC count was 0.52, 0.18, and 0.23 × 10(6) cells/μL, WBC count was 2.3, 1.21, and 1.34 × 10(3) cells/μL and platelet count was, 57.6, 53.3, and 66.35 × 10(3) cells/μL for the probiotic, probiotic plus honey, and placebo groups, respectively. The mean decrease of serum IgA was 22.53, 29.94, and 40.73 mg/dL for the probiotic, probiotic plus honey, and placebo groups, respectively. The observed nonsignificant effect of probiotics may be in favor of local effects of this product in the gut rather than systemic effects, however, as a trend toward a benefit was indicated, further studies are necessary in order to extract effects of probiotics or probiotic plus honey on hematologic and immunologic parameters in patients receiving pelvic radiotherapy.

  4. Effect of supplements: Probiotics and probiotic plus honey on blood cell counts and serum IgA in patients receiving pelvic radiotherapy

    PubMed Central

    Mansouri-Tehrani, Hajar-Alsadat; Rabbani-Khorasgani, Mohammad; Hosseini, Sayyed Mohsen; Mokarian, Fariborz; Mahdavi, Hoda; Roayaei, Mahnaz

    2015-01-01

    Background: Radiotherapy is frequently used in treatment approaches of pelvic malignancies. Nevertheless, it has some known systemic effects on blood cells and the immune system that possibly results in their susceptibility to infection. Probiotics are live microbial food ingredients that provide a health advantage to the consumer. Honey has prebiotic properties. The aim of this clinical trial was to investigate probable effects of probiotic or probiotics plus honey on blood cell counts and serum IgA levels in patients receiving pelvic radiotherapy. Materials and Methods: Sixty-seven adult patients with pelvic cancer were enrolled. Patients were randomized to receive either: (1) Probiotic capsules (including: Lactobacillus casei, Lactobacillus acidophilus, Lactobacillus rhamnosus, Lactobacillus bulgaricus, Bifidobacterium breve, Bifidobacterium longum, and Streptococcus thermophiles) (n = 22), (2) probiotic capsules plus honey (n = 21) or (3) placebo capsules (n = 24) all for 6 weeks. Blood and serum samples were collected for one week before radiotherapy and 24-72 h after the end of radiotherapy. Results: White blood cells (WBC), red blood cells (RBC), platelet counts, and serum IgA level were not significantly changed in patients taking probiotic (alone or plus honey) during pelvic radiotherapy. The mean decrease in RBC count was 0.52, 0.18, and 0.23 × 106 cells/μL, WBC count was 2.3, 1.21, and 1.34 × 103 cells/μL and platelet count was, 57.6, 53.3, and 66.35 × 103 cells/μL for the probiotic, probiotic plus honey, and placebo groups, respectively. The mean decrease of serum IgA was 22.53, 29.94, and 40.73 mg/dL for the probiotic, probiotic plus honey, and placebo groups, respectively. Conclusion: The observed nonsignificant effect of probiotics may be in favor of local effects of this product in the gut rather than systemic effects, however, as a trend toward a benefit was indicated, further studies are necessary in order to extract effects of probiotics or probiotic plus honey on hematologic and immunologic parameters in patients receiving pelvic radiotherapy. PMID:26622258

  5. Evaluation of quantitative PCR measurement of bacterial colonization of epithelial cells.

    PubMed

    Schmidt, Marcin T; Olejnik-Schmidt, Agnieszka K; Myszka, Kamila; Borkowska, Monika; Grajek, Włodzimierz

    2010-01-01

    Microbial colonization is an important step in establishing pathogenic or probiotic relations to host cells and in biofilm formation on industrial or medical devices. The aim of this work was to verify the applicability of quantitative PCR (Real-Time PCR) to measure bacterial colonization of epithelial cells. Salmonella enterica and Caco-2 intestinal epithelial cell line was used as a model. To verify sensitivity of the assay a competition of the pathogen cells to probiotic microorganism was tested. The qPCR method was compared to plate count and radiolabel approach, which are well established techniques in this area of research. The three methods returned similar results. The best quantification accuracy had radiolabel method, followed by qPCR. The plate count results showed coefficient of variation two-times higher than this of qPCR. The quantitative PCR proved to be a reliable method for enumeration of microbes in colonization assay. It has several advantages that make it very useful in case of analyzing mixed populations, where several different species or even strains can be monitored at the same time.

  6. Rifaximin has a Marginal Impact on Microbial Translocation, T-cell Activation and Inflammation in HIV-Positive Immune Non-responders to Antiretroviral Therapy – ACTG A5286

    PubMed Central

    Tenorio, Allan R.; Chan, Ellen S.; Bosch, Ronald J.; Macatangay, Bernard J. C.; Read, Sarah W.; Yesmin, Suria; Taiwo, Babafemi; Margolis, David M.; Jacobson, Jeffrey M.; Landay, Alan L.; Wilson, Cara C.; Mellors, John W.; Keshavarzian, Ali; Rodriguez, Benigno; Aziz, Mariam; Presti, Rachel; Deeks, Steven; Ebiasah, Ruth; Myers, Laurie; Borowski, LuAnn; Plants, Jill; Palm, David A.; Weibel, Derek; Putnam, Beverly; Lindsey, Elizabeth; Player, Amy; Albrecht, Mary; Kershaw, Andrea; Sax, Paul; Keenan, Cheryl; Walton, Patricia; Baum, Jane; Stroberg, Todd; Hughes, Valery; Coster, Laura; Kumar, Princy N.; Yin, Michael T.; Noel-Connor, Jolene; Tebas, Pablo; Thomas, Aleshia; Davis, Charles E.; Redfield, Robert R.; Sbrolla, Amy; Flynn, Teri; Davis, Traci; Whitely, Kim; Singh, Baljinder; Swaminathan, Shobha; McGregor, Donna; Palella, Frank; Aberg, Judith; Cavanagh, Karen; Santana Bagur, Jorge L.; Flores, Olga Méndez; Fritsche, Janice; Sha, Beverly; Slamowitz, Debbie; Valle, Sandra; Tashima, Karen; Patterson, Helen; Harber, Heather; Para, Michael; Eaton, Molly; Maddox, Dale; Currier, Judith; Cajahuaringa, Vanessa; Luetkemeyer, Annie; Dwyer, Jay; Fichtenbaum, Carl J.; Saemann, Michelle; Ray, Graham; Campbell, Thomas; Fischl, Margaret A.; Bolivar, Hector; Oakes, Jonathan; Chicurel-Bayard, Miriam; Tripoli, Christine; Weinman, D. Renee; Adams, Mary; Hurley, Christine; Dunaway, Shelia; Storey, Sheryl; Klebert, Michael; Royal, Michael

    2015-01-01

    Background. Rifaximin, a nonabsorbable antibiotic that decreases lipopolysaccharide (LPS) in cirrhotics, may decrease the elevated levels of microbial translocation, T-cell activation and inflammation in human immunodeficiency virus (HIV)-positive immune nonresponders to antiretroviral therapy (ART). Methods. HIV-positive adults receiving ART for ≥96 weeks with undetectable viremia for ≥48 weeks and CD4+ T-cell counts <350 cells/mm3 were randomized 2:1 to rifaximin versus no study treatment for 4 weeks. T-cell activation, LPS, and soluble CD14 were measured at baseline and at weeks 2, 4, and 8. Wilcoxon rank sum tests compared changes between arms. Results. Compared with no study treatment (n = 22), rifaximin (n = 43) use was associated with a significant difference between study arms in the change from baseline to week 4 for CD8+T-cell activation (median change, 0.0% with rifaximin vs +0.6% with no treatment; P = .03). This difference was driven by an increase in the no-study-treatment arm because there was no significant change within the rifaximin arm. Similarly, although there were significant differences between study arms in change from baseline to week 2 for LPS and soluble CD14, there were no significant changes within the rifaximin arm. Conclusions. In immune nonresponders to ART, rifaximin minimally affected microbial translocation and CD8+T-cell activation. Trial registration number. NCT01466595. PMID:25214516

  7. Nutrient and acetate amendment leads to acetoclastic methane production and microbial community change in a non-producing Australian coal well.

    PubMed

    In 't Zandt, Michiel H; Beckmann, Sabrina; Rijkers, Ruud; Jetten, Mike S M; Manefield, Mike; Welte, Cornelia U

    2017-09-19

    Coal mining is responsible for 11% of total anthropogenic methane emission thereby contributing considerably to climate change. Attempts to harvest coalbed methane for energy production are challenged by relatively low methane concentrations. In this study, we investigated whether nutrient and acetate amendment of a non-producing sub-bituminous coal well could transform the system to a methane source. We tracked cell counts, methane production, acetate concentration and geochemical parameters for 25 months in one amended and one unamended coal well in Australia. Additionally, the microbial community was analysed with 16S rRNA gene amplicon sequencing at 17 and 25 months after amendment and complemented by metagenome sequencing at 25 months. We found that cell numbers increased rapidly from 3.0 × 10 4 cells ml -1 to 9.9 × 10 7 in the first 7 months after amendment. However, acetate depletion with concomitant methane production started only after 12-19 months. The microbial community was dominated by complex organic compound degraders (Anaerolineaceae, Rhodocyclaceae and Geobacter spp.), acetoclastic methanogens (Methanothrix spp.) and fungi (Agaricomycetes). Even though the microbial community had the functional potential to convert coal to methane, we observed no indication that coal was actually converted within the time frame of the study. Our results suggest that even though nutrient and acetate amendment stimulated relevant microbial species, it is not a sustainable way to transform non-producing coal wells into bioenergy factories. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  8. Micron2 Lab: Microfluidic Microbiology Lab Project

    NASA Technical Reports Server (NTRS)

    Burton, Aaron; Botkin, Douglas; Castro, Sarah; Crucian, Brian

    2015-01-01

    Microbial monitoring during spaceflight is crucial to maintain crew health and ensure water purifications systems are functioning properly. Current protocols for in-flight enumeration of bacteria in potable water systems require culture based methods. In this project, we aim to develop a flight- and microgravity-compatible flow cytometer capable of counting total microbial counts in the water supply and differentiating live from dead bacteria.

  9. Use of a continuous culture fermentation system to investigate the effect of GanedenBC30 (Bacillus coagulans GBI-30, 6086) supplementation on pathogen survival in the human gut microbiota.

    PubMed

    Honda, Harue; Gibson, Glenn R; Farmer, Sean; Keller, David; McCartney, Anne L

    2011-02-01

    Single-stage continuous fermentation systems were employed to examine the effects of GanedenBC(30) supplementation on the human gastrointestinal microbiota in relation to pathogen challenge in vitro. Denaturing gradient gel electrophoresis analysis demonstrated that GanedenBC(30) supplementation modified the microbial profiles in the fermentation systems compared with controls, with profiles clustering according to treatment. Overall, GanedenBC(30) supplementation did not elicit major changes in bacterial population counts in vitro, although notably higher Bcoa191 counts were seen following probiotic supplementation (compared to the controls). Pathogen challenge did not elicit significant modification of the microbial counts in vitro, although notably higher Clit135 counts were seen in the control system post-Clostridium difficile challenge than in the corresponding GanedenBC(30)-supplemented systems. Sporulation appears to be associated with the anti-microbial activity of GanedenBC(30), suggesting that a bi-modal lifecycle of GanedenBC(30)in vivo may lead to anti-microbial activity in distal regions of the gastrointestinal tract. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Maternal white blood cell count cannot identify the presence of microbial invasion of the amniotic cavity or intra-amniotic inflammation in women with preterm prelabor rupture of membranes

    PubMed Central

    Musilova, Ivana; Pliskova, Lenka; Gerychova, Romana; Janku, Petr; Simetka, Ondrej; Matlak, Petr; Jacobsson, Bo

    2017-01-01

    Objective The main aim of this study was to determine the relationship between the maternal white blood cell (WBC) count at the time of hospital admission in pregnancies complicated by preterm prelabor rupture of membranes (PPROM) and the presence of microbial invasion of the amniotic cavity (MIAC) and/or intra-amniotic inflammation (IAI). The second aim was to test WBC diagnostic indices with respect to the presence of MIAC and/or IAI. Methods Four hundred and seventy-nine women with singleton pregnancies complicated by PPROM, between February 2012 and June 2017, were included in this study. Maternal blood and amniotic fluid samples were collected at the time of admission. Maternal WBC count was assessed. Amniotic fluid interleukin-6 (IL-6) concentration was measured using a point-of-care test, and IAI was characterized by an IL-6 concentration of ≥ 745 pg/mL. MIAC was diagnosed based on a positive polymerase chain reaction result for the Ureaplasma species, Mycoplasma hominis, and/or Chlamydia trachomatis and/or for the 16S rRNA gene. Results Women with MIAC or IAI had higher WBC counts than those without (with MIAC: median, 12.8 × 109/L vs. without MIAC: median, 11.9 × 109/L; p = 0.0006; with IAI: median, 13.7 × 109/L vs. without IAI: median, 11.9 × 109/L; p < 0.0001). When the women were divided into four subgroups based on the presence of MIAC and/or IAI, the women with both MIAC and IAI had a higher WBC count than those with either IAI or MIAC alone, and those without MIAC and IAI [both MIAC and IAI: median, 14.0 × 109/L; IAI alone: 12.1 × 109/L (p = 0.03); MIAC alone: 12.1 × 109/L (p = 0.0001); and without MIAC and IAI: median, 11.8 × 109/L (p < 0.0001)]. No differences in the WBC counts were found among the women with IAI alone, MIAC alone, and without MIAC and IAI. Conclusion The women with both MIAC and IAI had a higher maternal WBC count at the time of hospital admission than the remaining women with PPROM. The maternal WBC count at the time of admission showed poor diagnostic indices for the identification of the presence of both MIAC and IAI. Maternal WBC count at the time of admission cannot serve as a non-invasive screening tool for identifying these complications in women with PPROM. PMID:29232399

  11. Microbial evaluation of Alaska salmon caviar.

    PubMed

    Himelbloom, B H; Crapo, C A

    1998-05-01

    Microbial quality of pink salmon caviar (ikura) processed at one plant in Alaska during a 30-day season was examined. Ikura (aw = 0.98; pH 6.1) averaged 49% water, 32% protein, 11% fat, 7% ash, and 3% salt. Aerobic plate counts (APCs) ranged from < 10(2)/g to 4.5 x 10(7)/g with increasing APC toward season's end. Coliform counts ranged from < 3/g to 2.4 x 10(3)/g. Escherichia coli, Staphylococcus aureus, yeasts, and molds were not detected. High-APC (10(7)/g) thawed caviar exhibited predominantly lactic acid bacteria; low-APC (10(3)/g) thawed caviar exhibited predominantly gram-negative bacteria. Freezing had little effect on the microbial counts, and shelf life of thawed caviar was 3 to 5 days at 2 degrees C.

  12. Microbial colonization of biopolymeric thin films containing natural compounds and antibiotics fabricated by MAPLE

    NASA Astrophysics Data System (ADS)

    Cristescu, R.; Surdu, A. V.; Grumezescu, A. M.; Oprea, A. E.; Trusca, R.; Vasile, O.; Dorcioman, G.; Visan, A.; Socol, G.; Mihailescu, I. N.; Mihaiescu, D.; Enculescu, M.; Chifiriuc, M. C.; Boehm, R. D.; Narayan, R. J.; Chrisey, D. B.

    2015-05-01

    Although a great number of antibiotics are currently available, they are often rendered ineffective by the ability of microbial strains to develop genetic resistance and to grow in biofilms. Since many antimicrobial agents poorly penetrate biofilms, biofilm-associated infections often require high concentrations of antimicrobial agents for effective treatment. Among the various strategies that may be used to inhibit microbial biofilms, one strategy that has generated significant interest involves the use of bioactive surfaces that are resistant to microbial colonization. In this respect, we used matrix assisted pulsed laser evaporation (MAPLE) involving a pulsed KrF* excimer laser source (λ = 248 nm, τ = 25 ns, ν = 10 Hz) to obtain thin composite biopolymeric films containing natural (flavonoid) or synthetic (antibiotic) compounds as bioactive substances. Chemical composition and film structures were investigated by Fourier transform infrared spectroscopy and X-ray diffraction. Films morphology was studied by scanning electron microscopy and transmission electron microscopy. The antimicrobial assay of the microbial biofilms formed on these films was assessed by the viable cell counts method. The flavonoid-containing thin films showed increased resistance to microbial colonization, highlighting their potential to be used for the design of anti-biofilm surfaces.

  13. Microbial Contamination of Chicken Wings: An Open-Ended Laboratory Project.

    ERIC Educational Resources Information Center

    Deutch, Charles E.

    2001-01-01

    Introduces the chicken wing project in which students assess the microbial contamination of chicken wings for the safety of foods. Uses the colony counting technique and direct wash fluid examination for determining the microbial contamination, and investigates methods to reduce the level of microbial contamination. (Contains 14 references.) (YDS)

  14. Circulating Inflammatory Mediators in Patients with Fever: Predicting Bloodstream Infection

    PubMed Central

    Groeneveld, A. B. Johan; Bossink, Ailko W. J.; van Mierlo, Gerard J.; Hack, C. Erik

    2001-01-01

    The systemic host response to microbial infection involves clinical signs and symptoms of infection, including fever and elevated white blood cell (WBC) counts. In addition, inflammatory mediators are released, including activated complement product C3a, interleukin 6 (IL-6), and the acute-phase reactant secretory phospholipase A2 (sPLA2). To compare the value of the latter with the former in predicting (the degree of) microbial infection at the bedside, we determined clinical variables and took blood samples daily for 3 consecutive days in 300 patients with a new fever (>38.0°C rectally or >38.3°C axillary). Microbiological culture results for 7 days after inclusion were collected. Patients were divided into clinical and microbial categories: those without and with a clinical focus of infection and those with negative cultures, with positive local cultures or specific stains for fungal (n = 13) or tuberculous infections (n = 1), and with positive blood cultures, including one patient with malaria parasitemia. The area under the curve (AUC) of the receiver operating characteristic (ROC) for prediction of positive cultures was 0.60 (P < 0.005) for peak temperature and 0.59 (P < 0.01) for peak WBC count, 0.60 (P < 0.005) for peak C3a, 0.63 (P < 0.001) for peak IL-6, and 0.61 (P < 0.001) for peak sPLA2. The AUC under the ROC curve for prediction of positive blood cultures was 0.68 (P < 0.001) for peak temperature and 0.56 for peak WBC count (P < 0.05). The AUC for peak C3a was 0.69, that for peak IL-6 was 0.70, and that for sPLA2 was 0.67 (for all, P < 0.001). The degree of microbial invasion is thus a major determinant of the clinical and inflammatory host response in patients with fever. Moreover, circulating inflammatory mediators such as C3a and IL-6 may help to predict positive blood cultures, together with clinical signs and symptoms of the host response to microbial infection, even before culture results are available. This may help in the designing of entry criteria for therapeutic intervention studies. PMID:11687462

  15. The growth of Staphylococcus aureus and Escherichia coli in low-direct current electric fields.

    PubMed

    Zituni, Dunya; Schütt-Gerowitt, Heidi; Kopp, Marion; Krönke, Martin; Addicks, Klaus; Hoffmann, Christian; Hellmich, Martin; Faber, Franz; Niedermeier, Wilhelm

    2014-03-01

    Electrical potentials up to 800 mV can be observed between different metallic dental restorations. These potentials produce fields in the mouth that may interfere with microbial communities. The present study focuses on the impact of different electric field strengths (EFS) on the growth of Staphylococcus aureus (ATCC 25923) and Escherichia coli (ATCC 25922) in vitro. Cultures of S. aureus and E. coli in fluid and gel medium were exposed to different EFS. Effects were determined by calculation of viable counts and measurement of inhibition zones. In gel medium, anodic inhibition zones for S. aureus were larger than those for E. coli at all field strength levels. In fluid medium, the maximum decrease in the viable count of S. aureus cells was at 10 V⋅m(-1). Field-treated S. aureus cells presented ruptured cell walls and disintegrated cytoplasm. Conclusively, S. aureus is more sensitive to increasing electric field strength than E. coli.

  16. In vitro study on the effect of doxycycline on the microbial activity of soil determined by redox-potential measuring system.

    PubMed

    Szakmár, Katalin; Reichart, Olivér; Szatmári, István; Erdősi, Orsolya; Szili, Zsuzsanna; László, Noémi; Székely Körmöczy, Péter; Laczay, Péter

    2014-09-01

    The potential effect of doxycycline on the microbial activity was investigated in three types of soil. Soil samples were spiked with doxycycline, incubated at 25°C and tested at 0, 2, 4 and 6 days after treatment. The microbiological activity of the soil was characterized by the viable count determined by plate pouring and by the time necessary to reach a defined rate of the redox-potential decrease termed as time to detection (TTD).The viable count of the samples was not changed during the storage. The TTD values, however exhibited a significant increase in the 0.2-1.6 mg/kg doxycycline concentration range compared to the untreated samples indicating concentration-dependent inhibitory effect on microbial activity. The potency of the effect was different in the 3 soil types. To describe the combined effect of the doxycycline concentration and time on the biological activity of one type of soil a mathematical model was constructed and applied.The change of microbial metabolic rate could be measured also without (detectable) change of microbial count when the traditional microbiological methods are not applicable. The applied new redox potential measurement-based method is a simple and useful procedure for the examination of microbial activity of soil and its potential inhibition by antibiotics.

  17. Nucleic acid based quantitative microbial community analysis in different marine and terrestrial sediments

    NASA Astrophysics Data System (ADS)

    Schippers, A.; Blazejak, A.; Köweker, G.

    2009-12-01

    Sub-seafloor sediments harbour over half of all prokaryotic cells on Earth. This immense cell number is calculated from numerous microscopic cell counts (AODC) in ODP sediment cores. Since AODC can not differentiate between living or dead cells, the population size of living microorganisms and the abundance of different prokaryotic groups are unknown. Recent molecular nucleic acid and biomarker analyses showed that a high proportion of the cells are alive and that the microbial communities of deep marine sediments harbour members of distinct, uncultured bacterial and archaeal lineages. The main objective of our project is the quantification of living prokaryotes in various sediments. Deep sediment samples from the Pacific and the Atlantic Oceans (ODP Legs 201 and 207, IODP Exp. 307 and 308), sediments from the Indian Ocean (RV Sonne 189-2) and the Black Sea (RV Meteor 51/4) as well as terrestrial Chesapeake Bay Sediments (ICDP) were analyzed using Catalyzed Reporter Deposition - Fluorescence In Situ Hybridisation (CARD - FISH) and quantitative, real-time PCR (Q-PCR), targeting either the 16S rRNA gene or the functional genes dsrA, mcrA and aprA to quantify microorganisms of various phylogenetic or physiological groups (e.g. JS1 cluster and Chloroflexi). At all sediment sites, cell numbers decreased with depth, however, the abundance of particular microbial groups varied at different sites and depths. The results indicate that global estimates of the deep biosphere should be reconsidered.

  18. Electricity Generation in Microbial Fuel Cell (MFC) by Bacterium Isolated from Rice Paddy Field Soil

    NASA Astrophysics Data System (ADS)

    Fakhirruddin, Fakhriah; Amid, Azura; Salim, Wan Wardatul Amani Wan; Suhaida Azmi, Azlin

    2018-03-01

    Microbial fuel cell (MFC) is an alternative approach in generating renewable energy by utilising bacteria that will oxidize organic or inorganic substrates, producing electrons yielded as electrical energy. Different species of exoelectrogenic bacteria capable of generating significant amount of electricity in MFC has been identified, using various organic compounds for fuel. Soil sample taken from rice paddy field is proven to contain exoelectrogenic bacteria, thus electricity generation using mixed culture originally found in the soil, and pure culture isolated from the soil is studied. This research will isolate the exoelectrogenic bacterial species in the rice paddy field soil responsible for energy generation. Growth of bacteria isolated from the MFC is observed by measuring the optical density (OD), cell density weight (CDW) and viable cell count. Mixed bacterial species found in paddy field soil generates maximum power of 77.62 μW and 0.70 mA of current. In addition, the research also shows that the pure bacterium in rice paddy field soil can produce maximum power and current at 51.32 μW and 0.28 mA respectively.

  19. Possible overestimation of surface disinfection efficiency by assessment methods based on liquid sampling procedures as demonstrated by in situ quantification of spore viability.

    PubMed

    Grand, I; Bellon-Fontaine, M-N; Herry, J-M; Hilaire, D; Moriconi, F-X; Naïtali, M

    2011-09-01

    The standard test methods used to assess the efficiency of a disinfectant applied to surfaces are often based on counting the microbial survivors sampled in a liquid, but total cell removal from surfaces is seldom achieved. One might therefore wonder whether evaluations of microbial survivors in liquid-sampled cells are representative of the levels of survivors in whole populations. The present study was thus designed to determine the "damaged/undamaged" status induced by a peracetic acid disinfection for Bacillus atrophaeus spores deposited on glass coupons directly on this substrate and to compare it to the status of spores collected in liquid by a sampling procedure. The method utilized to assess the viability of both surface-associated and liquid-sampled spores included fluorescence labeling with a combination of Syto 61 and Chemchrome V6 dyes and quantifications by analyzing the images acquired by confocal laser scanning microscopy. The principal result of the study was that the viability of spores sampled in the liquid was found to be poorer than that of surface-associated spores. For example, after 2 min of peracetic acid disinfection, less than 17% ± 5% of viable cells were detected among liquid-sampled cells compared to 79% ± 5% or 47% ± 4%, respectively, when the viability was evaluated on the surface after or without the sampling procedure. Moreover, assessments of the survivors collected in the liquid phase, evaluated using the microscopic method and standard plate counts, were well correlated. Evaluations based on the determination of survivors among the liquid-sampled cells can thus overestimate the efficiency of surface disinfection procedures.

  20. Possible Overestimation of Surface Disinfection Efficiency by Assessment Methods Based on Liquid Sampling Procedures as Demonstrated by In Situ Quantification of Spore Viability ▿

    PubMed Central

    Grand, I.; Bellon-Fontaine, M.-N.; Herry, J.-M.; Hilaire, D.; Moriconi, F.-X.; Naïtali, M.

    2011-01-01

    The standard test methods used to assess the efficiency of a disinfectant applied to surfaces are often based on counting the microbial survivors sampled in a liquid, but total cell removal from surfaces is seldom achieved. One might therefore wonder whether evaluations of microbial survivors in liquid-sampled cells are representative of the levels of survivors in whole populations. The present study was thus designed to determine the “damaged/undamaged” status induced by a peracetic acid disinfection for Bacillus atrophaeus spores deposited on glass coupons directly on this substrate and to compare it to the status of spores collected in liquid by a sampling procedure. The method utilized to assess the viability of both surface-associated and liquid-sampled spores included fluorescence labeling with a combination of Syto 61 and Chemchrome V6 dyes and quantifications by analyzing the images acquired by confocal laser scanning microscopy. The principal result of the study was that the viability of spores sampled in the liquid was found to be poorer than that of surface-associated spores. For example, after 2 min of peracetic acid disinfection, less than 17% ± 5% of viable cells were detected among liquid-sampled cells compared to 79% ± 5% or 47% ± 4%, respectively, when the viability was evaluated on the surface after or without the sampling procedure. Moreover, assessments of the survivors collected in the liquid phase, evaluated using the microscopic method and standard plate counts, were well correlated. Evaluations based on the determination of survivors among the liquid-sampled cells can thus overestimate the efficiency of surface disinfection procedures. PMID:21742922

  1. Viability and biomass of Micrococcus luteus DE2008 at different salinity concentrations determined by specific fluorochromes and CLSM-image analysis.

    PubMed

    Puyen, Zully M; Villagrasa, Eduard; Maldonado, Juan; Esteve, Isabel; Solé, Antonio

    2012-01-01

    In previous studies, our group developed a method based on Confocal Laser Scanning Microscopy and Image Analysis (CLSM-IA) to analyze the diversity and biomass of cyanobacteria in microbial mats. However, this method cannot be applied to heterotrophic microorganisms, as these do not have autofluorescence. In this article, we present a method that combines CLSM-IA and Hoechst 33342 and SYTOX Green fluorochromes (FLU-CLSM-IA) to determine the viability and biomass of Micrococcus luteus DE2008, isolated from a saline microbial mat (Ebro Delta, Tarragona, Spain). The method has been applied to assess the effect of salinity on this microorganism. A reduction in viability and biomass (live cells) was observed as the salt concentration increases. The largest effect was at 100‰ NaCl with a cell death of 27.25% and a decrease in total and individual biomass of 39.75 and 0.009 mgC/cm(3), respectively, both with respect to optimal growth (10 ‰ NaCl). On the other hand, another important contribution of this article was that combining the FLU-CLSM-IA results with those achieved by plate counts enabled us to determine, for first time, the viability and the total biomass of the "dormant cells" (66.75% of viability and 40.59 mgC/cm(3) of total biomass at 100‰ NaCl). FLU-CLSM-IA is an efficient, fast, and reliable method for making a total count of cells at pixel level, including the dormant cells, to evaluate the viability and the biomass of a hetetrophic microorganism, M. luteus DE2008.

  2. Variation in Honey Bee Gut Microbial Diversity Affected by Ontogenetic Stage, Age and Geographic Location

    PubMed Central

    Hroncova, Zuzana; Havlik, Jaroslav; Killer, Jiri; Doskocil, Ivo; Tyl, Jan; Kamler, Martin; Titera, Dalibor; Hakl, Josef; Mrazek, Jakub; Bunesova, Vera; Rada, Vojtech

    2015-01-01

    Social honey bees, Apis mellifera, host a set of distinct microbiota, which is similar across the continents and various honey bee species. Some of these bacteria, such as lactobacilli, have been linked to immunity and defence against pathogens. Pathogen defence is crucial, particularly in larval stages, as many pathogens affect the brood. However, information on larval microbiota is conflicting. Seven developmental stages and drones were sampled from 3 colonies at each of the 4 geographic locations of A. mellifera carnica, and the samples were maintained separately for analysis. We analysed the variation and abundance of important bacterial groups and taxa in the collected bees. Major bacterial groups were evaluated over the entire life of honey bee individuals, where digestive tracts of same aged bees were sampled in the course of time. The results showed that the microbial tract of 6-day-old 5th instar larvae were nearly equally rich in total microbial counts per total digestive tract weight as foraging bees, showing a high percentage of various lactobacilli (Firmicutes) and Gilliamella apicola (Gammaproteobacteria 1). However, during pupation, microbial counts were significantly reduced but recovered quickly by 6 days post-emergence. Between emergence and day 6, imago reached the highest counts of Firmicutes and Gammaproteobacteria, which then gradually declined with bee age. Redundancy analysis conducted using denaturing gradient gel electrophoresis identified bacterial species that were characteristic of each developmental stage. The results suggest that 3-day 4th instar larvae contain low microbial counts that increase 2-fold by day 6 and then decrease during pupation. Microbial succession of the imago begins soon after emergence. We found that bacterial counts do not show only yearly cycles within a colony, but vary on the individual level. Sampling and pooling adult bees or 6th day larvae may lead to high errors and variability, as both of these stages may be undergoing dynamic succession. PMID:25768309

  3. Microbiome composition and geochemical characteristics of deep subsurface high-pressure environment, Pyhäsalmi mine Finland

    PubMed Central

    Miettinen, Hanna; Kietäväinen, Riikka; Sohlberg, Elina; Numminen, Mikko; Ahonen, Lasse; Itävaara, Merja

    2015-01-01

    Pyhäsalmi mine in central Finland provides an excellent opportunity to study microbial and geochemical processes in a deep subsurface crystalline rock environment through near-vertical drill holes that reach to a depth of more than two kilometers below the surface. However, microbial sampling was challenging in this high-pressure environment. Nucleic acid yields obtained were extremely low when compared to the cell counts detected (1.4 × 104 cells mL−1) in water. The water for nucleic acid analysis went through high decompression (60–130 bar) during sampling, whereas water samples for detection of cell counts by microscopy could be collected with slow decompression. No clear cells could be identified in water that went through high decompression. The high-pressure decompression may have damaged part of the cells and the nucleic acids escaped through the filter. The microbial diversity was analyzed from two drill holes by pyrosequencing amplicons of the bacterial and archaeal 16S rRNA genes and from the fungal ITS regions from both DNA and RNA fractions. The identified prokaryotic diversity was low, dominated by Firmicute, Beta- and Gammaproteobacteria species that are common in deep subsurface environments. The archaeal diversity consisted mainly of Methanobacteriales. Ascomycota dominated the fungal diversity and fungi were discovered to be active and to produce ribosomes in the deep oligotrophic biosphere. The deep fluids from the Pyhäsalmi mine shared several features with other deep Precambrian continental subsurface environments including saline, Ca-dominated water and stable isotope compositions positioning left from the meteoric water line. The dissolved gas phase was dominated by nitrogen but the gas composition clearly differed from that of atmospheric air. Despite carbon-poor conditions indicated by the lack of carbon-rich fracture fillings and only minor amounts of dissolved carbon detected in formation waters, some methane was found in the drill holes. No dramatic differences in gas compositions were observed between different gas sampling methods tested. For simple characterization of gas composition the most convenient way to collect samples is from free flowing fluid. However, compared to a pressurized method a relative decrease in the least soluble gases may appear. PMID:26579109

  4. Microbiological profiles, pH, and titratable acidity of chorizo and salchichón (two Spanish dry fermented sausages) manufactured with ostrich, deer, or pork meat.

    PubMed

    Capita, Rosa; Llorente-Marigómez, Sandra; Prieto, Miguel; Alonso-Calleja, Carlos

    2006-05-01

    Microbial counts, pH, and titratable acidity were determined in 102 Spanish dry fermented sausages (chorizo and salchichón) made with ostrich, deer, or pork meat. Average microbial counts (log CFU per gram) varied from 5.46 +/- 0.24 to 8.25 +/- 0.80 (total viable counts), from 4.79 +/- 0.36 to 7.99 +/- 0.20 (psychrotrophs), from 0.00 +/- 0.00 to 0.99 +/- 1.10 (undetectable values were assumed to be zero) (Enterobacteriaceae), from 0.00 +/- 0.00 to 4.27 +/- 1.47 (enterococci), from 5.15 +/- 1.15 to 8.46 +/- 0.49 (lactic acid bacteria), from 3.08 +/- 0.44 to 6.59 +/- 1.76 (Micrococcaceae), from 2.27 +/- 1.53 to 5.11 +/- 1.81 (molds and yeasts), from 0.00 +/- 0.00 to 2.25 +/- 0.81 (pseudomonads), and from 0.00 +/- 0.00 to 2.78 +/- 0.46 (Brochothrix thermosphacta). Average pH and titratable acidity varied from 5.07 +/- 0.25 to 5.63 +/- 0.51 (pH units) and from 0.30 +/- 0.01 to 0.86 +/- 0.19 (% lactic acid). Both type of sausage (P < 0.05) and species of meat (P < 0.001) influenced microbial counts. Salchich6n samples showed lower average values than chorizo samples for most microbial groups (significant for Enterobacteriaceae, lactic acid bacteria, and B. thermosphacta) and titratable acidity. Sausages made from pork showed the highest microbial loads for total viable counts, psychrotrophs, Enterobacteriaceae, enterococci, lactic acid bacteria, and yeasts and molds. Higher counts were observed only for pseudomonads in ostrich sausages. B. thermosphacta levels were similar for all species of meat. The highest average pH value was observed in sausages made from ostrich meat, and the lowest titratable acidity level was found in pork sausages.

  5. Noise-free accurate count of microbial colonies by time-lapse shadow image analysis.

    PubMed

    Ogawa, Hiroyuki; Nasu, Senshi; Takeshige, Motomu; Funabashi, Hisakage; Saito, Mikako; Matsuoka, Hideaki

    2012-12-01

    Microbial colonies in food matrices could be counted accurately by a novel noise-free method based on time-lapse shadow image analysis. An agar plate containing many clusters of microbial colonies and/or meat fragments was trans-illuminated to project their 2-dimensional (2D) shadow images on a color CCD camera. The 2D shadow images of every cluster distributed within a 3-mm thick agar layer were captured in focus simultaneously by means of a multiple focusing system, and were then converted to 3-dimensional (3D) shadow images. By time-lapse analysis of the 3D shadow images, it was determined whether each cluster comprised single or multiple colonies or a meat fragment. The analytical precision was high enough to be able to distinguish a microbial colony from a meat fragment, to recognize an oval image as two colonies contacting each other, and to detect microbial colonies hidden under a food fragment. The detection of hidden colonies is its outstanding performance in comparison with other systems. The present system attained accuracy for counting fewer than 5 colonies and is therefore of practical importance. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Is human immunodeficiency virus (HIV) stage an independent risk factor for altering the periodontal status of HIV-positive patients? A South African study.

    PubMed

    John, Cathy Nisha; Stephen, Lawrence Xavier; Joyce Africa, Charlene Wilma

    2013-12-03

    The immunosuppresion in HIV patients makes them highly susceptible to microbial infections. The aim of the study was to establish whether HIV stage (as depicted by CD4+ T lymphocyte counts) could independently be associated with periodontal status (as revealed by the measurement of clinical indices). One hundred and twenty HIV-infected patients attending an infectious diseases clinic in the Western Cape, South Africa were included in the study. The periodontal clinical indices such as plaque index, gingival index, pocket probing depth and clinical attachment levels were measured on the mesial aspect of the six Ramfjord teeth. The CD4 + T cell counts were taken from the patients' medical records and patients' HIV stage determined and grouped according to their CD4+ T cell counts into A (<200 cells /mm3), B (200-500 cells /mm3) and C (>500 cells /mm3). The mean age of 120 HIV-positive patients was 33.25 years and the mean CD4 + T cell count was 293.43 cells/mm3. The probing depth and clinical attachment loss were found to be significantly associated with the total CD4 + T cell counts but not with HIV stage. Significant correlations were found between age and all clinical indices except for clinical attachment loss. No correlation was found between age and HIV stage of the patients. The use of antiretroviral therapy was significantly associated with probing depth and clinical attachment loss, but not with plaque nor gingival index. Significant associations were observed between smoking and all of the clinical indices except for the gingival index. A significant association was observed between the use of interdental aids and all the clinical indices except for probing depth, while brushing was significantly associated with plaque index only. CD4 + T cell counts were significantly associated with brushing frequency (p = 0.0190) and the use of interdental aids (p = 0.0170). The findings of this study conclude that HIV stage, ART and age are not independent risk factors for changes in the periodontal status of HIV-positive subjects but rather that smoking and oral hygiene habits determine their susceptibility to disease.

  7. Microbial air quality and bacterial surface contamination in ambulances during patient services.

    PubMed

    Luksamijarulkul, Pipat; Pipitsangjan, Sirikun

    2015-03-01

    We sought to assess microbial air quality and bacterial surface contamination on medical instruments and the surrounding areas among 30 ambulance runs during service. We performed a cross-sectional study of 106 air samples collected from 30 ambulances before patient services and 212 air samples collected during patient services to assess the bacterial and fungal counts at the two time points. Additionally, 226 surface swab samples were collected from medical instrument surfaces and the surrounding areas before and after ambulance runs. Groups or genus of isolated bacteria and fungi were preliminarily identified by Gram's stain and lactophenol cotton blue. Data were analyzed using descriptive statistics, t-test, and Pearson's correlation coefficient with a p-value of less than 0.050 considered significant. The mean and standard deviation of bacterial and fungal counts at the start of ambulance runs were 318±485cfu/m(3) and 522±581cfu/m(3), respectively. Bacterial counts during patient services were 468±607cfu/m(3) and fungal counts were 656±612cfu/m(3). Mean bacterial and fungal counts during patient services were significantly higher than those at the start of ambulance runs, p=0.005 and p=0.030, respectively. For surface contamination, the overall bacterial counts before and after patient services were 0.8±0.7cfu/cm(2) and 1.3±1.1cfu/cm(2), respectively (p<0.001). The predominant isolated bacteria and fungi were Staphylococcus spp. and Aspergillus spp., respectively. Additionally, there was a significantly positive correlation between bacterial (r=0.3, p<0.010) and fungal counts (r=0.2, p=0.020) in air samples and bacterial counts on medical instruments and allocated areas. This study revealed high microbial contamination (bacterial and fungal) in ambulance air during services and higher bacterial contamination on medical instrument surfaces and allocated areas after ambulance services compared to the start of ambulance runs. Additionally, bacterial and fungal counts in ambulance air showed a significantly positive correlation with the bacterial surface contamination on medical instruments and allocated areas. Further studies should be conducted to determine the optimal intervention to reduce microbial contamination in the ambulance environment.

  8. Supporting the extensive dairy sheep smallholders of the semi-arid region of Crete through technical intervention.

    PubMed

    Volanis, M; Stefanakis, A; Hadjigeorgiou, I; Zoiopoulos, P

    2007-06-01

    The objective of this field study was to depict the extensive system of dairy sheep farming in the semi-arid environment of the island of Crete and to assess the potential margins of improvement through technical intervention. Forty-three family-run farms keeping a total of 13,870 sheep were surveyed in seven representative areas of the island. Several parameters were dealt with, concerning socio-economy, flock management and productivity. Study areas differed widely regarding feeds supplied per sheep, land cultivated for feeds, grazing land utilized and housing space. A range of parameters were recorded on flock size and their production characteristics such as births, fertility and number of lambs weaned. Milk yield and parameters associated with milk quality, such as somatic cell counts and total microbial flora, were also recorded. Technical intervention was directed towards removal of non-productive animals, programming of matings, balancing of diets, management of grazing lands and health care. Ewe fertility and numbers of lambs weaned per ewe, as well as harvested milk and milk quality (based on somatic cell counts and microbial load of milk) were also significantly improved. Information derived from this study stresses the important role of extension services to small farm sustainability and contributes to our knowledge of the dairy sheep farming systems in countries around the Mediterranean and elsewhere.

  9. Microbial enhancement of compost extracts based on cattle rumen content compost - characterisation of a system.

    PubMed

    Shrestha, Karuna; Shrestha, Pramod; Walsh, Kerry B; Harrower, Keith M; Midmore, David J

    2011-09-01

    Microbially enhanced compost extracts ('compost tea') are being used in commercial agriculture as a source of nutrients and for their perceived benefit to soil microbiology, including plant disease suppression. Rumen content material is a waste of cattle abattoirs, which can be value-added by conversion to compost and 'compost tea'. A system for compost extraction and microbial enhancement was characterised. Molasses amendment increased bacterial count 10-fold, while amendment based on molasses and 'fish and kelp hydrolysate' increased fungal count 10-fold. Compost extract incubated at 1:10 (w/v) dilution showed the highest microbial load, activity and humic/fulvic acid content compared to other dilutions. Aeration increased the extraction efficiency of soluble metabolites, and microbial growth rate, as did extraction of compost without the use of a constraining bag. A protocol of 1:10 dilution and aerated incubation with kelp and molasses amendments is recommended to optimise microbial load and fungal-to-bacterial ratio for this inoculum source. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. International Space Station environmental microbiome - microbial inventories of ISS filter debris.

    PubMed

    Venkateswaran, Kasthuri; Vaishampayan, Parag; Cisneros, Jessica; Pierson, Duane L; Rogers, Scott O; Perry, Jay

    2014-01-01

    Despite an expanding array of molecular approaches for detecting microorganisms in a given sample, rapid and robust means of assessing the differential viability of the microbial cells, as a function of phylogenetic lineage, remain elusive. A propidium monoazide (PMA) treatment coupled with downstream quantitative polymerase chain reaction (qPCR) and pyrosequencing analyses was carried out to better understand the frequency, diversity, and distribution of viable microorganisms associated with debris collected from the crew quarters of the International Space Station (ISS). The cultured bacterial counts were more in the ISS samples than cultured fungal population. The rapid molecular analyses targeted to estimate viable population exhibited 5-fold increase in bacterial (qPCR-PMA assay) and 25-fold increase in microbial (adenosine triphosphate assay) burden than the cultured bacterial population. The ribosomal nucleic acid-based identification of cultivated strains revealed the presence of only four to eight bacterial species in the ISS samples, however, the viable bacterial diversity detected by the PMA-pyrosequencing method was far more diverse (12 to 23 bacterial taxa) with the majority consisting of members of actinobacterial genera (Propionibacterium, Corynebacterium) and Staphylococcus. Sample fractions not treated with PMA (inclusive of both live and dead cells) yielded a great abundance of highly diverse bacterial (94 to 118 taxa) and fungal lineages (41 taxa). Even though deep sequencing capability of the molecular analysis widened the understanding about the microbial diversity, the cultivation assay also proved to be essential since some of the spore-forming microorganisms were detected only by the culture-based method. Presented here are the findings of the first comprehensive effort to assess the viability of microbial cells associated with ISS surfaces, and correlate differential viability with phylogenetic affiliation.

  11. Abundance and diversity of microbial inhabitants in European spacecraft-associated clean rooms.

    PubMed

    Stieglmeier, Michaela; Rettberg, Petra; Barczyk, Simon; Bohmeier, Maria; Pukall, Rüdiger; Wirth, Reinhard; Moissl-Eichinger, Christine

    2012-06-01

    The determination of the microbial load of a spacecraft en route to interesting extraterrestrial environments is mandatory and currently based on the culturable, heat-shock-surviving portion of microbial contaminants. Our study compared these classical bioburden measurements as required by NASA's and ESA's guidelines for the microbial examination of flight hardware, with molecular analysis methods (16S rRNA gene cloning and quantitative PCR) to further develop our understanding of the diversity and abundance of the microbial communities of spacecraft-associated clean rooms. Three samplings of the Herschel Space Observatory and its surrounding clean rooms were performed in two different European facilities. Molecular analyses detected a broad diversity of microbes typically found in the human microbiome with three bacterial genera (Staphylococcus, Propionibacterium, and Brevundimonas) common to all three locations. Bioburden measurements revealed a low, but heterogeneous, abundance of spore-forming and other heat-resistant microorganisms. Total cell numbers estimated by quantitative real-time PCR were typically 3 orders of magnitude greater than those determined by viable counts, which indicates a tendency for traditional methods to underestimate the extent of clean room bioburden. Furthermore, the molecular methods allowed the detection of a much broader diversity than traditional culture-based methods.

  12. Dynamics of microorganism populations in recirculating nutrient solutions

    NASA Technical Reports Server (NTRS)

    Strayer, R. F.

    1994-01-01

    This overview covers the basic microbial ecology of recirculating hydroponic solutions. Examples from NASA and Soviet CELSS tests and the commercial hydroponic industry will be used. The sources of microorganisms in nutrient solutions include air, water, seeds, plant containers and plumbing, biological vectors, and personnel. Microbial fates include growth, death, and emigration. Important microbial habitats within nutrient delivery systems are root surfaces, hardware surfaces (biofilms), and solution suspension. Numbers of bacteria on root surfaces usually exceed those from the other habitats by several orders of magnitude. Gram negative bacteria dominate the microflora with fungal counts usually much lower. Trends typically show a decrease in counts with increasing time unless stressed plants increase root exudates. Important microbial activities include carbon mineralization and nitrogen transformations. Important detrimental interactions include competition with plants, and human and plant pathogenesis.

  13. Project environmental microbiology as related to planetary quarantine

    NASA Technical Reports Server (NTRS)

    Pflug, I. J.

    1974-01-01

    Microbiological analyses of soil particles allow for the following conclusions: (1) there is a considerable range in the values of aerobic, mesophilic microbial counts associated with different size soil fractions; (2) as soil particle size increases, there is an increase in the mean microbial concentration per particle; (3) plate counts of aerobic, mesophilic organisms in unheated soils yielded a mean concentration of about six organisms per particle for the smallest soil fraction; (4) aerobic, mesophilic counts for sonicated particles heated at 80 C for 20 minutes yielded mean values of about two organisms per particle for the smallest particles; (5) some actinomycetes associated with the soil fractions could survive dry heat treatment at 110 C for one hour; and (6) soil particles stored under ambient laboratory conditions for 2.5 years aerobic, mesophilic plate counts which were comparable or slightly greater than the counts for more recently collected soil.

  14. Density and composition of microorganisms during long-term (418 day) growth of potato using biologically reclaimed nutrients from inedible plant biomass

    NASA Technical Reports Server (NTRS)

    Garland, J. L.; Cook, K. L.; Johnson, M.; Sumner, R.; Fields, N.; Sager, J. C. (Principal Investigator)

    1997-01-01

    A study evaluating alternative methods for long term operation of biomass production systems was recently completed at the Kennedy Space Center (KSC). The 418-day study evaluated repeated batch versus mixed-aged production of potato grown on either standard 1/2-strength Hoagland's nutrient solution or solutions including nutrients recycled from inedible plant material. The long term effects of closure and recycling on microbial dynamics were evaluated by monitoring the microbial communities associated with various habitats within the plant growth system (i.e., plant roots, nutrient solution, biofilms within the hydroponic systems, atmosphere, and atmospheric condensate). Plate count methods were used to enumerate and characterize microorganisms. Microscopic staining methods were used to estunate total cell densities. The primary finding was that the density and composition of microbial communities associated with controlled environmental plant growth systems are stable during long term operation. Continuous production resulted in slightly greater stability. Nutrient recycling, despite the addition of soluble organic material from the waste processing system, did not significantly increase microbial density in any of the habitats.

  15. Density and composition of microorganisms during long-term (418 day) growth of potato using biologically reclaimed nutrients from inedible plant biomass

    NASA Astrophysics Data System (ADS)

    Garland, J. L.; Cook, K. L.; Johnson, M.; Sumner, R.; Fields, N.

    1997-01-01

    A study evaluating alternative methods for long term operation of biomass production systems was recently completed at the Kennedy Space Center (KSC). The 418-day study evaluated repeated batch versus mixed-aged production of potato grown on either standard 1/2-strength Hoagland's nutrient solution or solutions including nutrients recycled from inedible plant material. The long term effects of closure and recycling on microbial dynamics were evaluated by monitoring the microbial communities associated with various habitats within the plant growth system (i.e., plant roots, nutrient solution, biofilms within the hydroponic systems, atmosphere, and atmospheric condensate). Plate count methods were used to enumerate and characterize microorganisms. Microscopic staining methods were used to estimate total cell densities. The primary finding was that the density and composition of microbial communities associated with controlled environmental plant growth systems are stable during long term operation. Continuous production resulted in slightly greater stability. Nutrient recycling, despite the addition of soluble organic material from the waste processing system, did not significantly increase microbial density in any of the habitats.

  16. Density and composition of microorganisms during long-term (418 day) growth of potato using biologically reclaimed nutrients from inedible plant biomass

    NASA Astrophysics Data System (ADS)

    1997-01-01

    A study evaluating alternative methods for long term operation of biomass production systems was recently completed at the Kennedy Space Center (KSC). The 418-day study evaluated repeated batch versus mixed-aged production of potato grown on either standard 12-strength Hoagland's nutrient solution or solutions including nutrients recycled from inedible plant material. The long term effects of closure and recycling on microbial dynamics were evaluated by monitoring the microbial communities associated with various habitats within the plant growth system (i.e., plant roots, nutrient solution, biofilms within the hydroponic systems, atmosphere, and atmospheric condensate). Plate count methods were used to enumerate and characterize microorganisms. Microscopic staining methods were used to estimate total cell densities. The primary finding was that the density and composition of microbial communities associated with controlled environmental plant growth systems are stable during long term operation. Continuous production resulted in slightly greater stability. Nutrient recycling, despite the addition of soluble organic material from the waste processing system, did not significantly increase microbial density in any of the habitats.

  17. Rapid classification of hairtail fish and pork freshness using an electronic nose based on the PCA method.

    PubMed

    Tian, Xiu-Ying; Cai, Qiang; Zhang, Yong-Ming

    2012-01-01

    We report a method for building a simple and reproducible electronic nose based on commercially available metal oxide sensors (MOS) to monitor the freshness of hairtail fish and pork stored at 15, 10, and 5 °C. After assembly in the laboratory, the proposed product was tested by a manufacturer. Sample delivery was based on the dynamic headspace method, and two features were extracted from the transient response of each sensor using an unsupervised principal component analysis (PCA) method. The compensation method and pattern recognition based on PCA are discussed in the current paper. PCA compensation can be used for all storage temperatures, however, pattern recognition differs according to storage conditions. Total volatile basic nitrogen (TVBN) and aerobic bacterial counts of the samples were measured simultaneously with the standard indicators of hairtail fish and pork freshness. The PCA models based on TVBN and aerobic bacterial counts were used to classify hairtail fish samples as "fresh" (TVBN ≤ 25 g and microbial counts ≤ 10(6) cfu/g) or "spoiled" (TVBN ≥ 25 g and microbial counts ≥ 10(6) cfu/g) and pork samples also as "fresh" (TVBN ≤ 15 g and microbial counts ≤ 10(6) cfu/g) or "spoiled" (TVBN ≥ 15 g and microbial counts ≥ 10(6) cfu/g). Good correlation coefficients between the responses of the electronic nose and the TVBN and aerobic bacterial counts of the samples were obtained. For hairtail fish, correlation coefficients were 0.97 and 0.91, and for pork, correlation coefficients were 0.81 and 0.88, respectively. Through laboratory simulation and field application, we were able to determine that the electronic nose could help ensure the shelf life of hairtail fish and pork, especially when an instrument is needed to take measurements rapidly. The results also showed that the electronic nose could analyze the process and level of spoilage for hairtail fish and pork.

  18. Airborne microbial composition in a high-throughput poultry slaughtering facility.

    PubMed

    Liang, Ruiping; Tian, Jijing; She, Ruiping; Meng, Hua; Xiao, Peng; Chang, Lingling

    2013-03-01

    A high-throughput chicken slaughtering facility in Beijing was systematically investigated for numbers of airborne microorganisms. Samples were assessed for counts of aerobic bacteria, Staphylococcus aureus, total coliforms, Escherichia coli, Pseudomonas aeruginosa, Listeria monocytogenes, Bacillus cereus, and Salmonella. During a 4-month period (September to December 2011), samples were collected for 10 min three times daily (preproduction, production, and postproduction). Samples were collected for three consecutive days of each month with an FA-1 sampler from six sampling sites: receiving-hanging, soaking-scalding and defeathering, evisceration, precooling, subdividing, and packing. Humidity, temperature, wind velocity, and airborne particulates also were recorded at each sampling site and time. The highest counts of microorganisms were recorded in the initial stages of processing, i.e., the receiving-hanging and defeathering areas, with a definite decline toward the evisceration, prechilling, subdividing, and packing areas; the prechilling area had the lowest microbial counts of 2.4 × 10(3) CFU/m(3). Mean total coliforms counts ranged from 8.4 × 10(3) to 140 CFU/m(3). Maximum E. coli counts were 6.1 × 10(3) CFU/m(3) in the soaking-scalding and defeathering area. B. cereus, P. aeruginosa, and S. aureus represented only a small proportion of the microbial population (1,900 to 20 CFU/m(3)). L. monocytogenes and Salmonella were rarely detected in evisceration, precooling, subdividing, and packing areas. Our study identified the levels of bioaerosols that may affect chicken product quality. This finding could be useful for improved control of microbial contamination to ensure product quality.

  19. Cytometric methods for measuring bacteria in water: advantages, pitfalls and applications.

    PubMed

    Hammes, Frederik; Egli, Thomas

    2010-06-01

    Rapid detection of microbial cells is a challenge in microbiology, particularly when complex indigenous communities or subpopulations varying in viability, activity and physiological state are investigated. Flow cytometry (FCM) has developed during the last 30 years into a multidisciplinary technique for analysing bacteria. When used correctly, FCM can provide a broad range of information at the single-cell level, including (but not limited to) total counts, size measurements, nucleic acid content, cell viability and activity, and detection of specific bacterial groups or species. The main advantage of FCM is that it is fast and easy to perform. It is a robust technique, which is adaptable to different types of samples and methods, and has much potential for automation. Hence, numerous FCM applications have emerged in industrial biotechnology, food and pharmaceutical quality control, routine monitoring of drinking water and wastewater systems, and microbial ecological research in soils and natural aquatic habitats. This review focuses on the information that can be gained from the analysis of bacteria in water, highlighting some of the main advantages, pitfalls and applications.

  20. Isolation of microbial pathogens of subclinical mastitis from raw sheep's milk of Epirus (Greece) and their role in its hygiene.

    PubMed

    Fotou, K; Tzora, A; Voidarou, Ch; Alexopoulos, A; Plessas, S; Avgeris, I; Bezirtzoglou, E; Akrida-Demertzi, K; Demertzis, P G

    2011-12-01

    The natural raw milk microflora is a factor that expresses its sensorial characteristics. The microbial charge into the mammary gland of healthy animal is low and the application of right and healthy conditions during milking and cheese making procedure, prevents from contaminating as well as maintains the natural microflora in order to lend the particular characteristics of milk. The purpose of the present project was the study of the Total Viable Count (T.V.C.) and the count of total psychrotropic bacteria of raw sheep milk from Boutsiko and Karamaniko breeds, collected from healthy animals, as well as the isolation, identification and enumeration of pathogenic bacteria related with the hygiene and the quality of raw sheep milk (with a particular interest in bacteria that may cause human infection). During the experiment we examined two hundred forty (240) samples of raw sheep milk. In these samples a) Staphylococcus aureus, Salmonella sp., Escherichia coli, Clostridium perfringens (vegetative cells and spores) and Bacillus sp. were isolated and identified b) the Total Viable Count and the total number of psychrotropic bacteria were also specified. The sampling, the preparation of samples and decimal dilutions were based on international methods. The Total viable count was determined using the standard methods of the American Public Health Association, 2002. The total number of psychrotropic bacteria was determined using APHA 1976, 1978 rules. The identification of the bacteria was carried out according to the Bergey's manual. Microscopic examination of Gram stained cells, catalase, oxidase and biochemical tests were performed when necessary to further identify. From the 240 milk samples tested, only 5% were E. coli positive, with mean counts ranged from 2 × 10(3) to 2.4 × 10(4) cfu/ml. S. aureus was isolated from 24% of the samples and the mean count per ml was ranged from <10 to 3.4 × 10(2). Meanwhile, Bacillus spp. was also detected in 29% samples. Vegetative forms and spores of C. perfringens were detected in 13% and 63% of the samples respectively. However, microbiological analyses revealed the presence of a small number of selected pathogens in milk samples such as Salmonella, which was only detected in 5% of the samples. Listeria sp., Pseudomonas sp. and Vibrio cholerae were never found. From the experimental results, the Total Viable Count from raw sheep milk samples, fulfils the microbiological criteria of EU Legislation in a percentage of approximately 97%. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Reservoir-Scale Biological Community Response to Trace Element Additions in a Northern Montana Oil Field

    NASA Astrophysics Data System (ADS)

    Connors, D. E.; Bradfish, J.; DeBruyn, R. P.; Zemetra, J.; Mitchell, H.

    2017-12-01

    In subsurface oil bearing formations, microbial growth and metabolism is restricted due to a lack of elements other than carbon, hydrogen, and oxygen required for cell structure and as cofactors. A chemical treatment that adds these elements back into the formation was deployed into an oil reservoir in Northern Montana, with the intent of increasing biogenic methane generation. Samples of water from producing wells in the reservoir were collected anaerobically, and analyzed for geochemical content, and cells from the water were collected and analyzed via 16S rRNA gene DNA sequencing to determine the makeup of the microbial community over the course of twelve months of treatment, and for two years after. Prior to chemical treatment, this reservoir was depleted in elements required for enzyme co-factors in the methanogenesis metabolic pathway (Co, Mo, Ni, W, Zn) as well as nitrogen and phosphorus. Most the microbial community was composed of chemoheterotrophic bacteria associated with the biodegradation of large carbon molecules, with a small community of acetoclastic methanogens. During and after additions of the depleted elements, the metabolism of the community in the reservoir shifted towards chemoautotrophs and hydrogenotrophic methanogens, and the cell density increased. After treatment was ended, cell counts stabilized at a new equilibrium concentration, and the autotrophic metabolism was maintained. The pre-treatment community was dependent on energy input from solubilized oil molecules, whereas the post-treatment community more effectively utilized dissolved organics and carbon dioxide as carbon sources for fixation and respiration. This study demonstrates the capability of microbial communities to rapidly reorganize in the environment when provided with an influx of the elements required for growth and metabolism.

  2. Bacterial abundance and composition in marine sediments beneath the Ross Ice Shelf, Antarctica.

    PubMed

    Carr, S A; Vogel, S W; Dunbar, R B; Brandes, J; Spear, J R; Levy, R; Naish, T R; Powell, R D; Wakeham, S G; Mandernack, K W

    2013-07-01

    Marine sediments of the Ross Sea, Antarctica, harbor microbial communities that play a significant role in the decomposition, mineralization, and recycling of organic carbon (OC). In this study, the cell densities within a 153-cm sediment core from the Ross Sea were estimated based on microbial phospholipid fatty acid (PLFA) concentrations and acridine orange direct cell counts. The resulting densities were as high as 1.7 × 10⁷ cells mL⁻¹ in the top ten centimeters of sediments. These densities are lower than those calculated for most near-shore sites but consistent with deep-sea locations with comparable sedimentation rates. The δ¹³C measurements of PLFAs and sedimentary and dissolved carbon sources, in combination with ribosomal RNA (SSU rRNA) gene pyrosequencing, were used to infer microbial metabolic pathways. The δ¹³C values of dissolved inorganic carbon (DIC) in porewaters ranged downcore from -2.5‰ to -3.7‰, while δ¹³C values for the corresponding sedimentary particulate OC (POC) varied from -26.2‰ to -23.1‰. The δ¹³C values of PLFAs ranged between -29‰ and -35‰ throughout the sediment core, consistent with a microbial community dominated by heterotrophs. The SSU rRNA gene pyrosequencing revealed that members of this microbial community were dominated by β-, δ-, and γ-Proteobacteria, Actinobacteria, Chloroflexi and Bacteroidetes. Among the sequenced organisms, many appear to be related to known heterotrophs that utilize OC sources such as amino acids, oligosaccharides, and lactose, consistent with our interpretation from δ¹³CPLFA analysis. Integrating phospholipids analyses with porewater chemistry, δ¹³CDIC and δ¹³CPOC values and SSU rRNA gene sequences provides a more comprehensive understanding of microbial communities and carbon cycling in marine sediments, including those of this unique ice shelf environment. © 2013 John Wiley & Sons Ltd.

  3. The antimicrobial effects of chopped garlic in ground beef and raw meatball (ciğ köfte).

    PubMed

    Aydin, Ali; Bostan, Kamil; Erkan, Mehmet Emin; Bingöl, Bariş

    2007-03-01

    This study was carried out to investigate the antimicrobial effects of chopped garlic in ground beef and raw meatball (çig köfte), which is a traditional food product eaten raw. Fresh minced ground beef and raw meatball batter prepared with traditional methods were separated into groups. Chopped and crushed garlic was added to each batch in order to reach various concentrations from 0% to 10%. The ground beef samples were stored at refrigerator and ambient temperatures. The raw meatball samples were only stored at room temperature. All samples were analyzed in order to determine the microbial counts at the 2(nd), 6(th), 12(th), and 24(th) hours of storage. Garlic addition decreased the microbial growth in some ground beef samples kept either at room temperature or in the refrigerator. However, microbial growth increased in some ground beef samples kept in similar conditions. The difference was found in samples kept in the refrigerator for 24 hours in terms of total aerobic mesophilic bacteria and coliform bacteria when garlic used at 10%. The effects of garlic on the microbial growth of both coliforms and Staphylococcus/Micrococcus in the samples kept at room temperature were increased. The yeast and mold counts in ground beef samples kept in any condition were not affected by garlic addition. However, the addition of garlic to the raw meatball mix decreased the microbial count, in terms of total aerobic mesophilic bacteria and yeast and mold counts, when the garlic was added at 5% or 10% (P < .05). The addition of 10% garlic to raw meatball caused a permanent decrease in yeast and mold count, unlike in ground beef. The results of this study indicate that the chopped garlic has a slowing-down effect on microbiological growth in ground meat depending on the garlic concentration, but this effect was not at an expected level even at the highest concentration, because potential antimicrobial agents in chopped garlic were probably insufficiently extracted.

  4. Dynamics of microorganism populations in recirculating nutrient solutions

    NASA Technical Reports Server (NTRS)

    Strayer, R. F.

    1994-01-01

    This overview covers the basic microbial ecology of recirculating hydroponic solutions. Examples from NASA and Soviet Controlled Ecological Life Support Systems (CELSS) tests and the commercial hydroponic industry will be used. The sources of microorganisms in nutrient solutions include air, water, seeds, plant containers and plumbing, biological vectors, and personnel. Microbial fates include growth, death, and emigration. Important microbial habitats within nutrient delivery systems are root surfaces, hardware surfaces (biofilms), and solution suspension. Numbers of bacteria on root surfaces usually exceed those from the other habitats by several orders of magnitude. Gram negative bacteria dominate the microflora with fungal counts usually much lower. Trends typically show a decrease in counts with increasing time unless stressed plants increase root exudates. Important microbial activities include carbon mineralization and nitrogen transformations. Important detrimental interactions include competition with plants, and human and plant pathogenesis.

  5. Microbial loads and antibiotic resistance patterns of Staphylococcus aureus in different types of raw poultry-based meat preparations.

    PubMed

    Buzón-Durán, Laura; Capita, Rosa; Alonso-Calleja, Carlos

    2017-09-01

    The hygiene status of raw chicken-meat preparations from retail outlets in North-Western Spain was investigated. Microbial counts (aerobic plate counts (APCs), psychrotrophs, Enterobacteriaceae, fecal coliforms, enterococci, pseudomonads, fluorescent pseudomonads, yeasts and molds, and Staphylococcus aureus) were determined for minced meat, hamburgers, nuggets, white sausages, red sausages, escalope, and roll-ups. S. aureus isolates were tested for susceptibility to twenty antimicrobials of veterinary and human clinical significance (disc diffusion method, CLSI). Average microbial loads (log10 cfu/g) ranged from 2.63 ± 0.80 (enterococci) to 6.66 ± 1.09 (psychrotrophs). Average APCs (6.44 ± 1.16 log10 cfu/g) were regarded as acceptable according to EU microbiological criteria. The type of product had an influence (P < 0.05) on microbial loads, samples of escalope showing the highest counts for most microbial groups. Two-thirds (66.7%) of the samples tested harbored S. aureus. All the S. aureus isolates were multi-resistant (to between three and fifteen antibiotics). The greatest prevalence of resistance was shown for ampicillin, oxacillin, penicillin G, ceftazidime, and nalidixic acid. The results of this study show that poultry-based meat preparations present high microbial loads and are a major reservoir of antibiotic-resistant S. aureus strains. This highlights the need for correct handling of such foodstuffs with a view to reducing risks to consumers. © 2017 Poultry Science Association Inc.

  6. Microbes of deep marine sediments as viewed by metagenomics

    NASA Astrophysics Data System (ADS)

    Biddle, J.

    2015-12-01

    Ten years after the first deep marine sediment metagenome was produced, questions still exist about the nucleic acid sequences we have retrieved. Current data sets, including the Peru Margin, Costa Rica Margin and Iberian Margin show that consistently, data forms larger assemblies at depth due to the reduced complexity of the microbial community. But are these organisms active or preserved? At SMTZs, a change in the assembly statistics is noted, as well as an increase in cell counts, suggesting that cells are truly active. As depth increases, genome sizes are consistently large, suggesting that much like soil microbes, sedimentary microbes may maintain a larger reportorie of genomic potential. Functional changes are seen with depth, but at many sites are not correlated to specific geochemistries. Individual genomes show changes with depth, which raises interesting questions on how the subsurface is settled and maintained. The subsurface does have a distinct genomic signature, including unusual microbial groups, which we are now able to analyze for total genomic content.

  7. Modeling the impact of the indigenous microbial population on the maximum population density of Salmonella on alfalfa.

    PubMed

    Rijgersberg, Hajo; Franz, Eelco; Nierop Groot, Masja; Tromp, Seth-Oscar

    2013-07-01

    Within a microbial risk assessment framework, modeling the maximum population density (MPD) of a pathogenic microorganism is important but often not considered. This paper describes a model predicting the MPD of Salmonella on alfalfa as a function of the initial contamination level, the total count of the indigenous microbial population, the maximum pathogen growth rate and the maximum population density of the indigenous microbial population. The model is parameterized by experimental data describing growth of Salmonella on sprouting alfalfa seeds at inoculum size, native microbial load and Pseudomonas fluorescens 2-79. The obtained model fits well to the experimental data, with standard errors less than ten percent of the fitted average values. The results show that the MPD of Salmonella is not only dictated by performance characteristics of Salmonella but depends on the characteristics of the indigenous microbial population like total number of cells and its growth rate. The model can improve the predictions of microbiological growth in quantitative microbial risk assessments. Using this model, the effects of preventive measures to reduce pathogenic load and a concurrent effect on the background population can be better evaluated. If competing microorganisms are more sensitive to a particular decontamination method, a pathogenic microorganism may grow faster and reach a higher level. More knowledge regarding the effect of the indigenous microbial population (size, diversity, composition) of food products on pathogen dynamics is needed in order to make adequate predictions of pathogen dynamics on various food products.

  8. Bacterial Diversity within the Extreme Arid Atacama Desert Soils of the Yungay Region, Chile

    NASA Astrophysics Data System (ADS)

    Connon, S. A.; Lester, E. D.; Shafaat, H. S.; Obenhuber, D. C.; Ponce, A.

    2006-12-01

    Surface and subsurface soil samples analyzed for this study were collected from the hyper-arid Yungay region of the Atacama Desert, Chile. This is the first report of microbial diversity from DNA extracted directly from these extremely desiccated soils. Our data shows that 94% of the 16S rRNA genes cloned from these soils belong to the Actinobacteria phylum. A 24-hour time course series showed a diurnal water activity (aw) cycle that peaked at 0.52 in the early predawn hours, and ranged from 0.08 0.01 during the day. All measured water activity values were below the level required for microbial growth or enzyme activity. Total organic carbon (TOC) levels in this region were just above the limits of detection and ranged from 220 660 μg/g of soil. Phospholipid fatty acid (PLFA) levels indicated cellular biomass ranging from 2 ×105 to 7 ×106 cell equivalents per gram of soil. The culturable counts were low with most samples showing no growth on standard plates of R2A medium; the highest single count was 47 colony forming units (CFU) per gram.

  9. Multispecies Biofilm Development on Space Station Heat Exhanger Core Material

    NASA Technical Reports Server (NTRS)

    Pyle, B. H.; Roth, S. R.; Vega, L. M.; Pickering, K. D.; Alvarez, Pedro J. J.; Roman, M. C.

    2007-01-01

    Investigations of microbial contamination of the cooling system aboard the International Space Station (ISS) suggested that there may be a relationship between heat exchanger (HX) materials and the degree of microbial colonization and biofilm formation. Experiments were undertaken to test the hypothesis that biofilm formation is influenced by the type and previous exposure of HX surfaces. Acidovorax delafieldii, Comamonas acidovorans, Hydrogenophaga pseudoflava, Pseudomonas stutzeri, Sphingomonas paucimobilis, and Stenotrophomonas maltophilia, originally isolated from ISS cooling system fluid, were cultured on R2A agar and suspended separately in fresh filter-sterilized ISS cooling fluid, pH 8.3. Initial numbers in each suspension ranged from 10(exp 6)-10(exp 7) CFU/ml, and a mixture contained greater than 10(exp 7) CFU/ml. Coupons of ISS HX material, previously used on orbit (HXOO) or unused (HXUU), polycarbonate (PC) and 316L polished stainless steel (SS) were autoclaved, covered with multispecies suspension in sterile tubes and incubated in the dark at ambient (22-25 C). Original HX material contained greater than 90% Ni, 4.5% Si, and 3.2% B, with a borate buffer. For approximately 10 weeks, samples of fluid were plated on R2A agar, and surface colonization assessed by SYBR green or BacLight staining and microscopy. Suspension counts for the PC and SC samples remained steady at around 10(exp 7) CFU/ml. HXUU counts declined about 1 log in 21 d then remained steady, and HXOO counts declined 2 logs in 28 d, fluctuated and stabilized about 10(exp 3) CFU/ml from 47-54 d. Predominantly yellow S. paucimobilis predominated on plates from HXOO samples up to 26 d, then white or translucent colonies of other species appeared. All colony types were seen on plates from other samples throughout the trial. Epifluorescence microscopy indicated microbial growth on all surfaces by 21 d, followed by variable colonization. After 54 d, all but the HXOO samples had well-distributed live and dead cells; the HXOO samples had few cells and most were live by BacLight. The results suggest that HX materials themselves are inhibiting microbial growth on the surfaces. The HX exposed on orbit to cooling system fluid inhibited growth of some species originally isolated from the system, whereas the unused HX material had a moderate effect compared to no inhibition with PC or SS controls. It is possible that chemistry or microbiology of the ISS system increased deposition of inhibitory compounds on the HXOO coupon surfaces; these may inhibit inoculated species to differing degrees.

  10. Microbial response to triepthylphosphate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazen, T.C.; Santo Domingo, J.W.; Berry, C.J.

    1997-05-01

    The effect of triethylphosphate (TEP) on the activity of a landfill aquifer microbial community was evaluated using standard techniques and in situ hybridizations with phylogenetic probes. Benzene was used as an external carbon source to monitor degradation of an aromatic compound in TEP amended microcosms. Microscopical and viable counts were higher in TEP containing microcosms when compared to unamended controls. A significant increase in metabolic activity was also observed for TEP amended samples as determined by the number of cells hybridizing to an eubacterial probe. In addition, the number of beta and gamma Proteobacteria increased from undetectable levels prior tomore » the study to 15-29% of the total bacteria in microcosms containing TEP and benzene. In these microcosms, nearly 40% of the benzene was degraded during the incubation period compared to less than 5% in unamended microcosms. While TEP has previously been used as an alternate phosphate source in the bioremediation of chlorinated aliphatics, this study shows that it can also stimulate the microbial degradation of aromatics in phosphate limited aquifers.« less

  11. Rifaximin has a marginal impact on microbial translocation, T-cell activation and inflammation in HIV-positive immune non-responders to antiretroviral therapy - ACTG A5286.

    PubMed

    Tenorio, Allan R; Chan, Ellen S; Bosch, Ronald J; Macatangay, Bernard J C; Read, Sarah W; Yesmin, Suria; Taiwo, Babafemi; Margolis, David M; Jacobson, Jeffrey M; Landay, Alan L; Wilson, Cara C

    2015-03-01

    Rifaximin, a nonabsorbable antibiotic that decreases lipopolysaccharide (LPS) in cirrhotics, may decrease the elevated levels of microbial translocation, T-cell activation and inflammation in human immunodeficiency virus (HIV)-positive immune nonresponders to antiretroviral therapy (ART). HIV-positive adults receiving ART for ≥96 weeks with undetectable viremia for ≥48 weeks and CD4(+) T-cell counts <350 cells/mm(3) were randomized 2:1 to rifaximin versus no study treatment for 4 weeks. T-cell activation, LPS, and soluble CD14 were measured at baseline and at weeks 2, 4, and 8. Wilcoxon rank sum tests compared changes between arms. Compared with no study treatment (n = 22), rifaximin (n = 43) use was associated with a significant difference between study arms in the change from baseline to week 4 for CD8(+)T-cell activation (median change, 0.0% with rifaximin vs +0.6% with no treatment; P = .03). This difference was driven by an increase in the no-study-treatment arm because there was no significant change within the rifaximin arm. Similarly, although there were significant differences between study arms in change from baseline to week 2 for LPS and soluble CD14, there were no significant changes within the rifaximin arm. In immune nonresponders to ART, rifaximin minimally affected microbial translocation and CD8(+)T-cell activation. Trial registration number. NCT01466595. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. [Effects of grape seed addition in swine manure-wheat straw composting on the compost microbial community and carbon and nitrogen contents].

    PubMed

    Huang, Yi-Mei; Liu, Xue-Ling; Jiang, Ji-Shao; Huang, Hua; Liu, Dong

    2012-08-01

    Taking substrates swine manure and wheat straw (fresh mass ratio 10.5:1) as the control (PMW), a composting experiment was conducted in a self-made aerated static composting bin to study the effects of adding 8% grape seed (treatment PMW + G) on the succession of microbial community and the transformation of carbon and nitrogen in the substrates during the composting. Seven samples were collected from each treatment, according to the temperature of the compost during the 30 d composting period. The microbial population and physiological groups were determined, and the NH4(+)-N, NO3(-)-N, organic N, and organic C concentrations in the compost were measured. Grape seed addition induced a slight increase of bacterial count and a significant increase of actinomycetes count, but decreased the fungal count significantly. Grape seed addition also decreased the ratio of bacteria to actinomycetes and the counts of ammonifiers and denitrifiers, but increased the counts of nitrifiers, N-fixing bacteria, and cellulose-decomposing microorganisms. The contents of NH4(+)-N and organic C decreased, while that of NO3(-)-N increased obviously. The NO3(-)-N content in the compost was positively correlated with the actinomycetes count. During composting, the compost temperature in treatment PMW + G increased more rapidly, and remained steady in thermophilic phase, while the water content changed little, which provided a stable and higher population of actinomycetes and nitrifiers in thermophilic phase, being beneficial to the increase of compost nitrate N.

  13. Comparison of Primary Models to Predict Microbial Growth by the Plate Count and Absorbance Methods.

    PubMed

    Pla, María-Leonor; Oltra, Sandra; Esteban, María-Dolores; Andreu, Santiago; Palop, Alfredo

    2015-01-01

    The selection of a primary model to describe microbial growth in predictive food microbiology often appears to be subjective. The objective of this research was to check the performance of different mathematical models in predicting growth parameters, both by absorbance and plate count methods. For this purpose, growth curves of three different microorganisms (Bacillus cereus, Listeria monocytogenes, and Escherichia coli) grown under the same conditions, but with different initial concentrations each, were analysed. When measuring the microbial growth of each microorganism by optical density, almost all models provided quite high goodness of fit (r(2) > 0.93) for all growth curves. The growth rate remained approximately constant for all growth curves of each microorganism, when considering one growth model, but differences were found among models. Three-phase linear model provided the lowest variation for growth rate values for all three microorganisms. Baranyi model gave a variation marginally higher, despite a much better overall fitting. When measuring the microbial growth by plate count, similar results were obtained. These results provide insight into predictive microbiology and will help food microbiologists and researchers to choose the proper primary growth predictive model.

  14. Data for Figures in Rainfall-induced release of microbes from manure: model development, parameter estimation, and uncertainty evaluation on small plots

    EPA Pesticide Factsheets

    ? Figure 1. Ratio of cumulative released cells to cells initially present in the manure at Week 0 as they vary by time, manure type and age, microbe, and Event (i.e., season). The 95% confidence intervals of the observed median number of cells in microbial runoff are shown as the shaded area.? Figure 2. Typical observed and simulated cumulative microbial runoff for Plots A403 and C209 with individual plot calibration.? Figure 3. Observed versus simulated microbial runoff associated with the Approach 1, adjusted for cumulative results by manure type and Event. Results accounted for counts associated with field monitoring time intervals described in Section 2.1 Field method. NS=Nash-Sutcliffe modeling efficiency, EC=E. coli, En=enterococci, FC= fecal coliforms.? Figure 4. Ratio of cumulative released cells/mass to cells/mass initially present in the aged manure by time and component (e.g., microbe) for solid manure (a) and (b), and amended, dry litter, and slurry manure (c). Solid lines (Equation (11) correspond to values in Table 3 for solid manure, and dry litter and slurry manure, respectively: (a) uses individual b values, and (b) and (c) use the combined values for b. Bounds of first and third quartiles associated with the present study??s results for cattle. Bounds of first and third quartiles associated with the present study??s results for poultry and swine. The full color versions of all figures are available in the online version of this paper, at ht

  15. Fermentation of enset (Ensete ventricosum) in the Gamo highlands of Ethiopia: Physicochemical and microbial community dynamics.

    PubMed

    Andeta, A F; Vandeweyer, D; Woldesenbet, F; Eshetu, F; Hailemicael, A; Woldeyes, F; Crauwels, S; Lievens, B; Ceusters, J; Vancampenhout, K; Van Campenhout, L

    2018-08-01

    Enset (Ensete ventricosum) provides staple food for 15 million people in Ethiopia after fermentation into kocho. The fermentation process has hardly been investigated and is prone to optimization. The aim of this study was to investigate the physicochemical and microbial dynamics of fermentation practices in the Gamo highlands. These practices show local variation, but two steps were omnipresent: scraping of the pseudostem and fermenting it in a pit or a bamboo basket. Enset plants were fragmented and fermented for two months in order to investigate the physicochemical (temperature, moisture content, pH and titratable acidity) and microbial dynamics (total viable aerobic counts, counts of Enterobacteriaceae, lactic acid bacteria, yeasts and moulds and Clostridium spores counts, and Illumina Miseq sequencing). Samples were taken on days 1, 7, 15, 17, 31 and 60. The pH decreased, whereas the titratable acidity increased during fermentation. Of all counts those of lactic acid bacteria and Clostridium spores increased during fermentation. Leuconostoc mesenteroides initiated the fermentation. Later on, Prevotella paludivivens, Lactobacillus sp. and Bifidobacterium minimum dominated. These three species are potential candidates for the development of a starter culture. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Microbial Air Quality and Bacterial Surface Contamination in Ambulances During Patient Services

    PubMed Central

    Luksamijarulkul, Pipat; Pipitsangjan, Sirikun

    2015-01-01

    Objectives We sought to assess microbial air quality and bacterial surface contamination on medical instruments and the surrounding areas among 30 ambulance runs during service. Methods We performed a cross-sectional study of 106 air samples collected from 30 ambulances before patient services and 212 air samples collected during patient services to assess the bacterial and fungal counts at the two time points. Additionally, 226 surface swab samples were collected from medical instrument surfaces and the surrounding areas before and after ambulance runs. Groups or genus of isolated bacteria and fungi were preliminarily identified by Gram’s stain and lactophenol cotton blue. Data were analyzed using descriptive statistics, t-test, and Pearson’s correlation coefficient with a p-value of less than 0.050 considered significant. Results The mean and standard deviation of bacterial and fungal counts at the start of ambulance runs were 318±485cfu/m3 and 522±581cfu/m3, respectively. Bacterial counts during patient services were 468±607cfu/m3 and fungal counts were 656±612cfu/m3. Mean bacterial and fungal counts during patient services were significantly higher than those at the start of ambulance runs, p=0.005 and p=0.030, respectively. For surface contamination, the overall bacterial counts before and after patient services were 0.8±0.7cfu/cm2 and 1.3±1.1cfu/cm2, respectively (p<0.001). The predominant isolated bacteria and fungi were Staphylococcus spp. and Aspergillus spp., respectively. Additionally, there was a significantly positive correlation between bacterial (r=0.3, p<0.010) and fungal counts (r=0.2, p=0.020) in air samples and bacterial counts on medical instruments and allocated areas. Conclusions This study revealed high microbial contamination (bacterial and fungal) in ambulance air during services and higher bacterial contamination on medical instrument surfaces and allocated areas after ambulance services compared to the start of ambulance runs. Additionally, bacterial and fungal counts in ambulance air showed a significantly positive correlation with the bacterial surface contamination on medical instruments and allocated areas. Further studies should be conducted to determine the optimal intervention to reduce microbial contamination in the ambulance environment. PMID:25960835

  17. Effects of Gelling Agent and Extracellular Signaling Molecules on the Culturability of Marine Bacteria

    PubMed Central

    Rygaard, Anita Mac; Thøgersen, Mariane Schmidt; Nielsen, Kristian Fog; Gram, Lone

    2017-01-01

    ABSTRACT Only 1% of marine bacteria are currently culturable using standard laboratory procedures, and this is a major obstacle for our understanding of the biology of marine microorganisms and for the discovery of novel microbial natural products. Therefore, the purpose of this study was to investigate if improved cultivation conditions, including the use of an alternative gelling agent and supplementation with signaling molecules, improve the culturability of bacteria from seawater. Replacing agar with gellan gum improved viable counts 3- to 40-fold, depending on medium composition and incubation conditions, with a maximum of 6.6% culturability relative to direct cell counts. Through V4 amplicon sequencing we found that culturable diversity was also affected by a change in gelling agent, facilitating the growth of orders not culturable on agar-based substrates. Community analyses showed that communities grown on gellan gum substrates were significantly different from communities grown on agar and that they covered a larger fraction of the seawater community. Other factors, such as incubation temperature and time, had less obvious effects on viable counts and culturable diversity. Supplementation with acylated homoserine lactones (AHLs) did not have a positive effect on total viable counts or a strong effect on culturable diversity. However, low concentrations of AHLs increased the relative abundance of sphingobacteria. Hence, with alternative growth substrates, it is possible to significantly increase the number and diversity of cultured marine bacteria. IMPORTANCE Serious challenges to human health, such as the occurrence and spread of antibiotic resistance and an aging human population in need of bioactive pharmaceuticals, have revitalized the search for natural microbial products. The marine environment, representing the largest ecosystem in the biosphere, harbors an immense and virtually untapped microbial diversity producing unique bioactive compounds. However, we are currently able to cultivate only a minute fraction of this diversity. The lack of cultivated microbes is hampering not only bioprospecting efforts but also our general understanding of marine microbes. In this study, we present a means to increase the number and diversity of cultured bacteria from seawater, showing that relatively simple changes to medium components may facilitate the isolation and growth of hitherto unknown bacterial orders. PMID:28213548

  18. The microbial communities and potential greenhouse gas production in boreal acid sulphate, non-acid sulphate, and reedy sulphidic soils.

    PubMed

    Šimek, Miloslav; Virtanen, Seija; Simojoki, Asko; Chroňáková, Alica; Elhottová, Dana; Krištůfek, Václav; Yli-Halla, Markku

    2014-01-01

    Acid sulphate (AS) soils along the Baltic coasts contain significant amounts of organic carbon and nitrogen in their subsoils. The abundance, composition, and activity of microbial communities throughout the AS soil profile were analysed. The data from a drained AS soil were compared with those from a drained non-AS soil and a pristine wetland soil from the same region. Moreover, the potential production of methane, carbon dioxide, and nitrous oxide from the soils was determined under laboratory conditions. Direct microscopic counting, glucose-induced respiration (GIR), whole cell hybridisation, and extended phospholipid fatty acid (PLFA) analysis confirmed the presence of abundant microbial communities in the topsoil and also in the deepest Cg2 horizon of the AS soil. The patterns of microbial counts, biomass and activity in the profile of the AS soil and partly also in the non-AS soil therefore differed from the general tendency of gradual decreases in soil profiles. High respiration in the deepest Cg2 horizon of the AS soil (5.66 μg Cg(-1)h(-1), as compared to 2.71 μg Cg(-1)h(-1) in a top Ap horizon) is unusual but reasonable given the large amount of organic carbon in this horizon. Nitrous oxide production peaked in the BCgc horizon of the AS and in the BC horizon of the non-AS soil, but the peak value was ten-fold higher in the AS soil than in the non-AS soil (82.3 vs. 8.6 ng Ng(-1)d(-1)). The data suggest that boreal AS soils on the Baltic coast contain high microbial abundance and activity. This, together with the abundant carbon and total and mineral nitrogen in the deep layers of AS soils, may result in substantial gas production. Consequently, high GHG emissions could occur, for example, when the generally high water table is lowered because of arable farming. © 2013.

  19. Microbial and Chemical Shelf-Life of Vacuum Steam-Pasteurized Whole Flaxseed and Milled Flaxseed.

    PubMed

    Shah, Manoj; Eklund, Bridget; Conde Lima, Luiz Gustavo; Bergholz, Teresa; Hall, Clifford

    2018-02-01

    Flaxseed is an oilseed with many health benefits. Flaxseed may be consumed raw or in processed form. In the raw form, there is a potential for microbial contamination. Several pasteurization methods have been used to reduce microbial contamination. However, such treatments may affect chemical properties of foods. In this study, vacuum steam-pasteurization was conducted on whole flaxseed and milled flaxseed using 4 different conditions (3 min at 75 °C, 3 min at 90 °C, 9 min at 90 °C, and 3 min at 105 °C). Microbial and chemical shelf-life was monitored for 28 wk (36 wk for aerobic plate counts). Significant reduction (P < 0.05) in microbial counts (total aerobic plate counts, and yeast and mold counts) occurred after pasteurization and during storage of both whole flaxseed and milled flaxseed. Although both the moisture content and a w increased after pasteurization, they were similar to the unpasteurized samples during storage. Peroxide value, free fatty acid, headspace volatiles, fatty acid profiles, oil content, and secoisolariciresinol diglucoside (SDG) content were chemical indices measured. Only small changes were observed in the chemical indices after vacuum steam-pasteurization for both pasteurized whole flaxseed and milled flaxseed as compared to the unpasteurized flaxseed at most instances. Vacuum steam-pasteurization can be used as a safe alternative for the microbial reduction of low-moisture products, such as flaxseed, without significantly affecting chemical stability. Vacuum steam-pasteurization can be effectively used for the treatment of whole flaxseed and milled flaxseed to reduce spoilage microorganisms, such as total aerobes and yeasts and molds. In addition, this pasteurization method had minimal effects on several chemical shelf-life parameters with positive impact on SDG of the processed flaxseed. © 2018 Institute of Food Technologists®.

  20. Effects of Variety and Postharvest Handling Practices on Microbial Population at Different Stages of the Value Chain of Fresh Tomato (Solanum lycopersicum) in Western Terai of Nepal.

    PubMed

    Khadka, Ram B; Marasini, Madan; Rawal, Ranjana; Gautam, Durga M; Acedo, Antonio L

    2017-01-01

    Background . Fresh vegetables such as tomato should have low microbial population for safe consumption and long storage life. The aerobic bacterial count (ABC) and coliform bacterial count (CBC), yeast, and mold population are the most widely used microbial indicators in fresh vegetables which should be lower than 4 log CFU g -1 for safe consumption. The stages of the supply chain, postharvest handling methods, and crop varieties had significant effects on microbial population. ABC, CBC, yeast, and mold population were significantly highest ( P < 0.05) at retail market (5.59, 4.38, 2.60, and 3.14 log CFU g -1 , resp.), followed by wholesale market (4.72, 4.71, 2.43, and 2.44 log CFU g -1 , resp.), and were least at farm gate (3.89, 3.63, 2.38, and 2.03 log CFU g -1 , resp.). Improved postharvest practices (washing in clean water and grading and packaging in clean plastic crate) helped to reduce ABC, CBC, and mold population by 2.51, 32.70, and 29.86 percentage as compared to the conventional method (no washing and no grading and packaging in mud plastered bamboo baskets). Among varieties, Pusa ruby had the lowest microbial load of 2.58, 4.53, 0.96, and 1.77 log CFU g -1 for ABC, CBC, yeast, and mold count, respectively. Significantly negative correlation ( P < 0.05) was observed between fruit pH & ABC and pH & mold count. Although the microbial quality of fresh tomato is safe in the local market of western Terai of Nepal both in conventional and in improved practices however still it is essential to follow improved postharvest handling practices in production and marketing of newly introduced tomato cultivars (high-pH cultivars) for ensuring the safe availability of fresh tomato in the market.

  1. Effects of Variety and Postharvest Handling Practices on Microbial Population at Different Stages of the Value Chain of Fresh Tomato (Solanum lycopersicum) in Western Terai of Nepal

    PubMed Central

    Marasini, Madan; Rawal, Ranjana; Gautam, Durga M.; Acedo, Antonio L.

    2017-01-01

    Background. Fresh vegetables such as tomato should have low microbial population for safe consumption and long storage life. The aerobic bacterial count (ABC) and coliform bacterial count (CBC), yeast, and mold population are the most widely used microbial indicators in fresh vegetables which should be lower than 4 log CFU g−1 for safe consumption. The stages of the supply chain, postharvest handling methods, and crop varieties had significant effects on microbial population. ABC, CBC, yeast, and mold population were significantly highest (P < 0.05) at retail market (5.59, 4.38, 2.60, and 3.14 log CFU g−1, resp.), followed by wholesale market (4.72, 4.71, 2.43, and 2.44 log CFU g−1, resp.), and were least at farm gate (3.89, 3.63, 2.38, and 2.03 log CFU g−1, resp.). Improved postharvest practices (washing in clean water and grading and packaging in clean plastic crate) helped to reduce ABC, CBC, and mold population by 2.51, 32.70, and 29.86 percentage as compared to the conventional method (no washing and no grading and packaging in mud plastered bamboo baskets). Among varieties, Pusa ruby had the lowest microbial load of 2.58, 4.53, 0.96, and 1.77 log CFU g−1 for ABC, CBC, yeast, and mold count, respectively. Significantly negative correlation (P < 0.05) was observed between fruit pH & ABC and pH & mold count. Although the microbial quality of fresh tomato is safe in the local market of western Terai of Nepal both in conventional and in improved practices however still it is essential to follow improved postharvest handling practices in production and marketing of newly introduced tomato cultivars (high-pH cultivars) for ensuring the safe availability of fresh tomato in the market. PMID:29124068

  2. Quantitative comparison of the in situ microbial communities in different biomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, D.C.; Ringelberg, D.B.; Palmer, R.J.

    1995-12-31

    A system to define microbial communities in different biomes requires the application of non-traditional methodology. Classical microbiological methods have severe limitations for the analysis of environmental samples. Pure-culture isolation, biochemical testing, and/or enumeration by direct microscopic counting are not well suited for the estimation of total biomass or the assessment of community composition within environmental samples. Such methods provide little insight into the in situ phenotypic activity of the extant microbiota since these techniques are dependent on microbial growth and thus select against many environmental microorganisms which are non- culturable under a wide range of conditions. It has been repeatedlymore » documented in the literature that viable counts or direct counts of bacteria attached to sediment grains are difficult to quantitative and may grossly underestimate the extent of the existing community. The traditional tests provide little indication of the in situ nutritional status or for evidence of toxicity within the microbial community. A more recent development (MIDI Microbial Identification System), measure free and ester-linked fatty acids from isolated microorganisms. Bacterial isolates are identified by comparing their fatty acid profiles to the MIKI database which contains over 8000 entries. The application of the MIKI system to the analysis of environmental samples however, has significant drawbacks. The MIDI system was developed to identify clinical microorganisms and requires their isolation and culture on trypticase soy agar at 27{degrees}C. Since many isolates are unable to grow at these restrictive growth conditions, the system does not lend itself to identification of some environmental organisms. A more applicable methodology for environmental microbial analysis is based on the liquid extrication and separation of microbial lipids from environmental samples, followed by quantitative analysis using gas chromatography/« less

  3. Internalisation of microbes in vegetables: microbial load of Ghanaian vegetables and the relationship with different water sources of irrigation.

    PubMed

    Donkor, Eric S; Lanyo, R; Kayang, Boniface B; Quaye, Jonathan; Edoh, Dominic A

    2010-09-01

    The occurrence of pathogens in the internal parts of vegetables is usually associated with irrigation water or contaminated soil and could pose risk to consumers as the internalised pathogens are unaffected by external washing. This study was carried out to assess the rate of internalisation of microbes in common Ghanaian vegetables. Standard microbiological methods were employed in microbial enumeration of vegetables collected at the market and farm levels, as well as irrigation water and soil samples. The overall mean counts of vegetables were 4.0 x 10(3) cfu g(-1); 8.1 x 10(2) cfu g(-1); 2.0 x 10(2) cfu g(-1); 3.5 x 10(2) cfu g(-1) for total bacteria, coliform counts, faecal coliform counts and yeast counts, respectively. The rate of internalisation of coliforms in vegetables irrigated with stream/well water was 2.7 times higher than those irrigated with pipe water. The mean coliform counts (4.7 x 10(7) cfu g(-1)) and faecal coliform counts (1.8 x 10(6) cfu g(-1)) of soil samples were similar to those of stream water suggesting both sources exerted similar contamination rates on the vegetables. Generally, there were no significant variations between the rates of internalisation of microbes at the market and farm levels at p < 05, indicating that internalisation of microbes in the vegetables mainly occurred at the farm level. The study has shown that microbial contamination of vegetables in Ghana is not limited to the external surface, but internal vegetable parts could harbour high microbial loads and pose risk to consumers. Safety practices associated with the commodity should therefore not be limited to external washing only. There is the additional need of heating vegetables to eliminate microbes both externally and internally before consumption.

  4. Microbial community dynamics during assays of harbour oil spill bioremediation: a microscale simulation study.

    PubMed

    Cappello, S; Caruso, G; Zampino, D; Monticelli, L S; Maimone, G; Denaro, R; Tripodo, B; Troussellier, M; Yakimov, M; Giuliano, L

    2007-01-01

    Microcosm experiments simulating an oil spill event were performed to evaluate the response of the natural microbial community structure of Messina harbour seawater following the accidental load of petroleum. An experimental harbour seawater microcosm, supplemented with nutrients and crude oil, was monitored above 15 days in comparison with unpolluted ones (control microcosms). Bacterial cells were counted with a Live/Dead BacLight viability kit; leucine aminopeptidase, beta-glucosidase, alkaline phosphatase, lipase and esterase enzymes were measured using fluorogenic substrates. The microbial community dynamic was monitored by isolation of total RNA, RT-PCR amplification of 16S rRNA, cloning and sequencing. Oil addition stimulated an increase of the total bacterial abundance, leucine aminopeptidase and phosphatase activity rates, as well as a change in the community structure. This suggested a prompt response of micro-organisms to the load of petroleum hydrocarbons. The present study on the viability, specific composition and metabolic characteristics of the microbial community allows a more precise assessment of oil pollution. Both structural and functional parameters offer interesting perspectives as indicators to monitor changes caused by petroleum hydrocarbons. A better knowledge of microbial structural successions at oil-polluted sites is essential for environmental bioremediation. Data obtained in microcosm studies improve our understanding of natural processes occurring during oil spills.

  5. Combination of Competitive Quantitative PCR and Constant-Denaturant Capillary Electrophoresis for High-Resolution Detection and Enumeration of Microbial Cells

    PubMed Central

    Lim, Eelin L.; Tomita, Aoy V.; Thilly, William G.; Polz, Martin F.

    2001-01-01

    A novel quantitative PCR (QPCR) approach, which combines competitive PCR with constant-denaturant capillary electrophoresis (CDCE), was adapted for enumerating microbial cells in environmental samples using the marine nanoflagellate Cafeteria roenbergensis as a model organism. Competitive PCR has been used successfully for quantification of DNA in environmental samples. However, this technique is labor intensive, and its accuracy is dependent on an internal competitor, which must possess the same amplification efficiency as the target yet can be easily discriminated from the target DNA. The use of CDCE circumvented these problems, as its high resolution permitted the use of an internal competitor which differed from the target DNA fragment by a single base and thus ensured that both sequences could be amplified with equal efficiency. The sensitivity of CDCE also enabled specific and precise detection of sequences over a broad range of concentrations. The combined competitive QPCR and CDCE approach accurately enumerated C. roenbergensis cells in eutrophic, coastal seawater at abundances ranging from approximately 10 to 104 cells ml−1. The QPCR cell estimates were confirmed by fluorescent in situ hybridization counts, but estimates of samples with <50 cells ml−1 by QPCR were less variable. This novel approach extends the usefulness of competitive QPCR by demonstrating its ability to reliably enumerate microorganisms at a range of environmentally relevant cell concentrations in complex aquatic samples. PMID:11525983

  6. Tillage system affects microbiological properties of soil

    NASA Astrophysics Data System (ADS)

    Delgado, A.; de Santiago, A.; Avilés, M.; Perea, F.

    2012-04-01

    Soil tillage significantly affects organic carbon accumulation, microbial biomass, and subsequently enzymatic activity in surface soil. Microbial activity in soil is a crucial parameter contributing to soil functioning, and thus a basic quality factor for soil. Since enzymes remain soil after excretion by living or disintegrating cells, shifts in their activities reflect long-term fluctuations in microbial biomass. In order to study the effects of no-till on biochemical and microbiological properties in comparison to conventional tillage in a representative soil from South Spain, an experiment was conducted since 1982 on the experimental farm of the Institute of Agriculture and Fisheries Research of Andalusia (IFAPA) in Carmona, SW Spain (37o24'07''N, 5o35'10''W). The soil at the experimental site was a very fine, montomorillonitic, thermic Chromic Haploxerert (Soil Survey Staff, 2010). A randomized complete block design involving three replications and the following two tillage treatments was performed: (i) Conventional tillage, which involved mouldboard plowing to a depth of 50 cm in the summer (once every three years), followed by field cultivation to a depth of 15 cm before sowing; crop residues being burnt, (ii) No tillage, which involved controlling weeds before sowing by spraying glyphosate and sowing directly into the crop residue from the previous year by using a planter with double-disk openers. For all tillage treatments, the crop rotation (annual crops) consisted of winter wheat, sunflower, and legumes (pea, chickpea, or faba bean, depending on the year), which were grown under rainfed conditions. Enzymatic activities (ß-glucosidase, dehydrogenase, aryl-sulphatase, acid phosphatase, and urease), soil microbial biomass by total viable cells number by acridine orange direct count, the density of cultivable groups of bacteria and fungi by dilution plating on semi-selective media, the physiological profiles of the microbial communities by BiologR, and the Shannon (H') and Gini (1-G) diversity index of microbial communities were determined in soil samples (0-10 cm depth) taken in autumn 2009. All the enzymatic activities and the biomass estimated by viable cell counting were significantly higher under no-till than under conventional tillage. However, only fluorescents pseudomonas population was increased under no-till, meanwhile oligotrophic bacteria and actinomycetes populations were higher with conventional tillage than with no-till. Overall, there was a higher use all the group of carbon sources used in the BiologR test with conventional tillage than with no-till, by except amines and phenols which showed non-significant differences. This reveals different physiological profiles in the microbial communities under both tillage systems. The Gini diversity was significantly lower with no-till than with conventional tillage. It can be concluded that no-till increases microbial biomass in soil and subsequently enzymatic activities likely ascribed to an increased organic matter content. Under low availability of hydrocarbon sources in soil due to conventional tillage, which promotes a decrease in the organic matter content of the soil, populations of oligotrophods and the diversity of microbial communities are increased. Under these conditions, there must not be dominant carbon sources promoting the selection of microorganisms with a given physiological profile. The reduced hydrocarbon availability and the higher diversity contribute to explain the increased use of carbon sources used in Biolog with conventional tillage than with no-till.

  7. Uncertainty of quantitative microbiological methods of pharmaceutical analysis.

    PubMed

    Gunar, O V; Sakhno, N G

    2015-12-30

    The total uncertainty of quantitative microbiological methods, used in pharmaceutical analysis, consists of several components. The analysis of the most important sources of the quantitative microbiological methods variability demonstrated no effect of culture media and plate-count techniques in the estimation of microbial count while the highly significant effect of other factors (type of microorganism, pharmaceutical product and individual reading and interpreting errors) was established. The most appropriate method of statistical analysis of such data was ANOVA which enabled not only the effect of individual factors to be estimated but also their interactions. Considering all the elements of uncertainty and combining them mathematically the combined relative uncertainty of the test results was estimated both for method of quantitative examination of non-sterile pharmaceuticals and microbial count technique without any product. These data did not exceed 35%, appropriated for a traditional plate count methods. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. An investigation of the antibacterial ability and cytotoxicity of a novel cu-bearing 317L stainless steel

    NASA Astrophysics Data System (ADS)

    Sun, Da; Xu, Dake; Yang, Chunguang; Shahzad, M. Babar; Sun, Ziqing; Xia, Jin; Zhao, Jinlong; Gu, Tingyue; Yang, Ke; Wang, Guixue

    2016-07-01

    In order to solve the challenging problem of microbial infections caused by microorganisms on medical implants, it is imperative to develop novel antimicrobial biomaterials. This work demonstrated that 317L-Cu stainless steel (SS), created by adding copper through a solution and aging heat treatment process, exhibited good antibacterial properties against staphylococcus aureus, achieving 2 log reduction of planktonic cells after 5 days of incubation. In this study, the antibacterial test was performed using the plate count method, the fluorescence cell staining method and the quantitative polymerase chain reaction (qPCR) method. It is well known that a high concentration of copper ion can lead to cytotoxicity. This work explored the cytotoxicity of 317L-Cu SS through real-time cell analysis (RTCA). Experimental results demonstrated that the 317L-Cu SS possessed a satisfactory antibacterial ability against S. aureus, and the antibacterial rate based on the reduction of sessile cell count reached 98.3% after 24-hour treatment. The bacterial adhesion and the biofilm thickness were considerably reduced by the 317L-Cu SS. The results of RTCA suggested that 317L-Cu SS did not introduce cytotoxicity to mouse cells, indicating its suitability as a medical implant material.

  9. The Impact of Climate Change on Microbial Communities and Carbon Cycling in High Arctic Permafrost Soil from Spitsbergen, Northern Norway

    NASA Astrophysics Data System (ADS)

    de Leon, K. C.; Schwery, D.; Yoshikawa, K.; Christiansen, H. H.; Pearce, D.

    2014-12-01

    Permafrost-affected soils are among the most fragile ecosystems in which current microbial controls on organic matter decomposition are changing as a result of climate change. Warmer conditions in the high Arctic will lead to a deepening of the seasonal active layer of permafrost, provoking changes in microbial processes and possibly resulting in exacerbated carbon degradation under increasing anoxic conditions. The viable and non-viable fractions of the microbial community in a permafrost soil from Adventdalen, Spitsbergen, Norway were subjected to a comprehensive investigation using culture-dependent and culture-independent methods. Molecular analyses using FISH (with CTC-DAPI) and amplified rDNA restriction analysis (ARDRA) on a 257cm deep core, revealed the presence of all major microbial soil groups, with the active layer having more viable cells, and a higher microbial community diversity. Carbon dioxide (CO2) and methane (CH4) flux measurements were performed to show the amount of C stored in the sample. We demonstrated that the microbial community composition from the soil in the center of the core was most likely influenced by small scale variations in environmental conditions. Community structure showed distinct shift of presence of bacterial groups along the vertical temperature gradient profile and microbial counts and diversity was found to be highest in the surface layers, decreasing with depth. It was observed that soil properties driving microbial diversity and functional potential varied across the permafrost table. Data on the variability of CO2 and CH4 distribution described in peat structure heterogeneity are important for modeling emissions on a larger scale. Furthermore, linking microbial biomass to gas distribution may elucidate the cause of peak CO2 and CH4 and their changes in relation to environmental change and peat composition.

  10. Addition of Rubber to soil damages the functional diversity of soil.

    PubMed

    Goswami, Madhurankhi; Bhattacharyya, Purnita; Tribedi, Prosun

    2017-07-01

    Rubber is a polymer of isoprene, consisting mainly of cis-1,4-polyisoprene units. The unmanageable production and its irresponsible disposal pose severe threats to environmental ecology. Therefore, the current study focuses extensively on the ill-effects of Rubber disposal on soil microbial functional diversity as it reflects the health of ecosystem by acting as a key component in ecosystem productivity. To investigate the effect of Rubber on soil microbial functional diversity, soil samples were collected from landfill sites and three different soil microcosms (Rubber treated, untreated, and sterile soil) were prepared. The soil enzymatic activity was determined by fluorescein diacetate hydrolysis followed by the determination of the microbial metabolic potential and functional diversity by average well color development and Shannon-Weaver index (H), respectively. BiOLOG ECO plates were used for determining the microbial functional diversity of the soil microcosms. Higher heterotrophic microbial count as well as higher soil microbial activity was observed in Rubber untreated soil than Rubber treated soil microcosm. The result indicated that the addition of Rubber to soil reduced soil heterotrophic microbial count and soil microbial activity considerably. Similarly, soil microbial metabolic potential as well as microbial functional diversity of soil had been decreased by the addition of Rubber gloves in it. Variation in soil microbial metabolic spectrum between Rubber treated and untreated microcosm was confirmed by multivariate analysis. Collectively, all the results demonstrated that the addition of Rubber to soil reduced the soil microbial functional diversity considerably. Therefore, it is necessary for the commission of serious steps regarding Rubber disposal and protection of the environment from serious environmental issues.

  11. Effects of gamma irradiation on microbial safety and quality of stir fry chicken dices with hot chili during storage

    NASA Astrophysics Data System (ADS)

    Chen, Qian; Cao, Mei; Chen, Hao; Gao, Peng; Fu, Yi; Liu, Mianxue; Wang, Yan; Huang, Min

    2016-10-01

    The purpose of this study was to investigate effects of irradiation with different doses on microbial safety, sensory quality and protein content of ready-to-eat stir fry chicken dices with hot chili (FCC) during one year storage. Fresh chicken meat was cut into small dices and fried at approximately 180 °C for 10 min for preparation of FCC samples. The samples were vacuum-packaged and gamma irradiated at 10, 20, 30 and 40 kGy. The results suggest that irradiation with the doses of 10 and 20 kGy could ensure microbiological safety of the samples without deterioration of sensory quality. Microbial counts, sensory qualities and protein contents of the samples were investigated during one year storage. No viable cells were observed and the samples were completely sterilized. Sensory qualities showed no significant difference after irradiated at the doses of 10 and 20 kGy during the storage period. Protein contents were also not affected by irradiation at the same doses. Our results indicate that gamma irradiation of 10 and 20 kGy are effective to maintain shelf stability of ready-to-eat FCC products with microbial safety, sensory quality and nutritional value.

  12. Effects of mannan oligosaccharide and virginiamycin on the cecal microbial community and intestinal morphology of chickens raised under suboptimal conditions.

    PubMed

    Pourabedin, Mohsen; Xu, Zhengxin; Baurhoo, Bushansingh; Chevaux, Eric; Zhao, Xin

    2014-05-01

    There is an increasing movement against use of antibiotic growth promoters in animal feed. Prebiotic supplementation is a potential alternative to enhance the host's natural defense through modulation of gut microbiota. In the present study, the effect of mannan oligosaccharide (MOS) and virginiamycin (VIRG) on cecal microbial ecology and intestinal morphology of broiler chickens raised under suboptimal conditions was evaluated. MOS and VIRG induced different bacterial community structures, as revealed by denaturing gradient gel electrophoresis of 16S rDNA. The antibiotic treatment reduced cecal microbial diversity while the community equitability increased. A higher bacterial diversity was observed in the cecum of MOS-supplemented birds. Quantitative polymerase chain reaction results indicated that MOS changed the cecal microbiota in favor of the Firmicutes population but not the Bacteroidetes population. No difference was observed in total bacterial counts among treatments. MOS promoted the growth of Lactobacillus spp. and Bifidobacterium spp. in the cecum and increased villus height and goblet cell numbers in the ileum and jejunum. These results provide a deeper insight into the microbial ecological changes after supplementation of MOS prebiotic in poultry diets.

  13. Immunological techniques as tools to characterize the subsurface microbial community at a trichloroethylene contaminated site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fliermans, C.B.; Dougherty, J.M.; Franck, M.M.

    Effective in situ bioremediation strategies require an understanding of the effects pollutants and remediation techniques have on subsurface microbial communities. Therefore, detailed characterization of a site`s microbial communities is important. Subsurface sediment borings and water samples were collected from a trichloroethylene (TCE) contaminated site, before and after horizontal well in situ air stripping and bioventing, as well as during methane injection for stimulation of methane-utilizing microorganisms. Subsamples were processed for heterotrophic plate counts, acridine orange direct counts (AODC), community diversity, direct fluorescent antibodies (DFA) enumeration for several nitrogen-transforming bacteria, and Biolog {reg_sign} evaluation of enzyme activity in collected water samples.more » Plate counts were higher in near-surface depths than in the vadose zone sediment samples. During the in situ air stripping and bioventing, counts increased at or near the saturated zone, remained elevated throughout the aquifer, but did not change significantly after the air stripping. Sporadic increases in plate counts at different depths as well as increased diversity appeared to be linked to differing lithologies. AODCs were orders of magnitude higher than plate counts and remained relatively constant with depth except for slight increases near the surface depths and the capillary fringe. Nitrogen-transforming bacteria, as measured by serospecific DFA, were greatly affected both by the in situ air stripping and the methane injection. Biolog{reg_sign} activity appeared to increase with subsurface stimulation both by air and methane. The complexity of subsurface systems makes the use of selective monitoring tools imperative.« less

  14. Anti-inflammatory and anti-bacterial properties of tetramethylhexadecenyl succinyl cysteine (TSC): a skin-protecting cosmetic functional ingredient.

    PubMed

    Fernandéz, J R; Rouzard, K; Voronkov, M; Huber, K L; Stock, J B; Stock, M; Gordon, J S; Pérez, E

    2015-02-01

    The skin is the first line of defence against exposure to microbial, physical, environmental and chemical insults. In mobilizing a protective response, several different cell types located in our skin release and respond to pro-inflammatory cytokines ensuring skin homeostasis and health. However, chronic activation of this response eventually causes damage resulting in premature ageing. Diosodium tetramethylhexadecenyl succinyl cysteine (TSC or SIG1273), an isoprenylcysteine small molecule, down modulates these inflammatory signalling pathways in various cell types (keratinocytes, peripheral blood mononuclear cells (PBMCs) and endothelial cells) and possesses anti-bacterial properties. Thus, TSC represents a novel cosmetic functional ingredient that provides a broad spectrum of benefits for the skin. To assess the anti-inflammatory properties of TSC in several cutaneous cell types and further investigate its anti-microbial activity. Cultured normal human epidermal keratinocytes were exposed to chemical irritant phorbol 12-myrisate 13-acetate (TPA) or ultraviolet-B light (UVB) to induce pro-inflammatory cytokine (IL-6, IL-8 and TNF-α) production. T-cell receptor (TCR) activation of PBMCs and nickel (Ni(2+) ) treatments of human dermal microvascular endothelial cells (HDMECs) were performed resulting in IL-4, IL-6, IL-8 and IL-17 production. Streptococcus pyogenes were cultured to determine minimal inhibitory concentration values. In vitro studies demonstrate TSC blocks TPA and UVB-induced cytokine production in cultured keratinocytes. Similarly, TSC inhibits overproduction of IL-4 and IL-17 in T-cell receptor (TCR)-activated PBMCs as well as nickel induction of IL-6 and IL-8 in HDMECs. Lastly, TSC demonstrated anti-microbial properties, inhibiting cell growth of S. pyogenes. Tetramethylhexadecenyl succinyl cysteine represents a novel cosmetic functional ingredient that provides a dual modulating benefit of skin protection to individuals by reducing inflammation in keratinocytes, endothelial and mononuclear cell types and S. pyogenes counts. © 2014 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  15. Effectiveness of a full-scale horizontal slow sand filter for controlling phytopathogens in recirculating hydroponics: From microbial isolation to full microbiome assessment.

    PubMed

    Prenafeta-Boldú, Francesc X; Trillas, Isabel; Viñas, Marc; Guivernau, Miriam; Cáceres, Rafaela; Marfà, Oriol

    2017-12-01

    The microbial disinfestation efficiency of an innovative horizontal-flow slow sand filter (HSSF) for treating nutrient solution spent from an experimental closed-loop nursery was evaluated by means of a combination of culture-dependent and independent molecular techniques. A dense inoculum of the fungal plant pathogen Fusarium oxysporum f.sp. lycopersici was applied in the fertigation system (10 6 cells per mL). Indigenous and introduced populations of eubacteria and fungi were assessed in the nutrient solution, the HSSF influent/effluent, and a sand bed transect by isolation on selective media, as well as by quantitative qPCR and next-generation sequencing (NGS) on target ribosomal genes. The HSSF effectively reduced viable Fusarium propagules and fungal gene content with an efficiency consistently above 99.9% (5 orders of magnitude down). On the other hand, Fusarium cells accumulated in the sand bed, indicating that physical entrapment was the main removal mechanism. The viability of retained Fusarium cells tended to decrease in time, so that treatment efficiency might be enhanced by antagonistic species from the genera Bacillus, Pseudomonas, and Trichoderma, also identified in the sand bed. Indigenous bacterial populations from the HSSF effluent were reduced by 87.2% and 99.9% in terms of colony forming units and gene counts, respectively, when compared to the influent. Furthermore, microbial populations from the HSSF effluent were different from those observed in the sand bed and the influent. In summary, the HSSF microbial disinfestation efficiency is comparable to that reported for other more intensive and costly methodologies, while allowing a significant recovery of water and nutrients. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. A Microbial Assessment Scheme to measure microbial performance of Food Safety Management Systems.

    PubMed

    Jacxsens, L; Kussaga, J; Luning, P A; Van der Spiegel, M; Devlieghere, F; Uyttendaele, M

    2009-08-31

    A Food Safety Management System (FSMS) implemented in a food processing industry is based on Good Hygienic Practices (GHP), Hazard Analysis Critical Control Point (HACCP) principles and should address both food safety control and assurance activities in order to guarantee food safety. One of the most emerging challenges is to assess the performance of a present FSMS. The objective of this work is to explain the development of a Microbial Assessment Scheme (MAS) as a tool for a systematic analysis of microbial counts in order to assess the current microbial performance of an implemented FSMS. It is assumed that low numbers of microorganisms and small variations in microbial counts indicate an effective FSMS. The MAS is a procedure that defines the identification of critical sampling locations, the selection of microbiological parameters, the assessment of sampling frequency, the selection of sampling method and method of analysis, and finally data processing and interpretation. Based on the MAS assessment, microbial safety level profiles can be derived, indicating which microorganisms and to what extent they contribute to food safety for a specific food processing company. The MAS concept is illustrated with a case study in the pork processing industry, where ready-to-eat meat products are produced (cured, cooked ham and cured, dried bacon).

  17. Microbiological profile and potential hazards associated with imported and local brands of tomato paste in Nigeria.

    PubMed

    Efiuvwevwere, B J; Atirike, O I

    1998-03-01

    Cans of three tomato paste brands (two of which are imported and one produced locally) showing defective or normal appearance were purchased from various retail outlets and analysed for microbial composition and pH values. Substantially higher total viable counts were observed in samples from defective cans but the lowest population was found in the local brand. Ratio of mesophilic to thermophilic micro-organisms increased in samples obtained from cans showing visible defects. Anaerobic spore counts were higher than the aerobic population in both normal and defective cans, but the counts varied with the brands. Four dominant bacterial genera (Bacillus, Clostridium, Lactobacillus and Leuconostoc) were isolated from the samples with the greater proportion being spore-formers. Percentage occurrence of Clostridium thermosaccharolyticum was appreciably higher in samples from defective cans while a preponderance of Lactobacillus occurred in samples from normal cans. Of the moulds isolated, Absidia and Aspergillus fumigatus showed a higher percentage in defective cans. pH values higher than the critical safe level of 4.6 were found in cans with visible defects and greater microbial diversity with higher microbial load was more often associated with these samples. Imported brands showed more undesirable microbial quality and pH values, making them potentially hazardous.

  18. Comparative analysis of quantitative methodologies for Vibrionaceae biofilms.

    PubMed

    Chavez-Dozal, Alba A; Nourabadi, Neda; Erken, Martina; McDougald, Diane; Nishiguchi, Michele K

    2016-11-01

    Multiple symbiotic and free-living Vibrio spp. grow as a form of microbial community known as a biofilm. In the laboratory, methods to quantify Vibrio biofilm mass include crystal violet staining, direct colony-forming unit (CFU) counting, dry biofilm cell mass measurement, and observation of development of wrinkled colonies. Another approach for bacterial biofilms also involves the use of tetrazolium (XTT) assays (used widely in studies of fungi) that are an appropriate measure of metabolic activity and vitality of cells within the biofilm matrix. This study systematically tested five techniques, among which the XTT assay and wrinkled colony measurement provided the most reproducible, accurate, and efficient methods for the quantitative estimation of Vibrionaceae biofilms.

  19. Real-time bacterial microcolony counting using on-chip microscopy

    NASA Astrophysics Data System (ADS)

    Jung, Jae Hee; Lee, Jung Eun

    2016-02-01

    Observing microbial colonies is the standard method for determining the microbe titer and investigating the behaviors of microbes. Here, we report an automated, real-time bacterial microcolony-counting system implemented on a wide field-of-view (FOV), on-chip microscopy platform, termed ePetri. Using sub-pixel sweeping microscopy (SPSM) with a super-resolution algorithm, this system offers the ability to dynamically track individual bacterial microcolonies over a wide FOV of 5.7 mm × 4.3 mm without requiring a moving stage or lens. As a demonstration, we obtained high-resolution time-series images of S. epidermidis at 20-min intervals. We implemented an image-processing algorithm to analyze the spatiotemporal distribution of microcolonies, the development of which could be observed from a single bacterial cell. Test bacterial colonies with a minimum diameter of 20 μm could be enumerated within 6 h. We showed that our approach not only provides results that are comparable to conventional colony-counting assays but also can be used to monitor the dynamics of colony formation and growth. This microcolony-counting system using on-chip microscopy represents a new platform that substantially reduces the detection time for bacterial colony counting. It uses chip-scale image acquisition and is a simple and compact solution for the automation of colony-counting assays and microbe behavior analysis with applications in antibacterial drug discovery.

  20. Real-time bacterial microcolony counting using on-chip microscopy

    PubMed Central

    Jung, Jae Hee; Lee, Jung Eun

    2016-01-01

    Observing microbial colonies is the standard method for determining the microbe titer and investigating the behaviors of microbes. Here, we report an automated, real-time bacterial microcolony-counting system implemented on a wide field-of-view (FOV), on-chip microscopy platform, termed ePetri. Using sub-pixel sweeping microscopy (SPSM) with a super-resolution algorithm, this system offers the ability to dynamically track individual bacterial microcolonies over a wide FOV of 5.7 mm × 4.3 mm without requiring a moving stage or lens. As a demonstration, we obtained high-resolution time-series images of S. epidermidis at 20-min intervals. We implemented an image-processing algorithm to analyze the spatiotemporal distribution of microcolonies, the development of which could be observed from a single bacterial cell. Test bacterial colonies with a minimum diameter of 20 μm could be enumerated within 6 h. We showed that our approach not only provides results that are comparable to conventional colony-counting assays but also can be used to monitor the dynamics of colony formation and growth. This microcolony-counting system using on-chip microscopy represents a new platform that substantially reduces the detection time for bacterial colony counting. It uses chip-scale image acquisition and is a simple and compact solution for the automation of colony-counting assays and microbe behavior analysis with applications in antibacterial drug discovery. PMID:26902822

  1. Flow Cytometry Total Cell Counts: A Field Study Assessing Microbiological Water Quality and Growth in Unchlorinated Drinking Water Distribution Systems

    PubMed Central

    Liu, G.; Van der Mark, E. J.; Verberk, J. Q. J. C.; Van Dijk, J. C.

    2013-01-01

    The objective of this study was to evaluate the application of flow cytometry total cell counts (TCCs) as a parameter to assess microbial growth in drinking water distribution systems and to determine the relationships between different parameters describing the biostability of treated water. A one-year sampling program was carried out in two distribution systems in The Netherlands. Results demonstrated that, in both systems, the biomass differences measured by ATP were not significant. TCC differences were also not significant in treatment plant 1, but decreased slightly in treatment plant 2. TCC values were found to be higher at temperatures above 15°C than at temperatures below 15°C. The correlation study of parameters describing biostability found no relationship among TCC, heterotrophic plate counts, and Aeromonas. Also no relationship was found between TCC and ATP. Some correlation was found between the subgroup of high nucleic acid content bacteria and ATP (R 2 = 0.63). Overall, the results demonstrated that TCC is a valuable parameter to assess the drinking water biological quality and regrowth; it can directly and sensitively quantify biomass, detect small changes, and can be used to determine the subgroup of active HNA bacteria that are related to ATP. PMID:23819117

  2. Microbiota of high-pressure-processed Serrano ham investigated by culture-dependent and culture-independent methods.

    PubMed

    Martínez-Onandi, N; Castioni, A; San Martín, E; Rivas-Cañedo, A; Nuñez, M; Torriani, S; Picon, A

    2017-01-16

    The microbiota of Serrano dry-cured ham of different chemical composition, subjected or not to high-pressure processing (HPP), was investigated using culture-dependent and culture-independent methods. Microbial counts were submitted to analysis of variance with physicochemical parameters (a w , NaCl concentration, salt-in-lean ratio and intramuscular fat content) or HPP as main effects. In untreated hams, physicochemical parameters significantly affected counts of aerobic mesophiles, psychrotrophs, and moulds and yeasts. NaCl concentration and fat content influenced the levels of four and three of the five studied microbial groups, respectively, whereas no influence of a w was stated. The HPP treatment had a significant effect on counts of all investigated microbial groups. Culture-independent methods showed the presence of bacteria such as Staphylococcus equorum, Staphylococcus succinus, Bacillus subtilis and Cellulosimicrobium sp., moulds like Penicillium commune, Aspergillus fumigatus, Sclerotinia sclerotiorum, Eurotium athecium and Moniliella mellis, and yeasts like Debaryomyces hansenii and Candida glucosophila. Absence of B. subtilis bands and weaker bands of E. athecium were recorded for HPP-treated hams. The higher microbial levels found in lean ham might result in a quicker deterioration. HPP treatment confirmed its suitability as a procedure to control spoilage microorganisms. DGGE did not seem to be sensitive enough to highlight changes caused by HPP treatment in the microbiota of ham, but contributed to the detection of microbial species not previously found in ham. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Seasonal Microbial Conditions of Locally Made Yoghurt (Shalom) Marketed in Some Regions of Cameroon

    PubMed Central

    Moh, Lamye Glory; Keilah, Lunga Paul; Etienne, Pamo Tedonkeng

    2017-01-01

    The microbial conditions of locally made yoghurt (shalom) marketed in three areas of Cameroon were evaluated during the dry and rainy seasons alongside three commercial brands. A total of ninety-six samples were collected and the microbial conditions were based on total aerobic bacteria (TEB), coliforms, yeasts, and moulds counts as well as the identification of coliforms and yeasts using identification kits. Generally, there was a significant increase (p ≤ 0.05) in total aerobic and coliform counts (especially samples from Bamenda), but a decrease in yeast and mould counts of the same samples during the rainy season when compared to those obtained during the dry season. These counts were mostly greater than the recommended standards. Twenty-one Enterobacteriaceae species belonging to 15 genera were identified from 72 bacterial isolates previously considered as all coliforms. Pantoea sp. (27.77%) was highly represented, found in 41% (dry season) and 50% (rainy season) of samples. In addition, sixteen yeast species belonging to 8 genera were equally identified from 55 yeast isolates and Candida sp. (76.36%) was the most represented. This result suggests that unhygienic practices during production, ignorance, warmer weather, duration of selling, and inadequate refrigeration are the principal causes of higher levels of contamination and unsafe yoghurts. PMID:29423400

  4. Survival of foodborne pathogenic bacteria (Bacillus cereus, Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, Staphylococcus aureus, and Listeria monocytogenes) and Bacillus cereus spores in fermented alcoholic beverages (beer and refined rice wine).

    PubMed

    Kim, S A; Kim, N H; Lee, S H; Hwang, I G; Rhee, M S

    2014-03-01

    Only limited information is available on the microbiological safety of fermented alcoholic beverages because it is still a common belief that such beverages do not provide a favorable environment for bacterial growth and survival. Thus, in this study, we examined the survival of major foodborne pathogens and spores in fermented alcoholic beverages. Foodborne pathogens (Bacillus cereus, Escherichia coli O157:H7, Listeria monocytogenes, Salmonella enterica serovar Typhimurium, and Staphylococcus aureus) and B. cereus spores (initial population, 3 to 4 log CFU/ml) were inoculated separately into three types of beer and refined rice wine, which were then stored at 5 and 22°C. Bacterial counts were assayed periodically for up to 28 days. Vegetative B. cereus counts decreased rapidly, whereas B. cereus spore counts remained constant (P > 0.05) for a long period of time in all beverages. Vegetative B. cereus cells formed spores in beer at 5 and 22°C, and the spores survived for long periods. Among vegetative cells, E. coli O157:H7 had the highest survival (only 1.49 to 1.56 log reduction during 28 days in beer at 5°C). Beer and refined rice wine supported microbial survival from several days to several weeks. Our results appear to contradict the common belief that pathogens cannot survive in alcoholic beverages. Long-term survival of pathogens (especially B. cereus and E. coli O157:H7) in beer and refined rice wine should be taken into consideration by the manufacturers of these beverages. This study provides basic information that should help further research into microbial survival in alcoholic beverages and increase the microbiological safety regulation of fermented alcoholic beverages.

  5. Effects of soil amendment with different carbon sources and other factors on the bioremediation of an aged PAH-contaminated soil.

    PubMed

    Teng, Ying; Luo, Yongming; Ping, Lifeng; Zou, Dexun; Li, Zhengao; Christie, Peter

    2010-04-01

    Carbon supplementation, soil moisture and soil aeration are believed to enhance in situ bioremediation of PAH-contaminated soils by stimulating the growth of indigenous microorganisms. However, the effects of added carbon and nitrogen together with soil moisture and soil aeration on the dissipation of PAHs and on associated microbial counts have yet to be fully assessed. In this study the effects on bioremediation of carbon source, carbon-to-nitrogen ratio, soil moisture and aeration on an aged PAH-contaminated agricultural soil were studied in microcosms over a 90-day period. Additions of starch, glucose and sodium succinate increased soil bacterial and fungal counts and accelerated the dissipation of phenanthrene and benzo(a)pyrene in soil. Decreases in phenanthrene and benzo(a)pyrene concentrations were effective in soil supplemented with glucose and sodium succinate (both 0.2 g C kg(-1) dry soil) and starch (1.0 g C kg(-1) dry soil). The bioremediation effect at a C/N ratio of 10:1 was significantly higher (P < 0.05) than at a C/N of either 25:1 or 40:1. Soil microbial counts and PAH dissipation were lower in the submerged soil but soil aeration increased bacterial and fungal counts, enhanced indigenous microbial metabolic activities, and accelerated the natural degradation of phenanthrene and benzo(a)pyrene. The results suggest that optimizing carbon source, C/N ratio, soil moisture and aeration conditions may be a feasible remediation strategy in certain PAH contaminated soils with large active microbial populations.

  6. Changes in the Microbial Composition of Microbrewed Beer during the Process in the Actual Manufacturing Line.

    PubMed

    Kim, S A; Jeon, S H; Kim, N H; Kim, H W; Lee, N Y; Cho, T J; Jung, Y M; Lee, S H; Hwang, I G; Rhee, M S

    2015-12-01

    This study investigated changes in the microbial composition of microbrewed beer during the manufacturing processes and identified potential microbial hazards, effective critical quality control points, and potential contamination routes. Comprehensive quantitative (aerobic plate count, lactic acid bacteria, fungi, acetic acid bacteria, coliforms, and Bacillus cereus) and qualitative (Escherichia coli and eight foodborne pathogens) microbiological analyses were performed using samples of raw materials (malt and manufacturing water), semiprocessed products (saccharified wort, boiled wort, and samples taken during the fermentation and maturation process), and the final product obtained from three plants. The initial aerobic plate count and lactic acid bacteria counts in malt were 5.2 and 4.3 log CFU/g, respectively. These counts were reduced to undetectable levels by boiling but were present at 2.9 and 0.9 log CFU/ml in the final product. Fungi were initially present at 3.6 log CFU/g, although again, the microbes were eliminated by boiling; however, the level in the final product was 4.6 log CFU/ml. No E. coli or foodborne pathogens (except B. cereus) were detected. B. cereus was detected at all stages, although it was not present in the water or boiled wort (total detection rate ¼ 16.4%). Results suggest that boiling of the wort is an effective microbial control measure, but careful management of raw materials and implementation of effective control measures after boiling are needed to prevent contamination of the product after the boiling step. The results of this study may constitute useful and comprehensive information regarding the microbiological quality of microbrewed beer.

  7. Breaking the Chain of Infection: Dental Unit Water Quality Control

    PubMed Central

    Pawar, Amrita; Mehta, Sonia; Dang, Rajat

    2016-01-01

    Introduction The air–water syringes, ultrasonic scalers, high speed air turbine handpieces are connected to dental units by a network of small-bore plastic tubes through which water and air travel to activate or cool the instruments and it had been shown that this system is extensively contaminated with microbial biofilms and pose a potential risk of infection for patients as well as dental professionals. Aim To evaluate and compare the efficacy of various disinfectants in reducing the microbial colony count in water derived from Dental Unit Waterlines. Materials and Methods Five random dental units were selected and samples were collected before and after intervention with 5 disinfectants (0.02% H2O2 continuously, 0.02% H2O2 continuously with shock treatment with 0.25% H2O2 weekly, 0.12% Chlorohexidine and 12% Ethanol overnight, 1:50 Original Listerine overnight, 2% Sodium Perborate and 2% EDTA 5 minutes in morning) using different disinfection methods for 4 weeks. Samples were cultured on Reasoner’s 2A (R2A) agar for microbial counting. Results Results were recorded as Colony forming units/ml (cfu/ml) and were evaluated statistically. Results showed that all the dental unit waterlines were heavily contaminated with microbes before any intervention. After 1 day of disinfection regime the counts reduced significantly and showed progressive reduction in consecutive weeks. Goals set by ADA & CDC were ultimately achieved at the end of 4 weeks. Conclusion All the disinfectants were equally effective in reducing the microbial colony count of DUWLs, irrespective of their concentration and method of disinfection. PMID:27630960

  8. Breaking the Chain of Infection: Dental Unit Water Quality Control.

    PubMed

    Pawar, Amrita; Garg, Sandeep; Mehta, Sonia; Dang, Rajat

    2016-07-01

    The air-water syringes, ultrasonic scalers, high speed air turbine handpieces are connected to dental units by a network of small-bore plastic tubes through which water and air travel to activate or cool the instruments and it had been shown that this system is extensively contaminated with microbial biofilms and pose a potential risk of infection for patients as well as dental professionals. To evaluate and compare the efficacy of various disinfectants in reducing the microbial colony count in water derived from Dental Unit Waterlines. Five random dental units were selected and samples were collected before and after intervention with 5 disinfectants (0.02% H2O2 continuously, 0.02% H2O2 continuously with shock treatment with 0.25% H2O2 weekly, 0.12% Chlorohexidine and 12% Ethanol overnight, 1:50 Original Listerine overnight, 2% Sodium Perborate and 2% EDTA 5 minutes in morning) using different disinfection methods for 4 weeks. Samples were cultured on Reasoner's 2A (R2A) agar for microbial counting. Results were recorded as Colony forming units/ml (cfu/ml) and were evaluated statistically. Results showed that all the dental unit waterlines were heavily contaminated with microbes before any intervention. After 1 day of disinfection regime the counts reduced significantly and showed progressive reduction in consecutive weeks. Goals set by ADA & CDC were ultimately achieved at the end of 4 weeks. All the disinfectants were equally effective in reducing the microbial colony count of DUWLs, irrespective of their concentration and method of disinfection.

  9. Can Probiotics Reduce Inflammation and Enhance Gut Immune Health in People Living with HIV: Study Designs for the Probiotic Visbiome for Inflammation and Translocation (PROOV IT) Pilot Trials.

    PubMed

    Kim, Connie J; Walmsley, Sharon L; Raboud, Janet M; Kovacs, Colin; Coburn, Bryan; Rousseau, Rodney; Reinhard, Robert; Rosenes, Ron; Kaul, Rupert

    2016-07-01

    Despite substantial improvements in HIV outcomes with combination antiretroviral therapy (cART), morbidity and mortality remain above population norms. The gut mucosal immune system is not completely restored by cART, and the resultant microbial translocation may contribute to chronic inflammation, inadequate CD4 T-cell recovery, and increased rates of serious non-AIDS events. Since the microbial environment surrounding a CD4 T cell may influence its development and function, we hypothesize that probiotics provided during cART might reduce inflammation and improve gut immune health in HIV-positive treatment-naïve individuals (PROOV IT I) and individuals with suboptimal CD4 recovery on cART (PROOV IT II). These prospective, double-blinded, randomized, placebo-controlled, multicenter pilot studies will assess the impact of the probiotic Visbiome at 900 billion bacteria daily. Forty HIV positive cART-naïve men will be randomized in the PROOV IT I study, coincident with antiretroviral initiation, and be followed for 24 weeks. In PROOV IT II, 36 men on cART, but with a CD4 T-cell count below 350 cells/mm(3) will be followed for 48 weeks. The primary outcome for both studies is the comparison of blood CD8 T-cell immune activation. Secondary analyses will include comparison of blood inflammatory biomarkers, microbial translocation, blood and gut immunology and HIV levels, the bacterial community composition, diet, intestinal permeability, and the safety, adherence and tolerability of the study product. These studies will evaluate the ability of probiotics as a safe and tolerable therapeutic intervention to reduce systemic immune activation and to accelerate gut immune restoration in people living with HIV.

  10. Energetic Constraints of Subseafloor Life

    NASA Astrophysics Data System (ADS)

    D'Hondt, S.; Spivack, A. J.; Wang, G.

    2014-12-01

    Mean per-cell rates of catabolic activity, energy flux, and biomass turnover are orders of magnitude slower in subseafloor sediment than in the surface world. Despite extreme scarcity of electron donors, competing metabolic pathways co-occur for hundreds of meters deep in subseafloor sediment deposited over millions of years. Our study of an example site (ODP Site 1226) indicates that the energy yields of these competing reactions are pinned to a thermodynamic minimum (Wang et al., 2010). The simplest explanation of this long-term co-existence is thermodynamic cooperation, where microorganisms utilize different but co-existing pathways that remove each other's reaction products. Our Site 1226 results indicate that the energy flux to subseafloor sedimentary microbes is extremely low. Comparison to biomass turnover rates at other sites suggests that most of this flux may be used for building biomolecules from existing components (e.g., amino acids in the surrounding sediment), rather than for de novo biosynthesis from inorganic chemicals. Given these discoveries, ocean drilling provides a tremendous opportunity to address several mysteries of microbial survival and natural selection under extreme energy limitation. Some of these mysteries are centered on microbial communities. To what extent do counted cells in subseafloor sediment constitute a deep microbial necrosphere? How do different kinds of microbes interact to sustain their mean activity at low average rates for millions of years? Other mysteries relate to individual cells. How slowly can a cell metabolize? How long can a cell survive at such low rates of activity? What properties allow microbes to be sustained by low fluxes of energy? In what ways do subseafloor organisms balance the benefit(s) of maximizing energy recovery with the need to minimize biochemical cost(s) of energy recovery? References Wang, G., et al., 2010. Geochimica et Cosmochimica Acta 74, 3938-3947.

  11. Fluorescence in situ hybridization (CARD-FISH) of microorganisms in hydrocarbon contaminated aquifer sediment samples.

    PubMed

    Tischer, Karolin; Zeder, Michael; Klug, Rebecca; Pernthaler, Jakob; Schattenhofer, Martha; Harms, Hauke; Wendeberg, Annelie

    2012-12-01

    Groundwater ecosystems are the most important sources of drinking water worldwide but they are threatened by contamination and overexploitation. Petroleum spills account for the most common source of contamination and the high carbon load results in anoxia and steep geochemical gradients. Microbes play a major role in the transformation of petroleum hydrocarbons into less toxic substances. To investigate microbial populations at the single cell level, fluorescence in situ hybridization (FISH) is now a well-established technique. Recently, however, catalyzed reporter deposition (CARD)-FISH has been introduced for the detection of microbes from oligotrophic environments. Nevertheless, petroleum contaminated aquifers present a worst case scenario for FISH techniques due to the combination of high background fluorescence of hydrocarbons and the presence of small microbial cells caused by the low turnover rates characteristic of groundwater ecosystems. It is therefore not surprising that studies of microorganisms from such sites are mostly based on cultivation techniques, fingerprinting, and amplicon sequencing. However, to reveal the population dynamics and interspecies relationships of the key participants of contaminant degradation, FISH is an indispensable tool. In this study, a protocol for FISH was developed in combination with cell quantification using an automated counting microscope. The protocol includes the separation and purification of microbial cells from sediment particles, cell permeabilization and, finally, CARD-FISH in a microwave oven. As a proof of principle, the distribution of Archaea and Bacteria was shown in 60 sediment samples taken across the contaminant plume of an aquifer (Leuna, Germany), which has been heavily contaminated with several ten-thousand tonnes of petroleum hydrocarbons since World War II. Copyright © 2012 Elsevier GmbH. All rights reserved.

  12. Cleanliness of disposable vs nondisposable electrocardiography lead wires in children.

    PubMed

    Addison, Nancy; Quatrara, Beth; Letzkus, Lisa; Strider, David; Rovnyak, Virginia; Syptak, Virginia; Fuzy, Lisa

    2014-09-01

    Mediastinitis costs hospitals thousands of dollars a year and increases the incidence of patient morbidity and mortality. No studies have been done to evaluate adenosine triphosphate (ATP) counts on disposable and nondisposable electrocardiography (ECG) lead wires in pediatric patients. To compare the cleanliness of disposable and nondisposable ECG lead wires in postoperative pediatric cardiac surgery patients by measuring the quantity of ATP (in relative luminescence units [RLUs]). ATP levels correlate with microbial cell counts and are used by institutions to assess hospital equipment and cleanliness. A prospective, randomized trial was initiated with approval from the institutional review board. Verbal consent was obtained from the parents/guardians for each patient. Trained nurses performed ATP swabs on the right and left upper ECG cables on postoperative days 1, 2, and 3. This study enrolled 51 patients. The disposable ECG lead wire ATP count on postoperative day 1 (median, 157 RLUs) was significantly lower (P < .001) than the count for nondisposable ATP lead wires (median, 610 RLUs). On postoperative day 2, the ATP count for the disposable ECG lead wires (median, 200 RLUs) was also lower (P = .06) than the count for the nondisposable ECG lead wires (median, 453 RLUs). Results of this study support the use of disposable ECG lead wires in postoperative pediatric cardiac surgery patients for at least the first 48 hours as a direct strategy to reduce the ATP counts on ECG lead wires. ©2014 American Association of Critical-Care Nurses.

  13. Detection of microbial concentration in ice-cream using the impedance technique.

    PubMed

    Grossi, M; Lanzoni, M; Pompei, A; Lazzarini, R; Matteuzzi, D; Riccò, B

    2008-06-15

    The detection of microbial concentration, essential for safe and high quality food products, is traditionally made with the plate count technique, that is reliable, but also slow and not easily realized in the automatic form, as required for direct use in industrial machines. To this purpose, the method based on impedance measurements represents an attractive alternative since it can produce results in about 10h, instead of the 24-48h needed by standard plate counts and can be easily realized in automatic form. In this paper such a method has been experimentally studied in the case of ice-cream products. In particular, all main ice-cream compositions of real interest have been considered and no nutrient media has been used to dilute the samples. A measurement set-up has been realized using benchtop instruments for impedance measurements on samples whose bacteria concentration was independently measured by means of standard plate counts. The obtained results clearly indicate that impedance measurement represents a feasible and reliable technique to detect total microbial concentration in ice-cream, suitable to be implemented as an embedded system for industrial machines.

  14. A comparison of hand washing techniques to remove Escherichia coli and caliciviruses under natural or artificial fingernails.

    PubMed

    Lin, Chia-Min; Wu, Fone-Mao; Kim, Hoi-Kyung; Doyle, Michael P; Michael, Barry S; Williams, L Keoki

    2003-12-01

    Compared with other parts of the hand, the area beneath fingernails harbors the most microorganisms and is most difficult to clean. Artificial fingernails, which are usually long and polished, reportedly harbor higher microbial populations than natural nails. Hence, the efficacy of different hand washing methods for removing microbes from natural and artificial fingernails was evaluated. Strains of nonpathogenic Escherichia coli JM109 and feline calicivirus (FCV) strain F9 were used as bacterial and viral indicators, respectively. Volunteers with artificial or natural nails were artificially contaminated with ground beef containing E. coli JM109 or artificial feces containing FCV. Volunteers washed their hands with tap water, regular liquid soap, antibacterial liquid soap, alcohol-based hand sanitizer gel, regular liquid soap followed by alcohol gel, or regular liquid soap plus a nailbrush. The greatest reduction of inoculated microbial populations was obtained by washing with liquid soap plus a nailbrush, and the least reduction was obtained by rubbing hands with alcohol gel. Lower but not significantly different (P > 0.05) reductions of E. coli and FCV counts were obtained from beneath artificial than from natural fingernails. However, significantly (P < or = 0.05) higher E. coli and FCV counts were recovered from hands with artificial nails than from natural nails before and after hand washing. In addition, microbial cell numbers were correlated with fingernail length, with greater numbers beneath fingernails with longer nails. These results indicate that best practices for fingernail sanitation of food handlers are to maintain short fingernails and scrub fingernails with soap and a nailbrush when washing hands.

  15. Microbial Standards of Commercially Available Produce

    NASA Technical Reports Server (NTRS)

    Scotten, Jessica

    2017-01-01

    Limits and guidelines are set on microbial counts in produce to protect the consumer. Different agencies make specifications, which constitute when a product becomes unsafe for human consumption. Producers design their procedures to comply with the limits, but they are responsible creating their own internal standards. The limits and guidelines are summarized here to be applied to assess the microbial safety of the NASA Veggie Program.

  16. Microbiological assessment of house and imported bottled water by comparison of bacterial endotoxin concentration, heterotrophic plate count, and fecal coliform count.

    PubMed

    Reyes, Mayra I; Pérez, Cynthia M; Negrón, Edna L

    2008-03-01

    Consumers increasingly use bottled water and home water treatment systems to avoid direct tap water. According to the International Bottled Water Association (IBWA), an industry trade group, 5 billion gallons of bottled water were consumed by North Americans in 2001. The principal aim of this study was to assess the microbial quality of in-house and imported bottled water for human consumption, by measurement and comparison of the concentration of bacterial endotoxin and standard cultivable methods of indicator microorganisms, specifically, heterotrophic and fecal coliform plate counts. A total of 21 brands of commercial bottled water, consisting of 10 imported and 11 in-house brands, selected at random from 96 brands that are consumed in Puerto Rico, were tested at three different time intervals. The Standard Limulus Amebocyte Lysate test, gel clot method, was used to measure the endotoxin concentrations. The minimum endotoxin concentration in 63 water samples was less than 0.0625 EU/mL, while the maximum was 32 EU/mL. The minimum bacterial count showed no growth, while the maximum was 7,500 CFU/mL. Bacterial isolates like P. fluorescens, Corynebacterium sp. J-K, S. paucimobilis, P. versicularis, A. baumannii, P. chlororaphis, F. indologenes, A. faecalis and P. cepacia were identified. Repeated measures analysis of variance demonstrated that endotoxin concentration did not change over time, while there was a statistically significant (p < 0.05) decrease in bacterial count over time. In addition, multiple linear regression analysis demonstrated that a unit change in the concentration of endotoxin across time was associated with a significant (p < 0.05) reduction in the bacteriological cell count. This analysis evidenced a significant time effect in the average log bacteriological cell count. Although bacterial growth was not detected in some water samples, endotoxin was present. Measurement of Gram-negative bacterial endotoxins is one of the methods that have been suggested as a rapid way of determining bacteriological water quality.

  17. The importance of staphylococci and threshold value of somatic cell count for diagnosis of sub-clinical mastitis in Pirlak sheep at mid-lactation.

    PubMed

    Ozenc, E; Seker, E; Baki Acar, D; Birdane, M K; Darbaz, I; Dogan, N

    2011-12-01

    This study investigated the bacterial agents causing sub-clinical mastitis and the mean somatic cell counts (SCC) of milk in Pirlak sheep at mid-lactation. The percentage of infected udder halves was 11.4% (53/464). The most frequently isolated species were coagulase-negative staphylococci (CNS) (64.2%), followed by Staphylococcus aureus (24.5%) and Escherichia coli (11.3%). Among the CNS, the most common species was Staphylococcus epidermidis (38.2%). The other species isolated from milk samples were Staphylococcus xylosus (17.7%), Staphylococcus chromogenes (14.7%), Staphylococcus simulans (8.8%) and Staphylococcus hyicus (8.8%). The mean SCC for culture positive and negative samples was 1742×10(3) and 161×10(3) cells/ml, respectively. A significant difference (p<0.05) was determined between with and without microbial growth groups in terms of the SCC values. Threshold limit for SCC was 374×10(3) cells/ml for Pirlak sheep. In conclusion, it was considered that SCC is an important predictor of sub-clinical mastitis in Pirlak sheep. This is the first study to describe the bacterial agents causing sub-clinical mastitis and threshold limit for SCC in Pirlak sheep in Turkey. © 2011 Blackwell Verlag GmbH.

  18. Maximising electricity production by controlling the biofilm specific growth rate in microbial fuel cells.

    PubMed

    Ledezma, Pablo; Greenman, John; Ieropoulos, Ioannis

    2012-08-01

    The aim of this work is to study the relationship between growth rate and electricity production in perfusion-electrode microbial fuel cells (MFCs), across a wide range of flow rates by co-measurement of electrical output and changes in population numbers by viable counts and optical density. The experiments hereby presented demonstrate, for the first time to the authors' knowledge, that the anodic biofilm specific growth rate can be determined and controlled in common with other loose matrix perfusion systems. Feeding with nutrient-limiting conditions at a critical flow rate (50.8 mL h(-1)) resulted in the first experimental determination of maximum specific growth rate μ(max) (19.8 day(-1)) for Shewanella spp. MFC biofilms, which is considerably higher than those predicted or assumed via mathematical modelling. It is also shown that, under carbon-energy limiting conditions there is a strong direct relationship between growth rate and electrical power output, with μ(max) coinciding with maximum electrical power production. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Effects of nail polish on microbial growth of fingernails. Dispelling sacred cows.

    PubMed

    Baumgardner, C A; Maragos, C S; Walz, J; Larson, E

    1993-07-01

    Nail polish worn on short, healthy nails does not appear to be associated with increased microbial counts on the fingernails. Additional studies to examine the effect of wearing nail polish on other aspects of hand hygiene may be warranted, however.

  20. Microbial Surveillance of Potable Water Sources of the International Space Station

    NASA Technical Reports Server (NTRS)

    Bruce, Rebekah J.; Ott, C. Mark; Skuratov, Vladimir M.; Pierson, Duane L.

    2005-01-01

    To mitigate risk to the crew, the microbial surveillance of the quality of potable water sources of the International Space Station (ISS) has been ongoing since before the arrival of the first permanent crew. These water sources have included stored ground-supplied water, water produced by the shuttle fuel cells during flight, and ISS humidity condensate that is reclaimed and processed. Monitoring was accomplished using a self-contained filter designed to allow bacterial growth and enumeration during flight. Upon return to earth, microbial isolates were identified using 16S ribosomal gene sequencing. While the predominant isolates were common Gramnegative bacteria including Ralstonia eutropha, Methylobacterium fujisawaense, and Spingomonas paucimobilis, opportunistic pathogens such as Stenotrophomonas maltophilia and Pseudomonas aeruginosa were also isolated. Results of in-flight enumeration have indicated a fluctuation of bacterial counts above system design specifications. Additional in-flight monitoring capability for the specific detection of coliforms was added in 2004; no coliforms have been detected from any potable water source. Neither the bacterial concentrations nor the identification of the isolates recovered from these samples has suggested a threat to crew health.

  1. Microbial load and safety of paper currencies from some food vendors in Jimma Town, Southwest Ethiopia.

    PubMed

    Girma, Gosa; Ketema, Tsige; Bacha, Ketema

    2014-11-25

    Paper currency is used for every type of commerce and plays an important role in the life of human beings. However, the combination of its widespread use and constant exchange make paper currency a likely agent for disease transmission. Thus, the aim of this study was to evaluate the microbial load and safety of Ethiopian paper currencies collected from some food vendors in Jimma town. Standard microbiological methods were used for the enumeration of various microbial groups, isolation and characterization of pathogenic bacteria and their growth potential in selected weaning foods. A total of 100 samples of Ethiopian paper currencies, consisting of five denominations, from street food venders, hotels and cafeterias in Jimma town were collected aseptically. Sterile cotton swabs moistened with buffered peptone water solution were used for swabbing and the swabs were separately soaked into 10 ml sterile buffered peptone water solution. Mean microbial counts of Aerobic mesophilic bacteria, Staphylococci, Enterobacteriaceae, coliforms and Aerobic bacterial spores were (log CFU/cm2) 6.32, 4.43, 3.14, 2.98 and 3.78, respectively. However, mean counts of Yeasts and Moulds were below detectable levels. There was statistically significant variation (p<0.05) among the mean counts of microbes isolated from samples of paper currencies. The predominantly isolated microbial groups were Staphylococcus spp. (34.06%) followed by Bacillus spp. (31.88%), Enterobacteraceae (13.39%), Micrococcus spp. (9.55%) and Streptococcus spp. (9.03%). Overall, 25% and 10% of the samples were positive for S. aureus and Salmonella spp, respectively. In challenge study, Salmonella spp. and S. aureus reached the infective dose within 12 to 18 hours of inoculation. Thus, paper currencies could be considered as one of the possible vehicles for transmission of disease causing microorganisms. Poor handling practices and personal hygiene of the food vendors could contribute to the observed microbial counts. Thus, it calls for awareness development on the potential risks associated with poor handling of paper currencies at all level of the food establishments.

  2. Protocol for evaluating the efficacy of cetylpyridinium chloride as a beef hide intervention.

    PubMed

    Bosilevac, Joseph M; Wheeler, Tommy L; Rivera-Betancourt, Mildred; Nou, Xiangwu; Arthur, Terrance M; Shackelford, Steven D; Kent, Matthew P; Jaroni, Divya; Osborn, Matthew S; Rossman, Michelle; Reagan, James O; Koohmaraie, Mohammad

    2004-02-01

    The objective of this study was to establish the necessary protocols and assess the efficacy of cetylpyridinium chloride (CPC) as an antimicrobial intervention on beef cattle hides. Experiments using CPC were conducted to determine (i) the methods of neutralization needed to obtain valid efficacy measurements, (ii) the effect of concentration and dwell time after treatment, (iii) the effect of CPC on hide and carcass microbial populations when cattle were treated at a feedlot and then transported to a processing facility for harvest, and (iv) the effectiveness of spray pressure and two-spray combinations of CPC and water to reduce hide microbial populations. Residual CPC in hide sponge samples prevented bacterial growth. Dey-Engley neutralization media at 7.8% and a centrifugation step were necessary to overcome this problem. All dwell times, ranging from 30 s to 4 h, after 1% CPC application to cattle hides resulted in aerobic plate counts and Enterobacteriaceae counts 1.5 log CFU/100 cm2 lower than controls. The most effective dose of CPC was 1%, which reduced aerobic plate counts and Enterobacteriaceae counts 2 and 1 log CFU/100 cm2, respectively. Low-pressure application of 1% CPC at the feedlot, transport to the processing facility, and harvest within 5 h of application resulted in no effect on Escherichia coli O157 prevalence on hides or preevisceration carcasses. Two high-pressure CPC washes lowered aerobic plate counts and Enterobacteriaceae counts by 4 log CFU/100 cm2, and two medium-pressure CPC washes were only slightly less effective. These results indicate that under the proper conditions, CPC may still be effective for reducing microbial populations on cattle hides. Further study is warranted to determine if this effect will result in reduction of hide-to-carcass contamination during processing.

  3. In vivo effect of carbon dioxide laser-skin resurfacing and mechanical abrasion on the skin's microbial flora in an animal model.

    PubMed

    Manolis, Evangelos N; Tsakris, Athanassios; Kaklamanos, Ioannis; Markogiannakis, Antonios; Siomos, Konstadinos

    2006-03-01

    Although beam-scanning carbon dioxide (CO2) lasers have provided a highly efficient tool for esthetic skin rejuvenation there has been no comprehensive animal studies looking into microbial skin changes following CO2 laser skin resurfacing. To evaluate the in vivo effects of CO2 laser skin resurfacing in an experimental rat model in comparison with mechanical abrasion on the skin microbial flora. Four separate cutaneous sections of the right dorsal surface of 10 Wistar rats were treated with a CO2 laser, operating at 18 W and delivering a radiant energy of 5.76 J/cm2, while mechanical abrasions of the skin were created on four sections of the left dorsal surface using a scalpel. Samples for culture and biopsies were obtained from the skin surfaces of the rats on day 1 of application of the CO2 laser or mechanical abrasion, as well as 10, 30, and 90 days after the procedure. The presence of four microorganisms (staphylococci, streptococci, diphtheroids, and yeasts) was evaluated as a microbe index for the skin flora, and colony counts were obtained using standard microbiological methods. Skin biopsy specimens, following CO2 laser treatment, initially showed epidermal and papillary dermal necrosis and later a re-epithelization of the epidermis as well as the generation of new collagen on the upper papillary dermis. The reduction in microbial counts on day 1 of the CO2 laser-inflicted wound was statistically significant for staphylococci and diphtheroids compared with the baseline counts (p=.004 and p<.001, respectively), and for staphylococci, diphtheroids, and yeasts compared with the scalpel-inflicted wound on the same day (p=0.029, p<.001, and p=.030, respectively). Skin resurfacing using CO2 lasers considerably reduces microbial counts of most microorganisms in comparison with either normal skin flora or a scalpel-inflicted wound. This might contribute to the positive clinical outcome of laser skin resurfacing.

  4. The Effect of Plant Cultivar, Growth Media, Harvest Method and Post Harvest Treatment on the Microbiology of Edible Crops

    NASA Technical Reports Server (NTRS)

    Hummerick, Mary P.; Gates, Justin R.; Nguyen, Bao-Thang; Massa, Gioia D.; Wheeler, Raymond M.

    2011-01-01

    Systems for the growth of crops in closed environments are being developed and tested for potential use in space applications to provide a source of fresh food. Plant growth conditions, growth media composition and harvest methods can have an effect on the microbial population of the plant, and therefore should be considered along with the optimization of plant growth and harvest yields to ensure a safe and palatable food crop. This work examines the effect of plant cultivar, growth media, and harvest method on plant microbial populations. Twelve varieties of leafy greens and herbs were grown on a mixture of Fafard #2 and Arcillite in the pillow root containment system currently being considered for the VEGGIE plant growth unit developed by Orbitec. In addition, ,Sierra and Outredgeous lettuce varieties were grown in three different mixtures (Fafard #2, Ardllite, and Perlite/Vermiculite). The plants were analyzed for microbial density. Two harvest methods, "cut and come again" (CACA) and terminal harvest were also compared. In one set ofexpe'riments red leaf lettuce and mizuna were grown in pots in a Biomass Production System for education. Plants were harvested every two weeks by either method. Another set of experiments was performed using the rooting pillows to grow 5 varieties of leafy greens and cut harvesting at different intervals. Radishes were harvested and replanted at two-week intervals. Results indicate up to a 3 IOglO difference in microbial counts between some varieties of plants. Rooting medium resulted in an approximately 2 IOglO lower count in the lettuce grown in arscillite then those grown in the other mixtures. Harvest method and frequency had less impact on microbial counts only showing a significant increase in one variety of plant. Post harvest methods to decrease the bacterial counts on edible crops were investigated in these and other experiments. The effectiveness of PRO-SAN and UV-C radiation is compared.

  5. Contaminant concentration versus flow velocity: drivers of biodegradation and microbial growth in groundwater model systems.

    PubMed

    Grösbacher, Michael; Eckert, Dominik; Cirpka, Olaf A; Griebler, Christian

    2018-06-01

    Aromatic hydrocarbons belong to the most abundant contaminants in groundwater systems. They can serve as carbon and energy source for a multitude of indigenous microorganisms. Predictions of contaminant biodegradation and microbial growth in contaminated aquifers are often vague because the parameters of microbial activity in the mathematical models used for predictions are typically derived from batch experiments, which don't represent conditions in the field. In order to improve our understanding of key drivers of natural attenuation and the accuracy of predictive models, we conducted comparative experiments in batch and sediment flow-through systems with varying concentrations of contaminant in the inflow and flow velocities applying the aerobic Pseudomonas putida strain F1 and the denitrifying Aromatoleum aromaticum strain EbN1. We followed toluene degradation and bacterial growth by measuring toluene and oxygen concentrations and by direct cell counts. In the sediment columns, the total amount of toluene degraded by P. putida F1 increased with increasing source concentration and flow velocity, while toluene removal efficiency gradually decreased. Results point at mass transfer limitation being an important process controlling toluene biodegradation that cannot be assessed with batch experiments. We also observed a decrease in the maximum specific growth rate with increasing source concentration and flow velocity. At low toluene concentrations, the efficiencies in carbon assimilation within the flow-through systems exceeded those in the batch systems. In all column experiments the number of attached cells plateaued after an initial growth phase indicating a specific "carrying capacity" depending on contaminant concentration and flow velocity. Moreover, in all cases, cells attached to the sediment dominated over those in suspension, and toluene degradation was performed practically by attached cells only. The observed effects of varying contaminant inflow concentration and flow velocity on biodegradation could be captured by a reactive-transport model. By monitoring both attached and suspended cells we could quantify the release of new-grown cells from the sediments to the mobile aqueous phase. Studying flow velocity and contaminant concentrations as key drivers of contaminant transformation in sediment flow-through microcosms improves our system understanding and eventually the prediction of microbial biodegradation at contaminated sites.

  6. Mineralogical impact on long-term patterns of soil nitrogen and phosphorus enzyme activities

    NASA Astrophysics Data System (ADS)

    Mikutta, Robert; Turner, Stephanie; Meyer-Stüve, Sandra; Guggenberger, Georg; Dohrmann, Reiner; Schippers, Axel

    2014-05-01

    Soil chronosequences provide a unique opportunity to study microbial activity over time in mineralogical diverse soils of different ages. The main objective of this study was to test the effect of mineralogical properties, nutrient and organic matter availability over whole soil pro-files on the abundance and activity of the microbial communities. We focused on microbio-logical processes involved in nitrogen and phosphorus cycling at the 120,000-year Franz Josef soil chronosequence. Microbial abundances (microbial biomass and total cell counts) and enzyme activities (protease, urease, aminopeptidase, and phosphatase) were determined and related to nutrient contents and mineralogical soil properties. Both, microbial abundances and enzyme activities decreased with soil depth at all sites. In the organic layers, microbial biomass and the activities of N-hydrolyzing enzymes showed their maximum at the intermediate-aged sites, corresponding to a high aboveground biomass. In contrast, the phosphatase activity increased with site age. The activities of N-hydrolyzing enzymes were positively correlated with total carbon and nitrogen contents, whereas the phosphatase activity was negatively correlated with the phosphorus content. In the mineral soil, the enzyme activities were generally low, thus reflecting the presence of strongly sorbing minerals. Sub-strate-normalized enzyme activities correlated negatively to clay content as well as poorly crystalline Al and Fe oxyhydroxides, supporting the view that the evolution of reactive sec-ondary mineral phases alters the activity of the microbial communities by constraining sub-strate availability. Our data suggest a strong mineralogical influence on nutrient cycling par-ticularly in subsoil environments.

  7. Can Particulate Air Sampling Predict Microbial Load in Operating Theatres for Arthroplasty?

    PubMed Central

    Cristina, Maria Luisa; Spagnolo, Anna Maria; Sartini, Marina; Panatto, Donatella; Gasparini, Roberto; Orlando, Paolo; Ottria, Gianluca; Perdelli, Fernanda

    2012-01-01

    Several studies have proposed that the microbiological quality of the air in operating theatres be indirectly evaluated by means of particle counting, a technique derived from industrial clean-room technology standards, using airborne particle concentration as an index of microbial contamination. However, the relationship between particle counting and microbiological sampling has rarely been evaluated and demonstrated in operating theatres. The aim of the present study was to determine whether particle counting could predict microbiological contamination of the air in an operating theatre during 95 surgical arthroplasty procedures. This investigation was carried out over a period of three months in 2010 in an orthopedic operating theatre devoted exclusively to prosthetic surgery. During each procedure, the bacterial contamination of the air was determined by means of active sampling; at the same time, airborne particulate contamination was assessed throughout the entire procedure. On considering the total number of surgical operations, the mean value of the total bacterial load in the center of the operating theatre proved to be 35 CFU/m3; the mean particle count was 4,194,569 no./m3 for particles of diameter ≥0.5 µm and 13,519 no./m3 for particles of diameter ≥5 µm. No significant differences emerged between the median values of the airborne microbial load recorded during the two types of procedure monitored. Particulates with a diameter of ≥0.5 µm were detected in statistically higher concentrations (p<0.001) during knee-replacement procedures. By contrast, particulates with a diameter of ≥5 µm displayed a statistically higher concentration during hip-replacement procedures (p<0.05). The results did not reveal any statistically significant correlation between microbial loads and particle counts for either of the particle diameters considered (≥0.5 µm and ≥5 µm). Consequently, microbiological monitoring remains the most suitable method of evaluating the quality of air in operating theatres. PMID:23285189

  8. Can particulate air sampling predict microbial load in operating theatres for arthroplasty?

    PubMed

    Cristina, Maria Luisa; Spagnolo, Anna Maria; Sartini, Marina; Panatto, Donatella; Gasparini, Roberto; Orlando, Paolo; Ottria, Gianluca; Perdelli, Fernanda

    2012-01-01

    Several studies have proposed that the microbiological quality of the air in operating theatres be indirectly evaluated by means of particle counting, a technique derived from industrial clean-room technology standards, using airborne particle concentration as an index of microbial contamination. However, the relationship between particle counting and microbiological sampling has rarely been evaluated and demonstrated in operating theatres. The aim of the present study was to determine whether particle counting could predict microbiological contamination of the air in an operating theatre during 95 surgical arthroplasty procedures. This investigation was carried out over a period of three months in 2010 in an orthopedic operating theatre devoted exclusively to prosthetic surgery. During each procedure, the bacterial contamination of the air was determined by means of active sampling; at the same time, airborne particulate contamination was assessed throughout the entire procedure. On considering the total number of surgical operations, the mean value of the total bacterial load in the center of the operating theatre proved to be 35 CFU/m(3); the mean particle count was 4,194,569 no./m(3) for particles of diameter ≥0.5 µm and 13,519 no./m(3) for particles of diameter ≥5 µm. No significant differences emerged between the median values of the airborne microbial load recorded during the two types of procedure monitored. Particulates with a diameter of ≥0.5 µm were detected in statistically higher concentrations (p<0.001) during knee-replacement procedures. By contrast, particulates with a diameter of ≥5 µm displayed a statistically higher concentration during hip-replacement procedures (p<0.05). The results did not reveal any statistically significant correlation between microbial loads and particle counts for either of the particle diameters considered (≥0.5 µm and ≥5 µm). Consequently, microbiological monitoring remains the most suitable method of evaluating the quality of air in operating theatres.

  9. Elimination of biofilm and microbial contamination reservoirs in hospital washbasin U-bends by automated cleaning and disinfection with electrochemically activated solutions.

    PubMed

    Swan, J S; Deasy, E C; Boyle, M A; Russell, R J; O'Donnell, M J; Coleman, D C

    2016-10-01

    Washbasin U-bends are reservoirs of microbial contamination in healthcare environments. U-Bends are constantly full of water and harbour microbial biofilm. To develop an effective automated cleaning and disinfection system for U-bends using two solutions generated by electrochemical activation of brine including the disinfectant anolyte (predominantly hypochlorous acid) and catholyte (predominantly sodium hydroxide) with detergent properties. Initially three washbasin U-bends were manually filled with catholyte followed by anolyte for 5min each once weekly for five weeks. A programmable system was then developed with one washbasin that automated this process. This U-bend had three cycles of 5min catholyte followed by 5min anolyte treatment per week for three months. Quantitative bacterial counts from treated and control U-bends were determined on blood agar (CBA), R2A, PAS, and PA agars following automated treatment and on CBA and R2A following manual treatment. The average bacterial density from untreated U-bends throughout the study was >1×10(5) cfu/swab on all media with Pseudomonas aeruginosa accounting for ∼50% of counts. Manual U-bend electrochemically activated (ECA) solution treatment reduced counts significantly (<100cfu/swab) (P<0.01 for CBA; P<0.005 for R2A). Similarly, counts from the automated ECA-treatment U-bend were significantly reduced with average counts for 35 cycles on CBA, R2A, PAS, and PA of 2.1±4.5 (P<0.0001), 13.1±30.1 (P<0.05), 0.7±2.8 (P<0.001), and 0 (P<0.05) cfu/swab, respectively. P. aeruginosa was eliminated from all treated U-bends. Automated ECA treatment of washbasin U-bends consistently minimizes microbial contamination. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Comparative study on the microbiological features of angular cheilitis in HIV seropositive and HIV seronegative patients from South India

    PubMed Central

    Krishnan, P Anitha; Kannan, Ranganathan

    2013-01-01

    Objective: This study was designed to compare the microbiological features of angular cheilitis (AC) in human immunodeficiency virus (HIV) seropositive and HIV seronegative individuals, in a group of south Indians. Materials and Methods: Swabs from oral commissures of 46 patients were obtained and inoculated on to Sabouraud's dextrose agar (SDA) supplemented with chloramphenicol, blood agar (BA) and MacConkey's agar (MCA) plates and cultured. α-hemolytic Streptococci, Staphylococcus albus, Staphylococcus aureus, Candida species, Klebsiella species and Pseudomonas species were cultured. Candidal colonies were further speciated by the conventional biotyping technique. Results: In AC of HIV seropositive patients Candida albicans and Staphylococcus aureus were more prevalent than that in HIV seronegative patients. Incidentally in patients with CD4 cell count less than 200 there was an increase in the incidence of Candidal and Staphylococcus aureus colonization when compared to patients with CD4 cell count higher than 200. Conclusion: The present study suggests a definite difference in the microbial flora of AC in HIV seropositive patients than that of HIV seronegative population. PMID:24574650

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snijders, Antoine M.; Langley, Sasha A.; Kim, Young-Mo

    Although the gut microbiome plays important roles in host physiology, health and disease1, we lack understanding of the complex interplay between host genetics and early life environment on the microbial and metabolic composition of the gut.We used the genetically diverse Collaborative Cross mouse system2 to discover that early life history impacts themicrobiome composition, whereas dietary changes have only a moderate effect. By contrast, the gut metabolome was shaped mostly by diet, with specific non-dietary metabolites explained by microbial metabolism. Quantitative trait analysis identified mouse genetic trait loci (QTL) that impact the abundances of specific microbes. Human orthologues of genes inmore » the mouse QTL are implicated in gastrointestinal cancer. Additionally, genes located in mouse QTL for Lactobacillales abundance are implicated in arthritis, rheumatic disease and diabetes. Furthermore, Lactobacillales abundance was predictive of higher host T-helper cell counts, suggesting an important link between Lactobacillales and host adaptive immunity.« less

  12. Status of microbial diversity in agroforestry systems in Tamil Nadu, India.

    PubMed

    Radhakrishnan, Srinivasan; Varadharajan, Mohan

    2016-06-01

    Soil is a complex and dynamic biological system. Agroforestry systems are considered to be an alternative land use option to help and prevent soil degradation, improve soil fertility, microbial diversity, and organic matter status. An increasing interest has emerged with respect to the importance of microbial diversity in soil habitats. The present study deals with the status of microbial diversity in agroforestry systems in Tamil Nadu. Eight soil samples were collected from different fields in agroforestry systems in Cuddalore, Villupuram, Tiruvanamalai, and Erode districts, Tamil Nadu. The number of microorganisms and physico-chemical parameters of soils were quantified. Among different microbial population, the bacterial population was recorded maximum (64%), followed by actinomycetes (23%) and fungi (13%) in different samples screened. It is interesting to note that the microbial population was positively correlated with the physico-chemical properties of different soil samples screened. Total bacterial count had positive correlation with soil organic carbon (C), moisture content, pH, nitrogen (N), and micronutrients such as Iron (Fe), copper (Cu), and zinc (Zn). Similarly, the total actinomycete count also showed positive correlations with bulk density, moisture content, pH, C, N, phosphorus (P), potassium (K), calcium (Ca), copper (Cu), magnesium (Mg), manganese (Mn), and zinc (Zn). It was also noticed that the soil organic matter, vegetation, and soil nutrients altered the microbial community under agroforestry systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Microbial Quality and Shelf Life of Blueberry Purée Developed Using Cavitation Technology.

    PubMed

    Fan, Lihua; Martynenko, Alex; Doucette, Craig; Hughes, Timothy; Fillmore, Sherry

    2018-03-01

    Blueberry purée was developed using hydrodynamic cavitation technology. The product was made from entire blueberries without adding any food additives. In this study, microbial reduction following each processing stage (at the industry setting) and after product pasteurization at 86, 88, 90, 92, 94, and 96 °C was investigated. Microbial quality including total plate counts, yeast and molds, and heat-resistant molds counts was determined. Shelf life of pasteurized products stored for up to 24 weeks at room temperature were assessed for microbial quality, soluble solids (°Brix), titratable acidity (citric acid %), pH, viscosity (cP) and flow rate (cm/30 s). Our results indicated that heat-resistant molds, initially present in frozen blueberries with counts at 2.03 log CFU/200g, were totally inactivated at 94 to 96 °C with 1 to 2 min holding time. Shelf life study showed that no product spoilage was caused by bacteria, yeasts and heat-resistant molds along with non-significant changes of textural characteristics. This study provided useful information for the food industry to develop variety of fruit purée products with no wastes of fruit materials. This study provides useful information for the food industry to develop safe liquid food products using cavitation technology without wasting any raw materials. © 2018 Institute of Food Technologists®.

  14. Estimates of microbial quality and concentration of copper in distributed drinking water are highly dependent on sampling strategy.

    PubMed

    Lehtola, Markku J; Miettinen, Ilkka T; Hirvonen, Arja; Vartiainen, Terttu; Martikainen, Pertti J

    2007-12-01

    The numbers of bacteria generally increase in distributed water. Often household pipelines or water fittings (e.g., taps) represent the most critical location for microbial growth in water distribution systems. According to the European Union drinking water directive, there should not be abnormal changes in the colony counts in water. We used a pilot distribution system to study the effects of water stagnation on drinking water microbial quality, concentration of copper and formation of biofilms with two commonly used pipeline materials in households; copper and plastic (polyethylene). Water stagnation for more than 4h significantly increased both the copper concentration and the number of bacteria in water. Heterotrophic plate counts were six times higher in PE pipes and ten times higher in copper pipes after 16 h of stagnation than after only 40 min stagnation. The increase in the heterotrophic plate counts was linear with time in both copper and plastic pipelines. In the distribution system, bacteria originated mainly from biofilms, because in laboratory tests with water, there was only minor growth of bacteria after 16 h stagnation. Our study indicates that water stagnation in the distribution system clearly affects microbial numbers and the concentration of copper in water, and should be considered when planning the sampling strategy for drinking water quality control in distribution systems.

  15. Vertical distribution of the subsurface microorganisms in Sagara oil reservoir

    NASA Astrophysics Data System (ADS)

    Nunoura, T.; Oida, H.; Masui, N.; Ingaki, F.; Takai, K.; Nealson, K. H.; Horikoshi, K.

    2002-12-01

    The recent microbiological studies reported that active microbial habitat for methanogen, sulfate reducers (Archaeoglobus, d-Proteobacteria, gram positives), fermenters (Thermococcus, Thermotogales, gram positives etc.) and other heterotrophs (g-Proteobacteria etc.) are in subsurface petroleum oil reservoirs. However, microbial distribution at vertical distances in depth has not been demonstrated since the samples in previous studies are only to use oil and the formation water. Here, we show the vertical profile of microbial community structure in Japanese terrestrial oil reservoir by a combination of molecular ecological analyses and culture dependent studies. The sequential WRC (Whole Round Core) samples (200 mbsf) were recovered from a drilling project for Sagara oil reservoir, Shizuoka Prefecture, Japan, conducted in Jar. -Mar. 2002. The lithology of the core samples was composed of siltstone, sandstone, or partially oil containing sand. The major oil components were gasoline, kerosene and light oil, that is a unique feature observed in the Sagara oil reservoir. The direct count of DAPI-stained cells suggested that the biomass was relatively constant, 1.0x104cells/g through the core of the non-oil layers, whereas the oil-bearing layers had quite higher population density at a range of 1.0x105 ? 3.7x107cells/g. The vertical profile of microbial community structures was analyzed by the sequence similarity analysis, phylogenetic analysis and T-RFLP fingerprinting of PCR-amplified 16S rDNA. From bacterial rDNA clone libraries, most of the examined rDNA were similar with the sequence of genera Pseudomanas, Stenotrophomonas and Sphingomonas within g-Proteobacteria. Especially, Pseudomonas stutzeri was predominantly present in all oil-bearing layers. From archaeal rDNA clone libraries, all rDNA clone sequences were phylogenetically associated with uncultured soil group in Crenarchaeota. We detected none of the sequences of sulfate reducers, sulfur dependent fermenters and methanogens that have been previously detected as dominant microbial components in other oil reservoir environments. The absence of methanogen was consistent with the results from the stable isotopic analysis that major hydrocarbon components including methane in Sagara oil reservoir are thermogenic origin. In this presentation, we will also show the activity of the subsurface microbial components by the cultivation assays and discuss about the relationship between the microbial community structure and the formation process of petroleum in Sagara oil reservoir.

  16. High-throughput synergy screening identifies microbial metabolites as combination agents for the treatment of fungal infections

    PubMed Central

    Zhang, Lixin; Yan, Kezhi; Zhang, Yu; Huang, Ren; Bian, Jiang; Zheng, Chuansen; Sun, Haixiang; Chen, Zhihui; Sun, Nuo; An, Rong; Min, Fangui; Zhao, Weibo; Zhuo, Ying; You, Jianlan; Song, Yongjie; Yu, Zhenyan; Liu, Zhiheng; Yang, Keqian; Gao, Hong; Dai, Huanqin; Zhang, Xiaoli; Wang, Jian; Fu, Chengzhang; Pei, Gang; Liu, Jintao; Zhang, Si; Goodfellow, Michael; Jiang, Yuanying; Kuai, Jun; Zhou, Guochun; Chen, Xiaoping

    2007-01-01

    The high mortality rate of immunocompromised patients with fungal infections and the limited availability of highly efficacious and safe agents demand the development of new antifungal therapeutics. To rapidly discover such agents, we developed a high-throughput synergy screening (HTSS) strategy for novel microbial natural products. Specifically, a microbial natural product library was screened for hits that synergize the effect of a low dosage of ketoconazole (KTC) that alone shows little detectable fungicidal activity. Through screening of ≈20,000 microbial extracts, 12 hits were identified with broad-spectrum antifungal activity. Seven of them showed little cytotoxicity against human hepatoma cells. Fractionation of the active extracts revealed beauvericin (BEA) as the most potent component, because it dramatically synergized KTC activity against diverse fungal pathogens by a checkerboard assay. Significantly, in our immunocompromised mouse model, combinations of BEA (0.5 mg/kg) and KTC (0.5 mg/kg) prolonged survival of the host infected with Candida parapsilosis and reduced fungal colony counts in animal organs including kidneys, lungs, and brains. Such an effect was not achieved even with the high dose of 50 mg/kg KTC. These data support synergism between BEA and KTC and thereby a prospective strategy for antifungal therapy. PMID:17360571

  17. In-Flight Microbial Monitor

    NASA Technical Reports Server (NTRS)

    Zeitlin, Nancy; Mullenix, Pamela; Wheeler, Raymond M.; Ruby, Anna Maria

    2015-01-01

    Previous research has shown that potential human pathogens have been detected on the International Space Station (ISS). New microorganisms are introduced with every exchange of crew and cargo. Microorganisms introduced to the ISS are readily transferred between crew and subsystems (i.e., ECLSS, environmental control and life support systems). Current microbial characterization methods require a culture-based enrichment of microorganisms and at least a 48-hour incubation time. This increases the microbial load while detecting only a limited number of microorganisms. The culture-based method detects approximately 1-10% of the total organisms present and provides no identification. To identify and enumerate ISS samples requires that the microbes be returned to Earth for complete analysis. Therefore, a more expedient, low-cost, inflight method of microbial detection, identification, and enumeration is needed. The RAZOR EX, a ruggedized, commercial off the shelf, real-time PCR field instrument was tested for its ability to detect microorganisms at low concentrations within one hour. Escherichia coli, Salmonella enterica Typhimurium, and Pseudomonas aeruginosa were detected at low levels using real-time DNA amplification. Total heterotrophic counts could also be detected using a 16S gene marker that can identify up to 98% of all bacteria. To reflect viable cells found in the samples, RNA was also detectable using a modified, single-step reverse transcription reaction.

  18. Culturability as an indicator of succession in microbial communities

    NASA Technical Reports Server (NTRS)

    Garland, J. L.; Cook, K. L.; Adams, J. L.; Kerkhof, L.

    2001-01-01

    Successional theory predicts that opportunistic species with high investment of energy in reproduction and wide niche width will be replaced by equilibrium species with relatively higher investment of energy in maintenance and narrower niche width as communities develop. Since the ability to rapidly grow into a detectable colony on nonselective agar medium could be considered as characteristic of opportunistic types of bacteria, the percentage of culturable cells may be an indicator of successional state in microbial communities. The ratios of culturable cells (colony forming units on R2A agar) to total cells (acridine orange direct microscopic counts) and culturable cells to active cells (reduction of 5-cyano-2,3-ditolyl tetrazolium chloride) were measured over time in two types of laboratory microcosms (the rhizosphere of hydroponically grown wheat and aerobic, continuously stirred tank reactors containing plant biomass) to determine the effectiveness of culturabilty as an index of successional state. The culturable cell:total cell ratio in the rhizosphere decreased from approximately 0.25 to less than 0.05 during the first 30-50 days of plant growth, and from 0.65 to 0.14 during the first 7 days of operation of the bioreactor. The culturable cell:active cell ratio followed similar trends, but the values were consistently greater than the culturable cell:total cell ratio, and even exceeded I in early samples. Follow-up studies used a cultivation-independent method, terminal restriction fragment length polymorphisms (TRFLP) from whole community DNA, to assess community structure. The number of TRFLP peaks increased with time, while the number of culturable types did not, indicating that the general decrease in culturability is associated with a shift in community structure. The ratio of respired to assimilated C-14-labeled amino acids increased with the age of rhizosphere communities, supporting the hypothesis that a shift in resource allocation from growth to maintenance occurs with time. Results from this work indicate that the percentage of culturable cells may be a useful method for assessing the successional state of microbial communities.

  19. Digital Holographic Microscopy, a Method for Detection of Microorganisms in Plume Samples from Enceladus and Other Icy Worlds

    PubMed Central

    Bedrossian, Manuel; Lindensmith, Chris

    2017-01-01

    Abstract Detection of extant microbial life on Earth and elsewhere in the Solar System requires the ability to identify and enumerate micrometer-scale, essentially featureless cells. On Earth, bacteria are usually enumerated by culture plating or epifluorescence microscopy. Culture plates require long incubation times and can only count culturable strains, and epifluorescence microscopy requires extensive staining and concentration of the sample and instrumentation that is not readily miniaturized for space. Digital holographic microscopy (DHM) represents an alternative technique with no moving parts and higher throughput than traditional microscopy, making it potentially useful in space for detection of extant microorganisms provided that sufficient numbers of cells can be collected. Because sample collection is expected to be the limiting factor for space missions, especially to outer planets, it is important to quantify the limits of detection of any proposed technique for extant life detection. Here we use both laboratory and field samples to measure the limits of detection of an off-axis digital holographic microscope (DHM). A statistical model is used to estimate any instrument's probability of detection at various bacterial concentrations based on the optical performance characteristics of the instrument, as well as estimate the confidence interval of detection. This statistical model agrees well with the limit of detection of 103 cells/mL that was found experimentally with laboratory samples. In environmental samples, active cells were immediately evident at concentrations of 104 cells/mL. Published estimates of cell densities for Enceladus plumes yield up to 104 cells/mL, which are well within the off-axis DHM's limits of detection to confidence intervals greater than or equal to 95%, assuming sufficient sample volumes can be collected. The quantitative phase imaging provided by DHM allowed minerals to be distinguished from cells. Off-axis DHM's ability for rapid low-level bacterial detection and counting shows its viability as a technique for detection of extant microbial life provided that the cells can be captured intact and delivered to the sample chamber in a sufficient volume of liquid for imaging. Key Words: In situ life detection—Extant microorganisms—Holographic microscopy—Ocean Worlds—Enceladus—Imaging. Astrobiology 17, 913–925. PMID:28708412

  20. A critical evaluation of a flow cytometer used for detecting enterococci in recreational waters.

    PubMed

    King, Dawn N; Brenner, Kristen P; Rodgers, Mark R

    2007-06-01

    The current U. S. Environmental Protection Agency-approved method for enterococci (Method 1600) in recreational water is a membrane filter (MF) method that takes 24 hours to obtain results. If the recreational water is not in compliance with the standard, the risk of exposure to enteric pathogens may occur before the water is identified as hazardous. Because flow cytometry combined with specific fluorescent antibodies has the potential to be used as a rapid detection method for microorganisms, this technology was evaluated as a rapid, same-day method to detect enterococci in bathing beach waters. The flow cytometer chosen for this study was a laser microbial detection system designed to detect labeled antibodies. A comparison of MF counts with flow cytometry counts of enterococci in phosphate buffer and sterile-filtered recreational water showed good agreement between the two methods. However, when flow cytometry was used, the counts were several orders of magnitude higher than the MF counts with no correlation to Enterococcus spike concentrations. The unspiked sample controls frequently had higher counts than the samples spiked with enterococci. Particles within the spiked water samples were probably counted as target cells by the flow cytometer because of autofluorescence or non-specific adsorption of antibody and carryover to subsequent samples. For these reasons, this technology may not be suitable for enterococci detection in recreational waters. Improvements in research and instrument design that will eliminate high background and carryover may make this a viable technology in the

  1. Performance Equivalence and Validation of the Soleris Automated System for Quantitative Microbial Content Testing Using Pure Suspension Cultures.

    PubMed

    Limberg, Brian J; Johnstone, Kevin; Filloon, Thomas; Catrenich, Carl

    2016-09-01

    Using United States Pharmacopeia-National Formulary (USP-NF) general method <1223> guidance, the Soleris(®) automated system and reagents (Nonfermenting Total Viable Count for bacteria and Direct Yeast and Mold for yeast and mold) were validated, using a performance equivalence approach, as an alternative to plate counting for total microbial content analysis using five representative microbes: Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, Candida albicans, and Aspergillus brasiliensis. Detection times (DTs) in the alternative automated system were linearly correlated to CFU/sample (R(2) = 0.94-0.97) with ≥70% accuracy per USP General Chapter <1223> guidance. The LOD and LOQ of the automated system were statistically similar to the traditional plate count method. This system was significantly more precise than plate counting (RSD 1.2-2.9% for DT, 7.8-40.6% for plate counts), was statistically comparable to plate counting with respect to variations in analyst, vial lots, and instruments, and was robust when variations in the operating detection thresholds (dTs; ±2 units) were used. The automated system produced accurate results, was more precise and less labor-intensive, and met or exceeded criteria for a valid alternative quantitative method, consistent with USP-NF general method <1223> guidance.

  2. Environmental monitoring: data trending using a frequency model.

    PubMed

    Caputo, Ross A; Huffman, Anne

    2004-01-01

    Environmental monitoring programs for the oversight of classified environments have used traditional statistical control charts to monitor trends in microbial recovery for classified environments. These methodologies work well for environments that yield measurable microbial recoveries. However, today successful increased control of microbial content yields numerous instances where microbial recovery in a sample is generally zero. As a result, traditional control chart methods cannot be used appropriately. Two methods to monitor the performance of a classified environment where microbial recovery is zero are presented. Both methods use the frequency between non-zero microbial recovery as an event. Therefore, the frequency of events is monitored rather than the microbial recovery count. Both methods are shown to be appropriate for use in the described instances.

  3. Effect of Resistant Starch and β-Glucan Combination on Oxidative Stability, Frying Performance, Microbial Count and Shelf Life of Prebiotic Sausage During
Refrigerated Storage

    PubMed Central

    2017-01-01

    Summary This study aims to evaluate the performance of two types of prebiotic sausages formulated with resistant starch (RS) and β-glucan (BG) extract (in ratios of 2.22:1.33 and 2.75:1.88) during frying and chilled storage. The oxidative stability indices and microbial counts were determined. The incorporation of two types of prebiotic dietary fibre increased frying loss and oil absorption. However, the moisture content of prebiotic sausages after production was higher than of conventional sausages and it decreased significantly during storage. The use of sausage sample containing 2.22% RS and 1.33% BG as a recommended formulation can decrease fat oxidation of sausages during storage due to antioxidant properties of BG extract, but higher levels of RS and BG could not be used due to further increase in fat oxidation. Total viable count increased up to day 45 and decreased afterwards. The addition of BG extract improved the antioxidant properties of sausages. Additionally, the antimicrobial properties of BG and moisture reduction could inhibit microbial growth. Moreover, the addition of RS caused an increase in thiobarbituric acid and peroxide values. PMID:29540982

  4. Quantifying oral inflammatory load: oral neutrophil counts in periodontal health and disease.

    PubMed

    Landzberg, M; Doering, H; Aboodi, G M; Tenenbaum, H C; Glogauer, M

    2015-06-01

    Neutrophils are the primary white blood cells that are recruited to fight the initial phases of microbial infections. While healthy norms have been determined for circulating blood neutrophil counts in order to identify patients with suspected systemic infections, the levels of oral neutrophils (oPMNs) in oral health and in the presence of periodontal diseases have not been described. It is important to address this deficiency in our knowledge as neutrophils are the primary immune cell present in the crevicular fluid and oral environment and previous work has suggested that they may be good indicators of overall oral inflammation and periodontal disease severity. The objective of this study was to measure oPMN counts obtained in a standardized oral rinse from healthy patients and from those with chronic periodontal disease in order to determine if oPMN levels have clinical relevance as markers of periodontal inflammation. A parallel goal of this investigation was to introduce the concept of 'oral inflammatory load', which constitutes the inflammatory burden experienced by the body as a consequence of oral inflammatory disease. Periodontal examinations of patients with a healthy periodontium and chronic periodontal disease were performed (n = 124). Two standardized consecutive saline rinses of 30 s each were collected before patient examination and instrumentation. Neutrophils were quantified in the rinse samples and correlated with the clinical parameters and periodontal diagnosis. Average oPMN counts were determined for healthy patients and for those with mild, moderate and severe chronic periodontal diseases. A statistically significant correlation was found between oPMN counts and deep periodontal probing, sites with bleeding on probing and overall severity of periodontal disease. oPMN counts obtained through a 30-s oral rinse are a good marker of oral inflammatory load and correlate with measures of periodontal disease severity. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Efficient method for the detection of microbially-produced antibacterial substances from food systems.

    PubMed

    Morgan, S M; Hickey, R; Ross, R P; Hill, C

    2000-07-01

    A novel method for the isolation of microbially-derived inhibitory substances from food sources was developed. The method involves an enrichment step coupled to a killing assay which is initially carried out in multiwell plates. The technique has advantages in that large numbers of samples can be tested in parallel. The assay can be completed in less than 60 h and is more sensitive than direct plating due to the enrichment step. This novel screening approach was compared with the standard direct plating approach in an effort to identify the antimicrobial potential of a number of Kefir grains. Kefir grains were incubated in 10% reconstituted skim milk for 20 h at 32 degrees C to enable production of any potential biopreservatives. Following overnight incubation, fermentates were aliquoted into multi-well plates and a known number of indicator cells was added to each well. The fermentates were incubated for a further 20 h and counts were carried out to determine whether a reduction in indicator cell numbers had occurred. A reduction in cell-forming units indicated the presence of an inhibitory substance and these inhibitory fermentates were selected for further investigation. Using the protocol outlined, Kefir fermentates capable of inhibiting Listeria innocua DPC1770 and Escherichia coli O157:H45 were identified.

  6. Characterization by volatile compounds of microbial deep spoilage in Iberian dry-cured ham.

    PubMed

    Martín, Alberto; Benito, María J; Aranda, Emilio; Ruiz-Moyano, Santiago; Córdoba, Juan J; Córdoba, María G

    2010-08-01

    In the present study, volatile compounds of spoiled dry-cured Iberian ham with deep spoilage or "bone taint" were analyzed and correlated with level of spoilage and the microorganisms detected. Volatile compounds extracted by a solid phase micro-extraction technique were assayed by gas chromatography/mass spectrometry. The spoiled hams were evaluated sensorially, and the correlations among volatile compounds, spoilage level, and microbial counts were studied. The spoiled hams had higher concentrations of hydrocarbons, alcohols, acids, esters, pyrazines, sulfur compounds, and other minor volatile compounds than unspoiled hams. The sensorial analysis showed that the spoilage level of hams correlated with several volatile compounds, most of them associated with Gram-positive catalase positive cocci and Enterobacteriaceae counts. Cyclic compounds such as cyclohexanone, some ethers, and pyrazines should be considered as indicators to monitor incipient microbial deep spoilage in the elaboration of this meat product.

  7. Effect of gamma radiation on native endolithic microorganisms from a radioactive waste deposit site.

    PubMed

    Pitonzo, B J; Amy, P S; Rudin, M

    1999-07-01

    A time-course experiment was conducted to evaluate the effects of gamma radiation on the indigenous microbiota present in rock obtained from Yucca Mountain, Nevada Test Site. Microcosms were constructed by placing pulverized Yucca Mountain rock in polystyrene cylinders. Continuous exposure (96 h) at a dose rate of 1.63 Gy/min was used to mimic the near-field environment surrounding waste canisters. The expected maximum surface dose rate from one unbreached canister designed to contain spent nuclear fuels is 0.06 Gy/min. Considering the current repository packing design, multiple canisters within one vault, the cumulative dose rate may well approach that used in this experiment. The microbial communities were characterized after receiving cumulative doses of 0, 0.098, 0. 58, 2.33, 4.67, 7.01 and 9.34 kGy. Radiation-resistant microorganisms in the pulverized rock became viable but nonculturable (VBNC) after a cumulative dose of 2.33 kGy. VBNC microorganisms lose the ability to grow on media on which they have routinely been cultured in response to the environmental stress imposed (i.e. radiation) but can be detected throughout the time course using direct fluorescence microscopy techniques. Two representative exopolysaccharide-producing isolates from Yucca Mountain were exposed to the same radiation regimen in sand microcosms. One isolate was much more radiation-resistant than the other, but both had greater resistance than the general microbial community based on culturable counts. However, when respiring cell counts (VBNC) were compared after irradiation, the results would indicate much more radiation resistance of the individual isolates and the microbial community in general. These results have significant implications for underground storage of nuclear waste as they indicate that indigenous microorganisms are capable of surviving gamma irradiation in a VBNC state.

  8. Effect of Coffea canephora aqueous extract on microbial counts in ex vivo oral biofilms: a case study.

    PubMed

    Antonio, Andréa Gonçalves; Iorio, Natália Lopes Pontes; Farah, Adriana; Netto dos Santos, Kátia Regina; Maia, Lucianne Cople

    2012-05-01

    In the present study, the ex vivo antimicrobial effect of brewed coffee was tested on oral biofilms. For this, unsweetened and sweetened (10 % sucrose) brewed light-roasted Coffea canephora at 20 % was used in biofilms formed by non-stimulated saliva from three volunteers. After 30 min contact with unsweetened and sweetened brews, the average microorganism count in the biofilms reduced by 15.2 % and 12.4 %, respectively, with no statistical difference among them. We also observed a drop of microorganisms in the biofilms after treatment with sucrose solution at 5 % compared to control (saline) and to sucrose at 1 % and 3 %. In conclusion, Coffea canephora extract reduces the microbial count in oral biofilm, and our data suggest that sucrose concentration in coffee brew can influence its antimicrobial property against the referred biofilm. Georg Thieme Verlag KG Stuttgart · New York.

  9. Hyperbaric storage of melon juice at and above room temperature and comparison with storage at atmospheric pressure and refrigeration.

    PubMed

    Queirós, Rui P; Santos, Mauro D; Fidalgo, Liliana G; Mota, Maria J; Lopes, Rita P; Inácio, Rita S; Delgadillo, Ivonne; Saraiva, Jorge A

    2014-03-15

    Hyperbaric storage (8h) of melon juice (a highly perishable food) at 25, 30 and 37°C, under pressure at 25-150 MPa was compared with atmospheric pressure storage (0.1 MPa) at the same temperatures and under refrigeration (4°C). Comparatively to the refrigerated condition, hyperbaric storage at 50/75 MPa resulted in similar or lower microbial counts (total aerobic mesophiles, enterobacteriaceae, and yeasts/moulds) while at 100/150 MPa, the counts were lower for all the tested temperatures, indicating in the latter case, in addition to microbial growth inhibition, a microbial inactivation effect. At 25 MPa no microbial inhibition was observed. Physicochemical parameters of all samples stored under pressure (pH, titratable acidity, total soluble solids, browning degree and cloudiness) did not show a clear variation trend with pressure, being the results globally similar to refrigeration storage. These results show the potential of hyperbaric storage, at and above room temperature and with potential energy savings, comparatively to refrigeration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Diversity and dynamics of antibiotic-resistant bacteria in cheese as determined by PCR denaturing gradient gel electrophoresis.

    PubMed

    Flórez, Ana Belén; Mayo, Baltasar

    2015-12-02

    This work reports the composition and succession of tetracycline- and erythromycin-resistant bacterial communities in a model cheese, monitored by polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE). Bacterial 16S rRNA genes were examined using this technique to detect structural changes in the cheese microbiota over manufacturing and ripening. Total bacterial genomic DNA, used as a template, was extracted from cultivable bacteria grown without and with tetracycline or erythromycin (both at 25 μg ml(-1)) on a non-selective medium used for enumeration of total and viable cells (Plate Count agar with Milk; PCA-M), and from those grown on selective and/or differential agar media used for counting various bacterial groups; i.e., lactic acid bacteria (de Man, Rogosa and Sharpe agar; MRSA), micrococci and staphylococci (Baird-Parker agar; BPA), and enterobacteria (Violet Red Bile Glucose agar; VRBGA). Large numbers of tetracycline- and erythromycin-resistant bacteria were detected in cheese samples at all stages of ripening. Counts of antibiotic-resistant bacteria varied widely depending on the microbial group and the point of sampling. In general, resistant bacteria were 0.5-1.0 Log10 units fewer in number than the corresponding susceptible bacteria. The PCR-DGGE profiles obtained with DNA isolated from the plates for total bacteria and the different bacterial groups suggested Escherichia coli, Lactococcus lactis, Enterococcus faecalis and Staphylococcus spp. as the microbial types resistant to both antibiotics tested. This study shows the suitability of the PCR-DGGE technique for rapidly identifying and tracking antibiotic resistant populations in cheese and, by extension, in other foods. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Cinnamaldehyde supplementation prevents fasting-induced hyperphagia, lipid accumulation, and inflammation in high-fat diet-fed mice.

    PubMed

    Khare, Pragyanshu; Jagtap, Sneha; Jain, Yachna; Baboota, Ritesh K; Mangal, Priyanka; Boparai, Ravneet K; Bhutani, Kamlesh K; Sharma, Shyam S; Premkumar, Louis S; Kondepudi, Kanthi K; Chopra, Kanwaljit; Bishnoi, Mahendra

    2016-01-01

    Cinnamaldehyde, a bioactive component of cinnamon, is increasingly gaining interest for its preventive and therapeutic effects against metabolic complications like type-2 diabetes. This study is an attempt to understand the effect of cinnamaldehyde in high-fat diet (HFD)-associated increase in fasting-induced hyperphagia and related hormone levels, adipose tissue lipolysis and inflammation, and selected cecal microbial count in mice. Cinnamaldehyde, at 40 µM dose, prevented lipid accumulation and altered gene expression toward lipolytic phenotype in 3T3-L1 preadipocyte cell lines. In vivo, cinnamaldehyde coadministration prevented HFD-induced body weight gain, decreased fasting-induced hyperphagia, as well as circulating leptin and leptin/ghrelin ratio. In addition to that, cinnamaldehyde altered serum biochemical parameters related to lipolysis, that is, glycerol and free fatty acid levels. At transcriptional level, cinnamaldehyde increased anorectic gene expression in hypothalamus and lipolytic gene expression in visceral white adipose tissue. Furthermore, cinnamaldehyde also decreased serum IL-1β and inflammatory gene expression in visceral white adipose tissue. However, cinnamaldehyde did not modulate the population of selected gut microbial (Lactobacillus, Bifidibaceria, and Roseburia) count in cecal content. In conclusion, cinnamaldehyde increased adipose tissue lipolysis, decreased fasting-induced hyperphagia, normalized circulating levels of leptin/ghrelin ratio, and reduced inflammation in HFD-fed mice, which augurs well for its antiobesity role. © 2016 International Union of Biochemistry and Molecular Biology.

  12. Effects of diets containing different concentrations of mannanoligosaccharide or antibiotics on growth performance, intestinal development, cecal and litter microbial populations, and carcass parameters of broilers.

    PubMed

    Baurhoo, B; Ferket, P R; Zhao, X

    2009-11-01

    The effects of 2 levels of mannanoligosaccharide (MOS) in feed were compared with antibiotic growth promoters on growth performance, intestinal morphology, cecal and litter microbial populations, and carcass parameters in broilers raised in a sanitary environment. Dietary treatments included: 1) antibiotic growth promoter-free diet (control), 2) VIRG (diet 1 + 16.5 mg/kg of virginiamycin), 3) BACT (diet 1 + 55 mg/kg of bacitracin), 4) LMOS (diet 1 + 0.2% MOS), and 5) HMOS (diet 1 + 0.5% MOS). Birds were randomly assigned to 3 replicate pens/treatment (n = 55/pen). Body weight and feed intake were recorded weekly throughout 38 d. At d 14, 24, and 34, a 1-cm segment of duodenum, jejunum, and ileum was used in morphological analysis (n = 9 birds/d per treatment). At the same bird ages, cecal contents were assayed for lactobacilli, bifidobacteria, Salmonella, Campylobacter, and Escherichia coli, whereas litter was analyzed for Salmonella, Campylobacter, and E. coli. Carcass yields (breast fillet and tenders, thigh, drumstick, and wing) were determined at d 38. Body weight, feed conversion, and carcass yields did not differ among treatments. In contrast to birds fed VIRG or BACT, LMOS and HMOS consistently increased (P < 0.05) villi height and goblet cell number per villus in all intestinal segments at d 24 and 34. Bifidobacteria concentrations were higher (P < 0.05) in LMOS- and HMOS-fed birds at all time points. Birds and litter from all treatments were free of Salmonella. At d 14 and 24, cecal E. coli and Campylobacter counts were not different among treatments. In comparison to birds fed control, at d 34, BACT, LMOS, and HMOS significantly reduced (P < 0.05) cecal E. coli concentrations, whereas Campylobacter counts were reduced (P < 0.05) by VIRG, BACT, and LMOS. Litter bacterial counts were not altered by dietary treatments. In conclusion, under conditions of this study, MOS conferred intestinal health benefits to chickens by improving its morphological development and microbial ecology. But, there were no additional benefits of the higher MOS dosage.

  13. Microbial Quality and Phylogenetic Diversity of Fresh Rainwater and Tropical Freshwater Reservoir

    PubMed Central

    Kaushik, Rajni; Balasubramanian, Rajasekhar; Dunstan, Hugh

    2014-01-01

    The impact of rainwater on the microbial quality of a tropical freshwater reservoir through atmospheric wet deposition of microorganisms was studied for the first time. Reservoir water samples were collected at four different sampling points and rainwater samples were collected in the immediate vicinity of the reservoir sites for a period of four months (January to April, 2012) during the Northeast monsoon period. Microbial quality of all fresh rainwater and reservoir water samples was assessed based on the counts for the microbial indicators: Escherichia coli (E. coli), total coliforms, and Enterococci along with total heterotrophic plate counts (HPC). The taxonomic richness and phylogenetic relationship of the freshwater reservoir with those of the fresh rainwater were also assessed using 16 S rRNA gene clone library construction. The levels of E. coli were found to be in the range of 0 CFU/100 mL – 75 CFU/100 mL for the rainwater, and were 10–94 CFU/100 mL for the reservoir water. The sampling sites that were influenced by highway traffic emissions showed the maximum counts for all the bacterial indicators assessed. There was no significant increase in the bacterial abundances observed in the reservoir water immediately following rainfall. However, the composite fresh rainwater and reservoir water samples exhibited broad phylogenetic diversity, including sequences representing Betaproteobacteria, Alphaproteobacteria, Gammaproteobacteria, Actinobacteria, Lentisphaerae and Bacteriodetes. Members of the Betaproteobacteria group were the most dominant in both fresh rainwater and reservoir water, followed by Alphaproteobacteria, Sphingobacteria, Actinobacteria and Gammaproteobacteria. PMID:24979573

  14. Microbial quality and phylogenetic diversity of fresh rainwater and tropical freshwater reservoir.

    PubMed

    Kaushik, Rajni; Balasubramanian, Rajasekhar; Dunstan, Hugh

    2014-01-01

    The impact of rainwater on the microbial quality of a tropical freshwater reservoir through atmospheric wet deposition of microorganisms was studied for the first time. Reservoir water samples were collected at four different sampling points and rainwater samples were collected in the immediate vicinity of the reservoir sites for a period of four months (January to April, 2012) during the Northeast monsoon period. Microbial quality of all fresh rainwater and reservoir water samples was assessed based on the counts for the microbial indicators: Escherichia coli (E. coli), total coliforms, and Enterococci along with total heterotrophic plate counts (HPC). The taxonomic richness and phylogenetic relationship of the freshwater reservoir with those of the fresh rainwater were also assessed using 16 S rRNA gene clone library construction. The levels of E. coli were found to be in the range of 0 CFU/100 mL-75 CFU/100 mL for the rainwater, and were 10-94 CFU/100 mL for the reservoir water. The sampling sites that were influenced by highway traffic emissions showed the maximum counts for all the bacterial indicators assessed. There was no significant increase in the bacterial abundances observed in the reservoir water immediately following rainfall. However, the composite fresh rainwater and reservoir water samples exhibited broad phylogenetic diversity, including sequences representing Betaproteobacteria, Alphaproteobacteria, Gammaproteobacteria, Actinobacteria, Lentisphaerae and Bacteriodetes. Members of the Betaproteobacteria group were the most dominant in both fresh rainwater and reservoir water, followed by Alphaproteobacteria, Sphingobacteria, Actinobacteria and Gammaproteobacteria.

  15. Microbial populations and activities of mangrove, restinga and Atlantic forest soils from Cardoso Island, Brazil.

    PubMed

    Pupin, B; Nahas, E

    2014-04-01

    Mangroves provide a distinctive ecological environment that differentiates them from other ecosystems. This study deal to evaluate the frequency of microbial groups and the metabolic activities of bacteria and fungi isolated from mangrove, restinga and Atlantic forest soils. Soil samples were collected during the summer and winter at depths of 0-2, 2-5 and 5-10 cm. Except for fungi, the counts of the total, sporulating, Gram-negative, actinomycetes, nitrifying and denitrifying bacteria decreased significantly in the following order: Atlantic forest >mangrove > restinga. The counts of micro-organisms decreased by 11 and 21% from the surface to the 2-5 and 5-10 cm layers, but denitrifying bacteria increased by 44 and 166%, respectively. A larger growth of micro-organisms was verified in the summer compared with the winter, except for actinomycetes and fungi. The average frequency of bacteria isolated from mangrove, restinga and Atlantic forest soils was 95, 77 and 78%, and 93, 90 and 95% for fungi, respectively. Bacteria were amylolytic (33%), producers of acid phosphatase (79%) and solubilizers (18%) of inorganic phosphate. The proportions of fungi were 19, 90 and 27%. The mangrove soil studied had higher chemical characteristics than the Atlantic forest, but the high salinity may have restricted the growth of microbial populations. Estimates of the microbial counts and activities were important to elucidate the differences of mangrove ecosystem from restinga and Atlantic forest. © 2013 The Society for Applied Microbiology.

  16. Soluble triggering receptor expressed on myeloid cells 1 and the diagnosis of sepsis.

    PubMed

    Barati, Mitra; Bashar, Farshid Rahimi; Shahrami, Reza; Zadeh, Mohammad Hossein Jarrah; Taher, Mahshid Talebi; Nojomi, Marzieh

    2010-06-01

    Early diagnosis and assessment of the systemic inflammatory response to infection are difficult with usual markers (fever, leukocytosis, C-reactive protein [CRP]). Triggering receptor expressed on myeloid cells-1 (TREM-1) expression on phagocytes is up-regulated by microbial products. We studied the ability of soluble TREM-1 (sTREM-1) to identify patients with sepsis. Plasma samples were obtained on intensive care unit admission from patients with systemic inflammatory response syndrome for sTREM-1 measurement. Soluble TREM-1, CRP concentrations and erythrocyte sedimentation rate (ESR) were higher in the sepsis group (n = 52) than in the non-infectious systemic inflammatory response syndrome group (n = 43; P = .00, .02, and .001, respectively). Soluble TREM-1, CRP concentrations, white blood cell count and ESR were higher in the sepsis group than in the non SIRS group (n = 37; P = .04, .00, .01, and .00, respectively). In a receiver-operating characteristic curve analysis, ESR, CRP and sTREM-1 had an area under the curve larger than 0.65 (P = .00), in distinguishing between septic and non-infectious SIRS patients. CRP, ESR, sTREM-1 had a sensitivity of 60%, 70% and 70% and a specificity of 60%, 69% and, 60% respectively in diagnosing infection in SIRS. C-reactive protein and ESR performed better than sTREM-1 and white blood cell count in diagnosing infection. Copyright (c) 2010. Published by Elsevier Inc.

  17. Veggie ISS Validation Test Results and Produce Consumption

    NASA Technical Reports Server (NTRS)

    Massa, Gioia; Hummerick, Mary; Spencer, LaShelle; Smith, Trent

    2015-01-01

    The Veggie vegetable production system flew to the International Space Station (ISS) in the spring of 2014. The first set of plants, Outredgeous red romaine lettuce, was grown, harvested, frozen, and returned to Earth in October. Ground control and flight plant tissue was sub-sectioned for microbial analysis, anthocyanin antioxidant phenolic analysis, and elemental analysis. Microbial analysis was also performed on samples swabbed on orbit from plants, Veggie bellows, and plant pillow surfaces, on water samples, and on samples of roots, media, and wick material from two returned plant pillows. Microbial levels of plants were comparable to ground controls, with some differences in community composition. The range in aerobic bacterial plate counts between individual plants was much greater in the ground controls than in flight plants. No pathogens were found. Anthocyanin concentrations were the same between ground and flight plants, while antioxidant and phenolic levels were slightly higher in flight plants. Elements varied, but key target elements for astronaut nutrition were similar between ground and flight plants. Aerobic plate counts of the flight plant pillow components were significantly higher than ground controls. Surface swab samples showed low microbial counts, with most below detection limits. Flight plant microbial levels were less than bacterial guidelines set for non-thermostabalized food and near or below those for fungi. These guidelines are not for fresh produce but are the closest approximate standards. Forward work includes the development of standards for space-grown produce. A produce consumption strategy for Veggie on ISS includes pre-flight assessments of all crops to down select candidates, wiping flight-grown plants with sanitizing food wipes, and regular Veggie hardware cleaning and microbial monitoring. Produce then could be consumed by astronauts, however some plant material would be reserved and returned for analysis. Implementation of this plan is a step toward developing pick-and-eat food production to supplement the packaged diet on ISS and for future exploration missions where plants could make up a larger portion of the diet. Supported by NASA Space Biology Program.

  18. [Advances in microbial solar cells--A review].

    PubMed

    Guo, Xiaoyun; Yu, Changping; Zheng, Tianling

    2015-08-04

    The energy crisis has become one of the major problems hindering the development of the world. The emergence of microbial fuel cells provides a new solution to the energy crisis. Microbial solar cells, integrating photosynthetic organisms such as plants and microalgae into microbial fuel cells, can convert solar energy into electrical energy. Microbial solar cell has steady electric energy, and broad application prospects in wastewater treatment, biodiesel processing and intermediate metabolites production. Here we reviewed recent progress of microbial solar cells from the perspective of the role of photosynthetic organisms in microbial fuel cells, based on a vast amount of literature, and discussed their advantages and deficiency. At last, brief analysis of the facing problems and research needs of microbial fuel cells are undertaken. This work was expected to be beneficial for the application of the microbial solar cells technology.

  19. Hygienic Status Assessment of Two Lamb Slaughterhouses in Spain.

    PubMed

    Alonso-Calleja, Carlos; Guerrero-Ramos, Emilia; Capita, Rosa

    2017-07-01

    A total of 180 lamb carcasses and 200 inert surfaces were sampled in two commercial abattoirs (plants A and B) from northwest Spain. A higher (P < 0.001) average microbial load (log CFU per square centimeter) on lamb carcasses was observed for total viable counts (TVC; 2.74 ± 1.15) than for Enterobacteriaceae (2.21 ± 1.16). Different microbial counts were found on carcasses from plants A and B, both for TVC (2.56 ± 0.96 versus 3.18 ± 1.47, respectively; P < 0.001) and Enterobacteriaceae (2.09 ± 0.97 versus 2.50 ± 1.61, respectively; P < 0.05). High correlations (P < 0.001) were observed for TVC and Enterobacteriaceae in both plants A (r = 0.708) and B (r = 0.912). The percentages of unsatisfactory daily mean log values for carcasses, according to European Union Regulation (EC) No 2073/2005, were 0.0 (TVC) and 30.8 (Enterobacteriaceae) in plant A and 10.0 (TVC) and 40.0 (Enterobacteriaceae) in plant B. Average counts for inert surfaces were all lower than 10 CFU/cm 2 (TVC) or 1 CFU/cm 2 (Enterobacteriaceae). The need to improve hygienic practices in order to adhere to the European Union microbiological performance criteria is emphasized. The detected different microbial counts between slaughterhouses could be attributed to differences in external hygiene of livestock and in the number of slaughterhouse workers. Microbiological analysis of carcasses and surfaces allows detection of hygienic concerns in the overall process.

  20. A new strategy for umbilical cord blood collection developed at the first Colombian public cord blood bank increases total nucleated cell content.

    PubMed

    Vanegas, Diana; Triviño, Lady; Galindo, Cristian; Franco, Leidy; Salguero, Gustavo; Camacho, Bernardo; Perdomo-Arciniegas, Ana-María

    2017-09-01

    The total nucleated cell dosage of umbilical cord blood (UCB) is an important factor in determining successful allogeneic hematopoietic stem cell transplantation after a minimum human leukocyte antigen donor-recipient match. The northern South American population is in need of a new-generation cord blood bank that cryopreserves only units with high total nucleated cell content, thereby increasing the likelihood of use. Colombia set up a public cord blood bank in 2014; and, as a result of its research for improving high total nucleated cell content, a new strategy for UCB collection was developed. Data from 2933 collected and 759 cryopreserved cord blood units between 2014 and 2015 were analyzed. The correlation of donor and collection variables with cellularity was evaluated. Moreover, blood volume, cell content, CD34+ count, clonogenic capacity, and microbial contamination were assessed comparing the new method, which combines in utero and ex utero techniques, with the conventional strategies. Multivariate analysis confirmed a correlation between neonatal birth weight and cell content. The new collection method increased total nucleated cell content in approximately 26% and did not alter pre-cryopreservation and post-thaw cell recovery, viability, or clonogenic ability. Furthermore, it showed a remarkably low microbial contamination rate (1.2%). The strategy for UCB collection developed at the first Colombian public cord blood bank increases total nucleated cell content and does not affect unit quality. The existence of this bank is a remarkable breakthrough for Latin-American patients in need of this kind of transplantation. © 2017 The Authors Transfusion published by Wiley Periodicals, Inc. on behalf of AABB.

  1. Microbiological quality of raw milk attributable to prolonged refrigeration conditions.

    PubMed

    Vithanage, Nuwan R; Dissanayake, Muditha; Bolge, Greg; Palombo, Enzo A; Yeager, Thomas R; Datta, Nivedita

    2017-02-01

    Refrigerated storage of raw milk is a prerequisite in dairy industry. However, temperature abused conditions in the farming and processing environments can significantly affect the microbiological quality of raw milk. Thus, the present study investigated the effect of different refrigeration conditions such as 2, 4, 6, 8, 10 and 12 °C on microbiological quality of raw milk from three different dairy farms with significantly different initial microbial counts. The bacterial counts (BC), protease activity (PA), proteolysis (PL) and microbial diversity in raw milk were determined during storage. The effect of combined heating (75 ± 0·5 °C for 15 s) and refrigeration on controlling those contaminating microorganisms was also investigated. Results of the present study indicated that all of the samples showed increasing BC, PA and PL as a function of temperature, time and initial BC with a significant increase in those criteria ≥6 °C. Similar trends in BC, PA and PL were observed during the extended storage of raw milk at 4 °C. Both PA and PL showed strong correlation with the psychrotrophic proteolytic count (PPrBC: at ≥4 °C) and thermoduric psychrotrophic count (TDPC: at ≥8 °C) compared to total plate count (TPC) and psychrotrophic bacterial count (PBC), that are often used as the industry standard. Significant increases in PA and PL were observed when PPrBC and TDPC reached 5 × 104 cfu/ml and 1 × 104 cfu/ml, and were defined as storage life for quality (S LQ), and storage life for safety (S LS) aspects, respectively. The storage conditions also significantly affected the microbial diversity, where Pseudomonas fluorescens and Bacillus cereus were found to be the most predominant isolates. However, deep cooling (2 °C) and combination of heating and refrigeration (≤4 °C) significantly extended the S LQ and S Ls of raw milk.

  2. Microbial and nutritional aspects on the production of live feeds in a fish farming industry.

    PubMed

    De Donno, A; Lugoli, F; Bagordo, F; Vilella, S; Campa, A; Grassi, T; Guido, M

    2010-03-01

    Aquaculture is an enterprise in constant development, in particular relating to its effect on the environment and also the quality of its products. It represents a valid alternative to traditional fishing, facing the increasing demand for fish products. To guarantee to the consumer a product of high nutritional, organoleptic and hygienic quality, it is fundamental to monitor every phase of the fish farming industry, isolating the potential risk points. For this reason there has been a rapid evolution of productive technique, particularly in the technology, artificial reproduction and feed sectors. The aim of this research has been the monitoring of the evolution of certain microbial and nutritional quality indexes (total microbial counts and lipid analysis on suspensions of Rotifers and Artemia, used as live feed) in the larval phase of the productive cycle of the farm raised fish, in an intensive system. The study has shown an increment in the total microbial counts in the fish farming industry within the production of Rotifers and Artemia, more evident in the suspensions of Rotifers. In addition the study has demonstrated that the maintenance phase, in the enrichment protocol, can reduce the EPA and DHA content. The results confirm the importance of microbial and nutritional control of the live feeds before they get supplied to fish larvae.

  3. Salivary microbial profiles in relation to age, periodontal, and systemic diseases

    PubMed Central

    Lira-Junior, Ronaldo; Åkerman, Sigvard; Klinge, Björn

    2018-01-01

    Background Analysis of saliva is emerging as a promising tool to diagnose and monitor diseases which makes determination of the salivary microbial profile in different scenarios essential. Objective To evaluate the effects of age, periodontal disease, sex, smoking, and medical conditions on the salivary microbial profile. Design A randomly selected sample of 441 individuals was enrolled (51% women; mean age 48.5±16.8). Participants answered a health questionnaire and underwent an oral examination. Stimulated saliva was collected and the counts of 41 bacteria were determined by checkerboard DNA-DNA hybridization. Results Elderly participants (> 64 years old) presented a significant increase in 24 out of 41 bacterial species compared to adults (≤ 64 years old). Eubacterium nodatum, Porphyromonas gingivalis, and Tannerella forsythia were significantly higher in participants with generalized bone loss compared to without. Males and non-smokers had higher bacteria counts in saliva. Individuals having mental disorders or muscle and joint diseases showed significantly altered microbial profiles whereas small or no differences were found for subjects with high blood pressure, heart disease, previous heart surgery, bowel disease, tumors, or diabetes. Conclusion Age, periodontal status, sex, smoking, and certain medical conditions namely, mental disorders and muscle and joint diseases, might affect the microbial profile in saliva. PMID:29538390

  4. Antimicrobial properties of natural substances in irradiated fresh poultry

    NASA Astrophysics Data System (ADS)

    Mahrour, A.; Lacroix, M.; Nketsa-Tabiri, J.; Calderon, N.; Gagnon, M.

    1998-06-01

    This study was undertaken to determine if a combined treatment (marinating in natural plant extracts or vacuum) with irradiation could have a synergetic effect, in order to reduce the dose required for complete elimination of Salmonella on fresh poultry. The effect of these combined treatments on the shelf-life extension was also evaluated. The fresh chicken legs were irradiated at 0, 3 and 5 kGy. The poultry underwent microbial analysis(mesophilic and Salmonella detection). For each treatment, the total microbial count decreased with increase of irradiation dose. The marinating treatment have a synergistic effect with irradiation treatment to reduce the total microbial count and controlling the proliferation during storage at 4°C. Irradiation of fresh chicken pieces with a dose of 3 kGy appears to be able to extend the microbial shelf-life by a factor of 2. When the chicken is marinating and irradiated at 3 kGy or when irradiated at 5 kGy without marinating, the microbial shelf-life is extended by a factor of 7 to 8. No Salmonella was found during all the experiment in the chicken in air and marinated. However, a presence of Salmonella was found in samples irradiated at 5 kGy under vacuum, in unirradiated samples and samples irradiated at 3kGy in air and under vacuum.

  5. Comparative day/night metatranscriptomic analysis of microbial communities in the North Pacific subtropical gyre.

    PubMed

    Poretsky, Rachel S; Hewson, Ian; Sun, Shulei; Allen, Andrew E; Zehr, Jonathan P; Moran, Mary Ann

    2009-06-01

    Metatranscriptomic analyses of microbial assemblages (< 5 microm) from surface water at the Hawaiian Ocean Time-Series (HOT) revealed community-wide metabolic activities and day/night patterns of differential gene expression. Pyrosequencing produced 75 558 putative mRNA reads from a day transcriptome and 75 946 from a night transcriptome. Taxonomic binning of annotated mRNAs indicated that Cyanobacteria contributed a greater percentage of the transcripts (54% of annotated sequences) than expected based on abundance (35% of cell counts and 21% 16S rRNA of libraries), and may represent the most actively transcribing cells in this surface ocean community in both the day and night. Major heterotrophic taxa contributing to the community transcriptome included alpha-Proteobacteria (19% of annotated sequences, most of which were SAR11-related) and gamma-Proteobacteria (4%). The composition of transcript pools was consistent with models of prokaryotic gene expression, including operon-based transcription patterns and an abundance of genes predicted to be highly expressed. Metabolic activities that are shared by many microbial taxa (e.g. glycolysis, citric acid cycle, amino acid biosynthesis and transcription and translation machinery) were well represented among the community transcripts. There was an overabundance of transcripts for photosynthesis, C1 metabolism and oxidative phosphorylation in the day compared with night, and evidence that energy acquisition is coordinated with solar radiation levels for both autotrophic and heterotrophic microbes. In contrast, housekeeping activities such as amino acid biosynthesis, membrane synthesis and repair, and vitamin biosynthesis were overrepresented in the night transcriptome. Direct sequencing of these environmental transcripts has provided detailed information on metabolic and biogeochemical responses of a microbial community to solar forcing.

  6. Allometry of animal-microbe interactions and global census of animal-associated microbes.

    PubMed

    Kieft, Thomas L; Simmons, Karen A

    2015-07-07

    Animals live in close association with microorganisms, mostly prokaryotes, living in or on them as commensals, mutualists or parasites, and profoundly affecting host fitness. Most animal-microbe studies focus on microbial community structure; for this project, allometry (scaling of animal attributes with animal size) was applied to animal-microbe relationships across a range of species spanning 12 orders of magnitude in animal mass, from nematodes to whales. Microbial abundances per individual animal were gleaned from published literature and also microscopically counted in three species. Abundance of prokaryotes/individual versus animal mass scales as a nearly linear power function (exponent = 1.07, R(2) = 0.94). Combining this power function with allometry of animal abundance indicates that macrofauna have an outsized share of animal-associated microorganisms. The total number of animal-associated prokaryotes in Earth's land animals was calculated to be 1.3-1.4 × 10(25) cells and the total of marine animal-associated microbes was calculated to be 8.6-9.0 × 10(24) cells. Animal-associated microbes thus total 2.1-2.3 × 10(25) of the approximately 10(30) prokaryotes on the Earth. Microbes associated with humans comprise 3.3-3.5% of Earth's animal-associated microbes, and domestic animals harbour 14-20% of all animal-associated microbes, adding a new dimension to the scale of human impact on the biosphere. This novel allometric power function may reflect underlying mechanisms involving the transfer of energy and materials between microorganisms and their animal hosts. Microbial diversity indices of animal gut communities and gut microbial species richness for 60 mammals did not indicate significant scaling relationships with animal body mass; however, further research in this area is warranted. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  7. Microbial behavior and changes in food constituents during fermentation of Japanese sourdoughs with different rye and wheat starting materials.

    PubMed

    Fujimoto, Akihito; Ito, Keisuke; Itou, Madoka; Narushima, Noriko; Ito, Takayuki; Yamamoto, Akihisa; Hirayama, Satoru; Furukawa, Soichi; Morinaga, Yasushi; Miyamoto, Takahisa

    2018-01-01

    Sourdough is a food item made by kneading grain flour and water together and allowing fermentation through the action of lactic acid bacteria (Lactobacillales) and yeast. Typically, Japanese bakeries make sourdough with rye flour, wheat flour, malt extract, and water and allow spontaneous fermentation for 6 days. We compared the microbial behavior and food components, such as organic acids, sugars, and free amino acids, of sourdoughs made using two different rye and wheat flours during the 6-day fermentation period. Comparisons were made for two types of rye and wheat flours, using different production sites and different milling, distribution, and storage conditions. The microbial count was evaluated using different culture media. All sourdough types showed a significant increase in lactic acid levels on fermentation day 2 and a decrease in free amino acid levels on day 4. Low overall lactic acid production and little fluctuation in sugar levels occurred in sourdough made from French ingredients. For sourdough made from Japanese ingredients, sugar levels (chiefly glucose, sucrose, and maltose) declined on fermentation day 1, increased on day 2, and declined by day 5. With the French ingredients, no yeast cells were detected until day 3, and many acid precursors of sourdough flavor components were detected. Yet with the Japanese ingredients, 10 6 /g yeast cells were detected on days 3-5, as well as sourdough-flavor esters and alcohols. Differences in raw material quality affected the microbial behavior and changes in food constituents during the fermentation process and, consequently, the sourdough flavor. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  8. Applications of Microbial Cell Sensors

    NASA Astrophysics Data System (ADS)

    Shimomura-Shimizu, Mifumi; Karube, Isao

    Since the first microbial cell sensor was studied by Karube et al. in 1977, many types of microbial cell sensors have been developed as analytical tools. The microbial cell sensor utilizes microbes as a sensing element and a transducer. The characteristics of microbial cell sensors as sensing devices are a complete contrast to those of enzyme sensors or immunosensors, which are highly specific for the substrates of interest, although the specificity of the microbial cell sensor has been improved by genetic modification of the microbe used as the sensing element. Microbial cell sensors have the advantages of tolerance to measuring conditions, a long lifetime, and good cost performance, and have the disadvantage of a long response time. In this review, applications of microbial cell sensors are summarized.

  9. Effects of a specific blend of essential oils on apparent nutrient digestion, rumen fermentation and rumen microbial populations in sheep fed a 50:50 alfalfa hay:concentrate diet

    PubMed Central

    Khateri, N.; Azizi, O.; Jahani-Azizabadi, H.

    2017-01-01

    Objective An experiment was conducted to investigate the effects of a specific mixture of essential oils (MEO), containing thyme, clove and cinnamon EO, on rumen microbial fermentation, nutrient apparent digestibility and blood metabolites in fistulated sheep. Methods Six sheep fitted with ruminal fistulas were used in a repeated measurement design with two 24-d periods to investigate the effect of adding MEO at 0 (control), 0.8, and 1.6 mL/d on apparent nutrient digestibility, rumen fermentation characteristics, rumen microbial population and blood chemical metabolites. Animals were fed with a 50:50 alfalfa hay:concentrate diet. Results Ruminal pH, total volatile fatty acids (VFA) concentration, molar proportion of individual VFA, acetate: propionate ratio and methane production were not affected with MEO. Relative to the control, Small peptides plus amino acid nitrogen and large peptides nitrogen concentration in rumen fluid were not affected with MEO supplementation; while, rumen fluid ammonia nitrogen concentration at 0 and 6 h after morning feeding in sheep fed with 1.6 mL/d of MEO was lower (p<0.05) compared to the control and 0.8 mL/d of MEO. At 0 h after morning feeding, ammonia nitrogen concentration was higher (p<0.05) in sheep fed 0.8 mL/d of MEO relative to 1.6 mL/d and control diet. Ruminal protozoa and hyper ammonia producing (HAP) bacteria counts were not affected by addition of MEO in the diet. Relative to the control, no changes were observed in the red and white blood cells, hemoglobin, hematocrit, glucose, beta-hydroxybutyric acid, cholesterol, total protein, albumin, blood urea nitrogen and aspartate aminotransferase and alanine aminotransferase concentration. Apparent total tract digestibility of dry matter, crude proten, organic matter, and neutral detergent fiber were not influenced by MEO supplementation. Conclusion The results of the present study suggested that supplementation of MEO may have limited effects on apparent nutrient digestibility, ruminal fermentation and protozoa and HAP bacteria count, blood cells and metabolites. PMID:28249376

  10. Changes in River Organic Matter Through Time.

    NASA Astrophysics Data System (ADS)

    Hudson, N.; Baker, A.; Ward, D.

    2006-12-01

    Samples of river water from central England were collected during the summer base-flow period. They were analysed for BOD and filtered at 1.2μm and 0.1μm increments to obtain i) the colloidal and dissolved, and ii) dissolved filter sterilized fractions. Each filtered fraction was plated up for microbiological cell counts and the agar plates and water samples were stored under a range of environmental conditions (4° C dark, 11° C light/ dark, 11° C dark, and 20° C dark) for 26 days. Absorbance, fluorescence, pH, conductivity and total organic carbon (TOC) were measured and colony forming units (CFU) counted on days 1, 2, 3, 4, 5, 12, 19 and 26. The fluorescence intensity was recorded for 5 commonly studied regions: protein like fluorescence, indicative of microbial activity, represented by the fluorescent amino acids tyrosine and tryptophan (which has two clear fluorescence regions) and humic and fulvic acids derived from the break down of terrestrial and aquatic plant material. Humic and fulvic-like fluorescence increased in all samples under all storage conditions suggesting that peaks A and C probably include a microbial element, either a product of the living community or as dead cell material in all fraction sizes including <0.1μm. Tryptophan and tyrosine-like fluorescence intensities demonstrated less clear trends which may be reflective of the intrinsic variation in natural samples. Tryptophan-like fluorescence generally decreased or showed minimal change, except in samples exposed to light in which an increase was observed in line with algal growth. A decrease in intensity may relate to the use of the tryptophan-like material as a microbial substrate. The increase in tryptophan-like fluorescence intensity suggests that this fluorescent material is being produced, either by algae, or bacterial activity associated with algal growth. It may also occur as a result of changing water chemistry causing a change in molecular conformation, and resulting fluorescence, as an increase in pH was also observed in these samples. This work illustrates the dynamic character of river organic matter within a timescale and under conditions that are representative of the natural system.

  11. Microbial populations of crude oil spill polluted soils at the Jordan-Iraq desert (the Badia region).

    PubMed

    Saadoun, Ismail; Mohammad, Munir J; Hameed, Khalid M; Shawaqfah, Mo'ayyad

    2008-07-01

    Microbial populations' inhabitants in crude petroleum contaminated soils were analyzed in relation with the soil characteristics. A noticeable greater decline of bacterial counts and diversity but a prevalence of the genus Pseudomonas over the other identified genera in the fresh contaminated soils as compared to the old ones was observed.

  12. The immunologic effects of mesalamine in treated HIV-infected individuals with incomplete CD4+ T cell recovery: a randomized crossover trial.

    PubMed

    Somsouk, Ma; Dunham, Richard M; Cohen, Michelle; Albright, Rebecca; Abdel-Mohsen, Mohamed; Liegler, Teri; Lifson, Jeffrey; Piatak, Michael; Gorelick, Robert; Huang, Yong; Wu, Yuaner; Hsue, Priscilla Y; Martin, Jeffrey N; Deeks, Steven G; McCune, Joseph M; Hunt, Peter W

    2014-01-01

    The anti-inflammatory agent, mesalamine (5-aminosalicylic acid) has been shown to decrease mucosal inflammation in ulcerative colitis. The effect of mesalamine in HIV-infected individuals, who exhibit abnormal mucosal immune activation and microbial translocation (MT), has not been established in a placebo-controlled trial. We randomized 33 HIV-infected subjects with CD4 counts <350 cells/mm3 and plasma HIV RNA levels <40 copies/ml on antiretroviral therapy (ART) to add mesalamine vs. placebo to their existing regimen for 12 weeks followed by a 12 week crossover to the other arm. Compared to placebo-treated subjects, mesalamine-treated subjects did not experience any significant change in the percent CD38+HLA-DR+ peripheral blood CD4+ and CD8+ T cells at week 12 (P = 0.38 and P = 0.63, respectively), or in the CD4+ T cell count at week 12 (P = 0.83). The percent CD38+HLA-DR+ CD4+ and CD8+ T cells also did not change significantly in rectal tissue (P = 0.86, P = 0.84, respectively). During the period of mesalamine administration, plasma sCD14, IL-6, D-dimer, and kynurenine to tryptophan ratio were not changed significantly at week 12 and were similarly unchanged at week 24. This study suggests that, at least under the conditions studied, the persistent immune activation associated with HIV infection is not impacted by the anti-inflammatory effects of mesalamine. ClinicalTrials.gov NCT01090102.

  13. Organomineral interactions as an important mechanism for stabilisation of bacterial residues in soil

    NASA Astrophysics Data System (ADS)

    Miltner, Anja; Achtenhagen, Jan; Kästner, Matthias

    2017-04-01

    Although plant material is the original input of organic matter to soils, microbial residues have been identified to contribute to a large extent to soil organic matter. However, until now it is unclear how microbial residues are stabilised in soil and protected from degradation. We hypothesised that organomineral interactions, in particular encrustation by oxides, may play an important role, which might vary depending on environmental conditions, e.g. redox potential. Therefore we produced 14C-labelled Escherichia coli cells and cell envelope fragments and coprecipitated these materials with Fe oxide or Al oxide. Mineral-free (control) and mineral-encrusted bacterial residues were incubated for 345 days at 20˚ C under either oxic or oxygen-limited conditions, and mineralisation was quantified by scintillation counting of the CO2 produced during incubation. Oxygen limitation was achieved by first exchanging the atmosphere in the incubation vessels with dinitrogen gas. After 100 days of incubation, the anoxic treatments were waterlogged to further decrease the redox potential, and after 290 days, glucose and nutrients were supplied to all treatments in order to foster microbial activity and consumption of electron acceptors. The mineralisation curves were fitted by double-exponential (0-100 days), first-order kinetic (100-290 days) and linear (290-345 days) models. The model parameters were tested for significant differences between the treatments by three-way ANOVA with post-hoc Bonferroni t-test. We found that encrustation by the oxides significantly reduced mineralisation of the bacterial residues. This effect was inversed by reductive dissolution of Fe oxides after substrate and nutrient addition to the oxygen-limited treatments, suggesting a significant role of the encrustation in stabilisation of the bacterial residues. We also observed that bacterial cell envelope fragments were generally slightly more resistant to mineralisation than whole cells. The results indicate that bacterial residues, in particular cell envelope fragments, may be stabilised in soil by organomineral interactions as long as the minerals are stable in soil.

  14. Combining flow cytometry and 16S rRNA gene pyrosequencing: a promising approach for drinking water monitoring and characterization.

    PubMed

    Prest, E I; El-Chakhtoura, J; Hammes, F; Saikaly, P E; van Loosdrecht, M C M; Vrouwenvelder, J S

    2014-10-15

    The combination of flow cytometry (FCM) and 16S rRNA gene pyrosequencing data was investigated for the purpose of monitoring and characterizing microbial changes in drinking water distribution systems. High frequency sampling (5 min intervals for 1 h) was performed at the outlet of a treatment plant and at one location in the full-scale distribution network. In total, 52 bulk water samples were analysed with FCM, pyrosequencing and conventional methods (adenosine-triphosphate, ATP; heterotrophic plate count, HPC). FCM and pyrosequencing results individually showed that changes in the microbial community occurred in the water distribution system, which was not detected with conventional monitoring. FCM data showed an increase in the total bacterial cell concentrations (from 345 ± 15 × 10(3) to 425 ± 35 × 10(3) cells mL(-1)) and in the percentage of intact bacterial cells (from 39 ± 3.5% to 53 ± 4.4%) during water distribution. This shift was also observed in the FCM fluorescence fingerprints, which are characteristic of each water sample. A similar shift was detected in the microbial community composition as characterized with pyrosequencing, showing that FCM and genetic fingerprints are congruent. FCM and pyrosequencing data were subsequently combined for the calculation of cell concentration changes for each bacterial phylum. The results revealed an increase in cell concentrations of specific bacterial phyla (e.g., Proteobacteria), along with a decrease in other phyla (e.g., Actinobacteria), which could not be concluded from the two methods individually. The combination of FCM and pyrosequencing methods is a promising approach for future drinking water quality monitoring and for advanced studies on drinking water distribution pipeline ecology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Effects of Lactobacillus acidophilus supplementation on growth performance, nutrient digestibility, fecal microbial and noxious gas emission in weaning pigs.

    PubMed

    Lan, Ruixia; Koo, Jinmo; Kim, Inho

    2017-03-01

    Antibiotics used as growth promoters in livestock have been banned in the European Union since 2006. Antibiotics alternatives have focused on probiotics, such as Lactobacillus acidophilus. The concentration of L. acidophilus is considered crucial for obtaining the desired effects. However, limited studies have been conducted to test the dose-dependent effects of L. acidophilus. Therefore, the present study aimed to test the dose-dependent effects of L. acidophilus on growth performance, nutrient digestibility, fecal microbial flora and fecal noxious gas emission in weaning pigs. Lactobacillus acidophilus supplementation increased (P < 0.05) average daily gain, average daily feed intake, apparent nutrient digestibility of dry matter, nitrogen and gross energy, and Lactobacillus counts compared to the basal diet treatment, and a linear effect (P < 0.05) was observed on those criteria. Escherichia coli counts and NH 3 emission were decreased (P < 0.05) by L. acidophilus supplementation, and a linear effect (P < 0.05) was observed on E. coli counts. These results suggest that L. acidophilus could be used as an antibiotic alternative by improving growth performance, nutrient digestibility and gut balance (i.e. increased Lactobacillus counts and decreased E. coli counts), and decreasing NH3 emission, of weaning pigs. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  16. Biodegradation of petroleum hydrocarbons in estuarine sediments: metal influence.

    PubMed

    Almeida, Raquel; Mucha, Ana P; Teixeira, Catarina; Bordalo, Adriano A; Almeida, C Marisa R

    2013-02-01

    In this work, the potential effect of metals, such as Cd, Cu and Pb, on the biodegradation of petroleum hydrocarbons in estuarine sediments was investigated under laboratory conditions. Sandy and muddy non-vegetated sediments were collected in the Lima River estuary (NW Portugal) and spiked with crude oil and each of the metals. Spiked sediments were left in the dark under constant shaking for 15 days, after which crude oil biodegradation was evaluated. To estimate microbial abundance, total cell counts were obtained by DAPI staining and microbial community structure was characterized by ARISA. Culturable hydrocarbon degraders were determined using a modified most probable number protocol. Total petroleum hydrocarbons concentrations were analysed by Fourier Transform Infrared Spectroscopy after their extraction by sonication, and metal contents were determined by atomic absorption spectrometry. The results obtained showed that microbial communities had the potential to degrade petroleum hydrocarbons, with a maximum of 32 % degradation obtained for sandy sediments. Both crude oil and metals changed the microbial community structure, being the higher effect observed for Cu. Also, among the studied metals, only Cu displayed measurable deleterious effect on the hydrocarbons degradation process, as shown by a decrease in the hydrocarbon degrading microorganisms abundance and in the hydrocarbon degradation rates. Both degradation potential and metal influence varied with sediment characteristics probably due to differences in contaminant bioavailability, a feature that should be taken into account in developing bioremediation strategies for co-contaminated estuarine sites.

  17. Inflight Microbial Monitoring- An Alternative Method to Culture Based Detection Currently Used on the International Space Station

    NASA Technical Reports Server (NTRS)

    Khodadad, Christina L.; Birmele, Michele N.; Roman, Monsi; Hummerick, Mary E.; Smith, David J.; Wheeler, Raymond M.

    2015-01-01

    Previous research has shown that potentially destructive microorganisms and human pathogens have been detected on the International Space Station (ISS). The likelihood of introducing new microorganisms occurs with every exchange of crew or addition of equipment or supplies. Microorganisms introduced to the ISS are readily transferred between crew and subsystems (i.e. ECLSS, environmental control and life support systems). Current microbial characterization methods require enrichment of microorganisms and at least a 48-hour incubation time. This increases the microbial load while detecting only a limited number of the total microorganisms. The culture based method detects approximately 1-10% of the total organisms present and provides no identification. To identify and enumerate ISS microbes requires that samples be returned to Earth for complete analysis. Therefore, a more expedient, low-cost, in-flight method of microbial detection, identification, and enumeration is warranted. The RAZOR EX, a ruggedized, commercial off the shelf, real-time PCR field instrument was tested for its ability to detect microorganisms at low concentrations within one hour. Escherichia coli, Salmonella enterica Typhimurium, and Pseudomonas aeruginosa were detected at low levels using real-time DNA amplification. Total heterotrophic counts could also be detected using a 16S gene marker that can identify up to 98% of all bacteria. To reflect viable cells found in the samples, RNA was also detectable using a modified, single-step reverse transcription reaction.

  18. Inflight Microbial Monitoring-An Alternative Method to Culture Based Detection Currently Used on International Space Station

    NASA Technical Reports Server (NTRS)

    Khodadad, Christina L.; Birmele, Michele N.; Roman, Monsi; Hummerick, Mary E.; Smith, David J.; Wheeler, Raymond M.

    2015-01-01

    Previous research has shown that microorganisms and potential human pathogens have been detected on the International Space Station (ISS). The potential to introduce new microorganisms occurs with every exchange of crew or addition of equipment or supplies. Previous research has shown that microorganisms introduced to the ISS are readily transferred between crew and subsystems and back (i.e. ECLSS, environmental control and life support systems). Current microbial characterization methods require enrichment of microorganisms and a 48-hour incubation time. This increases the microbial load while detecting a limited number of microorganisms. The culture based method detects approximately 1-10% of the total organisms present and provides no identification, To identify and enumerate ISS samples requires that samples to be returned to Earth for complete analysis. Therefore, a more expedient, low-cost, in-flight method of microbial detection, identification, and enumeration is warranted. The RAZOR EX, a ruggedized, commercial off the shelf, real-time PCR field instrument was tested for its ability to detect microorganism at low concentrations within one hour. Escherichia coli, Salmonella enterica Typhimurium, and Pseudomonas aeruginosa were detected at low levels using real-time DNA amplification. Total heterotrophic counts could also be detected using a 16S gene marker that can identify up to 98% of all bacteria. To reflect viable cells found in the samples, RNA was also detectable using a modified, single-step reverse transcription reaction.

  19. Microbial quality of some vegetables sold in ED DueimTwon, Sudan.

    PubMed

    Goja, Arafat Mohammed; Mahmoud, Mohamed Salih Osman

    2013-06-15

    This study was probably the first research carried out to investigate the microbiological quality of some vegetables sold in ED DueimTwon, Sudan. Four species of vegetables were used, Arugula (Eruca sativa), Mloukhia (Corchorus olitorius), Tomato (Lycopersicon esculentum) and Green pepper (Capsicum annuum). The samples were collected and examined according to standardized methods for total viable bacteria, coliforms and fecal coliform count. The average of total viable count ranged from 1.2 x 105-5.6 x 105 CFU mL(-1) for Arugula; 2.1 x 105-2.8 x 107 CFU mL(-1) for Mloukhia; 3.4 x 105-4.8 x 105 for Tomato and 2.3 x 105-8.0 x 106 CFU mL(-1) for Green pepper. However, the maximum level of total and fecal coliform were (93, 21); (28, 11); (75, 15) and (150, 20) MPN 100 mL(-1), respectively. Twelve bacteria belonging to five genera were isolated. Staphylococcus (33%) was the most predominant isolated followed by Enterobacteriaceae (25%), Bacillus (17%) and Streptococcus (17%). Micrococcus (8%) was the least dominant isolated. The results of microbial counts of these vegetable samples in this study indicate that, the agricultural practices, harvesting, hygiene, transporting and selling points are poor and therefore, the higher microbial load could be risked for public health.

  20. Response of microbial activities and diversity to PAHs contamination at coal tar contaminated land

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaohui; Sun, Yujiao; Ding, Aizhong; Zhang, Dan; Zhang, Dayi

    2015-04-01

    Coal tar is one of the most hazardous and concerned organic pollutants and the main hazards are polycyclic aromatic hydrocarbons (PAHs). The indigenous microorganisms in soils are capable to degrade PAHs, with essential roles in biochemical process for PAHs natural attenuation. This study investigated 48 soil samples (from 8 depths of 6 boreholes) in Beijing coking and chemistry plant (China) and revealed the correlation between PAHs contamination, soil enzyme activities and microbial community structure, by 16S rRNA denaturing gradient gel electrophoresis (DGGE). At the site, the key contaminants were identified as naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene and anthracene, and the total PAHs concentration ranged from 0.1 to 923.9 mg/kg dry soil. The total PAHs contamination level was positively correlated (p<0.05) with the bacteria count (0.9×107-14.2×107 CFU/mL), catalase activities (0.554-6.230 mL 0.02 M KMnO4/g•h) and dehydrogenase activities (1.9-30.4 TF μg/g•h soil), showing the significant response of microbial population and degrading functions to the organic contamination in soils. The PAHs contamination stimulated the PAHs degrading microbes and promoted their biochemical roles in situ. The positive relationship between bacteria count and dehydrogenase activities (p<0.05) suggested the dominancy of PAHs degrading bacteria in the microbial community. More interestingly, the microbial community deterioration was uncovered via the decline of microbial biodiversity (richness from 16S rRNA DGGE) against total PAHs concentration (p<0.05). Our research described the spatial profiles of PAHs contamination and soil microbial functions at the PAHs heavily contaminated sites, offering deeper understanding on the roles of indigenous microbial community in natural attenuation process.

  1. Evaluation of ATP measurements to detect microbial ingress by wastewater and surface water in drinking water.

    PubMed

    Vang, Óluva K; Corfitzen, Charlotte B; Smith, Christian; Albrechtsen, Hans-Jørgen

    2014-11-01

    Fast and reliable methods are required for monitoring of microbial drinking water quality in order to protect public health. Adenosine triphosphate (ATP) was investigated as a potential real-time parameter for detecting microbial ingress in drinking water contaminated with wastewater or surface water. To investigate the ability of the ATP assay in detecting different contamination types, the contaminant was diluted with non-chlorinated drinking water. Wastewater, diluted at 10(4) in drinking water, was detected with the ATP assay, as well as 10(2) to 10(3) times diluted surface water. To improve the performance of the ATP assay in detecting microbial ingress in drinking water, different approaches were investigated, i.e. quantifying microbial ATP or applying reagents of different sensitivities to reduce measurement variations; however, none of these approaches contributed significantly in this respect. Compared to traditional microbiological methods, the ATP assay could detect wastewater and surface water in drinking water to a higher degree than total direct counts (TDCs), while both heterotrophic plate counts (HPC 22 °C and HPC 37 °C) and Colilert-18 (Escherichia coli and coliforms) were more sensitive than the ATP measurements, though with much longer response times. Continuous sampling combined with ATP measurements displays definite monitoring potential for microbial drinking water quality, since microbial ingress in drinking water can be detected in real-time with ATP measurements. The ability of the ATP assay to detect microbial ingress is influenced by both the ATP load from the contaminant itself and the ATP concentration in the specific drinking water. Consequently, a low ATP concentration of the specific drinking water facilitates a better detection of a potential contamination of the water supply with the ATP assay. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Pleocytosis is not fully responsible for low CSF glucose in meningitis.

    PubMed

    Baud, Maxime O; Vitt, Jeffrey R; Robbins, Nathaniel M; Wabl, Rafael; Wilson, Michael R; Chow, Felicia C; Gelfand, Jeffrey M; Josephson, S Andrew; Miller, Steve

    2018-01-01

    The mechanism of hypoglycorrhachia-low CSF glucose-in meningitis remains unknown. We sought to evaluate the relative contribution of CSF inflammation vs microorganisms (bacteria and fungi) in lowering CSF glucose levels. We retrospectively categorized CSF profiles into microbial and aseptic meningitis and analyzed CSF leukocyte count, glucose, and protein concentrations. We assessed the relationship between these markers using multivariate and stratified linear regression analysis for initial and repeated CSF sampling. We also calculated the receiver operating characteristics of CSF glucose and CSF-to-serum glucose ratios to presumptively diagnose microbial meningitis. We found that increasing levels of CSF inflammation were associated with decreased CSF glucose levels in the microbial but not aseptic category. Moreover, elevated CSF protein levels correlated more strongly than the leukocyte count with low CSF glucose levels on initial ( R 2 = 36%, p < 0.001) and repeated CSF sampling ( R 2 = 46%, p < 0.001). Hypoglycorrhachia (<40 mg/dL) was observed in 50.1% of microbial cases, but only 9.6% of aseptic cases, most of which were neurosarcoidosis. Absolute CSF glucose and CSF-to-serum glucose ratios had similar low sensitivity and moderate-to-high specificity in diagnosing microbial meningitis at thresholds commonly used. The main driver of hypoglycorrhachia appears to be a combination of microbial meningitis with moderate to high degrees of CSF inflammation and proteins, suggesting that the presence of microorganisms capable of catabolizing glucose is a determinant of hypoglycorrhachia in meningitis. A major notable exception is neurosarcoidosis. Low CSF glucose and CSF-to-serum glucose ratios are useful markers for the diagnosis of microbial meningitis.

  3. Evaluation of microbiological, cellular and risk factors associated with subclinical mastitis in female buffaloes

    PubMed Central

    de Oliveira Moura, Emmanuella; do Nascimento Rangel, Adriano Henrique; de Melo, Maria Celeste Nunes; Borba, Luiz Henrique Fernandes; de Lima Júnior, Dorgival Morais; Novaes, Luciano Patto; Urbano, Stela Antas; de Andrade Neto, Júlio César

    2017-01-01

    Objective This study aimed to evaluate the microbiological and cellular milk profile for the diagnosis of subclinical mastitis in female buffaloes and to assess risk factors for predisposition of the disease. Methods Analyses were carried out by standard plate count (SPC), identification of species and antibiotic resistance, somatic cell count (SCC), electrical electrical conductivity of milk (ECM), and lactoferrin content in milk. Teat cups were swabbed to evaluate risk factors, observing hyperkeratosis, milking vacuum pressure and cleanliness of the site. Hence, 30 female buffaloes were randomly selected (15 from a group in early lactation and 15 in late lactation). Results The most common bacteria in the microbiological examination were Staphylococcus spp., Streptococcus spp. and Corynebacterium sp. In the antibiotic sensitivity test, 10 (58.82%) of the 17 antibiotics tested were sensitive to all isolates, and resistant bacteria were Streptococcus uberis, Streptococcus dysgalactiae, Streptococcus haemolyticus, and Escherichia coli. It was observed that positive samples in the microbiological examination showed total bacterial count between 9.10×103 to 6.94×106 colony forming units/mL, SCC between 42,000 to 4,320,000 cells/mL and ECM ranging from 1.85 to 7.40 mS/cm. It was also found that the teat cups had high microbial counts indicating poor hygiene, and even faults in the cleanliness of the animals’ waiting room were observed. It is concluded that values of SCC above 537,000 cells/mL and ECM above 3.0 mS/mL are indications of mammary gland infection for this herd; however, the association of these values with a microbiological analysis is necessary to more accurately evaluate the health status of mammary glands with subclinical mastitis. Conclusion Through phenotypic characterization of bacteria involved in the samples, the genera Staphylococcus spp., Streptococcus spp., and Corynebacterimum bovis were the most prevalent in this study. Faults in environment and equipment hygienization are factors that are directly associated with mastitis. PMID:28183165

  4. Influence of early life exposure, host genetics and diet on the mouse gut microbiome and metabolome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snijders, Antoine M.; Langley, Sasha A.; Kim, Young-Mo

    Although the gut microbiome plays important roles in host physiology, health and disease1, we lack understanding of the complex interplay between host genetics and early life environment on the microbial and metabolic composition of the gut.We used the genetically diverse Collaborative Cross mouse system2 to discover that early life history impacts themicrobiome composition, whereas dietary changes have only a moderate effect. By contrast, the gut metabolome was shaped mostly by diet, with specific non-dietary metabolites explained by microbial metabolism. Quantitative trait analysis identified mouse genetic trait loci (QTL) that impact the abundances of specific microbes. Human orthologues of genes inmore » the mouse QTL are implicated in gastrointestinal cancer. Additionally, genes located in mouse QTL for Lactobacillales abundance are implicated in arthritis, rheumatic disease and diabetes. Furthermore, Lactobacillales abundance was predictive of higher host T-helper cell counts, suggesting an important link between Lactobacillales and host adaptive immunity.« less

  5. Factors influencing microbial colonies in the air of operating rooms.

    PubMed

    Fu Shaw, Ling; Chen, Ian Horng; Chen, Chii Shya; Wu, Hui Hsin; Lai, Li Shing; Chen, Yin Yin; Wang, Fu Der

    2018-01-02

    The operating room (OR) of the hospital is a special unit that requires a relatively clean environment. The microbial concentration of an indoor OR extrinsically influences surgical site infection rates. The aim of this study was to use active sampling methods to assess microbial colony counts in working ORs and to determine the factors affecting air contamination in a tertiary referral medical center. This study was conducted in 28 operating rooms located in a 3000-bed medical center in northern Taiwan. The microbiologic air counts were measured using an impactor air sampler from May to August 2015. Information about the procedure-related operative characteristics and surgical environment (environmental- and personnel-related factors) characteristics was collected. A total of 250 air samples were collected during surgical procedures. The overall mean number of bacterial colonies in the ORs was 78 ± 47 cfu/m 3 . The mean number of colonies was the highest for transplant surgery (123 ± 60 cfu/m 3 ), followed by pediatric surgery (115 ± 30.3 cfu/m 3 ). A total of 25 samples (10%) contained pathogens; Coagulase-negative staphylococcus (n = 12, 4.8%) was the most common pathogen. After controlling for potentially confounding factors by a multiple regression analysis, the surgical stage had the significantly highest correlation with bacterial counts (r = 0.346, p < 0.001). Otherwise, independent factors influencing bacterial counts were the type of surgery (29.85 cfu/m 3 , 95% CI 1.28-58.42, p = 0.041), site of procedure (20.19 cfu/m 3 , 95% CI 8.24-32.14, p = 0.001), number of indoor staff (4.93 cfu/m 3 , 95% CI 1.47-8.38, p = 0.005), surgical staging (36.5 cfu/m 3 , 95% CI 24.76-48.25, p < 0.001), and indoor air temperature (9.4 cfu/m 3 , 95% CI 1.61-17.18, p = 0.018). Under the well-controlled ventilation system, the mean microbial colony counts obtained by active sampling in different working ORs were low. The number of personnel and their activities critically influence the microbe concentration in the air of the OR. We suggest that ORs doing complex surgeries with more surgical personnel present should increase the frequency of air exchanges. A well-controlled ventilation system and infection control procedures related to environmental and surgical procedures are of paramount importance for reducing microbial colonies in the air.

  6. Microbiological and clinical assessment of the abutment and non-abutment teeth of partial removable denture wearers.

    PubMed

    Costa, Luciana; do Nascimento, Cássio; de Souza, Valéria Oliveira Pagnano; Pedrazzi, Vinícius

    2017-03-01

    The aim of this study was assessing the changes in both clinical and microbiological parameters of healthy individuals after rehabilitation with removable partial denture (RPD). 11 women received unilateral or bilateral free-end saddle RPD in the mandibular arch. Clinical and microbiological parameters of abutment, non-abutment, and antagonist teeth were assessed at baseline (RPD installation) and after 7, 30, 90, and 180days of function. The Checkerboard DNA-DNA hybridization technique was used to identify and quantify up to 43 different microbial species from subgingival biofilm samples. Probing depth, gingival recession, and bleeding on probing were also investigated over time. The total and individual microbial genome counts were shown significantly increased after 180days with no significant differences between abutment, non-abutment, or antagonist teeth. Streptococcus spp., Aggregatibacter actinomycetemcomitans, and other species associated to periodontitis (Peptostreptococcus anaerobius, Prevotella nigrescens, and Tannerella forsythia), as well as opportunistic Candida spp., were recovered in moderate counts. Abutment teeth presented higher values of gingival recession when compared with non-abutment or antagonist teeth, irrespectively time of sampling (p<0.05). No significant differences were found between groups regarding bleeding on probing or probing depth over time. Overall, the microbial counts significantly increased after 6 months of denture loading for both abutment and non-abutment teeth with no significant differences regarding the microbial profile over time. Bleeding on probing and probing depth showed no significant difference between groups over time whereas gingival recession increased in the abutment teeth. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Microbial Populations in Two Swamp Soils of South Carolina

    Treesearch

    David S. Priester; William R. Harms

    1971-01-01

    Microbial populations were counted in agar-plated samples of two swamp soils collected in summer and winter. Number of aerobic and anaerobic microorganisms differed significantly among the soils and between seasons. Alluvial soil from the river swamp was high in organic matter, N, K, Ca, and pH and averaged 88 million microorganisms per gram over the growing season....

  8. Composition and physiological profiling of sprout-associated microbial communities

    NASA Technical Reports Server (NTRS)

    Matos, Anabelle; Garland, Jay L.; Fett, William F.

    2002-01-01

    The native microfloras of various types of sprouts (alfalfa, clover, sunflower, mung bean, and broccoli sprouts) were examined to assess the relative effects of sprout type and inoculum factors (i.e., sprout-growing facility, seed lot, and inoculation with sprout-derived inocula) on the microbial community structure of sprouts. Sprouts were sonicated for 7 min or hand shaken with glass beads for 2 min to recover native microfloras from the surface, and the resulting suspensions were diluted and plated. The culturable fraction was characterized by the density (log CFU/g), richness (e.g., number of types of bacteria), and diversity (e.g., microbial richness and evenness) of colonies on tryptic soy agar plates incubated for 48 h at 30 degrees C. The relative similarity between sprout-associated microbial communities was assessed with the use of community-level physiological profiles (CLPPs) based on patterns of utilization of 95 separate carbon sources. Aerobic plate counts of 7.96 +/- 0.91 log CFU/g of sprout tissue (fresh weight) were observed, with no statistically significant differences in microbial cell density, richness, or diversity due to sprout type, sprout-growing facility, or seed lot. CLPP analyses revealed that the microbial communities associated with alfalfa and clover sprouts are more similar than those associated with the other sprout types tested. Variability among sprout types was more extensive than any differences between microbial communities associated with alfalfa and clover sprouts from different sprout-growing facilities and seed lots. These results indicate that the subsequent testing of biocontrol agents should focus on similar organisms for alfalfa and clover, but alternative types may be most suitable for the other sprout types tested. The inoculation of alfalfa sprouts with communities derived from various sprout types had a significant, source-independent effect on microbial community structure, indicating that the process of inoculation alters the dynamics of community development regardless of the types of organisms involved.

  9. Effect of modified atmospheric packaging on chemical and microbial changes in dietetic rabri during storage.

    PubMed

    Ghayal, Gajanan; Jha, Alok; Kumar, Arvind; Gautam, Anuj Kumar; Rasane, Prasad

    2015-03-01

    Rabri is a dairy based sweet popular in the Indian subcontinent. The high sugar and fat content impose restrictions on its consumption due to health reasons. Dietetic rabri was prepared by the replacement of sugar with aspartame. Inulin was added to partially replace the milk fat and to improve the consistency of rabri. The rabri samples were packed in the polyethylene bags filled with different gaseous compositions (Air, 50 % CO2:50 % N2 and 100 % N2) and stored at 10 °C. The shelf life was evaluated on the basis of changes in the chemical quality parameters such as HMF, TBA and FFA and microbial content such as total plate count, yeast and molds and coliform counts. The chemical parameters and microbial spoilage increased in all the samples with the progression of storage period. The samples packed with air showed significantly higher chemical deterioration and microbial spoilage as compared to the other two combinations. The samples packed with 100 % N2 were more shelf stable than with air and 50 % CO2:50 % N2 combinations.

  10. Altered Virome and Bacterial Microbiome in Human Immunodeficiency Virus-Associated Acquired Immunodeficiency Syndrome

    PubMed Central

    Monaco, Cynthia L.; Gootenberg, David B.; Zhao, Guoyan; Handley, Scott A.; Ghebremichael, Musie S.; Lim, Efrem S.; Lankowski, Alex; Baldridge, Megan T.; Wilen, Craig B.; Flagg, Meaghan; Norman, Jason M.; Keller, Brian C.; Luévano, Jesús Mario; Wang, David; Boum, Yap; Martin, Jeffrey N.; Hunt, Peter W.; Bangsberg, David R.; Siedner, Mark J.; Kwon, Douglas S.; Virgin, Herbert W.

    2016-01-01

    SUMMARY Human immunodeficiency virus (HIV) infection is associated with increased intestinal translocation of microbial products and enteropathy as well as alterations in gut bacterial communities. However, whether the enteric virome contributes to this infection and resulting immunodeficiency remains unknown. We characterized the enteric virome and bacterial microbiome in a cohort of Ugandan patients, including HIV-uninfected or HIV-infected subjects and those either treated with anti-retroviral therapy (ART) or untreated. Low peripheral CD4 T cell counts were associated with an expansion of enteric adenovirus sequences and this increase was independent of ART treatment. Additionally, the enteric bacterial microbiome of patients with lower CD4 T counts exhibited reduced phylogenetic diversity and richness with specific bacteria showing differential abundance, including increases in Enterobacteriaceae, which have been associated with inflammation. Thus, immunodeficiency in progressive HIV infection is associated with alterations in the enteric virome and bacterial microbiome, which may contribute to AIDS-associated enteropathy and disease progression. PMID:26962942

  11. Altered Virome and Bacterial Microbiome in Human Immunodeficiency Virus-Associated Acquired Immunodeficiency Syndrome.

    PubMed

    Monaco, Cynthia L; Gootenberg, David B; Zhao, Guoyan; Handley, Scott A; Ghebremichael, Musie S; Lim, Efrem S; Lankowski, Alex; Baldridge, Megan T; Wilen, Craig B; Flagg, Meaghan; Norman, Jason M; Keller, Brian C; Luévano, Jesús Mario; Wang, David; Boum, Yap; Martin, Jeffrey N; Hunt, Peter W; Bangsberg, David R; Siedner, Mark J; Kwon, Douglas S; Virgin, Herbert W

    2016-03-09

    Human immunodeficiency virus (HIV) infection is associated with increased intestinal translocation of microbial products and enteropathy as well as alterations in gut bacterial communities. However, whether the enteric virome contributes to this infection and resulting immunodeficiency remains unknown. We characterized the enteric virome and bacterial microbiome in a cohort of Ugandan patients, including HIV-uninfected or HIV-infected subjects and those either treated with anti-retroviral therapy (ART) or untreated. Low peripheral CD4 T cell counts were associated with an expansion of enteric adenovirus sequences and this increase was independent of ART treatment. Additionally, the enteric bacterial microbiome of patients with lower CD4 T counts exhibited reduced phylogenetic diversity and richness with specific bacteria showing differential abundance, including increases in Enterobacteriaceae, which have been associated with inflammation. Thus, immunodeficiency in progressive HIV infection is associated with alterations in the enteric virome and bacterial microbiome, which may contribute to AIDS-associated enteropathy and disease progression. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Chitosan active films containing agro-industrial residue extracts for shelf life extension of chicken restructured product.

    PubMed

    Serrano-León, Juan S; Bergamaschi, Keityane B; Yoshida, Cristiana M P; Saldaña, Erick; Selani, Miriam M; Rios-Mera, Juan D; Alencar, Severino M; Contreras-Castillo, Carmen J

    2018-06-01

    This study aimed to develop chitosan films incorporating natural antioxidants from peanut skin (EPS) and pink pepper residue (EPP) extracts, as well as to evaluate their effects on lipid oxidation, pH, color, and microbial counts of a restructured chicken product. EPS had higher phenolic content and antioxidant activity compared to EPP. When both extracts were applied to chicken meat and the chitosan films, there were no differences for color, pH and total mesophilic counts compared to control at the end of the storage period. For lipid oxidation (peroxide value and thiobarbituric acid reactive substances), both extracts proved to be as effective as butylated hydroxytoluene to maintain the oxidative stability of the chicken product. The microbial counts of psychrotrophic microorganisms were significantly lower for treatments with active films. Chitosan active films with residue extracts may maintain the quality of chicken products due to their antioxidant and antimicrobial potential. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Predominance of single bacterial cells in composting bioaerosols

    NASA Astrophysics Data System (ADS)

    Galès, Amandine; Bru-Adan, Valérie; Godon, Jean-Jacques; Delabre, Karine; Catala, Philippe; Ponthieux, Arnaud; Chevallier, Michel; Birot, Emmanuel; Steyer, Jean-Philippe; Wéry, Nathalie

    2015-04-01

    Bioaerosols emitted from composting plants have become an issue because of their potential harmful impact on public or workers' health. Accurate knowledge of the particle-size distribution in bioaerosols emitted from open-air composting facilities during operational activity is a requirement for improved modeling of air dispersal. In order to investigate the aerodynamic diameter of bacteria in composting bioaerosols this study used an Electrical Low Pressure Impactor for sampling and quantitative real-time PCR for quantification. Quantitative PCR results show that the size of bacteria peaked between 0.95 μm and 2.4 μm and that the geometric mean diameter of the bacteria was 1.3 μm. In addition, total microbial cells were counted by flow cytometry and revealed that these qPCR results corresponded to single whole bacteria. Finally, the enumeration of cultivable thermophilic microorganisms allowed us to set the upper size limit for fragments at an aerodynamic diameter of ∼0.3 μm. Particle-size distributions of microbial groups previously used to monitor composting bioaerosols were also investigated. In collected the bioaerosols, the aerodynamic diameter of the actinomycetes Saccharopolyspora rectivirgula-and-relatives and also of the fungus Aspergillus fumigatus, appeared to be consistent with a majority of individual cells. Together, this study provides the first culture-independent data on particle-size distribution of composting bioaerosols and reveals that airborne single bacteria were emitted predominantly from open-air composting facilities.

  14. Significant contribution of Archaea to extant biomass in marine subsurface sediments.

    PubMed

    Lipp, Julius S; Morono, Yuki; Inagaki, Fumio; Hinrichs, Kai-Uwe

    2008-08-21

    Deep drilling into the marine sea floor has uncovered a vast sedimentary ecosystem of microbial cells. Extrapolation of direct counts of stained microbial cells to the total volume of habitable marine subsurface sediments suggests that between 56 Pg (ref. 1) and 303 Pg (ref. 3) of cellular carbon could be stored in this largely unexplored habitat. From recent studies using various culture-independent techniques, no clear picture has yet emerged as to whether Archaea or Bacteria are more abundant in this extensive ecosystem. Here we show that in subsurface sediments buried deeper than 1 m in a wide range of oceanographic settings at least 87% of intact polar membrane lipids, biomarkers for the presence of live cells, are attributable to archaeal membranes, suggesting that Archaea constitute a major fraction of the biomass. Results obtained from modified quantitative polymerase chain reaction and slot-blot hybridization protocols support the lipid-based evidence and indicate that these techniques have previously underestimated archaeal biomass. The lipid concentrations are proportional to those of total organic carbon. On the basis of this relationship, we derived an independent estimate of amounts of cellular carbon in the global marine subsurface biosphere. Our estimate of 90 Pg of cellular carbon is consistent, within an order of magnitude, with previous estimates, and underscores the importance of marine subsurface habitats for global biomass budgets.

  15. Microbial fuel cells: From fundamentals to applications. A review.

    PubMed

    Santoro, Carlo; Arbizzani, Catia; Erable, Benjamin; Ieropoulos, Ioannis

    2017-07-15

    In the past 10-15 years, the microbial fuel cell (MFC) technology has captured the attention of the scientific community for the possibility of transforming organic waste directly into electricity through microbially catalyzed anodic, and microbial/enzymatic/abiotic cathodic electrochemical reactions. In this review, several aspects of the technology are considered. Firstly, a brief history of abiotic to biological fuel cells and subsequently, microbial fuel cells is presented. Secondly, the development of the concept of microbial fuel cell into a wider range of derivative technologies, called bioelectrochemical systems, is described introducing briefly microbial electrolysis cells, microbial desalination cells and microbial electrosynthesis cells. The focus is then shifted to electroactive biofilms and electron transfer mechanisms involved with solid electrodes. Carbonaceous and metallic anode materials are then introduced, followed by an explanation of the electro catalysis of the oxygen reduction reaction and its behavior in neutral media, from recent studies. Cathode catalysts based on carbonaceous, platinum-group metal and platinum-group-metal-free materials are presented, along with membrane materials with a view to future directions. Finally, microbial fuel cell practical implementation, through the utilization of energy output for practical applications, is described.

  16. Microbial fuel cells: From fundamentals to applications. A review

    NASA Astrophysics Data System (ADS)

    Santoro, Carlo; Arbizzani, Catia; Erable, Benjamin; Ieropoulos, Ioannis

    2017-07-01

    In the past 10-15 years, the microbial fuel cell (MFC) technology has captured the attention of the scientific community for the possibility of transforming organic waste directly into electricity through microbially catalyzed anodic, and microbial/enzymatic/abiotic cathodic electrochemical reactions. In this review, several aspects of the technology are considered. Firstly, a brief history of abiotic to biological fuel cells and subsequently, microbial fuel cells is presented. Secondly, the development of the concept of microbial fuel cell into a wider range of derivative technologies, called bioelectrochemical systems, is described introducing briefly microbial electrolysis cells, microbial desalination cells and microbial electrosynthesis cells. The focus is then shifted to electroactive biofilms and electron transfer mechanisms involved with solid electrodes. Carbonaceous and metallic anode materials are then introduced, followed by an explanation of the electro catalysis of the oxygen reduction reaction and its behavior in neutral media, from recent studies. Cathode catalysts based on carbonaceous, platinum-group metal and platinum-group-metal-free materials are presented, along with membrane materials with a view to future directions. Finally, microbial fuel cell practical implementation, through the utilization of energy output for practical applications, is described.

  17. High pressure, temperature and time-dependent effects on enzymatic and microbial properties of fresh sugarcane juice.

    PubMed

    Chauhan, O P; Ravi, N; Roopa, N; Kumar, Sumeet; Raju, P S

    2017-11-01

    Efficacy of variable high pressure, temperature and time on the browning causing enzymes and microbial activities, which are major spoilage factors during preservation of sugarcane juice, was studied. The juice was processed at 200-600 MPa pressure for 2-8 min at 40 and 60 °C and their effect on polyphenol oxidase and peroxidase as well as microbiological quality in terms of total plate count, yeast and molds and total coliforms was studied. Application of high pressures were found to cause significant decrease in enzymatic and microbial activities. The effects were found to be significantly more pronounced at 60 °C as compared to 40 °C. Process time also caused significant ( p  < 0.05) negative effect on microbial and enzyme activities. The sugarcane juice treated at 600 MPa for 6 min at 60 °C was found sufficient to inactivate the microbial counts completely. Whereas, enzymes were found to be completely inactivated in the samples processed at 600 MPa for 8 min at 60 °C. A pressure of 600 MPa at 60 °C for 8 min could be applied during commercial preservation of sugarcane juice for getting complete inactivation of browning causing enzymes and spoilage causing microorganisms.

  18. WBC count

    MedlinePlus

    Leukocyte count; White blood cell count; White blood cell differential; WBC differential; Infection - WBC count; Cancer - WBC count ... called leukopenia. A count less than 4,500 cells per microliter (4.5 × 10 9 /L) is ...

  19. Changes in bacterial and archaeal communities during the concentration of brine at the graduation towers in Ciechocinek spa (Poland).

    PubMed

    Kalwasińska, Agnieszka; Deja-Sikora, Edyta; Burkowska-But, Aleksandra; Szabó, Attila; Felföldi, Támas; Kosobucki, Przemysław; Krawiec, Arkadiusz; Walczak, Maciej

    2018-03-01

    This study evaluates the changes in bacterial and archaeal community structure during the gradual evaporation of water from the brine (extracted from subsurface Jurassic deposits) in the system of graduation towers located in Ciechocinek spa, Poland. The communities were assessed with 16S rRNA gene sequencing (MiSeq, Illumina) and microscopic methods. The microbial cell density determined by direct cell count was at the order of magnitude of 10 7 cells/mL. It was found that increasing salt concentration was positively correlated with both the cell counts, and species-level diversity of bacterial and archaeal communities. The archaeal community was mostly constituted by members of the phylum Euryarchaeota, class Halobacteria and was dominated by Halorubrum-related sequences. The bacterial community was more diverse, with representatives of the phyla Proteobacteria and Bacteroidetes as the most abundant. The proportion of Proteobacteria decreased with increasing salt concentration, while the proportion of Bacteroidetes increased significantly in the more concentrated samples. Representatives of the genera Idiomarina, Psychroflexus, Roseovarius, and Marinobacter appeared to be tolerant to changes of salinity. During the brine concentration, the relative abundances of Sphingobium and Sphingomonas were significantly decreased and the raised contributions of genera Fabibacter and Fodinibius were observed. The high proportion of novel (not identified at 97% similarity level) bacterial reads (up to 42%) in the 16S rRNA gene sequences indicated that potentially new bacterial taxa inhabit this unique environment.

  20. [A multicenter study of correlation between peripheral lymphocyte counts and CD(+)4T cell counts in HIV/AIDS patients].

    PubMed

    Xie, Jing; Qiu, Zhifeng; Han, Yang; Li, Yanling; Song, Xiaojing; Li, Taisheng

    2015-02-01

    To evaluate the accuracy of lymphocyte count as a surrogate for CD(+)4T cell count in treatment-naїve HIV-infected adults. A total of 2 013 HIV-infected patients were screened at 23 sites in China. CD(+)4T cell counts were measured by flow cytometry. Correlation between CD(+)4T cell count and peripheral lymphocyte count were analyzed by spearman coefficient. AUCROC were used to evaluate the performance of lymphocyte count as a surrogate for CD(+)4T cell count. The lymphocyte count and CD(+)4T cell count of these 2 013 patients were (1 600 ± 670) × 10(6)/L and (244 ± 148) × 10(6)/L respectively. CD(+)4T cell count were positively correlated with lymphocyte count (r = 0.482, P < 0.000 1). AUCROC of lymphocyte count as a surrogate for CD(+)4T cell counts of <100×10(6)/L, <200×10(6)/L and <350×10(6)/L were 0.790 (95%CI 0.761-0.818, P < 0.000 1), 0.733 (95%CI 0.710-0.755, P < 0.000 1) and 0.732 (95%CI 0.706-0.758, P < 0.000 1) respectively. Lymphocyte count could be considerad as a potential surrogate marker for CD(+)4T cell count in HIV/AIDS patients not having access to T cell subset test by flowcytometry.

  1. The effect of storage temperature and duration on the microbial quality of bulk tank milk.

    PubMed

    O'Connell, A; Ruegg, P L; Jordan, K; O'Brien, B; Gleeson, D

    2016-05-01

    The dairy industry in Ireland is currently undergoing a period of expansion and, as a result, it is anticipated that milk may be stored in bulk tanks on-farm for periods greater than 48 h. The objective of this study was to investigate the effects of storage temperature and duration on microbial quality of bulk tank milk when fresh milk is added to the bulk tank twice daily. Bulk tank milk stored at 3 temperatures was sampled at 24-h intervals during storage periods of 0 to 96 h. Bulk tank milk samples were analyzed for total bacterial count (TBC), psychrotrophic bacterial count (PBC), laboratory pasteurization count (LPC), psychrotrophic-thermoduric bacterial count (PBC-LPC), proteolytic bacterial count, lipolytic bacterial count, presumptive Bacillus cereus, sulfite-reducing Clostridia (SRC), and SCC. The bulk tank milk temperature was set at each of 3 temperatures (2°C, 4°C, and 6°C) in each of 3 tanks on 2 occasions during two 6-wk periods. Period 1 was undertaken in August and September, when all cows were in mid lactation, and period 2 was undertaken in October and November, when all cows were in late lactation. None of the bulk tank bacterial counts except the proteolytic count were affected by lactation period. The proteolytic bacterial count was greater in period 2 than in period 1. The TBC and PBC of milk stored at 6°C increased as storage duration increased. The TBC did not increase with increasing storage duration when milk was stored at 2°C or 4°C but the PBC of milk stored at 4°C increased significantly between 0 and 96 h. The numbers of proteolytic and lipolytic bacteria, LPC, or PBC-LPC in bulk tank milk were not affected by temperature or duration of storage. Presumptive B. cereus were detected in 10% of all bulk tank milk samples taken over the two 6-wk periods, with similar proportions observed in both. In bulk tank milk samples, a greater incidence of SRC was observed in period 2 (20%) compared with period 1 (3%). Milk produced on-farm with minimal bacterial contamination can be successfully stored at 2°C and 4°C for up to 96h with little effect on its microbial quality. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Antimicrobial role of human meibomian lipids at the ocular surface.

    PubMed

    Mudgil, Poonam

    2014-10-14

    Human meibomian lipids form the outermost lipid layer of the tear film and serve many important functions to maintain its integrity. Although not investigated earlier, these lipids may have antimicrobial properties that help in strengthening the innate host defense of tears at the ocular surface. The aim of this study was to investigate the antimicrobial role of human meibomian lipids. Ocular pathogenic bacteria, Staphylococcus aureus 31, Pseudomonas aeruginosa 19, Pseudomonas aeruginosa 20, and Serratia marcescens 35, were grown in the presence and absence of human meibomian lipids in an artificial tear solution at the physiological temperature. Viable counts were obtained to note the number of bacteria surviving the treatment with meibomian lipids. Bacterial cells were imaged using scanning electron microscopy to observe the damages caused by meibomian lipids. Viable count results showed that in the presence of meibomian lipids, growth of all bacteria was considerably lower. Scanning electron microscopy showed that meibomian lipids caused extensive cellular damage to bacteria as manifested in smaller size, loss of aggregation, abnormal phenotype, cellular distortion, damaged cell wall, and cell lysis. This is the first-ever report of the antimicrobial role of human meibomian lipids. These lipids possess antimicrobial properties against both Gram-positive and Gram-negative bacteria and are involved in the innate host defense of tears in protecting the ocular surface against microbial pathogens. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  3. Metal mobilization by iron- and sulfur-oxidizing bacteria in a multiple extreme mine tailings in the Atacama Desert, Chile.

    PubMed

    Korehi, H; Blöthe, M; Sitnikova, M A; Dold, B; Schippers, A

    2013-03-05

    The marine shore sulfidic mine tailings dump at the Chañaral Bay in the Atacama Desert, northern Chile, is characterized by extreme acidity, high salinity, and high heavy metals concentrations. Due to pyrite oxidation, metals (especially copper) are mobilized under acidic conditions and transported toward the tailings surface and precipitate as secondary minerals (Dold, Environ. Sci. Technol. 2006, 40, 752-758.). Depth profiles of total cell counts in this almost organic-carbon free multiple extreme environment showed variable numbers with up to 10(8) cells g(-1) dry weight for 50 samples at four sites. Real-time PCR quantification and bacterial 16S rRNA gene diversity analysis via clone libraries revealed a dominance of Bacteria over Archaea and the frequent occurrence of the acidophilic iron(II)- and sulfur-oxidizing and iron(III)-reducing genera Acidithiobacillus, Alicyclobacillus, and Sulfobacillus. Acidophilic chemolithoautotrophic iron(II)-oxidizing bacteria were also frequently found via most-probable-number (MPN) cultivation. Halotolerant iron(II)-oxidizers in enrichment cultures were active at NaCl concentrations up to 1 M. Maximal microcalorimetrically determined pyrite oxidation rates coincided with maxima of the pyrite content, total cell counts, and MPN of iron(II)-oxidizers. These findings indicate that microbial pyrite oxidation and metal mobilization preferentially occur in distinct tailings layers at high salinity. Microorganisms for biomining with seawater salt concentrations obviously exist in nature.

  4. Characterization of suspended bacteria from processing units in an advanced drinking water treatment plant of China.

    PubMed

    Wang, Feng; Li, Weiying; Zhang, Junpeng; Qi, Wanqi; Zhou, Yanyan; Xiang, Yuan; Shi, Nuo

    2017-05-01

    For the drinking water treatment plant (DWTP), the organic pollutant removal was the primary focus, while the suspended bacterial was always neglected. In this study, the suspended bacteria from each processing unit in a DWTP employing an ozone-biological activated carbon process was mainly characterized by using heterotrophic plate counts (HPCs), a flow cytometer, and 454-pyrosequencing methods. The results showed that an adverse changing tendency of HPC and total cell counts was observed in the sand filtration tank (SFT), where the cultivability of suspended bacteria increased to 34%. However, the cultivability level of other units stayed below 3% except for ozone contact tank (OCT, 13.5%) and activated carbon filtration tank (ACFT, 34.39%). It meant that filtration processes promoted the increase in cultivability of suspended bacteria remarkably, which indicated biodegrading capability. In the unit of OCT, microbial diversity indexes declined drastically, and the dominant bacteria were affiliated to Proteobacteria phylum (99.9%) and Betaproteobacteria class (86.3%), which were also the dominant bacteria in the effluent of other units. Besides, the primary genus was Limnohabitans in the effluents of SFT (17.4%) as well as ACFT (25.6%), which was inferred to be the crucial contributors for the biodegradable function in the filtration units. Overall, this paper provided an overview of community composition of each processing units in a DWTP as well as reference for better developing microbial function for drinking water treatment in the future.

  5. Microbial growth associated with granular activated carbon in a pilot water treatment facility.

    PubMed Central

    Wilcox, D P; Chang, E; Dickson, K L; Johansson, K R

    1983-01-01

    The microbial dynamics associated with granular activated carbon (GAC) in a pilot water treatment plant were investigated over a period of 16 months. Microbial populations were monitored in the influent and effluent waters and on the GAC particles by means of total plate counts and ATP assays. Microbial populations between the influent and effluent waters of the GAC columns generally increased, indicating microbial growth. The dominant genera of microorganisms isolated from interstitial waters and GAC particles were Achromobacter, Acinetobacter, Aeromonas, Alcaligenes, Bacillus, Chromobacterium, Corynebacterium, Micrococcus, Microcyclus, Paracoccus, and Pseudomonas. Coliform bacteria were found in small numbers in the effluents from some of the GAC columns in the later months of the study. Oxidation of influent waters with ozone and maintenance of aerobic conditions on the GAC columns failed to appreciably enhance the microbial growth on GAC. PMID:6625567

  6. The impact of dairy cows' bedding material and its microbial content on the quality and safety of milk - A cross sectional study of UK farms.

    PubMed

    Bradley, Andrew J; Leach, Katharine A; Green, Martin J; Gibbons, Jenny; Ohnstad, Ian C; Black, David H; Payne, Barbara; Prout, Victoria E; Breen, James E

    2018-03-23

    The introduction of bedding dairy cows on recycled manure solids (RMS) in the UK led to concern by competent authorities that there could be an increased, unacceptable risk to animal and human health. A cross-sectional study was designed to evaluate the microbial content of different bedding materials, when used by dairy cows, and its impact on the microbial content of milk. Data were collected from farms bedding lactating cows on sand (n=41), sawdust (n=44) and RMS (n=40). The mean duration of RMS use prior to sampling was 13months. Total bacterial count, and counts of Streptococcus/Enterococcus spp., Staphylococcus spp., Bacillus cereus, thermophilic, thermoduric and psychrotrophic bacteria were determined in used bedding and milk. Samples were evaluated for the presence/absence of Listeria monocytogenes, Salmonella spp. and Yersinia enterocolitica. Data on milking practices were collected to investigate their potential to reduce microbial transfer from bedding to milk. There were substantial differences in bacterial counts both within and between bedding materials. However, there were no significant differences between bedding groups in counts in milk for any of the organisms studied, and no significant correlations between bacterial load in used bedding and milk. Fore-milking was associated with a reduced total bacterial count in milk. Dipping teats with disinfectant and drying, prior to milking, was associated with lower numbers of Streptococcus/Enterococcus spp. in milk. Disinfecting clusters between milking different cows was associated with a reduction in thermophilic and psychrotrophic counts in milk. This study did not provide evidence that use of RMS bedding increased the risk of presence of Y. enterocolitica, Salmonella spp. or L. monocytogenes in milk. However, the strength of this conclusion should be tempered by the relatively small number of farms on which Y. enterocolitica and Salmonella spp. were isolated. It is concluded that, despite the higher bacterial load of RMS, its use as bedding for lactating dairy cows need not be associated with a higher bacterial load in milk than the use of sand or sawdust. However, this finding must be interpreted in the light of the relatively recent introduction of RMS as a bedding material on the farms studied. Teat preparation provides a control point for the potential transfer of microorganisms from bedding to milk. The detection of zoonotic pathogens in a small proportion of milk samples, independent of bedding type, indicates that pasteurisation of milk prior to human consumption remains an important control measure. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Simultaneous construction of PCR-DGGE-based predictive models of Listeria monocytogenes and Vibrio parahaemolyticus on cooked shrimps.

    PubMed

    Liao, C; Peng, Z Y; Li, J B; Cui, X W; Zhang, Z H; Malakar, P K; Zhang, W J; Pan, Y J; Zhao, Y

    2015-03-01

    The aim of this study was to simultaneously construct PCR-DGGE-based predictive models of Listeria monocytogenes and Vibrio parahaemolyticus on cooked shrimps at 4 and 10°C. Calibration curves were established to correlate peak density of DGGE bands with microbial counts. Microbial counts derived from PCR-DGGE and plate methods were fitted by Baranyi model to obtain molecular and traditional predictive models. For L. monocytogenes, growing at 4 and 10°C, molecular predictive models were constructed. It showed good evaluations of correlation coefficients (R(2) > 0.92), bias factors (Bf ) and accuracy factors (Af ) (1.0 ≤ Bf ≤ Af ≤ 1.1). Moreover, no significant difference was found between molecular and traditional predictive models when analysed on lag phase (λ), maximum growth rate (μmax ) and growth data (P > 0.05). But for V. parahaemolyticus, inactivated at 4 and 10°C, molecular models show significant difference when compared with traditional models. Taken together, these results suggest that PCR-DGGE based on DNA can be used to construct growth models, but it is inappropriate for inactivation models yet. This is the first report of developing PCR-DGGE to simultaneously construct multiple molecular models. It has been known for a long time that microbial predictive models based on traditional plate methods are time-consuming and labour-intensive. Denaturing gradient gel electrophoresis (DGGE) has been widely used as a semiquantitative method to describe complex microbial community. In our study, we developed DGGE to quantify bacterial counts and simultaneously established two molecular predictive models to describe the growth and survival of two bacteria (Listeria monocytogenes and Vibrio parahaemolyticus) at 4 and 10°C. We demonstrated that PCR-DGGE could be used to construct growth models. This work provides a new approach to construct molecular predictive models and thereby facilitates predictive microbiology and QMRA (Quantitative Microbial Risk Assessment). © 2014 The Society for Applied Microbiology.

  8. Microbial Load of Hard Red Winter Wheat Produced at Three Growing Environments across Nebraska, USA.

    PubMed

    Sabillón, Luis; Stratton, Jayne; Rose, Devin J; Regassa, Teshome H; Bianchini, Andréia

    2016-04-01

    Post-flowering weather variables in farm fields may influence the microbial loads of wheat grain. In this study, the effects of weather variables following wheat flowering on the microbiological quality of wheat were evaluated over two consecutive growing seasons (2011 to 2012 and 2012 to 2013) in the state of Nebraska, USA. Three hard red winter wheat lines, including two commercial cultivars (Overland and McGill) and one experimental line (NW07505), were planted in three regions with contrasting key weather variables (Southeast, South Central, and Panhandle district) to ensure that developing seeds were exposed to different weather conditions. The natural microbial flora and deoxynivalenol concentrations of 54 freshly harvested wheat samples (three samples per wheat line, with a total of 9 samples per district) were analyzed to evaluate the impacts of the weather conditions prevailing from flowering to harvesting in each growing location (district) and season on the microbiological quality and safety of wheat grain. In 2012, the values for aerobic plate counts, Enterobacteriaceae, yeasts, molds, and internal mold infection levels were significantly lower in grain samples collected from the Panhandle district than in grain harvested from the South Central and Southeastern districts. No significant differences in the yeast counts were found in grain collected from all districts in 2013, but the levels of internal mold infection and mold counts were significantly higher in grain from the Southeastern district than in grain from the Panhandle district. Deoxynivalenol was detected in all districts; however, the concentrations were below the advisory level of 1 mg/kg for processed wheat. Microbial growth during grain development seems to be dependent on the existence of a threshold level of weather variables during the season. In general, the microbial loads in wheat grain tended to be lower in those areas with lower relative humidity levels (below 55%) and with temperatures lower than 13.7°C and higher than 31.5°C.

  9. 21 CFR 864.6160 - Manual blood cell counting device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... blood cell counting device. (a) Identification. A manual blood cell counting device is a device used to count red blood cells, white blood cells, or blood platelets. (b) Classification. Class I (general... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Manual blood cell counting device. 864.6160...

  10. 21 CFR 864.6160 - Manual blood cell counting device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... blood cell counting device. (a) Identification. A manual blood cell counting device is a device used to count red blood cells, white blood cells, or blood platelets. (b) Classification. Class I (general... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Manual blood cell counting device. 864.6160...

  11. 21 CFR 864.6160 - Manual blood cell counting device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... blood cell counting device. (a) Identification. A manual blood cell counting device is a device used to count red blood cells, white blood cells, or blood platelets. (b) Classification. Class I (general... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Manual blood cell counting device. 864.6160...

  12. 21 CFR 864.6160 - Manual blood cell counting device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... blood cell counting device. (a) Identification. A manual blood cell counting device is a device used to count red blood cells, white blood cells, or blood platelets. (b) Classification. Class I (general... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Manual blood cell counting device. 864.6160...

  13. 21 CFR 864.6160 - Manual blood cell counting device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Manual blood cell counting device. 864.6160... blood cell counting device. (a) Identification. A manual blood cell counting device is a device used to count red blood cells, white blood cells, or blood platelets. (b) Classification. Class I (general...

  14. Effects of High Hydrostatic Pressure on Bacterial Growth on Human Ossicles Explanted from Cholesteatoma Patients

    PubMed Central

    Ostwald, Jürgen; Lindner, Tobias; Zautner, Andreas Erich; Arndt, Kathleen; Pau, Hans Wilhelm; Podbielski, Andreas

    2012-01-01

    Background High hydrostatic pressure (HHP) treatment can eliminate cholesteatoma cells from explanted human ossicles prior to re-insertion. We analyzed the effects of HHP treatment on the microbial flora on ossicles and on the planktonic and biofilm states of selected isolates. Methodology Twenty-six ossicles were explanted from cholesteatoma patients. Five ossicles were directly analyzed for microbial growth without further treatment. Fifteen ossicles were cut into two pieces. One piece was exposed to HHP of 350 MPa for 10 minutes. Both the treated and untreated (control) pieces were then assessed semi-quantitatively. Three ossicles were cut into two pieces and exposed to identical pressure conditions with or without the addition of one of two different combinations of antibiotics to the medium. Differential effects of 10-minute in vitro exposure of planktonic and biofilm bacteria to pressures of 100 MPa, 250 MPa, 400 MPa and 540 MPa in isotonic and hypotonic media were analyzed using two patient isolates of Staphylococcus epidermidis and Neisseria subflava. Bacterial cell inactivation and biofilm destruction were assessed by colony counting and electron microscopy. Principal Findings A variety of microorganisms were isolated from the ossicles. Irrespective of the medium, HHP treatment at 350 MPa for 10 minutes led to satisfying but incomplete inactivation especially of Gram-negative bacteria. The addition of antibiotics increased the efficacy of elimination. A comparison of HHP treatment of planktonic and biofilm cells showed that the effects of HPP were reduced by about one decadic logarithmic unit when HPP was applied to biofilms. High hydrostatic pressure conditions that are suitable to inactivate cholesteatoma cells fail to completely sterilize ossicles even if antibiotics are added. As a result of the reduced microbial load and the viability loss of surviving bacteria, however, there is a lower risk of re-infection after re-insertion. PMID:22291908

  15. The Immunologic Effects of Mesalamine in Treated HIV-Infected Individuals with Incomplete CD4+ T Cell Recovery: A Randomized Crossover Trial

    PubMed Central

    Somsouk, Ma; Dunham, Richard M.; Cohen, Michelle; Albright, Rebecca; Abdel-Mohsen, Mohamed; Liegler, Teri; Lifson, Jeffrey; Piatak, Michael; Gorelick, Robert; Huang, Yong; Wu, Yuaner; Hsue, Priscilla Y.; Martin, Jeffrey N.; Deeks, Steven G.; McCune, Joseph M.; Hunt, Peter W.

    2014-01-01

    The anti-inflammatory agent, mesalamine (5-aminosalicylic acid) has been shown to decrease mucosal inflammation in ulcerative colitis. The effect of mesalamine in HIV-infected individuals, who exhibit abnormal mucosal immune activation and microbial translocation (MT), has not been established in a placebo-controlled trial. We randomized 33 HIV-infected subjects with CD4 counts <350 cells/mm3 and plasma HIV RNA levels <40 copies/ml on antiretroviral therapy (ART) to add mesalamine vs. placebo to their existing regimen for 12 weeks followed by a 12 week crossover to the other arm. Compared to placebo-treated subjects, mesalamine-treated subjects did not experience any significant change in the percent CD38+HLA-DR+ peripheral blood CD4+ and CD8+ T cells at week 12 (P  = 0.38 and P  = 0.63, respectively), or in the CD4+ T cell count at week 12 (P  = 0.83). The percent CD38+HLA-DR+ CD4+ and CD8+ T cells also did not change significantly in rectal tissue (P  = 0.86, P  = 0.84, respectively). During the period of mesalamine administration, plasma sCD14, IL-6, D-dimer, and kynurenine to tryptophan ratio were not changed significantly at week 12 and were similarly unchanged at week 24. This study suggests that, at least under the conditions studied, the persistent immune activation associated with HIV infection is not impacted by the anti-inflammatory effects of mesalamine. Trial Registration ClinicalTrials.gov NCT01090102 PMID:25545673

  16. Microbiota during fermentation of chum salmon (Oncorhynchus keta) sauce mash inoculated with halotolerant microbial starters: analyses using the plate count method and PCR-denaturing gradient gel electrophoresis (DGGE).

    PubMed

    Yoshikawa, Shuji; Yasokawa, Daisuke; Nagashima, Koji; Yamazaki, Koji; Kurihara, Hideyuki; Ohta, Tomoki; Kawai, Yuji

    2010-06-01

    Nine different combinations of mugi koji (barley steamed and molded with Aspergillus oryzae) and halotolerant microorganisms (HTMs), Zygosaccharomyces rouxii, Candida versatilis, and Tetragenococcus halophilus, were inoculated into chum salmon sauce mash under a non-aseptic condition used in industrial fish sauce production and fermented at 35 +/- 2.5 degrees C for 84 days to elucidate the microbial dynamics (i.e., microbial count and microbiota) during fermentation. The viable count of halotolerant yeast (HTY) in fermented chum salmon sauce (FCSS) mash showed various time courses dependent on the combination of the starter microorganisms. Halotolerant lactic acid bacteria (HTL) were detected morphologically and physiologically only from FCSS mash inoculated with T. halophilus alone or with T. halophilus and C. versatilis during the first 28 days of fermentation. Only four fungal species, Z. rouxii, C. versatilis, Pichia guilliermondii, and A. oryzae, were detected throughout the fermentation by PCR-denaturing gradient gel electrophoresis (PCR-DGGE). In FCSS mash, dominant HTMs, especially eumycetes, were nonexistent. However, under the non-aseptic conditions, undesirable wild yeast such as P. guilliermondii grew fortuitously. Therefore, HTY inoculation into FCSS mash at the beginning of fermentation is effective in preventing the growth of wild yeast and the resultant unfavorable flavor. 2009 Elsevier Ltd. All rights reserved.

  17. Ultrastructural and functional characterization of circulating hemocytes from Galleria mellonella larva: Cell types and their role in the innate immunity.

    PubMed

    Wu, Gongqing; Liu, Yi; Ding, Ying; Yi, Yunhong

    2016-08-01

    Galleria mellonella larvae have been widely used as a model to study the virulence of various human pathogens. Hemocytes play important roles in the innate immune response of G. mellonella. In this study, the hemocytes of G. mellonella larvae were analyzed by transmission electron microscope, light microscope, and cytochemistry. The cytological and morphological analyses revealed four types of hemocytes; Plasmatocytes, granular cells, spherule cells and oenocytoids. Differential hemocyte counts showed that under our conditions plasmatocytes and granular cells were the most abundant circulating cell types in the hemolymph. We also investigated the role of different types of hemocytes in the cellular and humoral immune defenses. The in-vivo experiment showed that plasmatocytes, granular cells and oenocytoids phagocytized FITC-labelled Escherichia coli bacteria in larvae of G. mellonella, whereas the granular cells exhibited the strongest phagocytic ability against these microbial cells. After incubation with L-DOPA, plasmatocytes, granular cells and oenocytoids are stained brown, indicating the presence of phenoloxidase activity. These results shed new light on our understanding of the immune function of G. mellonella hemocytes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Use of nutrient supplements to increase the microbial degradation of PAH in contaminated soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmichael, L.M.; Pfaender, F.K.

    1994-12-31

    The microbial degradation of polycyclic aromatic hydrocarbons (PAH) is often low in soils due to unavailability of PAH and/or to conditions in the soil that are not favorable to microbial activity. As a result, successful bioremediation of PAH contaminated soils may require the addition of supplements to impact PAH availability or soil conditions. This paper reports on the addition of supplements (Triton X-100, Inopol, nutrient buffer, an organic nutrient solution, salicylic acid) on the fate of (9-{sup 14}C) phenanthrene, a model PAH, in creosote contaminated soils. Phenanthrene metabolism was assessed using a mass balance approach that accounts for metabolism ofmore » phenanthrene to CO{sub 2}, relative metabolite production, and uptake of phenanthrene into cells. Most of the supplements did not drastically alter the fate of phenanthrene in the contaminated soils. Additions of Inopol, however, increased phenanthrene mineralization, while salicylic acid decreased phenanthrene mineralization but greatly increased the production of polar and water soluble metabolites. All supplements (excluding salicylic acid and the organic nutrient solution) increased populations of heterotrophic microorganisms, as measured by plate counts. Phenanthrene degrader populations, however, were only slightly increased by additions of the nutrient buffer, as measured by the Most Probable Number assay.« less

  19. Antimicrobial activity of different disinfection methods against biofilms in root canals.

    PubMed

    Gergova, Raina T; Gueorgieva, Tzvetelina; Dencheva-Garova, Mariya S; Krasteva-Panova, Assya Z; Kalchinov, Vasil; Mitov, Ivan; Kamenoff, Julia

    2016-08-01

    The aim of the present study was to evaluate the bactericidal effects of different disinfection methods against microbial biofilms grown in root canals. A total of 300 freshly-extracted human teeth were infected with microbial pathogens. The biofilm formation and the effects of laser therapy, photodynamic therapy (PDT), iontophoresis, and disinfection with irrigating solutions were evaluated by counting the generations of microbial cells in the samples of root canals and by scanning electron microscopy. Enterococcus faecalis and other Gram-positive cocci demonstrated highest sensitivity to the methods of antibacterial action compared here. In most of the cases observed, the antibacterial treatment was less effective against Gram-negative bacteria in dental biofilms. The biofilms that were most difficult to eliminate were those formed by Pseudomonas aeruginosa. Iontophoresis treatment with iodine and chemical disinfection with hypochlorite and chlorhexidine demonstrated the most powerful bactericidal effect. When PDT was applied with Fotosan as a photosensitizer, better disinfection was achieved in comparison to the other lasers alone. The comparison of these different strategies for endodontic treatment showed that hypochlorite, followed by the chlorhexidine irrigant in our experimental conditions, gave the most satisfactory results against the formation of bacterial biofilms in the root canals. © 2015 Wiley Publishing Asia Pty Ltd.

  20. Microbial Composition and In Vitro Fermentation Patterns of Human Milk Oligosaccharides and Prebiotics Differ between Formula-Fed and Sow-Reared Piglets123

    PubMed Central

    Li, Min; Bauer, Laura L.; Chen, Xin; Wang, Mei; Kuhlenschmidt, Theresa B.; Kuhlenschmidt, Mark S.; Fahey, George C.; Donovan, Sharon M.

    2012-01-01

    The microbial composition and in vitro fermentation characteristics of human milk oligosaccharides (HMO), lacto-N-neotetraose (LNnT), a 2:1 mixture of polydextrose (PDX) and galactooligosaccharides (GOS), and short-chain fructooligosaccharides (scFOS) by pooled ascending colonic microbiota from 9- and 17-d-old formula-fed (FF) and sow-reared (SR) piglets were assessed. pH change and gas, SCFA, and lactate production were determined after 0, 2, 4, 8, and 12 h of incubation. In most donor groups, the pH change was greater for scFOS fermentation and lower for PDX/GOS than for other substrates. LNnT fermentation produced larger amounts of gas, total SCFA, acetate, and butyrate than did the other substrates, whereas HMO and scFOS produced higher amounts of propionate and lactate, respectively. In general, pH change, total SCFA, acetate, and propionate production were greater in pooled inoculum from FF and 9-d-old piglets, whereas SR-derived inoculum produced higher amounts of butyrate and lactate after 4 h fermentation. Gut microbiota were assessed by 16S ribosomal RNA V3 gene denaturing gradient gel electrophoresis analysis and real-time qPCR. Microbial structures differed among the 4 groups before fermentation, with higher counts of Bifidobacterium in SR piglets and higher counts of Clostridium cluster IV, XIVa, and Bacteroides vulgatus in FF piglets. Lactobacillus counts were higher in 9-d-old piglets than in 17-d-old piglets, regardless of diet. Bifidobacterium, Bacteroides, and clostridial species increased after 8 and 12 h fermentation on most substrates. In summary, piglet diet and age affect gut microbiota, leading to different fermentation patterns. HMO have potential prebiotic effects due to their effects on SCFA production and microbial modulation. PMID:22399522

  1. Microbial composition and in vitro fermentation patterns of human milk oligosaccharides and prebiotics differ between formula-fed and sow-reared piglets.

    PubMed

    Li, Min; Bauer, Laura L; Chen, Xin; Wang, Mei; Kuhlenschmidt, Theresa B; Kuhlenschmidt, Mark S; Fahey, George C; Donovan, Sharon M

    2012-04-01

    The microbial composition and in vitro fermentation characteristics of human milk oligosaccharides (HMO), lacto-N-neotetraose (LNnT), a 2:1 mixture of polydextrose (PDX) and galactooligosaccharides (GOS), and short-chain fructooligosaccharides (scFOS) by pooled ascending colonic microbiota from 9- and 17-d-old formula-fed (FF) and sow-reared (SR) piglets were assessed. pH change and gas, SCFA, and lactate production were determined after 0, 2, 4, 8, and 12 h of incubation. In most donor groups, the pH change was greater for scFOS fermentation and lower for PDX/GOS than for other substrates. LNnT fermentation produced larger amounts of gas, total SCFA, acetate, and butyrate than did the other substrates, whereas HMO and scFOS produced higher amounts of propionate and lactate, respectively. In general, pH change, total SCFA, acetate, and propionate production were greater in pooled inoculum from FF and 9-d-old piglets, whereas SR-derived inoculum produced higher amounts of butyrate and lactate after 4 h fermentation. Gut microbiota were assessed by 16S ribosomal RNA V3 gene denaturing gradient gel electrophoresis analysis and real-time qPCR. Microbial structures differed among the 4 groups before fermentation, with higher counts of Bifidobacterium in SR piglets and higher counts of Clostridium cluster IV, XIVa, and Bacteroides vulgatus in FF piglets. Lactobacillus counts were higher in 9-d-old piglets than in 17-d-old piglets, regardless of diet. Bifidobacterium, Bacteroides, and clostridial species increased after 8 and 12 h fermentation on most substrates. In summary, piglet diet and age affect gut microbiota, leading to different fermentation patterns. HMO have potential prebiotic effects due to their effects on SCFA production and microbial modulation.

  2. Semiquantitative analysis of gaps in microbiological performance of fish processing sector implementing current food safety management systems: a case study.

    PubMed

    Onjong, Hillary Adawo; Wangoh, John; Njage, Patrick Murigu Kamau

    2014-08-01

    Fish processing plants still face microbial food safety-related product rejections and the associated economic losses, although they implement legislation, with well-established quality assurance guidelines and standards. We assessed the microbial performance of core control and assurance activities of fish exporting processors to offer suggestions for improvement using a case study. A microbiological assessment scheme was used to systematically analyze microbial counts in six selected critical sampling locations (CSLs). Nine small-, medium- and large-sized companies implementing current food safety management systems (FSMS) were studied. Samples were collected three times on each occasion (n = 324). Microbial indicators representing food safety, plant and personnel hygiene, and overall microbiological performance were analyzed. Microbiological distribution and safety profile levels for the CSLs were calculated. Performance of core control and assurance activities of the FSMS was also diagnosed using an FSMS diagnostic instrument. Final fish products from 67% of the companies were within the legally accepted microbiological limits. Salmonella was absent in all CSLs. Hands or gloves of workers from the majority of companies were highly contaminated with Staphylococcus aureus at levels above the recommended limits. Large-sized companies performed better in Enterobacteriaceae, Escherichia coli, and S. aureus than medium- and small-sized ones in a majority of the CSLs, including receipt of raw fish material, heading and gutting, and the condition of the fish processing tables and facilities before cleaning and sanitation. Fish products of 33% (3 of 9) of the companies and handling surfaces of 22% (2 of 9) of the companies showed high variability in Enterobacteriaceae counts. High variability in total viable counts and Enterobacteriaceae was noted on fish products and handling surfaces. Specific recommendations were made in core control and assurance activities associated with sampling locations showing poor performance.

  3. Deep-Subsurface Marine Methane Hydrate Microbial Communities: Who's There and What Are They Doing?

    NASA Astrophysics Data System (ADS)

    Colwell, F.; Reed, D.; Fujita, Y.; Delwiche, M.; Blackwelder, D.; Uchida, T.; Fujii, T.; Lu, H.

    2001-12-01

    Natural gas hydrates are crystalline deposits of freshwater and primarily methane. They are estimated to represent a potentially vast reservoir of energy. Relatively little is known regarding microbial communities surrounding deep [>100 meters below sea floor (mbsf)] hydrate-bearing sediments. Deep sediment cores were collected in zones above, within, and below the hydrate bearing strata in an accretionary prism off the coast of Japan. Microorganisms were characterized using cultivation- and non-cultivation-based microbiological techniques to better understand the role that they play in the production and distribution of methane in gas hydrates. Direct counts show cell density at 105 cells/g throughout the hydrate strata. Lipid and 16S rDNA analyses indicate that diverse bacterial and archaeal microorganisms are represented throughout the strata. Acetate and hydrogen were utilized as an energy source for methane-producing microorganisms from each sediment depth. Although the methanogenic biomarker coenzyme M was not present above the detection limit in any of the samples, cloning and characterization of amplified 16S ribosomal RNA genes indicated the presence of methanogenic microorganisms related to the Methanobacteriales and Methanococcales. In addition, archaeal clones closely related to the hyperthermophilic Pyrodictiales were detected. Analysis of eubacterial clones indicated a more diverse eubacterial community compared to the archaea, including members from the groups of cyanobacteria, proteobacteria, gram positive bacteria, and flexibacter-cytophaga-bacteriodes. This study suggests that the diversity of microbial communities associated with the presence of methane in gas hydrate-rich deep marine sediments is greater than previously estimated.

  4. High resolution and comprehensive techniques to analyze aerobic methane oxidation in mesocosm experiments

    NASA Astrophysics Data System (ADS)

    Chan, E. W.; Kessler, J. D.; Redmond, M. C.; Shiller, A. M.; Arrington, E. C.; Valentine, D. L.; Colombo, F.

    2015-12-01

    Many studies of microbially mediated aerobic methane oxidation in oceanic environments have examined the many different factors that control the rates of oxidation. However, there is debate on how quickly methane is oxidized once a microbial population is established and what factor(s) are limiting in these types of environments. These factors include the availability of CH4, O2, trace metals, nutrients, and the density of cell population. Limits to these factors can also control the temporal aspects of a methane oxidation event. In order to look at this process in its entirety and with higher temporal resolution, a mesocosm incubation system was developed with a Dissolved Gas Analyzer System (DGAS) coupled with a set of analytical tools to monitor aerobic methane oxidation in real time. With the addition of newer laser spectroscopy techniques (cavity ringdown spectroscopy), stable isotope fractionation caused by microbial processes can also be examined on a real time and automated basis. Cell counting, trace metal, nutrient, and DNA community analyses have also been carried out in conjunction with these mesocosm samples to provide a clear understanding of the biology in methane oxidation dynamics. This poster will detail the techniques involved to provide insights into the chemical and isotopic kinetics controlling aerobic methane oxidation. Proof of concept applications will be presented from seep sites in the Hudson Canyon and the Sleeping Dragon seep field, Mississippi Canyon 118 (MC 118). This system was used to conduct mesocosm experiments to examine methane consumption, O2 consumption, nutrient consumption, and biomass production.

  5. A comparison of additional treatment processes to limit particle accumulation and microbial growth during drinking water distribution.

    PubMed

    Liu, G; Lut, M C; Verberk, J Q J C; Van Dijk, J C

    2013-05-15

    Water quality changes, particle accumulation and microbial growth occurring in pilot-scale water distribution systems fed with normally treated and additional treated groundwater were monitored over a period of almost one year. The treatment processes were ranked in the following order: nanofiltration (NF) > (better than) ultrafiltration (UF) > ion exchange (IEX) for limiting particle accumulation. A different order was found for limiting overall microbial growth: NF > IEX > UF. There were strong correlations between particle load and particle accumulation, and between nutrient load and microbial growth. It was concluded that particle accumulation can be controlled by reducing the particle load in water treatment plants; and the microbial growth can be better controlled by limiting organic nutrients rather than removing biomass in water treatment plants. The major focus of this study was on microbial growth. The results demonstrated that growth occurred in all types of treated water, including the phases of bulk water, biofilm and loose deposits. Considering the growth in different phases, similar growth in bulk water was observed for all treatments; NF strongly reduced growth both in loose deposits and in biofilm; UF promoted growth in biofilm, while strongly limiting growth in loose deposits. IEX had good efficiency in between UF and NF, limiting both growths in loose deposits and in biofilm. Significant growth was found in loose deposits, suggesting that loose deposit biomass should be taken into account for growth evaluation and/or prediction. Strong correlations were found between microbial growth and pressure drop in a membrane fouling simulator which proved that a membrane fouling simulator can be a fast growth predictor (within a week). Different results obtained by adenosine triphosphate and flow cytometry cell counts revealed that ATP can accurately describe both suspended and particle-associated biomass, and flow cytometry files of TCC measurements needs to be further processed for particle loaded samples and/or a pretreatment protocol should be developed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Quantitative determination of H2-utilizing acetogenic and sulfate-reducing bacteria and methanogenic archaea from digestive tract of different mammals.

    PubMed

    Morvan, B; Bonnemoy, F; Fonty, G; Gouet, P

    1996-03-01

    Total number of bacteria, cellulolytic bacteria, and H2-utilizing microbial populations (methanogenic archaea, acetogenic and sulfate-reducing bacteria) were enumerated in fresh rumen samples from sheep, cattle, buffaloes, deer, llamas, and caecal samples from horses. Methanogens and sulfate reducers were found in all samples, whereas acetogenes were not detected in some samples of each animal. Archaea methanogens were the largest H2-utilizing populations in all animals, and a correlation was observed between the numbers of methanogens and those of cellulolytic microorganisms. Higher counts of acetogens were found in horses and llamas (1 x 10(4) and 4 x 10(4) cells ml-1 respectively).

  7. Use of Bacillus thuringiensis supernatant from a fermentation process to improve bioremediation of chlorpyrifos in contaminated soils.

    PubMed

    Aceves-Diez, Angel E; Estrada-Castañeda, Kelly J; Castañeda-Sandoval, Laura M

    2015-07-01

    The aim of this research was to investigate the potential of a nutrient-rich organic waste, namely the cell-free supernatant of Bacillus thuringiensis (BtS) gathered from fermentation, as a biostimulating agent to improve and sustain microbial populations and their enzymatic activities, thereby assisting in the bioremediation of chlorpyrifos-contaminated soil at a high dose (70 mg kg(-1)). Experiments were performed for up to 80 d. Chlorpyrifos degradation and its major metabolic product, 3,5,6-trichloro-2-pyridinol (TCP), were quantified by high-performance liquid chromatography (HPLC); total microbial populations were enumerated by direct counts in specific medium; and fluorescein diacetate (FDA) hydrolysis was measured as an index of soil microbial activity. Throughout the experiment, there was higher chlorpyrifos degradation in soil supplemented with BtS (83.1%) as compared to non-supplemented soil. TCP formation and degradation occurred in all soils, but the greatest degradation (30.34%) was observed in soil supplemented with BtS. The total microbial populations were significantly improved by supplementation with BtS. The application of chlorpyrifos to soil inhibited the enzymatic activity; however, this negative effect was counteracted by BtS, inducing an increase of approximately 16% in FDA hydrolysis. These results demonstrate the potential of B. thuringiensis supernatant as a suitable biostimulation agent for enhancing chlorpyrifos and TCP biodegradation in chlorpyrifos-contaminated soils. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Opening the black box of spring water microbiology from alpine karst aquifers to support proactive drinking water resource management.

    PubMed

    Savio, Domenico; Stadler, Philipp; Reischer, Georg H; Kirschner, Alexander K T; Demeter, Katalin; Linke, Rita; Blaschke, Alfred P; Sommer, Regina; Szewzyk, Ulrich; Wilhartitz, Inés C; Mach, Robert L; Stadler, Hermann; Farnleitner, Andreas H

    2018-01-01

    Over the past 15 years, pioneering interdisciplinary research has been performed on the microbiology of hydrogeologically well-defined alpine karst springs located in the Northern Calcareous Alps (NCA) of Austria. This article gives an overview on these activities and links them to other relevant research. Results from the NCA springs and comparable sites revealed that spring water harbors abundant natural microbial communities even in aquifers with high water residence times and the absence of immediate surface influence. Apparently, hydrogeology has a strong impact on the concentration and size of the observed microbes, and total cell counts (TCC) were suggested as a useful means for spring type classification. Measurement of microbial activities at the NCA springs revealed extremely low microbial growth rates in the base flow component of the studied spring waters and indicated the importance of biofilm-associated microbial activities in sediments and on rock surfaces. Based on genetic analysis, the autochthonous microbial endokarst community (AMEC) versus transient microbial endokarst community (TMEC) concept was proposed for the NCA springs, and further details within this overview article are given to prompt its future evaluation. In this regard, it is well known that during high-discharge situations, surface-associated microbes and nutrients such as from soil habitats or human settlements-potentially containing fecal-associated pathogens as the most critical water-quality hazard-may be rapidly flushed into vulnerable karst aquifers. In this context, a framework for the comprehensive analysis of microbial pollution has been proposed for the NCA springs to support the sustainable management of drinking water safety in accordance with recent World Health Organization guidelines. Near-real-time online water quality monitoring, microbial source tracking (MST) and MST-guided quantitative microbial-risk assessment (QMRA) are examples of the proposed analytical tools. In this context, this overview article also provides a short introduction to recently emerging methodologies in microbiological diagnostics to support reading for the practitioner. Finally, the article highlights future research and development needs. This article is categorized under: 1Engineering Water > Water, Health, and Sanitation2Science of Water > Water Extremes3Water and Life > Nature of Freshwater Ecosystems.

  9. Use of immunomagnetic separation for the detection of Desulfovibrio vulgaris from environmental samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, R.; Hazen, T.C.; Joyner, D.C.

    2011-04-15

    Immunomagnetic separation (IMS) has proved highly efficient for recovering microorganisms from heterogeneous samples. Current investigation targeted the separation of viable cells of the sulfate-reducing bacterium, Desulfovibrio vulgaris. Streptavidin-coupled paramagnetic beads and biotin labeled antibodies raised against surface antigens of this microorganism were used to capture D. vulgaris cells in both bioreactor grown laboratory samples and from extremely low-biomass environmental soil and subsurface drilling samples. Initial studies on detection, recovery efficiency and viability for IMS were performed with laboratory grown D. vulgaris cells using various cell densities. Efficiency of cell isolation and recovery (i.e., release of the microbial cells from themore » beads following separation) was followed by microscopic imaging and acridine orange direct counts (AODC). Excellent recovery efficiency encouraged the use of IMS to capture Desulfovibrio spp. cells from low-biomass environmental samples. The environmental samples were obtained from a radionuclide-contaminated site in Germany and the chromium (VI)-contaminated Hanford site, an ongoing bioremediation project of the U.S. Department of Energy. Field deployable IMS technology may greatly facilitate environmental sampling and bioremediation process monitoring and enable transcriptomics and proteomics/metabolomics-based studies directly on cells collected from the field.« less

  10. Development of dielectric barrier discharge for reducing microbial contamination in pepper (Piper nigrum) and sesame (Sesamum indicum Linn.) powder

    NASA Astrophysics Data System (ADS)

    Promping, J.; Prakongsil, P.; Picha, R.; Traikool, T.

    2017-09-01

    This research is designed to determine the efficacy of DBD plasma to reduce the microbial contamination of pepper and sesame powder. The AC high voltage power supply was used with voltages of up to 20 kV and the frequency of 5.5 kHz was applied to the DBD. The gap of DBD electrodes was set at 5 mm. In raw initial samples, the total aerobic count of pepper (Piper nigrum) was found at quite a high level at 5.40 × 105 CFU/g. Coliform bacteria was also found in both the sesame (Sesamum indicum Linn.) powder and pepper (Piper nigrum) powder. Both kinds of samples were treated with plasma for 2, 4, 6 and 10 minutes. Results indicated that plasma treatment at 2-10 minutes reduced the total aerobic count of pepper allowed to achieve the acceptable microbial level for spices. The plasma treatment times in this experiment were also effective in reducing faecal coliform bacteria in both pepper and sesame powders (MPN/g <3) as indicated in the standard. Plasma from dielectric barrier charge can reduce Staphylococcus epidermidis in sesame powder which was artificially contaminated with 3.50 × 102 CFU/g resulting in 0.15-0.5 log cycle reductions of microbial load.

  11. Characterization of Early Microbial Communities on Volcanic Deposits along a Vegetation Gradient on the Island of Miyake, Japan

    PubMed Central

    Guo, Yong; Fujimura, Reiko; Sato, Yoshinori; Suda, Wataru; Kim, Seok-won; Oshima, Kenshiro; Hattori, Masahira; Kamijo, Takashi; Narisawa, Kazuhiko; Ohta, Hiroyuki

    2014-01-01

    The 2000 eruption of Mount Oyama on the island of Miyake (Miyake-jima) created a unique opportunity to study the early ecosystem development on newly exposed terrestrial substrates. In this study, bacterial and fungal communities on 9- and 11-year-old volcanic deposits at poorly to fully vegetation-recovered sites in Miyake-jima, Japan, were characterized by conventional culture-based methods and pyrosequencing of 16S rRNA and 18S rRNA genes. Despite the differences in the vegetation cover, the upper volcanic deposit layer samples displayed low among-site variation for chemical properties (pH, total organic carbon, and total nitrogen) and microbial population densities (total direct count and culturable count). Statistical analyses of pyrosequencing data revealed that the microbial communities of volcanic deposit samples were phylogenetically diverse, in spite of very low-carbon environmental conditions, and their diversity was comparable to that in the lower soil layer (buried soil) samples. Comparing with the microbial communities in buried soil, the volcanic deposit communities were characterized by the presence of Betaproteobacteria and Gammaproteobacteria as the main bacterial class, Deinococcus- Thermus as the minor bacterial phyla, and Ascomycota as the major fungal phyla. Multivariate analysis revealed that several bacterial families and fungal classes correlated positively or negatively with plant species. PMID:24463576

  12. Microbial community assessment of mealworm larvae (Tenebrio molitor) and grasshoppers (Locusta migratoria migratorioides) sold for human consumption.

    PubMed

    Stoops, J; Crauwels, S; Waud, M; Claes, J; Lievens, B; Van Campenhout, L

    2016-02-01

    In Western countries, the popularity of edible insects as an alternative animal protein source is increasing. Nevertheless, there is a lack of profound insight into the microbial safety and shelf life of living insects sold for human consumption. The purpose of this study was to characterise the microflora of fresh edible mealworm larvae and grasshoppers in a quantitative and qualitative way. Therefore, culture-dependent analyses (the total viable aerobic count, Enterobacteriaceae, lactic acid bacteria, yeasts and moulds, and bacterial endospores) and next-generation sequencing (454amplicon pyrosequencing) were performed. High microbial counts were obtained for both insect species. Different insect batches resulted in quite similar microbial numbers, except for bacterial endospores. However, the bacterial community composition differed between both insect species. The most abundant operational taxonomic unit in mealworm larvae was Propionibacterium. Also members of the genera Haemophilus, Staphylococcus and Clostridium were found. Grasshoppers were mainly dominated by Weissella, Lactococcus and Yersinia/Rahnella. Overall, a variety of potential spoilage bacteria and food pathogens were characterised. The results of this study suggest that a processing step with a microbiocidal effect is required to avoid or minimize risks involved with the consumption of edible insects. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Effects of Microbial Transglutaminase on Physicochemical, Microbial and Sensorial Properties of Kefir Produced by Using Mixture Cow’s and Soymilk

    PubMed Central

    2017-01-01

    The objective of this research was to investigate the effects microbial transglutaminase (m-TGs) on the physicochemical, microbial and sensory properties of kefir produced by using mix cow and soymilk. Kefir batches were prepared using 0, 0.5, 1 and 1.5 Units m-TGs for per g of milk protein. Adding m-TGs to milk caused an increase in the pH and viscosity and caused a decrease in titratable acidity and syneresis in the kefir samples. Total bacteria, lactobacilli and streptococci counts decreased, while yeast counts increased in all the samples during storage. Alcohols and acids compounds have increased in all the samples except in the control samples, while carbonyl compounds have decreased in all the samples during storage (1-30 d). The differences in the percentage of alcohols, carbonyl compounds and acids in total volatiles on the 1st and the 30th d of storage were observed at 8.47-23.52%, 6.94-25.46% and 59.64-63.69%, respectively. The consumer evaluation of the kefir samples showed that greater levels of acceptability were found for samples which had been added 1.5 U m-TGs for per g of milk protein. PMID:28943774

  14. Effects of Microbial Transglutaminase on Physicochemical, Microbial and Sensorial Properties of Kefir Produced by Using Mixture Cow's and Soymilk.

    PubMed

    Temiz, Hasan; Dağyıldız, Kübra

    2017-01-01

    The objective of this research was to investigate the effects microbial transglutaminase (m-TGs) on the physicochemical, microbial and sensory properties of kefir produced by using mix cow and soymilk. Kefir batches were prepared using 0, 0.5, 1 and 1.5 Units m-TGs for per g of milk protein. Adding m-TGs to milk caused an increase in the pH and viscosity and caused a decrease in titratable acidity and syneresis in the kefir samples. Total bacteria, lactobacilli and streptococci counts decreased, while yeast counts increased in all the samples during storage. Alcohols and acids compounds have increased in all the samples except in the control samples, while carbonyl compounds have decreased in all the samples during storage (1-30 d). The differences in the percentage of alcohols, carbonyl compounds and acids in total volatiles on the 1st and the 30th d of storage were observed at 8.47-23.52%, 6.94-25.46% and 59.64-63.69%, respectively. The consumer evaluation of the kefir samples showed that greater levels of acceptability were found for samples which had been added 1.5 U m-TGs for per g of milk protein.

  15. Optimally achieving milk bulk tank somatic cell count thresholds.

    PubMed

    Troendle, Jason A; Tauer, Loren W; Gröhn, Yrjo T

    2017-01-01

    High somatic cell count in milk leads to reduced shelf life in fluid milk and lower processed yields in manufactured dairy products. As a result, farmers are often penalized for high bulk tank somatic cell count or paid a premium for low bulk tank somatic cell count. Many countries also require all milk from a farm to be lower than a specified regulated somatic cell count. Thus, farms often cull cows that have high somatic cell count to meet somatic cell count thresholds. Rather than naïvely cull the highest somatic cell count cows, a mathematical programming model was developed that determines the cows to be culled from the herd by maximizing the net present value of the herd, subject to meeting any specified bulk tank somatic cell count level. The model was applied to test-day cows on 2 New York State dairy farms. Results showed that the net present value of the herd was increased by using the model to meet the somatic cell count restriction compared with naïvely culling the highest somatic cell count cows. Implementation of the model would be straightforward in dairy management decision software. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. Drinking water quality and formation of biofilms in an office building during its first year of operation, a full scale study.

    PubMed

    Inkinen, Jenni; Kaunisto, Tuija; Pursiainen, Anna; Miettinen, Ilkka T; Kusnetsov, Jaana; Riihinen, Kalle; Keinänen-Toivola, Minna M

    2014-02-01

    Complex interactions existing between water distribution systems' materials and water can cause a reduction in water quality and unwanted changes in materials, aging or corrosion of materials and formation of biofilms on surfaces. Substances leaching from pipe materials and water fittings, as well as the microbiological quality of water and formation of biofilms were evaluated by applying a Living Lab theme i.e. a research in a real life setting using a full scale system during its first year of operation. The study site was a real office building with one part of the building lined with copper pipes, the other with cross-linked polyethylene (PEX) pipes thus enabling material comparison; also differences within the cold and hot water systems were analysed. It was found that operational conditions, such as flow conditions and temperature affected the amounts of metals leaching from the pipe network. In particular, brass components were considered to be a source of leaching; e. g. the lead concentration was highest during the first few weeks after the commissioning of the pipe network when the water was allowed to stagnate. Assimilable organic carbon (AOC) and microbially available phosphorus (MAP) were found to leach from PEX pipelines with minor effects on biomass of the biofilm. Cultivable and viable biomass (heterotrophic plate count (HPC), and adenosine triphosphate (ATP)) levels in biofilms were higher in the cold than in the hot water system whereas total microbial biomass (total cell count (DAPI)) was similar with both systems. The type of pipeline material was not found to greatly affect the microbial biomass or Alpha-, Beta- and Gammaproteobacteria profiles (16s rRNA gene copies) after the first one year of operation. Also microbiological quality of water was found to deteriorate due to stagnation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Sorption of radioiodide in an acidic, nutrient-poor boreal bog: insights into the microbial impact.

    PubMed

    Lusa, M; Bomberg, M; Aromaa, H; Knuutinen, J; Lehto, J

    2015-05-01

    Batch sorption experiments were conducted to evaluate the sorption behaviour of iodide and the microbial impact on iodide sorption in the surface moss, subsurface peat, gyttja, and clay layers of a nutrient-poor boreal bog. The batch distribution coefficient (Kd) values of iodide decreased as a function of sampling depth. The highest Kd values, 4800 L/Kg dry weight (DW) (geometric mean), were observed in the fresh surface moss and the lowest in the bottom clay (geometric mean 90 mL/g DW). In the surface moss, peat and gyttja layers, which have a high organic matter content (on average 97%), maximum sorption was observed at a pH between ∼ 4 and 5 and in the clay layer at pH 2. The Kd values were significantly lower in sterilized samples, being 20-fold lower than the values found for the unsterilized samples. In addition, the recolonization of sterilized samples with a microbial population from the fresh samples restored the sorption capacity of surface moss, peat and gyttja samples, indicating that the decrease in the sorption was due to the destruction of microbes and supporting the hypothesis that microbes are necessary for the incorporation of iodide into the organic matter. Anoxic conditions reduced the sorption of iodide in fresh, untreated samples, similarly to the effect of sterilization, which supports the hypothesis that iodide is oxidized into I2/HIO before incorporation into the organic matter. Furthermore, the Kd values positively correlated with peroxidase activity in surface moss, subsurface peat and gyttja layers at +20 °C, and with the bacterial cell counts obtained from plate count agar at +4 °C. Our results demonstrate the importance of viable microbes for the sorption of iodide in the bog environment, having a high organic matter content and a low pH. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Automated image analysis for quantitative fluorescence in situ hybridization with environmental samples.

    PubMed

    Zhou, Zhi; Pons, Marie Noëlle; Raskin, Lutgarde; Zilles, Julie L

    2007-05-01

    When fluorescence in situ hybridization (FISH) analyses are performed with complex environmental samples, difficulties related to the presence of microbial cell aggregates and nonuniform background fluorescence are often encountered. The objective of this study was to develop a robust and automated quantitative FISH method for complex environmental samples, such as manure and soil. The method and duration of sample dispersion were optimized to reduce the interference of cell aggregates. An automated image analysis program that detects cells from 4',6'-diamidino-2-phenylindole (DAPI) micrographs and extracts the maximum and mean fluorescence intensities for each cell from corresponding FISH images was developed with the software Visilog. Intensity thresholds were not consistent even for duplicate analyses, so alternative ways of classifying signals were investigated. In the resulting method, the intensity data were divided into clusters using fuzzy c-means clustering, and the resulting clusters were classified as target (positive) or nontarget (negative). A manual quality control confirmed this classification. With this method, 50.4, 72.1, and 64.9% of the cells in two swine manure samples and one soil sample, respectively, were positive as determined with a 16S rRNA-targeted bacterial probe (S-D-Bact-0338-a-A-18). Manual counting resulted in corresponding values of 52.3, 70.6, and 61.5%, respectively. In two swine manure samples and one soil sample 21.6, 12.3, and 2.5% of the cells were positive with an archaeal probe (S-D-Arch-0915-a-A-20), respectively. Manual counting resulted in corresponding values of 22.4, 14.0, and 2.9%, respectively. This automated method should facilitate quantitative analysis of FISH images for a variety of complex environmental samples.

  19. Fecal water genotoxicity in healthy free-living young Italian people.

    PubMed

    Daniela, Erba; Sara, Soldi; Marcella, Malavolti; Giovanni, Aragone; Meynier, Alexandra; Sophie, Vinoy; Cristina, Casiraghi M

    2014-02-01

    Dietary habit affects the composition of human feces thus determining intestinal environment and exposure of colon mucosa to risk factors. Fecal water (FW) citotoxicity and genotoxicity were investigated in 33 healthy young Italian people, as well as the relationship between genotoxicity and nutrient intake or microflora composition. Two fecal samples were collected at 2 weeks apart and 3-d dietary diary was recorded for each volunteer. Cytotoxicity was measured using the Trypan Blue Dye Exclusion assay and genotoxicity using the Comet Assay (alkaline single-cell electrophoresis). Fecal bifidobacteria, total microbial count and nutrient intakes were also assessed. High intra- and inter-variability in genotoxicity data and in bacteria counts were found. None of the FW samples were citotoxic, but 90% of FW samples were genotoxic. Seventy five percent indicated intermediate and 15% were highly genotoxic. There was a different sex-related distribution. Genotoxicity was positively correlated to the total lipid intake in females and to the bifidobacteria/total bacteria count ratio in male volunteers. These results demonstrate that the majority of FW samples isolated from free-living Italian people show intermediate level of genotoxicity and sustain a relation between this possible non-invasive marker of colorectal cancer risk with both dietary habits and colonic ecosystem. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Impact of temperature and time storage on the microbial detection of oral samples by Checkerboard DNA-DNA hybridization method.

    PubMed

    do Nascimento, Cássio; dos Santos, Janine Navarro; Pedrazzi, Vinícius; Pita, Murillo Sucena; Monesi, Nadia; Ribeiro, Ricardo Faria; de Albuquerque, Rubens Ferreira

    2014-01-01

    Molecular diagnosis methods have been largely used in epidemiological or clinical studies to detect and quantify microbial species that may colonize the oral cavity in healthy or disease. The preservation of genetic material from samples remains the major challenge to ensure the feasibility of these methodologies. Long-term storage may compromise the final result. The aim of this study was to evaluate the effect of temperature and time storage on the microbial detection of oral samples by Checkerboard DNA-DNA hybridization. Saliva and supragingival biofilm were taken from 10 healthy subjects, aliquoted (n=364) and processed according to proposed protocols: immediate processing and processed after 2 or 4 weeks, and 6 or 12 months of storage at 4°C, -20°C and -80°C. Either total or individual microbial counts were recorded in lower values for samples processed after 12 months of storage, irrespective of temperatures tested. Samples stored up to 6 months at cold temperatures showed similar counts to those immediately processed. The microbial incidence was also significantly reduced in samples stored during 12 months in all temperatures. Temperature and time of oral samples storage have relevant impact in the detection and quantification of bacterial and fungal species by Checkerboard DNA-DNA hybridization method. Samples should be processed immediately after collection or up to 6 months if conserved at cold temperatures to avoid false-negative results. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Assessment of the microbiological safety of dried spices and herbs commercialized in Spain.

    PubMed

    Sospedra, Isabel; Soriano, Jose M; Mañes, Jordi

    2010-12-01

    Spices and herbs are natural products or their blends that must be free of extraneous matter content. Conventional production of these products implicates a number of hygienic problems so spices and herbs may be exposed to a wide range of microbial contamination during pre- and post-harvest and they can present high microbial counts. In this study, we have analyzed the microbial quality of 53 samples of spices and dry herbs collected from Spanish markets detecting a contamination of samples of spices with mesophilic aerobic counts (10%) and Enterobacteriaceae (20%). The analysis from herbs showed that the percentage of contamination was 26% in both microbiological values. Pathogenic microorganisms like Staphylococcus aureus, Yersinia intermedia, Shigella spp., Enterobacter spp., Acinetobacter calcoaceticus and Hafni alvei were also isolated from spices and herbs. These unsatisfactory results showed a poor microbiological quality. Spices and dry herbs are used as ingredients in a variety of products prepared in different ways, this fact suggests the need to provide a control system to improve the quality of herbs and spices.

  2. Effect of Fixed Orthodontic Treatment on Salivary Flow, pH and Microbial Count.

    PubMed

    Arab, Sepideh; Nouhzadeh Malekshah, Sepideh; Abouei Mehrizi, Ehsan; Ebrahimi Khanghah, Anita; Naseh, Roya; Imani, Mohammad Moslem

    2016-01-01

    The present study was designed to evaluate the changes in saliva properties and oral microbial flora in patients undergoing fixed orthodontic treatment. Two important saliva properties namely the salivary flow rate and pH as well as oral microbial flora were assessed in 30 orthodontic patients before starting fixed orthodontic treatment and after six, 12 and 18 weeks of treatment. Selective media, Sabouraud dextrose agar, Mitis salivarius agar and Rogosa agar were used for isolation of Candida albicans, Streptococcus mutans and Lactobacillus acidophilus, respectively. Statistical analysis was performed using Friedman and Dunn's tests. P< 0.05 was considered statistically significant. After six, 12 and 18 weeks of commencing fixed orthodontic treatment, the total colony counts of Candida albicans, Streptococcus mutans and Lactobacillus acidophilus showed a significant increase. The saliva pH decreased during the orthodontic treatment (P< 0.05) while the salivary flow did not change significantly. Fixed orthodontic treatment causes major changes in the saliva properties. The changes in oral microflora and saliva properties show the importance of caries preventive measures during orthodontic treatment.

  3. Use of glutaraldehyde and benzalkonium chloride for minimizing post-harvest physio-chemical and microbial changes responsible for sucrose losses in sugar cane.

    PubMed

    Singh, Pushpa; Arya, Namita; Tiwari, Priyanka; Suman, Archna; Rai, R K; Shrivastava, A K; Solomon, S

    2008-08-27

    Sugar cane is sensitive to enormous sucrose losses induced by physio-chemical and microbial changes, the severity being increased during the time lag between harvest and crushing in the mills. Minimization of the sucrose losses in the field is essential for better sugar recovery and prevention of sucrose losses. An experiment was conducted to evaluate the efficacy of glutaraldehyde and benzalkonium chloride for their effects on the microbial counts and physio-chemical changes responsible for sucrose losses. Glutaraldehyde and benzalkonium chloride (1000 + 250 ppm) reduced the losses in sucrose content to 7.1% as compared to the 30.8% loss in the control, thus improving the performance by 76.9%. The application of chemicals reduced the acid invertase activity (by 60%), lowered weight loss, titrable acidity, reducing sugars content, dextran, ethanol, and ethylene production and respiration rates. The application led to the reduction in the total bacterial, fungal, Leuconostoc, and yeast counts by 67.92, 51.3%, 26.08, and 51.2%, respectively.

  4. 21 CFR 864.8185 - Calibrator for red cell and white cell counting.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Calibrator for red cell and white cell counting... Calibrator for red cell and white cell counting. (a) Identification. A calibrator for red cell and white cell counting is a device that resembles red or white blood cells and that is used to set instruments intended...

  5. Process to evaluate hematological parameters that reflex to manual differential cell counts in a pediatric institution.

    PubMed

    Guarner, Jeannette; Atuan, Maria Ana; Nix, Barbara; Mishak, Christopher; Vejjajiva, Connie; Curtis, Cheri; Park, Sunita; Mullins, Richard

    2010-01-01

    Each institution sets specific parameters obtained by automated hematology analyzers to trigger manual counts. We designed a process to decrease the number of manual differential cell counts without impacting patient care. We selected new criteria that prompt manual counts and studied the impact these changes had in 2 days of work and in samples of patients with newly diagnosed leukemia, sickle cell disease, and presence of left shift. By using fewer parameters and expanding our ranges we decreased the number of manual counts by 20%. The parameters that prompted manual counts most frequently were the presence of blast flags and nucleated red blood cells, 2 parameters that were not changed. The parameters that accounted for a decrease in the number of manual counts were the white blood cell count and large unstained cells. Eight of 32 patients with newly diagnosed leukemia did not show blast flags; however, other parameters triggered manual counts. In 47 patients with sickle cell disease, nucleated red cells and red cell variability prompted manual review. Bands were observed in 18% of the specimens and 4% would not have been counted manually with the new criteria, for the latter the mean band count was 2.6%. The process we followed to evaluate hematological parameters that reflex to manual differential cell counts increased efficiency without compromising patient care in our hospital system.

  6. The impact of culture medium on the development and physiology of biofilms of Pseudomonas fluorescens formed on polyurethane paint.

    PubMed

    Crookes-Goodson, Wendy J; Bojanowski, Caitlin L; Kay, Michelle L; Lloyd, Pamela F; Blankemeier, Andrew; Hurtubise, Jennifer M; Singh, Kristi M; Barlow, Daniel E; Ladouceur, Harold D; Matt Eby, D; Johnson, Glenn R; Mirau, Peter A; Pehrsson, Pehr E; Fraser, Hamish L; Russell, John N

    2013-01-01

    Microbial biofilms cause the deterioration of polymeric coatings such as polyurethanes (PUs). In many cases, microbes have been shown to use the PU as a nutrient source. The interaction between biofilms and nutritive substrata is complex, since both the medium and the substratum can provide nutrients that affect biofilm formation and biodeterioration. Historically, studies of PU biodeterioration have monitored the planktonic cells in the medium surrounding the material, not the biofilm. This study monitored planktonic and biofilm cell counts, and biofilm morphology, in long-term growth experiments conducted with Pseudomonas fluorescens under different nutrient conditions. Nutrients affected planktonic and biofilm cell numbers differently, and neither was representative of the system as a whole. Microscopic examination of the biofilm revealed the presence of intracellular storage granules in biofilms grown in M9 but not yeast extract salts medium. These granules are indicative of nutrient limitation and/or entry into stationary phase, which may impact the biodegradative capability of the biofilm.

  7. High microbial loads found in minimally-processed sliced mushrooms from Italian market.

    PubMed

    Jiang, Haiyang; Miraglia, Dino; Ranucci, David; Donnini, Domizia; Roila, Rossana; Branciari, Raffaella; Li, Cheng

    2018-03-31

    There is an increased consumer interest in minimally processed vegetables that has led to the development of products, such as pre-cut sliced mushrooms. Few data are available on the hygienic condition and the presence of foodborne pathogens in such products. Therefore, the current study aimed to evaluate the safety and hygienic characteristics of both ready-to-eat and ready-to-cook, pre-cut sliced mushrooms obtained from a local Italian market. For the evaluation of the hygienic condition, the aerobic mesophilic bacteria, aerobic psychrotrophic bacteria and Escherichia coli enumerations were performed. Salmonella spp., Listeria monocytogenes and Campylobacter spp. were considered in the assessment of the foodborne pathogens. High microbial loads were detected, including counts higher than 5 log CFU/g for E. coli and 6 log CFU/g for the other bacteria counts considered, but no pathogens were found. Ready-to-eat and ready-to-cook products differed only for aerobic mesophilic counts (7.87 and 8.26 log CFU/g, respectively, P=0.003). Strategies to enhance the hygienic level of the mushrooms, particularly the ready-to-eat products, are needed.

  8. High microbial loads found in minimally-processed sliced mushrooms from Italian market

    PubMed Central

    Jiang, Haiyang; Miraglia, Dino; Ranucci, David; Donnini, Domizia; Roila, Rossana; Branciari, Raffaella; Li, Cheng

    2018-01-01

    There is an increased consumer interest in minimally processed vegetables that has led to the development of products, such as pre-cut sliced mushrooms. Few data are available on the hygienic condition and the presence of foodborne pathogens in such products. Therefore, the current study aimed to evaluate the safety and hygienic characteristics of both ready-to-eat and ready-to-cook, pre-cut sliced mushrooms obtained from a local Italian market. For the evaluation of the hygienic condition, the aerobic mesophilic bacteria, aerobic psychrotrophic bacteria and Escherichia coli enumerations were performed. Salmonella spp., Listeria monocytogenes and Campylobacter spp. were considered in the assessment of the foodborne pathogens. High microbial loads were detected, including counts higher than 5 log CFU/g for E. coli and 6 log CFU/g for the other bacteria counts considered, but no pathogens were found. Ready-to-eat and ready-to-cook products differed only for aerobic mesophilic counts (7.87 and 8.26 log CFU/g, respectively, P=0.003). Strategies to enhance the hygienic level of the mushrooms, particularly the ready-to-eat products, are needed. PMID:29732334

  9. Artificial groundwater treatment: biofilm activity and organic carbon removal performance.

    PubMed

    Långmark, Jonas; Storey, Michael V; Ashbolt, Nicholas J; Stenström, Thor Axel

    2004-02-01

    The artificial recharge of sand aquifers with raw source waters is a means both explored and utilised by many water utilities to meet the future potable water demands for increasing urban populations. The microbial ecology within these systems is however, poorly understood, as is the role that microbial biofilms play in the quality of finished water. Knowledge of the ability of biofilm bacteria to metabolise natural organic matter (NOM) is limited, particularly in respect to the degradation of normally recalcitrant hydrophilic and hydrophobic humic acid fractions by sessile and planktonic microbial consortia within sand aquifer systems. To simulate the artificial recharge of sand aquifers that were proposed for the Greater Stockholm Area, four separate 4 m deep sand columns were fed raw lake water and examined over a 45-week study period. The simulated aquifer system (hydraulic retention time 9-16 h) demonstrated the removal of total organic carbon (TOC) (10+/-5%), direct total counts (DTC) of bacteria (74+/-11%), heterotrophic plate count (HPC) bacteria (87+/-5%) and assimilable organic carbon (AOC) (87+/-5%), thereby fulfilling an important barrier function, except for the removal of TOC. Hydrophilic humic acid fractions were more readily metabolised by microbiota (HPC and EUB338-positive cells) harvested from the raw source water (SSM-W), whilst hydrophobic humic acid fractions promoted higher activity by microbiota harvested from the sand matrix (SSM-S). The apparent low activity demonstrated by biofilm microbiota (approximately 40% and 25% of DTC were positive to EUB338 probing for sand matrix and slide biofilms, respectively) could be attributed to the highly recalcitrant nature of the organic loads, whilst at the same time explain the poor removal of TOC. Following nutrient activation (by the PAC assay) nonetheless, a 3-fold increase in the percentage of EUB-positive bacteria was observed on glass slides. Furthermore, the incubation of SSM-S with R2A increased probe-active cells from 57+/-8% to 75+/-7% of DTC and at the same time increased SSM-W from 38+/-8% to 50+/-10%. Whilst these results may imply a good potential for the biological treatment of water by shallow sand aquifers, further work should address the poor removal of TOC observed in this study.

  10. Gellan sulfate inhibits Plasmodium falciparum growth and invasion of red blood cells in vitro

    PubMed Central

    Recuenco, Frances Cagayat; Kobayashi, Kyousuke; Ishiwa, Akiko; Enomoto-Rogers, Yukiko; Fundador, Noreen Grace V.; Sugi, Tatsuki; Takemae, Hitoshi; Iwanaga, Tatsuya; Murakoshi, Fumi; Gong, Haiyan; Inomata, Atsuko; Horimoto, Taisuke; Iwata, Tadahisa; Kato, Kentaro

    2014-01-01

    Here, we assessed the sulfated derivative of the microbial polysaccharide gellan gum and derivatives of λ and κ-carrageenans for their ability to inhibit Plasmodium falciparum 3D7 and Dd2 growth and invasion of red blood cells in vitro. Growth inhibition was assessed by means of flow cytometry after a 96-h exposure to the inhibitors and invasion inhibition was assessed by counting ring parasites after a 20-h exposure to them. Gellan sulfate strongly inhibited invasion and modestly inhibited growth for both P. falciparum 3D7 and Dd2; both inhibitory effects exceeded those achieved with native gellan gum. The hydrolyzed λ-carrageenan and oversulfated κ-carrageenan were less inhibitory than their native forms. In vitro cytotoxicity and anticoagulation assays performed to determine the suitability of the modified polysaccharides for in vivo studies showed that our synthesized gellan sulfate had low cytotoxicity and anticoagulant activity. PMID:24740150

  11. 21 CFR 864.8185 - Calibrator for red cell and white cell counting.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... counting is a device that resembles red or white blood cells and that is used to set instruments intended to count red cells, white cells, or both. It is a suspension of particles or cells whose size, shape... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Calibrator for red cell and white cell counting...

  12. 21 CFR 864.8185 - Calibrator for red cell and white cell counting.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... counting is a device that resembles red or white blood cells and that is used to set instruments intended to count red cells, white cells, or both. It is a suspension of particles or cells whose size, shape... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Calibrator for red cell and white cell counting...

  13. 21 CFR 864.8185 - Calibrator for red cell and white cell counting.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... counting is a device that resembles red or white blood cells and that is used to set instruments intended to count red cells, white cells, or both. It is a suspension of particles or cells whose size, shape... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Calibrator for red cell and white cell counting...

  14. 21 CFR 864.8185 - Calibrator for red cell and white cell counting.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... counting is a device that resembles red or white blood cells and that is used to set instruments intended to count red cells, white cells, or both. It is a suspension of particles or cells whose size, shape... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Calibrator for red cell and white cell counting...

  15. High-Throughput Method for Automated Colony and Cell Counting by Digital Image Analysis Based on Edge Detection

    PubMed Central

    Choudhry, Priya

    2016-01-01

    Counting cells and colonies is an integral part of high-throughput screens and quantitative cellular assays. Due to its subjective and time-intensive nature, manual counting has hindered the adoption of cellular assays such as tumor spheroid formation in high-throughput screens. The objective of this study was to develop an automated method for quick and reliable counting of cells and colonies from digital images. For this purpose, I developed an ImageJ macro Cell Colony Edge and a CellProfiler Pipeline Cell Colony Counting, and compared them to other open-source digital methods and manual counts. The ImageJ macro Cell Colony Edge is valuable in counting cells and colonies, and measuring their area, volume, morphology, and intensity. In this study, I demonstrate that Cell Colony Edge is superior to other open-source methods, in speed, accuracy and applicability to diverse cellular assays. It can fulfill the need to automate colony/cell counting in high-throughput screens, colony forming assays, and cellular assays. PMID:26848849

  16. Microbial diversity in ultra-high-pressure rocks and fluids from the Chinese Continental Scientific Drilling Project in China.

    PubMed

    Zhang, Gengxin; Dong, Hailiang; Xu, Zhiqin; Zhao, Donggao; Zhang, Chuanlun

    2005-06-01

    Microbial communities in ultra-high-pressure (UHP) rocks and drilling fluids from the Chinese Continental Scientific Drilling Project were characterized. The rocks had a porosity of 1 to 3.5% and a permeability of approximately 0.5 mDarcy. Abundant fluid and gas inclusions were present in the minerals. The rocks contained significant amounts of Fe2O3, FeO, P2O5, and nitrate (3 to 16 ppm). Acridine orange direct counting and phospholipid fatty acid analysis indicated that the total counts in the rocks and the fluids were 5.2 x 10(3) to 2.4 x 10(4) cells/g and 3.5 x 10(8) to 4.2 x 10(9) cells/g, respectively. Enrichment assays resulted in successful growth of thermophilic and alkaliphilic bacteria from the fluids, and some of these bacteria reduced Fe(III) to magnetite. 16S rRNA gene analyses indicated that the rocks were dominated by sequences similar to sequences of Proteobacteria and that most organisms were related to nitrate reducers from a saline, alkaline, cold habitat; however, some phylotypes were either members of a novel lineage or closely related to uncultured clones. The bacterial communities in the fluids were more diverse and included Proteobacteria, Bacteroidetes, gram-positive bacteria, Planctomycetes, and Candidatus taxa. The archaeal diversity was lower, and most sequences were not related to any known cultivated species. Some archaeal sequences were 90 to 95% similar to sequences recovered from ocean sediments or other subsurface environments. Some archaeal sequences from the drilling fluids were >93% similar to sequences of Sulfolobus solfataricus, and the thermophilic nature was consistent with the in situ temperature. We inferred that the microbes in the UHP rocks reside in fluid and gas inclusions, whereas those in the drilling fluids may be derived from subsurface fluids.

  17. Microbial Diversity in Ultra-High-Pressure Rocks and Fluids from the Chinese Continental Scientific Drilling Project in China

    PubMed Central

    Zhang, Gengxin; Dong, Hailiang; Xu, Zhiqin; Zhao, Donggao; Zhang, Chuanlun

    2005-01-01

    Microbial communities in ultra-high-pressure (UHP) rocks and drilling fluids from the Chinese Continental Scientific Drilling Project were characterized. The rocks had a porosity of 1 to 3.5% and a permeability of ∼0.5 mDarcy. Abundant fluid and gas inclusions were present in the minerals. The rocks contained significant amounts of Fe2O3, FeO, P2O5, and nitrate (3 to 16 ppm). Acridine orange direct counting and phospholipid fatty acid analysis indicated that the total counts in the rocks and the fluids were 5.2 × 103 to 2.4 × 104 cells/g and 3.5 × 108 to 4.2 × 109 cells/g, respectively. Enrichment assays resulted in successful growth of thermophilic and alkaliphilic bacteria from the fluids, and some of these bacteria reduced Fe(III) to magnetite. 16S rRNA gene analyses indicated that the rocks were dominated by sequences similar to sequences of Proteobacteria and that most organisms were related to nitrate reducers from a saline, alkaline, cold habitat; however, some phylotypes were either members of a novel lineage or closely related to uncultured clones. The bacterial communities in the fluids were more diverse and included Proteobacteria, Bacteroidetes, gram-positive bacteria, Planctomycetes, and Candidatus taxa. The archaeal diversity was lower, and most sequences were not related to any known cultivated species. Some archaeal sequences were 90 to 95% similar to sequences recovered from ocean sediments or other subsurface environments. Some archaeal sequences from the drilling fluids were >93% similar to sequences of Sulfolobus solfataricus, and the thermophilic nature was consistent with the in situ temperature. We inferred that the microbes in the UHP rocks reside in fluid and gas inclusions, whereas those in the drilling fluids may be derived from subsurface fluids. PMID:15933024

  18. Microbial profile on metallic and ceramic bracket materials.

    PubMed

    Anhoury, Patrick; Nathanson, Dan; Hughes, Christopher V; Socransky, Sigmund; Feres, Magda; Chou, Laisheng Lee

    2002-08-01

    The placement of orthodontic appliances creates a favorable environment for the accumulation of a microbiota and food residues, which, in time, may cause caries or exacerbate any pre-existing periodontal disease. The purpose of the present study was to compare the total bacterial counts present on metallic and ceramic orthodontic brackets in order to clarify which bracket type has a higher plaque retaining capacity and to determine the levels of Streptococcus mutans and Lactobacillus spp on both types of brackets. Thirty-two metallic brackets and 24 ceramic brackets were collected from orthodontic patients at the day of debonding. Two brackets were collected from each patient; one from a maxillary central incisor and another from a maxillary second premolar. Sixteen patients who used metallic brackets and 12 patients who used ceramic brackets were sampled. Bacterial populations were studied using "checkerboard" DNA-DNA hybridization, which uses DNA probes to identify species in complex microbial samples. The significance of differences between groups was determined using the Mann-Whitney U-test. Results showed no significant differences between metallic and ceramic brackets with respect to the caries-inducing S mutans and L acidophilus spp counts. Mean counts of 8 of 35 additional species differed significantly between metallic and ceramic brackets with no obvious pattern favoring one bracket type over the other. This study showed higher mean counts of Treponema denticola, Actinobacillus actinomycetemcomitans, Fusobacterium nucleatum ss vincentii, Streptococcus anginosus, and Eubacterium nodatum on metallic brackets while higher counts of Eikenella corrodens, Campylobacter showae, and Selenomonas noxia were found on ceramic brackets.

  19. BioMig--A Method to Evaluate the Potential Release of Compounds from and the Formation of Biofilms on Polymeric Materials in Contact with Drinking Water.

    PubMed

    Wen, Gang; Kötzsch, Stefan; Vital, Marius; Egli, Thomas; Ma, Jun

    2015-10-06

    In contact with water, polymeric materials (plastics) release compounds that can support suspended microbial growth and/or biofilm formation. The different methods presently used in the European Union to test plastics take 7-16 weeks to obtain a result. In industry, this delays material and product development as well as quality testing. Therefore, we developed a method package (BioMig) that allows testing of plastic materials with high reproducibility in 2 weeks for their potential biofilm (or biomass) formation and release of carbonaceous migration products when in contact with water. BioMig consists of (i) an extended migration potential test (seven times for 24 h at 60 °C), based on the European norm EN 12873-1 and the German UBA (Umweltbundesamt) guideline, and (ii) a biomass formation potential (BFP) test (14 days at 30 °C), which is a modified version of the Dutch biofilm production potential test. In the migration potential test, the amount of carbon released into water by the specimen is quantified by monitoring total and assimilable organic carbon over time; furthermore, the modular design of the test also allows one to assess additional parameters such as pathogen growth potential on the migration water or toxic effects on microbial growth. Flow cytometry (FCM)-based total cell counting (TCC) is used to quantify microbial growth in suspension and on surfaces after removal with mild sonication without affecting cell integrity. The BFP test allows one to determine both the planktonic (pBFP) and the sessile (sBFP) cell fractions. The sBFP consists of surface-attached cells after removal (>90% efficiency). Results for four standard test materials (PE-Xa, PE-Xc, EPDM 2%, and EPDM 20%), plus positive (PVC-P) and negative (glass) controls are presented. FCM-based TCC demonstrates that the release of growth-supporting carbon and proliferation of surface-attached cells stops increasing and stabilizes after 14 days of incubation; this allows for faster assessment of growth-supporting properties of plastics with BioMig compared to established tests.

  20. Re-examination of the relationship between marine virus and microbial cell abundances.

    PubMed

    Wigington, Charles H; Sonderegger, Derek; Brussaard, Corina P D; Buchan, Alison; Finke, Jan F; Fuhrman, Jed A; Lennon, Jay T; Middelboe, Mathias; Suttle, Curtis A; Stock, Charles; Wilson, William H; Wommack, K Eric; Wilhelm, Steven W; Weitz, Joshua S

    2016-01-25

    Marine viruses are critical drivers of ocean biogeochemistry, and their abundances vary spatiotemporally in the global oceans, with upper estimates exceeding 10(8) per ml. Over many years, a consensus has emerged that virus abundances are typically tenfold higher than microbial cell abundances. However, the true explanatory power of a linear relationship and its robustness across diverse ocean environments is unclear. Here, we compile 5,671 microbial cell and virus abundance estimates from 25 distinct marine surveys and find substantial variation in the virus-to-microbial cell ratio, in which a 10:1 model has either limited or no explanatory power. Instead, virus abundances are better described as nonlinear, power-law functions of microbial cell abundances. The fitted scaling exponents are typically less than 1, implying that the virus-to-microbial cell ratio decreases with microbial cell density, rather than remaining fixed. The observed scaling also implies that viral effect sizes derived from 'representative' abundances require substantial refinement to be extrapolated to regional or global scales.

  1. Effects of different levels of sanguinarine on antioxidant indices, immunological responses, ileal microbial counts and jejunal morphology of laying hens fed diets with different levels of crude protein.

    PubMed

    Bavarsadi, M; Mahdavi, A H; Ansari-Mahyari, S; Jahanian, E

    2017-10-01

    This study was carried out to assess the effects of different levels of sanguinarine on antioxidant indices, immunological responses, serum biochemical parameters, ileal microbial counts and jejunal morphology of laying hens fed on diets with different levels of crude protein (CP). A total of 180 laying hens were subjected into nine dietary treatments with four cages of five birds each. Experimental treatments consisted of three levels of CP (85.0, 92.5 and 100% of Hy-Line W36 manual recommendation) and three levels of sanguinarine (0.00, 3.75 and 7.50 mg/kg) as a 3 × 3 factorial arrangement of laying hens which fed during a 70-day feeding trial. The in vitro study showed that sanguinarine exhibited sevenfold and threefold decreased antioxidant activities to inhibit 2-2-diphenyl-1-picric hydrazyl free radical as well as ferric ion reducing rather than butylated hydroxyl toluene. Although using the decremental levels of CP caused the increase in heterophil-to-lymphocyte ratio (p < 0.01), dietary administration of sanguinarine could suppress the serum cholesterol and malondialdehyde concentrations as well as heterophil-to-lymphocyte ratio (p < 0.05). Additionally, decreasing CP content resulted in the decreased percentage of albumin (p < 0.05); however, it had no negative effects on humoral immunity. Nonetheless, feeding of at least 3.75 mg/kg sanguinarine led to the remarkable increases in serum gamma globulin concentration (p < 0.01) and secondary (p < 0.05) antibody titres against sheep red blood cells. Moreover, a decline in dietary CP content led to higher villi height and crypt depth (p < 0.05; p < 0.001) and consequently decreased villi height-to-crypt depth ratio (p < 0.001) than the optimum level (100% CP). In spite of the effects of sanguinarine on the suppression of Escherichia coli and Salmonella counts (p < 0.05), it markedly enhanced villi height-to-crypt depth ratio as well as lamina propria lymphatic follicles extent, simultaneously (p < 0.001). Therefore, in spite of the detrimental effects of feeding low-CP diets on lymphocytes and serum albumin percentages, and villi height-to-crypt depth ratio, the administration of incremental levels of sanguinarine could improve cellular and humoral immunity, decrease ileal microbial counts and in turn improve the intestinal health indices in laying hens. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  2. Chlorine stress mediates microbial surface attachment in drinking water systems.

    PubMed

    Liu, Li; Le, Yang; Jin, Juliang; Zhou, Yuliang; Chen, Guowei

    2015-03-01

    Microbial attachment to drinking water pipe surfaces facilitates pathogen survival and deteriorates disinfection performance, directly threatening the safety of drinking water. Notwithstanding that the formation of biofilm has been studied for decades, the underlying mechanisms for the origins of microbial surface attachment in biofilm development in drinking water pipelines remain largely elusive. We combined experimental and mathematical methods to investigate the role of environmental stress-mediated cell motility on microbial surface attachment in chlorination-stressed drinking water distribution systems. Results show that at low levels of disinfectant (0.0-1.0 mg/L), the presence of chlorine promotes initiation of microbial surface attachment, while higher amounts of disinfectant (>1.0 mg/L) inhibit microbial attachment. The proposed mathematical model further demonstrates that chlorination stress (0.0-5.0 mg/L)-mediated microbial cell motility regulates the frequency of cell-wall collision and thereby controls initial microbial surface attachment. The results reveal that transport processes and decay patterns of chlorine in drinking water pipelines regulate microbial cell motility and, thus, control initial surface cell attachment. It provides a mechanistic understanding of microbial attachment shaped by environmental disinfection stress and leads to new insights into microbial safety protocols in water distribution systems.

  3. Characterization of the microbial diversity in yacon spontaneous fermentation

    PubMed Central

    Reina, L. D.; Pérez-Díaz, I. M.; Breidt, F.; Azcarate-Peril, M. A.; Medina, E.; Butz, N.V.

    2015-01-01

    The prebiotic fructooligosaccharides (FOS) content of yacon makes this root an attractive alternative for the supplementation of a variety of food products. The preservation of yacon by fermentation has been proposed as an alternative to increase the probiotic content of the root concomitantly with its shelf life. Thus the fermented yacon could have significant functional content. The objective of this research was to characterize the biochemistry and microbiology of spontaneous yacon fermentation and define the viability of the proposed process. The biochemical analysis of spontaneous heterolactic fermentation of yacon showed a progressive drop in pH with increased lactic and acetic acids, and the production of mannitol during fermentation. The microbial ecology of yacon fermentation was investigated using culture-dependent and culture-independent methods. Bacterial cell counts revealed a dominance of lactic acid bacteria (LAB) over yeasts, which were also present during fermentation. Results showed that the heterofermentative LAB were primarily Leuconostoc species, which dominated the fermentation. The fermentation of yacon by Leuconostoc spp. is thus presented as a viable method to achieve long term preservation of this root. PMID:25777679

  4. Characterization of the microbial diversity in yacon spontaneous fermentation at 20 °C.

    PubMed

    Reina, L D; Pérez-Díaz, I M; Breidt, F; Azcarate-Peril, M A; Medina, E; Butz, N

    2015-06-16

    The prebiotic fructooligosaccharide content of yacon makes this root an attractive alternative for the supplementation of a variety of food products. The preservation of yacon by fermentation has been proposed as an alternative to increase the probiotic content of the root concomitantly with its shelf life. Thus the fermented yacon could have significant functional content. The objective of this research was to characterize the biochemistry and microbiology of spontaneous yacon fermentation with 2% NaCl and define the viability of the proposed process. The biochemical analysis of spontaneous heterolactic fermentation of yacon showed a progressive drop in pH with increased lactic and acetic acids, and the production of mannitol during fermentation. The microbial ecology of yacon fermentation was investigated using culture-dependent and culture-independent methods. Bacterial cell counts revealed a dominance of lactic acid bacteria (LAB) over yeasts, which were also present during the first 2 days of the fermentation. Results showed that the heterofermentative LAB were primarily Leuconostoc species, thus it presents a viable method to achieve long term preservation of this root. Copyright © 2015. Published by Elsevier B.V.

  5. Short communication: incorporation of inulin and transglutaminase in fermented goat milk containing probiotic bacteria.

    PubMed

    Mituniewicz-Małek, A; Ziarno, M; Dmytrów, I

    2014-01-01

    Goat milk is a good carrier for probiotic bacteria; however, it is difficult to produce fermented goat milk with a consistency comparable to that of fermented cow milks. It can be improved by the addition of functional stabilizers, such as inulin, or treatment with transglutaminase. The aim of this study was to determine the effect of cold storage of inulin and microbial transglutaminase on the viability of Lactobacillus acidophilus La-5 and Bifidobacterium animalis ssp. lactis Bb-12 in fermented goat milk. Microbiological analysis included the determination of the probiotic bacteria cell count in fermented milk samples, whereas physico-chemical analysis included the analysis of fat content, titratable acidity, and pH of raw, pasteurized, and fermented goat milk samples. No positive influence of inulin or microbial transglutaminase on the viability of probiotics in fermented goat's milk samples was observed. Nevertheless, the population of probiotics remained above 6 log cfu/g after 8 wk of storage at 5 °C. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Potentials of biodegraded cashew pomace for cake baking.

    PubMed

    Aderiye, B I; Igbedioh, S O; Caurie, S A

    1992-04-01

    The use of biodegraded cashew pomace processed into flour for cake baking was investigated. The physico-chemical changes during the submerged fermentation of the pomace and the organoleptic qualities of the composite cake were also monitored. There was an increase of about 50% in protein content of the pomace after 96 h of fermentation. However, a reduction of about 61% in the total microbial count after 24 h was due to the toxic effect of the organic acids on the microbial cells during fermentation. The cashew flour had high crude fibre (ca. 20-33%) and carbohydrate (ca. 16-47%) values. The composite cake made from a 10:90 combination of 96 h-degraded cashew flour/wheat flour respectively was the most accepted. The cake which had a specific volume of 0.53 ml/g lost 11.1% moisture when 38 g of its batter was exposed to 190 degrees C for 10 minutes. This cake had a calorie value of 293.8/100 g and may be useful in feeding diabetic patients who require low carbohydrate foods.

  7. Bioelectric production from sediment of pond fishing and molasses using microbial fuel cell (MFC) technology-base with the influence of substrate concentration variety

    NASA Astrophysics Data System (ADS)

    Syafitri, L. M.; Saputro, Y. A.; Hana, P. N.; Hardiani, D.; Raharjo, B.

    2018-03-01

    Indonesia is currently faced the problem of the need for electrical energy. MFC is a technology that can be used to generate electricity by utilizing microbial activity. The aims of this study is to manage the molasses waste and sediment of fishery as a substrate in the MFC system. The research method was performed by preparing anode and cathode connected by a salt bridge forming the system of MFC Double Chamber. The result of bacteriology test using Total Plate Count (TPC) method showed that the number of bacterial colonies on the sediment substrate was 4.1 × 106 cfu/gr, while the molasses substrate was 7,1 × 104 cfu/gr. The measurement result of electricity showed that 25% sediment and 75% molasses substrate variation resulted in the highest average voltage and power density that are 0.372 V and 813.191 mW/m2. The conclusion of this research is that the mixture of sediment with molasses substrate can increase the production of electricity produced by MFC system.

  8. Graphite anode surface modification with controlled reduction of specific aryl diazonium salts for improved microbial fuel cells power output.

    PubMed

    Picot, Matthieu; Lapinsonnière, Laure; Rothballer, Michael; Barrière, Frédéric

    2011-10-15

    Graphite electrodes were modified with reduction of aryl diazonium salts and implemented as anodes in microbial fuel cells. First, reduction of 4-aminophenyl diazonium is considered using increased coulombic charge density from 16.5 to 200 mC/cm(2). This procedure introduced aryl amine functionalities at the surface which are neutral at neutral pH. These electrodes were implemented as anodes in "H" type microbial fuel cells inoculated with waste water, acetate as the substrate and using ferricyanide reduction at the cathode and a 1000 Ω external resistance. When the microbial anode had developed, the performances of the microbial fuel cells were measured under acetate saturation conditions and compared with those of control microbial fuel cells having an unmodified graphite anode. We found that the maximum power density of microbial fuel cell first increased as a function of the extent of modification, reaching an optimum after which it decreased for higher degree of surface modification, becoming even less performing than the control microbial fuel cell. Then, the effect of the introduction of charged groups at the surface was investigated at a low degree of surface modification. It was found that negatively charged groups at the surface (carboxylate) decreased microbial fuel cell power output while the introduction of positively charged groups doubled the power output. Scanning electron microscopy revealed that the microbial anode modified with positively charged groups was covered by a dense and homogeneous biofilm. Fluorescence in situ hybridization analyses showed that this biofilm consisted to a large extent of bacteria from the known electroactive Geobacter genus. In summary, the extent of modification of the anode was found to be critical for the microbial fuel cell performance. The nature of the chemical group introduced at the electrode surface was also found to significantly affect the performance of the microbial fuel cells. The method used for modification is easy to control and can be optimized and implemented for many carbon materials currently used in microbial fuel cells and other bioelectrochemical systems. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Methods for quantitative and qualitative evaluation of vaginal microflora during menstruation.

    PubMed Central

    Onderdonk, A B; Zamarchi, G R; Walsh, J A; Mellor, R D; Muñoz, A; Kass, E H

    1986-01-01

    The quantitative and qualitative changes in the bacterial flora of the vagina during menstruation have received inadequate study. Similarly, the effect of vaginal tampons on the microbial flora as well as the relationship between the microbial flora of the vagina and that of the tampon has not been adequately evaluated. The purposes of the present study were (i) to develop quantitative methods for studying the vaginal flora and the flora of tampons obtained during menstruation and (ii) to determine whether there were differences between the microflora of the tampon and that of the vaginal vault. Tampon and swab samples were obtained at various times from eight young healthy volunteers for 8 to 10 menstrual cycles. Samples consisted of swabs from women wearing menstrual pads compared with swab and tampon samples taken at various times during the menstrual cycle. Samples were analyzed for total facultative and anaerobic bacterial counts, and the six dominant bacterial species in each culture were identified. Statistical evaluation of the results indicates that total bacterial counts decreased during menstruation and that swab and tampon samples yielded similar total counts per unit weight of sample. The numbers of bacteria in tampons tended to be lower than in swabs taken at the same time. Overall, during menstruation, the concentrations of lactobacilli declined, but otherwise there was little difference among the species found during menstruation compared with those found in intermenstrual samples. Cotton tampons had little discernible effect on the microbial flora. PMID:3954346

  10. Revision of Viable Environmental Monitoring in a Development Pilot Plant Based on Quality Risk Assessment: A Case Study.

    PubMed

    Ziegler, Ildikó; Borbély-Jakab, Judit; Sugó, Lilla; Kovács, Réka J

    2017-01-01

    In this case study, the principles of quality risk management were applied to review sampling points and monitoring frequencies in the hormonal tableting unit of a formulation development pilot plant. In the cleanroom area, premises of different functions are located. Therefore a general method was established for risk evaluation based on the Hazard Analysis and Critical Control Points (HACCP) method to evaluate these premises (i.e., production area itself and ancillary clean areas) from the point of view of microbial load and state in order to observe whether the existing monitoring program met the emerged advanced monitoring practice. LAY ABSTRACT: In pharmaceutical production, cleanrooms are needed for the manufacturing of final dosage forms of drugs-intended for human or veterinary use-in order to protect the patient's weakened body from further infections. Cleanrooms are premises with a controlled level of contamination that is specified by the number of particles per cubic meter at a specified particle size or number of microorganisms (i.e. microbial count) per surface area. To ensure a low microbial count over time, microorganisms are detected and counted by environmental monitoring methods regularly. It is reasonable to find the easily infected places by risk analysis to make sure the obtained results really represent the state of the whole room. This paper presents a risk analysis method for the optimization of environmental monitoring and verification of the suitability of the method. © PDA, Inc. 2017.

  11. Quorum sensing and microbial drug resistance.

    PubMed

    Chen, Yu-fan; Liu, Shi-yin; Liang, Zhi-bin; Lv, Ming-fa; Zhou, Jia-nuan; Zhang, Lian-hui

    2016-10-20

    Microbial drug resistance has become a serious problem of global concern, and the evolution and regulatory mechanisms of microbial drug resistance has become a hotspot of research in recent years. Recent studies showed that certain microbial resistance mechanisms are regulated by quorum sensing system. Quorum sensing is a ubiquitous cell-cell communication system in the microbial world, which associates with cell density. High-density microbial cells produce sufficient amount of small signal molecules, activating a range of downstream cellular processes including virulence and drug resistance mechanisms, which increases bacterial drug tolerance and causes infections on host organisms. In this review, the general mechanisms of microbial drug resistance and quorum-sensing systems are summarized with a focus on the association of quorum sensing and chemical signaling systems with microbial drug resistance mechanisms, including biofilm formation and drug efflux pump. The potential use of quorum quenching as a new strategy to control microbial resistance is also discussed.

  12. Long terms trends in CD4+ cell counts, CD8+ cell counts, and the CD4+ : CD8+ ratio

    PubMed Central

    Hughes, Rachael A.; May, Margaret T.; Tilling, Kate; Taylor, Ninon; Wittkop, Linda; Reiss, Peter; Gill, John; Schommers, Philipp; Costagliola, Dominique; Guest, Jodie L.; Lima, Viviane D.; d’Arminio Monforte, Antonella; Smith, Colette; Cavassini, Matthias; Saag, Michael; Castilho, Jessica L.; Sterne, Jonathan A.C.

    2018-01-01

    Objective: Model trajectories of CD4+ and CD8+ cell counts after starting combination antiretroviral therapy (ART) and use the model to predict trends in these counts and the CD4+ : CD8+ ratio. Design: Cohort study of antiretroviral-naïve HIV-positive adults who started ART after 1997 (ART Cohort Collaboration) with more than 6 months of follow-up data. Methods: We jointly estimated CD4+ and CD8+ cell count trends and their correlation using a bivariate random effects model, with linear splines describing their population trends, and predicted the CD4+ : CD8+ ratio trend from this model. We assessed whether CD4+ and CD8+ cell count trends and the CD4+ : CD8+ ratio trend varied according to CD4+ cell count at start of ART (baseline), and, whether these trends differed in patients with and without virological failure more than 6 months after starting ART. Results: A total of 39 979 patients were included (median follow-up was 53 months). Among patients with baseline CD4+ cell count at least 50 cells/μl, predicted mean CD8+ cell counts continued to decrease between 3 and 15 years post-ART, partly driving increases in the predicted mean CD4+ : CD8+ ratio. During 15 years of follow-up, normalization of the predicted mean CD4+ : CD8+ ratio (to >1) was only observed among patients with baseline CD4+ cell count at least 200 cells/μl. A higher baseline CD4+ cell count predicted a shorter time to normalization. Conclusion: Declines in CD8+ cell count and increases in CD4+ : CD8+ ratio occurred up to 15 years after starting ART. The likelihood of normalization of the CD4+ : CD8+ ratio is strongly related to baseline CD4+ cell count. PMID:29851663

  13. Opening the black box of spring water microbiology from alpine karst aquifers to support proactive drinking water resource management

    PubMed Central

    Savio, Domenico; Stadler, Philipp; Reischer, Georg H.; Kirschner, Alexander K.T.; Demeter, Katalin; Linke, Rita; Blaschke, Alfred P.; Sommer, Regina; Szewzyk, Ulrich; Wilhartitz, Inés C.; Mach, Robert L.; Stadler, Hermann

    2018-01-01

    Over the past 15 years, pioneering interdisciplinary research has been performed on the microbiology of hydrogeologically well‐defined alpine karst springs located in the Northern Calcareous Alps (NCA) of Austria. This article gives an overview on these activities and links them to other relevant research. Results from the NCA springs and comparable sites revealed that spring water harbors abundant natural microbial communities even in aquifers with high water residence times and the absence of immediate surface influence. Apparently, hydrogeology has a strong impact on the concentration and size of the observed microbes, and total cell counts (TCC) were suggested as a useful means for spring type classification. Measurement of microbial activities at the NCA springs revealed extremely low microbial growth rates in the base flow component of the studied spring waters and indicated the importance of biofilm‐associated microbial activities in sediments and on rock surfaces. Based on genetic analysis, the autochthonous microbial endokarst community (AMEC) versus transient microbial endokarst community (TMEC) concept was proposed for the NCA springs, and further details within this overview article are given to prompt its future evaluation. In this regard, it is well known that during high‐discharge situations, surface‐associated microbes and nutrients such as from soil habitats or human settlements—potentially containing fecal‐associated pathogens as the most critical water‐quality hazard—may be rapidly flushed into vulnerable karst aquifers. In this context, a framework for the comprehensive analysis of microbial pollution has been proposed for the NCA springs to support the sustainable management of drinking water safety in accordance with recent World Health Organization guidelines. Near‐real‐time online water quality monitoring, microbial source tracking (MST) and MST‐guided quantitative microbial‐risk assessment (QMRA) are examples of the proposed analytical tools. In this context, this overview article also provides a short introduction to recently emerging methodologies in microbiological diagnostics to support reading for the practitioner. Finally, the article highlights future research and development needs. This article is categorized under: 1Engineering Water > Water, Health, and Sanitation2Science of Water > Water Extremes3Water and Life > Nature of Freshwater Ecosystems PMID:29780584

  14. Innate and cytokine-driven signals, rather than microbial antigens, dominate in natural killer T cell activation during microbial infection.

    PubMed

    Brigl, Manfred; Tatituri, Raju V V; Watts, Gerald F M; Bhowruth, Veemal; Leadbetter, Elizabeth A; Barton, Nathaniel; Cohen, Nadia R; Hsu, Fong-Fu; Besra, Gurdyal S; Brenner, Michael B

    2011-06-06

    Invariant natural killer T cells (iNKT cells) are critical for host defense against a variety of microbial pathogens. However, the central question of how iNKT cells are activated by microbes has not been fully explained. The example of adaptive MHC-restricted T cells, studies using synthetic pharmacological α-galactosylceramides, and the recent discovery of microbial iNKT cell ligands have all suggested that recognition of foreign lipid antigens is the main driver for iNKT cell activation during infection. However, when we compared the role of microbial antigens versus innate cytokine-driven mechanisms, we found that iNKT cell interferon-γ production after in vitro stimulation or infection with diverse bacteria overwhelmingly depended on toll-like receptor-driven IL-12. Importantly, activation of iNKT cells in vivo during infection with Sphingomonas yanoikuyae or Streptococcus pneumoniae, pathogens which are known to express iNKT cell antigens and which require iNKT cells for effective protection, also predominantly depended on IL-12. Constitutive expression of high levels of IL-12 receptor by iNKT cells enabled instant IL-12-induced STAT4 activation, demonstrating that among T cells, iNKT cells are uniquely equipped for immediate, cytokine-driven activation. These findings reveal that innate and cytokine-driven signals, rather than cognate microbial antigen, dominate in iNKT cell activation during microbial infections.

  15. Evaluation of the automated hematology analyzer ADVIA® 120 for cerebrospinal fluid analysis and usage of unique hemolysis reagent.

    PubMed

    Tanada, H; Ikemoto, T; Masutani, R; Tanaka, H; Takubo, T

    2014-02-01

    In this study, we evaluated the performance of the ADVIA 120 hematology system for cerebrospinal fluid (CSF) assay. Cell counts and leukocyte differentials in CSF were examined with the ADVIA 120 hematology system, while simultaneously confirming an effective hemolysis agent for automated CSF cell counts. The detection limits of both white blood cell (WBC) counts and red blood cell (RBC) counts on the measurement of CSF cell counts by the ADVIA 120 hematology system were superior at 2 cells/μL (10(-6) L). The WBC count was linear up to 9.850 cells/μL, and the RBC count was linear up to approximately 20 000 cells/μL. The intrarun reproducibility indicated good precision. The leukocyte differential of CSF cells, performed by the ADVIA120 hematology system, showed good correlation with the microscopic procedure. The VersaLyse hemolysis solution efficiently lysed the samples without interfering with cell counts and leukocyte differential, even in a sample that included approximately 50 000/μL RBC. These data show the ADVIA 120 hematology system correctly measured the WBC count and leukocyte differential in CSF. The VersaLyse hemolysis solution is considered to be optimal for hemolysis treatment of CSF when measuring cell counts and differentials by the ADVIA 120 hematology system. © 2013 John Wiley & Sons Ltd.

  16. Polydiacetylene nanovesicles as carriers of natural phenylpropanoids for creating antimicrobial food-contact surfaces.

    PubMed

    Dogra, Navneet; Choudhary, Ruplal; Kohli, Punit; Haddock, John D; Makwana, Sanjaysinh; Horev, Batia; Vinokur, Yakov; Droby, Samir; Rodov, Victor

    2015-03-11

    The ultimate goal of this study was developing antimicrobial food-contact materials based on natural phenolic compounds using nanotechnological approaches. Among the methyl-β-cyclodextrin-encapsulated phenolics tested, curcumin showed by far the highest activity toward Escherichia coli with a minimum inhibitory concentration of 0.4 mM. Curcumin was enclosed in liposome-type polydiacetylene/phosholipid nanovesicles supplemented with N-hydroxysuccinimide and glucose. The fluorescence spectrum of the nanovesicles suggested that curcumin was located in their bilayer region. Free-suspended nanovesicles tended to bind to the bacterial surface and demonstrated bactericidal activity toward Gram-negative (E. coli) and vegetative cells of Gram-positive (Bacillus cereus) bacteria reducing their counts from 5 log CFU mL(-1) to an undetectable level within 8 h. The nanovesicles were covalently bound to silanized glass. Incubation of E. coli and B. cereus with nanovesicle-coated glass resulted in a 2.5 log reduction in their counts. After optimization this approach can be used for controlling microbial growth, cross-contamination, and biofilm formation on food-contacting surfaces.

  17. Automated cell counts on CSF samples: A multicenter performance evaluation of the GloCyte system.

    PubMed

    Hod, E A; Brugnara, C; Pilichowska, M; Sandhaus, L M; Luu, H S; Forest, S K; Netterwald, J C; Reynafarje, G M; Kratz, A

    2018-02-01

    Automated cell counters have replaced manual enumeration of cells in blood and most body fluids. However, due to the unreliability of automated methods at very low cell counts, most laboratories continue to perform labor-intensive manual counts on many or all cerebrospinal fluid (CSF) samples. This multicenter clinical trial investigated if the GloCyte System (Advanced Instruments, Norwood, MA), a recently FDA-approved automated cell counter, which concentrates and enumerates red blood cells (RBCs) and total nucleated cells (TNCs), is sufficiently accurate and precise at very low cell counts to replace all manual CSF counts. The GloCyte System concentrates CSF and stains RBCs with fluorochrome-labeled antibodies and TNCs with nucleic acid dyes. RBCs and TNCs are then counted by digital image analysis. Residual adult and pediatric CSF samples obtained for clinical analysis at five different medical centers were used for the study. Cell counts were performed by the manual hemocytometer method and with the GloCyte System following the same protocol at all sites. The limits of the blank, detection, and quantitation, as well as precision and accuracy of the GloCyte, were determined. The GloCyte detected as few as 1 TNC/μL and 1 RBC/μL, and reliably counted as low as 3 TNCs/μL and 2 RBCs/μL. The total coefficient of variation was less than 20%. Comparison with cell counts obtained with a hemocytometer showed good correlation (>97%) between the GloCyte and the hemocytometer, including at very low cell counts. The GloCyte instrument is a precise, accurate, and stable system to obtain red cell and nucleated cell counts in CSF samples. It allows for the automated enumeration of even very low cell numbers, which is crucial for CSF analysis. These results suggest that GloCyte is an acceptable alternative to the manual method for all CSF samples, including those with normal cell counts. © 2017 John Wiley & Sons Ltd.

  18. Microbial contamination of cosmetics and personal care items in Egypt--body lotions and talcum powders.

    PubMed

    Ashour, M S; Abdelaziz, A A; Hefni, H; el-Tayeb, O M

    1989-06-01

    We examined a total of 54 samples, including 18 body lotions and 36 talcum powders, for their total aerobic bacterial, coliform and fungal counts. We also carried out anaerobic bacterial counts for talcum powder as well as tests to detect some potentially hazardous bacteria in all tested samples. Talcum powders were more heavily contaminated with bacteria and fungi than body lotions. More than 40% of the tested body lotions contained no viable bacteria or less than 100 c.f.u./g. while all the talcum powders tested contained more than 100 c.f.u./g. Thirty per cent of the talcum powders were contaminated with 10(4) c.f.u./g. and none of the body lotions were contaminated to that extent. No coliforms were recovered from any of the body lotions, while 17% of the talcum powder examined contained coliforms in the range of 230-500 c.f.u./g. Staphylococcus spp. were detected in 18 samples of both talcum powders and body lotions, three of these Staphylococci were of the aureus type. Three samples of talcum powder contained E. coli, two samples contained Enterobacter agglomerans and one sample contained Citrobacter freundii. Seventy per cent of the body lotions showed no fungal counts, while 83% of the talcum powders examined were contaminated with fungi and most of the contaminated talcum powders contained more than 100 fungal cells/g. With regard to the anaerobic bacterial counts for talcum powders, 50% of the samples showed no counts while the other 50% contained less than 100 c.f.u./g. Four samples were contaminated with Clostridium perfringens, although C. tetani was not recovered from any of the samples.

  19. New insight into microbial diversity and functions in traditional Vietnamese alcoholic fermentation.

    PubMed

    Thanh, Vu Nguyen; Thuy, Nguyen Thanh; Chi, Nguyen Thuy; Hien, Dinh Duc; Ha, Bui Thi Viet; Luong, Dao Thi; Ngoc, Pham Duc; Ty, Pham Van

    2016-09-02

    The roles of microorganisms in traditional alcoholic fermentation are often assumed based on abundance in the starter and activity in pure culture. There is a serious lack of hard evidence on the behavior and activity of individual microbial species during the actual fermentation process. In this study, microbial succession and metabolite changes during 7days of traditional Vietnamese alcoholic fermentation were monitored. Special attention was devoted to starch degradation. In total, 22 microbial species, including 6 species of filamentous fungi (Rhizopus microsporus, Rhizopus arrhizus, Mucor indicus, Mucor circinelloides, Cunninghamella elegans, Aspergillus niger), 1 yeast-like fungus (Saccharomycopsis fibuligera), 7 yeasts (Saccharomyces cerevisiae, Clavispora lusitaniae, Wickerhamomyces anomalus, Lindnera fabianii, Pichia kudriavzevii, Candida rugosa, Candida tropicalis), and 8 bacteria (Stenotrophomonas maltophilia, Lactobacillus brevis, Lactobacillus helveticus, Acinetobacter baumannii, Staphylococcus hominis, Bacillus megaterium, Enterobacter asburiae, Pediococcus pentosaceus) were identified. Despite the presence of a complex microbiota in the starter, the fermentation process is consistent and involves a limited number of functional species. Rapid change in microbial composition of fermentation mash was observed and it was correlated with ethanol content. Microbial biomass reached maximum during first 2days of solid state fermentation. Acidification of the medium took place in day 1, starch degradation in days 2, 3, 4, and alcohol accumulation from day 3. Although Sm. fibuligera dominated by cell count amongst potential starch degraders, zymography indicated that it did not produce amylase in the fermentation mash. In mixed culture with Rhizopus, amylase production by Sm. fibuligera is regulated by the moisture content of the substrate. Rhizopus was identified as the main starch degrader and S. cerevisiae as the main ethanol producer. Bacterial load was high but unstable in species composition and dominated by acid producers. M. indicus, Sm. fibuligera, W. anomalus and bacteria were regarded as satellite microorganisms. Their possible influence on organoleptic quality of fermentation product was discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Seasonal microbial and environmental parameters at Crocker Reef, Florida Keys, 2014–2015

    USGS Publications Warehouse

    Kellogg, Christina A.; Yates, Kimberly K.; Lawler, Stephanie N.; Moore, Christopher S.; Smiley, Nathan A.

    2015-11-04

    Microbial measurements included enumeration of total bacteria, enumeration of virus-like particles, and plate counts of Vibrio spp. colony-forming units (CFU). These measurements were intended to give a sense of any seasonal changes in the total microbial load and to provide an indication of water quality. Additional environmental parameters measured included water temperature, salinity, dissolved oxygen, and pH. Four sites (table 1) were intensively sampled for periods of approximately 48 hours during summer (July 2014) and winter (January–February 2015), during which water samples were collected every 4 hours for analysis, except when prevented by weather conditions.

  1. Relationships between processing delay and microbial load of broiler neck skin samples.

    PubMed

    Lucianez, A; Holmes, M A; Tucker, A W

    2010-01-01

    The measurable microbial load on poultry carcasses during processing is determined by a number of factors including farm or origin, processing hygiene, and external temperature. This study investigated associations between carcass microbial load and progressive delays to processing. A total of 30 carcasses were delayed immediately after defeathering and before evisceration in a commercial abattoir in groups of five, and were held at ambient temperature for 1, 2, 3, 4, 6, and 8 h. Delayed carcasses were reintroduced to the processing line, and quantitative assessment of total viable count, coliforms, Staphylococcus aureus, and Pseudomonas spp. was undertaken on neck skin flap samples collected after carcass chilling and then pooled for each group. Sampling was repeated on 5 separate days, and the data were combined. Significant increases in total viable count (P = 0.001) and coliforms (P = 0.004), but not for S. aureus or Pseudomonas loads, were observed across the 8-h period of delay. In line with previous studies, there was significant variation in microbiological data according to sampling day. In conclusion, there is a significant and measurable decline in microbiological status of uneviscerated but defeathered poultry carcasses after an 8-h delay, but the variability of sampling results, reflecting the wide range of factors that impact microbial load, means that it is not possible to determine maximum or minimum acceptable periods of processing delay based on this criterion alone.

  2. Bayesian Nonparametric Ordination for the Analysis of Microbial Communities.

    PubMed

    Ren, Boyu; Bacallado, Sergio; Favaro, Stefano; Holmes, Susan; Trippa, Lorenzo

    2017-01-01

    Human microbiome studies use sequencing technologies to measure the abundance of bacterial species or Operational Taxonomic Units (OTUs) in samples of biological material. Typically the data are organized in contingency tables with OTU counts across heterogeneous biological samples. In the microbial ecology community, ordination methods are frequently used to investigate latent factors or clusters that capture and describe variations of OTU counts across biological samples. It remains important to evaluate how uncertainty in estimates of each biological sample's microbial distribution propagates to ordination analyses, including visualization of clusters and projections of biological samples on low dimensional spaces. We propose a Bayesian analysis for dependent distributions to endow frequently used ordinations with estimates of uncertainty. A Bayesian nonparametric prior for dependent normalized random measures is constructed, which is marginally equivalent to the normalized generalized Gamma process, a well-known prior for nonparametric analyses. In our prior, the dependence and similarity between microbial distributions is represented by latent factors that concentrate in a low dimensional space. We use a shrinkage prior to tune the dimensionality of the latent factors. The resulting posterior samples of model parameters can be used to evaluate uncertainty in analyses routinely applied in microbiome studies. Specifically, by combining them with multivariate data analysis techniques we can visualize credible regions in ecological ordination plots. The characteristics of the proposed model are illustrated through a simulation study and applications in two microbiome datasets.

  3. The relevance of intestinal dysbiosis in liver transplant candidates.

    PubMed

    Grąt, M; Hołówko, W; Wronka, K M; Grąt, K; Lewandowski, Z; Kosińska, I; Krasnodębski, M; Wasilewicz, M; Gałęcka, M; Szachta, P; Zborowska, H; Patkowski, W; Krawczyk, M

    2015-04-01

    The gut microbial ecosystem plays an important role in the pathogenesis of liver diseases. However, the association of microbial community structure with the severity of liver dysfunction is not completely understood. Fecal microflora was assessed in 40 patients with liver cirrhosis listed for primary liver transplantation (LT). Independent associations between fecal microbial counts and serum bilirubin, serum creatinine, international normalized ratio (INR), and the Model for End-stage Liver Disease (MELD) score were established in multiple linear regression models. Bifidobacterium (standardized regression coefficient [sβ] = -0.549; P < 0.001), Enterococcus (sβ = 0.369; P = 0.004), and yeast (sβ = 0.315; P = 0.018) numbers were independently associated with serum bilirubin, while Escherichia coli counts (sβ = 0.318; P = 0.046) correlated with INR, and Bifidobacterium counts (sβ = 0.410; P = 0.009) with serum creatinine. Only Bifidobacterium (sβ = -0.468; P = 0.003) and Enterococcus (sβ = 0.331; P = 0.029) counts were independent predictors of the MELD score. Bifidobacterium/Enterococcus ratio, proposed as a measure of pre-LT gut dysbiosis, was significantly related to the MELD score following the adjustment for the absolute Bifidobacterium (sβ = -0.333; P = 0.029) and Enterococcus (sβ = -0.966; P = 0.003) numbers. This pre-transplant dysbiosis ratio (PTDR) was significantly correlated with Enterococcus (R = -0.897; P < 0.001) but not with Bifidobacterium (R = 0.098; P = 0.546) counts. Among the other components of gut microflora, only hydrogen peroxide (H2 O2 )-producing Lactobacillus strains significantly influenced Enterococcus counts (sβ = 0.349; P = 0.028) and PTDR (sβ = -0.318; P = 0.046). While the abundance of both Bifidobacterium and Enterococcus is related to liver dysfunction, the size of the Enterococcus population seems to be the most important determinant of pre-LT gut dysbiosis in cirrhotic patients. The H2 O2 -producing Lactobacillus strains potentially ameliorate this dysbiotic state. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Assessment of Physicochemical and Microbiological Quality of Public Swimming Pools in Addis Ababa, Ethiopia

    PubMed Central

    Yedeme, Kokebe; Legese, Melese Hailu; Gonfa, Almaz; Girma, Somson

    2017-01-01

    Background: From swimming pools, bathers may acquire many potential pathogens or may be affected by the physicochemical characteristics of water used during bathing. Hence, this study aimed at assessing the physicochemical and microbiological quality of public swimming pools located at different hotels and recreation center in Addis Ababa, Ethiopia. Method: A cross sectional study was carried out from February to May, 2016. Nine hotels and one recreation center which recognized to have public swimming services were included. A total of 60 swimming pool water samples from 10 swimming pools were collected at deeper, shallow and intake point twice on a weekly basis using a 250 ml sterile bottle containing sodium thiosulphate. PH, residual chlorine and temperature of samples were recorded at the time of collection. Sample containing bottles were transported in ice box to microbiological laboratory and analyzed on the same day. Standard cultural and biochemical methods were used for isolation and characterization of the main microbial groups. Total viable count, total coliform count, fecal coliform count and E. coli were determined. Data was analyzed using SPSS Version 20. Results: Average PH and temperature of swimming pool water samples were 7.1 and 29oC respectively. Of all analyzed water samples, 58.4% (n=35/60) of them had PH range of 7.2-7.8, 58.3% (n=35/60) of samples had temperature in the range of 21oC-32oC and 25% (n=15/60) of water samples had residual chlorine in the range of 2-3mg/l. 73.3% (n=44/60) of the samples had a total viable count below 200 MPN/ml and 70% (n-42/60) of the samples had Total Coliform Count values less than 2 MPN/100 ml. Moreover, 66.7% (n=40/60) of the samples had fecal coliform counts falling below 1 MPN /100 ml. E. coli was absent in 70% (n=42/60) of the samples while it was present in 30% (n=18/60) of the samples. Conclusion: PH, residual chlorine and temperature value of majority of the swimming pools’ water samples were within the acceptable limit. Regarding microbial quality, most swimming pools’ water samples complied to the WHO standard. Swimming pools that did not comply to the standard both in physicochemical levels and microbial quality need improvement due to their significant health implication. PMID:28761562

  5. Diverse, rare microbial taxa responded to the Deepwater Horizon deep-sea hydrocarbon plume.

    PubMed

    Kleindienst, Sara; Grim, Sharon; Sogin, Mitchell; Bracco, Annalisa; Crespo-Medina, Melitza; Joye, Samantha B

    2016-02-01

    The Deepwater Horizon (DWH) oil well blowout generated an enormous plume of dispersed hydrocarbons that substantially altered the Gulf of Mexico's deep-sea microbial community. A significant enrichment of distinct microbial populations was observed, yet, little is known about the abundance and richness of specific microbial ecotypes involved in gas, oil and dispersant biodegradation in the wake of oil spills. Here, we document a previously unrecognized diversity of closely related taxa affiliating with Cycloclasticus, Colwellia and Oceanospirillaceae and describe their spatio-temporal distribution in the Gulf's deepwater, in close proximity to the discharge site and at increasing distance from it, before, during and after the discharge. A highly sensitive, computational method (oligotyping) applied to a data set generated from 454-tag pyrosequencing of bacterial 16S ribosomal RNA gene V4-V6 regions, enabled the detection of population dynamics at the sub-operational taxonomic unit level (0.2% sequence similarity). The biogeochemical signature of the deep-sea samples was assessed via total cell counts, concentrations of short-chain alkanes (C1-C5), nutrients, (colored) dissolved organic and inorganic carbon, as well as methane oxidation rates. Statistical analysis elucidated environmental factors that shaped ecologically relevant dynamics of oligotypes, which likely represent distinct ecotypes. Major hydrocarbon degraders, adapted to the slow-diffusive natural hydrocarbon seepage in the Gulf of Mexico, appeared unable to cope with the conditions encountered during the DWH spill or were outcompeted. In contrast, diverse, rare taxa increased rapidly in abundance, underscoring the importance of specialized sub-populations and potential ecotypes during massive deep-sea oil discharges and perhaps other large-scale perturbations.

  6. Quantitative Monitoring of Microbial Species during Bioleaching of a Copper Concentrate.

    PubMed

    Hedrich, Sabrina; Guézennec, Anne-Gwenaëlle; Charron, Mickaël; Schippers, Axel; Joulian, Catherine

    2016-01-01

    Monitoring of the microbial community in bioleaching processes is essential in order to control process parameters and enhance the leaching efficiency. Suitable methods are, however, limited as they are usually not adapted to bioleaching samples and often no taxon-specific assays are available in the literature for these types of consortia. Therefore, our study focused on the development of novel quantitative real-time PCR (qPCR) assays for the quantification of Acidithiobacillus caldus, Leptospirillum ferriphilum, Sulfobacillus thermosulfidooxidans , and Sulfobacillus benefaciens and comparison of the results with data from other common molecular monitoring methods in order to evaluate their accuracy and specificity. Stirred tank bioreactors for the leaching of copper concentrate, housing a consortium of acidophilic, moderately thermophilic bacteria, relevant in several bioleaching operations, served as a model system. The microbial community analysis via qPCR allowed a precise monitoring of the evolution of total biomass as well as abundance of specific species. Data achieved by the standard fingerprinting methods, terminal restriction fragment length polymorphism (T-RFLP) and capillary electrophoresis single strand conformation polymorphism (CE-SSCP) on the same samples followed the same trend as qPCR data. The main added value of qPCR was, however, to provide quantitative data for each species whereas only relative abundance could be deduced from T-RFLP and CE-SSCP profiles. Additional value was obtained by applying two further quantitative methods which do not require nucleic acid extraction, total cell counting after SYBR Green staining and metal sulfide oxidation activity measurements via microcalorimetry. Overall, these complementary methods allow for an efficient quantitative microbial community monitoring in various bioleaching operations.

  7. Quantitative Monitoring of Microbial Species during Bioleaching of a Copper Concentrate

    PubMed Central

    Hedrich, Sabrina; Guézennec, Anne-Gwenaëlle; Charron, Mickaël; Schippers, Axel; Joulian, Catherine

    2016-01-01

    Monitoring of the microbial community in bioleaching processes is essential in order to control process parameters and enhance the leaching efficiency. Suitable methods are, however, limited as they are usually not adapted to bioleaching samples and often no taxon-specific assays are available in the literature for these types of consortia. Therefore, our study focused on the development of novel quantitative real-time PCR (qPCR) assays for the quantification of Acidithiobacillus caldus, Leptospirillum ferriphilum, Sulfobacillus thermosulfidooxidans, and Sulfobacillus benefaciens and comparison of the results with data from other common molecular monitoring methods in order to evaluate their accuracy and specificity. Stirred tank bioreactors for the leaching of copper concentrate, housing a consortium of acidophilic, moderately thermophilic bacteria, relevant in several bioleaching operations, served as a model system. The microbial community analysis via qPCR allowed a precise monitoring of the evolution of total biomass as well as abundance of specific species. Data achieved by the standard fingerprinting methods, terminal restriction fragment length polymorphism (T-RFLP) and capillary electrophoresis single strand conformation polymorphism (CE-SSCP) on the same samples followed the same trend as qPCR data. The main added value of qPCR was, however, to provide quantitative data for each species whereas only relative abundance could be deduced from T-RFLP and CE-SSCP profiles. Additional value was obtained by applying two further quantitative methods which do not require nucleic acid extraction, total cell counting after SYBR Green staining and metal sulfide oxidation activity measurements via microcalorimetry. Overall, these complementary methods allow for an efficient quantitative microbial community monitoring in various bioleaching operations. PMID:28066365

  8. Empirical Derivation of Correction Factors for Human Spiral Ganglion Cell Nucleus and Nucleolus Count Units.

    PubMed

    Robert, Mark E; Linthicum, Fred H

    2016-01-01

    Profile count method for estimating cell number in sectioned tissue applies a correction factor for double count (resulting from transection during sectioning) of count units selected to represent the cell. For human spiral ganglion cell counts, we attempted to address apparent confusion between published correction factors for nucleus and nucleolus count units that are identical despite the role of count unit diameter in a commonly used correction factor formula. We examined a portion of human cochlea to empirically derive correction factors for the 2 count units, using 3-dimensional reconstruction software to identify double counts. The Neurotology and House Histological Temporal Bone Laboratory at University of California at Los Angeles. Using a fully sectioned and stained human temporal bone, we identified and generated digital images of sections of the modiolar region of the lower first turn of cochlea, identified count units with a light microscope, labeled them on corresponding digital sections, and used 3-dimensional reconstruction software to identify double-counted count units. For 25 consecutive sections, we determined that double-count correction factors for nucleus count unit (0.91) and nucleolus count unit (0.92) matched the published factors. We discovered that nuclei and, therefore, spiral ganglion cells were undercounted by 6.3% when using nucleolus count units. We determined that correction factors for count units must include an element for undercounting spiral ganglion cells as well as the double-count element. We recommend a correction factor of 0.91 for the nucleus count unit and 0.98 for the nucleolus count unit when using 20-µm sections. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2015.

  9. Impact of cold plasma on Citrobacter freundii in apple juice: inactivation kinetics and mechanisms.

    PubMed

    Surowsky, Björn; Fröhling, Antje; Gottschalk, Nathalie; Schlüter, Oliver; Knorr, Dietrich

    2014-03-17

    Various studies have shown that cold plasma is capable of inactivating microorganisms located on a variety of food surfaces, food packaging materials and process equipment under atmospheric pressure conditions; however, less attention has been paid to the impact of cold plasma on microorganisms in liquid foodstuffs. The present study investigates cold plasma's ability to inactivate Citrobacter freundii in apple juice. Optical emission spectroscopy (OES) and temperature measurements were performed to characterise the plasma source. The plasma-related impact on microbial loads was evaluated by traditional plate count methods, while morphological changes were determined using scanning electron microscopy (SEM). Physiological property changes were obtained through flow cytometric measurements (membrane integrity, esterase activity and membrane potential). In addition, mathematical modelling was performed in order to achieve a reliable prediction of microbial inactivation and to establish the basis for possible industrial implementation. C. freundii loads in apple juice were reduced by about 5 log cycles after a plasma exposure of 480s using argon and 0.1% oxygen plus a subsequent storage time of 24h. The results indicate that a direct contact between bacterial cells and plasma is not necessary for achieving successful inactivation. The plasma-generated compounds in the liquid, such as H2O2 and most likely hydroperoxy radicals, are particularly responsible for microbial inactivation. Copyright © 2014. Published by Elsevier B.V.

  10. Characterization of the Cell Surface Properties of Drinking Water Pathogens by Microbial Adhesion to Hydrocarbon and Electrophoretic Mobility Measurements

    EPA Science Inventory

    The surface characteristics of microbial cells directly influence their mobility and behavior within aqueous environments. The cell surface hydrophobicity (CSH) and electrophoretic mobility (EPM) of microbial cells impact a number of interactions and processes including aggregati...

  11. Removal of Microbial Contamination from Surface by Plasma

    NASA Astrophysics Data System (ADS)

    Feng, Xinxin; Liu, Hongxia; Shen, Zhenxing; Wang, Taobo

    2018-01-01

    Microbial contamination is closely associated with human and environmental health, they can be tested on food surfaces, medical devices, packing material and so on. In this paper the removal of the microbial contamination from surface using plasma treatment is investigated. The Escherichia coli (E. coli) has been chosen as a bio-indicator enabling to evaluate the effect of plasma assisted microbial inactivation. Oxygen gas was as the working gas. The plasma RF power, plasma exposition time, gas flow and the concentration of organic pollutant were varied in order to see the effect of the plasma treatment on the Gram-negative germ removal. After the treatment, the microbial abatement was evaluated by the standard plate count method. This proved a positive effect of the plasma treatment on Gram-negative germ removal. The kinetics and mathematical model of removal were studied after plasma treatment, and then the removing course of E. coli was analyzed. This work is meaningful for deepening our understanding of the fundamental scientific principles regarding microbial contamination from surface by plasma.

  12. CD4 cell responses to combination antiretroviral therapy in patients starting therapy at high CD4 cell counts.

    PubMed

    Wright, Stephen T; Carr, Andrew; Woolley, Ian; Giles, Michelle; Hoy, Jennifer; Cooper, David A; Law, Matthew G

    2011-09-01

    To examine CD4 cell responses to combination antiretroviral therapy (cART) in patients enrolled in the Australian HIV Observational Database who commenced cART at CD4 cell counts >350 cells per microliter. CD4 cell counts were modelled using random effects, repeated measurement models in 432 HIV-infected adults from Australian HIV Observational Database who commenced their first cART regimen and had a baseline CD4 count >350 cells per microliter. Using published AIDS and/or death incidence rates combined with the data summarized by time and predicted CD4 cell count, we calculated the expected reduction in risk of an event for different starting baseline CD4 strata. Mean CD4 counts increased above 500 cells per microliter in all baseline CD4 strata by 12 months (means of 596, 717, and 881 cells/μL in baseline CD4 strata 351-500, 501-650, and >650 cells/μL, respectively) and after 72 months since initiating cART, mean CD4 cell counts (by increasing baseline CD4 strata) were 689, 746, 742 cells per microliter. The expected reduction in risk of mortality for baseline CD4 counts >650 cells per microliter relative to 351-500 cells per microliter was approximately 8%, an absolute risk reduction 0.33 per 1000 treated patient-years. Patients starting cART at high CD4 cell counts (>650 cells/μL) tend to maintain this immunological level over 6 years of follow-up. Patients starting from 351 to 500 CD4 cells per microliter achieve levels of >650 cells per microliter after approximately 3 years of cART. Initiating cART with a baseline CD4 count 501-650 or >650 cells per microliter relative to 351-500 cells per microliter indicated a minimal reduction in risk of AIDS incidence and/or death.

  13. A comparative evaluation of different types of microbial electrolysis desalination cells for malic acid production.

    PubMed

    Liu, Guangli; Zhou, Ying; Luo, Haiping; Cheng, Xing; Zhang, Renduo; Teng, Wenkai

    2015-12-01

    The aim of this study was to investigate different microbial electrolysis desalination cells for malic acid production. The systems included microbial electrolysis desalination and chemical-production cell (MEDCC), microbial electrolysis desalination cell (MEDC) with bipolar membrane and anion exchange membrane (BP-A MEDC), MEDC with bipolar membrane and cation exchange membrane (BP-C MEDC), and modified microbial desalination cell (M-MDC). The microbial electrolysis desalination cells performed differently in terms of malic acid production and energy consumption. The MEDCC performed best with the highest malic acid production rate (18.4 ± 0.6 mmol/Lh) and the lowest energy consumption (0.35 ± 0.14 kWh/kg). The best performance of MEDCC was attributable to the neutral pH condition in the anode chamber, the lowest internal resistance, and the highest Geobacter percentage of the anode biofilm population among all the reactors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Factors affecting the inactivation of the natural microbiota of milk processed by pulsed electric fields and cross-flow microfiltration.

    PubMed

    Rodríguez-González, Oscar; Walkling-Ribeiro, Markus; Jayaram, Shesha; Griffiths, Mansel W

    2011-08-01

    Prior to processing milk and cream were standardised and homogenised. Skim milk was cross-flow microfiltered (CFMF) prior to treatment with pulsed electric fields (PEF) or high temperature short time (HTST) pasteurization. The effect of temperature of the skim milk and product composition on the efficacy of PEF treatment was determined. The electrical conductivity of the product was related to fat and solids content and increased 5% for every g/kg increase of solids and decreased by nearly 0·7% for every g/kg increase of fat. From the three microbial groups analyzed (mesophilic, coliform, and psychrotroph) in milks differences (P<0·05) in the inactivation of mesophilic microorganisms were observed between the counts following PEF treatment, while HTST pasteurization resulted in higher reductions in all different counts than those obtained after PEF. Increasing the skim milk temperature prior to PEF treatment to about 34°C showed equivalent reductions in microbial counts to skim milk treated at 6°C in half the time. The reductions achieved by a combination of CFMF and PEF treatments were comparable to those achieved when CFMF was combined with HTST pasteurization. A higher reduction in coliform counts was observed in homogenised products subjected to PEF than in products that were only standardised for fat content.

  15. Effectiveness of erythrosine-mediated photodynamic antimicrobial chemotherapy on dental plaque aerobic microorganisms: A randomized controlled trial.

    PubMed

    Bhat, Manohar; Acharya, Swathi; Prasad, Kakarla Veera Venkata; Kulkarni, Raghavendra; Bhat, Anithraj; Bhat, Devikripa

    2017-01-01

    Dental plaque is one of the predominant causes of major oral diseases. Although mechanical and chemical methods are extensively followed to control the development of plaque, plaque-related diseases still persist. Therefore, this necessitates for alternative measures of plaque control, one such alternative is photodynamic antimicrobial chemotherapy (PACT). Split mouth randomized clinical trial (CTRI/2017/03/008239) was conducted on 30 participants who reported to the hospital. Participants were asked to rinse their mouth for 1 min using 10 ml of 25 μM erythrosine solutions. Same tooth on both quadrants of the same jaw are selected as the test and control. Intervention used was halogen-based composite curing light with wavelength of 500-590 nm. Plaque sample from the control tooth and test tooth was collected before and after exposure, respectively, and sent to microbiological laboratory for colony count. Logarithmic mean and standard deviation of control group with 10 2 dilutions of aerobic microbial count were found to be 5.34 ± 0.94, and for experimental group, it was 4.47 ± 1.37. The statistical difference between mean CFU values between aerobic bacterial counts was significant ( P = 0.006). Erythrosine-mediated PACT reduces the extent of dental plaque microbial count and has a potential preventive and therapeutic use in day-to-day life and dental clinics.

  16. Detection of microbial contamination in platelets

    NASA Astrophysics Data System (ADS)

    Berg, Tracy L.; Leparc, German; Huffman, Debra E.; Gennaccaro, Angela L.; Garcia-Lopez, Alicia; Klungness, Greta; Stephans, Christie; Garcia-Rubio, Luis H.

    2005-03-01

    In the United States, approximately 100 patients develop fatal sepsis associated with platelet transfusions every year. Current culture methods take 24-48 hours to acquire results, which in turn decrease the shelf life of platelets. Many of the microorganisms that contaminate platelets can replicate easily at room temperature, which is the necessary storage temperature to keep platelets functional. Therefore, there is a need for in-situ quality control assessment of the platelet quality. For this purpose, a real time spectrophotometric technique has been developed. The Spectral Acquisition Processing Detection (SAPD) method, comprised of a UV-vis spectrophotometer and modeling algorithms, is a rapid method that can be performed prior to platelet transfusion to decrease the risk of bacterial infection to patients. The SAPD method has been used to determine changes in cell suspensions, based on size, shape, chemical composition and internal structure. Changes in these cell characteristics can in turn be used to determine microbial contamination, platelet aging and other physiologic changes. Detection limits of this method for platelet suspensions seeded with bacterial contaminants were identified to be less than 100 cfu/ml of sample. Bacterial counts below 1000 cfu/ml are not considered clinically significant. The SAPD method can provide real-time identification of bacterial contamination of platelets affording patients an increased level of safety without causing undue strain on laboratory budgets or personnel while increasing the time frame that platelets can be used by dramatically shortening contaminant detection time.

  17. Current automated 3D cell detection methods are not a suitable replacement for manual stereologic cell counting

    PubMed Central

    Schmitz, Christoph; Eastwood, Brian S.; Tappan, Susan J.; Glaser, Jack R.; Peterson, Daniel A.; Hof, Patrick R.

    2014-01-01

    Stereologic cell counting has had a major impact on the field of neuroscience. A major bottleneck in stereologic cell counting is that the user must manually decide whether or not each cell is counted according to three-dimensional (3D) stereologic counting rules by visual inspection within hundreds of microscopic fields-of-view per investigated brain or brain region. Reliance on visual inspection forces stereologic cell counting to be very labor-intensive and time-consuming, and is the main reason why biased, non-stereologic two-dimensional (2D) “cell counting” approaches have remained in widespread use. We present an evaluation of the performance of modern automated cell detection and segmentation algorithms as a potential alternative to the manual approach in stereologic cell counting. The image data used in this study were 3D microscopic images of thick brain tissue sections prepared with a variety of commonly used nuclear and cytoplasmic stains. The evaluation compared the numbers and locations of cells identified unambiguously and counted exhaustively by an expert observer with those found by three automated 3D cell detection algorithms: nuclei segmentation from the FARSIGHT toolkit, nuclei segmentation by 3D multiple level set methods, and the 3D object counter plug-in for ImageJ. Of these methods, FARSIGHT performed best, with true-positive detection rates between 38 and 99% and false-positive rates from 3.6 to 82%. The results demonstrate that the current automated methods suffer from lower detection rates and higher false-positive rates than are acceptable for obtaining valid estimates of cell numbers. Thus, at present, stereologic cell counting with manual decision for object inclusion according to unbiased stereologic counting rules remains the only adequate method for unbiased cell quantification in histologic tissue sections. PMID:24847213

  18. Solar energy powered microbial fuel cell with a reversible bioelectrode.

    PubMed

    Strik, David P B T B; Hamelers, Hubertus V M; Buisman, Cees J N

    2010-01-01

    The solar energy powered microbial fuel cell is an emerging technology for electricity generation via electrochemically active microorganisms fueled by solar energy via in situ photosynthesized metabolites from algae, cyanobacteria, or living higher plants. A general problem with microbial fuel cells is the pH membrane gradient which reduces cell voltage and power output. This problem is caused by acid production at the anode, alkaline production at the cathode, and the nonspecific proton exchange through the membrane. Here we report a solution for a new kind of solar energy powered microbial fuel cell via development of a reversible bioelectrode responsible for both biocatalyzed anodic and cathodic electron transfer. Anodic produced protons were used for the cathodic reduction reaction which held the formation of a pH membrane gradient. The microbial fuel cell continuously generated electricity and repeatedly reversed polarity dependent on aeration or solar energy exposure. Identified organisms within biocatalyzing biofilm of the reversible bioelectrode were algae, (cyano)bacteria and protozoa. These results encourage application of solar energy powered microbial fuel cells.

  19. Influence of chlorothalonil on the removal of organic matter in horizontal subsurface flow constructed wetlands.

    PubMed

    Casas-Zapata, Juan C; Ríos, Karina; Florville-Alejandre, Tomás R; Morató, Jordi; Peñuela, Gustavo

    2013-01-01

    This study investigates the effects of chlorothalonil (CLT) on chemical oxygen demand (COD) and dissolved organic carbon (DOC) in pilot-scale horizontal subsurface flow constructed wetlands (HSSFCW) planted with Phragmites australis. Physicochemical parameters of influent and effluent water samples, microbial population counting methods and statistical analysis were used to evaluate the influence of CLT on organic matter removal efficiency. The experiments were conducted on four planted replicate wetlands (HSSFCW-Pa) and one unplanted control wetland (HSSFCW-NPa). The wetlands exhibited high average organic matter removal efficiencies (HSSFCW-Pa: 80.6% DOC, 98.0% COD; HSSFCW-NPa: 93.2% DOC, 98.4% COD). The addition of CLT did not influence organic removal parameters. In all cases CLT concentrations in the effluent occurred in concentrations lower than the detection limit of the analytical method. Microbial population counts from HSSFCW-Pa showed significant correlations among different microbial groups and with different physicochemical variables. The apparent independence of organic matter removal and CLT inputs, along with the CLT depletion observed in effluent samples demonstrated that HSSFCW are a viable technology for the treatment of agricultural effluents contaminated with organo-chloride pesticides like CLT.

  20. Study of the microbial ecology of wild and aquacultured Tunisian fresh fish.

    PubMed

    Boulares, Mouna; Mejri, Lobna; Hassouna, Mnasser

    2011-10-01

    Eighty samples of fresh fish were collected in Tunisia and analyzed for microbial load. Quality and hygienic safety of the meat and intestines of wild and aquacultured fresh fish were determined. The mesophilic aerobic plate count and populations of psychrotrophic lactic acid bacteria (LAB) and other psychrotrophic bacteria ranged from 5.67 to 7.29, 4.51 to 6, and 5.07 to 6.21 log CFU/g, respectively. For all microbiological determinations, bacterial counts were lower in meat than in the intestines of fresh fish. For all samples lower microbial populations were found in most of the wild fish than in the aquacultured fish. No isolates of the pathogenic genera Salmonella and Listeria were detected in any sample. Among the 160 strains of biopreservative psychrotrophic LAB and the 150 strains of spoilage psychrotrophic gram-negative bacteria identified by biochemical and molecular methods, Lactobacillus (six species) and Pseudomonas (six species) predominated. Lactococcus, Leuconostoc, Carnobacterium (C. piscicola and C. divergens), Aeromonas, and Photobacterium were the most common genera, and Lactococcus lactis, Lactobacillus plantarum, Pseudomonas fluorescens, and Aeromonas hydrophila were the most common species. These findings indicate that the microbiological quality of fresh fish in Tunisia can be preserved by controlling pathogenic and psychrotrophic bacteria.

  1. Forced-air warming design: evaluation of intake filtration, internal microbial buildup, and airborne-contamination emissions.

    PubMed

    Reed, Mike; Kimberger, Oliver; McGovern, Paul D; Albrecht, Mark C

    2013-08-01

    Forced-air warming devices are effective for the prevention of surgical hypothermia. However, these devices intake nonsterile floor-level air, and it is unknown whether they have adequate filtration measures to prevent the internal buildup or emission of microbial contaminants. We rated the intake filtration efficiency of a popular current-generation forced-air warming device (Bair Hugger model 750, Arizant Healthcare) using a monodisperse sodium chloride aerosol in the laboratory. We further sampled 23 forced-air warming devices (same model) in daily hospital use for internal microbial buildup and airborne-contamination emissions via swabbing and particle counting. Laboratory testing found the intake filter to be 63.8% efficient. Swabbing detected microorganisms within 100% of the forced-air warming blowers sampled, with isolates of coagulase-negative staphylococci, mold, and micrococci identified. Particle counting showed 96% of forced-air warming blowers to be emitting significant levels of internally generated airborne contaminants out of the hose end. These findings highlight the need for upgraded intake filtration, preferably high-efficiency particulate air filtration (99.97% efficient), on current-generation forced-air warming devices to reduce contamination buildup and emission risks.

  2. Bioluminescence ATP Monitoring for the Routine Assessment of Food Contact Surface Cleanliness in a University Canteen

    PubMed Central

    Osimani, Andrea; Garofalo, Cristiana; Clementi, Francesca; Tavoletti, Stefano; Aquilanti, Lucia

    2014-01-01

    ATP bioluminescence monitoring and traditional microbiological analyses (viable counting of total mesophilic aerobes, coliforms and Escherichia coli) were used to evaluate the effectiveness of Sanitation Standard Operating Procedures (SSOP) at a university canteen which uses a HACCP-based approach. To that end, 10 cleaning control points (CPs), including food contact surfaces at risk of contamination from product residues or microbial growth, were analysed during an 8-month monitoring period. Arbitrary acceptability limits were set for both microbial loads and ATP bioluminescence readings. A highly significant correlation (r = 0.99) between the means of ATP bioluminescence readings and the viable counts of total mesophilic aerobes was seen, thus revealing a strong association of these parameters with the level of surface contamination. Among CPs, the raw meat and multi-purpose chopping boards showed the highest criticalities. Although ATP bioluminescence technology cannot substitute traditional microbiological analyses for the determination of microbial load on food contact surfaces, it has proved to be a powerful tool for the real time monitoring of surface cleanliness at mass catering plants, for verify the correct application of SSOP, and hence for their implementation/revision in the case of poor hygiene. PMID:25329534

  3. Hiding in Fresh Fruits and Vegetables: Opportunistic Pathogens May Cross Geographical Barriers

    PubMed Central

    Al-Kharousi, Zahra S.; Al-Sadi, Abdullah M.; Al-Bulushi, Ismail M.; Shaharoona, Baby

    2016-01-01

    Different microbial groups of the microbiome of fresh produce can have diverse effects on human health. This study was aimed at identifying some microbial communities of fresh produce by analyzing 105 samples of imported fresh fruits and vegetables originated from different countries in the world including local samples (Oman) for aerobic plate count and the counts of Enterobacteriaceae, Enterococcus, and Staphylococcus aureus. The isolated bacteria were identified by molecular (PCR) and biochemical methods (VITEK 2). Enterobacteriaceae occurred in 60% of fruits and 91% of vegetables. Enterococcus was isolated from 20% of fruits and 42% of vegetables. E. coli and S. aureus were isolated from 22% and 7% of vegetables, respectively. Ninety-seven bacteria comprising 21 species were similarly identified by VITEK 2 and PCR to species level. E. coli, Klebsiella pneumoniae, Enterococcus casseliflavus, and Enterobacter cloacae were the most abundant species; many are known as opportunistic pathogens which may raise concern to improve the microbial quality of fresh produce. Phylogenetic trees showed no relationship between clustering of the isolates based on the 16S rRNA gene and the original countries of fresh produce. Intercountry passage of opportunistic pathogens in fresh produce cannot be ruled out, which requires better management. PMID:26989419

  4. Bioluminescence ATP monitoring for the routine assessment of food contact surface cleanliness in a university canteen.

    PubMed

    Osimani, Andrea; Garofalo, Cristiana; Clementi, Francesca; Tavoletti, Stefano; Aquilanti, Lucia

    2014-10-17

    ATP bioluminescence monitoring and traditional microbiological analyses (viable counting of total mesophilic aerobes, coliforms and Escherichia coli) were used to evaluate the effectiveness of Sanitation Standard Operating Procedures (SSOP) at a university canteen which uses a HACCP-based approach. To that end, 10 cleaning control points (CPs), including food contact surfaces at risk of contamination from product residues or microbial growth, were analysed during an 8-month monitoring period. Arbitrary acceptability limits were set for both microbial loads and ATP bioluminescence readings. A highly significant correlation (r = 0.99) between the means of ATP bioluminescence readings and the viable counts of total mesophilic aerobes was seen, thus revealing a strong association of these parameters with the level of surface contamination. Among CPs, the raw meat and multi-purpose chopping boards showed the highest criticalities. Although ATP bioluminescence technology cannot substitute traditional microbiological analyses for the determination of microbial load on food contact surfaces, it has proved to be a powerful tool for the real time monitoring of surface cleanliness at mass catering plants, for verify the correct application of SSOP, and hence for their implementation/revision in the case of poor hygiene.

  5. Determination of microbial contamination of plastic cups for dairy products and utilization of electron beam treatment for sterilization.

    PubMed

    Tacker, M; Hametner, C; Wepner, B

    2002-01-01

    Packaging materials are often considered a critical control point in HACCP systems of food companies. Methods for the determination of the microbial contamination rate of plastic cups, especially for dairy products, must reliably detect single moulds, yeasts or coliforms. In this study, a comparison of a specially adapted coating method, impedance method, direct inoculation and membrane filter technique was carried out to determine contamination with yeasts, moulds, coliforms and total bacterial counts using the appropriate agar in each case. The coating method is recommended for determining yeasts, moulds and coliforms as it allows the localization of the microorganisms as well as the determination of single microorganisms. For total bacterial count, a direct inoculation technique is proposed. The employing of simple measures in the production and during transport of packaging materials, such as dust-prevention or tight sealing in polyethylene bags, heavily reduces microbial contamination rates of packaging material. To reduce contamination rates further, electron beam irradiation was applied: plastic cups sealed in polyethylene bags were treated with 4-5 kGy, a dose that already leads to sterile polystyrene and polypropylene cups without influencing mechanical characteristics of the packaging material.

  6. Efficacy of Sodium Hypochlorite and Acidified Sodium Chlorite in Preventing Browning and Microbial Growth on Fresh-Cut Produce

    PubMed Central

    Sun, Shih Hui; Kim, Su Jin; Kwak, Soo Jin; Yoon, Ki Sun

    2012-01-01

    The use of suitable sanitizers can increase the quality of fresh-cut produce and reduce the risk of foodborne illnesses. The objective of this study was to compare the washing effects of 100 mg/L sodium hypochlorite (SH) and 500 mg/L acidified sodium chlorite (ASC) on the prevention of enzymatic browning and the growth of microbial populations, including aerobic plate counts, E. coli, and coliforms, throughout storage at 4°C and 10°C. Fresh-cut zucchini, cucumbers, green bell peppers, and root vegetables such as potatoes, sweet potatoes, carrots, and radishes were used. Compared to SH washing, ASC washing significantly (p<0.05) reduced microbial contamination on the fresh-cut produce and prevented browning of fresh-cut potatoes and sweet potatoes during storage. More effective inhibition of aerobic plate counts and coliforms growth was observed on fresh-cut produce treated with ASC during storage at 10°C. Polyphenol oxidase (PPO) activity of fresh-cut potatoes and sweet potatoes was more effectively inhibited after washing with ASC. The use of 500 mg/L ASC can provide effective antimicrobial and anti-browning treatments of fresh-cut produce, including processed root vegetables. PMID:24471086

  7. Efficacy of sodium hypochlorite and acidified sodium chlorite in preventing browning and microbial growth on fresh-cut produce.

    PubMed

    Sun, Shih Hui; Kim, Su Jin; Kwak, Soo Jin; Yoon, Ki Sun

    2012-09-01

    The use of suitable sanitizers can increase the quality of fresh-cut produce and reduce the risk of foodborne illnesses. The objective of this study was to compare the washing effects of 100 mg/L sodium hypochlorite (SH) and 500 mg/L acidified sodium chlorite (ASC) on the prevention of enzymatic browning and the growth of microbial populations, including aerobic plate counts, E. coli, and coliforms, throughout storage at 4°C and 10°C. Fresh-cut zucchini, cucumbers, green bell peppers, and root vegetables such as potatoes, sweet potatoes, carrots, and radishes were used. Compared to SH washing, ASC washing significantly (p<0.05) reduced microbial contamination on the fresh-cut produce and prevented browning of fresh-cut potatoes and sweet potatoes during storage. More effective inhibition of aerobic plate counts and coliforms growth was observed on fresh-cut produce treated with ASC during storage at 10°C. Polyphenol oxidase (PPO) activity of fresh-cut potatoes and sweet potatoes was more effectively inhibited after washing with ASC. The use of 500 mg/L ASC can provide effective antimicrobial and anti-browning treatments of fresh-cut produce, including processed root vegetables.

  8. Cold and carbon dioxide used as multi-hurdle preservation do not induce appearance of viable but non-culturable Listeria monocytogenes.

    PubMed

    Li, J; Kolling, G L; Matthews, K R; Chikindas, M L

    2003-01-01

    To study whether the exposure to cold (4 degrees C) and carbon dioxide which results in the elongation of Listeria cells, induces a viable but nonculturable (VBNC) state. When cold and CO2 stressed L. monocytogenes were observed under a fluorescence microscope, using the LIVE/DEAD BacLight bacteria viability kit (Molecular Probes, Eugene, OR, USA), the healthy, mildly injured, and the putative VBNC cells accounted for 31.0% of the stressed cell population. By using the selective plate count, 31.4% of the same stressed cell population was found to be healthy and mildly injured (putative VBNC cells not included). If there were VBNC state cells present, we should have observed a significant difference between the above two numbers. In fact, there was no significant difference between the results obtained from those two methods. There were no VBNC state cells observed in the stressed cell population. We conclude that cold and CO2 do not induce L. monocytogenes to enter a VBNC state. Cold and modified atmospheres are widely used in fresh muscle food and fruit preservation. Whether they would induce L. monocytogenes into a VBNC state is of a great concern for microbial food safety.

  9. Assessment of microbial quality of fish processing industrial effluent in bar-mouth at Bhidia landing site, Veraval, Gujarat, India.

    PubMed

    Sivaraman, G K; Visnuvinayagam, S; Jha, Ashish Kumar; Renuka, V; Remya, S; Vanik, Deesha

    2016-07-01

    The present study was carried out to assess the microbial quality of fish processing industries effluent at Bhidia bar-mouth, Veraval, Gujarat during April, 2012 to March 2013. The total viable bacterial count (TVBC), total Enterobacteriaceae count, E. coli count (EC), Staphylococcus aureus and Fecal Streptococcal count in effluent ranged from 3.0 x 10(-1) to 6.8 x 10(6), 9.0 x 10(1) to 2.9 x 10(4), 0 to 0. 5 x 10(4), 0 to 0. 4 x 102 and 0.3 x 10(1) to 0. 1 x 10(4) cfu.(-1)respectively. Significantly higher load of TEC, E. coli, S.aureus, Fecal Streptococci, Total coliforms and Fecal coliforms were higher during summer whereas, TVBC was higher in the month of Sept.-Oct. Furthermore, the total coliform and fecal coliform counts were found to be higher with 1400+ /100 ml MPN value throughout the year of the study, except in the month of August. Overall occurrence of pathogenic strains of E. coli, S. aureus and Fecal streptococci were 41.67%, 25.00% and 66.67% respectively during this period. The antibiogram of the isolated E. coli isolates show that almost 50% were resistant to Cefazidime/Clavulanic acid (CAC), Amoxyclav (AMC), Ciprofloxacin (CIF) and Ampicillin (AMP). The present study indicated that the effluent of fish processing industry was heavily contaminated with E. coli, S. aureus and Fecal Streptococci which confirmed improper treatment of fish processing effluent. Moreover, the precedence of antibiotic resistant E. coli may pose threat to public health safety.

  10. Culturable Rhodobacter and Shewanella species are abundant in estuarine turbidity maxima of the Columbia River

    PubMed Central

    Bräuer, S. L.; Adams, C.; Kranzler, K.; Murphy, D.; Xu, M.; Zuber, P.; Simon, H. M.; Baptista, A. M.; Tebo, B. M.

    2017-01-01

    Summary Measurements of dissolved, ascorbate-reducible and total Mn by ICP-OES revealed significantly higher concentrations during estuarine turbidity maxima (ETM) events, compared with non-events in the Columbia River. Most probable number (MPN) counts of Mn-oxidizing or Mn-reducing heterotrophs were not statistically different from that of other heterotrophs (103–104 cells ml−1) when grown in defined media, but counts of Mn oxidizers were significantly lower in nutrient-rich medium (13 cells ml−1). MPN counts of Mn oxidizers were also significantly lower on Mn(III)-pyrophosphate and glycerol (21 cells ml−1). Large numbers of Rhodobacter spp. were cultured from dilutions of 10−2 to 10−5, and many of these were capable of Mn(III) oxidation. Up to c. 30% of the colonies tested LBB positive, and all 77 of the successfully sequenced LBB positive colonies (of varying morphology) yielded sequences related to Rhodobacter spp. qPCR indicated that a cluster of Rhodobacter isolates and closely related strains (95–99% identity) represented approximately 1–3% of the total Bacteria, consistent with clone library results. Copy numbers of SSU rRNA genes for either Rhodobacter spp. or Bacteria were four to eightfold greater during ETM events compared with non-events. Strains of a Shewanella sp. were retrieved from the highest dilutions (10−5) of Mn reducers, and were also capable of Mn oxidation. The SSU rRNA gene sequences from these strains shared a high identity score (98%) with sequences obtained in clone libraries. Our results support previous findings that ETMs are zones with high microbial activity. Results indicated that Shewanella and Rhodobacter species were present in environmentally relevant concentrations, and further demonstrated that a large proportion of culturable bacteria, including Shewanella and Rhodobacter spp., were capable of Mn cycling in vitro. PMID:20977571

  11. Microbial Contamination on Used Surgical Masks among Hospital Personnel and Microbial Air Quality in their Working Wards: A Hospital in Bangkok

    PubMed Central

    Luksamijarulkul, Pipat; Aiempradit, Natkitta; Vatanasomboon, Pisit

    2014-01-01

    Objective To assess the relationship of bacterial and fungal contamination on used surgical masks worn by the hospital personnel and microbial air quality in their working wards. Methods This is a cross-sectional study of 230 used surgical masks collected from 214 hospital personnel, and 215 indoor air samples collected from their working wards to culture for bacterial and fungal counts. This study was carried out at the hospital in Bangkok. Group or genus of isolated bacteria and fungi were preliminarily identified by Gram’s stain and lacto-phenol cotton blue. Data were analyzed using paired t-test and Pearson’s correlation coefficient at the significant level of p<0.050. Results Means and standard deviation of bacterial and fungal contamination on inside area of the used masks were 47 ± 56 and 15 ± 9 cfu/ml/piece, and on outside area were 166 ± 199 and 34 ± 18 cfu/ml/piece, respectively, p<0.001. The bacterial and fungal contamination on used masks from hospital personnel working in the male and female medical wards and out-patient department, as well as the bacterial and fungal counts of the indoor air sample collected from the same area were relatively higher than the other wards. The predominant isolated bacteria and fungi contaminated on inside and outside areas of the used masks and air samples were similar (Staphylococcus spp. and Aspergillus spp.; respectively). For its relationship, results found that bacterial and fungal counts in air samples showed significantly positive correlation with the bacterial contamination load on outside area of the used masks, r=0.16, p=0.018 and r=0.21, p=0.003, respectively. Conclusion High bacterial contamination on outside area of the used masks was demonstrated, and it showed a significant correlation with microbial air quality of working wards. PMID:25337311

  12. Microbial Contamination on Used Surgical Masks among Hospital Personnel and Microbial Air Quality in their Working Wards: A Hospital in Bangkok.

    PubMed

    Luksamijarulkul, Pipat; Aiempradit, Natkitta; Vatanasomboon, Pisit

    2014-09-01

    To assess the relationship of bacterial and fungal contamination on used surgical masks worn by the hospital personnel and microbial air quality in their working wards. This is a cross-sectional study of 230 used surgical masks collected from 214 hospital personnel, and 215 indoor air samples collected from their working wards to culture for bacterial and fungal counts. This study was carried out at the hospital in Bangkok. Group or genus of isolated bacteria and fungi were preliminarily identified by Gram's stain and lacto-phenol cotton blue. Data were analyzed using paired t-test and Pearson's correlation coefficient at the significant level of p<0.050. Means and standard deviation of bacterial and fungal contamination on inside area of the used masks were 47 ± 56 and 15 ± 9 cfu/ml/piece, and on outside area were 166 ± 199 and 34 ± 18 cfu/ml/piece, respectively, p<0.001. The bacterial and fungal contamination on used masks from hospital personnel working in the male and female medical wards and out-patient department, as well as the bacterial and fungal counts of the indoor air sample collected from the same area were relatively higher than the other wards. The predominant isolated bacteria and fungi contaminated on inside and outside areas of the used masks and air samples were similar (Staphylococcus spp. and Aspergillus spp.; respectively). For its relationship, results found that bacterial and fungal counts in air samples showed significantly positive correlation with the bacterial contamination load on outside area of the used masks, r=0.16, p=0.018 and r=0.21, p=0.003, respectively. High bacterial contamination on outside area of the used masks was demonstrated, and it showed a significant correlation with microbial air quality of working wards.

  13. Microbial evaluation of traumatized teeth treated with triple antibiotic paste or calcium hydroxide with 2% chlorhexidine gel in pulp revascularization.

    PubMed

    Nagata, Juliana Y; Soares, Adriana J; Souza-Filho, Francisco J; Zaia, Alexandre A; Ferraz, Caio C R; Almeida, José F A; Gomes, Brenda P F A

    2014-06-01

    Revascularization outcome depends on microbial elimination because apical repair will not happen in the presence of infected tissues. This study evaluated the microbial composition of traumatized immature teeth and assessed their reduction during different stages of the revascularization procedures performed with 2 intracanal medicaments. Fifteen patients (7-17 years old) with immature teeth were submitted to the revascularization procedures; they were divided into 2 groups according to the intracanal medicament used: TAP group (n = 7), medicated with a triple antibiotic paste, and CHP group (n = 8), dressed with calcium hydroxide + 2% chlorhexidine gel. Samples were taken before any treatment (S1), after irrigation with 6% NaOCl (S2), after irrigation with 2% chlorhexidine (S3), after intracanal dressing (S4), and after 17% EDTA irrigation (S5). Cultivable bacteria recovered from the 5 stages were counted and identified by means of polymerase chain reaction assay (16S rRNA). Both groups had colony-forming unit counts significantly reduced after S2 (P < .05); however, no significant difference was found between the irrigants (S2 and S3, P = .99). No difference in bacteria counts was found between the intracanal medicaments used (P = .95). The most prevalent bacteria detected were Actinomyces naeslundii (66.67%), followed by Porphyromonas endodontalis, Parvimonas micra, and Fusobacterium nucleatum, which were detected in 33.34% of the root canals. An average of 2.13 species per canal was found, and no statistical correlation was observed between bacterial species and clinical/radiographic features. The microbial profile of infected immature teeth is similar to that of primarily infected permanent teeth. The greatest bacterial reduction was promoted by the irrigation solutions. The revascularization protocols that used the tested intracanal medicaments were efficient in reducing viable bacteria in necrotic immature teeth. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  14. Effect of Scrophularia striata and Ferulago angulata, as alternatives to virginiamycin, on growth performance, intestinal microbial population, immune response, and blood constituents of broiler chickens.

    PubMed

    Rostami, Farhad; Ghasemi, Hossein A; Taherpour, Kamran

    2015-09-01

    An experiment was conducted to investigate the comparative effect of Scrophularia striata, Ferulago angulata, and virginiamycin (VM) on performance, intestinal microbial population, immune response, and blood constituents of broilers. A total of 300 Ross 308 male broiler chickens were randomly assigned to 5 treatments, with 5 replicates/treatment (10 chickens/pen). Birds were fed either a corn-soybean meal basal diet (control) or the basal diet supplemented with 200 mg/kg VM; 4 g/kg S. striata (SS1); 8 g/kg S. striata (SS2); 4 g/kg F. angulata (FA1); or 8 g/kg F. angulata (FA2). After 6 wk, the BW, ADG, and feed-to-gain ratio (F:G) of the VM, SS1, and FA1 groups were better (P<0.01) compared with the control group. At 42 d, cecal lactobacillus counts were higher (P=0.032) in SS2 and FA2 groups compared with the control and VM groups. In addition, broilers fed any of the diets exhibited lower coliform counts (P<0.05) in the ileum and ceca than those fed the control diet. Total and IgG antibody titers against SRBC for secondary responses, relative spleen weight, and lymphocyte counts were higher (P<0.05) in birds fed the SS2 or FA2 diet compared with the control group. Moreover, feeding the SS2 or FA2 diet decreased (P<0.05) the blood heterophil/lymphocyte ratio and plasma triglyceride level, whereas only the SS2 diet increased (P=0.037) the white blood cell counts compared with the control diet. All diets, except for the VM diet, decreased (P=0.009) the plasma cholesterol level compared to the control treatment. The plasma high-density lipoprotein cholesterol level was also increased (P=0.042) in the SS2 and FA2 groups. In conclusion, dietary S. striata or F. angulata at a level of 4 g/kg diet enhanced growth performance, which was comparable to that of VM used as an antibiotic growth promoter. Furthermore, a high dose of both herbs (8 g/kg diet) could beneficially affect the intestinal health and immune status of broilers. © 2015 Poultry Science Association Inc.

  15. Effect of Diethylene Glycol Monomethyl Ether (DiEGME) and Triethylene Glycol Monomethyl Ether (TriEGME) on Microbial Contaminants in Aviation Fuel

    DTIC Science & Technology

    2010-03-01

    still be effective at controlling microbial growth. DiEGME and TriEGME’s ability to inhibit biofilm growth is also demonstrated. TriEGME is shown to...MO) with DiEGME or TriEGME added as appropriate. Fuel was filtered with a 0.45µm hydrophobic cellulose nitrate filter (Nalge Nunc, Rochester, NY... biofilm formation. However, no numerical standards have been universally accepted which define a particular colony count level as problematic (27). This

  16. Inclusion of detergent in a cleaning regime and effect on microbial load in livestock housing.

    PubMed

    Hancox, L R; Le Bon, M; Dodd, C E R; Mellits, K H

    Determining effective cleaning and disinfection regimes of livestock housing is vital to improving the health of resident animals and reducing zoonotic disease. A cleaning regime consisting of scraping, soaking with or without detergent (treatment and control), pressure washing, disinfection and natural drying was applied to multiple pig pens. After each cleaning stage, samples were taken from different materials and enumerated for total aerobic count (TAC) and Enterobacteriaceae (ENT). Soaking with detergent (Blast-Off, Biolink) caused significantly greater reductions of TAC and ENT on metal, and TAC on concrete, compared with control. Disinfection effect (Virkon S, DuPont) was not significantly associated with prior detergent treatment. Disinfection significantly reduced TAC and ENT on concrete and stock board but not on metal. Twenty-four hours after disinfection TAC and ENT on metal and stock board were significantly reduced, but no significant reductions occurred in the subsequent 96 hours. Counts on concrete did not significantly reduce during the entire drying period (120 hours). Detergent and disinfectant have varying bactericidal effects according to the surface and bacterial target; however, both can significantly reduce microbial numbers so should be used during cleaning, with a minimum drying period of 24 hours, to lower bacterial counts effectively.

  17. Plant community influence on soil microbial response after a wildfire in Sierra Nevada National Park (Spain).

    PubMed

    Bárcenas-Moreno, Gema; García-Orenes, Fuensanta; Mataix-Solera, Jorge; Mataix-Beneyto, Jorge

    2016-12-15

    Plant community influence on microbial response after fire has been studied in a Sierra Nevada National Park area affected by a wildfire in 2005. Two different plant communities adapted to different altitudes were selected to analyse possible differences on soil microbial recolonisation process after fire, in oak forest and high mountain shrub communities. Microbial abundance, activity and community composition were monitored to evaluate medium-term changes. Microbial abundance was studied by mean of microbial biomass carbon and plate count methods; microbial activity was analysed by microbial respiration and bacterial growth while microbial community composition was determined by analysing phospholipid fatty acid pattern. Under unburnt conditions oak forest showed higher nutrient content, pH and microbial abundance and activity values than the high mountain shrubs community. Different parameters studied showed different trends with time, highlighting important changes in microbial community composition in high mountain shrubs from first sampling to the second one. Post-fire recolonisation process was different depending on plant community studied. Highlighting fungal response and microbial activity were stimulated in burnt high mountain shrubs community whilst it was negatively affected in oak forest. Fire induced changes in oak forest were almost neutralized 20months after the fire, while high mountain shrubs community still showed fire-induced changes at the end of the study. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Evaluating the quality of a cell counting measurement process via a dilution series experimental design.

    PubMed

    Sarkar, Sumona; Lund, Steven P; Vyzasatya, Ravi; Vanguri, Padmavathy; Elliott, John T; Plant, Anne L; Lin-Gibson, Sheng

    2017-12-01

    Cell counting measurements are critical in the research, development and manufacturing of cell-based products, yet determining cell quantity with accuracy and precision remains a challenge. Validating and evaluating a cell counting measurement process can be difficult because of the lack of appropriate reference material. Here we describe an experimental design and statistical analysis approach to evaluate the quality of a cell counting measurement process in the absence of appropriate reference materials or reference methods. The experimental design is based on a dilution series study with replicate samples and observations as well as measurement process controls. The statistical analysis evaluates the precision and proportionality of the cell counting measurement process and can be used to compare the quality of two or more counting methods. As an illustration of this approach, cell counting measurement processes (automated and manual methods) were compared for a human mesenchymal stromal cell (hMSC) preparation. For the hMSC preparation investigated, results indicated that the automated method performed better than the manual counting methods in terms of precision and proportionality. By conducting well controlled dilution series experimental designs coupled with appropriate statistical analysis, quantitative indicators of repeatability and proportionality can be calculated to provide an assessment of cell counting measurement quality. This approach does not rely on the use of a reference material or comparison to "gold standard" methods known to have limited assurance of accuracy and precision. The approach presented here may help the selection, optimization, and/or validation of a cell counting measurement process. Published by Elsevier Inc.

  19. Distribution of Dechlorinating Bacteria between the Aqueous and Solid Phases

    NASA Astrophysics Data System (ADS)

    Cápiro, N. L.; Hatt, J. K.; Wang, Y.; Loeffler, F. E.; Pennell, K. D.

    2010-12-01

    Microbial monitoring of aquifers relies on nucleic acid biomarker analysis, which is typically performed with biomass recovered from groundwater samples; however, it is unclear what fraction of the target population(s) is associated with groundwater (i.e., planktonic cells) or is attached to solid phases (i.e., biofilms). Understanding how the titer of target organism(s) in groundwater correlates with the true cell titers of the target organism in the aquifer (i.e., planktonic plus attached cells) is critical for a meaningful interpretation of the data, the prediction of bioremediation performance, and the implementation of site management strategies. To evaluate the distribution of active cells between resident solid phase and the aqueous phase, one-dimensional columns were packed under water-saturated conditions with Bio-Dechlor INOCULUM, a PCE-to ethene-dechlorinating bacterial consortium containing both multiple Dehalococcoides (Dhc) strains and Geobacter lovleyi strain SZ (GeoSZ). The columns were packed with two distinct solid matrices: a low organic content sandy Federal Fine Ottawa soil or Appling soil with higher organic matter content. Influent reduced mineral salts medium supplied at a groundwater pore-water velocity of 0.3 m/day contained both 10 mM lactate as electron donor and 0.33 mM PCE as electron acceptor. Routine collection of biomass from column side ports and effluent samples measured the titers of target cells in the aqueous phase and determined when steady state conditions had been reached. A second set of column experiments evaluated delivery and filtration effects by the solid matrix (i.e., Federal Fine Ottawa sand versus Appling soil) under the same conditions except that electron donor or acceptor were omitted (no growth conditions). Quantitative real-time PCR (qPCR) analysis using Dhc and GeoSZ 16S rRNA gene-targeted primer and probe sets determined the planktonic cell counts, and destructive sampling of the columns allowed measurement of the total cell titer (i.e., attached plus planktonic cells). The results indicate that within the higher organic matter Appling soil, the fraction of target cells associated with the solid phase was nearly 2-orders of magnitude higher compared to the fraction attached to the aqueous phase. In the sandy soil, differences were approximately 1-order of magnitude. Ongoing efforts use dynamic light scattering and electrophoretic mobility measurements over a range of ionic strengths and pH values to shed light on the parameters that control microbial attachment behavior. Knowledge of factors that affect microbial distribution between aqueous and solid phases is essential for interpreting qPCR data obtained from site groundwater where biological remedies are implemented.

  20. Deep sea microbial fuel cell output as a proxy for microbial activity

    NASA Astrophysics Data System (ADS)

    Richter, K.; George, R.; Hardy, K. R.

    2016-02-01

    Abstract: Microbial fuel cells (MFCs) work by providing bacteria in anaerobic sediments with an electron acceptor (anode) that stimulates metabolism of organic matter. The buried anode is connected via control circuitry to a cathode exposed to oxygen in the overlying water. During metabolism, bacteria release hydrogen ions into the sediment and transfer electrons extra-cellularly to the anode, which eventually reduce dissolved oxygen at the cathode, forming water. The current is chiefly limited by the rate of microbial metabolism at the anode and serves as a proxy for microbial activity. The Office of Naval Research has encouraged development of microbial fuel cells in the marine environment at a number of academic and naval institutions and studies of important environmental parameters that affect fuel cell performance. Earlier work in shallow sediments of San Diego Bay showed that the most important environmental parameters that control fuel cell power output in San Diego Bay were total organic carbon in the sediment and seasonal water temperature. Current MFC work at SPAWAR includes extension of microbial fuel cell tests to the deep sea environment (>4000 m) and, in parallel, testing microbial fuel cells in the laboratory under deep sea conditions. We are pursuing a field efforts to deploy a microbial fuel cell in progressively deeper water, record in situ power and temperature over several weeks, and retrieve the fuel cell along with sediment samples for analysis. We are also pursuing a laboratory effort to build a matching microbial fuel cell in a pressure vessel capable of matching the pressure and temperature of deep water, and stocking the pressure vessel with deep water sediment in order to take measurements analogous to those in the field. We also hope to determine whether bacteria growing on the anode are different from bacteria growing in the bulk sediment via DNA analysis. The current progress and results from this work at SPAWAR will be presented.

  1. Microbial genome count in cerebrospinal fluid compared with clinical characteristics in pneumococcal and Haemophilus influenzae type b meningitis in children.

    PubMed

    Roine, Irmeli; Saukkoriipi, Annika; Leinonen, Maija; Peltola, Heikki

    2009-01-01

    Cerebrospinal fluid genome counts were determined by quantitative real-time polymerase chain reaction from 121 children: 36 with Streptococcus pneumoniae and 85 with Haemophilus influenzae meningitis. To examine the interactions of genome count and to determine its prognostic importance, we projected the results against findings on admission and different outcomes. The genome count varied vastly in both meningitides ranging from 0 to 9,250,000/microL. The genome quantity was weakly associated with only some of the patient findings on admission. High counts predicted neurologic (odds ratio [OR]=1.36; 95% confidence interval [CI], 1.09-1.69; P=0.006 for 1 log increase) but not audiologic sequelae. They also predicted death in S .pneumoniae (OR=2.05; 95% CI, 1.08-3.87; P=0.03) but not in H. influenzae meningitis.

  2. Clinical Predictors of Immune Reconstitution following Combination Antiretroviral Therapy in Patients from the Australian HIV Observational Database

    PubMed Central

    Rajasuriar, Reena; Gouillou, Maelenn; Spelman, Tim; Read, Tim; Hoy, Jennifer; Law, Matthew; Cameron, Paul U.; Petoumenos, Kathy; Lewin, Sharon R.

    2011-01-01

    Background A small but significant number of patients do not achieve CD4 T-cell counts >500cells/µl despite years of suppressive cART. These patients remain at risk of AIDS and non-AIDS defining illnesses. The aim of this study was to identify clinical factors associated with CD4 T-cell recovery following long-term cART. Methods Patients with the following inclusion criteria were selected from the Australian HIV Observational Database (AHOD): cART as their first regimen initiated at CD4 T-cell count <500cells/µl, HIV RNA<500copies/ml after 6 months of cART and sustained for at least 12 months. The Cox proportional hazards model was used to identify determinants associated with time to achieve CD4 T-cell counts >500cells/µl and >200cells/µl. Results 501 patients were eligible for inclusion from AHOD (n = 2853). The median (IQR) age and baseline CD4 T-cell counts were 39 (32–47) years and 236 (130–350) cells/µl, respectively. A major strength of this study is the long follow-up duration, median (IQR) = 6.5(3–10) years. Most patients (80%) achieved CD4 T-cell counts >500cells/µl, but in 8%, this took >5 years. Among the patients who failed to reach a CD4 T-cell count >500cells/µl, 16% received cART for >10 years. In a multivariate analysis, faster time to achieve a CD4 T-cell count >500cells/µl was associated with higher baseline CD4 T-cell counts (p<0.001), younger age (p = 0.019) and treatment initiation with a protease inhibitor (PI)-based regimen (vs. non-nucleoside reverse transcriptase inhibitor, NNRTI; p = 0.043). Factors associated with achieving CD4 T-cell counts >200cells/µl included higher baseline CD4 T-cell count (p<0.001), not having a prior AIDS-defining illness (p = 0.018) and higher baseline HIV RNA (p<0.001). Conclusion The time taken to achieve a CD4 T-cell count >500cells/µl despite long-term cART is prolonged in a subset of patients in AHOD. Starting cART early with a PI-based regimen (vs. NNRTI-based regimen) is associated with more rapid recovery of a CD4 T-cell count >500cells/µl. PMID:21674057

  3. Durability and regeneration of activated carbon air-cathodes in long-term operated microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Zhang, Enren; Wang, Feng; Yu, Qingling; Scott, Keith; Wang, Xu; Diao, Guowang

    2017-08-01

    The performance of activated carbon catalyst in air-cathodes in microbial fuel cells was investigated over one year. A maximum power of 1722 mW m-2 was produced within the initial one-month microbial fuel cell operation. The air-cathodes produced a maximum power >1200 mW m-2 within six months, but gradually became a limiting factor for the power output in prolonged microbial fuel cell operation. The maximum power decreased by 55% when microbial fuel cells were operated over one year due to deterioration in activated carbon air-cathodes. While salt/biofilm removal from cathodes experiencing one-year operation increased a limiting performance enhancement in cathodes, a washing-drying-pressing procedure could restore the cathode performance to its original levels, although the performance restoration was temporary. Durable cathodes could be regenerated by re-pressing activated carbon catalyst, recovered from one year deteriorated air-cathodes, with new gas diffusion layer, resulting in ∼1800 mW m-2 of maximum power production. The present study indicated that activated carbon was an effective catalyst in microbial fuel cell cathodes, and could be recovered for reuse in long-term operated microbial fuel cells by simple methods.

  4. Monitoring of Microbial Contaminants of Beef, Pork, and Chicken in HACCP Implemented Meat Processing Plants of Korea.

    PubMed

    Kim, Jung Hyun; Hur, Sun Jin; Yim, Dong Gyun

    2018-04-01

    This research was to evaluate microbial contamination levels in meat samples at hazard analysis critical control point (HACCP)-implemented processing plants that produce beef, pork, and chicken. During a period of about a year, a total of 178 samples (76 from beef, 89 from pork, and 13 from chicken) were obtained from raw materials (21.3%) and final products (78.7%). All samples were determined for each 25 g homogenized one. Samples were analyzed to determine the total aerobic plate count (APC), coliform count (CC), and E. coli count (ECC). By month, APC levels were the highest in September and the lowest in February ( p <0.001). In comparison among season, APC levels in meat samples were the highest in the summer and the lowest in winter ( p <0.001). By month, the highest CC prevalence was found in August, followed by October and then July ( p <0.001). By season, the highest CC was obtained in summer, followed by autumn and then spring ( p <0.001). All samples were negative for ECC. There was a direct correlation between the product form and coliform presence ( p <0.001). In addition, there was a positive correlation between the APC and CC (r=0.261). The APCs in analyzed samples ranged from below <10 1 CFU/g to <10 7 CFU/g. In conclusion, the month and season had significant effects on microbial contamination levels at HACCP implemented processing plants. Interrelationships between (i) the product form and coliform, (ii) the APC and CC were revealed.

  5. Microbiological Analysis in Three Diverse Natural Geothermal Bathing Pools in Iceland

    PubMed Central

    Thorolfsdottir, Berglind Osk Th.; Marteinsson, Viggo Thor

    2013-01-01

    Natural thermal bathing pools contain geothermal water that is very popular to bathe in but the water is not sterilized, irradiated or treated in any way. Increasing tourism in Iceland will lead to increasing numbers of bath guests, which can in turn affect the microbial flora in the pools and therefore user safety. Today, there is no legislation that applies to natural geothermal pools in Iceland, as the water is not used for consumption and the pools are not defined as public swimming pools. In this study, we conducted a microbiological analysis on three popular but different natural pools in Iceland, located at Lýsuhóll, Hveravellir and Landmannalaugar. Total bacterial counts were performed by flow cytometry, and with plate count at 22 °C, 37 °C and 50 °C. The presence of viable coliforms, Enterococcus spp. and pseudomonads were investigated by growth experiments on selective media. All samples were screened for noroviruses by real time PCR. The results indicate higher fecal contamination in the geothermal pools where the geothermal water flow was low and bathing guest count was high during the day. The number of cultivated Pseudomonas spp. was high (13,000–40,000 cfu/100 mL) in the natural pools, and several strains were isolated and classified as opportunistic pathogens. Norovirus was not detected in the three pools. DNA was extracted from one-liter samples in each pool and analyzed by partial 16S rRNA gene sequencing. Microbial diversity analysis revealed different microbial communities between the pools and they were primarily composed of alpha-, beta- and gammaproteobacteria. PMID:23493033

  6. Changing mortality risk associated with CD4 cell response to antiretroviral therapy in South Africa

    PubMed Central

    Lawn, Stephen D.; Little, Francesca; Bekker, Linda-Gail; Kaplan, Richard; Campbel, Elizabeth; Orrell, Catherine; Wood, Robin

    2013-01-01

    Objective To determine the relationship between mortality risk and the CD4 cell response to antiretroviral therapy (ART). Design Observational community-based ART cohort in South Africa. Methods CD4 cell counts were measured 4 monthly, and deaths were prospectively ascertained. Cumulative person-time accrued within a range of updated CD4 cell count strata (CD4 cell-strata) was calculated and used to derive CD4 cell-stratified mortality rates. Results Patients (2423) (median baseline CD4 cell count of 105 cells/ml) were observed for up to 5 years of ART. One hundred and ninety-seven patients died during 3155 person years of observation. In multivariate analysis, mortality rate ratios associated with 0–49, 50–99, 100–199, 200–299, 300– 399, 400–499 and at least 500 cells/ml updated CD4 cell-strata were 11.6, 4.9, 2.6, 1.7, 1.5, 1.4 and 1.0, respectively. Analysis of CD4 cell count recovery permitted calculations of person-time accrued within these CD4 cell strata. Despite rapid immune recovery, high mortality in the first year of ART was related to the large proportion of person-time accrued within CD4 cell-strata less than 200 cells/ml. Moreover, patients with baseline CD4 cell counts less than 100 cells/ml had much higher cumulative mortality estimates at 1 and 4 years (11.6 and 16.7%) compared with those of patients with baseline counts of at least 100 cells/ml (5.2 and 9.5%) largely because of greater cumulative person-time at CD4 cell counts less than 200 cells/ml. Conclusion: Updated CD4 cell counts are the variable most strongly associated with mortality risk during ART. High cumulative mortality risk is associated with person-time accrued at low CD4 cell counts. National HIV programmes in resource-limited settings should be designed to minimize the time patients spend with CD4 cell counts less than 200 cells/ml both before and during ART. PMID:19114870

  7. Preliminary biogeochemical assessment of EPICA LGM and Holocene ice samples

    NASA Astrophysics Data System (ADS)

    Bulat, S.; Alekhina, I.; Marie, D.; Wagenbach, D.; Raynaud, D.; Petit, J. R.

    2009-04-01

    We are investigating the biological content (biomass and microbial diversity of Aeolian origin) of EPICA ice core within the frame of EPICA Microbiology consortium*. Two ice core sections were selected from EPICA Dome C and Droning Maud Land, both from LGM and Holocene. Preliminary measurements of DOC (dissolved organic content) and microbial cell concentrations have been performed. Both analyses showed the very low biomass and ultra low DOC content. Trace DNA analyses are in a progress. The ice sections were decontaminated in LGGE cold and clean room facilities benefiting the protocol developed for Vostok ice core studies. The melt water was then shared between two party laboratories for a complementary approach in studying microbial content. Prior to biology the melt water was tested for chemical contaminant ions and organic acids, DOC and dust contents. The biological methods included all the spectra of appropriate molecular techniques (gDNA extraction, PCR, clone libraries and sequencing). As preliminary results, both LGM (well identified by dust fallout) and Holocene ice samples (EDC99 and EDML) proved to be extremely clear (i.e. pristine) in terms of biomass (less then 4 cells per ml) and DOC contents (less then 5 ppbC). There was no obvious difference between LGM and Holocene in cell counts, while LGM showed a bit high organic carbon content. The latter in terms of biology means ultra-oligotrophic conditions (i.e., no possibility for heterotrophic life style). In fact no metabolizing microbial cells or propagating populations are expected at these depths at temperature -38oC and lower (limiting life temperature threshold is -20°C). Nevertheless some life seeds brought in Antarctica with precipitation could be well preserved because the age is rather young (21 kyr and less). Trying to identify these aliens and document their distribution during last climate cycle the meltwater was concentrated about 1000 times down. The genomic DNA was extracted and very weak signals were possible to generate which are now under cloning. The signals were hard to reproduce because of rather low volume of samples. More ice volume is needed to get the biosignal stronger and reproducible. Meantime we are adjusting PCR and in addition testing DNA repair-enzyme cocktail in case of DNA damage. As a preliminary conclusion we would like to highlight the following. Both Holocene and LGM ice samples (EDC99 and EDML) are very clean in terms of Ultra low biomass and Ultra low DOC content. The most basal ice of EDC and EDML ice cores could help in assessing microbial biomass and diversity if present under the glacier at the ice-bedrock boundary. * The present-day consortium includes S. Bulat, I. Alekhina, P. Normand, D. Prieur, J-R. Petit and D. Raynaud (France) and E. Willerslev and J.P. Steffensen (Denmark)

  8. Short-term degradation of terrestrial DOM in the coastal ocean: Implications for nutrient subsidies and marine microbial community structure

    NASA Astrophysics Data System (ADS)

    Oliver, A. A.; Tank, S. E.; Kellogg, C.

    2015-12-01

    The export of riverine dissolved organic matter (DOM) to the coastal ocean provides an important link between terrestrial and aquatic ecosystems. The coastal temperate rainforests of British Columbia contain extensive freshwater networks that export significant amounts of water and DOM to the ocean, representing significant cross-system hydrologic and biogeochemical linkages. To better understand the importance of these linkages and implications for ecosystem structure and function, we used an experimental approach to investigate the role of microbial and photodegradation transformations of DOM exported from small coastal catchments to the marine environment. At two time periods (August 2014, March 2015), stream water from the outlets of two coastal watersheds was filtered (<0.2 μm), and treated with microbial inoculums from across a salinity gradient (i.e., freshwater, estuarine, and marine). Treatments were incubated in the ocean under light and dark conditions for 8 days. At 0, 3 and 8 days, samples were analyzed for DOC, TDN, DIN, and DON. Changes in DOM composition were determined with optical characterization techniques such as absorbance (SUVA, S, Sr) and fluorescence (EEM). Microbial community response was measured using cell counts and DNA/RNA amplicon sequencing to determine changes in bacterial abundance and community composition. General patterns indicated that microbial communities from the high salinity treatment (i.e. most marine) were the most effective at utilizing freshwater DOM, especially under light conditions. In some treatments, DOM appeared as a potential source of inorganic nitrogen with corresponding shifts in microbial community composition. Incubations using inoculum from low and mid salinity levels demonstrated smaller changes, indicating that DOM exported from these streams may not be extensively utilized until exposed to higher salinity environments further from stream outlets. These results suggest a role for terrestrial sourced-DOM as a subsidy for microbial communities within the near shore marine environment, and emphasize that changes in DOM exports due to land development or climate change may have implications for coastal food web processes and biogeochemical cycling.

  9. Surveillance study of bacterial contamination of the parent's cell phone in the NICU and the effectiveness of an anti-microbial gel in reducing transmission to the hands.

    PubMed

    Beckstrom, A C; Cleman, P E; Cassis-Ghavami, F L; Kamitsuka, M D

    2013-12-01

    To determine the bacterial contamination rate of the parent's cell phone and the effectiveness of anti-microbial gel in reducing transmission of bacteria from cell phone to hands. Cross-sectional study of cultures from the cell phone and hands before and after applying anti-microbial gel (n=50). All cell phones demonstrated bacterial contamination. Ninety percent had the same bacteria on the cell phone and their cleaned hands. Twenty two percent had no growth on their hands after applying anti-microbial gel after they had the same bacteria on the cell phone and hands. Ninety-two percent of parents were aware that cell phones carried bacteria, but only 38% cleaned their cell phones at least weekly. Bacterial contamination of cell phones may serve as vectors for nosocomial infection in the neonatal intensive care unit. Bacteria transmitted from cell phone to hands may not be eliminated using anti-microbial gel. Development of hand hygiene and cell phone cleaning guidelines are needed regarding bedside cell phone use.

  10. EFFECT OF GROUND-WATER REMEDIATION ACTIVITIES ON INDIGENOUS MICROFLORA

    EPA Science Inventory

    The United States Environmental Protection Agency (EPA), working with the Interagency DNAPL Consortium, completed an independent evaluation of microbial responses to ground-water remediation technology demonstrations at Launch Pad 34 at Cape Canaveral Air Station in Brevard Count...

  11. Arraycount, an algorithm for automatic cell counting in microwell arrays.

    PubMed

    Kachouie, Nezamoddin; Kang, Lifeng; Khademhosseini, Ali

    2009-09-01

    Microscale technologies have emerged as a powerful tool for studying and manipulating biological systems and miniaturizing experiments. However, the lack of software complementing these techniques has made it difficult to apply them for many high-throughput experiments. This work establishes Arraycount, an approach to automatically count cells in microwell arrays. The procedure consists of fluorescent microscope imaging of cells that are seeded in microwells of a microarray system and then analyzing images via computer to recognize the array and count cells inside each microwell. To start counting, green and red fluorescent images (representing live and dead cells, respectively) are extracted from the original image and processed separately. A template-matching algorithm is proposed in which pre-defined well and cell templates are matched against the red and green images to locate microwells and cells. Subsequently, local maxima in the correlation maps are determined and local maxima maps are thresholded. At the end, the software records the cell counts for each detected microwell on the original image in high-throughput. The automated counting was shown to be accurate compared with manual counting, with a difference of approximately 1-2 cells per microwell: based on cell concentration, the absolute difference between manual and automatic counting measurements was 2.5-13%.

  12. Size and Carbon Content of Sub-seafloor Microbial Cells at Landsort Deep, Baltic Sea

    PubMed Central

    Braun, Stefan; Morono, Yuki; Littmann, Sten; Kuypers, Marcel; Aslan, Hüsnü; Dong, Mingdong; Jørgensen, Bo B.; Lomstein, Bente Aa.

    2016-01-01

    The discovery of a microbial ecosystem in ocean sediments has evoked interest in life under extreme energy limitation and its role in global element cycling. However, fundamental parameters such as the size and the amount of biomass of sub-seafloor microbial cells are poorly constrained. Here we determined the volume and the carbon content of microbial cells from a marine sediment drill core retrieved by the Integrated Ocean Drilling Program (IODP), Expedition 347, at Landsort Deep, Baltic Sea. To determine their shape and volume, cells were separated from the sediment matrix by multi-layer density centrifugation and visualized via epifluorescence microscopy (FM) and scanning electron microscopy (SEM). Total cell-carbon was calculated from amino acid-carbon, which was analyzed by high-performance liquid chromatography (HPLC) after cells had been purified by fluorescence-activated cell sorting (FACS). The majority of microbial cells in the sediment have coccoid or slightly elongated morphology. From the sediment surface to the deepest investigated sample (~60 m below the seafloor), the cell volume of both coccoid and elongated cells decreased by an order of magnitude from ~0.05 to 0.005 μm3. The cell-specific carbon content was 19–31 fg C cell−1, which is at the lower end of previous estimates that were used for global estimates of microbial biomass. The cell-specific carbon density increased with sediment depth from about 200 to 1000 fg C μm−3, suggesting that cells decrease their water content and grow small cell sizes as adaptation to the long-term subsistence at very low energy availability in the deep biosphere. We present for the first time depth-related data on the cell volume and carbon content of sedimentary microbial cells buried down to 60 m below the seafloor. Our data enable estimates of volume- and biomass-specific cellular rates of energy metabolism in the deep biosphere and will improve global estimates of microbial biomass. PMID:27630628

  13. Avian leucocyte counting using the hemocytometer

    USGS Publications Warehouse

    Dein, F.J.; Wilson, A.; Fischer, D.; Langenberg, P.

    1994-01-01

    Automated methods for counting leucocytes in avian blood are not available because of the presence of nucleated erythrocytes and thrombocytes. Therefore, total white blood cell counts are performed by hand using a hemocytometer. The Natt and Herrick and the Unopette methods are the most common stain and diluent preparations for this procedure. Replicate hemocytometer counts using these two methods were performed on blood from four birds of different species. Cells present in each square of the hemocytometer were counted. Counting cells in the corner, side, or center hemocytometer squares produced statistically equivalent results; counting four squares per chamber provided a result similar to that obtained by counting nine squares; and the Unopette method was more precise for hemocytometer counting than was the Natt and Herrick method. The Unopette method is easier to learn and perform but is an indirect process, utilizing the differential count from a stained smear. The Natt and Herrick method is a direct total count, but cell identification is more difficult.

  14. Microbial community structures differentiated in a single-chamber air-cathode microbial fuel cell fueled with rice straw hydrolysate.

    PubMed

    Wang, Zejie; Lee, Taekwon; Lim, Bongsu; Choi, Chansoo; Park, Joonhong

    2014-01-17

    The microbial fuel cell represents a novel technology to simultaneously generate electric power and treat wastewater. Both pure organic matter and real wastewater can be used as fuel to generate electric power and the substrate type can influence the microbial community structure. In the present study, rice straw, an important feedstock source in the world, was used as fuel after pretreatment with diluted acid method for a microbial fuel cell to obtain electric power. Moreover, the microbial community structures of anodic and cathodic biofilm and planktonic culturewere analyzed and compared to reveal the effect of niche on microbial community structure. The microbial fuel cell produced a maximum power density of 137.6 ± 15.5 mW/m2 at a COD concentration of 400 mg/L, which was further increased to 293.33 ± 7.89 mW/m2 through adjusting the electrolyte conductivity from 5.6 mS/cm to 17 mS/cm. Microbial community analysis showed reduction of the microbial diversities of the anodic biofilm and planktonic culture, whereas diversity of the cathodic biofilm was increased. Planktonic microbial communities were clustered closer to the anodic microbial communities compared to the cathodic biofilm. The differentiation in microbial community structure of the samples was caused by minor portion of the genus. The three samples shared the same predominant phylum of Proteobacteria. The abundance of exoelectrogenic genus was increased with Desulfobulbus as the shared most abundant genus; while the most abundant exoelectrogenic genus of Clostridium in the inoculum was reduced. Sulfate reducing bacteria accounted for large relative abundance in all the samples, whereas the relative abundance varied in different samples. The results demonstrated that rice straw hydrolysate can be used as fuel for microbial fuel cells; microbial community structure differentiated depending on niches after microbial fuel cell operation; exoelectrogens were enriched; sulfate from rice straw hydrolysate might be responsible for the large relative abundance of sulfate reducing bacteria.

  15. Microbial community structures differentiated in a single-chamber air-cathode microbial fuel cell fueled with rice straw hydrolysate

    PubMed Central

    2014-01-01

    Background The microbial fuel cell represents a novel technology to simultaneously generate electric power and treat wastewater. Both pure organic matter and real wastewater can be used as fuel to generate electric power and the substrate type can influence the microbial community structure. In the present study, rice straw, an important feedstock source in the world, was used as fuel after pretreatment with diluted acid method for a microbial fuel cell to obtain electric power. Moreover, the microbial community structures of anodic and cathodic biofilm and planktonic culturewere analyzed and compared to reveal the effect of niche on microbial community structure. Results The microbial fuel cell produced a maximum power density of 137.6 ± 15.5 mW/m2 at a COD concentration of 400 mg/L, which was further increased to 293.33 ± 7.89 mW/m2 through adjusting the electrolyte conductivity from 5.6 mS/cm to 17 mS/cm. Microbial community analysis showed reduction of the microbial diversities of the anodic biofilm and planktonic culture, whereas diversity of the cathodic biofilm was increased. Planktonic microbial communities were clustered closer to the anodic microbial communities compared to the cathodic biofilm. The differentiation in microbial community structure of the samples was caused by minor portion of the genus. The three samples shared the same predominant phylum of Proteobacteria. The abundance of exoelectrogenic genus was increased with Desulfobulbus as the shared most abundant genus; while the most abundant exoelectrogenic genus of Clostridium in the inoculum was reduced. Sulfate reducing bacteria accounted for large relative abundance in all the samples, whereas the relative abundance varied in different samples. Conclusion The results demonstrated that rice straw hydrolysate can be used as fuel for microbial fuel cells; microbial community structure differentiated depending on niches after microbial fuel cell operation; exoelectrogens were enriched; sulfate from rice straw hydrolysate might be responsible for the large relative abundance of sulfate reducing bacteria. PMID:24433535

  16. Application of atomic force microscopy to microbial surfaces: from reconstituted cell surface layers to living cells.

    PubMed

    Dufrêne, Y F

    2001-02-01

    The application of atomic force microscopy (AFM) to probe the ultrastructure and physical properties of microbial cell surfaces is reviewed. The unique capabilities of AFM can be summarized as follows: imaging surface topography with (sub)nanometer lateral resolution; examining biological specimens under physiological conditions; measuring local properties and interaction forces. AFM is being used increasingly for: (i) visualizing the surface ultrastructure of microbial cell surface layers, including bacterial S-layers, purple membranes, porin OmpF crystals and fungal rodlet layers; (ii) monitoring conformational changes of individual membrane proteins; (iii) examining the morphology of bacterial biofilms, (iv) revealing the nanoscale structure of living microbial cells, including fungi, yeasts and bacteria, (v) mapping interaction forces at microbial surfaces, such as van der Waals and electrostatic forces, solvation forces, and steric/bridging forces; and (vi) probing the local mechanical properties of cell surface layers and of single cells.

  17. The Clinical Significance of Eosinophils in the Amniotic Fluid in Preterm Labor

    PubMed Central

    ROMERO, ROBERTO; KUSANOVIC, JUAN PEDRO; GOMEZ, RICARDO; LAMONT, RONALD; BYTAUTIENE, EGLE; GARFIELD, ROBERT E.; MITTAL, POOJA; HASSAN, SONIA S.; YEO, LAMI

    2012-01-01

    Objective White blood cells are not traditionally considered to be normally present in amniotic fluid. This study was conducted after the observation that a patient with preterm labor and intact membranes had eosinophils as a predominant cell in the amniotic fluid, and had an episode of asthma during the index pregnancy. The goal of this study was to determine whether women presenting with preterm labor with eosinophils in the amniotic fluid had a different outcome than those without eosinophils as the predominant white blood cell in the amniotic cavity. Methods This retrospective case-control study included women who presented with preterm labor and intact membranes between 24 and 34 weeks of gestation. Patients underwent an amniocentesis shortly after admission for the assessment of the microbiologic status of the amniotic cavity and/or fetal lung maturity. Amniotic fluid was cultured for aerobic and anaerobic bacteria as well as genital mycoplasmas. Cytologic studies included amniotic fluid white blood cell count and differential, which was performed on cytocentrifuged specimens. Patients with microbial invasion of the amniotic cavity and/or a white blood cell count >20 cells/mm3 were excluded from the study. Cases were defined as women in whom the differential contained >20% of eosinophils. Controls were selected among women with an amniotic fluid eosinophil count ≤20% and matched for gestational age at amniocentesis. The analysis was conducted with non-parametric statistics. Results The study population consisted of 10 cases and 50 controls. Gestational age and cervical dilatation at admission were similar in both groups. Cases had a lower gestational age at delivery than controls [34.6 weeks, inter-quartile range (IQR) 32–37.3 weeks vs. 38.0 weeks, IQR 35–40 weeks, respectively; p=0.018]. The prevalence of preterm delivery ≤35 weeks was higher among patients who had >20% eosinophils than in the control group [50% (5/10) vs. 18% (9/50), respectively; p=0.029]. Similar results were observed for delivery at <37 weeks [Cases: 70% (7/10) vs. Controls: 36% (18/50); p=0.046]. Conclusions Women with preterm labor and intact membranes who have a large proportion of eosinophils in the amniotic fluid are at an increased risk for spontaneous preterm delivery. These patients may have had an episode of preterm labor related to a type I hypersensitivity reaction. PMID:19900034

  18. Determination of mammalian cell counts, cell size and cell health using the Moxi Z mini automated cell counter.

    PubMed

    Dittami, Gregory M; Sethi, Manju; Rabbitt, Richard D; Ayliffe, H Edward

    2012-06-21

    Particle and cell counting is used for a variety of applications including routine cell culture, hematological analysis, and industrial controls(1-5). A critical breakthrough in cell/particle counting technologies was the development of the Coulter technique by Wallace Coulter over 50 years ago. The technique involves the application of an electric field across a micron-sized aperture and hydrodynamically focusing single particles through the aperture. The resulting occlusion of the aperture by the particles yields a measurable change in electric impedance that can be directly and precisely correlated to cell size/volume. The recognition of the approach as the benchmark in cell/particle counting stems from the extraordinary precision and accuracy of its particle sizing and counts, particularly as compared to manual and imaging based technologies (accuracies on the order of 98% for Coulter counters versus 75-80% for manual and vision-based systems). This can be attributed to the fact that, unlike imaging-based approaches to cell counting, the Coulter Technique makes a true three-dimensional (3-D) measurement of cells/particles which dramatically reduces count interference from debris and clustering by calculating precise volumetric information about the cells/particles. Overall this provides a means for enumerating and sizing cells in a more accurate, less tedious, less time-consuming, and less subjective means than other counting techniques(6). Despite the prominence of the Coulter technique in cell counting, its widespread use in routine biological studies has been prohibitive due to the cost and size of traditional instruments. Although a less expensive Coulter-based instrument has been produced, it has limitations as compared to its more expensive counterparts in the correction for "coincidence events" in which two or more cells pass through the aperture and are measured simultaneously. Another limitation with existing Coulter technologies is the lack of metrics on the overall health of cell samples. Consequently, additional techniques must often be used in conjunction with Coulter counting to assess cell viability. This extends experimental setup time and cost since the traditional methods of viability assessment require cell staining and/or use of expensive and cumbersome equipment such as a flow cytometer. The Moxi Z mini automated cell counter, described here, is an ultra-small benchtop instrument that combines the accuracy of the Coulter Principle with a thin-film sensor technology to enable precise sizing and counting of particles ranging from 3-25 microns, depending on the cell counting cassette used. The M type cassette can be used to count particles from with average diameters of 4 - 25 microns (dynamic range 2 - 34 microns), and the Type S cassette can be used to count particles with and average diameter of 3 - 20 microns (dynamic range 2 - 26 microns). Since the system uses a volumetric measurement method, the 4-25 microns corresponds to a cell volume range of 34 - 8,180 fL and the 3 - 20 microns corresponds to a cell volume range of 14 - 4200 fL, which is relevant when non-spherical particles are being measured. To perform mammalian cell counts using the Moxi Z, the cells to be counted are first diluted with ORFLO or similar diluent. A cell counting cassette is inserted into the instrument, and the sample is loaded into the port of the cassette. Thousands of cells are pulled, single-file through a "Cell Sensing Zone" (CSZ) in the thin-film membrane over 8-15 seconds. Following the run, the instrument uses proprietary curve-fitting in conjunction with a proprietary software algorithm to provide coincidence event correction along with an assessment of overall culture health by determining the ratio of the number of cells in the population of interest to the total number of particles. The total particle counts include shrunken and broken down dead cells, as well as other debris and contaminants. The results are presented in histogram format with an automatic curve fit, with gates that can be adjusted manually as needed. Ultimately, the Moxi Z enables counting with a precision and accuracy comparable to a Coulter Z2, the current gold standard, while providing additional culture health information. Furthermore it achieves these results in less time, with a smaller footprint, with significantly easier operation and maintenance, and at a fraction of the cost of comparable technologies.

  19. Cellular content of biomolecules in sub-seafloor microbial communities

    NASA Astrophysics Data System (ADS)

    Braun, Stefan; Morono, Yuki; Becker, Kevin W.; Hinrichs, Kai-Uwe; Kjeldsen, Kasper U.; Jørgensen, Bo B.; Lomstein, Bente Aa.

    2016-09-01

    Microbial biomolecules, typically from the cell envelope, can provide crucial information about distribution, activity, and adaptations of sub-seafloor microbial communities. However, when cells die these molecules can be preserved in the sediment on timescales that are likely longer than the lifetime of their microbial sources. Here we provide for the first time measurements of the cellular content of biomolecules in sedimentary microbial cells. We separated intact cells from sediment matrices in samples from surficial, deeply buried, organic-rich, and organic-lean marine sediments by density centrifugation. Amino acids, amino sugars, muramic acid, and intact polar lipids were analyzed in both whole sediment and cell extract, and cell separation was optimized and evaluated in terms of purity, separation efficiency, taxonomic resemblance, and compatibility to high-performance liquid chromatography and mass spectrometry for biomolecule analyses. Because cell extracts from density centrifugation still contained considerable amounts of detrital particles and non-cellular biomolecules, we further purified cells from two samples by fluorescence-activated cell sorting (FACS). Cells from these highly purified cell extracts had an average content of amino acids and lipids of 23-28 fg cell-1 and 2.3 fg cell-1, respectively, with an estimated carbon content of 19-24 fg cell-1. In the sediment, the amount of biomolecules associated with vegetative cells was up to 70-fold lower than the total biomolecule content. We find that the cellular content of biomolecules in the marine subsurface is up to four times lower than previous estimates. Our approach will facilitate and improve the use of biomolecules as proxies for microbial abundance in environmental samples and ultimately provide better global estimates of microbial biomass.

  20. Electricity generation in microbial fuel cells using neutral red as an electronophore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, D.H.; Zeikus, J.G.

    2000-04-01

    Neutral red (NR) was utilized as an electron mediator in microbial fuel cells consuming glucose to study both its efficiency during electricity generation and its role in altering anaerobic growth and metabolism of Escherichia coli and Actinobacillus succinogenes. A study of chemical fuel cells in which NADH, NR, and ferricyanide were the electron donor, the electronophore, and the electron acceptor, respectively, showed that electrical current produced from NADH was proportional to the concentration of NADH. Fourfold more current was produced from NADH in chemical fuel cells when NR was the electron mediator than when thionin was the electron mediator. Inmore » microbial fuel cells in which E. coli resting cells were used the amount of current produced from glucose when NR was the electron mediator was 10-fold more than the amount produced when thionin was the electron mediator. The amount of electrical energy generated and the amount of current produced from glucose in NR-mediated microbial fuel cells containing either E. coli or A. succinogenes were about 10- and 2-fold greater, respectively, when resting cells were used than when growing cells were used. Cell growth was inhibited substantially when these microbial fuel cells were making current, and more oxidized end products were formed under these conditions. When sewage sludge was used in the fuel cell, stable and equivalent levels of current were obtained with glucose, as observed in the pure-culture experiments. These results suggest that NR is better than other electron mediators used in microbial fuel cells and that sludge production can be decreased while electricity is produced in fuel cells. Their results are discussed in relation to factors that may improve the relatively low electrical efficiencies obtained with microbial fuel cells.« less

  1. Biotechnological Aspects of Microbial Extracellular Electron Transfer

    PubMed Central

    Kato, Souichiro

    2015-01-01

    Extracellular electron transfer (EET) is a type of microbial respiration that enables electron transfer between microbial cells and extracellular solid materials, including naturally-occurring metal compounds and artificial electrodes. Microorganisms harboring EET abilities have received considerable attention for their various biotechnological applications, in addition to their contribution to global energy and material cycles. In this review, current knowledge on microbial EET and its application to diverse biotechnologies, including the bioremediation of toxic metals, recovery of useful metals, biocorrosion, and microbial electrochemical systems (microbial fuel cells and microbial electrosynthesis), were introduced. Two potential biotechnologies based on microbial EET, namely the electrochemical control of microbial metabolism and electrochemical stimulation of microbial symbiotic reactions (electric syntrophy), were also discussed. PMID:26004795

  2. A Polysaccharide isolated from the liquid culture of Lentinus edodes (Shiitake) mushroom mycelia containing black rice bran protects mice against salmonellosis through upregulation of the Th1 immune reaction.

    PubMed

    Kim, Sung Phil; Park, Sun Ok; Lee, Sang Jong; Nam, Seok Hyun; Friedman, Mendel

    2014-03-19

    The present study investigated the antibacterial effect of a bioprocessed polysaccharide (BPP) isolated from Lentinus edodes liquid mycelial culture supplemented with black rice bran against murine salmonellosis. BPP was not bactericidal in vitro, it did, however, stimulate uptake of the bacteria into RAW 264.7 murine macrophage cells, as indicated by increased colony-forming unit (CFU) counts of the contents of the lysed macrophages incubated with Salmonella Typhimurium for 30 and 60 min. Two hours postinfection, the bacterial counts drastically increased in the macrophages, but 4 and 8 h postinfection BPP extract-treated cells showed lower bacterial counts than the vehicle (saline phosphate pH 7.4 buffer, PBS)-treated control. BPP elicited altered morphology and markedly elevated inducible nitric oxide (NO) synthase (iNOS) mRNA and protein expression in the infected macrophage cells. BPP also activated leukocytes in S. Typhimurium-infected mice, as determined by spleen lymphocyte proliferation and IFN-γ levels in mice sera. ELISA analysis on cytokine production by Th1 and Th2 immune cells from splenocytes of infected mice showed significant increases in the levels of the following Th1 cytokines: IL-1β, IL-2, IL-6, and IL-12. Histology assays of the livers of mice infected with a sublethal dose (1 × 10(4) CFU) of S. Typhimurium showed that BPP, administered daily through an intraperitoneal (ip) or oral route, protected against necrosis of the liver, a biomarker of in vivo salmonellosis. The lifespan of mice similarly infected with a lethal dose of S. Typhimurium (1 × 10(5) CFU) was significantly extended by ip injection or oral administration of the BPP without side effects. These results suggest that the activity of BPP against bacterial infection in mice occurs mainly through the activation of macrophage-mediated immune response resulting from augmented Th1 immunity. The significance of the results for microbial food safety and human health and further research needs are discussed.

  3. Seasonal variation of different microorganisms with nickel and cadmium in the industrial wastewater and agricultural soils.

    PubMed

    Ansari, Mohd Ikram; Malik, Abdul

    2010-08-01

    Wastewater and soil samples were collected from the industrial area of Ghaziabad City, India from January 2005 to December 2007 and were analyzed for the presence of heavy metals by atomic absorption spectrophotometry. Test samples revealed high levels of Fe, Cr, Cu, Ni, Zn, and Cd as 967.03, 34.63, 27.97, 19.7, 16.70, and 3.20 mg/L of wastewater, respectively. The concentrations of inorganic minerals were higher in the soil samples irrigated with wastewater. Total coliforms were found to be maximum (1,133x10(4) most probable number per 100 mL) during spring and summer followed by winter and postmonsoon in the wastewater samples. The microbial count in soil as well as in wastewater decreases as the metal concentration increases. The concentration 200 microg/mL of nickel and cadmium inhibits majority of the population, while, at some points, it inhibits 100% of the population. The exponential decay model for microbial count at the increasing metal concentrations indicate that asymbiotic N2 fixers were best fitted to the model. In all the seasons, the order of decline in terms of exponential decay of the population of different microbial groups in soil was asymbiotic N2 fixers>actinomycetes>fungi>aerobic heterotrophic bacteria. The different microbial groups that have different values of slope in different seasons indicate that the resistant population of microorganisms was variable with seasons.

  4. Ohmic resistance affects microbial community and electrochemical kinetics in a multi-anode microbial electrochemical cell

    EPA Science Inventory

    Multi-anode microbial electrochemical cells (MXCs) are considered as one of the most promising configurations for scale-up of MXCs, but fundamental understanding of anode kinetics governing current density is limited in the MXCs. In this study we first assessed microbial communi...

  5. Utility of Fite-Faraco stain for both mast cell count and bacillary index in skin biopsies of leprosy patients.

    PubMed

    Chatura, K R; Sangeetha, S

    2012-01-01

    To assess the utility of a single stain for both mast cell count and bacillary index (BI), 50 skin-biopsie patients were stained with Fite-Faraco (FF) stain, viewed under oil immersion and BI calculated using the Ridley's logarithmic scale, and mast cells counted as the number of cells per mm2. Mean mast cell count per mm2 at the tuberculoid pole was lowest in TT 7.9 and highest in BT 14.23. At the lepromatous end, it was highest in BL 9.21, while in LL it was 8.23. Highest counts were seen in the borderline types overall. The correlation coefficient between histopathological diagnosis and BI is 0.822 which is a positive correlation to a significant degree. The correlation coefficient between histopathological diagnosis and mast cell count was found to be -0.17, which is a negative correlation but not to a significant degree. FF stain was utilised to visualise both bacilli for estimation of BI and mast cells for mast cell count, a seldom attempted feature in literature.

  6. Effects of low-doses of Bacillus spp. from permafrost on differentiation of bone marrow cells.

    PubMed

    Kalyonova, L F; Novikova, M A; Kostolomova, E G

    2015-01-01

    The effects of a new microorganism species (Bacillus spp., strain M3) isolated from permafrost specimens from Central Yakutia (Mamontova Mountain) on the bone marrow hemopoiesis were studied on laboratory mice. Analysis of the count and immunophenotype of bone marrow cells indicated that even in low doses (1000-5000 microbial cells) these microorganisms modulated hemopoiesis and lymphopoiesis activity. The percentage of early hemopoietic precursors (CD117(+)CD34(-)) increased, intensity of lymphocyte precursor proliferation and differentiation (CD25(+)CD44(-)) decreased, and the percentage of lymphocytes released from the bone marrow (CD25(+)CD44(+)) increased on day 21 after injection of the bacteria. These changes in activity of hemopoiesis were associated with changes in the level of regulatory T lymphocytes (reduced expression of TCRαβ) and were most likely compensatory. The possibility of modulating hemopoiesis activity in the bone marrow by low doses of one microorganism strain isolated from the permafrost could be useful for evaluating the effects of other low dose bacteria on the bone marrow hemopoiesis.

  7. Long-term patterns in CD4 response are determined by an interaction between baseline CD4 cell count, viral load, and time: The Asia Pacific HIV Observational Database (APHOD).

    PubMed

    Egger, Sam; Petoumenos, Kathy; Kamarulzaman, Adeeba; Hoy, Jennifer; Sungkanuparph, Somnuek; Chuah, John; Falster, Kathleen; Zhou, Jialun; Law, Matthew G

    2009-04-15

    Random effects models were used to explore how the shape of CD4 cell count responses after commencing combination antiretroviral therapy (cART) develop over time and, in particular, the role of baseline and follow-up covariates. Patients in Asia Pacific HIV Observational Database who first commenced cART after January 1, 1997, and who had a baseline CD4 cell count and viral load measure and at least 1 follow-up measure between 6 and 24 months, were included. CD4 cell counts were determined at every 6-month period after the commencement of cART for up to 6 years. A total of 1638 patients fulfilled the inclusion criteria with a median follow-up time of 58 months. Lower post-cART mean CD4 cell counts were found to be associated with increasing age (P < 0.001), pre-cART hepatitis C coinfection (P = 0.038), prior AIDS (P = 0.019), baseline viral load < or equal to 100,000 copies per milliliter (P < 0.001), and the Asia Pacific region compared with Australia (P = 0.005). A highly significant 3-way interaction between the effects of time, baseline CD4 cell count, and post-cART viral burden (P < 0.0001) was demonstrated. Higher long-term mean CD4 cell counts were associated with lower baseline CD4 cell count and consistently undetectable viral loads. Among patients with consistently detectable viral load, CD4 cell counts seemed to converge for all baseline CD4 levels. Our analysis suggest that the long-term shape of post-cART CD4 cell count changes depends only on a 3-way interaction between baseline CD4 cell count, viral load response, and time.

  8. Poly iron sulfate flocculant as an effective additive for improving the performance of microbial fuel cells.

    PubMed

    Miyahara, Morio; Sakamoto, Akihiro; Kouzuma, Atsushi; Watanabe, Kazuya

    2016-12-01

    Laboratory microbial fuel cells were supplied with artificial wastewater and used to examine how supplementation with poly iron sulfate, an inorganic polymer flocculant widely used in wastewater-treatment plants, affects electricity generation and anode microbiomes. It is shown that poly iron sulfate substantially increases electric outputs from microbial fuel cells. Microbiological analyses show that iron and sulfate separately affect anode microbiomes, and the increase in power output is associated with the increases in bacteria affiliated with the families Geobacteraceae and/or Desulfuromonadaceae. We suggest that poly iron sulfate is an effective additive for increasing the electric output from microbial fuel cells. Other utilities of poly iron sulfate in microbial fuel cells are also discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. A comparison of manual and electronic counting for total nucleated cell counts on synovial fluid from canine stifle joints.

    PubMed

    Atilola, M A; Lumsden, J H; Rooke, F

    1986-04-01

    Synovial fluids collected from the stifle joints of 20 physically normal adult dogs were subjected to cytological examination. A total nucleated cell count was performed on each sample using both an electronic cell counter and a hemocytometer. The mean of the total counts done with the electronic counter was significantly higher (1008 cells/microL) than that obtained manually with the hemocytometer (848 cells/microL).

  10. Mycological studies housed in the Apollo 16 microbial ecology evaluation device

    NASA Technical Reports Server (NTRS)

    Volz, P. A.

    1973-01-01

    Survival, death, and phenotype count have yielded variation in the number of fungi recovered from the controls and the flight exposed cuvettes during preliminary analysis of postflight first phase data. Also the preliminary analysis was indicative that fungi exposed to specific space flight conditions demonstrated variable survival rates and phenotype counts. Specific space flight conditions included full light space exposure for Chaetomium globosum, exposure at 300- and 254-nanometer wavelengths for Rhodotorula rubra, full light and 280-nanometer wavelength exposure for Trichophyton terrestre, and 254-nanometer wavelength exposure for Saccharomyces cerevisiae. In general, phenotype counts for flight cuvettes and survival rates for control cuvettes were higher compared with the remaining cuvettes.

  11. Abundance and Distribution of Microbial Cells and Viruses in an Alluvial Aquifer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Donald; Nolan, Jason; Williams, Kenneth H.

    Viruses are the most abundant biological entity on Earth and their interactions with microbial communities are recognized to influence microbial ecology and impact biogeochemical cycling in various ecosystems. While the factors that control the distribution of viruses in surface aquatic environments are well-characterized, the abundance and distribution of continental subsurface viruses with respect to microbial abundance and biogeochemical parameters have not yet been established. In order to begin to understand the factors governing virus distribution in subsurface environments, we assessed microbial cell and virus abundance in groundwater concurrent with groundwater chemistry in a uranium impacted alluvial aquifer adjoining the Coloradomore » River near Rifle, CO. Virus abundance ranged from 8.0 × 10 4 to 1.0 × 10 6 mL -1 and exceeded cell abundance in all samples (cell abundance ranged from 5.8 × 10 4 to 6.1 × 10 5 mL -1). The virus to microbial cell ratio ranged from 1.1 to 8.1 and averaged 3.0 ± 1.6 with virus abundance most strongly correlated to cell abundance (Spearman's ρ = 0.73, p < 0.001). Both viruses and cells were positively correlated to dissolved organic carbon (DOC) with cells having a slightly stronger correlation (Spearman's ρ = 0.46, p < 0.05 and ρ = 0.54, p < 0.05; respectively). Groundwater uranium was also strongly correlated with DOC and virus and cell abundance (Spearman's ρ = 0.62, p < 0.05; ρ = 0.46, p < 0.05; and ρ = 0.50, p < 0.05; respectively). Together the data indicate that microbial cell and virus abundance are correlated to the geochemical conditions in the aquifer. As such local geochemical conditions likely control microbial host cell abundance which in turn controls viral abundance. Given the potential impacts of viral-mediated cell lysis such as liberation of labile organic matter from lysed cells and changes in microbial community structure, viral interactions with the microbiota should be considered in an effort to understand subsurface biogeochemical cycling and contaminant mobility.« less

  12. Abundance and Distribution of Microbial Cells and Viruses in an Alluvial Aquifer

    DOE PAGES

    Pan, Donald; Nolan, Jason; Williams, Kenneth H.; ...

    2017-07-11

    Viruses are the most abundant biological entity on Earth and their interactions with microbial communities are recognized to influence microbial ecology and impact biogeochemical cycling in various ecosystems. While the factors that control the distribution of viruses in surface aquatic environments are well-characterized, the abundance and distribution of continental subsurface viruses with respect to microbial abundance and biogeochemical parameters have not yet been established. In order to begin to understand the factors governing virus distribution in subsurface environments, we assessed microbial cell and virus abundance in groundwater concurrent with groundwater chemistry in a uranium impacted alluvial aquifer adjoining the Coloradomore » River near Rifle, CO. Virus abundance ranged from 8.0 × 10 4 to 1.0 × 10 6 mL -1 and exceeded cell abundance in all samples (cell abundance ranged from 5.8 × 10 4 to 6.1 × 10 5 mL -1). The virus to microbial cell ratio ranged from 1.1 to 8.1 and averaged 3.0 ± 1.6 with virus abundance most strongly correlated to cell abundance (Spearman's ρ = 0.73, p < 0.001). Both viruses and cells were positively correlated to dissolved organic carbon (DOC) with cells having a slightly stronger correlation (Spearman's ρ = 0.46, p < 0.05 and ρ = 0.54, p < 0.05; respectively). Groundwater uranium was also strongly correlated with DOC and virus and cell abundance (Spearman's ρ = 0.62, p < 0.05; ρ = 0.46, p < 0.05; and ρ = 0.50, p < 0.05; respectively). Together the data indicate that microbial cell and virus abundance are correlated to the geochemical conditions in the aquifer. As such local geochemical conditions likely control microbial host cell abundance which in turn controls viral abundance. Given the potential impacts of viral-mediated cell lysis such as liberation of labile organic matter from lysed cells and changes in microbial community structure, viral interactions with the microbiota should be considered in an effort to understand subsurface biogeochemical cycling and contaminant mobility.« less

  13. Dysmegakaryocytopoiesis and maintaining platelet count in patients with plasma cell neoplasm.

    PubMed

    Mair, Yasmin; Zheng, Yan; Cai, Donghong

    2013-05-01

    Dysmegakaryocytopoiesis in patients with the plasma cell neoplasm (PCN) is rarely discussed in the literature. The puzzling phenomenon, which PCN patients maintaining normal platelet count even when the marrow is mostly replaced by plasma cells, is hardly explored. This study was aimed to determine the frequency of dysmegakaryocytopoiesis in PCN and the relationships between bone marrow (BM) plasma cell percentage, plasma cell immunomarkers, the severity of dysmegakaryocytopoiesis, and peripheral blood platelet count in PCN. We randomly selected 16 cases of PCN, among which 4 were with monoclonal gammopathy of undetermined significance and 12 were with plasma cell myeloma. OUR STUDY SHOWED THAT: (1) Dysmegakaryocytopoiesis was present in all the selected cases of PCN and its severity was not correlated with the percentage of the plasma cells in BM; (2) almost all patients maintained normal platelet count even when BM was mostly replaced by plasma cells; (3) immunomarkers of the neoplastic plasma cells were not associated with dysmegakaryocytopoiesis or maintaining of platelet count. The possible mechanisms behind dysmegakaryocytopoiesis and maintaining of platelet count were also discussed. Despite the universal presence of dysmegakaryocytopoiesis in PCN, the platelet count is maintained at normal range.

  14. Microbiological challenge of four protective devices for the reconstitution of cytotoxic agents.

    PubMed

    De Prijck, K; D'Haese, E; Vandenbroucke, J; Coucke, W; Robays, H; Nelis, H J

    2008-12-01

    To evaluate the susceptibility to microbial contamination that occurs during simulated handling of protective devices for the preparation of cytotoxic drug solutions. Four devices, i.e. Chemoprotect spike, Clave connector, PhaSeal and Securmix were challenged with low and high inocula of micro-organisms. The cells, transferred to the connected vials during repeated manipulations of the devices were counted by means of solid-phase cytometry. Of the four devices, PhaSeal afforded the lowest transfer of micro-organisms. Secondly, the efficiency of procedures for the disinfection of an artificially contaminated rubber stopper was compared prior to connection of the vial to the PhaSeal device. Spraying or swabbing alone was inadequate, as opposed to a combination of spraying [0.5% or 2.0% (w/v) chlorhexidine in isopropanol] and swabbing [70% (v/v) isopropanol]. Although Phaseal afforded the lowest transfer of micro-organisms, adequate disinfection of the vial prior to connection remains required. Unlike aspects of operator protection, which are well documented, the microbiological safety of protective devices for the preparation of cytotoxic drugs has not been addressed in the literature. This study estimates the susceptibility to microbial contamination during handling of four commonly used devices.

  15. Variation in coastal Antarctic microbial community composition at sub-mesoscale: spatial distance or environmental filtering?

    PubMed

    Moreno-Pino, Mario; De la Iglesia, Rodrigo; Valdivia, Nelson; Henríquez-Castilo, Carlos; Galán, Alexander; Díez, Beatriz; Trefault, Nicole

    2016-07-01

    Spatial environmental heterogeneity influences diversity of organisms at different scales. Environmental filtering suggests that local environmental conditions provide habitat-specific scenarios for niche requirements, ultimately determining the composition of local communities. In this work, we analyze the spatial variation of microbial communities across environmental gradients of sea surface temperature, salinity and photosynthetically active radiation and spatial distance in Fildes Bay, King George Island, Antarctica. We hypothesize that environmental filters are the main control of the spatial variation of these communities. Thus, strong relationships between community composition and environmental variation and weak relationships between community composition and spatial distance are expected. Combining physical characterization of the water column, cell counts by flow cytometry, small ribosomal subunit genes fingerprinting and next generation sequencing, we contrast the abundance and composition of photosynthetic eukaryotes and heterotrophic bacterial local communities at a submesoscale. Our results indicate that the strength of the environmental controls differed markedly between eukaryotes and bacterial communities. Whereas eukaryotic photosynthetic assemblages responded weakly to environmental variability, bacteria respond promptly to fine-scale environmental changes in this polar marine system. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Properties of biophotons and their theoretical implications.

    PubMed

    Popp, Fritz-Albert

    2003-05-01

    The word "biophotons" is used to denote a permanent spontaneous photon emission from all living systems. It displays a few up to some hundred photons/(s x cm2) within the spectral range from at least 260 to 800 nm. It is closely linked to delayed luminescence (DL) of biological tissues which describes the long term and ultra weak reemission of photons after exposure to light illumination. During relaxation DL turns continuously into the steady state biophoton emission, where both, DL and biophoton emission exhibit mode coupling over the entire spectrum and a Poissonian photo count distribution. DL is representing excited states of the biophoton field. The physical properties indicate that biophotons originate from fully coherent and sometimes even squeezed states. The physical analysis provides thermodynamic and quantum optical interpretation, in order to understand the biological impacts of biophotons. Biological phenomena like intracellular and intercellular communication, cell growth and differentiation, interactions among biological systems (like "Gestaltbildung" or swarming), and microbial infections can be understood in terms of biophotons. "Biophotonics", the corresponding field of applications, provide a new powerful tool for assessing the quality of food (like freshness and shelf life), microbial infections, environmental influences and for substantiating medical diagnosis and therapy.

  17. Comparison of Antibacterial Effects of 810 and 980- nanometer Diode Lasers on Enterococcus Faecalis in the Root Canal System -An in vitro study.

    PubMed

    Asnaashari, Mohamad; Ebad, Leila Tahmasebi; Shojaeian, Shiva

    2016-10-01

    Background and aim: Use of laser technology in endodontics has greatly increased in the recent years due to the introduction of new wavelengths and methods and optimal antimicrobial and smear layer removal properties of lasers. This in vitro study aimed to compare the antibacterial effects of diode lasers of 810 nm and 980 nm wavelength on Enterococcus faecalis (E. faecalis) biofilm in the root canal system. Materials and methods: Fifty single-canal human anterior teeth were cleaned, shaped, sterilized and randomly divided into four groups namely two experimental, one positive and one negative control group. The experimental and positive control groups were inoculated with E. faecalis and incubated for two weeks. The experimental group one (n=20) received 810 nm diode laser irradiation (1.5W) while the experimental group two (n=20) was subjected to 980 nm diode laser irradiation (1.5W). The E. faecalis colony forming units (CFUs) were counted in each root canal before and after laser irradiation. Results: Laser irradiation significantly decreased the bacterial colony count in both experimental groups. The reduction in microbial count was significantly greater in 810 nm laser group compared to 980 nm laser group. Conclusion: Irradiation of both 810 and 980 nm lasers significantly decreased the E. faecalis count in the root canal system; 810 nm laser was more effective in decreasing the intracanal microbial load.

  18. Comparison of Antibacterial Effects of 810 and 980- nanometer Diode Lasers on Enterococcus Faecalis in the Root Canal System —An in vitro study

    PubMed Central

    Asnaashari, Mohamad; Ebad, Leila Tahmasebi

    2016-01-01

    Background and aim: Use of laser technology in endodontics has greatly increased in the recent years due to the introduction of new wavelengths and methods and optimal antimicrobial and smear layer removal properties of lasers. This in vitro study aimed to compare the antibacterial effects of diode lasers of 810 nm and 980 nm wavelength on Enterococcus faecalis (E. faecalis) biofilm in the root canal system. Materials and methods: Fifty single-canal human anterior teeth were cleaned, shaped, sterilized and randomly divided into four groups namely two experimental, one positive and one negative control group. The experimental and positive control groups were inoculated with E. faecalis and incubated for two weeks. The experimental group one (n=20) received 810 nm diode laser irradiation (1.5W) while the experimental group two (n=20) was subjected to 980 nm diode laser irradiation (1.5W). The E. faecalis colony forming units (CFUs) were counted in each root canal before and after laser irradiation. Results: Laser irradiation significantly decreased the bacterial colony count in both experimental groups. The reduction in microbial count was significantly greater in 810 nm laser group compared to 980 nm laser group. Conclusion: Irradiation of both 810 and 980 nm lasers significantly decreased the E. faecalis count in the root canal system; 810 nm laser was more effective in decreasing the intracanal microbial load. PMID:27853346

  19. Diverse, rare microbial taxa responded to the Deepwater Horizon deep-sea hydrocarbon plume

    PubMed Central

    Kleindienst, Sara; Grim, Sharon; Sogin, Mitchell; Bracco, Annalisa; Crespo-Medina, Melitza; Joye, Samantha B

    2016-01-01

    The Deepwater Horizon (DWH) oil well blowout generated an enormous plume of dispersed hydrocarbons that substantially altered the Gulf of Mexico's deep-sea microbial community. A significant enrichment of distinct microbial populations was observed, yet, little is known about the abundance and richness of specific microbial ecotypes involved in gas, oil and dispersant biodegradation in the wake of oil spills. Here, we document a previously unrecognized diversity of closely related taxa affiliating with Cycloclasticus, Colwellia and Oceanospirillaceae and describe their spatio-temporal distribution in the Gulf's deepwater, in close proximity to the discharge site and at increasing distance from it, before, during and after the discharge. A highly sensitive, computational method (oligotyping) applied to a data set generated from 454-tag pyrosequencing of bacterial 16S ribosomal RNA gene V4–V6 regions, enabled the detection of population dynamics at the sub-operational taxonomic unit level (0.2% sequence similarity). The biogeochemical signature of the deep-sea samples was assessed via total cell counts, concentrations of short-chain alkanes (C1–C5), nutrients, (colored) dissolved organic and inorganic carbon, as well as methane oxidation rates. Statistical analysis elucidated environmental factors that shaped ecologically relevant dynamics of oligotypes, which likely represent distinct ecotypes. Major hydrocarbon degraders, adapted to the slow-diffusive natural hydrocarbon seepage in the Gulf of Mexico, appeared unable to cope with the conditions encountered during the DWH spill or were outcompeted. In contrast, diverse, rare taxa increased rapidly in abundance, underscoring the importance of specialized sub-populations and potential ecotypes during massive deep-sea oil discharges and perhaps other large-scale perturbations. PMID:26230048

  20. Habitat heterogeneity and associated microbial community structure in a small-scale floodplain hyporheic flow path.

    PubMed

    Lowell, Jennifer L; Gordon, Nathan; Engstrom, Dale; Stanford, Jack A; Holben, William E; Gannon, James E

    2009-10-01

    The Nyack floodplain is located on the Middle Fork of the Flathead River, an unregulated, pristine, fifth-order stream in Montana, USA, bordering Glacier National Park. The hyporheic zone is a nutritionally heterogeneous floodplain component harboring a diverse array of microbial assemblages essential in fluvial biogeochemical cycling, riverine ecosystem productivity, and trophic interactions. Despite these functions, microbial community structure in pristine hyporheic systems is not well characterized. The current study was designed to assess whether physical habitat heterogeneity within the hyporheic zone of the Nyack floodplain was sufficient to drive bacterial beta diversity between three different hyporheic flow path locations. Habitat heterogeneity was assessed by measuring soluble reactive phosphorous, nitrate, dissolved organic carbon, dissolved oxygen, and soluble total nitrogen levels seasonally at surface water infiltration, advection, and exfiltration zones. Significant spatial differences were detected in dissolved oxygen and nitrate levels, and seasonal differences were detected in dissolved oxygen, nitrate, and dissolved organic carbon levels. Denaturing gradient gel electrophoresis (DGGE) and cell counts indicated that bacterial diversity increased with abundance, and DGGE fingerprints covaried with nitrate levels where water infiltrated the hyporheic zone. The ribosomal gene phylogeny revealed that hyporheic habitat heterogeneity was sufficient to drive beta diversity between bacterial assemblages. Phylogenetic (P) tests detected sequence disparity between the flow path locations. Small distinct lineages of Firmicutes, Actinomycetes, Planctomycetes, and Acidobacteria defined the infiltration zone and alpha- and beta-proteobacterial lineages delineated the exfiltration and advection zone communities. These data suggest that spatial habitat heterogeneity drives hyporheic microbial community development and that attempts to understand functional differences between bacteria inhabiting nutritionally heterogeneous hyporheic environments might begin by focusing on the biology of these taxa.

  1. A novel concentration and viability detection method for Brettanomyces using the Cellometer image cytometry.

    PubMed

    Martyniak, Brian; Bolton, Jason; Kuksin, Dmitry; Shahin, Suzanne M; Chan, Leo Li-Ying

    2017-01-01

    Brettanomyces spp. can present unique cell morphologies comprised of excessive pseudohyphae and budding, leading to difficulties in enumerating cells. The current cell counting methods include manual counting of methylene blue-stained yeasts or measuring optical densities using a spectrophotometer. However, manual counting can be time-consuming and has high operator-dependent variations due to subjectivity. Optical density measurement can also introduce uncertainties where instead of individual cells counted, an average of a cell population is measured. In contrast, by utilizing the fluorescence capability of an image cytometer to detect acridine orange and propidium iodide viability dyes, individual cell nuclei can be counted directly in the pseudohyphae chains, which can improve the accuracy and efficiency of cell counting, as well as eliminating the subjectivity from manual counting. In this work, two experiments were performed to demonstrate the capability of Cellometer image cytometer to monitor Brettanomyces concentrations, viabilities, and budding/pseudohyphae percentages. First, a yeast propagation experiment was conducted to optimize software counting parameters for monitoring the growth of Brettanomyces clausenii, Brettanomyces bruxellensis, and Brettanomyces lambicus, which showed increasing cell concentrations, and varying pseudohyphae percentages. The pseudohyphae formed during propagation were counted either as multiple nuclei or a single multi-nuclei organism, where the results of counting the yeast as a single multi-nuclei organism were directly compared to manual counting. Second, a yeast fermentation experiment was conducted to demonstrate that the proposed image cytometric analysis method can monitor the growth pattern of B. lambicus and B. clausenii during beer fermentation. The results from both experiments displayed different growth patterns, viability, and budding/pseudohyphae percentages for each Brettanomyces species. The proposed Cellometer image cytometry method can improve efficiency and eliminate operator-dependent variations of cell counting compared with the traditional methods, which can potentially improve the quality of beverage products employing Brettanomyces yeasts.

  2. A Novel Automated Slide-Based Technology for Visualization, Counting, and Characterization of the Formed Elements of Blood: A Proof of Concept Study.

    PubMed

    Winkelman, James W; Tanasijevic, Milenko J; Zahniser, David J

    2017-08-01

    - A novel automated slide-based approach to the complete blood count and white blood cell differential count is introduced. - To present proof of concept for an image-based approach to complete blood count, based on a new slide preparation technique. A preliminary data comparison with the current flow-based technology is shown. - A prototype instrument uses a proprietary method and technology to deposit a precise volume of undiluted peripheral whole blood in a monolayer onto a glass microscope slide so that every cell can be distinguished, counted, and imaged. The slide is stained, and then multispectral image analysis is used to measure the complete blood count parameters. Images from a 600-cell white blood cell differential count, as well as 5000 red blood cells and a variable number of platelets, that are present in 600 high-power fields are made available for a technologist to view on a computer screen. An initial comparison of the basic complete blood count parameters was performed, comparing 1857 specimens on both the new instrument and a flow-based hematology analyzer. - Excellent correlations were obtained between the prototype instrument and a flow-based system. The primary parameters of white blood cell, red blood cell, and platelet counts resulted in correlation coefficients (r) of 0.99, 0.99, and 0.98, respectively. Other indices included hemoglobin (r = 0.99), hematocrit (r = 0.99), mean cellular volume (r = 0.90), mean corpuscular hemoglobin (r = 0.97), and mean platelet volume (r = 0.87). For the automated white blood cell differential counts, r values were calculated for neutrophils (r = 0.98), lymphocytes (r = 0.97), monocytes (r = 0.76), eosinophils (r = 0.96), and basophils (r = 0.63). - Quantitative results for components of the complete blood count and automated white blood cell differential count can be developed by image analysis of a monolayer preparation of a known volume of peripheral blood.

  3. Microbial Survey of Pennsylvania Surface Water Used for Irrigating Produce Crops.

    PubMed

    Draper, Audrey D; Doores, Stephanie; Gourama, Hassan; LaBorde, Luke F

    2016-06-01

    Recent produce-associated foodborne illness outbreaks have been attributed to contaminated irrigation water. This study examined microbial levels in Pennsylvania surface waters used for irrigation, relationships between microbial indicator organisms and water physicochemical characteristics, and the potential use of indicators for predicting the presence of human pathogens. A total of 153 samples taken from surface water sources used for irrigation in southeastern Pennsylvania were collected from 39 farms over a 2-year period. Samples were analyzed for six microbial indicator organisms (aerobic plate count, Enterobacteriaceae, coliform, fecal coliforms, Escherichia coli, and enterococci), two human pathogens (Salmonella and E. coli O157), and seven physical and environmental characteristics (pH, conductivity, turbidity, air and water temperature, and sampling day and 3-day-accumulated precipitation levels). Indicator populations were highly variable and not predicted by water and environmental characteristics. Only five samples were confirmed positive for Salmonella, and no E. coli O157 was detected in any samples. Predictive relationships between microbial indicators and the occurrence of pathogens could therefore not be determined.

  4. Changes in microbial and nutrient composition associated with rumen content compost incubation.

    PubMed

    Shrestha, Karuna; Shrestha, Pramod; Adetutu, Eric M; Walsh, Kerry B; Harrower, Keith M; Ball, Andrew S; Midmore, David J

    2011-02-01

    Physico-chemical and microbiological investigations were carried out on rumen content material composted for nine months, fresh vermicasts (obtained after passing the same compost through the guts of a mixture of three species of earthworms: Eisenia fetida, Lumbricus rubellus and Perionyx excavates) and microbially enhanced extracts derived from rumen compost, vermicast and vermicast leachate incubated for up to 48 h. Compared to composted rumen contents, vermicast was only improved in terms of microbial biomass C, while vermicast leached extract was significantly higher in NH(4)(+)-N,PO(4)(-)-P, humic acid, bacterial counts and total microbial activity compared to rumen compost extract. Although no difference between treatments was observed in genetic diversity as indicated by DGGE analysis, community level functional diversity of vermicast leached extract (Biolog™) was higher than that of composted rumen contents, vermicast and rumen compost extract indicating an enhancement of microbial activity rather than diversity due to liquid incubation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. [Correlation between red blood cell count and liver function status].

    PubMed

    Xie, Xiaomeng; Wang, Leijie; Yao, Mingjie; Wen, Xiajie; Chen, Xiangmei; You, Hong; Jia, Jidong; Zhao, Jingmin; Lu, Fengmin

    2016-02-01

    To investigate the changes in red blood cell count in patients with different liver diseases and the correlation between red blood cell count and degree of liver damage. The clinical data of 1427 patients with primary liver cancer, 172 patients with liver cirrhosis, and 185 patients with hepatitis were collected, and the Child-Pugh class was determined for all patients. The differences in red blood cell count between patients with different liver diseases were retrospectively analyzed, and the correlation between red blood cell count and liver function status was investigated. The Mann-Whitney U test, Kruskal-Wallis H test, rank sum test, Spearman rank sum correlation test, and chi-square test were performed for different types of data. Red blood cell count showed significant differences between patients with chronic hepatitis, liver cancer, and liver cirrhosis and was highest in patients with chronic hepatitis and lowest in patients with liver cirrhosis (P < 0.05). In the patients with liver cirrhosis, red blood cell count tended to decrease in patients with a higher Child-Pugh class (P < 0.05). For patients with liver cirrhosis, red blood cell count can reflect the degree of liver damage, which may contribute to an improved liver function prediction model for these patients.

  6. Electrospray-assisted drying of live probiotics in acacia gum microparticles matrix.

    PubMed

    Zaeim, Davood; Sarabi-Jamab, Mahboobe; Ghorani, Behrouz; Kadkhodaee, Rassoul; Tromp, R Hans

    2018-03-01

    Acacia gum solution was employed as a carrier for electrospray-assisted drying of probiotic cells. To optimize the process, effect of gum concentration, thermal sterilization as a prerequisite for microbial studies, and surfactant addition on physical properties of feed solution was investigated. Increasing gum concentration from 20 to 40 wt.% led to a viscosity increase, whilst surface tension did not change meaningfully and electrical conductivity declined after an increasing trend up to 30 wt.% of the gum. Thermal sterilization increased the viscosity without any significant effect on the conductivity and surface tension. Surfactant addition reduced the surface tension and conductivity but the viscosity increased. Highly uniform particles were formed by electrospray-assisted drying of autoclaved 35 wt.% acacia gum solution containing 1 wt.% Tween 80. Thermal sterilization and surfactant addition improved electrospray-ability of acacia gum solution. Bacterial count showed that more than 96 percent of probiotic cells passed the process viably. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Chitosan-thioglycolic acid as a versatile antimicrobial agent.

    PubMed

    Geisberger, Georg; Gyenge, Emina Besic; Hinger, Doris; Käch, Andres; Maake, Caroline; Patzke, Greta R

    2013-04-08

    As functionalized chitosans hold great potential for the development of effective and broad-spectrum antibiotics, representative chitosan derivatives were tested for antimicrobial activity in neutral media: trimethyl chitosan (TMC), carboxy-methyl chitosan (CMC), and chitosan-thioglycolic acid (TGA; medium molecular weight: MMW-TGA; low molecular weight: LMW-TGA). Colony forming assays indicated that LMW-TGA displayed superior antimicrobial activity over the other derivatives tested: a 30 min incubation killed 100% Streptococcus sobrinus (Gram-positive bacteria) and reduced colony counts by 99.99% in Neisseria subflava (Gram-negative bacteria) and 99.97% in Candida albicans (fungi). To elucidate LMW-TGA effects at the cellular level, microscopic studies were performed. Use of fluorescein isothiocyanate (FITC)-labeled chitosan derivates in confocal microscopy showed that LMW-TGA attaches to microbial cell walls, while transmission electron microscopy indicated that this derivative severely affects cell wall integrity and intracellular ultrastructure in all species tested. We therefore propose LMW-TGA as a promising and effective broad-band antimicrobial compound.

  8. Slurry-phase biodegradation of weathered oily sludge waste.

    PubMed

    Machín-Ramírez, C; Okoh, A I; Morales, D; Mayolo-Deloisa, K; Quintero, R; Trejo-Hernández, M R

    2008-01-01

    We assessed the biodegradation of a typical oily sludge waste (PB401) in Mexico using several regimes of indigenous microbial consortium and relevant bioremediation strategies in slurry-phase system. Abiotic loss of total petroleum hydrocarbons (TPH) in the PB401 was insignificant, and degradation rates under the various treatment conditions ranged between 666.9 and 2168.7 mg kg(-1) day(-1) over a 15 days reaction period, while viable cell count peaked at between log(10)5.7 and log(10)7.4 cfu g(-1). Biostimulation with a commercial fertilizer resulted in 24% biodegradation of the TPH in the oily waste and a corresponding peak cell density of log(10)7.4 cfu g(-1). Addition of non-indigenous adapted consortium did not appear to enhance the removal of TPH from the oily waste. It would appear that the complexities of the components of the alkylaromatic fraction of the waste limited biodegradation rate even in a slurry system.

  9. Does natural honey act as an alternative to antibiotics in the semen extender for cryopreservation of crossbred ram semen?

    PubMed Central

    Banday, M. N.; Lone, F. A.; Rasool, F.; Rather, H. A.; Rather, M. A.

    2017-01-01

    Antibiotics are added to semen extenders to take care of heavy microbial load, however, their continuous use poses a constant threat of developing antibiotic resistance by the common microbes present in the semen. Our hypothesis was that natural honey, having antibacterial activity and rich in fructose could replace the use of antibiotics and fructose in the semen extender. Twenty-four ejaculates from six crossbred rams were obtained and extended with tris-based extender without (control) and with honey at 2.5% (T1), 5% (T2) and 7% (T3). Sperm quality was measured in terms of percentage sperm motility, live sperm count, intact acrosome and hypo-osmotic swelling test (HOST) reacted spermatozoa. The semen samples at post-thaw were also evaluated for total viable count (colony forming units/ml). At post-thaw, control exhibited significantly (P<0.05) higher sperm motility in comparison to T2 and T3. The percent of live sperm count, intact acrosome and HOST reacted spermatozoa were significantly higher (P<0.05) for control than all other treatment groups at post-thaw. Among treatment groups, T1 maintained significantly higher (P<0.05) percentage of live sperm count, intact acrosome and HOST reacted spermatozoa than T2 and T3. The total viable count at post-thaw was significantly lower (P<0.05) for control than all the treatment groups. In conclusion, honey cannot be used as an alternative to antibiotics to take care of heavy microbial load in semen, however, levels up to 2.5% may be supplemented to semen as an energy source. PMID:29387098

  10. Microbial colonization at the implant-abutment interface and its possible influence on periimplantitis: A systematic review and meta-analysis.

    PubMed

    Tallarico, Marco; Canullo, Luigi; Caneva, Martina; Özcan, Mutlu

    2017-07-01

    The aim of this systematic review and meta-analysis was to evaluate the microbial colonization at the implant-abutment interfaces (IAI) on bone-level implants and to identify possible association with peri-implant conditions. The focus question aimed to answer whether two-piece osseointegrated implants, in function for at least 1 year, in human, relate to higher bacterial count and the onset of periimplantitis, compared to healthy peri-implant conditions. Search strategy encompassed the on-line (MedLine, Google scholar, Cochrane library) literature from 1990 up to March 2015 published in English using combinations of MeSH (Medical Subject Headings) and search terms. Quality assessment of selected full-text articles was performed according to the ARRIVE and CONSORT statement guidelines. For data analysis, the total bacterial count of Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola, Prevotella intermedia, and Fusobacterium nucleatum was calculated and compared to IAI with or without peri-implant pathology. A total of 14 articles, reporting data from 1126 implants, fulfilled the inclusion criteria and subjected to quality assessment. The selected studies revealed contamination of the IAI, in patients who received two-piece implant systems. Meta-analysis indicated significant difference in total bacterial count between implants affected by periimplantitis versus healthy peri-implant tissues (0.387±0.055; 95% CI 0.279-0.496). Less bacterial counts were identified in the healthy IAI for all the investigated gram-negative bacteria except for T. forsythia. Significantly higher bacterial counts were found for periodontal pathogenic bacteria within the IAI of implants in patients with periimplantitis compared to those implants surrounded by healthy peri-implant tissues. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  11. Transcriptome analysis reveals that multidrug efflux genes are upregulated to protect Pseudomonas aeruginosa from pentachlorophenol stress.

    PubMed

    Muller, Jocelyn Fraga; Stevens, Ann M; Craig, Johanna; Love, Nancy G

    2007-07-01

    Through chemical contamination of natural environments, microbial communities are exposed to many different types of chemical stressors; however, research on whole-genome responses to this contaminant stress is limited. This study examined the transcriptome response of a common soil bacterium, Pseudomonas aeruginosa, to the common environmental contaminant pentachlorophenol (PCP). Cells were grown in chemostats at a low growth rate to obtain substrate-limited, steady-state, balanced-growth conditions. The PCP stress was administered as a continuous increase in concentration, and samples taken over time were examined for physiological function changes with whole-cell acetate uptake rates (WAURs) and cell viability and for gene expression changes by Affymetrix GeneChip technology and real-time reverse transcriptase PCR. Cell viability, measured by heterotrophic plate counts, showed a moderately steady decrease after exposure to the stressor, but WAURs did not change in response to PCP. In contrast to the physiological data, the microarray data showed significant changes in the expression of several genes. In particular, genes coding for multidrug efflux pumps, including MexAB-OprM, were strongly upregulated. The upregulation of these efflux pumps protected the cells from the potentially toxic effects of PCP, allowing the physiological whole-cell function to remain constant.

  12. Lower white blood cell counts in elite athletes training for highly aerobic sports.

    PubMed

    Horn, P L; Pyne, D B; Hopkins, W G; Barnes, C J

    2010-11-01

    White cell counts at rest might be lower in athletes participating in selected endurance-type sports. Here, we analysed blood tests of elite athletes collected over a 10-year period. Reference ranges were established for 14 female and 14 male sports involving 3,679 samples from 937 females and 4,654 samples from 1,310 males. Total white blood cell counts and counts of neutrophils, lymphocytes and monocytes were quantified. Each sport was scaled (1-5) for its perceived metabolic stress (aerobic-anaerobic) and mechanical stress (concentric-eccentric) by 13 sports physiologists. Substantially lower total white cell and neutrophil counts were observed in aerobic sports of cycling and triathlon (~16% of test results below the normal reference range) compared with team or skill-based sports such as water polo, cricket and volleyball. Mechanical stress of sports had less effect on the distribution of cell counts. The lower white cell counts in athletes in aerobic sports probably represent an adaptive response, not underlying pathology.

  13. Post-Transplantation Natural Killer Cell Count: A Predictor of Acute Graft-Versus-Host Disease and Survival Outcomes After Allogeneic Hematopoietic Stem Cell Transplantation.

    PubMed

    Kim, Seo Yeon; Lee, Hyewon; Han, Mi-Soon; Shim, Hyoeun; Eom, Hyeon-Seok; Park, Boram; Kong, Sun-Young

    2016-09-01

    Reconstitution of the immune system after allogeneic hematopoietic stem cell transplantation (allo-HSCT) plays an important role in post-transplant outcomes. However, the clinical relevance of the lymphocyte subset (LST) counts to transplant-related complications and survival outcomes after allo-HSCT has not been fully elucidated. A total of 70 patients who had undergone allo-HSCT from 2007 to 2013, with LST results both 7 days before conditioning and 30 or 90 days after allo-HSCT were included. The LST counts in the peripheral blood were determined using 6-color flow cytometry. Clinical information, including transplant-related events during the first 100 days after allo-HSCT, was reviewed, and any association between these events and LST was analyzed. At 30 days after allo-HSCT, the CD4 + T-cell (P = .009) and B-cell (P = .035) counts were lower and the natural killer (NK) cell count was greater (P < .001) than before conditioning. The CD8 + T-cell (P = .001) and NK cell (P < .001) counts were high 90 days after transplantation. The hazard ratios for a low NK cell count on days 30 and 90 for acute graft-versus-host disease were 6.22 and 14.67, respectively. Patients with low NK cell counts at 30 and 90 days after allo-HSCT had poorer overall survival (P = .043 and P = .028, respectively) and greater nonrelapse mortality (P = .036 and P = .033, respectively). A low NK cell count on day 30 was still prognostic for overall survival (P = .039) on multivariable analysis. NK cell counts after allo-HSCT, especially on day 30, were predictive of acute graft-versus-host disease, nonrelapse mortality, and survival. Serial lymphocyte subset analysis can be used to identify and treat patients at risk during the early period after allo-HSCT. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Microbial Heat Recovery Cell (MHRC) System Concept

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This factsheet describes a project that aimed to develop a microbial heat recovery cell (MHRC) system that combines a microbial reverse electrodialysis technology with waste heat recovery to convert industrial effluents into electricity and hydrogen.

  15. Beyond the standard plate count: genomic views into microbial food ecology

    USDA-ARS?s Scientific Manuscript database

    Food spoilage is a complex process that involves multiple species with specific niches and metabolic processes; bacterial culturing techniques are the traditional methods for identifying the microbes responsible. These culture-dependent methods may be considered selective, targeting the isolation of...

  16. Evaluation of Options for Interpreting Environmental ...

    EPA Pesticide Factsheets

    Report Secondary data from the BioResponse Operational Testing and Evaluation project were used to study six options for interpreting culture-based/microbial count data sets that include left censored data, or measurements that are less than established quantification limits and/or detection limits.

  17. Do bacterial cell numbers follow a theoretical Poisson distribution? Comparison of experimentally obtained numbers of single cells with random number generation via computer simulation.

    PubMed

    Koyama, Kento; Hokunan, Hidekazu; Hasegawa, Mayumi; Kawamura, Shuso; Koseki, Shigenobu

    2016-12-01

    We investigated a bacterial sample preparation procedure for single-cell studies. In the present study, we examined whether single bacterial cells obtained via 10-fold dilution followed a theoretical Poisson distribution. Four serotypes of Salmonella enterica, three serotypes of enterohaemorrhagic Escherichia coli and one serotype of Listeria monocytogenes were used as sample bacteria. An inoculum of each serotype was prepared via a 10-fold dilution series to obtain bacterial cell counts with mean values of one or two. To determine whether the experimentally obtained bacterial cell counts follow a theoretical Poisson distribution, a likelihood ratio test between the experimentally obtained cell counts and Poisson distribution which parameter estimated by maximum likelihood estimation (MLE) was conducted. The bacterial cell counts of each serotype sufficiently followed a Poisson distribution. Furthermore, to examine the validity of the parameters of Poisson distribution from experimentally obtained bacterial cell counts, we compared these with the parameters of a Poisson distribution that were estimated using random number generation via computer simulation. The Poisson distribution parameters experimentally obtained from bacterial cell counts were within the range of the parameters estimated using a computer simulation. These results demonstrate that the bacterial cell counts of each serotype obtained via 10-fold dilution followed a Poisson distribution. The fact that the frequency of bacterial cell counts follows a Poisson distribution at low number would be applied to some single-cell studies with a few bacterial cells. In particular, the procedure presented in this study enables us to develop an inactivation model at the single-cell level that can estimate the variability of survival bacterial numbers during the bacterial death process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Laboratory blood analysis in Strigiformes-Part I: hematologic reference intervals and agreement between manual blood cell counting techniques.

    PubMed

    Ammersbach, Mélanie; Beaufrère, Hugues; Gionet Rollick, Annick; Tully, Thomas

    2015-03-01

    While hematologic reference intervals (RI) are available for multiple raptorial species of the order Accipitriformes and Falconiformes, there is a lack of valuable hematologic information in Strigiformes that can be used for diagnostic and health monitoring purposes. The objective was to report RI in Strigiformes for hematologic variables and to assess agreement between manual cell counting techniques. A multi-center prospective study was designed to assess hematologic RI and blood cell morphology in owl species. Samples were collected from individuals representing 13 Strigiformes species, including Great Horned Owl, Snowy Owl, Eurasian Eagle Owl, Barred Owl, Great Gray Owl, Ural Owl, Northern Saw-Whet Owls, Northern Hawk Owl, Spectacled Owl, Barn Owl, Eastern Screech Owl, Long-Eared Owl, and Short-Eared Owl. Red blood cell count was determined manually using a hemocytometer. White blood cell count was determined using 3 manual counting techniques: (1) phloxine B technique, (2) Natt and Herrick technique, and (3) estimation from the smear. Differential counts and blood cell morphology were determined on smears. Reference intervals were determined and agreement between methods was calculated. Important species-specific differences were observed in blood cell counts and granulocyte morphology. Differences in WBC count between species did not appear to be predictable based on phylogenetic relationships. Overall, most boreal owl species exhibited a lower WBC count than other species. Important disagreements were found between different manual WBC counting techniques. Disagreements observed between manual counting techniques suggest that technique-specific RI should be used in Strigiformes. © 2015 American Society for Veterinary Clinical Pathology.

  19. CD4 Cell Count Threshold for Cryptococcal Antigen Screening of HIV-Infected Individuals: A Systematic Review and Meta-analysis.

    PubMed

    Ford, Nathan; Shubber, Zara; Jarvis, Joseph N; Chiller, Tom; Greene, Greg; Migone, Chantal; Vitoria, Marco; Doherty, Meg; Meintjes, Graeme

    2018-03-04

    Current guidelines recommend screening all people living with human immunodeficiency virus (PLHIV) who have a CD4 count ≤100 cells/µL for cryptococcal antigen (CrAg) to identify those patients who could benefit from preemptive fluconazole treatment prior to the onset of meningitis. We conducted a systematic review to assess the prevalence of CrAg positivity at different CD4 cell counts. We searched 4 databases and abstracts from 3 conferences up to 1 September 2017 for studies reporting prevalence of CrAg positivity according to CD4 cell count strata. Prevalence estimates were pooled using random effects models. Sixty studies met our inclusion criteria. The pooled prevalence of cryptococcal antigenemia was 6.5% (95% confidence interval [CI], 5.7%-7.3%; 54 studies) among patients with CD4 count ≤100 cells/µL and 2.0% (95% CI, 1.2%-2.7%; 21 studies) among patients with CD4 count 101-200 cells/µL. Twenty-one studies provided sufficient information to compare CrAg prevalence per strata; overall, 18.6% (95% CI, 15.4%-22.2%) of the CrAg-positive cases identified at ≤200 cells/µL (n = 11823) were identified among individuals with a CD4 count 101-200 cells/µL. CrAg prevalence was higher among inpatients (9.8% [95% CI, 4.0%-15.5%]) compared with outpatients (6.3% [95% CI, 5.3%-7.4%]). The findings of this review support current recommendations to screen all PLHIV who have a CD4 count ≤100 cells/µL for CrAg and suggest that screening may be considered at CD4 cell count ≤200 cells/µL.

  20. Short communication: Snapshot of industry milk hauling practices in the western United States.

    PubMed

    Kuhn, Eva; Meunier-Goddik, Lisbeth; Waite-Cusic, Joy G

    2018-03-01

    The Pasteurized Milk Ordinance (PMO) mandates milk hauling sanitation and operational practices; however, the use of vague language (i.e., "as needed") and gaps in processes lead to variability in industry practices. Our aim was to characterize industry milk hauling practices and identify areas that may be an unexplained source of contamination in the dairy processing continuum, and communicate this information with industry to cultivate best practices. The objectives of this study were to (1) survey industry hauling sanitation and operation practices in the Pacific Northwest region of the United States, and (2) quantify microbial populations [aerobic plate count (APC), lactic acid bacteria, coliforms] on the internal surfaces of transfer hoses (tanker and receiving bay) to determine their potential contribution to the microbiological quality of raw milk. Eleven facilities (78% response rate) participated in our survey. All facilities surveyed were compliant with the PMO; however, overall milk reception layout, sanitation practices, and routine maintenance greatly varied between facilities. Farm hose samples (n = 115) had significantly higher microbial loads (APC: mean 4.7 log cfu/100 cm 2 ; median 5.1 log cfu/cm 2 ) than receiving hose samples (n = 57; APC: mean: 2.1 log cfu/100 cm 2 ; median 1.9 log cfu/100 cm 2 ). Microbial populations on transfer hose surfaces did not correlate with time since last cleaning for either tanker or receiving bay hoses. Microbial content of farm hoses is likely to reflect the microbial quality of the previous milk transferred through the hose, making on-farm management practices the primary consideration to maintain low microbiological counts downstream. Upon arrival at the processor, 10% of farm hoses were missing caps. Although this did not correlate with elevated microbiological counts, uncapped farm hoses are exposed to the farm environment, provide opportunity for contamination, and are in violation of the PMO. Through observations made during our studies, manual cleaning procedures appear to be a major weakness in hauling practices and need more attention. Recognizing and communicating variability and areas of weakness allows industry to elevate their hauling sanitation and operational practices to maintain optimum milk microbiological quality. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Metaproteomics to investigate the impact of sampling-site biogeochemistry on structure and functionality of leaf-litter degrading microbial communities

    NASA Astrophysics Data System (ADS)

    Schneider, Thomas; Keiblinger, Katharina; Gerrits, Bertran; Schmid, Emanuel; Eberl, Leo; Zechmeister-Boltenstern, Sophie; Riedel, Kathrin

    2010-05-01

    The composition of organic matter in natural ecosystems is strongly influenced by the microorganisms present. Conversely, bacteria and fungi are limited by the amount and type of organic matter available in a given environment, most of which is ultimately derived from plants. Changes in the stoichiometry and biochemical constituents of plant litter may therefore alter species composition and elicit changes in the activities of microbial communities and their component parts. The identification of the microbial proteins of a given habitat together with the analysis of their phylogenetic origin and their spatial and temporal distribution are expected to provide fundamentally new insights into the role of microbial diversity in biogeochemical processes. To relate structure and functionality of microbial communities involved in leaf-litter decomposition we determined biogeochemistry, community structure by phospholipid fatty acid (PLFA)-analyses, enzymatic activities, and analysed the protein complement of different litter types, which were collected in winter and spring at various Austrian sampling sites, in a semi-quantitative proteomics approach by one dimensional polyacrylamide gel electrophoresis (1-D-SDS-PAGE) combined with liquid chromatography/tandem mass-spectrometry (LC-MS/MS). Protein abundances were determined by counting the number of MS/MS spectra assigned to each protein. In samples with high manganese and phosphor content a significant increase of fungal proteins from February to May was observed, which was in good agreement with the PLFA-analyses showing similar trends towards an increase of the fungal community. In contrast, the PLFA analysis revealed no temporal changes in the community at Achenkirch and even a decrease in the fungal/bacterial ratio at Klausen-Leopoldsdorf, two sampling sites low in P and Mn; similar trends are reflected in our spectral counts. In conclusion, semi-quantitative proteome- and PLFA-analyses suggest that fungal and bacterial abundance positively correlates with the total amount of P and Mn within the different litter types. Spectral counts of extracellular enzymes demonstrated a significant increase of these enzymes in the May, which was also mirrored by measurements of total enzymatic activities. The finding that almost all hydrolytic enzymes identified from litter were of fungal origin suggests a prominent role of fungi during aerobic litter decomposition.

  2. Comparison of respiratory activity and culturability during monochloramine disinfection of binary population biofilms.

    PubMed Central

    Stewart, P S; Griebe, T; Srinivasan, R; Chen, C I; Yu, F P; deBeer, D; McFeters, G A

    1994-01-01

    Biofilm bacteria challenged with monochloramine retained significant respiratory activity, even though they could not be cultured on agar plates. Microbial colony counts on agar media declined by approximately 99.9% after 1 h of disinfection, whereas the number of bacteria stained by a fluorescent redox dye experienced a 93% reduction. Integrated measures of biofilm respiratory activity, including net oxygen and glucose utilization rates, showed only a 10 to 15% reduction. In this biofilm system, measures of microbial respiratory activity and culturability yielded widely differing estimates of biocide efficacy. PMID:8017950

  3. First evaluation of alkylpyrazine application as a novel method to decrease microbial contaminations in processed meat products.

    PubMed

    Schöck, Matthias; Liebminger, Stefan; Berg, Gabriele; Cernava, Tomislav

    2018-04-03

    Every year about 20% of the globally produced meat gets lost due to microbial spoilage. Nevertheless, the demand for processed meat is constantly rising and producers are searching for novel strategies to reduce microbial contaminations in their products. In the present study, we evaluated the applicability of alkylpyrazines as antimicrobial agents. These fragrant molecules naturally occur in different vegetables, fruits, roasted nut and meat. Several pyrazine derivatives are readily added to processed products for flavoring purposes in the food industry. To evaluate their potential for application, two derivatives were tested for their antimicrobial activity against meat-associated bacterial contaminants and chicken meat as a whole. Isolates assigned to Carnobacteriaceae, Enterobacteriaceae, Listeriaceae, and Moraxellaceae were substantially inhibited in the pilot tests. Moreover, treatments of pyrazine-susceptible isolates resulted in 4-log reductions in bacterial cell counts. The effect was more pronounced when the model contaminants were exposed to higher concentrations of 5-isobutyl-2,3-dimethylpyrazine. In a first small-scale application with processed chicken meat, it was demonstrated that the antimicrobial effects of 2-isobutyl-3-methylpyrazine can be improved by additionally lowering the water activity on the meat surface when maltodextrin is used as a carrier substance. At low pyrazine dosages, the number of viable bacteria was decreased up to 95% in comparison to the corresponding controls. A complementary imaging method that was developed to assess the efficacy on the product, reinforced the applicability of this two-component system.

  4. Ruminal changes in monensin- and lasalocid-fed cattle grazing bloat-provocative alfalfa pasture.

    PubMed

    Katz, M P; Nagaraja, T G; Fina, L R

    1986-10-01

    Microbial and fermentation changes in the rumen in monensin- and lasalocid-fed cattle grazing bloat-provocative alfalfa pasture were studied using genetically bloat-susceptible, ruminally-cannulated adult cattle. Monensin at .66 and .99 mg/kg body weight daily reduced the severity of legume bloat by 41 and 73%, respectively. The same doses of lasalocid reduced bloat by 25 and 12%. Comparison of ruminal contents from animals before treatment with ruminal contents from antibiotic-treated animals showed no differences in pH, ammonia, soluble N, soluble carbohydrate, ethanol-precipitable slime and anaerobic bacterial counts. Monensin treatment decreased protozoal numbers and microbial activity, as evidenced by lower gas production from in vitro fermentation of ground alfalfa hay when compared to pretreatment. Lasalocid had no effect on protozoal counts and in vitro gas production. Addition of monensin or lasalocid (12 micrograms/ml) to in vitro fermentation of chopped, fresh alfalfa reduced microbial activity as evidenced by higher soluble N, lower ammonia concentration and decreased gas production. Monensin reduced the amount of ethanol-precipitable slime and protozoal numbers. Reduction in the severity of bloat when monensin was fed appears to be due to decreased protozoal numbers, which resulted in decreased gas production. Lasalocid did not reduce legume bloat because of its minimal effect on the ruminal protozoa.

  5. The influence of the microbial quality of wastewater, lettuce cultivars and enumeration technique when estimating the microbial contamination of wastewater-irrigated lettuce.

    PubMed

    Makkaew, P; Miller, M; Cromar, N J; Fallowfield, H J

    2017-04-01

    This study investigated the volume of wastewater retained on the surface of three different varieties of lettuce, Iceberg, Cos, and Oak leaf, following submersion in wastewater of different microbial qualities (10, 10 2 , 10 3 , and 10 4 E. coli MPN/100 mL) as a surrogate method for estimation of contamination of spray-irrigated lettuce. Uniquely, Escherichia coli was enumerated, after submersion, on both the outer and inner leaves and in a composite sample of lettuce. E. coli were enumerated using two techniques. Firstly, from samples of leaves - the direct method. Secondly, using an indirect method, where the E. coli concentrations were estimated from the volume of wastewater retained by the lettuce and the E. coli concentration of the wastewater. The results showed that different varieties of lettuce retained significantly different volumes of wastewater (p < 0.01). No statistical differences (p > 0.01) were detected between E. coli counts obtained from different parts of lettuce, nor between the direct and indirect enumeration methods. Statistically significant linear relationships were derived relating the E. coli concentration of the wastewater in which the lettuces were submerged to the subsequent E. coli count on each variety the lettuce.

  6. Immature pea seeds: effect of storage under modified atmosphere packaging and sanitation with acidified sodium chlorite.

    PubMed

    Collado, Elena; Venzke Klug, Tâmmila; Martínez-Sánchez, Ascensión; Artés-Hernandez, Francisco; Aguayo, Encarna; Artés, Francisco; Fernández, Juan A; Gómez, Perla A

    2017-10-01

    Appropriate sanitation is a priority for extending the shelf life and promoting the consumption of immature pea seeds, as processing accelerates quality deterioration and microbial growth. The combined effect of disinfection with acidified sodium chlorite (ASC) or sodium hypochlorite (SH) and packaging under a passive modified atmosphere (MAP) at 1 or 4 °C on quality was analysed. After 14 days, greenness and vitamin C had decreased, especially in the SH-disinfected samples. Total phenols and antioxidant capacity were not affected by disinfection. Proteins levels fell by around 27%, regardless of the sanitizer and storage temperature. Compared with the initial microbial load, samples stored at 1 °C showed an increase of 1 log CFU g -1 in psychrophiles when treated with SH, whereas no increase of note occurred with ASC. In general, microbial counts were always below 3 log CFU g -1 for all the treatments. Immature pea seeds could be stored for 14 days at 1-4 °C under MAP with only minor quality changes. Disinfection with ASC resulted in better sensory quality, higher content of vitamin C and lower psychrophile counts. More research is needed to analyse the effect of these treatments on other quality parameters. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  7. Microbial quality and associated health risks of raw milk marketed in the Tanga region of Tanzania.

    PubMed

    Swai, E S; Schoonman, L

    2011-06-01

    To evaluate microbial quality and associated health risks of raw milk marketed in the Tanga region of Tanzania. A microbial quality assessment of marketed raw milk was undertaken by evaluating 59 samples of milk from selling points (collecting centres =15), bicycle boys (12) and kiosks/restaurants (32) in Tanga city during April-May 2005. Quality and milk-borne hazards were assessed using a combination of tests in order to quantify the occurrence of Brucellosis (milk ring test), Escherichia coli (E. coli) O157:H7 (culture), the coliform bacteria as well as standard plate count (SPC). Specific gravity (SG) determination was used as an indicator of adulteration. The mean coliform plate count (c.f.u/mL) of milk handled by bicycle boys (4.2×10(6)) was significantly higher than that handled by collecting centres (3.0×10(6)) and kiosk/ restaurants (1.4×10(6)), respectively (P < 0.05). Of the 59 milk samples collected, 33 (56%) were Brucella milk ring test (MRT)-positive and 78% and 17% of the samples graded satisfactorily based on SG and coliform plate counts as prescribed by East African Community standards for raw milk. There was no verocytotoxigenic E. coli (VTEC) O157: H7 in any of the milk samples collected and analysed during the present study. It can be concluded that raw market milk in the study area is of poor bacteriological quality and hazardous for human consumption. This highlights the need to implement good hygiene practices and effective monitoring from production through the delivery chain to the consumer. Further studies are needed for detection of toxins that are produced by E. coli, other pathogenic spore forming bacteria (Bacillus spp. and Clostridium spp.) and other harmful microorganisms.

  8. Evaluation in a Dog Model of Three Antimicrobial Glassy Coatings: Prevention of Bone Loss around Implants and Microbial Assessments.

    PubMed

    López-Píriz, Roberto; Solá-Linares, Eva; Rodriguez-Portugal, Mercedes; Malpica, Beatriz; Díaz-Güemes, Idoia; Enciso, Silvia; Esteban-Tejeda, Leticia; Cabal, Belén; Granizo, Juan José; Moya, José Serafín; Torrecillas, Ramón

    2015-01-01

    The aim of the present study is to evaluate, in a ligature-induced peri-implantitis model, the efficacy of three antimicrobial glassy coatings in the prevention of biofilm formation, intrasulcular bacterial growth and the resulting peri-implant bone loss. Mandibular premolars were bilaterally extracted from five beagle dogs. Four dental implants were inserted on each hemiarch. Eight weeks after, one control zirconia abutment and three with different bactericidal coatings (G1n-Ag, ZnO35, G3) were connected. After a plaque control period, bacterial accumulation was allowed and biofilm formation on abutments was observed by Scanning Electron Microscopy (SEM). Peri-implantitis was induced by cotton ligatures. Microbial samples and peri-implant crestal bone levels of all implant sites were obtained before, during and after the breakdown period. During experimental induce peri-implantitis: colony forming units counts from intrasulcular microbial samples at implants with G1n-Ag coated abutment remained close to the basal inoculum; G3 and ZnO35 coatings showed similar low counts; and anaerobic bacterias counts at control abutments exhibited a logarithmic increase by more than 2. Bone loss during passive breakdown period was no statistically significant. Additional bone loss occurred during ligature-induce breakdown: 0.71 (SD 0.48) at G3 coating, 0.57 (SD 0.36) at ZnO35 coating, 0.74 (SD 0.47) at G1n-Ag coating, and 1.29 (SD 0.45) at control abutments; and statistically significant differences (p<0.001) were found. The lowest bone loss at the end of the experiment was exhibited by implants dressing G3 coated abutments (mean 2.1; SD 0.42). Antimicrobial glassy coatings could be a useful tool to ward off, diminish or delay peri-implantitis progression.

  9. Energetic constraints on life in deep marine sediments

    NASA Astrophysics Data System (ADS)

    Amend, J.; LaRowe, D.

    2013-12-01

    Microorganisms are abundant in deep-sea sediments, but what percentage of cells is active, how fast do they grow, and what factors control their diversity and population size? Geochemical modelling of redox reaction energetics can help in answering these questions. Calculations of Gibbs energies reveal which reactions are thermodynamically possible, but they also highlight which geochemical variables (e.g., temperature, pressure, pH, composition) may control microbial activity and how the amount and type of biomass are affected by energy limitations. We will discuss recent results from sediment cores collected at the Peru Margin (active continental shelf with high primary productivity and significant organic matter accumulation), the South Pacific Gyre (ultra-slow sedimentation rate and low organic carbon content), and the Juan de Fuca Ridge flank (high rate of sedimentation influenced by hydrothermal circulation). However, this approach to evaluating bioenergetic potential and predicting microbial activity can be applied to any environment where the geochemistry is well characterized, even if microbiology data have not been collected. When Gibbs energies are calculated on a basis of per mole of electrons transferred (as is commonly done), aerobic oxidation of hydrogen and organic matter in South Pacific Gyre sediments is the most exergonic. Based on this, one might posit that the fastest catabolic rates and the largest biomass would be found there. However, cell counts at Juan de Fuca and the Peru Margin are several orders of magnitude higher. When recast as energy densities (in J per cm3 of sediment), we observe far more energy available in sediments at Juan de Fuca and the Peru Margin than at those in the South Pacific Gyre. We also note that the identity of the most exergonic reaction changes with depth, suggesting corresponding changes in the microbial community structure. The thermodynamic approach used here for energy supply can also be used for energy demand, including the often-considered minimum or threshold energy, also referred to as the biological energy quantum. Based on this energetic minimum theory, many reactions cannot support microbial communities because their energy yield is apparently too low. However, we show that when evaluated as energy densities, some energetically ';impossible' catabolisms become ';possible' and vice versa.

  10. Development of microbial spoilage and lipid and protein oxidation in rabbit meat.

    PubMed

    Nakyinsige, K; Sazili, A Q; Aghwan, Z A; Zulkifli, I; Goh, Y M; Abu Bakar, F; Sarah, S A

    2015-10-01

    This experiment aimed to determine microbial spoilage and lipid and protein oxidation during aerobic refrigerated (4°C) storage of rabbit meat. Forty male New Zealand white rabbits were slaughtered according to the Halal slaughter procedure. The hind limbs were used for microbial analysis while the Longissimus lumborum m. was used for determination of lipid and protein oxidation. Bacterial counts generally increased with aging time and the limit for fresh meat (10(8)cfu/g) was reached at d 7 postmortem. Significant differences in malondialdehyde content were observed after 3d of storage. The thiol concentration significantly decreased with increase in aging time. The band intensities of myosin heavy chain and troponin T significantly reduced with increased refrigerated storage while actin remained relatively stable. This study thus proposes protein oxidation as a potential deteriorative change in refrigerated rabbit meat along with microbial spoilage and lipid oxidation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Probing Metabolic Activity of Deep Subseafloor Life with NanoSIMS

    NASA Astrophysics Data System (ADS)

    Morono, Y.; Terada, T.; Itoh, M.; Inagaki, F.

    2014-12-01

    There are very few natural environments where life is absent in the Earth's surface biosphere. However, uninhabitable region is expected to be exist in the deep subsurface biosphere, of which extent and constraining factor(s) have still remained largly unknown. Scientific ocean drilling have revealed that microbial communities in sediments are generally phylogenetically distinct from known spieces isolated from the Earth's surface biosphere, and hence metabolic functions of the deep subseafloor life remain unknown. In addition, activity of subseafloor microbial cells are thought to be extraordinally slow, as indicated by limited supply of neutrient and energy substrates. To understand the limits of the Earth's subseafloor biosphere and metabolic functions of microbial populations, detection and quantification of the deeply buried microbial cells in geological habitats are fundamentary important. Using newly developed cell separation techniques as well as an discriminative cell detection system, the current quantification limit of sedimentary microbial cells approaches to 102 cells/cm3. These techniques allow not only to assess very small microbial population close to the subsurface biotic fringe, but also to separate and sort the target cells using flow cytometric cell sorter. Once the deep subseafloor microbial cells are detached from mineral grains and sorted, it opens new windows to subsequent molecular ecological and element/isotopic analyses. With a combined use of nano-scale secondary ion masspectrometry (NanoSIMS) and stable isotope-probing techniques, it is possible to detect and measure activity of substrate incorporation into biomass, even for extremely slow metabolic processes such as uncharacteriszed deep subseafloor life. For example, it was evidenced by NanoSIMS that at least over 80% of microbial cells at ~200 meters-deep, 460,000-year-old sedimentary habitat are indeed live, which substrate incooporation was found to be low (10-15 gC/cell/day) even under the lab incubation condition. Also microbial activity in ultraoligotrophic biosphere samples such as the South Pacific Gyre (i.e., IODP Expeditions 329) will be shown. Our results demonstrates metabolic potential of microbes that have been survived for geological timescale in extremely starved condition.

  12. Microbiological Evaluation of Ozone on Dentinal Lesions in Young Permanent Molars using the Stepwise Excavation.

    PubMed

    Safwat, Osama; Elkateb, Mona; Dowidar, Karin; Salam, Hala Abdel; El Meligy, Omar

    To assess the microbial effect of ozone gas on dentinal lesions in young permanent molars using the stepwise excavation. An experimental, controlled clinical trial was performed. The sample included 80 immature first permanent molars, showing deep occlusal carious cavities that were indicated for stepwise excavation. Following first step of dentin excavation, the sample was divided into test (ozone gas) and control (calcium hydroxide (Ca(OH) 2 ) base material) groups. One half of the cases in each group were evaluated for microbiological changes after 6 months, and the other half after 12 months. Mutans streptococci (MS), Lactobacilli, and Candida counts were significantly reduced immediately after ozone application in the test group (P ≤0.05). At the final assessment period, MS and Lactobacilli were significantly reduced in the test group (P ≤0.05). Meanwhile, the Candida counts were significantly reduced only in the test group of the 6 and 12 month-cases (P ≤0.05). Regarding the control group, the significant reduction in microbial count was observed with MS after 6 and 12 months (P ≤0.05). No significant differences were observed between test and control groups at different evaluation periods (P >0.05). Ozone gas had a significant antimicrobial effect in deep class I carious lesions.

  13. Characterization of Microbial Communities Found in Bioreactor Effluent

    NASA Technical Reports Server (NTRS)

    Flowe, Candice

    2013-01-01

    The purpose of this investigation was to examine microbial communities of simulated wastewater effluent from hollow fiber membrane bioreactors collected from the Space Life Science Laboratory and Texas Technical University. Microbes were characterized using quantitative polymerase chain reaction where a total count of bacteria and fungi were determined. The primers that were used to determine the total count of bacteria and fungi were targeted for 16S rDNA genes and the internal transcribed spacer, respectively. PCR products were detected with SYBR Green I fluorescent dye and a melting curve analysis was performed to identify unique melt profiles resulting from DNA sequence variations from each species of the community. Results from both the total bacteria and total fungi count assays showed that distinct populations were present in isolates from these bioreactors. This was exhibited by variation in the number of peaks observed on the melting curve analysis graph. Further analysis of these results using species-specific primers will shed light on exactly which microbes are present in these effluents. Information gained from this study will enable the design of a system that can efficiently monitor microbes that play a role in the biogeochemical cycling of nitrogen in wastewater on the International Space Station to assist in the design of a sustainable system capable of converting this nutrient.

  14. Inactivation of Staphylococcus aureus and native microflora in human milk by high pressure processing

    NASA Astrophysics Data System (ADS)

    Windyga, Bożena; Rutkowska, Małgorzata; Sokołowska, Barbara; Skąpska, Sylwia; Wesołowska, Aleksandra; Wilińska, Maria; Fonberg-Broczek, Monika; Rzoska, Sylwester J.

    2015-04-01

    The storage of unpreserved food, including breast milk, is associated with the growth of microorganisms, including pathogenic bacteria. It is therefore necessary to use suitable processes to eliminate pathogenic microorganisms and reduce the total microbial count in order to ensure product safety for consumers. In the present study, samples of milk obtained from volunteers donating to the human milk bank were artificially contaminated with Staphylococcus aureus ATCC 6538. This bacteria was the model microorganism of choice, being relatively resistant to high pressure as well as posing the most serious risk to infant health. The results obtained show that high pressure processing can reduce the count of S. aureus by about 5 log units at 4°C and about 8 log units at 50°C, and totally eliminate Enterobacteriaceae after 5 min of treatment, and result in a total microbial count reduction after 10 min treatment at 500 MPa at 20°C and 50°C. This suggests the possibility of this technology being applied to ensure the adequate safety and quality of human breast milk in human milk banks. This paper was presented at the LIIth European High Pressure Research Group (EHPRG 52) Meeting in Lyon (France), 7-12 September 2014.

  15. Inclusion of detergent in a cleaning regime and effect on microbial load in livestock housing

    PubMed Central

    Hancox, L. R.; Le Bon, M.; Dodd, C. E. R.; Mellits, K. H.

    2013-01-01

    Determining effective cleaning and disinfection regimes of livestock housing is vital to improving the health of resident animals and reducing zoonotic disease. A cleaning regime consisting of scraping, soaking with or without detergent (treatment and control), pressure washing, disinfection and natural drying was applied to multiple pig pens. After each cleaning stage, samples were taken from different materials and enumerated for total aerobic count (TAC) and Enterobacteriaceae (ENT). Soaking with detergent (Blast-Off, Biolink) caused significantly greater reductions of TAC and ENT on metal, and TAC on concrete, compared with control. Disinfection effect (Virkon S, DuPont) was not significantly associated with prior detergent treatment. Disinfection significantly reduced TAC and ENT on concrete and stock board but not on metal. Twenty-four hours after disinfection TAC and ENT on metal and stock board were significantly reduced, but no significant reductions occurred in the subsequent 96 hours. Counts on concrete did not significantly reduce during the entire drying period (120 hours). Detergent and disinfectant have varying bactericidal effects according to the surface and bacterial target; however, both can significantly reduce microbial numbers so should be used during cleaning, with a minimum drying period of 24 hours, to lower bacterial counts effectively. PMID:23839725

  16. Dynamics of microbiological parameters, enzymatic activities and worm biomass production during vermicomposting of effluent treatment plant sludge of bakery industry.

    PubMed

    Yadav, Anoop; Suthar, S; Garg, V K

    2015-10-01

    This paper reports the changes in microbial parameters and enzymatic activities during vermicomposting of effluent treatment plant sludge (ETPS) of bakery industry spiked with cow dung (CD) by Eisenia fetida. Six vermibins containing different ratios of ETPS and CD were maintained under controlled laboratory conditions for 15 weeks. Total bacterial and total fungal count increased upto 7th week and declined afterward in all the bins. Maximum bacterial and fungal count was 31.6 CFU × 10(6) g(-1) and 31 CFU × 10(4) g(-1) in 7th week. Maximum dehydrogenase activity was 1921 μg TPF g(-1) h(-1) in 9th week in 100 % CD containing vermibin, whereas maximum urease activity was 1208 μg NH4 (-)N g(-1) h(-1) in 3rd week in 100 % CD containing vermibin. The enzyme activity and microbial counts were lesser in ETPS containing vermibins than control (100 % CD). The growth and fecundity of the worms in different vermibins were also investigated. The results showed that initially biomass and fecundity of the worms increased but decreased at the later stages due to non-availability of the palatable feed. This showed that quality and palatability of food directly affect biological parameters of the system.

  17. [Automated hematology analysers and spurious counts Part 3. Haemoglobin, red blood cells, cell count and indices, reticulocytes].

    PubMed

    Godon, Alban; Genevieve, Franck; Marteau-Tessier, Anne; Zandecki, Marc

    2012-01-01

    Several situations lead to abnormal haemoglobin measurement or to abnormal red blood cells (RBC) counts, including hyperlipemias, agglutinins and cryoglobulins, haemolysis, or elevated white blood cells (WBC) counts. Mean (red) cell volume may be also subject to spurious determination, because of agglutinins (mainly cold), high blood glucose level, natremia, anticoagulants in excess and at times technological considerations. Abnormality related to one measured parameter eventually leads to abnormal calculated RBC indices: mean cell haemoglobin content is certainly the most important RBC parameter to consider, maybe as important as flags generated by the haematology analysers (HA) themselves. In many circumstances, several of the measured parameters from cell blood counts (CBC) may be altered, and the discovery of a spurious change on one parameter frequently means that the validity of other parameters should be considered. Sensitive flags allow now the identification of several spurious counts, but only the most sophisticated HA have optimal flagging, and simpler ones, especially those without any WBC differential scattergram, do not share the same capacity to detect abnormal results. Reticulocytes are integrated into the CBC in many HA, and several situations may lead to abnormal counts, including abnormal gating, interference with intraerythrocytic particles, erythroblastosis or high WBC counts.

  18. Bacteriophage lytic to Desulfovibrio aespoeensis isolated from deep groundwater.

    PubMed

    Eydal, Hallgerd S C; Jägevall, Sara; Hermansson, Malte; Pedersen, Karsten

    2009-10-01

    Viruses were earlier found to be 10-fold more abundant than prokaryotes in deep granitic groundwater at the Aspö Hard Rock Laboratory (HRL). Using a most probable number (MPN) method, 8-30 000 cells of sulphate-reducing bacteria per ml were found in groundwater from seven boreholes at the Aspö HRL. The content of lytic phages infecting the indigenous bacterium Desulfovibrio aespoeensis in Aspö groundwater was analysed using the MPN technique for phages. In four of 10 boreholes, 0.2-80 phages per ml were found at depths of 342-450 m. Isolates of lytic phages were made from five cultures. Using transmission electron microscopy, these were characterized and found to be in the Podoviridae morphology group. The isolated phages were further analysed regarding host range and were found not to infect five other species of Desulfovibrio or 10 Desulfovibrio isolates with up to 99.9% 16S rRNA gene sequence identity to D. aespoeensis. To further analyse phage-host interactions, using a direct count method, growth of the phages and their host was followed in batch cultures, and the viral burst size was calculated to be approximately 170 phages per lytic event, after a latent period of approximately 70 h. When surviving cells from infected D. aespoeensis batch cultures were inoculated into new cultures and reinfected, immunity to the phages was found. The parasite-prey system found implies that viruses are important for microbial ecosystem diversity and activity, and for microbial numbers in deep subsurface groundwater.

  19. Interactions between Lactobacillus rhamnosus GG and oral micro-organisms in an in vitro biofilm model.

    PubMed

    Jiang, Qingru; Stamatova, Iva; Kainulainen, Veera; Korpela, Riitta; Meurman, Jukka H

    2016-07-12

    Probiotics have shown favourable properties in maintaining oral health. By interacting with oral microbial communities, these species could contribute to healthier microbial equilibrium. This study aimed to investigate in vitro the ability of probiotic Lactobacillus rhamnosus GG (L.GG) to integrate in oral biofilm and affect its species composition. Five oral strains, Streptococcus mutans, Streptococcus sanguinis, Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum and Candida albicans were involved. The group setup included 6 mono-species groups, 3 dual-species groups (L.GG + S. mutans/S. sanguinis/C. albicans), and 4 multi-species groups (4/5 species and 4/5 species + L.GG, 4 species were all the tested strains except S. mutans). Cell suspensions of six strains were pooled according to the group setup. Biofilms were grown on saliva-coated hydroxyapatite (HA) discs at 37 °C in anaerobic conditions for 64.5 h. Biofilm medium was added and refreshed at 0, 16.5, and 40.5 h. The pH of spent media was measured. Viable cells of the 16.5 h and 64.5 h biofilms were counted. 64.5 h biofilms were stained and scanned with confocal laser scanning microscopy. Our results showed that L.GG and S. mutans demonstrated stronger adhesion ability than the other strains to saliva-coated HA discs. L.GG, C. albicans, S. mutans and F. nucleatum, with poor ability to grow in mono-species biofilms demonstrated better abilities of adhesion and reproduction in dual- and/or multi-species biofilms. L.GG slightly suppressed the growth of C. albicans in all groups, markedly weakened the growth of S. sanguinis and F. nucleatum in 4sp + L.GG group, and slightly reduced the adhesion of S. mutans in L.GG+ S. mutans group. To conclude, in this in vitro model L.GG successfully integrated in all oral biofilms, and reduced the counts of S. sanguinis and C. albicans and lowered the biofilm-forming ability of F. nucleatum, but only slightly reduced the adhesion of S. mutans. C. albicans significantly promoted the growth of L.GG.

  20. A new method for long-term storage of titred microbial standard solutions suitable for microbiologic quality control activities of pharmaceutical companies.

    PubMed

    Chiellini, Carolina; Mocali, Stefano; Fani, Renato; Ferro, Iolanda; Bruschi, Serenella; Pinzani, Alessandro

    2016-08-01

    Commercially available lyophilized microbial standards are expensive and subject to reduction in cell viability due to freeze-drying stress. Here we introduce an inexpensive and straightforward method for in-house microbial standard preparation and cryoconservation that preserves constant cell titre and cell viability over 14 months.

  1. Extracellular enzymes facilitate electron uptake in biocorrosion and bioelectrosynthesis.

    PubMed

    Deutzmann, Jörg S; Sahin, Merve; Spormann, Alfred M

    2015-04-21

    Direct, mediator-free transfer of electrons between a microbial cell and a solid phase in its surrounding environment has been suggested to be a widespread and ecologically significant process. The high rates of microbial electron uptake observed during microbially influenced corrosion of iron [Fe(0)] and during microbial electrosynthesis have been considered support for a direct electron uptake in these microbial processes. However, the underlying molecular mechanisms of direct electron uptake are unknown. We investigated the electron uptake characteristics of the Fe(0)-corroding and electromethanogenic archaeon Methanococcus maripaludis and discovered that free, surface-associated redox enzymes, such as hydrogenases and presumably formate dehydrogenases, are sufficient to mediate an apparent direct electron uptake. In genetic and biochemical experiments, we showed that these enzymes, which are released from cells during routine culturing, catalyze the formation of H2 or formate when sorbed to an appropriate redox-active surface. These low-molecular-weight products are rapidly consumed by M. maripaludis cells when present, thereby preventing their accumulation to any appreciable or even detectable level. Rates of H2 and formate formation by cell-free spent culture medium were sufficient to explain the observed rates of methane formation from Fe(0) and cathode-derived electrons by wild-type M. maripaludis as well as by a mutant strain carrying deletions in all catabolic hydrogenases. Our data collectively show that cell-derived free enzymes can mimic direct extracellular electron transfer during Fe(0) corrosion and microbial electrosynthesis and may represent an ecologically important but so far overlooked mechanism in biological electron transfer. The intriguing trait of some microbial organisms to engage in direct electron transfer is thought to be widespread in nature. Consequently, direct uptake of electrons into microbial cells from solid surfaces is assumed to have a significant impact not only on fundamental microbial and biogeochemical processes but also on applied bioelectrochemical systems, such as microbial electrosynthesis and biocorrosion. This study provides a simple mechanistic explanation for frequently observed fast electron uptake kinetics in microbiological systems without a direct transfer: free, cell-derived enzymes can interact with cathodic surfaces and catalyze the formation of intermediates that are rapidly consumed by microbial cells. This electron transfer mechanism likely plays a significant role in various microbial electron transfer reactions in the environment. Copyright © 2015 Deutzmann et al.

  2. Efficacy of tigecycline alone and in combination with gentamicin in the treatment of experimental endocarditis due to linezolid-resistant Enterococcus faecium.

    PubMed

    Pontikis, Konstantinos; Pefanis, Angelos; Tsaganos, Thomas; Tzepi, Ira-Maria; Carrer, Dionyssia-Pinelopi; Giamarellou, Helen

    2013-07-01

    We evaluated the efficacy of tigecycline in a rabbit model of experimental endocarditis caused by a linezolid-resistant clinical strain of Enterococcus faecium. Tigecycline-treated animals had a 2.8-log10-CFU/g reduction in microbial counts in excised vegetations compared with controls. Addition of gentamicin caused a further arithmetical reduction in colony counts. The therapeutic effect was sustained 5 days after completion of treatment, as shown by relapse studies performed in treatment groups.

  3. Efficacy of Tigecycline Alone and in Combination with Gentamicin in the Treatment of Experimental Endocarditis Due to Linezolid-Resistant Enterococcus faecium

    PubMed Central

    Pefanis, Angelos; Tsaganos, Thomas; Tzepi, Ira-Maria; Carrer, Dionyssia-Pinelopi; Giamarellou, Helen

    2013-01-01

    We evaluated the efficacy of tigecycline in a rabbit model of experimental endocarditis caused by a linezolid-resistant clinical strain of Enterococcus faecium. Tigecycline-treated animals had a 2.8-log10-CFU/g reduction in microbial counts in excised vegetations compared with controls. Addition of gentamicin caused a further arithmetical reduction in colony counts. The therapeutic effect was sustained 5 days after completion of treatment, as shown by relapse studies performed in treatment groups. PMID:23587961

  4. Somatic cell counts in bulk milk and their importance for milk processing

    NASA Astrophysics Data System (ADS)

    Savić, N. R.; Mikulec, D. P.; Radovanović, R. S.

    2017-09-01

    Bulk tank milk somatic cell counts are the indicator of the mammary gland health in the dairy herds and may be regarded as an indirect measure of milk quality. Elevated somatic cell counts are correlated with changes in milk composition The aim of this study was to assess the somatic cell counts that significantly affect the quality of milk and dairy products. We examined the somatic cell counts in bulk tank milk samples from 38 farms during the period of 6 months, from December to the May of the next year. The flow cytometry, Fossomatic was used for determination of somatic cell counts. In the same samples content of total proteins and lactose was determined by Milcoscan. Our results showed that average values for bulk tank milk samples were 273,605/ml from morning milking and 292,895/ml from evening milking. The average values for total proteins content from morning and evening milking are 3,31 and 3,34%, respectively. The average values for lactose content from morning and evening milking are 4,56 and 4,63%, respectively. The highest somatic cell count (516,000/ml) was detected in bulk tank milk sample from evening milk in the Winter and the lowest content of lactose was 4,46%. Our results showed that obtained values for bulk tank milk somatic cell counts did not significantly affected the content of total proteins and lactose.

  5. The role of CD4 cell count as discriminatory measure to guide chemoprophylaxis against Pneumocystis jirovecii pneumonia in human immunodeficiency virus-negative immunocompromised patients: A systematic review.

    PubMed

    Messiaen, Peter E; Cuyx, Senne; Dejagere, Tom; van der Hilst, Jeroen C

    2017-04-01

    In recent years, the incidence of Pneumocystis jirovecii pneumonia (PJP) has increased in immunocompromised patients without human immunodeficiency virus (HIV) infection. Chemoprophylaxis with trimethoprim-sulfamethoxazole (TMP-SMX) is highly effective in preventing PJP in both HIV-positive and -seronegative patients. In HIV-positive patients, the risk of PJP is strongly correlated with decreased CD4 cell count. The role of CD4 cell count in the pathogenesis of PJP in non-HIV immunocompromised patients is less well studied. For most immunosuppressive conditions, no clear guidelines indicate whether to start TMP-SMX. We conducted a systematic literature review with the aim to provide a comprehensive overview on the role of CD4 cell counts in managing the risk of PJP in HIV-seronegative patients. Of the 63 individual studies retrieved, 14 studies report on CD4 cell counts in a variety of immunosuppressive conditions. CD4 cell count were <200/μL in 73.1% of the patients. CD4 cell count <200/μL is a sensitive biomarker to identify non-HIV immunocompromised patients who are at risk for PJP. Measuring CD4 cell counts could help clinicians identify patients who may benefit from TMP-SMX prophylaxis. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Microbial quality of catfish nuggets

    USDA-ARS?s Scientific Manuscript database

    The microbiological quality of catfish nuggets is not known. Nuggets, purchased from local retailers in the northeast United States (NJ, NY, PA, and DE), were tested for aerobic plate count (APC) at 22 and 37 deg C, Enterobacteriacea, and Escherichia coli/coliform using Petrifilms**™. The BAX**™ ...

  7. Effects of grape seed extract on the oxidative and microbial stability of restructured mutton slices.

    PubMed

    Reddy, G V Bhaskar; Sen, A R; Nair, Pramod N; Reddy, K Sudhakar; Reddy, K Kondal; Kondaiah, N

    2013-10-01

    The antioxidant and antimicrobial efficacy of grape seed extract (GSE) was studied in restructured mutton slices (RMS) under aerobic and vacuum packaging conditions during refrigerated storage. The RMS treated with grape seed extract (GSE) had significantly (P<0.05) lower thiobarbituric acid reactive substance (TBARS) values and free fatty acids (FFA) % compared to control (C) and butylated hydroxy anisole (BHA) treated RMS during storage at 4±1°C. Addition of GSE significantly (P<0.05) reduced the total psychrophilic and coliform counts in RMS during refrigerated storage. The GSE treated mutton slices recorded significantly (P<0.05) superior scores of color, flavor, juiciness and overall palatability than C and BHA treated RMS. The TBARS values, FFA % and microbial counts increased significantly (P<0.05) during storage. It can be concluded that GSE has excellent antioxidant and antimicrobial properties compared to control and BHA treated RMS during refrigerated storage under aerobic and vacuum conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. A generalized plate method for estimating total aerobic microbial count.

    PubMed

    Ho, Kai Fai

    2004-01-01

    The plate method outlined in Chapter 61: Microbial Limit Tests of the U.S. Pharmacopeia (USP 61) provides very specific guidance for assessing total aerobic bioburden in pharmaceutical articles. This methodology, while comprehensive, lacks the flexibility to be useful in all situations. By studying the plate method as a special case within a more general family of assays, the effects of each parameter in the guidance can be understood. Using a mathematical model to describe the plate counting procedure, a statistical framework for making more definitive statements about total aerobic bioburden is developed. Such a framework allows the laboratory scientist to adjust the USP 61 methods to satisfy specific practical constraints. In particular, it is shown that the plate method can be conducted, albeit with stricter acceptance criteria, using a test specimen quantity that is smaller than the 10 g or 10 mL prescribed in the guidance. Finally, the interpretation of results proffered by the guidance is re-examined within this statistical framework and shown to be overly aggressive.

  9. Dispersal of micro-organisms in commercial defeathering systems.

    PubMed

    Allen, V M; Tinker, D B; Hinton, M H; Wathes, C M

    2003-03-01

    1. The extent of cross contamination between carcases and the dispersal of micro-organisms to the environs during defeathering was measured in a commercial processing plant. 2. Defeathering reduced the numbers of a marker organism, a nalidixic acid-resistant strain of Escherichia coli K12, on inoculated carcases but dispersed the organism on to preceding and following carcases. 3. The pattern of microbial dispersal during defeathering was similar for naturally occurring bacteria on the carcase, for example, total aerobic counts and counts of presumptive coliforms, suggesting that the marker organism mimics the natural situation realistically. 4. The majority of feathers, together with micro-organisms, were removed during the first 10 s of the defeathering process, which was completed in 45 s, indicating that control measures to minimise cross contamination would be most effective if applied in the early stages of the process. 5. The method of defeathering used by the machine influenced the pattern of microbial dispersal and the extent of cross contamination to other carcases on the same processing line.

  10. Microstructure, microbial profile and quality characteristics of high-pressure-treated chicken nuggets.

    PubMed

    Devatkal, Suresh; Anurag, Rahul; Jaganath, Bindu; Rao, Srinivasa

    2015-10-01

    High-pressure processing (300 MPa for 5 min) as a non-thermal post-processing intervention was employed to improve the shelf life and qualities of cooked refrigerated chicken nuggets. Pomegranate peel extract (1%) was also used as a source of natural antioxidant and antimicrobial in chicken nuggets. Microstructure, microbial profile, instrumental colour, texture profile and lipid oxidation were evaluated. High-pressure treatment and pomegranate peel extract did not influence significantly the colour and textural properties of cooked chicken nuggets. Thiobarbituric acid reactive substance values significantly (p < 0.05) increased in pressure-treated nuggets. Microstructural studies revealed shrinkage in the structure and loosening of the dense network of meat emulsion due to high-pressure treatment. Pressure treatment resulted in a reduction of 2-3.0 log10 cfu/g in total plate count and Enterobacteriaceae count. Molecular characterization studies revealed that Enterobacter amnigenus and Enterobacter sp. in control and Bacillus licheniformis, Enterococcus gallinarum and Acinetobacter baumannii in high-pressure-treated chicken nuggets were the major spoilage bacteria. © The Author(s) 2014.

  11. The impact of shrimp farming effluent on bacterial communities in mangrove waters, Ceará, Brazil.

    PubMed

    Sousa, O V; Macrae, A; Menezes, F G R; Gomes, N C M; Vieira, R H S F; Mendonça-Hagler, L C S

    2006-12-01

    The effects of shrimp farm effluents on bacterial communities in mangroves have been infrequently reported. Classic and molecular biology methods were used to survey bacterial communities from four mangroves systems. Water temperature, salinity, pH, total heterotrophic bacteria and maximum probable numbers of Vibrio spp. were investigated. Genetic profiles of bacterial communities were also characterized by polymerase chain reaction (PCR) amplification of eubacterial and Vibrio 16S rDNA using denaturing gradient gel electrophoresis (DGGE). Highest heterotrophic counts were registered in the mangrove not directly polluted by shrimp farming. The Enterobacteriaceae and Chryseomonas luteola dominated the heterotrophic isolates. Vibrio spp. pathogenic to humans and shrimps were identified. Eubacterial genetic profiles suggest a shared community structure independent of mangrove system. Vibrio genetic profiles were mangrove specific. Neither microbial counts nor genetic profiling revealed a significant decrease in species richness associated with shrimp farm effluent. The complex nature of mangrove ecosystems and their microbial communities is discussed.

  12. Influence of smoking and packaging methods on lipid stability and microbial quality of Capelin (Mallotus villosus) and Sardine (Sardinella gibossa)

    PubMed Central

    Cyprian, Odoli O; Van Nguyen, Minh; Sveinsdottir, Kolbrun; Jonsson, Asbjorn; Tomasson, Tumi; Thorkelsson, Gudjon; Arason, Sigurjon

    2015-01-01

    Lipid and microbial quality of smoked capelin (two groups differing in lipid content) and sardine was studied, with the aim of introducing capelin in the smoked sardine markets. Lipid hydrolysis (phospholipid and free fatty acids) and oxidation index (hydroperoxides and thiobarbituric acid-reactive substances), fatty acid composition, and total viable count were measured in raw and packaged smoked fish during chilled storage (day 2, 10, 16, 22, 28). Lipid hydrolysis was more pronounced in low lipid capelin, whereas accelerated lipid oxidation occurred in high lipid capelin. Muscle lipid was less stable in sardine than capelin. Essential polyunsaturated fatty acids (eicosapentaenoic acid and docosahexaenoic acid) constituted 12% of fatty acids in capelin and 19% in sardine. Vacuum packaging as well as hot smoking retarded bacterial growth, recording counts of ≤log 5 CFU/g compared to ≥log 7CFU/g in cold smoked air packaged. Smoked low lipid capelin was considered an alternative for introduction in smoked sardine markets. PMID:26405526

  13. Electricity production from municipal solid waste using microbial fuel cells.

    PubMed

    Chiu, H Y; Pai, T Y; Liu, M H; Chang, C A; Lo, F C; Chang, T C; Lo, H M; Chiang, C F; Chao, K P; Lo, W Y; Lo, S W; Chu, Y L

    2016-07-01

    The organic content of municipal solid waste has long been an attractive source of renewable energy, mainly as a solid fuel in waste-to-energy plants. This study focuses on the potential to use microbial fuel cells to convert municipal solid waste organics into energy using various operational conditions. The results showed that two-chamber microbial fuel cells with carbon felt and carbon felt allocation had a higher maximal power density (20.12 and 30.47 mW m(-2) for 1.5 and 4 L, respectively) than those of other electrode plate allocations. Most two-chamber microbial fuel cells (1.5 and 4 L) had a higher maximal power density than single-chamber ones with corresponding electrode plate allocations. Municipal solid waste with alkali hydrolysis pre-treatment and K3Fe(CN)6 as an electron acceptor improved the maximal power density to 1817.88 mW m(-2) (~0.49% coulomb efficiency, from 0.05-0.49%). The maximal power density from experiments using individual 1.5 and 4 L two-chamber microbial fuel cells, and serial and parallel connections of 1.5 and 4 L two-chamber microbial fuel cells, was found to be in the order of individual 4 L (30.47 mW m(-2)) > serial connection of 1.5 and 4 L (27.75) > individual 1.5 L (20.12) > parallel connection of 1.5 and 4 L (17.04) two-chamber microbial fuel cells . The power density using municipal solid waste microbial fuel cells was compared with information in the literature and discussed. © The Author(s) 2016.

  14. Electricity Generation in Microbial Fuel Cells Using Neutral Red as an Electronophore

    PubMed Central

    Park, Doo Hyun; Zeikus, J. Gregory

    2000-01-01

    Neutral red (NR) was utilized as an electron mediator in microbial fuel cells consuming glucose to study both its efficiency during electricity generation and its role in altering anaerobic growth and metabolism of Escherichia coli and Actinobacillus succinogenes. A study of chemical fuel cells in which NADH, NR, and ferricyanide were the electron donor, the electronophore, and the electron acceptor, respectively, showed that electrical current produced from NADH was proportional to the concentration of NADH. Fourfold more current was produced from NADH in chemical fuel cells when NR was the electron mediator than when thionin was the electron mediator. In microbial fuel cells in which E. coli resting cells were used the amount of current produced from glucose when NR was the electron mediator (3.5 mA) was 10-fold more than the amount produced when thionin was the electron mediator (0.4 mA). The amount of electrical energy generated (expressed in joules per mole of substrate) and the amount of current produced from glucose (expressed in milliamperes) in NR-mediated microbial fuel cells containing either E. coli or A. succinogenes were about 10- and 2-fold greater, respectively, when resting cells were used than when growing cells were used. Cell growth was inhibited substantially when these microbial fuel cells were making current, and more oxidized end products were formed under these conditions. When sewage sludge (i.e., a mixed culture of anaerobic bacteria) was used in the fuel cell, stable (for 120 h) and equivalent levels of current were obtained with glucose, as observed in the pure-culture experiments. These results suggest that NR is better than other electron mediators used in microbial fuel cells and that sludge production can be decreased while electricity is produced in fuel cells. Our results are discussed in relation to factors that may improve the relatively low electrical efficiencies (1.2 kJ/mol) obtained with microbial fuel cells. PMID:10742202

  15. Designing primers and evaluation of the efficiency of propidium monoazide - Quantitative polymerase chain reaction for counting the viable cells of Lactobacillus gasseri and Lactobacillus salivarius.

    PubMed

    Lai, Chieh-Hsien; Wu, Sih-Rong; Pang, Jen-Chieh; Ramireddy, Latha; Chiang, Yu-Cheng; Lin, Chien-Ku; Tsen, Hau-Yang

    2017-07-01

    The purpose of this study is to evaluate the efficiency of using propidium monoazide (PMA) real-time quantitative polymerase chain reaction (qPCR) to count the viable cells of Lactobacillus gasseri and Lactobacillus salivarius in probiotic products. Based on the internal transcription spacer and 23S rRNA genes, two primer sets specific for these two Lactobacillus species were designed. For a probiotic product, the total deMan Rogosa Sharpe plate count was 8.65±0.69 log CFU/g, while for qPCR, the cell counts of L. gasseri and L. salivarius were 8.39±0.14 log CFU/g and 8.57±0.24 log CFU/g, respectively. Under the same conditions, for its heat-killed product, qPCR counts for L. gasseri and L. salivarius were 6.70±0.16 log cells/g and 7.67±0.20 log cells/g, while PMA-qPCR counts were 5.33±0.18 log cells/g and 5.05±0.23 log cells/g, respectively. For cell dilutions with a viable cell count of 8.5 log CFU/mL for L. gasseri and L. salivarius, after heat killing, the PMA-qPCR count for both Lactobacillus species was near 5.5 log cells/mL. When the PMA-qPCR counts of these cell dilutions were compared before and after heat killing, although some DNA might be lost during the heat killing, significant qPCR signals from dead cells, i.e., about 4-5 log cells/mL, could not be reduced by PMA treatment. Increasing PMA concentrations from 100 μM to 200 μM or light exposure time from 5 minutes to 15 minutes had no or, if any, only minor effect on the reduction of qPCR signals from their dead cells. Thus, to differentiate viable lactic acid bacterial cells from dead cells using the PMA-qPCR method, the efficiency of PMA to reduce the qPCR signals from dead cells should be notable. Copyright © 2016. Published by Elsevier B.V.

  16. Single chamber microbial fuel cell with Ni-Co cathode

    NASA Astrophysics Data System (ADS)

    Włodarczyk, Barbara; Włodarczyk, Paweł P.; Kalinichenko, Antonina

    2017-10-01

    The possibility of wastewater treatment and the parallel energy production using the Ni-Co alloy as cathode catalyst for single chamber microbial fuel cells is presented in this research. The research included a preparation of catalyst and comparison of COD, NH4+ and NO3- reduction in the reactor without aeration, with aeration and with using a single chamber microbial fuel cell with Ni-Co cathode. The reduction time for COD with the use of microbial fuel cell with the Ni-Co catalyst is similar to the reduction time with aeration. The current density (2.4 A·m-2) and amount of energy (0.48 Wh) obtained in MFC is low, but the obtained amount of energy allows elimination of the energy needed for reactor aeration. It has been shown that the Ni-Co can be used as cathode catalyst in single chamber microbial fuel cells.

  17. Compact Cell Settlers for Perfusion Cultures of Microbial (and Mammalian) Cells.

    PubMed

    Freeman, Cassandra A; Samuel, Premsingh S D; Kompala, Dhinakar S

    2017-07-01

    As microbial secretory expression systems have become well developed for microbial yeast cells, such as Saccharomyces cerevisiae and Pichia pastoris, it is advantageous to develop high cell density continuous perfusion cultures of microbial yeast cells to retain the live and productive yeast cells inside the perfusion bioreactor while removing the dead cells and cell debris along with the secreted product protein in the harvest stream. While the previously demonstrated inclined or lamellar settlers can be used for such perfusion bioreactors for microbial cells, the size and footprint requirements of such inefficiently scaled up devices can be quite large in comparison to the bioreactor size. Faced with this constraint, we have now developed novel, patent-pending compact cell settlers that can be used more efficiently with microbial perfusion bioreactors to achieve high cell densities and bioreactor productivities. Reproducible results from numerous month-long perfusion culture experiments using these devices attached to the 5 L perfusion bioreactor demonstrate very high cell densities due to substantial sedimentation of the larger live yeast cells which are returned to the bioreactor, while the harvest stream from the top of these cell settlers is a significantly clarified liquid, containing less than 30% and more typically less than 10% of the bioreactor cell concentration. Size of cells in the harvest is smaller than that of the cells in the bioreactor. Accumulated protein collected from the harvest and rate of protein accumulation is significantly (> 6x) higher than the protein produced in repeated fed-batch cultures over the same culture duration. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:913-922, 2017. © 2017 American Institute of Chemical Engineers.

  18. Predictive factors for long-term engraftment of autologous blood stem cells.

    PubMed

    Duggan, P R; Guo, D; Luider, J; Auer, I; Klassen, J; Chaudhry, A; Morris, D; Glück, S; Brown, C B; Russell, J A; Stewart, D A

    2000-12-01

    Data from 170 consecutive patients aged 19-66 years (median age 46 years) who underwent unmanipulated autologous blood stem cell transplant (ASCT) were analyzed to determine if total CD34+ cells/kg infused, CD34+ subsets (CD34+41+, CD34+90+, CD34+33-, CD34+38-, CD34+38-DR-), peripheral blood CD34+ cell (PBCD34+) count on first apheresis day, or various clinical factors were associated with low blood counts 6 months post ASCT. Thirty-four patients were excluded from analysis either because of death (n = 17) or re-induction chemotherapy prior to 6 months post ASCT (n = 13), or because of lack of follow-up data (n = 4). Of the remaining 136 patients, 46% had low WBC ( < 4 x 10(9)/l), 41% low platelets (<150 x 10(9)/l), and 34% low hemoglobin ( < 120 g/l) at a median of 6 months following ASCT. By Spearman's rank correlation, both the total CD34+ cell dose/kg and the PBCD34+ count correlated with 6 month blood counts better than any subset of CD34+ cells or any clinical factor. The PBCD34+ count was overall a stronger predictor of 6 month blood counts than was the total CD34+ cells/kg infused. Both factors retained their significance in multivariate analysis, controlling for clinical factors. In conclusion, subsets of CD34+ cells and clinical factors are inferior to the total CD34+ cell dose/kg and PBCD34+ count in predicting 6 month blood counts following ASCT.

  19. Variations in microbial carbon sources and cycling in the deep continental subsurface

    NASA Astrophysics Data System (ADS)

    Simkus, Danielle N.; Slater, Greg F.; Lollar, Barbara Sherwood; Wilkie, Kenna; Kieft, Thomas L.; Magnabosco, Cara; Lau, Maggie C. Y.; Pullin, Michael J.; Hendrickson, Sarah B.; Wommack, K. Eric; Sakowski, Eric G.; van Heerden, Esta; Kuloyo, Olukayode; Linage, Borja; Borgonie, Gaetan; Onstott, Tullis C.

    2016-01-01

    Deep continental subsurface fracture water systems, ranging from 1.1 to 3.3 km below land surface (kmbls), were investigated to characterize the indigenous microorganisms and elucidate microbial carbon sources and their cycling. Analysis of phospholipid fatty acid (PLFA) abundances and direct cell counts detected varying biomass that was not correlated with depth. Compound-specific carbon isotope analyses (δ13C and Δ14C) of the phospholipid fatty acids (PLFAs) and carbon substrates combined with genomic analyses did identify, however, distinct carbon sources and cycles between the two depth ranges studied. In the shallower boreholes at circa 1 kmbls, isotopic evidence indicated microbial incorporation of biogenic CH4 by the in situ microbial community. At the shallowest site, 1.05 kmbls in Driefontein mine, this process clearly dominated the isotopic signal. At slightly deeper depths, 1.34 kmbls in Beatrix mine, the isotopic data indicated the incorporation of both biogenic CH4 and dissolved inorganic carbon (DIC) derived from CH4 oxidation. In both of these cases, molecular genetic analysis indicated that methanogenic and methanotrophic organisms together comprised a small component (<5%) of the microbial community. Thus, it appears that a relatively minor component of the prokaryotic community is supporting a much larger overall bacterial community in these samples. In the samples collected from >3 kmbls in Tau Tona mine (TT107, TT109 Bh2), the CH4 had an isotopic signature suggesting a predominantly abiogenic origin with minor inputs from microbial methanogenesis. In these samples, the isotopic enrichments (δ13C and Δ14C) of the PLFAs relative to CH4 were consistent with little incorporation of CH4 into the biomass. The most 13C-enriched PLFAs were observed in TT107 where the dominant CO2-fixation pathway was the acetyl-CoA pathway by non-acetogenic bacteria. The differences in the δ13C of the PLFAs and the DIC and DOC for TT109 Bh2 were ∼-24‰ and 0‰, respectively. The dominant CO2-fixation pathways were 3-HP/4-HB cycle > acetyl-CoA pathway > reductive pentose phosphate cycle.

  20. Increase in CD4+ T-Cell Count at the Time of HIV Diagnosis and Antiretroviral Treatment Initiation Among Persons With HIV in New York City.

    PubMed

    Braunstein, Sarah L; Robertson, McKaylee M; Myers, Julie; Abraham, Bisrat; Nash, Denis

    2016-12-01

     Trends in CD4 + T-cell count at human immunodeficiency virus (HIV) infection diagnosis and antiretroviral therapy (ART) initiation can be characterized using laboratory tests from surveillance.  We used CD4 + T-cell counts and viral loads from New York City for persons who received a diagnosis of HIV infection during 2006-2012.  From 2006 to 2012, the median CD4 + T-cell count increased from 325 to 379 cells/µL at diagnosis and from 178 to 360 cells/μL at ART initiation. CD4 + T-cell counts were consistently lower in women, blacks, Hispanics, persons who inject drugs, and heterosexuals.  Increases in CD4 + T-cell count at diagnosis and ART initiation suggest that the time from HIV infection to ART initiation has been reduced substantially in New York City. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  1. Determination of Microbial Growth by Protein Assay in an Air-Cathode Single Chamber Microbial Fuel Cell.

    PubMed

    Li, Na; Kakarla, Ramesh; Moon, Jung Mi; Min, Booki

    2015-07-01

    Microbial fuel cells (MFCs) have gathered attention as a novel bioenergy technology to simultaneously treat wastewater with less sludge production than the conventional activated sludge system. In two different operations of the MFC and aerobic process, microbial growth was determined by the protein assay method and their biomass yields using real wastewater were compared. The biomass yield on the anode electrode of the MFC was 0.02 g-COD-cell/g- COD-substrate and the anolyte planktonic biomass was 0.14 g-COD-cell/g-COD-substrate. An MFC without anode electrode resulted in the biomass yield of 0.07 ± 0.03 g-COD-cell/g-COD-substrate, suggesting that oxygen diffusion from the cathode possibly supported the microbial growth. In a comparative test, the biomass yield under aerobic environment was 0.46 ± 0.07 g-COD-cell/g-COD-substrate, which was about 3 times higher than the total biomass value in the MFC operation.

  2. White blood cell and platelet count as adjuncts to standard clinical evaluation for risk assessment in patients at low probability of acute aortic syndrome.

    PubMed

    Morello, Fulvio; Cavalot, Giulia; Giachino, Francesca; Tizzani, Maria; Nazerian, Peiman; Carbone, Federica; Pivetta, Emanuele; Mengozzi, Giulio; Moiraghi, Corrado; Lupia, Enrico

    2017-08-01

    Pre-test probability assessment is key in the approach to suspected acute aortic syndromes (AASs). However, most patients with AAS-compatible symptoms are classified at low probability, warranting further evaluation for decision on aortic imaging. White blood cell count, platelet count and fibrinogen explore pathophysiological pathways mobilized in AASs and are routinely assayed in the workup of AASs. However, the diagnostic performance of these variables for AASs, alone and as a bundle, is unknown. We tested the hypothesis that white blood cell count, platelet count and/or fibrinogen at presentation may be applied as additional tools to standard clinical evaluation for pre-test risk assessment in patients at low probability of AAS. This was a retrospective observational study conducted on consecutive patients managed in our Emergency Department from 2009 to 2014 for suspected AAS. White blood cell count, platelet count and fibrinogen were assayed during evaluation in the Emergency Department. The final diagnosis was obtained by computed tomography angiography. The pre-test probability of AAS was defined according to guidelines. Of 1210 patients with suspected AAS, 1006 (83.1%) were classified at low probability, and 271 (22.4%) were diagnosed with AAS. Within patients at low probability, presence of at least one alteration among white blood cell count >9*10 3 /µl, platelet count <200*10 3 /µl and fibrinogen <350 mg/dl was associated with a sensitivity of 95.5% (89.7-98.5%) and a specificity of 18.3% (15.6-21.2%). In patients at low probability, white blood cell count >9*10 3 /µl and platelet count <200*10 3 /µl were found as independent predictors of AAS beyond established clinical risk markers. Within patients at low probability, the estimated risk of AAS based on the number of alterations amongst white blood cell count >9*10 3 /µl and platelet count <200*10 3 /µl was 2.7% (1.2-5.7%) with zero alterations, 11.3% (8.8-14.3%) with one alteration and 31.9% (24.8-40%) with two alterations ( p<0.001). In addition to standard clinical evaluation, white blood cell count and platelet count may be used in patients at low pre-test probability to fine-tune risk assessment of AAS.

  3. The Importance of TLR2 and Macrophages in Modulating a Humoral Response after Encountering Streptococcus pneumoniae

    DTIC Science & Technology

    2008-03-26

    Response after Encountering Streptococcus Pneumoniae" Brian Schae:5 ,Ph.D. Department of Microbi ogy & Immunology Committee Chairperson Masters...presenting cells (APCs), such as macrophages (M ) and dendritic cells (DC) recognize microbial surface components via cell surface receptors (i.e...stimulating factor (GM-CSF). TH1 cells are able to secrete IFN- , which is important in activating M to produce mediators important for microbial

  4. Outward electron transfer by Saccharomyces cerevisiae monitored with a bi-cathodic microbial fuel cell-type activity sensor.

    PubMed

    Ducommun, Raphaël; Favre, Marie-France; Carrard, Delphine; Fischer, Fabian

    2010-03-01

    A Janus head-like bi-cathodic microbial fuel cell was constructed to monitor the electron transfer from Saccharomyces cerevisiae to a woven carbon anode. The experiments were conducted during an ethanol cultivation of 170 g/l glucose in the presence and absence of yeast-peptone medium. First, using a basic fuel-cell type activity sensor, it was shown that yeast-peptone medium contains electroactive compounds. For this purpose, 1% solutions of soy peptone and yeast extract were subjected to oxidative conditions, using a microbial fuel cell set-up corresponding to a typical galvanic cell, consisting of culture medium in the anodic half-cell and 0.5 M K(3)Fe(CN)(6) in the cathodic half-cell. Second, using a bi-cathodic microbial fuel cell, it was shown that electrons were transferred from yeast cells to the carbon anode. The participation of electroactive compounds in the electron transport was separated as background current. This result was verified by applying medium-free conditions, where only glucose was fed, confirming that electrons are transferred from yeast cells to the woven carbon anode. Knowledge about the electron transfer through the cell membrane is of importance in amperometric online monitoring of yeast fermentations and for electricity production with microbial fuel cells. Copyright (c) 2009 John Wiley & Sons, Ltd.

  5. Occurrence of genes coding for MSCRAMM and biofilm-associated protein Bap in Staphylococcus spp. isolated from bovine subclinical mastitis and relationship with somatic cell counts.

    PubMed

    Zuniga, Eveline; Melville, Priscilla A; Saidenberg, André B S; Laes, Marco A; Gonsales, Fernanda F; Salaberry, Sandra R S; Gregori, Fabio; Brandão, Paulo E; dos Santos, Franklin G B; Lincopan, Nilton E; Benites, Nilson R

    2015-12-01

    This study aimed to elucidate aspects of the epidemiology of bovine subclinical mastitis through the assessment of genes encoding MSCRAMM (microbial surface components recognizing adhesive matrix molecules - a group of adhesins) and protein Bap (implicated in biofilm formation), in coagulase-positive (CPS) and coagulase-negative (CNS) Staphylococcus isolated from subclinical mastitis. Milk samples were collected for microbiological exams, somatic cell count (SCC) and a survey of the genes coding for MSCRAMM (cna, eno, ebpS, fnbA, fnbB and fib) and biofilm-associated protein Bap (bap) in 106 Staphylococcus spp. isolates using PCR. The frequencies of occurrence of eno (82.1%), fnbA (72.6%), fib (71.7%) and bap (56.6%) were higher (P < 0.0001) compared with the other assessed genes (cna, ebpS and fnbB). The higher frequency of occurrence (P < 0.005) of the bap gene in CNS compared with CPS suggests that in these species biofilm formation is an important mechanism for the persistence of the infection. The medians of the SCCs in the samples where eno, fnbA, fib and bap genes were detected were higher compared with Staphylococcus without the assessed genes (P < 0.05) and negative samples (P < 0.01), which indicated that the presence of these MSCRAMM may be related to a higher intensity of the inflammatory process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Microbial quality of food available to populations of differing socioeconomic status.

    PubMed

    Koro, Marlen E; Anandan, Shivanthi; Quinlan, Jennifer J

    2010-05-01

    Low SES has been shown to be linked to poorer-quality diets, decreased consumption of fresh produce, and an increased reliance on small retail stores. The objective of this research was to determine if there is a difference in the microbial quality and potential safety of food available to low-SES versus high-SES populations at the retail level. Aerobic plate count (APC); yeast and mold counts (Y & M); and total coliforms were determined in ready-to-eat (RTE) greens, pre-cut watermelon, broccoli, strawberries, cucumbers, milk, and orange juice and compared among products purchased in stores in low- versus those purchased in high-SES neighborhoods between June 2005 and September 2006. APC, fecal coliforms, and E. coli in ground beef and the presence of Salmonella and Campylobacter in chicken were also compared. Results showed higher microbial loads on produce from markets in low-SES areas. Significant differences observed included (1) APC and Y&M in RTE greens, (2) APC and Y&M in strawberries, and (3) YMCs in cucumbers. No difference was detected in the level of pathogens in raw meat and poultry; however, the APC in ground beef available in high-SES markets was significantly higher compared with that found in low-SES markets. The results presented here indicate that populations of low SES may be more likely to experience produce of poorer microbial quality, which may have an impact on both the appeal and potential safety of the produce. 2010 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  7. The micro-Petri dish, a million-well growth chip for the culture and high-throughput screening of microorganisms.

    PubMed

    Ingham, Colin J; Sprenkels, Ad; Bomer, Johan; Molenaar, Douwe; van den Berg, Albert; van Hylckama Vlieg, Johan E T; de Vos, Willem M

    2007-11-13

    A miniaturized, disposable microbial culture chip has been fabricated by microengineering a highly porous ceramic sheet with up to one million growth compartments. This versatile culture format, with discrete compartments as small as 7 x 7 mum, allowed the growth of segregated microbial samples at an unprecedented density. The chip has been used for four complementary applications in microbiology. (i) As a fast viable counting system that showed a dynamic range of over 10,000, a low degree of bias, and a high culturing efficiency. (ii) In high-throughput screening, with the recovery of 1 fluorescent microcolony in 10,000. (iii) In screening for an enzyme-based, nondominant phenotype by the targeted recovery of Escherichia coli transformed with the plasmid pUC18, based on expression of the lacZ reporter gene without antibiotic-resistance selection. The ease of rapid, successive changes in the environment of the organisms on the chip, needed for detection of beta-galactosidase activity, highlights an advantageous feature that was also used to screen a metagenomic library for the same activity. (iv) In high-throughput screening of >200,000 isolates from Rhine water based on metabolism of a fluorogenic organophosphate compound, resulting in the recovery of 22 microcolonies with the desired phenotype. These isolates were predicted, on the basis of rRNA sequence, to include six new species. These four applications suggest that the potential for such simple, readily manufactured chips to impact microbial culture is extensive and may facilitate the full automation and multiplexing of microbial culturing, screening, counting, and selection.

  8. Effects of gamma ray and electron beam irradiation on reduction of microbial load and antioxidant properties of Chum-Hed-Thet (Cassia alata (L.) Roxb.)

    NASA Astrophysics Data System (ADS)

    Prakhongsil, P.; Pewlong, W.; Sajjabut, S.; Chookaew, S.

    2017-06-01

    Considering the growing demands of herbal medicines, Cassia alata (L.) Roxb. has been reported to have various phytochemical activities. It has also been called in Thai as Chum-Hed-Thet. In this study, C. alata (L.) Roxb. powder were exposed to gamma and electron beam irradiation at doses of 0, 5, 10, 15 and 20 kGy. At the dose of 10 kGy, both of gamma and electron beam irradiation were sufficient in reducing microbial load of irradiated samples as specified in Thai pharmacopoeia (2005). These include the total aerobic microbial count of < 5.0x105 CFU/g, total fungi count of < 5.0x104 CFU/g, bile tolerant gram negative bacteria of < 104 (per g). In addition, pathogenic Clostridium spp. (per 10 g), Salmonella spp. (per 10 g), S. aureus (per 1g) and E.coli (per 1g) were absence. In terms of the bioactive molecules, the total phenolic content, DPPH free radical scavenging activity and ferric reducing antioxidant potential of unirradiated and irradiated samples were 19.32-22.44 mg gallic acid equivalent/g, 5.20-7.82 mg ascorbic acid equivalent/g and 69.46-82.06 μmol FeSO4/g, respectively. However, there were no significant differences between unirradiated and irradiated samples (p>0.05). Therefore, both of radiation by gamma ray or electron beam at 10 kGy was sufficient in elimination of microbial flora and did not significantly affected the total phenolic content and antioxidant activities of C. alata (L.) Roxb.

  9. Efficacy of detergents and fresh produce disinfectants against microorganisms associated with mixed raw vegetables.

    PubMed

    Samadi, Nasrin; Abadian, Neda; Bakhtiari, Donya; Fazeli, Mohammad Reza; Jamalifar, Hossein

    2009-07-01

    Efficacy of commercial detergent and disinfectants to eliminate microorganisms associated with fresh vegetables eaten raw in Iran, including radish, parsley, basil, coriander (cilantro), Allium porrum (leek), and peppermint were studied. The raw vegetables were subjected to a triple wash treatment of washing in tap water for mud removal, washing in water containing a detergent (dishwashing liquid) or disinfectant individually, and rinsing in tap water. The population of total mesophilic microbes on the surface of untreated vegetables ranged from 10(5) to 10(6) CFU/g. Washing in tap water or treatment with detergent (333 ppm for 10 min) or benzalkonium chloride (92 ppm for 15 min) reduced the total microbial count, most probable number (MPN) of coliforms, MPN of fecal coliforms, and MPN of fecal streptococci by about 1.2 to 2.3 log. No significant differences in microbial populations were found on vegetables after decontamination with tap water, detergent, or benzalkonium chloride (P > 0.05). Treatments with peracetic acid (100 ppm for 15 min) and hydrogen peroxide (133 ppm for 30 min) reduced the total mesophilic microbial counts by about 2.8 log. The microbial reductions with calcium hypochlorite (300 ppm for 15 min) and combined hydrogen peroxide and silver ion (133 ppm for 30 min) were significantly higher than those obtained after rinsing in tap water or after detergent or benzalkonium chloride wash (P < 0.05). Pretreatment with detergent slightly enhanced the efficacy of all decontamination treatments, but results were not significantly different from those obtained after individual application of disinfectants.

  10. Go with the flow or solitary confinement: a look inside the single-cell toolbox for isolation of rare and uncultured microbes.

    PubMed

    Huys, Geert Rb; Raes, Jeroen

    2018-06-13

    With the vast majority of the microbial world still considered unculturable or undiscovered, microbiologists not only require more fundamental insights concerning microbial growth requirements but also need to implement miniaturized, versatile and high-throughput technologies to upscale current microbial isolation strategies. In this respect, single-cell-based approaches are increasingly finding their way to the microbiology lab. A number of recent studies have demonstrated that analysis and separation of free microbial cells by flow-based sorting as well as physical stochastic confinement of individual cells in microenvironment compartments can facilitate the isolation of previously uncultured species and the discovery of novel microbial taxa. Still, while most of these methods give immediate access to downstream whole genome sequencing, upscaling to higher cell densities as required for metabolic readouts and preservation purposes can remain challenging. Provided that these and other technological challenges are addressed in future innovation rounds, integration of single-cell tools in commercially available benchtop instruments and service platforms is expected to trigger more targeted explorations in the microbial dark matter at a depth comparable to metagenomics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Linking microbial assemblages to paleoenvironmental conditions from the Holocene and Last Glacial Maximum times in Laguna Potrok Aike sediments, Argentina

    NASA Astrophysics Data System (ADS)

    Vuillemin, Aurele; Ariztegui, Daniel; Leavitt, Peter R.; Bunting, Lynda

    2014-05-01

    Laguna Potrok Aike is a closed basin located in the southern hemisphere's mid-latitudes (52°S) where paleoenvironmental conditions were recorded as temporal sedimentary sequences resulting from variations in the regional hydrological regime and geology of the catchment. The interpretation of the limnogeological multiproxy record developed during the ICDP-PASADO project allowed the identification of contrasting time windows associated with the fluctuations of Southern Westerly Winds. In the framework of this project, a 100-m-long core was also dedicated to a detailed geomicrobiological study which aimed at a thorough investigation of the lacustrine subsurface biosphere. Indeed, aquatic sediments do not only record past climatic conditions, but also provide a wide range of ecological niches for microbes. In this context, the influence of environmental features upon microbial development and survival remained still unexplored for the deep lacustrine realm. Therefore, we investigated living microbes throughout the sedimentary sequence using in situ ATP assays and DAPI cell count. These results, compiled with pore water analysis, SEM microscopy of authigenic concretions and methane and fatty acid biogeochemistry, provided evidence for a sustained microbial activity in deep sediments and pinpointed the substantial role of microbial processes in modifying initial organic and mineral fractions. Finally, because the genetic material associated with microorganisms can be preserved in sediments over millennia, we extracted environmental DNA from Laguna Potrok Aike sediments and established 16S rRNA bacterial and archaeal clone libraries to better define the use of DNA-based techniques in reconstructing past environments. We focused on two sedimentary horizons both displaying in situ microbial activity, respectively corresponding to the Holocene and Last Glacial Maximum periods. Sequences recovered from the productive Holocene record revealed a microbial community adapted to subsaline conditions producing methane with a high potential of organic matter degradation. In contrast, sediments rich in volcanic detritus from the Last Glacial Maximum showed a substantial presence of lithotrophic microorganisms and sulphate-reducing bacteria mediating authigenic minerals. Together, these features suggested that microbial communities developed in response to climatic control of lake and catchment productivity at the time of sediment deposition. Prevailing climatic conditions exerted a hierarchical control on the microbial composition of lake sediments by regulating the influx of organic and inorganic material to the lake basin, which in turn determined water column chemistry, production and sedimentation of particulate material, resulting in the different niches sheltering these microbial assemblages. Moreover, it demonstrated that environmental DNA can constitute sedimentary archives of phylogenetic diversity and diagenetic processes over tens of millennia.

  12. Increased circulating blood cell counts in combat-related PTSD: Associations with inflammation and PTSD severity.

    PubMed

    Lindqvist, Daniel; Mellon, Synthia H; Dhabhar, Firdaus S; Yehuda, Rachel; Grenon, S Marlene; Flory, Janine D; Bierer, Linda M; Abu-Amara, Duna; Coy, Michelle; Makotkine, Iouri; Reus, Victor I; Aschbacher, Kirstin; Bersani, F Saverio; Marmar, Charles R; Wolkowitz, Owen M

    2017-12-01

    Inflammation is reported in post-traumatic stress disorder (PTSD). Few studies have investigated circulating blood cells that may contribute to inflammation. We assessed circulating platelets, white blood cells (WBC) and red blood cells (RBC) in PTSD and assessed their relationship to inflammation and symptom severity. One-hundred and sixty-three male combat-exposed veterans (82 PTSD, 81 non-PTSD) had blood assessed for platelets, WBC, and RBC. Data were correlated with symptom severity and inflammation. All cell counts were significantly elevated in PTSD. There were small mediation effects of BMI and smoking on these relationships. After adjusting for these, the differences in WBC and RBC remained significant, while platelet count was at trend level. In all subjects, all of the cell counts correlated significantly with inflammation. Platelet count correlated with inflammation only in the PTSD subjects. Platelet count, but none of the other cell counts, was directly correlated with PTSD severity ratings in the PTSD group. Combat PTSD is associated with elevations in RBC, WBC, and platelets. Dysregulation of all three major lineages of hematopoietic cells in PTSD, as well as their significant correlation with inflammation, suggest clinical significance of these changes. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Long-term mortality in HIV-positive individuals virally suppressed for >3 years with incomplete CD4 recovery.

    PubMed

    Engsig, Frederik N; Zangerle, Robert; Katsarou, Olga; Dabis, Francois; Reiss, Peter; Gill, John; Porter, Kholoud; Sabin, Caroline; Riordan, Andrew; Fätkenheuer, Gerd; Gutiérrez, Félix; Raffi, Francois; Kirk, Ole; Mary-Krause, Murielle; Stephan, Christoph; de Olalla, Patricia Garcia; Guest, Jodie; Samji, Hasina; Castagna, Antonella; d'Arminio Monforte, Antonella; Skaletz-Rorowski, Adriane; Ramos, Jose; Lapadula, Giuseppe; Mussini, Cristina; Force, Lluís; Meyer, Laurence; Lampe, Fiona; Boufassa, Faroudy; Bucher, Heiner C; De Wit, Stéphane; Burkholder, Greer A; Teira, Ramon; Justice, Amy C; Sterling, Tim R; M Crane, Heidi; Gerstoft, Jan; Grarup, Jesper; May, Margaret; Chêne, Geneviève; Ingle, Suzanne M; Sterne, Jonathan; Obel, Niels

    2014-05-01

    Some human immunodeficiency virus (HIV)-infected individuals initiating combination antiretroviral therapy (cART) with low CD4 counts achieve viral suppression but not CD4 cell recovery. We aimed to identify (1) risk factors for failure to achieve CD4 count >200 cells/µL after 3 years of sustained viral suppression and (2) the association of the achieved CD4 count with subsequent mortality. We included treated HIV-infected adults from 2 large international HIV cohorts, who had viral suppression (≤500 HIV type 1 RNA copies/mL) for >3 years with CD4 count ≤200 cells/µL at start of the suppressed period. Logistic regression was used to identify risk factors for incomplete CD4 recovery (≤200 cells/µL) and Cox regression to identify associations with mortality. Of 5550 eligible individuals, 835 (15%) did not reach a CD4 count >200 cells/µL after 3 years of suppression. Increasing age, lower initial CD4 count, male heterosexual and injection drug use transmission, cART initiation after 1998, and longer time from initiation of cART to start of the virally suppressed period were risk factors for not achieving a CD4 count >200 cells/µL. Individuals with CD4 ≤200 cells/µL after 3 years of viral suppression had substantially increased mortality (adjusted hazard ratio, 2.60; 95% confidence interval, 1.86-3.61) compared with those who achieved CD4 count >200 cells/µL. The increased mortality was seen across different patient groups and for all causes of death. Virally suppressed HIV-positive individuals on cART who do not achieve a CD4 count >200 cells/µL have substantially increased long-term mortality.

  14. Relationship between automated total nucleated cell count and enumeration of cells on direct smears of canine synovial fluid.

    PubMed

    Dusick, Allison; Young, Karen M; Muir, Peter

    2014-12-01

    Canine osteoarthritis is a common disorder seen in veterinary clinical practice and causes considerable morbidity in dogs as they age. Synovial fluid analysis is an important tool for diagnosis and treatment of canine joint disease and obtaining a total nucleated cell count (TNCC) is particularly important. However, the low sample volumes obtained during arthrocentesis are often insufficient for performing an automated TNCC, thereby limiting diagnostic interpretation. The aim of the present study was to investigate whether estimation of TNCC in canine synovial fluid could be achieved by performing manual cell counts on direct smears of fluid. Fifty-eight synovial fluid samples, taken by arthrocentesis from 48 dogs, were included in the study. Direct smears of synovial fluid were prepared, and hyaluronidase added before cell counts were obtained using a commercial laser-based instrument. A protocol was established to count nucleated cells in a specific region of the smear, using a serpentine counting pattern; the mean number of nucleated cells per 400 × field was then calculated. There was a positive correlation between the automated TNCC and mean manual cell count, with more variability at higher TNCC. Regression analysis was performed to estimate TNCC from manual counts. By this method, 78% of the samples were correctly predicted to fall into one of three categories (within the reference interval, mildly to moderately increased, or markedly increased) relative to the automated TNCC. Intra-observer and inter-observer agreement was good to excellent. The results of the study suggest that interpretation of canine synovial fluid samples of low volume can be aided by methodical manual counting of cells on direct smears. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. The impact of date palm fruits and their component polyphenols, on gut microbial ecology, bacterial metabolites and colon cancer cell proliferation.

    PubMed

    Eid, Noura; Enani, Sumia; Walton, Gemma; Corona, Giulia; Costabile, Adele; Gibson, Glenn; Rowland, Ian; Spencer, Jeremy P E

    2014-01-01

    The fruit of the date palm (Phoenix dactylifera L.) is a rich source of dietary fibre and polyphenols. We have investigated gut bacterial changes induced by the whole date fruit extract (digested date extract; DDE) and its polyphenol-rich extract (date polyphenol extract; DPE) using faecal, pH-controlled, mixed batch cultures mimicking the distal part of the human large intestine, and utilising an array of microbial group-specific 16S rRNA oligonucleotide probes. Fluorescence microscopic enumeration indicated that there was a significant increase in the growth of bifidobacteria in response to both treatments, whilst whole dates also increased bacteroides at 24 h and the total bacterial counts at later fermentation time points when compared with DPE alone. Bacterial metabolism of whole date fruit led to the production of SCFA, with acetate significantly increasing following bacterial incubation with DDE. In addition, the production of flavonoid aglycones (myricetin, luteolin, quercetin and apigenin) and the anthocyanidin petunidin in less than 1 h was also observed. Lastly, the potential of DDE, DPE and metabolites to inhibit Caco-2 cell growth was investigated, indicating that both were capable of potentially acting as antiproliferative agents in vitro, following a 48 h exposure. This potential to inhibit growth was reduced following fermentation. Together these data suggest that consumption of date fruits may enhance colon health by increasing beneficial bacterial growth and inhibiting the proliferation of colon cancer cells. This is an early suggestion that date intake by humans may aid in the maintenance of bowel health and even the reduction of colorectal cancer development.

  16. Engineering microbial cell factories for the production of plant natural products: from design principles to industrial-scale production.

    PubMed

    Liu, Xiaonan; Ding, Wentao; Jiang, Huifeng

    2017-07-19

    Plant natural products (PNPs) are widely used as pharmaceuticals, nutraceuticals, seasonings, pigments, etc., with a huge commercial value on the global market. However, most of these PNPs are still being extracted from plants. A resource-conserving and environment-friendly synthesis route for PNPs that utilizes microbial cell factories has attracted increasing attention since the 1940s. However, at the present only a handful of PNPs are being produced by microbial cell factories at an industrial scale, and there are still many challenges in their large-scale application. One of the challenges is that most biosynthetic pathways of PNPs are still unknown, which largely limits the number of candidate PNPs for heterologous microbial production. Another challenge is that the metabolic fluxes toward the target products in microbial hosts are often hindered by poor precursor supply, low catalytic activity of enzymes and obstructed product transport. Consequently, despite intensive studies on the metabolic engineering of microbial hosts, the fermentation costs of most heterologously produced PNPs are still too high for industrial-scale production. In this paper, we review several aspects of PNP production in microbial cell factories, including important design principles and recent progress in pathway mining and metabolic engineering. In addition, implemented cases of industrial-scale production of PNPs in microbial cell factories are also highlighted.

  17. Tracking heavy water (D2O) incorporation for identifying and sorting active microbial cells

    PubMed Central

    Berry, David; Mader, Esther; Lee, Tae Kwon; Woebken, Dagmar; Wang, Yun; Zhu, Di; Palatinszky, Marton; Schintlmeister, Arno; Schmid, Markus C.; Hanson, Buck T.; Shterzer, Naama; Mizrahi, Itzhak; Rauch, Isabella; Decker, Thomas; Bocklitz, Thomas; Popp, Jürgen; Gibson, Christopher M.; Fowler, Patrick W.; Huang, Wei E.; Wagner, Michael

    2015-01-01

    Microbial communities are essential to the function of virtually all ecosystems and eukaryotes, including humans. However, it is still a major challenge to identify microbial cells active under natural conditions in complex systems. In this study, we developed a new method to identify and sort active microbes on the single-cell level in complex samples using stable isotope probing with heavy water (D2O) combined with Raman microspectroscopy. Incorporation of D2O-derived D into the biomass of autotrophic and heterotrophic bacteria and archaea could be unambiguously detected via C-D signature peaks in single-cell Raman spectra, and the obtained labeling pattern was confirmed by nanoscale-resolution secondary ion MS. In fast-growing Escherichia coli cells, label detection was already possible after 20 min. For functional analyses of microbial communities, the detection of D incorporation from D2O in individual microbial cells via Raman microspectroscopy can be directly combined with FISH for the identification of active microbes. Applying this approach to mouse cecal microbiota revealed that the host-compound foragers Akkermansia muciniphila and Bacteroides acidifaciens exhibited distinctive response patterns to amendments of mucin and sugars. By Raman-based cell sorting of active (deuterated) cells with optical tweezers and subsequent multiple displacement amplification and DNA sequencing, novel cecal microbes stimulated by mucin and/or glucosamine were identified, demonstrating the potential of the nondestructive D2O-Raman approach for targeted sorting of microbial cells with defined functional properties for single-cell genomics. PMID:25550518

  18. White blood cell counts and neutrophil to lymphocyte ratio in the diagnosis of testicular cancer: a simple secondary serum tumor marker.

    PubMed

    Yuksel, Ozgur Haki; Verit, Ayhan; Sahin, Aytac; Urkmez, Ahmet; Uruc, Fatih

    2016-01-01

    The aim of the study was to investigate white blood cell counts and neutrophil to lymphocyte ratio (NLR) as markers of systemic inflammation in the diagnosis of localized testicular cancer as a malignancy with initially low volume. Thirty-six patients with localized testicular cancer with a mean age of 34.22±14.89 years and 36 healthy controls with a mean age of 26.67±2.89 years were enrolled in the study. White blood cell counts and NLR were calculated from complete blood cell counts. White blood cell counts and NLR were statistically significantly higher in patients with testicular cancer compared with the control group (p<0.0001 for all). Both white blood cell counts and NLR can be used as a simple test in the diagnosis of testicular cancer besides the well-known accurate serum tumor markers as AFP (alpha fetoprotein), hCG (human chorionic gonadotropin) and LDH (lactate dehydrogenase).

  19. Microbial Iron(II) Oxidation in Littoral Freshwater Lake Sediment: The Potential for Competition between Phototrophic vs. Nitrate-Reducing Iron(II)-Oxidizers

    PubMed Central

    Melton, E. D.; Schmidt, C.; Kappler, A.

    2012-01-01

    The distribution of neutrophilic microbial iron oxidation is mainly determined by local gradients of oxygen, light, nitrate and ferrous iron. In the anoxic top part of littoral freshwater lake sediment, nitrate-reducing and phototrophic Fe(II)-oxidizers compete for the same e− donor; reduced iron. It is not yet understood how these microbes co-exist in the sediment and what role they play in the Fe cycle. We show that both metabolic types of anaerobic Fe(II)-oxidizing microorganisms are present in the same sediment layer directly beneath the oxic-anoxic sediment interface. The photoferrotrophic most probable number counted 3.4·105 cells·g−1 and the autotrophic and mixotrophic nitrate-reducing Fe(II)-oxidizers totaled 1.8·104 and 4.5·104 cells·g−1 dry weight sediment, respectively. To distinguish between the two microbial Fe(II) oxidation processes and assess their individual contribution to the sedimentary Fe cycle, littoral lake sediment was incubated in microcosm experiments. Nitrate-reducing Fe(II)-oxidizing bacteria exhibited a higher maximum Fe(II) oxidation rate per cell, in both pure cultures and microcosms, than photoferrotrophs. In microcosms, photoferrotrophs instantly started oxidizing Fe(II), whilst nitrate-reducing Fe(II)-oxidizers showed a significant lag-phase during which they probably use organics as e− donor before initiating Fe(II) oxidation. This suggests that they will be outcompeted by phototrophic Fe(II)-oxidizers during optimal light conditions; as phototrophs deplete Fe(II) before nitrate-reducing Fe(II)-oxidizers start Fe(II) oxidation. Thus, the co-existence of the two anaerobic Fe(II)-oxidizers may be possible due to a niche space separation in time by the day-night cycle, where nitrate-reducing Fe(II)-oxidizers oxidize Fe(II) during darkness and phototrophs play a dominant role in Fe(II) oxidation during daylight. Furthermore, metabolic flexibility of Fe(II)-oxidizing microbes may play a paramount role in the conservation of the sedimentary Fe cycle. PMID:22666221

  20. Microbial life in cold, hydrologically active oceanic crustal fluids

    NASA Astrophysics Data System (ADS)

    Meyer, J. L.; Jaekel, U.; Girguis, P. R.; Glazer, B. T.; Huber, J. A.

    2012-12-01

    It is estimated that at least half of Earth's microbial biomass is found in the deep subsurface, yet very little is known about the diversity and functional roles of these microbial communities due to the limited accessibility of subseafloor samples. Ocean crustal fluids, which may have a profound impact on global nutrient cycles given the large volumes of water moving through the crustal aquifer, are particularly difficult to sample. Access to uncontaminated ocean crustal fluids is possible with CORK (Circulation Obviation Retrofit Kit) observatories, installed through the Integrated Ocean Drilling Program (IODP). Here we present the first microbiological characterization of the formation fluids from cold, oxygenated igneous crust at North Pond on the western flank of the Mid Atlantic Ridge. Fluids were collected from two CORKs installed at IODP boreholes 1382A and 1383C and include fluids from three different depth horizons within oceanic crust. Collection of borehole fluids was monitored in situ using an oxygen optode and solid-state voltammetric electrodes. In addition, discrete samples were analyzed on deck using a comparable lab-based system as well as a membrane-inlet mass spectrometer to quantify all dissolved volatiles up to 200 daltons. The instruments were operated in parallel and both in situ and shipboard geochemical measurements point to a highly oxidized fluid, revealing an apparent slight depletion of oxygen in subsurface fluids (~215μM) relative to bottom seawater (~245μM). We were unable to detect reduced hydrocarbons, e.g. methane. Cell counts indicated the presence of roughly 2 x 10^4 cells per ml in all fluid samples, and DNA was extracted and amplified for the identification of both bacterial and archaeal community members. The utilization of ammonia, nitrate, dissolved inorganic carbon, and acetate was measured using stable isotopes, and oxygen consumption was monitored to provide an estimate of the rate of respiration per cell per day. These results provide the first dataset describing the diversity of microbes present in cold, oxygenated ocean crustal fluids and the biogeochemical processes they mediate in the subseafloor.

Top