Sample records for microbial cell surface

  1. Chlorine stress mediates microbial surface attachment in drinking water systems.

    PubMed

    Liu, Li; Le, Yang; Jin, Juliang; Zhou, Yuliang; Chen, Guowei

    2015-03-01

    Microbial attachment to drinking water pipe surfaces facilitates pathogen survival and deteriorates disinfection performance, directly threatening the safety of drinking water. Notwithstanding that the formation of biofilm has been studied for decades, the underlying mechanisms for the origins of microbial surface attachment in biofilm development in drinking water pipelines remain largely elusive. We combined experimental and mathematical methods to investigate the role of environmental stress-mediated cell motility on microbial surface attachment in chlorination-stressed drinking water distribution systems. Results show that at low levels of disinfectant (0.0-1.0 mg/L), the presence of chlorine promotes initiation of microbial surface attachment, while higher amounts of disinfectant (>1.0 mg/L) inhibit microbial attachment. The proposed mathematical model further demonstrates that chlorination stress (0.0-5.0 mg/L)-mediated microbial cell motility regulates the frequency of cell-wall collision and thereby controls initial microbial surface attachment. The results reveal that transport processes and decay patterns of chlorine in drinking water pipelines regulate microbial cell motility and, thus, control initial surface cell attachment. It provides a mechanistic understanding of microbial attachment shaped by environmental disinfection stress and leads to new insights into microbial safety protocols in water distribution systems.

  2. Application of atomic force microscopy to microbial surfaces: from reconstituted cell surface layers to living cells.

    PubMed

    Dufrêne, Y F

    2001-02-01

    The application of atomic force microscopy (AFM) to probe the ultrastructure and physical properties of microbial cell surfaces is reviewed. The unique capabilities of AFM can be summarized as follows: imaging surface topography with (sub)nanometer lateral resolution; examining biological specimens under physiological conditions; measuring local properties and interaction forces. AFM is being used increasingly for: (i) visualizing the surface ultrastructure of microbial cell surface layers, including bacterial S-layers, purple membranes, porin OmpF crystals and fungal rodlet layers; (ii) monitoring conformational changes of individual membrane proteins; (iii) examining the morphology of bacterial biofilms, (iv) revealing the nanoscale structure of living microbial cells, including fungi, yeasts and bacteria, (v) mapping interaction forces at microbial surfaces, such as van der Waals and electrostatic forces, solvation forces, and steric/bridging forces; and (vi) probing the local mechanical properties of cell surface layers and of single cells.

  3. Characterization of the Cell Surface Properties of Drinking Water Pathogens by Microbial Adhesion to Hydrocarbon and Electrophoretic Mobility Measurements

    EPA Science Inventory

    The surface characteristics of microbial cells directly influence their mobility and behavior within aqueous environments. The cell surface hydrophobicity (CSH) and electrophoretic mobility (EPM) of microbial cells impact a number of interactions and processes including aggregati...

  4. Graphite anode surface modification with controlled reduction of specific aryl diazonium salts for improved microbial fuel cells power output.

    PubMed

    Picot, Matthieu; Lapinsonnière, Laure; Rothballer, Michael; Barrière, Frédéric

    2011-10-15

    Graphite electrodes were modified with reduction of aryl diazonium salts and implemented as anodes in microbial fuel cells. First, reduction of 4-aminophenyl diazonium is considered using increased coulombic charge density from 16.5 to 200 mC/cm(2). This procedure introduced aryl amine functionalities at the surface which are neutral at neutral pH. These electrodes were implemented as anodes in "H" type microbial fuel cells inoculated with waste water, acetate as the substrate and using ferricyanide reduction at the cathode and a 1000 Ω external resistance. When the microbial anode had developed, the performances of the microbial fuel cells were measured under acetate saturation conditions and compared with those of control microbial fuel cells having an unmodified graphite anode. We found that the maximum power density of microbial fuel cell first increased as a function of the extent of modification, reaching an optimum after which it decreased for higher degree of surface modification, becoming even less performing than the control microbial fuel cell. Then, the effect of the introduction of charged groups at the surface was investigated at a low degree of surface modification. It was found that negatively charged groups at the surface (carboxylate) decreased microbial fuel cell power output while the introduction of positively charged groups doubled the power output. Scanning electron microscopy revealed that the microbial anode modified with positively charged groups was covered by a dense and homogeneous biofilm. Fluorescence in situ hybridization analyses showed that this biofilm consisted to a large extent of bacteria from the known electroactive Geobacter genus. In summary, the extent of modification of the anode was found to be critical for the microbial fuel cell performance. The nature of the chemical group introduced at the electrode surface was also found to significantly affect the performance of the microbial fuel cells. The method used for modification is easy to control and can be optimized and implemented for many carbon materials currently used in microbial fuel cells and other bioelectrochemical systems. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Final Report: Rational Design of Anode Surface Chemistry in Microbial Fuel Cells for Improved Exoelectrogen Attachment and Electron Transfer

    DTIC Science & Technology

    2015-12-21

    SECURITY CLASSIFICATION OF: The overall goal of this project is to determine how electrode surface chemistry can be rationally designed to decrease...2015 Approved for Public Release; Distribution Unlimited Final Report: Rational Design of Anode Surface Chemistry in Microbial Fuel Cells for...ABSTRACT Final Report: Rational Design of Anode Surface Chemistry in Microbial Fuel Cells for Improved Exoelectrogen Attachment and Electron Transfer

  6. Yeast surface display of dehydrogenases in microbial fuel-cells.

    PubMed

    Gal, Idan; Schlesinger, Orr; Amir, Liron; Alfonta, Lital

    2016-12-01

    Two dehydrogenases, cellobiose dehydrogenase from Corynascus thermophilus and pyranose dehydrogenase from Agaricus meleagris, were displayed for the first time on the surface of Saccharomyces cerevisiae using the yeast surface display system. Surface displayed dehydrogenases were used in a microbial fuel cell and generated high power outputs. Surface displayed cellobiose dehydrogenase has demonstrated a midpoint potential of -28mV (vs. Ag/AgCl) at pH=6.5 and was used in a mediator-less anode compartment of a microbial fuel cell producing a power output of 3.3μWcm(-2) using lactose as fuel. Surface-displayed pyranose dehydrogenase was used in a microbial fuel cell and generated high power outputs using different substrates, the highest power output that was achieved was 3.9μWcm(-2) using d-xylose. These results demonstrate that surface displayed cellobiose dehydrogenase and pyranose dehydrogenase may successfully be used in microbial bioelectrochemical systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Microbial Surface Colonization and Biofilm Development in Marine Environments

    PubMed Central

    2015-01-01

    SUMMARY Biotic and abiotic surfaces in marine waters are rapidly colonized by microorganisms. Surface colonization and subsequent biofilm formation and development provide numerous advantages to these organisms and support critical ecological and biogeochemical functions in the changing marine environment. Microbial surface association also contributes to deleterious effects such as biofouling, biocorrosion, and the persistence and transmission of harmful or pathogenic microorganisms and their genetic determinants. The processes and mechanisms of colonization as well as key players among the surface-associated microbiota have been studied for several decades. Accumulating evidence indicates that specific cell-surface, cell-cell, and interpopulation interactions shape the composition, structure, spatiotemporal dynamics, and functions of surface-associated microbial communities. Several key microbial processes and mechanisms, including (i) surface, population, and community sensing and signaling, (ii) intraspecies and interspecies communication and interaction, and (iii) the regulatory balance between cooperation and competition, have been identified as critical for the microbial surface association lifestyle. In this review, recent progress in the study of marine microbial surface colonization and biofilm development is synthesized and discussed. Major gaps in our knowledge remain. We pose questions for targeted investigation of surface-specific community-level microbial features, answers to which would advance our understanding of surface-associated microbial community ecology and the biogeochemical functions of these communities at levels from molecular mechanistic details through systems biological integration. PMID:26700108

  8. Microbial Surface Colonization and Biofilm Development in Marine Environments.

    PubMed

    Dang, Hongyue; Lovell, Charles R

    2016-03-01

    Biotic and abiotic surfaces in marine waters are rapidly colonized by microorganisms. Surface colonization and subsequent biofilm formation and development provide numerous advantages to these organisms and support critical ecological and biogeochemical functions in the changing marine environment. Microbial surface association also contributes to deleterious effects such as biofouling, biocorrosion, and the persistence and transmission of harmful or pathogenic microorganisms and their genetic determinants. The processes and mechanisms of colonization as well as key players among the surface-associated microbiota have been studied for several decades. Accumulating evidence indicates that specific cell-surface, cell-cell, and interpopulation interactions shape the composition, structure, spatiotemporal dynamics, and functions of surface-associated microbial communities. Several key microbial processes and mechanisms, including (i) surface, population, and community sensing and signaling, (ii) intraspecies and interspecies communication and interaction, and (iii) the regulatory balance between cooperation and competition, have been identified as critical for the microbial surface association lifestyle. In this review, recent progress in the study of marine microbial surface colonization and biofilm development is synthesized and discussed. Major gaps in our knowledge remain. We pose questions for targeted investigation of surface-specific community-level microbial features, answers to which would advance our understanding of surface-associated microbial community ecology and the biogeochemical functions of these communities at levels from molecular mechanistic details through systems biological integration. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. Versatile microbial surface-display for environmental remediation and biofuels production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Cindy H.; Mulchandani, Ashok; Chen, wilfred

    2008-02-14

    Surface display is a powerful technique that utilizes natural microbial functional components to express proteins or peptides on the cell exterior. Since the reporting of the first surface-display system in the mid-1980s, a variety of new systems have been reported for yeast, Gram-positive and Gram-negative bacteria. Non-conventional display methods are emerging, eliminating the generation of genetically modified microorganisms. Cells with surface display are used as biocatalysts, biosorbents and biostimulants. Microbial cell-surface display has proven to be extremely important for numerous applications ranging from combinatorial library screening and protein engineering to bioremediation and biofuels production.

  10. The Importance of TLR2 and Macrophages in Modulating a Humoral Response after Encountering Streptococcus pneumoniae

    DTIC Science & Technology

    2008-03-26

    Response after Encountering Streptococcus Pneumoniae" Brian Schae:5 ,Ph.D. Department of Microbi ogy & Immunology Committee Chairperson Masters...presenting cells (APCs), such as macrophages (M ) and dendritic cells (DC) recognize microbial surface components via cell surface receptors (i.e...stimulating factor (GM-CSF). TH1 cells are able to secrete IFN- , which is important in activating M to produce mediators important for microbial

  11. Pure and Oxidized Copper Materials as Potential Antimicrobial Surfaces for Spaceflight Activities

    NASA Astrophysics Data System (ADS)

    Hahn, C.; Hans, M.; Hein, C.; Mancinelli, R. L.; Mücklich, F.; Wirth, R.; Rettberg, P.; Hellweg, C. E.; Moeller, R.

    2017-12-01

    Microbial biofilms can lead to persistent infections and degrade a variety of materials, and they are notorious for their persistence and resistance to eradication. During long-duration space missions, microbial biofilms present a danger to crew health and spacecraft integrity. The use of antimicrobial surfaces provides an alternative strategy for inhibiting microbial growth and biofilm formation to conventional cleaning procedures and the use of disinfectants. Antimicrobial surfaces contain organic or inorganic compounds, such as antimicrobial peptides or copper and silver, that inhibit microbial growth. The efficacy of wetted oxidized copper layers and pure copper surfaces as antimicrobial agents was tested by applying cultures of Escherichia coli and Staphylococcus cohnii to these metallic surfaces. Stainless steel surfaces were used as non-inhibitory control surfaces. The production of reactive oxygen species and membrane damage increased rapidly within 1 h of exposure on pure copper surfaces, but the effect on cell survival was negligible even after 2 h of exposure. However, longer exposure times of up to 4 h led to a rapid decrease in cell survival, whereby the survival of cells was additionally dependent on the exposed cell density. Finally, the release of metal ions was determined to identify a possible correlation between copper ions in suspension and cell survival. These measurements indicated a steady increase of free copper ions, which were released indirectly by cells presumably through excreted complexing agents. These data indicate that the application of antimicrobial surfaces in spaceflight facilities could improve crew health and mitigate material damage caused by microbial contamination and biofilm formation. Furthermore, the results of this study indicate that cuprous oxide layers were superior to pure copper surfaces related to the antimicrobial effect and that cell density is a significant factor that influences the time dependence of antimicrobial activity.

  12. Trophic interactions induce spatial self-organization of microbial consortia on rough surfaces.

    PubMed

    Wang, Gang; Or, Dani

    2014-10-24

    The spatial context of microbial interactions common in natural systems is largely absent in traditional pure culture-based microbiology. The understanding of how interdependent microbial communities assemble and coexist in limited spatial domains remains sketchy. A mechanistic model of cell-level interactions among multispecies microbial populations grown on hydrated rough surfaces facilitated systematic evaluation of how trophic dependencies shape spatial self-organization of microbial consortia in complex diffusion fields. The emerging patterns were persistent irrespective of initial conditions and resilient to spatial and temporal perturbations. Surprisingly, the hydration conditions conducive for self-assembly are extremely narrow and last only while microbial cells remain motile within thin aqueous films. The resulting self-organized microbial consortia patterns could represent optimal ecological templates for the architecture that underlie sessile microbial colonies on natural surfaces. Understanding microbial spatial self-organization offers new insights into mechanisms that sustain small-scale soil microbial diversity; and may guide the engineering of functional artificial microbial consortia.

  13. Specificity of marine microbial surface interactions.

    PubMed Central

    Imam, S H; Bard, R F; Tosteson, T R

    1984-01-01

    The macromolecular surface components involved in intraspecific cell surface interactions of the green microalga Chlorella vulgaris and closely associated bacteria were investigated. The specific surface attachment between this alga and its associated bacteria is mediated by lectin-like macromolecules associated with the surfaces of these cells. The binding activity of these surface polymers was inhibited by specific simple sugars; this suggests the involvement of specific receptor-ligand binding sites on the interactive surfaces. Epifluorescent microscopic evaluation of bacteria-alga interactions in the presence and absence of the macromolecules that mediate these interactions showed that the glycoproteins active in these processes were specific to the microbial sources from which they were obtained. The demonstration and definition of the specificity of these interactions in mixed microbial populations may play an important role in our understanding of the dynamics of marine microbial populations in the sea. PMID:6508293

  14. Shape recognition of microbial cells by colloidal cell imprints

    NASA Astrophysics Data System (ADS)

    Borovička, Josef; Stoyanov, Simeon D.; Paunov, Vesselin N.

    2013-08-01

    We have engineered a class of colloids which can recognize the shape and size of targeted microbial cells and selectively bind to their surfaces. These imprinted colloid particles, which we called ``colloid antibodies'', were fabricated by partial fragmentation of silica shells obtained by templating the targeted microbial cells. We successfully demonstrated the shape and size recognition between such colloidal imprints and matching microbial cells. High percentage of binding events of colloidal imprints with the size matching target particles was achieved. We demonstrated selective binding of colloidal imprints to target microbial cells in a binary mixture of cells of different shapes and sizes, which also resulted in high binding selectivity. We explored the role of the electrostatic interactions between the target cells and their colloid imprints by pre-coating both of them with polyelectrolytes. Selective binding occurred predominantly in the case of opposite surface charges of the colloid cell imprint and the targeted cells. The mechanism of the recognition is based on the amplification of the surface adhesion in the case of shape and size match due to the increased contact area between the target cell and the colloidal imprint. We also tested the selective binding for colloid imprints of particles of fixed shape and varying sizes. The concept of cell recognition by colloid imprints could be used for development of colloid antibodies for shape-selective binding of microbes. Such colloid antibodies could be additionally functionalized with surface groups to enhance their binding efficiency to cells of specific shape and deliver a drug payload directly to their surface or allow them to be manipulated using external fields. They could benefit the pharmaceutical industry in developing selective antimicrobial therapies and formulations.

  15. Pure and Oxidized Copper Materials as Potential Antimicrobial Surfaces for Spaceflight Activities.

    PubMed

    Hahn, C; Hans, M; Hein, C; Mancinelli, R L; Mücklich, F; Wirth, R; Rettberg, P; Hellweg, C E; Moeller, R

    2017-12-01

    Microbial biofilms can lead to persistent infections and degrade a variety of materials, and they are notorious for their persistence and resistance to eradication. During long-duration space missions, microbial biofilms present a danger to crew health and spacecraft integrity. The use of antimicrobial surfaces provides an alternative strategy for inhibiting microbial growth and biofilm formation to conventional cleaning procedures and the use of disinfectants. Antimicrobial surfaces contain organic or inorganic compounds, such as antimicrobial peptides or copper and silver, that inhibit microbial growth. The efficacy of wetted oxidized copper layers and pure copper surfaces as antimicrobial agents was tested by applying cultures of Escherichia coli and Staphylococcus cohnii to these metallic surfaces. Stainless steel surfaces were used as non-inhibitory control surfaces. The production of reactive oxygen species and membrane damage increased rapidly within 1 h of exposure on pure copper surfaces, but the effect on cell survival was negligible even after 2 h of exposure. However, longer exposure times of up to 4 h led to a rapid decrease in cell survival, whereby the survival of cells was additionally dependent on the exposed cell density. Finally, the release of metal ions was determined to identify a possible correlation between copper ions in suspension and cell survival. These measurements indicated a steady increase of free copper ions, which were released indirectly by cells presumably through excreted complexing agents. These data indicate that the application of antimicrobial surfaces in spaceflight facilities could improve crew health and mitigate material damage caused by microbial contamination and biofilm formation. Furthermore, the results of this study indicate that cuprous oxide layers were superior to pure copper surfaces related to the antimicrobial effect and that cell density is a significant factor that influences the time dependence of antimicrobial activity. Key Words: Contact killing-E. coli-S. cohnii-Antimicrobial copper surfaces-Copper oxide layers-Human health-Planetary protection. Astrobiology 17, 1183-1191.

  16. Inhibition and enhancement of microbial surface colonization: the role of silicate composition

    USGS Publications Warehouse

    Roberts, Jennifer A.

    2004-01-01

    Classical treatment of cell attachment by models of filtration or coulombic attraction assumes that attachment of cells to mineral surfaces would be controlled by factors such as response to predation, collision efficiency, or coulombic attraction between the charged groups at the mineral and cell surfaces. In the study reported here, the passive model of attachment was investigated using a native microbial consortium and a variety of Al- and Fe-bearing silicates and oxides to determine if other controls, such as mineral composition, also influence the interaction between cells and surfaces. Results from in situ colonization studies in an anaerobic groundwater at pH 6.8 combined with most probable number analyses (MPN) of surface-adherent cells demonstrate that electrostatic effects dominate microbial colonization on positively charged oxide surfaces regardless of mineral composition. In contrast, on negatively charged silicate minerals and glasses, the solid phase composition is a factor in determining the extent of microbial colonization, as well as the diversity of the attached community. In particular, silicates containing more than 1.2% Al exhibit less biomass than Al-poor silicates and MPN suggests a shift in community diversity, possibly indicating Al toxicity on these surfaces. When Fe is present in the silicate, however, this trend is reversed and abundant colonization of the surface is observed. Here, microorganisms preferentially colonize those silicate surfaces that offer beneficial nutrients and avoid those that contain potentially toxic elements.

  17. Extracellular enzymes facilitate electron uptake in biocorrosion and bioelectrosynthesis.

    PubMed

    Deutzmann, Jörg S; Sahin, Merve; Spormann, Alfred M

    2015-04-21

    Direct, mediator-free transfer of electrons between a microbial cell and a solid phase in its surrounding environment has been suggested to be a widespread and ecologically significant process. The high rates of microbial electron uptake observed during microbially influenced corrosion of iron [Fe(0)] and during microbial electrosynthesis have been considered support for a direct electron uptake in these microbial processes. However, the underlying molecular mechanisms of direct electron uptake are unknown. We investigated the electron uptake characteristics of the Fe(0)-corroding and electromethanogenic archaeon Methanococcus maripaludis and discovered that free, surface-associated redox enzymes, such as hydrogenases and presumably formate dehydrogenases, are sufficient to mediate an apparent direct electron uptake. In genetic and biochemical experiments, we showed that these enzymes, which are released from cells during routine culturing, catalyze the formation of H2 or formate when sorbed to an appropriate redox-active surface. These low-molecular-weight products are rapidly consumed by M. maripaludis cells when present, thereby preventing their accumulation to any appreciable or even detectable level. Rates of H2 and formate formation by cell-free spent culture medium were sufficient to explain the observed rates of methane formation from Fe(0) and cathode-derived electrons by wild-type M. maripaludis as well as by a mutant strain carrying deletions in all catabolic hydrogenases. Our data collectively show that cell-derived free enzymes can mimic direct extracellular electron transfer during Fe(0) corrosion and microbial electrosynthesis and may represent an ecologically important but so far overlooked mechanism in biological electron transfer. The intriguing trait of some microbial organisms to engage in direct electron transfer is thought to be widespread in nature. Consequently, direct uptake of electrons into microbial cells from solid surfaces is assumed to have a significant impact not only on fundamental microbial and biogeochemical processes but also on applied bioelectrochemical systems, such as microbial electrosynthesis and biocorrosion. This study provides a simple mechanistic explanation for frequently observed fast electron uptake kinetics in microbiological systems without a direct transfer: free, cell-derived enzymes can interact with cathodic surfaces and catalyze the formation of intermediates that are rapidly consumed by microbial cells. This electron transfer mechanism likely plays a significant role in various microbial electron transfer reactions in the environment. Copyright © 2015 Deutzmann et al.

  18. Epithelial Microvilli Establish an Electrostatic Barrier to Microbial Adhesion

    PubMed Central

    Bennett, Kaila M.; Walker, Sharon L.

    2014-01-01

    Microvilli are membrane extensions on the apical surface of polarized epithelia, such as intestinal enterocytes and tubule and duct epithelia. One notable exception in mucosal epithelia is M cells, which are specialized for capturing luminal microbial particles; M cells display a unique apical membrane lacking microvilli. Based on studies of M cell uptake under different ionic conditions, we hypothesized that microvilli may augment the mucosal barrier by providing an increased surface charge density from the increased membrane surface and associated glycoproteins. Thus, electrostatic charges may repel microbes from epithelial cells bearing microvilli, while M cells are more susceptible to microbial adhesion. To test the role of microvilli in bacterial adhesion and uptake, we developed polarized intestinal epithelial cells with reduced microvilli (“microvillus-minus,” or MVM) but retaining normal tight junctions. When tested for interactions with microbial particles in suspension, MVM cells showed greatly enhanced adhesion and uptake of particles compared to microvillus-positive cells. This preference showed a linear relationship to bacterial surface charge, suggesting that microvilli resist binding of microbes by using electrostatic repulsion. Moreover, this predicts that pathogen modification of electrostatic forces may contribute directly to virulence. Accordingly, the effacement effector protein Tir from enterohemorrhagic Escherichia coli O157:H7 expressed in epithelial cells induced a loss of microvilli with consequent enhanced microbial binding. These results provide a new context for microvillus function in the host-pathogen relationship, based on electrostatic interactions. PMID:24778113

  19. Identification of microbes from the surfaces of food-processing lines based on the flow cytometric evaluation of cellular metabolic activity combined with cell sorting.

    PubMed

    Juzwa, W; Duber, A; Myszka, K; Białas, W; Czaczyk, K

    2016-09-01

    In this study the design of a flow cytometry-based procedure to facilitate the detection of adherent bacteria from food-processing surfaces was evaluated. The measurement of the cellular redox potential (CRP) of microbial cells was combined with cell sorting for the identification of microorganisms. The procedure enhanced live/dead cell discrimination owing to the measurement of the cell physiology. The microbial contamination of the surface of a stainless steel conveyor used to process button mushrooms was evaluated in three independent experiments. The flow cytometry procedure provided a step towards monitoring of contamination and enabled the assessment of microbial food safety hazards by the discrimination of active, mid-active and non-active bacterial sub-populations based on determination of their cellular vitality and subsequently single cell sorting to isolate microbial strains from discriminated sub-populations. There was a significant correlation (r = 0.97; p < 0.05) between the bacterial cell count estimated by the pour plate method and flow cytometry, despite there being differences in the absolute number of cells detected. The combined approach of flow cytometric CRP measurement and cell sorting allowed an in situ analysis of microbial cell vitality and the identification of species from defined sub-populations, although the identified microbes were limited to culturable cells.

  20. Biodegradation and surfactant-mediated biodegradation of diesel fuel by 218 microbial consortia are not correlated to cell surface hydrophobicity.

    PubMed

    Owsianiak, Mikołaj; Szulc, Alicja; Chrzanowski, Łukasz; Cyplik, Paweł; Bogacki, Mariusz; Olejnik-Schmidt, Agnieszka K; Heipieper, Hermann J

    2009-09-01

    In this study, we elucidated the role of cell surface hydrophobicity (microbial adhesion to hydrocarbons method, MATH) and the effect of anionic rhamnolipids and nonionic Triton X-100 surfactants on biodegradation of diesel fuel employing 218 microbial consortia isolated from petroleum-contaminated soils. Applied enrichment procedure with floating diesel fuel as a sole carbon source in liquid cultures resulted in consortia of varying biodegradation potential and diametrically different cell surface properties, suggesting that cell surface hydrophobicity is a conserved parameter. Surprisingly, no correlations between cell surface hydrophobicity and biodegradation of diesel fuel were found. Nevertheless, both surfactants altered cell surface hydrophobicity of the consortia in similar manner: increased for the hydrophilic and decreased for the hydrophobic cultures. In addition to this, the surfactants exhibited similar influence on diesel fuel biodegradation: Increase was observed for initially slow-degrading cultures and the opposite for fast degraders. This indicates that in the surfactant-mediated biodegradation, effectiveness of surfactants depends on the specification of microorganisms and not on the type of surfactant. In contrary to what was previously reported for pure strains, cell surface hydrophobicity, as determined by MATH, is not a good descriptor of biodegrading potential for mixed cultures.

  1. Redesigning of Microbial Cell Surface and Its Application to Whole-Cell Biocatalysis and Biosensors.

    PubMed

    Han, Lei; Zhao, Yukun; Cui, Shan; Liang, Bo

    2018-06-01

    Microbial cell surface display technology can redesign cell surfaces with functional proteins and peptides to endow cells some unique features. Foreign peptides or proteins are transported out of cells and immobilized on cell surface by fusing with anchoring proteins, which is an effective solution to avoid substance transfer limitation, enzyme purification, and enzyme instability. As the most frequently used prokaryotic and eukaryotic protein surface display system, bacterial and yeast surface display systems have been widely applied in vaccine, biocatalysis, biosensor, bioadsorption, and polypeptide library screening. In this review of bacterial and yeast surface display systems, different cell surface display mechanisms and their applications in biocatalysis as well as biosensors are described with their strengths and shortcomings. In addition to single enzyme display systems, multi-enzyme co-display systems are presented here. Finally, future developments based on our and other previous reports are discussed.

  2. Individual-Based Model of Microbial Life on Hydrated Rough Soil Surfaces

    PubMed Central

    Kim, Minsu; Or, Dani

    2016-01-01

    Microbial life in soil is perceived as one of the most interesting ecological systems, with microbial communities exhibiting remarkable adaptability to vast dynamic environmental conditions. At the same time, it is a notoriously challenging system to understand due to its complexity including physical, chemical, and biological factors in synchrony. This study presents a spatially-resolved model of microbial dynamics on idealised rough soil surfaces represented as patches with different (roughness) properties that preserve the salient hydration physics of real surfaces. Cell level microbial interactions are considered within an individual-based formulation including dispersion and various forms of trophic dependencies (competition, mutualism). The model provides new insights into mechanisms affecting microbial community dynamics and gives rise to spontaneous formation of microbial community spatial patterns. The framework is capable of representing many interacting species and provides diversity metrics reflecting surface conditions and their evolution over time. A key feature of the model is its spatial scalability that permits representation of microbial processes from cell-level (micro-metric scales) to soil representative volumes at sub-metre scales. Several illustrative examples of microbial trophic interactions and population dynamics highlight the potential of the proposed modelling framework to quantitatively study soil microbial processes. The model is highly applicable in a wide range spanning from quantifying spatial organisation of multiple species under various hydration conditions to predicting microbial diversity residing in different soils. PMID:26807803

  3. Microbial cell surface characteristics: Elucidating attachment/detachment using hydrophobicity and electrokinetic measurements

    EPA Science Inventory

    The surface properties of microorganisms play an important role in their behavior within the environment. Electrophoretic mobility and cell surface hydrophobicity of bacterial cells influence their initial interaction with surfaces and mediate their stability within an aqueous su...

  4. Steamed cake-derived 3D carbon foam with surface anchored carbon nanoparticles as freestanding anodes for high-performance microbial fuel cells.

    PubMed

    Yuan, Haoran; Dong, Ge; Li, Denian; Deng, Lifang; Cheng, Peng; Chen, Yong

    2018-09-15

    Anode design is highly significant for microbial fuel cells, since it simultaneously serves as the scaffold for electroactive microorganisms and as a medium for electron migration. In this study, a stiff 3D carbon foam with surface anchored nitrogen-containing carbon nanoparticles was facilely constructed via in-situ polyaniline coating of carbonized steamed cake prior to the carbonization process. The resultant product was determined to be an excellent freestanding anode that enabled the microbial fuel cell to deliver a maximum power density of up to 1307 mW/m 2 , which significantly outperformed its non-coated counterpart, the widely used commercial carbon felt. Further investigations revealed that the overall performance enhancement was associated with the open porosity, enlarged electroactive surface, increased biocompatibility, and decreased electric resistance of the anode scaffold. This promising anode material would offer a green and economical option for fabricating high-performance microbial fuel cell-based devices towards various ends. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Characterization of the cell surface properties of drinking water pathogens by microbial adhesion to hydrocarbon and electrophoretic mobility measurements.

    PubMed

    Popovici, Jonathan; White, Colin P; Hoelle, Jill; Kinkle, Brian K; Lytle, Darren A

    2014-06-01

    The surface characteristics of microbial cells directly influence their mobility and behavior within aqueous environments. The cell surface hydrophobicity (CSH) and electrophoretic mobility (EPM) of microbial cells impact a number of interactions and processes including aggregation, adhesion to surfaces, and stability of the cells within the aqueous environments. These cell characteristics are unique to the bacterial species and are a reflection of the large diversity of surface structures, proteins, and appendages of microorganisms. CSH and EPM of bacterial cells contribute substantially to the effectiveness of drinking water treatment to remove them, and therefore an investigation of these properties will be useful in predicting their removal through drinking water treatment processes and transport through drinking water distribution systems. EPM and CSH measurements of six microbiological pathogen or surrogate species suspended in phosphate-buffered water are reported in this work. Two strains of Vibrio cholerae were hydrophobic, while three strains of Escherichia coli were hydrophilic. Bacillus cereus was categorized as moderately hydrophobic. The strains of E. coli had the highest (most negative) EPM. Based on the measurements, E. coli species is predicted to be most difficult to remove from water while V. cholerae will be the easiest to remove. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Combined use of atomic force microscopy, X-ray photoelectron spectroscopy, and secondary ion mass spectrometry for cell surface analysis.

    PubMed

    Dague, Etienne; Delcorte, Arnaud; Latgé, Jean-Paul; Dufrêne, Yves F

    2008-04-01

    Understanding the surface properties of microbial cells is a major challenge of current microbiological research and a key to efficiently exploit them in biotechnology. Here, we used three advanced surface analysis techniques with different sensitivity, probing depth, and lateral resolution, that is, in situ atomic force microscopy, X-ray photoelectron spectroscopy, and secondary ion mass spectrometry, to gain insight into the surface properties of the conidia of the human fungal pathogen Aspergillus fumigatus. We show that the native ultrastructure, surface protein and polysaccharide concentrations, and amino acid composition of three mutants affected in hydrophobin production are markedly different from those of the wild-type, thereby providing novel insight into the cell wall architecture of A. fumigatus. The results demonstrate the power of using multiple complementary techniques for probing microbial cell surfaces.

  7. Non-enzymatic palladium recovery on microbial and synthetic surfaces.

    PubMed

    Rotaru, Amelia-Elena; Jiang, Wei; Finster, Kai; Skrydstrup, Troels; Meyer, Rikke Louise

    2012-08-01

    The use of microorganisms as support for reduction of dissolved Pd(II) to immobilized Pd(0) nanoparticles is an environmentally friendly approach for Pd recovery from waste. To better understand and engineer Pd(0) nanoparticle synthesis, one has to consider the mechanisms by which Pd(II) is reduced on microbial surfaces. Escherichia coli, Shewanella oneidensis, and Pseudomonas putida were used as model organisms in order to elucidate the role of microbial cells in Pd(II) reduction under acidic conditions. Pd(II) was reduced by formate under acidic conditions, and the process occurred substantially faster in the presence of cells as compared to cell-free controls. We found no difference between native (untreated) and autoclaved cells, and could demonstrate that even a non-enzymatic protein (bovine serum albumin) stimulated Pd(II) reduction as efficiently as bacterial cells. Amine groups readily interact with Pd(II), and to specifically test their role in surface-assisted Pd(II) reduction by formate, we replaced bacterial cells with polystyrene microparticles functionalized with amine or carboxyl groups. Amine-functionalized microparticles had the same effect on Pd(II) reduction as bacterial cells, and the effect could be hampered if the amine groups were blocked by acetylation. The interaction with amine groups was confirmed by infrared spectroscopy on whole cells and amine-functionalized microparticles. In conclusion, bio-supported Pd(II) reduction on microbial surfaces is possibly mediated by a non-enzymatic mechanism. We therefore suggest the use of amine-rich biomaterials rather than intact cells for Pd bio-recovery from waste. Copyright © 2012 Wiley Periodicals, Inc.

  8. Microbially induced flotation and flocculation of pyrite and sphalerite.

    PubMed

    Patra, Partha; Natarajan, K A

    2004-07-15

    Cells of Paenibacillus polymyxa and their metabolite products were successfully utilized to achieve selective separation of sphalerite from pyrite, through microbially induced flocculation and flotation. Adsorption studies and electrokinetic investigations were carried out to understand the changes in the surface chemistry of bacterial cells and the minerals after mutual interaction. Possible mechanisms in microbially induced flotation and flocculation are outlined.

  9. Plasmonic cell nanocoating: a new concept for rapid microbial screening.

    PubMed

    Xu, Ke; Bui, Minh-Phuong N; Fang, Aiqin; Abbas, Abdennour

    2017-11-01

    Nanocoating of single microbial cells with gold nanostructures can confer optical, electrical, thermal, and mechanical properties to microorganisms, thus enabling new avenues for their control, study, application, and detection. Cell nanocoating is often performed using layer-by-layer (LbL) deposition. LbL is time-consuming and relies on nonspecific electrostatic interactions, which limit potential applications for microbial diagnostics. Here, we show that, by taking advantage of surface molecules densely present in the microbial outer layers, cell nanocoating with gold nanoparticles can be achieved within seconds using surface molecules, including disulfide- bond-containing (Dsbc) proteins and chitin. A simple activation of these markers and their subsequent interaction with gold nanoparticles allow specific microbial screening and quantification of bacteria and fungi within 5 and 30 min, respectively. The use of plasmonics and fluorescence as transduction methods offers a limit of detection below 35 cfu mL -1 for E. coli bacteria and 1500 cfu mL -1 for M. circinelloides fungi using a hand-held fluorescent reader. Graphical abstract A new concept for rapid microbial screening by targeting disulfide - bond-containing (Dsbc) proteins and chitin with reducing agents and gold nanoparticles.

  10. Anticorrosive Microbial Polysaccharides: Structure-Function Relationships

    USDA-ARS?s Scientific Manuscript database

    Water-soluble microbial polysaccharides are often implicated in biofilm formation and are believed to mediate cell-cell aggregation and adhesion to surfaces. Generally, biofilm formation is considered harmful or undesirable, as it leads to increased drag, plugging of pores, dimished heat transfer, ...

  11. The role of microbial flora on the ocular surface.

    PubMed

    Miller, Darlene; Iovieno, Alfonso

    2009-10-01

    Presence and interplay of microbial flora at the ocular surface reveal dynamic and evolving interactions with implications for both ocular surface health and disease. Data in this area are scarce or non-existent. The purpose of this review is to provide a snapshot of new and emerging developments in this area over the last 12 months. Recent findings signal potential roles for ocular surface microbial flora in both the preservation and extension of ocular surface health and in the initiation of new or escalation of common surface disorders. Contributions range from priming surface epithelial immune cells to regulating mucin composition and production. Other findings explore the emergent role of ocular microbial flora cross talk with pattern recognition receptors to protect and strengthen local and adaptive mucosal immunity while preserving vision. Deciphering the functional role of microbial communities at the ocular surface could bring new insights into and clarify the epidemiology and pathology of ocular surface dynamics in health and disease.

  12. Cell surface characteristics enable encrustation-free survival of neutrophilic iron-oxidizing bacteria

    NASA Astrophysics Data System (ADS)

    Saini, G.; Chan, C. S.

    2011-12-01

    Microbial growth in mineralizing environments depends on the cells' ability to evade surface precipitation. Cell-mineral interactions may be required for metabolism, but if unmoderated, cells could become encrusted, which would limit diffusion of nutrients and waste across cell walls. A combination of cell surface charge and hydrophobicity could enable the survival of microbes in such environments by inhibiting mineral attachment. To investigate this mechanism, we characterized the surfaces of two neutrophilic iron-oxidizing bacteria (FeOB): Mariprofundus ferrooxydans, a Zetaproteobacterium from Fe(II)-rich submarine hydrothermal vents and a Betaproteobacterium Gallionellales strain R-1, recently isolated from a ferrous groundwater seep. Both bacteria produce iron oxyhydroxides, yet successfully escape surface encrustation while inhabiting milieu where iron minerals are also produced by abiotic processes. SEM-EDX and TEM-EELS analyses of cultured bacteria revealed no iron on the cell surfaces. Zeta potential measurements showed that these bacteria have very small negative surface charge (0 to -4 mV) over a pH range of 4-9, indicating near-neutrally charged surfaces. Water contact angle measurements and thermodynamic calculations demonstrate that both bacteria and abiotically-formed Fe oxhydroxides are hydrophilic. Extended-DLVO calculations showed that hydrophilic repulsion between cells and minerals dominates over electrostatic and Lifshitz-van der Waals interactions. This leads to overall repulsion between microbes and minerals, thus preventing surface encrustation. Low surface charge and hydrophilicity (determined by microbial adhesion to hydrocarbon assay) were common features for both live and azide-inhibited cells, which shows that surface characteristics do not depend on active metabolism. It is remarkable that these two phylogenetically-distant bacteria from different environments employ similar adaptations to prevent surface mineralization. Our results confirm that surface characteristics can be a mechanism for survival in mineralizing environments. We predict that biotechnological applications such as bioremediation and microbial mineral carbon sequestration will benefit from microbes that can similarly avoid encrustation.

  13. Rapid culture-independent microbial analysis aboard the international space station (ISS) stage two: quantifying three microbial biomarkers.

    PubMed

    Morris, Heather C; Damon, Michael; Maule, Jake; Monaco, Lisa A; Wainwright, Norm

    2012-09-01

    Abstract A portable, rapid, microbial detection unit, the Lab-On-a-Chip Application Development Portable Test System (LOCAD-PTS), was launched to the International Space Station (ISS) as a technology demonstration unit in December 2006. Results from the first series of experiments designed to detect Gram-negative bacteria on ISS surfaces by quantifying a single microbial biomarker lipopolysaccharide (LPS) were reported in a previous article. Herein, we report additional technology demonstration experiments expanding the on-orbit capabilities of the LOCAD-PTS to detecting three different microbial biomarkers on ISS surfaces. Six different astronauts on more than 20 occasions participated in these experiments, which were designed to test the new beta-glucan (fungal cell wall molecule) and lipoteichoic acid (LTA; Gram-positive bacterial cell wall component) cartridges individually and in tandem with the existing Limulus Amebocyte Lysate (LAL; Gram-negative bacterial LPS detection) cartridges. Additionally, we conducted the sampling side by side with the standard culture-based detection method currently used on the ISS. Therefore, we present data on the distribution of three microbial biomarkers collected from various surfaces in every module present on the ISS at the time of sampling. In accordance with our previous experiments, we determined that spacecraft surfaces known to be frequently in contact with crew members demonstrated higher values of all three microbial molecules. Key Words: Planetary protection-Spaceflight-Microbiology-Biosensor. Astrobiology 12, 830-840.

  14. New Techniques for the Generation and Analysis of Tailored Microbial Systems on Surfaces.

    PubMed

    Furst, Ariel L; Smith, Matthew J; Francis, Matthew B

    2018-05-17

    The interactions between microbes and surfaces provide critically important cues that control the behavior and growth of the cells. As our understanding of complex microbial communities improves, there is a growing need for experimental tools that can establish and control the spatial arrangements of these cells in a range of contexts. Recent improvements in methods to attach bacteria and yeast to nonbiological substrates, combined with an expanding set of techniques available to study these cells, position this field for many new discoveries. Improving methods for controlling the immobilization of bacteria provides powerful experimental tools for testing hypotheses regarding microbiome interactions, studying the transfer of nutrients between bacterial species, and developing microbial communities for green energy production and pollution remediation.

  15. Probing Metabolic Activity of Deep Subseafloor Life with NanoSIMS

    NASA Astrophysics Data System (ADS)

    Morono, Y.; Terada, T.; Itoh, M.; Inagaki, F.

    2014-12-01

    There are very few natural environments where life is absent in the Earth's surface biosphere. However, uninhabitable region is expected to be exist in the deep subsurface biosphere, of which extent and constraining factor(s) have still remained largly unknown. Scientific ocean drilling have revealed that microbial communities in sediments are generally phylogenetically distinct from known spieces isolated from the Earth's surface biosphere, and hence metabolic functions of the deep subseafloor life remain unknown. In addition, activity of subseafloor microbial cells are thought to be extraordinally slow, as indicated by limited supply of neutrient and energy substrates. To understand the limits of the Earth's subseafloor biosphere and metabolic functions of microbial populations, detection and quantification of the deeply buried microbial cells in geological habitats are fundamentary important. Using newly developed cell separation techniques as well as an discriminative cell detection system, the current quantification limit of sedimentary microbial cells approaches to 102 cells/cm3. These techniques allow not only to assess very small microbial population close to the subsurface biotic fringe, but also to separate and sort the target cells using flow cytometric cell sorter. Once the deep subseafloor microbial cells are detached from mineral grains and sorted, it opens new windows to subsequent molecular ecological and element/isotopic analyses. With a combined use of nano-scale secondary ion masspectrometry (NanoSIMS) and stable isotope-probing techniques, it is possible to detect and measure activity of substrate incorporation into biomass, even for extremely slow metabolic processes such as uncharacteriszed deep subseafloor life. For example, it was evidenced by NanoSIMS that at least over 80% of microbial cells at ~200 meters-deep, 460,000-year-old sedimentary habitat are indeed live, which substrate incooporation was found to be low (10-15 gC/cell/day) even under the lab incubation condition. Also microbial activity in ultraoligotrophic biosphere samples such as the South Pacific Gyre (i.e., IODP Expeditions 329) will be shown. Our results demonstrates metabolic potential of microbes that have been survived for geological timescale in extremely starved condition.

  16. Microbial Life in Soil - Linking Biophysical Models with Observations

    NASA Astrophysics Data System (ADS)

    Or, Dani; Tecon, Robin; Ebrahimi, Ali; Kleyer, Hannah; Ilie, Olga; Wang, Gang

    2015-04-01

    Microbial life in soil occurs within fragmented aquatic habitats formed in complex pore spaces where motility is restricted to short hydration windows (e.g., following rainfall). The limited range of self-dispersion and physical confinement promote spatial association among trophically interdepended microbial species. Competition and preferences for different nutrient resources and byproducts and their diffusion require high level of spatial organization to sustain the functioning of multispecies communities. We report mechanistic modeling studies of competing multispecies microbial communities grown on hydrated surfaces and within artificial soil aggregates (represented by 3-D pore network). Results show how trophic dependencies and cell-level interactions within patchy diffusion fields promote spatial self-organization of motile microbial cells. The spontaneously forming patterns of segregated, yet coexisting species were robust to spatial heterogeneities and to temporal perturbations (hydration dynamics), and respond primarily to the type of trophic dependencies. Such spatially self-organized consortia may reflect ecological templates that optimize substrate utilization and could form the basic architecture for more permanent surface-attached microbial colonies. Hydration dynamics affect structure and spatial arrangement of aerobic and anaerobic microbial communities and their biogeochemical functions. Experiments with well-characterized artificial soil microbial assemblies grown on porous surfaces provide access to community dynamics during wetting and drying cycles detected through genetic fingerprinting. Experiments for visual observations of spatial associations of tagged bacterial species with known trophic dependencies on model porous surfaces are underway. Biophysical modeling provide a means for predicting hydration-mediated critical separation distances for activation of spatial self-organization. The study provides new modeling and observational tools that enable new mechanistic insights into how differences in substrate affinities among microbial species and soil micro-hydrological conditions may give rise to a remarkable spatial and functional order in an extremely heterogeneous soil microbial world

  17. Microbial Life in Soil - Linking Biophysical Models with Observations

    NASA Astrophysics Data System (ADS)

    Or, D.; Tecon, R.; Ebrahimi, A.; Kleyer, H.; Ilie, O.; Wang, G.

    2014-12-01

    Microbial life in soil occurs within fragmented aquatic habitats in complex pore spaces where motility is restricted to short hydration windows (e.g., following rainfall). The limited range of self-dispersion and physical confinement promote spatial association among trophically interdepended microbial species. Competition and preferences for different nutrient resources and byproducts and their diffusion require high level of spatial organization to sustain the functioning of multispecies communities. We report mechanistic modeling studies of competing multispecies microbial communities grown on hydrated surfaces and within artificial soil aggregates (represented by 3-D pore network). Results show how trophic dependencies and cell-level interactions within patchy diffusion fields promote spatial self-organization of motile microbial cells. The spontaneously forming patterns of segregated, yet coexisting species were robust to spatial heterogeneities and to temporal perturbations (hydration dynamics), and respond primarily to the type of trophic dependencies. Such spatially self-organized consortia may reflect ecological templates that optimize substrate utilization and could form the basic architecture for more permanent surface-attached microbial colonies. Hydration dynamics affect structure and spatial arrangement of aerobic and anaerobic microbial communities and their biogeochemical functions. Experiments with well-characterized artificial soil microbial assemblies grown on porous surfaces provide access to community dynamics during wetting and drying cycles detected through genetic fingerprinting. Experiments for visual observations of spatial associations of tagged bacterial species with known trophic dependencies on model porous surfaces are underway. Biophysical modeling provide a means for predicting hydration-mediated critical separation distances for activation of spatial self-organization. The study provides new modeling and observational tools that enable new mechanistic insights into how differences in substrate affinities among microbial species and soil micro-hydrological conditions may give rise to a remarkable spatial and functional order in an extremely heterogeneous soil microbial world.

  18. Sensitivity of Geoelectrical Measurements to the Presence of Bacteria in Porous Media

    EPA Science Inventory

    We investigated the sensitivity of low frequency electrical measurements (0.1-1000 Hz) to (i) microbial cell density, (ii) live and dead cells, and (iii) microbial attachment onto mineral surfaces of clean quartz sands and iron oxide coated sands. Three strains of Pseudomonas aer...

  19. Metabolic Reconstruction and Modeling Microbial Electrosynthesis.

    PubMed

    Marshall, Christopher W; Ross, Daniel E; Handley, Kim M; Weisenhorn, Pamela B; Edirisinghe, Janaka N; Henry, Christopher S; Gilbert, Jack A; May, Harold D; Norman, R Sean

    2017-08-21

    Microbial electrosynthesis is a renewable energy and chemical production platform that relies on microbial cells to capture electrons from a cathode and fix carbon. Yet despite the promise of this technology, the metabolic capacity of the microbes that inhabit the electrode surface and catalyze electron transfer in these systems remains largely unknown. We assembled thirteen draft genomes from a microbial electrosynthesis system producing primarily acetate from carbon dioxide, and their transcriptional activity was mapped to genomes from cells on the electrode surface and in the supernatant. This allowed us to create a metabolic model of the predominant community members belonging to Acetobacterium, Sulfurospirillum, and Desulfovibrio. According to the model, the Acetobacterium was the primary carbon fixer, and a keystone member of the community. Transcripts of soluble hydrogenases and ferredoxins from Acetobacterium and hydrogenases, formate dehydrogenase, and cytochromes of Desulfovibrio were found in high abundance near the electrode surface. Cytochrome c oxidases of facultative members of the community were highly expressed in the supernatant despite completely sealed reactors and constant flushing with anaerobic gases. These molecular discoveries and metabolic modeling now serve as a foundation for future examination and development of electrosynthetic microbial communities.

  20. Cell surface engineering of microorganisms towards adsorption of heavy metals.

    PubMed

    Li, Peng-Song; Tao, Hu-Chun

    2015-06-01

    Heavy metal contamination has become a worldwide environmental concern due to its toxicity, non-degradability and food-chain bioaccumulation. Conventional physical and chemical treatment methods for heavy metal removal have disadvantages such as cost-intensiveness, incomplete removal, secondary pollution and the lack of metal specificity. Microbial biomass-based biosorption is one of the approaches gaining increasing attention because it is effective, cheap, and environmental friendly and can work well at low concentrations. To enhance the adsorption properties of microbial cells to heavy metal ions, the cell surface display of various metal-binding proteins/peptides have been performed using a cell surface engineering approach. The surface engineering of Gram-negative bacteria, Gram-positive bacteria and yeast towards the adsorption of heavy metals are reviewed in this article. The problems and future perspectives of this technology are discussed.

  1. Environmental Stress-mediated EPS Production Shape Microbial Activity on Various Hydrated Rough Surfaces

    NASA Astrophysics Data System (ADS)

    Wang, G.; Liu, L.; Chen, G.

    2016-12-01

    The complex environmental physical and chemical processes and interplay with the associating biological responses are keys to understanding the environmental microbiology ensconced in environmental remediation, water quality control, food safety, nutrient cycling, and etc., yet remain poorly understood. Using experimental micromodels, we study how environmental conditions (e.g., hydration fluctuation, nutrient limitation, pH variation, etc.) affect microbial extracellular polymeric substances (EPS) production and their configuration within various hydrated surfaces, and impacts on microbial motility, surface attachment, aggregation, and other bioremediation activities. To elucidate the potential mechanisms underlying the complex bio-physicochemical processes, we developed an individual-based and spatio-temporally resolved modeling platform that explicitly considers microscale aqueous-phase configuration and nutrient transport/diffusion and associated biophysical processes affecting individual microbial cell life history. We quantitatively explore the effects of the above microscale environmental processes on bio-physicochemical interactions affecting microbial growth, motility, surface attachment and aggregation, and shaping population interactions and functions. Simulation scenarios of microbial induced pollutant (e.g., roxarsone) biotransformation on various hydrated rough surfaces will also be present.

  2. Live microbial cells adsorb Mg2+ more effectively than lifeless organic matter

    NASA Astrophysics Data System (ADS)

    Qiu, Xuan; Yao, Yanchen; Wang, Hongmei; Duan, Yong

    2018-03-01

    The Mg2+ content is essential in determining different Mg-CaCO3 minerals. It has been demonstrated that both microbes and the organic matter secreted by microbes are capable of allocating Mg2+ and Ca2+ during the formation of Mg-CaCO3, yet detailed scenarios remain unclear. To investigate the mechanism that microbes and microbial organic matter potentially use to mediate the allocation of Mg2+ and Ca2+ in inoculating systems, microbial mats and four marine bacterial strains ( Synechococcus elongatus, Staphylococcus sp., Bacillus sp., and Desulfovibrio vulgaris) were incubated in artificial seawater media with Mg/Ca ratios ranging from 0.5 to 10.0. At the end of the incubation, the morphology of the microbial mats and the elements adsorbed on them were analyzed using scanning electronic microscopy (SEM) and energy diffraction spectra (EDS), respectively. The content of Mg2+ and Ca2+ adsorbed by the extracellular polysaccharide substances (EPS) and cells of the bacterial strains were analyzed with atomic adsorption spectroscopy (AAS). The functional groups on the surface of the cells and EPS of S. elongatus were estimated using automatic potentiometric titration combined with a chemical equilibrium model. The results show that live microbial mats generally adsorb larger amounts of Mg2+ than Ca2+, while this rarely is the case for autoclaved microbial mats. A similar phenomenon was also observed for the bacterial strains. The living cells adsorb more Mg2+ than Ca2+, yet a reversed trend was observed for EPS. The functional group analysis indicates that the cell surface of S. elongatus contains more basic functional groups (87.24%), while the EPS has more acidic and neutral functional groups (83.08%). These features may be responsible for the different adsorption behavior of Mg2+ and Ca2+ by microbial cells and EPS. Our work confirms the differential Mg2+ and Ca2+ mediation by microbial cells and EPS, which may provide insight into the processes that microbes use to induce Mg-carbonate formation.

  3. Can environmental conditions trigger cyanobacterial surfaces and following carbonate formation: implication for biomineralization and biotechnology

    NASA Astrophysics Data System (ADS)

    Paulo, C.; Dittrich, M.; Zhu, T.

    2015-12-01

    In this presentation we will give an overview what kind of the factors may trigger carbonate formations at the cell surfaces under a variety of environmental conditions. As examples, we will present the results from our recent studies on formation of calcium carbonates, dolomites and bio-cements. The extracellular polymeric substances (EPS) in the Synechococcuscell envelope are recognized key players in the nucleation of carbonates in marine and freshwater environments. Yet, little is known about a nutrient contents control over the molecular composition of Synechococcus cell envelope, and consequently, biomineralization. In the first study, we investigated how a variation of the phosphorus (P) in the growth media can lead to changes in the surface reactivity of the cells and impact their ability to form carbonates. The objective of the second study is to gain insights into the spatial distribution of cyanobacterial EPS and dolomite from different sediment layers of Khor Al-Adaid sabkha (Qatar). Here, we characterized microbial mats on molecular level in respect of organic and inorganic components using in-situ 2D Raman spectroscopy and Atomic Force Microscopy (AFM) were used. Additionally, 2D chemical maps of sediment layers documented spectral characterizations of minerals and organic matter of microbial origins at high spatial resolution. Finally, we will show the results from the experiments with auto-phototrophic cyanobacteria Gloeocapsa PCC73106, which habitat on the monument surfaces, towards its application for bio-concrete, a product of microbial carbonate precipitation. We studied the biomineralization in biofilm forming Gloeocapsa PCC73106 on the concrete surface as a pre-requirement for microbial carbonate precipitation. Biomineralization on the concrete surface by live cells and killed cells were compared with that under the abiotic condition. Our experiments allow us to conclude that environmental conditions play a significant role in the control of the EPS dynamics and synthesis by cyanobacteria cells and, hence, these factors should be considered in biomineralization experiments.

  4. Microbial diversity and impact on carbonate geochemistry across a changing geochemical gradient in a karst aquifer

    PubMed Central

    Gray, Cassie J; Engel, Annette S

    2013-01-01

    Although microbes are known to influence karst (carbonate) aquifer ecosystem-level processes, comparatively little information is available regarding the diversity of microbial activities that could influence water quality and geological modification. To assess microbial diversity in the context of aquifer geochemistry, we coupled 16S rRNA Sanger sequencing and 454 tag pyrosequencing to in situ microcosm experiments from wells that cross the transition from fresh to saline and sulfidic water in the Edwards Aquifer of central Texas, one of the largest karst aquifers in the United States. The distribution of microbial groups across the transition zone correlated with dissolved oxygen and sulfide concentration, and significant variations in community composition were explained by local carbonate geochemistry, specifically calcium concentration and alkalinity. The waters were supersaturated with respect to prevalent aquifer minerals, calcite and dolomite, but in situ microcosm experiments containing these minerals revealed significant mass loss from dissolution when colonized by microbes. Despite differences in cell density on the experimental surfaces, carbonate loss was greater from freshwater wells than saline, sulfidic wells. However, as cell density increased, which was correlated to and controlled by local geochemistry, dissolution rates decreased. Surface colonization by metabolically active cells promotes dissolution by creating local disequilibria between bulk aquifer fluids and mineral surfaces, but this also controls rates of karst aquifer modification. These results expand our understanding of microbial diversity in karst aquifers and emphasize the importance of evaluating active microbial processes that could affect carbonate weathering in the subsurface. PMID:23151637

  5. Microbial diversity and impact on carbonate geochemistry across a changing geochemical gradient in a karst aquifer.

    PubMed

    Gray, Cassie J; Engel, Annette S

    2013-02-01

    Although microbes are known to influence karst (carbonate) aquifer ecosystem-level processes, comparatively little information is available regarding the diversity of microbial activities that could influence water quality and geological modification. To assess microbial diversity in the context of aquifer geochemistry, we coupled 16S rRNA Sanger sequencing and 454 tag pyrosequencing to in situ microcosm experiments from wells that cross the transition from fresh to saline and sulfidic water in the Edwards Aquifer of central Texas, one of the largest karst aquifers in the United States. The distribution of microbial groups across the transition zone correlated with dissolved oxygen and sulfide concentration, and significant variations in community composition were explained by local carbonate geochemistry, specifically calcium concentration and alkalinity. The waters were supersaturated with respect to prevalent aquifer minerals, calcite and dolomite, but in situ microcosm experiments containing these minerals revealed significant mass loss from dissolution when colonized by microbes. Despite differences in cell density on the experimental surfaces, carbonate loss was greater from freshwater wells than saline, sulfidic wells. However, as cell density increased, which was correlated to and controlled by local geochemistry, dissolution rates decreased. Surface colonization by metabolically active cells promotes dissolution by creating local disequilibria between bulk aquifer fluids and mineral surfaces, but this also controls rates of karst aquifer modification. These results expand our understanding of microbial diversity in karst aquifers and emphasize the importance of evaluating active microbial processes that could affect carbonate weathering in the subsurface.

  6. Microbially induced separation of quartz from calcite using Saccharomyces cerevisiae.

    PubMed

    Padukone, S Usha; Natarajan, K A

    2011-11-01

    Cells of Saccharomyces cerevisiae and their metabolites were successfully utilized to achieve selective separation of quartz and calcite through microbially induced flotation and flocculation. S. cerevisiae was adapted to calcite and quartz minerals. Adsorption studies and electrokinetic investigations were carried out to understand the changes in the surface chemistry of yeast cells and the minerals after mutual interaction. Possible mechanisms in microbially induced flotation and flocculation are outlined. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Surface-Enhanced Raman Scattering (SERS) in Microbiology: Illumination and Enhancement of the Microbial World.

    PubMed

    Chisanga, Malama; Muhamadali, Howbeer; Ellis, David I; Goodacre, Royston

    2018-01-01

    The microbial world forms a huge family of organisms that exhibit the greatest phylogenetic diversity on Earth and thus colonize virtually our entire planet. Due to this diversity and subsequent complex interactions, the vast majority of microorganisms are involved in innumerable natural bioprocesses and contribute an absolutely vital role toward the maintenance of life on Earth, whilst a small minority cause various infectious diseases. The ever-increasing demand for environmental monitoring, sustainable ecosystems, food security, and improved healthcare systems drives the continuous search for inexpensive but reproducible, automated and portable techniques for detection of microbial isolates and understanding their interactions for clinical, environmental, and industrial applications and benefits. Surface-enhanced Raman scattering (SERS) is attracting significant attention for the accurate identification, discrimination and characterization and functional assessment of microbial cells at the single cell level. In this review, we briefly discuss the technological advances in Raman and Fourier transform infrared (FT-IR) instrumentation and their application for the analysis of clinically and industrially relevant microorganisms, biofilms, and biological warfare agents. In addition, we summarize the current trends and future prospects of integrating Raman/SERS-isotopic labeling and cell sorting technologies in parallel, to link genotype-to-phenotype in order to define community function of unculturable microbial cells in mixed microbial communities which possess admirable traits such as detoxification of pollutants and recycling of essential metals.

  8. Metabolic Reconstruction and Modeling Microbial Electrosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, Christopher W.; Ross, Daniel E.; Handley, Kim M.

    Microbial electrosynthesis is a renewable energy and chemical production platform that relies on microbial cells to capture electrons from a cathode and fix carbon. Yet despite the promise of this technology, the metabolic capacity of the microbes that inhabit the electrode surface and catalyze electron transfer in these systems remains largely unknown. Here, we assembled thirteen draft genomes from a microbial electrosynthesis system producing primarily acetate from carbon dioxide, and their transcriptional activity was mapped to genomes from cells on the electrode surface and in the supernatant. This allowed us to create a metabolic model of the predominant community membersmore » belonging to Acetobacterium, Sulfurospirillum, and Desulfovibrio. According to the model, the Acetobacterium was the primary carbon fixer, and a keystone member of the community. Transcripts of soluble hydrogenases and ferredoxins from Acetobacterium and hydrogenases, formate dehydrogenase, and cytochromes of Desulfovibrio were found in high abundance near the electrode surface. Cytochrome c oxidases of facultative members of the community were highly expressed in the supernatant despite completely sealed reactors and constant flushing with anaerobic gases. The resulting molecular discoveries and metabolic modeling now serve as a foundation for future examination and development of electrosynthetic microbial communities.« less

  9. Metabolic Reconstruction and Modeling Microbial Electrosynthesis

    DOE PAGES

    Marshall, Christopher W.; Ross, Daniel E.; Handley, Kim M.; ...

    2017-08-21

    Microbial electrosynthesis is a renewable energy and chemical production platform that relies on microbial cells to capture electrons from a cathode and fix carbon. Yet despite the promise of this technology, the metabolic capacity of the microbes that inhabit the electrode surface and catalyze electron transfer in these systems remains largely unknown. Here, we assembled thirteen draft genomes from a microbial electrosynthesis system producing primarily acetate from carbon dioxide, and their transcriptional activity was mapped to genomes from cells on the electrode surface and in the supernatant. This allowed us to create a metabolic model of the predominant community membersmore » belonging to Acetobacterium, Sulfurospirillum, and Desulfovibrio. According to the model, the Acetobacterium was the primary carbon fixer, and a keystone member of the community. Transcripts of soluble hydrogenases and ferredoxins from Acetobacterium and hydrogenases, formate dehydrogenase, and cytochromes of Desulfovibrio were found in high abundance near the electrode surface. Cytochrome c oxidases of facultative members of the community were highly expressed in the supernatant despite completely sealed reactors and constant flushing with anaerobic gases. The resulting molecular discoveries and metabolic modeling now serve as a foundation for future examination and development of electrosynthetic microbial communities.« less

  10. Aerobic granular sludge inoculated microbial fuel cells for enhanced epoxy reactive diluent wastewater treatment.

    PubMed

    Cheng, Kai; Hu, Jingping; Hou, Huijie; Liu, Bingchuan; Chen, Qin; Pan, Keliang; Pu, Wenhong; Yang, Jiakuan; Wu, Xu; Yang, Changzhu

    2017-04-01

    Microbial consortiums aggregated on the anode surface of microbial fuel cells (MFCs) are critical factors for electricity generation as well as biodegradation efficiencies of organic compounds. Here in this study, aerobic granular sludge (AGS) was assembled on the surface of the MFC anode to form an AGS-MFC system with superior performance on epoxy reactive diluent (ERD) wastewater treatment. AGS-MFCs successfully shortened the startup time from 13d to 7d compared to the ones inoculated with domestic wastewater. Enhanced toxicity tolerance as well as higher COD removal (77.8% vs. 63.6%) were achieved. The higher ERD wastewater treatment efficiency of AGS-MFC is possibly attributed to the diverse microbial population on MFC biofilm, as well as the synergic degradation of contaminants by both the MFC anode biofilm and AGS granules. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Microbial interactions in building of communities

    PubMed Central

    Wright, Christopher J.; Burns, Logan H.; Jack, Alison A.; Back, Catherine R.; Dutton, Lindsay C.; Nobbs, Angela H.; Lamont, Richard J.; Jenkinson, Howard F.

    2012-01-01

    SUMMARY Establishment of a community is considered to be essential for microbial growth and survival in the human oral cavity. Biofilm communities have increased resilience to physical forces, antimicrobial agents, and nutritional variations. Specific cell-to-cell adherence processes, mediated by adhesin-receptor pairings on respective microbial surfaces, are able to direct community development. These interactions co-localize species in mutually beneficial relationships, such as streptococci, veillonellae, Porphyromonas gingivalis and Candida albicans. In transition from the planktonic mode of growth to a biofilm community, microorganisms undergo major transcriptional and proteomic changes. These occur in response to sensing of diffusible signals, such as autoinducer molecules, and to contact with host tissues or other microbial cells. Underpinning many of these processes are intracellular phosphorylation events that regulate a large number of microbial interactions relevant to community formation and development. PMID:23253299

  12. Extracellular Enzymes Facilitate Electron Uptake in Biocorrosion and Bioelectrosynthesis

    PubMed Central

    Deutzmann, Jörg S.; Sahin, Merve

    2015-01-01

    ABSTRACT Direct, mediator-free transfer of electrons between a microbial cell and a solid phase in its surrounding environment has been suggested to be a widespread and ecologically significant process. The high rates of microbial electron uptake observed during microbially influenced corrosion of iron [Fe(0)] and during microbial electrosynthesis have been considered support for a direct electron uptake in these microbial processes. However, the underlying molecular mechanisms of direct electron uptake are unknown. We investigated the electron uptake characteristics of the Fe(0)-corroding and electromethanogenic archaeon Methanococcus maripaludis and discovered that free, surface-associated redox enzymes, such as hydrogenases and presumably formate dehydrogenases, are sufficient to mediate an apparent direct electron uptake. In genetic and biochemical experiments, we showed that these enzymes, which are released from cells during routine culturing, catalyze the formation of H2 or formate when sorbed to an appropriate redox-active surface. These low-molecular-weight products are rapidly consumed by M. maripaludis cells when present, thereby preventing their accumulation to any appreciable or even detectable level. Rates of H2 and formate formation by cell-free spent culture medium were sufficient to explain the observed rates of methane formation from Fe(0) and cathode-derived electrons by wild-type M. maripaludis as well as by a mutant strain carrying deletions in all catabolic hydrogenases. Our data collectively show that cell-derived free enzymes can mimic direct extracellular electron transfer during Fe(0) corrosion and microbial electrosynthesis and may represent an ecologically important but so far overlooked mechanism in biological electron transfer. PMID:25900658

  13. Altering textural properties of fermented milk by using surface-engineered Lactococcus lactis.

    PubMed

    Tarazanova, Mariya; Huppertz, Thom; Kok, Jan; Bachmann, Herwig

    2018-05-09

    Lactic acid bacteria are widely used for the fermentation of dairy products. While bacterial acidification rates, proteolytic activity and the production of exopolysaccharides are known to influence textural properties of fermented milk products, little is known about the role of the microbial surface on microbe-matrix interactions in dairy products. To investigate how alterations of the bacterial cell surface affect fermented milk properties, 25 isogenic Lactococcus lactis strains that differed with respect to surface charge, hydrophobicity, cell chaining, cell-clumping, attachment to milk proteins, pili expression and EPS production were used to produce fermented milk. We show that overexpression of pili increases surface hydrophobicity of various strains from 3-19% to 94-99%. A profound effect of different cell surface properties was an altered spatial distribution of the cells in the fermented product. Aggregated cells tightly fill the cavities of the protein matrix, while chaining cells seem to be localized randomly. A positive correlation was found between pili overexpression and viscosity and gel hardness of fermented milk. Gel hardness also positively correlated with clumping of cells in the fermented milk. Viscosity of fermented milk was also higher when it was produced with cells with a chaining phenotype or with cells that overexpress exopolysaccharides. Our results show that alteration of cell surface morphology affects textural parameters of fermented milk and cell localization in the product. This is indicative of a cell surface-dependent potential of bacterial cells as structure elements in fermented foods. © 2018 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  14. Power enhancement of a μl-scale microbial fuel cells by surface roughness

    NASA Astrophysics Data System (ADS)

    Kim, Jihoon; Hwan Ko, Jin; Lee, Jaehyun; Jun Kim, Min; Byun, Doyoung

    2014-06-01

    In recent years, microbial fuel cells (MFCs) have gained much attention due to their potential to generate energy in a sustainable manner from living microorganisms. Research has shown that electrode design is a critical factor for MFCs power enhancement. In this study, we designed and fabricated MFCs energy-harvesting devices with living bacteria, and we investigated the effect of the surface roughness of the electrodes on power generation. In batch experiments of our MFCs, we found that the total power delivered could be enhanced using electrodes having rough surfaces with protruded micro-structures relative to that of electrodes with a flat surface. This was due to the delayed acidification resulting from the changes in bio-film formation between them.

  15. Spatial and Temporal Scales of Surface Water-Groundwater Interactions

    NASA Astrophysics Data System (ADS)

    Boano, F.

    2016-12-01

    The interfaces between surface water and groundwater (i.e., river and lake sediments) represent hotspots for nutrient transformation in watersheds. This intense biochemical activity stems from the peculiar physicochemical properties of these interface areas. Here, the exchange of water and nutrients between surface and subsurface environments creates an ecotone region that can support the presence of different microbial species responsible for nutrient transformation. Previous studies have elucidated that water exchange between rivers and aquifers is organized in a complex system of nested flow cells. Each cell entails a range of residence timescales spanning multiple order of magnitudes, providing opportunities for different biochemical reactions to occur. Physically-bases models represent useful tools to deal with the wide range of spatial and temporal scales that characterize surface-subsurface water exchange. This contribution will present insights about how hydrodynamic processes control scale organization for surface water - groundwater interactions. The specific focus will be the influence of exchange processes on microbial activity and nutrient transformation, discussing how groundwater flow at watershed scale controls flow conditions and hence constrain microbial reactions at much smaller scales.

  16. Initial association of fresh microbial products to soil particles: a joint density fractionation and NanoSIMS study

    NASA Astrophysics Data System (ADS)

    Hatton, Pierre-Joseph; Remusat, Laurent; Brewer, Elizabeth; Derrien, Delphine

    2014-05-01

    While soil microorganisms are increasingly seen as shaping stable soil organic matter (OM) formation, the mechanisms controlling the attachment of microbial metabolites to soil particles are not fully understood yet. We investigate the spatial distribution of freshly produced microbial products among density-isolated fractions of soil using stable C and N isotopes and Nano-scale secondary ion mass spectrometry (NanoSIMS). A surface forest soil was amended with uniformly 13C/15N labeled glycine and incubated for 8 hours in gamma-irradiated and non-sterile soils. Sequential density fractionation was then performed to isolate various classes of aggregates and of single mineral particles. Eight hours after the labeled glycine addition, 7 % of the 13C and 15N was tightly bound to soil assemblages. Comparison of sterile and non-sterile treatments revealed that microbial activity was almost completely responsible for this rapid association (>85 %). The distributions of glycine-derived 13C and 15N, considered as markers of new microbial products, were mapped on particles of the non-sterile treatment using NanoSIMS. New microbial products were heterogeneously distributed and spatially decoupled at the surface of on soil particles. 13C microbial products were scarce and presumably within or in the vicinity of microbial cells. In contrast, 15N microbial products seemed evenly spread at the surface of soil particles, likely as soluble exoenzymes diffusing away from their parent cell. Macroscopic measurements among density fractions suggested that the diffusion of such 15N microbial products was spatially limited yet, because of pore space architecture. NanoSIMS images further allowed gaining insight into the attachment of the new microbial products on particle surfaces already covered by OM, in a multilayer fashion. Using an internal calibration method to determine C/N ratios of NanoSIMS images, we showed the preferential attachment of soluble microbial N-metabolites to N-rich mineral-attached OM (C/N ratios mostly < 16). Exceptions were found in dense particles, supposed to contained aluminium and iron (hydr)oxides, with the microbial N-metabolites apparently preferentially attached to C-rich mineral-attached OM (C/N ratios > 80). This work provided visual evidences that the attachment of new microbial products to the soil matrix is mediated by distinct processes for N-rich and C-rich metabolites. It also demonstrated that the pore space architecture has impact on the formation of stable OM by limiting the diffusion of soluble microbial metabolites and their access to reactive and stabilising surfaces.

  17. Flow cytometric analysis of microbial contamination in food industry technological lines--initial study.

    PubMed

    Józwa, Wojciech; Czaczyk, Katarzyna

    2012-04-02

    Flow cytometry constitutes an alternative for traditional methods of microorganisms identification and analysis, including methods requiring cultivation step. It enables the detection of pathogens and other microorganisms contaminants without the need to culture microbial cells meaning that the sample (water, waste or food e.g. milk, wine, beer) may be analysed directly. This leads to a significant reduction of time required for analysis allowing monitoring of production processes and immediate reaction in case of contamination or any disruption occurs. Apart from the analysis of raw materials or products on different stages of manufacturing process, the flow cytometry seems to constitute an ideal tool for the assessment of microbial contamination on the surface of technological lines. In the present work samples comprising smears from 3 different surfaces of technological lines from fruit and vegetable processing company from Greater Poland were analysed directly with flow cytometer. The measured parameters were forward and side scatter of laser light signals allowing the estimation of microbial cell contents in each sample. Flow cytometric analysis of the surface of food industry production lines enable the preliminary evaluation of microbial contamination within few minutes from the moment of sample arrival without the need of sample pretreatment. The presented method of fl ow cytometric initial evaluation of microbial state of food industry technological lines demonstrated its potential for developing a robust, routine method for the rapid and labor-saving detection of microbial contamination in food industry.

  18. Charcoal disrupts cell-cell communication through multiple mechanisms

    NASA Astrophysics Data System (ADS)

    Gao, X.; Cheng, H. Y.; Liu, S.; Masiello, C. A.; Silberg, J. J.; Del Valle, I.

    2016-12-01

    Microbial cell-cell communication through the release and detection of small signaling molecules is employed by soil microbes to manage many biogeochemically relevant processes including production of biofilms, priming effects on native SOM, and management of methanogenesis and denitrification. Charcoal is a ubiquitous component of soil, entering soil either from natural fire or intentionally amended as biochar. Charcoal's presence in soil introduces spatial and temporal heterogeneity in nutrients and habitats for soil microbes and may trigger a range of biological effects not yet predictable, in part because it interferes with microbial cell-cell communication. We hypothesized that charcoal's alkalinity and large active surface area could affect the lifetime of some chemical compounds that microbes use for cell-cell signaling on times scales relevant to growth and communication. To test this idea, we examined the extent and rate of charcoal quenching of cell-cell communication caused by ten charcoals with a wide range of physicochemical properties. Our measurements focused on signaling mediated by an acyl-homoserine lactone (AHL), N-3-oxo-dodecanoyl-L-homoserine lactone, which is used by many gram-negative bacteria for quorum sensing. Our results from a bioassay and chemical sorption experiments revealed that charcoal can decrease the bioavailable level of AHL through a combination of sorption and pH-dependent hydrolysis of the lactone ring. We found that the kinetics of hydrolysis can exceed those of sorption. These findings implicate charcoal surface area and alkalinity as properties that could be tuned to regulate the degradation rates of cell-cell signaling molecules in soils. We then built a quantitative model that predicts the half-lives of different microbial signaling compounds in the presence of charcoals varying in pH and surface area. Our model results suggest that the effects of charcoal on pH-sensitive bacterial AHL signals will be fundamentally distinct from effects on pH-insensitive fungal signals, potentially leading to shifts in microbial community structures.

  19. Optimization of hot water treatment for removing microbial colonies on fresh blueberry surface.

    PubMed

    Kim, Tae Jo; Corbitt, Melody P; Silva, Juan L; Wang, Dja Shin; Jung, Yean-Sung; Spencer, Barbara

    2011-08-01

    Blueberries for the frozen market are washed but this process sometimes is not effective or further contaminates the berries. This study was designed to optimize conditions for hot water treatment (temperature, time, and antimicrobial concentration) to remove biofilm and decrease microbial load on blueberries. Scanning electron microscopy (SEM) image showed a well-developed microbial biofilm on blueberries dipped in room temperature water. The biofilm consisted of yeast and bacterial cells attached to the berry surface in the form of microcolonies, which produced exopolymer substances between or upon the cells. Berry exposure to 75 and 90 °C showed little to no microorganisms on the blueberry surface; however, the sensory quality (wax/bloom) of berries at those temperatures was unacceptable. Response surface plots showed that increasing temperature was a significant factor on reduction of aerobic plate counts (APCs) and yeast/mold counts (YMCs) while adding Boxyl® did not have significant effect on APC. Overlaid contour plots showed that treatments of 65 to 70 °C for 10 to 15 s showed maximum reductions of 1.5 and 2.0 log CFU/g on APCs and YMCs, respectively; with acceptable level of bloom/wax score on fresh blueberries. This study showed that SEM, response surface, and overlaid contour plots proved successful in arriving at optima to reduce microbial counts while maintaining bloom/wax on the surface of the blueberries. Since chemical sanitizing treatments such as chlorine showed ineffectiveness to reduce microorganisms loaded on berry surface (Beuchat and others 2001, Sapers 2001), hot water treatment on fresh blueberries could maximize microbial reduction with acceptable quality of fresh blueberries. © 2011 Institute of Food Technologists®

  20. Microbial community structure elucidates performance of Glyceria maxima plant microbial fuel cell.

    PubMed

    Timmers, Ruud A; Rothballer, Michael; Strik, David P B T B; Engel, Marion; Schulz, Stephan; Schloter, Michael; Hartmann, Anton; Hamelers, Bert; Buisman, Cees

    2012-04-01

    The plant microbial fuel cell (PMFC) is a technology in which living plant roots provide electron donor, via rhizodeposition, to a mixed microbial community to generate electricity in a microbial fuel cell. Analysis and localisation of the microbial community is necessary for gaining insight into the competition for electron donor in a PMFC. This paper characterises the anode-rhizosphere bacterial community of a Glyceria maxima (reed mannagrass) PMFC. Electrochemically active bacteria (EAB) were located on the root surfaces, but they were more abundant colonising the graphite granular electrode. Anaerobic cellulolytic bacteria dominated the area where most of the EAB were found, indicating that the current was probably generated via the hydrolysis of cellulose. Due to the presence of oxygen and nitrate, short-chain fatty acid-utilising denitrifiers were the major competitors for the electron donor. Acetate-utilising methanogens played a minor role in the competition for electron donor, probably due to the availability of graphite granules as electron acceptors.

  1. Biofilms’ Role in Planktonic Cell Proliferation

    PubMed Central

    Bester, Elanna; Wolfaardt, Gideon M.; Aznaveh, Nahid B.; Greener, Jesse

    2013-01-01

    The detachment of single cells from biofilms is an intrinsic part of this surface-associated mode of bacterial existence. Pseudomonas sp. strain CT07gfp biofilms, cultivated in microfluidic channels under continuous flow conditions, were subjected to a range of liquid shear stresses (9.42 mPa to 320 mPa). The number of detached planktonic cells was quantified from the effluent at 24-h intervals, while average biofilm thickness and biofilm surface area were determined by confocal laser scanning microscopy and image analysis. Biofilm accumulation proceeded at the highest applied shear stress, while similar rates of planktonic cell detachment was maintained for biofilms of the same age subjected to the range of average shear rates. The conventional view of liquid-mediated shear leading to the passive erosion of single cells from the biofilm surface, disregards the active contribution of attached cell metabolism and growth to the observed detachment rates. As a complement to the conventional conceptual biofilm models, the existence of a biofilm surface-associated zone of planktonic cell proliferation is proposed to highlight the need to expand the traditional perception of biofilms as promoting microbial survival, to include the potential of biofilms to contribute to microbial proliferation. PMID:24201127

  2. Size and Carbon Content of Sub-seafloor Microbial Cells at Landsort Deep, Baltic Sea

    PubMed Central

    Braun, Stefan; Morono, Yuki; Littmann, Sten; Kuypers, Marcel; Aslan, Hüsnü; Dong, Mingdong; Jørgensen, Bo B.; Lomstein, Bente Aa.

    2016-01-01

    The discovery of a microbial ecosystem in ocean sediments has evoked interest in life under extreme energy limitation and its role in global element cycling. However, fundamental parameters such as the size and the amount of biomass of sub-seafloor microbial cells are poorly constrained. Here we determined the volume and the carbon content of microbial cells from a marine sediment drill core retrieved by the Integrated Ocean Drilling Program (IODP), Expedition 347, at Landsort Deep, Baltic Sea. To determine their shape and volume, cells were separated from the sediment matrix by multi-layer density centrifugation and visualized via epifluorescence microscopy (FM) and scanning electron microscopy (SEM). Total cell-carbon was calculated from amino acid-carbon, which was analyzed by high-performance liquid chromatography (HPLC) after cells had been purified by fluorescence-activated cell sorting (FACS). The majority of microbial cells in the sediment have coccoid or slightly elongated morphology. From the sediment surface to the deepest investigated sample (~60 m below the seafloor), the cell volume of both coccoid and elongated cells decreased by an order of magnitude from ~0.05 to 0.005 μm3. The cell-specific carbon content was 19–31 fg C cell−1, which is at the lower end of previous estimates that were used for global estimates of microbial biomass. The cell-specific carbon density increased with sediment depth from about 200 to 1000 fg C μm−3, suggesting that cells decrease their water content and grow small cell sizes as adaptation to the long-term subsistence at very low energy availability in the deep biosphere. We present for the first time depth-related data on the cell volume and carbon content of sedimentary microbial cells buried down to 60 m below the seafloor. Our data enable estimates of volume- and biomass-specific cellular rates of energy metabolism in the deep biosphere and will improve global estimates of microbial biomass. PMID:27630628

  3. Surface-to-surface biofilm transfer: a quick and reliable startup strategy for mixed culture microbial fuel cells.

    PubMed

    Vogl, Andreas; Bischof, Franz; Wichern, Marc

    2016-01-01

    The startup of microbial fuel cells (MFCs) is known to be prone to failure or result in erratic performance impeding the research. The aim of this study was to advise a quick launch strategy for laboratory-scale MFCs that ensures steady operation performance in a short period of time. Different startup strategies were investigated and compared with membraneless single chamber MFCs. A direct surface-to-surface biofilm transfer (BFT) in an operating MFC proved to be the most efficient method. It provided steady power densities of 163 ± 13 mWm(-2) 4 days after inoculation compared to 58 ± 15 mWm(-2) after 30 days following a conventional inoculation approach. The in situ BFT eliminates the need for microbial acclimation during startup and reduces performance fluctuations caused by shifts in microbial biodiversity. Anaerobic pretreatment of the substrate and addition of suspended enzymes from an operating MFC into the new MFC proved to have a beneficial effect on startup and subsequent operation. Polarization methods were applied to characterize the startup phase and the steady state operation in terms of power densities, internal resistance and power overshoot during biofilm maturation. Applying this method a well-working MFC can be multiplied into an array of identically performing MFCs.

  4. Gold-FISH: A correlative approach to microscopic imaging of single microbial cells in environmental samples

    NASA Astrophysics Data System (ADS)

    Schmidt, Hannes; Seki, David; Woebken, Dagmar; Eickhorst, Thilo

    2017-04-01

    Fluorescence in situ hybridization (FISH) is routinely used for the phylogenetic identification, detection, and quantification of single microbial cells environmental microbiology. Oligonucleotide probes that match the 16S rRNA sequence of target organisms are generally applied and the resulting signals are visualized via fluorescence microscopy. Consequently, the detection of the microbial cells of interest is limited by the resolution and the sensitivity of light microscopy where objects smaller than 0.2 µm can hardly be represented. Visualizing microbial cells at magnifications beyond light microscopy, however, can provide information on the composition and potential complexity of microbial habitats - the actual sites of nutrient cycling in soil and sediments. We present a recently developed technique that combines (1) the phylogenetic identification and detection of individual microorganisms by epifluorescence microscopy, with (2) the in situ localization of gold-labelled target cells on an ultrastructural level by SEM. Based on 16S rRNA targeted in situ hybridization combined with catalyzed reporter deposition, a streptavidin conjugate labeled with a fluorescent dye and nanogold particles is introduced into whole microbial cells. A two-step visualization process including an autometallographic enhancement of nanogold particles then allows for either fluorescence or electron microscopy, or a correlative application thereof. We will present applications of the Gold-FISH protocol to samples of marine sediments, agricultural soils, and plant roots. The detection and enumeration of bacterial cells in soil and sediment samples was comparable to CARD-FISH applications via fluorescence microscopy. Examples of microbe-surface interaction analysis will be presented on the basis of bacteria colonizing the rhizoplane of rice roots. In principle, Gold-FISH can be performed on any material to give a snapshot of microbe-surface interactions and provides a promising tool for the acquisition of correlative information on microorganisms within their respective habitats.

  5. Simultaneous microbial reduction of vanadium (V) and chromium (VI) by Shewanella loihica PV-4.

    PubMed

    Wang, Guangyu; Zhang, Baogang; Li, Shuang; Yang, Meng; Yin, Changcheng

    2017-03-01

    Toxic vanadium (V) and chromium (VI) often co-exist in wastewater from vanadium ore smelting and their reductions by bacterial strain Shewanella loihica PV-4 is realized simultaneously. After 27-d operation, 71.3% of V(V) and 91.2% of Cr(VI) were removed respectively, with citrate as organic carbon source. Enhancement of Cr(VI) bioreduction was observed with the suppressed V(V) reduction. V(IV) and Cr(III), the main reduction products, precipitated inside the organisms and attached on cell surfaces. Both membrane components containing cytochrome c and cytoplasmic fractions containing soluble proteins as well as NADH may contribute to these microbial reductions. Most Cr(VI) were reduced extracellularly and V(V) tended to be reduced through intracellular process, as revealed by mapping the microbial surface and a line scan across the cell, performed by scanning transmission electron microscopy. This study provides an efficient alternative for controlling combined pollution caused by these two metals based on microbial technology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Microbial community development on the surface of Hans and Werenskiold Glaciers (Svalbard, Arctic): a comparison.

    PubMed

    Grzesiak, Jakub; Górniak, Dorota; Świątecki, Aleksander; Aleksandrzak-Piekarczyk, Tamara; Szatraj, Katarzyna; Zdanowski, Marek K

    2015-09-01

    Surface ice and cryoconite holes of two types of polythermal Svalbard Glaciers (Hans Glacier--grounded tidewater glacier and Werenskiold Glacier-land-based valley glacier) were investigated in terms of chemical composition, microbial abundance and diversity. Gathered data served to describe supraglacial habitats and to compare microbe-environment interactions on those different type glaciers. Hans Glacier samples displayed elevated nutrient levels (DOC, nitrogen and seston) compared to Werenskiold Glacier. Adjacent tundra formations, bird nesting sites and marine aerosol were candidates for allochtonic enrichment sources. Microbial numbers were comparable on both glaciers, with surface ice containing cells in the range of 10(4) mL(-1) and cryoconite sediment 10(8) g(-1) dry weight. Denaturating gradient gel electrophoresis band-based clustering revealed differences between glaciers in terms of dominant bacterial taxa structure. Microbial community on Werenskiold Glacier benefited from the snow-released substances. On Hans Glacier, this effect was not as pronounced, affecting mainly the photoautotrophs. Over-fertilization of Hans Glacier surface was proposed as the major factor, desensitizing the microbial community to the snow melt event. Nitrogen emerged as a limiting factor in surface ice habitats, especially to Eukaryotic algae.

  7. Chirality in microbial biofilms is mediated by close interactions between the cell surface and the substratum

    PubMed Central

    Jauffred, Liselotte; Munk Vejborg, Rebecca; Korolev, Kirill S; Brown, Stanley; Oddershede, Lene B

    2017-01-01

    From microbial biofilms to human migrations, spatial competition is central to the evolutionary history of many species. The boundary between expanding populations is the focal point of competition for space and resources and is of particular interest in ecology. For all Escherichia coli strains studied here, these boundaries move in a counterclockwise direction even when the competing strains have the same fitness. We find that chiral growth of bacterial colonies is strongly suppressed by the expression of extracellular features such as adhesive structures and pili. Experiments with other microbial species show that chiral growth is found in other bacteria and exclude cell wall biosynthesis and anisotropic shape as the primary causes of chirality. Instead, intimate contact with the substratum is necessary for chirality. Our results demonstrate that through a handful of surface molecules cells can fundamentally reorganize their migration patterns, which might affect intra- and interspecific competitions through colony morphology or other mechanisms. PMID:28362723

  8. Microbial cell retention in a melting High Arctic snowpack, Svalbard

    NASA Astrophysics Data System (ADS)

    Zarsky, Jakub; Björkman, Mats; Kühnel, Rafael; Hell, Katherina; Hodson, Andy; Sattler, Birgit; Psenner, Roland

    2014-05-01

    Introduction The melting snow pack represents a highly dynamic system not only for chemical compounds but also for bacterial cells. Microbial activity was found at subzero temperatures in ice veins when liquid water persists due to high concentration of ions on the surface of snow crystals and brine channels between large ice crystals in ice. Several observations also suggest microbial activity under subzero temperatures in seasonal snow. Even with regard to the spatial and temporal relevance of snow ecosystems, microbial activity in such an extreme habitat represents a relatively small proportion in the carbon flux of the global ecosystem and even of the glacial ecosystems specifically. On the other hand, it represents a remarkable piece of mosaic of the microbial activity in glacial ecosystems because the snow pack represents the first contact between the atmosphere and cryosphere. This topic also embodies vital crossovers to biogeochemistry and ecotoxicology, offering a quantitative view of utilization of various substrates relevant for downstream ecosystems. Here we present our study of the dynamics of both solvents and cells suspended in meltwater of the melting snowpack on a high arctic glacier to demonstrate the spatio-temporal constraint of interaction between solvent and bacterial cells in this environment. Method We used 6 lysimeters inserted into the bottom of the snowpack to collect replicated samples of melt water before it comes into contact with basal ice or slush layer at the base of the snow pack. The sampling site was chosen at Midre Lovénbreen (Svalbard, Kongsfjorden, MLB stake 6) where the snow pack showed melting on the surface but the basal ice was still dry. Sampling was conducted in June 2010 for a period of 10 days once per day and the snow profile was sampled according to distinguished layers in the profile at the beginning of the field mission and as bulk at its end. The height of snow above the lysimeters dropped from the initial 74 cm to the final 38 cm. The major ion composition (IC), pH, conductivity and cell abundances were measured. Results and conlusions The removal of microbial cells from a high arctic snowpack resembles an elution sequence similar to that of hydrophobic compounds a process that helps glaciers retain a microbial biomass upon their surface, even after the demise of the snow cover. The snowpack and the glacier surface therefore act as an accumulator of cells during the melt season. This suggests that wet snowpacks, even on the surface of high arctic glaciers, are likely to be dynamic ecosystems in their own right. In our study, a clear ion elution sequence was observed that resembled earlier reports and caused high concentrations of ions in snowpack runoff at the start of the snow melt, which rapidly decreased as snow melt proceeded. Chloride, sulfate, nitrate, sodium and potassium experienced a 50 % elution before 20 - 25 % of the snowpack water content was lost. By contrast, cell removal only reached the 50 % level after ~70 % snowpack depletion. In contrast to our expectations, the calculated cell budget between the initial and final snowpack (including the cell loss by elution), revealed a significant increase of the total cell numbers, i.e. more than twice the original number. Assuming aeolian deposition processes to be low, this suggests cell proliferation as a contribution to the observed "retention effect". Precipitation was the major cell contributor to the snowpack upon Midtre Lovénbreen. An overall low cell concentration was therefore found within the snowpack stratigraphy, where snow layers frequently showed cell abundances similar to those of cloud water. This was in contrast to the nearby and more wind exposed sites examined in the Kongsfjorden area in 2007. However, layers of higher dust deposition were concomitant with one order of magnitude higher cell abundances, indicating that wind dispersal from locally exposed rocks supplements the atmospheric cell input.

  9. Renewable sustainable biocatalyzed electricity production in a photosynthetic algal microbial fuel cell (PAMFC).

    PubMed

    Strik, David P B T B; Terlouw, Hilde; Hamelers, Hubertus V M; Buisman, Cees J N

    2008-12-01

    Electricity production via solar energy capturing by living higher plants and microalgae in combination with microbial fuel cells are attractive because these systems promise to generate useful energy in a renewable, sustainable, and efficient manner. This study describes the proof of principle of a photosynthetic algal microbial fuel cell (PAMFC) based on naturally selected algae and electrochemically active microorganisms in an open system and without addition of instable or toxic mediators. The developed solar-powered PAMFC produced continuously over 100 days renewable biocatalyzed electricity. The sustainable performance of the PAMFC resulted in a maximum current density of 539 mA/m2 projected anode surface area and a maximum power production of 110 mW/m2 surface area photobioreactor. The energy recovery of the PAMFC can be increased by optimization of the photobioreactor, by reducing the competition from non-electrochemically active microorganisms, by increasing the electrode surface and establishment of a further-enriched biofilm. Since the objective is to produce net renewable energy with algae, future research should also focus on the development of low energy input PAMFCs. This is because current algae production systems have energy inputs similar to the energy present in the outcoming valuable products.

  10. Modeling Bacteria Surface Acid-Base Properties: The Overprint Of Biology

    NASA Astrophysics Data System (ADS)

    Amores, D. R.; Smith, S.; Warren, L. A.

    2009-05-01

    Bacteria are ubiquitous in the environment and are important repositories for metals as well as nucleation templates for a myriad of secondary minerals due to an abundance of reactive surface binding sites. Model elucidation of whole cell surface reactivity simplifies bacteria as viable but static, i.e., no metabolic activity, to enable fits of microbial data sets from models derived from mineral surfaces. Here we investigate the surface proton charging behavior of live and dead whole cell cyanobacteria (Synechococcus sp.) harvested from a single parent culture by acid-base titration using a Fully Optimized ContinUouS (FOCUS) pKa spectrum method. Viability of live cells was verified by successful recultivation post experimentation, whereas dead cells were consistently non-recultivable. Surface site identities derived from binding constants determined for both the live and dead cells are consistent with molecular analogs for organic functional groups known to occur on microbial surfaces: carboxylic (pKa = 2.87-3.11), phosphoryl (pKa = 6.01-6.92) and amine/hydroxyl groups (pKa = 9.56-9.99). However, variability in total ligand concentration among the live cells is greater than those between the live and dead. The total ligand concentrations (LT, mol- mg-1 dry solid) derived from the live cell titrations (n=12) clustered into two sub-populations: high (LT = 24.4) and low (LT = 5.8), compared to the single concentration for the dead cell titrations (LT = 18.8; n=5). We infer from these results that metabolic activity can substantively impact surface reactivity of morphologically identical cells. These results and their modeling implications for bacteria surface reactivities will be discussed.

  11. A Survey of Environmental Microbial Flora During Closed Chamber Studies

    NASA Technical Reports Server (NTRS)

    Ott, C. Mark; Groves, Theron O.; Bell-Robinson, Denetia; Pierson, Duane L.; Paloski, W. H. (Technical Monitor)

    1999-01-01

    Services, Inc. and NASA Johnson Space Center, Houston, TX As NASA prepares for long-term missions aboard the International Space Station and the eventual exploration of Mars, closed-environment chambers on Earth have become important test beds for systems evaluations. During 2 separate studies of a selfcontained ecosystem containing 4 crewmembers, microbial surveys of samples from 13 surface and 3 air sites were performed. Microbial concentration of samples from surface sites with frequent water contact (e.g., urinal, sink) did not indicate significantly higher levels of contamination than drier areas, though surface cleaning by the crew may have influenced this conclusion. Changes in bacterial diversity on surface sites implied that the number of transient species was high, suggesting movement by crew activities, aerosols, or both. A non-linear relationship between bacterial diversity and enumeration from surface samples indicated that a rapid increase occurred in the number of species as cell concentration increased to 5 CFU/sq cm. Above this concentration, the number of different bacterial species varied between 11 and 16. Airborne bacteria and fungi averaged only 160 and 1 CFU/m3, respectively. Microbial contamination of the potable water system primarily consisted of 3 species of Gram negative bacteria; however, after 60 days during one study, several species of Bacillus became the dominant flora. This study suggests that under these conditions, microbial contamination in the air and water was suppressed by the life-support systems, though contamination was possible. Conversely, the crew and their activities controlled microbial levels on surfaces. Understanding the factors that affect microbial control will improve the design of microbial testing both during space flight and in analogous Earth-based environments.

  12. Detecting contaminating microorganism in human food and water from Raman mapping through biofilms

    USDA-ARS?s Scientific Manuscript database

    Detecting microbial growth can help experts determine how to prevent the outbreaks especially if human food or water has been contaminated. Biofilms are a group of microbial cells that can either grow on living surfaces or surrounding themselves as they progress. Biofilms are not necessarily uniform...

  13. Incredibly Versatile Microbial Fuel Cells Innovative Ideas at HES-SO Valais-Wallis for Solving Topical Problems.

    PubMed

    Heinzelmann, Elsbeth

    2016-01-01

    At HES-SO Valais-Wallis, Prof. Fabian Fischer is specialized in microbial fuel cells for novel applications that meet the challenge of producing renewable energies. He and his team possess a unique expertise in bioelectric energy vector generation, phosphate extraction (CHIMIA 2015, 69, 296) and the testing of antimicrobial surfaces. Let's take a look behind the scenes of the Institute of Life Technologies in Sion.

  14. Abundance and Distribution of Microbial Cells and Viruses in an Alluvial Aquifer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Donald; Nolan, Jason; Williams, Kenneth H.

    Viruses are the most abundant biological entity on Earth and their interactions with microbial communities are recognized to influence microbial ecology and impact biogeochemical cycling in various ecosystems. While the factors that control the distribution of viruses in surface aquatic environments are well-characterized, the abundance and distribution of continental subsurface viruses with respect to microbial abundance and biogeochemical parameters have not yet been established. In order to begin to understand the factors governing virus distribution in subsurface environments, we assessed microbial cell and virus abundance in groundwater concurrent with groundwater chemistry in a uranium impacted alluvial aquifer adjoining the Coloradomore » River near Rifle, CO. Virus abundance ranged from 8.0 × 10 4 to 1.0 × 10 6 mL -1 and exceeded cell abundance in all samples (cell abundance ranged from 5.8 × 10 4 to 6.1 × 10 5 mL -1). The virus to microbial cell ratio ranged from 1.1 to 8.1 and averaged 3.0 ± 1.6 with virus abundance most strongly correlated to cell abundance (Spearman's ρ = 0.73, p < 0.001). Both viruses and cells were positively correlated to dissolved organic carbon (DOC) with cells having a slightly stronger correlation (Spearman's ρ = 0.46, p < 0.05 and ρ = 0.54, p < 0.05; respectively). Groundwater uranium was also strongly correlated with DOC and virus and cell abundance (Spearman's ρ = 0.62, p < 0.05; ρ = 0.46, p < 0.05; and ρ = 0.50, p < 0.05; respectively). Together the data indicate that microbial cell and virus abundance are correlated to the geochemical conditions in the aquifer. As such local geochemical conditions likely control microbial host cell abundance which in turn controls viral abundance. Given the potential impacts of viral-mediated cell lysis such as liberation of labile organic matter from lysed cells and changes in microbial community structure, viral interactions with the microbiota should be considered in an effort to understand subsurface biogeochemical cycling and contaminant mobility.« less

  15. Abundance and Distribution of Microbial Cells and Viruses in an Alluvial Aquifer

    DOE PAGES

    Pan, Donald; Nolan, Jason; Williams, Kenneth H.; ...

    2017-07-11

    Viruses are the most abundant biological entity on Earth and their interactions with microbial communities are recognized to influence microbial ecology and impact biogeochemical cycling in various ecosystems. While the factors that control the distribution of viruses in surface aquatic environments are well-characterized, the abundance and distribution of continental subsurface viruses with respect to microbial abundance and biogeochemical parameters have not yet been established. In order to begin to understand the factors governing virus distribution in subsurface environments, we assessed microbial cell and virus abundance in groundwater concurrent with groundwater chemistry in a uranium impacted alluvial aquifer adjoining the Coloradomore » River near Rifle, CO. Virus abundance ranged from 8.0 × 10 4 to 1.0 × 10 6 mL -1 and exceeded cell abundance in all samples (cell abundance ranged from 5.8 × 10 4 to 6.1 × 10 5 mL -1). The virus to microbial cell ratio ranged from 1.1 to 8.1 and averaged 3.0 ± 1.6 with virus abundance most strongly correlated to cell abundance (Spearman's ρ = 0.73, p < 0.001). Both viruses and cells were positively correlated to dissolved organic carbon (DOC) with cells having a slightly stronger correlation (Spearman's ρ = 0.46, p < 0.05 and ρ = 0.54, p < 0.05; respectively). Groundwater uranium was also strongly correlated with DOC and virus and cell abundance (Spearman's ρ = 0.62, p < 0.05; ρ = 0.46, p < 0.05; and ρ = 0.50, p < 0.05; respectively). Together the data indicate that microbial cell and virus abundance are correlated to the geochemical conditions in the aquifer. As such local geochemical conditions likely control microbial host cell abundance which in turn controls viral abundance. Given the potential impacts of viral-mediated cell lysis such as liberation of labile organic matter from lysed cells and changes in microbial community structure, viral interactions with the microbiota should be considered in an effort to understand subsurface biogeochemical cycling and contaminant mobility.« less

  16. Harnessing biodiesel-producing microbes: from genetic engineering of lipase to metabolic engineering of fatty acid biosynthetic pathway.

    PubMed

    Yan, Jinyong; Yan, Yunjun; Madzak, Catherine; Han, Bingnan

    2017-02-01

    Microbial production routes, notably whole-cell lipase-mediated biotransformation and fatty-acids-derived biosynthesis, offer new opportunities for synthesizing biodiesel. They compare favorably to immobilized lipase and chemically catalyzed processes. Genetically modified whole-cell lipase-mediated in vitro route, together with in vivo and ex vivo microbial biosynthesis routes, constitutes emerging and rapidly developing research areas for effective production of biodiesel. This review presents recent advances in customizing microorganisms for producing biodiesel, via genetic engineering of lipases and metabolic engineering (including system regulation) of fatty-acids-derived pathways. Microbial hosts used include Escherichia coli, Saccharomyces cerevisiae, Pichia pastoris and Aspergillus oryzae. These microbial cells can be genetically modified to produce lipases under different forms: intracellularly expressed, secreted or surface-displayed. They can be metabolically redesigned and systematically regulated to obtain balanced biodiesel-producing cells, as highlighted in this study. Such genetically or metabolically modified microbial cells can support not only in vitro biotransformation of various common oil feedstocks to biodiesel, but also de novo biosynthesis of biodiesel from glucose, glycerol or even cellulosic biomass. We believe that the genetically tractable oleaginous yeast Yarrowia lipolytica could be developed to an effective biodiesel-producing microbial cell factory. For this purpose, we propose several engineered pathways, based on lipase and wax ester synthase, in this promising oleaginous host.

  17. Effect of surface characteristics on retention and removal of Escherichia coli O157:H7 on surfaces of spinach

    USDA-ARS?s Scientific Manuscript database

    The topography and the spatial heterogeneity of produce surfaces may impact the attachment of microbial cells onto produce surfaces and affect disinfection efficacy. In this study, the effects of produce surface characteristics on the removal of bacteria were studied. Fresh spinach leaves were sp...

  18. Cell surface characteristics of Lactobacillus casei subsp. casei, Lactobacillus paracasei subsp. paracasei, and Lactobacillus rhamnosus strains.

    PubMed Central

    Pelletier, C; Bouley, C; Cayuela, C; Bouttier, S; Bourlioux, P; Bellon-Fontaine, M N

    1997-01-01

    Hydrophilic and electrostatic cell surface properties of eight Lactobacillus strains were characterized by using the microbial adhesion to solvents method and microelectrophoresis, respectively. All strains appeared relatively hydrophilic. The strong microbial adhesion to chloroform, an acidic solvent, in comparison with microbial adhesion to hexadecane, an apolar n-alkane, demonstrated the particularity of lactobacilli to have an important electron donor and basic character and consequently their potential ability to generate Lewis acid-base interactions with a support. Regardless of their electrophoretic mobility (EM), strains were in general slightly negatively charged at alkaline pH. A pH-dependent behavior concerning cell surface charges was observed. The EM decreased progressively with more acidic pHs for the L. casei subsp. casei and L. paracasei subsp. paracasei strains until the isoelectric point (IEP), i.e., the pH value for which the EM is zero. On the other hand, the EM for the L. rhamnosus strains was stable from pH 8 to pH 3 to 4, at which point there was a shift near the IEP. Both L. casei subsp. casei and L. paracasei subsp. paracasei strains were characterized by an IEP of around 4, whereas L. rhamnosus strains possessed a markedly lower IEP of 2. The present study showed that the cell surface physicochemical properties of lactobacilli seem to be, at least in part and under certain experimental conditions, particular to the bacterial species. Such differences detected between species are likely to be accompanied by some particular changes in cell wall chemical composition. PMID:9143109

  19. Formation of industrial mixed culture biofilm in chlorophenol cultivated medium of microbial fuel cell

    NASA Astrophysics Data System (ADS)

    Hassan, Huzairy; Jin, Bo; Dai, Sheng; Ngau, Cornelius

    2016-11-01

    The formation of microbial biofilm while maintaining the electricity output is a challenging topic in microbial fuel cell (MFC) studies. This MFC critical factor becomes more significant when handling with industrial wastewater which normally contains refractory and toxic compounds. This study explores the formation of industrial mixed culture biofilm in chlorophenol cultivated medium through observing and characterizing microscopically its establishment on MFC anode surface. The mixed culture was found to develop its biofilm on the anode surface in the chlorophenol environment and established its maturity and dispersal stages with concurrent electricity generation and phenolic degradation. The mixed culture biofilm engaged the electron transfer roles in MFC by generating current density of 1.4 mA/m2 and removing 53 % of 2,4-dichlorophenol. The results support further research especially on hazardous wastewater treatment using a benign and sustainable method.

  20. Bacterial cellulose-polyaniline nano-biocomposite: A porous media hydrogel bioanode enhancing the performance of microbial fuel cell

    NASA Astrophysics Data System (ADS)

    Mashkour, Mehrdad; Rahimnejad, Mostafa; Mashkour, Mahdi

    2016-09-01

    Microbial fuel cells (MFCs) are one of the possible renewable energy supplies which microorganisms play an active role in bio-oxidize reactions of a substrate such as glucose. Electrode materials and surface modifications are highly effective tools in enhancing MFCs' Performance. In this study, new composite anodes are fabricated. Bacterial cellulose (BC) is used as continuous phase and polyaniline (PANI) as dispersed one which is synthesized by in situ chemical oxidative polymerization on BC's fibers. With hydrogel nature of BC as a novel feature and polyaniline conductivity there meet the favorable conditions to obtain an active microbial biofilm on anode surface. Maximum power density of 117.76 mW/m2 in current density of 617 mA/m2 is achieved for BC/PANI anode. The amounts demonstrate a considerable enhancement compared with graphite plate (1 mW/m2 and 10 mA/m2).

  1. Extracellular Electron Uptake: Among Autotrophs and Mediated by Surfaces.

    PubMed

    Tremblay, Pier-Luc; Angenent, Largus T; Zhang, Tian

    2017-04-01

    Autotrophic microbes can acquire electrons from solid donors such as steel, other microbial cells, or electrodes. Based on this feature, bioprocesses are being developed for the microbial electrosynthesis (MES) of useful products from the greenhouse gas CO 2 . Extracellular electron-transfer mechanisms involved in the acquisition of electrons from metals by electrical microbially influenced corrosion (EMIC), from other living cells by interspecies electron transfer (IET), or from an electrode during MES rely on: (i) mediators such as H 2 ; (ii) physical contact through electron-transfer proteins; or (iii) mediator-generating enzymes detached from cells. This review explores the interactions of autotrophs with solid electron donors and their importance in nature and for biosustainable technologies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Endospore abundance, microbial growth and necromass turnover in deep sub-seafloor sediment.

    PubMed

    Lomstein, Bente Aa; Langerhuus, Alice T; D'Hondt, Steven; Jørgensen, Bo B; Spivack, Arthur J

    2012-03-18

    Two decades of scientific ocean drilling have demonstrated widespread microbial life in deep sub-seafloor sediment, and surprisingly high microbial-cell numbers. Despite the ubiquity of life in the deep biosphere, the large community sizes and the low energy fluxes in this vast buried ecosystem are not yet understood. It is not known whether organisms of the deep biosphere are specifically adapted to extremely low energy fluxes or whether most of the observed cells are in a dormant, spore-like state. Here we apply a new approach--the D:L-amino-acid model--to quantify the distributions and turnover times of living microbial biomass, endospores and microbial necromass, as well as to determine their role in the sub-seafloor carbon budget. The approach combines sensitive analyses of unique bacterial markers (muramic acid and D-amino acids) and the bacterial endospore marker, dipicolinic acid, with racemization dynamics of stereo-isomeric amino acids. Endospores are as abundant as vegetative cells and microbial activity is extremely low, leading to microbial biomass turnover times of hundreds to thousands of years. We infer from model calculations that biomass production is sustained by organic carbon deposited from the surface photosynthetic world millions of years ago and that microbial necromass is recycled over timescales of hundreds of thousands of years.

  3. Protozoan grazing reduces the current output of microbial fuel cells.

    PubMed

    Holmes, Dawn E; Nevin, Kelly P; Snoeyenbos-West, Oona L; Woodard, Trevor L; Strickland, Justin N; Lovley, Derek R

    2015-10-01

    Several experiments were conducted to determine whether protozoan grazing can reduce current output from sediment microbial fuel cells. When marine sediments were amended with eukaryotic inhibitors, the power output from the fuel cells increased 2-5-fold. Quantitative PCR showed that Geobacteraceae sequences were 120 times more abundant on anodes from treated fuel cells compared to untreated fuel cells, and that Spirotrichea sequences in untreated fuel cells were 200 times more abundant on anode surfaces than in the surrounding sediments. Defined studies with current-producing biofilms of Geobacter sulfurreducens and pure cultures of protozoa demonstrated that protozoa that were effective in consuming G. sulfurreducens reduced current production up to 91% when added to G. sulfurreducens fuel cells. These results suggest that anode biofilms are an attractive food source for protozoa and that protozoan grazing can be an important factor limiting the current output of sediment microbial fuel cells. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Microbially induced separation of quartz from hematite using sulfate reducing bacteria.

    PubMed

    Prakasan, M R Sabari; Natarajan, K A

    2010-07-01

    Cells and metabolic products of Desulfovibrio desulfuricans were successfully used to separate quartz from hematite through environmentally benign microbially induced flotation. Bacterial metabolic products such as extracellular proteins and polysaccharides were isolated from both unadapted and mineral-adapted bacterial metabolite and their basic characteristics were studied in order to get insight into the changes brought about on bioreagents during adaptation. Interaction between bacterial cells and metabolites with minerals like hematite and quartz brought about significant surface-chemical changes on both the minerals. Quartz was rendered more hydrophobic, while hematite became more hydrophilic after biotreatment. The predominance of bacterial polysaccharides on interacted hematite and of proteins on quartz was responsible for the above surface-chemical changes, as attested through adsorption studies. Surface-chemical changes were also observed on bacterial cells after adaptation to the above minerals. Selective separation of quartz from hematite was achieved through interaction with quartz-adapted bacterial cells and metabolite. Mineral-specific proteins secreted by quartz-adapted cells were responsible for conferment of hydrophobicity on quartz resulting in enhanced separation from hematite through flotation. 2010 Elsevier B.V. All rights reserved.

  5. Microbes Persist: Using a Systems Biology Approach to Reveal How the Soil Microbiome Shapes Soil Organic Matter

    NASA Astrophysics Data System (ADS)

    Pett-Ridge, J.

    2017-12-01

    Soils store more carbon than the atmosphere and terrestrial vegetation combined, yet the factors that control its persistence remain elusive. Recent insights have overturned the long-held assumption that carbon stability depends mostly on chemical `recalcitrance' of soil organic matter (SOM). Instead, an emerging paradigm emphasizes how environmental drivers like temperature and moisture, soil minerals, and microbial ecology interact to control SOM formation, stabilization, and turnover. Detailed spectroscopic and isotopic (14C) analyses of mineral-associated SOM show that the oldest carbon in soil may be easily broken down and respired in the laboratory, and that it biochemically resembles microbial cells and metabolites far more than plant material. This places microbial ecophysiology at the center of the soil carbon persistence question. Microbial cells likely interact with mineral surfaces as part of an ecological strategy to condition their environment (e.g. biofilm formation or extracellular enzyme production), and their diverse cellular components likely associate with minerals after cells die. Collectively, these microbial characteristics - metabolic activities, population growth strategies, and cellular biochemistry - can be thought of as `soil ecophysiological traits'. This presentation will explore potential traits that may be fruitful targets for studies evaluating the persistence and importance of microbial products as SOM precursors, and will highlight results showing that soil mineral type influences the microbial communities that colonize mineral surfaces, as well as the quantity and type of mineral-associated carbon that accumulates. I will propose a series of integrated approaches that used together can examine how genomic capacity and activities of soil microbiomes are shaped by edaphic conditions (moisture, temperature, redox regimes) and fundamentally affect the terrestrial soil C pool.

  6. Binding of heavy metal ions in aggregates of microbial cells, EPS and biogenic iron minerals measured in-situ using metal- and glycoconjugates-specific fluorophores

    NASA Astrophysics Data System (ADS)

    Hao, Likai; Guo, Yuan; Byrne, James M.; Zeitvogel, Fabian; Schmid, Gregor; Ingino, Pablo; Li, Jianli; Neu, Thomas R.; Swanner, Elizabeth D.; Kappler, Andreas; Obst, Martin

    2016-05-01

    Aggregates consisting of bacterial cells, extracellular polymeric substances (EPS) and Fe(III) minerals formed by Fe(II)-oxidizing bacteria are common at bulk or microscale chemical interfaces where Fe cycling occurs. The high sorption capacity and binding capacity of cells, EPS, and minerals controls the mobility and fate of heavy metals. However, it remains unclear to which of these component(s) the metals will bind in complex aggregates. To clarify this question, the present study focuses on 3D mapping of heavy metals sorbed to cells, glycoconjugates that comprise the majority of EPS constituents, and Fe(III) mineral aggregates formed by the phototrophic Fe(II)-oxidizing bacteria Rhodobacter ferrooxidans SW2 using confocal laser scanning microscopy (CLSM) in combination with metal- and glycoconjugates-specific fluorophores. The present study evaluated the influence of glycoconjugates, microbial cell surfaces, and (biogenic) Fe(III) minerals, and the availability of ferrous and ferric iron on heavy metal sorption. Analyses in this study provide detailed knowledge on the spatial distribution of metal ions in the aggregates at the sub-μm scale, which is essential to understand the underlying mechanisms of microbe-mineral-metal interactions. The heavy metals (Au3+, Cd2+, Cr3+, CrO42-, Cu2+, Hg2+, Ni2+, Pd2+, tributyltin (TBT) and Zn2+) were found mainly sorbed to cell surfaces, present within the glycoconjugates matrix, and bound to the mineral surfaces, but not incorporated into the biogenic Fe(III) minerals. Statistical analysis revealed that all ten heavy metals tested showed relatively similar sorption behavior that was affected by the presence of sorbed ferrous and ferric iron. Results in this study showed that in addition to the mineral surfaces, both bacterial cell surfaces and the glycoconjugates provided most of sorption sites for heavy metals. Simultaneously, ferrous and ferric iron ions competed with the heavy metals for sorption sites on the organic compounds. In summary, the information obtained by the present approach using a microbial model system provides important information to better understand the interactions between heavy metals and biofilms, and microbially formed Fe(III) minerals and heavy metals in complex natural environments.

  7. Simulation of Escherichia coli Dynamics in Biofilms and Submerged Colonies with an Individual-Based Model Including Metabolic Network Information.

    PubMed

    Tack, Ignace L M M; Nimmegeers, Philippe; Akkermans, Simen; Hashem, Ihab; Van Impe, Jan F M

    2017-01-01

    Clustered microbial communities are omnipresent in the food industry, e.g., as colonies of microbial pathogens in/on food media or as biofilms on food processing surfaces. These clustered communities are often characterized by metabolic differentiation among their constituting cells as a result of heterogeneous environmental conditions in the cellular surroundings. This paper focuses on the role of metabolic differentiation due to oxygen gradients in the development of Escherichia coli cell communities, whereby low local oxygen concentrations lead to cellular secretion of weak acid products. For this reason, a metabolic model has been developed for the facultative anaerobe E. coli covering the range of aerobic, microaerobic, and anaerobic environmental conditions. This metabolic model is expressed as a multiparametric programming problem, in which the influence of low extracellular pH values and the presence of undissociated acid cell products in the environment has been taken into account. Furthermore, the developed metabolic model is incorporated in MICRODIMS, an in-house developed individual-based modeling framework to simulate microbial colony and biofilm dynamics. Two case studies have been elaborated using the MICRODIMS simulator: (i) biofilm growth on a substratum surface and (ii) submerged colony growth in a semi-solid mixed food product. In the first case study, the acidification of the biofilm environment and the emergence of typical biofilm morphologies have been observed, such as the mushroom-shaped structure of mature biofilms and the formation of cellular chains at the exterior surface of the biofilm. The simulations show that these morphological phenomena are respectively dependent on the initial affinity of pioneer cells for the substratum surface and the cell detachment process at the outer surface of the biofilm. In the second case study, a no-growth zone emerges in the colony center due to a local decline of the environmental pH. As a result, cellular growth in the submerged colony is limited to the colony periphery, implying a linear increase of the colony radius over time. MICRODIMS has been successfully used to reproduce complex dynamics of clustered microbial communities.

  8. Evidence for Direct Electron Transfer by a Gram-Positive Bacterium Isolated from a Microbial Fuel Cell▿†

    PubMed Central

    Wrighton, K. C.; Thrash, J. C.; Melnyk, R. A.; Bigi, J. P.; Byrne-Bailey, K. G.; Remis, J. P.; Schichnes, D.; Auer, M.; Chang, C. J.; Coates, J. D.

    2011-01-01

    Despite their importance in iron redox cycles and bioenergy production, the underlying physiological, genetic, and biochemical mechanisms of extracellular electron transfer by Gram-positive bacteria remain insufficiently understood. In this work, we investigated respiration by Thermincola potens strain JR, a Gram-positive isolate obtained from the anode surface of a microbial fuel cell, using insoluble electron acceptors. We found no evidence that soluble redox-active components were secreted into the surrounding medium on the basis of physiological experiments and cyclic voltammetry measurements. Confocal microscopy revealed highly stratified biofilms in which cells contacting the electrode surface were disproportionately viable relative to the rest of the biofilm. Furthermore, there was no correlation between biofilm thickness and power production, suggesting that cells in contact with the electrode were primarily responsible for current generation. These data, along with cryo-electron microscopy experiments, support contact-dependent electron transfer by T. potens strain JR from the cell membrane across the 37-nm cell envelope to the cell surface. Furthermore, we present physiological and genomic evidence that c-type cytochromes play a role in charge transfer across the Gram-positive bacterial cell envelope during metal reduction. PMID:21908627

  9. Influence of diligent disintegration on anaerobic biomass and performance of microbial fuel cell.

    PubMed

    Divyalakshmi, Palanisamy; Murugan, Devaraj; Rai, Chockalingam Lajapathi

    2017-12-01

    To enhance the performance of microbial fuel cells (MFC) by increasing the surface area of cathode and diligent mechanical disintegration of anaerobic biomass. Tannery effluent and anaerobic biomass were used. The increase in surface area of the cathode resulted in 78% COD removal, with the potential, current density, power density and coulombic efficiency of 675 mV, 147 mA m -2 , 33 mW m -2 and 3.5%, respectively. The work coupled with increased surface area of the cathode with diligent mechanical disintegration of the biomass, led to a further increase in COD removal of 82% with the potential, current density, power density and coulombic efficiency of 748 mV, 229 mA m -2 , 78 mW m -2 and 6% respectively. Mechanical disintegration of the biomass along with increased surface area of cathode enhances power generation in vertical MFC reactors using tannery effluent as fuel.

  10. Parabolic Flight Evaluation of Bacterial Adhesion on Multiple Antimicrobial Surface Treatments

    NASA Technical Reports Server (NTRS)

    Birmele, Michele

    2011-01-01

    This report describes the development of a test method and the evaluation of the effectiveness of antimicrobial technologies in reduced gravity based on parabolic flight experiments. Microbial growth is a common occurrence on fully immersed wetted surfaces in spacecraft environmental control and life support systems despite the use of chemical and/or physical \\disinfection. Many materials and surface treatments with antimicrobial properties are commercially available but none have been vetted for spaceflight applications. Herein a test method is explained that included ground and reduced gravity parabolic flight experiments with a standard microorganism recovered from spacecraft, Pseudomonas aeruginosa, added at a concentration of 1 x 10(exp 5) cells per milliliter (mL) onto challenge material coupon surfaces. Several experimental materials were observed to slightly reduce microbial attachment in reduced gravity flight experiments, but none were capable of eliminating all challenge bacteria. Lunar gravity had an increased antimicrobial effect in 28 out of 36 test coupons compared to microgravity when provided otherwise identical conditions for growth, suggesting trace .amounts of gravity may be required for maximum antimicrobial performance. Bacterial cells exposed to variable gravity had more than twice as ,much intracellular adenosine triphosphate (ATP) when compared to control cells exposed only to Earth gravity due to a short duration response to environmental stress. An ATP luminescence assay was the method most amenable to development of an in-flight microbial monitoring assay

  11. Environmental microbial contamination in a stem cell bank.

    PubMed

    Cobo, F; Concha, A

    2007-04-01

    The aim of this study was to evaluate the main environmental microbial contaminants of the clean rooms in our stem cell bank. We have measured the microbial air contamination by both passive and active air sampling and the microbial monitoring of surfaces by means of Rodac plates. The environmental monitoring tests were carried out in accordance with the guidelines of European Pharmacopeia and US Pharmacopeia. The micro-organisms were identified by means of an automated system (VITEK 2). During the monitoring, the clean rooms are continually under good manufacturing practices specifications. The most frequent contaminants were Gram-positive cocci. The main contaminants in our stem cell bank were coagulase-negative staphylococci and other opportunistic human pathogens. In order to assure the levels of potential contamination in both embryonic and adult stem cell lines, a continuous sampling of air particles and testing for viable microbiological contamination is necessary. This study is the first evaluation of the environmental contaminants in stem cell banks and can serve as initial evaluation for these establishments. The introduction of environmental monitoring programmes in the processing of stem cell lines could diminish the risk of contamination in stem cell cultures.

  12. Optimization studies of bio-hydrogen production in a coupled microbial electrolysis-dye sensitized solar cell system.

    PubMed

    Ajayi, Folusho Francis; Kim, Kyoung-Yeol; Chae, Kyu-Jung; Choi, Mi-Jin; Chang, In Seop; Kim, In S

    2010-03-01

    Bio-hydrogen production in light-assisted microbial electrolysis cell (MEC) with a dye sensitized solar cell (DSSC) was optimized by connecting multiple MECs to a single dye (N719) sensitized solar cell (V(OC) approx. 0.7 V). Hydrogen production occurred simultaneously in all the connected MECs when the solar cell was irradiated with light. The amount of hydrogen produced in each MEC depends on the activity of the microbial catalyst on their anode. Substrate (acetate) to hydrogen conversion efficiencies ranging from 42% to 65% were obtained from the reactors during the experiment. A moderate light intensity of 430 W m(-2) was sufficient for hydrogen production in the coupled MEC-DSSC. A higher light intensity of 915 W m(-2), as well as an increase in substrate concentration, did not show any improvement in the current density due to limitation caused by the rate of microbial oxidation on the anode. A significant reduction in the surface area of the connected DSSC only showed a slight effect on current density in the coupled MEC-DSSC system when irradiated with light.

  13. Biodesulfurization of Dibenzothiophene by Microbial Cells Coated with Magnetite Nanoparticles

    PubMed Central

    Shan, GuoBin; Xing, JianMin; Zhang, HuaiYing; Liu, HuiZhou

    2005-01-01

    Microbial cells of Pseudomonas delafieldii were coated with magnetic Fe3O4 nanoparticles and then immobilized by external application of a magnetic field. Magnetic Fe3O4 nanoparticles were synthesized by a coprecipitation method followed by modification with ammonium oleate. The surface-modified Fe3O4 nanoparticles were monodispersed in an aqueous solution and did not precipitate in over 18 months. Using transmission electron microscopy (TEM), the average size of the magnetic particles was found to be in the range from 10 to 15 nm. TEM cross section analysis of the cells showed further that the Fe3O4 nanoparticles were for the most part strongly absorbed by the surfaces of the cells and coated the cells. The coated cells had distinct superparamagnetic properties. The magnetization (δs) was 8.39 emu · g−1. The coated cells not only had the same desulfurizing activity as free cells but could also be reused more than five times. Compared to cells immobilized on Celite, the cells coated with Fe3O4 nanoparticles had greater desulfurizing activity and operational stability. PMID:16085841

  14. The clinical and cellular basis of contact lens-related corneal infections

    PubMed Central

    Robertson, Danielle M; Cavanagh, H Dwight

    2008-01-01

    Microbial keratitis (MK) is the most visually devastating complication associated with contact lens wear. Pseudomonas aeruginosa (PA) is highly invasive in the corneal epithelium and is responsible for more than half of the reported cases of contact lens-related MK. To protect against Pseudomonas-mediated MK, the corneal epithelium has evolved overlapping defense mechanisms that function to protect the ocular surface from microbial invasion. Research has shown that contact lens wear disrupts these protective mechanisms through breakdown of normal homeostatic surface renewal as well as damaging the corneal surface, exposing underlying cell membrane receptors that bind and internalize PA through the formation of lipid rafts. Human clinical trials have shown that initial adherence of PA with resulting increased risk for microbial infection is mediated in part by contact lens oxygen transmissibility. Recently, chemical preserved multipurpose solutions (MPS) have been implicated in increasing PA adherence to corneal epithelial cells, in addition to inducing significant levels of toxic staining when used in conjunction with specific silicone hydrogel lenses. This review summarizes what is currently known about the relationship between contact lenses, the corneal epithelium, MPS, and infection. PMID:19277209

  15. Metagenomic analysis of microbial communities yields insight into impacts of nanoparticle design

    NASA Astrophysics Data System (ADS)

    Metch, Jacob W.; Burrows, Nathan D.; Murphy, Catherine J.; Pruden, Amy; Vikesland, Peter J.

    2018-01-01

    Next-generation DNA sequencing and metagenomic analysis provide powerful tools for the environmentally friendly design of nanoparticles. Herein we demonstrate this approach using a model community of environmental microbes (that is, wastewater-activated sludge) dosed with gold nanoparticles of varying surface coatings and morphologies. Metagenomic analysis was highly sensitive in detecting the microbial community response to gold nanospheres and nanorods with either cetyltrimethylammonium bromide or polyacrylic acid surface coatings. We observed that the gold-nanoparticle morphology imposes a stronger force in shaping the microbial community structure than does the surface coating. Trends were consistent in terms of the compositions of both taxonomic and functional genes, which include antibiotic resistance genes, metal resistance genes and gene-transfer elements associated with cell stress that are relevant to public health. Given that nanoparticle morphology remained constant, the potential influence of gold dissolution was minimal. Surface coating governed the nanoparticle partitioning between the bioparticulate and aqueous phases.

  16. Microbial precipitation of dolomite in methanogenic groundwater

    USGS Publications Warehouse

    Roberts, Jennifer A.; Bennett, Philip C.; Gonzalez, Luis A.; Macpherson, G.L.; Milliken, Kitty L.

    2004-01-01

    We report low-temperature microbial precipitation of dolomite in dilute natural waters from both field and laboratory experiments. In a freshwater aquifer, microorganisms colonize basalt and nucleate nonstoichiometric dolomite on cell walls. In the laboratory, ordered dolomite formed at near-equilibrium conditions from groundwater with molar Mg:Ca ratios of <1; dolomite was absent in sterile experiments. Geochemical and microbiological data suggest that methanogens are the dominant metabolic guild in this system and are integral to dolomite precipitation. We hypothesize that the attached microbial consortium reacts with the basalt surface, releasing Mg and Ca into solution, which drives dolomite precipitation via nucleation on the cell wall. These findings provide insight into the long-standing dolomite problem and suggest a fundamental role for microbial processes in the formation of dolomite across a wide range of environmental conditions.

  17. Nano-scale investigation of the association of microbial nitrogen residues with iron (hydr)oxides in a forest soil O-horizon

    NASA Astrophysics Data System (ADS)

    Keiluweit, Marco; Bougoure, Jeremy J.; Zeglin, Lydia H.; Myrold, David D.; Weber, Peter K.; Pett-Ridge, Jennifer; Kleber, Markus; Nico, Peter S.

    2012-10-01

    Amino sugars in fungal cell walls (such as chitin) represent an important source of nitrogen (N) in many forest soil ecosystems. Despite the importance of this material in soil nitrogen cycling, comparatively little is known about abiotic and biotic controls on and the timescale of its turnover. Part of the reason for this lack of information is the inaccessibility of these materials to classic bulk extraction methods. To address this issue, we used advanced visualization tools to examine transformation pathways of chitin-rich fungal cell wall residues as they interact with microorganisms, soil organic matter and mineral surfaces. Our goal was to document initial micro-scale dynamics of the incorporation of 13C- and 15N-labeled chitin into fungi-dominated microenvironments in O-horizons of old-growth forest soils. At the end of a 3-week incubation experiment, high-resolution secondary ion mass spectrometry imaging of hyphae-associated soil microstructures revealed a preferential association of 15N with Fe-rich particles. Synchrotron-based scanning transmission X-ray spectromicroscopy (STXM/NEXAFS) of the same samples showed that thin organic coatings on these soil microstructures are enriched in aliphatic C and amide N on Fe (hydr)oxides, suggesting a concentration of microbial lipids and proteins on these surfaces. A possible explanation for the results of our micro-scale investigation of chemical and spatial patterns is that amide N from chitinous fungal cell walls was assimilated by hyphae-associated bacteria, resynthesized into proteinaceous amide N, and subsequently concentrated onto Fe (hydr)oxide surfaces. If confirmed in other soil ecosystems, such rapid association of microbial N with hydroxylated Fe oxide surfaces may have important implications for mechanistic models of microbial cycling of C and N.

  18. Microbial cell budgets of an Arctic glacier surface quantified using flow cytometry.

    PubMed

    Irvine-Fynn, T D L; Edwards, A; Newton, S; Langford, H; Rassner, S M; Telling, J; Anesio, A M; Hodson, A J

    2012-11-01

    Uncertainty surrounds estimates of microbial cell and organic detritus fluxes from glacier surfaces. Here, we present the first enumeration of biological particles draining from a supraglacial catchment, on Midtre Lovénbreen (Svalbard) over 36 days. A stream cell flux of 1.08 × 10(7)  cells m(-2)  h(-1) was found, with strong inverse, non-linear associations between water discharge and biological particle concentrations. Over the study period, a significant decrease in cell-like particles exhibiting 530 nm autofluorescence was noted. The observed total fluvial export of ~7.5 × 10(14) cells equates to 15.1-72.7 g C, and a large proportion of these cells were small (< 0.5 μm in diameter). Differences between the observed fluvial export and inputs from ice-melt and aeolian deposition were marked: results indicate an apparent storage rate of 8.83 × 10(7)  cells m(-2)  h(-1). Analysis of surface ice cores revealed cell concentrations comparable to previous studies (6 × 10(4)  cells ml(-1)) but, critically, showed no variation with depth in the uppermost 1 m. The physical retention and growth of particulates at glacier surfaces has two implications: to contribute to ice mass thinning through feedbacks altering surface albedo, and to potentially seed recently deglaciated terrain with cells, genes and labile organic matter. This highlights the merit of further study into glacier surface hydraulics and biological processes. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  19. Graphene/Fe3 O4 Nanocomposites as Efficient Anodes to Boost the Lifetime and Current Output of Microbial Fuel Cells.

    PubMed

    Song, Rong-Bin; Zhao, Cui-E; Gai, Pan-Pan; Guo, Dan; Jiang, Li-Ping; Zhang, Qichun; Zhang, Jian-Rong; Zhu, Jun-Jie

    2017-02-01

    The enhancement of microbial activity and electrocatalysis through the design of new anode materials is essential to develop microbial fuel cells (MFCs) with longer lifetimes and higher output. In this research, a novel anode material, graphene/Fe 3 O 4 (G/Fe 3 O 4 ) composite, has been designed for Shewanella-inoculated MFCs. Because the Shewanella species could bind to Fe 3 O 4 with high affinity and their growth could be supported by Fe 3 O 4 , the bacterial cells attached quickly onto the anode surface and their long-term activity improved. As a result, MFCs with reduced startup time and improved stability were obtained. Additionally, the introduction of graphene not only provided a large surface area for bacterial attachment, but also offered high electrical conductivity to facilitate extracellular electron transfer (EET). The results showed that the current and power densities of a G/Fe 3 O 4 anode were much higher than those of each individual component as an anode. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Factors affecting microbial adhesion to stainless steel and other materials used in medical devices.

    PubMed

    Verran, J; Whitehead, K

    2005-11-01

    The role of biofilm in medical device associated infections is well documented. Biofilms are more resistant to antibiotics than planktonic cells, these are extremely difficult to treat. Prevention strategies include efforts to insert implants under stringent aseptic conditions, and also encompass the development of novel materials which interfere with the initial attachment of microorganisms to the surface of the device. Microbial cells also attach onto hygienic surfaces in the hospital setting, and thereby pose a cross-infection problem. In this case, vigorous cleaning and sanitizing regimes may be employed in addition to any surface modifications. Many factors affect the initial attachment of organisms to inert substrata, and their subsequent retention or removal/detachment, including the physical and chemical nature and location of the substratum, the type of organic material and microorganisms potentially fouling the surface, and the nature of the interface (solid-liquid in the body; solid-air on environmental surfaces). Focusing on one factor, surface topography, it is apparent that many further variables need to be defined in order to fully understand the interactions occurring between the cell and surface. It is therefore important when modifying one substratum surface property in order to reduce adhesion, to also consider other potentially confounding factors.

  1. Ancient microbes from halite fluid inclusions: optimized surface sterilization and DNA extraction.

    PubMed

    Sankaranarayanan, Krithivasan; Timofeeff, Michael N; Spathis, Rita; Lowenstein, Tim K; Lum, J Koji

    2011-01-01

    Fluid inclusions in evaporite minerals (halite, gypsum, etc.) potentially preserve genetic records of microbial diversity and changing environmental conditions of Earth's hydrosphere for nearly one billion years. Here we describe a robust protocol for surface sterilization and retrieval of DNA from fluid inclusions in halite that, unlike previously published methods, guarantees removal of potentially contaminating surface-bound DNA. The protocol involves microscopic visualization of cell structures, deliberate surface contamination followed by surface sterilization with acid and bleach washes, and DNA extraction using Amicon centrifugal filters. Methods were verified on halite crystals of four different ages from Saline Valley, California (modern, 36 ka, 64 ka, and 150 ka), with retrieval of algal and archaeal DNA, and characterization of the algal community using ITS1 sequences. The protocol we developed opens up new avenues for study of ancient microbial ecosystems in fluid inclusions, understanding microbial evolution across geological time, and investigating the antiquity of life on earth and other parts of the solar system.

  2. Organic matter quantity and source affects microbial community structure and function following volcanic eruption on Kasatochi Island, Alaska

    USGS Publications Warehouse

    Zeglin, Lydia H.; Wang, Bronwen; Waythomas, Christopher F.; Rainey, Frederick; Talbot, Sandra L.

    2016-01-01

    In August 2008, Kasatochi volcano erupted and buried a small island in pyroclastic deposits and fine ash; since then, microbes, plants and birds have begun to re-colonize the initially sterile surface. Five years post-eruption, bacterial 16S rRNA gene and fungal internal transcribed spacer (ITS) copy numbers and extracellular enzyme activity (EEA) potentials were one to two orders of magnitude greater in pyroclastic materials with organic matter (OM) inputs relative to those without, despite minimal accumulation of OM (< 0.2%C). When normalized by OM levels, post-eruptive surfaces with OM inputs had the highest β-glucosidase, phosphatase, NAGase and cellobiohydrolase activities, and had microbial population sizes approaching those in reference soils. In contrast, the strongest factor determining bacterial community composition was the dominance of plants versus birds as OM input vectors. Although soil pH ranged from 3.9 to 7.0, and %C ranged 100×, differentiation between plant- and bird-associated microbial communities suggested that cell dispersal or nutrient availability are more likely drivers of assembly than pH or OM content. This study exemplifies the complex relationship between microbial cell dispersal, soil geochemistry, and microbial structure and function; and illustrates the potential for soil microbiota to be resilient to disturbance.

  3. Cell-secreted flavins bound to membrane cytochromes dictate electron transfer reactions to surfaces with diverse charge and pH.

    PubMed

    Okamoto, Akihiro; Kalathil, Shafeer; Deng, Xiao; Hashimoto, Kazuhito; Nakamura, Ryuhei; Nealson, Kenneth H

    2014-07-11

    The variety of solid surfaces to and from which microbes can deliver electrons by extracellular electron transport (EET) processes via outer-membrane c-type cytochromes (OM c-Cyts) expands the importance of microbial respiration in natural environments and industrial applications. Here, we demonstrate that the bifurcated EET pathway of OM c-Cyts sustains the diversity of the EET surface in Shewanella oneidensis MR-1 via specific binding with cell-secreted flavin mononucleotide (FMN) and riboflavin (RF). Microbial current production and whole-cell differential pulse voltammetry revealed that RF and FMN enhance EET as bound cofactors in a similar manner. Conversely, FMN and RF were clearly differentiated in the EET enhancement by gene-deletion of OM c-Cyts and the dependency of the electrode potential and pH. These results indicate that RF and FMN have specific binding sites in OM c-Cyts and highlight the potential roles of these flavin-cytochrome complexes in controlling the rate of electron transfer to surfaces with diverse potential and pH.

  4. Responses to Microbial Challenges by SLAMF Receptors

    PubMed Central

    van Driel, Boaz Job; Liao, Gongxian; Engel, Pablo; Terhorst, Cox

    2016-01-01

    The SLAMF family (SLAMF) of cell surface glycoproteins is comprised of nine glycoproteins and while SLAMF1, 3, 5, 6, 7, 8, and 9 are self-ligand receptors, SLAMF2 and SLAMF4 interact with each other. Their interactions induce signal transduction networks in trans, thereby shaping immune cell–cell communications. Collectively, these receptors modulate a wide range of functions, such as myeloid cell and lymphocyte development, and T and B cell responses to microbes and parasites. In addition, several SLAMF receptors serve as microbial sensors, which either positively or negatively modulate the function of macrophages, dendritic cells, neutrophils, and NK cells in response to microbial challenges. The SLAMF receptor–microbe interactions contribute both to intracellular microbicidal activity as well as to migration of phagocytes to the site of inflammation. In this review, we describe the current knowledge on how the SLAMF receptors and their specific adapters SLAM-associated protein and EAT-2 regulate innate and adaptive immune responses to microbes. PMID:26834746

  5. Electricity generation from digitally printed cyanobacteria.

    PubMed

    Sawa, Marin; Fantuzzi, Andrea; Bombelli, Paolo; Howe, Christopher J; Hellgardt, Klaus; Nixon, Peter J

    2017-11-06

    Microbial biophotovoltaic cells exploit the ability of cyanobacteria and microalgae to convert light energy into electrical current using water as the source of electrons. Such bioelectrochemical systems have a clear advantage over more conventional microbial fuel cells which require the input of organic carbon for microbial growth. However, innovative approaches are needed to address scale-up issues associated with the fabrication of the inorganic (electrodes) and biological (microbe) parts of the biophotovoltaic device. Here we demonstrate the feasibility of using a simple commercial inkjet printer to fabricate a thin-film paper-based biophotovoltaic cell consisting of a layer of cyanobacterial cells on top of a carbon nanotube conducting surface. We show that these printed cyanobacteria are capable of generating a sustained electrical current both in the dark (as a 'solar bio-battery') and in response to light (as a 'bio-solar-panel') with potential applications in low-power devices.

  6. Review: Microbial Analysis in Dielectrophoretic Microfluidic Systems

    PubMed Central

    Fernandez, Renny E.; Rohani, Ali; Farmehini, Vahid; Swami, Nathan S.

    2017-01-01

    Infections caused by various known and emerging pathogenic microorganisms, including antibiotic-resistant strains, are a major threat to global health and well-being. This highlights the urgent need for detection systems for microbial identification, quantification and characterization towards assessing infections, prescribing therapies and understanding the dynamic cellular modifications. Current state-of-the-art microbial detection systems exhibit a trade-off between sensitivity and assay time, which could be alleviated by selective and label-free microbial capture onto the sensor surface from dilute samples. AC electrokinetic methods, such as dielectrophoresis, enable frequency-selective capture of viable microbial cells and spores due to polarization based on their distinguishing size, shape and sub-cellular compositional characteristics, for downstream coupling to various detection modalities. Following elucidation of the polarization mechanisms that distinguish bacterial cells from each other, as well as from mammalian cells, this review compares the microfluidic platforms for dielectrophoretic manipulation of microbials and their coupling to various detection modalities, including immuno-capture, impedance measurement, Raman spectroscopy and nucleic acid amplification methods, as well as for phenotypic assessment of microbial viability and antibiotic susceptibility. Based on the urgent need within point-of-care diagnostics towards reducing assay times and enhancing capture of the target organism, as well as the emerging interest in isolating intact microbials based on their phenotype and subcellular features, we envision widespread adoption of these label-free and selective electrokinetic techniques. PMID:28372723

  7. A microbial survey of the International Space Station (ISS)

    PubMed Central

    Lang, Jenna M.; Coil, David A.; Neches, Russell Y.; Brown, Wendy E.; Cavalier, Darlene; Severance, Mark; Hampton-Marcell, Jarrad T.; Gilbert, Jack A.

    2017-01-01

    Background Modern advances in sequencing technology have enabled the census of microbial members of many natural ecosystems. Recently, attention is increasingly being paid to the microbial residents of human-made, built ecosystems, both private (homes) and public (subways, office buildings, and hospitals). Here, we report results of the characterization of the microbial ecology of a singular built environment, the International Space Station (ISS). This ISS sampling involved the collection and microbial analysis (via 16S rDNA PCR) of 15 surfaces sampled by swabs onboard the ISS. This sampling was a component of Project MERCCURI (Microbial Ecology Research Combining Citizen and University Researchers on ISS). Learning more about the microbial inhabitants of the “buildings” in which we travel through space will take on increasing importance, as plans for human exploration continue, with the possibility of colonization of other planets and moons. Results Sterile swabs were used to sample 15 surfaces onboard the ISS. The sites sampled were designed to be analogous to samples collected for (1) the Wildlife of Our Homes project and (2) a study of cell phones and shoes that were concurrently being collected for another component of Project MERCCURI. Sequencing of the 16S rDNA genes amplified from DNA extracted from each swab was used to produce a census of the microbes present on each surface sampled. We compared the microbes found on the ISS swabs to those from both homes on Earth and data from the Human Microbiome Project. Conclusions While significantly different from homes on Earth and the Human Microbiome Project samples analyzed here, the microbial community composition on the ISS was more similar to home surfaces than to the human microbiome samples. The ISS surfaces are species-rich with 1,036–4,294 operational taxonomic units (OTUs per sample). There was no discernible biogeography of microbes on the 15 ISS surfaces, although this may be a reflection of the small sample size we were able to obtain. PMID:29492330

  8. A microbial survey of the International Space Station (ISS).

    PubMed

    Lang, Jenna M; Coil, David A; Neches, Russell Y; Brown, Wendy E; Cavalier, Darlene; Severance, Mark; Hampton-Marcell, Jarrad T; Gilbert, Jack A; Eisen, Jonathan A

    2017-01-01

    Modern advances in sequencing technology have enabled the census of microbial members of many natural ecosystems. Recently, attention is increasingly being paid to the microbial residents of human-made, built ecosystems, both private (homes) and public (subways, office buildings, and hospitals). Here, we report results of the characterization of the microbial ecology of a singular built environment, the International Space Station (ISS). This ISS sampling involved the collection and microbial analysis (via 16S rDNA PCR) of 15 surfaces sampled by swabs onboard the ISS. This sampling was a component of Project MERCCURI (Microbial Ecology Research Combining Citizen and University Researchers on ISS). Learning more about the microbial inhabitants of the "buildings" in which we travel through space will take on increasing importance, as plans for human exploration continue, with the possibility of colonization of other planets and moons. Sterile swabs were used to sample 15 surfaces onboard the ISS. The sites sampled were designed to be analogous to samples collected for (1) the Wildlife of Our Homes project and (2) a study of cell phones and shoes that were concurrently being collected for another component of Project MERCCURI. Sequencing of the 16S rDNA genes amplified from DNA extracted from each swab was used to produce a census of the microbes present on each surface sampled. We compared the microbes found on the ISS swabs to those from both homes on Earth and data from the Human Microbiome Project. While significantly different from homes on Earth and the Human Microbiome Project samples analyzed here, the microbial community composition on the ISS was more similar to home surfaces than to the human microbiome samples. The ISS surfaces are species-rich with 1,036-4,294 operational taxonomic units (OTUs per sample). There was no discernible biogeography of microbes on the 15 ISS surfaces, although this may be a reflection of the small sample size we were able to obtain.

  9. Microbe-surface interactions in biofouling and biocorrosion processes.

    PubMed

    Beech, Iwona B; Sunner, Jan A; Hiraoka, Kenzo

    2005-09-01

    The presence of microorganisms on material surfaces can have a profound effect on materials performance. Surface-associated microbial growth, i.e. a biofilm, is known to instigate biofouling. The presence of biofilms may promote interfacial physico-chemical reactions that are not favored under abiotic conditions. In the case of metallic materials, undesirable changes in material properties due to a biofilm (or a biofouling layer) are referred to as biocorrosion or microbially influenced corrosion (MIC). Biofouling and biocorrosion occur in aquatic and terrestrial habitats varying in nutrient content, temperature, pressure and pH. Interfacial chemistry in such systems reflects a wide variety of physiological activities carried out by diverse microbial populations thriving within biofilms. Biocorrosion can be viewed as a consequence of coupled biological and abiotic electron-transfer reactions, i.e. redox reactions of metals, enabled by microbial ecology. Microbially produced extracellular polymeric substances (EPS), which comprise different macromolecules, mediate initial cell adhesion to the material surface and constitute a biofilm matrix. Despite their unquestionable importance in biofilm development, the extent to which EPS contribute to biocorrosion is not well-understood. This review offers a current perspective on material/microbe interactions pertinent to biocorrosion and biofouling, with EPS as a focal point, while emphasizing the role atomic force spectroscopy and mass spectrometry techniques can play in elucidating such interactions.

  10. DART Employees at Work

    NASA Image and Video Library

    2014-10-31

    The Dust Atmospheric Recovery Technology, or DART, spacecraft is being assembled in a laboratory inside the Space Life Sciences Lab at NASA’s Kennedy Space Center in Florida. DART will characterize the dust loading and microbial diversity in the atmosphere over Florida during summer months with a special emphasis on their interactions during an African dust storm. DART will be used to collect atmospheric aerosols and suspended microbial cells over Florida and Kennedy. Results will help predict the risks of excessive microbial contamination adhering to spacecraft surfaces.

  11. DART Employees at Work

    NASA Image and Video Library

    2014-10-31

    A researcher at NASA’s Kennedy Space Center in Florida checks a reading on the Dust Atmospheric Recovery Technology, or DART, spacecraft inside a laboratory at the Space Life Sciences Lab. DART will characterize the dust loading and microbial diversity in the atmosphere over Florida during summer months with a special emphasis on their interactions during an African dust storm. DART will be used to collect atmospheric aerosols and suspended microbial cells over Florida and Kennedy. Results will help predict the risks of excessive microbial contamination adhering to spacecraft surfaces.

  12. DART Employees at Work

    NASA Image and Video Library

    2014-10-31

    Researchers at NASA’s Kennedy Space Center in Florida check readings on the Dust Atmospheric Recovery Technology, or DART, spacecraft inside a laboratory at the Space Life Sciences Lab. DART will characterize the dust loading and microbial diversity in the atmosphere over Florida during summer months with a special emphasis on their interactions during an African dust storm. DART will be used to collect atmospheric aerosols and suspended microbial cells over Florida and Kennedy. Results will help predict the risks of excessive microbial contamination adhering to spacecraft surfaces.

  13. Did Mineral Surface Chemistry and Toxicity Contribute to Evolution of Microbial Extracellular Polymeric Substances?

    PubMed Central

    Campbell, Jay M.; Zhang, Nianli; Hickey, William J.

    2012-01-01

    Abstract Modern ecological niches are teeming with an astonishing diversity of microbial life in biofilms closely associated with mineral surfaces, which highlights the remarkable success of microorganisms in conquering the challenges and capitalizing on the benefits presented by the mineral–water interface. Biofilm formation capability likely evolved on early Earth because biofilms provide crucial cell survival functions. The potential toxicity of mineral surfaces toward cells and the complexities of the mineral–water–cell interface in determining the toxicity mechanisms, however, have not been fully appreciated. Here, we report a previously unrecognized role for extracellular polymeric substances (EPS), which form biofilms in shielding cells against the toxicity of mineral surfaces. Using colony plating and LIVE/DEAD staining methods in oxide suspensions versus oxide-free controls, we found greater viability of wild-type, EPS-producing strains of Pseudomonas aeruginosa PAO1 compared to their isogenic knockout mutant with defective biofilm-producing capacity. Oxide toxicity was specific to its surface charge and particle size. High resolution transmission electron microscopy (HRTEM) images and assays for highly reactive oxygen species (hROS) on mineral surfaces suggested that EPS shield via both physical and chemical mechanisms. Intriguingly, qualitative as well as quantitative measures of EPS production showed that toxic minerals induced EPS production in bacteria. By determining the specific toxicity mechanisms, we provide insight into the potential impact of mineral surfaces in promoting increased complexity of cell surfaces, including EPS and biofilm formation, on early Earth. Key Words: Mineral toxicity—Bacteria—EPS evolution—Biofilms—Cytotoxicity—Silica—Anatase—Alumina. Astrobiology 12, 785–798. PMID:22934560

  14. A simple microbial fuel cell model for improvement of biomedical device powering times.

    PubMed

    Roxby, Daniel N; Tran, Nham; Nguyen, Hung T

    2014-01-01

    This study describes a Matlab based Microbial Fuel Cell (MFC) model for a suspended microbial population, in the anode chamber for the use of the MFC in powering biomedical devices. The model contains three main sections including microbial growth, microbial chemical uptake and secretion and electrochemical modeling. The microbial growth portion is based on a Continuously Stirred Tank Reactor (CSTR) model for the microbial growth with substrate and electron acceptors. Microbial stoichiometry is used to determine chemical concentrations and their rates of change and transfer within the MFC. These parameters are then used in the electrochemical modeling for calculating current, voltage and power. The model was tested for typically exhibited MFC characteristics including increased electrode distances and surface areas, overpotentials and operating temperatures. Implantable biomedical devices require long term powering which is the main objective for MFCs. Towards this end, our model was tested with different initial substrate and electron acceptor concentrations, revealing a four-fold increase in concentrations decreased the power output time by 50%. Additionally, the model also predicts that for a 35.7% decrease in specific growth rate, a 50% increase in power longevity is possible.

  15. Bioelectrochemical analysis of a hyperthermophilic microbial fuel cell generating electricity at temperatures above 80 °C.

    PubMed

    Fu, Qian; Fukushima, Naoya; Maeda, Haruo; Sato, Kozo; Kobayashi, Hajime

    2015-01-01

    We examined whether a hyperthermophilic microbial fuel cell (MFC) would be technically feasible. Two-chamber MFC reactors were inoculated with subsurface microorganisms indigenous to formation water from a petroleum reservoir and were started up at operating temperature 80 °C. The MFC generated a maximum current of 1.3 mA 45 h after the inoculation. Performance of the MFC improved with an increase in the operating temperature; the best performance was achieved at 95 °C with the maximum power density of 165 mWm(-2), which was approximately fourfold higher than that at 75 °C. Thus, to our knowledge, our study is the first to demonstrate generation of electricity in a hyperthermophilic MFC (operating temperature as high as 95 °C). Scanning electron microscopy showed that filamentous microbial cells were attached on the anode surface. The anodic microbial consortium showed limited phylogenetic diversity and primarily consisted of hyperthermophilic bacteria closely related to Caldanaerobacter subterraneus and Thermodesulfobacterium commune.

  16. Living together in biofilms: the microbial cell factory and its biotechnological implications.

    PubMed

    Berlanga, Mercedes; Guerrero, Ricardo

    2016-10-01

    In nature, bacteria alternate between two modes of growth: a unicellular life phase, in which the cells are free-swimming (planktonic), and a multicellular life phase, in which the cells are sessile and live in a biofilm, that can be defined as surface-associated microbial heterogeneous structures comprising different populations of microorganisms surrounded by a self-produced matrix that allows their attachment to inert or organic surfaces. While a unicellular life phase allows for bacterial dispersion and the colonization of new environments, biofilms allow sessile cells to live in a coordinated, more permanent manner that favors their proliferation. In this alternating cycle, bacteria accomplish two physiological transitions via differential gene expression: (i) from planktonic cells to sessile cells within a biofilm, and (ii) from sessile to detached, newly planktonic cells. Many of the innate characteristics of biofilm bacteria are of biotechnological interest, such as the synthesis of valuable compounds (e.g., surfactants, ethanol) and the enhancement/processing of certain foods (e.g., table olives). Understanding the ecology of biofilm formation will allow the design of systems that will facilitate making products of interest and improve their yields.

  17. Long-term performance and characterization of microbial desalination cells in treating domestic wastewater.

    PubMed

    Luo, Haiping; Xu, Pei; Ren, Zhiyong

    2012-09-01

    Microbial desalination cell represents a new technology for simultaneous wastewater treatment, water desalination, and energy production. This study characterized the long-term performance of MDC during wastewater treatment and identified the key factors that caused performance decline. The 8-month operation shows that MDC performance decreased over time, as indicated by a 47% decline in current density, a 46% drop in Columbic efficiency, and a 27% decrease in desalination efficiency. Advanced electrochemical, microscopy, and spectroscopy analyses all confirmed biofouling on the anion exchange membrane, which increased system resistance and reduced ionic transfer and energy conversion efficiency. Minor chemical scaling was found on the cation exchange membrane surface. Microbial communities became less diverse at the end of operation, and Proteobacteria spp. was dominant on both anode and AEM fouling layer surface. These results provide insights into the viability of long-term MDC operation on reactor performance and direct system development through membrane optimization. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Microbial Functioning and Community Structure Variability in the Mesopelagic and Epipelagic Waters of the Subtropical Northeast Atlantic Ocean

    PubMed Central

    Arístegui, Javier; Gasol, Josep M.; Herndl, Gerhard J.

    2012-01-01

    We analyzed the regional distribution of bulk heterotrophic prokaryotic activity (leucine incorporation) and selected single-cell parameters (cell viability and nucleic acid content) as parameters for microbial functioning, as well as bacterial and archaeal community structure in the epipelagic (0 to 200 m) and mesopelagic (200 to 1,000 m) subtropical Northeast Atlantic Ocean. We selectively sampled three contrasting regions covering a wide range of surface productivity and oceanographic properties within the same basin: (i) the eddy field south of the Canary Islands, (ii) the open-ocean NE Atlantic Subtropical Gyre, and (iii) the upwelling filament off Cape Blanc. In the epipelagic waters, a high regional variation in hydrographic parameters and bacterial community structure was detected, accompanied, however, by a low variability in microbial functioning. In contrast, mesopelagic microbial functioning was highly variable between the studied regions despite the homogeneous abiotic conditions found therein. More microbial functioning parameters indicated differences among the three regions within the mesopelagic (i.e., viability of cells, nucleic acid content, cell-specific heterotrophic activity, nanoflagellate abundance, prokaryote-to-nanoflagellate abundance ratio) than within the epipelagic (i.e., bulk activity, nucleic acid content, and nanoflagellate abundance) waters. Our results show that the mesopelagic realm in the Northeast Atlantic is, in terms of microbial activity, more heterogeneous than its epipelagic counterpart, probably linked to mesoscale hydrographical variations. PMID:22344670

  19. Quantitative X-ray photoelectron spectroscopy-based depth profiling of bioleached arsenopyrite surface by Acidithiobacillus ferrooxidans

    NASA Astrophysics Data System (ADS)

    Zhu, Tingting; Lu, Xiancai; Liu, Huan; Li, Juan; Zhu, Xiangyu; Lu, Jianjun; Wang, Rucheng

    2014-02-01

    In supergene environments, microbial activities significantly enhance sulfide oxidation and result in the release of heavy metals, causing serious contamination of soils and waters. As the most commonly encountered arsenic mineral in nature, arsenopyrite (FeAsS) accounts for arsenic contaminants in various environments. In order to investigate the geochemical behavior of arsenic during microbial oxidation of arsenopyrite, (2 3 0) surfaces of arsenopyrite slices were characterized after acidic (pH 2.00) and oxidative decomposition with or without an acidophilic microorganism Acidithiobacillus ferrooxidans. The morphology as well as chemical and elemental depth profiles of the oxidized arsenopyrite surface were investigated by scanning electron microscopy and X-ray photoelectron spectroscopy. With the mediation of bacteria, cell-shaped and acicular pits were observed on the reacted arsenopyrite surface, and the concentration of released arsenic species in solution was 50 times as high as that of the abiotic reaction after 10 days reaction. Fine-scale XPS depth profiles of the reacted arsenopyrite surfaces after both microbial and abiotic oxidation provided insights into the changes in chemical states of the elements in arsenopyrite surface layers. Within the 450 nm surface layer of abiotically oxidized arsenopyrite, Fe(III)-oxides appeared and gradually increased towards the surface, and detectable sulfite and monovalent arsenic appeared above 50 nm. In comparison, higher contents of ferric sulfate, sulfite, and arsenite were found in the surface layer of approximately 3 μm of the microbially oxidized arsenopyrite. Intermediates, such as Fe(III)-AsS and S0, were detectable in the presence of bacteria. Changes of oxidative species derived from XPS depth profiles show the oxidation sequence is Fe > As = S in abiotic oxidation, and Fe > S > As in microbial oxidation. Based on these results, a possible reaction path of microbial oxidation was proposed in a concept model.

  20. Electrochemical surface modification of carbon mesh anode to improve the performance of air-cathode microbial fuel cells.

    PubMed

    Luo, Jianmei; Chi, Meiling; Wang, Hongyu; He, Huanhuan; Zhou, Minghua

    2013-12-01

    A convenient and promising alternative to surface modification of carbon mesh anode was fulfilled by electrochemical oxidation in the electrolyte of nitric acid or ammonium nitrate at ambient temperature. It was confirmed that such an anode modification method was low cost and effective not only in improving the efficiency of power generation in microbial fuel cells (MFCs) for synthetic wastewater treatment, but also helping to reduce the period for MFCs start-up. The MFCs with anode modification in electrolyte of nitric acid performed the best, achieving a Coulombic efficiency enhancement of 71 %. As characterized, the electrochemical modification resulted in the decrease of the anode potential and internal resistance but the increase of current response and nitrogen-containing and oxygen-containing functional groups on the carbon surface, which might contribute to the enhancement on the performances of MFCs.

  1. Microbes at Surface-Air Interfaces: The Metabolic Harnessing of Relative Humidity, Surface Hygroscopicity, and Oligotrophy for Resilience

    PubMed Central

    Stone, Wendy; Kroukamp, Otini; Korber, Darren R.; McKelvie, Jennifer; Wolfaardt, Gideon M.

    2016-01-01

    The human environment is predominantly not aqueous, and microbes are ubiquitous at the surface-air interfaces with which we interact. Yet microbial studies at surface-air interfaces are largely survival-oriented, whilst microbial metabolism has overwhelmingly been investigated from the perspective of liquid saturation. This study explored microbial survival and metabolism under desiccation, particularly the influence of relative humidity (RH), surface hygroscopicity, and nutrient availability on the interchange between these two phenomena. The combination of a hygroscopic matrix (i.e., clay or 4,000 MW polyethylene glycol) and high RH resulted in persistent measurable microbial metabolism during desiccation. In contrast, no microbial metabolism was detected at (a) hygroscopic interfaces at low RH, and (b) less hygroscopic interfaces (i.e., sand and plastic/glass) at high or low RH. Cell survival was conversely inhibited at high RH and promoted at low RH, irrespective of surface hygroscopicity. Based on this demonstration of metabolic persistence and survival inhibition at high RH, it was proposed that biofilm metabolic rates might inversely influence whole-biofilm resilience, with ‘resilience’ defined in this study as a biofilm’s capacity to recover from desiccation. The concept of whole-biofilm resilience being promoted by oligotrophy was supported in desiccation-tolerant Arthrobacter spp. biofilms, but not in desiccation-sensitive Pseudomonas aeruginosa biofilms. The ability of microbes to interact with surfaces to harness water vapor during desiccation was demonstrated, and potentially to harness oligotrophy (the most ubiquitous natural condition facing microbes) for adaptation to desiccation. PMID:27746774

  2. Importance of positioning for microbial evolution

    PubMed Central

    Kim, Wook; Racimo, Fernando; Schluter, Jonas; Levy, Stuart B.; Foster, Kevin R.

    2014-01-01

    Microbes commonly live in dense surface-attached communities where cells layer on top of one another such that only those at the edges have unimpeded access to limiting nutrients and space. Theory predicts that this simple spatial effect, akin to plants competing for light in a forest, generates strong natural selection on microbial phenotypes. However, we require direct empirical tests of the importance of this spatial structuring. Here we show that spontaneous mutants repeatedly arise, push their way to the surface, and dominate colonies of the bacterium Pseudomonas fluorescens Pf0-1. Microscopy and modeling suggests that these mutants use secretions to expand and push themselves up to the growth surface to gain the best access to oxygen. Physically mixing the cells in the colony, or introducing space limitations, largely removes the mutant’s advantage, showing a key link between fitness and the ability of the cells to position themselves in the colony. We next follow over 500 independent adaptation events and show that all occur through mutation of a single repressor of secretions, RsmE, but that the mutants differ in competitiveness. This process allows us to map the genetic basis of their adaptation at high molecular resolution and we show how evolutionary competitiveness is explained by the specific effects of each mutation. By combining population level and molecular analyses, we demonstrate how living in dense microbial communities can generate strong natural selection to reach the growing edge. PMID:24715732

  3. Enhancing biodegradation and energy generation via roughened surface graphite electrode in microbial desalination cell.

    PubMed

    Ebrahimi, Atieh; Yousefi Kebria, Daryoush; Najafpour Darzi, Ghasem

    2017-09-01

    The microbial desalination cell (MDC) is known as a newly developed technology for water and wastewater treatment. In this study, desalination rate, organic matter removal and energy production in the reactors with and without desalination function were compared. Herein, a new design of plain graphite called roughened surface graphite (RSG) was used as the anode electrode in both microbial fuel cell (MFC) and MDC reactors for the first time. Among the three type of anode electrodes investigated in this study, RSG electrode produced the highest power density and salt removal rate of 10.81 W/m 3 and 77.6%, respectively. Such a power density was 2.33 times higher than the MFC reactor due to the junction potential effect. In addition, adding the desalination function to the MFC reactor enhanced columbic efficiency from 21.8 to 31.4%. These results provided a proof-of-concept that the use of MDC instead of MFC would improve wastewater treatment efficiency and power generation, with an added benefit of water desalination. Furthermore, RSG can successfully be employed in an MDC or MFC, enhancing the bio-electricity generation and salt removal.

  4. [Modeling the Propagation of Microbial Cells and Phage Particles from the Sites of Permafrost Thawing.

    PubMed

    Skladnev, D A; Mulyukin, A L; Filippoval, S N; Kulikov, E E; Letaroval, M A; Yuzbasheva, E A; Karnysheva, E A; Brushkov, A V; Gal'chenko, V F

    2016-09-01

    A method is proposed for integral assessment of the propagation of microbial cells and viral parti- cles during seasonal thawing of relic ice wedge layers. The results of on-site and laboratory investigation car- ried out in the upper part of permafrost exposure at Mamontova Gora (Yakutiya, Russia) are presented. To increase reliability of the results, suspensions of two microbial species and two coliphage species were intro- duced as biomarkers directly on the surface of thaing ice and in the meltwater flow. Each of the four different model biological objects was shown to possess unique parameters of movement in the meltwater flow and is able to move 132 m in 25-35 min with the water flow.

  5. Organic matter quantity and source affects microbial community structure and function following volcanic eruption on Kasatochi Island, Alaska.

    PubMed

    Zeglin, Lydia H; Wang, Bronwen; Waythomas, Christopher; Rainey, Frederick; Talbot, Sandra L

    2016-01-01

    In August 2008, Kasatochi volcano erupted and buried a small island in pyroclastic deposits and fine ash; since then, microbes, plants and birds have begun to re-colonize the initially sterile surface. Five years post-eruption, bacterial 16S rRNA gene and fungal internal transcribed spacer (ITS) copy numbers and extracellular enzyme activity (EEA) potentials were one to two orders of magnitude greater in pyroclastic materials with organic matter (OM) inputs relative to those without, despite minimal accumulation of OM (< 0.2%C). When normalized by OM levels, post-eruptive surfaces with OM inputs had the highest β-glucosidase, phosphatase, NAGase and cellobiohydrolase activities, and had microbial population sizes approaching those in reference soils. In contrast, the strongest factor determining bacterial community composition was the dominance of plants versus birds as OM input vectors. Although soil pH ranged from 3.9 to 7.0, and %C ranged 100×, differentiation between plant- and bird-associated microbial communities suggested that cell dispersal or nutrient availability are more likely drivers of assembly than pH or OM content. This study exemplifies the complex relationship between microbial cell dispersal, soil geochemistry, and microbial structure and function; and illustrates the potential for soil microbiota to be resilient to disturbance. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. Carbon nanotube dispersed conductive network for microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Matsumoto, S.; Yamanaka, K.; Ogikubo, H.; Akasaka, H.; Ohtake, N.

    2014-08-01

    Microbial fuel cells (MFCs) are promising devices for capturing biomass energy. Although they have recently attracted considerable attention, their power densities are too low for practical use. Increasing their electrode surface area is a key factor for improving the performance of MFC. Carbon nanotubes (CNTs), which have excellent electrical conductivity and extremely high specific surface area, are promising materials for electrodes. However, CNTs are insoluble in aqueous solution because of their strong intertube van der Waals interactions, which make practical use of CNTs difficult. In this study, we revealed that CNTs have a strong interaction with Saccharomyces cerevisiae cells. CNTs attach to the cells and are dispersed in a mixture of water and S. cerevisiae, forming a three-dimensional CNT conductive network. Compared with a conventional two-dimensional electrode, such as carbon paper, the three-dimensional conductive network has a much larger surface area. By applying this conductive network to MFCs as an anode electrode, power density is increased to 176 μW/cm2, which is approximately 25-fold higher than that in the case without CNTs addition. Maximum current density is also increased to approximately 8-fold higher. These results suggest that three-dimensional CNT conductive network contributes to improve the performance of MFC by increasing surface area.

  7. Raman mapping of intact biofilms on stainless steel surfaces

    NASA Astrophysics Data System (ADS)

    Nguyen, Julie K.; Heighton, Lynne; Xu, Yunfeng; Nou, Xiangwu; Schmidt, Walter F.

    2016-05-01

    Many issues occur when microbial bacteria contaminates human food or water; it can be dangerous to the public. Determining how the microbial are growing, it can help experts determine how to prevent the outbreaks. Biofilms are a tightly group of microbial cells that grow on living surfaces or surrounding themselves. Though biofilms are not necessarily uniform; when there are more than one type of microbial bacteria that are grown, Raman mapping is performed to determine the growth patterns. Depending on the type of microbial bacteria, they can grow in various patterns such as symmetrical or scattered on the surface. The biofilms need to be intact in order to preclude and potentially figuring out the relative intensity of different components in a biofilm mixture. In addition, it is important to determine whether one biofilms is a substrate for another biofilm to be detected. For example, it is possible if layer B appears above layer A, but layer A doesn't appear above layer B. In this case, three types of biofilms that are grown includes Listeria(L), Ralstonia(R), and a mixture of the two (LR). Since microbe deposits on metal surfaces are quite suitable, biofilms were grown on stainless steel surface slides. Each slide was viewed under a Raman Microscope at 100X and using a 532nm laser to provide great results and sharp peaks. The mapping of the laser helps determine how the bacteria growth, at which intensity the bacteria appeared in order to identify specific microbes to signature markers on biofilms.

  8. Allometric scaling of microbial fuel cells and stacks: The lifeform case for scale-up

    NASA Astrophysics Data System (ADS)

    Greenman, John; Ieropoulos, Ioannis A.

    2017-07-01

    This case study reports for the first time on the comparison between allometric scaling of lifeforms and scale-up of microbial fuel cell entities; enlarging individual units in volume, footprint and electrode surface area but also multiplying a static size/footprint and electrode surface area to scale-up by stacking. A study published in 2010 by DeLong et al. showed for the first time that Kleiber's law does not apply uniformly to all lifeforms, and that in fact growth rate for prokaryotes is superlinear, for protists is linear and for metazoa is sublinear. The current study, which is utilising data from previous experiments, is showing for the first time that for individual MFC units, which are enlarged, growth rate/power is sublinear, whereas for stacks this is superlinear.

  9. KSC-2014-4900

    NASA Image and Video Library

    2014-10-31

    CAPE CANAVERAL, Fla. – A researcher at NASA’s Kennedy Space Center in Florida checks a reading on the Dust Atmospheric Recovery Technology, or DART, spacecraft inside a laboratory at the Space Life Sciences Lab. DART will characterize the dust loading and microbial diversity in the atmosphere over Florida during summer months with a special emphasis on their interactions during an African dust storm. DART will be used to collect atmospheric aerosols and suspended microbial cells over Florida and Kennedy. Results will help predict the risks of excessive microbial contamination adhering to spacecraft surfaces. Photo credit: NASA/Dimitri Gerondidakis

  10. KSC-2014-4901

    NASA Image and Video Library

    2014-10-31

    CAPE CANAVERAL, Fla. – A researcher at NASA’s Kennedy Space Center in Florida checks a reading on the Dust Atmospheric Recovery Technology, or DART, spacecraft inside a laboratory at the Space Life Sciences Lab. DART will characterize the dust loading and microbial diversity in the atmosphere over Florida during summer months with a special emphasis on their interactions during an African dust storm. DART will be used to collect atmospheric aerosols and suspended microbial cells over Florida and Kennedy. Results will help predict the risks of excessive microbial contamination adhering to spacecraft surfaces. Photo credit: NASA/Dimitri Gerondidakis

  11. KSC-2014-4903

    NASA Image and Video Library

    2014-10-31

    CAPE CANAVERAL, Fla. – Researchers at NASA’s Kennedy Space Center in Florida check readings on the Dust Atmospheric Recovery Technology, or DART, spacecraft inside a laboratory at the Space Life Sciences Lab. DART will characterize the dust loading and microbial diversity in the atmosphere over Florida during summer months with a special emphasis on their interactions during an African dust storm. DART will be used to collect atmospheric aerosols and suspended microbial cells over Florida and Kennedy. Results will help predict the risks of excessive microbial contamination adhering to spacecraft surfaces. Photo credit: NASA/Dimitri Gerondidakis

  12. KSC-2014-4902

    NASA Image and Video Library

    2014-10-31

    CAPE CANAVERAL, Fla. – Researchers at NASA’s Kennedy Space Center in Florida check readings on the Dust Atmospheric Recovery Technology, or DART, spacecraft inside a laboratory at the Space Life Sciences Lab. DART will characterize the dust loading and microbial diversity in the atmosphere over Florida during summer months with a special emphasis on their interactions during an African dust storm. DART will be used to collect atmospheric aerosols and suspended microbial cells over Florida and Kennedy. Results will help predict the risks of excessive microbial contamination adhering to spacecraft surfaces. Photo credit: NASA/Dimitri Gerondidakis

  13. KSC-2014-4899

    NASA Image and Video Library

    2014-10-31

    CAPE CANAVERAL, Fla. – The Dust Atmospheric Recovery Technology, or DART, spacecraft is being assembled in a laboratory inside the Space Life Sciences Lab at NASA’s Kennedy Space Center in Florida. DART will characterize the dust loading and microbial diversity in the atmosphere over Florida during summer months with a special emphasis on their interactions during an African dust storm. DART will be used to collect atmospheric aerosols and suspended microbial cells over Florida and Kennedy. Results will help predict the risks of excessive microbial contamination adhering to spacecraft surfaces. Photo credit: NASA/Dimitri Gerondidakis

  14. KSC-2014-4898

    NASA Image and Video Library

    2014-10-31

    CAPE CANAVERAL, Fla. – The Dust Atmospheric Recovery Technology, or DART, spacecraft is being assembled in a laboratory inside the Space Life Sciences Lab at NASA’s Kennedy Space Center in Florida. DART will characterize the dust loading and microbial diversity in the atmosphere over Florida during summer months with a special emphasis on their interactions during an African dust storm. DART will be used to collect atmospheric aerosols and suspended microbial cells over Florida and Kennedy. Results will help predict the risks of excessive microbial contamination adhering to spacecraft surfaces. Photo credit: NASA/Dimitri Gerondidakis

  15. DART Employees at Work

    NASA Image and Video Library

    2014-10-31

    A researcher from the University of Florida in Gainesville, checks the Dust Atmospheric Recovery Technology, or DART, spacecraft in a laboratory inside the Space Life Sciences Lab at NASA’s Kennedy Space Center in Florida. DART will characterize the dust loading and microbial diversity in the atmosphere over Florida during summer months with a special emphasis on their interactions during an African dust storm. DART will be used to collect atmospheric aerosols and suspended microbial cells over Florida and Kennedy. Results will help predict the risks of excessive microbial contamination adhering to spacecraft surfaces.

  16. Detection of Fatty Acids from Intact Microorganisms by Molecular Beam Static Secondary Ion Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ingram, Jani Cheri; Lehman, Richard Michael; Bauer, William Francis

    We report the use of a surface analysis approach, static secondary ion mass spectrometry (SIMS) equipped with a molecular (ReO4-) ion primary beam, to analyze the surface of intact microbial cells. SIMS spectra of 28 microorganisms were compared to fatty acid profiles determined by gas chromatographic analysis of transesterfied fatty acids extracted from the same organisms. The results indicate that surface bombardment using the molecular primary beam cleaved the ester linkage characteristic of bacteria at the glycerophosphate backbone of the phospholipid components of the cell membrane. This cleavage enables direct detection of the fatty acid conjugate base of intact microorganismsmore » by static SIMS. The limit of detection for this approach is approximately 107 bacterial cells/cm2. Multivariate statistical methods were applied in a graded approach to the SIMS microbial data. The results showed that the full data set could initially be statistically grouped based upon major differences in biochemical composition of the cell wall. The gram-positive bacteria were further statistically analyzed, followed by final analysis of a specific bacterial genus that was successfully grouped by species. Additionally, the use of SIMS to detect microbes on mineral surfaces is demonstrated by an analysis of Shewanella oneidensis on crushed hematite. The results of this study provide evidence for the potential of static SIMS to rapidly detect bacterial species based on ion fragments originating from cell membrane lipids directly from sample surfaces.« less

  17. Exposure of phototrophs to 548 days in low Earth orbit: microbial selection pressures in outer space and on early earth

    PubMed Central

    Cockell, Charles S; Rettberg, Petra; Rabbow, Elke; Olsson-Francis, Karen

    2011-01-01

    An epilithic microbial community was launched into low Earth orbit, and exposed to conditions in outer space for 548 days on the European Space Agency EXPOSE-E facility outside the International Space Station. The natural phototroph biofilm was augmented with akinetes of Anabaena cylindrica and vegetative cells of Nostoc commune and Chroococcidiopsis. In space-exposed dark controls, two algae (Chlorella and Rosenvingiella spp.), a cyanobacterium (Gloeocapsa sp.) and two bacteria associated with the natural community survived. Of the augmented organisms, cells of A. cylindrica and Chroococcidiopsis survived, but no cells of N. commune. Only cells of Chroococcidiopsis were cultured from samples exposed to the unattenuated extraterrestrial ultraviolet (UV) spectrum (>110 nm or 200 nm). Raman spectroscopy and bright-field microscopy showed that under these conditions the surface cells were bleached and their carotenoids were destroyed, although cell morphology was preserved. These experiments demonstrate that outer space can act as a selection pressure on the composition of microbial communities. The results obtained from samples exposed to >200 nm UV (simulating the putative worst-case UV exposure on the early Earth) demonstrate the potential for epilithic colonization of land masses during that time, but that UV radiation on anoxic planets can act as a strong selection pressure on surface-dwelling organisms. Finally, these experiments have yielded new phototrophic organisms of potential use in biomass and oxygen production in space exploration. PMID:21593797

  18. Exposure of phototrophs to 548 days in low Earth orbit: microbial selection pressures in outer space and on early earth.

    PubMed

    Cockell, Charles S; Rettberg, Petra; Rabbow, Elke; Olsson-Francis, Karen

    2011-10-01

    An epilithic microbial community was launched into low Earth orbit, and exposed to conditions in outer space for 548 days on the European Space Agency EXPOSE-E facility outside the International Space Station. The natural phototroph biofilm was augmented with akinetes of Anabaena cylindrica and vegetative cells of Nostoc commune and Chroococcidiopsis. In space-exposed dark controls, two algae (Chlorella and Rosenvingiella spp.), a cyanobacterium (Gloeocapsa sp.) and two bacteria associated with the natural community survived. Of the augmented organisms, cells of A. cylindrica and Chroococcidiopsis survived, but no cells of N. commune. Only cells of Chroococcidiopsis were cultured from samples exposed to the unattenuated extraterrestrial ultraviolet (UV) spectrum (>110 nm or 200 nm). Raman spectroscopy and bright-field microscopy showed that under these conditions the surface cells were bleached and their carotenoids were destroyed, although cell morphology was preserved. These experiments demonstrate that outer space can act as a selection pressure on the composition of microbial communities. The results obtained from samples exposed to >200 nm UV (simulating the putative worst-case UV exposure on the early Earth) demonstrate the potential for epilithic colonization of land masses during that time, but that UV radiation on anoxic planets can act as a strong selection pressure on surface-dwelling organisms. Finally, these experiments have yielded new phototrophic organisms of potential use in biomass and oxygen production in space exploration.

  19. Biochar and microbial signaling: production conditions determine effects on microbial communication.

    PubMed

    Masiello, Caroline A; Chen, Ye; Gao, Xiaodong; Liu, Shirley; Cheng, Hsiao-Ying; Bennett, Matthew R; Rudgers, Jennifer A; Wagner, Daniel S; Zygourakis, Kyriacos; Silberg, Jonathan J

    2013-10-15

    Charcoal has a long soil residence time, which has resulted in its production and use as a carbon sequestration technique (biochar). A range of biological effects can be triggered by soil biochar that can positively and negatively influence carbon storage, such as changing the decomposition rate of organic matter and altering plant biomass production. Sorption of cellular signals has been hypothesized to underlie some of these effects, but it remains unknown whether the binding of biochemical signals occurs, and if so, on time scales relevant to microbial growth and communication. We examined biochar sorption of N-3-oxo-dodecanoyl-L-homoserine lactone, an acyl-homoserine lactone (AHL) intercellular signaling molecule used by many gram-negative soil microbes to regulate gene expression. We show that wood biochars disrupt communication within a growing multicellular system that is made up of sender cells that synthesize AHL and receiver cells that express green fluorescent protein in response to an AHL signal. However, biochar inhibition of AHL-mediated cell-cell communication varied, with the biochar prepared at 700 °C (surface area of 301 m(2)/g) inhibiting cellular communication 10-fold more than an equivalent mass of biochar prepared at 300 °C (surface area of 3 m(2)/g). These findings provide the first direct evidence that biochars elicit a range of effects on gene expression dependent on intercellular signaling, implicating the method of biochar preparation as a parameter that could be tuned to regulate microbial-dependent soil processes, like nitrogen fixation and pest attack of root crops.

  20. Biochar and microbial signaling: production conditions determine effects on microbial communication

    PubMed Central

    Masiello, Caroline A.; Chen, Ye; Gao, Xiaodong; Liu, Shirley; Cheng, Hsiao-Ying; Bennett, Matthew R.; Rudgers, Jennifer A.; Wagner, Daniel S.; Zygourakis, Kyriacos; Silberg, Jonathan J.

    2013-01-01

    Charcoal has a long soil residence time, which has resulted in its production and use as a carbon sequestration technique (biochar). A range of biological effects can be triggered by soil biochar that can positively and negatively influence carbon storage, such as changing the decomposition rate of organic matter and altering plant biomass production. Sorption of cellular signals has been hypothesized to underlie some of these effects, but it remains unknown whether the binding of biochemical signals occurs, and if so, on time scales relevant to microbial growth and communication. We examined biochar sorption of N-3-oxo-dodecanoyl-L-homoserine lactone, an acyl-homoserine lactone (AHL) intercellular signaling molecule used by many gram-negative soil microbes to regulate gene expression. We show that wood biochars disrupt communication within a growing multicellular system that is made up of sender cells that synthesize AHL and receiver cells that express green fluorescent protein in response to an AHL signal. However, biochar inhibition of AHL-mediated cell-cell communication varied, with the biochar prepared at 700°C (surface area of 301 m2/g) inhibiting cellular communication 10-fold more than an equivalent mass of biochar prepared at 300°C (surface area of 3 m2/g). These findings provide the first direct evidence that biochars elicit a range of effects on gene expression dependent on intercellular signaling, implicating the method of biochar preparation as a parameter that could be tuned to regulate microbial-dependent soil processes, like nitrogen fixation and pest attack of root crops. PMID:24066613

  1. Spatial colonization of microbial cells on the rhizoplane.

    NASA Astrophysics Data System (ADS)

    Raynaud, Xavier; Eickhorst, Thilo; Nunan, Naoise; Kaiser, Christina; Woebken, Dagmar; Schmidt, Hannes

    2017-04-01

    The rhizoplane is the region where the root surface is in contact with soil and corresponds to the inner limit of the rhizosphere. At the rhizoplane level, plants exchange elements with the surrounding soil and the rhizoplane can therefore be considered as the region that drives nutrient movement and transformation in the rhizosphere. The rhizoplane differs in many respects from the bulk soil due to the far larger supply of substrates derived from the roots, with far greater microbial cell densities and reduced levels of diversity (Philippot et al., 2013). This is likely to result in completely different interaction profiles among microorganisms which may affect rhizosphere biogeochemistry. While the diversity of microorganisms associated with the rhizosphere and on the rhizoplane is getting increasing attention, knowledge on the spatial organisation of this diversity is still scarce. We therefore aimed at investigating the spatial arrangement of microbial rhizoplane colonization to increase our understanding of potential interaction dynamics within soil-microbe-plant interfaces. To study the spatial distribution of microbial cells on roots we cultivated rice plants in water-logged paddy soil. Root samples were taken three months after germination. After removing adhering rhizosphere soil the root samples were chemically fixed and prepared for CARD-FISH (Schmidt & Eickhorst, 2014). For hybridization, the oligonucleotide probes EUB I-III (Daims et al., 1999) were applied to cover the majority of bacteria colonizing the rhizoplane. Root segments were then subjected to confocal laser scanning microscopy where triplicate image stacks of 10 µm thickness (0.5 µm layer distance) were acquired per region of interest (ROI). ROIs were defined as distances from the root tip (0, 5, 10, 15 mm) and corresponded to the root tip, elongation zone, and zone of maturation. Image stacks were processed using ImageJ software to extract microbial cells spatial coordinates, as well as other features of the root (e.g. root cell walls). For all the images analysed, we found that microbial cell distributions were not distributed randomly and strongly associated to root cell walls. The spatial organization of root cell walls could be used to simulate microbial cell distribution that have similar spatial properties compared to the microscopic data. Root cell walls thus appear as a strong determinant for microbial cell colonization of the rhizoplane.

  2. An innovative miniature microbial fuel cell fabricated using photolithography.

    PubMed

    Chen, You-Peng; Zhao, Yue; Qiu, Ke-Qiang; Chu, Jian; Lu, Rui; Sun, Min; Liu, Xian-Wei; Sheng, Guo-Ping; Yu, Han-Qing; Chen, Jie; Li, Wen-Jie; Liu, Gang; Tian, Yang-Chao; Xiong, Ying

    2011-02-15

    Recently microbial fuel cells (MFCs) have attracted increasing interests in both environmental and energy fields. Among the various MFC configurations, miniature microbial fuel cell (mini-MFC) has a great potential for the application in medical, communication and other areas because of its miniature volume and high output power density. In this work, a 25-μL single-chamber mini-MFC was fabricated using the photolithography technique. The plate-shaped gold anodic electrode in the mini-MFC showed a higher electrochemical activity than the stripe-shaped one. A biofilm of Shewanella oneidensis MR-1 was formed on the surface of gold electrode in this micro-liter-scale MFCs. As a result, a maximum power density of 29 mW/m(2) and a maximum current density of 2148 mA/m(2) were achieved by this single-chamber mini-MFC. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Tracking microbial colonization patterns associated with micro-environments of rice

    NASA Astrophysics Data System (ADS)

    Schmidt, Hannes; Eickhorst, Thilo

    2015-04-01

    The interface between soil and roots (i.e. the rhizosphere) represents a highly dynamic micro-environment for microbial populations. Root-derived compounds are released into the rhizosphere and may attract, stimulate, or inhibit native soil microorganisms. Microbes associated with the rhizosphere, in turn, may have deleterious, neutral, or promoting effects on the plant. Such influences of microbial populations on the plant and vice versa are likely to be greatest in close vicinity to the root surface. It is therefore essential to detect and visualize preferential micro-sites of microbial root colonization to identify potential areas of microbe-plant interaction. We present a single-cell based approach allowing for the localization, quantification, and visualization of native microbial populations in the rhizosphere and on the rhizoplane of soil-grown roots in situ. Catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH) in combination with confocal laser scanning microscopy was applied to observe colonization densities and patterns of microbial populations associated with wetland rice. Hybridizations with domain- and phylum-specific oligonucleotide probes showed that the growth stage of the rice plant as well as the distance to the root surface had a strong influence on microbial colonization patterns. Three-dimensional visualizations of root-associated microbes revealed micro-sites of preferential colonization. Highest cell numbers of archaea and bacteria were found at flowering stage of rice plant development. Irregular distribution patterns of microbiota observed at early growth stages shifted towards more uniform colonization with plant age. Accordingly, the highest colonization densities shifted from the tip to more mature regions of rice roots. Methanogenic archaea and methanotrophic bacteria were found to be co-localized at basal regions of lateral roots. Beneficial effects of a close association with root surfaces were indicated by proportionally higher numbers of methane-oxidizing bacteria on the rhizoplane compared to the rhizosphere. Such spatial effects could not be observed for methanogenic archaea. As a consequence, the detection and visualization of microbial colonization patterns on a micro-scale via CARD-FISH represents an instrumental approach in revealing potential sites of interaction between microbes and plants in soil micro-environments.

  4. Mineralogic control on abundance and diversity of surface-adherent microbial communities

    USGS Publications Warehouse

    Mauck, Brena S.; Roberts, Jennifer A.

    2007-01-01

    In this study, we investigated the role of mineral-bound P and Fe in defining microbial abundance and diversity in a carbon-rich groundwater. Field colonization experiments of initially sterile mineral surfaces were combined with community structure characterization of the attached microbial population. Silicate minerals containing varying concentrations of P (∼1000 ppm P) and Fe (∼4 wt % Fe 2 O3), goethite (FeOOH), and apatite [Ca5(PO4)3(OH)] were incubated for 14 months in three biogeochemically distinct zones within a petroleum-contaminated aquifer. Phospholipid fatty acid analysis of incubated mineral surfaces and groundwater was used as a measure of microbial community structure and biomass. Microbial biomass on minerals exhibited distinct trends as a function of mineralogy depending on the environment of incubation. In the carbon-rich, aerobic groundwater attached biomass did not correlate to the P- or Fe- content of the mineral. In the methanogenic groundwater, however, biomass was most abundant on P-containing minerals. Similarly, in the Fe-reducing groundwater a correlation between Fe-content and biomass was observed. The community structure of the mineral-adherent microbial population was compared to the native groundwater community. These two populations were significantly different regardless of mineralogy, suggesting differentiation of the planktonic community through attachment, growth, and death of colonizing cells. Biomarkers specific for dissimilatory Fe-reducing bacteria native to the aquifer were identified only on Fe-containing minerals in the Fe-reducing groundwater. These results demonstrate that the trace nutrient content of minerals affects both the abundance and diversity of surface-adherent microbial communities. This behavior may be a means to access limiting nutrients from the mineral, creating a niche for a particular microbial population. These results suggest that heterogeneity of microbial populations and their associated activities in subsurface environments extend to the microscale and cautions over-interpretation of highly sample-dependent measurements in the context of interpreting field data.

  5. Internal Porosity of Mineral Coating Supports Microbial Activity in Rapid Sand Filters for Groundwater Treatment

    PubMed Central

    Gülay, Arda; Tatari, Karolina; Musovic, Sanin; Mateiu, Ramona V.; Albrechtsen, Hans-Jørgen

    2014-01-01

    A mineral coating develops on the filter grain surface when groundwater is treated via rapid sand filtration in drinking water production. The coating changes the physical and chemical properties of the filter material, but little is known about its effect on the activity, colonization, diversity, and abundance of microbiota. This study reveals that a mineral coating can positively affect the colonization and activity of microbial communities in rapid sand filters. To understand this effect, we investigated the abundance, spatial distribution, colonization, and diversity of all and of nitrifying prokaryotes in filter material with various degrees of mineral coating. We also examined the physical and chemical characteristics of the mineral coating. The amount of mineral coating correlated positively with the internal porosity, the packed bulk density, and the biologically available surface area of the filter material. The volumetric NH4+ removal rate also increased with the degree of mineral coating. Consistently, bacterial 16S rRNA and amoA abundances positively correlated with increased mineral coating levels. Microbial colonization could be visualized mainly within the outer periphery (60.6 ± 35.6 μm) of the mineral coating, which had a thickness of up to 600 ± 51 μm. Environmental scanning electron microscopic (E-SEM) observations suggested an extracellular polymeric substance-rich matrix and submicron-sized bacterial cells. Nitrifier diversity profiles were similar irrespective of the degree of mineral coating, as indicated by pyrosequencing analysis. Overall, our results demonstrate that mineral coating positively affects microbial colonization and activity in rapid sand filters, most likely due to increased volumetric cell abundances facilitated by the large surface area of internal mineral porosity accessible for microbial colonization. PMID:25192987

  6. Endophyte Microbiome Diversity in Micropropagated Atriplex canescens and Atriplex torreyi var griffithsii

    PubMed Central

    Lucero, Mary E.; Unc, Adrian; Cooke, Peter; Dowd, Scot; Sun, Shulei

    2011-01-01

    Microbial diversity associated with micropropagated Atriplex species was assessed using microscopy, isolate culturing, and sequencing. Light, electron, and confocal microscopy revealed microbial cells in aseptically regenerated leaves and roots. Clone libraries and tag-encoded FLX amplicon pyrosequencing (TEFAP) analysis amplified sequences from callus homologous to diverse fungal and bacterial taxa. Culturing isolated some seed borne endophyte taxa which could be readily propagated apart from the host. Microbial cells were observed within biofilm-like residues associated with plant cell surfaces and intercellular spaces. Various universal primers amplified both plant and microbial sequences, with different primers revealing different patterns of fungal diversity. Bacterial and fungal TEFAP followed by alignment with sequences from curated databases revealed 7 bacterial and 17 ascomycete taxa in A. canescens, and 5 bacterial taxa in A. torreyi. Additional diversity was observed among isolates and clone libraries. Micropropagated Atriplex retains a complex, intimately associated microbiome which includes diverse strains well poised to interact in manners that influence host physiology. Microbiome analysis was facilitated by high throughput sequencing methods, but primer biases continue to limit recovery of diverse sequences from even moderately complex communities. PMID:21437280

  7. Microbial colonization of biopolymeric thin films containing natural compounds and antibiotics fabricated by MAPLE

    NASA Astrophysics Data System (ADS)

    Cristescu, R.; Surdu, A. V.; Grumezescu, A. M.; Oprea, A. E.; Trusca, R.; Vasile, O.; Dorcioman, G.; Visan, A.; Socol, G.; Mihailescu, I. N.; Mihaiescu, D.; Enculescu, M.; Chifiriuc, M. C.; Boehm, R. D.; Narayan, R. J.; Chrisey, D. B.

    2015-05-01

    Although a great number of antibiotics are currently available, they are often rendered ineffective by the ability of microbial strains to develop genetic resistance and to grow in biofilms. Since many antimicrobial agents poorly penetrate biofilms, biofilm-associated infections often require high concentrations of antimicrobial agents for effective treatment. Among the various strategies that may be used to inhibit microbial biofilms, one strategy that has generated significant interest involves the use of bioactive surfaces that are resistant to microbial colonization. In this respect, we used matrix assisted pulsed laser evaporation (MAPLE) involving a pulsed KrF* excimer laser source (λ = 248 nm, τ = 25 ns, ν = 10 Hz) to obtain thin composite biopolymeric films containing natural (flavonoid) or synthetic (antibiotic) compounds as bioactive substances. Chemical composition and film structures were investigated by Fourier transform infrared spectroscopy and X-ray diffraction. Films morphology was studied by scanning electron microscopy and transmission electron microscopy. The antimicrobial assay of the microbial biofilms formed on these films was assessed by the viable cell counts method. The flavonoid-containing thin films showed increased resistance to microbial colonization, highlighting their potential to be used for the design of anti-biofilm surfaces.

  8. Feasibility study of surface-modified carbon cloth electrodes using atmospheric pressure plasma jets for microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Chang, Shih-Hang; Liou, Jyun-Sian; Liu, Jung-Liang; Chiu, Yi-Fan; Xu, Chang-Han; Chen, Bor-Yann; Chen, Jian-Zhang

    2016-12-01

    This study investigated the surface and electrochemical properties of carbon cloth electrodes surface-modified by using atmospheric pressure plasma jets (APPJs) for applications involving microbial fuel cells (MFCs). APPJ treatment made the carbon cloth highly hydrophilic and did not introduce any observable cracks or flaws. MFCs configured with APPJ-treated carbon cloth electrodes exhibited electrochemical performance (maximum power density of 7.56 mW m-2) superior to that of MFCs configured with untreated carbon cloth electrodes (maximum power density of 2.38 mW m-2). This boost in performance can be attributed to the formation of abundant carboxyl and ammonium functional groups on the surface of APPJ-treated carbon cloth, which promoted the formation of anodic biofilms and the adhesion of bacteria, while facilitating the transfer of electrons from the bacteria to the electrodes. APPJ surface modification is non-toxic and environmentally friendly (no exogenous chemicals are required), which is particularly beneficial as the introduction of toxins might otherwise inhibit bacterial growth and metabolism. The APPJ surface modification process is rapid, cost-effective, and applicable to substrates covering a large area, making it ideal for the fabrication of large-scale MFCs and bioelectrochemical bioenergy devices.

  9. Possible overestimation of surface disinfection efficiency by assessment methods based on liquid sampling procedures as demonstrated by in situ quantification of spore viability.

    PubMed

    Grand, I; Bellon-Fontaine, M-N; Herry, J-M; Hilaire, D; Moriconi, F-X; Naïtali, M

    2011-09-01

    The standard test methods used to assess the efficiency of a disinfectant applied to surfaces are often based on counting the microbial survivors sampled in a liquid, but total cell removal from surfaces is seldom achieved. One might therefore wonder whether evaluations of microbial survivors in liquid-sampled cells are representative of the levels of survivors in whole populations. The present study was thus designed to determine the "damaged/undamaged" status induced by a peracetic acid disinfection for Bacillus atrophaeus spores deposited on glass coupons directly on this substrate and to compare it to the status of spores collected in liquid by a sampling procedure. The method utilized to assess the viability of both surface-associated and liquid-sampled spores included fluorescence labeling with a combination of Syto 61 and Chemchrome V6 dyes and quantifications by analyzing the images acquired by confocal laser scanning microscopy. The principal result of the study was that the viability of spores sampled in the liquid was found to be poorer than that of surface-associated spores. For example, after 2 min of peracetic acid disinfection, less than 17% ± 5% of viable cells were detected among liquid-sampled cells compared to 79% ± 5% or 47% ± 4%, respectively, when the viability was evaluated on the surface after or without the sampling procedure. Moreover, assessments of the survivors collected in the liquid phase, evaluated using the microscopic method and standard plate counts, were well correlated. Evaluations based on the determination of survivors among the liquid-sampled cells can thus overestimate the efficiency of surface disinfection procedures.

  10. Possible Overestimation of Surface Disinfection Efficiency by Assessment Methods Based on Liquid Sampling Procedures as Demonstrated by In Situ Quantification of Spore Viability ▿

    PubMed Central

    Grand, I.; Bellon-Fontaine, M.-N.; Herry, J.-M.; Hilaire, D.; Moriconi, F.-X.; Naïtali, M.

    2011-01-01

    The standard test methods used to assess the efficiency of a disinfectant applied to surfaces are often based on counting the microbial survivors sampled in a liquid, but total cell removal from surfaces is seldom achieved. One might therefore wonder whether evaluations of microbial survivors in liquid-sampled cells are representative of the levels of survivors in whole populations. The present study was thus designed to determine the “damaged/undamaged” status induced by a peracetic acid disinfection for Bacillus atrophaeus spores deposited on glass coupons directly on this substrate and to compare it to the status of spores collected in liquid by a sampling procedure. The method utilized to assess the viability of both surface-associated and liquid-sampled spores included fluorescence labeling with a combination of Syto 61 and Chemchrome V6 dyes and quantifications by analyzing the images acquired by confocal laser scanning microscopy. The principal result of the study was that the viability of spores sampled in the liquid was found to be poorer than that of surface-associated spores. For example, after 2 min of peracetic acid disinfection, less than 17% ± 5% of viable cells were detected among liquid-sampled cells compared to 79% ± 5% or 47% ± 4%, respectively, when the viability was evaluated on the surface after or without the sampling procedure. Moreover, assessments of the survivors collected in the liquid phase, evaluated using the microscopic method and standard plate counts, were well correlated. Evaluations based on the determination of survivors among the liquid-sampled cells can thus overestimate the efficiency of surface disinfection procedures. PMID:21742922

  11. Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus

    PubMed Central

    Foster, Timothy J.; Geoghegan, Joan A.; Ganesh, Vannakambadi K.; Höök, Magnus

    2014-01-01

    Staphylococcus aureus is an important opportunistic pathogen and persistently colonizes about 20% of the human population. Its surface is ‘decorated’ with proteins that are covalently anchored to the cell wall peptidoglycan. Structural and functional analysis has identified four distinct classes of surface proteins, of which microbial surface component recognizing adhesive matrix molecules (MSCRAMMs) are the largest class. These surface proteins have numerous functions, including adhesion to and invasion of host cells and tissues, evasion of immune responses and biofilm formation. Thus, cell wall-anchored proteins are essential virulence factors for the survival of S. aureus in the commensal state and during invasive infections, and targeting them with vaccines could combat S. aureus infections. PMID:24336184

  12. Dolomitized cells within chert of the Permian Assistência Formation, Paraná Basin, Brazil

    NASA Astrophysics Data System (ADS)

    Calça, Cléber P.; Fairchild, Thomas R.; Cavalazzi, Barbara; Hachiro, Jorge; Petri, Setembrino; Huila, Manuel Fernando Gonzalez; Toma, Henrique E.; Araki, Koiti

    2016-04-01

    Dolomitic microscopic structures in the form of microspheres, "horseshoe- shaped" objects, and thin botryoidal crusts found within microfossiliferous chert within stromatolites of the Evaporite Bed (EB) of the Permian Assistência Formation, Irati Subgroup, Paraná Basin, Brazil, have been investigated by means of optical microscopy, X-ray fluorescence, scanning electron microscopy, Raman spectrometry and energy-dispersive X-ray spectrometry. The microspheres were identified as dolomitized coccoidal cyanobacteria based on similarity in size, spheroidal and paired hemispheroidal morphologies and colonial habit to co-occurring silicified organic-walled cyanobacteria embedded within the same microfabric and rock samples. The co-occurrence of dolomite, pyrite framboids, and abundant dispersed carbonaceous material and silicified cells is consistent with a hypersaline depositional environment with abundant cyanobacterial mats and elevated Mg2 +/Ca2 + ratios and reducing conditions with active anoxic microbial processes near the water-(bio)sediment interface. The abundance of extracellular polymeric substances facilitated anoxic microbial processes (sulfate reduction), providing essential conditions for possible primary microbially induced dolomitization. In most of the dolomitized cells dolomite occurs only as an external layer; in fully dolomitized cells magnesium is richest in the outermost layer. Presumably, the dolomitization process was favored by the presence of anoxic microbial degraders and negatively charged functional groups at the surface of the cyanobacterial cells. Botryoidal dolomite rims of silica-filled fenestrae formed by a similar process and inherited the botryoidal morphology of the cell as originally lining the fenestrae. Silicification interrupted the dolomitization of the largely organic biosediment, mostly by permineralization, but locally by substitution, thereby preserving not only dolomitic microspheres, but also huge numbers of structurally well-preserved organic-walled cyanobacteria and portions of microbial mat. Clearly, dolomitization began very early in the microbial mats, prior to compaction of the sediment or full obliteration of cellular remains, followed very closely by silicification thereby impeding continued degradation and providing a window onto very well-preserved Permian microbial mats.

  13. Photo-switchable microbial fuel-cells.

    PubMed

    Schlesinger, Orr; Dandela, Rambabu; Bhagat, Ashok; Adepu, Raju; Meijler, Michael M; Xia, Lin; Alfonta, Lital

    2018-05-01

    Regulation of Bio-systems in a clean, simple, and efficient way is important for the design of smart bio-interfaces and bioelectronic devices. Light as a non-invasive mean to control the activity of a protein enables spatial and temporal control far superior to other chemical and physical methods. The ability to regulate the activity of a catalytic enzyme in a biofuel-cell reduces the waste of resources and energy and turns the fuel-cell into a smart and more efficient device for power generation. Here we present a microbial-fuel-cell based on a surface displayed, photo-switchable alcohol dehydrogenase. The enzyme was modified near the active site using non-canonical amino acids and a small photo-reactive molecule, which enables reversible control of enzymatic activity. Depending on the modification site, the enzyme exhibits reversible behavior upon irradiation with UV and visible light, in both biochemical, and electrochemical assays. The change observed in power output of a microbial fuel cell utilizing the modified enzyme was almost five-fold, between inactive and active states. © 2018 Wiley Periodicals, Inc.

  14. Retention and transport of an anaerobic trichloroethene dechlorinating microbial culture in anaerobic porous media.

    PubMed

    Zhang, Huixin; Ulrich, Ania C; Liu, Yang

    2015-06-01

    The influence of solution chemistry on microbial transport was examined using the strictly anaerobic trichloroethene (TCE) bioaugmentation culture KB-1(®). A column was employed to determine transport behaviors and deposition kinetics of three distinct functional species in KB-1(®), Dehalococcoides, Geobacter, and Methanomethylovorans, over a range of ionic strengths under a well-controlled anaerobic condition. A quantitative polymerase chain reaction (qPCR) was utilized to enumerate cell concentration and complementary techniques were implemented to evaluate cell surface electrokinetic potentials. Solution chemistry was found to positively affect the deposition rates, which was consistent with calculated Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction energies. Retained microbial profiles showed spatially constant colloid deposition rate coefficients, in agreement with classical colloid filtration theory (CFT). It was interesting to note that the three KB-1(®) species displayed similar transport and retention behaviors under the defined experimental conditions despite their different cell electrokinetic properties. A deeper analysis of cell characteristics showed that factors, such as cell size and shape, concentration, and motility were involved in determining adhesion behavior. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Microbial biofilms in intertidal systems: an overview

    NASA Astrophysics Data System (ADS)

    Decho, Alan W.

    2000-07-01

    Intertidal marine systems are highly dynamic systems which are characterized by periodic fluctuations in environmental parameters. Microbial processes play critical roles in the remineralization of nutrients and primary production in intertidal systems. Many of the geochemical and biological processes which are mediated by microorganisms occur within microenvironments which can be measured over micrometer spatial scales. These processes are localized by cells within a matrix of extracellular polymeric secretions (EPS), collectively called a "microbial biofilm". Recent examinations of intertidal systems by a range of investigators using new approaches show an abundance of biofilm communities. The purpose of this overview is to examine recent information concerning the roles of microbial biofilms in intertidal systems. The microbial biofilm is a common adaptation of natural bacteria and other microorganisms. In the fluctuating environments of intertidal systems, biofilms form protective microenvironments and may structure a range of microbial processes. The EPS matrix of biofilm forms sticky coatings on individual sediment particles and detrital surfaces, which act as a stabilizing anchor to buffer cells and their extracellular processes during the frequent physical stresses (e.g., changes in salinity and temperature, UV irradiation, dessication). EPS is an operational definition designed to encompass a range of large microbially-secreted molecules having widely varying physical and chemical properties, and a range of biological roles. Examinations of EPS using Raman and Fourier-transform infared spectroscopy, and atomic-force microscopy suggest that some EPS gels possess physical and chemical properties which may hasten the development of sharp geochemical gradients, and contribute a protective effect to cells. Biofilm polymers act as a sorptive sponge which binds and concentrates organic molecules and ions close to cells. Concurrently, the EPS appear to localize extracellular enzyme activities of bacteria, and hence contribute to the efficient biomineralization of organics. At larger spatial scales, the copious secretion of specific types of EPS by diatoms on the surfaces of intertidal mudflats may stabilize sediments against resuspension. Biofilms exert important roles in environmental- and public health processes occurring within intertidal systems. The sorptive properties of EPS effectively chelate toxic metals and other contaminants, which then act as an efficient trophic-transfer vehicle for the entry of contaminants into food webs. In the water column, biofilm microenvironments in suspended flocs may form a stabilizing refugia that enhances the survival and propagation of pathogenic (i.e., disease-causing) bacteria entering coastal waters from terrestrial and freshwater sources. The EPS matrix affords microbial cells a tremendous potential for resiliency during periods of stress, and may enhance the overall physiological activities of bacteria. It is emphasized here that the influences of small-scale microbial biofilms must be addressed in understanding larger-scale processes within intertidal systems.

  16. A flat microbial fuel cell for decentralized wastewater valorization: process performance and optimization potential.

    PubMed

    Peixoto, Luciana; Rodrigues, Alexandrina L; Martins, Gilberto; Nicolau, Ana; Brito, António G; Silva, M Manuela; Parpot, Pier; Nogueira, Regina

    2013-01-01

    A very compact flat microbial fuel cell (MFC), with 64 cm2 each for the anode surface and the cathode surface and 1 cm3 each for the anode and cathode chambers, was tested for wastewater treatment with simultaneous electricity production with the ultimate goal of implementing an autonomous service in decentralized wastewater treatment systems. The MFC was operated with municipal wastewater in sequencing batch reactor mode with re-circulation. Current densities up to 407 W/m3 and a carbon removal of 83% were obtained. Interruption in the operation slightly decreased power density, while the re-circulation ratio did not influence power generation. The anode biofilm presented high conductivity, activity and diversity. The denaturing gradient gel electrophoresis band-pattern of the DNA showed the presence of several ribotypes with different species of Shewanellaceae and Geobacteraceae families.

  17. High salinity facilitates dolomite precipitation mediated by Haloferax volcanii DS52

    NASA Astrophysics Data System (ADS)

    Qiu, Xuan; Wang, Hongmei; Yao, Yanchen; Duan, Yong

    2017-08-01

    Although most modern dolomites occur in hypersaline environments, the effects of elevated salinity on the microbial mediation of dolomite precipitation have not been fully evaluated. Here we report results of dolomite precipitation in association with a batch culture of Haloferax volcanii DS52, a halophilic archaeon, under various salinities (from 120‰ to 360‰) and the impact of salinity on microbe-mediated dolomite formation. The mineral phases, morphology and atomic arrangement of the precipitates were analyzed by XRD, SEM and TEM, respectively. The amount of amino acids on the archaeal cell surface was quantified by HPLC/MS. The XRD analysis indicated that disordered dolomite formed successfully with the facilitation of cells harvested from cultures with relatively high salinities (200‰ and 280‰) but was not observed in association with cells harvested from cultures with lower salinity (120‰) or the lysates of cells harvested from extremely high salinity (360‰). The TEM analysis demonstrated that the crystals from cultures with a salinity of 200‰ closely matched that of dolomite. Importantly, we found that more carboxyl groups were presented on the cell surface under high salinity conditions to resist the high osmotic pressure, which may result in the subsequent promotion of dolomite formation. Our finding suggests a link between variations in the hydro-chemical conditions and the formation of dolomite via microbial metabolic activity and enhances our understanding about the mechanism of microbially mediated dolomite formation under high salinity conditions.

  18. Beneficial Autoimmunity at Body Surfaces – Immune Surveillance and Rapid Type 2 Immunity Regulate Tissue Homeostasis and Cancer

    PubMed Central

    Dalessandri, Tim; Strid, Jessica

    2014-01-01

    Epithelial cells (ECs) line body surface tissues and provide a physicochemical barrier to the external environment. Frequent microbial and non-microbial challenges such as those imposed by mechanical disruption, injury or exposure to noxious environmental substances including chemicals, carcinogens, ultraviolet-irradiation, or toxins cause activation of ECs with release of cytokines and chemokines as well as alterations in the expression of cell-surface ligands. Such display of epithelial stress is rapidly sensed by tissue-resident immunocytes, which can directly interact with self-moieties on ECs and initiate both local and systemic immune responses. ECs are thus key drivers of immune surveillance at body surface tissues. However, ECs have a propensity to drive type 2 immunity (rather than type 1) upon non-invasive challenge or stress – a type of immunity whose regulation and function still remain enigmatic. Here, we review the induction and possible role of type 2 immunity in epithelial tissues and propose that rapid immune surveillance and type 2 immunity are key regulators of tissue homeostasis and carcinogenesis. PMID:25101088

  19. AFM probing in aqueous environment of Staphylococcus epidermidis cells naturally immobilised on glass: physico-chemistry behind the successful immobilisation.

    PubMed

    Méndez-Vilas, A; Gallardo-Moreno, A M; Calzado-Montero, R; González-Martín, M L

    2008-05-01

    AFM probing of microbial cells in liquid environments usually requires them to be physically or chemically attached to a solid surface. The fixation mechanisms may influence the nanomechanical characterization done by force curve mapping using an AFM. To study the response of a microbial cell surface to this kind of local measurement this study attempts to overcome the problem associated to the uncertainties introduced by the different fixation treatments by analysing the surface of Staphylococcus epidermidis cells naturally (non-artificially mediated) immobilised on a glass support surface. The particularities of this natural bacterial fixation process for AFM surface analysis are discussed in terms of theoretical predictions of the XDLVO model applied to the systems bacteria/support substratum and bacteria/AFM tip immersed in water. In this sense, in the first part of this study the conditions for adequate natural fixation of three S. epidermidis strains have been analyzed by taking into account the geometries of the bacterium, substrate and tip. In the second part, bacteria are probed without the risk of any possible artefacts due to the mechanical or chemical fixation procedures. Forces measured over the successfully adhered cells have (directly) shown that the untreated bacterial surface suffers from a combination of both reversible and non-reversible deformations during acquisition of force curves all taken under the same operational conditions. This is revealed directly through high-resolution tapping-mode imaging of the bacterial surface immediately following force curve mapping. The results agree with the two different types of force curves that were repeatedly obtained. Interestingly, one type of these force curves suggests that the AFM tip is breaking (rather than pushing) the cell surface during acquisition of the force curve. In this case, adhesive peaks were always observed, suggesting a mechanical origin of the measured pull-off forces. The other type of force curves shows no adhesive peaks and exhibits juxtaposing of approaching and retraction curves, reflecting elastic deformations.

  20. KSC-2014-4904

    NASA Image and Video Library

    2014-10-31

    CAPE CANAVERAL, Fla. – A researcher from the University of Florida in Gainesville, checks the Dust Atmospheric Recovery Technology, or DART, spacecraft in a laboratory inside the Space Life Sciences Lab at NASA’s Kennedy Space Center in Florida. DART will characterize the dust loading and microbial diversity in the atmosphere over Florida during summer months with a special emphasis on their interactions during an African dust storm. DART will be used to collect atmospheric aerosols and suspended microbial cells over Florida and Kennedy. Results will help predict the risks of excessive microbial contamination adhering to spacecraft surfaces. Photo credit: NASA/Dimitri Gerondidakis

  1. Investigation of extractive microbial transformation in nonionic surfactant micelle aqueous solution using response surface methodology.

    PubMed

    Xue, Yingying; Qian, Chen; Wang, Zhilong; Xu, Jian-He; Yang, Rude; Qi, Hanshi

    2010-01-01

    Extractive microbial transformation of L-phenylacetylcarbinol (L-PAC) in nonionic surfactant Triton X-100 micelle aqueous solution was investigated by response surface methodology. Based on the Box-Behnken design, a mathematical model was developed for the predication of mutual interactions between benzaldehyde, Triton X-100, and glucose on L-PAC production. It indicated that the negative or positive effect of nonionic surfactant strongly depended on the substrate concentration. The model predicted that the optimal concentration of benzaldehyde, Triton X-100, and glucose was 1.2 ml, 15 g, and 2.76 g per 100 ml, respectively. Under the optimal condition, the maximum L-PAC production was 27.6 mM, which was verified by a time course of extractive microbial transformation. A discrete fed-batch process for verification of cell activity was also presented.

  2. Understanding Microbe-Mineral Reactions Using Synchrotron Radiation Fourier Transform Infrared Spectromicroscopy

    NASA Astrophysics Data System (ADS)

    Kauffman, M. E.; Lehman, R. M.; Martin, M. C.; Bauer, W. F.

    2002-12-01

    Microorganisms are able to alter their surrounding microenvironment to an extent not predicted by the thermodynamics of the macro-environment chemistry. Microbially induced environmental alterations include weathering, biomineralization and mobilization or immobilization of authegenic metals or contaminants. Microbial colonization of surfaces, followed by biofilm formation, are the first steps in alteration processes. With the exception of iron oxides and iron-reducing bacteria, the fundamentals of how microbes react with various mineral surfaces is not well understood. Synchrotron radiation Fourier transform infrared spectromicroscopy (SR-FTIR) is a non-destructive analytical technique capable of probing, in situ, the microbe-mineral interface. The SR-FTIR beamline 1.4.3, at the Advanced Light Source, Berkeley, CA, has a diffraction-limited spatial resolution of 10 um, is 2-3 orders of magnitude brighter than traditional FTIR, and is not harmful to living samples. Aliquots of pure cultures of Burkholderia cepacia G4 were deposited on four individual mineral surfaces (plagioclase, ilmenite, augite and olivine) and spectra were collected within 20-40 min. Reference spectra were collected from the same pure cultures deposited on gold-coated glass slides. Additionally, reference spectra were collected of commercially available biomolecules deposited on the four individual mineral specimens. The spectra of the bacterial cells on gold and the spectra of the separate biomolecules contained all the relevant peaks documented in the literature. However, the spectra collected from the microbe-mineral interfaces were markedly different from the reference spectra and varied between the four mineral surfaces. Bacterial cells in contact with plagioclase exhibited predominantly absorption bands associated with phosphate groups, while the spectra of olivine and bacterial cells were limited to absorption bands associated with bacterial proteins. Spectra of the same bacterial cells in contact with augite indicated a strong peak attributed to amino acids, specifically tyrosine. The results presented here document the changes in the biogeochemistry of the microbial-mineral interface that can occur within minutes when cells react to various mineral surfaces. These results advance the understanding of how microorganisms impact the natural environment.

  3. Systematic screening of carbon-based anode materials for microbial fuel cells with Shewanella oneidensis MR-1.

    PubMed

    Kipf, Elena; Koch, Julia; Geiger, Bettina; Erben, Johannes; Richter, Katrin; Gescher, Johannes; Zengerle, Roland; Kerzenmacher, Sven

    2013-10-01

    We present a systematic screening of carbon-based anode materials for microbial fuel cells with Shewanella oneidensis MR-1. Under anoxic conditions nanoporous activated carbon cloth is a superior anode material in terms of current density normalized to the projected anode area and anode volume (24.0±0.3 μA cm(-2) and 482±7 μA cm(-3) at -0.2 vs. SCE, respectively). The good performance can be attributed to the high specific surface area of the material, which is available for mediated electron transfer through self-secreted flavins. Under aerated conditions no influence of the specific surface area is observed, which we attribute to a shift from primary indirect electron transfer by mediators to direct electron transfer via adherent cells. Furthermore, we show that an aerated initial growth phase enhances the current density under subsequent anoxic conditions fivefold when compared to a similar experiment that was conducted under permanently anoxic conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. In vivo and in vitro evaluation of an Acetobacter xylinum synthesized microbial cellulose membrane intended for guided tissue repair

    PubMed Central

    Mendes, Péricles Nóbrega; Rahal, Sheila Canevese; Pereira-Junior, Oduvaldo Câmara Marques; Fabris, Viciany Erique; Lenharo, Sara Lais Rahal; de Lima-Neto, João Ferreira; da Cruz Landim-Alvarenga, Fernanda

    2009-01-01

    Background Barrier materials as cellulose membranes are used for guided tissue repair. However, it is essential that the surrounding tissues accept the device. The present study histologically evaluated tissue reaction to a microbial cellulose membrane after subcutaneous implantation in mice. Furthermore, the interaction between mesenchymal stem cells and the biomaterial was studied in vitro to evaluate its ability to act as cellular scaffold for tissue engineering. Methods Twenty-five Swiss Albino mice were used. A 10 × 10 mm cellulose membrane obtained through biosynthesis using Acetobacter xylinum bacteria was implanted into the lumbar subcutaneous tissue of each mouse. The mice were euthanatized at seven, 15, 30, 60, and 90 days, and the membrane and surrounding tissues were collected and examined by histology. Results A mild inflammatory response without foreign body reaction was observed until 30 days post-surgery around the implanted membrane. Polarized microscopy revealed that the membrane remained intact at all evaluation points. Scanning electron microscopy of the cellulose membrane surface showed absence of pores. The in vitro evaluation of the interaction between cells and biomaterial was performed through viability staining analysis of the cells over the biomaterial, which showed that 95% of the mesenchymal stem cells aggregating to the cellulose membrane were alive and that 5% were necrotic. Scanning electron microscopy showed mesenchymal stem cells with normal morphology and attached to the cellulose membrane surface. Conclusion The microbial cellulose membrane evaluated was found to be nonresorbable, induced a mild inflammatory response and may prove useful as a scaffold for mesenchymal stem cells. PMID:19317903

  5. Dynamic processes of the microbiota - from metagenomics to biofilms

    NASA Astrophysics Data System (ADS)

    Wingreen, Ned

    The extent, origin, and impact of microbial diversity is a central question in biology. We expect that physical processes contribute to this diversity, but we are only beginning to explore the nature of these interactions. I will briefly discuss two approaches to this question, one based on metagenomics the other on observation of bacterial biofilms. First, I will address the challenge of identifying the constituents of microbial systems by presenting a new approach to analyzing community sequencing data that identifies microbial subpopulations while avoiding problematic clustering-based methods. Using data from a time-series study of human tongue microbiota, we were able to resolve within the standard definition of a ``species'' up to 20 ecologically distinct subpopulations with tag sequences differing by as little as one nucleotide (99.2% similarity). This fine resolution allowed us decouple sequence similarity from dynamical similarity, and to resolve dynamics on multiple time scales, including the slow appearance and disappearance of strains over months. Second, I will present recent results on the growth and competition of bacteria within biofilms. We imaged the growth ofliving biofilms of Vibrio choleraefrom single founder cells to ten thousand cells at single cell spatial resolution and with temporal resolution of one cell cycle. We discovered a transition from a branched 2D colony to a dense 3D cluster, in which cells at the biofilm center exhibit collective vertical alignment and local nematic packing. Our results suggest that biofilm cells exploit mechanics to simultaneously achieve strong surface adhesion, access to 3D space, resistance to invasion, and dominance over surface territory.

  6. Vertically aligned carbon nanotubes as anode and air-cathode in single chamber microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Amade, R.; Moreno, H. A.; Hussain, S.; Vila-Costa, M.; Bertran, E.

    2016-10-01

    Electrode optimization in microbial fuel cells is a key issue to improve the power output and cell performance. Vertically aligned carbon nanotubes (VACNTs) grown on low cost stainless-steel mesh present an attractive approach to increase the cell performance while avoiding the use of expensive Pt-based materials. In comparison with non-aligned carbon nanotubes (NACNTs), VACNTs increase the oxygen reduction reaction taking place at the cathode by a factor of two. In addition, vertical alignment also increases the power density up to 2.5 times with respect to NACNTs. VACNTs grown at the anode can further improve the cell performance by increasing the electrode surface area and thus the electron transfer between bacteria and the electrode. The maximum power density obtained using VACNTs was 14 mW/m2 and 160 mV output voltage.

  7. Biological treatment of steroidal drug industrial effluent and electricity generation in the microbial fuel cells.

    PubMed

    Liu, Ru; Gao, Chongyang; Zhao, Yang-Guo; Wang, Aijie; Lu, Shanshan; Wang, Min; Maqbool, Farhana; Huang, Qing

    2012-11-01

    The single chamber microbial fuel cells (MFCs) were used to treat steroidal drug production wastewater (SPW) and generate electricity simultaneously. The results indicated that the maximum COD removal efficiency reached 82%, total nitrogen and sulfate removal rate approached 62.47% and 26.46%, respectively. The maximum power density and the Coulombic efficiency reached to 22.3Wm(-3) and 30%, respectively. The scanning electron microscope showed that the dominant microbial populations were remarkably different in morphology on the surface of SPW and acetate-fed anodes. PCR-denaturing gradient gel electrophoresis profiles revealed that the microbial community structure fed with different concentrations of SPW presented a gradual succession and unique bacterial sequences were detected on the SPW and acetate-fed anodes. This research demonstrates that MFCs fed with SPW achieved a high efficiency of power density and simultaneous nutrient removal, and the dominant microorganisms on the anode were related to the types and the concentrations of substrates. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Nanoscopic morphological changes in yeast cell surfaces caused by oxidative stress: an atomic force microscopic study.

    PubMed

    Canetta, Elisabetta; Walker, Graeme M; Adya, Ashok K

    2009-06-01

    Nanoscopic changes in the cell surface morphology of the yeasts Saccharomyces cerevisiae (strain NCYC 1681) and Schizosaccharomyces pombe (strain DVPB 1354), due to their exposure to varying concentrations of hydrogen peroxide (oxidative stress), were investigated using an atomic force microscope (AFM). Increasing hydrogen peroxide concentration led to a decrease in cell viabilities and mean cell volumes, and an increase in the surface roughness of the yeasts. In addition, AFM studies revealed that oxidative stress caused cell compression in both S. cerevisiae and Schiz. pombe cells and an increase in the number of aged yeasts. These results confirmed the importance and usefulness of AFM in investigating the morphology of stressed microbial cells at the nanoscale. The results also provided novel information on the relative oxidative stress tolerance of S. cerevisiae and Schiz. pombe.

  9. Carbonate fabrics in the modern microbialites of Pavilion Lake: two suites of microfabrics that reflect variation in microbial community morphology, growth habit, and lithification.

    PubMed

    Theisen, C Harwood; Sumner, D Y; Mackey, T J; Lim, D S S; Brady, A L; Slater, G F

    2015-07-01

    Modern microbialites in Pavilion Lake, BC, provide an analog for ancient non-stromatolitic microbialites that formed from in situ mineralization. Because Pavilion microbialites are mineralizing under the influence of microbial communities, they provide insights into how biological processes influence microbialite microfabrics and mesostructures. Hemispherical nodules and micrite-microbial crusts are two mesostructures within Pavilion microbialites that are directly associated with photosynthetic communities. Both filamentous cyanobacteria in hemispherical nodules and branching filamentous green algae in micrite-microbial crusts were associated with calcite precipitation at microbialite surfaces and with characteristic microfabrics in the lithified microbialite. Hemispherical nodules formed at microbialite surfaces when calcite precipitated around filamentous cyanobacteria with a radial growth habit. The radial filament pattern was preserved within the microbialite to varying degrees. Some subsurface nodules contained well-defined filaments, whereas others contained only dispersed organic inclusions. Variation in filament preservation is interpreted to reflect differences in timing and amount of carbonate precipitation relative to heterotrophic decay, with more defined filaments reflecting greater lithification prior to degradation than more diffuse filaments. Micrite-microbial crusts produce the second suite of microfabrics and form in association with filamentous green algae oriented perpendicular to the microbialite surface. Some crusts include calcified filaments, whereas others contained voids that reflect the filamentous community in shape, size, and distribution. Pavilion microbialites demonstrate that microfabric variation can reflect differences in lithification processes and microbial metabolisms as well as microbial community morphology and organization. Even when the morphology of individual filaments or cells is not well preserved, the microbial growth habit can be captured in mesoscale microbialite structures. These results suggest that when petrographic preservation is extremely good, ancient microbialite growth structures and microfabrics can be interpreted in the context of variation in community organization, community composition, and lithification history. Even in the absence of distinct microbial microfabrics, mesostructures can capture microbial community morphology. © 2015 John Wiley & Sons Ltd.

  10. The role of coastal fog in increased viability of marine microbial aerosols

    NASA Astrophysics Data System (ADS)

    Dueker, M.; O'Mullan, G. D.; Weathers, K. C.; Juhl, A. R.; Uriarte, M.

    2011-12-01

    Microbes in the atmosphere (microbial aerosols) play an important role in climate and provide an ecological and biogeochemical connection between oceanic, atmospheric, and terrestrial environments. Despite the ubiquity of these bacteria (concentration estimates range from 1 x 10^4 to 6 x 10^5 cells m-3), much is still being learned about their source, viability, and interactions with climatic controls. They can be attached to ambient aerosol particles or exist singly in the air. They affect climate by serving as ice, cloud, and fog nucleators, and have the metabolic potential to alter atmospheric chemistry. Fog presence in particular has been shown to greatly increase the deposition of viable microbial aerosols in both urban and coastal environments, but the mechanisms behind this are not fully understood. To address this gap, we examined the diversity of culturable microbial aerosols from a relatively pristine coastal environment in Maine (USA) and determined the effect of fog presence on viability and community composition of microbial aerosols. 16S rRNA sequencing of culturable ocean surface bacteria and depositing microbial aerosols (under clear and foggy conditions) resulted in the detection of 31 bacterial genera, with 5 dominant genera (Vibrio, Bacillus, Pseudoalteromonas, Psychrobacter, Salinibacterium) making up 66% of all sequences. Seventy-five percent of the viable microbial aerosols falling out under foggy conditions were most similar to GenBank-published sequences detected in marine environments. The fog and ocean surface sequence libraries were significantly more similar in microbial community composition than clear (non-foggy) and ocean surface libraries. These findings support a dual role for fog in enhancing the fallout of viable marine microbial aerosols via increased gravitational settling rates and decreased aerosolization stress on the organisms. The dominant presence of marine bacteria in coastal microbial aerosols provides a strong case for an ecologically-relevant ocean to terrestrial transport of microbes, creating a potential connection between water and air quality in the coastal environment.

  11. Lack of electricity production by Pelobacter carbinolicus indicates that the capacity for Fe(III) oxide reduction does not necessarily confer electron transfer ability to fuel cell anodes.

    PubMed

    Richter, Hanno; Lanthier, Martin; Nevin, Kelly P; Lovley, Derek R

    2007-08-01

    The ability of Pelobacter carbinolicus to oxidize electron donors with electron transfer to the anodes of microbial fuel cells was evaluated because microorganisms closely related to Pelobacter species are generally abundant on the anodes of microbial fuel cells harvesting electricity from aquatic sediments. P. carbinolicus could not produce current in a microbial fuel cell with electron donors which support Fe(III) oxide reduction by this organism. Current was produced using a coculture of P. carbinolicus and Geobacter sulfurreducens with ethanol as the fuel. Ethanol consumption was associated with the transitory accumulation of acetate and hydrogen. G. sulfurreducens alone could not metabolize ethanol, suggesting that P. carbinolicus grew in the fuel cell by converting ethanol to hydrogen and acetate, which G. sulfurreducens oxidized with electron transfer to the anode. Up to 83% of the electrons available in ethanol were recovered as electricity and in the metabolic intermediate acetate. Hydrogen consumption by G. sulfurreducens was important for ethanol metabolism by P. carbinolicus. Confocal microscopy and analysis of 16S rRNA genes revealed that half of the cells growing on the anode surface were P. carbinolicus, but there was a nearly equal number of planktonic cells of P. carbinolicus. In contrast, G. sulfurreducens was primarily attached to the anode. P. carbinolicus represents the first Fe(III) oxide-reducing microorganism found to be unable to produce current in a microbial fuel cell, providing the first suggestion that the mechanisms for extracellular electron transfer to Fe(III) oxides and fuel cell anodes may be different.

  12. Long-term effects of nickel oxide nanoparticles on performance, microbial enzymatic activity, and microbial community of a sequencing batch reactor.

    PubMed

    Wang, Sen; Li, Zhiwei; Gao, Mengchun; She, Zonglian; Guo, Liang; Zheng, Dong; Zhao, Yangguo; Ma, Bingrui; Gao, Feng; Wang, Xuejiao

    2017-02-01

    The nitrogen and phosphorus removal, microbial enzymatic activity, and microbial community of a sequencing batch reactor (SBR) were evaluated under long-term exposure to nickel oxide nanoparticles (NiO NPs). High NiO NP concentration (over 5 mg L -1 ) affected the removal of chemical oxygen demand, nitrogen, and phosphorus. The presence of NiO NP inhibited the microbial enzymatic activities and reduced the nitrogen and phosphorus removal rates of activated sludge. The microbial enzymatic activities of the activated sludge showed a similar variation trend to the nitrogen and phosphorus removal rates with the increase in NiO NP concentration from 0 to 60 mg L -1 . The Ni content in the effluent and activated sludge showed an increasing trend with the increase in NiO NP concentration. Some NiO NPs were absorbed on the sludge surface or penetrate the cell membrane into the interior of microbial cells in the activated sludge. NiO NP facilitated the increase in reactive oxygen species by disturbing the balance between the oxidation and anti-oxidation processes, and the variation in lactate dehydrogenase demonstrated that NiO NP could destroy the cytomembrane and cause variations in the microbial morphology and physiological function. High-throughput sequencing demonstrated that the microbial community of SBR had some obvious changes at 0-60 mg L -1 NiO NPs at the phyla, class and genus levels. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Microbial Extracellular Polymeric Substances (EPSs) in Ocean Systems

    PubMed Central

    Decho, Alan W.; Gutierrez, Tony

    2017-01-01

    Microbial cells (i.e., bacteria, archaea, microeukaryotes) in oceans secrete a diverse array of large molecules, collectively called extracellular polymeric substances (EPSs) or simply exopolymers. These secretions facilitate attachment to surfaces that lead to the formation of structured ‘biofilm’ communities. In open-water environments, they also lead to formation of organic colloids, and larger aggregations of cells, called ‘marine snow.’ Secretion of EPS is now recognized as a fundamental microbial adaptation, occurring under many environmental conditions, and one that influences many ocean processes. This relatively recent realization has revolutionized our understanding of microbial impacts on ocean systems. EPS occur in a range of molecular sizes, conformations and physical/chemical properties, and polysaccharides, proteins, lipids, and even nucleic acids are actively secreted components. Interestingly, however, the physical ultrastructure of how individual EPS interact with each other is poorly understood. Together, the EPS matrix molecules form a three-dimensional architecture from which cells may localize extracellular activities and conduct cooperative/antagonistic interactions that cannot be accomplished efficiently by free-living cells. EPS alter optical signatures of sediments and seawater, and are involved in biogeomineral precipitation and the construction of microbial macrostructures, and horizontal-transfers of genetic information. In the water-column, they contribute to the formation of marine snow, transparent exopolymer particles (TEPs), sea-surface microlayer biofilm, and marine oil snow. Excessive production of EPS occurs during later-stages of phytoplankton blooms as an excess metabolic by product and releases a carbon pool that transitions among dissolved-, colloidal-, and gel-states. Some EPS are highly labile carbon forms, while other forms appear quite refractory to degradation. Emerging studies suggest that EPS contribute to efficient trophic-transfer of environmental contaminants, and may provide a protective refugia for pathogenic cells within marine systems; one that enhances their survival/persistence. Finally, these secretions are prominent in ‘extreme’ environments ranging from sea-ice communities to hypersaline systems to the high-temperatures/pressures of hydrothermal-vent systems. This overview summarizes some of the roles of exopolymer in oceans. PMID:28603518

  14. Surface chemical studies on selective separation of pyrite and galena in the presence of bacterial cells and metabolic products of Paenibacillus polymyxa.

    PubMed

    Patra, Partha; Natarajan, K A

    2006-06-15

    Selective separation of pyrite and galena from mixture of the two minerals was achieved through interaction with cells and metabolic products from a culture of Paenibacillus polymyxa. Adsorption of cells and metabolic products onto minerals and electrokinetic studies of minerals after interaction with cells and metabolic products were carried out to examine the resulting surface modification on the mineral surfaces. Flocculation and flotation techniques were successfully applied in the selective separation of minerals after bacterial interaction. The effect of varying conditions for production of extracellular polysaccharides and protein provided an insight into the possible mechanism involved in microbially induced flocculation and flotation of pyrite and galena.

  15. Dynamic Dispersal of Surface Layer Biofilm Induced by Nanosized TiO2 Based on Surface Plasmon Resonance and Waveguide.

    PubMed

    Zhang, Peng; Guo, Jin-Song; Yan, Peng; Chen, You-Peng; Wang, Wei; Dai, You-Zhi; Fang, Fang; Wang, Gui-Xue; Shen, Yu

    2018-05-01

    Pollutant degradation is present mainly in the surface layer of biofilms, and the surface layer is the most vulnerable to impairment by toxic pollutants. In this work, the effects of nanosized TiO 2 (n-TiO 2 ) on the average thicknesses of Bacillus subtilis biofilm and on bacterial attachment on different surfaces were investigated. The binding mechanism of n-TiO 2 to the cell surface was also probed. The results revealed that n-TiO 2 caused biofilm dispersal and the thicknesses decreased by 2.0 to 2.6 μm after several hours of exposure. The attachment abilities of bacteria with extracellular polymeric substances (EPS) on hydrophilic surfaces were significantly reduced by 31% and 81% under 10 and 100 mg/liter of n-TiO 2 , respectively, whereas those of bacteria without EPS were significantly reduced by 43% and 87%, respectively. The attachment abilities of bacteria with and without EPS on hydrophobic surfaces were significantly reduced by 50% and 56%, respectively, under 100 mg/liter of n-TiO 2 The results demonstrated that biofilm dispersal can be attributed to the changes in the cell surface structure and the reduction of microbial attachment ability. IMPORTANCE Nanoparticles can penetrate into the outer layer of biofilm in a relatively short period and can bind onto EPS and bacterial surfaces. The current work probed the effects of nanosized TiO 2 (n-TiO 2 ) on biofilm thickness, bacterial migration, and surface properties of the cell in the early stage using the surface plasmon resonance waveguide mode. The results demonstrated that n-TiO 2 decreased the adhesive ability of both cell and EPS and induced bacterial migration and biofilm detachment in several hours. The decreased adhesive ability of microbes and EPS worked against microbial aggregation, reducing the effluent quality in the biological wastewater treatment process. Copyright © 2018 American Society for Microbiology.

  16. Micro-sized microbial fuel cell: a mini-review.

    PubMed

    Wang, Hsiang-Yu; Bernarda, Angela; Huang, Chih-Yung; Lee, Duu-Jong; Chang, Jo-Shu

    2011-01-01

    This review presents the development of micro-sized microbial fuel cells (including mL-scale and μL-scale setups), with summarization of their advantageous characteristics, fabrication methods, performances, potential applications and possible future directions. The performance of microbial fuel cells (MFCs) is affected by issues such as mass transport, reaction kinetics and ohmic resistance. These factors are manipulated in micro-sized MFCs using specially allocated electrodes constructed with specified materials having physically or chemically modified surfaces. Both two-chamber and air-breathing cathodes are promising configurations for mL-scale MFCs. However, most of the existing μL-scale MFCs generate significantly lower volumetric power density compared with their mL-counterparts because of the high internal resistance. Although μL-scale MFCs have not yet to provide sufficient power for operating conventional equipment, they show great potential in rapid screening of electrochemically microbes and electrode performance. Additional possible applications and future directions are also provided for the development of micro-sized MFCs. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Defects in intracellular trafficking of fungal cell wall synthases lead to aberrant host immune recognition.

    PubMed

    Esher, Shannon K; Ost, Kyla S; Kohlbrenner, Maria A; Pianalto, Kaila M; Telzrow, Calla L; Campuzano, Althea; Nichols, Connie B; Munro, Carol; Wormley, Floyd L; Alspaugh, J Andrew

    2018-06-01

    The human fungal pathogen, Cryptococcus neoformans, dramatically alters its cell wall, both in size and composition, upon entering the host. This cell wall remodeling is essential for host immune avoidance by this pathogen. In a genetic screen for mutants with changes in their cell wall, we identified a novel protein, Mar1, that controls cell wall organization and immune evasion. Through phenotypic studies of a loss-of-function strain, we have demonstrated that the mar1Δ mutant has an aberrant cell surface and a defect in polysaccharide capsule attachment, resulting in attenuated virulence. Furthermore, the mar1Δ mutant displays increased staining for exposed cell wall chitin and chitosan when the cells are grown in host-like tissue culture conditions. However, HPLC analysis of whole cell walls and RT-PCR analysis of cell wall synthase genes demonstrated that this increased chitin exposure is likely due to decreased levels of glucans and mannans in the outer cell wall layers. We observed that the Mar1 protein differentially localizes to cellular membranes in a condition dependent manner, and we have further shown that the mar1Δ mutant displays defects in intracellular trafficking, resulting in a mislocalization of the β-glucan synthase catalytic subunit, Fks1. These cell surface changes influence the host-pathogen interaction, resulting in increased macrophage activation to microbial challenge in vitro. We established that several host innate immune signaling proteins are required for the observed macrophage activation, including the Card9 and MyD88 adaptor proteins, as well as the Dectin-1 and TLR2 pattern recognition receptors. These studies explore novel mechanisms by which a microbial pathogen regulates its cell surface in response to the host, as well as how dysregulation of this adaptive response leads to defective immune avoidance.

  18. Extracting archaeal populations from iron oxidizing systems

    NASA Astrophysics Data System (ADS)

    Whitmore, L. M.; Hutchison, J.; Chrisler, W.; Jay, Z.; Moran, J.; Inskeep, W.; Kreuzer, H.

    2013-12-01

    Unique environments in Yellowstone National Park offer exceptional conditions for studying microorganisms in extreme and constrained systems. However, samples from some extreme systems often contain inorganic components that pose complications during microbial and molecular analysis. Several archaeal species are found in acidic, geothermal ferric-oxyhydroxide mats; these species have been shown to adhere to mineral surfaces in flocculated colonies. For optimal microbial analysis, (microscopy, flow cytometry, genomic extractions, proteomic analysis, stable isotope analysis, and others), improved techniques are needed to better facilitate cell detachment and separation from mineral surfaces. As a requirement, these techniques must preserve cell structure while simultaneously minimizing organic carryover to downstream analysis. Several methods have been developed for removing sediments from mixed prokaryotic populations, including ultra-centrifugation, nycodenz gradient, sucrose cushions, and cell straining. In this study we conduct a comparative analysis of mechanisms used to detach archaeal cell populations from the mineral interface. Specifically, we evaluated mechanical and chemical approaches for cell separation and homogenization. Methods were compared using confocal microscopy, flow cytometry analyses, and real-time PCR detection. The methodology and approaches identified will be used to optimize biomass collection from environmental specimens or isolates grown with solid phases.

  19. Bacteria-instructed synthesis of polymers for self-selective microbial binding and labelling

    PubMed Central

    Magennis, E. Peter; Fernandez-Trillo, Francisco; Sui, Cheng; Spain, Sebastian G.; Bradshaw, David; Churchley, David; Mantovani, Giuseppe; Winzer, Klaus; Alexander, Cameron

    2014-01-01

    The detection and inactivation of pathogenic strains of bacteria continues to be an important therapeutic goal. Hence, there is a need for materials that can bind selectively to specific microorganisms, for diagnostic or anti-infective applications, but which can be formed from simple and inexpensive building blocks. Here, we exploit bacterial redox systems to induce a copper-mediated radical polymerisation of synthetic monomers at cell surfaces, generating polymers in situ that bind strongly to the microorganisms which produced them. This ‘bacteria-instructed synthesis’ can be carried out with a variety of microbial strains, and we show that the polymers produced are self-selective binding agents for the ‘instructing’ cell types. We further expand on the bacterial redox chemistries to ‘click’ fluorescent reporters onto polymers directly at the surfaces of a range of clinical isolate strains, allowing rapid, facile and simultaneous binding and visualisation of pathogens. PMID:24813421

  20. Bacteria-instructed synthesis of polymers for self-selective microbial binding and labelling

    NASA Astrophysics Data System (ADS)

    Magennis, E. Peter; Fernandez-Trillo, Francisco; Sui, Cheng; Spain, Sebastian G.; Bradshaw, David J.; Churchley, David; Mantovani, Giuseppe; Winzer, Klaus; Alexander, Cameron

    2014-07-01

    The detection and inactivation of pathogenic strains of bacteria continues to be an important therapeutic goal. Hence, there is a need for materials that can bind selectively to specific microorganisms for diagnostic or anti-infective applications, but that can be formed from simple and inexpensive building blocks. Here, we exploit bacterial redox systems to induce a copper-mediated radical polymerization of synthetic monomers at cell surfaces, generating polymers in situ that bind strongly to the microorganisms that produced them. This ‘bacteria-instructed synthesis’ can be carried out with a variety of microbial strains, and we show that the polymers produced are self-selective binding agents for the ‘instructing’ cell types. We further expand on the bacterial redox chemistries to ‘click’ fluorescent reporters onto polymers directly at the surfaces of a range of clinical isolate strains, allowing rapid, facile and simultaneous binding and visualization of pathogens.

  1. Tofu wastewater treatment by sediment microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Rinaldi, W.; Abubakar; Rahmi, R. F.; Silmina

    2018-03-01

    This research aimed to measure power density generated by sediment microbial fuel cells (SMFCs) by varying anode position and wastewater concentration. Anode position was varied at 2 cm and 4 cm under the surface of sediment, while wastewater concentration varied into 25%, 50%, 75% and 100%. The electrodes employed was stainless steel mesh, while the organic subtrate source was taken from wastewater of soybean washing and boiling process. The sediment was taken from the Lamnyong River around the outlet of tofu industry wastewater. SMFCs was run until the power density was relatively small. The produced electricity represented in power density. The results of this research showed that power density was decreased over time. Generated power density by varying 2 cm and 4 cm position of anode under the sediment surface was not significantly different, while the lowest wastewater concentration, 25%, gave the highest power density.

  2. Preservation in microbial mats: mineralization by a talc-like phase of a fish embedded in a microbial sarcophagus

    NASA Astrophysics Data System (ADS)

    Iniesto, Miguel; Zeyen, Nina; López-Archilla, Ana; Bernard, Sylvain; Buscalioni, Ángela; Guerrero, M. Carmen; Benzerara, Karim

    2015-09-01

    Microbial mats have been repeatedly suggested to promote early fossilization of macroorganisms. Yet, experimental simulations of this process remain scarce. Here, we report results of 5 year-long experiments performed onfish carcasses to document the influence of microbial mats on mineral precipitation during early fossilization. Carcasses were initially placed on top of microbial mats. After two weeks, fishes became coated by the mats forming a compact sarcophagus, which modified the microenvironment close to the corpses. Our results showed that these conditions favoured the precipitation of a poorly crystalline silicate phase rich in magnesium. This talc-like mineral phase has been detected in three different locations within the carcasses placed in microbial mats for more than 4 years: 1) within inner tissues, colonized by several bacillary cells; 2) at the surface of bones of the upper face of the corpse buried in the mat; and 3) at the surface of several bones such as the dorsal fin which appeared to be gradually replaced by the Mg-silicate phase. This mineral phase has been previously shown to promote bacteria fossilization. Here we provide first experimental evidence that such Mg-rich phase can also be involved in exceptional preservation of animals.

  3. Persistent Hydrogen Production by the Photo-Assisted Microbial Electrolysis Cell Using a p-Type Polyaniline Nanofiber Cathode.

    PubMed

    Jeon, Yongwon; Kim, Sunghyun

    2016-12-08

    A microbial electrolysis cell, though considered as a promising, environmentally friendly technology for hydrogen production, suffers from concomitant production of methane. The high hydrogen/methane ratio at the initial operation stage decreases with time. Here we report for the first time the photoassisted microbial electrolysis cell (MEC) for persistent hydrogen production using polyaniline nanofibers as a cathode. Under 0.8 V external bias and laboratory fluorescent light illumination in a single-chamber MEC, continuous hydrogen production from acetate at a rate of 1.78 mH2 3  m -3  d -1 with 79.2 % overall hydrogen recovery was achieved with negligible methane formation for six months. Energy efficiencies based on input electricity as well as input electricity plus substrate were 182 and 66.2 %, respectively. This was attributed to the p-type-semiconductor characteristics of polyaniline nanofibers in which photoexcited electrons are used to reduce protons at the surface and holes are reduced with electrons originating from acetate oxidation at the anode. This method can be extended to microbial wastewater treatment for hydrogen production. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Characterization of microbial current production as a function of microbe-electrode-interaction.

    PubMed

    Dolch, Kerstin; Danzer, Joana; Kabbeck, Tobias; Bierer, Benedikt; Erben, Johannes; Förster, Andreas H; Maisch, Jan; Nick, Peter; Kerzenmacher, Sven; Gescher, Johannes

    2014-04-01

    Microbe-electrode-interactions are keys for microbial fuel cell technology. Nevertheless, standard measurement routines to analyze the interplay of microbial physiology and material characteristics have not been introduced yet. In this study, graphite anodes with varying surface properties were evaluated using pure cultures of Shewanella oneidensis and Geobacter sulfurreducens, as well as defined and undefined mixed cultures. The evaluation routine consisted of a galvanostatic period, a current sweep and an evaluation of population density. The results show that surface area correlates only to a certain extent with population density and anode performance. Furthermore, the study highlights a strain-specific microbe-electrode-interaction, which is affected by the introduction of another microorganism. Moreover, evidence is provided for the possibility of translating results from pure culture to undefined mixed species experiments. This is the first study on microbe-electrode-interaction that systematically integrates and compares electrochemical and biological data. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Effects of Bacillus subtilis endospore surface reactivity on the rate of forsterite dissolution

    NASA Astrophysics Data System (ADS)

    Harrold, Z.; Gorman-Lewis, D.

    2013-12-01

    Primary mineral dissolution products, such as silica (Si), calcium (Ca) and magnesium (Mg), play an important role in numerous biologic and geochemical cycles including microbial metabolism, plant growth and secondary mineral precipitation. The flux of these and other dissolution products into the environment is largely controlled by the rate of primary silicate mineral dissolution. Bacteria, a ubiquitous component in water-rock systems, are known to facilitate mineral dissolution and may play a substantial role in determining the overall flux of dissolution products into the environment. Bacterial cell walls are complex and highly reactive organic surfaces that can affect mineral dissolution rates directly through microbe-mineral adsorption or indirectly by complexing dissolution products. The effect of bacterial surface adsorption on chemical weathering rates may even outweigh the influence of active processes in environments where a high proportion of cells are metabolically dormant or cell metabolism is slow. Complications associated with eliminating or accounting for ongoing metabolic processes in long-term dissolution studies have made it challenging to isolate the influence of cell wall interactions on mineral dissolution rates. We utilized Bacillus subtilis endospores, a robust and metabolically dormant cell type, to isolate and quantify the effects of bacterial surface reactivity on forsterite (Mg2SiO4) dissolution rates. We measured the influence of both direct and indirect microbe-mineral interactions on forsterite dissolution. Indirect pathways were isolated using dialysis tubing to prevent mineral-microbe contact while allowing free exchange of dissolved mineral products and endospore-ion adsorption. Homogenous experimental assays allowed both direct microbe-mineral and indirect microbe-ion interactions to affect forsterite dissolution rates. Dissolution rates were calculated based on silica concentrations and zero-order dissolution kinetics. Additional analyses including Mg concentrations, microprobe and BET analyses support mineral dissolution rate calculations and stoichiometry considerations. All experimental assays containing endospores show increased forsterite dissolution rates relative to abiotic controls. Forsterite dissolution rates increased by approximately one order of magnitude in dialysis bound, biotic experiments relative to abiotic assays. Homogenous biotic assays exhibited a more complex dissolution rate profile that changes over time. All microbially mediated forsterite dissolution rates returned to abiotic control rates after 10 to 15 days of incubation. This shift in dissolution rate likely corresponds to maximum endospore surface adsorption capacity. The Bacillus subtilis endospore surface serves as a first-order proxy for studying the effect of metabolizing microbe surfaces on silicate dissolution rates. Comparisons with published abiotic, microbial, and organic acid mediated forsterite dissolution rates will provide insight on the importance of bacterial surfaces in primary mineral dissolution processes.

  6. Vertical redox profiles in treatment wetlands as function of hydraulic regime and macrophytes presence: surveying the optimal scenario for microbial fuel cell implementation.

    PubMed

    Corbella, Clara; Garfí, Marianna; Puigagut, Jaume

    2014-02-01

    Sediment microbial fuel cell (sMFC) represents a variation of the typical configuration of a MFC in which energy can be harvested via naturally occurring electropotential differences. Moreover, constructed wetlands show marked redox gradients along the depth which could be exploited for energy production via sMFC. In spite of the potential application of sMFC to constructed wetlands, there is almost no published work on the topic. The main objective of the present work was to define the best operational and design conditions of sub-surface flow constructed wetlands (SSF CWs) under which energy production with microbial fuel cells (MFCs) would be maximized. To this aim, a pilot plant based on SSF CW treating domestic sewage was operated during six months. Redox gradients along the depth of SSF CWs were determined as function of hydraulic regime (continuous vs discontinuous) and the presence of macrophytes in two sampling campaigns (after three and six months of plant operation). Redox potential (EH) within the wetlands was analysed at 5, 15 and 25 cm. Results obtained indicated that the maximum redox gradient was between the surface and the bottom of the bed for continuous planted wetlands (407.7 ± 73.8 mV) and, to a lesser extent, between the surface and the middle part of the wetland (356.5 ± 76.7 mV). Finally, the maximum redox gradients obtained for planted wetlands operated under continuous flow regime would lead to a power production of about 16 mW/m(2). © 2013.

  7. In situ formation of graphene layers on graphite surfaces for efficient anodes of microbial fuel cells.

    PubMed

    Tang, Jiahuan; Chen, Shanshan; Yuan, Yong; Cai, Xixi; Zhou, Shungui

    2015-09-15

    Graphene can be used to improve the performance of the anode in a microbial fuel cell (MFC) due to its good biocompatibility, high electrical conductivity and large surface area. However, the chemical production and modification of the graphene on the anode are environmentally hazardous because of the use of various harmful chemicals. This study reports a novel method based on the electrochemical exfoliation of a graphite plate (GP) for the in situ formation of graphene layers on the surface of a graphite electrode. When the resultant graphene-layer-based graphite plate electrode (GL/GP) was used as an anode in an MFC, a maximum power density of 0.67 ± 0.034 W/m(2) was achieved. This value corresponds to 1.72-, 1.56- and 1.26-times the maximum power densities of the original GP, exfoliated-graphene-modified GP (EG/GP) and chemically-reduced-graphene-modified GP (rGO/GP) anodes, respectively. Electrochemical measurements revealed that the high performance of the GL/GP anode was attributable to its macroporous structure, improved electron transfer and high electrochemical capacitance. The results demonstrated that the proposed method is a facile and environmentally friendly synthesis technique for the fabrication of high-performance graphene-based electrodes for use in microbial energy harvesting. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Inhibition of microbial growth on air cathodes of single chamber microbial fuel cells by incorporating enrofloxacin into the catalyst layer.

    PubMed

    Liu, Weifeng; Cheng, Shaoan; Sun, Dan; Huang, Haobin; Chen, Jie; Cen, Kefa

    2015-10-15

    The inevitable growth of aerobic bacteria on the surface of air cathodes is an important factor reducing the performance stability of air cathode single-chamber membrane-free microbial fuel cells (MFCs). Thus searching for effective methods to inhibit the cathodic microbial growth is critical for the practical application of MFCs. In this study, enrofloxacin (ENR), a broad spectrum fluoroquinolone antibiotic, was incorporated into the catalyst layer of activated carbon air cathodes (ACACs) to inhibit the cathodic microbial growth. The biomass content on ACACs was substantially reduced by 60.2% with ENR treatment after 91 days of MFCs operation. As a result of the inhibited microbial growth, the oxygen reduction catalytic performance of the ENR treated ACACs was much stable compared to the fast performance decline of the untreated control. Consequently, a quite stable electricity production was obtained for the MFCs with the ENR treated ACACs, in contrast with a 22.5% decrease in maximum power density of the MFCs with the untreated cathode. ENR treatment of ACACs showed minimal effects on the anode performance. These results indicate that incorporating antibiotics into ACACs should be a simple and effective strategy to inhibit the microbial growth and improve the long-term stability of the performance of air cathode and the electricity production of MFCs. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Microbial fuel cells applied to the metabolically based detection of extraterrestrial life.

    PubMed

    Abrevaya, Ximena C; Mauas, Pablo J D; Cortón, Eduardo

    2010-12-01

    Since the 1970s, when the Viking spacecrafts carried out experiments to detect microbial metabolism on the surface of Mars, the search for nonspecific methods to detect life in situ has been one of the goals of astrobiology. It is usually required that a methodology detect life independently from its composition or form and that the chosen biological signature point to a feature common to all living systems, such as the presence of metabolism. In this paper, we evaluate the use of microbial fuel cells (MFCs) for the detection of microbial life in situ. MFCs are electrochemical devices originally developed as power electrical sources and can be described as fuel cells in which the anode is submerged in a medium that contains microorganisms. These microorganisms, as part of their metabolic process, oxidize organic material, releasing electrons that contribute to the electric current, which is therefore proportional to metabolic and other redox processes. We show that power and current density values measured in MFCs that use microorganism cultures or soil samples in the anode are much larger than those obtained with a medium free of microorganisms or sterilized soil samples, respectively. In particular, we found that this is true for extremophiles, which have been proposed as potential inhabitants of extraterrestrial environments. Therefore, our results show that MFCs have the potential to be used for in situ detection of microbial life.

  10. A Versatile Strategy for Characterization and Imaging of Drip Flow Microbial Biofilms.

    PubMed

    Li, Bin; Dunham, Sage J B; Ellis, Joseph F; Lange, Justin D; Smith, Justin R; Yang, Ning; King, Travis L; Amaya, Kensey R; Arnett, Clint M; Sweedler, Jonathan V

    2018-06-05

    The inherent architectural and chemical complexities of microbial biofilms mask our understanding of how these communities form, survive, propagate, and influence their surrounding environment. Here we describe a simple and versatile workflow for the cultivation and characterization of model flow-cell-based microbial ecosystems. A customized low-shear drip flow reactor was designed and employed to cultivate single and coculture flow-cell biofilms at the air-liquid interface of several metal surfaces. Pseudomonas putida F1 and Shewanella oneidensis MR-1 were selected as model organisms for this study. The utility and versatility of this platform was demonstrated via the application of several chemical and morphological imaging techniques-including matrix-assisted laser desorption/ionization mass spectrometry imaging, secondary ion mass spectrometry imaging, and scanning electron microscopy-and through the examination of model systems grown on iron substrates of varying compositions. Implementation of these techniques in combination with tandem mass spectrometry and a two-step imaging principal component analysis strategy resulted in the identification and characterization of 23 lipids and 3 oligosaccharides in P. putida F1 biofilms, the discovery of interaction-specific analytes, and the observation of several variations in cell and substrate morphology present during microbially influenced corrosion. The presented workflow is well-suited for examination of both single and multispecies drip flow biofilms and offers a platform for fundamental inquiries into biofilm formation, microbe-microbe interactions, and microbially influenced corrosion.

  11. Microbial Fuel Cells Applied to the Metabolically Based Detection of Extraterrestrial Life

    NASA Astrophysics Data System (ADS)

    Abrevaya, Ximena C.; Mauas, Pablo J. D.; Cortón, Eduardo

    2010-12-01

    Since the 1970s, when the Viking spacecrafts carried out experiments to detect microbial metabolism on the surface of Mars, the search for nonspecific methods to detect life in situ has been one of the goals of astrobiology. It is usually required that a methodology detect life independently from its composition or form and that the chosen biological signature point to a feature common to all living systems, such as the presence of metabolism. In this paper, we evaluate the use of microbial fuel cells (MFCs) for the detection of microbial life in situ. MFCs are electrochemical devices originally developed as power electrical sources and can be described as fuel cells in which the anode is submerged in a medium that contains microorganisms. These microorganisms, as part of their metabolic process, oxidize organic material, releasing electrons that contribute to the electric current, which is therefore proportional to metabolic and other redox processes. We show that power and current density values measured in MFCs that use microorganism cultures or soil samples in the anode are much larger than those obtained with a medium free of microorganisms or sterilized soil samples, respectively. In particular, we found that this is true for extremophiles, which have been proposed as potential inhabitants of extraterrestrial environments. Therefore, our results show that MFCs have the potential to be used for in situ detection of microbial life.

  12. Nanoporous Mo2C functionalized 3D carbon architecture anode for boosting flavins mediated interfacial bioelectrocatalysis in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Zou, Long; Lu, Zhisong; Huang, Yunhong; Long, Zhong-er; Qiao, Yan

    2017-08-01

    An efficient microbial electrocatalysis in microbial fuel cells (MFCs) needs both high loading of microbes (biocatalysts) and robust interfacial electron transfer from microbes to electrode. Herein a nanoporous molybdenum carbide (Mo2C) functionalized carbon felt electrode with rich 3D hierarchical porous architecture is applied as MFC anode to achieve superior electrocatalytic performance. The nanoporous Mo2C functionalized anode exhibits strikingly improved microbial electrocatalysis in MFCs with 5-fold higher power density and long-term stability of electricity production. The great enhancement is attributed to the introduction of rough Mo2C nanostructural interface into macroporous carbon architecture for promoting microbial growth with great excretion of endogenous electron shuttles (flavins) and rich available nanopores for enlarging electrochemically active surface area. Importantly, the nanoporous Mo2C functionalized anode is revealed for the first time to have unique electrocatalytic activity towards redox reaction of flavins with more negative redox potential, indicating a more favourable thermodynamic driving force for anodic electron transfer. This work not only provides a promising electrode for high performance MFCs but also brings up a new insight into the effect of nanostructured materials on interfacial bioelectrocatalysis.

  13. The nanostructure of microbially-reduced graphene oxide fosters thick and highly-performing electrochemically-active biofilms

    NASA Astrophysics Data System (ADS)

    Virdis, Bernardino; Dennis, Paul G.

    2017-07-01

    Biofilms of electrochemically-active organisms are used in microbial electrochemical technologies (METs) to catalyze bioreactions otherwise not possible at bare electrodes. At present, however, achievable current outputs are still below levels considered sufficient for economic viability of large-scale METs implementations. Here, we report three-dimensional, self-aggregating biofilm composites comprising of microbial cells embedded with microbially-reduced graphene oxide (rGO) nanoparticles to form a thick macro-porous network with superior electrochemical properties. In the presence of metabolic substrate, these hybrid biofilms are capable of producing up to five times more catalytic current than the control biofilms. Cyclic voltammetry, linear sweep voltammetry, and electrochemical impedance spectroscopy, show that in spite of the increased thickness, the biofilms amended with GO display lower polarization/charge transfer resistance compared to the controls, which we ascribe to the incorporation of rGO into the biofilms, which (1) promotes fast electron transfer, yet conserving a macroporous structure that allows free diffusion of reactants and products, and (2) enhances the interfacial dynamics by allowing a higher load of microbial cells per electrode surface area. These results suggest an easy-to-apply and cost-effective method to produce high-performing electrochemically-active biofilms in situ.

  14. A study of microbial communities on terracotta separator and on biocathode of air breathing microbial fuel cells.

    PubMed

    Rago, Laura; Zecchin, Sarah; Marzorati, Stefania; Goglio, Andrea; Cavalca, Lucia; Cristiani, Pierangela; Schievano, Andrea

    2018-04-01

    Recently, terracotta has attracted interest as low-cost and biocompatible material to build separators in microbial fuel cells (MFCs). However, the influence of a non-conductive material like terracotta on electroactive microbiological communities remains substantially unexplored. This study aims at describing the microbial pools developed from two different seed inocula (bovine and swine sewage) in terracotta-based air-breathing MFC. A statistical approach on microbiological data confirmed different community enrichment in the MFCs, depending mainly on the inoculum. Terracotta separators impeded the growth of electroactive communities in contact with cathodes (biocathodes), while a thick biofilm was observed on the surface (anolyte-side) of the terracotta separator. Terracotta-free MFCs, set as control experiments, showed a well-developed biocathode, Biocathode-MFCs resulted in 4 to 6-fold higher power densities. All biofilms were analyzed by high-throughput Illumina sequencing applied to 16S rRNA gene. The results showed more abundant (3- to 5-fold) electroactive genera (mainly Geobacter, Pseudomonas, Desulfuromonas and Clostridia MBA03) in terracotta-free biocathodes. Nevertheless, terracotta separators induced only slight changes in anodic microbial communities. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Improved Flotation Technique for Microscopy of In Situ Soil and Sediment Microorganisms

    PubMed Central

    Bone, T. L.; Balkwill, D. L.

    1986-01-01

    An improved flotation method for microscopy of in situ soil and sediment microorganisms was developed. Microbial cells were released into gellike flotation films that were stripped from soil and sediment aggregates as these aggregates were submerged in 0.5% solutions of polyvinylpyrrolidone. The use of polyvinylpyrrolidone solutions instead of water facilitated the release of films from saturated samples such as aquifer sediments as well as from typical surface soils. In situ microbial morphological characteristics could then be surveyed rapidly by light microscopy of films stained with acridine orange. This method effectively determined the ranges of morphological diversity in a variety of sample types. It also detected microcolonies and other spatial relationships among microbial cells. Only a small fraction (3.4 to 10.1%) of the microflora was released into the flotation films, but plating and direct evaluations by microscopy showed that this fraction was representative of the total population. Images PMID:16347005

  16. The microbe electric: conversion of organic matter to electricity.

    PubMed

    Lovley, Derek R

    2008-12-01

    Broad application of microbial fuel cells will require substantial increases in current density. A better understanding of the microbiology of these systems may help. Recent studies have greatly expanded the range of microorganisms known to function either as electrode-reducing microorganisms at the anode or as electrode-oxidizing microorganisms at the cathode. Microorganisms that can completely oxidize organic compounds with an electrode serving as the sole electron acceptor are expected to be the primary contributors to power production. Several mechanisms for electron transfer to anodes have been proposed including: direct electron transfer via outer-surface c-type cytochromes, long-range electron transfer via microbial nanowires, electron flow through a conductive biofilm matrix containing cytochromes, and soluble electron shuttles. Which mechanisms are most important depend on the microorganisms and the thickness of the anode biofilm. Emerging systems biology approaches to the study, design, and evolution of microorganisms interacting with electrodes are expected to contribute to improved microbial fuel cells.

  17. Algae Drive Enhanced Darkening of Bare Ice on the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Stibal, Marek; Box, Jason E.; Cameron, Karen A.; Langen, Peter L.; Yallop, Marian L.; Mottram, Ruth H.; Khan, Alia L.; Molotch, Noah P.; Chrismas, Nathan A. M.; Calı Quaglia, Filippo; Remias, Daniel; Smeets, C. J. P. Paul; van den Broeke, Michiel R.; Ryan, Jonathan C.; Hubbard, Alun; Tranter, Martyn; van As, Dirk; Ahlstrøm, Andreas P.

    2017-11-01

    Surface ablation of the Greenland ice sheet is amplified by surface darkening caused by light-absorbing impurities such as mineral dust, black carbon, and pigmented microbial cells. We present the first quantitative assessment of the microbial contribution to the ice sheet surface darkening, based on field measurements of surface reflectance and concentrations of light-absorbing impurities, including pigmented algae, during the 2014 melt season in the southwestern part of the ice sheet. The impact of algae on bare ice darkening in the study area was greater than that of nonalgal impurities and yielded a net albedo reduction of 0.038 ± 0.0035 for each algal population doubling. We argue that algal growth is a crucial control of bare ice darkening, and incorporating the algal darkening effect will improve mass balance and sea level projections of the Greenland ice sheet and ice masses elsewhere.

  18. Using Deep UV Raman Spectroscopy to Identify In Situ Microbial Activity

    NASA Astrophysics Data System (ADS)

    Sapers, H. M.; Wanger, G.; Amend, J.; Orphan, V. J.; Bhartia, R.

    2017-12-01

    Microbial communities living in close association with lithic substrates play a critical role in biogeochemical cycles. Understanding the interactions between microorganisms and their abiotic substrates requires knowledge of microbial activity. Identifying active cells adhered to complex environmental substrates, especially in low biomass systems, remains a challenge. Stable isotope probing (SIP) provides a means to trace microbial activity in environmental systems. Active members of the community take up labeled substrates and incorporate the labels into biomolecules that can be detected through downstream analyses. Here we show for the first time that Deep UV (248 nm) Raman spectroscopy can differentiate microbial cells labeled with stable isotopes. Previous studies have used Raman spectroscopy with a 532 nm source to identify active bacterial cells by measuring a Raman shift between peaks corresponding to amino acids incorporating 13C compared to controls. However, excitation at 532 nm precludes detection on complex substrates due to high autofluorescence of native minerals. Excitation in the DUV range offers non-destructive imaging on mineral surfaces - retaining critical contextual information. We prepared cultures of E. coli grown in 50 atom% 13C glucose spotted onto Al wafers to test the ability of DUV Raman spectroscopy to differentiate labeled and unlabeled cells. For the first time, we are able to demonstrate a distinct and repeatable shift between cells grown in labeled media and unlabeled media when imaged on Al wafers with DUV Raman spectroscopy. The Raman spectra are dominated by the characteristic Raman bands of guanine. The dominant marker peak for guanine attributed to N7-C8 and C8-N9 ring stretching and C8-H in-plane bending, is visible at 1480 cm-1 in the unlabeled cells and is blue-shifted by 20 wavenumbers to 1461 cm-1 in the labeled cells. The ability of DUV Raman to effectively identify regions containing cells that have incorporated isotopic labels will allow in situ detection of metabolically-targeted active community members on complex natural substrates providing a crucial link between microbial activity and environmental context.

  19. Snow surface microbiome on the High Antarctic Plateau (DOME C).

    PubMed

    Michaud, Luigi; Lo Giudice, Angelina; Mysara, Mohamed; Monsieurs, Pieter; Raffa, Carmela; Leys, Natalie; Amalfitano, Stefano; Van Houdt, Rob

    2014-01-01

    The cryosphere is an integral part of the global climate system and one of the major habitable ecosystems of Earth's biosphere. These permanently frozen environments harbor diverse, viable and metabolically active microbial populations that represent almost all the major phylogenetic groups. In this study, we investigated the microbial diversity in the surface snow surrounding the Concordia Research Station on the High Antarctic Plateau through a polyphasic approach, including direct prokaryotic quantification by flow cytometry and catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH), and phylogenetic identification by 16S RNA gene clone library sequencing and 454 16S amplicon pyrosequencing. Although the microbial abundance was low (<10(3) cells/ml of snowmelt), concordant results were obtained with the different techniques. The microbial community was mainly composed of members of the Alpha-proteobacteria class (e.g. Kiloniellaceae and Rhodobacteraceae), which is one of the most well-represented bacterial groups in marine habitats, Bacteroidetes (e.g. Cryomorphaceae and Flavobacteriaceae) and Cyanobacteria. Based on our results, polar microorganisms could not only be considered as deposited airborne particles, but as an active component of the snowpack ecology of the High Antarctic Plateau.

  20. Microbiological test results using three urine pretreatment regimes with 316L stainless steel

    NASA Technical Reports Server (NTRS)

    Huff, Timothy L.

    1993-01-01

    Three urine pretreatments, (1) Oxone (Dupont) and sulfuric acid, (2) sodium hypochlorite and sulfuric acid, (3) and ozone, were studied for their ability to reduce microbial levels in urine and minimize surface attachment to 316L stainless steel coupons. Urine samples inoculated with Bacillus insolitus and a filamentous mold, organisms previously recovered from the vapor compression distillation subsystem of NASA Space Station Freedom water recovery test were tested in glass corrosion cells containing base or weld metal coupons. Microbial levels, changes in pH, color, turbidity, and odor of the fluid were monitored over the course of the 21-day test. Specimen surfaces were examined by scanning electron microscopy at completion of the test for microbial attachment. Ozonated urine samples were less turbid and had lower microbial levels than controls or samples receiving other pretreatments. Base metal coupons receiving pretreatment were relatively free of attached bacteria. However, well-developed biofilms were found in the heat-affected regions of welded coupons receiving Oxone and hypochlorite pretreatments. Few bacteria were observed in the same regions of the ozone pretreatment sample.

  1. [Advances in microbial solar cells--A review].

    PubMed

    Guo, Xiaoyun; Yu, Changping; Zheng, Tianling

    2015-08-04

    The energy crisis has become one of the major problems hindering the development of the world. The emergence of microbial fuel cells provides a new solution to the energy crisis. Microbial solar cells, integrating photosynthetic organisms such as plants and microalgae into microbial fuel cells, can convert solar energy into electrical energy. Microbial solar cell has steady electric energy, and broad application prospects in wastewater treatment, biodiesel processing and intermediate metabolites production. Here we reviewed recent progress of microbial solar cells from the perspective of the role of photosynthetic organisms in microbial fuel cells, based on a vast amount of literature, and discussed their advantages and deficiency. At last, brief analysis of the facing problems and research needs of microbial fuel cells are undertaken. This work was expected to be beneficial for the application of the microbial solar cells technology.

  2. Surface-oxidized cobalt phosphide used as high efficient electrocatalyst in activated carbon air-cathode microbial fuel cell

    NASA Astrophysics Data System (ADS)

    Yang, Tingting; Wang, Zhong; Li, Kexun; Liu, Yi; Liu, Di; Wang, Junjie

    2017-09-01

    Herein, we report a simplistic method to fabricate the surface-oxidized cobalt phosphide (CoP) nanocrystals (NCs), which is used as electrocatalyst for oxygen reduction reaction (ORR) in microbial fuel cell (MFC) for the first time. The corallite-like CoP NCs are successfully prepared by a hydrothermal reaction following a phosphating treatment in N2 atmosphere. When used as an ORR catalyst, cobalt phosphide shows comparable onset potential, inferior resistance, as well as a small Tafel slope with long-term stability in neutral media. The maximum power density of MFC embellished with 10% CoP reached 1914.4 ± 59.7 mW m-2, which is 108.5% higher than the control. The four-electron pathway, observed by the RDE, plays a crucial role in electrochemical catalytic activity. In addition, material characterizations indicate that the surface oxide layer (CoOx) around the metallic CoP core is important and beneficial for ORR. Accordingly, it can be expected that the as-synthesized CoP will be a promising candidate of the non-precious metal ORR electrocatalysts for electrochemical energy applications.

  3. Electron harvest and treatment of amendment free municipal wastewater using microbial anodes: A case study

    NASA Astrophysics Data System (ADS)

    Rosa, Luis F. M.; Koch, Christin; Korth, Benjamin; Harnisch, Falk

    2017-07-01

    Microbial electrochemical technologies (METs) and especially microbial fuel cells (MFCs) are considered to allow energy harvest from the fuel wastewater during its treatment. However, the majority of studies use either "artificial" wastewater, amended wastewater, (i.e. with addition of chemicals), or pre-enriched microbial anodes. As these strategies might not be transferable to large scale, this study uses exclusively amendment free municipal wastewater as inoculum and sole carbon and energy source. It is shown that electrons can be harvested, at maximum current densities of 0.01 mA cm-2. In weekly cycles using batch systems (with 90 cm2 L-1 anode surface) only a minor fraction (<10%) of the available charge from COD-removal was turned into electricity by a highly diverse anodic microbial community. This performance is below those achieved by pre-enriched anodes or in amended wastewater studies, illustrating the need for more fundamental, application relevant studies.

  4. Electron transfer from a solid-state electrode assisted by methyl viologen sustains efficient microbial reductive dechlorination of TCE.

    PubMed

    Aulenta, Federico; Catervi, Alessandro; Majone, Mauro; Panero, Stefania; Reale, Priscilla; Rossetti, Simona

    2007-04-01

    The ability to transfer electrons, via an extracellular path, to solid surfaces is typically exploited by microorganisms which use insoluble electron acceptors, such as iron-or manganese-oxides or inert electrodes in microbial fuel cells. The reverse process, i.e., the use of solid surfaces or electrodes as electron donors in microbial respirations, although largely unexplored, could potentially have important environmental applications, particularly for the removal of oxidized pollutants from contaminated groundwater or waste streams. Here we show, for the first time, that an electrochemical cell with a solid-state electrode polarized at -500 mV (vs standard hydrogen electrode), in combination with a low-potential redox mediator (methyl viologen), can efficiently transfer electrochemical reducing equivalents to microorganisms which respire using chlorinated solvents. By this approach, the reductive transformation of trichloroethene, a toxic yet common groundwater contaminant, to harmless end-products such as ethene and ethane could be performed. Furthermore, using a methyl-viologen-modified electrode we could even demonstrate that dechlorinating bacteria were able to accept reducing equivalents directly from the modified electrode surface. The innovative concept, based on the stimulation of dechlorination reactions through the use of solid-state electrodes (we propose for this process the acronym BEARD: Bio-Electrochemically Assisted Reductive Dechlorination), holds promise for in situ bioremediation of chlorinated-solvent-contaminated groundwater, and has several potential advantages over traditional approaches based on the subsurface injection of organic compounds. The results of this study raise the possibility that immobilization of selected redox mediators may be a general strategy for stimulating and controlling a range of microbial reactions using insoluble electrodes as electron donors.

  5. Alaskan Arctic Soils: Relationship between Microbial Carbon Usage and Soil Composition

    NASA Astrophysics Data System (ADS)

    Li, H.; Ziolkowski, L. A.

    2015-12-01

    Carbon stored in Arctic permafrost carbon is sensitive to climate change. Microbes are known to degrade Arctic soil organic carbon (OC) and potentially release vast quantitates of CO2 and CH4. Previously, it has been shown that warming of Arctic soils leads to microbes respiring older carbon. To examine this process, we studied the microbial carbon usage and its relationship to the soil OC composition in active layer soils at five locations along a latitudinal transect on the North Slope of Alaska using the compound specific radiocarbon signatures of the viable microbial community using phospholipid fatty acids (PLFA). Additional geochemical parameters (C/N, 13C, 15N and 14C) of bulk soils were measured. Overall there was a greater change with depth than location. Organic rich surface soils are rich in vegetation and have high PLFA based cell densities, while deeper in the active layer geochemical parameters indicated soil OC was degraded and cell densities decreased. As expected, PLFA indicative of Fungi and Protozoa species dominated in surface soils, methyl-branched PLFAs, indicative of bacterial origin, increased in deeper in the active layer. A group of previously unreported PLFAs, believed to correlate to anaerobic microbes, increased at the transition between the surface and deep microbial communities. Cluster analysis based on individual PLFAs of samples confirmed compositional differences as a function of depth dominated with no site to site differences. Radiocarbon data of soil OC and PLFA show the preferential consumption of younger soil OC by microbes at all sites and older OC being eaten in deep soils. However, in deeper soil, where the C/N ratio suggests lower bioavailability, less soil OC was incorporated into the microbes as indicating by greater differences between bulk and PLFA radiocarbon ages.

  6. High hydrostatic pressure inactivation of Lactobacillus plantarum cells in (O/W)-emulsions is independent from cell surface hydrophobicity and lipid phase parameters

    NASA Astrophysics Data System (ADS)

    Kafka, T. A.; Reitermayer, D.; Lenz, C. A.; Vogel, R. F.

    2017-07-01

    Inactivation efficiency of high hydrostatic pressure (HHP) processing of food is strongly affected by food matrix composition. We investigated effects of fat on HHP inactivation of spoilage-associated Lactobacillus (L.) plantarum strains using defined oil-in-water (O/W)-emulsion model systems. Since fat-mediated effects on HHP inactivation could be dependent on interactions between lipid phase and microbial cells, three major factors possibly influencing such interactions were considered, that is, cell surface hydrophobicity, presence and type of surfactants, and oil droplet size. Pressure tolerance varied noticeably among L. plantarum strains and was independent of cell surface hydrophobicity. We showed that HHP inactivation of all strains tended to be more effective in presence of fat. The observation in both, surfactant-stabilized and surfactant-free (O/W)-emulsion, indicates that cell surface hydrophobicity is no intrinsic pressure resistance factor. In contrast to the presence of fat per se, surfactant type and oil droplet size did not affect inactivation efficiency.

  7. Understanding the role of clay minerals in the chromium(VI) bioremoval by Pseudomonas aeruginosa CCTCC AB93066 under growth condition: microscopic, spectroscopic and kinetic analysis.

    PubMed

    Kang, Chunxi; Wu, Pingxiao; Li, Yuewu; Ruan, Bo; Li, Liping; Tran, Lytuong; Zhu, Nengwu; Dang, Zhi

    2015-11-01

    Laboratory batch experiments were conducted to investigate the role of clay minerals, e.g., kaolinite and vermiculite, in microbial Cr(VI) reduction by Pseudomonas aeruginosa under growth condition in glucose-amended mediums as a method for treating Cr(VI)-contaminated subsurface environment such as soil. Our results indicated that glucose could acted as an essential electron donor, and clay minerals significantly enhanced microbial Cr(VI) reduction rates by improving the consumption rate of glucose and stimulating the growth and propagation of P. aeruginosa. Cr(VI) bioreduction by both free cells and clay minerals-amended cells followed the pseudo-first-order kinetic model, with the latter one fitting better. The mass balance analyses and X-ray photoelectron spectroscopy analysis found that Cr(VI) was reduced to Cr(III) and the adsorption of total chromium on clay minerals-bacteria complex was small, implying that Cr(VI) bioremoval was not mainly due to the adsorption of Cr(VI) onto cells or clay minerals or clay minerals-cells complex but mainly due to the Cr(VI) reduction capacity of P. aeruginosa under the experimental conditions studied (e.g., pH 7). Atomic force microscopy revealed that the addition of clay minerals (e.g. vermiculite) decreased the surface roughness of Cr(VI)-laden cells and changed the cell morphology and dimension. Fourier transform infrared spectroscopy revealed that organic matters such as aliphatic species and/or proteins played an important role in the combination of cells and clay minerals. Scanning electron microscopy confirmed the attachment of cells on the surface of clay minerals, indicating that clay minerals could provide a microenvironment to protect cells from Cr(VI) toxicity and serve as growth-supporting materials. These findings manifested the underlying influence of clay minerals on microbial reduction of Cr(VI) and gave an understanding of the interaction between pollutants, the environment and the biota.

  8. Effect of electrode sub-micron surface feature size on current generation of Shewanella oneidensis in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Ye, Zhou; Ellis, Michael W.; Nain, Amrinder S.; Behkam, Bahareh

    2017-04-01

    Microbial fuel cells (MFCs) are envisioned to serve as compact and sustainable sources of energy; however, low current and power density have hindered their widespread use. Introduction of 3D micro/nanostructures on the MFC anode is known to improve its performance by increasing the surface area available for bacteria attachment; however, the role of the feature size remains poorly understood. To delineate the role of feature size from the ensuing surface area increase, nanostructures with feature heights of 115 nm and 300 nm, both at a height to width aspect ratio of 0.3, are fabricated in a grid pattern on glassy carbon electrodes (GCEs). Areal current densities and bacteria attachment densities of the patterned and unpatterned GCEs are compared using Shewanella oneidensis Δbfe in a three-electrode bioreactor. The 115 nm features elicit a remarkable 40% increase in current density and a 78% increase in bacterial attachment density, whereas the GCE with 300 nm pattern does not exhibit significant change in current density or bacterial attachment density. The current density dependency on feature size is maintained over the entire 160 h experiment. Thus, optimally sized surface features have a substantial effect on current production that is independent of their effect on surface area.

  9. Modified wound dressing with phyto-nanostructured coating to prevent staphylococcal and pseudomonal biofilm development

    NASA Astrophysics Data System (ADS)

    Anghel, Ion; Holban, Alina Maria; Grumezescu, Alexandru Mihai; Andronescu, Ecaterina; Ficai, Anton; Anghel, Alina Georgiana; Maganu, Maria; Lazǎr, Veronica; Chifiriuc, Mariana Carmen

    2012-12-01

    This paper reports a newly fabricated nanophyto-modified wound dressing with microbicidal and anti-adherence properties. Nanofluid-based magnetite doped with eugenol or limonene was used to fabricate modified wound dressings. Nanostructure coated materials were characterized by TEM, XRD, and FT-IR. For the quantitative measurement of biofilm-embedded microbial cells, a culture-based method for viable cell count was used. The optimized textile dressing samples proved to be more resistant to staphylococcal and pseudomonal colonization and biofilm formation compared to the uncoated controls. The functionalized surfaces for wound dressing seems to be a very useful tool for the prevention of wound microbial contamination on viable tissues.

  10. Modified wound dressing with phyto-nanostructured coating to prevent staphylococcal and pseudomonal biofilm development

    PubMed Central

    2012-01-01

    This paper reports a newly fabricated nanophyto-modified wound dressing with microbicidal and anti-adherence properties. Nanofluid-based magnetite doped with eugenol or limonene was used to fabricate modified wound dressings. Nanostructure coated materials were characterized by TEM, XRD, and FT-IR. For the quantitative measurement of biofilm-embedded microbial cells, a culture-based method for viable cell count was used. The optimized textile dressing samples proved to be more resistant to staphylococcal and pseudomonal colonization and biofilm formation compared to the uncoated controls. The functionalized surfaces for wound dressing seems to be a very useful tool for the prevention of wound microbial contamination on viable tissues. PMID:23272823

  11. Modified wound dressing with phyto-nanostructured coating to prevent staphylococcal and pseudomonal biofilm development.

    PubMed

    Anghel, Ion; Holban, Alina Maria; Grumezescu, Alexandru Mihai; Andronescu, Ecaterina; Ficai, Anton; Anghel, Alina Georgiana; Maganu, Maria; Laz R, Veronica; Chifiriuc, Mariana Carmen

    2012-12-31

    This paper reports a newly fabricated nanophyto-modified wound dressing with microbicidal and anti-adherence properties. Nanofluid-based magnetite doped with eugenol or limonene was used to fabricate modified wound dressings. Nanostructure coated materials were characterized by TEM, XRD, and FT-IR. For the quantitative measurement of biofilm-embedded microbial cells, a culture-based method for viable cell count was used. The optimized textile dressing samples proved to be more resistant to staphylococcal and pseudomonal colonization and biofilm formation compared to the uncoated controls. The functionalized surfaces for wound dressing seems to be a very useful tool for the prevention of wound microbial contamination on viable tissues.

  12. Applications of Microbial Cell Sensors

    NASA Astrophysics Data System (ADS)

    Shimomura-Shimizu, Mifumi; Karube, Isao

    Since the first microbial cell sensor was studied by Karube et al. in 1977, many types of microbial cell sensors have been developed as analytical tools. The microbial cell sensor utilizes microbes as a sensing element and a transducer. The characteristics of microbial cell sensors as sensing devices are a complete contrast to those of enzyme sensors or immunosensors, which are highly specific for the substrates of interest, although the specificity of the microbial cell sensor has been improved by genetic modification of the microbe used as the sensing element. Microbial cell sensors have the advantages of tolerance to measuring conditions, a long lifetime, and good cost performance, and have the disadvantage of a long response time. In this review, applications of microbial cell sensors are summarized.

  13. Study of different carbon materials for their use as bioanodes in microbial fuel cells.

    PubMed

    González-Nava, Catalina; Godínez, Luis A; Chávez, Abraham U; Cercado, Bibiana; Arriaga, Luis G; Rodríguez-Valadez, Francisco J

    2016-01-01

    Microbial fuel cells (MFCs) are capable of removing the organic matter contained in water while generating a certain amount of electrical power at the same time. One of the most important aspects in the operation of MFCs is the formation of biofilms on the anode. Here, we report the characterization of different carbon electrodes and biofilm using a rapid and easy methodology for the growth of biofilms. The biofilms were developed and generated a voltage in less than 4 days, obtaining a maximum of 0.3 V in the cells. Scanning electron microscopy images revealed that growth of the biofilm was only on the surface of the electrode, and consequently both carbon cloth Electrochem and carbon cloth Roe materials showed a greater quantity of volatile solids on the surface of the anode and power density. The results suggested that the best support was carbon cloth Electrochem because it generated a power density of 13.4 mW/m(2) and required only a few hours for the formation of the biofilm.

  14. Performance and microbial diversity of microbial fuel cells coupled with different cathode types during simultaneous azo dye decolorization and electricity generation.

    PubMed

    Hou, Bin; Hu, Yongyou; Sun, Jian

    2012-05-01

    To study the effect of cathode type on performance and microbial diversity of the MFC, aerobic biocathode and air-cathode were incorporated into microbial fuel cells (MFCs) which were explored for simultaneous azo dye decolorization and electricity generation. The electrochemical impedance spectroscopy (EIS) results demonstrated that the catalytic activity of the microorganisms on the biocathode surface was comparable with that of the platinum coated on the air-cathode. The power density achieved by using biocathode was lower than air-cathode, but the biocathode could greatly improve the Congo red decolorization rate. By using the biocathode, 96.4% decolorization of Congo red was obtained within 29 h, whereas, about 107 h was required to achieve the same decolorization efficiency with the air-cathode. 16S rRNA sequencing analysis demonstrated a phylogenetic diversity in the communities of the anode biofilm and showed clear differences between the anode-attached populations in the MFCs with a different cathode type. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Materials Research Society Spring Meeting Symposium KK: Microbial Life on Surfaces: Biofilm-Material Interactions: Life at Interfaces. Held in San Francisco, California on 25-27 April 2011 (Abstracts)

    DTIC Science & Technology

    2012-05-24

    distribution of protein molecules on the cell surface and relative to the substrate on which the bacteria were growing. 9:30AMKKLL3 Effects of the... Temperature and Ionic Strength of Growth Conditions on the Nanoscale Adhesion of L. monocytogenes EGDe to Silicon Nitride. Pinar Gordesli and Nehal Abu...microscopy (AFM) for bacterial cells grown under five different temperatures (10, 20, 30, 37 and 40°C) and five different ionic strengths (0.005

  16. Reticulate Structures Reveal the Significance of Cell Motility in the Morphogenesis of Complex Microbial Structures in Pavilion Lake, British Columbia

    NASA Astrophysics Data System (ADS)

    Shepard, R.

    2008-12-01

    Microbial communities are architects of incredibly complex and diverse morphological structures. Each morphology is a snapshot that reflects the complex interactions within the microbial community and between the community and its environment. Characterizing morphology as an emergent property of microbial communities is thus relevant to understanding the evolution of multicellularity and complexity in developmental systems, to the identification of biosignatures, and to furthering our understanding of modern and ancient microbial ecology. Recently discovered cyanobacterial mats in Pavilion Lake, British Columbia construct unusual complex architecture on the scale of decimeters that incorporates significant void space. Fundamental mesoscale morphological elements include terraces, arches, bridges, depressions, domes, and pillars. The mats themselves also exhibit several microscale morphologies, with reticulate structures being the dominant example. The reticulate structures exhibit a diverse spectrum of morphologies with endmembers characterized by either angular or curvilinear ridges. In laboratory studies, aggregation into reticulate structures occurs as a result of the random gliding and colliding among motile cyanobacterial filaments. Likewise, when Pavilion reticulate mats were sampled and brought to the surface, cyanobacteria invariably migrated out of the mat onto surrounding surfaces. Filaments were observed to move rapidly in clumps, preferentially following paths of previous filaments. The migrating filaments organized into new angular and ropey reticulate biofilms within hours of sampling, demonstrating that cell motility is responsible for the reticulate patterns. Because the morphogenesis of reticulate structures can be linked to motility behaviors of filamentous cyanobacteria, the Willow Point mats provide a unique natural laboratory in which to elucidate the connections between a specific microbial behavior and the construction of complex microbial community morphology. To this end, we identified and characterized fundamental building blocks of the mesoscale morphologies, including bridges, anchors, and curved edges. These morphological building blocks were compared with the suite of motility behaviors and patterns observed in reticulate morphogenesis. Results of this comparison suggest that cyanobacterial motility plays a significant and often dominant role in the morphogenesis of the entire suite of morphologies observed in the microbial mats of Pavilion Lake.

  17. Hydration dynamics promote bacterial coexistence on rough surfaces

    PubMed Central

    Wang, Gang; Or, Dani

    2013-01-01

    Identification of mechanisms that promote and maintain the immense microbial diversity found in soil is a central challenge for contemporary microbial ecology. Quantitative tools for systematic integration of complex biophysical and trophic processes at spatial scales, relevant for individual cell interactions, are essential for making progress. We report a modeling study of competing bacterial populations cohabiting soil surfaces subjected to highly dynamic hydration conditions. The model explicitly tracks growth, motion and life histories of individual bacterial cells on surfaces spanning dynamic aqueous networks that shape heterogeneous nutrient fields. The range of hydration conditions that confer physical advantages for rapidly growing species and support competitive exclusion is surprisingly narrow. The rapid fragmentation of soil aqueous phase under most natural conditions suppresses bacterial growth and cell dispersion, thereby balancing conditions experienced by competing populations with diverse physiological traits. In addition, hydration fluctuations intensify localized interactions that promote coexistence through disproportional effects within densely populated regions during dry periods. Consequently, bacterial population dynamics is affected well beyond responses predicted from equivalent and uniform hydration conditions. New insights on hydration dynamics could be considered in future designs of soil bioremediation activities, affect longevity of dry food products, and advance basic understanding of bacterial diversity dynamics and its role in global biogeochemical cycles. PMID:23051694

  18. Microbial Communities and Electrochemical Performance of Titanium-Based Anodic Electrodes in a Microbial Fuel Cell▿

    PubMed Central

    Michaelidou, Urania; ter Heijne, Annemiek; Euverink, Gerrit Jan W.; Hamelers, Hubertus V. M.; Stams, Alfons J. M.; Geelhoed, Jeanine S.

    2011-01-01

    Four types of titanium (Ti)-based electrodes were tested in the same microbial fuel cell (MFC) anodic compartment. Their electrochemical performances and the dominant microbial communities of the electrode biofilms were compared. The electrodes were identical in shape, macroscopic surface area, and core material but differed in either surface coating (Pt- or Ta-coated metal composites) or surface texture (smooth or rough). The MFC was inoculated with electrochemically active, neutrophilic microorganisms that had been enriched in the anodic compartments of acetate-fed MFCs over a period of 4 years. The original inoculum consisted of bioreactor sludge samples amended with Geobacter sulfurreducens strain PCA. Overall, the Pt- and Ta-coated Ti bioanodes (electrode-biofilm association) showed higher current production than the uncoated Ti bioanodes. Analyses of extracted DNA of the anodic liquid and the Pt- and Ta-coated Ti electrode biofilms indicated differences in the dominant bacterial communities. Biofilm formation on the uncoated electrodes was poor and insufficient for further analyses. Bioanode samples from the Pt- and Ta-coated Ti electrodes incubated with Fe(III) and acetate showed several Fe(III)-reducing bacteria, of which selected species were dominant, on the surface of the electrodes. In contrast, nitrate-enriched samples showed less diversity, and the enriched strains were not dominant on the electrode surface. Isolated Fe(III)-reducing strains were phylogenetically related, but not all identical, to Geobacter sulfurreducens strain PCA. Other bacterial species were also detected in the system, such as a Propionicimonas-related species that was dominant in the anodic liquid and Pseudomonas-, Clostridium-, Desulfovibrio-, Azospira-, and Aeromonas-related species. PMID:21131513

  19. Possible ecological role of pseudopterosins G and P-U and seco-pseudopterosins J and K from the gorgonian Pseudopterogorgia elisabethae from Providencia Island (SW Caribbean) in regulating microbial surface communities.

    PubMed

    Correa, Hebelin; Zorro, Pamela; Arevalo-Ferro, Catalina; Puyana, Monica; Duque, Carmenza

    2012-09-01

    The gorgonian Pseudopterogorgia elisabethae collected at Providencia Island (Colombia) has an unfouled surface, free of obvious algal and invertebrate growth. This gorgonian produces significant amounts of the glycosilated diterpenes pseudopterosins and seco-pseudopterosins (Ps and seco-Ps). Our previous experiments have shown activity of these compounds against eukaryotic (human cancer cell lines and Candida albicans) and prokaryotic cells (Staphylococcus aureus and Enterococcus faecalis). However, the potential role of pseudopterosins on the regulation of the fouling process is still under study. We evaluated the activity of these compounds against bacteria isolated from heavily fouled marine surfaces as an indicator of antifouling activity. Additionally, we assessed their activity against bacteria isolated from P. elisabethae to determine whether potentially they play a role in preventing surface bacterial colonization, thus impairing presumptively the establishment of further successional stages of fouling communities. Results showed that Ps and seco-Ps seem to modulate bacterial growth (controlling Gram-positive bacterial growth and inducing Gram-negative bacterial associations). We thus hypothesized that Ps and seco-Ps may play a role in controlling microbial fouling communities on the surface of this gorgonian. By using bTEFAP and FISH we showed that the most abundant bacteria present in the microbial communities associated with P. elisabethae are Gram-negative bacteria, with Proteobacteria and Gammaproteobacteria the most representative. To evaluate whether Ps and seco-Ps have a direct effect on the structure of the bacterial community associated with P. elisabethae, we tested these compounds against culturable bacteria associated with the surface of P. elisabethae, finding remarkable selectivity against Gram-positive bacteria. The evidence presented here suggests that Ps and seco-Ps might have a role in the selection of organisms associated with the gorgonian surface and in the regulation of the associated bacterial community composition.

  20. Bacteria-Affinity 3D Macroporous Graphene/MWCNTs/Fe3O4 Foams for High-Performance Microbial Fuel Cells.

    PubMed

    Song, Rong-Bin; Zhao, Cui-E; Jiang, Li-Ping; Abdel-Halim, Essam Sayed; Zhang, Jian-Rong; Zhu, Jun-Jie

    2016-06-29

    Promoting the performance of microbial fuel cells (MFCs) relies heavily on the structure design and composition tailoring of electrode materials. In this work, three-dimensional (3D) macroporous graphene foams incorporated with intercalated spacer of multiwalled carbon nanotubes (MWCNTs) and bacterial anchor of Fe3O4 nanospheres (named as G/MWCNTs/Fe3O4 foams) were first synthesized and used as anodes for Shewanella-inoculated microbial fuel cells (MFCs). Thanks to the macroporous structure of 3D graphene foams, the expanded electrode surface by MWCNTs spacing, as well as the high affinity of Fe3O4 nanospheres toward Shewanella oneidensis MR-1, the anode exhibited high bacterial loading capability. In addition to spacing graphene nanosheets for accommodating bacterial cells, MWCNTs paved a smoother way for electron transport in the electrode substrate of MFCs. Meanwhile, the embedded bioaffinity Fe3O4 nanospheres capable of preserving the bacterial metabolic activity provided guarantee for the long-term durability of the MFCs. With these merits, the constructed MFC possessed significantly higher power output and stronger stability than that with conventional graphite rod anode.

  1. Enhanced power generation in annular single-chamber microbial fuel cell via optimization of electrode spacing using chocolate industry wastewater.

    PubMed

    Noori, Parisa; Najafpour Darzi, Ghasem

    2016-05-01

    Development and practical application of microbial fuel cell (MFC) is restricted because of the limitations such as low power output. To overcome low power limitation, the optimization of specific parameters including electrode materials and surface area, electrode spacing, and MFC's cell shape was investigated. To the best of our knowledge, no investigation has been reported in the literature to implement an annular single-chamber microbial fuel cell (ASCMFC) using chocolate industry wastewater. ASCMFC was fabricated via optimization of the stated parameters. The aspects of ASCMFC were comprehensively examined. In this study, the optimization of electrode spacing and its impact on performance of the ASCMFC were conducted. Reduction of electrode spacing by 46.15% (1.3-0.7 cm) resulted in a decrease in internal resistance from 100 to 50 Ω, which enhanced the power density and current output to 22.898 W/m(3) and 6.42 mA, respectively. An optimum electrode spacing of 0.7 cm was determined. Through this paper, the effects of these parameters and the performance of ASCMFC are also evaluated. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  2. Final Technical Report: Viral Infection of Subsurface Microorganisms and Metal/Radionuclide Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, Karrie A.; Bender, Kelly S.; Li, Yusong

    Microbially mediated metabolisms have been identified as a significant factor either directly or indirectly impacting the fate and transport of heavy metal/radionuclide contaminants. To date microorganisms have been isolated from contaminated environments. Examination of annotated finished genome sequences of many of these subsurface isolates from DOE sites, revealed evidence of prior viral infection. To date the role that viruses play influencing microbial mortality and the resulting community structure which directly influences biogeochemical cycling in soils and sedimentary environments remains poorly understood. The objective of this exploratory study was to investigate the role of viral infection of subsurface bacteria and themore » formation of contaminant-bearing viral particles. This objective was approached by examining the following working hypotheses: (i) subsurface microorganisms are susceptible to viral infections by the indigenous subsurface viral community, and (ii) viral surfaces will adsorb heavy metals and radionuclides. Our results have addressed basic research needed to accomplish the BER Long Term Measure to provide sufficient scientific understanding such that DOE sites would be able to incorporate coupled physical, chemical and biological processes into decision making for environmental remediation or natural attenuation and long-term stewardship by establishing viral-microbial relationships on the subsequent fate and transport of heavy metals and radionuclides. Here we demonstrated that viruses play a significant role in microbial mortality and community structure in terrestrial subsurface sedimentary systems. The production of viral-like particles within subsurface sediments in response to biostimulation with dissolved organic carbon and a terminal electron acceptor resulted in the production of viral-like particles. Organic carbon alone did not result in significant viral production and required the addition of a terminal electron acceptor (nitrate), indicating that nutrients are not limiting viral production, but rather substrates that can be converted into energy for host metabolism. Our results also revealed that cell abundance was not correlated to the mineralization of organic carbon, but rather viruses were positively correlated with carbon mineralization. This is a result of viral-mediated cell lysis and demonstrates that viruses are sensitive indicators of microbial activity. Viruses as an indicator of microbial activity was not unique to batch culture studies as results obtained from an in situ field experiment conducted at the DOE Old Rifle Field site. This study revealed that viral abundance increased in response to the injection of oxygenated groundwater and influx of dissolved organic carbon whereas cell abundance changes were minimal. However, the extent to which viral-mediated cell lysis alters organic matter pools subsequently influencing microbial community structure and biogeochemical function remains a critical question in subsurface biogeochemical cycling. The production of significant numbers of viruses in groundwater has implications for nanoparticulate metal as well as carbon transport in groundwater. We have demonstrated that the virus surface is reactive and will adsorb heavy metals. Thus viruses can promote colloidal contaminant mobility. Interestingly, the presence of heavy metals has a positive effect on infectivity of the phage, increasing phage infection which could lead to further production of viruses. Together, the results indicate that the sorption of metals to the surface of viruses could not only contribute to nanoparticulate metal as well as carbon transport but could also enhance infectivity further contributing to cell lysis which could subsequently influence biogeochemical cycling. As more viruses infect host microbial populations the high concentration of metals would enhance infection, resulting in cell lysis, and decreasing the metabolically active host population while yielding greater numbers of viruses capable of transporting contaminats. Additional studies will be necessary to further establish the potential relationship(s) between viruses, cells, carbon, and metals/radionuclides to provide sufficient scientific understanding to incorporate coupled physical, chemical, and biological processes into agent based and reactive transport models.« less

  3. Photodynamic inactivation of biofilm: taking a lightly colored approach to stubborn infection

    PubMed Central

    de Melo, Wanessa CMA; Avci, Pinar; de Oliveira, Milene Nóbrega; Gupta, Asheesh; Vecchio, Daniela; Sadasivam, Magesh; Chandran, Rakkiyappan; Huang, Ying-Ying; Yin, Rui; Perussi, Livia R; Tegos, George P; Perussi, Janice R; Dai, Tianhong; Hamblin, Michael R

    2015-01-01

    Microbial biofilms are responsible for a variety of microbial infections in different parts of the body, such as urinary tract infections, catheter infections, middle-ear infections, gingivitis, caries, periodontitis, orthopedic implants, and so on. The microbial biofilm cells have properties and gene expression patterns distinct from planktonic cells, including phenotypic variations in enzymic activity, cell wall composition and surface structure, which increase the resistance to antibiotics and other antimicrobial treatments. There is consequently an urgent need for new approaches to attack biofilm-associated microorganisms, and antimicrobial photodynamic therapy (aPDT) may be a promising candidate. aPDT involves the combination of a nontoxic dye and low-intensity visible light which, in the presence of oxygen, produces cytotoxic reactive oxygen species. It has been demonstrated that many biofilms are susceptible to aPDT, particularly in dental disease. This review will focus on aspects of aPDT that are designed to increase efficiency against biofilms modalities to enhance penetration of photosensitizer into biofilm, and a combination of aPDT with biofilm-disrupting agents. PMID:23879608

  4. Nanomaterials-based biosensors for detection of microorganisms and microbial toxins.

    PubMed

    Sutarlie, Laura; Ow, Sian Yang; Su, Xiaodi

    2017-04-01

    Detection of microorganisms and microbial toxins is important for health and safety. Due to their unique physical and chemical properties, nanomaterials have been extensively used to develop biosensors for rapid detection of microorganisms with microbial cells and toxins as target analytes. In this paper, the design principles of nanomaterials-based biosensors for four selected analyte categories (bacteria cells, toxins, mycotoxins, and protozoa cells), closely associated with the target analytes' properties is reviewed. Five signal transducing methods that are less equipment intensive (colorimetric, fluorimetric, surface enhanced Raman scattering, electrochemical, and magnetic relaxometry methods) is described and compared for their sensory performance (in term oflimit of detection, dynamic range, and response time) for all analyte categories. In the end, the suitability of these five sensing principles for on-site or field applications is discussed. With a comprehensive coverage of nanomaterials, design principles, sensing principles, and assessment on the sensory performance and suitability for on-site application, this review offers valuable insight and perspective for designing suitable nanomaterials-based microorganism biosensors for a given application. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells.

    PubMed

    Oh, Sang-Eun; Logan, Bruce E

    2006-03-01

    Power generation in microbial fuel cells (MFCs) is a function of the surface areas of the proton exchange membrane (PEM) and the cathode relative to that of the anode. To demonstrate this, the sizes of the anode and cathode were varied in two-chambered MFCs having PEMs with three different surface areas (A (PEM)=3.5, 6.2, or 30.6 cm(2)). For a fixed anode and cathode surface area (A (An)=A (Cat)=22.5 cm(2)), the power density normalized to the anode surface area increased with the PEM size in the order 45 mW/m(2) (A (PEM)=3.5 cm(2)), 68 mW/m(2) (A (PEM)=6.2 cm(2)), and 190 mW/m(2) (A (PEM)=30.6 cm(2)). PEM surface area was shown to limit power output when the surface area of the PEM was smaller than that of the electrodes due to an increase in internal resistance. When the relative cross sections of the PEM, anode, and cathode were scaled according to 2A (Cat)=A(PEM)=2A (An), the maximum power densities of the three different MFCs, based on the surface area of the PEM (A (PEM)=3.5, 6.2, or 30.6 cm(2)), were the same (168+/-4.53 mW/m(2)). Increasing the ionic strength and using ferricyanide at the cathode also increased power output.

  6. Galectins as self/non-self recognition receptors in innate and adaptive immunity: an unresolved paradox

    PubMed Central

    Vasta, Gerardo R.; Ahmed, Hafiz; Nita-Lazar, Mihai; Banerjee, Aditi; Pasek, Marta; Shridhar, Surekha; Guha, Prasun; Fernández-Robledo, José A.

    2012-01-01

    Galectins are characterized by their binding affinity for β-galactosides, a unique binding site sequence motif, and wide taxonomic distribution and structural conservation in vertebrates, invertebrates, protista, and fungi. Since their initial description, galectins were considered to bind endogenous (“self”) glycans and mediate developmental processes and cancer. In the past few years, however, numerous studies have described the diverse effects of galectins on cells involved in both innate and adaptive immune responses, and the mechanistic aspects of their regulatory roles in immune homeostasis. More recently, however, evidence has accumulated to suggest that galectins also bind exogenous (“non-self”) glycans on the surface of potentially pathogenic microbes, parasites, and fungi, suggesting that galectins can function as pattern recognition receptors (PRRs) in innate immunity. Thus, a perplexing paradox arises by the fact that galectins also recognize lactosamine-containing glycans on the host cell surface during developmental processes and regulation of immune responses. According to the currently accepted model for non-self recognition, PRRs recognize pathogens via highly conserved microbial surface molecules of wide distribution such as LPS or peptidoglycan (pathogen-associated molecular patterns; PAMPs), which are absent in the host. Hence, this would not apply to galectins, which apparently bind similar self/non-self molecular patterns on host and microbial cells. This paradox underscores first, an oversimplification in the use of the PRR/PAMP terminology. Second, and most importantly, it reveals significant gaps in our knowledge about the diversity of the host galectin repertoire, and the subcellular targeting, localization, and secretion. Furthermore, our knowledge about the structural and biophysical aspects of their interactions with the host and microbial carbohydrate moieties is fragmentary, and warrants further investigation. PMID:22811679

  7. Rapid microbial respiration of oil from the Deepwater Horizon spill in offshore surface waters of the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Edwards, Bethanie R.; Reddy, Christopher M.; Camilli, Richard; Carmichael, Catherine A.; Longnecker, Krista; Van Mooy, Benjamin A. S.

    2011-07-01

    The Deepwater Horizon oil spill was one of the largest oil spills in history, and the fate of this oil within the Gulf of Mexico ecosystem remains to be fully understood. The goal of this study—conducted in mid-June of 2010, approximately two months after the oil spill began—was to understand the key role that microbes would play in the degradation of the oil in the offshore oligotrophic surface waters near the Deepwater Horizon site. As the utilization of organic carbon by bacteria in the surface waters of the Gulf had been previously shown to be phosphorus limited, we hypothesized that bacteria would be unable to rapidly utilize the oil released from the Macondo well. Although phosphate was scarce throughout the sampling region and microbes exhibited enzymatic signs of phosphate stress within the oil slick, microbial respiration within the slick was enhanced by approximately a factor of five. An incubation experiment to determine hydrocarbon degradation rates confirmed that a large fraction of this enhanced respiration was supported by hydrocarbon degradation. Extrapolating our observations to the entire area of the slick suggests that microbes had the potential to degrade a large fraction of the oil as it arrived at the surface from the well. These observations decidedly refuted our hypothesis. However, a concomitant increase in microbial abundance or biomass was not observed in the slick, suggesting that microbial growth was nutrient limited; incubations amended with nutrients showed rapid increases in cell number and biomass, which supported this conclusion. Our study shows that the dynamic microbial community of the Gulf of Mexico supported remarkable rates of oil respiration, despite a dearth of dissolved nutrients.

  8. Deep-Sea Trench Microbiology Down to 10.9 Kilometers Below the Surface

    NASA Astrophysics Data System (ADS)

    Bartlett, D. H.

    2012-12-01

    Deep-sea trenches, extending to more than 10.9 km below the sea surface, are among the most remote and infrequently sampled habitats. As a result a global perspective of microbial diversity and adaptation is lacking in these extreme settings. I will present the results of studies of deep-sea trench microbes collected in the Puerto Rico Trench (PRT), Tonga Trench, New Britain Trench and Mariana Trench. The samples collected include sediment, seawater and animals in baited traps. The analyses to be described include microbial community activity and viability measurements as a function of hydrostatic pressure, microbial culturing at high pressure under various physiological conditions, phylogenetics and metagenome and single-cell genome characterizations. Most of the results to date stem from samples recovered from the PRT. The deep-sea PRT Trench microbes have more in common at the species level with other deep-sea microbial communities previously characterized in the Pacific Ocean and the Mediterranean Sea than with the microbial populations above them in shallow waters. They also harbor larger genomes with more genes assigned to signal transduction, transcription, replication, recombination and repair and inorganic ion transport. The overrepresented transporters in the PRT metagenome include di- and tri-carboxylate transporters that correspond to the prevailing catabolic processes such as butanoate, glyoxylate and dicarboxylate metabolism. A surprisingly high abundance of sulfatases for the degradation of sulfated polysaccharides were also present in the PRT. But, perhaps the most dramatic adaptational feature of the PRT microbes is heavy metal resistance, as reflected in the high numbers of metal efflux systems present. Single-cell genomics approaches have proven particularly useful for placing PRT metagenomic data into context.

  9. Microbial survival in deep space environment.

    NASA Technical Reports Server (NTRS)

    Silverman, G. J.

    1971-01-01

    Review of the knowledge available on the extent to which microorganisms (mainly microbial spores, vegetative cells, and fungi) are capable of surviving the environment of deep space, based on recent simulation experiments of deep space. A description of the experimental procedures used is followed by a discussion of deep space ecology, the behavior of microorganisms in ultrahigh vacuum, and factors influencing microbial survival. It is concluded that, so far, simulation experiments have proved far less lethal to microorganisms than to other forms of life. There are, however, wide gaps in the knowledge available, and no accurate predictions can as yet be made on the degree of lethality that might be incurred by a microbial population on a given mission. Therefore, sterilization of spacecraft surfaces is deemed necessary if induced panspermia (i.e., interplanetary life propagation) is to be avoided.

  10. Medium-chain-length poly-3-hydroxyalkanoates-carbon nanotubes composite anode enhances the performance of microbial fuel cell.

    PubMed

    Hindatu, Y; Annuar, M S M; Subramaniam, R; Gumel, A M

    2017-06-01

    Insufficient power generation from a microbial fuel cell (MFC) hampers its progress towards utility-scale development. Electrode modification with biopolymeric materials could potentially address this issue. In this study, medium-chain-length poly-3-hydroxyalkanoates (PHA)/carbon nanotubes (C) composite (CPHA) was successfully applied to modify the surface of carbon cloth (CC) anode in MFC. Characterization of the functional groups on the anodic surface and its morphology was carried out. The CC-CPHA composite anode recorded maximum power density of 254 mW/m 2 , which was 15-53% higher than the MFC operated with CC-C (214 mW/m 2 ) and pristine CC (119 mW/m 2 ) as the anode in a double-chambered MFC operated with Escherichia coli as the biocatalyst. Electrochemical impedance spectroscopy and cyclic voltammetry showed that power enhancement was attributed to better electron transfer capability by the bacteria for the MFC setup with CC-CPHA anode.

  11. One-step pyrolysis route to three dimensional nitrogen-doped porous carbon as anode materials for microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Bi, Linlin; Ci, Suqin; Cai, Pingwei; Li, Hao; Wen, Zhenhai

    2018-01-01

    The design and synthesis of low-cost and favourable anode materials is crucial to both power production efficiency and overall performance of microbial fuel cells (MFCs). Herein, we reported the preparation of three dimensional (3D) nitrogen-doped porous carbons (N/PCs) by one-step pyrolysis of solid mixture of sodium citrate and melamine. a variety of techniques, including electron microscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), etc., were applied to characterize the surface physicochemical properties of the products, featuring macroporous structure with rich nitrogen doping on the as-prepared N/PCs. When applied as anode materials of MFC, the N/PCs exhibits a maximum power density of 2777.7 mW m-2, approximately twice higher than that of the MFCs with the commercial carbon cloth (CC) as anode. The significantly improved performance of the N/PCs was attributed to the unique structure and properties, such as favourable porous structure, good electrical conductivity, and large pore volume (0.7 cm3 g-1) in the present N/PCs. Nitrogen dopant on the surface of porous carbon contributed to an increasing in biocompatibility, resulting in a suitable micro-environment for microbial growth and thus helps to decrease charge transfer resistance at the electrode interface.

  12. Delivery of drugs bound to erythrocytes: new avenues for an old intravascular carrier

    PubMed Central

    Villa, Carlos H; Pan, Daniel C; Zaitsev, Sergei; Cines, Douglas B; Siegel, Donald L; Muzykantov, Vladimir R

    2015-01-01

    For several decades, researchers have used erythrocytes for drug delivery of a wide variety of therapeutics in order to improve their pharmacokinetics, biodistribution, controlled release and pharmacodynamics. Approaches include encapsulation of drugs within erythrocytes, as well as coupling of drugs onto the red cell surface. This review focuses on the latter approach, and examines the delivery of red blood cell (RBC)-surface-bound anti-inflammatory, anti-thrombotic and anti-microbial agents, as well as RBC carriage of nanoparticles. Herein, we discuss the progress that has been made in surface loading approaches, and address in depth the issues relevant to surface loading of RBC, including intrinsic features of erythrocyte membranes, immune considerations, potential surface targets and techniques for the production of affinity ligands. PMID:26228773

  13. Enhanced biomimic bactericidal surfaces by coating with positively-charged ZIF nano-dagger arrays.

    PubMed

    Yuan, Yuan; Zhang, Yugen

    2017-10-01

    Cicada wing surfaces are covered with dense patterns of nano-pillar structure that prevent bacterial growth by rupturing adhered microbial cells. To mimic the natural nano-pillar structure, we developed a general and simple method to grow metal organic framework (MOF) nano-dagger arrays on a wide range of surfaces. These nano-daggers possess high bactericidal activity, with log reduction >7 for Escherichia coli and Staphylococcus aureus. It was hypothesized that the positively-charged ZIF-L nano-dagger surfaces enhance bacterial cell adhesion, facilitating selective and efficient bacteria killing by the rigid and sharp nano-dagger tips. This research provides a safe and clean antimicrobial surface technology which does not require external chemicals and will not cause drug resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Microbial fuel cells: From fundamentals to applications. A review.

    PubMed

    Santoro, Carlo; Arbizzani, Catia; Erable, Benjamin; Ieropoulos, Ioannis

    2017-07-15

    In the past 10-15 years, the microbial fuel cell (MFC) technology has captured the attention of the scientific community for the possibility of transforming organic waste directly into electricity through microbially catalyzed anodic, and microbial/enzymatic/abiotic cathodic electrochemical reactions. In this review, several aspects of the technology are considered. Firstly, a brief history of abiotic to biological fuel cells and subsequently, microbial fuel cells is presented. Secondly, the development of the concept of microbial fuel cell into a wider range of derivative technologies, called bioelectrochemical systems, is described introducing briefly microbial electrolysis cells, microbial desalination cells and microbial electrosynthesis cells. The focus is then shifted to electroactive biofilms and electron transfer mechanisms involved with solid electrodes. Carbonaceous and metallic anode materials are then introduced, followed by an explanation of the electro catalysis of the oxygen reduction reaction and its behavior in neutral media, from recent studies. Cathode catalysts based on carbonaceous, platinum-group metal and platinum-group-metal-free materials are presented, along with membrane materials with a view to future directions. Finally, microbial fuel cell practical implementation, through the utilization of energy output for practical applications, is described.

  15. Microbial fuel cells: From fundamentals to applications. A review

    NASA Astrophysics Data System (ADS)

    Santoro, Carlo; Arbizzani, Catia; Erable, Benjamin; Ieropoulos, Ioannis

    2017-07-01

    In the past 10-15 years, the microbial fuel cell (MFC) technology has captured the attention of the scientific community for the possibility of transforming organic waste directly into electricity through microbially catalyzed anodic, and microbial/enzymatic/abiotic cathodic electrochemical reactions. In this review, several aspects of the technology are considered. Firstly, a brief history of abiotic to biological fuel cells and subsequently, microbial fuel cells is presented. Secondly, the development of the concept of microbial fuel cell into a wider range of derivative technologies, called bioelectrochemical systems, is described introducing briefly microbial electrolysis cells, microbial desalination cells and microbial electrosynthesis cells. The focus is then shifted to electroactive biofilms and electron transfer mechanisms involved with solid electrodes. Carbonaceous and metallic anode materials are then introduced, followed by an explanation of the electro catalysis of the oxygen reduction reaction and its behavior in neutral media, from recent studies. Cathode catalysts based on carbonaceous, platinum-group metal and platinum-group-metal-free materials are presented, along with membrane materials with a view to future directions. Finally, microbial fuel cell practical implementation, through the utilization of energy output for practical applications, is described.

  16. Opening the black box of spring water microbiology from alpine karst aquifers to support proactive drinking water resource management.

    PubMed

    Savio, Domenico; Stadler, Philipp; Reischer, Georg H; Kirschner, Alexander K T; Demeter, Katalin; Linke, Rita; Blaschke, Alfred P; Sommer, Regina; Szewzyk, Ulrich; Wilhartitz, Inés C; Mach, Robert L; Stadler, Hermann; Farnleitner, Andreas H

    2018-01-01

    Over the past 15 years, pioneering interdisciplinary research has been performed on the microbiology of hydrogeologically well-defined alpine karst springs located in the Northern Calcareous Alps (NCA) of Austria. This article gives an overview on these activities and links them to other relevant research. Results from the NCA springs and comparable sites revealed that spring water harbors abundant natural microbial communities even in aquifers with high water residence times and the absence of immediate surface influence. Apparently, hydrogeology has a strong impact on the concentration and size of the observed microbes, and total cell counts (TCC) were suggested as a useful means for spring type classification. Measurement of microbial activities at the NCA springs revealed extremely low microbial growth rates in the base flow component of the studied spring waters and indicated the importance of biofilm-associated microbial activities in sediments and on rock surfaces. Based on genetic analysis, the autochthonous microbial endokarst community (AMEC) versus transient microbial endokarst community (TMEC) concept was proposed for the NCA springs, and further details within this overview article are given to prompt its future evaluation. In this regard, it is well known that during high-discharge situations, surface-associated microbes and nutrients such as from soil habitats or human settlements-potentially containing fecal-associated pathogens as the most critical water-quality hazard-may be rapidly flushed into vulnerable karst aquifers. In this context, a framework for the comprehensive analysis of microbial pollution has been proposed for the NCA springs to support the sustainable management of drinking water safety in accordance with recent World Health Organization guidelines. Near-real-time online water quality monitoring, microbial source tracking (MST) and MST-guided quantitative microbial-risk assessment (QMRA) are examples of the proposed analytical tools. In this context, this overview article also provides a short introduction to recently emerging methodologies in microbiological diagnostics to support reading for the practitioner. Finally, the article highlights future research and development needs. This article is categorized under: 1Engineering Water > Water, Health, and Sanitation2Science of Water > Water Extremes3Water and Life > Nature of Freshwater Ecosystems.

  17. Metasecretome-selective phage display approach for mining the functional potential of a rumen microbial community.

    PubMed

    Ciric, Milica; Moon, Christina D; Leahy, Sinead C; Creevey, Christopher J; Altermann, Eric; Attwood, Graeme T; Rakonjac, Jasna; Gagic, Dragana

    2014-05-12

    In silico, secretome proteins can be predicted from completely sequenced genomes using various available algorithms that identify membrane-targeting sequences. For metasecretome (collection of surface, secreted and transmembrane proteins from environmental microbial communities) this approach is impractical, considering that the metasecretome open reading frames (ORFs) comprise only 10% to 30% of total metagenome, and are poorly represented in the dataset due to overall low coverage of metagenomic gene pool, even in large-scale projects. By combining secretome-selective phage display and next-generation sequencing, we focused the sequence analysis of complex rumen microbial community on the metasecretome component of the metagenome. This approach achieved high enrichment (29 fold) of secreted fibrolytic enzymes from the plant-adherent microbial community of the bovine rumen. In particular, we identified hundreds of heretofore rare modules belonging to cellulosomes, cell-surface complexes specialised for recognition and degradation of the plant fibre. As a method, metasecretome phage display combined with next-generation sequencing has a power to sample the diversity of low-abundance surface and secreted proteins that would otherwise require exceptionally large metagenomic sequencing projects. As a resource, metasecretome display library backed by the dataset obtained by next-generation sequencing is ready for i) affinity selection by standard phage display methodology and ii) easy purification of displayed proteins as part of the virion for individual functional analysis.

  18. Fate of Eight Different Polymers under Uncontrolled Composting Conditions: Relationships Between Deterioration, Biofilm Formation, and the Material Surface Properties.

    PubMed

    Mercier, Anne; Gravouil, Kevin; Aucher, Willy; Brosset-Vincent, Sandra; Kadri, Linette; Colas, Jenny; Bouchon, Didier; Ferreira, Thierry

    2017-02-21

    With the ever-increasing volume of polymer wastes and their associated detrimental impacts on the environment, the plastic life cycle has drawn increasing attention. Here, eight commercial polymers selected from biodegradable to environmentally persistent materials, all formulated under a credit card format, were incubated in an outdoor compost to evaluate their fate over time and to profile the microbial communities colonizing their surfaces. After 450 days in compost, the samples were all colonized by multispecies biofilms, these latest displaying different amounts of adhered microbial biomass and significantly distinct bacterial and fungal community compositions depending on the substrate. Interestingly, colonization experiments on the eight polymers revealed a large core of shared microbial taxa, predominantly composed of microorganisms previously reported from environments contaminated with petroleum hydrocarbons or plastics debris. These observations suggest that biofilms may contribute to the alteration process of all the polymers studied. Actually, four substrates, independently of their assignment to a polymer group, displayed a significant deterioration, which might be attributed to biologically mediated mechanisms. Relevantly, the deterioration appears strongly associated with the formation of a high-cell density biofilm onto the polymer surfaces. The analysis of various surface properties revealed that roughness and hydrophilicity are likely prominent parameters for driving the biological interactions with the polymers.

  19. Variations of algal communities cause darkening of a Greenland glacier.

    PubMed

    Lutz, Stefanie; Anesio, Alexandre M; Jorge Villar, Susana E; Benning, Liane G

    2014-08-01

    We have assessed the microbial ecology on the surface of Mittivakkat glacier in SE-Greenland during the exceptional high melting season in July 2012 when the so far most extreme melting rate for the Greenland Ice Sheet has been recorded. By employing a complementary and multi-disciplinary field sampling and analytical approach, we quantified the dramatic changes in the different microbial surface habitats (green snow, red snow, biofilms, grey ice, cryoconite holes). The observed clear change in dominant algal community and their rapidly changing cryo-organic adaptation inventory was linked to the high melting rate. The changes in carbon and nutrient fluxes between different microbial pools (from snow to ice, cryoconite holes and glacial forefronts) revealed that snow and ice algae dominate the net primary production at the onset of melting, and that they have the potential to support the cryoconite hole communities as carbon and nutrient sources. A large proportion of algal cells is retained on the glacial surface and temporal and spatial changes in pigmentation contribute to the darkening of the snow and ice surfaces. This implies that the fast, melt-induced algal growth has a high albedo reduction potential, and this may lead to a positive feedback speeding up melting processes. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  20. Microbial community assembly and evolution in subseafloor sediment.

    PubMed

    Starnawski, Piotr; Bataillon, Thomas; Ettema, Thijs J G; Jochum, Lara M; Schreiber, Lars; Chen, Xihan; Lever, Mark A; Polz, Martin F; Jørgensen, Bo B; Schramm, Andreas; Kjeldsen, Kasper U

    2017-03-14

    Bacterial and archaeal communities inhabiting the subsurface seabed live under strong energy limitation and have growth rates that are orders of magnitude slower than laboratory-grown cultures. It is not understood how subsurface microbial communities are assembled and whether populations undergo adaptive evolution or accumulate mutations as a result of impaired DNA repair under such energy-limited conditions. Here we use amplicon sequencing to explore changes of microbial communities during burial and isolation from the surface to the >5,000-y-old subsurface of marine sediment and identify a small core set of mostly uncultured bacteria and archaea that is present throughout the sediment column. These persisting populations constitute a small fraction of the entire community at the surface but become predominant in the subsurface. We followed patterns of genome diversity with depth in four dominant lineages of the persisting populations by mapping metagenomic sequence reads onto single-cell genomes. Nucleotide sequence diversity was uniformly low and did not change with age and depth of the sediment. Likewise, there was no detectable change in mutation rates and efficacy of selection. Our results indicate that subsurface microbial communities predominantly assemble by selective survival of taxa able to persist under extreme energy limitation.

  1. In Situ Analysis of a Silver Nanoparticle-Precipitating Shewanella Biofilm by Surface Enhanced Confocal Raman Microscopy

    PubMed Central

    Schkolnik, Gal; Schmidt, Matthias; Mazza, Marco G.; Harnisch, Falk; Musat, Niculina

    2015-01-01

    Shewanella oneidensis MR-1 is an electroactive bacterium, capable of reducing extracellular insoluble electron acceptors, making it important for both nutrient cycling in nature and microbial electrochemical technologies, such as microbial fuel cells and microbial electrosynthesis. When allowed to anaerobically colonize an Ag/AgCl solid interface, S. oneidensis has precipitated silver nanoparticles (AgNp), thus providing the means for a surface enhanced confocal Raman microscopy (SECRaM) investigation of its biofilm. The result is the in-situ chemical mapping of the biofilm as it developed over time, where the distribution of cytochromes, reduced and oxidized flavins, polysaccharides and phosphate in the undisturbed biofilm is monitored. Utilizing AgNp bio-produced by the bacteria colonizing the Ag/AgCl interface, we could perform SECRaM while avoiding the use of a patterned or roughened support or the introduction of noble metal salts and reducing agents. This new method will allow a spatially and temporally resolved chemical investigation not only of Shewanella biofilms at an insoluble electron acceptor, but also of other noble metal nanoparticle-precipitating bacteria in laboratory cultures or in complex microbial communities in their natural habitats. PMID:26709923

  2. Snow Surface Microbiome on the High Antarctic Plateau (DOME C)

    PubMed Central

    Michaud, Luigi; Lo Giudice, Angelina; Mysara, Mohamed; Monsieurs, Pieter; Raffa, Carmela; Leys, Natalie; Amalfitano, Stefano; Van Houdt, Rob

    2014-01-01

    The cryosphere is an integral part of the global climate system and one of the major habitable ecosystems of Earth's biosphere. These permanently frozen environments harbor diverse, viable and metabolically active microbial populations that represent almost all the major phylogenetic groups. In this study, we investigated the microbial diversity in the surface snow surrounding the Concordia Research Station on the High Antarctic Plateau through a polyphasic approach, including direct prokaryotic quantification by flow cytometry and catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH), and phylogenetic identification by 16S RNA gene clone library sequencing and 454 16S amplicon pyrosequencing. Although the microbial abundance was low (<103 cells/ml of snowmelt), concordant results were obtained with the different techniques. The microbial community was mainly composed of members of the Alpha-proteobacteria class (e.g. Kiloniellaceae and Rhodobacteraceae), which is one of the most well-represented bacterial groups in marine habitats, Bacteroidetes (e.g. Cryomorphaceae and Flavobacteriaceae) and Cyanobacteria. Based on our results, polar microorganisms could not only be considered as deposited airborne particles, but as an active component of the snowpack ecology of the High Antarctic Plateau. PMID:25101779

  3. Microbial Attachment Inhibition through Low-Voltage Electrochemical Reactions on Electrically Conducting Membranes.

    PubMed

    Ronen, Avner; Duan, Wenyan; Wheeldon, Ian; Walker, Sharon; Jassby, David

    2015-11-03

    Bacterial biofilm formation on membrane surfaces remains a serious challenge in water treatment systems. The impact of low voltages on microbial attachment to electrically conducting ultrafiltration membranes was investigated using a direct observation cross-flow membrane system mounted on a fluorescence microscope. Escherichia coli and microparticle deposition and detachment rates were measured as a function of the applied electrical potential to the membrane surface. Selecting bacteria and particles with low surface charge minimized electrostatic interactions between the bacteria and charged membrane surface. Application of an electrical potential had a significant impact on the detachment of live bacteria in comparison to dead bacteria and particles. Image analysis indicated that when a potential of 1.5 V was applied to the membrane/counter electrode pair, the percent of dead bacteria was 32±2.1 and 67±3.6% when the membrane was used as a cathode or anode, respectively, while at a potential of 1 V, 92±2.4% were alive. The application of low electrical potentials resulted in the production of low (μM) concentrations of hydrogen peroxide (HP) through the electroreduction of oxygen. The electrochemically produced HP reduced microbial cell viability and increased cellular permeability. Exposure to low concentrations of electrochemically produced HP on the membrane surface prevents bacterial attachment, thus ensuring biofilm-free conditions during membrane filtration operations.

  4. Exploring Arabidopsis thaliana Root Endophytes via Single-Cell Genomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lundberg, Derek; Woyke, Tanja; Tringe, Susannah

    2014-03-19

    Land plants grow in association with microbial communities both on their surfaces and inside the plant (endophytes). The relationships between microbes and their host can vary from pathogenic to mutualistic. Colonization of the endophyte compartment occurs in the presence of a sophisticated plant immune system, implying finely tuned discrimination of pathogens from mutualists and commensals. Despite the importance of the microbiome to the plant, relatively little is known about the specific interactions between plants and microbes, especially in the case of endophytes. The vast majority of microbes have not been grown in the lab, and thus one of the fewmore » ways of studying them is by examining their DNA. Although metagenomics is a powerful tool for examining microbial communities, its application to endophyte samples is technically difficult due to the presence of large amounts of host plant DNA in the sample. One method to address these difficulties is single-cell genomics where a single microbial cell is isolated from a sample, lysed, and its genome amplified by multiple displacement amplification (MDA) to produce enough DNA for genome sequencing. This produces a single-cell amplified genome (SAG). We have applied this technology to study the endophytic microbes in Arabidopsis thaliana roots. Extensive 16S gene profiling of the microbial communities in the roots of multiple inbred A. thaliana strains has identified 164 OTUs as being significantly enriched in all the root endophyte samples compared to their presence in bulk soil.« less

  5. Formation and Stability of Microbially Derived Soil Organic Matter

    NASA Astrophysics Data System (ADS)

    Waldrop, M. P.; Creamer, C.; Foster, A. L.; Lawrence, C. R.; Mcfarland, J. W.; Schulz, M. S.

    2017-12-01

    Soil carbon is vital to soil health, food security, and climate change mitigation, but the underlying mechanisms controlling the stabilization and destabilization of soil carbon are still poorly understood. There has been a conceptual paradigm shift in how soil organic matter is formed which now emphasizes the importance of microbial activity to build stable (i.e. long-lived) and mineral-associated soil organic matter. In this conceptual model, the consumption of plant carbon by microorganisms, followed by subsequent turnover of microbial bodies closely associated with mineral particles, produces a layering of amino acid and lipid residues on the surfaces of soil minerals that remains protected from destabilization by mineral-association and aggregation processes. We tested this new model by examining how isotopically labeled plant and microbial C differ in their fundamental stabilization and destabilization processes on soil minerals through a soil profile. We used a combination of laboratory and field-based approaches to bridge multiple spatial scales, and used soil depth as well as synthetic minerals to create gradients of soil mineralogy. We used Raman microscopy as a tool to probe organic matter association with mineral surfaces, as it allows for the simultaneous quantification and identification of living microbes, carbon, minerals, and isotopes through time. As expected, we found that the type of minerals present had a strong influence on the amount of C retained, but the stabilization of new C critically depends on growth, death, and turnover of microbial cells. Additionally, the destabilization of microbial residue C on mineral surfaces was little affected by flushes of DOC relative to wet-dry cycles alone. We believe this new insight into microbial mechanisms of C stabilization in soils will eventually lead to new avenues for measuring and modeling SOM dynamics in soils, and aid in the management of soil C to mediate global challenges.

  6. Soil microbial structure and function post-volcanic eruption on Kasatochi Island and regional controls on microbial heterogeneity

    NASA Astrophysics Data System (ADS)

    Zeglin, L. H.; Rainey, F.; Wang, B.; Waythomas, C.; Talbot, S. L.

    2013-12-01

    Microorganisms are abundant and diverse in soil and their integrated activity drives nutrient cycling on the ecosystem scale. Organic matter (OM) inputs from plant production support microbial heterotrophic life, and soil geochemistry constrains microbial activity and diversity. As vegetation and soil develops over time, these factors change, modifying the controls on microbial heterogeneity. Following a volcanic eruption, ash deposition creates new surfaces where both organismal growth and weathering processes are effectively reset. The trajectory of microbial community development following this disturbance depends on both organic matter accumulation and geochemical constraints. Also, dispersal of microbial cells to the sterile ash surface may determine microbial community succession. The Aleutian Islands (Alaska, USA) are a dynamic volcanic region, with active and dormant volcanoes distributed across the volcanic arc. One of these volcanoes, Kasatochi, erupted violently in August 2008, burying a small lush island in pryoclastic flows and fine ash. Since, plants and birds are beginning to re-establish on developing surfaces, including legacy soils exposed by rapid erosion of pyroclastic deposits, suggesting that recovery of microbial life is also proceeding. However, soil microbial diversity and function has not been examined on Kasatochi Island or across the greater Aleutian region. The project goal is to address these questions: How is soil microbial community structure and function developing following the Kasatochi eruption? What is the relative importance of dispersal, soil OM and geochemistry to microbial community heterogeneity across the Aleutians? Surface mineral soil (20-cm depth) samples were collected from Kasatochi Island in summer 2013, five years after the 2008 eruption, and from eight additional Aleutian islands. On Kasatochi, pryoclastic deposits, exposed legacy soils supporting regrowth of remnant dune wild-rye (Leymus mollis) and mesic meadow plant communities, and soils impacted by recovering seabird rookeries were sampled. On the other islands, soils supporting both Leymus and mesic meadow communities (representative of dominant vegetation types on Kasatochi pre-eruption) were sampled. For each soil category and island combination, three transects of soil cores at 10-cm, 50-cm, 1-m, 5-m and 10-m distance were collected; with distances between sites and islands included (up to >700 km), the range of geographic distance examined covers over 7 orders of magnitude. For all samples, data on fundamental geochemical and OM factors, bacterial and fungal biomass, activity and diversity (via QPCR, extracellular enzyme potential assays and T-RFLP) are being collected. Covariance analysis is being used to evaluate the scale of maximum spatial heterogeneity in microbial structure and function, and ordination and matrix correlation analyses are being used to identify the key environmental covariates with heterogeneity. We hypothesize that heterogeneity at small (cm) scales will reflect predominant geochemical controls, at medium (m) scales will reflect predominant OM (vegetation) controls and at large (km) scales will reflect dispersal-related controls on microbial community structure and function.

  7. Model system for studies of microbial dynamics at exuding surfaces such as the rhizosphere.

    PubMed Central

    Odham, G; Tunlid, A; Valeur, A; Sundin, P; White, D C

    1986-01-01

    An autoclavable all-glass system for studying microbial dynamics at permeable surfaces is described. Standard hydrophobic or hydrophilic membranes (46-mm diameter) of various pore sizes were supported on a glass frit through which nutrient solutions were pumped by a peristaltic pump. The pump provided a precisely controlled flow at speeds of 0.5 to 500 ml of defined or natural cell exudates per h, which passed through the membrane into a receiving vessel. The construction allowed a choice of membranes, which could be modified. The system was tested with a bacterium, isolated from rape plant roots (Brassica napus L.), that was inoculated on a hydrophilic membrane filter and allowed to develop into a biofilm. A defined medium with a composition resembling that of natural rape root exudate was pumped through the membrane at 0.5 ml/h. Scanning electron microscopic examinations indicated that the inoculum formed microcolonies embedded in exopolymers evenly distributed over the membrane surface. The lipid composition and content of poly-beta-hydroxybutyrate in free-living and adhered cells were determined by gas chromatography. The bacterial consumption of amino acids in the exudate was also studied. Images PMID:11536565

  8. Model system for studies of microbial dynamics at exuding surfaces such as the rhizosphere

    NASA Technical Reports Server (NTRS)

    Odham, G.; Tunlid, A.; Valeur, A.; Sundin, P.; White, D. C.

    1986-01-01

    An autoclavable all-glass system for studying microbial dynamics at permeable surfaces is described. Standard hydrophobic or hydrophilic membranes (46-mm diameter) of various pore sizes were supported on a glass frit through which nutrient solutions were pumped by a peristaltic pump. The pump provided a precisely controlled flow at speeds of 0.5 to 500 ml of defined or natural cell exudates per h, which passed through the membrane into a receiving vessel. The construction allowed a choice of membranes, which could be modified. The system was tested with a bacterium, isolated from rape plant roots (Brassica napus L.), that was inoculated on a hydrophilic membrane filter and allowed to develop into a biofilm. A defined medium with a composition resembling that of natural rape root exudate was pumped through the membrane at 0.5 ml/h. Scanning electron microscopic examinations indicated that the inoculum formed microcolonies embedded in exopolymers evenly distributed over the membrane surface. The lipid composition and content of poly-beta-hydroxybutyrate in free-living and adhered cells were determined by gas chromatography. The bacterial consumption of amino acids in the exudate was also studied.

  9. Endotoxins in Environmental and Clinical Samples Assessed by GC-Tandem MS

    NASA Astrophysics Data System (ADS)

    Szponar, Bogumila

    Bacteria appeared on the Earth millions years before us and human evolution was triggered by the constant presence of pathogenic and symbiotic microorganisms in our surroundings. Interplay occurred between higher organism and microbial consortia residing in the host organs and on the epithelial surfaces; another natural space of bacteria-human interaction is the indoor environment where we spend the majority of our lifetime. Indoor microbial exposure affects our well-being and can result in respiratory symptoms, such as allergies and asthma, since both dead and live microorganisms and their cell constituents, including lipopolysaccharides (LPS, endotoxins), interact with our immune system. Thus, there is a demand for robust tools for qualitative and quantitative determination of the microbial communities that we are exposed to.

  10. Influence of Surface Properties on the Adhesion of Staphylococcus epidermidis to Acrylic and Silicone

    PubMed Central

    Sousa, Cláudia; Teixeira, Pilar; Oliveira, Rosário

    2009-01-01

    The aim of the present study was to compare the ability of eight Staphylococcus epidermidis strains to adhere to acrylic and silicone, two polymers normally used in medical devices manufacture. Furthermore, it was tried to correlate that with the surface properties of substrata and cells. Therefore, hydrophobicity and surface tension components were calculated through contact angle measurements. Surface roughness of substrata was also assessed by atomic force microscopy (AFM). No relationship was found between microbial surface hydrophobicity and adhesion capability. Nevertheless, Staphylococcus epidermidis IE214 showed very unique adhesion behaviour, with cells highly aggregated between them, which is a consequence of their specific surface features. All strains, determined as being hydrophilic, adhered at a higher extent to silicone than to acrylic, most likely due to its more hydrophobic character and higher roughness. This demonstrates the importance of biomaterial surface characteristics for bacterial adhesion. PMID:20126579

  11. Microbial Habitability in Gale Crater: Sample Analysis at Mars (SAM) Instrument Detection of Microbial Essential Carbon and Nitrogen

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Ming, D. W.; Eigenbrode, J. E.; Steele, A.; Stern, J. C.; Gonzalez, R. N.; McAdam, A. C.; Mahaffy, P. R.

    2016-01-01

    Chemical analyses of Mars soils and sediments from previous landed missions have demonstrated that Mars surface materials possessed major (e.g., P, K, Ca, Mg, S) and minor (e.g., Fe, Mn, Zn, Ni, Cl) elements essential to support microbial life. However, the detection of microbial essential organic-carbon (C) and nitrate have been more elusive until the Mars Science Laboratory (MSL) rover mission. Nitrate and organic-C in Gale Crater, Mars have been detected by the Sample Analysis at Mars (SAM) instrument onboard the MSL Curiosity rover. Eolian fines and drilled sedimentary rock samples were heated in the SAM oven from approximately 30 to 860 degrees Centigrade where evolved gases (e.g., nitrous oxide (NO) and CO2) were released and analyzed by SAM’s quadrupole mass spectrometer (MS). The temperatures of evolved NO was assigned to nitrate while evolved CO2 was assigned to organic-C and carbonate. The CO2 releases in several samples occurred below 450 degrees Centigrade suggesting organic-C dominated in those samples. As much as 7 micromoles NO3-N per gram and 200 micromoles CO2-C per gram have been detected in the Gale Crater materials. These N and C levels coupled with assumed microbial biomass (9 x 10 (sup -7) micrograms per cell) C (0.5 micrograms C per micrograms cell) and N (0.14 micrograms N per micrograms cell) requirements, suggests that less than 1 percent and less than 10 percent of Gale Crater C and N, respectively, would be required if available, to accommodate biomass requirements of 1 by 10 (sup 5) cells per gram sediment. While nitrogen is the limiting nutrient, the potential exists that sufficient N and organic-C were present to support limited heterotrophic microbial populations that may have existed on ancient Mars.

  12. Glutathione as a promising anti-hydrophobicity agent against Malassezia spp.

    PubMed

    Sivasankar, Chandran; Ponmalar, Ayyappan; Bhaskar, James P; Pandian, Shunmugiah K

    2015-10-01

    The genus Malassezia has recently attracted wide attention in medical microbiology and dermatology as a pathogen. They are lipophilic yeasts possessing high level of cell surface hydrophobicity (CSH). L-glutathione (GSH) is a ubiquitous antioxidant which offers protection against microbial infections. This study is intended to investigate the role of GSH as a potential anti-hydrophobicity agent against Malazessia spp. Microbial adherence to hydrocarbon assay was performed to assess the anti-hydrophobicity activity (AHA) of GSH against four Malassezia spp. The assay revealed that GSH at 400 μg ml(-1) concentration inhibited CSH, ranging from 84% to 95% in M. furfur, M. globosa, M. restricta and M. sympodialis without killing the cells. The AHA of GSH was corroborated by auto-aggregation assay and zeta-potential measurement, through which delayed cell aggregation was observed due to reduction in CSH level and not by modification in cell surface charge. In addition, colony-forming unit assay was performed in which 62-93% of CSH reduction was observed in Malassezia spp. tested. Furthermore, GSH treatment enhanced the sensitivity of Malassezia spp. towards human blood at the rate of 64-72%. The AHA was further confirmed through Fourier transform infrared analysis. Thus, this study portrays GSH as a prospective therapeutic alternative for Malassezia-mediated infections. © 2015 Blackwell Verlag GmbH.

  13. Microbial reduction of uranium

    USGS Publications Warehouse

    Lovley, D.R.; Phillips, E.J.P.; Gorby, Y.A.; Landa, E.R.

    1991-01-01

    REDUCTION of the soluble, oxidized form of uranium, U(VI), to insoluble U(IV) is an important mechanism for the immobilization of uranium in aquatic sediments and for the formation of some uranium ores1-10. U(VI) reduction has generally been regarded as an abiological reaction in which sulphide, molecular hydrogen or organic compounds function as the reductant1,2,5,11. Microbial involvement in U(VI) reduction has been considered to be limited to indirect effects, such as microbial metabolism providing the reduced compounds for abiological U(VI) reduction and microbial cell walls providing a surface to stimulate abiological U(VI) reduction1,12,13. We report here, however, that dissimilatory Fe(III)-reducing microorganisms can obtain energy for growth by electron transport to U(VI). This novel form of microbial metabolism can be much faster than commonly cited abiological mechanisms for U(VI) reduction. Not only do these findings expand the known potential terminal electron acceptors for microbial energy transduction, they offer a likely explanation for the deposition of uranium in aquatic sediments and aquifers, and suggest a method for biological remediation of environments contaminated with uranium.

  14. Nanomechanics of Yeast Surfaces Revealed by AFM

    NASA Astrophysics Data System (ADS)

    Dague, Etienne; Beaussart, Audrey; Alsteens, David

    Despite the large and well-documented characterization of the microbial cell wall in terms of chemical composition, the determination of the mechanical properties of surface molecules in relation to their function remains a key challenge in cell biology.The emergence of powerful tools allowing molecular manipulations has already revolutionized our understanding of the surface properties of fungal cells. At the frontier between nanophysics and molecular biology, atomic force microscopy (AFM), and more specifically single-molecule force spectroscopy (SMFS), has strongly contributed to our current knowledge of the cell wall organization and nanomechanical properties. However, due to the complexity of the technique, measurements on live cells are still at their infancy.In this chapter, we describe the cell wall composition and recapitulate the principles of AFM as well as the main current methodologies used to perform AFM measurements on live cells, including sample immobilization and tip functionalization.The current status of the progress in probing nanomechanics of the yeast surface is illustrated through three recent breakthrough studies. Determination of the cell wall nanostructure and elasticity is presented through two examples: the mechanical response of mannoproteins from brewing yeasts and elasticity measurements on lacking polysaccharide mutant strains. Additionally, an elegant study on force-induced unfolding and clustering of adhesion proteins located at the cell surface is also presented.

  15. Cryptic oxygen oases: Hypolithic photosynthesis in hydrothermal areas and implications for Archean surface oxidation

    NASA Astrophysics Data System (ADS)

    Havig, J. R.; Hamilton, T. L.

    2017-12-01

    Mounting geochemical evidence suggests microorganisms capable of oxygenic photosynthesis (e.g., Cyanobacteria) colonized Archean continental surfaces, driving oxidative weathering of detrital pyrites prior to the 2.5 Ga great oxidation event. Modern terrestrial environments dominated by single-celled phototrophs include hydrothermal systems (e.g., Yellowstone National Park) and hypolithic communities found in arid to hyper-arid deserts (e.g., McMurdo Dry Valleys of Antarctica, Atacama Desert of Chile). Recent work indicates terrestrial hydrothermal systems date back at least as far as 3.5 Ga. Here, we explore phototrophic communities in both hypolithic (sub-sinter) and hydrothermal (subaqueous and subaerial) environments in Yellowstone National Park as potential analogs to Archean continental surfaces. Hydrothermal sub-sinter environments provide ideal conditions for phototrophic microbial communities, including blocking of harmful UV radiation, trapping and retention of moisture, and protection from erosion by rain and surface runoff. Hypolithic communities in geothermal settings were similar in both composition and carbon uptake rates to nearby hot spring communities. We hypothesize that hydrothermal area hypolithic communities represent modern analogs of phototrophic microbial communities that colonized Archean continental surfaces, producing oxygen locally and facilitating microbially-mediated pyrite oxidation prior to the presence of free oxygen in the global atmosphere. These results have implications for oxidation of the early Earth surface, the search for biosignatures in the rock record, as well as for potential harbors of past life on Mars and the search for life on Exoplanets.

  16. The innovation of cryo-SEM freeze-fracturing methodology demonstrated on high pressure frozen biofilm.

    PubMed

    Hrubanova, Kamila; Nebesarova, Jana; Ruzicka, Filip; Krzyzanek, Vladislav

    2018-07-01

    In this study we present an innovative method for the preparation of fully hydrated samples of microbial biofilms of cultures Staphylococcus epidermidis, Candida parapsilosis and Candida albicans. Cryo-scanning electron microscopy (cryo-SEM) and high-pressure freezing (HPF) rank among cutting edge techniques in the electron microscopy of hydrated samples such as biofilms. However, the combination of these techniques is not always easily applicable. Therefore, we present a method of combining high-pressure freezing using EM PACT2 (Leica Microsystems), which fixes hydrated samples on small sapphire discs, with a high resolution SEM equipped with the widely used cryo-preparation system ALTO 2500 (Gatan). Using a holder developed in house, a freeze-fracturing technique was applied to image and investigate microbial cultures cultivated on the sapphire discs. In our experiments, we focused on the ultrastructure of the extracellular matrix produced during cultivation and the relationships among microbial cells in the biofilm. The main goal of our investigations was the detailed visualization of areas of the biofilm where the microbial cells adhere to the substrate/surface. We show the feasibility of this technique, which is clearly demonstrated in experiments with various freeze-etching times. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Morphological Survey of Microbial Mats Near Deep-Sea Thermal Vents †

    PubMed Central

    Jannasch, Holger W.; Wirsen, Carl O.

    1981-01-01

    A microscopic survey is presented of the most commonly observed and morphologically conspicuous microorganisms found attached to natural surfaces or to artificial materials deposited in the immediate vicinity of thermal submarine vents at the Galapagos Rift ocean spreading zone at a depth of 2,550 meters. Of special interest were the following findings: (i) all surfaces intermittently exposed to H2S-containing hydrothermal fluid were covered by layers, ca. 5 to 10 μm thick, of procaryotic, gram-negative cells interspaced with amorphous metal (Mn-Fe) deposits; (ii) although some of the cells were encased by dense metal deposits, there was little apparent correlation between metal deposition and the occurrence of microbial mats, (iii) highly differentiated forms appeared to be analogues of certain cyanobacteria, (iv) isolates from massive mats of a prosthecate bacterium could be identified as Hyphomicrobium spp., (v) intracellular membrane systems similar to those found in methylotrophic and nitrifying bacteria were observed in approximately 20% of the cells composing the mats, (vi) thiosulfate enrichments made from mat material resulted in isolations of different types of sulfur-oxidizing bacteria including the obligately chemolithotrophic genus Thiomicrospira. Images PMID:16345722

  18. Surface Enhanced Raman Spectroscopy for the Rapid Detection and Identification of Microbial Pathogens in Human Serum

    DTIC Science & Technology

    2014-12-11

    and 1 mm depth. Bacterial culture and cell count determination Bacterial species of Acinetobacter baumannii (A. baumannii, ST-3), Escherichia coli...remove all broth components followed by a final resuspension of the pellet in ddH2O back to 1 OD. Cell count was determined by plating the 10 4 , 10 3...10 2 and 10 1 cell dilutions on TSB Nutrient Agar media. Colony forming units (CFU) were counted the following day to confirm bacterial species

  19. MHC variation sculpts individualized microbial communities that control susceptibility to enteric infection

    PubMed Central

    Kubinak, Jason L.; Stephens, W. Zac; Soto, Ray; Petersen, Charisse; Chiaro, Tyson; Gogokhia, Lasha; Bell, Rickesha; Ajami, Nadim J.; Petrosino, Joseph F.; Morrison, Linda; Potts, Wayne K.; Jensen, Peter E.; O'Connell, Ryan M.; Round, June L.

    2015-01-01

    The presentation of protein antigens on the cell surface by major histocompatibility complex (MHC) molecules coordinates vertebrate adaptive immune responses, thereby mediating susceptibility to a variety of autoimmune and infectious diseases. The composition of symbiotic microbial communities (the microbiota) is influenced by host immunity and can have a profound impact on host physiology. Here we use an MHC congenic mouse model to test the hypothesis that genetic variation at MHC genes among individuals mediates susceptibility to disease by controlling microbiota composition. We find that MHC genotype significantly influences antibody responses against commensals in the gut, and that these responses are correlated with the establishment of unique microbial communities. Transplantation experiments in germfree mice indicate that MHC-mediated differences in microbiota composition are sufficient to explain susceptibility to enteric infection. Our findings indicate that MHC polymorphisms contribute to defining an individual's unique microbial fingerprint that influences health. PMID:26494419

  20. MetaSort untangles metagenome assembly by reducing microbial community complexity

    PubMed Central

    Ji, Peifeng; Zhang, Yanming; Wang, Jinfeng; Zhao, Fangqing

    2017-01-01

    Most current approaches to analyse metagenomic data rely on reference genomes. Novel microbial communities extend far beyond the coverage of reference databases and de novo metagenome assembly from complex microbial communities remains a great challenge. Here we present a novel experimental and bioinformatic framework, metaSort, for effective construction of bacterial genomes from metagenomic samples. MetaSort provides a sorted mini-metagenome approach based on flow cytometry and single-cell sequencing methodologies, and employs new computational algorithms to efficiently recover high-quality genomes from the sorted mini-metagenome by the complementary of the original metagenome. Through extensive evaluations, we demonstrated that metaSort has an excellent and unbiased performance on genome recovery and assembly. Furthermore, we applied metaSort to an unexplored microflora colonized on the surface of marine kelp and successfully recovered 75 high-quality genomes at one time. This approach will greatly improve access to microbial genomes from complex or novel communities. PMID:28112173

  1. Investigation of Macrophage Differentiation and Cytokine Production in an Undergraduate Immunology Laboratory

    ERIC Educational Resources Information Center

    Berkes, Charlotte; Chan, Leo Li-Ying

    2015-01-01

    We have developed a semester-long laboratory project for an undergraduate immunology course in which students study multiple aspects of macrophage biology including differentiation from progenitors in the bone marrow, activation upon stimulation with microbial ligands, expression of cell surface markers, and modulation of cytokine production. In…

  2. Microbial colonization and growth on metal sulfides and other mineral surfaces

    NASA Technical Reports Server (NTRS)

    Caldwell, D.; Sundquist, A. R.; Lawrence, J.; Doyle, A. P.

    1985-01-01

    To determine whether a bacterial film forms on sulfur minerals in situ, various sulfur containing and other minerals were incubated in Penitencia Creek. The rate of cell growth and attachment within the surface microenvironment of mineral surfaces was also determined. To determine whether surfaces enriched with soluble sulfur substrates (cysteine, glutathione, thioglycolate, sulfite, and thiosulfate) increased the rate of growth or attachment of natural communities, membrane enrichments were incubated. These rates were determined as described by Caldwell et al. (1981, 1983). The growth of Pseudomonas fluorescens, a heterotrophic sulfur oxidizer, was studied in batch cell suspensions and in continuous culture. In batch culture the cells were oxygen limited (growth rate 0.33 per hour under oxygen limitations and 0.52 per hour when vigorously aerated). Growth within the film was glucose limited. Several behavioral phenomena were observed for cells growing within the hydrodynamic boundary layer. Despite a flow of 10 cm per second in the environment, the bacteria were able to move freely in both directions within the hydrodynamic boundary layer.

  3. Effect of surface nano/micro-structuring on the early formation of microbial anodes with Geobacter sulfurreducens: Experimental and theoretical approaches.

    PubMed

    Champigneux, Pierre; Renault-Sentenac, Cyril; Bourrier, David; Rossi, Carole; Delia, Marie-Line; Bergel, Alain

    2018-06-01

    Smooth and nano-rough flat gold electrodes were manufactured with controlled Ra of 0.8 and 4.5nm, respectively. Further nano-rough surfaces (Ra 4.5nm) were patterned with arrays of micro-pillars 500μm high. All these electrodes were implemented in pure cultures of Geobacter sulfurreducens, under a constant potential of 0.1V/SCE and with a single addition of acetate 10mM to check the early formation of microbial anodes. The flat smooth electrodes produced an average current density of 0.9A·m -2 . The flat nano-rough electrodes reached 2.5A·m -2 on average, but with a large experimental deviation of ±2.0A·m -2 . This large deviation was due to the erratic colonization of the surface but, when settled on the surface, the cells displayed current density that was directly correlated to the biofilm coverage ratio. The micro-pillars considerably improved the experimental reproducibility by offering the cells a quieter environment, facilitating biofilm development. Current densities of up to 8.5A·m -2 (per projected surface area) were thus reached, in spite of rate limitation due to the mass transport of the buffering species, as demonstrated by numerical modelling. Nano-roughness combined with micro-structuring increased current density by a factor close to 10 with respect to the smooth flat surface. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. BioMig--A Method to Evaluate the Potential Release of Compounds from and the Formation of Biofilms on Polymeric Materials in Contact with Drinking Water.

    PubMed

    Wen, Gang; Kötzsch, Stefan; Vital, Marius; Egli, Thomas; Ma, Jun

    2015-10-06

    In contact with water, polymeric materials (plastics) release compounds that can support suspended microbial growth and/or biofilm formation. The different methods presently used in the European Union to test plastics take 7-16 weeks to obtain a result. In industry, this delays material and product development as well as quality testing. Therefore, we developed a method package (BioMig) that allows testing of plastic materials with high reproducibility in 2 weeks for their potential biofilm (or biomass) formation and release of carbonaceous migration products when in contact with water. BioMig consists of (i) an extended migration potential test (seven times for 24 h at 60 °C), based on the European norm EN 12873-1 and the German UBA (Umweltbundesamt) guideline, and (ii) a biomass formation potential (BFP) test (14 days at 30 °C), which is a modified version of the Dutch biofilm production potential test. In the migration potential test, the amount of carbon released into water by the specimen is quantified by monitoring total and assimilable organic carbon over time; furthermore, the modular design of the test also allows one to assess additional parameters such as pathogen growth potential on the migration water or toxic effects on microbial growth. Flow cytometry (FCM)-based total cell counting (TCC) is used to quantify microbial growth in suspension and on surfaces after removal with mild sonication without affecting cell integrity. The BFP test allows one to determine both the planktonic (pBFP) and the sessile (sBFP) cell fractions. The sBFP consists of surface-attached cells after removal (>90% efficiency). Results for four standard test materials (PE-Xa, PE-Xc, EPDM 2%, and EPDM 20%), plus positive (PVC-P) and negative (glass) controls are presented. FCM-based TCC demonstrates that the release of growth-supporting carbon and proliferation of surface-attached cells stops increasing and stabilizes after 14 days of incubation; this allows for faster assessment of growth-supporting properties of plastics with BioMig compared to established tests.

  5. Microbes in the upper atmosphere and unique opportunities for astrobiology research.

    PubMed

    Smith, David J

    2013-10-01

    Microbial taxa from every major biological lineage have been detected in Earth's upper atmosphere. The goal of this review is to communicate (1) relevant astrobiology questions that can be addressed with upper atmosphere microbiology studies and (2) available sampling methods for collecting microbes at extreme altitudes. Precipitation, mountain stations, airplanes, balloons, rockets, and satellites are all feasible routes for conducting aerobiology research. However, more efficient air samplers are needed, and contamination is also a pervasive problem in the field. Measuring microbial signatures without false positives in the upper atmosphere might contribute to sterilization and bioburden reduction methods for proposed astrobiology missions. Intriguingly, environmental conditions in the upper atmosphere resemble the surface conditions of Mars (extreme cold, hypobaria, desiccation, and irradiation). Whether terrestrial microbes are active in the upper atmosphere is an area of intense research interest. If, in fact, microbial metabolism, growth, or replication is achievable independent of Earth's surface, then the search for habitable zones on other worlds should be broadened to include atmospheres (e.g., the high-altitude clouds of Venus). Furthermore, viable cells in the heavily irradiated upper atmosphere of Earth could help identify microbial genes or enzymes that bestow radiation resistance. Compelling astrobiology questions on the origin of life (if the atmosphere synthesized organic aerosols), evolution (if airborne transport influenced microbial mutation rates and speciation), and panspermia (outbound or inbound) are also testable in Earth's upper atmosphere.

  6. Recent advances in engineering topography mediated antibacterial surfaces

    PubMed Central

    Hasan, Jafar

    2015-01-01

    The tendency of bacterial cells to adhere and colonize a material surface leading to biofilm formation is a fundamental challenge underlying many different applications including microbial infections associated with biomedical devices and products. Although, bacterial attachment to surfaces has been extensively studied in the past, the effect of surface topography on bacteria–material interactions has received little attention until more recently. We review the recent progress in surface topography based approaches for engineering antibacterial surfaces. Biomimicry of antibacterial surfaces in nature is a popular strategy. Whereas earlier endeavors in the field aimed at minimizing cell attachment, more recent efforts have focused on developing bactericidal surfaces. However, not all such topography mediated bactericidal surfaces are necessarily cytocompatible thus underscoring the need for continued efforts for research in this area for developing antibacterial and yet cytocompatible surfaces for use in implantable biomedical applications. This mini-review provides a brief overview of the current strategies and challenges in the emerging field of topography mediated antibacterial surfaces. PMID:26372264

  7. Recent advances in engineering topography mediated antibacterial surfaces

    NASA Astrophysics Data System (ADS)

    Hasan, Jafar; Chatterjee, Kaushik

    2015-09-01

    The tendency of bacterial cells to adhere and colonize a material surface leading to biofilm formation is a fundamental challenge underlying many different applications including microbial infections associated with biomedical devices and products. Although, bacterial attachment to surfaces has been extensively studied in the past, the effect of surface topography on bacteria-material interactions has received little attention until more recently. We review the recent progress in surface topography based approaches for engineering antibacterial surfaces. Biomimicry of antibacterial surfaces in nature is a popular strategy. Whereas earlier endeavors in the field aimed at minimizing cell attachment, more recent efforts have focused on developing bactericidal surfaces. However, not all such topography mediated bactericidal surfaces are necessarily cytocompatible thus underscoring the need for continued efforts for research in this area for developing antibacterial and yet cytocompatible surfaces for use in implantable biomedical applications. This mini-review provides a brief overview of the current strategies and challenges in the emerging field of topography mediated antibacterial surfaces.

  8. Linking Spectral Induced Polarization (SIP) and Subsurface Microbial Processes: Results from Sand Column Incubation Experiments.

    PubMed

    Mellage, Adrian; Smeaton, Christina M; Furman, Alex; Atekwana, Estella A; Rezanezhad, Fereidoun; Van Cappellen, Philippe

    2018-02-20

    Geophysical techniques, such as spectral induced polarization (SIP), offer potentially powerful approaches for in situ monitoring of subsurface biogeochemistry. The successful implementation of these techniques as monitoring tools for reactive transport phenomena, however, requires the deconvolution of multiple contributions to measured signals. Here, we present SIP spectra and complementary biogeochemical data obtained in saturated columns packed with alternating layers of ferrihydrite-coated and pure quartz sand, and inoculated with Shewanella oneidensis supplemented with lactate and nitrate. A biomass-explicit diffusion-reaction model is fitted to the experimental biogeochemical data. Overall, the results highlight that (1) the temporal response of the measured imaginary conductivity peaks parallels the microbial growth and decay dynamics in the columns, and (2) SIP is sensitive to changes in microbial abundance and cell surface charging properties, even at relatively low cell densities (<10 8 cells mL -1 ). Relaxation times (τ) derived using the Cole-Cole model vary with the dominant electron accepting process, nitrate or ferric iron reduction. The observed range of τ values, 0.012-0.107 s, yields effective polarization diameters in the range 1-3 μm, that is, 2 orders of magnitude smaller than the smallest quartz grains in the columns, suggesting that polarization of the bacterial cells controls the observed chargeability and relaxation dynamics in the experiments.

  9. Activation of the innate immune receptor Dectin-1 upon formation of a “phagocytic synapse”

    PubMed Central

    Goodridge, Helen S.; Reyes, Christopher N.; Becker, Courtney A.; Katsumoto, Tamiko R.; Ma, Jun; Wolf, Andrea J.; Bose, Nandita; Chan, Anissa S. H.; Magee, Andrew S.; Danielson, Michael E.; Weiss, Arthur; Vasilakos, John P.; Underhill, David M.

    2011-01-01

    Innate immune cells must be able to distinguish between direct binding to microbes and detection of components shed from the surface of microbes located at a distance. Dectin-1 is a pattern recognition receptor expressed by myeloid phagocytes (macrophages, dendritic cells and neutrophils) that detects β-glucans in fungal cell walls and triggers direct cellular anti-microbial activity, including phagocytosis and production of reactive oxygen species1, 2. In contrast to inflammatory responses stimulated upon detection of soluble ligands by other pattern recognition receptors, such as Toll-like receptors (TLRs), these responses are only useful when a cell comes into direct contact with a microbe and must not be spuriously activated by soluble stimuli. In this study we show that despite its ability to bind both soluble and particulate β-glucan polymers, Dectin-1 signalling is only activated by particulate β-glucans, which cluster the receptor in synapse-like structures from which regulatory tyrosine phosphatases CD45 and CD148 are excluded (Supplementary Figure 1). The “phagocytic synapse” now provides a model mechanism by which innate immune receptors can distinguish direct microbial contact from detection of microbes at a distance, thereby initiating direct cellular anti-microbial responses only when they are required. PMID:21525931

  10. Microbial and geochemical investigations of dissolved organic carbon and microbial ecology of native waters from the Biscayne and Upper Floridan Aquifers

    USGS Publications Warehouse

    Lisle, John T.; Harvey, Ron W.; Aiken, George R.; Metge, David W.

    2010-01-01

    Groundwater resources in the United States are under ever-increasing demands for potable, irrigation, and recreational uses. Additionally, aquifer systems are being used or targeted for use as storage areas for treated surface waters and (or) groundwaters via injection (for example, aquifer storage and recovery). To date, the influence that the nutrients, including carbon, in the injected water have on native microbial communities and the biogeochemistry in the subsurface zones used for storage of the injectate has not been determined. In this report, we describe a series of experiments that establishes a baseline dataset for the quantity and quality of organic and inorganic carbon and nutrients in the Biscayne Aquifer (BA) and Upper Floridan Aquifer (UFA) in south Florida. The most significant differences between the BA (26 meters below surface) and UFA (366 meters below surface) are the average specific conductance (0.552 and 6.12 microsiemens per centimeter, respectively), dissolved oxygen (1.6 and 0 milligrams per liter, respectively), and oxidation-reduction potential (40.3 and -358 millivolts, respectively). The dissolved organic carbon from the BA is characterized by carbon originating from terrestrial sources and microbial activities, while the UFA has a distinctive microbial signature. Acetate and lactate are the dominant carbon constituents in both aquifers. Additionally, components of the dissolved organic carbon from the UFA have a total trihalomethane-formation potential that is approximately threefold greater than the maximum contaminat level of 80 micrograms per liter established by the U.S. Environmental Protection Agency. The average native bacterial abundances in the aquifers are similar with 4.69x10^4 cells per milliliter in the BA and 1.33x10^4 cells per milliliter in the UFA. The average bacteriophage abundances are also similar with 1.15x10^5 virus-like particles in the BA and 1.92x10^5 virus-like particles in the UFA. Interestingly, ciliated protozoa are present in both aquifers. The average abundance of ciliates in the BA (2.97x10^3 ciliates per milliliter) is approximately twentyfold greater than abundances in the UFA (1.39x10^2 ciliates per milliliter). Collectively, these data indicate that microbial processes are the dominant contributor to the cycling of carbon and inorganic carbon in the BA and may be the only carbon cycling process in the UFA, as this aquifer has not had a terrestrial influx of carbon for more than 15,000 years. The rates of carbon, in the form of acetate, utilization by the native microbial communities are significantly different between the two aquifers. Based on data from 14C-acetate-utilization experiments, the microbial communities in the BA turn over the native acetate in 2.5 years, whereas communities in the UFA turn over native acetate in 6.8 years. These data support the hypothesis derived from the microbial-abundance data, in that the carbon for bacterial maintainence and growth is recycled from bacterial biomass released during cell lysis, especially in the UFA. An in situ diffusion chamber was designed to retain bacterial cells within the chamber while allowing native water constituents to move through the chamber. A series of 1-week deployments of chambers filled with fluorescent beads, inactivated native bacteria and laboratory grown and viable bacteria into the UFA, permitted by the State of Florida Environmental Protection Agency, was successfully completed. This was the first time this type of deployment into an aquifer system that is used for potable water supply has been permitted within the United States. This technology will allow, for the first time, in situ studies on the survival of microbial indicators of fecal pollution and true pathogens in groundwater systems.

  11. Microbial Metabolism in Serpentinite Fluids

    NASA Astrophysics Data System (ADS)

    Crespo-Medina, M.; Brazelton, W. J.; Twing, K. I.; Kubo, M.; Hoehler, T. M.; Schrenk, M. O.

    2013-12-01

    Serpentinization is the process in which ultramafic rocks, characteristic of the upper mantle, react with water liberating mantle carbon and reducing power to potenially support chemosynthetic microbial communities. These communities may be important mediators of carbon and energy exchange between the deep Earth and the surface biosphere. Our work focuses on the Coast Range Ophiolite Microbial Observatory (CROMO) in Northern California where subsurface fluids are accessible through a series of wells. Preliminary analyses indicate that the highly basic fluids (pH 9-12) have low microbial diversity, but there is limited knowledge about the metabolic capabilities of these communties. Metagenomic data from similar serpentine environments [1] have identified Betaproteobacteria belonging to the order Burkholderiales and Gram-positive bacteria from the order Clostridiales as key components of the serpentine microbiome. In an effort to better characterize the microbial community, metabolism, and geochemistry at CROMO, fluids from two representative wells (N08B and CSWold) were sampled during recent field campaigns. Geochemical characterization of the fluids includes measurements of dissolved gases (H2, CO, CH4), dissolved inorganic and organic carbon, volatile fatty acids, and nutrients. The wells selected can be differentiated in that N08B had higher pH (10-11), lower dissolved oxygen, and cell counts ranging from 105-106 cells mL-1 of fluid, with an abundance of the betaproteobacterium Hydrogenophaga. In contrast, fluids from CSWold have slightly lower pH (9-9.5), DO, and conductivity, as well as higher TDN and TDP. CSWold fluid is also characterized for having lower cell counts (~103 cells mL-1) and an abundance of Dethiobacter, a taxon within the phylum Clostridiales. Microcosm experiments were conducted with the purpose of monitoring carbon fixation, methanotrophy and metabolism of small organic compounds, such as acetate and formate, while tracing changes in fluid chemistry and microbial community composition. These experiments are expected to provide insight into the biogeochemical dynamics of the serpentinite subsurface at CROMO and represent a first step for developing metatranscriptomic and RNA-based Stable Isotope Probing (RNA-SIP) experiments to trace microbial activity at this site. [1] Brazelton et al. (2012) Frontiers in Microbiology 2:268

  12. Human Skin Is the Largest Epithelial Surface for Interaction with Microbes.

    PubMed

    Gallo, Richard L

    2017-06-01

    Human skin contains an abundant and diverse population of microbial organisms. Many of these microbes inhabit follicular structures of the skin. Furthermore, numerous studies have shown that the interaction of some members of the skin microbiome with host cells will result in changes in cell function. However, estimates of the potential for the microbiome to influence human health through skin have ignored the inner follicular surface, and therefore vastly underestimated the potential of the skin microbiome to have a systemic effect on the human body. By calculating the surface area of follicular and the interfollicular epithelial surface it is shown that skin provides a vast interface for interactions with the microbiome. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  13. Microbial Influences on Trace Metal Cycling in a Meromictic Lake, Fayetteville Green Lake, NY

    NASA Astrophysics Data System (ADS)

    Zerkle, A. L.; House, C.; Kump, L.

    2002-12-01

    Microorganisms can exist in aquatic environments at very high cell densities of up to 1011 cells/L, and can accumulate significant quantities of trace metals. Bacteria actively take up bioactive trace metals, including Fe, Zn, Mn, Co, Ni, Cu, and Mo, which function as catalytic centers in metalloproteins and metal-activated enzymes involved in virtually all cellular functions. In addition, bacteria may catalyze the release of trace metals from inorganic substrates by processes such as the reduction of iron and manganese oxides, suggesting that trace metal distributions within a natural environment dominated by microbial processes may be controlled primarily by microbial ecology. Fayetteville Green Lake (FGL), NY, is a permanently stratified meromictic lake that has a well-oxygenated surface water mass (mixolimnion) overlying a relatively stagnant, anoxic deep water mass (monimolimnion). A chemocline separates the water masses at around 20m depth, where oxygen concentrations decrease and sulfate and methane concentrations increase. In addition, previous studies have indicated that trace metals such as V, Cr, Co, Mn, and Fe reach elevated concentrations at the chemocline. Using fluorescent in situ hybridization (FISH) of FGL samples from depths of up to 40m with bacterial and archaeal probes, we have shown that fluctuating redox conditions within the FGL water column correlate with significant variations in the composition and distribution of microbial populations with depth. The mixolimnion is dominated by Eubacteria, with increasing concentrations of Archaea in the lower anoxic zone. Increases in microbial cell densities coincide with increases in trace metals at the chemocline, suggesting microbial activity may be responsible for trace metal release at this boundary. 16S rRNA PCR cloning techniques are currently being used to identify dominant microbial populations at various levels within the FGL water column. Future studies will focus on the potential for these dominant microorganisms to influence trace metal cycling and bioavailability in the FGL water column.

  14. Electricity generating capacity and performance deterioration of a microbial fuel cell fed with beer brewery wastewater.

    PubMed

    Köroğlu, Emre Oğuz; Özkaya, Bestamin; Denktaş, Cenk; Çakmakci, Mehmet

    2014-12-01

    This study focused on using beer brewery wastewater (BBW) to evaluate membrane concentrate disposal and production of electricity in microbial fuel cells. In the membrane treatment of BBW, the membrane permeate concentration was 570 ± 30 mg/L corresponding to a chemical oxygen demand (COD) removal efficiency of 75 ± 5%, and the flux values changed between 160 and 40 L/m(2)-h for all membrane runs. For electricity production from membrane concentrate, the highest current density in the microbial fuel cell (MFC) was observed to be 1950 mA/m(2) according to electrode surface area with 36% COD removal efficiency and 2.48% CE with 60% BBW membrane concentrate. The morphologies of the cation exchange membrane and the MFC deterioration were studied using a scanning electron microscope (SEM), attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy, differential scanning calorimetry (DSC), and thermal gravimetric analysis (TGA). A decrease in the thermal stability of the sulfonate (-SO3H) groups was demonstrated and morphological changes were detected in the SEM analysis. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  15. Electrochemical and impedance characterization of Microbial Fuel Cells based on 2D and 3D anodic electrodes working with seawater microorganisms under continuous operation.

    PubMed

    Hidalgo, D; Sacco, A; Hernández, S; Tommasi, T

    2015-11-01

    A mixed microbial population naturally presents in seawater was used as active anodic biofilm of two Microbial Fuel Cells (MFCs), employing either a 2D commercial carbon felt or 3D carbon-coated Berl saddles as anode electrodes, with the aim to compare their electrochemical behavior under continuous operation. After an initial increase of the maximum power density, the felt-based cell reduced its performance at 5 months (from 7 to 4 μW cm(-2)), while the saddle-based MFC exceeds 9 μW cm(-2) (after 2 months) and maintained such performance for all the tests. Electrochemical impedance spectroscopy was used to identify the MFCs controlling losses and indicates that the mass-transport limitations at the biofilm-electrolyte interface have the main contribution (>95%) to their internal resistance. The activation resistance was one order of magnitude lower with the Berl saddles than with carbon felt, suggesting an enhanced charge-transfer in the high surface-area 3D electrode, due to an increase in bacteria population growth. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Fibrous polyaniline@manganese oxide nanocomposites as supercapacitor electrode materials and cathode catalysts for improved power production in microbial fuel cells.

    PubMed

    Ansari, Sajid Ali; Parveen, Nazish; Han, Thi Hiep; Ansari, Mohammad Omaish; Cho, Moo Hwan

    2016-04-07

    Fibrous Pani-MnO2 nanocomposite were prepared using a one-step and scalable in situ chemical oxidative polymerization method. The formation, structural and morphological properties were investigated using a range of characterization techniques. The electrochemical capacitive behavior of the fibrous Pani-MnO2 nanocomposite was examined by cyclic voltammetry and galvanostatic charge-discharge measurements using a three-electrode experimental setup in an aqueous electrolyte. The fibrous Pani-MnO2 nanocomposite achieved high capacitance (525 F g(-1) at a current density of 2 A g(-1)) and excellent cycling stability of 76.9% after 1000 cycles at 10 A g(-1). Furthermore, the microbial fuel cell constructed with the fibrous Pani-MnO2 cathode catalyst showed an improved power density of 0.0588 W m(-2), which was higher than that of pure Pani and carbon paper, respectively. The improved electrochemical supercapacitive performance and cathode catalyst performance in microbial fuel cells were attributed mainly to the synergistic effect of Pani and MnO2 in fibrous Pani-MnO2, which provides high surface area for the electrode/electrolyte contact as well as electronic conductive channels and exhibits pseudocapacitance behavior.

  17. Biofuel Cells Select for Microbial Consortia That Self-Mediate Electron Transfer

    PubMed Central

    Rabaey, Korneel; Boon, Nico; Siciliano, Steven D.; Verhaege, Marc; Verstraete, Willy

    2004-01-01

    Microbial fuel cells hold great promise as a sustainable biotechnological solution to future energy needs. Current efforts to improve the efficiency of such fuel cells are limited by the lack of knowledge about the microbial ecology of these systems. The purposes of this study were (i) to elucidate whether a bacterial community, either suspended or attached to an electrode, can evolve in a microbial fuel cell to bring about higher power output, and (ii) to identify species responsible for the electricity generation. Enrichment by repeated transfer of a bacterial consortium harvested from the anode compartment of a biofuel cell in which glucose was used increased the output from an initial level of 0.6 W m−2 of electrode surface to a maximal level of 4.31 W m−2 (664 mV, 30.9 mA) when plain graphite electrodes were used. This result was obtained with an average loading rate of 1 g of glucose liter−1 day−1 and corresponded to 81% efficiency for electron transfer from glucose to electricity. Cyclic voltammetry indicated that the enhanced microbial consortium had either membrane-bound or excreted redox components that were not initially detected in the community. Dominant species of the enhanced culture were identified by denaturing gradient gel electrophoresis and culturing. The community consisted mainly of facultative anaerobic bacteria, such as Alcaligenes faecalis and Enterococcus gallinarum, which are capable of hydrogen production. Pseudomonas aeruginosa and other Pseudomonas species were also isolated. For several isolates, electrochemical activity was mainly due to excreted redox mediators, and one of these mediators, pyocyanin produced by P. aeruginosa, could be characterized. Overall, the enrichment procedure, irrespective of whether only attached or suspended bacteria were examined, selected for organisms capable of mediating the electron transfer either by direct bacterial transfer or by excretion of redox components. PMID:15345423

  18. Potential Evaporite Biomarkers from the Dead Sea

    NASA Technical Reports Server (NTRS)

    Morris, Penny A.; Wentworth, Susan J.; Thomas-Keprta, Kathie; Allen, Carlton C.; McKay, David S.

    2001-01-01

    The Dead Sea is located on the northern branch of the African-Levant Rift systems. The rift system, according to one model, was formed by a series of strike slip faults, initially forming approximately two million years ago. The Dead Sea is an evaporite basin that receives freshwater from springs and from the Jordan River. The Dead Sea is different from other evaporite basins, such as the Great Salt Lake, in that it possesses high concentrations of magnesium and has an average pH of 6.1. The dominant cation in the Great Salt Lake is sodium, and the pH is 7.7. Calcium concentrations are also higher in the Dead Sea than in the Great Salt Lake. Both basins are similar in that the dominant anion is chlorine and the salinity levels are approximately 20 %. Other common cations that have been identified from the waters of the Dead Sea and the Great Salt Lake include sodium and potassium. A variety of Archea, Bacteria, and a single genus of a green algal, Dunaliella, has been described from the Dead Sea. Earlier studies concentrated on microbial identification and analysis of their unique physiology that allows them to survive in this type of extreme environment. Potential microbial fossilization processes, microbial fossils, and the metallic ions associated with fossilization have not been studied thoroughly. The present study is restricted to identifying probable microbial morphologies and associated metallic ions. XRD (X Ray Diffraction) analysis indicates the presence of halite, quartz, and orthoclase feldspar. In addition to these minerals, other workers have reported potassium chloride, magnesium bromide, magnesium chloride, calcium chloride, and calcium sulfate. Halite, calcium sulfate, and orthoclase were examined in this report for the presence of microbes, microbially induced deposits or microbial alteration. Neither the gypsum nor the orthoclase surfaces possesses any obvious indications of microbial life or fossilization. The sand-sized orthoclase particles are weathered with 122 extensive fan-shaped mineral deposits. The gypsum deposits are associated with halite minerals and also exhibit extensive weathering. Halite minerals represent the only substrates that have probable rod-shaped microbial structures with long, filamentous, apical extensions. EDS (energy dispersive x-ray) analysis of the putative microbes indicates elevated calcium levels that are enriched with magnesium. The rod-shaped structures exhibit possible fossilization stages. Rhombohedralshaped minerals of magnesium-enriched calcium carbonate are deposited on the microbial surfaces, and eventually coat the entire microbial surface. The sodium chloride continues to crystallize on nearby halite surface and even crystallizes on the fossilized microbial remains. The putative fossils are found exclusively on halite surfaces, and all contained elevated levels of calcium magnesium cations. Both of these metallic cations are associated with microbial activity and fossilization. Their morphological diversity is low in comparison with the reported living Dead Sea microbial population. If we examine the fossil record for multicellular organisms, fossilization rates are lower for soft-bodied organisms than for those possessing hard parts, i.e. shells, bones. For example, smaller, single celled organisms would have a smaller chance of fossilization; their fossilized shapes could be mistaken for abiotic products. Another consideration is that dead organisms in the water column are probably utilized as a food source by other microbes before fossilization processes are completed. This may be an important consideration as we attempt to model and interpret ancient microbial environments either on Earth or on Mars.

  19. Mathematical estimation of the level of microbial contamination on spacecraft surfaces by volumetric air sampling

    NASA Technical Reports Server (NTRS)

    Oxborrow, G. S.; Roark, A. L.; Fields, N. D.; Puleo, J. R.

    1974-01-01

    Microbiological sampling methods presently used for enumeration of microorganisms on spacecraft surfaces require contact with easily damaged components. Estimation of viable particles on surfaces using air sampling methods in conjunction with a mathematical model would be desirable. Parameters necessary for the mathematical model are the effect of angled surfaces on viable particle collection and the number of viable cells per viable particle. Deposition of viable particles on angled surfaces closely followed a cosine function, and the number of viable cells per viable particle was consistent with a Poisson distribution. Other parameters considered by the mathematical model included deposition rate and fractional removal per unit time. A close nonlinear correlation between volumetric air sampling and airborne fallout on surfaces was established with all fallout data points falling within the 95% confidence limits as determined by the mathematical model.

  20. Distributions of microbial activities in deep subseafloor sediments

    NASA Technical Reports Server (NTRS)

    D'Hondt, Steven; Jorgensen, Bo Barker; Miller, D. Jay; Batzke, Anja; Blake, Ruth; Cragg, Barry A.; Cypionka, Heribert; Dickens, Gerald R.; Ferdelman, Timothy; Hinrichs, Kai-Uwe; hide

    2004-01-01

    Diverse microbial communities and numerous energy-yielding activities occur in deeply buried sediments of the eastern Pacific Ocean. Distributions of metabolic activities often deviate from the standard model. Rates of activities, cell concentrations, and populations of cultured bacteria vary consistently from one subseafloor environment to another. Net rates of major activities principally rely on electron acceptors and electron donors from the photosynthetic surface world. At open-ocean sites, nitrate and oxygen are supplied to the deepest sedimentary communities through the underlying basaltic aquifer. In turn, these sedimentary communities may supply dissolved electron donors and nutrients to the underlying crustal biosphere.

  1. Microbial Electrosynthesis: Feeding Microbes Electricity To Convert Carbon Dioxide and Water to Multicarbon Extracellular Organic Compounds

    PubMed Central

    Nevin, Kelly P.; Woodard, Trevor L.; Franks, Ashley E.; Summers, Zarath M.; Lovley, Derek R.

    2010-01-01

    The possibility of providing the acetogenic microorganism Sporomusa ovata with electrons delivered directly to the cells with a graphite electrode for the reduction of carbon dioxide to organic compounds was investigated. Biofilms of S. ovata growing on graphite cathode surfaces consumed electrons with the reduction of carbon dioxide to acetate and small amounts of 2-oxobutyrate. Electrons appearing in these products accounted for over 85% of the electrons consumed. These results demonstrate that microbial production of multicarbon organic compounds from carbon dioxide and water with electricity as the energy source is feasible. PMID:20714445

  2. Morphodynamics of a growing microbial colony driven by cell death

    NASA Astrophysics Data System (ADS)

    Ghosh, Pushpita; Levine, Herbert

    2017-11-01

    Bacterial cells can often self-organize into multicellular structures with complex spatiotemporal morphology. In this work, we study the spatiotemporal dynamics of a growing microbial colony in the presence of cell death. We present an individual-based model of nonmotile bacterial cells which grow and proliferate by consuming diffusing nutrients on a semisolid two-dimensional surface. The colony spreads by growth forces and sliding motility of cells and undergoes cell death followed by subsequent disintegration of the dead cells in the medium. We model cell death by considering two possible situations: In one of the cases, cell death occurs in response to the limitation of local nutrients, while the other case corresponds to an active death process, known as apoptotic or programmed cell death. We demonstrate how the colony morphology is influenced by the presence of cell death. Our results show that cell death facilitates transitions from roughly circular to highly branched structures at the periphery of an expanding colony. Interestingly, our results also reveal that for the colonies which are growing in higher initial nutrient concentrations, cell death occurs much earlier compared to the colonies which are growing in lower initial nutrient concentrations. This work provides new insights into the branched patterning of growing bacterial colonies as a consequence of complex interplay among the biochemical and mechanical effects.

  3. Mechanism of microbial flotation using Thiobacillus ferrooxidans for pyrite suppression.

    PubMed

    Ohmura, N; Kitamura, K; Saiki, H

    1993-03-15

    Microbial desulfurization might be developed as a new process for the removal of pyrite sulfur from coal sluries such as coal-water mixture (CWM). An application of iron-oxidizing bacterium Thiobacillus ferrooxidans to flotation would shorten the periods of the microbial removal of pyrite from some weeks by leaching methods to a few minutes. The floatability of pyrite in flotation was mainly reduced by T. ferrooxidans itself rather than by other microbial substances in bacterial culture as additive of flotation liquor. Floatability was suppressed within a few seconds by bacterial contact. The suppression was proportional to increasing the number of cells observed between bacterial adhesion and the suppression of floatability. If 25% of the total pyrite surface area covered with the bacteria, pyrite floatability would be completely depressed. Bacteria that lost their iron-oxidizing activities by sodium cyanide treatment were also able to adhere to pyrite and reduced pyrite floatability as much as normal bacteria did. Thiobacillus ferrooxidans ATCC 23270, T-1, 9, and 11, which had different iron-oxidizing abilities, suppressed floatability to similar-levels. The oxidizing ability of bacteria did not influence the suppressing effect. These results showed the mechanism of the suppression of pyrite floatability by bacteria. Quick bacterial adhesion to pyrite induced floatability suppression by changing the surface property from hydrophobic. The quick adhesion of the bacterium was the novel function which worked to change the surface property of pyrite to remove it from coal. (c) 1993 John Wiley & Sons, Inc.

  4. Streptomyces Exploration: Competition, Volatile Communication and New Bacterial Behaviours.

    PubMed

    Jones, Stephanie E; Elliot, Marie A

    2017-07-01

    Streptomyces bacteria are prolific producers of specialized metabolites, and have a well studied, complex life cycle. Recent work has revealed a new type of Streptomyces growth termed 'exploration' - so named for the ability of explorer cells to rapidly traverse solid surfaces. Streptomyces exploration is stimulated by fungal interactions, and is associated with the production of an alkaline volatile organic compound (VOC) capable of inducing exploration by other streptomycetes. Here, we examine Streptomyces exploration from the perspectives of interkingdom interactions, pH-induced morphological switches, and VOC-mediated communication. The phenotypic diversity that can be revealed through microbial interactions and VOC exposure is providing us with insight into novel modes of microbial development, and an opportunity to exploit VOCs to stimulate desired microbial behaviours. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Microbe observation and cultivation array (MOCA) for cultivating and analyzing environmental microbiota.

    PubMed

    Gao, Weimin; Navarroli, Dena; Naimark, Jared; Zhang, Weiwen; Chao, Shih-Hui; Meldrum, Deirdre R

    2013-01-09

    The use of culture-independent nucleic acid techniques, such as ribosomal RNA gene cloning library analysis, has unveiled the tremendous microbial diversity that exists in natural environments. In sharp contrast to this great achievement is the current difficulty in cultivating the majority of bacterial species or phylotypes revealed by molecular approaches. Although recent new technologies such as metagenomics and metatranscriptomics can provide more functionality information about the microbial communities, it is still important to develop the capacity to isolate and cultivate individual microbial species or strains in order to gain a better understanding of microbial physiology and to apply isolates for various biotechnological applications. We have developed a new system to cultivate bacteria in an array of droplets. The key component of the system is the microbe observation and cultivation array (MOCA), which consists of a Petri dish that contains an array of droplets as cultivation chambers. MOCA exploits the dominance of surface tension in small amounts of liquid to spontaneously trap cells in well-defined droplets on hydrophilic patterns. During cultivation, the growth of the bacterial cells across the droplet array can be monitored using an automated microscope, which can produce a real-time record of the growth. When bacterial cells grow to a visible microcolony level in the system, they can be transferred using a micropipette for further cultivation or analysis. MOCA is a flexible system that is easy to set up, and provides the sensitivity to monitor growth of single bacterial cells. It is a cost-efficient technical platform for bioassay screening and for cultivation and isolation of bacteria from natural environments.

  6. A New Look at Factors Affecting Microbial Silicification: Effects of Microbe to Solution Ratio, Al and Fe on Silica Accumulation on B. subtilis Surfaces

    NASA Astrophysics Data System (ADS)

    Tenesch, A. C.; Hinman, N. W.; Blank, C. E.

    2006-12-01

    In this investigation, we aim to constrain the geochemical conditions that favor siliceous microfossil formation. This work will provide a framework for assessing the biogenic origin of putative microfossils in siliceous hydrothermal deposits on early Earth, and potentially, on Mars. Previous work on silicification of microbial cells has been done under unnatural conditions or when cells were physiological stressed. Here, we attempt to reduce the amount reduce the amount of physiological stress on the organisms and to better emulate the natural environment. Silicification experiments involving the gram-positive bacterium, Bacillus subtilis, have been conducted under different experimental conditions to provide insight into the processes that affect silicification of microorganisms. Experiments were conducted with silica stock solution at an initial pH of 8, and with and without added Al and Fe, in two different experimental designs. The first experimental design represented a silica-limited environment in which the ratio of exponentially growing culture (O.D.600 = 0.2) to silica-rich stock solution was very high (1:1 v/v). Silica concentrations declined likely due to nucleation and precipitation mediated by microbial surfaces, and the pH dropped from 8.0 to 6.5. The presence of Fe and Al resulted in lower dissolved silica concentrations, suggesting additional effects of these ions on nucleation and precipitation. The second experimental design used a lower ratio of exponentially growing culture (O.D.600 = .2) to silica-rich stock solution (0.004:1 v/v) resulting in a stable concentration of silica, which was also accompanied by a slight decline in pH. This latter design is more similar to the cell:silica ratios found in natural environments. B. subtilis cells were examined using scanning electron microscopy (SEM) accompanied by energy dispersive spectrometry (EDS). Cells exhibited silica crystallites under SEM and yet continued to undergo cell division in an environment of limited resources. Silicification in the low-ratio experiments appeared to be more efficient as cells were more encrusted with Si than cells in the high-ratio experiments. Further, sporulation was more efficient in the low-ratio experiments.

  7. Inorganic mercury (Hg2+) accumulation in autotrophic and mixotrophic planktonic protists: Implications for Hg trophodynamics in ultraoligotrophic Andean Patagonian lakes.

    PubMed

    Soto Cárdenas, Carolina; Gerea, Marina; Queimaliños, Claudia; Ribeiro Guevara, Sergio; Diéguez, María C

    2018-05-01

    Microbial assemblages are typical of deep ultraoligotrophic Andean Patagonian lakes and comprise picoplankton and protists (phytoflagellates and mixotrophic ciliates), having a central role in the C cycle, primary production and in the incorporation of dissolved inorganic mercury (Hg 2+ ) into lake food webs. In this study we evaluated the mechanisms of Hg 2+ incorporation in hetero- and autotrophic bacteria, in the autotrophic dinoflagellate (Gymnodinium paradoxum) and in two mixotrophic ciliates (Stentor araucanus and Ophrydium naumanni) dominating the planktonic microbial assemblage. The radioisotope 197 Hg was used to trace the Hg 2+ incorporation in microbiota. Hg uptake was analyzed as a function of cell abundance (BCF: bioconcentration factor), cell surface (SCF: surface concentration factor) and cell volume (VCF: volume concentration factor). Overall, the results obtained showed that these organisms incorporate substantial amounts of dissolved Hg 2+ passively (adsorption) and actively (bacteria consumption or attachment), displaying different Hg internalization and therefore, varying potential for Hg transfer. Surface area and quality, and surface:volume ratio (S:V) control the passive uptake in all the organisms. Active incorporation depends on bacteria consumption in the mixotrophic ciliates, or on bacteria association to surface in the autotrophic dinoflagellate. Hg bioaccumulated by pelagic protists can be transferred to higher trophic levels through plankton and fish feeding, regenerated to the dissolved phase by excretion, and/or transferred to the sediments by particle sinking. In ultraoligotrophic Andean Patagonian lakes, picoplankton and planktonic protists are key components of lake food webs, linking the pelagic and benthic Hg pathways, and thereby playing a central role in Hg trophodynamics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Four-year bacterial monitoring in the International Space Station-Japanese Experiment Module "Kibo" with culture-independent approach.

    PubMed

    Ichijo, Tomoaki; Yamaguchi, Nobuyasu; Tanigaki, Fumiaki; Shirakawa, Masaki; Nasu, Masao

    2016-01-01

    Studies on the relationships between humans and microbes in space habitation environments are critical for success in long-duration space missions, to reduce potential hazards to the crew and the spacecraft infrastructure. We performed microbial monitoring in the Japanese Experiment Module "Kibo", a part of the International Space Station, for 4 years after its completion, and analyzed samples with modern molecular microbiological techniques. Sampling was performed in September 2009, February 2011, and October 2012. The surface of the incubator, inside the door of the incubator, an air intake, air diffuser, and handrail were selected as sampling sites. Sampling was performed using the optimized swabbing method. Abundance and phylogenetic affiliation of bacteria on the interior surfaces of Kibo were determined by quantitative PCR and pyrosequencing, respectively. Bacteria in the phyla Proteobacteria (γ-subclass) and Firmicutes were frequently detected on the interior surfaces in Kibo. Families Staphylococcaceae and Enterobacteriaceae were dominant. Most bacteria detected belonged to the human microbiota; thus, we suggest that bacterial cells are transferred to the surfaces in Kibo from the astronauts. Environmental bacteria such as Legionella spp. were also detected. From the data on bacterial abundance and phylogenetic affiliation, Kibo has been microbiologically well maintained; however, the microbial community structure in Kibo may change with prolonged stay of astronauts. Continuous monitoring is required to obtain information on changes in the microbial community structure in Kibo.

  9. Final technical report for project titled Quantitative Characterization of Cell Aggregation/Adhesion as Predictor for Distribution and Transport of Microorganisms in Subsurface Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, April Z.; Wan, Kai-tak

    This project aims to explore and develop enabling methodology and techniques for nano-scale characterization of microbe cell surface contact mechanics, interactions and adhesion quantities that allow for identification and quantification of indicative properties related to microorganism migration and transport behavior in porous media and in subsurface environments. Microbe transport has wide impact and therefore is of great interest in various environmental applications such as in situ or enhanced subsurface bioremediation,filtration processes for water and wastewater treatments and protection of drinking water supplies. Although great progress has been made towards understanding the identities and activities of these microorganisms in the subsurface,more » to date, little is known of the mechanisms that govern the mobility and transport of microorganisms in DOE’s contaminated sites, making the outcomes of in situ natural attenuation or contaminant stability enhancement unpredictable. Conventionally, movement of microorganisms was believed to follows the rules governing solute (particle) transport. However, recent studies revealed that cell surface properties, especially those pertaining to cell attachment/adhesion and aggregation behavior, can cause the microbe behavior to deviate from non-viable particles and hence greatly influence the mobility and distribution of microorganisms in porous media.This complexity highlights the need to obtain detailed information of cell-cell and cell-surface interactions in order to improve and refine the conceptual and quantitative model development for fate and transport of microorganisms and contaminant in subsurface. Traditional cell surface characterization methods are not sufficient to fully predict the deposition rates and transport behaviors of microorganism observed. A breakthrough of methodology that would allow for quantitative and molecular-level description of intrinsic cell surface properties indicative for cell-surface interactions is essential for the field. To tackle this, we have developed a number of new Bio-nanomechanical techniques, including reflection interference contrast microscopy (RICM) and bio-AFM (Atomic Force Microscopy), for cell adhesion-detachment measurement of the long-range surface interactions, in combination with mathematical modeling, which would allow us to characterize the mechanical behavior from single cell to multi-cell aggregate, critical thresholds for large scale coaggregation and transportation of cells and aggregates in the presence of long range inter-surface forces etc. Although some technical and mathematical challenges remain, the preliminary results promise great breakthrough potential. In this study, we investigated the cellular surface characteristics of representative bio-remediating microorganisms relevant to DOE IFRC (Integrated Field-Scale Subsurface Research Challenges) sites and their transport behaviors in porous media, aiming to draw a groundbreaking correlation between the micro-scale genetic and biological origin-based cell surface properties, the consequent mechanical adhesion and aggregation behaviors, and the macro-scale microbial mobility and retention in porous media, which are unavailable in the literature. The long-term goal is to significantly improve the mechanistic and quantitative understanding of microbial mobility, sorption, and transport within reactive transport models as needed to manipulate subsurface contaminant fate and transport predictions.« less

  10. Characterization and performance of anodic mixed culture biofilms in submersed microbial fuel cells.

    PubMed

    Saba, Beenish; Christy, Ann D; Yu, Zhongtang; Co, Anne C; Islam, Rafiq; Tuovinen, Olli H

    2017-02-01

    Microbial fuel cells (MFCs) were designed for laboratory scale experiments to study electroactive biofilms in anodic chambers. Anodic biofilms and current generation during biofilm growth were examined using single chambered MFCs submersed in algal catholyte. A culture of the marine green alga Nanochloropsis salina was used as a biocatholyte, and a rumen fluid microbiota was the anodic chamber inoculum. Electrical impedance spectroscopy was performed under varying external resistance once a week to identify mass transport limitations at the biofilm-electrolyte interface during the four-week experiment. The power generation increased from 249 to 461mWm -2 during the time course. Confocal laser scanning microscopy imaging showed that the depth of the bacterial biofilm on the anode was about 65μm. There were more viable bacteria on the biofilm surface and near the biofilm-electrolyte interface as compared to those close to the anode surface. The results suggest that biofilm growth on the anode creates a conductive layer, which can help overcome mass transport limitations in MFCs. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Enhanced surface functionality and microbial fuel cell performance of chitosan membranes through phosphorylation.

    PubMed

    Holder, Shima L; Lee, Ching-Hwa; Popuri, Srinivasa R; Zhuang, Meng-Xin

    2016-09-20

    The effects of plasticization and cross-linking on the performance of chitosan as promising proton exchange membranes (PEMs) for bioelectricity generation in microbial fuel cells (MFCs) were investigated. The physico-chemical properties of chitosan (CS), sorbitol-chitosan (S-CS), phosphorylated-chitosan (CS-P) and phosphorylated-sorbitol-chitosan (S-CS-P) membranes were investigated by FESEM-EDS, FTIR-ATR, XRD, TGA, tensile strength and sorption studies. The performance of the fabricated PEMs was assessed by power density and cation exchange capacity (CEC). Maximum power densities achieved were 130.03, 20.76, 94.59 and 7.42mW/m(2) for CS-P, S-CS-P, S-CS and CS membranes respectively. Phosphorylation of the CS membranes increased CEC and tensile strength, attributed to an increase in bonded amide and phosphate ionic surface groups. Further, 49.07% COD removal from municipal wastewater was achieved with CS-P membranes. Thus, through chemical modifications, the physico-chemical and mechanical properties of natural abundant biopolymer chitosan can be enhanced for its use as an environmentally sustainable PEM in MFC technology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. N-type Cu2O doped activated carbon as catalyst for improving power generation of air cathode microbial fuel cells.

    PubMed

    Zhang, Xi; Li, Kexun; Yan, Pengyu; Liu, Ziqi; Pu, Liangtao

    2015-01-01

    A novel n-type Cu2O doped activated carbon (AC) air cathode (Cu/AC) was developed as an alternative to Pt electrode for oxygen reduction in microbial fuel cells (MFCs). The maximum power density of MFCs using this novel air cathode was as high as 1390±76mWm(-2), almost 59% higher than the bare AC air cathode. Specifically, the resistance including total resistance and charge transfer resistance significantly decreased comparing to the control. Tafel curve also showed the faster electro-transfer kinetics of Cu/AC with exchange current density of 1.03×10(-3)Acm(-2), which was 69% higher than the control. Ribbon-like Cu2O was deposited on the surface of AC with the mesopore surface area increasing. Cubic Cu2O crystals exclusively expose (111) planes with the interplanar crystal spacing of 2.48Å, which was the dominate active sites for oxygen reduction reaction (ORR). N-type Cu2O with oxygen vacancies played crucial roles in electrochemical catalytic activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Single-cell force spectroscopy of pili-mediated adhesion

    NASA Astrophysics Data System (ADS)

    Sullan, Ruby May A.; Beaussart, Audrey; Tripathi, Prachi; Derclaye, Sylvie; El-Kirat-Chatel, Sofiane; Li, James K.; Schneider, Yves-Jacques; Vanderleyden, Jos; Lebeer, Sarah; Dufrêne, Yves F.

    2013-12-01

    Although bacterial pili are known to mediate cell adhesion to a variety of substrates, the molecular interactions behind this process are poorly understood. We report the direct measurement of the forces guiding pili-mediated adhesion, focusing on the medically important probiotic bacterium Lactobacillus rhamnosus GG (LGG). Using non-invasive single-cell force spectroscopy (SCFS), we quantify the adhesion forces between individual bacteria and biotic (mucin, intestinal cells) or abiotic (hydrophobic monolayers) surfaces. On hydrophobic surfaces, bacterial pili strengthen adhesion through remarkable nanospring properties, which - presumably - enable the bacteria to resist high shear forces under physiological conditions. On mucin, nanosprings are more frequent and adhesion forces larger, reflecting the influence of specific pili-mucin bonds. Interestingly, these mechanical responses are no longer observed on human intestinal Caco-2 cells. Rather, force curves exhibit constant force plateaus with extended ruptures reflecting the extraction of membrane nanotethers. These single-cell analyses provide novel insights into the molecular mechanisms by which piliated bacteria colonize surfaces (nanosprings, nanotethers), and offer exciting avenues in nanomedicine for understanding and controlling the adhesion of microbial cells (probiotics, pathogens).

  14. Impact of Substratum Surface on Microbial Community Structure and Treatment Performance in Biological Aerated Filters

    PubMed Central

    Kim, Lavane; Pagaling, Eulyn; Zuo, Yi Y.

    2014-01-01

    The impact of substratum surface property change on biofilm community structure was investigated using laboratory biological aerated filter (BAF) reactors and molecular microbial community analysis. Two substratum surfaces that differed in surface properties were created via surface coating and used to develop biofilms in test (modified surface) and control (original surface) BAF reactors. Microbial community analysis by 16S rRNA gene-based PCR-denaturing gradient gel electrophoresis (DGGE) showed that the surface property change consistently resulted in distinct profiles of microbial populations during replicate reactor start-ups. Pyrosequencing of the bar-coded 16S rRNA gene amplicons surveyed more than 90% of the microbial diversity in the microbial communities and identified 72 unique bacterial species within 19 bacterial orders. Among the 19 orders of bacteria detected, Burkholderiales and Rhodocyclales of the Betaproteobacteria class were numerically dominant and accounted for 90.5 to 97.4% of the sequence reads, and their relative abundances in the test and control BAF reactors were different in consistent patterns during the two reactor start-ups. Three of the five dominant bacterial species also showed consistent relative abundance changes between the test and control BAF reactors. The different biofilm microbial communities led to different treatment efficiencies, with consistently higher total organic carbon (TOC) removal in the test reactor than in the control reactor. Further understanding of how surface properties affect biofilm microbial communities and functional performance would enable the rational design of new generations of substrata for the improvement of biofilm-based biological treatment processes. PMID:24141134

  15. Fe(III) oxides accelerate microbial nitrate reduction and electricity generation by Klebsiella pneumoniae L17.

    PubMed

    Liu, Tongxu; Li, Xiaomin; Zhang, Wei; Hu, Min; Li, Fangbai

    2014-06-01

    Klebsiella pneumoniae L17 is a fermentative bacterium that can reduce iron oxide and generate electricity under anoxic conditions, as previously reported. This study reveals that K. pneumoniae L17 is also capable of dissimilatory nitrate reduction, producing NO2(-), NH4(+), NO and N2O under anoxic conditions. The presence of Fe(III) oxides (i.e., α-FeOOH, γ-FeOOH, α-Fe2O3 and γ-Fe2O3) significantly accelerates the reduction of nitrate and generation of electricity by K. pneumoniae L17, which is similar to a previous report regarding another fermentative bacterium, Bacillus. No significant nitrate reduction was observed upon treatment with Fe(2+) or α-FeOOH+Fe(2+), but a slight facilitation of nitrate reduction and electricity generation was observed upon treatment with L17+Fe(2+). This result suggests that aqueous Fe(II) or mineral-adsorbed Fe(II) cannot reduce nitrate abiotically but that L17 can catalyze the reduction of nitrate and generation of electricity in the presence of Fe(II) (which might exist as cell surface-bound Fe(II)). To rule out the potential effect of Fe(II) produced by L17 during microbial iron reduction, treatments with the addition of TiO2 or Al2O3 instead of Fe(III) oxides also exhibited accelerated microbial nitrate reduction and electricity generation, indicating that cell-mineral sorption did account for the acceleration effect. However, the acceleration caused by Fe(III) oxides is only partially attributed to the cell surface-bound Fe(II) and cell-mineral sorption but may be driven by the iron oxide conduction band-mediated electron transfer from L17 to nitrate or an electrode, as proposed previously. The current study extends the diversity of bacteria of which nitrate reduction and electricity generation can be facilitated by the presence of iron oxides and confirms the positive role of Fe(III) oxides on microbial nitrate reduction and electricity generation by particular fermentative bacteria in anoxic environments. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Effect of organic loading rates and proton exchange membrane surface area on the performance of an up-flow cylindrical microbial fuel cell.

    PubMed

    Jana, Partha S; Behera, Manaswini; Ghangrekar, M M

    2012-01-01

    The effect of organic loading rates (OLRs) and proton exchange membrane (PEM) surface area on the performance of microbial fuel cells (MFCs) was evaluated. Three MFCs (MFC-1, MFC-2 and MFC-3) having PEM surface area of 10 cm2, 20 cm2 and 40 cm2, respectively, were used in the study. The MFCs were operated at influent chemical oxygen demand (COD) of 500 mg L(-1) and hydraulic retention time (HRT) of 20 h, 17 h, 13 h and 6 h in experimental Run-1 to Run-4. MFC-3, with highest PEM surface area showed highest power generation throughout the study. The optimum performancewas obtained at HRT of 13 h. In Run-5 and Run-6, the influent COD was increased to 1000 mg L(-1) and 1500 mg L(-1), respectively, maintaining the HRT at 13 h. Maximum volumetric powers of 4.26 W m(-3), 9.41 W m(-3) and 17.24 W m(-3) were obtained in MFC-1, MFC-2 and MFC-3, respectively, in Run-5 under the OLR of 1.84 kg COD m(-3) d(-1). These power values are among the higher values reported in literature; MFCs with higher PEM surface area showed better electricity generation, which clearly demonstrates that proton mass transfer is the main constraint in the MFCs which limits the power output. Combined effect of influent COD and HRT was found on electricity generation.

  17. Environmental Impact of Tributyltin-Resistant Marine Bacteria in the Indigenous Microbial Population of Tributyltin-Polluted Surface Sediments.

    PubMed

    Mimura, Haruo; Yagi, Masahiro; Yoshida, Kazutoshi

    2017-01-01

     We compared the TBT-resistant ability of resting cells prepared from isolates that formed colonies on nutrient agar plates containing 100 µM tributyltin (TBT) chloride, such as Photobacterium sp. TKY1, Halomonas sp. TKY2, and Photobacterium sp. NGY1, with those from taxonomically similar type strains. Photobacterium sp. TKY1 showed the highest ability among those three isolates. The number of surviving Photobacterium sp. TKY1 cells was hardly decreased after 1 h of exposure to 100 µM TBTCl, regardless of the number of resting cells in the range from 10 9.4 to 10 4.2 CFU mL -1 . In such an experimental condition, the maximum number of TBT molecules available to associate with a single cell was estimated to be approximately 6.0 x 10 11.8 . Resting cells prepared from type strains Photobacterium ganghwense JCM 12487 T and P. halotolerans LMG 22194 T , which have 16S rDNA sequences highly homologous with those of Photobacterium sp. TKY1, showed sensitivity to TBT, indicating that TBT-resistant marine bacterial species are not closely related in spite of their taxonomic similarity. We also estimated the impact of TBT-resistant bacterial species to indigenous microbial populations of TBT-polluted surface sediments. The number of surviving TBT-sensitive Vibrio natriegens ATCC 14048 T cells, 10 6.2±0.3 CFU mL -1 , was reduced to 10 4.4±0.4 CFU mL -1 when TBT-resistant Photobacterium sp. TKY1 cells, 10 9.1±0.2 CFU mL -1 , coexisted with 10 9.4±0.2 CFU mL -1 of V. natriegens ATCC 14048 T cells in the presence of 100 µM TBTCl. These results indicate that the toxicity of TBT to TBT-sensitive marine bacterial populations might be enhanced when a TBT-resistant marine bacterial species inhabits TBT-polluted surface sediments.

  18. Resistance of Terrestrial Microbial Communities to Impack of Physical Conditinos of Subsurface Layers of Martian Regolith

    NASA Astrophysics Data System (ADS)

    Cheptsov, V. S.; Vorobyova, E. A.

    2017-05-01

    Currently, astrobiology is focused on Mars as one of the most perspective objects in the Solar System to search for microbial life. It was assumed that the putative biosphere of Mars could be cryopreserved and had been stored for billions of years in anabiotic state like microbial communities of Arctic and Antarctic permafrost deposits have been preserved till now for millions of years. In this case microbial cells should be not able to repair the damages or these processes have to be significantly depressed, and the main factor causing cell's death should be ionizing radiation. In a series of experiments we simulated the effects of combination of physical factors known as characteristics of the Martian regolith (and close to the space environment) on the natural microbial communities inhabiting xerophytic harsh habitats with extreme temperature conditions: polar permafrost and desert soils. The aim of the study was to examine the cumulative effect of factors (gamma radiation, low temperature, low pressure) to assess the possibility of metabolic reactions, and to find limits of the viability of natural microbial communities after exposure to the given conditions. It was found that microbial biomarkers could be reliably detected in soil samples after radiation dose accumulation up to 1 MGy (not further investigated) in combination with exposure to low temperature and low pressure. Resistance to extremely high doses of radiation in simulated conditions proves that if there was an Earth-like biosphere on the early Mars microorganisms could survive in the surface or subsurface layers of the Martian regolith for more than tens of millions of years after climate change. The study gives also some new grounds for the approval of transfer of viable microorganisms in space.

  19. Biofouling of reverse osmosis membranes: effects of cleaning on biofilm microbial communities, membrane performance, and adherence of extracellular polymeric substances.

    PubMed

    Al Ashhab, Ashraf; Sweity, Amer; Bayramoglu, Bihter; Herzberg, Moshe; Gillor, Osnat

    2017-05-01

    Laboratory-scale reverse osmosis (RO) flat-sheet systems were used with two parallel flow cells, one treated with cleaning agents and a control (ie undisturbed). The cleaning efforts increased the affinity of extracellular polymeric substances (EPS) to the RO membrane and altered the biofilm surface structure. Analysis of the membrane biofilm community composition revealed the dominance of Proteobacteria. However, within the phylum Proteobacteria, γ-Proteobacteria dominated the cleaned membrane biofilm, while β-Proteobacteria dominated the control biofilm. The composition of the fungal phyla was also altered by cleaning, with enhancement of Ascomycota and suppression of Basidiomycota. The results suggest that repeated cleaning cycles select for microbial groups that strongly attach to the RO membrane surface by producing rigid and adhesive EPS that hampers membrane performance.

  20. Re-examination of the relationship between marine virus and microbial cell abundances.

    PubMed

    Wigington, Charles H; Sonderegger, Derek; Brussaard, Corina P D; Buchan, Alison; Finke, Jan F; Fuhrman, Jed A; Lennon, Jay T; Middelboe, Mathias; Suttle, Curtis A; Stock, Charles; Wilson, William H; Wommack, K Eric; Wilhelm, Steven W; Weitz, Joshua S

    2016-01-25

    Marine viruses are critical drivers of ocean biogeochemistry, and their abundances vary spatiotemporally in the global oceans, with upper estimates exceeding 10(8) per ml. Over many years, a consensus has emerged that virus abundances are typically tenfold higher than microbial cell abundances. However, the true explanatory power of a linear relationship and its robustness across diverse ocean environments is unclear. Here, we compile 5,671 microbial cell and virus abundance estimates from 25 distinct marine surveys and find substantial variation in the virus-to-microbial cell ratio, in which a 10:1 model has either limited or no explanatory power. Instead, virus abundances are better described as nonlinear, power-law functions of microbial cell abundances. The fitted scaling exponents are typically less than 1, implying that the virus-to-microbial cell ratio decreases with microbial cell density, rather than remaining fixed. The observed scaling also implies that viral effect sizes derived from 'representative' abundances require substantial refinement to be extrapolated to regional or global scales.

  1. Strong Effects of a Shelfbreak Jet on Microbial Enzyme Activities

    NASA Astrophysics Data System (ADS)

    Hoarfrost, A.; Balmonte, J. P.; Ziervogel, K.; Ghobrial, S.; Gawarkiewicz, G.; Arnosti, C.

    2016-02-01

    The activities of extracellular enzymes are critical in initiating microbial cycling of organic carbon, yet the dynamics of heterotrophic enzyme activities in marine environments are still poorly understood. Variations at a given site in rates of activity and the spectrum of organic substrates hydrolyzed may depend upon environmental context. We measured the extracellular enzymatic hydrolysis of 13 high- and low-molecular-weight organic substrates in surface and bottom waters along a closely spaced 4-station transect at 71 W on the North Atlantic continental shelf, in the vicinity of the shelfbreak front. This transect intersects a robust upwelling cell that typically shows high biologic productivity, and is locatable by changes in T/S profiles and chl a concentrations along sharp spatial gradients. At the time of sampling, cold pool waters over the continental shelf were relatively cold, 3.5 Deg. C, compared to 12 Deg. C over the upper continental slope. Satellite thermal imagery indicated that shelf water extended offshore and interacted with a large crest of the Gulf Stream. The surface and bottom waters associated with the upwelling jet were characterized by enzyme activities a factor of 20 more rapid than closer inshore waters, and surface water chl a concentrations that were two to three times higher than the inshore waters. The spectrum of enzyme activities also differed markedly between surface and bottom waters both within the jet and at near-shore stations. Microbial extracellular enzymatic activities were strongly influenced by differences in their environmental context along the continental slope and shelfbreak front. Constraining the factors controlling heterotrophic activity across the diverse marine environment is an important step in understanding microbial controls on carbon cycling.

  2. Comparative day/night metatranscriptomic analysis of microbial communities in the North Pacific subtropical gyre.

    PubMed

    Poretsky, Rachel S; Hewson, Ian; Sun, Shulei; Allen, Andrew E; Zehr, Jonathan P; Moran, Mary Ann

    2009-06-01

    Metatranscriptomic analyses of microbial assemblages (< 5 microm) from surface water at the Hawaiian Ocean Time-Series (HOT) revealed community-wide metabolic activities and day/night patterns of differential gene expression. Pyrosequencing produced 75 558 putative mRNA reads from a day transcriptome and 75 946 from a night transcriptome. Taxonomic binning of annotated mRNAs indicated that Cyanobacteria contributed a greater percentage of the transcripts (54% of annotated sequences) than expected based on abundance (35% of cell counts and 21% 16S rRNA of libraries), and may represent the most actively transcribing cells in this surface ocean community in both the day and night. Major heterotrophic taxa contributing to the community transcriptome included alpha-Proteobacteria (19% of annotated sequences, most of which were SAR11-related) and gamma-Proteobacteria (4%). The composition of transcript pools was consistent with models of prokaryotic gene expression, including operon-based transcription patterns and an abundance of genes predicted to be highly expressed. Metabolic activities that are shared by many microbial taxa (e.g. glycolysis, citric acid cycle, amino acid biosynthesis and transcription and translation machinery) were well represented among the community transcripts. There was an overabundance of transcripts for photosynthesis, C1 metabolism and oxidative phosphorylation in the day compared with night, and evidence that energy acquisition is coordinated with solar radiation levels for both autotrophic and heterotrophic microbes. In contrast, housekeeping activities such as amino acid biosynthesis, membrane synthesis and repair, and vitamin biosynthesis were overrepresented in the night transcriptome. Direct sequencing of these environmental transcripts has provided detailed information on metabolic and biogeochemical responses of a microbial community to solar forcing.

  3. The effectiveness of radiant catalytic ionization in inactivation of Listeria monocytogenes planktonic and biofilm cells from food and food contact surfaces as a method of food preservation.

    PubMed

    Skowron, K; Grudlewska, K; Krawczyk, A; Gospodarek-Komkowska, E

    2018-06-01

    The aim of the study was to evaluate the microbicidal effectiveness of radiant catalytic ionization (RCI) against Listeria monocytogenes strains in the form of planktonic cells and biofilm on food products and food contact surfaces as a method of food preservation. The study material comprised six strains of L. monocytogenes, isolated from food. Samples of different types of food available by retail (raw carrot, frozen salmon filets, soft cheese) and the fragments of surfaces (stainless steel AISI 304, rubber, milled rock tiles, polypropylene) were used in the experiment. The obtained results showed the effectiveness of RCI in the inactivation of both forms of the tested L. monocytogenes strains on all the surfaces. The effectiveness of RCI for biofilm forms was lower as compared with planktonic forms. The PRR value ranged from 18·19 to 99·97% for planktonic form and from 3·92 to 70·10% for biofilm. The RCI phenomenon induces the inactivation of L. monocytogenes on surfaces of food and materials used in the processing industry to a varying degree, depending on the manner of surface contamination, the properties of the contaminated materials as well as on the origin of the strain and the properties of surrounding dispersive environment in which the micro-organisms were suspended. Searching of new actions aimed at the reduction of the microbial contamination of food and food contact surfaces are extremely important. RCI method has been already described as an effective technique of microbial and abiotic pollution removal from air. However, our studies provide new, additional data related to evaluation the RCI efficacy against microbes on different surfaces, both in planktonic and biofilm form. © 2018 The Society for Applied Microbiology.

  4. Quorum sensing and microbial drug resistance.

    PubMed

    Chen, Yu-fan; Liu, Shi-yin; Liang, Zhi-bin; Lv, Ming-fa; Zhou, Jia-nuan; Zhang, Lian-hui

    2016-10-20

    Microbial drug resistance has become a serious problem of global concern, and the evolution and regulatory mechanisms of microbial drug resistance has become a hotspot of research in recent years. Recent studies showed that certain microbial resistance mechanisms are regulated by quorum sensing system. Quorum sensing is a ubiquitous cell-cell communication system in the microbial world, which associates with cell density. High-density microbial cells produce sufficient amount of small signal molecules, activating a range of downstream cellular processes including virulence and drug resistance mechanisms, which increases bacterial drug tolerance and causes infections on host organisms. In this review, the general mechanisms of microbial drug resistance and quorum-sensing systems are summarized with a focus on the association of quorum sensing and chemical signaling systems with microbial drug resistance mechanisms, including biofilm formation and drug efflux pump. The potential use of quorum quenching as a new strategy to control microbial resistance is also discussed.

  5. Quantifying the pattern of microbial cell dispersion, density and clustering on surfaces of differing chemistries and topographies using multifractal analysis.

    PubMed

    Wickens, David; Lynch, Stephen; West, Glen; Kelly, Peter; Verran, Joanna; Whitehead, Kathryn A

    2014-09-01

    The effects of surface topography on bacterial distribution across a surface are of extreme importance when designing novel, hygienic or antimicrobial surface coatings. The majority of methods that are deployed to describe the pattern of cell dispersion, density and clustering across surfaces are currently qualitative. This paper presents a novel application of multifractal analysis to quantitatively measure these factors using medically relevant microorganisms (Staphylococcus aureus or Staphylococcus epidermidis). Surfaces (medical grade 316 stainless steel) and coatings (Ti-ZrN, Ti-ZrN/6.0%Ag, Ti-ZrN/15.6%Ag, TiZrN/24.7%Ag) were used in microbiological retention assays. Results demonstrated that S. aureus displayed a more heterogeneous cell dispersion (∆αAS<1) whilst the dispersion of S. epidermidis was more symmetric and homogeneous (∆αAS≥1). Further, although the surface topography and chemistry had an effect on cell dispersion, density and clustering, the type of bonding that occurred at the surface interface was also important. Both types of cells were influenced by both surface topographical and chemical effects; however, S. aureus was influenced marginally more by surface chemistry whilst S. epidermidis cells was influenced marginally more by surface topography. Thus, this effect was bacterially species specific. The results demonstrate that multifractal analysis is a method that can be used to quantitatively analyse the cell dispersion, density and clustering of retained microorganisms on surfaces. Using quantitative descriptors has the potential to aid the understanding the effect of surface properties on the production of hygienic and antimicrobial coatings. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Study of acetic acid production by immobilized acetobacter cells: oxygen transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghommidh, C.; Navarro, J.M.; Durand, G.

    1982-03-01

    The immobilization of living Acetobacter cells by adsorption onto a large-surface-area ceramic support was studied in a pulsed flow reactor. The high oxygen transfer capability of the reactor enabled acetic acid production rates up to 10.4 g/L/h to be achieved. Using a simple mathematical model incorporating both internal and external mass transfer coefficients, it was shown that oxygen transfer in the microbial film controls the reactor productivity. (Refs. 10).

  7. Determination of effects of turbulence flow in a cathode environment on electricity generation using a tidal mud-based cylindrical-type sediment microbial fuel cell.

    PubMed

    An, Junyeong; Lee, Soo-Jin; Ng, How Yong; Chang, In Seop

    2010-12-01

    We examined the possibility of harvesting electricity from the surface of a tidal mud flat using a cylindrical-type sediment microbial fuel cell (SMFC), a marine mud battery (MMB), which can be applied in a sea environment where the ebb and flow occur due to tidal difference. In addition, we indirectly investigated the influence of ebb and flow in a lab, using aeration, argon gassing, and by agitating the cathodic solution. The MMBs consisted of cylindrical acrylic compartments containing a nylon membrane, an anode, and a cathode in a single body. The MMBs were stuck vertically into an artificial tidal mud flat such that the anode electrode was in direct contact with the tidal mud surface. As a result, the maximum current and power density generated were 35 mA/m(2) and 9 mW/m(2), respectively, thus verifying that it is possible to harvest electricity from the surface of a tidal mud flat using an MMB without burying the anode electrode in the tidal mud. Furthermore, the results of tests using an artificial turbulence flow showed the flow induced by the tidal ebb and flow could allow the performance of MMBs to be enhanced. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Electricity generation coupled with wastewater treatment using a microbial fuel cell composed of a modified cathode with a ceramic membrane and cellulose acetate film.

    PubMed

    Seo, Ha Na; Lee, Woo Jin; Hwang, Tae Sik; Park, Doo Hyun

    2009-09-01

    A noncompartmented microbial fuel cell (NCMFC) composed of a Mn(IV)-carbon plate and a Fe(III)-carbon plate was used for electricity generation from organic wastewater without consumption of external energy. The Fe(III)-carbon plate, coated with a porous ceramic membrane and a semipermeable cellulose acetate film, was used as a cathode, which substituted for the catholyte and cathode. The Mn(IV)-carbon plate was used as an anode without a membrane or film coating. A solar cell connected to the NCMFC activated electricity generation and bacterial consumption of organic matter contained in the wastewater. More than 99 degrees of the organic matter was biochemically oxidized during wastewater flow through the four NCMFC units. A predominant bacterium isolated from the anode surface in both the conventional and the solar cell-linked NCMFC was found to be more than 99 degrees similar to a Mn(II)-oxidizing bacterium and Burkeholderia sp., based on 16S rDNA sequence analysis. The isolate reacted electrochemically with the Mn(IV)-modified anode and produced electricity in the NCMFC. After 90 days of incubation, a bacterial species that was enriched on the Mn(IV)-modified anode surface in all of the NCMFC units was found to be very similar to the initially isolated predominant species by comparing 16S rDNA sequences.

  9. The Identification of Cable Bacteria Attached to the Anode of a Benthic Microbial Fuel Cell: Evidence of Long Distance Extracellular Electron Transport to Electrodes

    PubMed Central

    Reimers, Clare E.; Li, Cheng; Graw, Michael F.; Schrader, Paul S.; Wolf, Michael

    2017-01-01

    Multicellular, filamentous, sulfur-oxidizing bacteria, known as cable bacteria, were discovered attached to fibers of a carbon brush electrode serving as an anode of a benthic microbial fuel cell (BMFC). The BMFC had been operated in a temperate estuarine environment for over a year before collecting anode samples for scanning electron microscopy and phylogenetic analyses. Individual filaments were attached by single terminus cells with networks of pilus-like nano-filaments radiating out from these cells, across the anode fiber surface, and between adjacent attachment locations. Current harvesting by the BMFC poised the anode at potentials of ~170–250 mV vs. SHE, and these surface potentials appear to have allowed the cable bacteria to use the anode as an electron acceptor in a completely anaerobic environment. A combination of catalyzed reporter deposition fluorescent in situ hybridization (CARD-FISH) and 16S rRNA gene sequence analysis confirmed the phylogeny of the cable bacteria and showed that filaments often occurred in bundles and in close association with members of the genera Desulfuromonas. However, the Desulfobulbaceae Operational Taxonomic Units (OTUs) from the 16S sequencing did not cluster closely with other putative cable bacteria sequences suggesting that the taxonomic delineation of cable bacteria is far from complete. PMID:29114243

  10. Surface multiheme c-type cytochromes from Thermincola potens: Implications for dissimilatory metal reduction by Gram-positive bacteria

    NASA Astrophysics Data System (ADS)

    Carlson, H. K.; Iavarone, A. T.; Gorur, A.; Yeo, B. S.; Tran, R.; Melnyk, R. A.; Mathies, R. A.; Auer, M.; Coates, J. D.

    2011-12-01

    Almost nothing is known about the mechanisms of dissimilatory metal reduction by Gram-positive bacteria, although they have been shown to be the dominant species in some environments. Thermincola potens strain JR was isolated from the anode of a microbial fuel cell inoculated with anaerobic digester sludge and operated at 55 °C. Preliminary characterization revealed that T. potens coupled acetate oxidation to the reduction of hydrous ferric oxides (HFO) or the humic substances analog, anthraquinone-2,6-disulfonate (AQDS). The genome of T. potens was recently sequenced, and the abundance of multiheme c-type cytochromes (MHCs) is unusual for a Gram-positive bacterium. We present evidence from trypsin shaving LC-MS/MS experiments and surface-enhanced Raman spectroscopy (SERS) that indicates the expression of a number of MHCs during T. potens growth on either HFO or AQDS and that several MHCs are localized to the cell wall or cell surface of T. potens. Furthermore, one of the MHCs can be extracted from cells with low pH or denaturants suggesting a loose association with the cell wall or cell surface. Electron microscopy does not reveal an S-layer, and the precipitation of silver metal on the cell surface is inhibited by cyanide, supporting the involvement of surface-localized redox-active heme proteins in dissimilatory metal reduction. These results are the first direct evidence for cell-wall associated cytochromes and MHC involvement in conducting electrons across the cell envelope of a Gram-positive bacterium.

  11. [Research on functional diversity of microorganisms on jujube fruit surface in storage].

    PubMed

    Sha, Yuexia

    2009-10-01

    Disease during storage caused by microbial infection is a serious problem of jujube fruits. The aim of the study was to characterize the microbial diversity in stored jujube fruits. I used Biolog in experiment. The types of micro-plates were Filamentous Fungi micro-plate and Economicmicro-plate. There was much difference in microbial functional diversity on the surface of stored jujube fruit. The microbial functional diversity of stored 30 days was richer than it of stored 15 days. The diversity, homogeneity and average well color development of jujube used by fruit perservatives were lower than it not used by fruit preservatives. There were six kinds of the characteristic carbon. Our study firstly showed microbial diversity on the surface of stored jujube fruit. Biolog could be applied in the research on microbial functional diversity of fruit surface.

  12. Modified Gold Electrode and Hollow Mn3O4 Nanoparticles as Electrode Materials for Microbial Fuel Cell Applications

    NASA Astrophysics Data System (ADS)

    Dhungana, Pramod

    Microbial fuel cell (MFC) technology has attracted great attention in the scientific community as it offers the possibility of extraction of electricity from wide range of soluble and dissolved organic waste or renewable biomass, including sludge, waste water and cellulosic biomass. Microbial fuel cells are devices that utilize microbial metabolic processes to convert chemical energy via the oxidation of organic substances to produce electric current. MFCs consist of two chambers, an anode and cathode, separated by ion-permeable materials. The efficiency of producing electricity using the MFC depends on several factors such as immobilization of microorganisms on anode, mode of electron transfer, types of substrate/fuel and effectiveness of cathode materials for oxygen reduction reaction (ORR). In this work, in order to immobilize the microorganisms on anode materials, we have investigated the surface modification of gold electrode (anode) using alkyl dithiol and aryl thiol with glucose. The modification processes were characterized by using contact angle measurements and proton nuclear magnetic resonance (NMR). In order to study the effectiveness of cathode materials for ORR, we have synthesized hollow Mn3O 4 nanoparticles which are electrically very poor. Therefore, the hollow nanoparticles were mixed with electrically conductive multi-walled carbon nanotube as support and optimized the mixing process. This composite material shows enhanced ORR activity in all types of pH conditions. In future, we will focus to integrate anode and cathode in MFC to check its efficiency to produce electricity.

  13. Experimental and Theoretical Approaches for the Surface Interaction between Copper and Activated Sludge Microorganisms at Molecular Scale

    NASA Astrophysics Data System (ADS)

    Luo, Hong-Wei; Chen, Jie-Jie; Sheng, Guo-Ping; Su, Ji-Hu; Wei, Shi-Qiang; Yu, Han-Qing

    2014-11-01

    Interactions between metals and activated sludge microorganisms substantially affect the speciation, immobilization, transport, and bioavailability of trace heavy metals in biological wastewater treatment plants. In this study, the interaction of Cu(II), a typical heavy metal, onto activated sludge microorganisms was studied in-depth using a multi-technique approach. The complexing structure of Cu(II) on microbial surface was revealed by X-ray absorption fine structure (XAFS) and electron paramagnetic resonance (EPR) analysis. EPR spectra indicated that Cu(II) was held in inner-sphere surface complexes of octahedral coordination with tetragonal distortion of axial elongation. XAFS analysis further suggested that the surface complexation between Cu(II) and microbial cells was the distorted inner-sphere coordinated octahedra containing four short equatorial bonds and two elongated axial bonds. To further validate the results obtained from the XAFS and EPR analysis, density functional theory calculations were carried out to explore the structural geometry of the Cu complexes. These results are useful to better understand the speciation, immobilization, transport, and bioavailability of metals in biological wastewater treatment plants.

  14. Activated microporous-mesoporous carbon derived from chestnut shell as a sustainable anode material for high performance microbial fuel cells.

    PubMed

    Chen, Qin; Pu, Wenhong; Hou, Huijie; Hu, Jingping; Liu, Bingchuan; Li, Jianfeng; Cheng, Kai; Huang, Long; Yuan, Xiqing; Yang, Changzhu; Yang, Jiakuan

    2018-02-01

    Microbial fuel cells (MFCs) are promising biotechnologies tool to harvest electricity by decomposing organic matter in waste water, and the anode material is a critical factor in determining the performance of MFCs. In this study, chestnut shell is proposed as a novel anode material with mesoporous and microporous structure prepared via a simple carbonization procedure followed by an activation process. The chemical activation process successfully modified the macroporous structure, created more mesoporous and microporous structure and decreased the O-content and pyridinic/pyrrolic N groups on the biomass anode, which were beneficial for improving charge transfer efficiency between the anode surface and microbial biofilm. The MFC with activated biomass anode achieved a maximum power density (23.6 W m -3 ) 2.3 times higher than carbon cloth anode (10.4 W m -3 ). This study introduces a promising and feasible strategy for the fabrication of high performance anodes for MFCs derived from cost-effective, sustainable natural materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Microbial genesis, life and death in glacial ice.

    PubMed

    Price, P Buford

    2009-01-01

    Arguments are given that terrestrial RNA and DNA may have originated in a frozen environment more than 4 billion years ago. Scenarios are developed for atmospheric transport of microbes onto glacial ice, their adaptation to subzero temperatures in the ice, and their incorporation into one of three habitats - liquid veins, mineral grain surfaces, or isolated inside 1 of the crystals that make up polycrystalline ice. The Arrhenius dependence of microbial metabolic rate on temperature is shown to match that required to repair damage owing to spontaneous DNA depurination and amino acid racemization. Even for the oldest glacial ice, microbial lifetime is shown not to be shortened by radiation damage from 238U, 232Th, or 40K in mineral dust in ice, by phage-induced lysis, or by penetrating cosmic radiation. Instead, death of those cells adapted to the hostile conditions in glacial ice is probably due to exhaustion of available nutrients. By contrast, in permafrost microbial death is more likely due to alpha-particle radiation damage from U and Th in the soil and rocks intermixed with ice. For residence times in ice longer than a million years, spore formers may be unable to compete in longevity with vegetative cells that are able to repair DNA damage via survival metabolism.

  16. Innate and cytokine-driven signals, rather than microbial antigens, dominate in natural killer T cell activation during microbial infection.

    PubMed

    Brigl, Manfred; Tatituri, Raju V V; Watts, Gerald F M; Bhowruth, Veemal; Leadbetter, Elizabeth A; Barton, Nathaniel; Cohen, Nadia R; Hsu, Fong-Fu; Besra, Gurdyal S; Brenner, Michael B

    2011-06-06

    Invariant natural killer T cells (iNKT cells) are critical for host defense against a variety of microbial pathogens. However, the central question of how iNKT cells are activated by microbes has not been fully explained. The example of adaptive MHC-restricted T cells, studies using synthetic pharmacological α-galactosylceramides, and the recent discovery of microbial iNKT cell ligands have all suggested that recognition of foreign lipid antigens is the main driver for iNKT cell activation during infection. However, when we compared the role of microbial antigens versus innate cytokine-driven mechanisms, we found that iNKT cell interferon-γ production after in vitro stimulation or infection with diverse bacteria overwhelmingly depended on toll-like receptor-driven IL-12. Importantly, activation of iNKT cells in vivo during infection with Sphingomonas yanoikuyae or Streptococcus pneumoniae, pathogens which are known to express iNKT cell antigens and which require iNKT cells for effective protection, also predominantly depended on IL-12. Constitutive expression of high levels of IL-12 receptor by iNKT cells enabled instant IL-12-induced STAT4 activation, demonstrating that among T cells, iNKT cells are uniquely equipped for immediate, cytokine-driven activation. These findings reveal that innate and cytokine-driven signals, rather than cognate microbial antigen, dominate in iNKT cell activation during microbial infections.

  17. International Space Station environmental microbiome - microbial inventories of ISS filter debris.

    PubMed

    Venkateswaran, Kasthuri; Vaishampayan, Parag; Cisneros, Jessica; Pierson, Duane L; Rogers, Scott O; Perry, Jay

    2014-01-01

    Despite an expanding array of molecular approaches for detecting microorganisms in a given sample, rapid and robust means of assessing the differential viability of the microbial cells, as a function of phylogenetic lineage, remain elusive. A propidium monoazide (PMA) treatment coupled with downstream quantitative polymerase chain reaction (qPCR) and pyrosequencing analyses was carried out to better understand the frequency, diversity, and distribution of viable microorganisms associated with debris collected from the crew quarters of the International Space Station (ISS). The cultured bacterial counts were more in the ISS samples than cultured fungal population. The rapid molecular analyses targeted to estimate viable population exhibited 5-fold increase in bacterial (qPCR-PMA assay) and 25-fold increase in microbial (adenosine triphosphate assay) burden than the cultured bacterial population. The ribosomal nucleic acid-based identification of cultivated strains revealed the presence of only four to eight bacterial species in the ISS samples, however, the viable bacterial diversity detected by the PMA-pyrosequencing method was far more diverse (12 to 23 bacterial taxa) with the majority consisting of members of actinobacterial genera (Propionibacterium, Corynebacterium) and Staphylococcus. Sample fractions not treated with PMA (inclusive of both live and dead cells) yielded a great abundance of highly diverse bacterial (94 to 118 taxa) and fungal lineages (41 taxa). Even though deep sequencing capability of the molecular analysis widened the understanding about the microbial diversity, the cultivation assay also proved to be essential since some of the spore-forming microorganisms were detected only by the culture-based method. Presented here are the findings of the first comprehensive effort to assess the viability of microbial cells associated with ISS surfaces, and correlate differential viability with phylogenetic affiliation.

  18. Microbial Monitoring of Common Opportunistic Pathogens by Comparing Multiple Real-Time PCR Platforms for Potential Space Applications

    NASA Technical Reports Server (NTRS)

    Oubre, Cherie M.; Birmele, Michele N.; Castro, Victoria A.; Venkateswaran, Kasthuri J.; Vaishampayan, Parag A.; Jones, Kathy U.; Singhal, Adesh; Johnston, Angela S.; Roman, Monserrate C.; Ozbolt, Tamra A.; hide

    2013-01-01

    Because the International Space Station is a closed environment with rotations of astronauts and equipment that each introduce their own microbial flora, it is necessary to monitor the air, surfaces, and water for microbial contamination. Current microbial monitoring includes labor- and time-intensive methods to enumerate total bacterial and fungal cells, with limited characterization, during in-flight testing. Although this culture-based method is sufficient for monitoring the International Space Station, on future long-duration missions more detailed characterization will need to be performed during flight, as sample return and ground characterization may not be available. At a workshop held in 2011 at NASA's Johnson Space Center to discuss alternative methodologies and technologies suitable for microbial monitoring for these long-term exploration missions, molecular-based methodologies such as polymerase chain reaction (PCR) were recommended. In response, a multi-center (Marshall Space Flight Center, Johnson Space Center, Jet Propulsion Laboratory, and Kennedy Space Center) collaborative research effort was initiated to explore novel commercial-off-the-shelf hardware options for space flight environmental monitoring. The goal was to evaluate quantitative or semi-quantitative PCR approaches for low-cost in-flight rapid identification of microorganisms that could affect crew safety. The initial phase of this project identified commercially available platforms that could be minimally modified to perform nominally in microgravity. This phase was followed by proof-of-concept testing of the highest qualifying candidates with a universally available challenge organism, Salmonella enterica. The analysis identified two technologies that were able to perform sample-to-answer testing with initial cell sample concentrations between 50 and 400 cells. In addition, the commercial systems were evaluated for initial flight safety and readiness.

  19. Satellite remote sensing data can be used to model marine microbial metabolite turnover

    PubMed Central

    Larsen, Peter E; Scott, Nicole; Post, Anton F; Field, Dawn; Knight, Rob; Hamada, Yuki; Gilbert, Jack A

    2015-01-01

    Sampling ecosystems, even at a local scale, at the temporal and spatial resolution necessary to capture natural variability in microbial communities are prohibitively expensive. We extrapolated marine surface microbial community structure and metabolic potential from 72 16S rRNA amplicon and 8 metagenomic observations using remotely sensed environmental parameters to create a system-scale model of marine microbial metabolism for 5904 grid cells (49 km2) in the Western English Chanel, across 3 years of weekly averages. Thirteen environmental variables predicted the relative abundance of 24 bacterial Orders and 1715 unique enzyme-encoding genes that encode turnover of 2893 metabolites. The genes' predicted relative abundance was highly correlated (Pearson Correlation 0.72, P-value <10−6) with their observed relative abundance in sequenced metagenomes. Predictions of the relative turnover (synthesis or consumption) of CO2 were significantly correlated with observed surface CO2 fugacity. The spatial and temporal variation in the predicted relative abundances of genes coding for cyanase, carbon monoxide and malate dehydrogenase were investigated along with the predicted inter-annual variation in relative consumption or production of ∼3000 metabolites forming six significant temporal clusters. These spatiotemporal distributions could possibly be explained by the co-occurrence of anaerobic and aerobic metabolisms associated with localized plankton blooms or sediment resuspension, which facilitate the presence of anaerobic micro-niches. This predictive model provides a general framework for focusing future sampling and experimental design to relate biogeochemical turnover to microbial ecology. PMID:25072414

  20. Satellite remote sensing data can be used to model marine microbial metabolite turnover

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, Peter E.; Scott, Nicole; Post, Anton F.

    Sampling ecosystems, even at a local scale, at the temporal and spatial resolution necessary to capture natural variability in microbial communities are prohibitively expensive. We extrapolated marine surface microbial community structure and metabolic potential from 72 16S rRNA amplicon and 8 metagenomic observations using remotely sensed environmental parameters to create a system-scale model of marine microbial metabolism for 5904 grid cells (49 km2) in the Western English Chanel, across 3 years of weekly averages. Thirteen environmental variables predicted the relative abundance of 24 bacterial Orders and 1715 unique enzyme-encoding genes that encode turnover of 2893 metabolites. The genes’ predicted relativemore » abundance was highly correlated (Pearson Correlation 0.72, P-value <10-6) with their observed relative abundance in sequenced metagenomes. Predictions of the relative turnover (synthesis or consumption) of CO2 were significantly correlated with observed surface CO2 fugacity. The spatial and temporal variation in the predicted relative abundances of genes coding for cyanase, carbon monoxide and malate dehydrogenase were investigated along with the predicted inter-annual variation in relative consumption or production of ~3000 metabolites forming six significant temporal clusters. These spatiotemporal distributions could possibly be explained by the co-occurrence of anaerobic and aerobic metabolisms associated with localized plankton blooms or sediment resuspension, which facilitate the presence of anaerobic micro-niches. This predictive model provides a general framework for focusing future sampling and experimental design to relate biogeochemical turnover to microbial ecology.« less

  1. The structural bases of long-term anabiosis in non-spore-forming bacteria

    NASA Astrophysics Data System (ADS)

    Suzina, Natalia E.; Mulyukin, Andrey L.; Dmitriev, Vladimir V.; Nikolaev, Yury A.; Shorokhova, Anna P.; Bobkova, Yulia S.; Barinova, Ekaterina S.; Plakunov, Vladimir K.; El-Registan, Galina I.; Duda, Vitalii I.

    2006-01-01

    Peculiarities of the structural organization in non-spore-forming bacteria associated with long-term anabiosis were revealed both in laboratory cultures and in natural populations isolated from 1 3-Myr-old Eastern Siberian permafrost and tundra soil. Different advanced methods were used, including (a) high-resolution electron microscopy; (b) simulation of in situ conditions in the laboratory by varying the composition of growth medium and cultivation conditions; (c) low-temperature fractionation to isolate and concentrate microbial cells from natural soils; (d) comparative morphological analysis of microbial cells in model cultures and natural soils (in situ). Under laboratory conditions, the intense formation of resting cells by representatives of various taxa of eubacteria and halophilic archaea occurred in 2 9-month-old cultures grown in carbon-, nitrogen-, or phosphorus-limited media, in starved cell suspensions in the presence of sodium silicate, or on soil agar. Among resting cells, we revealed cystlike forms having a complicated structure and common features. These included a thick capsule; a thickened and multiprofile cell wall; the presence of large intramembrane particles on PF- and EF-fracture surfaces; fine-grained or lumpy cytoplasm; and a condensed nucleoid. The general morphological properties, ultrastructural organization, physiological features of cystlike cells, and their ability to germinate under the appropriate conditions suggest the existence of constitutive dormancy in non-spore-forming bacteria. It was found that the majority of microorganisms in permafrost and tundra soil are cystlike cells, very similar to those in laboratory cultures. Anabiotic (resting) cystlike cells are responsible for the survival of non-spore-formers in extreme Earth habitats and may be regarded as possible analogs of extraterrestrial forms of microbial life.

  2. Porous nitrogen-doped carbon nanosheet on graphene as metal-free catalyst for oxygen reduction reaction in air-cathode microbial fuel cells.

    PubMed

    Wen, Qing; Wang, Shaoyun; Yan, Jun; Cong, Lijie; Chen, Ye; Xi, Hongyuan

    2014-02-01

    Porous nitrogen-doped carbon nanosheet on graphene (PNCN) was used as an alternative cathode catalyst for oxygen reduction reaction (ORR) in air-cathode microbial fuel cells (MFCs). Here we report a novel, low-cost, scalable, synthetic method for preparation of PNCN via the carbonization of graphite oxide-polyaniline hybrid (GO-PANI), subsequently followed by KOH activation treatment. Due to its high concentration of nitrogen and high specific surface area, PNCN exhibited an excellent catalytic activity for ORR. As a result, the maximum power density of 1159.34mWm(-2) obtained with PNCN catalyst was higher than that of Pt/C catalyst (858.49mWm(-2)) in a MFC. Therefore, porous nitrogen-doped carbon nanosheet could be a good alternative to Pt catalyst in MFCs. © 2013.

  3. Optimization of enhanced bioelectrical reactor with electricity from microbial fuel cells for groundwater nitrate removal.

    PubMed

    Liu, Ye; Zhang, Baogang; Tian, Caixing; Feng, Chuanping; Wang, Zhijun; Cheng, Ming; Hu, Weiwu

    2016-01-01

    Factors influencing the performance of a continual-flow bioelectrical reactor (BER) intensified by microbial fuel cells for groundwater nitrate removal, including nitrate load, carbon source and hydraulic retention time (HRT), were investigated and optimized by response surface methodology (RSM). With the target of maximum nitrate removal and minimum intermediates accumulation, nitrate load (for nitrogen) of 60.70 mg/L, chemical oxygen demand (COD) of 849.55 mg/L and HRT of 3.92 h for the BER were performed. COD was the dominant factor influencing performance of the system. Experimental results indicated the undistorted simulation and reliable optimized values. These demonstrate that RSM is an effective method to evaluate and optimize the nitrate-reducing performance of the present system and can guide mathematical models development to further promote its practical applications.

  4. Anti-microbial peptide facilitated cytosolic delivery of metallic gold nanomaterials

    NASA Astrophysics Data System (ADS)

    Kapur, Anshika; Wang, Wentao; Diaz Hernandez, Juan; Medina, Scott; Schneider, Joel P.; Mattoussi, Hedi

    2018-02-01

    The unique photophysical properties of gold nanomaterials combined with progress in developing effective surfacefunctionalization strategies has motivated researchers to employ them as tools for use in biomedical imaging, biosensing, diagnostics, photothermal therapy, and as drug and gene delivery vehicles. However, a major challenge limiting these advancements has been the unavailability of effective strategies to deliver these and other nanocrystals into the cytoplasm of live cells. In this study, we demonstrate that the use of a chemically-synthesized anti-microbial peptide, SVS-1, can promote non-endocytic uptake of both small size gold nanoparticles (AuNPs) and larger size gold nanorods (AuNRs) into mammalian cells. For this, colloidally stable AuNP and AuNRs, surface ligated with an amine-functionalized polymer, His-PIMA-PEG-OCH3/NH2 were prepared. The amine groups allow dual, covalent attachment of cysteine terminated SVS-1 (via a thioether linkage) and NHS-ester-Texas-Red dye onto the nanocrystal surfaces. We use fluorescence microscopy to demonstrate nanocrystal staining throughout the cytoplasmic volume of the cells incubated with these conjugates. More importantly, we have conducted additional endocytosis inhibition experiments where cells were incubated with the conjugates at 4°C. Here too, the imaging data have shown significant levels of nanocrystal uptake, further verifying that physical translocation of these conjugates takes place through the cell membrane independent of endocytosis. These findings are promising and can provide critical support for the widespread applications of nanomaterials in the field of biology.

  5. Yeast cell surface display for lipase whole cell catalyst and its applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yun; Zhang, Rui; Lian, Zhongshuai

    The cell surface display technique allows for the expression of target proteins or peptides on the microbial cell surface by fusing an appropriate protein as an anchoring motif. Yeast display systems, such as Pichia pastoris, Yarowia lipolytica and Saccharomyces cerevisiae, are ideal, alternative and extensive display systems with the advantage of simple genetic manipulation and post-translational modification of expressed heterologous proteins. Engineered yeasts show high performance characteristics and variant utilizations. Herein, we comprehensively summarize the variant factors affecting lipase whole cell catalyst activity and display efficiency, including the structure and size of target proteins, screening anchor proteins, type and chainmore » length of linkers, and the appropriate matching rules among the above-mentioned display units. Furthermore, we also address novel approaches to enhance stability and activity of recombinant lipases, such as VHb gene co-expression, multi-enzyme co-display technique, and the micro-environmental interference and self-assembly techniques. Finally, we represent the variety of applications of whole cell surface displayed lipases on yeast cells in non-aqueous phases, including synthesis of esters, PUFA enrichment, resolution of chiral drugs, organic synthesis and biofuels. We demonstrate that the lipase surface display technique is a powerful tool for functionalizing yeasts to serve as whole cell catalysts, and increasing interest is providing an impetus for broad application of this technique.« less

  6. Metabolic and Demographic Feedbacks Shape the Emergent Spatial Structure and Function of Microbial Communities

    PubMed Central

    Estrela, Sylvie; Brown, Sam P.

    2013-01-01

    Microbes are predominantly found in surface-attached and spatially structured polymicrobial communities. Within these communities, microbial cells excrete a wide range of metabolites, setting the stage for interspecific metabolic interactions. The links, however, between metabolic and ecological interactions (functional relationships), and species spatial organization (structural relationships) are still poorly understood. Here, we use an individual-based modelling framework to simulate the growth of a two-species surface-attached community where food (resource) is traded for detoxification (service) and investigate how metabolic constraints of individual species shape the emergent structural and functional relationships of the community. We show that strong metabolic interdependence drives the emergence of mutualism, robust interspecific mixing, and increased community productivity. Specifically, we observed a striking and highly stable emergent lineage branching pattern, generating a persistent lineage mixing that was absent when the metabolic exchange was removed. These emergent community properties are driven by demographic feedbacks, such that aid from neighbouring cells directly enhances focal cell growth, which in turn feeds back to neighbour fecundity. In contrast, weak metabolic interdependence drives conflict (exploitation or competition), and in turn greater interspecific segregation. Together, these results support the idea that species structural and functional relationships represent the net balance of metabolic interdependencies. PMID:24385891

  7. Effects of titanium nanotubes on the osseointegration, cell differentiation, mineralisation and antibacterial properties of orthopaedic implant surfaces.

    PubMed

    Su, E P; Justin, D F; Pratt, C R; Sarin, V K; Nguyen, V S; Oh, S; Jin, S

    2018-01-01

    The development and pre-clinical evaluation of nano-texturised, biomimetic, surfaces of titanium (Ti) implants treated with titanium dioxide (TiO 2 ) nanotube arrays is reviewed. In vitro and in vivo evaluations show that TiO 2 nanotubes on Ti surfaces positively affect the osseointegration, cell differentiation, mineralisation, and anti-microbial properties. This surface treatment can be superimposed onto existing macro and micro porous Ti implants creating a surface texture that also interacts with cells at the nano level. Histology and mechanical pull-out testing of specimens in rabbits indicate that TiO 2 nanotubes improves bone bonding nine-fold (p = 0.008). The rate of mineralisation associated with TiO 2 nanotube surfaces is about three times that of non-treated Ti surfaces. In addition to improved osseointegration properties, TiO 2 nanotubes reduce the initial adhesion and colonisation of Staphylococcus epidermidis Collectively, the properties of Ti implant surfaces enhanced with TiO 2 nanotubes show great promise. Cite this article: Bone Joint J 2018;100-B(1 Supple A):9-16. ©2018 The British Editorial Society of Bone & Joint Surgery.

  8. Application of biofilm bioreactors in white biotechnology.

    PubMed

    Muffler, K; Lakatos, M; Schlegel, C; Strieth, D; Kuhne, S; Ulber, R

    2014-01-01

    The production of valuable compounds in industrial biotechnology is commonly done by cultivation of suspended cells or use of (immobilized) enzymes rather than using microorganisms in an immobilized state. Within the field of wastewater as well as odor treatment the application of immobilized cells is a proven technique. The cells are entrapped in a matrix of extracellular polymeric compounds produced by themselves. The surface-associated agglomerate of encapsulated cells is termed biofilm. In comparison to common immobilization techniques, toxic effects of compounds used for cell entrapment may be neglected. Although the economic impact of biofilm processes used for the production of valuable compounds is negligible, many prospective approaches were examined in the laboratory and on a pilot scale. This review gives an overview of biofilm reactors applied to the production of valuable compounds. Moreover, the characteristics of the utilized materials are discussed with respect to support of surface-attached microbial growth.

  9. Distribution of culturable microorganisms in Fennoscandian Shield groundwater.

    PubMed

    Haveman, Shelley A; Pedersen, Karsten

    2002-02-01

    Microbial populations in 16 groundwater samples from six Fennoscandian Shield sites in Finland and Sweden were investigated. The average total cell number was 3.7x10(5) cells ml(-1), and there was no change in the mean of the total cell numbers to a depth of 1390 m. Culture media were designed based on the chemical composition of each groundwater sample and used successfully to culture anaerobic microorganisms from all samples between 65 and 1350 m depth. Between 0.0084 and 14.8% of total cells were cultured from groundwater samples. Sulfate-reducing bacteria, iron-reducing bacteria and heterotrophic acetogenic bacteria were cultured from groundwater sampled at 65-686 m depth in geographically distant sites. Different microbial populations were cultured from deeper, older and more saline groundwater from 863 to 1350 m depth. Principal component analysis of groundwater chemistry data showed that sulfate- and iron-reducing bacteria were not detected in the most saline groundwater. Iron-reducing bacteria and acetogens were cultured from deep groundwater that contained 0.35-3.5 mM sulfate, while methanogens and acetogens were cultured from deep sulfate-depleted groundwater. In one borehole from which autotrophic methanogens were cultured, dissolved inorganic carbon was enriched in (13)C compared to other Fennoscandian Shield groundwater samples, suggesting that autotrophs were active. It can be concluded that a diverse microbial community is present from the surface to over 1300 m depth in the Fennoscandian Shield.

  10. Microbial Keratitis: Could Contact Lens Material Affect Disease Pathogenesis?

    PubMed Central

    Evans, David J.; Fleiszig, Suzanne M. J.

    2012-01-01

    Microbial keratitis is a sight-threatening complication associated with contact lenses. The introduction of silicone hydrogel lens materials with increased oxygen transmission to the ocular surface has not significantly altered the incidence of microbial keratitis. These data suggest that alternate, or additional, predisposing factors involving lens wear must be addressed to reduce or eliminate these infections. The contact lens can provide a surface for microbial growth in situ, and can also influence ocular surface homeostasis through effects on the tear fluid and corneal epithelium. Thus, it is intuitive that future contact lens materials could make a significant contribution to preventing microbial keratitis. Design of the “right” material to prevent microbial keratitis requires understanding the effects of current materials on bacterial virulence in the cornea, and on ocular surface innate defenses. Current knowledge in each of these areas will be presented, with a discussion of future directions needed to understand the influence of lens material on the pathogenesis of microbial keratitis. PMID:23266587

  11. Sacrificing power for more cost-effective treatment: A techno-economic approach for engineering microbial fuel cells.

    PubMed

    Stoll, Zachary A; Ma, Zhaokun; Trivedi, Christopher B; Spear, John R; Xu, Pei

    2016-10-01

    Microbial fuel cells (MFCs) are a promising energy-positive wastewater treatment technology, however, the system's cost-effectiveness has been overlooked. In this study, two new anode materials - hard felt (HF) and carbon foam (CF) - were evaluated against the standard graphite brush (GB) to determine if using inexpensive materials with less than ideal properties can achieve more cost-effective treatment than high-cost, high-performing materials. Using domestic wastewater as the substrate, power densities for the GB, HF and CF-MFCs were 393, 339 and 291 mW m(-2) normalized by cathodic surface area, respectively. Higher power densities correlated with larger anodic surface areas and anodic current densities but not with electrical conductivity. Cyclic voltammetry revealed that redox systems used for extracellular electron transport in the GB, HF and CF-MFCs were similar (-0.143 ± 0.046, -0.158 ± 0.004 and -0.100 ± 0.014 V vs. Ag/AgCl) and that the electrochemical kinetics of the MFCs showed no correlation with their respective electrical conductivity. 16S rRNA sequencing showed the GB, HF and CF microbial community compositions were not statistically different while organic removal rates were nearly identical for all MFCs. The HF-MFC generated a power output to electrode cost (W $(-1)) 1.9 times greater than the GB-MFC, despite producing 14% less power and 15% less anodic current, while having 2.6 times less anodic surface area, 2.1 times larger charge transfer resistance and an electrical conductivity three orders of magnitude lower. The results demonstrate that inexpensive materials are capable of achieving more cost-effective treatment than high-performing materials despite generating lower power when treating real wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Textural evidence of microbial activity in seafloor and subseafloor basalt: A comparison

    NASA Astrophysics Data System (ADS)

    Thorseth, I. H.; Pedersen, R. B.; Christie, D. M.

    2003-04-01

    SEM observations of alteration rims in basaltic glasses dredged from 0 -- 2.5 Ma seafloor and drilled from 18 -- 28 Ma ocean crust in the Australian-Antarctic Discordance (AAD) document the presence of endolithic microbes in altered basalt glass. In very young AAD lavas ˜10 μm thick alteration rims are developed along intersecting fractures and cracks. The altered glass contains numerous spherical, rod-shaped and star-shaped, partially fossilised microbial cells, similar to those from the Arctic Ridges (Thorseth et al., 2001). In 2.5 Ma basalt glasses, altered rims are up to 250 μm thick and zeolite (phillipsite) is present within the fractures. Spherical cells are observed both in porous zones in the outer part of alteration rims and on zeolite surfaces within central fractures, indicating that microbial activity persist in the region for at least 2.5 Ma. Mn-rich cell-encrustations suggest that Mn is used in an energy yielding metabolic process. Combined with recent results from the Arctic ridges the results from this study demonstrate that endolithic microbial growth is a general feature of mid-ocean spreading ridges. In glasses from ODP cores, ˜1mm thick alteration rims are developed along wide fractures lined with Mn(Fe)-oxyhydroxides and clay and filled by zeolite and calcite. Most common however are <10--200 μm thick rims developed along zeolite filled, more narrow fractures and cracks. Zeolite filled fractures with only minor to no alteration, indicate several episodes of fracturing followed by relatively fast sealing. There is no age progression in alteration thickness along fractures or other characteristics, suggesting that alteration is essentially completed between 2.5 and 18 Ma. A comparison of alteration in the 2.5 Ma glass with that in the ODP samples indicates that a significant part of the altered glass in the drilled samples developed at the surface stage. However, diffuse and highly irregular alteration fronts that are only observed in the ODP samples, most likely developed after burial. These diffuse alteration fronts are caused by partially dissolution and alteration of the glass into minute globules, 0.05 -- 0.2 μm in diameter, with no associated microbial morphologies. Fossilised, Mn-rich cells do occur within zeolite filled fractures, possibly indicating that microbial activity continued in the fractures for as long as circulation continued. The apparent non-biological origin of diffuse, irregular alteration fronts in buried AAD glasses indicates that these textural features are not reliable as diagnostic criteria for the existence of a deep biosphere in the volcanic ocean crust. Reference: Thorseth, I. H., Torsvik, T., Torsvik, V., Daae, F. L., Pedersen, R. B. & Keldysh -- 98 Scientific party (2001). Diversity of life in ocean floor basalt. Earth Planet. Sci. Lett., 194: 31-37.

  13. Dectin-1/TLR2 and NOD2 Agonists Render Dendritic Cells Susceptible to Infection by X4-Using HIV-1 and Promote cis-Infection of CD4+ T Cells

    PubMed Central

    Tremblay, Michel J.

    2013-01-01

    HIV-1 pathogenesis is intimately linked with microbial infections and innate immunity during all stages of the disease. While the impact of microbial-derived products in transmission of R5-using virus to CD4+ T cells by dendritic cells (DCs) has been addressed before, very limited data are available on the effect of such compounds on DC-mediated dissemination of X4-tropic variant. Here, we provide evidence that treatment of DCs with dectin-1/TLR2 and NOD2 ligands increases cis-infection of autologous CD4+ T cells by X4-using virus. This phenomenon is most likely associated with an enhanced permissiveness of DCs to productive infection with X4 virus, which is linked to increased surface expression of CXCR4 and the acquisition of a maturation profile by DCs. The ensuing DC maturation enhances susceptibility of CD4+ T cells to productive infection with HIV-1. This study highlights the crucial role of DCs at different stages of HIV-1 infection and particularly in spreading of viral strains displaying a X4 phenotype. PMID:23844079

  14. Aeromicrobiology/air quality

    USGS Publications Warehouse

    Andersen, Gary L.; Frisch, A.S.; Kellogg, Christina A.; Levetin, E.; Lighthart, Bruce; Paterno, D.

    2009-01-01

    The most prevalent microorganisms, viruses, bacteria, and fungi, are introduced into the atmosphere from many anthropogenic sources such as agricultural, industrial and urban activities, termed microbial air pollution (MAP), and natural sources. These include soil, vegetation, and ocean surfaces that have been disturbed by atmospheric turbulence. The airborne concentrations range from nil to great numbers and change as functions of time of day, season, location, and upwind sources. While airborne, they may settle out immediately or be transported great distances. Further, most viable airborne cells can be rendered nonviable due to temperature effects, dehydration or rehydration, UV radiation, and/or air pollution effects. Mathematical microbial survival models that simulate these effects have been developed.

  15. Activated carbon derived from chitosan as air cathode catalyst for high performance in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Zhao, Yong; Li, Kexun; Wang, Zhong; Tian, Pei; Liu, Di; Yang, Tingting; Wang, Junjie

    2018-02-01

    Chitosan with rich of nitrogen is used as carbon precursor to synthesis activated carbon through directly heating method in this study. The obtained carbon is activated by different amount of KOH at different temperatures, and then prepared as air cathodes for microbial fuel cells. Carbon sample treated with double amount of KOH at 850 °C exhibits maximum power density (1435 ± 46 mW m-2), 1.01 times improved, which ascribes to the highest total surface area, moderate micropore and mesoporous structure and the introduction of nitrogen. The electrochemical impedance spectroscopy and powder resistivity state that carbon treated with double amount of KOH at 850 °C possesses lower resistance. The other electrochemical measurements demonstrate that the best kinetic activity make the above treated sample to show the best oxygen reduction reaction activity. Besides, the degree of graphitization of samples increases with the activated temperature increasing, which is tested by Raman. According to elemental analysis and X-ray photoelectron spectroscopy, all chitosan samples are nitrogen-doped carbon, and high content nitrogen (pyridinic-N) improves the electrochemical activity of carbon treated with KOH at 850 °C. Thus, carbon materials derived from chitosan would be an optimized catalyst for oxygen reduction reaction in microbial fuel cell.

  16. Microbial consortia in meat processing environments

    NASA Astrophysics Data System (ADS)

    Alessandria, V.; Rantsiou, K.; Cavallero, M. C.; Riva, S.; Cocolin, L.

    2017-09-01

    Microbial contamination in food processing plants can play a fundamental role in food quality and safety. The description of the microbial consortia in the meat processing environment is important since it is a first step in understanding possible routes of product contamination. Furthermore, it may contribute in the development of sanitation programs for effective pathogen removal. The purpose of this study was to characterize the type of microbiota in the environment of meat processing plants: the microbiota of three different meat plants was studied by both traditional and molecular methods (PCR-DGGE) in two different periods. Different levels of contamination emerged between the three plants as well as between the two sampling periods. Conventional methods of killing free-living bacteria through antimicrobial agents and disinfection are often ineffective against bacteria within a biofilm. The use of gas-discharge plasmas potentially can offer a good alternative to conventional sterilization methods. The purpose of this study was to measure the effectiveness of Atmospheric Pressure Plasma (APP) surface treatments against bacteria in biofilms. Biofilms produced by three different L. monocytogenes strains on stainless steel surface were subjected to three different conditions (power, exposure time) of APP. Our results showed how most of the culturable cells are inactivated after the Plasma exposure but the RNA analysis by qPCR highlighted the entrance of the cells in the viable-but non culturable (VBNC) state, confirming the hypothesis that cells are damaged after plasma treatment, but in a first step, still remain alive. The understanding of the effects of APP on the L. monocytogenes biofilm can improve the development of sanitation programs with the use of APP for effective pathogen removal.

  17. A comparative evaluation of different types of microbial electrolysis desalination cells for malic acid production.

    PubMed

    Liu, Guangli; Zhou, Ying; Luo, Haiping; Cheng, Xing; Zhang, Renduo; Teng, Wenkai

    2015-12-01

    The aim of this study was to investigate different microbial electrolysis desalination cells for malic acid production. The systems included microbial electrolysis desalination and chemical-production cell (MEDCC), microbial electrolysis desalination cell (MEDC) with bipolar membrane and anion exchange membrane (BP-A MEDC), MEDC with bipolar membrane and cation exchange membrane (BP-C MEDC), and modified microbial desalination cell (M-MDC). The microbial electrolysis desalination cells performed differently in terms of malic acid production and energy consumption. The MEDCC performed best with the highest malic acid production rate (18.4 ± 0.6 mmol/Lh) and the lowest energy consumption (0.35 ± 0.14 kWh/kg). The best performance of MEDCC was attributable to the neutral pH condition in the anode chamber, the lowest internal resistance, and the highest Geobacter percentage of the anode biofilm population among all the reactors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Modelling bio-electrosynthesis in a reverse microbial fuel cell to produce acetate from CO2 and H2O.

    PubMed

    Kazemi, M; Biria, D; Rismani-Yazdi, H

    2015-05-21

    Bio-electrosynthesis is one of the significant developments in reverse microbial fuel cell technology which is potentially capable of creating organic compounds by combining CO2 with H2O. Accordingly, the main objective in the current study was to present a model of microbial electrosynthesis for producing organic compounds (acetate) based on direct conduction of electrons in biofilms. The proposed model enjoys a high degree of rigor because it can predict variations in the substrate concentration, electrical potential, current density and the thickness of the biofilm. Additionally, coulombic efficiency was investigated as a function of substrate concentration and cathode potential. For a system containing CO2 as the substrate and Sporomusa ovata as the biofilm forming microorganism, an increase in the substrate concentration at a constant potential can lead to a decrease in coulombic efficiency as well as an increase in current density and biofilm thickness. On the other hand, an increase in the surface cathodic voltage at a constant substrate concentration may result in an increase in the coulombic efficiency and a decrease in the current density. The maximum coulombic efficiency was revealed to be 75% at a substrate concentration of 0.025 mmol cm(-3) and 55% at a surface cathodic voltage of -0.3 V producing a high range of acetate production by creating an optimal state in the concentration and potential intervals. Finally, the validity of the model was verified by comparing the obtained results with related experimental findings.

  19. Mechanistic Basis of Antimicrobial Actions of Silver Nanoparticles

    PubMed Central

    Dakal, Tikam Chand; Kumar, Anu; Majumdar, Rita S.; Yadav, Vinod

    2016-01-01

    Multidrug resistance of the pathogenic microorganisms to the antimicrobial drugs has become a major impediment toward successful diagnosis and management of infectious diseases. Recent advancements in nanotechnology-based medicines have opened new horizons for combating multidrug resistance in microorganisms. In particular, the use of silver nanoparticles (AgNPs) as a potent antibacterial agent has received much attention. The most critical physico-chemical parameters that affect the antimicrobial potential of AgNPs include size, shape, surface charge, concentration and colloidal state. AgNPs exhibits their antimicrobial potential through multifaceted mechanisms. AgNPs adhesion to microbial cells, penetration inside the cells, ROS and free radical generation, and modulation of microbial signal transduction pathways have been recognized as the most prominent modes of antimicrobial action. On the other side, AgNPs exposure to human cells induces cytotoxicity, genotoxicity, and inflammatory response in human cells in a cell-type dependent manner. This has raised concerns regarding use of AgNPs in therapeutics and drug delivery. We have summarized the emerging endeavors that address current challenges in relation to safe use of AgNPs in therapeutics and drug delivery platforms. Based on research done so far, we believe that AgNPs can be engineered so as to increase their efficacy, stability, specificity, biosafety and biocompatibility. In this regard, three perspectives research directions have been suggested that include (1) synthesizing AgNPs with controlled physico-chemical properties, (2) examining microbial development of resistance toward AgNPs, and (3) ascertaining the susceptibility of cytoxicity, genotoxicity, and inflammatory response to human cells upon AgNPs exposure. PMID:27899918

  20. Engineering of global regulators and cell surface properties toward enhancing stress tolerance in Saccharomyces cerevisiae.

    PubMed

    Kuroda, Kouichi; Ueda, Mitsuyoshi

    2017-12-01

    Microbial cell factories are subject to various stresses, leading to the reductions of metabolic activity and bioproduction efficiency. Therefore, the development of stress-tolerant microorganisms is important for improving bio-production efficiency. Recently, modifications of cell surface properties and master regulators have been shown to be effective approaches for enhancing stress tolerance. The cell surface is an attractive target owing to its interactions with the environment and its role in transmitting environmental information. Cell surface engineering in yeast has enabled the convenient modification of cell surface properties. Displaying random peptide libraries and subsequent screening can successfully improve stress tolerance. Furthermore, master regulators including transcription factors are also promising target to be engineered because stress tolerance is determined by many cooperative factors and modification of master regulators can simultaneously affect the expression of multiple downstream genes. The key single amino acid mutations in transcription factors have been identified by analyzing tolerant yeasts that were isolated by adaptive evolution under stress conditions. This enabled the reconstruction of stress-tolerant yeast without burdening cells by introducing the identified mutations. Therefore, for the construction of stress-tolerant yeast from any strains, these two approaches are promising alternatives to conventional overexpression and deletion of stress-related genes. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  1. Interfacial interaction between methyl parathion-degrading bacteria and minerals is important in biodegradation.

    PubMed

    Zhao, Gang; Huang, Qiaoyun; Rong, Xingmin; Cai, Peng; Liang, Wei; Dai, Ke

    2014-02-01

    In the present study, the influence of kaolinite and goethite on microbial degradation of methyl parathion was investigated. We observed that the biodegradation process was improved by kaolinite and depressed by goethite. Calorimetric data further showed that the metabolic activities of degrading cells (Pseudomonas putida) were enhanced by the presence of kaolinite and depressed by the presence of goethite. A semipermeable membrane experiment was performed and results supported the above observations: the promotive effect of kaolinite and the inhibition of goethite for microbial degradation was not found when the bacteria was enclosed by semipermeable membrane and had no direct contact with these minerals, suggesting the important function of the contact of cellular surfaces with mineral particles. The relative larger particles of kaolinite were loosely attached to the bacteria. This attachment made the cells easy to use the sorbed substrate and then stimulated biodegradation. For goethite, small particles were tightly bound to bacterial cells and limited the acquisition of substrate and nutrients, thereby inhibiting biodegradation. These results indicated that interfacial interaction between bacterial cells and minerals significantly affected the biodegradation of pesticides.

  2. Preparing near-surface heavy oil for extraction using microbial degradation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Busche, Frederick D.; Rollins, John B.; Noyes, Harold J.

    In one embodiment, the invention provides a system including at least one computing device for enhancing the recovery of heavy oil in an underground, near-surface crude oil extraction environment by performing a method comprising sampling and identifying microbial species (bacteria and/or fungi) that reside in the underground, near-surface crude oil extraction environment; collecting rock and fluid property data from the underground, near-surface crude oil extraction environment; collecting nutrient data from the underground, near-surface crude oil extraction environment; identifying a preferred microbial species from the underground, near-surface crude oil extraction environment that can transform the heavy oil into a lighter oil;more » identifying a nutrient from the underground, near-surface crude oil extraction environment that promotes a proliferation of the preferred microbial species; and introducing the nutrient into the underground, near-surface crude oil extraction environment.« less

  3. Four-year bacterial monitoring in the International Space Station—Japanese Experiment Module “Kibo” with culture-independent approach

    PubMed Central

    Ichijo, Tomoaki; Yamaguchi, Nobuyasu; Tanigaki, Fumiaki; Shirakawa, Masaki; Nasu, Masao

    2016-01-01

    Studies on the relationships between humans and microbes in space habitation environments are critical for success in long-duration space missions, to reduce potential hazards to the crew and the spacecraft infrastructure. We performed microbial monitoring in the Japanese Experiment Module “Kibo”, a part of the International Space Station, for 4 years after its completion, and analyzed samples with modern molecular microbiological techniques. Sampling was performed in September 2009, February 2011, and October 2012. The surface of the incubator, inside the door of the incubator, an air intake, air diffuser, and handrail were selected as sampling sites. Sampling was performed using the optimized swabbing method. Abundance and phylogenetic affiliation of bacteria on the interior surfaces of Kibo were determined by quantitative PCR and pyrosequencing, respectively. Bacteria in the phyla Proteobacteria (γ-subclass) and Firmicutes were frequently detected on the interior surfaces in Kibo. Families Staphylococcaceae and Enterobacteriaceae were dominant. Most bacteria detected belonged to the human microbiota; thus, we suggest that bacterial cells are transferred to the surfaces in Kibo from the astronauts. Environmental bacteria such as Legionella spp. were also detected. From the data on bacterial abundance and phylogenetic affiliation, Kibo has been microbiologically well maintained; however, the microbial community structure in Kibo may change with prolonged stay of astronauts. Continuous monitoring is required to obtain information on changes in the microbial community structure in Kibo. PMID:28725725

  4. Solar energy powered microbial fuel cell with a reversible bioelectrode.

    PubMed

    Strik, David P B T B; Hamelers, Hubertus V M; Buisman, Cees J N

    2010-01-01

    The solar energy powered microbial fuel cell is an emerging technology for electricity generation via electrochemically active microorganisms fueled by solar energy via in situ photosynthesized metabolites from algae, cyanobacteria, or living higher plants. A general problem with microbial fuel cells is the pH membrane gradient which reduces cell voltage and power output. This problem is caused by acid production at the anode, alkaline production at the cathode, and the nonspecific proton exchange through the membrane. Here we report a solution for a new kind of solar energy powered microbial fuel cell via development of a reversible bioelectrode responsible for both biocatalyzed anodic and cathodic electron transfer. Anodic produced protons were used for the cathodic reduction reaction which held the formation of a pH membrane gradient. The microbial fuel cell continuously generated electricity and repeatedly reversed polarity dependent on aeration or solar energy exposure. Identified organisms within biocatalyzing biofilm of the reversible bioelectrode were algae, (cyano)bacteria and protozoa. These results encourage application of solar energy powered microbial fuel cells.

  5. Role of Outer Membrane C-Type Cytochromes MtrC and OmcA in Shewanella Oneidensis MR-1 Cell Production, Accumulation, and Detachment During Respiration on Hematite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Andrew C.; Peterson, L.; Reardon, Catherine L.

    2012-07-01

    Solid phase iron oxides are considered to be important terminal electron acceptors for microbial respiration in many anoxic environments. Besides the knowledge that cells attach to and reduce these substrates, other aspects of surface-associated cell behavior and the related cell surface components that influence cell-mineral interactions are not well understood. In the present study, wild-type cells of the dissimilatory iron-reducing bacterium Shewanella oneidensis MR-1 formed thin biofilms one-to-two cell layers in thickness when respiring on natural specular hematite under flow conditions similar to those which exist in aquatic sediments and subsurface environments. The distribution of cells within the biofilm indicatedmore » that direct contact was not required for electron transfer from cells to the mineral surface. Detached biomass in the form of single cells represented >99% of the surface-associated wild-type cell production from respiration on hematite over the biofilm life cycle. A mutant deficient in the outer membrane c35 type cytochrome OmcA, while still able to respire and replicate on hematite, established a lower steady-state cell density on the mineral surface than that of the wild-type strain. A mutant deficient in MtrC, another outer membrane c-type cytochrome, and a mutant deficient in both cytochromes were unable to reduce sufficient amounts of hematite to support detectable growth on the mineral surface. When considered in the context of previous work, the results support a growing body of evidence that the relative importance of OmcA and MtrC to cell respiration and replication depends on the form of iron oxide available as terminal electron acceptor.« less

  6. The role of macrobiota in structuring microbial communities along rocky shores

    DOE PAGES

    Pfister, Catherine A.; Gilbert, Jack A.; Gibbons, Sean M.

    2014-10-16

    Rocky shore microbial diversity presents an excellent system to test for microbial habitat specificity or generality, enabling us to decipher how common macrobiota shape microbial community structure. At two coastal locations in the northeast Pacific Ocean, we show that microbial composition was significantly different between inert surfaces, the biogenic surfaces that included rocky shore animals and an alga, and the water column plankton. While all sampled entities had a core of common OTUs, rare OTUs drove differences among biotic and abiotic substrates. For the mussel Mytilus californianus, the shell surface harbored greater alpha diversity compared to internal tissues of themore » gill and siphon. Strikingly, a 7-year experimental removal of this mussel from tidepools did not significantly alter the microbial community structure of microbes associated with inert surfaces when compared with unmanipulated tidepools. However, bacterial taxa associated with nitrate reduction had greater relative abundance with mussels present, suggesting an impact of increased animal-derived nitrogen on a subset of microbial metabolism. Because the presence of mussels did not affect the structure and diversity of the microbial community on adjacent inert substrates, microbes in this rocky shore environment may be predominantly affected through direct physical association with macrobiota.« less

  7. The role of macrobiota in structuring microbial communities along rocky shores

    PubMed Central

    Gilbert, Jack A.; Gibbons, Sean M.

    2014-01-01

    Rocky shore microbial diversity presents an excellent system to test for microbial habitat specificity or generality, enabling us to decipher how common macrobiota shape microbial community structure. At two coastal locations in the northeast Pacific Ocean, we show that microbial composition was significantly different between inert surfaces, the biogenic surfaces that included rocky shore animals and an alga, and the water column plankton. While all sampled entities had a core of common OTUs, rare OTUs drove differences among biotic and abiotic substrates. For the mussel Mytilus californianus, the shell surface harbored greater alpha diversity compared to internal tissues of the gill and siphon. Strikingly, a 7-year experimental removal of this mussel from tidepools did not significantly alter the microbial community structure of microbes associated with inert surfaces when compared with unmanipulated tidepools. However, bacterial taxa associated with nitrate reduction had greater relative abundance with mussels present, suggesting an impact of increased animal-derived nitrogen on a subset of microbial metabolism. Because the presence of mussels did not affect the structure and diversity of the microbial community on adjacent inert substrates, microbes in this rocky shore environment may be predominantly affected through direct physical association with macrobiota. PMID:25337459

  8. Recent progress in Bacillus subtilis spore-surface display: concept, progress, and future.

    PubMed

    Wang, He; Wang, Yunxiang; Yang, Ruijin

    2017-02-01

    With the increased knowledge on spore structure and advances in biotechnology engineering, the newly developed spore-surface display system confers several inherent advantages over other microbial cell-surface display systems including enhanced stability and high safety. Bacillus subtilis is the most commonly used Bacillus species for spore-surface display. The expression of heterologous antigen or protein on the surface of B. subtilis spores has now been practiced for over a decade with noteworthy success. As an update and supplement to other previous reviews, we comprehensively summarize recent studies in the B. subtilis spore-surface display technique. We focus on its benefits as well as the critical factors affecting its display efficiency and offer suggestions for the future success of this field.

  9. Electricity generation from real industrial wastewater using a single-chamber air cathode microbial fuel cell with an activated carbon anode.

    PubMed

    Mohamed, Hend Omar; Obaid, M; Sayed, Enas Taha; Liu, Yang; Lee, Jinpyo; Park, Mira; Barakat, Nasser A M; Kim, Hak Yong

    2017-08-01

    This study introduces activated carbon (AC) as an effective anode for microbial fuel cells (MFCs) using real industrial wastewater without treatment or addition of external microorganism mediators. Inexpensive activated carbon is introduced as a proper electrode alternative to carbon cloth and carbon paper materials, which are considered too expensive for the large-scale application of MFCs. AC has a porous interconnected structure with a high bio-available surface area. The large surface area, in addition to the high macro porosity, facilitates the high performance by reducing electron transfer resistance. Extensive characterization, including surface morphology, material chemistry, surface area, mechanical strength and biofilm adhesion, was conducted to confirm the effectiveness of the AC material as an anode in MFCs. The electrochemical performance of AC was also compared to other anodes, i.e., Teflon-treated carbon cloth (CCT), Teflon-treated carbon paper (CPT), untreated carbon cloth (CC) and untreated carbon paper (CP). Initial tests of a single air-cathode MFC display a current density of 1792 mAm -2 , which is approximately four times greater than the maximum value of the other anode materials. COD analyses and Coulombic efficiency (CE) measurements for AC-MFC show the greatest removal of organic compounds and the highest CE efficiency (60 and 71%, respectively). Overall, this study shows a new economical technique for power generation from real industrial wastewater with no treatment and using inexpensive electrode materials.

  10. Novel approaches to microbial enhancement of oil recovery.

    PubMed

    Kryachko, Yuriy

    2018-01-20

    Microbially enhanced oil recovery (MEOR) was shown to be feasible in a number of laboratory experiments and field trials. However, it has not been widely used in the oil industry because necessary conditions cannot always be easily established in an oil reservoir. Novel approaches to MEOR, which are based on newly discovered biosurfactant-mediated MEOR-mechanisms, are discussed in this review. Particularly, the possibility of combining MEOR with chemical enhancement of oil recovery in heterogeneous oil reservoirs, which involves rock surface wettability shifts and emulsion inversions, is discussed. In wider (centimeter/millimeter-scale) rock pores, the activity of (bio)surfactants and microbial cells attached to oil may allow releasing trapped oil blobs through oil-in-water emulsification. After no more oil can be emulsified, the addition of alkali or surfactants, which turn rock surface oil-wet, may help release oil droplets trapped in narrow (micrometer-scale) pores through coalescence of the droplets and water-in-oil emulsification. Experiments demonstrating the possibility of (bio)surfactant-mediated enhancement of immiscible gas-driven oil recovery are also reviewed. Interestingly, very low (bio)surfactant concentrations were shown to be needed for enhancement of immiscible gas-driven oil recovery. Some possible side effects of MEOR, such as unintended bioplugging and microbially influenced corrosion (MIC), are discussed as well. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  11. Surface multiheme c-type cytochromes from Thermincola potens and implications for respiratory metal reduction by Gram-positive bacteria

    PubMed Central

    Carlson, Hans K.; Iavarone, Anthony T.; Gorur, Amita; Yeo, Boon Siang; Tran, Rosalie; Melnyk, Ryan A.; Mathies, Richard A.; Auer, Manfred; Coates, John D.

    2012-01-01

    Almost nothing is known about the mechanisms of dissimilatory metal reduction by Gram-positive bacteria, although they may be the dominant species in some environments. Thermincola potens strain JR was isolated from the anode of a microbial fuel cell inoculated with anaerobic digester sludge and operated at 55 °C. Preliminary characterization revealed that T. potens coupled acetate oxidation to the reduction of hydrous ferric oxides (HFO) or anthraquinone-2,6-disulfonate (AQDS), an analog of the redox active components of humic substances. The genome of T. potens was recently sequenced, and the abundance of multiheme c-type cytochromes (MHCs) is unusual for a Gram-positive bacterium. We present evidence from trypsin-shaving LC-MS/MS experiments and surface-enhanced Raman spectroscopy (SERS) that indicates the expression of a number of MHCs during T. potens growth on either HFO or AQDS, and that several MHCs are localized to the cell wall or cell surface. Furthermore, one of the MHCs can be extracted from cells with low pH or denaturants, suggesting a loose association with the cell wall or cell surface. Electron microscopy does not reveal an S-layer, and the precipitation of silver metal on the cell surface is inhibited by cyanide, supporting the involvement of surface-localized redox-active heme proteins in dissimilatory metal reduction. These results provide unique direct evidence for cell wall-associated cytochromes and support MHC involvement in conducting electrons across the cell envelope of a Gram-positive bacterium. PMID:22307634

  12. Deep sea microbial fuel cell output as a proxy for microbial activity

    NASA Astrophysics Data System (ADS)

    Richter, K.; George, R.; Hardy, K. R.

    2016-02-01

    Abstract: Microbial fuel cells (MFCs) work by providing bacteria in anaerobic sediments with an electron acceptor (anode) that stimulates metabolism of organic matter. The buried anode is connected via control circuitry to a cathode exposed to oxygen in the overlying water. During metabolism, bacteria release hydrogen ions into the sediment and transfer electrons extra-cellularly to the anode, which eventually reduce dissolved oxygen at the cathode, forming water. The current is chiefly limited by the rate of microbial metabolism at the anode and serves as a proxy for microbial activity. The Office of Naval Research has encouraged development of microbial fuel cells in the marine environment at a number of academic and naval institutions and studies of important environmental parameters that affect fuel cell performance. Earlier work in shallow sediments of San Diego Bay showed that the most important environmental parameters that control fuel cell power output in San Diego Bay were total organic carbon in the sediment and seasonal water temperature. Current MFC work at SPAWAR includes extension of microbial fuel cell tests to the deep sea environment (>4000 m) and, in parallel, testing microbial fuel cells in the laboratory under deep sea conditions. We are pursuing a field efforts to deploy a microbial fuel cell in progressively deeper water, record in situ power and temperature over several weeks, and retrieve the fuel cell along with sediment samples for analysis. We are also pursuing a laboratory effort to build a matching microbial fuel cell in a pressure vessel capable of matching the pressure and temperature of deep water, and stocking the pressure vessel with deep water sediment in order to take measurements analogous to those in the field. We also hope to determine whether bacteria growing on the anode are different from bacteria growing in the bulk sediment via DNA analysis. The current progress and results from this work at SPAWAR will be presented.

  13. Durability and regeneration of activated carbon air-cathodes in long-term operated microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Zhang, Enren; Wang, Feng; Yu, Qingling; Scott, Keith; Wang, Xu; Diao, Guowang

    2017-08-01

    The performance of activated carbon catalyst in air-cathodes in microbial fuel cells was investigated over one year. A maximum power of 1722 mW m-2 was produced within the initial one-month microbial fuel cell operation. The air-cathodes produced a maximum power >1200 mW m-2 within six months, but gradually became a limiting factor for the power output in prolonged microbial fuel cell operation. The maximum power decreased by 55% when microbial fuel cells were operated over one year due to deterioration in activated carbon air-cathodes. While salt/biofilm removal from cathodes experiencing one-year operation increased a limiting performance enhancement in cathodes, a washing-drying-pressing procedure could restore the cathode performance to its original levels, although the performance restoration was temporary. Durable cathodes could be regenerated by re-pressing activated carbon catalyst, recovered from one year deteriorated air-cathodes, with new gas diffusion layer, resulting in ∼1800 mW m-2 of maximum power production. The present study indicated that activated carbon was an effective catalyst in microbial fuel cell cathodes, and could be recovered for reuse in long-term operated microbial fuel cells by simple methods.

  14. Microbial sensor for drug susceptibility testing of Mycobacterium tuberculosis.

    PubMed

    Zhang, Z-T; Wang, D-B; Li, C-Y; Deng, J-Y; Zhang, J-B; Bi, L-J; Zhang, X-E

    2018-01-01

    Drug susceptibility testing (DST) of clinical isolates of Mycobacterium tuberculosis is critical in treating tuberculosis. We demonstrate the possibility of using a microbial sensor to perform DST of M. tuberculosis and shorten the time required for DST. The sensor is made of an oxygen electrode with M. tuberculosis cells attached to its surface. This sensor monitors the residual oxygen consumption of M. tuberculosis cells after treatment with anti-TB drugs with glycerine as a carbon source. In principle, after drug pretreatment for 4-5 days, the response differences between the sensors made of drug-sensitive isolates are distinguishable from the sensors made of drug-resistant isolates. The susceptibility of the M. tuberculosis H37Ra strain, its mutants and 35 clinical isolates to six common anti-TB drugs: rifampicin, isoniazid, streptomycin, ethambutol, levofloxacin and para-aminosalicylic acid were tested using the proposed method. The results agreed well with the gold standard method (LJ) and were determined in significantly less time. The whole procedure takes approximately 11 days and therefore has the potential to inform clinical decisions. To our knowledge, this is the first study that demonstrates the possible application of a dissolved oxygen electrode-based microbial sensor in M. tuberculosis drug resistance testing. This study used the microbial sensor to perform DST of M. tuberculosis and shorten the time required for DST. The overall detection result of the microbial sensor agreed well with that of the conventional LJ proportion method and takes less time than the existing phenotypic methods. In future studies, we will build an O 2 electrode array microbial sensor reactor to enable a high-throughput drug resistance analysis. © 2017 The Authors. Journal of Applied Microbiology published by John Wiley & Sons Ltd on behalf of The Society for Applied Microbiology.

  15. Micro-scale in situ characterisation of the organic and mineral composition of modern, hypersaline, photosynthetic microbial mats

    NASA Astrophysics Data System (ADS)

    Gautret, P.; Ramboz, C.; de Wit, R.; Delarue, F.; Orange, F.; Sorieul, S.; Westall, F.

    2012-04-01

    Physico-chemical and biological micro-scale environmental parameters within microbial mats formed in hypersaline conditions favour the precipitation of minerals, such as carbonates. We used optical microscopy and the technique "Fluorescence Induction Relaxation » (FIRe) to differentiate the photosynthetic activity of oxygenic photosynthesisers (cyanobacteria) from anoxygenic photosynthesisers (Chloroflexus-like bacteria, CFB) in samples obtained in 2011. After this preliminary investigation, we characterised the elemental composition of the different species of microorganisms, their extracellular substances (EPS), and the minerals precipitated on their surface. This study was made in-situ by µ-PIXE using the nuclear microprobe of the AIFIRA platform (CEN Bordeaux-Gradignan ; protons of 1.5 or 3MeV). With this microprobe it is possible to map the distribution of elements occurring in quantities down to several ppm, a resolution that is particularly favourable for studying microorganisms. SEM observation of the same zones allowed us to localise exactly the microbial structures (cells, EPS) and minerals analysed by nuclear probe. We were thus able to document the differential S and P concentrations in the different microbial species, the CLB being richer in P. Note that the CLB filaments are < 1 µm in diameter. We were also able to demonstrate the anti-correlation of Ca and Mg in the minerals precipitated directly on the microorganisms and on their EPS. Thus we have shown the utility of these in situ, nano-scale methods in studying microbial structures consisting of different species with different metabolic activitie, and different functional groups on their cell walls and EPS implicated in the bioprecipitation of different kinds of minerals. Such features in ancient microbial mats could aid their interpretation and possibly the distinction between ancient oxygenic and anoxygenic mats.

  16. Pectin assisted one-pot synthesis of three dimensional porous NiO/graphene composite for enhanced bioelectrocatalysis in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoshuai; Shi, Zhuanzhuan; Zou, Long; Li, Chang Ming; Qiao, Yan

    2018-02-01

    A three dimensional (3D) porous nickel oxide (NiO)/graphene composite is developed through one-pot hydrothermal synthesis with a biopolymer-pectin for tailoring the porous structure. The introduction of pectin makes the NiO grow into nanoflakes-assembled micro spheres that insert in the graphene layers rather than just deposit on the surface of graphene nanosheets as nanoparticles. As the increase of pectin ratio, the size and the amount of NiO micro spheres are both increased, which resulting a 3D hierarchical porous structure. With the optimized pectin concentration, the obtained NiO/graphene nanocomposite anode possesses good electrocatalytic capability and delivers maximum power density of 3.632 Wm-2 in Shewanella putrefaciens CN32 microbial fuel cells (MFCs). This work provides a new way to develop low cost, high performance anode materials for MFCs.

  17. Nanoscale visualization and characterization of Myxococcus xanthus cells with atomic force microscopy

    PubMed Central

    Pelling, Andrew E.; Li, Yinuo; Shi, Wenyuan; Gimzewski, James K.

    2005-01-01

    Multicellular microbial communities are the predominant form of existence for microorganisms in nature. As one of the most primitive social organisms, Myxococcus xanthus has been an ideal model bacterium for studying intercellular interaction and multicellular organization. Through previous genetic and EM studies, various extracellular appendages and matrix components have been found to be involved in the social behavior of M. xanthus, but none of them was directly visualized and analyzed under native conditions. Here, we used atomic force microscopy (AFM) imaging and in vivo force spectroscopy to characterize these cellular structures under native conditions. AFM imaging revealed morphological details on the extracellular ultrastructures at an unprecedented resolution, and in vivo force spectroscopy of live cells in fluid allowed us to nanomechanically characterize extracellular polymeric substances. The findings provide the basis for AFM as a useful tool for investigating microbial-surface ultrastructures and nanomechanical properties under native conditions. PMID:15840722

  18. Biosensoric potential of microbial fuel cells.

    PubMed

    Schneider, György; Kovács, Tamás; Rákhely, Gábor; Czeller, Miklós

    2016-08-01

    Recent progress in microbial fuel cell (MFC) technology has highlighted the potential of these devices to be used as biosensors. The advantages of MFC-based biosensors are that they are phenotypic and can function in either assay- or flow-through formats. These features make them appropriate for contiguous on-line monitoring in laboratories and for in-field applications. The selectivity of an MFC biosensor depends on the applied microorganisms in the anodic compartment where electron transfer (ET) between the artificial surface (anode) and bacterium occurs. This process strongly determines the internal resistance of the sensoric system and thus influences signal outcome and response time. Despite their beneficial characteristics, the number of MFC-based biosensoric applications has been limited until now. The aim of this mini-review is to turn attention to the biosensoric potential of MFCs by summarizing ET mechanisms on which recently established and future sensoric devices are based.

  19. Vertically grown multiwalled carbon nanotube anode and nickel silicide integrated high performance microsized (1.25 μL) microbial fuel cell.

    PubMed

    Mink, Justine E; Rojas, Jhonathan P; Logan, Bruce E; Hussain, Muhammad M

    2012-02-08

    Microbial fuel cells (MFCs) are an environmentally friendly method for water purification and self-sustained electricity generation using microorganisms. Microsized MFCs can also be a useful power source for lab-on-a-chip and similar integrated devices. We fabricated a 1.25 μL microsized MFC containing an anode of vertically aligned, forest type multiwalled carbon nanotubes (MWCNTs) with a nickel silicide (NiSi) contact area that produced 197 mA/m(2) of current density and 392 mW/m(3) of power density. The MWCNTs increased the anode surface-to-volume ratio, which improved the ability of the microorganisms to couple and transfer electrons to the anode. The use of nickel silicide also helped to boost the output current by providing a low resistance contact area to more efficiently shuttle electrons from the anode out of the device. © 2012 American Chemical Society

  20. Construction and performance evaluation of mediator-less microbial fuel cell using carbon nanotubes as an anode material.

    PubMed

    Roh, Sung-Hee; Kim, Sun-Il

    2012-05-01

    A microbial fuel cell (MFC) is a device that converts chemical energy to electrical energy using the catalytic reaction of microorganisms. We investigated the performance of mediator-less MFC with carbon nanotubes (CNTs)/graphite felt composite electrodes. The addition of CNTs to a graphite felt electrode increases the specific surface area of the electrode and enhances the charge transfer capability so as to cause considerable improvement of the electrochemical activity for the anode reaction in a MFC. The performance of the MFC using CNTs/graphite felt electrode has been compared against a plain graphite felt electrode based MFC. A CNTs/graphite felt electrode showed as high as 15% increase in the power density (252 mW/m2) compared to graphite felt electrode (214 mW/m2). The CNTs/graphite felt anode therefore offers good prospects for application in MFCs.

  1. Inactivation of pathogenic bacteria inoculated onto a Bacto™ agar model surface using TiO2-UVC photocatalysis, UVC and chlorine treatments.

    PubMed

    Yoo, S; Ghafoor, K; Kim, S; Sun, Y W; Kim, J U; Yang, K; Lee, D-U; Shahbaz, H M; Park, J

    2015-09-01

    The aim of this study was to study inactivation of different pathogenic bacteria on agar model surface using TiO2-UV photocatalysis (TUVP). A unified food surface model was simulated using Bacto(™) agar, a routinely used microbial medium. The foodborne pathogenic bacteria Escherichia coli K12 (as a surrogate for E. coli O157:H7), Salmonella Typhimurium, Staphylococcus aureus and Listeria monocytogenes were inoculated onto the agar surface, followed by investigation of TUVP-assisted inactivation and morphological changes in bacterial cells. The TUVP process showed higher bacterial inactivation, particularly for Gram-negative bacteria, than UVC alone and a control (dark reaction). A TUVP treatment of 17·2 mW cm(-2) (30% lower than the UVC light intensity) reduced the microbial load on the agar surface by 4·5-6·0 log CFU cm(-2). UVC treatment of 23·7 mW cm(-2) caused 3·0-5·3 log CFU cm(-2) reduction. The use of agar model surface is effective for investigation of bacterial disinfection and TUVP is a promising nonthermal technique. The results showing effects of photocatalysis and other treatments for inactivation of bacterial pathogens on model surface can be useful for applying such processes for disinfection of fruit, vegetables and other similar surfaces. © 2015 The Society for Applied Microbiology.

  2. Comparison of bacterial communities from lava cave microbial mats to overlying surface soils from Lava Beds National Monument, USA

    PubMed Central

    Read, Kaitlyn J. H.; Hughes, Evan M.; Spilde, Michael N.

    2017-01-01

    Subsurface habitats harbor novel diversity that has received little attention until recently. Accessible subsurface habitats include lava caves around the world that often support extensive microbial mats on ceilings and walls in a range of colors. Little is known about lava cave microbial diversity and how these subsurface mats differ from microbial communities in overlying surface soils. To investigate these differences, we analyzed bacterial 16S rDNA from 454 pyrosequencing from three colors of microbial mats (tan, white, and yellow) from seven lava caves in Lava Beds National Monument, CA, USA, and compared them with surface soil overlying each cave. The same phyla were represented in both surface soils and cave microbial mats, but the overlap in shared OTUs (operational taxonomic unit) was only 11.2%. Number of entrances per cave and temperature contributed to observed differences in diversity. In terms of species richness, diversity by mat color differed, but not significantly. Actinobacteria dominated in all cave samples, with 39% from caves and 21% from surface soils. Proteobacteria made up 30% of phyla from caves and 36% from surface soil. Other major phyla in caves were Nitrospirae (7%) followed by minor phyla (7%), compared to surface soils with Bacteroidetes (8%) and minor phyla (8%). Many of the most abundant sequences could not be identified to genus, indicating a high degree of novelty. Surface soil samples had more OTUs and greater diversity indices than cave samples. Although surface soil microbes immigrate into underlying caves, the environment selects for microbes able to live in the cave habitats, resulting in very different cave microbial communities. This study is the first comprehensive comparison of bacterial communities in lava caves with the overlying soil community. PMID:28199330

  3. Effect of heat and radio frequency electric field treatments on membrane damage and intracellular leakage of UV-substances of Escherichia coli K-12 in apple juice

    USDA-ARS?s Scientific Manuscript database

    The need for a nonthermal intervention technology that can achieve microbial safety without altering nutritional quality of liquid foods led to the development of the radio frequency electric fields (RFEF) process. Previously, we documented formation of surface blebs on Escherichia coli cells treate...

  4. Surveillance study of bacterial contamination of the parent's cell phone in the NICU and the effectiveness of an anti-microbial gel in reducing transmission to the hands.

    PubMed

    Beckstrom, A C; Cleman, P E; Cassis-Ghavami, F L; Kamitsuka, M D

    2013-12-01

    To determine the bacterial contamination rate of the parent's cell phone and the effectiveness of anti-microbial gel in reducing transmission of bacteria from cell phone to hands. Cross-sectional study of cultures from the cell phone and hands before and after applying anti-microbial gel (n=50). All cell phones demonstrated bacterial contamination. Ninety percent had the same bacteria on the cell phone and their cleaned hands. Twenty two percent had no growth on their hands after applying anti-microbial gel after they had the same bacteria on the cell phone and hands. Ninety-two percent of parents were aware that cell phones carried bacteria, but only 38% cleaned their cell phones at least weekly. Bacterial contamination of cell phones may serve as vectors for nosocomial infection in the neonatal intensive care unit. Bacteria transmitted from cell phone to hands may not be eliminated using anti-microbial gel. Development of hand hygiene and cell phone cleaning guidelines are needed regarding bedside cell phone use.

  5. Novel mesoporous MnCo2O4 nanorods as oxygen reduction catalyst at neutral pH in microbial fuel cells.

    PubMed

    Kumar, Ravinder; Singh, Lakhveer; Wahid, Zularisam Ab; Mahapatra, Durga Madhab; Liu, Hong

    2018-04-01

    The aim of this work was to evaluate the comparative performance of hybrid metal oxide nanorods i.e. MnCo 2 O 4 nanorods (MCON) and single metal oxide nanorods i.e. Co 3 O 4 nanorods (CON) as oxygen reduction catalyst in microbial fuel cells (MFC). Compared to the single metal oxide, the hybrid MCON exhibited a higher BET surface area and provided additional positively charged ions, i.e., Co 2+ /Co 3+ and Mn 3+ /Mn 4+ on its surfaces, which increased the electro-conductivity of the cathode and improved the oxygen reduction kinetics significantly, achieved an i o of 6.01 A/m 2 that was 12.4% higher than CON. Moreover, the porous architecture of MCON facilitated the diffusion of electrolyte, reactants and electrons during the oxygen reduction, suggested by lower diffusion (R d ), activation (R act ) and ohmic resistance (R ohm ) values. This enhanced oxygen reduction by MCON boosted the power generation in MFC, achieving a maximum power density of 587 mW/m 2 that was ∼29% higher than CON. Published by Elsevier Ltd.

  6. Effects of water chemistry and surface contact on the toxicity of silver nanoparticles to Bacillus subtilis.

    PubMed

    Yi, Jun; Cheng, Jinping

    2017-07-01

    The growing use of silver nanoparticles (AgNPs) has created concerns about its potential impacts on natural microbial communities. In this study, the physicochemical properties of AgNPs and its toxicity on natural bacteria Bacillus subtilis (B. subtilis) were investigated in aqueous conditions. The characterization data showed that AgNPs highly aggregated in aqueous conditions, and the hydrodynamic diameter of AgNPs in aqueous conditions was larger than its primary size. The studied AgNPs was less toxic to B. subtilis in estuarine water as compared to that in Milli-Q water and artificial seawater, which might be due to the observed enhanced aggregation of AgNPs in estuarine water. The toxicity of AgNPs to B. subtilis was greatly reduced when their surface contact was blocked by a dialysis membrane. Scanning electron microscope images showed that exposure contact to AgNPs resulted in damage of the microbial cell wall and enhanced formation of fibrillar structures. These results suggest that particle-cell contact is largely responsible for the observed toxicity of AgNPs in B. subtilis. This study can help to understand the potential impacts of AgNPs to natural microbes, especially in the complex aquatic environments.

  7. Porous metal-organic framework Cu3(BTC)2 as catalyst used in air-cathode for high performance of microbial fuel cell.

    PubMed

    Tian, Pei; Liu, Di; Li, Kexun; Yang, Tingting; Wang, Junjie; Liu, Yi; Zhang, Song

    2017-11-01

    Metal-organic framework Cu 3 (BTC) 2 , prepared by an easy hydrothermal method, was used as the oxygen-based catalyst in microbial fuel cell (MFC). The maximum power density of Cu 3 (BTC) 2 modified air-cathode MFC was 1772±15mWm -2 , almost 1.8 times higher than the control. BET results disclosed high specific surface area of 2159.7m 2 g -1 and abundant micropores structure. Regular octahedron and porous surface of Cu 3 (BTC) 2 were observed in SEM. XPS testified the existence of divalent copper in the extended 3D frameworks, which importantly acted as the Lewis-acid sites or redox centers in ORR. Additionally, the total resistance decreased by 42% from 17.60 to 10.24Ω compared with bare AC electrode. The rotating disk electrode test results showed a four-electron transfer pathway for Cu 3 (BTC) 2 , which was crucial for electrochemical catalytic activity. All the structural and electrochemical advantages make Cu 3 (BTC) 2 a promising catalyst for ORR in MFC. Copyright © 2017. Published by Elsevier Ltd.

  8. A functionalized poly(ethylene glycol)-based bioassay surface chemistry that facilitates bio-immobilization and inhibits non-specific protein, bacterial, and mammalian cell adhesion

    PubMed Central

    Harbers, Gregory M.; Emoto, Kazunori; Greef, Charles; Metzger, Steven W.; Woodward, Heather N.; Mascali, James J.; Grainger, David W.; Lochhead, Michael J.

    2008-01-01

    This paper describes a new bioassay surface chemistry that effectively inhibits non-specific biomolecular and cell binding interactions, while providing a capacity for specific immobilization of desired biomolecules. Poly(ethylene glycol) (PEG) as the primary component in nonfouling film chemistry is well-established, but the multicomponent formulation described here is unique in that it (1) is applied in a single, reproducible, solution-based coating step; (2) can be applied to diverse substrate materials without the use of special primers; and (3) is readily functionalized to provide specific attachment chemistries. Surface analysis data are presented, detailing surface roughness, polymer film thickness, and film chemistry. Protein non-specific binding assays demonstrate significant inhibition of serum, fibrinogen, and lysozyme adsorption to coated glass, indium tin oxide, and tissue culture polystyrene dishes. Inhibition of S. aureus and K. pneumoniae microbial adhesion in a microfluidic flow cell, and inhibition of fibroblast cell adhesion from serum-based cell culture is shown. Effective functionalization of the coating is demonstrated by directing fibroblast adhesion to polymer surfaces activated with an RGD peptide. Batch-to-batch reproducibility data are included. The in situ cross-linked PEG-based coating chemistry is unique in its formulation, and its surface properties are attractive for a broad range of in vitro bioassay applications. PMID:18815622

  9. Microbial metabolic networks in a complex electrogenic biofilm recovered from a stimulus-induced metatranscriptomics approach

    PubMed Central

    Ishii, Shun’ichi; Suzuki, Shino; Tenney, Aaron; Norden-Krichmar, Trina M.; Nealson, Kenneth H.; Bretschger, Orianna

    2015-01-01

    Microorganisms almost always exist as mixed communities in nature. While the significance of microbial community activities is well appreciated, a thorough understanding about how microbial communities respond to environmental perturbations has not yet been achieved. Here we have used a combination of metagenomic, genome binning, and stimulus-induced metatranscriptomic approaches to estimate the metabolic network and stimuli-induced metabolic switches existing in a complex microbial biofilm that was producing electrical current via extracellular electron transfer (EET) to a solid electrode surface. Two stimuli were employed: to increase EET and to stop EET. An analysis of cell activity marker genes after stimuli exposure revealed that only two strains within eleven binned genomes had strong transcriptional responses to increased EET rates, with one responding positively and the other responding negatively. Potential metabolic switches between eleven dominant members were mainly observed for acetate, hydrogen, and ethanol metabolisms. These results have enabled the estimation of a multi-species metabolic network and the associated short-term responses to EET stimuli that induce changes to metabolic flow and cooperative or competitive microbial interactions. This systematic meta-omics approach represents a next step towards understanding complex microbial roles within a community and how community members respond to specific environmental stimuli. PMID:26443302

  10. The Arsenite Oxidation Potential of Native Microbial Communities from Arsenic-Rich Freshwaters.

    PubMed

    Fazi, Stefano; Crognale, Simona; Casentini, Barbara; Amalfitano, Stefano; Lotti, Francesca; Rossetti, Simona

    2016-07-01

    Microorganisms play an important role in speciation and mobility of arsenic in the environment, by mediating redox transformations of both inorganic and organic species. Since arsenite [As(III)] is more toxic than arsenate [As(V)] to the biota, the microbial driven processes of As(V) reduction and As(III) oxidation may play a prominent role in mediating the environmental impact of arsenic contamination. However, little is known about the ecology and dynamics of As(III)-oxidizing populations within native microbial communities exposed to natural high levels of As. In this study, two techniques for single cell quantification (i.e., flow cytometry, CARD-FISH) were used to analyze the structure of aquatic microbial communities across a gradient of arsenic (As) contamination in different freshwater environments (i.e., groundwaters, surface and thermal waters). Moreover, we followed the structural evolution of these communities and their capacity to oxidize arsenite, when experimentally exposed to high As(III) concentrations in experimental microcosms. Betaproteobacteria and Deltaproteobacteria were the main groups retrieved in groundwaters and surface waters, while Beta and Gammaproteobacteria dominated the bacteria community in thermal waters. At the end of microcosm incubations, the communities were able to oxidize up to 95 % of arsenite, with an increase of Alphaproteobacteria in most of the experimental conditions. Finally, heterotrophic As(III)-oxidizing strains (one Alphaproteobacteria and two Gammaproteobacteria) were isolated from As rich waters. Our findings underlined that native microbial communities from different arsenic-contaminated freshwaters can efficiently perform arsenite oxidation, thus contributing to reduce the overall As toxicity to the aquatic biota.

  11. Removal of Microbial Contamination from Surface by Plasma

    NASA Astrophysics Data System (ADS)

    Feng, Xinxin; Liu, Hongxia; Shen, Zhenxing; Wang, Taobo

    2018-01-01

    Microbial contamination is closely associated with human and environmental health, they can be tested on food surfaces, medical devices, packing material and so on. In this paper the removal of the microbial contamination from surface using plasma treatment is investigated. The Escherichia coli (E. coli) has been chosen as a bio-indicator enabling to evaluate the effect of plasma assisted microbial inactivation. Oxygen gas was as the working gas. The plasma RF power, plasma exposition time, gas flow and the concentration of organic pollutant were varied in order to see the effect of the plasma treatment on the Gram-negative germ removal. After the treatment, the microbial abatement was evaluated by the standard plate count method. This proved a positive effect of the plasma treatment on Gram-negative germ removal. The kinetics and mathematical model of removal were studied after plasma treatment, and then the removing course of E. coli was analyzed. This work is meaningful for deepening our understanding of the fundamental scientific principles regarding microbial contamination from surface by plasma.

  12. Process boundaries of irreversible scCO2 -assisted phase separation in biphasic whole-cell biocatalysis.

    PubMed

    Brandenbusch, Christoph; Glonke, Sebastian; Collins, Jonathan; Hoffrogge, Raimund; Grunwald, Klaudia; Bühler, Bruno; Schmid, Andreas; Sadowski, Gabriele

    2015-11-01

    The formation of stable emulsions in biphasic biotransformations catalyzed by microbial cells turned out to be a major hurdle for industrial implementation. Recently, a cost-effective and efficient downstream processing approach, using supercritical carbon dioxide (scCO2 ) for both irreversible emulsion destabilization (enabling complete phase separation within minutes of emulsion treatment) and product purification via extraction has been proposed by Brandenbusch et al. (2010). One of the key factors for a further development and scale-up of the approach is the understanding of the mechanism underlying scCO2 -assisted phase separation. A systematic approach was applied within this work to investigate the various factors influencing phase separation during scCO2 treatment (that is pressure, exposure of the cells to CO2 , and changes of cell surface properties). It was shown that cell toxification and cell disrupture are not responsible for emulsion destabilization. Proteins from the aqueous phase partially adsorb to cells present at the aqueous-organic interface, causing hydrophobic cell surface characteristics, and thus contribute to emulsion stabilization. By investigating the change in cell-surface hydrophobicity of these cells during CO2 treatment, it was found that a combination of catastrophic phase inversion and desorption of proteins from the cell surface is responsible for irreversible scCO2 mediated phase separation. These findings are essential for the definition of process windows for scCO2 -assisted phase separation in biphasic whole-cell biocatalysis. © 2015 Wiley Periodicals, Inc.

  13. Microbial community structures differentiated in a single-chamber air-cathode microbial fuel cell fueled with rice straw hydrolysate.

    PubMed

    Wang, Zejie; Lee, Taekwon; Lim, Bongsu; Choi, Chansoo; Park, Joonhong

    2014-01-17

    The microbial fuel cell represents a novel technology to simultaneously generate electric power and treat wastewater. Both pure organic matter and real wastewater can be used as fuel to generate electric power and the substrate type can influence the microbial community structure. In the present study, rice straw, an important feedstock source in the world, was used as fuel after pretreatment with diluted acid method for a microbial fuel cell to obtain electric power. Moreover, the microbial community structures of anodic and cathodic biofilm and planktonic culturewere analyzed and compared to reveal the effect of niche on microbial community structure. The microbial fuel cell produced a maximum power density of 137.6 ± 15.5 mW/m2 at a COD concentration of 400 mg/L, which was further increased to 293.33 ± 7.89 mW/m2 through adjusting the electrolyte conductivity from 5.6 mS/cm to 17 mS/cm. Microbial community analysis showed reduction of the microbial diversities of the anodic biofilm and planktonic culture, whereas diversity of the cathodic biofilm was increased. Planktonic microbial communities were clustered closer to the anodic microbial communities compared to the cathodic biofilm. The differentiation in microbial community structure of the samples was caused by minor portion of the genus. The three samples shared the same predominant phylum of Proteobacteria. The abundance of exoelectrogenic genus was increased with Desulfobulbus as the shared most abundant genus; while the most abundant exoelectrogenic genus of Clostridium in the inoculum was reduced. Sulfate reducing bacteria accounted for large relative abundance in all the samples, whereas the relative abundance varied in different samples. The results demonstrated that rice straw hydrolysate can be used as fuel for microbial fuel cells; microbial community structure differentiated depending on niches after microbial fuel cell operation; exoelectrogens were enriched; sulfate from rice straw hydrolysate might be responsible for the large relative abundance of sulfate reducing bacteria.

  14. Microbial community structures differentiated in a single-chamber air-cathode microbial fuel cell fueled with rice straw hydrolysate

    PubMed Central

    2014-01-01

    Background The microbial fuel cell represents a novel technology to simultaneously generate electric power and treat wastewater. Both pure organic matter and real wastewater can be used as fuel to generate electric power and the substrate type can influence the microbial community structure. In the present study, rice straw, an important feedstock source in the world, was used as fuel after pretreatment with diluted acid method for a microbial fuel cell to obtain electric power. Moreover, the microbial community structures of anodic and cathodic biofilm and planktonic culturewere analyzed and compared to reveal the effect of niche on microbial community structure. Results The microbial fuel cell produced a maximum power density of 137.6 ± 15.5 mW/m2 at a COD concentration of 400 mg/L, which was further increased to 293.33 ± 7.89 mW/m2 through adjusting the electrolyte conductivity from 5.6 mS/cm to 17 mS/cm. Microbial community analysis showed reduction of the microbial diversities of the anodic biofilm and planktonic culture, whereas diversity of the cathodic biofilm was increased. Planktonic microbial communities were clustered closer to the anodic microbial communities compared to the cathodic biofilm. The differentiation in microbial community structure of the samples was caused by minor portion of the genus. The three samples shared the same predominant phylum of Proteobacteria. The abundance of exoelectrogenic genus was increased with Desulfobulbus as the shared most abundant genus; while the most abundant exoelectrogenic genus of Clostridium in the inoculum was reduced. Sulfate reducing bacteria accounted for large relative abundance in all the samples, whereas the relative abundance varied in different samples. Conclusion The results demonstrated that rice straw hydrolysate can be used as fuel for microbial fuel cells; microbial community structure differentiated depending on niches after microbial fuel cell operation; exoelectrogens were enriched; sulfate from rice straw hydrolysate might be responsible for the large relative abundance of sulfate reducing bacteria. PMID:24433535

  15. Infection, inflammation and host carbohydrates: A Glyco-Evasion Hypothesis

    PubMed Central

    Kreisman, Lori SC; Cobb, Brian A

    2012-01-01

    Microbial immune evasion can be achieved through the expression, or mimicry, of host-like carbohydrates on the microbial cell surface to hide from detection. However, disparate reports collectively suggest that evasion could also be accomplished through the modulation of the host glycosylation pathways, a mechanism that we call the “Glyco-Evasion Hypothesis”. Here, we will summarize the evidence in support of this paradigm by reviewing three separate bodies of work present in the literature. We review how infection and inflammation can lead to host glycosylation changes, how host glycosylation changes can increase susceptibility to infection and inflammation and how glycosylation impacts molecular and cellular function. Then, using these data as a foundation, we propose a unifying hypothesis in which microbial products can hijack host glycosylation to manipulate the immune response to the advantage of the pathogen. This model reveals areas of research that we believe could significantly improve our fight against infectious disease. PMID:22492234

  16. Quick counting method for estimating the number of viable microbes on food and food processing equipment.

    PubMed

    Winter, F H; York, G K; el-Nakhal, H

    1971-07-01

    A rapid method for estimating the extent of microbial contamination on food and on food processing equipment is described. Microbial cells are rinsed from food or swab samples with sterile diluent and concentrated on the surface of membrane filters. The filters are incubated on a suitable bacteriological medium for 4 hr at 30 C, heated at 105 C for 5 min, and stained. The membranes are then dried at 60 C for 15 min, rendered transparent with immersion oil, and examined microscopically. Data obtained by the rapid method were compared with counts of the same samples determined by the standard plate count method. Over 60 comparisons resulted in a correlation coefficient of 0.906. Because the rapid technique can provide reliable microbiological count information in extremely short times, it can be a most useful tool in the routine evaluation of microbial contamination of food processing facilities and for some foods.

  17. STABILITY AND CHANGE IN ESTUARINE BIOFILM BACTERIAL COMMUNITY DIVERSITY

    EPA Science Inventory

    Biofilms develop on all surfaces in aquatic environments and are defined as matrix-enclosed microbial populations adherent to each other and/or surfaces (1, 31). A substantial part of the microbial activity in nature is associated with surfaces (12). Surface association (biofou...

  18. Secapin, a bee venom peptide, exhibits anti-fibrinolytic, anti-elastolytic, and anti-microbial activities.

    PubMed

    Lee, Kwang Sik; Kim, Bo Yeon; Yoon, Hyung Joo; Choi, Yong Soo; Jin, Byung Rae

    2016-10-01

    Bee venom contains a variety of peptide constituents that have various biological, toxicological, and pharmacological actions. However, the biological actions of secapin, a venom peptide in bee venom, remain largely unknown. Here, we provide the evidence that Asiatic honeybee (Apis cerana) secapin (AcSecapin-1) exhibits anti-fibrinolytic, anti-elastolytic, and anti-microbial activities. The recombinant mature AcSecapin-1 peptide was expressed in baculovirus-infected insect cells. AcSecapin-1 functions as a serine protease inhibitor-like peptide that has inhibitory effects against plasmin, elastases, microbial serine proteases, trypsin, and chymotrypsin. Consistent with these functions, AcSecapin-1 inhibited the plasmin-mediated degradation of fibrin to fibrin degradation products, thus indicating the role of AcSecapin-1 as an anti-fibrinolytic agent. AcSecapin-1 also inhibited both human neutrophil and porcine pancreatic elastases. Furthermore, AcSecapin-1 bound to bacterial and fungal surfaces and exhibited anti-microbial activity against fungi and gram-positive and gram-negative bacteria. Taken together, our data demonstrated that the bee venom peptide secapin has multifunctional roles as an anti-fibrinolytic agent during fibrinolysis and an anti-microbial agent in the innate immune response. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Hierarchically Porous N-Doped Carbon Nanotubes/Reduced Graphene Oxide Composite for Promoting Flavin-Based Interfacial Electron Transfer in Microbial Fuel Cells.

    PubMed

    Wu, Xiaoshuai; Qiao, Yan; Shi, Zhuanzhuan; Tang, Wei; Li, Chang Ming

    2018-04-11

    Interfacial electron transfer between an electroactive biofilm and an electrode is a crucial step for microbial fuel cells (MFCs) and other bio-electrochemical systems. Here, a hierarchically porous nitrogen-doped carbon nanotubes (CNTs)/reduced graphene oxide (rGO) composite with polyaniline as the nitrogen source has been developed for the MFC anode. This composite possesses a nitrogen atom-doped surface for improved flavin redox reaction and a three-dimensional hierarchically porous structure for rich bacterial biofilm growth. The maximum power density achieved with the N-CNTs/rGO anode in S. putrefaciens CN32 MFCs is 1137 mW m -2 , which is 8.9 times compared with that of the carbon cloth anode and also higher than those of N-CNTs (731.17 mW m -2 ), N-rGO (442.26 mW m -2 ), and the CNTs/rGO (779.9 mW m -2 ) composite without nitrogen doping. The greatly improved bio-electrocatalysis could be attributed to the enhanced adsorption of flavins on the N-doped surface and the high density of biofilm adhesion for fast interfacial electron transfer. This work reveals a synergistic effect from pore structure tailoring and surface chemistry designing to boost both the bio- and electrocatalysis in MFCs, which also provide insights for the bioelectrode design in other bio-electrochemical systems.

  20. Investigation on electrical surface modification of waste to energy ash for possible use as an electrode material in microbial fuel cells.

    PubMed

    Webster, Megan; Lee, Hae Yang; Pepa, Kristi; Winkler, Nathan; Kretzschmar, Ilona; Castaldi, Marco J

    2018-03-01

    With the world population expected to reach 8.5 billion by 2030, demand for access to electricity and clean water will grow at unprecedented rates. Municipal solid waste combusted at waste to energy (WtE) facilities decreases waste volume and recovers energy, but yields ash as a byproduct, the beneficial uses of which are actively being investigated. Ash is intrinsically hydrophobic, highly oxidized, and exhibits high melting points and low conductivities. The research presented here explores the potential of ash to be used as an electrode material for a microbial fuel cell (MFC). This application requires increased conductivity and hydrophilicity, and a lowered melting point. Three ash samples were investigated. By applying an electric potential in the range 50-125 V across the ash in the presence of water, several key property changes were observed: lower melting point, a color change within the ash, evidence of changes in surface morphologies of ash particles, and completely wetting water-ash contact angles. We analyzed this system using a variety of analytical techniques including sector field inductively coupled plasma mass spectrometry, scanning electron microscopy, X-ray diffraction, differential scanning calorimetry, and tensiometry. Ability to make such surface modifications and significant property changes could allow ash to become useful in an application such as an electrode material for a MFC.

  1. Adsorptive immobilization of a Pseudomonas strain on solid carriers for augmented decolourization in a chemostat bioreactor.

    PubMed

    Tse, Siu-Wah; Yu, Jian

    2003-08-01

    Pseudomonas GM3, a highly efficient strain in cleavage of azo bonds of synthetic dyes under anoxic conditions, was immobilized via adsorption on two types of carriers, porous glass beads and solid PVA particles. The cells were cultivated in a nutrient medium, adsorbed on sterile carriers, stabilized as biofilms in repeated batch cultures, and introduced into a chemostat activated sludge reactor for augmented decolourization. The microbial cells were quickly adsorbed and fixed on the PVA surface, compared to a slow and linear immobilization on the glass surface. The porous structure of glass beads provided shelter for the embedded cells, giving a high biomass loading or thick biofilm (13.3 mg VS ml-1 carrier) in comparison with PVA particles (4.8 mg VS ml-1 carrier), but the mass transfer of substrate in the biofilm became a significant limiting factorin the thicker biofilms (effectiveness factor eta = 0.31). The microbial decolourization rate per volume of carriers was 0.15 and 0.17 mg dye ml-1 of glass beads and PVA particles, respectively. In augmented decomposition of a recalcitrant azo dye (60 mg l-1), the immobilized Pseudomonas cells in porous glass beads gave a stable decolourization efficiency (80-81%), but cells fixed on solid PVA particles showed an initial high colour removal of 90% which then declined to a stable removal efficiency of 81%. In both cases, the colour removal efficiency of the chemostat bioreactor was increased from < 10% by an activated sludge to approximately 80% by the augmented system.

  2. Rapid Formation of Microbe-Oil Aggregates and Changes in Community Composition in Coastal Surface Water Following Exposure to Oil and the Dispersant Corexit.

    PubMed

    Doyle, Shawn M; Whitaker, Emily A; De Pascuale, Veronica; Wade, Terry L; Knap, Anthony H; Santschi, Peter H; Quigg, Antonietta; Sylvan, Jason B

    2018-01-01

    During the Deepwater Horizon (DWH) oil spill, massive quantities of oil were deposited on the seafloor via a large-scale marine oil-snow sedimentation and flocculent accumulation (MOSSFA) event. The role of chemical dispersants (e.g., Corexit) applied during the DWH oil spill clean-up in helping or hindering the formation of this MOSSFA event are not well-understood. Here, we present the first experiment related to the DWH oil spill to specifically investigate the relationship between microbial community structure, oil and Corexit®, and marine oil-snow in coastal surface waters. We observed the formation of micron-scale aggregates of microbial cells around droplets of oil and dispersant and found that their rate of formation was directly related to the concentration of oil within the water column. These micro-aggregates are potentially important precursors to the formation of larger marine oil-snow particles. Therefore, our observation that Corexit® significantly enhanced their formation suggests dispersant application may play a role in the development of MOSSFA events. We also observed that microbial communities in marine surface waters respond to oil and oil plus Corexit® differently and much more rapidly than previously measured, with major shifts in community composition occurring within only a few hours of experiment initiation. In the oil-amended treatments without Corexit®, this manifested as an increase in community diversity due to the outgrowth of several putative aliphatic- and aromatic-hydrocarbon degrading genera, including phytoplankton-associated taxa. In contrast, microbial community diversity was reduced in mesocosms containing chemically dispersed oil. Importantly, different consortia of hydrocarbon degrading bacteria responded to oil and chemically dispersed oil, indicating that functional redundancy in the pre-spill community likely results in hydrocarbon consumption in both undispersed and dispersed oils, but by different bacterial taxa. Taken together, these data improve our understanding of how dispersants influence the degradation and transport of oil in marine surface waters following an oil spill and provide valuable insight into the early response of complex microbial communities to oil exposure.

  3. Rapid Formation of Microbe-Oil Aggregates and Changes in Community Composition in Coastal Surface Water Following Exposure to Oil and the Dispersant Corexit

    PubMed Central

    Doyle, Shawn M.; Whitaker, Emily A.; De Pascuale, Veronica; Wade, Terry L.; Knap, Anthony H.; Santschi, Peter H.; Quigg, Antonietta; Sylvan, Jason B.

    2018-01-01

    During the Deepwater Horizon (DWH) oil spill, massive quantities of oil were deposited on the seafloor via a large-scale marine oil-snow sedimentation and flocculent accumulation (MOSSFA) event. The role of chemical dispersants (e.g., Corexit) applied during the DWH oil spill clean-up in helping or hindering the formation of this MOSSFA event are not well-understood. Here, we present the first experiment related to the DWH oil spill to specifically investigate the relationship between microbial community structure, oil and Corexit®, and marine oil-snow in coastal surface waters. We observed the formation of micron-scale aggregates of microbial cells around droplets of oil and dispersant and found that their rate of formation was directly related to the concentration of oil within the water column. These micro-aggregates are potentially important precursors to the formation of larger marine oil-snow particles. Therefore, our observation that Corexit® significantly enhanced their formation suggests dispersant application may play a role in the development of MOSSFA events. We also observed that microbial communities in marine surface waters respond to oil and oil plus Corexit® differently and much more rapidly than previously measured, with major shifts in community composition occurring within only a few hours of experiment initiation. In the oil-amended treatments without Corexit®, this manifested as an increase in community diversity due to the outgrowth of several putative aliphatic- and aromatic-hydrocarbon degrading genera, including phytoplankton-associated taxa. In contrast, microbial community diversity was reduced in mesocosms containing chemically dispersed oil. Importantly, different consortia of hydrocarbon degrading bacteria responded to oil and chemically dispersed oil, indicating that functional redundancy in the pre-spill community likely results in hydrocarbon consumption in both undispersed and dispersed oils, but by different bacterial taxa. Taken together, these data improve our understanding of how dispersants influence the degradation and transport of oil in marine surface waters following an oil spill and provide valuable insight into the early response of complex microbial communities to oil exposure. PMID:29696005

  4. Cellular content of biomolecules in sub-seafloor microbial communities

    NASA Astrophysics Data System (ADS)

    Braun, Stefan; Morono, Yuki; Becker, Kevin W.; Hinrichs, Kai-Uwe; Kjeldsen, Kasper U.; Jørgensen, Bo B.; Lomstein, Bente Aa.

    2016-09-01

    Microbial biomolecules, typically from the cell envelope, can provide crucial information about distribution, activity, and adaptations of sub-seafloor microbial communities. However, when cells die these molecules can be preserved in the sediment on timescales that are likely longer than the lifetime of their microbial sources. Here we provide for the first time measurements of the cellular content of biomolecules in sedimentary microbial cells. We separated intact cells from sediment matrices in samples from surficial, deeply buried, organic-rich, and organic-lean marine sediments by density centrifugation. Amino acids, amino sugars, muramic acid, and intact polar lipids were analyzed in both whole sediment and cell extract, and cell separation was optimized and evaluated in terms of purity, separation efficiency, taxonomic resemblance, and compatibility to high-performance liquid chromatography and mass spectrometry for biomolecule analyses. Because cell extracts from density centrifugation still contained considerable amounts of detrital particles and non-cellular biomolecules, we further purified cells from two samples by fluorescence-activated cell sorting (FACS). Cells from these highly purified cell extracts had an average content of amino acids and lipids of 23-28 fg cell-1 and 2.3 fg cell-1, respectively, with an estimated carbon content of 19-24 fg cell-1. In the sediment, the amount of biomolecules associated with vegetative cells was up to 70-fold lower than the total biomolecule content. We find that the cellular content of biomolecules in the marine subsurface is up to four times lower than previous estimates. Our approach will facilitate and improve the use of biomolecules as proxies for microbial abundance in environmental samples and ultimately provide better global estimates of microbial biomass.

  5. Electricity generation in microbial fuel cells using neutral red as an electronophore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, D.H.; Zeikus, J.G.

    2000-04-01

    Neutral red (NR) was utilized as an electron mediator in microbial fuel cells consuming glucose to study both its efficiency during electricity generation and its role in altering anaerobic growth and metabolism of Escherichia coli and Actinobacillus succinogenes. A study of chemical fuel cells in which NADH, NR, and ferricyanide were the electron donor, the electronophore, and the electron acceptor, respectively, showed that electrical current produced from NADH was proportional to the concentration of NADH. Fourfold more current was produced from NADH in chemical fuel cells when NR was the electron mediator than when thionin was the electron mediator. Inmore » microbial fuel cells in which E. coli resting cells were used the amount of current produced from glucose when NR was the electron mediator was 10-fold more than the amount produced when thionin was the electron mediator. The amount of electrical energy generated and the amount of current produced from glucose in NR-mediated microbial fuel cells containing either E. coli or A. succinogenes were about 10- and 2-fold greater, respectively, when resting cells were used than when growing cells were used. Cell growth was inhibited substantially when these microbial fuel cells were making current, and more oxidized end products were formed under these conditions. When sewage sludge was used in the fuel cell, stable and equivalent levels of current were obtained with glucose, as observed in the pure-culture experiments. These results suggest that NR is better than other electron mediators used in microbial fuel cells and that sludge production can be decreased while electricity is produced in fuel cells. Their results are discussed in relation to factors that may improve the relatively low electrical efficiencies obtained with microbial fuel cells.« less

  6. Multispecies Biofilm Development on Space Station Heat Exhanger Core Material

    NASA Technical Reports Server (NTRS)

    Pyle, B. H.; Roth, S. R.; Vega, L. M.; Pickering, K. D.; Alvarez, Pedro J. J.; Roman, M. C.

    2007-01-01

    Investigations of microbial contamination of the cooling system aboard the International Space Station (ISS) suggested that there may be a relationship between heat exchanger (HX) materials and the degree of microbial colonization and biofilm formation. Experiments were undertaken to test the hypothesis that biofilm formation is influenced by the type and previous exposure of HX surfaces. Acidovorax delafieldii, Comamonas acidovorans, Hydrogenophaga pseudoflava, Pseudomonas stutzeri, Sphingomonas paucimobilis, and Stenotrophomonas maltophilia, originally isolated from ISS cooling system fluid, were cultured on R2A agar and suspended separately in fresh filter-sterilized ISS cooling fluid, pH 8.3. Initial numbers in each suspension ranged from 10(exp 6)-10(exp 7) CFU/ml, and a mixture contained greater than 10(exp 7) CFU/ml. Coupons of ISS HX material, previously used on orbit (HXOO) or unused (HXUU), polycarbonate (PC) and 316L polished stainless steel (SS) were autoclaved, covered with multispecies suspension in sterile tubes and incubated in the dark at ambient (22-25 C). Original HX material contained greater than 90% Ni, 4.5% Si, and 3.2% B, with a borate buffer. For approximately 10 weeks, samples of fluid were plated on R2A agar, and surface colonization assessed by SYBR green or BacLight staining and microscopy. Suspension counts for the PC and SC samples remained steady at around 10(exp 7) CFU/ml. HXUU counts declined about 1 log in 21 d then remained steady, and HXOO counts declined 2 logs in 28 d, fluctuated and stabilized about 10(exp 3) CFU/ml from 47-54 d. Predominantly yellow S. paucimobilis predominated on plates from HXOO samples up to 26 d, then white or translucent colonies of other species appeared. All colony types were seen on plates from other samples throughout the trial. Epifluorescence microscopy indicated microbial growth on all surfaces by 21 d, followed by variable colonization. After 54 d, all but the HXOO samples had well-distributed live and dead cells; the HXOO samples had few cells and most were live by BacLight. The results suggest that HX materials themselves are inhibiting microbial growth on the surfaces. The HX exposed on orbit to cooling system fluid inhibited growth of some species originally isolated from the system, whereas the unused HX material had a moderate effect compared to no inhibition with PC or SS controls. It is possible that chemistry or microbiology of the ISS system increased deposition of inhibitory compounds on the HXOO coupon surfaces; these may inhibit inoculated species to differing degrees.

  7. Biotechnological Aspects of Microbial Extracellular Electron Transfer

    PubMed Central

    Kato, Souichiro

    2015-01-01

    Extracellular electron transfer (EET) is a type of microbial respiration that enables electron transfer between microbial cells and extracellular solid materials, including naturally-occurring metal compounds and artificial electrodes. Microorganisms harboring EET abilities have received considerable attention for their various biotechnological applications, in addition to their contribution to global energy and material cycles. In this review, current knowledge on microbial EET and its application to diverse biotechnologies, including the bioremediation of toxic metals, recovery of useful metals, biocorrosion, and microbial electrochemical systems (microbial fuel cells and microbial electrosynthesis), were introduced. Two potential biotechnologies based on microbial EET, namely the electrochemical control of microbial metabolism and electrochemical stimulation of microbial symbiotic reactions (electric syntrophy), were also discussed. PMID:26004795

  8. Single-cell genomics-based analysis of virus–host interactions in marine surface bacterioplankton

    DOE PAGES

    Labonté, Jessica M.; Swan, Brandon K.; Poulos, Bonnie; ...

    2015-04-07

    Viral infections dynamically alter the composition and metabolic potential of marine microbial communities and the evolutionary trajectories of host populations with resulting feedback on biogeochemical cycles. It is quite possible that all microbial populations in the ocean are impacted by viral infections. Our knowledge of virus–host relationships, however, has been limited to a minute fraction of cultivated host groups. Here, we utilized single-cell sequencing to obtain genomic blueprints of viruses inside or attached to individual bacterial and archaeal cells captured in their native environment, circumventing the need for host and virus cultivation. Furthermore, a combination of comparative genomics, metagenomic fragmentmore » recruitment, sequence anomalies and irregularities in sequence coverage depth and genome recovery were utilized to detect viruses and to decipher modes of virus–host interactions. Members of all three tailed phage families were identified in 20 out of 58 phylogenetically and geographically diverse single amplified genomes (SAGs) of marine bacteria and archaea. At least four phage–host interactions had the characteristics of late lytic infections, all of which were found in metabolically active cells. One virus had genetic potential for lysogeny. Our findings include first known viruses of Thaumarchaeota, Marinimicrobia, Verrucomicrobia and Gammaproteobacteria clusters SAR86 and SAR92. Viruses were also found in SAGs of Alphaproteobacteria and Bacteroidetes. A high fragment recruitment of viral metagenomic reads confirmed that most of the SAG-associated viruses are abundant in the ocean. This study demonstrates that single-cell genomics, in conjunction with sequence-based computational tools, enable in situ, cultivation-independent insights into host–virus interactions in complex microbial communities.« less

  9. Succession of Sulfur-Oxidizing Bacteria in the Microbial Community on Corroding Concrete in Sewer Systems† ▿

    PubMed Central

    Okabe, Satoshi; Odagiri, Mitsunori; Ito, Tsukasa; Satoh, Hisashi

    2007-01-01

    Microbially induced concrete corrosion (MICC) in sewer systems has been a serious problem for a long time. A better understanding of the succession of microbial community members responsible for the production of sulfuric acid is essential for the efficient control of MICC. In this study, the succession of sulfur-oxidizing bacteria (SOB) in the bacterial community on corroding concrete in a sewer system in situ was investigated over 1 year by culture-independent 16S rRNA gene-based molecular techniques. Results revealed that at least six phylotypes of SOB species were involved in the MICC process, and the predominant SOB species shifted in the following order: Thiothrix sp., Thiobacillus plumbophilus, Thiomonas intermedia, Halothiobacillus neapolitanus, Acidiphilium acidophilum, and Acidithiobacillus thiooxidans. A. thiooxidans, a hyperacidophilic SOB, was the most dominant (accounting for 70% of EUB338-mixed probe-hybridized cells) in the heavily corroded concrete after 1 year. This succession of SOB species could be dependent on the pH of the concrete surface as well as on trophic properties (e.g., autotrophic or mixotrophic) and on the ability of the SOB to utilize different sulfur compounds (e.g., H2S, S0, and S2O32−). In addition, diverse heterotrophic bacterial species (e.g., halo-tolerant, neutrophilic, and acidophilic bacteria) were associated with these SOB. The microbial succession of these microorganisms was involved in the colonization of the concrete and the production of sulfuric acid. Furthermore, the vertical distribution of microbial community members revealed that A. thiooxidans was the most dominant throughout the heavily corroded concrete (gypsum) layer and that A. thiooxidans was most abundant at the highest surface (1.5-mm) layer and decreased logarithmically with depth because of oxygen and H2S transport limitations. This suggested that the production of sulfuric acid by A. thiooxidans occurred mainly on the concrete surface and the sulfuric acid produced penetrated through the corroded concrete layer and reacted with the sound concrete below. PMID:17142362

  10. Ohmic resistance affects microbial community and electrochemical kinetics in a multi-anode microbial electrochemical cell

    EPA Science Inventory

    Multi-anode microbial electrochemical cells (MXCs) are considered as one of the most promising configurations for scale-up of MXCs, but fundamental understanding of anode kinetics governing current density is limited in the MXCs. In this study we first assessed microbial communi...

  11. Microbial competition in porous environments can select against rapid biofilm growth

    PubMed Central

    Coyte, Katharine Z.; Tabuteau, Hervé; Gaffney, Eamonn A.; Durham, William M.

    2017-01-01

    Microbes often live in dense communities called biofilms, where competition between strains and species is fundamental to both evolution and community function. Although biofilms are commonly found in soil-like porous environments, the study of microbial interactions has largely focused on biofilms growing on flat, planar surfaces. Here, we use microfluidic experiments, mechanistic models, and game theory to study how porous media hydrodynamics can mediate competition between bacterial genotypes. Our experiments reveal a fundamental challenge faced by microbial strains that live in porous environments: cells that rapidly form biofilms tend to block their access to fluid flow and redirect resources to competitors. To understand how these dynamics influence the evolution of bacterial growth rates, we couple a model of flow–biofilm interaction with a game theory analysis. This investigation revealed that hydrodynamic interactions between competing genotypes give rise to an evolutionarily stable growth rate that stands in stark contrast with that observed in typical laboratory experiments: cells within a biofilm can outcompete other genotypes by growing more slowly. Our work reveals that hydrodynamics can profoundly affect how bacteria compete and evolve in porous environments, the habitat where most bacteria live. PMID:28007984

  12. Quantum dots conjugated zinc oxide nanosheets: Impeder of microbial growth and biofilm

    NASA Astrophysics Data System (ADS)

    Patil, Rajendra; Gholap, Haribhau; Warule, Sambhaji; Banpurkar, Arun; Kulkarni, Gauri; Gade, Wasudeo

    2015-01-01

    The grieving problem of the 21st century has been the antimicrobial resistance in pathogenic microorganisms to conventional antibiotics. Therefore, developments of novel antibacterial materials which effectively inhibit or kill such resistant microorganisms have become the need of the hour. In the present study, we communicate the synthesis of quantum dots conjugated zinc oxide nanostructures (ZnO/CdTe) as an impeder of microbial growth and biofilm. The as-synthesized nanostructures were characterized by X-ray diffraction, ultraviolet-visible spectroscopy, photoluminescence spectroscopy, field emission scanning electron microscopy and high resolution transmission electron microscopy. The growth impedance property of ZnO and ZnO/CdTe on Gram positive organism, Bacillus subtilis NCIM 2063 and Gram negative, Escherichia coli NCIM 2931 and biofilm impedance activity in Pseudomonas aeruginosa O1 was found to occur due to photocatalytical action on the cell biofilm surfaces. The impedance in microbial growth and biofilm formation was further supported by ruptured appearances of cells and dettrered biofilm under field emission scanning electron and confocal laser scanning microscope. The ZnO/CdTe nanostructures array synthesized by hydrothermal method has an advantage of low growth temperature, and opportunity to fabricate inexpensive material for nano-biotechnological applications.

  13. CoBOP: Microbial Biofilms: A Parameter Altering the Apparent Optical Properties of Sediments, Seagrasses and Surfaces

    DTIC Science & Technology

    2002-09-30

    CoBOP: Microbial Biofilms: A Parameter Altering the Apparent Optical Properties of Sediments, Seagrasses and Surfaces Alan W. Decho Department...TITLE AND SUBTITLE CoBOP: Microbial Biofilms: A Parameter Altering the Apparent Optical Properties of Sediments, Seagrasses and Surfaces 5a. CONTRACT...structures produced by bacteria. Their growth appears to depend on biofilm processes and light distributions ( photosynthesis ). Therefore, the data acquired

  14. CoBOP: Microbial Biofilms: A Parameter Altering the Apparent Optical Properties of Sediments, Seagrasses and Surfaces

    DTIC Science & Technology

    2003-09-30

    CoBOP: MICROBIAL BIOFILMS: A PARAMETER ALTERING THE APPARENT OPTICAL PROPERTIES OF SEDIMENTS, SEAGRASSES AND SURFACES. Alan W. Decho Department...AND SUBTITLE CoBOP: Microbial Biofilms: A Parameter Altering The Apparent Optical Properties Of Sediments, Seagrasses And Surfaces 5a. CONTRACT...biofilm processes and light distributions ( photosynthesis ). Therefore, the data acquired from this project will be closely paired with results of

  15. Induced calcium carbonate precipitation using Bacillus species.

    PubMed

    Seifan, Mostafa; Samani, Ali Khajeh; Berenjian, Aydin

    2016-12-01

    Microbially induced calcium carbonate precipitation is an emerging process for the production of self-healing concrete. This study was aimed to investigate the effects and optimum conditions on calcium carbonate biosynthesis. Bacillus licheniformis, Bacillus sphaericus, yeast extract, urea, calcium chloride and aeration were found to be the most significant factors affecting the biomineralization of calcium carbonate. It was noticed that the morphology of microbial calcium carbonate was mainly affected by the genera of bacteria (cell surface properties), the viscosity of the media and the type of electron acceptors (Ca 2+ ). The maximum calcium carbonate concentration of 33.78 g/L was achieved at the optimum conditions This value is the highest concentration reported in the literature.

  16. Specific capture and detection of Staphylococcus aureus with high-affinity modified aptamers to cell surface components

    PubMed Central

    Baumstummler, A; Lehmann, D; Janjic, N; Ochsner, UA

    2014-01-01

    Slow off-rate modified aptamer (SOMAmer) reagents were generated to several Staphylococcus aureus cell surface-associated proteins via SELEX with multiple modified DNA libraries using purified recombinant or native proteins. High-affinity binding agents with sub-nanomolar Kd's were obtained for staphylococcal protein A (SpA), clumping factors (ClfA, ClfB), fibronectin-binding proteins (FnbA, FnbB) and iron-regulated surface determinants (Isd). Further screening revealed several SOMAmers that specifically bound to Staph. aureus cells from all strains that were tested, but not to other staphylococci or other bacteria. SpA and ClfA SOMAmers proved useful for the selective capture and enrichment of Staph. aureus cells, as shown by culture and PCR, leading to improved limits of detection and efficient removal of PCR inhibitors. Detection of Staph. aureus cells was enhanced by several orders of magnitude when the bacterial cell surface was coated with SOMAmers followed by qPCR of the SOMAmers. Furthermore, fluorescence-labelled SpA SOMAmers demonstrated their utility as direct detection agents in flow cytometry. Significance and Impact of the Study Monitoring for microbial contamination of food, water, nonsterile products or the environment is typically based on culture, PCR or antibodies. Aptamers that bind with high specificity and affinity to well-conserved cell surface epitopes represent a promising novel type of reagents to detect bacterial cells without the need for culture or cell lysis, including for the capture and enrichment of bacteria present at low cell densities and for the direct detection via qPCR or fluorescent staining. PMID:24935714

  17. Spatial Control of Bacteria Using Screen Printing

    PubMed Central

    Moon, Soonhee; Fritz, Ian L.; Singer, Zakary S.

    2016-01-01

    Abstract Synthetic biology has led to advances in both our understanding and engineering of genetic circuits that affect spatial and temporal behaviors in living cells. A growing array of native and synthetic circuits such as oscillators, pattern generators, and cell–cell communication systems has been studied, which exhibit spatiotemporal properties. To better understand the design principles of these genetic circuits, there is a need for versatile and precise methods for patterning cell populations in various configurations. In this study, we develop a screen printing methodology to pattern bacteria on agar, glass, and paper surfaces. Initially, we tested three biocompatible resuspension media with appropriate rheological properties for screen printing. Using microscopy, we characterized the resolution and bleed of bacteria screen prints on agar and glass surfaces, obtaining resolutions as low as 188 μm. Next, we engineered bacterial strains producing visible chromoproteins analogous to the cyan, magenta, and yellow subtractive color system for the creation of multicolored bacteria images. Using this system, we printed distinct populations in overlapping or interlocking designs on both paper and agar substrates. These proof-of-principle experiments demonstrated how the screen printing method could be used to study microbial community interactions and pattern formation of biofilms at submillimeter length scales. Overall, our approach allows for rapid and precise prototyping of patterned bacteria species that will be useful in the understanding and engineering of spatiotemporal behaviors in microbial communities. PMID:29577061

  18. Ecology and thermal inactivation of microbes in and on interplanetary space vehicle components. [examined with a scanning electron microscope

    NASA Technical Reports Server (NTRS)

    Campbell, J. E.

    1974-01-01

    The uses of scanning electron microscopy in assessing changes that occur in spores exposed to wet and dry heat cycles at elevated temperatures were examined. Several species of Bacillus and other nonspore-forming species of organisms were used for the experiment. Surface morphology of viable and nonviable organisms was clearly detectable by this method, making it a potentially useful technique for investigating microbial inactivation on space vehicle surfaces and components. Micrographs of the spores and bacterial cells are provided.

  19. Respiratory tract immune response to microbial pathogens.

    PubMed

    Wilkie, B N

    1982-11-15

    Effective resistance to respiratory tract infection depends principally on specific immunity on mucosal surfaces of the upper or lower respiratory tract. Respiratory tract immune response comprises antibody and cell-mediated systems and may be induced most readily by surface presentation of replicating agents but can result from parenteral or local presentation of highly immunogenic antigens. Upper and lower respiratory tract systems differ in immunologic competence, with the lungs having a greater inventory of protective mechanisms than the trachea or nose. Several effective vaccines have been developed for prevention or modification of respiratory tract diseases.

  20. A mechanism for bacterial transformation of dimethylsulfide to dimethylsulfoxide: a missing link in the marine organic sulfur cycle.

    PubMed

    Lidbury, Ian; Kröber, Eileen; Zhang, Zhidong; Zhu, Yijun; Murrell, J Colin; Chen, Yin; Schäfer, Hendrik

    2016-09-01

    The volatile organosulfur compound, dimethylsulfide (DMS), plays an important role in climate regulation and global sulfur biogeochemical cycles. Microbial oxidation of DMS to dimethylsulfoxide (DMSO) represents a major sink of DMS in surface seawater, yet the underlying molecular mechanisms and key microbial taxa involved are not known. Here, we reveal that Ruegeria pomeroyi, a model marine heterotrophic bacterium, can oxidize DMS to DMSO using trimethylamine monooxygenase (Tmm). Purified Tmm oxidizes DMS to DMSO at a 1:1 ratio. Mutagenesis of the tmm gene in R. pomeroyi completely abolished DMS oxidation and subsequent DMSO formation. Expression of Tmm and DMS oxidation in R. pomeroyi is methylamine-dependent and regulated at the post-transcriptional level. Considering that Tmm is present in approximately 20% of bacterial cells inhabiting marine surface waters, particularly the marine Roseobacter clade and the SAR11 clade, our observations contribute to a mechanistic understanding of biological DMSO production in surface seawater. © 2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  1. Microbial Oxidation of Fe2+ and Pyrite Exposed to Flux of Micromolar H2O2 in Acidic Media

    PubMed Central

    Ma, Yingqun; Lin, Chuxia

    2013-01-01

    At an initial pH of 2, while abiotic oxidation of aqueous Fe2+ was enhanced by a flux of H2O2 at micromolar concentrations, bio-oxidation of aqueous Fe2+ could be impeded due to oxidative stress/damage in Acidithiobacillus ferrooxidans caused by Fenton reaction-derived hydroxyl radical, particularly when the molar ratio of Fe2+ to H2O2 was low. When pyrite cubes were intermittently exposed to fluxes of micromolar H2O2, the reduced Fe2+-Fe3+ conversion rate in the solution (due to reduced microbial activity) weakened the Fe3+-catalyzed oxidation of cubic pyrite and added to relative importance of H2O2-driven oxidation in the corrosion of mineral surfaces for the treatments with high H2O2 doses. This had effects on reducing the build-up of a passivating coating layer on the mineral surfaces. Cell attachment to the mineral surfaces was only observed at the later stage of the experiment after the solutions became less favorable for the growth of planktonic bacteria. PMID:23760258

  2. Microbial Oxidation of Fe2+ and Pyrite Exposed to Flux of Micromolar H2O2 in Acidic Media

    NASA Astrophysics Data System (ADS)

    Ma, Yingqun; Lin, Chuxia

    2013-06-01

    At an initial pH of 2, while abiotic oxidation of aqueous Fe2+ was enhanced by a flux of H2O2 at micromolar concentrations, bio-oxidation of aqueous Fe2+ could be impeded due to oxidative stress/damage in Acidithiobacillus ferrooxidans caused by Fenton reaction-derived hydroxyl radical, particularly when the molar ratio of Fe2+ to H2O2 was low. When pyrite cubes were intermittently exposed to fluxes of micromolar H2O2, the reduced Fe2+-Fe3+ conversion rate in the solution (due to reduced microbial activity) weakened the Fe3+-catalyzed oxidation of cubic pyrite and added to relative importance of H2O2-driven oxidation in the corrosion of mineral surfaces for the treatments with high H2O2 doses. This had effects on reducing the build-up of a passivating coating layer on the mineral surfaces. Cell attachment to the mineral surfaces was only observed at the later stage of the experiment after the solutions became less favorable for the growth of planktonic bacteria.

  3. Microbial oxidation of Fe²⁺ and pyrite exposed to flux of micromolar H₂O₂ in acidic media.

    PubMed

    Ma, Yingqun; Lin, Chuxia

    2013-01-01

    At an initial pH of 2, while abiotic oxidation of aqueous Fe(2+) was enhanced by a flux of H2O2 at micromolar concentrations, bio-oxidation of aqueous Fe(2+) could be impeded due to oxidative stress/damage in Acidithiobacillus ferrooxidans caused by Fenton reaction-derived hydroxyl radical, particularly when the molar ratio of Fe(2+) to H2O2 was low. When pyrite cubes were intermittently exposed to fluxes of micromolar H2O2, the reduced Fe(2+)-Fe(3+) conversion rate in the solution (due to reduced microbial activity) weakened the Fe(3+)-catalyzed oxidation of cubic pyrite and added to relative importance of H2O2-driven oxidation in the corrosion of mineral surfaces for the treatments with high H2O2 doses. This had effects on reducing the build-up of a passivating coating layer on the mineral surfaces. Cell attachment to the mineral surfaces was only observed at the later stage of the experiment after the solutions became less favorable for the growth of planktonic bacteria.

  4. In situ fabrication of green reduced graphene-based biocompatible anode for efficient energy recycle.

    PubMed

    Cheng, Ying; Mallavarapu, Megharaj; Naidu, Ravi; Chen, Zuliang

    2018-02-01

    Improving the anode configuration to enhance biocompatibility and accelerate electron shuttling is critical for efficient energy recovery in microbial fuel cells (MFCs). In this paper, green reduced graphene nanocomposite was successfully coated using layer-by-layer assembly technique onto carbon brush anode. The modified anode achieved a 3.2-fold higher power density of 33.7 W m -3 at a current density of 69.4 A m -3 with a 75% shorter start period. As revealed in the characterization, the green synthesized nanocomposite film affords larger surface roughness for microbial colonization. Besides, gold nanoparticles, which anchored on graphene sheets, promise the relatively high electroactive sites and facilitate electron transfer from electricigens to the anode. The reduction-oxidation peaks in cyclic voltammograms indicated the mechanism of surface cytochromes facilitated current generation while the electrochemical impedance spectroscopy confirmed the enhanced electron transfer from surface cytochrome to electrode. The green synthesis process has the potential to generate a high performing anode in further applications of MFCs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. A secreted antibacterial neuropeptide shapes the microbiome of Hydra.

    PubMed

    Augustin, René; Schröder, Katja; Murillo Rincón, Andrea P; Fraune, Sebastian; Anton-Erxleben, Friederike; Herbst, Eva-Maria; Wittlieb, Jörg; Schwentner, Martin; Grötzinger, Joachim; Wassenaar, Trudy M; Bosch, Thomas C G

    2017-09-26

    Colonization of body epithelial surfaces with a highly specific microbial community is a fundamental feature of all animals, yet the underlying mechanisms by which these communities are selected and maintained are not well understood. Here, we show that sensory and ganglion neurons in the ectodermal epithelium of the model organism hydra (a member of the animal phylum Cnidaria) secrete neuropeptides with antibacterial activity that may shape the microbiome on the body surface. In particular, a specific neuropeptide, which we call NDA-1, contributes to the reduction of Gram-positive bacteria during early development and thus to a spatial distribution of the main colonizer, the Gram-negative Curvibacter sp., along the body axis. Our findings warrant further research to test whether neuropeptides secreted by nerve cells contribute to the spatial structure of microbial communities in other organisms.Certain neuropeptides, in addition to their neuromodulatory functions, display antibacterial activities of unclear significance. Here, the authors show that a secreted neuropeptide modulates the distribution of bacterial communities on the body surface during development of the model organism Hydra.

  6. Coupled Spatiotemporal Dynamics of Microbial Community Ecology, Biogeochemistry, and Hydrologic Mixing

    NASA Astrophysics Data System (ADS)

    Stegen, J.; Johnson, T. C.; Fredrickson, J.; Wilkins, M.; Konopka, A.; Nelson, W.; Arntzen, E.; Chrisler, W.; Chu, R. K.; Fansler, S.; Kennedy, D.; Resch, T.; Tfaily, M. M.

    2015-12-01

    The hyporheic zone (HZ) is a critical ecosystem component that links terrestrial, surface water, and groundwater ecosystems. A dominant feature of the HZ is groundwater-surface water mixing and the input of terrestrially—as well as aquatically—derived organic carbon. In many systems the HZ has a relatively small spatial extent, but in larger riverine systems groundwater-surface water mixing can occur 100s of meters beyond the surface water shoreline; we consider these more distal locations to be within the 'subsurface interaction zone' (SIZ) as they are beyond the traditional HZ. Microbial communities in the HZ and SIZ drive biogeochemical processes in these system components, yet relatively little is known about the ecological processes that drive HZ and SIZ microbial communities. Here, we applied ecological theory, aqueous biogeochemistry, DNA sequencing, and ultra-high resolution organic carbon profiling to field samples collected through space (400m spatial extent) and time (7 month temporal extent) within the Hanford Site 300 Area. These data streams were integrated to evaluate how the influence of groundwater-surface water mixing on microbial communities changes when moving from the HZ to the broader SIZ. Our results indicate that groundwater-surface water mixing (i) consistently stimulated heterotrophic respiration, but only above a threshold of surface water intrusion, (ii) did not stimulate denitrification, (iii) caused deterministic shifts in HZ microbial communities due to changes in organic carbon composition, and (iv) did not cause shifts in SIZ microbial communities. These results suggest that microbial communities and the biogeochemical processes they drive are impacted by groundwater-surface water mixing primarily in the HZ and to a lesser extent in the SIZ.

  7. Poly iron sulfate flocculant as an effective additive for improving the performance of microbial fuel cells.

    PubMed

    Miyahara, Morio; Sakamoto, Akihiro; Kouzuma, Atsushi; Watanabe, Kazuya

    2016-12-01

    Laboratory microbial fuel cells were supplied with artificial wastewater and used to examine how supplementation with poly iron sulfate, an inorganic polymer flocculant widely used in wastewater-treatment plants, affects electricity generation and anode microbiomes. It is shown that poly iron sulfate substantially increases electric outputs from microbial fuel cells. Microbiological analyses show that iron and sulfate separately affect anode microbiomes, and the increase in power output is associated with the increases in bacteria affiliated with the families Geobacteraceae and/or Desulfuromonadaceae. We suggest that poly iron sulfate is an effective additive for increasing the electric output from microbial fuel cells. Other utilities of poly iron sulfate in microbial fuel cells are also discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Adhesion of Chlamydomonas microalgae to surfaces is switchable by light

    NASA Astrophysics Data System (ADS)

    Kreis, Christian Titus; Le Blay, Marine; Linne, Christine; Makowski, Marcin Michal; Bäumchen, Oliver

    2018-01-01

    Microalgae are photoactive microbes that live in liquid-infused environments, such as soil, temporary pools and rocks, where they encounter and colonize a plethora of surfaces. Their photoactivity manifests itself in a variety of processes, including light-directed motility (phototaxis), the growth of microalgal populations, and their photosynthetic machinery. Although microbial responses to light have been widely recognized, any influence of light on cell-surface interactions remains elusive. Here, we reveal that the unspecific adhesion of microalgae to surfaces can be reversibly switched on and off by light. Using a micropipette force spectroscopy technique, we measured in vivo single-cell adhesion forces and show that the microalga's flagella provide light-switchable adhesive contacts with the surface. This light-induced adhesion to surfaces is an active and completely reversible process that occurs on a timescale of seconds. Our results suggest that light-switchable adhesiveness is a natural functionality of microalgae to regulate the transition between the planktonic and the surface-associated state, which yields an adhesive adaptation to optimize the photosynthetic efficiency in conjunction with phototaxis.

  9. Solid-State (13)C NMR Delineates the Architectural Design of Biopolymers in Native and Genetically Altered Tomato Fruit Cuticles.

    PubMed

    Chatterjee, Subhasish; Matas, Antonio J; Isaacson, Tal; Kehlet, Cindie; Rose, Jocelyn K C; Stark, Ruth E

    2016-01-11

    Plant cuticles on outer fruit and leaf surfaces are natural macromolecular composites of waxes and polyesters that ensure mechanical integrity and mitigate environmental challenges. They also provide renewable raw materials for cosmetics, packaging, and coatings. To delineate the structural framework and flexibility underlying the versatile functions of cutin biopolymers associated with polysaccharide-rich cell-wall matrices, solid-state NMR spectra and spin relaxation times were measured in a tomato fruit model system, including different developmental stages and surface phenotypes. The hydrophilic-hydrophobic balance of the cutin ensures compatibility with the underlying polysaccharide cell walls; the hydroxy fatty acid structures of outer epidermal cutin also support deposition of hydrophobic waxes and aromatic moieties while promoting the formation of cell-wall cross-links that rigidify and strengthen the cuticle composite during fruit development. Fruit cutin-deficient tomato mutants with compromised microbial resistance exhibit less efficient local and collective biopolymer motions, stiffening their cuticular surfaces and increasing their susceptibility to fracture.

  10. Morphotype disparity in the Precambrian

    NASA Astrophysics Data System (ADS)

    Moore, Rachael; Reitner, Joachim; Braiser, Martin; Donoghue, Phil; Schirrmeister, Bettina

    2015-04-01

    Prokaryotes have dominated life on Earth for over 2 billion years. Throughout the Precambrian, prokaryotes acted as the major biological impetus for both large and small scale environmental changes. Yet, very little is known about the composition, diversity and evolution of ancient microbial communities due to poor preservation during the Precambrian period. Previous studies of fossils that date to this period relied mainly on light microscopy to identify microfossil morphology and abundance, with limited success. Here we present novel analyses of the microbial remains found in Precambrian stromatolites using Synchrotron Radiation x-Ray Tomographic Microscopy (SRXTM). Microfossils found in samples of three Precambrian deposits, 3.45 Ga Strelley Pool, Australia, 2.1 Ga Gunflint Chert, Canada, and 650 Ma Rasthof Cap Carbonate, Namibia, have been reconstructed in 3D. Based on four scans from each sample, we estimated size and abundance of spheroidal microfossils within those deposits. Our findings show that while cell abundance decreased towards the end of the Precambrian, the biovolume of microfossils within the host rock remained relatively constant. Additionally, both size and disparity increase through time. Constant biovolumes and yet different sizes for these three deposits, point towards a negative correlation of large cell size and cell abundance. This negative correlation indicates that the systems in which these prokaryotes lived may have been biolimited. Both, gas exchange and nutrient uptake in prokaryotes function via diffusion. Therefore, one would expect bacteria to evolve towards an increasing surface to volume ratio. Increased cell sizes, and hence decreased overall surface to volume ratio observed in our data, suggest the influence of other selective factors. Decreased abundance and increased cell size could potentially be associated to changes in nutrient availability and the occurrence of predation. As cells increased in size, more nutrients would be required, which could have a limiting effect on abundance. Additionally, eukaryotes start appearing in the fossil record around 1.6 Ga, with the origin of grazing predators within the Mesoproterozoic. Predation has been suggested to be an important driver for morphological change in bacteria, before. Preservational bias towards larger microfossils, in combination with smaller prokaryotes having been predated on by grazers, this could explain lower appearance of small microfossils in the late Precambrian. Analyses of more localities would be helpful to strengthen conclusions on causes and consequences of microbial size evolution during the Precambrian. Furthermore, analyses of more recently fossilized microbial communities, such as those found in modern stromatolites, could provide valuable information to examine the influence environmental factors have on cell size and abundance. Yet, our results, support earlier hypotheses that suggest a decline in prokaryotic preservation due to the appearance and success of eukaryotes and eukaryotic grazers at the end of the Precambrian.

  11. Diversity and Activity of Communities Inhabiting Plastic Debris in the North Pacific Gyre.

    PubMed

    Bryant, Jessica A; Clemente, Tara M; Viviani, Donn A; Fong, Allison A; Thomas, Kimberley A; Kemp, Paul; Karl, David M; White, Angelicque E; DeLong, Edward F

    2016-01-01

    Marine plastic debris has become a significant concern in ocean ecosystems worldwide. Little is known, however, about its influence on microbial community structure and function. In 2008, we surveyed microbial communities and metabolic activities in seawater and on plastic on an oceanographic expedition through the "great Pacific garbage patch." The concentration of plastic particles in surface seawater within different size classes (2 to 5 mm and >5 mm) ranged from 0.35 to 3.7 particles m -3 across sampling stations. These densities and the particle size distribution were consistent with previous values reported in the North Pacific Ocean. Net community oxygen production (NCP = gross primary production - community respiration) on plastic debris was positive and so net autotrophic, whereas NCP in bulk seawater was close to zero. Scanning electron microscopy and metagenomic sequencing of plastic-attached communities revealed the dominance of a few metazoan taxa and a diverse assemblage of photoautotrophic and heterotrophic protists and bacteria. Bryozoa , Cyanobacteria , Alphaproteobacteria , and Bacteroidetes dominated all plastic particles, regardless of particle size. Bacteria inhabiting plastic were taxonomically distinct from the surrounding picoplankton and appeared well adapted to a surface-associated lifestyle. Genes with significantly higher abundances among plastic-attached bacteria included che genes, secretion system genes, and nifH genes, suggesting enrichment for chemotaxis, frequent cell-to-cell interactions, and nitrogen fixation. In aggregate, our findings suggest that plastic debris forms a habitat for complex microbial assemblages that have lifestyles, metabolic pathways, and biogeochemical activities that are distinct from those of free-living planktonic microbial communities. IMPORTANCE Marine plastic debris is a growing concern that has captured the general public's attention. While the negative impacts of plastic debris on oceanic macrobiota, including mammals and birds, are well documented, little is known about its influence on smaller marine residents, including microbes that have key roles in ocean biogeochemistry. Our work provides a new perspective on microbial communities inhabiting microplastics that includes its effect on microbial biogeochemical activities and a description of the cross-domain communities inhabiting plastic particles. This study is among the first molecular ecology, plastic debris biota surveys in the North Pacific Subtropical Gyre. It has identified fundamental differences in the functional potential and taxonomic composition of plastic-associated microbes versus planktonic microbes found in the surrounding open-ocean habitat. Author Video : An author video summary of this article is available.

  12. A Comparison of Microbial Communities from Deep Igneous Crust

    NASA Astrophysics Data System (ADS)

    Smith, A. R.; Flores, G. E.; Fisk, M. R.; Colwell, F. S.; Thurber, A. R.; Mason, O. U.; Popa, R.

    2013-12-01

    Recent investigations of life in Earth's crust have revealed common themes in organism function, taxonomy, and diversity. Capacities for hydrogen oxidation, carbon fixation, methanogenesis and methanotrophy, iron and sulfur metabolisms, and hydrocarbon degradation often predominate in deep life communities, and crustal mineralogy has been hypothesized as a driving force for determining deep life community assemblages. Recently, we found that minerals characteristic of the igneous crust harbored unique communities when incubated in the Juan de Fuca Ridge flank borehole IODP 1301A. Here we present attached mineral biofilm morphologies and a comparison of our mineral communities to those from a variety of locations, contamination states, and igneous crustal or mineralogical types. We found that differences in borehole mineral communities were reflected in biofilm morphologies. Olivine biofilms were thick, carbon-rich films with embedded cells of uniform size and shape and often contained secondary minerals. Encrusted cells, spherical and rod-shaped cells, and tubes were indicative of glass surfaces. We also found that the attached communities from incubated borehole minerals were taxonomically more similar to native, attached communities from marine and continental crust than to communities from the aquifer water that seeded it. Our findings further support the hypothesis that mineralogy selects for microbial communities that have distinct phylogenetic, morphological, and potentially functional, signatures. This has important implications for resolving ecosystem function and microbial distributions in igneous crust, the largest deep habitat on Earth.

  13. Surface-attached cells, biofilms and biocide susceptibility: implications for hospital cleaning and disinfection.

    PubMed

    Otter, J A; Vickery, K; Walker, J T; deLancey Pulcini, E; Stoodley, P; Goldenberg, S D; Salkeld, J A G; Chewins, J; Yezli, S; Edgeworth, J D

    2015-01-01

    Microbes tend to attach to available surfaces and readily form biofilms, which is problematic in healthcare settings. Biofilms are traditionally associated with wet or damp surfaces such as indwelling medical devices and tubing on medical equipment. However, microbes can survive for extended periods in a desiccated state on dry hospital surfaces, and biofilms have recently been discovered on dry hospital surfaces. Microbes attached to surfaces and in biofilms are less susceptible to biocides, antibiotics and physical stress. Thus, surface attachment and/or biofilm formation may explain how vegetative bacteria can survive on surfaces for weeks to months (or more), interfere with attempts to recover microbes through environmental sampling, and provide a mixed bacterial population for the horizontal transfer of resistance genes. The capacity of existing detergent formulations and disinfectants to disrupt biofilms may have an important and previously unrecognized role in determining their effectiveness in the field, which should be reflected in testing standards. There is a need for further research to elucidate the nature and physiology of microbes on dry hospital surfaces, specifically the prevalence and composition of biofilms. This will inform new approaches to hospital cleaning and disinfection, including novel surfaces that reduce microbial attachment and improve microbial detachment, and methods to augment the activity of biocides against surface-attached microbes such as bacteriophages and antimicrobial peptides. Future strategies to address environmental contamination on hospital surfaces should consider the presence of microbes attached to surfaces, including biofilms. Copyright © 2014 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  14. Experimental evidence that microbial activity lowers the albedo of glacier surfaces: the cryoconite casserole experiment.

    NASA Astrophysics Data System (ADS)

    Musilova, M.; Tranter, M.; Takeuchi, N.; Anesio, A. M.

    2014-12-01

    Darkened glacier and ice sheet surfaces have lower albedos, absorb more solar radiation and consequently melt more rapidly. The increase in glacier surface darkening is an important positive feedback to warming global temperatures, leading to ever growing world-wide ice mass loss. Most studies focus primarily on glacial albedo darkening caused by the physical properties of snow and ice surfaces, and the deposition of dark impurities on glaciers. To date, however, the important effects of biological activity have not been included in most albedo reduction models. This study provides the first experimental evidence that microbial activity can significantly decrease the albedo of glacier surfaces. An original laboratory experiment, the cryoconite casserole, was designed to test the microbial darkening of glacier surface debris (cryoconite) under simulated Greenlandic summer conditions. It was found that minor fertilisation of the cryoconite (at nutrient concentrations typical of glacial ice melt) stimulated extensive microbial activity. Microbes intensified their organic carbon fixation and even mined phosphorous out of the glacier surface sediment. Furthermore, the microbial organic carbon production, accumulation and transformation caused the glacial debris to darken further by 17.3% reflectivity (albedo analogue). These experiments are consistent with the hypothesis that enhanced fertilisation by anthropogenic inputs results in substantial amounts of organic carbon fixation, debris darkening and ultimately to a considerable decrease in the ice albedo of glacier surfaces on global scales. The sizeable amounts of microbially produced glacier surface organic matter and nutrients can thus be a vital source of bioavailable nutrients for subglacial and downstream environments.

  15. Deposition and postdeposition mechanisms as possible drivers of microbial population variability in glacier ice.

    PubMed

    Xiang, Shu-Rong; Shang, Tian-Cui; Chen, Yong; Yao, Tan-Dong

    2009-11-01

    Glaciers accumulate airborne microorganisms year by year and thus are good archives of microbial communities and their relationship to climatic and environmental changes. Hypotheses have focused on two possible drivers of microbial community composition in glacier systems. One is aeolian deposition, in which the microbial load by aerosol, dust, and precipitation events directly determines the amount and composition of microbial species in glacier ice. The other is postdepositional selection, in which the metabolic activity in surface snow causes microbial community shifts in glacier ice. An additional possibility is that both processes occur simultaneously. Aeolian deposition initially establishes a microbial community in the ice, whereas postdeposition selection strengthens the deposition patterns of microorganisms with the development of tolerant species in surface snow, resulting in varying structures of microbial communities with depth. In this minireview, we examine these postulations through an analysis of physical-chemical and biological parameters from the Malan and Vostok ice cores, and the Kuytun 51 Glacial surface and deep snow. We discuss these and other recent results in the context of the hypothesized mechanisms driving microbial community succession in glaciers. We explore our current gaps in knowledge and point out future directions for research on microorganisms in glacial ecosystems.

  16. Cell Surface Trafficking of TLR1 Is Differentially Regulated by the Chaperones PRAT4A and PRAT4B*

    PubMed Central

    Hart, Bryan E.; Tapping, Richard I.

    2012-01-01

    The subcellular localization of Toll-like receptors (TLRs) is critical to their ability to function as innate immune sensors of microbial infection. We previously reported that an I602S polymorphism of human TLR1 is associated with aberrant trafficking of the receptor to the cell surface, loss of responses to TLR1 agonists, and differential susceptibility to diseases caused by pathogenic mycobacteria. Through an extensive analysis of receptor deletion and point mutants we have discovered that position 602 resides within a short 6 amino acid cytoplasmic region that is required for TLR1 surface expression. This short trafficking motif, in conjunction with the adjacent transmembrane domain, is sufficient to direct TLR1 to the cell surface. A serine at position 602 interrupts this trafficking motif and prevents cell surface expression of TLR1. Additionally, we have found that ER-resident TLR chaperones, PRAT4A and PRAT4B, act as positive and negative regulators of TLR1 surface trafficking, respectively. Importantly, either over-expression of PRAT4A or knock-down of PRAT4B rescues cell surface expression of the TLR1 602S variant. We also report that IFN-γ treatment of primary human monocytes derived from homozygous 602S individuals rescues TLR1 cell surface trafficking and cellular responses to soluble agonists. This event appears to be mediated by PRAT4A whose expression is strongly induced in human monocytes by IFN-γ. Collectively, these results provide a mechanism for the differential trafficking of TLR1 I602S variants, and highlight the distinct roles for PRAT4A and PRAT4B in the regulation of TLR1 surface expression. PMID:22447933

  17. Microplastic-associated bacterial assemblages in the intertidal zone of the Yangtze Estuary.

    PubMed

    Jiang, Peilin; Zhao, Shiye; Zhu, Lixin; Li, Daoji

    2018-05-15

    Plastic trash is common in oceans. Terrestrial and marine ecosystem interactions occur in the intertidal zone where accumulation of plastic frequently occurs. However, knowledge of the plastic-associated microbial community (the plastisphere) in the intertidal zone is scanty. We used high-throughput sequencing to profile the bacterial communities attached to microplastic samples from intertidal locations around the Yangtze estuary in China. The structure and composition of plastisphere communities varied significantly among the locations. We found the taxonomic composition on microplastic samples was related to their sedimentary and aquatic origins. Correlation network analysis was used to identify keystone bacterial genera (e.g. Rhodobacterales, Sphingomonadales and Rhizobiales), which represented important microbial associations within the plastisphere community. Other species (i.e. potential pathogens) were considered as hitchhikers in the plastic attached microbial communities. Metabolic pathway analysis suggested adaptations of these bacterial assemblages to the plastic surface-colonization lifestyle. These adaptations included reduced "cell motility" and greater "xenobiotics biodegradation and metabolism." The findings illustrate the diverse microbial assemblages that occur on microplastic and increase our understanding of plastisphere ecology. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Microbial population and functional dynamics associated with surface potential and carbon metabolism

    PubMed Central

    Ishii, Shun'ichi; Suzuki, Shino; Norden-Krichmar, Trina M; Phan, Tony; Wanger, Greg; Nealson, Kenneth H; Sekiguchi, Yuji; Gorby, Yuri A; Bretschger, Orianna

    2014-01-01

    Microbial extracellular electron transfer (EET) to solid surfaces is an important reaction for metal reduction occurring in various anoxic environments. However, it is challenging to accurately characterize EET-active microbial communities and each member's contribution to EET reactions because of changes in composition and concentrations of electron donors and solid-phase acceptors. Here, we used bioelectrochemical systems to systematically evaluate the synergistic effects of carbon source and surface redox potential on EET-active microbial community development, metabolic networks and overall electron transfer rates. The results indicate that faster biocatalytic rates were observed under electropositive electrode surface potential conditions, and under fatty acid-fed conditions. Temporal 16S rRNA-based microbial community analyses showed that Geobacter phylotypes were highly diverse and apparently dependent on surface potentials. The well-known electrogenic microbes affiliated with the Geobacter metallireducens clade were associated with lower surface potentials and less current generation, whereas Geobacter subsurface clades 1 and 2 were associated with higher surface potentials and greater current generation. An association was also observed between specific fermentative phylotypes and Geobacter phylotypes at specific surface potentials. When sugars were present, Tolumonas and Aeromonas phylotypes were preferentially associated with lower surface potentials, whereas Lactococcus phylotypes were found to be closely associated with Geobacter subsurface clades 1 and 2 phylotypes under higher surface potential conditions. Collectively, these results suggest that surface potentials provide a strong selective pressure, at the species and strain level, for both solid surface respirators and fermentative microbes throughout the EET-active community development. PMID:24351938

  19. Comparison of microbial communities in Lake Tahoe surface sample with Tonga Trench water column samples using High Pressure Liquid Chromatography - Electrospray Ionization - Mass Spectroscopy (HPLC - ESI - MS) and Global Natural Products Social Molecular Network (GNPS)

    NASA Astrophysics Data System (ADS)

    Belmonte, M. A.

    2015-12-01

    Intact polar lipids (IPLs) are lipids composed of a head group, a glycerol, and a fatty acid chain that make up the lipid bilayer of cell membranes in living cells; and the varying head groups can be indicative of the type of microbes present in the environment (Van Mooy 2010). So by distinguishing and identifying the IPL distribution in an environment one can make inferences about the microbial communities in the said environment. In this study, we used High Pressure Liquid Chromatography-Electrospray Ionization- Mass Spectroscopy (HPLC-ESI-MS) and Global Natural Products Social Molecular Networking (GNPS) to compare the IPL distributions of two oligotrophic environments: surface waters of Lake Tahoe in the Sierra Nevada Mountains, and the water column of the Tonga Trench in the South Pacific. We hypothesized that the similar nutrient dynamics of the two oligotrophic environments would result in similar eukaryotic and prokaryotic communities, which would be reflected in the IPL composition of suspended particulate organic matter (POM). For simplicity we focused on the classes of IPLs most commonly observed in the marine environment: phosphotidylglycerol (PG), phosphotidylethanolamine (PE), diacylglyceryl-trimethyl-homoserine (DGTS), diacylglyceryl-hydroxymethyl-trimethylalanine (DGTA), sulfoquinovosyldiacylglycerol (SQDG), monoglycosyldiacylglycerol (MGDG) and diglycosyldiacylglycerol (DGDG). Our results showed that all of the marine IPLs of interest were present in Lake Tahoe which confirms that there are many of the same microbial communities in the fresh waters of Lake Tahoe and the salt waters Tonga Trench.

  20. Antimicrobial Efficacy of Two Surface Barrier Discharges with Air Plasma against In Vitro Biofilms

    PubMed Central

    Matthes, Rutger; Bender, Claudia; Schlüter, Rabea; Koban, Ina; Bussiahn, René; Reuter, Stephan; Lademann, Jürgen; Weltmann, Klaus-Dieter; Kramer, Axel

    2013-01-01

    The treatment of infected wounds is one possible therapeutic aspect of plasma medicine. Chronic wounds are often associated with microbial biofilms which limit the efficacy of antiseptics. The present study investigates two different surface barrier discharges with air plasma to compare their efficacy against microbial biofilms with chlorhexidine digluconate solution (CHX) as representative of an important antibiofilm antiseptic. Pseudomonas aeruginosa SG81 and Staphylococcus epidermidis RP62A were cultivated on polycarbonate discs. The biofilms were treated for 30, 60, 150, 300 or 600 s with plasma or for 600 s with 0.1% CHX, respectively. After treatment, biofilms were dispensed by ultrasound and the antimicrobial effects were determined as difference in the number of the colony forming units by microbial culture. A high antimicrobial efficacy on biofilms of both plasma sources in comparison to CHX treatment was shown. The efficacy differs between the used strains and plasma sources. For illustration, the biofilms were examined under a scanning electron microscope before and after treatment. Additionally, cytotoxicity was determined by the MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay with L929 mouse fibroblast cell line. The cell toxicity of the used plasma limits its applicability on human tissue to maximally 150 s. The emitted UV irradiance was measured to estimate whether UV could limit the application on human tissue at the given parameters. It was found that the UV emission is negligibly low. In conclusion, the results support the assumption that air plasma could be an option for therapy of chronic wounds. PMID:23894661

  1. The Impact of Climate Change on Microbial Communities and Carbon Cycling in High Arctic Permafrost Soil from Spitsbergen, Northern Norway

    NASA Astrophysics Data System (ADS)

    de Leon, K. C.; Schwery, D.; Yoshikawa, K.; Christiansen, H. H.; Pearce, D.

    2014-12-01

    Permafrost-affected soils are among the most fragile ecosystems in which current microbial controls on organic matter decomposition are changing as a result of climate change. Warmer conditions in the high Arctic will lead to a deepening of the seasonal active layer of permafrost, provoking changes in microbial processes and possibly resulting in exacerbated carbon degradation under increasing anoxic conditions. The viable and non-viable fractions of the microbial community in a permafrost soil from Adventdalen, Spitsbergen, Norway were subjected to a comprehensive investigation using culture-dependent and culture-independent methods. Molecular analyses using FISH (with CTC-DAPI) and amplified rDNA restriction analysis (ARDRA) on a 257cm deep core, revealed the presence of all major microbial soil groups, with the active layer having more viable cells, and a higher microbial community diversity. Carbon dioxide (CO2) and methane (CH4) flux measurements were performed to show the amount of C stored in the sample. We demonstrated that the microbial community composition from the soil in the center of the core was most likely influenced by small scale variations in environmental conditions. Community structure showed distinct shift of presence of bacterial groups along the vertical temperature gradient profile and microbial counts and diversity was found to be highest in the surface layers, decreasing with depth. It was observed that soil properties driving microbial diversity and functional potential varied across the permafrost table. Data on the variability of CO2 and CH4 distribution described in peat structure heterogeneity are important for modeling emissions on a larger scale. Furthermore, linking microbial biomass to gas distribution may elucidate the cause of peak CO2 and CH4 and their changes in relation to environmental change and peat composition.

  2. Microbial Heat Recovery Cell (MHRC) System Concept

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This factsheet describes a project that aimed to develop a microbial heat recovery cell (MHRC) system that combines a microbial reverse electrodialysis technology with waste heat recovery to convert industrial effluents into electricity and hydrogen.

  3. Removal forces and adhesion properties of Saccharomyces cerevisiae on glass substrates probed by optical tweezer

    NASA Astrophysics Data System (ADS)

    Castelain, Mickaël; Pignon, Frédéric; Piau, Jean-Michel; Magnin, Albert; Mercier-Bonin, Muriel; Schmitz, Philippe

    2007-10-01

    In agroindustry, the hygiene of solid surfaces is of primary importance in order to ensure that products are safe for consumers. To improve safety, one of the major ways consists in identifying and understanding the mechanisms of microbial cell adhesion to nonporous solid surfaces or filtration membranes. In this paper we investigate the adhesion of the yeast cell Saccharomyces cerevisiae (about 5μm in diameter) to a model solid surface, using well-defined hydrophilic glass substrates. An optical tweezer device developed by Piau [J. Non-Newtonian Fluid Mech. 144, 1 (2007)] was applied to yeast cells in contact with well-characterized glass surfaces. Two planes of observation were used to obtain quantitative measurements of removal forces and to characterize the corresponding mechanisms at a micrometer length scale. The results highlight various adhesion mechanisms, depending on the ionic strength, contact time, and type of yeast. The study has allowed to show a considerable increase of adhering cells with the ionic strength and has provided a quantitative measurement of the detachment forces of cultured yeast cells. Force levels are found to grow with ionic strength and differences in mobility are highlighted. The results clearly underline that a microrheological approach is essential for analyzing the adhesion mechanisms of biological systems at the relevant local scales.

  4. Opening the black box of spring water microbiology from alpine karst aquifers to support proactive drinking water resource management

    PubMed Central

    Savio, Domenico; Stadler, Philipp; Reischer, Georg H.; Kirschner, Alexander K.T.; Demeter, Katalin; Linke, Rita; Blaschke, Alfred P.; Sommer, Regina; Szewzyk, Ulrich; Wilhartitz, Inés C.; Mach, Robert L.; Stadler, Hermann

    2018-01-01

    Over the past 15 years, pioneering interdisciplinary research has been performed on the microbiology of hydrogeologically well‐defined alpine karst springs located in the Northern Calcareous Alps (NCA) of Austria. This article gives an overview on these activities and links them to other relevant research. Results from the NCA springs and comparable sites revealed that spring water harbors abundant natural microbial communities even in aquifers with high water residence times and the absence of immediate surface influence. Apparently, hydrogeology has a strong impact on the concentration and size of the observed microbes, and total cell counts (TCC) were suggested as a useful means for spring type classification. Measurement of microbial activities at the NCA springs revealed extremely low microbial growth rates in the base flow component of the studied spring waters and indicated the importance of biofilm‐associated microbial activities in sediments and on rock surfaces. Based on genetic analysis, the autochthonous microbial endokarst community (AMEC) versus transient microbial endokarst community (TMEC) concept was proposed for the NCA springs, and further details within this overview article are given to prompt its future evaluation. In this regard, it is well known that during high‐discharge situations, surface‐associated microbes and nutrients such as from soil habitats or human settlements—potentially containing fecal‐associated pathogens as the most critical water‐quality hazard—may be rapidly flushed into vulnerable karst aquifers. In this context, a framework for the comprehensive analysis of microbial pollution has been proposed for the NCA springs to support the sustainable management of drinking water safety in accordance with recent World Health Organization guidelines. Near‐real‐time online water quality monitoring, microbial source tracking (MST) and MST‐guided quantitative microbial‐risk assessment (QMRA) are examples of the proposed analytical tools. In this context, this overview article also provides a short introduction to recently emerging methodologies in microbiological diagnostics to support reading for the practitioner. Finally, the article highlights future research and development needs. This article is categorized under: 1Engineering Water > Water, Health, and Sanitation2Science of Water > Water Extremes3Water and Life > Nature of Freshwater Ecosystems PMID:29780584

  5. Electrokinesis is a microbial behavior that requires extracellular electron transport

    PubMed Central

    Harris, H. W.; El-Naggar, M. Y.; Bretschger, O.; Ward, M. J.; Romine, M. F.; Obraztsova, A. Y.; Nealson, K. H.

    2009-01-01

    We report a previously undescribed bacterial behavior termed electrokinesis. This behavior was initially observed as a dramatic increase in cell swimming speed during reduction of solid MnO2 particles by the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1. The same behavioral response was observed when cells were exposed to small positive applied potentials at the working electrode of a microelectrochemical cell and could be tuned by adjusting the potential on the working electrode. Electrokinesis was found to be different from both chemotaxis and galvanotaxis but was absent in mutants defective in electron transport to solid metal oxides. Using in situ video microscopy and cell tracking algorithms, we have quantified the response for different strains of Shewanella and shown that the response correlates with current-generating capacity in microbial fuel cells. The electrokinetic response was only exhibited by a subpopulation of cells closest to the MnO2 particles or electrodes. In contrast, the addition of 1 mM 9,10-anthraquinone-2,6-disulfonic acid, a soluble electron shuttle, led to increases in motility in the entire population. Electrokinesis is defined as a behavioral response that requires functional extracellular electron transport and that is observed as an increase in cell swimming speeds and lengthened paths of motion that occur in the proximity of a redox active mineral surface or the working electrode of an electrochemical cell. PMID:20018675

  6. Fast microbial reduction of ferrihydrite colloids from a soil effluent

    NASA Astrophysics Data System (ADS)

    Fritzsche, Andreas; Bosch, Julian; Rennert, Thilo; Heister, Katja; Braunschweig, Juliane; Meckenstock, Rainer U.; Totsche, Kai U.

    2012-01-01

    Recent studies on the microbial reduction of synthetic iron oxide colloids showed their superior electron accepting property in comparison to bulk iron oxides. However, natural colloidal iron oxides differ in composition from their synthetic counterparts. Besides a potential effect of colloid size, microbial iron reduction may be accelerated by electron-shuttling dissolved organic matter (DOM) as well as slowed down by inhibitors such as arsenic. We examined the microbial reduction of OM- and arsenic-containing ferrihydrite colloids. Four effluent fractions were collected from a soil column experiment run under water-saturated conditions. Ferrihydrite colloids precipitated from the soil effluent and exhibited stable hydrodynamic diameters ranging from 281 (±146) nm in the effluent fraction that was collected first and 100 (±43) nm in a subsequently obtained effluent fraction. Aliquots of these oxic effluent fractions were added to anoxic low salt medium containing diluted suspensions of Geobacter sulfurreducens. Independent of the initial colloid size, the soil effluent ferrihydrite colloids were quickly and completely reduced. The rates of Fe2+ formation ranged between 1.9 and 3.3 fmol h-1 cell-1, and are in the range of or slightly exceeding previously reported rates of synthetic ferrihydrite colloids (1.3 fmol h-1 cell-1), but greatly exceeding previously known rates of macroaggregate-ferrihydrite reduction (0.07 fmol h-1 cell-1). The inhibition of microbial Fe(III) reduction by arsenic is unlikely or overridden by the concurrent enhancement induced by soil effluent DOM. These organic species may have increased the already high intrinsic reducibility of colloidal ferrihydrite owing to quinone-mediated electron shuttling. Additionally, OM, which is structurally associated with the soil effluent ferrihydrite colloids, may also contribute to the higher reactivity due to increasing solubility and specific surface area of ferrihydrite. In conclusion, ferrihydrite colloids from soil effluents can be considered as highly reactive electron acceptors in anoxic environments.

  7. Microbial Monitoring of Pathogens by Comparing Multiple Real-Time PCR Platforms for Potential Space Applications

    NASA Technical Reports Server (NTRS)

    Birmele, Michele

    2012-01-01

    The International Space Station (ISS) is a closed environment wih rotations of crew and equipment each introducing their own microbial flora making it necessary to monitor the air, surfaces, and water for microbial contamination. Current microbial monitoring includes labor and time intensive methods to enumerate total bacterial and fungal cells with limited characterization during in-flight testing. Although this culture-based method has been sufficient for monitoring the ISS, future long duration missions will need to perform more comprehensive characterization in-flight, since sample return and ground characterization may not be available. A workshop was held in 2011 at the Johnson Space Center to discuss alternative methodologies and technologies suitable for microbial monitoring for these longterm exploration missions where molecular-based methodologies, such as polymerase chain reaction (PCR), were recommended. In response, a multi-center (Marshall Space Flight Center, Johnson Space Center, Jet Propulsion Laboratory, and Kennedy Space Center) collaborative research effort was initiated to explore novel commercial-off-the-shelf hardware options for spaceflight environmental monitoring. The goal was to evaluate quantitative/semi-quantitative PCR approaches to space applications for low cost in-flight rapid identification of microorganisms affecting crew safety. The initial phase of this project identified commercially available platforms that could be minimally modified to perform nominally in microgravity followed by proof-of-concept testing on the highest qualifying candidates with a universally available test organism, Salmonella enterica. The platforms evaluated during proof-of-concept testing included the iCubate 2.0(TradeMark) (iCubate, Huntsville, AL), RAZOR EX (BioFire Diagnostics; Salt Lake City, Utah) and SmartCycler(TradeMark) (Cepheid; Sunnyvale, CA). The analysis identified two potential technologies (iCubate 2.0 and RAZOR EX) that were able to perform sample-to-answer testing with cell sample concentrations between SO to 400 cells. In addition, the commercial systems were evaluated for initial flight safety and readiness, sample concentration needs were reviewed, and a competitive procurement of commercially available platforms was initiated.

  8. The Role of Cell Surface Architecture of Lactobacilli in Host-Microbe Interactions in the Gastrointestinal Tract

    PubMed Central

    Altermann, Eric; Anderson, Rachel C.; McNabb, Warren C.; Moughan, Paul J.; Roy, Nicole C.

    2013-01-01

    Lactobacillus species can exert health promoting effects in the gastrointestinal tract (GIT) through many mechanisms, which include pathogen inhibition, maintenance of microbial balance, immunomodulation, and enhancement of the epithelial barrier function. Different species of the genus Lactobacillus can evoke different responses in the host, and not all strains of the same species can be considered beneficial. Strain variations may be related to diversity of the cell surface architecture of lactobacilli and the bacteria's ability to express certain surface components or secrete specific compounds in response to the host environment. Lactobacilli are known to modify their surface structures in response to stress factors such as bile and low pH, and these adaptations may help their survival in the face of harsh environmental conditions encountered in the GIT. In recent years, multiple cell surface-associated molecules have been implicated in the adherence of lactobacilli to the GIT lining, immunomodulation, and protective effects on intestinal epithelial barrier function. Identification of the relevant bacterial ligands and their host receptors is imperative for a better understanding of the mechanisms through which lactobacilli exert their beneficial effects on human health. PMID:23576850

  9. Macroscale porous carbonized polydopamine-modified cotton textile for application as electrode in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Zeng, Lizhen; Zhao, Shaofei; He, Miao

    2018-02-01

    The anode material is a crucial factor that significantly affects the cost and performance of microbial fuel cells (MFCs). In this study, a novel macroscale porous, biocompatible, highly conductive and low cost electrode, carbonized polydopamine-modified cotton textile (NC@CCT), is fabricated by using normal cheap waste cotton textiles as raw material via a simple in situ polymerization and carbonization treatment as anode of MFCs. The physical and chemical characterizations show that the macroscale porous and biocompatible NC@CCT electrode is coated by nitrogen-doped carbon nanoparticles and offers a large specific surface area (888.67 m2 g-1) for bacterial cells growth, accordingly greatly increases the loading amount of bacterial cells and facilitates extracellular electron transfer (EET). As a result, the MFC equipped with the NC@CCT anode achieves a maximum power density of 931 ± 61 mW m-2, which is 80.5% higher than that of commercial carbon felt (516 ± 27 mW m-2) anode. Moreover, making full use of the normal cheap waste cotton textiles can greatly reduce the cost of MFCs and the environmental pollution problem.

  10. Electrochemically exfoliated graphene anodes with enhanced biocurrent production in single-chamber air-breathing microbial fuel cells.

    PubMed

    Najafabadi, Amin Taheri; Ng, Norvin; Gyenge, Előd

    2016-07-15

    Microbial fuel cells (MFCs) present promising options for environmentally sustainable power generation especially in conjunction with waste water treatment. However, major challenges remain including low power density, difficult scale-up, and durability of the cell components. This study reports enhanced biocurrent production in a membrane-free MFC, using graphene microsheets (GNs) as anode and MnOx catalyzed air cathode. The GNs are produced by ionic liquid assisted simultaneous anodic and cathodic electrochemical exfoliation of iso-molded graphite electrodes. The GNs produced by anodic exfoliation increase the MFC peak power density by over 300% compared to plain carbon cloth (i.e., 2.85Wm(-2) vs 0.66Wm(-2), respectively), and by 90% compared to conventional carbon black (i.e., Vulcan XC-72) anode. These results exceed previously reported power densities for graphene-containing MFC anodes. The fuel cell polarization results are corroborated by electrochemical impedance spectroscopy indicating three times lower charge transfer resistance for the GN anode. Material characterizations suggest that the best performing GN samples were of relatively smaller size (~500nm), with higher levels of ionic liquid induced surface functionalization during the electrochemical exfoliation process. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Effect of food microstructure on growth dynamics of Listeria monocytogenes in fish-based model systems.

    PubMed

    Verheyen, Davy; Bolívar, Araceli; Pérez-Rodríguez, Fernando; Baka, Maria; Skåra, Torstein; Van Impe, Jan F

    2018-06-01

    Traditionally, predictive growth models for food pathogens are developed based on experiments in broth media, resulting in models which do not incorporate the influence of food microstructure. The use of model systems with various microstructures is a promising concept to get more insight into the influence of food microstructure on microbial dynamics. By means of minimal variation of compositional and physicochemical factors, these model systems can be used to study the isolated effect of certain microstructural aspects on microbial growth, survival and inactivation. In this study, the isolated effect on microbial growth dynamics of Listeria monocytogenes of two food microstructural aspects and one aspect influenced by food microstructure were investigated, i.e., the nature of the food matrix, the presence of fat droplets, and microorganism growth morphology, respectively. To this extent, fish-based model systems with various microstructures were used, i.e., a liquid, a second more viscous liquid system containing xanthan gum, an emulsion, an aqueous gel, and a gelled emulsion. Growth experiments were conducted at 4 and 10 °C, both using homogeneous and surface inoculation (only for the gelled systems). Results regarding the influence of the growth morphology indicated that the lag phase of planktonic cells in the liquid system was similar to the lag phase of submerged colonies in the xanthan system. The lag phase of submerged colonies in each gelled system was considerably longer than the lag phase of surface colonies on these respective systems. The maximum specific growth rate of planktonic cells in the liquid system was significantly lower than for submerged colonies in the xanthan system at 10 °C, while no significant differences were observed at 4 °C. The maximum cell density was higher for submerged colonies than for surface colonies. The nature of the food matrix only exerted an influence on the maximum specific growth rate, which was significantly higher in the viscous systems than in the gelled systems. The presence of a small amount of fat droplets improved the growth of L. monocytogenes at 4 °C, resulting in a shorter lag phase and a higher maximum specific growth rate. The obtained results could be useful in the determination of a set of suitable microstructural parameters for future predictive models that incorporate the influence of food microstructure on microbial dynamics. Copyright © 2018. Published by Elsevier B.V.

  12. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells.

    PubMed

    Logan, Bruce; Cheng, Shaoan; Watson, Valerie; Estadt, Garett

    2007-05-01

    To efficiently generate electricity using bacteria in microbial fuel cells (MFCs), highly conductive noncorrosive materials are needed that have a high specific surface area (surface area per volume) and an open structure to avoid biofouling. Graphite brush anodes, consisting of graphite fibers wound around a conductive, but noncorrosive metal core, were examined for power production in cube (C-MFC) and bottle (B-MFC) air-cathode MFCs. Power production in C-MFCs containing brush electrodes at 9600 m2/m3 reactor volume reached a maximum power density of 2400 mW/m2 (normalized to the cathode projected surface area), or 73 W/m3 based on liquid volume, with a maximum Coulombic efficiency (CE) of 60%. This power density, normalized by cathode projected area, is the highest value yet achieved by an air-cathode system. The increased power resulted from a reduction in internal resistance from 31 to 8 Q. Brush electrodes (4200 m2/m3) were also tested in B-MFCs, consisting of a laboratory media bottle modified to have a single side arm with a cathode clamped to its end. B-MFCs inoculated with wastewater produced up to 1430 mW/m2 (2.3 W/m3, CE = 23%) with brush electrodes, versus 600 mW/m2 with a plain carbon paper electrode. These findings show that brush anodes that have high surface areas and a porous structure can produce high power densities, and therefore have qualities that make them ideal for scaling up MFC systems.

  13. Synergistic effect of polyaniline coverage and surface microstructure on the inhibition of Pseudomonas aeruginosa biofilm formation.

    PubMed

    Gallarato, L A; Mulko, L E; Dardanelli, M S; Barbero, C A; Acevedo, D F; Yslas, E I

    2017-02-01

    Biofilm Formation is a survival strategy for microorganisms to adapt to their environment. Microbial cells in biofilm become tolerant and resistant to antibiotics and immune responses, increasing the difficulties for the clinical treatment of microbial infections. The surface chemistry and the micro/nano-topography of solid interfaces play a major role in mediating microorganism activity and adhesion. The effect of the surface chemical composition and topography on the adhesion and viability of Pseudomonas aeruginosa was studied. Polymeric (polyethylene terephthalate) surfaces were covered with a conducting polymer (polyaniline, PANI) film by in-situ polymerization and microstructured by Direct Laser Interference Patterning (DLIP). The viability of Pseudomonas aeruginosa on the different surfaces was investigated. The physicochemical properties of the surfaces were characterized by water contact angle measurements, scanning electron microscopy and atomic force microscopy. Bacterial biofilms were imaged by atomic force and scanning electron microscopies. The bacterial viability decreased on PANI compared with the substrate (polyethylene terephthalate) and it decreased even more upon micro-structuring the PANI films. In addition, the biofilm reduction could be improved using polymers with different chemical composition and/or the same polymer with different topographies. Both methods presented diminish the bacterial attachment and biofilm formation. These findings present a high impact related to materials for biomedical engineer applications regarding medical devices, as prostheses or catheters. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Study on Microbial Deposition and Contamination onto Six Surfaces Commonly Used in Chemical and Microbiological Laboratories

    PubMed Central

    Tamburini, Elena; Donegà, Valentina; Marchetti, Maria Gabriella; Pedrini, Paola; Monticelli, Cecilia; Balbo, Andrea

    2015-01-01

    The worktops in both chemical and microbiological laboratories are the surfaces most vulnerable to damage and exposure to contamination by indoor pollutants. The rate at which particles are deposited on indoor surfaces is an important parameter to determine human exposure to airborne biological particles. In contrast to what has been established for inorganic pollutants, no limit has been set by law for microbial contamination in indoor air. To our knowledge, a comparative study on the effect of surfaces on the deposition of microbes has not been carried out. An evaluation of the microbial contamination of worktop materials could be of crucial importance, both for safety reasons and for the reliability of tests and experiments that need to be carried out in non-contaminated environments. The aim of this study was to evaluate the overall microbial contamination (fungi, mesophilic and psychrophilic bacteria, staphylococci) on six widely used worktop materials in laboratories (glass, stainless steel, fine porcelain stoneware, post-forming laminate, high-performing laminate and enamel steel) and to correlate it with the characteristics of the surfaces. After cleaning, the kinetics of microbial re-contamination were also evaluated for all surfaces. PMID:26193296

  15. Systems and Photosystems: Cellular Limits of Autotrophic Productivity in Cyanobacteria

    PubMed Central

    Burnap, Robert L.

    2014-01-01

    Recent advances in the modeling of microbial growth and metabolism have shown that growth rate critically depends upon the optimal allocation of finite proteomic resources among different cellular functions and that modeling growth rates becomes more realistic with the explicit accounting for the costs of macromolecular synthesis, most importantly, protein expression. The “proteomic constraint” is considered together with its application to understanding photosynthetic microbial growth. The central hypothesis is that physical limits of cellular space (and corresponding solvation capacity) in conjunction with cell surface-to-volume ratios represent the underlying constraints on the maximal rate of autotrophic microbial growth. The limitation of cellular space thus constrains the size the total complement of macromolecules, dissolved ions, and metabolites. To a first approximation, the upper limit in the cellular amount of the total proteome is bounded this space limit. This predicts that adaptation to osmotic stress will result in lower maximal growth rates due to decreased cellular concentrations of core metabolic proteins necessary for cell growth owing the accumulation of compatible osmolytes, as surmised previously. The finite capacity of membrane and cytoplasmic space also leads to the hypothesis that the species-specific differences in maximal growth rates likely reflect differences in the allocation of space to niche-specific proteins with the corresponding diminution of space devoted to other functions including proteins of core autotrophic metabolism, which drive cell reproduction. An optimization model for autotrophic microbial growth, the autotrophic replicator model, was developed based upon previous work investigating heterotrophic growth. The present model describes autotrophic growth in terms of the allocation protein resources among core functional groups including the photosynthetic electron transport chain, light-harvesting antennae, and the ribosome groups. PMID:25654078

  16. Exploring Metabolic Activities of Deeply Buried Microbial Communities in Oxic Sediments Underlying Oligotrophic Open Ocean Gyres

    NASA Astrophysics Data System (ADS)

    Ziebis, W.; Patel, A.; Krupke, A.; Ferdelman, T. G.

    2012-12-01

    The vast majority of scientific drilling expeditions have focused on continental margins where oxygen is depleted within the surface (1 m) layer of the sediment and buried organic carbon sustains anaerobic microbial communities. IODP expeditions 329 (South Pacific Gyre) and 336 (Mid-Atlantic Ridge - North Pond) took place in oligotrophic open ocean regions, which constitute 48% of the world ocean. These expeditions have revealed that unlike continental margins the seafloor underneath oligotrophic ocean gyres is oxic. Within the South Pacific Gyre (SPG) dissolved oxygen persists throughout the sediment cover and reaches the basement even at the sites with thickest sediment cover (62 and 75 mbsf). North Pond is a sedimented pond (< 300 m sediment cover) located on the flank of the Mid-Atlantic Ridge underlying the oligotrophic central Atlantic. Here, oxygen diffuses upward from the basaltic aquifer underlying the sediment package in addition to deep oxygen penetration from the overlying water. Oxygen is the main electron acceptor available for sub-seafloor microbial activity in these vast oligotrophic open ocean regions. Microbial cells are present and active in the organic poor sediments, albeit numbers are near or below the detection limit (<103 cm-3 sediment) in the extremely organic-poor sediment of the SPG (below 2 -15 m sediment depth, depending on the location). However, we have very limited knowledge on the microbial community compositions and metabolic activities. Even the dominance of bacteria or archaea remains largely elusive. It has been suggested that while archaea dominate in the anoxic sediments of continental margins bacteria might be more abundant in the oxic seafloor underlying oligotrophic ocean gyres where aerobic respiration prevails. Experiments were conducted with sediment samples from the SPG and North Pond to explore the pattern of microbial diversity and metabolic activity using a suite of radio and stable isotopes in combination with single cell analyses. Our goal was to track the uptake and turnover of metabolically important elements (C, N, P) and to compare metabolic activities (heterotrophy / autotrophy) between sites and with depth. Labeling of cells using fluorescent oligonucleotide probes (HISH and CARD-FISH) in combination with nanoSIMS has thus far revealed a clear dominance of bacteria in SPG sub-seafloor sediments, which showed a high uptake of nitrogen (ammonium). Current experiments using cell extractions and cell encapsulations followed by incubations with radiotracers will further reveal carbon turnover pathways of specific microorganisms.

  17. Molecular cartography of the human skin surface in 3D.

    PubMed

    Bouslimani, Amina; Porto, Carla; Rath, Christopher M; Wang, Mingxun; Guo, Yurong; Gonzalez, Antonio; Berg-Lyon, Donna; Ackermann, Gail; Moeller Christensen, Gitte Julie; Nakatsuji, Teruaki; Zhang, Lingjuan; Borkowski, Andrew W; Meehan, Michael J; Dorrestein, Kathleen; Gallo, Richard L; Bandeira, Nuno; Knight, Rob; Alexandrov, Theodore; Dorrestein, Pieter C

    2015-04-28

    The human skin is an organ with a surface area of 1.5-2 m(2) that provides our interface with the environment. The molecular composition of this organ is derived from host cells, microbiota, and external molecules. The chemical makeup of the skin surface is largely undefined. Here we advance the technologies needed to explore the topographical distribution of skin molecules, using 3D mapping of mass spectrometry data and microbial 16S rRNA amplicon sequences. Our 3D maps reveal that the molecular composition of skin has diverse distributions and that the composition is defined not only by skin cells and microbes but also by our daily routines, including the application of hygiene products. The technological development of these maps lays a foundation for studying the spatial relationships of human skin with hygiene, the microbiota, and environment, with potential for developing predictive models of skin phenotypes tailored to individual health.

  18. Molecular cartography of the human skin surface in 3D

    PubMed Central

    Bouslimani, Amina; Porto, Carla; Rath, Christopher M.; Wang, Mingxun; Guo, Yurong; Gonzalez, Antonio; Berg-Lyon, Donna; Ackermann, Gail; Moeller Christensen, Gitte Julie; Nakatsuji, Teruaki; Zhang, Lingjuan; Borkowski, Andrew W.; Meehan, Michael J.; Dorrestein, Kathleen; Gallo, Richard L.; Bandeira, Nuno; Knight, Rob; Alexandrov, Theodore; Dorrestein, Pieter C.

    2015-01-01

    The human skin is an organ with a surface area of 1.5–2 m2 that provides our interface with the environment. The molecular composition of this organ is derived from host cells, microbiota, and external molecules. The chemical makeup of the skin surface is largely undefined. Here we advance the technologies needed to explore the topographical distribution of skin molecules, using 3D mapping of mass spectrometry data and microbial 16S rRNA amplicon sequences. Our 3D maps reveal that the molecular composition of skin has diverse distributions and that the composition is defined not only by skin cells and microbes but also by our daily routines, including the application of hygiene products. The technological development of these maps lays a foundation for studying the spatial relationships of human skin with hygiene, the microbiota, and environment, with potential for developing predictive models of skin phenotypes tailored to individual health. PMID:25825778

  19. [Biofilms and their significance in medical microbiology].

    PubMed

    Cernohorská, L; Votava, M

    2002-11-01

    Microorganisms are able to adhere to various surfaces and to form there a three-dimensional structure known as biofilm. In biofilms, microbial cells show characteristics and behaviours different from those of plankton cells. Intercellular signalizations of the quorum-sensing type regulate interaction between members of the biofilm. Bacteria embedded in the biofilm can escape and form well known planktonic forms, that are obviously only a part of the bacterial life cycle. Bacteria adhere also to medically important surfaces such as catheters, either urinary or intravenous ones, artificial heart valves, orthopedic implants and so on and contribute to device-related infections like cystitis, catheter-related sepsis, endocarditis etc. Once a biofilm has been established on a surface, the bacteria harboured inside are less exposed to the host's immune response and less susceptible to antibiotics. As an important cause of nosocomial infections the biofilm must remain in the centre of the microbiologist's attention.

  20. A new method for long-term storage of titred microbial standard solutions suitable for microbiologic quality control activities of pharmaceutical companies.

    PubMed

    Chiellini, Carolina; Mocali, Stefano; Fani, Renato; Ferro, Iolanda; Bruschi, Serenella; Pinzani, Alessandro

    2016-08-01

    Commercially available lyophilized microbial standards are expensive and subject to reduction in cell viability due to freeze-drying stress. Here we introduce an inexpensive and straightforward method for in-house microbial standard preparation and cryoconservation that preserves constant cell titre and cell viability over 14 months.

  1. Polyacrylamide brush coatings preventing microbial adhesion to silicone rubber.

    PubMed

    Fundeanu, Irina; van der Mei, Henny C; Schouten, Arend J; Busscher, Henk J

    2008-07-15

    Silicone rubber is a frequently used biomaterial in biomedical devices and implants, yet highly prone to microbial adhesion and the development of a biomaterial-centered infection. Effective coating of silicone rubber to discourage microbial adhesion has thus far been impossible due to the hydrophobic character of its surface, surface deterioration upon treatment and instability of coatings under physiological conditions. Here we present a method to successfully grow polyacrylamide (PAAm) brushes from silicone rubber surfaces after removal of low molecular weight organic molecules (LMWOM), such as silane oligomers. PAAm brush coating did not cause any surface deterioration and discouraged microbial adhesion, even after 1-month exposure to physiological fluids. The method presented opens many new avenues for the use of silicone rubber as a biomaterial, without the risk of developing a biomaterial-centered infection.

  2. Analysis of the global ocean sampling (GOS) project for trends in iron uptake by surface ocean microbes.

    PubMed

    Toulza, Eve; Tagliabue, Alessandro; Blain, Stéphane; Piganeau, Gwenael

    2012-01-01

    Microbial metagenomes are DNA samples of the most abundant, and therefore most successful organisms at the sampling time and location for a given cell size range. The study of microbial communities via their DNA content has revolutionized our understanding of microbial ecology and evolution. Iron availability is a critical resource that limits microbial communities' growth in many oceanic areas. Here, we built a database of 2319 sequences, corresponding to 140 gene families of iron metabolism with a large phylogenetic spread, to explore the microbial strategies of iron acquisition in the ocean's bacterial community. We estimate iron metabolism strategies from metagenome gene content and investigate whether their prevalence varies with dissolved iron concentrations obtained from a biogeochemical model. We show significant quantitative and qualitative variations in iron metabolism pathways, with a higher proportion of iron metabolism genes in low iron environments. We found a striking difference between coastal and open ocean sites regarding Fe(2+) versus Fe(3+) uptake gene prevalence. We also show that non-specific siderophore uptake increases in low iron open ocean environments, suggesting bacteria may acquire iron from natural siderophore-like organic complexes. Despite the lack of knowledge of iron uptake mechanisms in most marine microorganisms, our approach provides insights into how the iron metabolic pathways of microbial communities may vary with seawater iron concentrations.

  3. Groundwater geochemistry and microbial community structure in the aquifer transition from volcanic to alluvial areas.

    PubMed

    Amalfitano, S; Del Bon, A; Zoppini, A; Ghergo, S; Fazi, S; Parrone, D; Casella, P; Stano, F; Preziosi, E

    2014-11-15

    Groundwaters may act as sinks or sources of organic and inorganic solutes, depending on the relative magnitude of biochemical mobilizing processes and groundwater-surface water exchanges. The objective of this study was to link the lithological and hydrogeological gradients to the aquatic microbial community structure in the transition from aquifer recharge (volcanic formations) to discharge areas (alluvial deposits). A field-scale analysis was performed along a water table aquifer in which volcanic products decreased in thickness and areal extension, while alluvial deposits became increasingly important. We measured the main groundwater physical parameters and the concentrations of major and trace elements. In addition, the microbial community structure was assessed by estimating the occurrence of total coliforms and Escherichia coli, the prokaryotic abundance, the cytometric and phylogenetic community composition. The overall biogeochemical asset differed along the aquifer flow path. The concentration of total and live prokaryotic cells significantly increased in alluvial waters, together with the percentages of Beta- and Delta-Proteobacteria. The microbial propagation over a theoretical groundwater travel time allowed for the identification of microbial groups shifting significantly in the transition between the two different hydrogeochemical facies. The microbial community structure was intimately associated with geochemical changes, thus it should be further considered in view of a better understanding of groundwater ecology and sustainable management strategies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Electricity production from municipal solid waste using microbial fuel cells.

    PubMed

    Chiu, H Y; Pai, T Y; Liu, M H; Chang, C A; Lo, F C; Chang, T C; Lo, H M; Chiang, C F; Chao, K P; Lo, W Y; Lo, S W; Chu, Y L

    2016-07-01

    The organic content of municipal solid waste has long been an attractive source of renewable energy, mainly as a solid fuel in waste-to-energy plants. This study focuses on the potential to use microbial fuel cells to convert municipal solid waste organics into energy using various operational conditions. The results showed that two-chamber microbial fuel cells with carbon felt and carbon felt allocation had a higher maximal power density (20.12 and 30.47 mW m(-2) for 1.5 and 4 L, respectively) than those of other electrode plate allocations. Most two-chamber microbial fuel cells (1.5 and 4 L) had a higher maximal power density than single-chamber ones with corresponding electrode plate allocations. Municipal solid waste with alkali hydrolysis pre-treatment and K3Fe(CN)6 as an electron acceptor improved the maximal power density to 1817.88 mW m(-2) (~0.49% coulomb efficiency, from 0.05-0.49%). The maximal power density from experiments using individual 1.5 and 4 L two-chamber microbial fuel cells, and serial and parallel connections of 1.5 and 4 L two-chamber microbial fuel cells, was found to be in the order of individual 4 L (30.47 mW m(-2)) > serial connection of 1.5 and 4 L (27.75) > individual 1.5 L (20.12) > parallel connection of 1.5 and 4 L (17.04) two-chamber microbial fuel cells . The power density using municipal solid waste microbial fuel cells was compared with information in the literature and discussed. © The Author(s) 2016.

  5. Electricity Generation in Microbial Fuel Cells Using Neutral Red as an Electronophore

    PubMed Central

    Park, Doo Hyun; Zeikus, J. Gregory

    2000-01-01

    Neutral red (NR) was utilized as an electron mediator in microbial fuel cells consuming glucose to study both its efficiency during electricity generation and its role in altering anaerobic growth and metabolism of Escherichia coli and Actinobacillus succinogenes. A study of chemical fuel cells in which NADH, NR, and ferricyanide were the electron donor, the electronophore, and the electron acceptor, respectively, showed that electrical current produced from NADH was proportional to the concentration of NADH. Fourfold more current was produced from NADH in chemical fuel cells when NR was the electron mediator than when thionin was the electron mediator. In microbial fuel cells in which E. coli resting cells were used the amount of current produced from glucose when NR was the electron mediator (3.5 mA) was 10-fold more than the amount produced when thionin was the electron mediator (0.4 mA). The amount of electrical energy generated (expressed in joules per mole of substrate) and the amount of current produced from glucose (expressed in milliamperes) in NR-mediated microbial fuel cells containing either E. coli or A. succinogenes were about 10- and 2-fold greater, respectively, when resting cells were used than when growing cells were used. Cell growth was inhibited substantially when these microbial fuel cells were making current, and more oxidized end products were formed under these conditions. When sewage sludge (i.e., a mixed culture of anaerobic bacteria) was used in the fuel cell, stable (for 120 h) and equivalent levels of current were obtained with glucose, as observed in the pure-culture experiments. These results suggest that NR is better than other electron mediators used in microbial fuel cells and that sludge production can be decreased while electricity is produced in fuel cells. Our results are discussed in relation to factors that may improve the relatively low electrical efficiencies (1.2 kJ/mol) obtained with microbial fuel cells. PMID:10742202

  6. SHIMMER (1.0): a novel mathematical model for microbial and biogeochemical dynamics in glacier forefield ecosystems

    NASA Astrophysics Data System (ADS)

    Bradley, J. A.; Anesio, A. M.; Singarayer, J. S.; Heath, M. R.; Arndt, S.

    2015-10-01

    SHIMMER (Soil biogeocHemIcal Model for Microbial Ecosystem Response) is a new numerical modelling framework designed to simulate microbial dynamics and biogeochemical cycling during initial ecosystem development in glacier forefield soils. However, it is also transferable to other extreme ecosystem types (such as desert soils or the surface of glaciers). The rationale for model development arises from decades of empirical observations in glacier forefields, and enables a quantitative and process focussed approach. Here, we provide a detailed description of SHIMMER, test its performance in two case study forefields: the Damma Glacier (Switzerland) and the Athabasca Glacier (Canada) and analyse sensitivity to identify the most sensitive and unconstrained model parameters. Results show that the accumulation of microbial biomass is highly dependent on variation in microbial growth and death rate constants, Q10 values, the active fraction of microbial biomass and the reactivity of organic matter. The model correctly predicts the rapid accumulation of microbial biomass observed during the initial stages of succession in the forefields of both the case study systems. Primary production is responsible for the initial build-up of labile substrate that subsequently supports heterotrophic growth. However, allochthonous contributions of organic matter, and nitrogen fixation, are important in sustaining this productivity. The development and application of SHIMMER also highlights aspects of these systems that require further empirical research: quantifying nutrient budgets and biogeochemical rates, exploring seasonality and microbial growth and cell death. This will lead to increased understanding of how glacier forefields contribute to global biogeochemical cycling and climate under future ice retreat.

  7. Single chamber microbial fuel cell with Ni-Co cathode

    NASA Astrophysics Data System (ADS)

    Włodarczyk, Barbara; Włodarczyk, Paweł P.; Kalinichenko, Antonina

    2017-10-01

    The possibility of wastewater treatment and the parallel energy production using the Ni-Co alloy as cathode catalyst for single chamber microbial fuel cells is presented in this research. The research included a preparation of catalyst and comparison of COD, NH4+ and NO3- reduction in the reactor without aeration, with aeration and with using a single chamber microbial fuel cell with Ni-Co cathode. The reduction time for COD with the use of microbial fuel cell with the Ni-Co catalyst is similar to the reduction time with aeration. The current density (2.4 A·m-2) and amount of energy (0.48 Wh) obtained in MFC is low, but the obtained amount of energy allows elimination of the energy needed for reactor aeration. It has been shown that the Ni-Co can be used as cathode catalyst in single chamber microbial fuel cells.

  8. Compact Cell Settlers for Perfusion Cultures of Microbial (and Mammalian) Cells.

    PubMed

    Freeman, Cassandra A; Samuel, Premsingh S D; Kompala, Dhinakar S

    2017-07-01

    As microbial secretory expression systems have become well developed for microbial yeast cells, such as Saccharomyces cerevisiae and Pichia pastoris, it is advantageous to develop high cell density continuous perfusion cultures of microbial yeast cells to retain the live and productive yeast cells inside the perfusion bioreactor while removing the dead cells and cell debris along with the secreted product protein in the harvest stream. While the previously demonstrated inclined or lamellar settlers can be used for such perfusion bioreactors for microbial cells, the size and footprint requirements of such inefficiently scaled up devices can be quite large in comparison to the bioreactor size. Faced with this constraint, we have now developed novel, patent-pending compact cell settlers that can be used more efficiently with microbial perfusion bioreactors to achieve high cell densities and bioreactor productivities. Reproducible results from numerous month-long perfusion culture experiments using these devices attached to the 5 L perfusion bioreactor demonstrate very high cell densities due to substantial sedimentation of the larger live yeast cells which are returned to the bioreactor, while the harvest stream from the top of these cell settlers is a significantly clarified liquid, containing less than 30% and more typically less than 10% of the bioreactor cell concentration. Size of cells in the harvest is smaller than that of the cells in the bioreactor. Accumulated protein collected from the harvest and rate of protein accumulation is significantly (> 6x) higher than the protein produced in repeated fed-batch cultures over the same culture duration. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:913-922, 2017. © 2017 American Institute of Chemical Engineers.

  9. Gut microbiota utilize immunoglobulin A for mucosal colonization.

    PubMed

    Donaldson, G P; Ladinsky, M S; Yu, K B; Sanders, J G; Yoo, B B; Chou, W-C; Conner, M E; Earl, A M; Knight, R; Bjorkman, P J; Mazmanian, S K

    2018-05-18

    The immune system responds vigorously to microbial infection while permitting lifelong colonization by the microbiome. Mechanisms that facilitate the establishment and stability of the gut microbiota remain poorly described. We found that a regulatory system in the prominent human commensal Bacteroides fragilis modulates its surface architecture to invite binding of immunoglobulin A (IgA) in mice. Specific immune recognition facilitated bacterial adherence to cultured intestinal epithelial cells and intimate association with the gut mucosal surface in vivo. The IgA response was required for B. fragilis (and other commensal species) to occupy a defined mucosal niche that mediates stable colonization of the gut through exclusion of exogenous competitors. Therefore, in addition to its role in pathogen clearance, we propose that IgA responses can be co-opted by the microbiome to engender robust host-microbial symbiosis. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  10. Cross-specificity of protective human antibodies against Klebsiella pneumoniae LPS O-antigen.

    PubMed

    Rollenske, Tim; Szijarto, Valeria; Lukasiewicz, Jolanta; Guachalla, Luis M; Stojkovic, Katarina; Hartl, Katharina; Stulik, Lukas; Kocher, Simone; Lasitschka, Felix; Al-Saeedi, Mohammed; Schröder-Braunstein, Jutta; von Frankenberg, Moritz; Gaebelein, Gereon; Hoffmann, Peter; Klein, Sabrina; Heeg, Klaus; Nagy, Eszter; Nagy, Gabor; Wardemann, Hedda

    2018-06-01

    Humoral immune responses to microbial polysaccharide surface antigens can prevent bacterial infection but are typically strain specific and fail to mediate broad protection against different serotypes. Here we describe a panel of affinity-matured monoclonal human antibodies from peripheral blood immunoglobulin M-positive (IgM + ) and IgA + memory B cells and clonally related intestinal plasmablasts, directed against the lipopolysaccharide (LPS) O-antigen of Klebsiella pneumoniae, an opportunistic pathogen and major cause of antibiotic-resistant nosocomial infections. The antibodies showed distinct patterns of in vivo cross-specificity and protection against different clinically relevant K. pneumoniae serotypes. However, cross-specificity was not limited to K. pneumoniae, as K. pneumoniae-specific antibodies recognized diverse intestinal microbes and neutralized not only K. pneumoniae LPS but also non-K. pneumoniae LPS. Our data suggest that the recognition of minimal glycan epitopes abundantly expressed on microbial surfaces might serve as an efficient humoral immunological mechanism to control invading pathogens and the large diversity of the human microbiota with a limited set of cross-specific antibodies.

  11. Microbial colonization in diverse surface soil types in Surtsey and diversity analysis of its subsurface microbiota

    NASA Astrophysics Data System (ADS)

    Marteinsson, V.; Klonowski, A.; Reynisson, E.; Vannier, P.; Sigurdsson, B. D.; Ólafsson, M.

    2015-02-01

    Colonization of life on Surtsey has been observed systematically since the formation of the island 50 years ago. Although the first colonisers were prokaryotes, such as bacteria and blue-green algae, most studies have been focused on the settlement of plants and animals but less on microbial succession. To explore microbial colonization in diverse soils and the influence of associated vegetation and birds on numbers of environmental bacteria, we collected 45 samples from different soil types on the surface of the island. Total viable bacterial counts were performed with the plate count method at 22, 30 and 37 °C for all soil samples, and the amount of organic matter and nitrogen (N) was measured. Selected samples were also tested for coliforms, faecal coliforms and aerobic and anaerobic bacteria. The subsurface biosphere was investigated by collecting liquid subsurface samples from a 181 m borehole with a special sampler. Diversity analysis of uncultivated biota in samples was performed by 16S rRNA gene sequences analysis and cultivation. Correlation was observed between nutrient deficits and the number of microorganisms in surface soil samples. The lowest number of bacteria (1 × 104-1 × 105 cells g-1) was detected in almost pure pumice but the count was significantly higher (1 × 106-1 × 109 cells g-1) in vegetated soil or pumice with bird droppings. The number of faecal bacteria correlated also to the total number of bacteria and type of soil. Bacteria belonging to Enterobacteriaceae were only detected in vegetated samples and samples containing bird droppings. The human pathogens Salmonella, Campylobacter and Listeria were not in any sample. Both thermophilic bacteria and archaea 16S rDNA sequences were found in the subsurface samples collected at 145 and 172 m depth at 80 and 54 °C, respectively, but no growth was observed in enrichments. The microbiota sequences generally showed low affiliation to any known 16S rRNA gene sequences.

  12. Amplified effect of Brownian motion in bacterial near-surface swimming

    PubMed Central

    Li, Guanglai; Tam, Lick-Kong; Tang, Jay X.

    2008-01-01

    Brownian motion influences bacterial swimming by randomizing displacement and direction. Here, we report that the influence of Brownian motion is amplified when it is coupled to hydrodynamic interaction. We examine swimming trajectories of the singly flagellated bacterium Caulobacter crescentus near a glass surface with total internal reflection fluorescence microscopy and observe large fluctuations over time in the distance of the cell from the solid surface caused by Brownian motion. The observation is compared with computer simulation based on analysis of relevant physical factors, including electrostatics, van der Waals force, hydrodynamics, and Brownian motion. The simulation reproduces the experimental findings and reveals contribution from fluctuations of the cell orientation beyond the resolution of present observation. Coupled with hydrodynamic interaction between the bacterium and the boundary surface, the fluctuations in distance and orientation subsequently lead to variation of the swimming speed and local radius of curvature of swimming trajectory. These results shed light on the fundamental roles of Brownian motion in microbial motility, nutrient uptake, and adhesion. PMID:19015518

  13. Salinity shapes microbial diversity and community structure in surface sediments of the Qinghai-Tibetan Lakes.

    PubMed

    Yang, Jian; Ma, Li'an; Jiang, Hongchen; Wu, Geng; Dong, Hailiang

    2016-04-26

    Investigating microbial response to environmental variables is of great importance for understanding of microbial acclimatization and evolution in natural environments. However, little is known about how microbial communities responded to environmental factors (e.g. salinity, geographic distance) in lake surface sediments of the Qinghai-Tibetan Plateau (QTP). In this study, microbial diversity and community structure in the surface sediments of nine lakes on the QTP were investigated by using the Illumina Miseq sequencing technique and the resulting microbial data were statistically analyzed in combination with environmental variables. The results showed total microbial community of the studied lakes was significantly correlated (r = 0.631, P < 0.001) with lake salinity instead of geographic distance. This suggests that lake salinity is more important than geographic distance in shaping the microbial diversity and community structure in the studied samples. In addition, the abundant and rare taxa (OTUs with relative abundance higher than 1% and lower than 0.01% within one sample, respectively) were significantly (P < 0.05) correlated (r = 0.427 and 0.783, respectively) with salinity, suggesting rare taxa might be more sensitive to salinity than their abundant counterparts, thus cautions should be taken in future when evaluating microbial response (abundant vs. rare sub-communities) to environmental conditions.

  14. A novel planar flow cell for studies of biofilm heterogeneity and flow-biofilm interactions

    PubMed Central

    Zhang, Wei; Sileika, Tadas S.; Chen, Cheng; Liu, Yang; Lee, Jisun; Packman, Aaron I.

    2012-01-01

    Biofilms are microbial communities growing on surfaces, and are ubiquitous in nature, in bioreactors, and in human infection. Coupling between physical, chemical, and biological processes is known to regulate the development of biofilms; however, current experimental systems do not provide sufficient control of environmental conditions to enable detailed investigations of these complex interactions. We developed a novel planar flow cell that supports biofilm growth under complex two-dimensional fluid flow conditions. This device provides precise control of flow conditions and can be used to create well-defined physical and chemical gradients that significantly affect biofilm heterogeneity. Moreover, the top and bottom of the flow chamber are transparent, so biofilm growth and flow conditions are fully observable using non-invasive confocal microscopy and high-resolution video imaging. To demonstrate the capability of the device, we observed the growth of Pseudomonas aeruginosa biofilms under imposed flow gradients. We found a positive relationship between patterns of fluid velocity and biofilm biomass because of faster microbial growth under conditions of greater local nutrient influx, but this relationship eventually reversed because high hydrodynamic shear leads to the detachment of cells from the surface. These results reveal that flow gradients play a critical role in the development of biofilm communities. By providing new capability for observing biofilm growth, solute and particle transport, and net chemical transformations under user-specified environmental gradients, this new planar flow cell system has broad utility for studies of environmental biotechnology and basic biofilm microbiology, as well as applications in bioreactor design, environmental engineering, biogeochemistry, geomicrobiology, and biomedical research. PMID:21656713

  15. Specific capture and detection of Staphylococcus aureus with high-affinity modified aptamers to cell surface components.

    PubMed

    Baumstummler, A; Lehmann, D; Janjic, N; Ochsner, U A

    2014-10-01

    Slow off-rate modified aptamer (SOMAmer) reagents were generated to several Staphylococcus aureus cell surface-associated proteins via SELEX with multiple modified DNA libraries using purified recombinant or native proteins. High-affinity binding agents with sub-nanomolar Kd 's were obtained for staphylococcal protein A (SpA), clumping factors (ClfA, ClfB), fibronectin-binding proteins (FnbA, FnbB) and iron-regulated surface determinants (Isd). Further screening revealed several SOMAmers that specifically bound to Staph. aureus cells from all strains that were tested, but not to other staphylococci or other bacteria. SpA and ClfA SOMAmers proved useful for the selective capture and enrichment of Staph. aureus cells, as shown by culture and PCR, leading to improved limits of detection and efficient removal of PCR inhibitors. Detection of Staph. aureus cells was enhanced by several orders of magnitude when the bacterial cell surface was coated with SOMAmers followed by qPCR of the SOMAmers. Furthermore, fluorescence-labelled SpA SOMAmers demonstrated their utility as direct detection agents in flow cytometry. Significance and impact of the study: Monitoring for microbial contamination of food, water, nonsterile products or the environment is typically based on culture, PCR or antibodies. Aptamers that bind with high specificity and affinity to well-conserved cell surface epitopes represent a promising novel type of reagents to detect bacterial cells without the need for culture or cell lysis, including for the capture and enrichment of bacteria present at low cell densities and for the direct detection via qPCR or fluorescent staining. © 2014 Soma Logic, Inc. published by John Wiley & Sons Ltd On behalf of the society for Applied Microbiology.

  16. Microbial Electrochemistry and its Application to Energy and Environmental Issues

    NASA Astrophysics Data System (ADS)

    Hastings, Jason Thomas

    Microbial electrochemistry forms the basis of a wide range of topics from microbial fuel cells to fermentation of carbon food sources. The ability to harness microbial electron transfer processes can lead to a greener and cleaner future. This study focuses on microbial electron transfer for liquid fuel production, novel electrode materials, subsurface environments and removal of unwanted byproducts. In the first chapter, exocellular electron transfer through direct contact utilizing passive electrodes for the enhancement of bio-fuel production was tested. Through the application of microbial growth in a 2-cell apparatus on an electrode surface ethanol production was enhanced by 22.7% over traditional fermentation. Ethanol production efficiencies of close to 95% were achieved in a fraction of the time required by traditional fermentation. Also, in this chapter, the effect of exogenous electron shuttles, electrode material selection and resistance was investigated. Power generation was observed using the 2-cell passive electrode system. An encapsulation method, which would also utilize exocellular transfer of electrons through direct contact, was hypothesized for the suspension of viable cells in a conductive polymer substrate. This conductive polymer substrate could have applications in bio-fuel production. Carbon black was added to a polymer solution to test electrospun polymer conductivity and cell viability. Polymer morphology and cell viability were imaged using electron and optical microscopy. Through proper encapsulation, higher fuel production efficiencies would be achievable. Electron transfer through endogenous exocellular protein shuttles was observed in this study. Secretion of a soluble redox active exocellular protein by Clostridium sp. have been shown utilizing a 2-cell apparatus. Cyclic voltammetry and gel electrophoresis were used to show the presence of the protein. The exocellular protein is capable of reducing ferrous iron in a membrane separated chamber. In experiments where the redox active protein was allowed to pass through the permeable membrane, iron dissolution was 14-fold greater than experiments where the protein was held to one chamber by a non-permeable membrane. Confirmation of a redox active protein could reshape or understanding of subsurface redox processes. The final topic in this study discusses electron transfer within the cell for production of fermentation products. Glycerol, which is an unwanted side-product of biodiesel transesterfication, is utilized as a carbon source for fermentation. Bacterial samples harvested from Galena Creek soil (NGC) are shown in this study to be efficient consumers of glycerol. NGC microbe was characterized through 16s rDNA genetic sequencing and determined to belong to genus Clostridium. Clostridium NGC was able to consume glycerol at 29.7gpl within 72hrs grown in a media containing 50gpl glycerol. All observed fermentation metabolites were characterized and quantified through an HPLC. Glycerol consumption rates and metabolite production rates were observed using varying media recipes. This study has found that NGC has higher selectivity for low weight acids at lower yeast extract concentration and higher selectivity for larger acids and alcohols at higher yeast extract concentrations.

  17. Determination of Microbial Growth by Protein Assay in an Air-Cathode Single Chamber Microbial Fuel Cell.

    PubMed

    Li, Na; Kakarla, Ramesh; Moon, Jung Mi; Min, Booki

    2015-07-01

    Microbial fuel cells (MFCs) have gathered attention as a novel bioenergy technology to simultaneously treat wastewater with less sludge production than the conventional activated sludge system. In two different operations of the MFC and aerobic process, microbial growth was determined by the protein assay method and their biomass yields using real wastewater were compared. The biomass yield on the anode electrode of the MFC was 0.02 g-COD-cell/g- COD-substrate and the anolyte planktonic biomass was 0.14 g-COD-cell/g-COD-substrate. An MFC without anode electrode resulted in the biomass yield of 0.07 ± 0.03 g-COD-cell/g-COD-substrate, suggesting that oxygen diffusion from the cathode possibly supported the microbial growth. In a comparative test, the biomass yield under aerobic environment was 0.46 ± 0.07 g-COD-cell/g-COD-substrate, which was about 3 times higher than the total biomass value in the MFC operation.

  18. Outward electron transfer by Saccharomyces cerevisiae monitored with a bi-cathodic microbial fuel cell-type activity sensor.

    PubMed

    Ducommun, Raphaël; Favre, Marie-France; Carrard, Delphine; Fischer, Fabian

    2010-03-01

    A Janus head-like bi-cathodic microbial fuel cell was constructed to monitor the electron transfer from Saccharomyces cerevisiae to a woven carbon anode. The experiments were conducted during an ethanol cultivation of 170 g/l glucose in the presence and absence of yeast-peptone medium. First, using a basic fuel-cell type activity sensor, it was shown that yeast-peptone medium contains electroactive compounds. For this purpose, 1% solutions of soy peptone and yeast extract were subjected to oxidative conditions, using a microbial fuel cell set-up corresponding to a typical galvanic cell, consisting of culture medium in the anodic half-cell and 0.5 M K(3)Fe(CN)(6) in the cathodic half-cell. Second, using a bi-cathodic microbial fuel cell, it was shown that electrons were transferred from yeast cells to the carbon anode. The participation of electroactive compounds in the electron transport was separated as background current. This result was verified by applying medium-free conditions, where only glucose was fed, confirming that electrons are transferred from yeast cells to the woven carbon anode. Knowledge about the electron transfer through the cell membrane is of importance in amperometric online monitoring of yeast fermentations and for electricity production with microbial fuel cells. Copyright (c) 2009 John Wiley & Sons, Ltd.

  19. Human host defense peptides - role in maintaining human homeostasis and pathological processes.

    PubMed

    Dawgul, Malgorzata Anna; Greber, Katarzyna Ewa; Sawicki, Wieslaw; Kamysz, Wojciech

    2016-12-12

    The human body expresses over 100 host defense peptides and proteins (antimicrobial peptides, AMPs). The compounds are produced by tissues and mucosal surfaces, e.g. skin, the digestive and urinary tract, the ocular surface and neutrophils, and are believed to play a crucial role in defense from microbial infection. They are considered to protect the human body against microbial infections due to their antimicrobial and immunomodulatory activities. As well as having strong antimicrobial activity towards a broad spectrum of microorganisms, AMPs have been found to interact with neutrophils, monocytes and T-cells and promote the production of cytokines. They also neutralize the action of lipopolysaccharide (LPS) and play a crucial role in wound healing processes. In response to the microbial stimuli the AMPs are released in order to fight the infection, however there are several microorganisms evading the human immune system by downregulation of AMPs. Decreased or elevated expression of AMPs is associated also with several non-infectious diseases. Despite numerous studies conducted in the field of AMPs over the last few decades, their exact role in physiological and pathological processes remains to be explained. In this paper, we review the most significant human AMPs and their potential roles in maintaining human homeostasis as well as in pathological processes.

  20. Energetic Constraints of Subseafloor Life

    NASA Astrophysics Data System (ADS)

    D'Hondt, S.; Spivack, A. J.; Wang, G.

    2014-12-01

    Mean per-cell rates of catabolic activity, energy flux, and biomass turnover are orders of magnitude slower in subseafloor sediment than in the surface world. Despite extreme scarcity of electron donors, competing metabolic pathways co-occur for hundreds of meters deep in subseafloor sediment deposited over millions of years. Our study of an example site (ODP Site 1226) indicates that the energy yields of these competing reactions are pinned to a thermodynamic minimum (Wang et al., 2010). The simplest explanation of this long-term co-existence is thermodynamic cooperation, where microorganisms utilize different but co-existing pathways that remove each other's reaction products. Our Site 1226 results indicate that the energy flux to subseafloor sedimentary microbes is extremely low. Comparison to biomass turnover rates at other sites suggests that most of this flux may be used for building biomolecules from existing components (e.g., amino acids in the surrounding sediment), rather than for de novo biosynthesis from inorganic chemicals. Given these discoveries, ocean drilling provides a tremendous opportunity to address several mysteries of microbial survival and natural selection under extreme energy limitation. Some of these mysteries are centered on microbial communities. To what extent do counted cells in subseafloor sediment constitute a deep microbial necrosphere? How do different kinds of microbes interact to sustain their mean activity at low average rates for millions of years? Other mysteries relate to individual cells. How slowly can a cell metabolize? How long can a cell survive at such low rates of activity? What properties allow microbes to be sustained by low fluxes of energy? In what ways do subseafloor organisms balance the benefit(s) of maximizing energy recovery with the need to minimize biochemical cost(s) of energy recovery? References Wang, G., et al., 2010. Geochimica et Cosmochimica Acta 74, 3938-3947.

  1. Bacterial Immobilization for Imaging by Atomic Force Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allison, David P; Sullivan, Claretta; Mortensen, Ninell P

    2011-01-01

    AFM is a high-resolution (nm scale) imaging tool that mechanically probes a surface. It has the ability to image cells and biomolecules, in a liquid environment, without the need to chemically treat the sample. In order to accomplish this goal, the sample must sufficiently adhere to the mounting surface to prevent removal by forces exerted by the scanning AFM cantilever tip. In many instances, successful imaging depends on immobilization of the sample to the mounting surface. Optimally, immobilization should be minimally invasive to the sample such that metabolic processes and functional attributes are not compromised. By coating freshly cleaved micamore » surfaces with porcine (pig) gelatin, negatively charged bacteria can be immobilized on the surface and imaged in liquid by AFM. Immobilization of bacterial cells on gelatin-coated mica is most likely due to electrostatic interaction between the negatively charged bacteria and the positively charged gelatin. Several factors can interfere with bacterial immobilization, including chemical constituents of the liquid in which the bacteria are suspended, the incubation time of the bacteria on the gelatin coated mica, surface characteristics of the bacterial strain and the medium in which the bacteria are imaged. Overall, the use of gelatin-coated mica is found to be generally applicable for imaging microbial cells.« less

  2. Cross-Site Soil Microbial Communities under Tillage Regimes: Fungistasis and Microbial Biomarkers

    PubMed Central

    Yrjälä, Kim; Alakukku, Laura; Palojärvi, Ansa

    2012-01-01

    The exploitation of soil ecosystem services by agricultural management strategies requires knowledge of microbial communities in different management regimes. Crop cover by no-till management protects the soil surface, reducing the risk of erosion and nutrient leaching, but might increase straw residue-borne and soilborne plant-pathogenic fungi. A cross-site study of soil microbial communities and Fusarium fungistasis was conducted on six long-term agricultural fields with no-till and moldboard-plowed treatments. Microbial communities were studied at the topsoil surface (0 to 5 cm) and bottom (10 to 20 cm) by general bacterial and actinobacterial terminal restriction fragment length polymorphism (T-RFLP) and phospholipid fatty acid (PLFA) analyses. Fusarium culmorum soil fungistasis describing soil receptivity to plant-pathogenic fungi was explored by using the surface layer method. Soil depth had a significant impact on general bacterial as well as actinobacterial communities and PLFA profiles in no-till treatment, with a clear spatial distinction of communities (P < 0.05), whereas the depth-related separation of microbial communities was not observed in plowed fields. The fungal biomass was higher in no-till surface soil than in plowed soil (P < 0.07). Soil total microbial biomass and fungal biomass correlated with fungistasis (P < 0.02 for the sum of PLFAs; P < 0.001 for PLFA 18:2ω6). Our cross-site study demonstrated that agricultural management strategies can have a major impact on soil microbial community structures, indicating that it is possible to influence the soil processes with management decisions. The interactions between plant-pathogenic fungi and soil microbial communities are multifaceted, and a high level of fungistasis could be linked to the high microbial biomass in soil but not to the specific management strategy. PMID:22983972

  3. Cell death versus cell survival instructed by supramolecular cohesion of nanostructures

    NASA Astrophysics Data System (ADS)

    Newcomb, Christina J.; Sur, Shantanu; Ortony, Julia H.; Lee, One-Sun; Matson, John B.; Boekhoven, Job; Yu, Jeong Min; Schatz, George C.; Stupp, Samuel I.

    2014-02-01

    Many naturally occurring peptides containing cationic and hydrophobic domains have evolved to interact with mammalian cell membranes and have been incorporated into materials for non-viral gene delivery, cancer therapy or treatment of microbial infections. Their electrostatic attraction to the negatively charged cell surface and hydrophobic interactions with the membrane lipids enable intracellular delivery or cell lysis. Although the effects of hydrophobicity and cationic charge of soluble molecules on the cell membrane are well known, the interactions between materials with these molecular features and cells remain poorly understood. Here we report that varying the cohesive forces within nanofibres of supramolecular materials with nearly identical cationic and hydrophobic structure instruct cell death or cell survival. Weak intermolecular bonds promote cell death through disruption of lipid membranes, while materials reinforced by hydrogen bonds support cell viability. These findings provide new strategies to design biomaterials that interact with the cell membrane.

  4. Go with the flow or solitary confinement: a look inside the single-cell toolbox for isolation of rare and uncultured microbes.

    PubMed

    Huys, Geert Rb; Raes, Jeroen

    2018-06-13

    With the vast majority of the microbial world still considered unculturable or undiscovered, microbiologists not only require more fundamental insights concerning microbial growth requirements but also need to implement miniaturized, versatile and high-throughput technologies to upscale current microbial isolation strategies. In this respect, single-cell-based approaches are increasingly finding their way to the microbiology lab. A number of recent studies have demonstrated that analysis and separation of free microbial cells by flow-based sorting as well as physical stochastic confinement of individual cells in microenvironment compartments can facilitate the isolation of previously uncultured species and the discovery of novel microbial taxa. Still, while most of these methods give immediate access to downstream whole genome sequencing, upscaling to higher cell densities as required for metabolic readouts and preservation purposes can remain challenging. Provided that these and other technological challenges are addressed in future innovation rounds, integration of single-cell tools in commercially available benchtop instruments and service platforms is expected to trigger more targeted explorations in the microbial dark matter at a depth comparable to metagenomics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Influence of platinum group metal-free catalyst synthesis on microbial fuel cell performance

    NASA Astrophysics Data System (ADS)

    Santoro, Carlo; Rojas-Carbonell, Santiago; Awais, Roxanne; Gokhale, Rohan; Kodali, Mounika; Serov, Alexey; Artyushkova, Kateryna; Atanassov, Plamen

    2018-01-01

    Platinum group metal-free (PGM-free) ORR catalysts from the Fe-N-C family were synthesized using sacrificial support method (SSM) technique. Six experimental steps were used during the synthesis: 1) mixing the precursor, the metal salt, and the silica template; 2) first pyrolysis in hydrogen rich atmosphere; 3) ball milling; 4) etching the silica template using harsh acids environment; 5) the second pyrolysis in ammonia rich atmosphere; 6) final ball milling. Three independent batches were fabricated following the same procedure. The effect of each synthetic parameters on the surface chemistry and the electrocatalytic performance in neutral media was studied. Rotating ring disk electrode (RRDE) experiment showed an increase in half wave potential and limiting current after the pyrolysis steps. The additional improvement was observed after etching and performing the second pyrolysis. A similar trend was seen in microbial fuel cells (MFCs), in which the power output increased from 167 ± 2 μW cm-2 to 214 ± 5 μW cm-2. X-ray Photoelectron Spectroscopy (XPS) was used to evaluate surface chemistry of catalysts obtained after each synthetic step. The changes in chemical composition were directly correlated with the improvements in performance. We report outstanding reproducibility in both composition and performance among the three different batches.

  6. Global and local-scale variation in bacterial community structure of snow from the Swiss and Australian Alps.

    PubMed

    Wunderlin, Tina; Ferrari, Belinda; Power, Michelle

    2016-09-01

    Seasonally, snow environments cover up to 50% of the land's surface, yet the microbial diversity and ecosystem functioning within snow, particularly from alpine regions are not well described. This study explores the bacterial diversity in snow using next-generation sequencing technology. Our data expand the global inventory of snow microbiomes by focusing on two understudied regions, the Swiss Alps and the Australian Alps. A total biomass similar to cell numbers in polar snow was detected, with 5.2 to 10.5 × 10(3) cells mL(-1) of snow. We found that microbial community structure of surface snow varied by country and site and along the altitudinal range (alpine and sub-alpine). The bacterial communities present were diverse, spanning 25 distinct phyla, but the six phyla Proteobacteria (Alpha- and Betaproteobacteria), Acidobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria and Firmicutes, accounted for 72%-98% of the total relative abundance. Taxa such as Acidobacteriaceae and Methylocystaceae, associated with cold soils, may be part of the atmospherically sourced snow community, while families like Sphingomonadaceae were detected in every snow sample and are likely part of the common snow biome. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Suitability of different Escherichia coli enumeration techniques to assess the microbial quality of different irrigation water sources.

    PubMed

    Truchado, P; Lopez-Galvez, F; Gil, M I; Pedrero-Salcedo, F; Alarcón, J J; Allende, A

    2016-09-01

    The use of fecal indicators such as Escherichia coli has been proposed as a potential tool to characterize microbial contamination of irrigation water. Recently, not only the type of microbial indicator but also the methodologies used for enumeration have been called into question. The goal of this study was to assess the microbial quality of different water sources for irrigation of zucchini plants by using E. coli as an indicator of fecal contamination and the occurrence of foodborne pathogens. Three water sources were evaluated including reclaimed secondary treated water (RW-2), reclaimed tertiary UV-C treated water (RW-3) and surface water (SW). The suitability of two E. coli quantification techniques (plate count and qPCR) was examined for irrigation water and fresh produce. E. coli levels using qPCR assay were significantly higher than that obtained by plate count in all samples of irrigation water and fresh produce. The microbial quality of water samples from RW-2 was well predicted by qPCR, as the presence of foodborne pathogens were positively correlated with high E. coli levels. However, differences in the water characteristics influenced the suitability of qPCR as a tool to predict potential contamination in irrigation water. No significant differences were obtained between the number of cells of E. coli from RW-2 and RW-3, probably due to the fact that qPCR assay cannot distinguish between viable and dead cells. These results indicated that the selection of the most suitable technique for enumeration of indicator microorganisms able to predict potential presence of fecal contamination might be influenced by the water characteristics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Encapsulation of Multiple Microalgal Cells via a Combination of Biomimetic Mineralization and LbL Coating.

    PubMed

    Kim, Minjeong; Choi, Myoung Gil; Ra, Ho Won; Park, Seung Bin; Kim, Yong-Joo; Lee, Kyubock

    2018-02-13

    The encapsulation of living cells is appealing for its various applications to cell-based sensors, bioreactors, biocatalysts, and bioenergy. In this work, we introduce the encapsulation of multiple microalgal cells in hollow polymer shells of rhombohedral shape by the following sequential processes: embedding of microalgae in CaCO₃ crystals; layer-by-layer (LbL) coating of polyelectrolytes; and removal of sacrificial crystals. The microcapsule size was controlled by the alteration of CaCO₃ crystal size, which is dependent on CaCl₂/Na₂CO₃ concentration. The microalgal cells could be embedded in CaCO₃ crystals by a two-step process: heterogeneous nucleation of crystal on the cell surface followed by cell embedment by the subsequent growth of crystal. The surfaces of the microalgal cells were highly favorable for the crystal growth of calcite; thus, micrometer-sized microalgae could be perfectly occluded in the calcite crystal without changing its rhombohedral shape. The surfaces of the microcapsules, moreover, could be decorated with gold nanoparticles, Fe₃O₄ magnetic nanoparticles, and carbon nanotubes (CNTs), by which we would expect the functionalities of a light-triggered release, magnetic separation, and enhanced mechanical and electrical strength, respectively. This approach, entailing the encapsulation of microalgae in semi-permeable and hollow polymer microcapsules, has the potential for application to microbial-cell immobilization for high-biomass-concentration cultivation as well as various other bioapplications.

  9. The Effects of Silicone Hydrogel Lens Wear on the Corneal Epithelium and Risk for Microbial Keratitis

    PubMed Central

    Robertson, Danielle M.

    2012-01-01

    Previous studies using animal models and human clinical trials have demonstrated that the use of low oxygen transmissible contact lens materials produce corneal epithelial surface damage resulting in increased Pseudomonas aeruginosa (PA) adhesion and raft-mediated internalization into surface corneal epithelial cells. These findings led to the testable clinical predictions that: (1) microbial keratitis (MK) risk is expected to be greatest during the first 6 months of wear; (2) there is no difference between 6 and 30 night extended wear; and (3) that wear of hyper-oxygen transmissible lenses would reduce the reported incidence of infection. Subsequent epidemiological studies have confirmed the first two predictions; however, increased oxygen transmissibility with silicone hydrogel (SiHy) lens wear has not altered the overall incidence of MK. In this review, more recent clinical and basic studies that investigate epithelial alterations and bacterial adhesion to corneal epithelial cells following wear of SiHy lenses with and without concomitant exposure to chemically preserved multipurpose solutions (MPS) will be examined. The collective results of these studies demonstrate that even in the absence of lens-related hypoxia, MPS induce ocular surface changes during SiHy lens wear which are associated with a pathophysiological increase in PA adherence and internalization in the corneal epithelium, and therefore, predict an increased risk for PA-MK. In addition, new data supporting an interactive role for inflammation in facilitating PA adherence and internalization in the corneal epithelium will also be discussed. PMID:23266590

  10. Engineering microbial cell factories for the production of plant natural products: from design principles to industrial-scale production.

    PubMed

    Liu, Xiaonan; Ding, Wentao; Jiang, Huifeng

    2017-07-19

    Plant natural products (PNPs) are widely used as pharmaceuticals, nutraceuticals, seasonings, pigments, etc., with a huge commercial value on the global market. However, most of these PNPs are still being extracted from plants. A resource-conserving and environment-friendly synthesis route for PNPs that utilizes microbial cell factories has attracted increasing attention since the 1940s. However, at the present only a handful of PNPs are being produced by microbial cell factories at an industrial scale, and there are still many challenges in their large-scale application. One of the challenges is that most biosynthetic pathways of PNPs are still unknown, which largely limits the number of candidate PNPs for heterologous microbial production. Another challenge is that the metabolic fluxes toward the target products in microbial hosts are often hindered by poor precursor supply, low catalytic activity of enzymes and obstructed product transport. Consequently, despite intensive studies on the metabolic engineering of microbial hosts, the fermentation costs of most heterologously produced PNPs are still too high for industrial-scale production. In this paper, we review several aspects of PNP production in microbial cell factories, including important design principles and recent progress in pathway mining and metabolic engineering. In addition, implemented cases of industrial-scale production of PNPs in microbial cell factories are also highlighted.

  11. Transcription factors controlling innate lymphoid cell fate decisions.

    PubMed

    Klose, Christoph S N; Diefenbach, Andreas

    2014-01-01

    The mucosal epithelium is in direct contact with symbiotic and pathogenic microorganisms. Therefore, the mucosal surface is the principal portal of entry for invading pathogens and immune cells accumulated in the intestine to prevent infections. In addition to these conventional immune system functions, it has become clear that immune cells during steady-state continuously integrate microbial and nutrient-derived signals from the environment to support organ homeostasis. A major role in both processes is played by a recently discovered group of lymphocytes referred to as innate lymphoid cells (ILCs) Innate lymphoid cells (ILCs) that are specifically enriched at mucosal surfaces but are rather rare in secondary lymphoid organs. In analogy to the dichotomy between CD8 and CD4 T cells, we propose to classify ILCs into interleukin-7 receptor α-negative cytotoxic ILCs and IL-7Rα(+) helper-like ILCs. Dysregulated immune responses triggered by the various ILC subsets have been linked to inflammatory diseases such as inflammatory bowel disease, atopic dermatitis and airway hyperresponsiveness. Here, we will review recent progress in determining the transcriptional and developmental programs that control ILC fate decisions.

  12. Preliminary investigation of single chamber single electrode microbial fuel cell using sewage sludge as a substrate

    NASA Astrophysics Data System (ADS)

    Sai Chaithanya, M.; Thakur, Somil; Sonu, Kumar; Das, Bhaskar

    2017-11-01

    A microbial fuel cell (MFC) consists of a cathode and anode; micro-organisms transfer electrons acquired from the degradation of organic matter in the substrate to anode; and thereby to cathode; by using an external circuit to generate electricity. In the present study, a single chamber single electrode microbial fuel cell has been fabricated to generate electricity from the sludge of the sewage treatment plant at two different ambient temperature range of 25 ± 4°C and 32 ± 4°C under aerobic condition. No work has been done yet by using the single electrode in any MFC system; it is hypothesized that single electrode submerged partially in substrate and rest to atmosphere can function as both cathode and anode. The maximum voltage obtained was about 2890 mV after 80 (hrs) at temperature range of 25 ± 4°C, with surface power density of 1108.29 mW/m2. When the ambient temperature was 32 ± 4°C, maximum voltage obtained was 1652 mV after 40 (hrs.) surface power density reduced to 865.57 mW/m2. When amount of substrate was decreased for certain area of electrode at 25 ± 4°C range, electricity generation decreased and it also shortened the time to reach peak voltage. On the other hand, when the ambient temperature was increased to 32 ± 4°C, the maximum potential energy generated was less than that of previous experiment at 25 ± 4°C for the same substrate Also the time to reach peak voltage decreased to 40 hrs. When comparing with other single chamber single electrode MFC, the present model is generating more electricity that any MFC using sewage sludge as substrate except platinum electrode, which is much costlier that electrode used in the present study.

  13. Tracking heavy water (D2O) incorporation for identifying and sorting active microbial cells

    PubMed Central

    Berry, David; Mader, Esther; Lee, Tae Kwon; Woebken, Dagmar; Wang, Yun; Zhu, Di; Palatinszky, Marton; Schintlmeister, Arno; Schmid, Markus C.; Hanson, Buck T.; Shterzer, Naama; Mizrahi, Itzhak; Rauch, Isabella; Decker, Thomas; Bocklitz, Thomas; Popp, Jürgen; Gibson, Christopher M.; Fowler, Patrick W.; Huang, Wei E.; Wagner, Michael

    2015-01-01

    Microbial communities are essential to the function of virtually all ecosystems and eukaryotes, including humans. However, it is still a major challenge to identify microbial cells active under natural conditions in complex systems. In this study, we developed a new method to identify and sort active microbes on the single-cell level in complex samples using stable isotope probing with heavy water (D2O) combined with Raman microspectroscopy. Incorporation of D2O-derived D into the biomass of autotrophic and heterotrophic bacteria and archaea could be unambiguously detected via C-D signature peaks in single-cell Raman spectra, and the obtained labeling pattern was confirmed by nanoscale-resolution secondary ion MS. In fast-growing Escherichia coli cells, label detection was already possible after 20 min. For functional analyses of microbial communities, the detection of D incorporation from D2O in individual microbial cells via Raman microspectroscopy can be directly combined with FISH for the identification of active microbes. Applying this approach to mouse cecal microbiota revealed that the host-compound foragers Akkermansia muciniphila and Bacteroides acidifaciens exhibited distinctive response patterns to amendments of mucin and sugars. By Raman-based cell sorting of active (deuterated) cells with optical tweezers and subsequent multiple displacement amplification and DNA sequencing, novel cecal microbes stimulated by mucin and/or glucosamine were identified, demonstrating the potential of the nondestructive D2O-Raman approach for targeted sorting of microbial cells with defined functional properties for single-cell genomics. PMID:25550518

  14. Microbial surface displayed enzymes based biofuel cell utilizing degradation products of lignocellulosic biomass for direct electrical energy.

    PubMed

    Fan, Shuqin; Hou, Chuantao; Liang, Bo; Feng, Ruirui; Liu, Aihua

    2015-09-01

    In this work, a bacterial surface displaying enzyme based two-compartment biofuel cell for the direct electrical energy conversion from degradation products of lignocellulosic biomass is reported. Considering that the main degradation products of the lignocellulose are glucose and xylose, xylose dehydrogenase (XDH) displayed bacteria (XDH-bacteria) and glucose dehydrogenase (GDH) displayed bacteria (GDH-bacteria) were used as anode catalysts in anode chamber with methylene blue as electron transfer mediator. While the cathode chamber was constructed with laccase/multi-walled-carbon nanotube/glassy-carbon-electrode. XDH-bacteria exhibited 1.75 times higher catalytic efficiency than GDH-bacteria. This assembled enzymatic fuel cell exhibited a high open-circuit potential of 0.80 V, acceptable stability and energy conversion efficiency. Moreover, the maximum power density of the cell could reach 53 μW cm(-2) when fueled with degradation products of corn stalk. Thus, this finding holds great potential to directly convert degradation products of biomass into electrical energy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Geographic variability in amoeboid protists and other microbial groups in the water column of the lower Hudson River Estuary (New York, USA)

    NASA Astrophysics Data System (ADS)

    Juhl, Andrew R.; Anderson, O. Roger

    2014-12-01

    In comparison to other groups of planktonic microorganisms, relatively little is known about the role of amoeboid protists (amebas) in planktonic ecosystems. This study describes the first geographic survey of the abundance and biomass of amebas in an estuarine water column. Samples collected in the lower Hudson River Estuary were used to investigate relationships between ameba abundance and biomass and hydrographic variables (temperature, salinity, and turbidity), water depth (surface and near bottom), distance from mid-channel to shore, phytoplankton biomass (chlorophyll fluorescence) and the occurrence of other heterotrophic microbial groups (heterotrophic bacteria, nanoflagellates, and ciliates) in the plankton. Although salinity increased significantly towards the mouth of the estuary, there were no significant differences in the abundance or biomass of any microbial group in surface samples collected at three stations separated by 44 km along the estuary's mid-channel. Peak biomass values for all microbial groups were found at the station closest to shore, however, cross-channel trends in microbial abundance and biomass were not statistically significant. Although ameba abundance and biomass in most samples were low compared to other microbial groups, clear patterns in ameba distribution were nevertheless found. Unlike other microbial groups examined, ameba numbers and biomass greatly increased in near bottom water compared to surface samples. Ameba abundance and biomass (in surface samples) were also strongly related to increasing turbidity. The different relationships of ameba abundance and biomass with turbidity suggest a rising contribution of large amebas in microbial communities of the Hudson estuary when turbidity increases. These results, emphasizing the importance of particle concentration as attachment and feeding surfaces for amebas, will help identify the environmental conditions when amebas are most likely to contribute significantly to estuarine bacterivory and C-flux.

  16. Cell growth and protein expression of Shewanella oneidensis in biofilms and hydrogel-entrapped cultures.

    PubMed

    Zhang, Yingdan; Ng, Chun Kiat; Cohen, Yehuda; Cao, Bin

    2014-05-01

    The performance of biofilm-based bioprocesses is difficult to predict and control because of the intrinsic heterogeneous and dynamic properties of microbial biofilms. Biofilm mimics, such as microbial cells entrapped in polymeric scaffolds that are permeable for nutrients, have been proposed to replace real biofilms to achieve long-term robust performance in engineering applications. However, the physiological differences between cells that are physically entrapped in a synthetic polymeric matrix and biofilm cells that are encased in a self-produced polymeric matrix remain unknown. In this study, using Shewanella oneidensis as a model organism and alginate hydrogel as a model synthetic matrix, we compared the cell growth and protein expression in entrapped cultures and biofilms. The hydrogel-entrapped cultures were found to exhibit a growth rate comparable with biofilms. There was no substantial difference in cell viability, surface charge, as well as hydrophobicity between the cells grown in alginate hydrogel and those grown in biofilms. However, the gel-entrapped cultures were found to be physiologically different from biofilms. The gel-entrapped cultures had a higher demand for metabolic energy. The siderophore-mediated iron uptake was repressed in the gel-entrapped cells. The presence of the hydrogel matrix decreased the expression of proteins involved in biofilm formation, while inducing the production of extracellular DNA (eDNA) in the gel-entrapped cultures. These results advance the fundamental understanding of the physiology of hydrogel-entrapped cells, which can lead to more efficient biofilm mimic-based applications.

  17. Bacterial Adhesion under Static and Dynamic Conditions

    PubMed Central

    Rijnaarts, Huub H. M.; Norde, Willem; Bouwer, Edward J.; Lyklema, Johannes; Zehnder, Alexander J. B.

    1993-01-01

    The deposition of various pseudomonads and coryneform bacteria with different hydrophobicities (water contact angles) and negative cell surface charges on negatively charged Teflon and glass surfaces was investigated. The levels of deposition varied between 5.0 × 104 and 1.6 × 107 cells cm-2 and between 5.0 × 104 and 3.6 × 107 cells cm-2 for dynamic column and static batch systems, respectively, indicating that there was a wide variation in physicochemical interactions. Batch and column results were compared in order to better distinguish between hydrodynamic and other system-dependent influences and method-independent physicochemical interactions. Despite the shorter suspension-solid contact time in columns (1 h) than in batch systems (4 h), the level of deposition (expressed as the number of cells that adhered) divided by the applied ambient cell concentration was 4.12 ± 1.63 times higher in columns than in batch sytems for 15 of 22 strain-surface combinations studied. This demonstrates that transport of microbial particles from bulk liquid to surfaces is more efficient in dynamic columns (transport dominated by convection and diffusion) than in static batch systems (transport by diffusion only). The relative constancy of this ratio for the 15 combinations shows that physicochemical interactions affect adhesion similarly in the two systems. The deviating deposition behavior of the other seven strain-surface combinations could be attributed to method-dependent effects resulting from specific cell characteristics (e.g., to the presence of capsular polymers, to an ability to aggregate, to large cell sizes, or to a tendency to desorb after passage through an air-liquid interface). Images PMID:16349063

  18. High performance spiral wound microbial fuel cell with hydraulic characterization.

    PubMed

    Haeger, Alexander; Forrestal, Casey; Xu, Pei; Ren, Zhiyong Jason

    2014-12-01

    The understanding and development of functioning systems are crucial steps for microbial fuel cell (MFC) technology advancement. In this study, a compact spiral wound MFC (swMFC) was developed and hydraulic residence time distribution (RTD) tests were conducted to investigate the flow characteristics in the systems. Results show that two-chamber swMFCs have high surface area to volume ratios of 350-700m(2)/m(3), and by using oxygen cathode without metal-catalysts, the maximum power densities were 42W/m(3) based on total volume and 170W/m(3) based on effective volume. The hydraulic step-input tracer study identified 20-67% of anodic flow dead space, which presents new opportunities for system improvement. Electrochemical tools revealed very low ohmic resistance but high charge transfer and diffusion resistance due to catalyst-free oxygen reduction. The spiral wound configuration combined with RTD tool offers a holistic approach for MFC development and optimization. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Enhancement of hexavalent chromium reduction and electricity production from a biocathode microbial fuel cell.

    PubMed

    Huang, Liping; Chen, Jingwen; Quan, Xie; Yang, Fenglin

    2010-10-01

    Enhancement of Cr (VI) reduction rate and power production from biocathode microbial fuel cells (MFCs) was achieved using indigenous bacteria from Cr (VI)-contaminated site as inoculum and MFC architecture with a relatively large cathode-specific surface area of 340-900 m2 m(-3). A specific Cr (VI) reduction rate of 2.4 ± 0.2 mg g(-1)VSS h(-1) and a power production of 2.4 ± 0.1 W m(-3) at a current density of 6.9 A m(-3) were simultaneously achieved at an initial Cr (VI) concentration of 39.2 mg L(-1). Initial Cr (VI) concentration and solution conductivity affected Cr (VI) reduction rate, power production and coulombic efficiency. These findings demonstrate the importance of inoculation and MFC architecture in the enhancement of Cr (VI) reduction rate and power production. This study is a beneficial attempt to improve the efficiency of biocathode MFCs and provide a good candidate of bioremediation process for Cr (VI)-contaminated sites.

  20. Concurrent hydrogen production and phosphorus recovery in dual chamber microbial electrolysis cell.

    PubMed

    Almatouq, Abdullah; Babatunde, A O

    2017-08-01

    Concurrent hydrogen (H 2 ) production and phosphorus (P) recovery were investigated in dual chamber microbial electrolysis cells (MECs). The aim of the study was to explore and understand the influence of applied voltage and influent COD concentration on concurrent H 2 production and P recovery in MEC. P was efficiently precipitated at the cathode chamber and the precipitated crystals were verified as struvite, using X-ray diffraction and scanning electron microscopy analysis. The maximum P precipitation efficiency achieved by the MEC was 95%, and the maximum H 2 production rate was 0.28m 3 -H 2 /m 3 -d. Response surface methodology showed that applied voltage had a great influence on H 2 production and P recovery, while influent COD concentration had a significant effect on P recovery only. The overall energy recovery in the MEC was low and ranged from 25±1 to 37±1.7%. These results confirmed MECs capability for concurrent H 2 production and P recovery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Mitigating external and internal cathode fouling using a polymer bonded separator in microbial fuel cells.

    PubMed

    Yang, Wulin; Rossi, Ruggero; Tian, Yushi; Kim, Kyoung-Yeol; Logan, Bruce E

    2018-02-01

    Microbial fuel cell (MFC) cathodes rapidly foul when treating domestic wastewater, substantially reducing power production over time. Here a wipe separator was chemically bonded to an activated carbon air cathode using polyvinylidene fluoride (PVDF) to mitigate cathode fouling and extend cathode performance over time. MFCs with separator-bonded cathodes produced a maximum power density of 190 ± 30 mW m -2 after 2 months of operation using domestic wastewater, which was ∼220% higher than controls (60 ± 50 mW m -2 ) with separators that were not chemically bonded to the cathode. Less biomass (protein) was measured on the bonded separator surface than the non-bonded separator, indicating chemical bonding reduced external bio-fouling. Salt precipitation that contributed to internal fouling was also reduced using separator-bonded cathodes. Overall, the separator-bonded cathodes showed better performance over time by mitigating both external bio-fouling and internal salt fouling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Recycled tire crumb rubber anodes for sustainable power production in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Heming; Davidson, Matthew; Zuo, Yi; Ren, Zhiyong

    One of the greatest challenges facing microbial fuel cells (MFCs) in large scale applications is the high cost of electrode material. We demonstrate here that recycled tire crumb rubber coated with graphite paint can be used instead of fine carbon materials as the MFC anode. The tire particles showed satisfactory conductivity after 2-4 layers of coating. The specific surface area of the coated rubber was over an order of magnitude greater than similar sized graphite granules. Power production in single chamber tire-anode air-cathode MFCs reached a maximum power density of 421 mW m -2, with a coulombic efficiency (CE) of 25.1%. The control graphite granule MFC achieved higher power density (528 mW m -2) but lower CE (15.6%). The light weight of tire particle could reduce clogging and maintenance cost but posts challenges in conductive connection. The use of recycled material as the MFC anodes brings a new perspective to MFC design and application and carries significant economic and environmental benefit potentials.

  3. Bacterial Cell Surface Adsorption of Rare Earth Elements

    NASA Astrophysics Data System (ADS)

    Jiao, Y.; Park, D.; Reed, D.; Fujita, Y.; Yung, M.; Anderko, A.; Eslamimanesh, A.

    2015-12-01

    Rare earth elements (REE) play a critical role in many emerging clean energy technologies, including high-power magnets, wind turbines, solar panels, hybrid/electric vehicle batteries and lamp phosphors. In order to sustain demand for such technologies given current domestic REE shortages, there is a need to develop new approaches for ore processing/refining and recycling of REE-containing materials. To this end, we have developed a microbially-mediated bioadsorption strategy with application towards enrichment of REE from complex mixtures. Specifically, the bacterium Caulobacter crescentus was genetically engineered to display lanthanide binding tags (LBTs), short peptides that possess high affinity and specificity for rare earth elements, on its cell surface S-layer protein. Under optimal conditions, LBT-displayed cells adsorbed greater than 5-fold more REE than control cells lacking LBTs. Competition binding experiments with a selection of REEs demonstrated that our engineered cells could facilitate separation of light- from heavy- REE. Importantly, binding of REE onto our engineered strains was much more favorable compared to non-REE metals. Finally, REE bound to the cell surface could be stripped off using citrate, providing an effective and non-toxic REE recovery method. Together, this data highlights the potential of our approach for selective REE enrichment from REE containing mixtures.

  4. A microbiology-based multi-parametric approach towards assessing biological stability in drinking water distribution networks.

    PubMed

    Lautenschlager, Karin; Hwang, Chiachi; Liu, Wen-Tso; Boon, Nico; Köster, Oliver; Vrouwenvelder, Hans; Egli, Thomas; Hammes, Frederik

    2013-06-01

    Biological stability of drinking water implies that the concentration of bacterial cells and composition of the microbial community should not change during distribution. In this study, we used a multi-parametric approach that encompasses different aspects of microbial water quality including microbial growth potential, microbial abundance, and microbial community composition, to monitor biological stability in drinking water of the non-chlorinated distribution system of Zürich. Drinking water was collected directly after treatment from the reservoir and in the network at several locations with varied average hydraulic retention times (6-52 h) over a period of four months, with a single repetition two years later. Total cell concentrations (TCC) measured with flow cytometry remained remarkably stable at 9.5 (± 0.6) × 10(4) cells/ml from water in the reservoir throughout most of the distribution network, and during the whole time period. Conventional microbial methods like heterotrophic plate counts, the concentration of adenosine tri-phosphate, total organic carbon and assimilable organic carbon remained also constant. Samples taken two years apart showed more than 80% similarity for the microbial communities analysed with denaturing gradient gel electrophoresis and 454 pyrosequencing. Only the two sampling locations with the longest water retention times were the exceptions and, so far for unknown reasons, recorded a slight but significantly higher TCC (1.3 (± 0.1) × 10(5) cells/ml) compared to the other locations. This small change in microbial abundance detected by flow cytometry was also clearly observed in a shift in the microbial community profiles to a higher abundance of members from the Comamonadaceae (60% vs. 2% at other locations). Conventional microbial detection methods were not able to detect changes as observed with flow cytometric cell counts and microbial community analysis. Our findings demonstrate that the multi-parametric approach used provides a powerful and sensitive tool to assess and evaluate biological stability and microbial processes in drinking water distribution systems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Detection of microbial biofilms on food processing surfaces: hyperspectral fluorescence imaging study

    NASA Astrophysics Data System (ADS)

    Jun, Won; Kim, Moon S.; Chao, Kaunglin; Lefcourt, Alan M.; Roberts, Michael S.; McNaughton, James L.

    2009-05-01

    We used a portable hyperspectral fluorescence imaging system to evaluate biofilm formations on four types of food processing surface materials including stainless steel, polypropylene used for cutting boards, and household counter top materials such as formica and granite. The objective of this investigation was to determine a minimal number of spectral bands suitable to differentiate microbial biofilm formation from the four background materials typically used during food processing. Ultimately, the resultant spectral information will be used in development of handheld portable imaging devices that can be used as visual aid tools for sanitation and safety inspection (microbial contamination) of the food processing surfaces. Pathogenic E. coli O157:H7 and Salmonella cells were grown in low strength M9 minimal medium on various surfaces at 22 +/- 2 °C for 2 days for biofilm formation. Biofilm autofluorescence under UV excitation (320 to 400 nm) obtained by hyperspectral fluorescence imaging system showed broad emissions in the blue-green regions of the spectrum with emission maxima at approximately 480 nm for both E. coli O157:H7 and Salmonella biofilms. Fluorescence images at 480 nm revealed that for background materials with near-uniform fluorescence responses such as stainless steel and formica cutting board, regardless of the background intensity, biofilm formation can be distinguished. This suggested that a broad spectral band in the blue-green regions can be used for handheld imaging devices for sanitation inspection of stainless, cutting board, and formica surfaces. The non-uniform fluorescence responses of granite make distinctions between biofilm and background difficult. To further investigate potential detection of the biofilm formations on granite surfaces with multispectral approaches, principal component analysis (PCA) was performed using the hyperspectral fluorescence image data. The resultant PCA score images revealed distinct contrast between biofilms and granite surfaces. This investigation demonstrated that biofilm formations on food processing surfaces, even for background materials with heterogeneous fluorescence responses, can be detected. Furthermore, a multispectral approach in developing handheld inspection devices may be needed to inspect surface materials that exhibit non-uniform fluorescence.

  6. Phenol Biodegradation by Free and Immobilized Candida tropicalis RETL-Crl on Coconut Husk and Loofah Packed in Biofilter Column

    NASA Astrophysics Data System (ADS)

    Shazryenna, D.; Ruzanna, R.; Jessica, M. S.; Piakong, M. T.

    2015-04-01

    Phenols and its derivatives are environmental pollutant commonly found in many industrial effluents. It is toxic in nature and causes various health hazards. However, they are poorly removed in conventional biological processes due to their toxicity. Immobilization of microbial cells has received increasing interest in the field of waste treatment and creates opportunities in a wide range of sectors including environmental pollution control. Live cells of phenol-degrading yeast, Candida tropicalis RETL-Crl, were immobilized on coconut husk and loofah by adsorption. The immobolized particle was packed into biofilter column which used for continuous treatment of a phenol with initial phenol concentration of 3mM. Both loofah and coconut husk have similar phenol biodegradation rate of 0.0188 gL-1h-1 within 15 hours to achieve a phenol removal efficiency of 100%. However loofah have lower biomass concentration of 4.22 gL-1 compared to biomass concentration on coconut husk, 4.39 gL-1. Coconut husk contain higher biomass concentration which makes it better support material than loofah. Fibrous matrices such as loofah and coconut husk provide adequate supporting surfaces for cell adsorption, due to their high specific surface area. Therefore, coconut husk and loofah being an agricultural waste product have the potential to be used as low-cost adsorbent and support matrix for microbial culture immobilization for the removal of organic pollutant from wastewater.

  7. The Structure of Microbial Community and Degradation of Diatoms in the Deep Near-Bottom Layer of Lake Baikal

    PubMed Central

    Zakharova, Yulia R.; Galachyants, Yuri P.; Kurilkina, Maria I.; Likhoshvay, Alexander V.; Petrova, Darya P.; Shishlyannikov, Sergey M.; Ravin, Nikolai V.; Mardanov, Andrey V.; Beletsky, Alexey V.; Likhoshway, Yelena V.

    2013-01-01

    Insight into the role of bacteria in degradation of diatoms is important for understanding the factors and components of silica turnover in aquatic ecosystems. Using microscopic methods, it has been shown that the degree of diatom preservation and the numbers of diatom-associated bacteria in the surface layer of bottom sediments decrease with depth; in the near-bottom water layer, the majority of bacteria are associated with diatom cells, being located either on the cell surface or within the cell. The structure of microbial community in the near-bottom water layer has been characterized by pyrosequencing of the 16S rRNA gene, which has revealed 149 208 unique sequences. According to the results of metagenomic analysis, the community is dominated by representatives of Proteobacteria (41.9%), Actinobacteria (16%); then follow Acidobacteria (6.9%), Cyanobacteria (5%), Bacteroidetes (4.7%), Firmicutes (2.8%), Nitrospira (1.6%), and Verrucomicrobia (1%); other phylotypes account for less than 1% each. For 18.7% of the sequences, taxonomic identification has been possible only to the Bacteria domain level. Many bacteria identified to the genus level have close relatives occurring in other aquatic ecosystems and soils. The metagenome of the bacterial community from the near-bottom water layer also contains 16S rRNA gene sequences found in previously isolated bacterial strains possessing hydrolytic enzyme activity. These data show that potential degraders of diatoms occur among the vast variety of microorganisms in the near-bottom water of Lake Baikal. PMID:23560063

  8. Piezophilic Bacteria Isolated from Sediment of the Shimokita Coalbed, Japan

    NASA Astrophysics Data System (ADS)

    Fang, J.; Kato, C.; Hori, T.; Morono, Y.; Inagaki, F.

    2013-12-01

    The Earth is a cold planet as well as pressured planet, hosting both the surface biosphere and the deep biosphere. Pressure ranges over four-orders of magnitude in the surface biosphere and probably more in the deep biosphere. Pressure is an important thermodynamic property of the deep biosphere that affects microbial physiology and biochemistry. Bacteria that require high-pressure conditions for optimal growth are called piezophilic bacteria. Subseafloor marine sediments are one of the most extensive microbial habitats on Earth. Marine sediments cover more than two-thirds of the Earth's surface, and represent a major part of the deep biosphere. Owing to its vast size and intimate connection with the surface biosphere, particularly the oceans, the deep biosphere has enormous potential for influencing global-scale biogeochemical processes, including energy, climate, carbon and nutrient cycles. Therefore, studying piezophilic bacteria of the deep biosphere has important implications in increasing our understanding of global biogeochemical cycles, the interactions between the biosphere and the geosphere, and the evolution of life. Sediment samples were obtained during IODP Expedition 337, from 1498 meters below sea floor (mbsf) (Sample 6R-3), 1951~1999 mbsf (19R-1~25R-3; coalbed mix), and 2406 mbsf (29R-7). The samples were mixed with MB2216 growth medium and cultivated under anaerobic conditions at 35 MPa (megapascal) pressure. Growth temperatures were adjusted to in situ environmental conditions, 35°C for 6R-3, 45°C for 19R-1~25R-3, and 55°C for 29R-7. The cultivation was performed three times, for 30 days each time. Microbial cells were obtained and the total DNA was extracted. At the same time, isolation of microbes was also performed under anaerobic conditions. Microbial communities in the coalbed sediment were analyzed by cloning, sequencing, and terminal restriction fragment length polymorphism (t-RFLP) of 16S ribosomal RNA genes. From the partial 16S rRNA gene sequences, we have identified abundant Alkalibacterium sp. in 6R-3 and 29R-7 at the first HP cultivation. We also identified Haloactibacillus sp. in 6R-3 and Anoxybacillus related sp. in 19R-1~25R-3 at the third HP cultivation. These microorganisms are likely piezophiles and play an important role in degradation of sedimentary organic matter and production of microbial metabolites sustaining the deep microbial ecosystem in the Shimokita Coalbed. The complete 16S sequencing and isolation of piezophiles are now ongoing.

  9. The interaction in vitro of Mycoplasma pulmonis with mouse peritoneal macrophages and L-cells.

    PubMed

    Jones, T C; Hirsch, J G

    1971-02-01

    Methods have been devised for establishing infection in vitro of mouse macrophages and fibroblasts with Mycoplasma pulmonis. The mycoplasmas attached to the cells and under appropriate cultural conditions grew into a lawn of microorganisms covering most of the cell surface. The mycoplasmas grew abundantly on fibroblasts cultured in minimal essential medium containing 20% fetal calf serum; supplementation of this medium with heart infusion broth was necessary to obtain similar growth on macrophages. The infection of these cells appeared to be essentially an extracellular process; only rarely were partially degraded mycoplasmas seen with phagocytic vacuoles. The addition to heavily infected macrophage cultures of low concentrations of anti-mycoplasma antibody stimulated rapid, massive phagocytosis of the surface microorganisms. In sharp contrast, the same antiserum had no discernable effect on the mycoplasma-fibroblast relationship. The antibody effect in the macrophage system was apparently a direct opsonic one rather than an indirect result of microbial killing, since the mycoplasmas in macrophage or fibroblast cultures incorporated labelled thymidine into DNA after the addition of antiserum to the medium. The phagocytic event and the subsequent fate of the mycoplasmas were studied in detail after the addition of antibody to the macrophage cultures. Phase-contrast cinemicrophotography revealed membrane ruffles surrounding the surface mycoplasmas and disappearance from view of the organisms; 10-30 min later translucent grapelike clusters were seen in large phagocytic vacuoles. On electronmicroscopic study the surface mycoplasmas were surrounded by pincers-like projections of the macrophage. Numerous mycoplasmas were seen in phagocytic vacuoles; in the early minutes after the addition of antibody the intracellular mycoplasmas appeared normal, but within 2 hr they appeared partially degraded with a central electron-lucent area and electron-opaque deposits at the microbial cell margin. 24 hr after the addition of antiserum, digestion of the mycoplasmas was nearly complete; the cells appeared normal except for large residual bodies composed of amorphous moderately dense material and increased lipid deposits. Degradation of mycoplasmas within macrophages was also studied using infected cultures in which the mycoplasmas, but not the macrophages, had incorporated tritiated thymidine into DNA. The appearance of large amounts of acid-soluble radiolabel after phagocytosis stimulated by antibody confirmed the degradation of the intracellular mycoplasmas.

  10. Microbial Habitability and Pleistocene Aridification of the Asian Interior

    NASA Astrophysics Data System (ADS)

    Wang, Jiuyi; Lowenstein, Tim K.; Fang, Xiaomin

    2016-06-01

    Fluid inclusions trapped in ancient halite can contain a community of halophilic prokaryotes and eukaryotes that inhabited the surface brines from which the halite formed. Long-term survival of bacteria and archaea and preservation of DNA have been reported from halite, but little is known about the distribution of microbes in buried evaporites. Here we report the discovery of prokaryotes and single-celled algae in fluid inclusions in Pleistocene halite, up to 2.26 Ma in age, from the Qaidam Basin, China. We show that water activity (aw), a measure of water availability and an environmental control on biological habitability in surface brines, is also related to microbe entrapment in fluid inclusions. The aw of Qaidam Basin brines progressively decreased over the last ˜1 million years, driven by aridification of the Asian interior, which led to decreased precipitation and water inflow and heightened evaporation rates. These changes in water balance produced highly concentrated brines, which reduced the habitability of surface lakes and decreased the number of microbes trapped in halite. By 0.13 Ma, the aw of surface brines approached the limits tolerated by halophilic prokaryotes and algae. These results show the response of microbial ecosystems to climate change in an extreme environment, which will guide future studies exploring deep life on Earth and elsewhere in the Solar System.

  11. Evaluation of electricity production from alkaline pretreated sludge using two-chamber microbial fuel cell.

    PubMed

    Xiao, Benyi; Yang, Fang; Liu, Junxin

    2013-06-15

    Electricity production from alkaline pretreated sludge was evaluated using a two-chamber microbial fuel cell (MFC). The electricity production was found to be stable over a long period of time (approximately 17 d) with voltage outputs and power densities of 0.47-0.52 V and 46.80-55.88 mW/m(2), respectively. The anode resistance was the main internal resistance (73.2%) of MFC in the stable stage. Most soluble organic matters (proteins and carbohydrates) in the anode chamber were first degraded and converted into volatile fatty acids (0-15 d), which were then degraded and converted into electricity and methane (15-29 d). The insoluble organics were solubilized thereby decreasing the sludge concentration and reducing the sludge mass. Methane was produced in the anode chamber owing to the growth of methanogens, which did not obviously affect the electricity production. The change in humic-like substances displayed a positive correlation with the electricity production of the MFC. Microbial analysis showed that methanogens and electricity-producing bacteria co-existed mostly on the surface as well as inside the anode. Decreasing the anode resistance and increasing the anode utilization could enhance the electricity production. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  12. Integrated Microfluidic Flow-Through Microbial Fuel Cells

    PubMed Central

    Jiang, Huawei; Ali, Md. Azahar; Xu, Zhen; Halverson, Larry J.; Dong, Liang

    2017-01-01

    This paper reports on a miniaturized microbial fuel cell with a microfluidic flow-through configuration: a porous anolyte chamber is formed by filling a microfluidic chamber with three-dimensional graphene foam as anode, allowing nutritional medium to flow through the chamber to intimately interact with the colonized microbes on the scaffolds of the anode. No nutritional media flow over the anode. This allows sustaining high levels of nutrient utilization, minimizing consumption of nutritional substrates, and reducing response time of electricity generation owing to fast mass transport through pressure-driven flow and rapid diffusion of nutrients within the anode. The device provides a volume power density of 745 μW/cm3 and a surface power density of 89.4 μW/cm2 using Shewanella oneidensis as a model biocatalyst without any optimization of bacterial culture. The medium consumption and the response time of the flow-through device are reduced by 16.4 times and 4.2 times, respectively, compared to the non-flow-through counterpart with its freeway space volume six times the volume of graphene foam anode. The graphene foam enabled microfluidic flow-through approach will allow efficient microbial conversion of carbon-containing bioconvertible substrates to electricity with smaller space, less medium consumption, and shorter start-up time. PMID:28120875

  13. Computational investigation of the flow field contribution to improve electricity generation in granular activated carbon-assisted microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Li, Jian; Battaglia, Francine; He, Zhen

    2016-11-01

    Microbial fuel cells (MFCs) offer an alternative approach to treat wastewater with less energy input and direct electricity generation. To optimize MFC anodic performance, adding granular activated carbon (GAC) has been proved to be an effective way, most likely due to the enlarged electrode surface for biomass attachment and improved mixing of the flow field. The impact of a flow field on the current enhancement within a porous anode medium (e.g., GAC) has not been well understood before, and thus is investigated in this study by using mathematical modeling of the multi-order Butler-Volmer equation with computational fluid dynamics (CFD) techniques. By comparing three different CFD cases (without GAC, with GAC as a nonreactive porous medium, and with GAC as a reactive porous medium), it is demonstrated that adding GAC contributes to a uniform flow field and a total current enhancement of 17%, a factor that cannot be neglected in MFC design. However, in an actual MFC operation, this percentage could be even higher because of the microbial competition and energy loss issues within a porous medium. The results of the present study are expected to help with formulating strategies to optimize MFC with a better flow pattern design.

  14. Integrated Microfluidic Flow-Through Microbial Fuel Cells

    NASA Astrophysics Data System (ADS)

    Jiang, Huawei; Ali, Md. Azahar; Xu, Zhen; Halverson, Larry J.; Dong, Liang

    2017-01-01

    This paper reports on a miniaturized microbial fuel cell with a microfluidic flow-through configuration: a porous anolyte chamber is formed by filling a microfluidic chamber with three-dimensional graphene foam as anode, allowing nutritional medium to flow through the chamber to intimately interact with the colonized microbes on the scaffolds of the anode. No nutritional media flow over the anode. This allows sustaining high levels of nutrient utilization, minimizing consumption of nutritional substrates, and reducing response time of electricity generation owing to fast mass transport through pressure-driven flow and rapid diffusion of nutrients within the anode. The device provides a volume power density of 745 μW/cm3 and a surface power density of 89.4 μW/cm2 using Shewanella oneidensis as a model biocatalyst without any optimization of bacterial culture. The medium consumption and the response time of the flow-through device are reduced by 16.4 times and 4.2 times, respectively, compared to the non-flow-through counterpart with its freeway space volume six times the volume of graphene foam anode. The graphene foam enabled microfluidic flow-through approach will allow efficient microbial conversion of carbon-containing bioconvertible substrates to electricity with smaller space, less medium consumption, and shorter start-up time.

  15. EMSL Geochemistry, Biogeochemistry and Subsurface Science-Science Theme Advisory Panel Meeting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Gordon E.; Chaka, Anne; Shuh, David K.

    2011-08-01

    This report covers the topics of discussion and the recommendations of the panel members. On December 8 and 9, 2010, the Geochemistry, Biogeochemistry, and Subsurface Science (GBSS) Science Theme Advisory Panel (STAP) convened for a more in-depth exploration of the five Science Theme focus areas developed at a similar meeting held in 2009. The goal for the fiscal year (FY) 2011 meeting was to identify potential topical areas for science campaigns, necessary experimental development needs, and scientific members for potential research teams. After a review of the current science in each of the five focus areas, the 2010 STAP discussionsmore » successfully led to the identification of one well focused campaign idea in pore-scale modeling and five longer-term potential research campaign ideas that would likely require additional workshops to identify specific research thrusts. These five campaign areas can be grouped into two categories: (1) the application of advanced high-resolution, high mass accuracy experimental techniques to elucidate the interplay between geochemistry and microbial communities in terrestrial ecosystems and (2) coupled computation/experimental investigations of the electron transfer reactions either between mineral surfaces and outer membranes of microbial cells or between the outer and inner membranes of microbial cells.« less

  16. Identifying protist consumers of photosynthetic picoeukaryotes in the surface ocean using stable isotope probing.

    PubMed

    Orsi, William D; Wilken, Susanne; Del Campo, Javier; Heger, Thierry; James, Erick; Richards, Thomas A; Keeling, Patrick J; Worden, Alexandra Z; Santoro, Alyson E

    2018-02-01

    Photosynthetic picoeukaryotes contribute a significant fraction of primary production in the upper ocean. Micromonas pusilla is an ecologically relevant photosynthetic picoeukaryote, abundantly and widely distributed in marine waters. Grazing by protists may control the abundance of picoeukaryotes such as M. pusilla, but the diversity of the responsible grazers is poorly understood. To identify protists consuming photosynthetic picoeukaryotes in a productive North Pacific Ocean region, we amended seawater with living 15 N, 13 C-labelled M. pusilla cells in a 24-h replicated bottle experiment. DNA stable isotope probing, combined with high-throughput sequencing of V4 hypervariable regions from 18S rRNA gene amplicons (Tag-SIP), identified 19 operational taxonomic units (OTUs) of microbial eukaryotes that consumed M. pusilla. These OTUs were distantly related to cultured taxa within the dinoflagellates, ciliates, stramenopiles (MAST-1C and MAST-3 clades) and Telonema flagellates, thus, far known only from their environmental 18S rRNA gene sequences. Our discovery of eukaryotic prey consumption by MAST cells confirms that their trophic role in marine microbial food webs includes grazing upon picoeukaryotes. Our study provides new experimental evidence directly linking the genetic identity of diverse uncultivated microbial eukaryotes to the consumption of picoeukaryotic phytoplankton in the upper ocean. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  17. Pulse electromagnetic fields enhance extracellular electron transfer in magnetic bioelectrochemical systems.

    PubMed

    Zhou, Huihui; Liu, Bingfeng; Wang, Qisong; Sun, Jianmin; Xie, Guojun; Ren, Nanqi; Ren, Zhiyong Jason; Xing, Defeng

    2017-01-01

    Microbial extracellular electron transfer (EET) is essential in driving the microbial interspecies interaction and redox reactions in bioelectrochemical systems (BESs). Magnetite (Fe 3 O 4 ) and magnetic fields (MFs) were recently reported to promote microbial EET, but the mechanisms of MFs stimulation of EET and current generation in BESs are not known. This study investigates the behavior of current generation and EET in a state-of-the-art pulse electromagnetic field (PEMF)-assisted magnetic BES (PEMF-MBES), which was equipped with magnetic carbon particle (Fe 3 O 4 @N-mC)-coated electrodes. Illumina Miseq sequencing of 16S rRNA gene amplicons was also conducted to reveal the changes of microbial communities and interactions on the anode in response to magnetic field. PEMF had significant influences on current generation. When reactors were operated in microbial fuel cell (MFC) mode with pulse electromagnetic field (PEMF-MMFCs), power densities increased by 25.3-36.0% compared with no PEMF control MFCs (PEMF-OFF-MMFCs). More interestingly, when PEMF was removed, the power density dropped by 25.7%, while when PEMF was reintroduced, the value was restored to the previous level. Illumina sequencing of 16S rRNA gene amplicon and principal component analysis (PCA) based on operational taxonomic units (OTUs) indicate that PEMFs led to the shifts in microbial community and changes in species evenness that decreased biofilm microbial diversity. Geobacter spp. were found dominant in all anode biofilms, but the relative abundance in PEMF-MMFCs (86.1-90.0%) was higher than in PEMF-OFF-MMFCs (82.5-82.7%), indicating that the magnetic field enriched Geobacter on the anode. The current generation of Geobacter -inoculated microbial electrolysis cells (MECs) presented the same change regularity, the accordingly increase or decrease corresponding with switch of PEMF, which confirmed the reversible stimulation of PEMFs on microbial electron transfer. The pulse electromagnetic field (PEMF) showed significant influence on state-of-the-art pulse magnetic bioelectrochemical systems (PEMF-MBES) in terms of current generation and microbial ecology. EET was instantaneously and reversibly enhanced in MBESs inoculated with either mixed-culture or Geobacter . PEMF notably decreased bacterial and archaeal diversities of the anode biofilms in MMFCs via changing species evenness rather than species richness, and facilitated specific enrichment of exoelectrogenic bacteria ( Geobacter ) on the anode surface. This study demonstrates a new magnetic approach for understanding and facilitating microbial electrochemical activities.

  18. Receptor Kinases in Plant-Pathogen Interactions: More Than Pattern Recognition[OPEN

    PubMed Central

    2017-01-01

    Receptor-like kinases (RLKs) and Receptor-like proteins (RLPs) play crucial roles in plant immunity, growth, and development. Plants deploy a large number of RLKs and RLPs as pattern recognition receptors (PRRs) that detect microbe- and host-derived molecular patterns as the first layer of inducible defense. Recent advances have uncovered novel PRRs, their corresponding ligands, and mechanisms underlying PRR activation and signaling. In general, PRRs associate with other RLKs and function as part of multiprotein immune complexes at the cell surface. Innovative strategies have emerged for the rapid identification of microbial patterns and their cognate PRRs. Successful pathogens can evade or block host recognition by secreting effector proteins to “hide” microbial patterns or inhibit PRR-mediated signaling. Furthermore, newly identified pathogen effectors have been shown to manipulate RLKs controlling growth and development by mimicking peptide hormones of host plants. The ongoing studies illustrate the importance of diverse plant RLKs in plant disease resistance and microbial pathogenesis. PMID:28302675

  19. Microbial community in biofilm on membrane surface of submerged MBR: effect of in-line cleaning chemical agent.

    PubMed

    Lim, B R; Ahn, K H; Song, K G; Cho, J W

    2005-01-01

    The objective of this study was to investigate the change in microbial community pattern with the effect of cleaning agent using a quinone profile that is used for membrane in-line chemical cleaning in SMBR. The dominant quinone types of biofilm were ubiquinone (UQs)-8, -10, followed by menaquinone (MKs)-8(H4), -7 and UQ-9, but those of suspended microorganisms were UQ-8, UQ-10 followed by MKs-8(H4), -7 and -11. Both UQ and MK contents decreased with increasing NaCIO dosage and it seems that there is more resistance from UQ compared to MK. In addition, COD and DOC concentrations increased with increasing NaClO dosage up to 0.05 g-NaCIO/g-SS. The organic degradation performance of the microbial community in the presence of NaClO was impaired. The present study suggested that larger added amounts of NaClO caused an inhibition of organic degradation and cell lysis.

  20. Single-Cell Imaging and Spectroscopic Analyses of Cr(VI) Reduction on the Surface of Bacterial Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yuanmin; Sevinc, Papatya C.; Belchik, Sara M.

    2013-01-22

    We investigate single-cell reduction of toxic Cr(VI) by the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1 (MR-1), an important bioremediation process, using Raman spectroscopy and scanning electron microscopy (SEM) combined with energy-dispersive X-ray spectroscopy (EDX). Our experiments indicate that the toxic and highly soluble Cr(VI) can be efficiently reduced to the less toxic and non-soluble Cr2O3 nanoparticles by MR-1. Cr2O3 is observed to emerge as nanoparticles adsorbed on the cell surface and its chemical nature is identified by EDX imaging and Raman spectroscopy. Co-localization of Cr2O3 and cytochromes by EDX imaging and Raman spectroscopy suggests a terminal reductase role for MR-1more » surface-exposed cytochromes MtrC and OmcA. Our experiments revealed that the cooperation of surface proteins OmcA and MtrC makes the reduction reaction most efficient, and the sequence of the reducing reactivity of the MR-1 is: wild type > single mutant @mtrC or mutant @omcA > double mutant (@omcA-@mtrC). Moreover, our results also suggest that the direct microbial Cr(VI) reduction and Fe(II) (hematite)-mediated Cr(VI) reduction mechanisms may co-exist in the reduction processes.« less

Top