Science.gov

Sample records for microbial cell wall

  1. Enzyme Amplified Detection of Microbial Cell Wall Components

    NASA Technical Reports Server (NTRS)

    Wainwright, Norman R.

    2004-01-01

    This proposal is MBL's portion of NASA's Johnson Space Center's Astrobiology Center led by Principal Investigator, Dr. David McKay, entitled: 'Institute for the Study of Biomarkers in Astromaterials.' Dr. Norman Wainwright is the principal investigator at MBL and is responsible for developing methods to detect trace quantities of microbial cell wall chemicals using the enzyme amplification system of Limulus polyphemus and other related methods.

  2. Innate immune recognition of microbial cell wall components and microbial strategies to evade such recognitions.

    PubMed

    Sukhithasri, V; Nisha, N; Biswas, Lalitha; Anil Kumar, V; Biswas, Raja

    2013-08-25

    The innate immune system constitutes the first line of defence against invading microbes. The basis of this defence resides in the recognition of defined structural motifs of the microbes called "Microbial associated molecular patterns" that are absent in the host. Cell wall, the outer layer of both bacterial and fungal cells, a unique structure that is absent in the host and is recognized by the germ line encoded host receptors. Nucleotide oligomerization domain proteins, peptidoglycan recognition proteins and C-type lectins are host receptors that are involved in the recognition of bacterial cell wall (usually called peptidoglycan), whereas fungal cell wall components (N- and O-linked mannans, β-glucans etc.) are recognized by host receptors like C-type lectins (Dectin-1, Dectin-2, mannose receptor, DC-SIGN), Toll like receptors-2 and -4 (TLR-2 and TLR-4). These recognitions lead to activation of a variety of host signaling cascades and ultimate production of anti-microbial compounds including phospholipase A2, antimicrobial peptides, lysozyme, reactive oxygen and nitrogen species. These molecules act in cohort against the invading microbes to eradicate infections. Additionally pathogen recognition leads to the production of cytokines, which further activate the adaptive immune system. Both pathogenic and commensal bacteria and fungus use numerous strategies to subvert the host defence. These strategies include bacterial peptidoglycan glycan backbone modifications by O-acetylation, N-deacetylation, N-glycolylation and stem peptide modifications by amidation of meso-Diaminopimelic acid; fungal cell wall modifications by shielding the β-glucan layer with mannoproteins and α-1,3 glucan. This review focuses on the recent advances in understanding the role of bacterial and fungal cell wall in their innate immune recognition and evasion strategies.

  3. Plant cell walls: Protecting the barrier from degradation by microbial enzymes.

    PubMed

    Lagaert, Stijn; Beliën, Tim; Volckaert, Guido

    2009-12-01

    Plant cell walls are predominantly composed of polysaccharides, which are connected in a strong, yet resilient network. They determine the size and shape of plant cells and form the interface between the cell and its often hostile environment. To penetrate the cell wall and thus infect plants, most phytopathogens secrete numerous cell wall degrading enzymes. Conversely, as a first line of defense, plant cell walls contain an array of inhibitors of these enzymes. Scientific knowledge on these inhibitors significantly progressed in the past years and this review is meant to give a comprehensive overview of plant inhibitors against microbial cell wall degrading enzymes and their role in plant protection.

  4. Post-synthetic modification of plant cell walls by expression of microbial hydrolases in the apoplast.

    PubMed

    Pogorelko, Gennady; Fursova, Oksana; Lin, Ming; Pyle, Eric; Jass, Johanna; Zabotina, Olga A

    2011-11-01

    The systematic creation of defined cell wall modifications in the model plant Arabidopsis thaliana by expression of microbial hydrolases with known specific activities is a promising approach to examine the impacts of cell wall composition and structure on both plant fitness and cell wall recalcitrance. Moreover, this approach allows the direct evaluation in living plants of hydrolase specificity, which can differ from in vitro specificity. To express genes encoding microbial hydrolases in A. thaliana, and target the hydrolases to the apoplast compartment, we constructed an expression cassette composed of the Cauliflower Mosaic Virus 35S RNA promoter, the A. thaliana β-expansin signal peptide, and the fluorescent marker protein YFP. Using this construct we successfully introduced into Colombia-0 plants three Aspergillus nidulans hydrolases, β-xylosidase/α-arabinosidase, feruloyl esterase, acetylxylan esterase, and a Xanthomonas oryzae putative a-L: -arabinofuranosidase. Fusion with YFP permitted quick and easy screening of transformants, detection of apoplastic localization, and protein size confirmation. Compared to wild-type Col-0, all transgenic lines showed a significant increase in the corresponding hydrolytic activity in the apoplast and changes in cell wall composition. Examination of hydrolytic activity in the transgenic plants also showed, for the first time, that the X. oryzae gene indeed encoded an enzyme with α-L: -arabinofuranosidase activity. None of the transgenic plants showed a visible phenotype; however, the induced compositional changes increased the degradability of biomass from plants expressing feruloyl esterase and β-xylosidase/α-arabinosidase. Our results demonstrate the viability of creating a set of transgenic A. thaliana plants with modified cell walls to use as a toolset for investigation of how cell wall composition contributes to recalcitrance and affects plant fitness.

  5. Microbial cell wall agents as an occupational hazard

    SciTech Connect

    Sigsgaard, T. . E-mail: ts@mil.au.dk; Bonefeld-Jorgensen, E.C.; Hoffmann, H.J.; Bonlokke, J.; Krueger, T.

    2005-09-01

    Organic dusts cause inflammatory reactions in the tissues exposed. The lung and the cells lining the surface of the respiratory tract are a primary target. Many receptors have been shown to react specifically on the presence of microorganisms that are ubiquitous elements in organic dusts. There is a great variability in the individual response to organic dusts. Almost 50% of Caucasians are hyporesponders to LPS exposure, and people with alpha-1-antitrypsin deficiency are hyperresponsive to organic dust exposure. The diseases resulting from organic dust exposures include asthma, allergy, hypersensitivity pneumonitis and toxic pneumonitis (organic dust toxic syndrome).This paper deals with inflammation and the subsequent mechanism of disease as it is encountered in industries with these exposures. Toxicological studies including human experimental exposures and ex vivo studies of cells are described. Cellular reactions are mediated through the attachment of, e.g. LPS and {beta} (1,3)-D-glucan to lipopolysaccharide binding protein, CD14 and Toll-like receptors. The relation between protein release and the gene activation is described. Furthermore, studies of the individual susceptibility will be reviewed.

  6. Differential recognition of plant cell walls by microbial xylan-specific carbohydrate-binding modules.

    PubMed

    McCartney, Lesley; Blake, Anthony W; Flint, James; Bolam, David N; Boraston, Alisdair B; Gilbert, Harry J; Knox, J Paul

    2006-03-21

    Glycoside hydrolases that degrade plant cell walls have complex molecular architectures in which one or more catalytic modules are appended to noncatalytic carbohydrate-binding modules (CBMs). CBMs promote binding to polysaccharides and potentiate enzymic hydrolysis. Although there are diverse sequence-based families of xylan-binding CBMs, these modules, in general, recognize both decorated and unsubstituted forms of the target polysaccharide, and thus the evolutionary rationale for this diversity is unclear. Using immunohistochemistry to interrogate the specificity of six xylan-binding CBMs for their target polysaccharides in cell walls has revealed considerable differences in the recognition of plant materials between these protein modules. Family 2b and 15 CBMs bind to xylan in secondary cell walls in a range of dicotyledon species, whereas family 4, 6, and 22 CBMs display a more limited capability to bind to secondary cell walls. A family 35 CBM, which displays more restricted ligand specificity against purified xylans than the other five protein modules, reveals a highly distinctive binding pattern to plant material including the recognition of primary cell walls of certain dicotyledons, a feature shared with CBM15. Differences in the specificity of the CBMs toward walls of wheat grain and maize coleoptiles were also evident. The variation in CBM specificity for ligands located in plant cell walls provides a biological rationale for the repertoire of structurally distinct xylan-binding CBMs present in nature, and points to the utility of these modules in probing the molecular architecture of cell walls.

  7. Effect of storage conditions on the microbial ecology and biochemical stability of cell wall components in brewers' spent grain.

    PubMed

    Robertson, James A; I'Anson, Kerry J A; Brocklehurst, Tim F; Faulds, Craig B; Waldron, Keith W

    2010-06-23

    The composition of brewers' spent grain (BSG) makes it susceptible to microbial attack and chemical deterioration. This can constrain its appeal as an industrial feedstock. The current study has monitored the effects of BSG storage as fresh material (20 degrees C), refrigerated and autoclaved, measured against frozen material in relation to microbial proliferation and modification to plant cell wall polysaccharides and component phenolic acids. At 20 degrees C there was a rapid colonization by microbes and an associated loss of components from BSG. Refrigeration gave a similar but lower level response. When stored frozen, BSG showed no changes in composition but autoclaving resulted in a solubilization of polysaccharides and associated phenolics. Changes were associated with the temperature profile determined during autoclaving and were also partially due to the breakdown of residual starch. Losses of highly branched arabinoxylan (AX) and the related decrease in ferulic acid cross-linking were also found. The results confirm the need for storage stabilization of BSG and demonstrate that the methods selected for stabilization can themselves lead to a substantial modification to BSG.

  8. Stabilization of glucose-C in microbial cell membranes (PLFA) and cell walls (amino sugars) evaluated by 13C-labelling in a field experiment

    NASA Astrophysics Data System (ADS)

    Gunina, Anna; Kuzyakov, Yakov; Glaser, Bruno

    2015-04-01

    Microorganisms control carbon (C) cycle and strongly contribute to formation of soil organic matter. Strong differences in the turnover of microbial groups and cellular compounds complicate the assessment of their contribution to microbial food webs and C sequestration in soil in situ. The uptake and incorporation of 13C labeled glucose by microbial groups were traced during 50 days after the labeling under field conditions. 13C was analysed: i) in the cytosolic pool by chloroform fumigation extraction, ii) in cell membranes by phospholipid fatty acids (PLFA), iii) in cell walls by amino sugars, and iv) remaining in bulk soil. This allowed tracing C in microbial groups as well as cellular compounds. Mean residence times (MRT) of C in PLFA and the cytosol were 47 and 150 days, respectively. Such long cytosol MRT depends on its heterogeneous composition, which includes high and low molecular weight organics. Amino sugars were mainly originated from microbial residues and thus, observation periods higher than 1 year are required for estimation of their MRT. Relative 13C incorporation (13C portion in total pool C) was the highest for PLFAs (~1.5% at day 3), whereas 13C content of the cytosol and amino sugars was one and two orders of magnitude less, respectively. Relative 13C incorporation into amino sugars of living microorganisms showed only 0.57% on day 3. Therefore, the turnover of cell membrane components is two times faster than that of cell walls, even in living microorganisms. Both PLFAs and amino sugars showed that glucose C was preferentially used by bacteria. 13C incorporation into bacterial cell walls and membranes decreased with time, but increased or remained constant for fungi, reflecting faster turnover of bacteria than fungi. Consequently, bacteria contribute more to the decomposition of low molecular weight organics, whereas fungi consume bacterial products or necromass and contribute more to long-term C stabilisation. Thus, tracing of 13C in cellular

  9. The Lamportian cell wall

    SciTech Connect

    Keiliszewski, M.; Lamport, D. )

    1991-05-01

    The Lamportian Warp-Weft hypothesis suggests a cellulose-extensin interpenetrating network where extensin mechanically couples the load-bearing cellulose microfibrils in a wall matrix that is best described as a microcomposite. This model is based on data gathered from the extensin-rich walls of tomato and sycamore cell suspension culture, wherein extensin precursors are insolubilized into the wall by undefined crosslinks. The authors recent work with cell walls isolated from intact tissue as well as walls from suspension cultured cells of the graminaceous monocots maize and rice, the non-graminaceous monocot asparagus, the primitive herbaceous dicot sugar beet, and the gymnosperm Douglas Fir indicate that although extensins are ubiquitous to all plant species examined, they are not the major structural protein component of most walls examined. Amino acid analyses of intact and HF-treated walls shows a major component neither an HRGP, nor directly comparable to the glycine-rich wall proteins such as those associated with seed coat walls or the 67 mole% glycine-rich proteins cloned from petunia and soybean. Clearly, structural wall protein alternatives to extensin exist and any cell wall model must take that into account. If we assume that extracellular matrices are a priori network structures, then new Hypless' structural proteins in the maize cell wall raise questions about the sort of network these proteins create: the kinds of crosslinks involved; how they are formed; and the roles played by the small amounts of HRGPs.

  10. Functional and structural characterization of a novel putative cysteine protease cell wall-modifying multi-domain enzyme selected from a microbial metagenome

    PubMed Central

    Faheem, Muhammad; Martins-de-Sa, Diogo; Vidal, Julia F. D.; Álvares, Alice C. M.; Brandão-Neto, José; Bird, Louise E.; Tully, Mark D.; von Delft, Frank; Souto, Betulia M.; Quirino, Betania F.; Freitas, Sonia M.; Barbosa, João Alexandre R. G.

    2016-01-01

    A current metagenomics focus is to interpret and transform collected genomic data into biological information. By combining structural, functional and genomic data we have assessed a novel bacterial protein selected from a carbohydrate-related activity screen in a microbial metagenomic library from Capra hircus (domestic goat) gut. This uncharacterized protein was predicted as a bacterial cell wall-modifying enzyme (CWME) and shown to contain four domains: an N-terminal, a cysteine protease, a peptidoglycan-binding and an SH3 bacterial domain. We successfully cloned, expressed and purified this putative cysteine protease (PCP), which presented autoproteolytic activity and inhibition by protease inhibitors. We observed cell wall hydrolytic activity and ampicillin binding capacity, a characteristic of most bacterial CWME. Fluorimetric binding analysis yielded a Kb of 1.8 × 105 M−1 for ampicillin. Small-angle X-ray scattering (SAXS) showed a maximum particle dimension of 95 Å with a real-space Rg of 28.35 Å. The elongated molecular envelope corroborates the dynamic light scattering (DLS) estimated size. Furthermore, homology modeling and SAXS allowed the construction of a model that explains the stability and secondary structural changes observed by circular dichroism (CD). In short, we report a novel cell wall-modifying autoproteolytic PCP with insight into its biochemical, biophysical and structural features. PMID:27934875

  11. Uncovering the cultivable microbial diversity of costa rican beetles and its ability to break down plant cell wall components.

    PubMed

    Vargas-Asensio, Gabriel; Pinto-Tomas, Adrian; Rivera, Beatriz; Hernandez, Myriam; Hernandez, Carlos; Soto-Montero, Silvia; Murillo, Catalina; Sherman, David H; Tamayo-Castillo, Giselle

    2014-01-01

    Coleopterans are the most diverse insect order described to date. These organisms have acquired an array of survival mechanisms through their evolution, including highly efficient digestive systems. Therefore, the coleopteran intestinal microbiota constitutes an important source of novel plant cell wall-degrading enzymes with potential biotechnological applications. We isolated and described the cultivable fungi, actinomycetes and aerobic eubacteria associated with the gut of larvae and adults from six different beetle families colonizing decomposing logs in protected Costa Rican ecosystems. We obtained 611 isolates and performed phylogenetic analyses using the ITS region (fungi) and 16S rDNA (bacteria). The majority of fungal isolates belonged to the order Hypocreales (26% of 169 total), while the majority of actinomycetes belonged to the genus Streptomyces (86% of 241 total). Finally, we isolated 201 bacteria spanning 19 different families belonging into four phyla: Firmicutes, α, β and γ-proteobacteria. Subsequently, we focused on microbes isolated from Passalid beetles to test their ability to degrade plant cell wall polymers. Highest scores in these assays were achieved by a fungal isolate (Anthostomella sp.), two Streptomyces and one Bacillus bacterial isolates. Our study demonstrates that Costa Rican beetles harbor several types of cultivable microbes, some of which may be involved in symbiotic relationships that enable the insect to digest complex polymers such as lignocellulose.

  12. Uncovering the Cultivable Microbial Diversity of Costa Rican Beetles and Its Ability to Break Down Plant Cell Wall Components

    PubMed Central

    Vargas-Asensio, Gabriel; Pinto-Tomas, Adrian; Rivera, Beatriz; Hernandez, Myriam; Hernandez, Carlos; Soto-Montero, Silvia; Murillo, Catalina; Sherman, David H.; Tamayo-Castillo, Giselle

    2014-01-01

    Coleopterans are the most diverse insect order described to date. These organisms have acquired an array of survival mechanisms through their evolution, including highly efficient digestive systems. Therefore, the coleopteran intestinal microbiota constitutes an important source of novel plant cell wall-degrading enzymes with potential biotechnological applications. We isolated and described the cultivable fungi, actinomycetes and aerobic eubacteria associated with the gut of larvae and adults from six different beetle families colonizing decomposing logs in protected Costa Rican ecosystems. We obtained 611 isolates and performed phylogenetic analyses using the ITS region (fungi) and 16S rDNA (bacteria). The majority of fungal isolates belonged to the order Hypocreales (26% of 169 total), while the majority of actinomycetes belonged to the genus Streptomyces (86% of 241 total). Finally, we isolated 201 bacteria spanning 19 different families belonging into four phyla: Firmicutes, α, β and γ-proteobacteria. Subsequently, we focused on microbes isolated from Passalid beetles to test their ability to degrade plant cell wall polymers. Highest scores in these assays were achieved by a fungal isolate (Anthostomella sp.), two Streptomyces and one Bacillus bacterial isolates. Our study demonstrates that Costa Rican beetles harbor several types of cultivable microbes, some of which may be involved in symbiotic relationships that enable the insect to digest complex polymers such as lignocellulose. PMID:25411842

  13. Microbial Populations in Naked Neck Chicken Ceca Raised on Pasture Flock Fed with Commercial Yeast Cell Wall Prebiotics via an Illumina MiSeq Platform

    PubMed Central

    Park, Si Hong; Lee, Sang In; Ricke, Steven C.

    2016-01-01

    Prebiotics are non-digestible carbohydrate dietary supplements that selectively stimulate the growth of one or more beneficial bacteria in the gastrointestinal tract of the host. These bacteria can inhibit colonization of pathogenic bacteria by producing antimicrobial substances such as short chain fatty acids (SCFAs) and competing for niches with pathogens within the gut. Pasture flock chickens are generally raised outdoors with fresh grass, sunlight and air, which represents different environmental growth conditions compared to conventionally raised chickens. The purpose of this study was to evaluate the difference in microbial populations from naked neck chicken ceca fed with commercial prebiotics derived from brewer’s yeast cell wall via an Illumina MiSeq platform. A total of 147 day-of-hatch naked neck chickens were distributed into 3 groups consisted of 1) C: control (no prebiotic), 2) T1: Biolex® MB40 with 0.2%, and 3) T2: Leiber® ExCel with 0.2%, consistently supplemented prebiotics during the experimental period. At 8 weeks, a total of 15 birds from each group were randomly selected and ceca removed for DNA extraction. The Illumina Miseq platform based on V4 region of 16S rRNA gene was applied for microbiome analysis. Both treatments exhibited limited impact on the microbial populations at the phylum level, with no significant differences in the OTU number of Bacteroidetes among groups and an increase of Proteobacteria OTUs for the T1 (Biolex® MB40) group. In addition there was a significant increase of genus Faecalibacterium OTU, phylum Firmicutes. According to the development of next generation sequencing (NGS), microbiome analysis based on 16S rRNA gene proved to be informative on the prebiotic impact on poultry gut microbiota in pasture-raised naked neck birds. PMID:26992104

  14. Microbial Populations in Naked Neck Chicken Ceca Raised on Pasture Flock Fed with Commercial Yeast Cell Wall Prebiotics via an Illumina MiSeq Platform.

    PubMed

    Park, Si Hong; Lee, Sang In; Ricke, Steven C

    2016-01-01

    Prebiotics are non-digestible carbohydrate dietary supplements that selectively stimulate the growth of one or more beneficial bacteria in the gastrointestinal tract of the host. These bacteria can inhibit colonization of pathogenic bacteria by producing antimicrobial substances such as short chain fatty acids (SCFAs) and competing for niches with pathogens within the gut. Pasture flock chickens are generally raised outdoors with fresh grass, sunlight and air, which represents different environmental growth conditions compared to conventionally raised chickens. The purpose of this study was to evaluate the difference in microbial populations from naked neck chicken ceca fed with commercial prebiotics derived from brewer's yeast cell wall via an Illumina MiSeq platform. A total of 147 day-of-hatch naked neck chickens were distributed into 3 groups consisted of 1) C: control (no prebiotic), 2) T1: Biolex® MB40 with 0.2%, and 3) T2: Leiber® ExCel with 0.2%, consistently supplemented prebiotics during the experimental period. At 8 weeks, a total of 15 birds from each group were randomly selected and ceca removed for DNA extraction. The Illumina Miseq platform based on V4 region of 16S rRNA gene was applied for microbiome analysis. Both treatments exhibited limited impact on the microbial populations at the phylum level, with no significant differences in the OTU number of Bacteroidetes among groups and an increase of Proteobacteria OTUs for the T1 (Biolex® MB40) group. In addition there was a significant increase of genus Faecalibacterium OTU, phylum Firmicutes. According to the development of next generation sequencing (NGS), microbiome analysis based on 16S rRNA gene proved to be informative on the prebiotic impact on poultry gut microbiota in pasture-raised naked neck birds.

  15. Fecal microbial communities of healthy adult dogs fed raw meat-based diets with or without inulin or yeast cell wall extracts as assessed by 454 pyrosequencing.

    PubMed

    Beloshapka, Alison N; Dowd, Scot E; Suchodolski, Jan S; Steiner, Jörg M; Duclos, Laura; Swanson, Kelly S

    2013-06-01

    Our objective was to determine the effects of feeding raw meat-based diets with or without inulin or yeast cell wall extract (YCW) on fecal microbial communities of dogs using 454 pyrosequencing. Six healthy female adult beagles (5.5 ± 0.5 years; 8.5 ± 0.5 kg) were randomly assigned to six test diets using a Latin square design: (1) beef control; (2) beef + 1.4% inulin; (3) beef + 1.4% YCW; (4) chicken control; (5) chicken + 1.4% inulin; and (6) chicken + 1.4% YCW. Following 14 days of adaptation, fresh fecal samples were collected on day 15 or day 16 of each period. Fecal genomic DNA was extracted and used to create 16S rRNA gene amplicons, which were subjected to 454 pyrosequencing and qPCR. Predominant fecal bacterial phyla included Fusobacteria, Firmicutes, Bacteroidetes, and Proteobacteria. Beef-based diets increased (P < 0.05) Escherichia, but decreased (P < 0.05) Anaerobiospirillum vs. chicken-based diets. Inulin decreased (P < 0.05) Enterobacteriaceae. Inulin increased (P < 0.05) Megamonas vs. control. Inulin also decreased (P < 0.05) Escherichia vs. YCW. qPCR data showed that YCW increased (P < 0.05) Bifidobacterium vs. inulin and control and inulin increased (P < 0.05) Lactobacillus vs. YCW. Although a few changes in fecal microbiota were observed with inulin or YCW consumption, a strong prebiotic effect was not observed.

  16. Microbial specialists in below-grade foundation walls in Scandinavia.

    PubMed

    Nunez, M; Hammer, H

    2014-10-01

    Below-grade foundation walls are often exposed to excessive moisture by water infiltration, condensation, leakage, or lack of ventilation. Microbial growth in these structures depends largely on environmental factors, elapsed time, and the type of building materials and construction setup. The ecological preferences of Actinomycetes (Actinobacteria) and the molds Ascotricha chartarum, Myxotrichum chartarum (Ascomycota), Geomyces pannorum, and Monocillium sp. (Hyphomycetes) have been addressed based on analyses of 1764 samples collected in below-grade spaces during the period of 2001-2012. Our results show a significant correlation between these taxa and moist foundation walls as ecological niches. Substrate preference was the strongest predictor of taxa distribution within the wall, but the taxa's physiological needs, together with gradients of abiotic factors within the wall structure, also played a role. Our study describes for the first time how the wall environment affects microbial growth.

  17. Applications of Microbial Cell Sensors

    NASA Astrophysics Data System (ADS)

    Shimomura-Shimizu, Mifumi; Karube, Isao

    Since the first microbial cell sensor was studied by Karube et al. in 1977, many types of microbial cell sensors have been developed as analytical tools. The microbial cell sensor utilizes microbes as a sensing element and a transducer. The characteristics of microbial cell sensors as sensing devices are a complete contrast to those of enzyme sensors or immunosensors, which are highly specific for the substrates of interest, although the specificity of the microbial cell sensor has been improved by genetic modification of the microbe used as the sensing element. Microbial cell sensors have the advantages of tolerance to measuring conditions, a long lifetime, and good cost performance, and have the disadvantage of a long response time. In this review, applications of microbial cell sensors are summarized.

  18. Microbial Cell Imaging

    SciTech Connect

    Doktycz, Mitchel John; Sullivan, Claretta; Mortensen, Ninell P; Allison, David P

    2011-01-01

    the maximum scan size (roughly 100 x 100 {mu}m) and the restricted movement of the cantilever in the Z (or height) direction. In most commercial AFMs, the Z range is restricted to roughly 10 {mu}m such that the height of cells to be imaged must be seriously considered. Nevertheless, AFM can provide structural-functional information at nanometer resolution and do so in physiologically relevant environments. Further, instrumentation for scanning probe microscopy continues to advance. Systems for high-speed imaging are becoming available, and techniques for looking inside the cells are being demonstrated. The ability to combine AFM with other imaging modalities is likely to have an even greater impact on microbiological studies. AFM studies of intact microbial cells started to appear in the literature in the 1990s. For example, AFM studies of Saccharomyces cerevisiae examined buddings cars after cell division and detailed changes related to cell growth processes. Also, the first AFM studies of bacterial biofilms appeared. In the late 1990s, AFM studies of intact fungal spores described clear changes in spore surfaces upon germination, and studies of individual bacterial cells were also described. These early bacterial imaging studies examined changes in bacterial morphology due to antimicrobial peptides exposure and bacterial adhesion properties. The majority of these early studies were carried out on dried samples and took advantage of the resolving power of AFM. The lack of cell mounting procedures presented an impediment for cell imaging studies. Subsequently, several approaches to mounting microbial cells have been developed, and these techniques are described later. Also highlighted are general considerations for microbial imaging and a description of some of the various applications of AFM to microbiology.

  19. Microbial fuel cells

    SciTech Connect

    Nealson, Kenneth H; Pirbazari, Massoud; Hsu, Lewis

    2013-04-09

    A microbial fuel cell includes an anode compartment with an anode and an anode biocatalyst and a cathode compartment with a cathode and a cathode biocatalyst, with a membrane positioned between the anode compartment and the cathode compartment, and an electrical pathway between the anode and the cathode. The anode biocatalyst is capable of catalyzing oxidation of an organic substance, and the cathode biocatalyst is capable of catalyzing reduction of an inorganic substance. The reduced organic substance can form a precipitate, thereby removing the inorganic substance from solution. In some cases, the anode biocatalyst is capable of catalyzing oxidation of an inorganic substance, and the cathode biocatalyst is capable of catalyzing reduction of an organic or inorganic substance.

  20. Plant cell walls to ethanol.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conversion of plant cell walls to ethanol constitutes generation 2 bioethanol production. The process consists of several steps: biomass selection/genetic modification, physiochemical pretreatment, enzymatic saccharification, fermentation, and separation. Ultimately, it is desired to combine as man...

  1. Walls talk: Microbial biogeography of homes spanning urbanization.

    PubMed

    Ruiz-Calderon, Jean F; Cavallin, Humberto; Song, Se Jin; Novoselac, Atila; Pericchi, Luis R; Hernandez, Jean N; Rios, Rafael; Branch, Oralee H; Pereira, Henrique; Paulino, Luciana C; Blaser, Martin J; Knight, Rob; Dominguez-Bello, Maria G

    2016-02-01

    Westernization has propelled changes in urbanization and architecture, altering our exposure to the outdoor environment from that experienced during most of human evolution. These changes might affect the developmental exposure of infants to bacteria, immune development, and human microbiome diversity. Contemporary urban humans spend most of their time indoors, and little is known about the microbes associated with different designs of the built environment and their interaction with the human immune system. This study addresses the associations between architectural design and the microbial biogeography of households across a gradient of urbanization in South America. Urbanization was associated with households' increased isolation from outdoor environments, with additional indoor space isolation by walls. Microbes from house walls and floors segregate by location, and urban indoor walls contain human bacterial markers of space use. Urbanized spaces uniquely increase the content of human-associated microbes-which could increase transmission of potential pathogens-and decrease exposure to the environmental microbes with which humans have coevolved.

  2. Multidimensional solid-state NMR spectroscopy of plant cell walls.

    PubMed

    Wang, Tuo; Phyo, Pyae; Hong, Mei

    2016-09-01

    Plant biomass has become an important source of bio-renewable energy in modern society. The molecular structure of plant cell walls is difficult to characterize by most atomic-resolution techniques due to the insoluble and disordered nature of the cell wall. Solid-state NMR (SSNMR) spectroscopy is uniquely suited for studying native hydrated plant cell walls at the molecular level with chemical resolution. Significant progress has been made in the last five years to elucidate the molecular structures and interactions of cellulose and matrix polysaccharides in plant cell walls. These studies have focused on primary cell walls of growing plants in both the dicotyledonous and grass families, as represented by the model plants Arabidopsis thaliana, Brachypodium distachyon, and Zea mays. To date, these SSNMR results have shown that 1) cellulose, hemicellulose, and pectins form a single network in the primary cell wall; 2) in dicot cell walls, the protein expansin targets the hemicellulose-enriched region of the cellulose microfibril for its wall-loosening function; and 3) primary wall cellulose has polymorphic structures that are distinct from the microbial cellulose structures. This article summarizes these key findings, and points out future directions of investigation to advance our fundamental understanding of plant cell wall structure and function.

  3. Isolation of the Cell Wall.

    PubMed

    Canut, Hervé; Albenne, Cécile; Jamet, Elisabeth

    2017-01-01

    This chapter describes a method allowing the purification of the cell wall for studying both polysaccharides and proteins. The plant primary cell wall is mainly composed of polysaccharides (90-95 % in mass) and of proteins (5-10 %). At the end of growth, specialized cells may synthesize a lignified secondary wall composed of polysaccharides (about 65 %) and lignin (about 35 %). Due to its composition, the cell wall is the cellular compartment having the highest density and this property is used for its purification. It plays critical roles during plant development and in response to environmental constraints. It is largely used in the food and textile industries as well as for the production of bioenergy. All these characteristics and uses explain why its study as a true cell compartment is of high interest. The proposed method of purification can be used for large amount of material but can also be downscaled to 500 mg of fresh material. Tools for checking the quality of the cell wall preparation, such as protein analysis and microscopy observation, are also provided.

  4. Sporothrix schenckii Cell Wall Peptidorhamnomannans

    PubMed Central

    Lopes-Bezerra, Leila M.

    2011-01-01

    This mini-review article is dedicated to clarifying certain important biochemical aspects of Sporothrix schenckii cell wall peptidorhamnomannans. Cell wall components involved in the host interaction such as antigens as well as a gp70 adhesin are important molecules present on the surface of the yeast parasitic phase. Other structural glycoconjugates present on the fungus cell surface are also described here. Knowledge of the fine structure of carbohydrate epitopes expressed on the surface in both morphological phases of S. schenckii permitted the development of non-invasive immunochemical methods to diagnose human and feline sporotrichosis. PMID:22203817

  5. Cell wall construction in Saccharomyces cerevisiae.

    PubMed

    Klis, Frans M; Boorsma, Andre; De Groot, Piet W J

    2006-02-01

    In this review, we discuss new insights in cell wall architecture and cell wall construction in the ascomycetous yeast Saccharomyces cerevisiae. Transcriptional profiling studies combined with biochemical work have provided ample evidence that the cell wall is a highly adaptable organelle. In particular, the protein population that is anchored to the stress-bearing polysaccharides of the cell wall, and forms the interface with the outside world, is highly diverse. This diversity is believed to play an important role in adaptation of the cell to environmental conditions, in growth mode and in survival. Cell wall construction is tightly controlled and strictly coordinated with progression of the cell cycle. This is reflected in the usage of specific cell wall proteins during consecutive phases of the cell cycle and in the recent discovery of a cell wall integrity checkpoint. When the cell is challenged with stress conditions that affect the cell wall, a specific transcriptional response is observed that includes the general stress response, the cell wall integrity pathway and the calcineurin pathway. This salvage mechanism includes increased expression of putative cell wall assemblases and some potential cross-linking cell wall proteins, and crucial changes in cell wall architecture. We discuss some more enzymes involved in cell wall construction and also potential inhibitors of these enzymes. Finally, we use both biochemical and genomic data to infer that the architectural principles used by S. cerevisiae to build its cell wall are also used by many other ascomycetous yeasts and also by some mycelial ascomycetous fungi.

  6. Forage digestibility: the intersection of cell wall lignification and plant tissue anatomy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cellulose and the other polysaccharides present in forage cell walls can be completely degraded by the rumen microflora but only when these polysaccharides have been isolated from the wall and all matrix structures eliminated. Understanding how cell wall component interactions limit microbial degrad...

  7. Using isolated cell wall xylan to identify recalcitrant oligosaccharides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Herbaceous biomass is a renewable source of carbohydrates with potential for use in microbial conversion to biofuels. Xylan comprises 20-40% of herbaceous biomass cell wall material and its full depolymerization benefits the economics of bioconversion. To understand the limitations of commercial enz...

  8. Back wall solar cell

    NASA Technical Reports Server (NTRS)

    Brandhorst, H. W., Jr. (Inventor)

    1978-01-01

    A solar cell is disclosed which comprises a first semiconductor material of one conductivity type with one face having the same conductivity type but more heavily doped to form a field region arranged to receive the radiant energy to be converted to electrical energy, and a layer of a second semiconductor material, preferably highly doped, of opposite conductivity type on the first semiconductor material adjacent the first semiconductor material at an interface remote from the heavily doped field region. Instead of the opposite conductivity layer, a metallic Schottky diode layer may be used, in which case no additional back contact is needed. A contact such as a gridded contact, previous to the radiant energy may be applied to the heavily doped field region of the more heavily doped, same conductivity material for its contact.

  9. Microbial Fuel Cells and Sensors

    DTIC Science & Technology

    2007-11-02

    funding foreign research over Quality U.S. research needs to be investigated by government officials. PATENT INFORMATION: Improved fuel cell designs and...Zeikus. Analysis of microbial electrochemical activity in marine sediment. (In preparation) REPOT D CUM NTA ON AGEForm Approved REPOT D CUM NTATON

  10. The microbial cell cycle

    SciTech Connect

    Nurse, P.; Streiblova, E.

    1984-01-01

    This book concentrates on the major problems of cell cycle control in microorganisms. A wide variety of microorganisms, ranging from bacteria and yeasts to hyphal fungi, algae, and ciliates are analyzed, with emphasis on the basic similarities among the organisms. Different ways of looking at cell cycle control which emphasize aspects of the problem such as circadian rhythms, limit cycle oscillators, and cell size models, are considered. New approaches such as the study of cell cycle mutants, and cloning of cell cycle control genes are also presented.

  11. Catalysts of plant cell wall loosening

    PubMed Central

    Cosgrove, Daniel J.

    2016-01-01

    The growing cell wall in plants has conflicting requirements to be strong enough to withstand the high tensile forces generated by cell turgor pressure while selectively yielding to those forces to induce wall stress relaxation, leading to water uptake and polymer movements underlying cell wall expansion. In this article, I review emerging concepts of plant primary cell wall structure, the nature of wall extensibility and the action of expansins, family-9 and -12 endoglucanases, family-16 xyloglucan endotransglycosylase/hydrolase (XTH), and pectin methylesterases, and offer a critical assessment of their wall-loosening activity PMID:26918182

  12. The role of the cell wall in plant immunity

    PubMed Central

    Malinovsky, Frederikke G.; Fangel, Jonatan U.; Willats, William G. T.

    2014-01-01

    The battle between plants and microbes is evolutionarily ancient, highly complex, and often co-dependent. A primary challenge for microbes is to breach the physical barrier of host cell walls whilst avoiding detection by the plant’s immune receptors. While some receptors sense conserved microbial features, others monitor physical changes caused by an infection attempt. Detection of microbes leads to activation of appropriate defense responses that then challenge the attack. Plant cell walls are formidable and dynamic barriers. They are constructed primarily of complex carbohydrates joined by numerous distinct connection types, and are subject to extensive post-synthetic modification to suit prevailing local requirements. Multiple changes can be triggered in cell walls in response to microbial attack. Some of these are well described, but many remain obscure. The study of the myriad of subtle processes underlying cell wall modification poses special challenges for plant glycobiology. In this review we describe the major molecular and cellular mechanisms that underlie the roles of cell walls in plant defense against pathogen attack. In so doing, we also highlight some of the challenges inherent in studying these interactions, and briefly describe the analytical potential of molecular probes used in conjunction with carbohydrate microarray technology. PMID:24834069

  13. Towards a Microbial Thermoelectric Cell

    PubMed Central

    Rodríguez-Barreiro, Raúl; Abendroth, Christian; Vilanova, Cristina; Moya, Andrés; Porcar, Manuel

    2013-01-01

    Microbial growth is an exothermic process. Biotechnological industries produce large amounts of heat, usually considered an undesirable by-product. In this work, we report the construction and characterization of the first microbial thermoelectric cell (MTC), in which the metabolic heat produced by a thermally insulated microbial culture is partially converted into electricity through a thermoelectric device optimized for low ΔT values. A temperature of 41°C and net electric voltage of around 250–600 mV was achieved with 1.7 L baker’s yeast culture. This is the first time microbial metabolic energy has been converted into electricity with an ad hoc thermoelectric device. These results might contribute towards developing a novel strategy to harvest excess heat in the biotechnology industry, in processes such as ethanol fermentation, auto thermal aerobic digestion (ATAD) or bioremediation, which could be coupled with MTCs in a single unit to produce electricity as a valuable by-product of the primary biotechnological product. Additionally, we propose that small portable MTCs could be conceived and inoculated with suitable thermophilic of hyperthermophilic starter cultures and used for powering small electric devices. PMID:23468862

  14. Photosynthetic Microbial Fuel Cells.

    PubMed

    Laureanti, Joseph A; Jones, Anne K

    2017-01-10

    This chapter presents the current state of research on bioelectrochemical systems that include phototrophic organisms. First, we describe what is known of how phototrophs transfer electrons from internal metabolism to external substrates. This includes efforts to understand both the source of electrons and transfer pathways within cells. Second, we consider technological progress toward producing bio-photovoltaic devices with phototrophs. Efforts to improve these devices by changing the species included, the electrode surfaces, and chemical mediators are described. Finally, we consider future directions for this research field.

  15. The Structure of Plant Cell Walls

    PubMed Central

    Burke, David; Kaufman, Peter; McNeil, Michael; Albersheim, Peter

    1974-01-01

    The primary cell walls of six suspension-cultured monocots and of a single suspension-cultured gymnosperm have been investigated with the following results: (a) the compositions of all six monocot cell walls are remarkably similar, despite the fact that the cell cultures were derived from diverse tissues; (b) the cell walls of suspension-cultured monocots differ substantially from those of suspension-cultured dicots and from the suspension-cultured gymnosperm; (c) an arabinoxylan is a major component (40% or more by weight) of monocot primary cell walls; (d) mixed β-1,3; β-1,4-glucans were found only in the cell wall preparations of rye grass endosperm cells, and not in the cell walls of any of the other five monocot cell cultures nor in the walls of suspension-cultured Douglas fir cells; (e) the monocot primary cell walls studied contain from 9 to 14% cellulose, 7 to 18% uronic acids, and 7 to 17% protein; (f) hydroxyproline accounts for less than 0.2% of the cell walls of monocots. Similar data on the soluble extracellular polysaccharides secreted by these cells are included. PMID:16658824

  16. Moss cell walls: structure and biosynthesis

    PubMed Central

    Roberts, Alison W.; Roberts, Eric M.; Haigler, Candace H.

    2012-01-01

    The genome sequence of the moss Physcomitrella patens has stimulated new research examining the cell wall polysaccharides of mosses and the glycosyl transferases that synthesize them as a means to understand fundamental processes of cell wall biosynthesis and plant cell wall evolution. The cell walls of mosses and vascular plants are composed of the same classes of polysaccharides, but with differences in side chain composition and structure. Similarly, the genomes of P. patens and angiosperms encode the same families of cell wall glycosyl transferases, yet, in many cases these families have diversified independently in each lineage. Our understanding of land plant evolution could be enhanced by more complete knowledge of the relationships among glycosyl transferase functional diversification, cell wall structural and biochemical specialization, and the roles of cell walls in plant adaptation. As a foundation for these studies, we review the features of P. patens as an experimental system, analyses of cell wall composition in various moss species, recent studies that elucidate the structure and biosynthesis of cell wall polysaccharides in P. patens, and phylogenetic analysis of P. patens genes potentially involved in cell wall biosynthesis. PMID:22833752

  17. Architecture of dermatophyte cell Walls: Electron microscopic and biochemical analysis

    NASA Technical Reports Server (NTRS)

    Nozawa, Y.; Kitajima, Y.

    1984-01-01

    A review with 83 references on the cell wall structure of dermatophytes is presented. Topics discussed include separation and preparation of cell walls; microstructure of cell walls by electron microscopy; chemical composition of cell walls; structural model of cell walls; and morphological structure of cell walls.

  18. Secondary cell walls: biosynthesis and manipulation.

    PubMed

    Kumar, Manoj; Campbell, Liam; Turner, Simon

    2016-01-01

    Secondary cell walls (SCWs) are produced by specialized plant cell types, and are particularly important in those cells providing mechanical support or involved in water transport. As the main constituent of plant biomass, secondary cell walls are central to attempts to generate second-generation biofuels. Partly as a consequence of this renewed economic importance, excellent progress has been made in understanding how cell wall components are synthesized. SCWs are largely composed of three main polymers: cellulose, hemicellulose, and lignin. In this review, we will attempt to highlight the most recent progress in understanding the biosynthetic pathways for secondary cell wall components, how these pathways are regulated, and how this knowledge may be exploited to improve cell wall properties that facilitate breakdown without compromising plant growth and productivity. While knowledge of individual components in the pathway has improved dramatically, how they function together to make the final polymers and how these individual polymers are incorporated into the wall remain less well understood.

  19. The effect of as long-term Mars simulation on a microbial permafrost soil community and macromolecules such as DNA, polypeptides and cell wall components.

    NASA Astrophysics Data System (ADS)

    Finster, K.; Hansen, A.; Liengaard, L.; Kristoffersen, T.; Mikkelsen, K.; Merrison, J.; Lomstein, B.

    Ten freeze-dried and homogenized samples of a 2300 years old Spitsbergen permafrost soil containing a complex microbial community were aseptically transferred to inert glass tubes and subjected to a 30 days Martian simulation experiment. During this period the samples received an UV dose equivalent to 80 Martian Sol. Data loggers in 4 out the ten samples monitored the temperature 0-2 mm below the surface of the sample. After removal from the simulation chamber, the samples were sliced in 1.5 to 6 mm thick horizons (H1, 0-1.5 mm; H2, 1.5-3 mm; H3, 3-6 mm; H4, 6-9 mm; H5, 9-15 mm; H6, 15-21 mm; H7, 21-27 mm and H8, 27-33 mm), resulting in 10 subsamples from each soil horizon. The subsamples from each horizon were pooled and used for the following investigations: 1. Determination of the bacterial number after staining with SYBR-gold, 2. Determination of the number of dead and living bacteria using the BacLight kit, 3. Determination of the total amount of extractable DNA, 4. Determination of the number of culturable aerobic and anaerobic bacteria, 5. Determination of the concentration of the total hydrolysable amino acids and D and L enantiomers, 6. Determination of the muramic acid contentration. The results of the experiments will be presented and discussed in our communication

  20. Biosynthesis: Imaging cell-wall biosynthesis live

    NASA Astrophysics Data System (ADS)

    Bugg, Timothy D. H.

    2013-01-01

    The biosynthesis of peptidoglycan is an important step in bacterial cell division and cell-wall maturation. Now it has been shown that fluorescent D-amino acids can be used to label the peptidoglycan cell wall of living bacteria, providing a new tool to study this important process.

  1. Plant cell walls to ethanol.

    PubMed

    Jordan, Douglas B; Bowman, Michael J; Braker, Jay D; Dien, Bruce S; Hector, Ronald E; Lee, Charles C; Mertens, Jeffrey A; Wagschal, Kurt

    2012-03-01

    Conversion of plant cell walls to ethanol constitutes second generation bioethanol production. The process consists of several steps: biomass selection/genetic modification, physiochemical pretreatment, enzymatic saccharification, fermentation and separation. Ultimately, it is desirable to combine as many of the biochemical steps as possible in a single organism to achieve CBP (consolidated bioprocessing). A commercially ready CBP organism is currently unreported. Production of second generation bioethanol is hindered by economics, particularly in the cost of pretreatment (including waste management and solvent recovery), the cost of saccharification enzymes (particularly exocellulases and endocellulases displaying kcat ~1 s-1 on crystalline cellulose), and the inefficiency of co-fermentation of 5- and 6-carbon monosaccharides (owing in part to redox cofactor imbalances in Saccharomyces cerevisiae).

  2. How do plant cell walls extend?

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1993-01-01

    This article briefly summarizes recent work that identifies the biophysical and biochemical processes that give rise to the extension of plant cell walls. I begin with the biophysical notion of stress relaxation of the wall and follow with recent studies of wall enzymes thought to catalyze wall extension and relaxation. Readers should refer to detailed reviews for more comprehensive discussion of earlier literature (Taiz, 1984; Carpita and Gibeaut, 1993; Cosgrove, 1993).

  3. Cell Wall Assembly in Saccharomyces cerevisiae

    PubMed Central

    Lesage, Guillaume; Bussey, Howard

    2006-01-01

    An extracellular matrix composed of a layered meshwork of β-glucans, chitin, and mannoproteins encapsulates cells of the yeast Saccharomyces cerevisiae. This organelle determines cellular morphology and plays a critical role in maintaining cell integrity during cell growth and division, under stress conditions, upon cell fusion in mating, and in the durable ascospore cell wall. Here we assess recent progress in understanding the molecular biology and biochemistry of cell wall synthesis and its remodeling in S. cerevisiae. We then review the regulatory dynamics of cell wall assembly, an area where functional genomics offers new insights into the integration of cell wall growth and morphogenesis with a polarized secretory system that is under cell cycle and cell type program controls. PMID:16760306

  4. Microbial electrolysis cell with a microbial biocathode.

    PubMed

    Jeremiasse, Adriaan W; Hamelers, Hubertus V M; Buisman, Cees J N

    2010-04-01

    This study demonstrates, for the first time, the proof-of-principle of an MEC in which both the anodic and cathodic reaction are catalyzed by microorganisms. No expensive chemical catalysts, such as platinum, are needed. Two of these MECs were simultaneously operated and reached a maximum of 1.4 A/m(2) at an applied cell voltage of 0.5 V. At a cathode potential of -0.7 V, the biocathode in the MECs had a higher current density (MEC 1: 1.9 A/m(2), MEC 2: 3.3 A/m(2)) than a control cathode (0.3 A/m(2), graphite felt without biofilm) in an electrochemical half cell. This indicates that hydrogen production is catalyzed at the biocathode, likely by electrochemically active microorganisms. The cathodic hydrogen recovery was 17% for MEC 1 and 21% for MEC 2. Hydrogen losses were ascribed to diffusion through membrane and tubing, and methane formation. After 1600 h of operation, the current density of the MECs had decreased to 0.6 A/m(2), probably caused by precipitation of calcium phosphate on the biocathode. The slow deteriorating effect of calcium phosphate, and the production of methane show the importance of studying the combination of bioanode and biocathode in one electrochemical cell, and of studying long term performance of such an MEC.

  5. [The cell wall of Coelastrum (Chlorophycees)].

    PubMed

    Reymond, O

    1975-01-01

    The cell wall of Coelastrum is usually composed of three layers. The outermost layer was studied most extensively. It consists of erect tubules which often bear long bristles whose function may be to stabilize the algae in its enviroment. The cell wall can modify its morphology according to the enviroment.

  6. Microbial fuel cells: novel microbial physiologies and engineering approaches.

    PubMed

    Lovley, Derek R

    2006-06-01

    The possibility of generating electricity with microbial fuel cells has been recognized for some time, but practical applications have been slow to develop. The recent development of a microbial fuel cell that can harvest electricity from the organic matter stored in marine sediments has demonstrated the feasibility of producing useful amounts of electricity in remote environments. Further study of these systems has led to the discovery of microorganisms that conserve energy to support their growth by completely oxidizing organic compounds to carbon dioxide with direct electron transfer to electrodes. This suggests that self-sustaining microbial fuel cells that can effectively convert a diverse range of waste organic matter or renewable biomass to electricity are feasible. Significant progress has recently been made to increase the power output of systems designed to convert organic wastes to electricity, but substantial additional optimization will be required for large-scale electricity production.

  7. Accelerating forward genetics for cell wall deconstruction

    PubMed Central

    Vidaurre, Danielle; Bonetta, Dario

    2012-01-01

    The elucidation of the genes involved in cell wall synthesis and assembly remains one of the biggest challenges of cell wall biology. Although traditional genetic approaches, using simple yet elegant screens, have identified components of the cell wall, many unknowns remain. Exhausting the genetic toolbox by performing sensitized screens, adopting chemical genetics or combining these with improved cell wall imaging, hold the promise of new gene discovery and function. With the recent introduction of next-generation sequencing technologies, it is now possible to quickly and efficiently map and clone genes of interest in record time. The combination of a classical genetics approach and cutting edge technology will propel cell wall biology in plants forward into the future. PMID:22685448

  8. Do plant cell walls have a code?

    PubMed

    Tavares, Eveline Q P; Buckeridge, Marcos S

    2015-12-01

    A code is a set of rules that establish correspondence between two worlds, signs (consisting of encrypted information) and meaning (of the decrypted message). A third element, the adaptor, connects both worlds, assigning meaning to a code. We propose that a Glycomic Code exists in plant cell walls where signs are represented by monosaccharides and phenylpropanoids and meaning is cell wall architecture with its highly complex association of polymers. Cell wall biosynthetic mechanisms, structure, architecture and properties are addressed according to Code Biology perspective, focusing on how they oppose to cell wall deconstruction. Cell wall hydrolysis is mainly focused as a mechanism of decryption of the Glycomic Code. Evidence for encoded information in cell wall polymers fine structure is highlighted and the implications of the existence of the Glycomic Code are discussed. Aspects related to fine structure are responsible for polysaccharide packing and polymer-polymer interactions, affecting the final cell wall architecture. The question whether polymers assembly within a wall display similar properties as other biological macromolecules (i.e. proteins, DNA, histones) is addressed, i.e. do they display a code?

  9. Safranine fluorescent staining of wood cell walls.

    PubMed

    Bond, J; Donaldson, L; Hill, S; Hitchcock, K

    2008-06-01

    Safranine is an azo dye commonly used for plant microscopy, especially as a stain for lignified tissues such as xylem. Safranine fluorescently labels the wood cell wall, producing green/yellow fluorescence in the secondary cell wall and red/orange fluorescence in the middle lamella (ML) region. We examined the fluorescence behavior of safranine under blue light excitation using a variety of wood- and fiber-based samples of known composition to interpret the observed color differentiation of different cell wall types. We also examined the basis for the differences in fluorescence emission using spectral confocal microscopy to examine lignin-rich and cellulose-rich cell walls including reaction wood and decayed wood compared to normal wood. Our results indicate that lignin-rich cell walls, such as the ML of tracheids, the secondary wall of compression wood tracheids, and wood decayed by brown rot, tend to fluoresce red or orange, while cellulose-rich cell walls such as resin canals, wood decayed by white rot, cotton fibers and the G-layer of tension wood fibers, tend to fluoresce green/yellow. This variation in fluorescence emission seems to be due to factors including an emission shift toward red wavelengths combined with dye quenching at shorter wavelengths in regions with high lignin content. Safranine fluorescence provides a useful way to differentiate lignin-rich and cellulose-rich cell walls without counterstaining as required for bright field microscopy.

  10. Isolation of plant cell wall proteins.

    PubMed

    Jamet, Elisabeth; Boudart, Georges; Borderies, Giséle; Charmont, Stephane; Lafitte, Claude; Rossignol, Michel; Canut, Herve; Pont-Lezica, Rafael

    2008-01-01

    The quality of a proteomic analysis of a cell compartment strongly depends on the reliability of the isolation procedure for the cell compartment of interest. Plant cell walls possess specific drawbacks: (1) the lack of a surrounding membrane may result in the loss of cell wall proteins (CWP) during the isolation procedure; (2) polysaccharide networks of cellulose, hemicelluloses, and pectins form potential traps for contaminants such as intracellular proteins; (3) the presence of proteins interacting in many different ways with the polysaccharide matrix require different procedures to elute them from the cell wall. Three categories of CWP are distinguished: labile proteins that have little or no interactions with cell wall components, weakly bound proteins extractable with salts, and strongly bound proteins. Two alternative protocols are decribed for cell wall proteomics: (1) nondestructive techniques allowing the extraction of labile or weakly bound CWP without damaging the plasma membrane; (2) destructive techniques to isolate cell walls from which weakly or strongly bound CWP can be extracted. These protocols give very low levels of contamination by intracellular proteins. Their application should lead to a realistic view of the cell wall proteome at least for labile and weakly bound CWP extractable by salts.

  11. Cell Wall Assembly in Fucus Zygotes

    PubMed Central

    Quatrano, Ralph S.; Stevens, Patricia T.

    1976-01-01

    Fertilization triggers the assembly of a cell wall around the egg cell of three brown algae, Fucus vesiculosus, F. distichus, and F. inflatus. New polysaccharide polymers are continually being added to the cell wall during the first 24 hours of synchronous embryo development. This wall assembly involves the extracellular deposition of fibrillar material by cytoplasmic vesicles fusing with the plasma membrane. One hour after fertilization a fragmented wall can be isolated free of cytoplasm and contains equal amounts of cellulose and alginic acid with no fucose-containing polymers (fucans) present. Birefringence of the wall caused by oriented cellulose microfibrils is not detected in all zygotes until 4 hours, at which time intact cell walls can be isolated that retain the shape of the zygote. These walls have a relatively low ratio of fucose to xylose and little sulfate when compared to walls from older embryos. When extracts of walls from 4-hour zygotes are subjected to cellulose acetate electrophoresis at pH 7, a single fucan (F1) can be detected. By 12 hours, purified cell walls are composed of fucans containing a relatively high ratio of fucose to xylose and high levels of sulfate, and contain a second fucan (F2) which is electrophoretically distinct from F1. F2 appears to be deposited in only a localized region of the wall, that which elongates to form the rhizoid cell. Throughout wall assembly, the polyuronide block co-polymer alginic acid did not significantly vary its mannuronic (M) to guluronic (G) acid ratio (0.33-0.55) or its block distribution (MG, 54%; GG, 30%; MM, 16%). From 6 to 24 hours of embryo development, the proportion of the major polysaccharide components found in purified walls is stable. Alginic acid is the major polymer and comprises about 60% of the total wall, while cellulose and the fucans each make-up about 20% of the remainder. During the extracellular assembly of this wall, the intracellular levels of the storage glucan laminaran

  12. The cell walls of Chara aspera Willd. (Charophyta) vegetative cells.

    PubMed

    Nyberg, H; Saranpää, P

    1989-01-01

    The ultrastructure of the vegetative cell walls of the charophyte Chara aspera Willd was studied with TEM. Thallus cells, rhizoid bulbil and rhizoidal node cells were investigated. The internodal cells transverse walls contained plasmodesmata. The longitudinal walls of the internodal cells were uniform, fibrillar, with two thin structurally distinct layers with different structure facing the cytoplasm. The outermost layers of internodal, cortical and rhizoid bulbil cells were composed of randomly orientated fibrils. The longitudinal walls of the cortical cells were helicoidal in structure. In the rhizoid bulbil cell walls, six different layers could be distinguished, but their occurrence seemed to depend on the fixation, staining and cutting procedures. A middle lamella and osmophilic deposits were found in the wall between rhizoidal node cells. The cytoplasmic structure of the internodal and cortical cells was not found to differ from other species of Chara. Charasomes were observed only in cortical cells.

  13. Recent advances in plant cell wall proteomics.

    PubMed

    Jamet, Elisabeth; Albenne, Cécile; Boudart, Georges; Irshad, Muhammad; Canut, Hervé; Pont-Lezica, Rafael

    2008-02-01

    The plant extracellular matrix contains typical polysaccharides such as cellulose, hemicelluloses, and pectins that interact to form dense interwoven networks. Plant cell walls play crucial roles during development and constitute the first barrier of defense against invading pathogens. Cell wall proteomics has greatly contributed to the description of the protein content of a compartment specific to plants. Around 400 cell wall proteins (CWPs) of Arabidopsis, representing about one fourth of its estimated cell wall proteome, have been described. The main points to note are that: (i) the diversity of enzymes acting on polysaccharides suggests a great plasticity of cell walls; (ii) CWPs such as proteases, polysaccharide hydrolytic enzymes, and lipases may contribute to the generation of signals; (iii) proteins of unknown functions were identified, suggesting new roles for cell walls. Recently, the characterization of PTMs such as N- and O-glycosylations improved our knowledge of CWP structure. The presence of many glycoside hydrolases and proteases suggests a complex regulation of CWPs involving various types of post-translational events. The first 3-D structures to be resolved gave clues about the interactions between CWPs, or between CWPs and polysaccharides. Future work should include: extracting and identifying CWPs still recalcitrant to proteomics, describing the cell wall interactome, improving quantification, and unraveling the roles of each of the CWPs.

  14. Polyphosphorylated fungal cell wall glycopeptides

    SciTech Connect

    Bonetti, S.J.; Black, B.; Gander, J.E.

    1987-05-01

    Penicillium charlesii secretes a 65 kDa peptidophosphogalactomannan (pPGM) containing 10 phosphodiester residues and 10 galactofuranosyl-containing galactin chains attached to a linear mannan; the polysaccharides is attached to a 3 kDa seryl- and threonyl-rich peptide. The authors have now isolated and partially characterized a form of pPGM released from mycelia of P. charlesii treated at 50/sup 0/C for 15, 30, 60 or 120 min. Two- to 3-fold more pPGM was released by heat treatment than is secreted. Crude pPGM, released by heat, was fractionated on DE-52 and was fractionated into two major fractions on the basis of its difference in negative charge. /sup 1/H-decoupled /sup 13/C NMR spectroscopy of these two fractions provided spectra very similar to that of secreted pPGM previously reported from this laboratory. /sup 1/H-decoupled /sup 31/P NMR showed major signals at 1.47, and 0.22 ppm and minor signals at 1.32, 1.15, 1.00, 0.91 and 0.76 ppm. These signals are upfield from phosphomonoesters and are in the region observed for (6-O-phosphorylcholine)- and (6-O-phosphorylethanolamine)-..cap alpha..-D-mannopyranosyl residues which are 0.22 and 0.90 ppm, respectively. These polymers contain 30 phosphodiester residues per molecule of 70 kDa mass compared with 10 phosphodiesters in secreted pPGM. Acid phosphatase and alkaline protease were the only lytic enzymes released by heat treatment. The evidence suggests that much of the pPGM is derived from cell walls; and that the polysaccharide is highly phosphorylated.

  15. Molecular regulation of plant cell wall extensibility

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1998-01-01

    Gravity responses in plants often involve spatial and temporal changes in cell growth, which is regulated primarily by controlling the ability of the cell wall to extend. The wall is thought to be a cellulose-hemicellulose network embedded in a hydrated matrix of complex polysaccharides and a small amount of structural protein. The wall extends by a form of polymer creep, which is mediated by expansins, a novel group of wall-loosening proteins. Expansins were discovered during a molecular dissection of the "acid growth" behavior of cell walls. Expansin alters the rheology of plant walls in profound ways, yet its molecular mechanism of action is still uncertain. It lacks detectable hydrolytic activity against the major components of the wall, but it is able to disrupt noncovalent adhesion between wall polysaccharides. The discovery of a second family of expansins (beta-expansins) sheds light on the biological role of a major group of pollen allergens and implies that expansins have evolved for diverse developmental functions. Finally, the contribution of other processes to wall extensibility is briefly summarized.

  16. Cell wall, cytoskeleton, and cell expansion in higher plants.

    PubMed

    Bashline, Logan; Lei, Lei; Li, Shundai; Gu, Ying

    2014-04-01

    To accommodate two seemingly contradictory biological roles in plant physiology, providing both the rigid structural support of plant cells and the adjustable elasticity needed for cell expansion, the composition of the plant cell wall has evolved to become an intricate network of cellulosic, hemicellulosic, and pectic polysaccharides and protein. Due to its complexity, many aspects of the cell wall influence plant cell expansion, and many new and insightful observations and technologies are forthcoming. The biosynthesis of cell wall polymers and the roles of the variety of proteins involved in polysaccharide synthesis continue to be characterized. The interactions within the cell wall polymer network and the modification of these interactions provide insight into how the plant cell wall provides its dual function. The complex cell wall architecture is controlled and organized in part by the dynamic intracellular cytoskeleton and by diverse trafficking pathways of the cell wall polymers and cell wall-related machinery. Meanwhile, the cell wall is continually influenced by hormonal and integrity sensing stimuli that are perceived by the cell. These many processes cooperate to construct, maintain, and manipulate the intricate plant cell wall--an essential structure for the sustaining of the plant stature, growth, and life.

  17. 2003 Plant Cell Walls Gordon Conference

    SciTech Connect

    Daniel J. Cosgrove

    2004-09-21

    This conference will address recent progress in many aspects of cell wall biology. Molecular, genetic, and genomic approaches are yielding major advances in our understanding of the composition, synthesis, and architecture of plant cell walls and their dynamics during growth, and are identifying the genes that encode the machinery needed to make their biogenesis possible. This meeting will bring together international scientists from academia, industry and government labs to share the latest breakthroughs and perspectives on polysaccharide biosynthesis, wood formation, wall modification, expansion and interaction with other organisms, and genomic & evolutionary analyses of wall-related genes, as well as to discuss recent ''nanotechnological'' advances that take wall analysis to the level of a single cell.

  18. Refractive index of plant cell walls

    NASA Technical Reports Server (NTRS)

    Gausman, H. W.; Allen, W. A.; Escobar, D. E.

    1974-01-01

    Air was replaced with media of higher refractive indices by vacuum infiltration in leaves of cucumber, blackeye pea, tomato, and string bean plants, and reflectance of noninfiltrated and infiltrated leaves was spectrophotometrically measured. Infiltrated leaves reflected less light than noninfiltrated leaves over the 500-2500-nm wavelength interval because cell wall-air interfaces were partly eliminated. Minimal reflectance should occur when the average refractive index of plant cell walls was matched by the infiltrating fluid. Although refractive indices that resulted in minimal reflectance differed among the four plant genera, an average value of 1.425 approximates the refractive index of plant cell walls for the four plant genera.

  19. Differential scanning calorimetry of plant cell walls

    SciTech Connect

    Lin, Liangshiou; Varner, J.E. ); Yuen, H.K. )

    1991-03-15

    High-sensitivity differential scanning calorimetry has been used to study the phase transition of cell wall preparations of the elongating and mature regions of soybean hypocotyls and of celery epidermis and collenchyma strands. A step-like transition believed to be glass transition was observed in walls isolated from the elongating region of soybean hypocotyls at 52.9C. Addition of 1 mM CaCl{sub 2} to the cell wall preparation increased the transition temperature to 60.8C and greatly reduced the transition magnitude. In walls from the mature region, the transition was small and occurred at a higher temperature (60.1C). Addition of calcium to the mature region cell wall had little effect on the transition. Based on the known interactions between calcium and pectin, the authors propose that calcium affects the glass transition by binding to the polygalacturonate backbone of wall pectin, resulting in a more rigid wall with a smaller transition at a higher temperature. The mature region either has more calcium in the wall or has more methyl-esterified pectin, making it less responsive to added calcium.

  20. Cell wall remodeling under abiotic stress

    PubMed Central

    Tenhaken, Raimund

    2015-01-01

    Plants exposed to abiotic stress respond to unfavorable conditions on multiple levels. One challenge under drought stress is to reduce shoot growth while maintaining root growth, a process requiring differential cell wall synthesis and remodeling. Key players in this process are the formation of reactive oxygen species (ROS) and peroxidases, which initially cross-link phenolic compounds and glycoproteins of the cell walls causing stiffening. The function of ROS shifts after having converted all the peroxidase substrates in the cell wall. If ROS-levels remain high during prolonged stress, OH°-radicals are formed which lead to polymer cleavage. In concert with xyloglucan modifying enzymes and expansins, the resulting cell wall loosening allows further growth of stressed organs. PMID:25709610

  1. Role of cell wall deconstructing enzymes in the proanthocyanidin-cell wall adsorption-desorption phenomena.

    PubMed

    Castro-López, Liliana del Rocío; Gómez-Plaza, Encarna; Ortega-Regules, Ana; Lozada, Daniel; Bautista-Ortín, Ana Belén

    2016-04-01

    The transference of proanthocyanidins from grapes to wine is quite low. This could be due, among other causes, to proanthocyanidins being bound to grape cell wall polysaccharides, which are present in high concentrations in the must. Therefore, the effective extraction of proanthocyanidins from grapes will depend on the ability to disrupt these associations, and, in this respect, enzymes that degrade these polysaccharides could play an important role. The main objective of this work was to test the behavior of proanthocyanidin-cell wall interactions when commercial maceration enzymes are present in the solution. The results showed that cell wall polysaccharides adsorbed a high amount of proanthocyanidins and only a limited quantity of proanthocyanidins could be desorbed from the cell walls after washing with a model solution. The presence of enzymes in the solution reduced the proanthocyanidin-cell wall interaction, probably through the elimination of pectins from the cell wall network.

  2. Cell wall proteins: a new insight through proteomics.

    PubMed

    Jamet, Elisabeth; Canut, Hervé; Boudart, Georges; Pont-Lezica, Rafael F

    2006-01-01

    Cell wall proteins are essential constituents of plant cell walls; they are involved in modifications of cell wall components, wall structure, signaling and interactions with plasma membrane proteins at the cell surface. The application of proteomic approaches to the cell wall compartment raises important questions: are there technical problems specific to cell wall proteomics? What kinds of proteins can be found in Arabidopsis walls? Are some of them unexpected? What sort of post-translational modifications have been characterized in cell wall proteins to date? The purpose of this review is to discuss the experimental results obtained to date using proteomics, as well as some of the new questions challenging future research.

  3. Modes of deformation of walled cells.

    PubMed

    Dumais, Jacques

    2013-11-01

    The bewildering morphological diversity found in cells is one of the starkest illustrations of life's ability to self-organize. Yet the morphogenetic mechanisms that produce the multifarious shapes of cells are still poorly understood. The shared similarities between the walled cells of prokaryotes, many protists, fungi, and plants make these groups particularly appealing to begin investigating how morphological diversity is generated at the cell level. In this review, I attempt a first classification of the different modes of surface deformation used by walled cells. Five modes of deformation were identified: inextensional bending, equi-area shear, elastic stretching, processive intussusception, and chemorheological growth. The two most restrictive modes-inextensional and equi-area deformations-are embodied in the exine of pollen grains and the wall-like pellicle of euglenoids, respectively. For these modes, it is possible to express the deformed geometry of the cell explicitly in terms of the undeformed geometry and other easily observable geometrical parameters. The greatest morphogenetic power is reached with the processive intussusception and chemorheological growth mechanisms that underlie the expansive growth of walled cells. A comparison of these two growth mechanisms suggests a possible way to tackle the complexity behind wall growth.

  4. Cell wall as a target for bacteria inactivation by pulsed electric fields

    PubMed Central

    Pillet, Flavien; Formosa-Dague, Cécile; Baaziz, Houda; Dague, Etienne; Rols, Marie-Pierre

    2016-01-01

    The integrity and morphology of bacteria is sustained by the cell wall, the target of the main microbial inactivation processes. One promising approach to inactivation is based on the use of pulsed electric fields (PEF). The current dogma is that irreversible cell membrane electro-permeabilisation causes the death of the bacteria. However, the actual effect on the cell-wall architecture has been poorly explored. Here we combine atomic force microscopy and electron microscopy to study the cell-wall organization of living Bacillus pumilus bacteria at the nanoscale. For vegetative bacteria, exposure to PEF led to structural disorganization correlated with morphological and mechanical alterations of the cell wall. For spores, PEF exposure led to the partial destruction of coat protein nanostructures, associated with internal alterations of cortex and core. Our findings reveal for the first time that the cell wall and coat architecture are directly involved in the electro-eradication of bacteria. PMID:26830154

  5. Structure, cell wall elasticity and polysaccharide properties of living yeast cells, as probed by AFM

    NASA Astrophysics Data System (ADS)

    Alsteens, David; Dupres, Vincent; McEvoy, Kevin; Wildling, Linda; Gruber, Hermann J.; Dufrêne, Yves F.

    2008-09-01

    Although the chemical composition of yeast cell walls is known, the organization, assembly, and interactions of the various macromolecules remain poorly understood. Here, we used in situ atomic force microscopy (AFM) in three different modes to probe the ultrastructure, cell wall elasticity and polymer properties of two brewing yeast strains, i.e. Saccharomyces carlsbergensis and S. cerevisiae. Topographic images of the two strains revealed smooth and homogeneous cell surfaces, and the presence of circular bud scars on dividing cells. Nanomechanical measurements demonstrated that the cell wall elasticity of S. carlsbergensis is homogeneous. By contrast, the bud scar of S. cerevisiae was found to be stiffer than the cell wall, presumably due to the accumulation of chitin. Notably, single molecule force spectroscopy with lectin-modified tips revealed major differences in polysaccharide properties of the two strains. Polysaccharides were clearly more extended on S. cerevisiae, suggesting that not only oligosaccharides, but also polypeptide chains of the mannoproteins were stretched. Consistent with earlier cell surface analyses, these findings may explain the very different aggregation properties of the two organisms. This study demonstrates the power of using multiple complementary AFM modalities for probing the organization and interactions of the various macromolecules of microbial cell walls.

  6. Assembly of the Yeast Cell Wall

    PubMed Central

    Cabib, Enrico; Farkas, Vladimir; Kosík, Ondrej; Blanco, Noelia; Arroyo, Javier; McPhie, Peter

    2008-01-01

    The cross-linking of polysaccharides to assemble new cell wall in fungi requires mechanisms by which a preexisting linkage is broken for each new one made, to allow for the absence of free energy sources outside the plasma membrane. Previous work showed that Crh1p and Crh2p, putative transglycosylases, are required for the linkage of chitin to β(1–3)glucose branches of β(1–6)glucan in the cell wall of budding yeast. To explore the linking reaction in vivo and in vitro, we used fluorescent sulforhodamine-linked laminari-oligosaccharides as artificial chitin acceptors. In vivo, fluorescence was detected in bud scars and at a lower level in the cell contour, both being dependent on the CRH genes. The linking reaction was also shown in digitonin-permeabilized cells, with UDP-N-acetylglucosamine as the substrate for nascent chitin production. Both the nucleotide and the Crh proteins were required here. A gas1 mutant that overexpresses Crh1p showed very high fluorescence both in intact and permeabilized cells. In the latter, fluorescence was still incorporated in patches in the absence of UDP-GlcNAc. Isolated cell walls of this strain, when incubated with sulforhodamine-oligosaccharide, also showed Crhp-dependent fluorescence in patches, which were identified as bud scars. In all three systems, binding of the fluorescent material to chitin was verified by chitinase digestion. Moreover, the cell wall reaction was inhibited by chitooligosaccharides. These results demonstrate that the Crh proteins act by transferring chitin chains to β(1–6)glucan, with a newly observed high activity in the bud scar. The importance of transglycosylation for cell wall assembly is thus firmly established. PMID:18694928

  7. Cell wall proteomic of Brachypodium distachyon grains: A focus on cell wall remodeling proteins.

    PubMed

    Francin-Allami, Mathilde; Merah, Kahina; Albenne, Cécile; Rogniaux, Hélène; Pavlovic, Marija; Lollier, Virginie; Sibout, Richard; Guillon, Fabienne; Jamet, Elisabeth; Larré, Colette

    2015-07-01

    Cell walls play key roles during plant development. Following their deposition into the cell wall, polysaccharides are continually remodeled according to the growth stage and stress environment to accommodate cell growth and differentiation. To date, little is known concerning the enzymes involved in cell wall remodeling, especially in gramineous and particularly in the grain during development. Here, we investigated the cell wall proteome of the grain of Brachypodium distachyon. This plant is a suitable model for temperate cereal crops. Among the 601 proteins identified, 299 were predicted to be secreted. These proteins were distributed into eight functional classes; the class of proteins that act on carbohydrates was the most highly represented. Among these proteins, numerous glycoside hydrolases were found. Expansins and peroxidases, which are assumed to be involved in cell wall polysaccharide remodeling, were also identified. Approximately half of the proteins identified in this study were newly discovered in grain and were not identified in the previous proteome analysis conducted using the culms and leaves of B. distachyon. Therefore, the data obtained from all organs of B. distachyon infer a global cell wall proteome consisting of 460 proteins. At present, this is the most extensive cell wall proteome of a monocot species.

  8. Progress toward the tomato fruit cell wall proteome

    PubMed Central

    Ruiz-May, Eliel; Rose, Jocelyn K. C.

    2013-01-01

    The plant cell wall (CW) compartment, or apoplast, is host to a highly dynamic proteome, comprising large numbers of both enzymatic and structural proteins. This reflects its importance as the interface between adjacent cells and the external environment, the presence of numerous extracellular metabolic and signaling pathways, and the complex nature of wall structural assembly and remodeling during cell growth and differentiation. Tomato fruit ontogeny, with its distinct phases of rapid growth and ripening, provides a valuable experimental model system for CW proteomic studies, in that it involves substantial wall assembly, remodeling, and coordinated disassembly. Moreover, diverse populations of secreted proteins must be deployed to resist microbial infection and protect against abiotic stresses. Tomato fruits also provide substantial amounts of biological material, which is a significant advantage for many types of biochemical analyses, and facilitates the detection of lower abundance proteins. In this review, we describe a variety of orthogonal techniques that have been applied to identify CW localized proteins from tomato fruit, including approaches that: target the proteome of the CW and the overlying cuticle; functional “secretome” screens; lectin affinity chromatography; and computational analyses to predict proteins that enter the secretory pathway. Each has its merits and limitations, but collectively they are providing important insights into CW proteome composition and dynamics, as well as some potentially controversial issues, such as the prevalence of non-canonical protein secretion. PMID:23755055

  9. Why should cell biologists study microbial pathogens?

    PubMed

    Welch, Matthew D

    2015-12-01

    One quarter of all deaths worldwide each year result from infectious diseases caused by microbial pathogens. Pathogens infect and cause disease by producing virulence factors that target host cell molecules. Studying how virulence factors target host cells has revealed fundamental principles of cell biology. These include important advances in our understanding of the cytoskeleton, organelles and membrane-trafficking intermediates, signal transduction pathways, cell cycle regulators, the organelle/protein recycling machinery, and cell-death pathways. Such studies have also revealed cellular pathways crucial for the immune response. Discoveries from basic research on the cell biology of pathogenesis are actively being translated into the development of host-targeted therapies to treat infectious diseases. Thus there are many reasons for cell biologists to incorporate the study of microbial pathogens into their research programs.

  10. Roles of membrane trafficking in plant cell wall dynamics

    PubMed Central

    Ebine, Kazuo; Ueda, Takashi

    2015-01-01

    The cell wall is one of the characteristic components of plant cells. The cell wall composition differs among cell types and is modified in response to various environmental conditions. To properly generate and modify the cell wall, many proteins are transported to the plasma membrane or extracellular space through membrane trafficking, which is one of the key protein transport mechanisms in eukaryotic cells. Given the diverse composition and functions of the cell wall in plants, the transport of the cell wall components and proteins that are involved in cell wall-related events could be specialized for each cell type, i.e., the machinery for cell wall biogenesis, modification, and maintenance could be transported via different trafficking pathways. In this review, we summarize the recent progress in the current understanding of the roles and mechanisms of membrane trafficking in plant cells and focus on the biogenesis and regulation of the cell wall. PMID:26539200

  11. Reconstitution of a Secondary Cell Wall in a Secondary Cell Wall-Deficient Arabidopsis Mutant

    PubMed Central

    Sakamoto, Shingo; Mitsuda, Nobutaka

    2015-01-01

    The secondary cell wall constitutes a rigid frame of cells in plant tissues where rigidity is required. Deposition of the secondary cell wall in fiber cells contributes to the production of wood in woody plants. The secondary cell wall is assembled through co-operative activities of many enzymes, and their gene expression is precisely regulated by a pyramidal cascade of transcription factors. Deposition of a transmuted secondary cell wall in empty fiber cells by expressing selected gene(s) in this cascade has not been attempted previously. In this proof-of-concept study, we expressed chimeric activators of 24 transcription factors that are preferentially expressed in the stem, in empty fiber cells of the Arabidopsis nst1-1 nst3-1 double mutant, which lacks a secondary cell wall in fiber cells, under the control of the NST3 promoter. The chimeric activators of MYB46, SND2 and ANAC075, as well as NST3, reconstituted a secondary cell wall with different characteristics from those of the wild type in terms of its composition. The transgenic lines expressing the SND2 or ANAC075 chimeric activator showed increased glucose and xylose, and lower lignin content, whereas the transgenic line expressing the MYB46 chimeric activator showed increased mannose content. The expression profile of downstream genes in each transgenic line was also different from that of the wild type. This study proposed a new screening strategy to identify factors of secondary wall formation and also suggested the potential of the artificially reconstituted secondary cell walls as a novel raw material for production of bioethanol and other chemicals. PMID:25535195

  12. Vessel wall-embedded dendritic cells induce T-cell autoreactivity and initiate vascular inflammation.

    PubMed

    Han, Ji W; Shimada, Kazunori; Ma-Krupa, Wei; Johnson, Tiffany L; Nerem, Robert M; Goronzy, Jörg J; Weyand, Cornelia M

    2008-03-14

    Human medium-sized and large arteries are targeted by inflammation with innate and adaptive immune responses occurring within the unique microspace of the vessel wall. How 3D spatial arrangements influence immune recognition and cellular response thresholds and which cell populations sense immunoactivating ligands and function as antigen-presenting cells are incompletely understood. To mimic the 3D context of human arteries, bioartificial arteries were engineered from collagen type I matrix, human vascular smooth muscle cells (VSMCs), and human endothelial cells and populated with cells implicated in antigen presentation and T-cell stimulation, including monocytes, macrophages, and myeloid dendritic cells (DCs). Responsiveness of wall-embedded antigen-presenting cells was probed with the Toll-like receptor ligand lipopolysaccharide, and inflammation was initiated by adding autologous CD4(+) T cells. DCs colonized the outermost VSMC layer, recapitulating their positioning at the media-adventitia border of normal arteries. Wall-embedded DCs responded to the microbial product lipopolysaccharide by entering the maturation program and upregulating the costimulatory ligand CD86. Activated DCs effectively stimulated autologous CD4 T cells, which produced the proinflammatory cytokine interferon-gamma and infiltrated deeply into the VSMC layer, causing matrix damage. Lipopolysaccharide-triggered macrophages were significantly less efficacious in recruiting T cells and promoting T-cell stimulation. CD14(+) monocytes, even when preactivated, failed to support initial steps of vascular wall inflammation. Innate immune cells, including monocytes, macrophages, and DCs, display differential functions in the vessel wall. DCs are superior in sensing pathogen-derived motifs and are highly efficient in breaking T-cell tolerance, guiding T cells toward proinflammatory and tissue-invasive behavior.

  13. Cell Differentiation and Spatial Organization in Yeast Colonies: Role of Cell-Wall Integrity Pathway.

    PubMed

    Piccirillo, Sarah; Morales, Rita; White, Melissa G; Smith, Keston; Kapros, Tamas; Honigberg, Saul M

    2015-12-01

    Many microbial communities contain organized patterns of cell types, yet relatively little is known about the mechanism or function of this organization. In colonies of the budding yeast Saccharomyces cerevisiae, sporulation occurs in a highly organized pattern, with a top layer of sporulating cells sharply separated from an underlying layer of nonsporulating cells. A mutant screen identified the Mpk1 and Bck1 kinases of the cell-wall integrity (CWI) pathway as specifically required for sporulation in colonies. The CWI pathway was induced as colonies matured, and a target of this pathway, the Rlm1 transcription factor, was activated specifically in the nonsporulating cell layer, here termed feeder cells. Rlm1 stimulates permeabilization of feeder cells and promotes sporulation in an overlying cell layer through a cell-nonautonomous mechanism. The relative fraction of the colony apportioned to feeder cells depends on nutrient environment, potentially buffering sexual reproduction against suboptimal environments.

  14. Cell Wall Heterogeneity in Root Development of Arabidopsis

    PubMed Central

    Somssich, Marc; Khan, Ghazanfar Abbas; Persson, Staffan

    2016-01-01

    Plant cell walls provide stability and protection to plant cells. During growth and development the composition of cell walls changes, but provides enough strength to withstand the turgor of the cells. Hence, cell walls are highly flexible and diverse in nature. These characteristics are important during root growth, as plant roots consist of radial patterns of cells that have diverse functions and that are at different developmental stages along the growth axis. Young stem cell daughters undergo a series of rapid cell divisions, during which new cell walls are formed that are highly dynamic, and that support rapid anisotropic cell expansion. Once the cells have differentiated, the walls of specific cell types need to comply with and support different cell functions. For example, a newly formed root hair needs to be able to break through the surrounding soil, while endodermal cells modify their walls at distinct positions to form Casparian strips between them. Hence, the cell walls are modified and rebuilt while cells transit through different developmental stages. In addition, the cell walls of roots readjust to their environment to support growth and to maximize nutrient uptake. Many of these modifications are likely driven by different developmental and stress signaling pathways. However, our understanding of how such pathways affect cell wall modifications and what enzymes are involved remain largely unknown. In this review we aim to compile data linking cell wall content and re-modeling to developmental stages of root cells, and dissect how root cell walls respond to certain environmental changes. PMID:27582757

  15. Interplays between the cell wall and phytohormones in interaction between plants and necrotrophic pathogens.

    PubMed

    Nafisi, Majse; Fimognari, Lorenzo; Sakuragi, Yumiko

    2015-04-01

    The plant cell wall surrounds every cell in plants. During microbial infection, the cell wall provides a dynamic interface for interaction with necrotrophic phytopathogens as a rich source of carbohydrates for the growth of pathogens, as a physical barrier restricting the progression of the pathogens, and as an integrity sensory system that can activate intracellular signaling cascades and ultimately lead to a multitude of inducible host defense responses. Studies over the last decade have provided evidence of interplays between the cell wall and phytohormone signaling. This review summarizes the current state of knowledge about the cell wall-phytohormone interplays, with the focus on auxin, cytokinin, brassinosteroids, and abscisic acid, and discuss how they impact the outcome of plant-necrotrophic pathogen interaction.

  16. [Advances in microbial solar cells--A review].

    PubMed

    Guo, Xiaoyun; Yu, Changping; Zheng, Tianling

    2015-08-04

    The energy crisis has become one of the major problems hindering the development of the world. The emergence of microbial fuel cells provides a new solution to the energy crisis. Microbial solar cells, integrating photosynthetic organisms such as plants and microalgae into microbial fuel cells, can convert solar energy into electrical energy. Microbial solar cell has steady electric energy, and broad application prospects in wastewater treatment, biodiesel processing and intermediate metabolites production. Here we reviewed recent progress of microbial solar cells from the perspective of the role of photosynthetic organisms in microbial fuel cells, based on a vast amount of literature, and discussed their advantages and deficiency. At last, brief analysis of the facing problems and research needs of microbial fuel cells are undertaken. This work was expected to be beneficial for the application of the microbial solar cells technology.

  17. Autonomous, Retrievable, Deep Sea Microbial Fuel Cell

    NASA Astrophysics Data System (ADS)

    Richter, K.

    2014-12-01

    Microbial fuel cells (MFCs) work by providing bacteria in anaerobic sediments with an electron acceptor (anode) that stimulates metabolism of organic matter. The buried anode is connected via control circuitry to a cathode exposed to oxygen in the overlying water. During metabolism, bacteria release hydrogen ions into the sediment and transfer electrons extra-cellularly to the anode, which eventually reduce dissolved oxygen at the cathode, forming water. The open circuit voltage is approximately 0.8 v. The voltage between electrodes is operationally kept at 0.4 v with a potentiastat. The current is chiefly limited by the rate of microbial metabolism at the anode. The Office of Naval Research has encouraged development of microbial fuel cells in the marine environment at a number of academic and naval institutions. Earlier work in shallow sediments of San Diego Bay showed that the most important environmental parameters that control fuel cell power output in San Diego Bay were total organic carbon in the sediment and seasonal water temperature. Current MFC work at SPAWAR includes extension of microbial fuel cell tests to the deep sea environment (>1000 m) and, in parallel, testing microbial fuel cells in the laboratory under deep sea conditions. One question we are asking is whether MFC power output from deep water sediments repressurized and chilled in the laboratory comparable to those measured in situ. If yes, mapping the power potential of deep sea sediments may be made much easier, requiring sediment grabs and lab tests rather than deployment and retrieval of fuel cells. Another question we are asking is whether in situ temperature and total organic carbon in the deep sea sediment can predict MFC power. If yes, then we can make use of the large collection of publicly available, deep sea oceanographic measurements to make these predictions, foregoing expensive work at sea. These regressions will be compared to those derived from shallow water measurements.

  18. Interval scanning photomicrography of microbial cell populations.

    NASA Technical Reports Server (NTRS)

    Casida, L. E., Jr.

    1972-01-01

    A single reproducible area of the preparation in a fixed focal plane is photographically scanned at intervals during incubation. The procedure can be used for evaluating the aerobic or anaerobic growth of many microbial cells simultaneously within a population. In addition, the microscope is not restricted to the viewing of any one microculture preparation, since the slide cultures are incubated separately from the microscope.

  19. Measuring in vitro extensibility of growing plant cell walls.

    PubMed

    Cosgrove, Daniel J

    2011-01-01

    This article summarizes the theory and practical aspects of measuring cell wall properties by four different extensometer techniques and how the results of these methods relate to the concept and ideal measurement of cell wall extensibility in the context of cell growth. These in vivo techniques are particularly useful for studies of the molecular basis of cell wall extension. Measurements of breaking strength, elastic compliance, and plastic compliance may be informative about changes in cell wall structure, whereas measurements of wall stress relaxation and creep are sensitive to both changes in wall structure and wall-loosening processes, such as those mediated by expansins and some lytic enzymes. A combination of methods is needed to obtain a broader view of cell wall behavior and properties connected with the concept of cell wall extensibility.

  20. Single-cell transcriptomics for microbial eukaryotes.

    PubMed

    Kolisko, Martin; Boscaro, Vittorio; Burki, Fabien; Lynn, Denis H; Keeling, Patrick J

    2014-11-17

    One of the greatest hindrances to a comprehensive understanding of microbial genomics, cell biology, ecology, and evolution is that most microbial life is not in culture. Solutions to this problem have mainly focused on whole-community surveys like metagenomics, but these analyses inevitably loose information and present particular challenges for eukaryotes, which are relatively rare and possess large, gene-sparse genomes. Single-cell analyses present an alternative solution that allows for specific species to be targeted, while retaining information on cellular identity, morphology, and partitioning of activities within microbial communities. Single-cell transcriptomics, pioneered in medical research, offers particular potential advantages for uncultivated eukaryotes, but the efficiency and biases have not been tested. Here we describe a simple and reproducible method for single-cell transcriptomics using manually isolated cells from five model ciliate species; we examine impacts of amplification bias and contamination, and compare the efficacy of gene discovery to traditional culture-based transcriptomics. Gene discovery using single-cell transcriptomes was found to be comparable to mass-culture methods, suggesting single-cell transcriptomics is an efficient entry point into genomic data from the vast majority of eukaryotic biodiversity.

  1. Cell wall proteome of pathogenic fungi.

    PubMed

    Karkowska-Kuleta, Justyna; Kozik, Andrzej

    2015-01-01

    A fast development of a wide variety of proteomic techniques supported by mass spectrometry coupled with high performance liquid chromatography has been observed in recent years. It significantly contributes to the progress in research on the cell wall, very important part of the cells of pathogenic fungi. This complicated structure composed of different polysaccharides, proteins, lipids and melanin, plays a key role in interactions with the host during infection. Changes in the set of the surface-exposed proteins under different environmental conditions provide an effective way for pathogens to respond, adapt and survive in the new niches of infection. This work summarizes the current state of knowledge on proteins, studied both qualitatively and quantitatively, and found within the cell wall of fungal pathogens for humans, including Candida albicans, Candida glabrata, Aspergillus fumigatus, Cryptococcus neoformans and other medically important fungi. The described proteomic studies involved the isolation and fractionation of particular sets of proteins of interest with various techniques, often based on differences in their linkages to the polysaccharide scaffold. Furthermore, the proteinaceous contents of extracellular vesicles ("virulence bags") of C. albicans, C. neoformans, Histoplasma capsulatum and Paracoccidioides brasiliensis are compared, because their production can partially explain the problem of non-classical protein secretion by fungi. The role assigned to surface-exposed proteins in pathogenesis of fungal infections is enormously high, thus justifying the need for further investigation of cell wall proteomes.

  2. Microbial fuel cells for biosensor applications.

    PubMed

    Yang, Huijia; Zhou, Minghua; Liu, Mengmeng; Yang, Weilu; Gu, Tingyue

    2015-12-01

    Microbial fuel cells (MFCs) face major hurdles for real-world applications as power generators with the exception of powering small sensor devices. Despite tremendous improvements made in the last two decades, MFCs are still too expensive to build and operate and their power output is still too small. In view of this, in recently years, intensive researches have been carried out to expand the applications into other areas such as acid and alkali production, bioremediation of aquatic sediments, desalination and biosensors. Unlike power applications, MFC sensors have the immediate prospect to be practical. This review covers the latest developments in various proposed biosensor applications using MFCs including monitoring microbial activity, testing biochemical oxygen demand, detection of toxicants and detection of microbial biofilms that cause biocorrosion.

  3. Celery (Apium graveolens) parenchyma cell walls: cell walls with minimal xyloglucan.

    PubMed

    Thimm, Julian C.; Burritt, David J.; Sims, Ian M.; Newman, Roger H.; Ducker, William A.; Melton, Laurence D.

    2002-10-01

    The primary walls of celery (Apium graveolens L.) parenchyma cells were isolated and their polysaccharide components characterized by glycosyl linkage analysis, cross-polarization magic-angle spinning solid-state 13C nuclear magnetic resonance (CP/MAS 13C NMR) and X-ray diffraction. Glycosyl linkage analysis showed that the cell walls consisted of mainly cellulose (43 mol%) and pectic polysaccharides (51 mol%), comprising rhamnogalacturonan (28 mol%), arabinan (12 mol%) and galactan (11 mol%). The amounts of xyloglucan (2 mol%) and xylan (2 mol%) detected in the cell walls were strikingly low. The small amount of xyloglucan present means that it cannot coat the cellulose microfibrils. Solid-state 13C NMR signals were consistent with the constituents identified by glycosyl linkage analysis and allowed the walls to be divided into three domains, based on the rigidity of the polymers. Cellulose (rigid) and rhamnogalacturonan (semi-mobile) polymers responded to the CP/MAS 13C NMR pulse sequence and were distinguished by differences in proton spin relaxation time constants. The arabinans, the most mobile polymers, responded to single-pulse excitation (SPE), but not CP/MAS 13C NMR. From solid-state 13C NMR of the cell walls the diameter of the crystalline cellulose microfibrils was determined to be approximately 3 nm while X-ray diffraction of the cell walls gave a value for the diameter of approximately 2 nm.

  4. Revealing the structural and functional diversity of plant cell walls.

    PubMed

    Knox, J Paul

    2008-06-01

    The extensive knowledge of the chemistry of isolated cell wall polymers, and that relating to the identification and partial annotation of gene families involved in their synthesis and modification, is not yet matched by a sophisticated understanding of the occurrence of the polymers within cell walls of the diverse cell types within a growing organ. Currently, the main sets of tools that are used to determine cell-type-specific configurations of cell wall polymers and aspects of cell wall microstructures are antibodies, carbohydrate-binding modules (CBMs) and microspectroscopies. As these tools are applied we see that cell wall polymers are extensively developmentally regulated and that there is a range of structurally distinct primary and secondary cell walls within organs and across species. The challenge now is to document cell wall structures in relation to diverse cell biological events and to integrate this knowledge with the emerging understanding of polymer functions.

  5. Membrane fluidity sensoring microbial fuel cell.

    PubMed

    Choi, Youngjin; Jung, Eunkyoung; Kim, Sunghyun; Jung, Seunho

    2003-04-01

    A study has been performed to examine the effect of temperature and ethanolic stresses on the coulombic efficiency of a microbial fuel cell. The conventional-type fuel cell containing Gram-negative bacteria, Proteus vulgaris, was investigated as a model system. From current output measurements, it was found that the coulombic yields were altered by environmental stresses such as temperature shock or ethanol treatment to the bacteria. While high-temperature or ethanolic shock led to a remarkable decrement in coulombic output, the low-temperature shock induced a slight increase in microbial fuel cell efficiency. These results indicate that the membrane fluidity is affected considerably by environmental stress, which in turn affects the electron transfer process through the bacterial cell membrane to and from the electrode. This interpretation was confirmed by the cyclic voltammetric study of a mediator on an electrode surface modified with the lipids extracted from the membrane of P. vulgaris under the given stress. Markedly different electrochemical behaviors were observed depending on the environmental stress. A reciprocal relationship between coulomb output and the ratio of saturation/unsaturation of fatty acids has been observed. This is the first report, to our knowledge, that the structural adaptation of membrane fatty acids in response to the environmental shock can regulate the coulombic efficiency of a microbial fuel cell.

  6. Wall relaxation and the driving forces for cell expansive growth

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1987-01-01

    When water uptake by growing cells is prevented, the turgor pressure and the tensile stress in the cell wall are reduced by continued wall loosening. This process, termed in vivo stress relaxation, provides a new way to study the dynamics of wall loosening and to measure the wall yield threshold and the physiological wall extensibility. Stress relaxation experiments indicate that wall stress supplies the mechanical driving force for wall yielding. Cell expansion also requires water absorption. The driving force for water uptake during growth is created by wall relaxation, which lowers the water potential of the expanding cells. New techniques for measuring this driving force show that it is smaller than believed previously; in elongating stems it is only 0.3 to 0.5 bar. This means that the hydraulic resistance of the water transport pathway is small and that rate of cell expansion is controlled primarily by wall loosening and yielding.

  7. Association Mapping of Cell Wall Synthesis Regulatory Genes and Cell Wall Quality in Switchgrass

    SciTech Connect

    Bartley, Laura; Wu, Y.; Zhu, L.; Brummer, E. C.; Saha, M.

    2016-05-31

    Inefficient conversion of biomass to biofuels is one of the main barriers for biofuel production from such materials. Approximately half of polysaccharides in biomass remain unused by typical biochemical conversion methods. Conversion efficiency is influenced by the composition and structure of cell walls of biomass. Grasses such as wheat, maize, and rice, as well as dedicated perennial bioenergy crops, like switchgrass, make up ~55% of biomass that can be produced in the United States. Grass cell walls have a different composition and patterning compared with dicotyledonous plants, including the well-studied model plant, Arabidopsis. This project identified genetic determinants of cell wall composition in grasses using both naturally occurring genetic variation of switchgrass and gene network reconstruction and functional assays in rice. In addition, the project linked functional data in rice and other species to switchgrass improvement efforts through curation of the most abundant class of regulators in the switchgrass genome. Characterizing natural diversity of switchgrass for variation in cell wall composition and properties, also known as quality, provides an unbiased avenue for identifying biologically viable diversity in switchgrass cell walls. To characterizing natural diversity, this project generated cell wall composition and enzymatic deconstruction data for ~450 genotypes of the Switchgrass Southern Association Collection (SSAC), a diverse collection composed of 36 switchgrass accessions from the southern U.S. distribution of switchgrass. Comparing these data with other measures of cell wall quality for the same samples demonstrated the complementary nature of the diverse characterization platforms now being used for biomass characterization. Association of the composition data with ~3.2K single nucleotide variant markers identified six significant single nucleotide variant markers co-associated with digestibility and another compositional trait. These

  8. STREAMLINED METHOD FOR BIOMASS WHOLE-CELL-WALL STRUCTURAL PROFILING

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In wide-ranging research aimed at altering plant cell wall characteristics by conventional breeding or modern genetic methods, one of the biggest problems is in delineating the effects on the cell wall. Plant cell walls are a complex conglomerate of a variety of polysaccharides and lignin. Each comp...

  9. STREAMLINED METHOD FOR BIOMASS WHOLE-CELL-WALL STRUCTURAL PROFILING

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In wide-ranging research aimed at altering plant cell wall characteristics by conventional breeding or modern genetic methods, one of the biggest problems is in delineating the effects on the cell wall. Plant cell walls are a complex conglomerate of a variety of polysaccharides and lignin. Although ...

  10. From microbial communities to cells

    NASA Technical Reports Server (NTRS)

    Margulis, L.

    1985-01-01

    The eukraotic cell, the unit of structure of protoctists, plants, fungi, and animals, is not at all homologous to prokaryotic cells. Instead the eukaryotic cell is homologous to communities of microorganisms such as those of the sulfuretum. This research is based on the hypothesis that at least four different interacting community members entered the original associations that, when stabilized, led to the emergence of eukaryotic cells. These are: (1) host nucleocytoplasm (thermoplasma like archaebacteria); (2) mitochrondria (paracoccus or bdellovibryo like respiring bacteria; and (3) plastids (cyanobacteria) and undulipodia. Tubulin like protein was found in the free living spirochete Spirochaeta bajacaliforniensis and in several other spirochetes. The amino acid sequence was to see if the spirochete protein is homologous to the tubulin of undulipodial and mitotic spindle microtubules.

  11. The Structure of Plant Cell Walls

    PubMed Central

    Talmadge, Kenneth W.; Keegstra, Kenneth; Bauer, Wolfgang D.; Albersheim, Peter

    1973-01-01

    This is the first in a series of papers dealing with the structure of cell walls isolated from suspension-cultured sycamore cells (Acer pseudoplatanus). These studies have been made possible by the availability of purified hydrolytic enzymes and by recent improvements in the techniques of methylation analysis. These techniques have permitted us to identify and quantitate the macromolecular components of sycamore cell walls. These walls are composed of 10% arabinan, 2% 3,6-linked arabinogalactan, 23% cellulose, 9% oligo-arabinosides (attached to hydroxyproline), 8% 4-linked galactan, 10% hydroxyproline-rich protein, 16% rhamnogalacturonan, and 21% xyloglucan. The structures of the pectic polymers (the neutral arabinan, the neutral galactan, and the acidic rhamnogalacturonan) were obtained, in part, by methylation analysis of fragments of these polymers which were released from the sycamore walls by the action of a highly purified endopolygalacturonase. The data suggest a branched arabinan and a linear 4-linked galactan occurring as side chains on the rhamnogalacturonan. Small amounts or pieces of a xyloglucan, the wall hemicellulose, appear to be covalently linked to some of the galactan chains. Thus, the galactan appears to serve as a bridge between the xyloglucan and rhamnogalacturonan components of the wall. The rhamnogalacturonan consists of an α-(1 → 4)-linked galacturonan chain which is interspersed with 2-linked rhamnosyl residues. The rhamnosyl residues are not randomly distributed in the chain but probably occur in units of rhamnosyl- (1 → 4)-galacturonosyl- (1 → 2)-rhamnosyl. This sequence appears to alternate with a homogalacturonan sequence containing approximately 8 residues of 4-linked galacturonic acid. About half of the rhamnosyl residues are branched, having a substituent attached to carbon 4. This is likely to be the site of attachment of the 4-linked galactan. The hydroxyprolyl oligo-arabinosides of the hydroxyproline-rich glycoprotein

  12. Monoclonal antibodies against plant cell wall polysaccharides

    SciTech Connect

    Hahn, M.G.; Bucheli, E.; Darvill, A.; Albersheim, P. )

    1989-04-01

    Monoclonal antibodies (McAbs) are useful tools to probe the structure of plant cell wall polysaccharides and to localize these polysaccharides in plant cells and tissues. Murine McAbs were generated against the pectic polysaccharide, rhamnogalacturonan I (RG-I), isolated from suspension-cultured sycamore cells. The McAbs that were obtained were grouped into three classes based upon their reactivities with a variety of plant polysaccharides and membrane glycoproteins. Eleven McAbs (Class I) recognize epitope(s) that appear to be immunodominant and are found in RG-I from sycamore and maize, citrus pectin, polygalacturonic acid, and membrane glycoproteins from suspension-cultured cells of sycamore, maize, tobacco, parsley, and soybean. A second group of five McAbs (Class II) recognize epitope(s) present in sycamore RG-I, but do not bind to any of the other polysaccharides or glycoproteins recognized by Class I. Lastly, one McAb (Class III) reacts with sycamore RG-I, sycamore and tamarind xyloglucan, and sycamore and rice glucuronoarabinoxylan, but does not bind to maize RG-I, polygalacturonic acid or the plant membrane glycoproteins recognized by Class I. McAbs in Classes II and III are likely to be useful in studies of the structure, biosynthesis and localization of plant cell wall polysaccharides.

  13. Wireless sensors powered by microbial fuel cells.

    PubMed

    Shantaram, Avinash; Beyenal, Haluk; Raajan, Raaja; Veluchamy, Angathevar; Lewandowski, Zbigniew

    2005-07-01

    Monitoring parameters characterizing water quality, such as temperature, pH, and concentrations of heavy metals in natural waters, is often followed by transmitting the data to remote receivers using telemetry systems. Such systems are commonly powered by batteries, which can be inconvenient at times because batteries have a limited lifetime and must be recharged or replaced periodically to ensure that sufficient energy is available to power the electronics. To avoid these inconveniences, a microbial fuel cell was designed to power electrochemical sensors and small telemetry systems to transmit the data acquired by the sensors to remote receivers. The microbial fuel cell was combined with low-power, high-efficiency electronic circuitry providing a stable power source for wireless data transmission. To generate enough power for the telemetry system, energy produced by the microbial fuel cell was stored in a capacitor and used in short bursts when needed. Since commercial electronic circuits require a minimum 3.3 V input and our cell was able to deliver a maximum of 2.1 V, a DC-DC converter was used to boost the potential. The DC-DC converter powered a transmitter, which gathered the data from the sensor and transmitted it wirelessly to a remote receiver. To demonstrate the utility of the system, temporal variations in temperature were measured, and the data were wirelessly transmitted to a remote receiver.

  14. Engineering secondary cell wall deposition in plants

    PubMed Central

    Yang, Fan; Mitra, Prajakta; Zhang, Ling; Prak, Lina; Verhertbruggen, Yves; Kim, Jin-Sun; Sun, Lan; Zheng, Kejian; Tang, Kexuan; Auer, Manfred; Scheller, Henrik V; Loqué, Dominique

    2013-01-01

    Lignocellulosic biomass was used for thousands of years as animal feed and is now considered a great sugar source for biofuels production. It is composed mostly of secondary cell walls built with polysaccharide polymers that are embedded in lignin to reinforce the cell wall structure and maintain its integrity. Lignin is the primary material responsible for biomass recalcitrance to enzymatic hydrolysis. During plant development, deep reductions of lignin cause growth defects and often correlate with the loss of vessel integrity that adversely affects water and nutrient transport in plants. The work presented here describes a new approach to decrease lignin content while preventing vessel collapse and introduces a new strategy to boost transcription factor expression in native tissues. We used synthetic biology tools in Arabidopsis to rewire the secondary cell network by changing promoter-coding sequence associations. The result was a reduction in lignin and an increase in polysaccharide depositions in fibre cells. The promoter of a key lignin gene, C4H, was replaced by the vessel-specific promoter of transcription factor VND6. This rewired lignin biosynthesis specifically for vessel formation while disconnecting C4H expression from the fibre regulatory network. Secondly, the promoter of the IRX8 gene, secondary cell wall glycosyltransferase, was used to express a new copy of the fibre transcription factor NST1, and as the IRX8 promoter is induced by NST1, this also created an artificial positive feedback loop (APFL). The combination of strategies—lignin rewiring with APFL insertion—enhances polysaccharide deposition in stems without over-lignifying them, resulting in higher sugar yields after enzymatic hydrolysis. PMID:23140549

  15. Plant cell wall proteomics: the leadership of Arabidopsis thaliana

    PubMed Central

    Albenne, Cécile; Canut, Hervé; Jamet, Elisabeth

    2013-01-01

    Plant cell wall proteins (CWPs) progressively emerged as crucial components of cell walls although present in minor amounts. Cell wall polysaccharides such as pectins, hemicelluloses, and cellulose represent more than 90% of primary cell wall mass, whereas hemicelluloses, cellulose, and lignins are the main components of lignified secondary walls. All these polymers provide mechanical properties to cell walls, participate in cell shape and prevent water loss in aerial organs. However, cell walls need to be modified and customized during plant development and in response to environmental cues, thus contributing to plant adaptation. CWPs play essential roles in all these physiological processes and particularly in the dynamics of cell walls, which requires organization and rearrangements of polysaccharides as well as cell-to-cell communication. In the last 10 years, plant cell wall proteomics has greatly contributed to a wider knowledge of CWPs. This update will deal with (i) a survey of plant cell wall proteomics studies with a focus on Arabidopsis thaliana; (ii) the main protein families identified and the still missing peptides; (iii) the persistent issue of the non-canonical CWPs; (iv) the present challenges to overcome technological bottlenecks; and (v) the perspectives beyond cell wall proteomics to understand CWP functions. PMID:23641247

  16. Plant cell wall proteomics: the leadership of Arabidopsis thaliana.

    PubMed

    Albenne, Cécile; Canut, Hervé; Jamet, Elisabeth

    2013-01-01

    Plant cell wall proteins (CWPs) progressively emerged as crucial components of cell walls although present in minor amounts. Cell wall polysaccharides such as pectins, hemicelluloses, and cellulose represent more than 90% of primary cell wall mass, whereas hemicelluloses, cellulose, and lignins are the main components of lignified secondary walls. All these polymers provide mechanical properties to cell walls, participate in cell shape and prevent water loss in aerial organs. However, cell walls need to be modified and customized during plant development and in response to environmental cues, thus contributing to plant adaptation. CWPs play essential roles in all these physiological processes and particularly in the dynamics of cell walls, which requires organization and rearrangements of polysaccharides as well as cell-to-cell communication. In the last 10 years, plant cell wall proteomics has greatly contributed to a wider knowledge of CWPs. This update will deal with (i) a survey of plant cell wall proteomics studies with a focus on Arabidopsis thaliana; (ii) the main protein families identified and the still missing peptides; (iii) the persistent issue of the non-canonical CWPs; (iv) the present challenges to overcome technological bottlenecks; and (v) the perspectives beyond cell wall proteomics to understand CWP functions.

  17. Exoelectrogenic bacteria that power microbial fuel cells.

    PubMed

    Logan, Bruce E

    2009-05-01

    There has been an increase in recent years in the number of reports of microorganisms that can generate electrical current in microbial fuel cells. Although many new strains have been identified, few strains individually produce power densities as high as strains from mixed communities. Enriched anodic biofilms have generated power densities as high as 6.9 W per m(2) (projected anode area), and therefore are approaching theoretical limits. To understand bacterial versatility in mechanisms used for current generation, this Progress article explores the underlying reasons for exocellular electron transfer, including cellular respiration and possible cell-cell communication.

  18. Microbial fuel cell with improved anode

    DOEpatents

    Borole, Abhijeet P.

    2010-04-13

    The present invention relates to a method for preparing a microbial fuel cell, wherein the method includes: (i) inoculating an anodic liquid medium in contact with an anode of the microbial fuel cell with one or more types of microorganisms capable of functioning by an exoelectrogenic mechanism; (ii) establishing a biofilm of the microorganisms on and/or within the anode along with a substantial absence of planktonic forms of the microorganisms by substantial removal of the planktonic microorganisms during forced flow and recirculation conditions of the anodic liquid medium; and (iii) subjecting the microorganisms of the biofilm to a growth stage by incorporating one or more carbon-containing nutritive compounds in the anodic liquid medium during biofilm formation or after biofilm formation on the anode has been established.

  19. Roles and regulation of plant cell walls surrounding plasmodesmata.

    PubMed

    Knox, J Paul; Benitez-Alfonso, Yoselin

    2014-12-01

    In plants, the intercellular transport of simple and complex molecules can occur symplastically through plasmodesmata. These are membranous channels embedded in cell walls that connect neighbouring cells. The properties of the cell walls surrounding plasmodesmata determine their transport capacity and permeability. These cell wall micro-domains are enriched in callose and have a characteristic pectin distribution. Cell wall modifications, leading to changes in plasmodesmata structure, have been reported to occur during development and in response to environmental signals. Cell wall remodelling enzymes target plasmodesmata to rapidly control intercellular communication in situ. Here we describe current knowledge on the composition of cell walls at plasmodesmata sites and on the proteins and signals that modify cell walls to regulate plasmodesmata aperture.

  20. Double-walled carbon nanotube solar cells.

    PubMed

    Wei, Jinquan; Jia, Yi; Shu, Qinke; Gu, Zhiyi; Wang, Kunlin; Zhuang, Daming; Zhang, Gong; Wang, Zhicheng; Luo, Jianbin; Cao, Anyuan; Wu, Dehai

    2007-08-01

    We directly configured double-walled carbon nanotubes as energy conversion materials to fabricate thin-film solar cells, with nanotubes serving as both photogeneration sites and a charge carriers collecting/transport layer. The solar cells consist of a semitransparent thin film of nanotubes conformally coated on a n-type crystalline silicon substrate to create high-density p-n heterojunctions between nanotubes and n-Si to favor charge separation and extract electrons (through n-Si) and holes (through nanotubes). Initial tests have shown a power conversion efficiency of >1%, proving that DWNTs-on-Si is a potentially suitable configuration for making solar cells. Our devices are distinct from previously reported organic solar cells based on blends of polymers and nanomaterials, where conjugate polymers generate excitons and nanotubes only serve as a transport path.

  1. Riboflavin-shuttled extracellular electron transfer from Enterococcus faecalis to electrodes in microbial fuel cells.

    PubMed

    Zhang, Enren; Cai, Yamin; Luo, Yue; Piao, Zhe

    2014-11-01

    Great attention has been focused on Gram-negative bacteria in the application of microbial fuel cells. In this study, the Gram-positive bacterium Enterococcus faecalis was employed in microbial fuel cells. Bacterial biofilms formed by E. faecalis ZER6 were investigated with respect to electricity production through the riboflavin-shuttled extracellular electron transfer. Trace riboflavin was shown to be essential for transferring electrons derived from the oxidation of glucose outside the peptidoglycan layer in the cell wall of E. faecalis biofilms formed on the surface of electrodes, in the absence of other potential electron mediators (e.g., yeast extract).

  2. Cell Wall Loosening in the Fungus, Phycomyces blakesleeanus

    PubMed Central

    Ortega, Joseph K. E.; Truong, Jason T.; Munoz, Cindy M.; Ramirez, David G.

    2015-01-01

    A considerable amount of research has been conducted to determine how cell walls are loosened to produce irreversible wall deformation and expansive growth in plant and algal cells. The same cannot be said about fungal cells. Almost nothing is known about how fungal cells loosen their walls to produce irreversible wall deformation and expansive growth. In this study, anoxia is used to chemically isolate the wall from the protoplasm of the sporangiophores of Phycomyces blakesleeanus. The experimental results provide direct evidence of the existence of chemistry within the fungal wall that is responsible for wall loosening, irreversible wall deformation and elongation growth. In addition, constant-tension extension experiments are conducted on frozen-thawed sporangiophore walls to obtain insight into the wall chemistry and wall loosening mechanism. It is found that a decrease in pH to 4.6 produces creep extension in the frozen-thawed sporangiophore wall that is similar, but not identical, to that found in frozen-thawed higher plant cell walls. Experimental results from frozen-thawed and boiled sporangiophore walls suggest that protein activity may be involved in the creep extension. PMID:27135318

  3. Cell wall-associated kinases and pectin perception.

    PubMed

    Kohorn, Bruce D

    2016-01-01

    The pectin matrix of the angiosperm cell wall is regulated in both synthesis and modification and greatly influences the direction and extent of cell growth. Pathogens, herbivory and mechanical stresses all influence this pectin matrix and consequently plant form and function. The cell wall-associated kinases (WAKs) bind to pectin and regulate cell expansion or stress responses depending upon the state of the pectin. This review explores the WAKs in the context of cell wall biology and signal transduction pathways.

  4. Grass cell walls: A story of cross-linking

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cell wall matrices are complex composites mainly of polysaccharides, phenolics (monomers and polymers), and protein. We are beginning to understand the synthesis of these major wall components individually, but still have a poor understanding of how the cell wall components are assembled into comple...

  5. Cortical microtubule rearrangements and cell wall patterning

    PubMed Central

    Oda, Yoshihisa

    2015-01-01

    Plant cortical microtubules, which form a highly ordered array beneath the plasma membrane, play essential roles in determining cell shape and function by directing the arrangement of cellulosic and non-cellulosic compounds on the cell surface. Interphase transverse arrays of cortical microtubules self-organize through their dynamic instability and inter-microtubule interactions, and by branch-form microtubule nucleation and severing. Recent studies revealed that distinct spatial signals including ROP GTPase, cellular geometry, and mechanical stress regulate the behavior of cortical microtubules at the subcellular and supercellular levels, giving rise to dramatic rearrangements in the cortical microtubule array in response to internal and external cues. Increasing evidence indicates that negative regulators of microtubules also contribute to the rearrangement of the cortical microtubule array. In this review, I summarize recent insights into how the rearrangement of the cortical microtubule array leads to proper, flexible cell wall patterning. PMID:25904930

  6. Exploiting fungal cell wall components in vaccines

    PubMed Central

    Levitz, Stuart M.; Huang, Haibin; Ostroff, Gary R.; Specht, Charles A.

    2014-01-01

    Innate recognition of fungi leads to strong adaptive immunity. Investigators are trying to exploit this observation in vaccine development by combining antigens with evolutionarily conserved fungal cell wall carbohydrates to induce protective responses. Best studied is β-1,3-glucan, a glycan that activates complement and is recognized by Dectin-1. Administration of antigens in association with β-1,3-glucan, either by direct conjugation or complexed in glucan particles, results in robust humoral and cellular immune responses. While the host has a host of mannose receptors, responses to fungal mannoproteins generally are amplified if cells are cooperatively stimulated with an additional danger signal such as a toll-like receptor agonist. Chitosan, a polycationic homopolymer of glucosamine manufactured by the deacetylation of chitin, is being studied as an adjuvant in DNA and protein-based vaccines. It appears particularly promising in mucosal vaccines. Finally, universal and organism-specific fungal vaccines have been formulated by conjugating fungal cell wall glycans to carrier proteins. A major challenge will be to advance these experimental findings so that at risk patients can be protected. PMID:25404118

  7. Grass Cell Walls: A Story of Cross-Linking

    PubMed Central

    Hatfield, Ronald D.; Rancour, David M.; Marita, Jane M.

    2017-01-01

    Cell wall matrices are complex composites mainly of polysaccharides, phenolics (monomers and polymers), and protein. We are beginning to understand the synthesis of these major wall components individually, but still have a poor understanding of how cell walls are assembled into complex matrices. Valuable insight has been gained by examining intact components to understand the individual elements that make up plant cell walls. Grasses are a prominent group within the plant kingdom, not only for their important roles in global agriculture, but also for the complexity of their cell walls. Ferulate incorporation into grass cell wall matrices (C3 and C4 types) leads to a cross-linked matrix that plays a prominent role in the structure and utilization of grass biomass compared to dicot species. Incorporation of p-coumarates as part of the lignin structure also adds to the complexity of grass cell walls. Feruoylation results in a wall with individual hemicellulosic polysaccharides (arabinoxylans) covalently linked to each other and to lignin. Evidence strongly suggests that ferulates not only cross-link arabinoxylans, but may be important factors in lignification of the cell wall. Therefore, the distribution of ferulates on arabinoxylans could provide a means of structuring regions of the matrix with the incorporation of lignin and have a significant impact upon localized cell wall organization. The role of other phenolics in cell wall formation such as p-coumarates (which can have concentrations higher than ferulates) remains unknown. It is possible that p-coumarates assist in the formation of lignin, especially syringyl rich lignin. The uniqueness of the grass cell wall compared to dicot sepcies may not be so much in the gross composition of the wall, but how the distinctive individual components are organized into a functional wall matrix. These features are discussed and working models are provided to illustrate how changing the organization of feruoylation and p

  8. Arrangement of peptidoglycan in the cell wall of Staphylococcus spp.

    PubMed Central

    Amako, K; Umeda, A; Murata, K

    1982-01-01

    The arrangement of peptidoglycan in the cell wall of Staphylococcus was observed with the newly developed freeze-fracture technique, using n-octanol instead of water as the freezing medium. The replica of the trichloroacetic acid-extracted cell wall (TCA-wall) showed two areas. One of them has a concentric circular structure, a characteristic surface structure of the staphylococcal cell wall, and the other showed an irregular and rough surface. The chemical analysis of the wall revealed that the TCA-wall consisted of mostly peptidoglycan. By digesting the TCA-wall with lysozyme, the circular structures were greatly disturbed, and they disappeared after 60 min of treatment. From these observations it can be expected that the peptidoglycan is arranged in a concentric circular manner in the newly generated cell wall of Staphylococcus. Images PMID:7068534

  9. Enzymes and other agents that enhance cell wall extensibility

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1999-01-01

    Polysaccharides and proteins are secreted to the inner surface of the growing cell wall, where they assemble into a network that is mechanically strong, yet remains extensible until the cells cease growth. This review focuses on the agents that directly or indirectly enhance the extensibility properties of growing walls. The properties of expansins, endoglucanases, and xyloglucan transglycosylases are reviewed and their postulated roles in modulating wall extensibility are evaluated. A summary model for wall extension is presented, in which expansin is a primary agent of wall extension, whereas endoglucanases, xyloglucan endotransglycosylase, and other enzymes that alter wall structure act secondarily to modulate expansin action.

  10. Disruption of hydrogen bonding between plant cell wall polymers by proteins that induce wall extension.

    PubMed Central

    McQueen-Mason, S; Cosgrove, D J

    1994-01-01

    Plant cell enlargement is controlled by the ability of the constraining cell wall to expand. This ability has been postulated to be under the control of polysaccharide hydrolases or transferases that weaken or rearrange the loadbearing polymeric networks in the wall. We recently identified a family of wall proteins, called expansins, that catalyze the extension of isolated plant cell walls. Here we report that these proteins mechanically weaken pure cellulose paper in extension assays and stress relaxation assays, without detectable cellulase activity (exo- or endo- type). Because paper derives its mechanical strength from hydrogen bonding between cellulose microfibrils, we conclude that expansins can disrupt hydrogen bonding between cellulose fibers. This conclusion is further supported by experiments in which expansin-mediated wall extension (i) was increased by 2 M urea (which should weaken hydrogen bonding between wall polymers) and (ii) was decreased by replacement of water with deuterated water, which has a stronger hydrogen bond. The temperature sensitivity of expansin-mediated wall extension suggests that units of 3 or 4 hydrogen bonds are broken by the action of expansins. In the growing cell wall, expansin action is likely to catalyze slippage between cellulose microfibrils and the polysaccharide matrix, and thereby catalyze wall stress relaxation, followed by wall surface expansion and plant cell enlargement. Images PMID:11607483

  11. Recent advances in amino acid production by microbial cells.

    PubMed

    Hirasawa, Takashi; Shimizu, Hiroshi

    2016-12-01

    Amino acids have been utilized for the production of foods, animal feeds and pharmaceuticals. After the discovery of the glutamic acid-producing bacterium Corynebacterium glutamicum by Japanese researchers, the production of amino acids, which are primary metabolites, has been achieved using various microbial cells as hosts. Recently, metabolic engineering studies on the rational design of amino acid-producing microbial cells have been successfully conducted. Moreover, the technology of systems biology has been applied to metabolic engineering for the creation of amino acid-producing microbial cells. Currently, new technologies including synthetic biology, single-cell analysis, and evolutionary engineering have been utilized to create amino acid-producing microbial cells. In addition, useful compounds from amino acids have been produced by microbial cells. Here, current researches into the metabolic engineering of microbial cells toward production of amino acids and amino acid-related compounds are reviewed.

  12. Anthocyanins influence tannin-cell wall interactions.

    PubMed

    Bautista-Ortín, Ana Belén; Martínez-Hernández, Alejandro; Ruiz-García, Yolanda; Gil-Muñoz, Rocío; Gómez-Plaza, Encarna

    2016-09-01

    The rate of tannin extraction was studied in a vinification of red grapes and the results compared with another vinification made with white grapes fermented as for typical red wine, in the presence of skins and seeds. Even though the grapes presented a quite similar skin and seed tannin content, the differences in tannin concentration between both vinifications was very large, despite the fact that the only apparent difference between the phenolic composition of both wines was the anthocyanin content. This suggests that anthocyanins play an important role in tannin extractability, perhaps because they affect the extent of the tannin-cell wall interaction, a factor that largely controls the resulting quantity of tannins in wines. To confirm this observation, the effect of anthocyanins on the tannin extractability from grape seeds and skin and on the interaction between tannins and grape cell walls suspended in model solutions were studied. The results indicated that anthocyanins favored skin and seed tannin extraction and that there is a competition for the adsorption sites between anthocyanins and tannins that increases the tannin content when anthocyanins are present.

  13. Proton transfer in microbial electrolysis cells

    DOE PAGES

    Borole, Abhijeet P.; Lewis, Alex J.

    2017-02-15

    Proton transfer and electron transfer are of prime importance in the development of microbial electrochemical cells. While electron transfer is primarily controlled by biology, proton transfer is controlled by process engineering and cell design. To develop commercially feasible technologies around the concept of a bioelectrochemical cell, real feedstocks have to be explored and associated limitations have to be identified. Here in this study, the proton transfer rate was quantified for a microbial electrolysis cell (MEC) and its dependence on process parameters was investigated using a proton balance model. The reaction system consisted of a biomass-derived pyrolytic aqueous stream as amore » substrate producing hydrogen in a flow-through MEC. The proton transfer rate increased with anode flow rate and organic loading rate up to a maximum of 0.36 ± 0.01 moles per m2 per h, equivalent to a hydrogen production rate of 9.08 L per L per day. Higher rates of hydrogen production, reaching 11.7 ± 0.2 L per L per day were achieved, when additional protons were provided via the cathode buffer. Electrochemical impedance spectroscopy shows that proton transfer was the dominant resistance in the production of hydrogen. The quantification of proton transfer rates for MECs with potential for biorefinery application and the demonstration of high hydrogen production rates approaching those required for commercial consideration indicate the strong potential of this technology for renewable hydrogen production. Understanding the transport phenomenon in bioelectrochemical cells is of great significance since these systems have potential for wide-ranging applications including energy production, bioremediation, chemical and nanomaterial synthesis, electro-fermentation, energy storage, desalination, and produced water treatment. Electron transfer in anode biofilms has been investigated extensively, but proton transfer studies are also important, since many cathodic half reactions

  14. Tracing Cell Wall Biogenesis in Intact Cells and Plants 1

    PubMed Central

    Gibeaut, David M.; Carpita, Nicholas C.

    1991-01-01

    Cells of proso millet (Panicum miliaceum L. cv Abarr) in liquid culture and leaves of maize seedlings (Zea mays L. cv LH51 × LH1131) readily incorporated d-[U-14C]glucose and l-[U-14C]arabinose into soluble and cell wall polymers. Radioactivity from arabinose accumulated selectively in polymers containing arabinose or xylose because a salvage pathway and C-4 epimerase yield both nucleotide-pentoses. On the other hand, radioactivity from glucose was found in all sugars and polymers. Pulse-chase experiments with proso millet cells in liquid culture demonstrated turnover of buffer soluble polymers within minutes and accumulation of radioactive polymers in the cell wall. In leaves of maize seedlings, radioactive polymers accumulated quickly and peaked 30 hours after the pulse then decreased slowly for the remaining time course. During further growth of the seedlings, radioactive polymers became more tenaciously bound in the cell wall. Sugars were constantly recycled from turnover of polysaccharides of the cell wall. Arabinose, hydrolyzed from glucuronoarabinoxylans, and glucose, hydrolyzed from mixed-linkage (1→3, 1→4)β-d-glucans, constituted most of the sugar participating in turnover. Arabinogalactans were a large portion of the buffer soluble (cytoplasmic) polymers of both proso millet cells and maize seedlings, and these polymers also exhibited turnover. Our results indicate that the primary cell wall is not simply a sink for various polysaccharide components, but rather a dynamic compartment exhibiting long-term reorganization by turnover and alteration of specific polymers during development. PMID:16668434

  15. Disruption of cell walls for enhanced lipid recovery

    DOEpatents

    Knoshaug, Eric P; Donohoe, Bryon S; Gerken, Henri; Laurens, Lieve; Van Wychen, Stefanie Rose

    2015-03-24

    Presented herein are methods of using cell wall degrading enzymes for recovery of internal lipid bodies from biomass sources such as algae. Also provided are algal cells that express at least one exogenous gene encoding a cell wall degrading enzyme and methods for recovering lipids from the cells.

  16. Characterization of the cell wall of the ubiquitous plant pathogen Botrytis cinerea.

    PubMed

    Cantu, Dario; Greve, L Carl; Labavitch, John M; Powell, Ann L T

    2009-12-01

    The ascomycete Botrytis cinerea is a destructive and ubiquitous plant pathogen and represents a model organism for the study of necrotrophic fungal pathogens. Higher fungi possess a complex and dynamic multilayer cell wall involved in crucial aspects of fungal development, growth and pathogenicity. Plant resistance to microbial pathogens is determined often by the capacity of the plant to recognize molecular patterns associated with the surface of an interacting microbe. Here we report the chemical characterization of cell walls from B. cinerea during axenic growth. Neutral sugars and proteins constituted most of the mass of the B. cinerea cell walls, although chitin and uronic acids were detected. Glucose was the most abundant neutral sugar, but arabinose, galactose, xylose and mannose also were present. Changes in cell wall composition during culture were observed. As the culture developed, protein levels declined, while chitin and neutral sugars increased. Growth of B. cinerea was associated with a remarkable decline in the fraction of its cell wall material that was soluble in hot alkali. These results suggest that the cell wall of B. cinerea undergoes significant modifications during growth, possibly becoming more extensively covalently cross-linked, as a result of aging of mycelia or in response to decreasing nutrient supply or as a consequence of increasing culture density.

  17. Shifting foundations: the mechanical cell wall and development.

    PubMed

    Braybrook, Siobhan A; Jönsson, Henrik

    2016-02-01

    The cell wall has long been acknowledged as an important physical mediator of growth in plants. Recent experimental and modelling work has brought the importance of cell wall mechanics into the forefront again. These data have challenged existing dogmas that relate cell wall structure to cell/organ growth, that uncouple elasticity from extensibility, and those which treat the cell wall as a passive and non-stressed material. Within this review we describe experiments and models which have changed the ways in which we view the mechanical cell wall, leading to new hypotheses and research avenues. It has become increasingly apparent that while we often wish to simplify our systems, we now require more complex multi-scale experiments and models in order to gain further insight into growth mechanics. We are currently experiencing an exciting and challenging shift in the foundations of our understanding of cell wall mechanics in growth and development.

  18. Two endogenous proteins that induce cell wall extension in plants

    NASA Technical Reports Server (NTRS)

    McQueen-Mason, S.; Durachko, D. M.; Cosgrove, D. J.

    1992-01-01

    Plant cell enlargement is regulated by wall relaxation and yielding, which is thought to be catalyzed by elusive "wall-loosening" enzymes. By employing a reconstitution approach, we found that a crude protein extract from the cell walls of growing cucumber seedlings possessed the ability to induce the extension of isolated cell walls. This activity was restricted to the growing region of the stem and could induce the extension of isolated cell walls from various dicot stems and the leaves of amaryllidaceous monocots, but was less effective on grass coleoptile walls. Endogenous and reconstituted wall extension activities showed similar sensitivities to pH, metal ions, thiol reducing agents, proteases, and boiling in methanol or water. Sequential HPLC fractionation of the active wall extract revealed two proteins with molecular masses of 29 and 30 kD associated with the activity. Each protein, by itself, could induce wall extension without detectable hydrolytic breakdown of the wall. These proteins appear to mediate "acid growth" responses of isolated walls and may catalyze plant cell wall extension by a novel biochemical mechanism.

  19. Evolution and diversity of green plant cell walls.

    PubMed

    Popper, Zoë A

    2008-06-01

    Plant cells are surrounded by a dynamic cell wall that performs many essential biological roles, including regulation of cell expansion, the control of tissue cohesion, ion-exchange and defence against microbes. Recent evidence shows that the suite of polysaccharides and wall proteins from which the plant cell wall is composed shows variation between monophyletic plant taxa. This is likely to have been generated during the evolution of plant groups in response to environmental stress. Understanding the natural variation and diversity that exists between cell walls from different taxa is key to facilitating their future exploitation and manipulation, for example by increasing lignocellulosic content or reducing its recalcitrance for use in biofuel generation.

  20. Size and Carbon Content of Sub-seafloor Microbial Cells

    NASA Astrophysics Data System (ADS)

    Braun, S.; Morono, Y.; Littmann, S.; Jørgensen, B. B.; Lomstein, B. A.

    2015-12-01

    Into the seafloor, a radical decline in nutrient and energy availability poses strong metabolic demands to any residing life. However, a sedimentary microbial ecosystem seems to maintain itself close to what we understand to be the energetic limit of life. Since a complex sediment matrix is interfering with the analysis of whole cells and sub-cellular compounds such as cell wall and membrane molecules, little is known about the physiological properties of cells in the deep biosphere. Here we focus on the size and carbon content of cells from a 90-m sediment drill core retrieved in October 2013 at Landsort Deep, Baltic Sea, in 437 meters water depth. To determine their shape and volume, cells were separated from the sediment matrix by multi-layer density centrifugation and visualized via fluorescence microscopy (FM), scanning electron microscopy (SEM), and stimulated emission depletion microscopy (STED). Total cell-carbon was calculated from amino acid-carbon, which was analyzed by high-performance liquid chromatography after cells had additionally been purified by fluorescence activated cell sorting (FACS). Cell-carbon turnover times were estimated using an amino acid racemization model that is based on the built-in molecular clock of aspartic acid, which due to racemization alternates between the D- and L-isomeric configurations over timescales of thousands of years at low in-situ temperatures (≈4˚C). We find that the majority of microbial cells in the sediment have coccoid or rod-shaped morphology, and that absolute values for cell volume are strongly dependent on the method used, spanning three orders of magnitude from approximately 0.001 to 1 µm3 for both coccoid and rod-shaped cells. From the surface to the deepest sample measured (≈60 mbsf), cell volume decreases by an order of magnitude, and carbon content is in the lower range (<20 fg C cell-1) of what has been reported in the literature as conversion factors. Cell-carbon is turned over approximately

  1. Wall teichoic acids prevent antibody binding to epitopes within the cell wall of Staphylococcus aureus.

    PubMed

    Gautam, Samir; Kim, Taehan; Lester, Evan; Deep, Deeksha; Spiegel, David A

    2016-01-15

    Staphylococcus aureus is a Gram-positive bacterial pathogen that produces a range of infections including cellulitis, pneumonia, and septicemia. The principle mechanism in antistaphylococcal host defense is opsonization with antibodies and complement proteins, followed by phagocytic clearance. Here we use a previously developed technique for installing chemical epitopes in the peptidoglycan cell wall to show that surface glycopolymers known as wall teichoic acids conceal cell wall epitopes, preventing their recognition and opsonization by antibodies. Thus, our results reveal a previously unrecognized immunoevasive role for wall teichoic acids in S. aureus: repulsion of peptidoglycan-targeted antibodies.

  2. Shape recognition of microbial cells by colloidal cell imprints

    NASA Astrophysics Data System (ADS)

    Borovička, Josef; Stoyanov, Simeon D.; Paunov, Vesselin N.

    2013-08-01

    We have engineered a class of colloids which can recognize the shape and size of targeted microbial cells and selectively bind to their surfaces. These imprinted colloid particles, which we called ``colloid antibodies'', were fabricated by partial fragmentation of silica shells obtained by templating the targeted microbial cells. We successfully demonstrated the shape and size recognition between such colloidal imprints and matching microbial cells. High percentage of binding events of colloidal imprints with the size matching target particles was achieved. We demonstrated selective binding of colloidal imprints to target microbial cells in a binary mixture of cells of different shapes and sizes, which also resulted in high binding selectivity. We explored the role of the electrostatic interactions between the target cells and their colloid imprints by pre-coating both of them with polyelectrolytes. Selective binding occurred predominantly in the case of opposite surface charges of the colloid cell imprint and the targeted cells. The mechanism of the recognition is based on the amplification of the surface adhesion in the case of shape and size match due to the increased contact area between the target cell and the colloidal imprint. We also tested the selective binding for colloid imprints of particles of fixed shape and varying sizes. The concept of cell recognition by colloid imprints could be used for development of colloid antibodies for shape-selective binding of microbes. Such colloid antibodies could be additionally functionalized with surface groups to enhance their binding efficiency to cells of specific shape and deliver a drug payload directly to their surface or allow them to be manipulated using external fields. They could benefit the pharmaceutical industry in developing selective antimicrobial therapies and formulations.

  3. Bacterial cell wall composition and the influence of antibiotics by cell-wall and whole-cell NMR

    PubMed Central

    Romaniuk, Joseph A. H.; Cegelski, Lynette

    2015-01-01

    The ability to characterize bacterial cell-wall composition and structure is crucial to understanding the function of the bacterial cell wall, determining drug modes of action and developing new-generation therapeutics. Solid-state NMR has emerged as a powerful tool to quantify chemical composition and to map cell-wall architecture in bacteria and plants, even in the context of unperturbed intact whole cells. In this review, we discuss solid-state NMR approaches to define peptidoglycan composition and to characterize the modes of action of old and new antibiotics, focusing on examples in Staphylococcus aureus. We provide perspectives regarding the selected NMR strategies as we describe the exciting and still-developing cell-wall and whole-cell NMR toolkit. We also discuss specific discoveries regarding the modes of action of vancomycin analogues, including oritavancin, and briefly address the reconsideration of the killing action of β-lactam antibiotics. In such chemical genetics approaches, there is still much to be learned from perturbations enacted by cell-wall assembly inhibitors, and solid-state NMR approaches are poised to address questions of cell-wall composition and assembly in S. aureus and other organisms. PMID:26370936

  4. (The structure of pectins from cotton suspension culture cell walls)

    SciTech Connect

    Mort, A.

    1990-01-01

    We have made progress on several projects to do with determining the structure of pectins. These include: (1) Devising a new sensitive method to determine the degree of methyl esterification (DOM) of pectins; (2) solubilization of all of RGI from cotton cell walls; (3) solubilization of RGII from cotton cell walls; (4) characterization of xyloglucan from cotton cell walls; and (5) investigation giving an indication of a cross-link between extension and pectin.

  5. An arabidopsis gene regulatory network for secondary cell wall synthesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The plant cell wall is an important factor for determining cell shape, function and response to the environment. Secondary cell walls, such as those found in xylem, are composed of cellulose, hemicelluloses and lignin and account for the bulk of plant biomass. The coordination between transcriptiona...

  6. Metabolic profile of caecal micro-organisms from rats fed indigestible plant cell-wall components.

    PubMed

    Rowland, I R; Wise, A; Mallett, A K

    1983-02-01

    A fibre-free diet, or the same diet supplemented with 100 g cabbage or carrot cell-wall preparation/kg, was fed to rats for 28 days and the activities of a number of caecal microbial enzymes (azoreductase, aryl nitroreductase, beta-glucosidase, beta-glucuronidase, imidazole nitroreductase and nitrite reductase) were determined in vitro. The plant cell-wall preparations diluted the gut contents and decreased the number of bacteria per gram of caecal contents. Enzyme activities per gram of caecal contents were also decreased, with the exception of beta-glucosidase activity which was significantly increased. These plant cell-wall preparations also increased caecal size, and thereby significantly increased total activity per caecum of microbial azoreductase, aryl nitroreductase, beta-glucosidase and beta-glucuronidase. When bacterial metabolism was expressed per 10(9) bacteria, all enzyme activities were significantly increased in caecal samples from rats fed the plant cell-wall preparations. There was an overall concordance of 0.91 between all the enzymes when expressed per 10(9) bacteria, but of only 0.38 when enzyme activities were expressed per gram of caecal contents.

  7. Secondary cell walls: biosynthesis, patterned deposition and transcriptional regulation.

    PubMed

    Zhong, Ruiqin; Ye, Zheng-Hua

    2015-02-01

    Secondary walls are mainly composed of cellulose, hemicelluloses (xylan and glucomannan) and lignin, and are deposited in some specialized cells, such as tracheary elements, fibers and other sclerenchymatous cells. Secondary walls provide strength to these cells, which lend mechanical support and protection to the plant body and, in the case of tracheary elements, enable them to function as conduits for transporting water. Formation of secondary walls is a complex process that requires the co-ordinated expression of secondary wall biosynthetic genes, biosynthesis and targeted secretion of secondary wall components, and patterned deposition and assembly of secondary walls. Here, we provide a comprehensive review of genes involved in secondary wall biosynthesis and deposition. Most of the genes involved in the biosynthesis of secondary wall components, including cellulose, xylan, glucomannan and lignin, have been identified and their co-ordinated activation has been shown to be mediated by a transcriptional network encompassing the secondary wall NAC and MYB master switches and their downstream transcription factors. It has been demonstrated that cortical microtubules and microtubule-associated proteins play important roles in the targeted secretion of cellulose synthase complexes, the oriented deposition of cellulose microfibrils and the patterned deposition of secondary walls. Further investigation of many secondary wall-associated genes with unknown functions will provide new insights into the mechanisms controlling the formation of secondary walls that constitute the bulk of plant biomass.

  8. Small Molecule Probes for Plant Cell Wall Polysaccharide Imaging

    PubMed Central

    Wallace, Ian S.; Anderson, Charles T.

    2012-01-01

    Plant cell walls are composed of interlinked polymer networks consisting of cellulose, hemicelluloses, pectins, proteins, and lignin. The ordered deposition of these components is a dynamic process that critically affects the development and differentiation of plant cells. However, our understanding of cell wall synthesis and remodeling, as well as the diverse cell wall architectures that result from these processes, has been limited by a lack of suitable chemical probes that are compatible with live-cell imaging. In this review, we summarize the currently available molecular toolbox of probes for cell wall polysaccharide imaging in plants, with particular emphasis on recent advances in small molecule-based fluorescent probes. We also discuss the potential for further development of small molecule probes for the analysis of cell wall architecture and dynamics. PMID:22639673

  9. Cell wall ultrastructure of flocculent and non-flocculent Schizosaccharomyces pombe strains. Effect of cell wall hydrolysing enzymes on flocculation and cell wall ultastructure.

    PubMed

    Geleta, Anna; Kristóf, Z; Maráz, Anna

    2007-03-01

    Scanning and transmission electron microscopic studies revealed the presence of slime-like, amorphous material on the surface of Schizosaccahromyces pombe RIVE 4-2-1 cells, independently, whether they were in flocculated or in non-flocculated state. Close contact of the adjacent cells via the merging outermost cell wall layers was found, however, only in the case of floc formation, which was induced by cultivating the cells in the presence of 6% (v/v) ethanol. Irreversible loss of the flocculation ability of the cells by treatment with proteinases suggests that proteinaceous cell surface molecules as lectins contribute to the cell-to-cell interaction during flocculation. Both proteinase K and pronase treatments removed a distinct outer layer of the cell wall, which indicated that the protein moieties of the phosphogalactomannan outer surface layer has a crucial role in the maintenance of cell wall integrity. In the case of lysing enzyme treatment the removal of the outermost layer was also observed as the first step of the cell wall digestion, while driselase treatment resulted in almost complete digestion of the cell wall.

  10. Demonstration of pectic polysaccharides in cork cell wall from Quercus suber L.

    PubMed

    Rocha, S M; Coimbra, M A; Delgadillo, I

    2000-06-01

    Scanning electron microscopy (SEM) and chemical analysis were used to observe the cell wall changes that occur in cork with "mancha amarela", when compared to a standard cork. To mimic the microbial attack exhibited in cork with mancha amarela, the standard cork was treated enzymatically with commercial pectinase and hemicellulase preparations. The tissues treated with pectinase were comparable with those attacked with mancha amarela. Both were composed by deformed and wrinkly cells and exhibited cell wall separation at the middle lamella level, which suggests solubilization/removal of the pectic polysaccharides. The cork cell wall material, prepared as alcohol-insoluble residue, was fractionated by hot water (Pect(H)()2(O)) and hot dilute acid (Pect(acid)). The relatively large amount of hexuronic acid and the occurrence of Ara in the SPect(H)()2(O) and SPect(acid) allow to confirm, as far as we know, for the first time the presence of pectic polysaccharides in the cell walls of cork from Quercus suber L. They accounted for ca. 1.5% of the cork and may consist of polymers with long side chains of arabinosyl residues. These polymers have to be taken into account in any realistic model of the cork cell wall. Cork with mancha amarela contained a smaller amount of pectic polysaccharides (ca. 0.5%), which confirms that the cellular separation observed by SEM is related to the degradation/removal of the middle lamella pectic polysaccharides.

  11. An enlarged cell wall proteome of Arabidopsis thaliana rosettes.

    PubMed

    Hervé, Vincent; Duruflé, Harold; San Clemente, Hélène; Albenne, Cécile; Balliau, Thierry; Zivy, Michel; Dunand, Christophe; Jamet, Elisabeth

    2016-12-01

    Plant cells are surrounded by cell walls playing many roles during development and in response to environmental constraints. Cell walls are mainly composed of polysaccharides (cellulose, hemicelluloses and pectins), but they also contain proteins which are critical players in cell wall remodeling processes. Today, the cell wall proteome of Arabidopsis thaliana, a major dicot model plant, comprises more than 700 proteins predicted to be secreted (cell wall proteins-CWPs) identified in different organs or in cell suspension cultures. However, the cell wall proteome of rosettes is poorly represented with only 148 CWPs identified after extraction by vacuum infiltration. This new study allows enlarging its coverage. A destructive method starting with the purification of cell walls has been performed and two experiments have been compared. They differ by the presence/absence of protein separation by a short 1D-electrophoresis run prior to tryptic digestion and different gradient programs for peptide separation before mass spectrometry analysis. Altogether, the rosette cell wall proteome has been significantly enlarged to 361 CWPs, among which 213 newly identified in rosettes and 57 newly described. The identified CWPs fall in four major functional classes: 26.1% proteins acting on polysaccharides, 11.1% oxido-reductases, 14.7% proteases and 11.7% proteins possibly related to lipid metabolism.

  12. Preparation of Cell Wall Antigens of Staphylococcus aureus

    PubMed Central

    Kowalski, J. J.; Tipper, Donald J.; Berman, David T.

    1970-01-01

    Cell walls were prepared from Staphylococcus aureus strains Copenhagen and 263 by high-speed mixing in the presence of glass beads followed by differential centrifugation. Insoluble peptidoglycan complexes were derived from cell walls by extraction of teichoic acid with 10% trichloroacetic acid. Intact teichoic acid was prepared from each strain by digestion of cell walls with lysostaphin and isolated by column chromatography. Soluble glycopeptide (peptidoglycan in which only the glycan has been fragmented) and the stable complex of teichoic acid with glycopeptide were prepared by digestion of cell walls with Chalaropsis B endo-N-acetylmuramidase and were separated by column chromatography. Amino acid and amino sugar contents of walls and subunits of walls were comparable to those reported by others. Images PMID:16557799

  13. Screening and characterization of plant cell walls using carbohydrate microarrays.

    PubMed

    Sørensen, Iben; Willats, William G T

    2011-01-01

    Plant cells are surrounded by cell walls built largely from complex carbohydrates. The primary walls of growing plant cells consist of interdependent networks of three polysaccharide classes: cellulose, cross-linking glycans (also known as hemicelluloses), and pectins. Cellulose microfibrils are tethered together by cross-linking glycans, and this assembly forms the major load-bearing component of primary walls, which is infiltrated with pectic polymers. In the secondary walls of woody tissues, pectins are much reduced and walls are reinforced with the phenolic polymer lignin. Plant cell walls are essential for plant life and also have numerous industrial applications, ranging from wood to nutraceuticals. Enhancing our knowledge of cell wall biology and the effective use of cell wall materials is dependent to a large extent on being able to analyse their fine structures. We have developed a suite of techniques based on microarrays probed with monoclonal antibodies with specificity for cell wall components, and here we present practical protocols for this type of analysis.

  14. Ohmic resistance affects microbial community and electrochemical kinetics in a multi-anode microbial electrochemical cell

    EPA Science Inventory

    Multi-anode microbial electrochemical cells (MXCs) are considered as one of the most promising configurations for scale-up of MXCs, but fundamental understanding of anode kinetics governing current density is limited in the MXCs. In this study we first assessed microbial communi...

  15. How the deposition of cellulose microfibrils builds cell wall architecture.

    PubMed

    Emons, A M; Mulder, B M

    2000-01-01

    Cell walls, the extracytoplasmic matrices of plant cells, consist of an ordered array of cellulose microfibrils embedded in a matrix of polysaccharides and glycoproteins. This construction is reminiscent of steel rods in reinforced concrete. How a cell organizes these ordered textures around itself, creating its own desirable environment, is a fascinating question. We believe that nature adopted an economical solution to this design problem: it exploits the geometrical constraints imposed by the shape of the cell and the limited space in which microfibrils are deposited, enabling the wall textures essentially to 'build themselves'. This does not imply that the cell cannot control its wall texture. On the contrary, the cell has ample regulatory mechanisms to control wall texture formation by controlling the insertion of synthases and the distance between individual microfibrils within a wall lamella.

  16. Combining microbial cultures for efficient production of electricity from butyrate in a microbial electrochemical cell.

    PubMed

    Miceli, Joseph F; Garcia-Peña, Ines; Parameswaran, Prathap; Torres, César I; Krajmalnik-Brown, Rosa

    2014-10-01

    Butyrate is an important product of anaerobic fermentation; however, it is not directly used by characterized strains of the highly efficient anode respiring bacteria (ARB) Geobacter sulfurreducens in microbial electrochemical cells. By combining a butyrate-oxidizing community with a Geobacter rich culture, we generated a microbial community which outperformed many naturally derived communities found in the literature for current production from butyrate and rivaled the highest performing natural cultures in terms of current density (∼ 11A/m(2)) and Coulombic efficiency (∼ 70%). Microbial community analyses support the shift in the microbial community from one lacking efficient ARB in the marine hydrothermal vent community to a community consisting of ∼ 80% Geobacter in the anode biofilm. This demonstrates the successful production and adaptation of a novel microbial culture for generating electrical current from butyrate with high current density and high Coulombic efficiency, by combining two mixed microbial cultures containing complementing biochemical pathways.

  17. Energy from algae using microbial fuel cells.

    PubMed

    Velasquez-Orta, Sharon B; Curtis, Tom P; Logan, Bruce E

    2009-08-15

    Bioelectricity production from a phytoplankton, Chlorella vulgaris, and a macrophyte, Ulva lactuca was examined in single chamber microbial fuel cells (MFCs). MFCs were fed with the two algae (as powders), obtaining differences in energy recovery, degradation efficiency, and power densities. C. vulgaris produced more energy generation per substrate mass (2.5 kWh/kg), but U. lactuca was degraded more completely over a batch cycle (73 +/- 1% COD). Maximum power densities obtained using either single cycle or multiple cycle methods were 0.98 W/m(2) (277 W/m(3)) using C. vulgaris, and 0.76 W/m(2) (215 W/m(3)) using U. lactuca. Polarization curves obtained using a common method of linear sweep voltammetry (LSV) overestimated maximum power densities at a scan rate of 1 mV/s. At 0.1 mV/s, however, the LSV polarization data was in better agreement with single- and multiple-cycle polarization curves. The fingerprints of microbial communities developed in reactors had only 11% similarity to inocula and clustered according to the type of bioprocess used. These results demonstrate that algae can in principle, be used as a renewable source of electricity production in MFCs.

  18. Assembly and enlargement of the primary cell wall in plants

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1997-01-01

    Growing plant cells are shaped by an extensible wall that is a complex amalgam of cellulose microfibrils bonded noncovalently to a matrix of hemicelluloses, pectins, and structural proteins. Cellulose is synthesized by complexes in the plasma membrane and is extruded as a self-assembling microfibril, whereas the matrix polymers are secreted by the Golgi apparatus and become integrated into the wall network by poorly understood mechanisms. The growing wall is under high tensile stress from cell turgor and is able to enlarge by a combination of stress relaxation and polymer creep. A pH-dependent mechanism of wall loosening, known as acid growth, is characteristic of growing walls and is mediated by a group of unusual wall proteins called expansins. Expansins appear to disrupt the noncovalent bonding of matrix hemicelluloses to the microfibril, thereby allowing the wall to yield to the mechanical forces generated by cell turgor. Other wall enzymes, such as (1-->4) beta-glucanases and pectinases, may make the wall more responsive to expansin-mediated wall creep whereas pectin methylesterases and peroxidases may alter the wall so as to make it resistant to expansin-mediated creep.

  19. Structural Studies of Complex Carbohydrates of Plant Cell Walls

    SciTech Connect

    Darvill, Alan; Hahn, Michael G.; O'Neill, Malcolm A.; York, William S.

    2015-02-17

    Most of the solar energy captured by land plants is converted into the polysaccharides (cellulose, hemicellulose, and pectin) that are the predominant components of the cell wall. These walls, which account for the bulk of plant biomass, have numerous roles in the growth and development of plants. Moreover, these walls have a major impact on human life as they are a renewable source of biomass, a source of diverse commercially useful polymers, a major component of wood, and a source of nutrition for humans and livestock. Thus, understanding the molecular mechanisms that lead to wall assembly and how cell walls and their component polysaccharides contribute to plant growth and development is essential to improve and extend the productivity and value of plant materials. The proposed research will develop and apply advanced analytical and immunological techniques to study specific changes in the structures and interactions of the hemicellulosic and pectic polysaccharides that occur during differentiation and in response to genetic modification and chemical treatments that affect wall biosynthesis. These new techniques will make it possible to accurately characterize minute amounts of cell wall polysaccharides so that subtle changes in structure that occur in individual cell types can be identified and correlated to the physiological or developmental state of the plant. Successful implementation of this research will reveal fundamental relationships between polysaccharide structure, cell wall architecture, and cell wall functions.

  20. Modeling microbial reaction rates in a submarine hydrothermal vent chimney wall

    NASA Astrophysics Data System (ADS)

    LaRowe, Douglas E.; Dale, Andrew W.; Aguilera, David R.; L'Heureux, Ivan; Amend, Jan P.; Regnier, Pierre

    2014-01-01

    The fluids emanating from active submarine hydrothermal vent chimneys provide a window into subseafloor processes and, through mixing with seawater, are responsible for steep thermal and compositional gradients that provide the energetic basis for diverse biological communities. Although several models have been developed to better understand the dynamic interplay of seawater, hydrothermal fluid, minerals and microorganisms inside chimney walls, none provide a fully integrated approach to quantifying the biogeochemistry of these hydrothermal systems. In an effort to remedy this, a fully coupled biogeochemical reaction-transport model of a hydrothermal vent chimney has been developed that explicitly quantifies the rates of microbial catalysis while taking into account geochemical processes such as fluid flow, solute transport and oxidation-reduction reactions associated with fluid mixing as a function of temperature. The metabolisms included in the reaction network are methanogenesis, aerobic oxidation of hydrogen, sulfide and methane and sulfate reduction by hydrogen and methane. Model results indicate that microbial catalysis is generally fastest in the hottest habitable portion of the vent chimney (77-102 °C), and methane and sulfide oxidation peak near the seawater-side of the chimney. The fastest metabolisms are aerobic oxidation of H2 and sulfide and reduction of sulfate by H2 with maximum rates of 140, 900 and 800 pmol cm-3 d-1, respectively. The maximum rate of hydrogenotrophic methanogenesis is just under 0.03 pmol cm-3 d-1, the slowest of the metabolisms considered. Due to thermodynamic inhibition, there is no anaerobic oxidation of methane by sulfate (AOM). These simulations are consistent with vent chimney metabolic activity inferred from phylogenetic data reported in the literature. The model developed here provides a quantitative approach to describing the rates of biogeochemical transformations in hydrothermal systems and can be used to constrain the

  1. The role of wall calcium in the extension of cell walls of soybean hypocotyls

    NASA Technical Reports Server (NTRS)

    Virk, S. S.; Cleland, R. E.

    1990-01-01

    Calcium crosslinks are load-bearing bonds in soybean (Glycine max (L.) Merr.) hypocotyl cell walls, but they are not the same load-bearing bonds that are broken during acid-mediated cell elongation. This conclusion is reached by studying the relationship between wall calcium, pH and the facilitated creep of frozen-thawed soybean hypocotyl sections. Supporting data include the following observations: 1) 2-[(2-bis-[carboxymethyl]amino-5-methylphenoxy)methyl]-6-methoxy-8-bis[car boxymethyl]aminoquinoline (Quin 2) and ethylene glycol-bis(2-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) caused only limited facilitated creep as compared with acid, despite removal of comparable or larger amounts of wall calcium; 2) the pH-response curves for calcium removal and acid-facilitated creep were different; 3) reversible acid-extension occurred even after removal of almost all wall calcium with Quin 2; and 4) growth of abraded sections did not involve a proportional loss of wall calcium. Removal of wall calcium, however, increased the capacity of the walls to undergo acid-facilitated creep. These data indicate that breakage of calcium crosslinks is not a major mechanism of cell-wall loosening in soybean hypocotyl tissues.

  2. Tissue-specific cell wall hydration in sugarcane stalks.

    PubMed

    Maziero, Priscila; Jong, Jennifer; Mendes, Fernanda M; Gonçalves, Adilson R; Eder, Michaela; Driemeier, Carlos

    2013-06-19

    Plant cell walls contain water, especially under biological and wet processing conditions. The present work characterizes this water in tissues of sugarcane stalks. Environmental scanning electron microscopy shows tissue deformation upon drying. Dynamic vapor sorption determines the equilibrium and kinetics of moisture uptake. Thermoporometry by differential scanning calorimetry quantifies water in nanoscale pores. Results show that cell walls from top internodes of stalks are more deformable, slightly more sorptive to moisture, and substantially more porous. These differences of top internode are attributed to less lignified walls, which is confirmed by lower infrared spectral signal from aromatics. Furthermore, cell wall nanoscale porosity, an architectural and not directly compositional characteristic, is shown to be tissue-specific. Nanoscale porosities are ranked as follows: pith parenchyma > pith vascular bundles > rind. This ranking coincides with wall reactivity and digestibility in grasses, suggesting that nanoscale porosity is a major determinant of wall recalcitrance.

  3. An evaluation of the impact of multi-walled carbon nanotubes on soil microbial community structure and functional diversity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing application of carbon nanotubes (CNTs) triggers the need for an assessment of their effects on organisms in the environment. Soil microbial communities play a significant role in soil organic matter dynamics and nutrient cycling. This study evaluated the impacts of multi-walled carbon nan...

  4. Mast cells in the human alveolar wall: an electronmicroscopic study.

    PubMed Central

    Fox, B; Bull, T B; Guz, A

    1981-01-01

    Mast cells were identified by electronmicroscopy in the alveolar wall of the lung in 20 subjects (10 normal, 10 abnormal). A quantitative and qualitative study was made of the mast cells. In the normal lung there was an average concentration of 350 mast cells/mm2 of alveolar wall and in the abnormal 523/mm2. Mast cells occupied approximately 1.6-2.1% of the area of the alveolar wall. There was marked variation in the structure of the mast cell granules but no differences between those in the normal and abnormal lungs. There was evidence that constant degranulation of mast cells may be occurring in the lung. The role that alveolar mast cells may play in the vasoconstrictor response to alveolar hypoxia is discussed. It is suggested that the tachypnoea present in asthma may partly be due to release of mediators from sensitised mast cells within the alveolar wall. Images PMID:7328180

  5. Methods for degrading or converting plant cell wall polysaccharides

    DOEpatents

    Berka, Randy; Cherry, Joel

    2008-08-19

    The present invention relates to methods for converting plant cell wall polysaccharides into one or more products, comprising: treating the plant cell wall polysaccharides with an effective amount of a spent whole fermentation broth of a recombinant microorganism, wherein the recombinant microorganism expresses one or more heterologous genes encoding enzymes which degrade or convert the plant cell wall polysaccharides into the one or more products. The present invention also relates to methods for producing an organic substance, comprising: (a) saccharifying plant cell wall polysaccharides with an effective amount of a spent whole fermentation broth of a recombinant microorganism, wherein the recombinant microorganism expresses one or more heterologous genes encoding enzymes which degrade or convert the plant cell wall polysaccharides into saccharified material; (b) fermenting the saccharified material of step (a) with one or more fermenting microoganisms; and (c) recovering the organic substance from the fermentation.

  6. Microbial fuel cells and microbial electrolysis cells for the production of bioelectricity and biomaterials.

    PubMed

    Zhou, Minghua; Yang, Jie; Wang, Hongyu; Jin, Tao; Xu, Dake; Gu, Tingyue

    2013-01-01

    Today's global energy crisis requires a multifaceted solution. Bioenergy is an important part of the solution. The microbial fuel cell (MFC) technology stands out as an attractive potential technology in bioenergy. MFCs can convert energy stored in organic matter directly into bioelectricity. MFCs can also be operated in the electrolysis mode as microbial electrolysis cells to produce bioproducts such as hydrogen and ethanol. Various wastewaters containing low-grade organic carbons that are otherwise unutilized can be used as feed streams for MFCs. Despite major advances in the past decade, further improvements in MFC power output and cost reduction are needed for MFCs to be practical. This paper analysed MFC operating principles using bioenergetics and bioelectrochemistry. Several major issues were explored to improve the MFC performance. An emphasis was placed on the use of catalytic materials for MFC electrodes. Recent advances in the production of various biomaterials using MFCs were also investigated.

  7. Two stage bioethanol refining with multi litre stacked microbial fuel cell and microbial electrolysis cell.

    PubMed

    Sugnaux, Marc; Happe, Manuel; Cachelin, Christian Pierre; Gloriod, Olivier; Huguenin, Gérald; Blatter, Maxime; Fischer, Fabian

    2016-12-01

    Ethanol, electricity, hydrogen and methane were produced in a two stage bioethanol refinery setup based on a 10L microbial fuel cell (MFC) and a 33L microbial electrolysis cell (MEC). The MFC was a triple stack for ethanol and electricity co-generation. The stack configuration produced more ethanol with faster glucose consumption the higher the stack potential. Under electrolytic conditions ethanol productivity outperformed standard conditions and reached 96.3% of the theoretically best case. At lower external loads currents and working potentials oscillated in a self-synchronized manner over all three MFC units in the stack. In the second refining stage, fermentation waste was converted into methane, using the scale up MEC stack. The bioelectric methanisation reached 91% efficiency at room temperature with an applied voltage of 1.5V using nickel cathodes. The two stage bioethanol refining process employing bioelectrochemical reactors produces more energy vectors than is possible with today's ethanol distilleries.

  8. Imaging Cell Wall Architecture in Single Zinnia elegans Tracheary Elements1[OA

    PubMed Central

    Lacayo, Catherine I.; Malkin, Alexander J.; Holman, Hoi-Ying N.; Chen, Liang; Ding, Shi-You; Hwang, Mona S.; Thelen, Michael P.

    2010-01-01

    The chemical and structural organization of the plant cell wall was examined in Zinnia elegans tracheary elements (TEs), which specialize by developing prominent secondary wall thickenings underlying the primary wall during xylogenesis in vitro. Three imaging platforms were used in conjunction with chemical extraction of wall components to investigate the composition and structure of single Zinnia TEs. Using fluorescence microscopy with a green fluorescent protein-tagged Clostridium thermocellum family 3 carbohydrate-binding module specific for crystalline cellulose, we found that cellulose accessibility and binding in TEs increased significantly following an acidified chlorite treatment. Examination of chemical composition by synchrotron radiation-based Fourier-transform infrared spectromicroscopy indicated a loss of lignin and a modest loss of other polysaccharides in treated TEs. Atomic force microscopy was used to extensively characterize the topography of cell wall surfaces in TEs, revealing an outer granular matrix covering the underlying meshwork of cellulose fibrils. The internal organization of TEs was determined using secondary wall fragments generated by sonication. Atomic force microscopy revealed that the resulting rings, spirals, and reticulate structures were composed of fibrils arranged in parallel. Based on these combined results, we generated an architectural model of Zinnia TEs composed of three layers: an outermost granular layer, a middle primary wall composed of a meshwork of cellulose fibrils, and inner secondary wall thickenings containing parallel cellulose fibrils. In addition to insights in plant biology, studies using Zinnia TEs could prove especially productive in assessing cell wall responses to enzymatic and microbial degradation, thus aiding current efforts in lignocellulosic biofuel production. PMID:20592039

  9. Collenchyma: a versatile mechanical tissue with dynamic cell walls

    PubMed Central

    Leroux, Olivier

    2012-01-01

    Background Collenchyma has remained in the shadow of commercially exploited mechanical tissues such as wood and fibres, and therefore has received little attention since it was first described. However, collenchyma is highly dynamic, especially compared with sclerenchyma. It is the main supporting tissue of growing organs with walls thickening during and after elongation. In older organs, collenchyma may become more rigid due to changes in cell wall composition or may undergo sclerification through lignification of newly deposited cell wall material. While much is known about the systematic and organographic distribution of collenchyma, there is rather less information regarding the molecular architecture and properties of its cell walls. Scope and conclusions This review summarizes several aspects that have not previously been extensively discussed including the origin of the term ‘collenchyma’ and the history of its typology. As the cell walls of collenchyma largely determine the dynamic characteristics of this tissue, I summarize the current state of knowledge regarding their structure and molecular composition. Unfortunately, to date, detailed studies specifically focusing on collenchyma cell walls have not been undertaken. However, generating a more detailed understanding of the structural and compositional modifications associated with the transition from plastic to elastic collenchyma cell wall properties is likely to provide significant insights into how specific configurations of cell wall polymers result in specific functional properties. This approach, focusing on architecture and functional properties, is likely to provide improved clarity on the controversial definition of collenchyma. PMID:22933416

  10. Programming microbial population dynamics by engineered cell-cell communication.

    PubMed

    Song, Hao; Payne, Stephen; Tan, Cheemeng; You, Lingchong

    2011-07-01

    A major aim of synthetic biology is to program novel cellular behavior using engineered gene circuits. Early endeavors focused on building simple circuits that fulfill simple functions, such as logic gates, bistable toggle switches, and oscillators. These gene circuits have primarily focused on single-cell behaviors since they operate intracellularly. Thus, they are often susceptible to cell-cell variations due to stochastic gene expression. Cell-cell communication offers an efficient strategy to coordinate cellular behavior at the population level. To this end, we review recent advances in engineering cell-cell communication to achieve reliable population dynamics, spanning from communication within single species to multispecies, from one-way sender-receiver communication to two-way communication in synthetic microbial ecosystems. These engineered systems serve as well-defined model systems to better understand design principles of their naturally occurring counterparts and to facilitate novel biotechnology applications.

  11. Mechanical properties of spruce wood cell walls by nanoindentation

    NASA Astrophysics Data System (ADS)

    Gindl, W.; Gupta, H. S.; Schöberl, T.; Lichtenegger, H. C.; Fratzl, P.

    2004-12-01

    In order to study the effects of structural variability, nanoindentation experiments were performed in Norway spruce cell walls with highly variable cellulose microfibril angle and lignin content. Contrary to hardness, which showed no statistically significant relationship with changing microfibril angle and lignin content, the elastic modulus of the secondary cell wall decreased significantly with increasing microfibril angle. While the elastic moduli of cell walls with large microfibril angle agreed well with published values, the elastic moduli of cell walls with small microfibril angle were clearly underestimated in nanoindentation measurements. Hardness measurements in the cell corner middle lamella allowed us to estimate the yield stress of the cell-wall matrix to be 0.34±0.16 GPa. Since the hardness of the secondary cell wall was statistically not different from the hardness of the cell corner middle lamella, irrespective of high variability in cellulose microfibril angle, it is proposed that compressive yielding of wood-cell walls is a matrix-dominated process.

  12. Dynamic metabolic flux analysis of plant cell wall synthesis.

    PubMed

    Chen, Xuewen; Alonso, Ana P; Shachar-Hill, Yair

    2013-07-01

    The regulation of plant cell wall synthesis pathways remains poorly understood. This has become a bottleneck in designing bioenergy crops. The goal of this study was to analyze the regulation of plant cell wall precursor metabolism using metabolic flux analysis based on dynamic labeling experiments. Arabidopsis T87 cells were cultured heterotrophically with (13)C labeled sucrose. The time course of ¹³C labeling patterns in cell wall precursors and related sugar phosphates was monitored using liquid chromatography tandem mass spectrometry until steady state labeling was reached. A kinetic model based on mass action reaction mechanisms was developed to simulate the carbon flow in the cell wall synthesis network. The kinetic parameters of the model were determined by fitting the model to the labeling time course data, cell wall composition, and synthesis rates. A metabolic control analysis was performed to predict metabolic regulations that may improve plant biomass composition for biofuel production. Our results describe the routes and rates of carbon flow from sucrose to cell wall precursors. We found that sucrose invertase is responsible for the entry of sucrose into metabolism and UDP-glucose-4-epimerase plays a dominant role in UDP-Gal synthesis in heterotrophic Aradidopsis cells under aerobic conditions. We also predicted reactions that exert strong regulatory influence over carbon flow to cell wall synthesis and its composition.

  13. Microbial fuel cells and microbial ecology: applications in ruminant health and production research.

    PubMed

    Bretschger, Orianna; Osterstock, Jason B; Pinchak, William E; Ishii, Shun'ichi; Nelson, Karen E

    2010-04-01

    Microbial fuel cell (MFC) systems employ the catalytic activity of microbes to produce electricity from the oxidation of organic, and in some cases inorganic, substrates. MFC systems have been primarily explored for their use in bioremediation and bioenergy applications; however, these systems also offer a unique strategy for the cultivation of synergistic microbial communities. It has been hypothesized that the mechanism(s) of microbial electron transfer that enable electricity production in MFCs may be a cooperative strategy within mixed microbial consortia that is associated with, or is an alternative to, interspecies hydrogen (H(2)) transfer. Microbial fermentation processes and methanogenesis in ruminant animals are highly dependent on the consumption and production of H(2)in the rumen. Given the crucial role that H(2) plays in ruminant digestion, it is desirable to understand the microbial relationships that control H(2) partial pressures within the rumen; MFCs may serve as unique tools for studying this complex ecological system. Further, MFC systems offer a novel approach to studying biofilms that form under different redox conditions and may be applied to achieve a greater understanding of how microbial biofilms impact animal health. Here, we present a brief summary of the efforts made towards understanding rumen microbial ecology, microbial biofilms related to animal health, and how MFCs may be further applied in ruminant research.

  14. Microbial Fuel Cells and Microbial Ecology: Applications in Ruminant Health and Production Research

    PubMed Central

    Osterstock, Jason B.; Pinchak, William E.; Ishii, Shun’ichi; Nelson, Karen E.

    2009-01-01

    Microbial fuel cell (MFC) systems employ the catalytic activity of microbes to produce electricity from the oxidation of organic, and in some cases inorganic, substrates. MFC systems have been primarily explored for their use in bioremediation and bioenergy applications; however, these systems also offer a unique strategy for the cultivation of synergistic microbial communities. It has been hypothesized that the mechanism(s) of microbial electron transfer that enable electricity production in MFCs may be a cooperative strategy within mixed microbial consortia that is associated with, or is an alternative to, interspecies hydrogen (H2) transfer. Microbial fermentation processes and methanogenesis in ruminant animals are highly dependent on the consumption and production of H2in the rumen. Given the crucial role that H2 plays in ruminant digestion, it is desirable to understand the microbial relationships that control H2 partial pressures within the rumen; MFCs may serve as unique tools for studying this complex ecological system. Further, MFC systems offer a novel approach to studying biofilms that form under different redox conditions and may be applied to achieve a greater understanding of how microbial biofilms impact animal health. Here, we present a brief summary of the efforts made towards understanding rumen microbial ecology, microbial biofilms related to animal health, and how MFCs may be further applied in ruminant research. PMID:20024685

  15. Methanogenesis in membraneless microbial electrolysis cells.

    PubMed

    Clauwaert, Peter; Verstraete, Willy

    2009-04-01

    Operation of microbial electrolysis cells (MECs) without an ion exchange membrane could help to lower the construction costs while lowering the ohmic cell resistance and improving MEC conversion rates by minimizing the pH gradient between anode and cathode. In this research, we demonstrate that membraneless MECs with plain graphite can be operated for methane production without pH adjustment and that the ohmic cell resistance could be lowered with approximately 50% by removing the cation exchange membrane. As a result, the current production increased from 66 +/- 2 to 156 +/- 1 A m(-3) MEC by removing the membrane with an applied voltage of -0.8 V. Methane was the main energetic product despite continuous operation under carbonate-limited and slightly acidified conditions (pH 6.1-6.2). Our results suggest that continuous production of hydrogen in membraneless MECs will be challenging since methane production might not be avoided easily. The electrical energy invested was not always completely recovered under the form of an energy-rich biogas; however, our results indicate that membraneless MECs might be a viable polishing step for the treatment of the effluent of anaerobic digesters as methane was produced under low organic loading conditions and at room temperature.

  16. Impact of single walled carbon nanotubes (SWNTs) on wastewater microbial communities

    NASA Astrophysics Data System (ADS)

    Goyal, Deepankar

    Aim: Carbon nanotubes (CNTs) hold great promise in advancing our future, with potential applications such as adsorbents, conductive composites, energy storage devices, and more. Despite of numerous potential applications of CNTs, almost nothing so far is known about how such carbon-based nanomaterials would in future impact environmental processes such as wastewater treatment. The objective of the current study was to evaluate the impact of single-walled carbon nanotubes (SWNTs) on microbial communities and wastewater treatment processes in activated sludge bioreactors. Method: Closed system batch-scale reactors were used to simulate the activated sludge process. Two sets of triplicate reactors were analyzed to determine the effects of SWNTs and associated impurities compared to control reactors that contained no CNTs. Sub-samples for microbial community analyses were aseptically removed periodically from the bioreactors every ˜1 hour 15 minutes and held at -80°C until analyzed. Genomic DNA was extracted from bioreactor samples, and molecular profiles of the bacterial communities were determined using automated ribosomal intergenic spacer analysis (ARISA). The clones for the ARISA profiles having distinct ARISA peaks were picked and sequenced. Result: ARISA profiles revealed adverse changes in CNT-exposed bacterial communities compared to control reactors associated with CNTs. The phylogenetic analysis of cloned insert containing Internal Transcribed Spacer (ITS) region plus the 16S rRNA genes identified them belonging to taxonomic groups of the families Sphingomonadaceae and Cytophagacaceae , and the genus Zoogloea. Changes in community structure were observed in both SWNT-exposed and control reactors over the experimental time period. Also the date on which activated sludge was obtained from a wastewater treatment plant facility seemed to play a critical role in changing the community structure altogether, indicating the importance of analyzing microbial

  17. Maize development: cell wall changes in leaves and sheaths

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Developmental changes occur in maize (Zea mays L.) as it transitions from juvenile stages to the mature plant. Changes also occur as newly formed cells mature into adult cells. Maize leaf blades, including the midribs and sheaths, undergo cell wall changes as cells transition to fully mature cell ty...

  18. The Plant Cell Wall: A Dynamic Barrier Against Pathogen Invasion

    PubMed Central

    Underwood, William

    2012-01-01

    Prospective plant pathogens must overcome the physical barrier presented by the plant cell wall. In addition to being a preformed, passive barrier limiting access of pathogens to plant cells, the cell wall is actively remodeled and reinforced specifically at discrete sites of interaction with potentially pathogenic microbes. Active reinforcement of the cell wall through the deposition of cell wall appositions, referred to as papillae, is an early response to perception of numerous categories of pathogens including fungi and bacteria. Rapid deposition of papillae is generally correlated with resistance to fungal pathogens that attempt to penetrate plant cell walls for the establishment of feeding structures. Despite the ubiquity and apparent importance of this early defense response, relatively little is known about the underlying molecular mechanisms and cellular processes involved in the targeting and assembly of papillae. This review summarizes recent advances in our understanding of cell wall-associated defenses induced by pathogen perception as well as the impact of changes in cell wall polymers on interactions with pathogens and highlights significant unanswered questions driving future research in the area. PMID:22639669

  19. A Fungal Endoglucanase with Plant Cell Wall Extension Activity1

    PubMed Central

    Yuan, Sheng; Wu, Yajun; Cosgrove, Daniel J.

    2001-01-01

    We have identified a wall hydrolytic enzyme from Trichoderma reesei with potent ability to induce extension of heat-inactivated type I cell walls. It is a small (23-kD) endo-1,4-β-glucanase (Cel12A) belonging to glycoside hydrolase family 12. Extension of heat-inactivated walls from cucumber (Cucumis sativus cv Burpee Pickler) hypocotyls was induced by Cel12A after a distinct lag time and was accompanied by a large increase in wall plasticity and elasticity. Cel12A also increased the rate of stress relaxation of isolated walls at very short times (<200 ms; equivalent to reducing t0, a parameter that estimates the minimum relaxation time). Similar changes in wall plasticity and elasticity were observed in wheat (Triticum aestivum cv Pennmore Winter) coleoptile (type II) walls, which showed only a negligible extension in response to Cel12A treatment. Thus, Cel12A modifies both type I and II walls, but substantial extension is found only in type I walls. Cel12A has strong endo-glucanase activity against xyloglucan and (1→3,1→4)-β-glucan, but did not exhibit endo-xylanase, endo-mannase, or endo-galactanase activities. In terms of kinetics of action and effects on wall rheology, wall loosening by Cel12A differs qualitatively from the action by expansins, which induce wall extension by a non-hydrolytic polymer creep mechanism. The action by Cel12A mimics some of the changes in wall rheology found after auxin-induced growth. The strategy used here to identify Cel12A could be used to identify analogous plant enzymes that cause auxin-induced changes in cell wall rheology. PMID:11553760

  20. How cell wall complexity influences saccharification efficiency in Miscanthus sinensis

    PubMed Central

    De Souza, Amanda P.; Kamei, Claire L. Alvim; Torres, Andres F.; Pattathil, Sivakumar; Hahn, Michael G.; Trindade, Luisa M.; Buckeridge, Marcos S.

    2015-01-01

    The production of bioenergy from grasses has been developing quickly during the last decade, with Miscanthus being among the most important choices for production of bioethanol. However, one of the key barriers to producing bioethanol is the lack of information about cell wall structure. Cell walls are thought to display compositional differences that lead to emergence of a very high level of complexity, resulting in great diversity in cell wall architectures. In this work, a set of different techniques was used to access the complexity of cell walls of different genotypes of Miscanthus sinensis in order to understand how they interfere with saccharification efficiency. Three genotypes of M. sinensis displaying different patterns of correlation between lignin content and saccharification efficiency were subjected to cell wall analysis by quantitative/qualitative analytical techniques such as monosaccharide composition, oligosaccharide profiling, and glycome profiling. When saccharification efficiency was correlated negatively with lignin, the structural features of arabinoxylan and xyloglucan were found to contribute positively to hydrolysis. In the absence of such correlation, different types of pectins, and some mannans contributed to saccharification efficiency. Different genotypes of M. sinensis were shown to display distinct interactions among their cell wall components, which seem to influence cell wall hydrolysis. PMID:25908240

  1. How cell wall complexity influences saccharification efficiency in Miscanthus sinensis

    DOE PAGES

    De Souza, Amanda P.; Kamei, Claire L. Alvim; Torres, Andres F.; ...

    2015-04-23

    The production of bioenergy from grasses has been developing quickly during the last decade, with Miscanthus being among the most important choices for production of bioethanol. However, one of the key barriers to producing bioethanol is the lack of information about cell wall structure. Cell walls are thought to display compositional differences that lead to emergence of a very high level of complexity, resulting in great diversity in cell wall architectures. In this work, a set of different techniques was used to access the complexity of cell walls of different genotypes of Miscanthus sinensis in order to understand how theymore » interfere with saccharification efficiency. Three genotypes of M. sinensis displaying different patterns of correlation between lignin content and saccharification efficiency were subjected to cell wall analysis by quantitative/qualitative analytical techniques such as monosaccharide composition, oligosaccharide profiling, and glycome profiling. When saccharification efficiency was correlated negatively with lignin, the structural features of arabinoxylan and xyloglucan were found to contribute positively to hydrolysis. In the absence of such correlation, different types of pectins, and some mannans contributed to saccharification efficiency. In conclusion, different genotypes of M. sinensis were shown to display distinct interactions among their cell wall components, which seem to influence cell wall hydrolysis.« less

  2. Microbial Community Analysis of a Single Chamber Microbial Fuel Cell Using Potato Wastewater

    SciTech Connect

    Zhen Li; Rishika Haynes; Eugene Sato; Malcolm Shields; Yoshiko Fujita; Chikashi Sato

    2014-04-01

    Microbial fuel cells (MFCs) convert chemical energy to electrical energy via bioelectrochemical reactions mediated by microorganisms. We investigated the diversity of the microbial community in an air cathode single chamber MFC that utilized potato-process wastewater as substrate. Terminal Restriction Fragment Length Polymorphism (T-RFLP) results indicated that the bacterial communities on the anode, cathode, control electrode, and MFC bulk fluid were similar, but differed dramatically from that of the anaerobic domestic sludge and potato wastewater inoculum. The 16S rDNA sequencing results showed that microbial species detected on the anode were predominantly within the phyla of Proteobacteria, Firmicutes, and Bacteroidetes. Fluorescent microscopy results indicated that there was a clear enhancement of biofilm formation on the anode. Results of this study could help improve understanding of the complexity of microbial communities and optimize the microbial composition for generating electricity by MFCs that utilize potato wastewater.

  3. Microbial community analysis of a single chamber microbial fuel cell using potato wastewater.

    PubMed

    Li, Zhen; Haynes, Rishika; Sato, Eugene; Shields, Malcolm S; Fujita, Yoshiko; Sato, Chikashi

    2014-04-01

    Microbial fuel cells (MFCs) convert chemical energy to electrical energy via bio-electrochemical reactions mediated by microorganisms. This study investigated the diversity of the microbial community in an air cathode single chamber MFC that used potato-process wastewater as substrate. Terminal restriction fragment length polymorphism results indicated that the bacterial communities on the anode, cathode, control electrode, and MFC bulk fluid were similar, but differed dramatically from that of the anaerobic domestic sludge and potato wastewater inoculum. The 16S ribosomal DNA sequencing results showed that microbial species detected on the anode were predominantly within the phyla of Proteobacteria, Firmicutes, and Bacteroidetes. Fluorescent microscopy results indicated that there was a clear enhancement of biofilm formation on the anode. Results of this study could help improve understanding of the complexity of microbial communities and optimize the microbial composition for generating electricity by MFCs that use potato wastewater.

  4. Arabidopsis Regenerating Protoplast: A Powerful Model System for Combining the Proteomics of Cell Wall Proteins and the Visualization of Cell Wall Dynamics

    PubMed Central

    Yokoyama, Ryusuke; Kuki, Hiroaki; Kuroha, Takeshi; Nishitani, Kazuhiko

    2016-01-01

    The development of a range of sub-proteomic approaches to the plant cell wall has identified many of the cell wall proteins. However, it remains difficult to elucidate the precise biological role of each protein and the cell wall dynamics driven by their actions. The plant protoplast provides an excellent means not only for characterizing cell wall proteins, but also for visualizing the dynamics of cell wall regeneration, during which cell wall proteins are secreted. It therefore offers a unique opportunity to investigate the de novo construction process of the cell wall. This review deals with sub-proteomic approaches to the plant cell wall through the use of protoplasts, a methodology that will provide the basis for further exploration of cell wall proteins and cell wall dynamics. PMID:28248244

  5. Over-pressurized bioreactors: application to microbial cell cultures.

    PubMed

    Lopes, Marlene; Belo, Isabel; Mota, Manuel

    2014-01-01

    In industrial biotechnology, microbial cultures are exposed to different local pressures inside bioreactors. Depending on the microbial species and strains, the increased pressure may have detrimental or beneficial effects on cellular growth and product formation. In this review, the effects of increased air pressure on various microbial cultures growing in bioreactors under moderate total pressure conditions (maximum, 15 bar) will be discussed. Recent data illustrating the diversity of increased air pressure effects at different levels in microbial cells cultivation will be presented, with particular attention to the effects of oxygen and carbon dioxide partial pressures on cellular growth and product formation, and the concomitant effect of oxygen pressure on antioxidant cellular defense mechanisms.

  6. Plant expansins: diversity and interactions with plant cell walls

    PubMed Central

    Cosgrove, Daniel J.

    2015-01-01

    Expansins were discovered two decades ago as cell wall proteins that mediate acid-induced growth by catalyzing loosening of plant cell walls without lysis of wall polymers. In the interim our understanding of expansins has gotten more complex through bioinformatic analysis of expansin distribution and evolution, as well as through expression analysis, dissection of the upstream transcription factors regulating expression, and identification of additional classes of expansin by sequence and structural similarities. Molecular analyses of expansins from bacteria have identified residues essential for wall loosening activity and clarified the bifunctional nature of expansin binding to complex cell walls. Transgenic modulation of expansin expression modifies growth and stress physiology of plants, but not always in predictable and even understandable ways. PMID:26057089

  7. Dynamic microtubules and the texture of plant cell walls.

    PubMed

    Lloyd, Clive

    2011-01-01

    The relationship between microtubules and cell-wall texture has had a fitful history in which progress in one area has not been matched by progress in the other. For example, the idea that wall texture arises entirely from self-assembly, independently of microtubules, originated with electron microscopic analyses of fixed cells that gave no clue to the ability of microtubules to reorganize. Since then, live-cell studies have established the surprising dynamicity of plant microtubules involving collisions, changes in angle, parallelization, and rotation of microtubule tracks. Combined with proof that cellulose synthases do track along shifting microtubules, this offers more realistic models for the dynamic influence of microtubules on wall texture than could have been imagined in the electron microscopic era-the era from which most ideas on wall texture originate. This review revisits the classical literature on wall organization from the vantage point of current knowledge of microtubule dynamics.

  8. Plant expansins: diversity and interactions with plant cell walls.

    PubMed

    Cosgrove, Daniel J

    2015-06-01

    Expansins were discovered two decades ago as cell wall proteins that mediate acid-induced growth by catalyzing loosening of plant cell walls without lysis of wall polymers. In the interim our understanding of expansins has gotten more complex through bioinformatic analysis of expansin distribution and evolution, as well as through expression analysis, dissection of the upstream transcription factors regulating expression, and identification of additional classes of expansin by sequence and structural similarities. Molecular analyses of expansins from bacteria have identified residues essential for wall loosening activity and clarified the bifunctional nature of expansin binding to complex cell walls. Transgenic modulation of expansin expression modifies growth and stress physiology of plants, but not always in predictable or even understandable ways.

  9. Measurement of pectin methylation in plant cell walls

    SciTech Connect

    McFeeters, R.F.; Armstrong, S.A.

    1984-01-01

    A procedure was developed to measure the degree of pectin methylation in small samples of isolated cell walls from nonlignified plant tissues or pectin solutions. Galacturonic acid was determined colorimetrically with the 3,5-dimethylphenol reagent. Methylation was measured by base hydrolysis of galacturonic acid methyl esters, followed by gas chromatographic determination of released methanol. Estimates of the precision of analysis of pectin and cell wall samples were made. The coefficient of variation for estimates of the pectin esterification in cell walls isolated from 10-g samples of cucumber tissue ranged from 7.7 to 13.2%.

  10. Probing (macro)molecular transport through cell walls.

    PubMed

    Kilcher, Giona; Delneri, Daniela; Duckham, Craig; Tirelli, Nicola

    2008-01-01

    We here report a study on the passive permeability of hydrophobic probes through the cell wall of Saccharomyces cerevisiae. In this study we have prepared a series of fluorescent probes with similar chemical composition and molecular weight ranging from a few hundreds to a few thousands of g mol(-1). Their permeation into the cell body exhibits a clear MW cut-off and the underlying mechanism is governed by the permeation of individual molecules rather than aggregates. We also show that it is possible to reversibly alter the cell wall permeation properties without compromising the essence of its structure, by modifying the polarity/dielectric constant of the wall through solvent exchange.

  11. Cell Wall Metabolism in Response to Abiotic Stress.

    PubMed

    Le Gall, Hyacinthe; Philippe, Florian; Domon, Jean-Marc; Gillet, Françoise; Pelloux, Jérôme; Rayon, Catherine

    2015-02-16

    This review focuses on the responses of the plant cell wall to several abiotic stresses including drought, flooding, heat, cold, salt, heavy metals, light, and air pollutants. The effects of stress on cell wall metabolism are discussed at the physiological (morphogenic), transcriptomic, proteomic and biochemical levels. The analysis of a large set of data shows that the plant response is highly complex. The overall effects of most abiotic stress are often dependent on the plant species, the genotype, the age of the plant, the timing of the stress application, and the intensity of this stress. This shows the difficulty of identifying a common pattern of stress response in cell wall architecture that could enable adaptation and/or resistance to abiotic stress. However, in most cases, two main mechanisms can be highlighted: (i) an increased level in xyloglucan endotransglucosylase/hydrolase (XTH) and expansin proteins, associated with an increase in the degree of rhamnogalacturonan I branching that maintains cell wall plasticity and (ii) an increased cell wall thickening by reinforcement of the secondary wall with hemicellulose and lignin deposition. Taken together, these results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall. This will help identify the key components that could be targeted to improve biomass production under stress conditions.

  12. Cell Wall Metabolism in Response to Abiotic Stress

    PubMed Central

    Gall, Hyacinthe Le; Philippe, Florian; Domon, Jean-Marc; Gillet, Françoise; Pelloux, Jérôme; Rayon, Catherine

    2015-01-01

    This review focuses on the responses of the plant cell wall to several abiotic stresses including drought, flooding, heat, cold, salt, heavy metals, light, and air pollutants. The effects of stress on cell wall metabolism are discussed at the physiological (morphogenic), transcriptomic, proteomic and biochemical levels. The analysis of a large set of data shows that the plant response is highly complex. The overall effects of most abiotic stress are often dependent on the plant species, the genotype, the age of the plant, the timing of the stress application, and the intensity of this stress. This shows the difficulty of identifying a common pattern of stress response in cell wall architecture that could enable adaptation and/or resistance to abiotic stress. However, in most cases, two main mechanisms can be highlighted: (i) an increased level in xyloglucan endotransglucosylase/hydrolase (XTH) and expansin proteins, associated with an increase in the degree of rhamnogalacturonan I branching that maintains cell wall plasticity and (ii) an increased cell wall thickening by reinforcement of the secondary wall with hemicellulose and lignin deposition. Taken together, these results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall. This will help identify the key components that could be targeted to improve biomass production under stress conditions. PMID:27135320

  13. An Arabidopsis gene regulatory network for secondary cell wall synthesis

    SciTech Connect

    Taylor-Teeples, M.; Lin, L.; de Lucas, M.; Turco, G.; Toal, T. W.; Gaudinier, A.; Young, N. F.; Trabucco, G. M.; Veling, M. T.; Lamothe, R.; Handakumbura, P. P.; Xiong, G.; Wang, C.; Corwin, J.; Tsoukalas, A.; Zhang, L.; Ware, D.; Pauly, M.; Kliebenstein, D. J.; Dehesh, K.; Tagkopoulos, I.; Breton, G.; Pruneda-Paz, J. L.; Ahnert, S. E.; Kay, S. A.; Hazen, S. P.; Brady, S. M.

    2014-12-24

    The plant cell wall is an important factor for determining cell shape, function and response to the environment. Secondary cell walls, such as those found in xylem, are composed of cellulose, hemicelluloses and lignin and account for the bulk of plant biomass. The coordination between transcriptional regulation of synthesis for each polymer is complex and vital to cell function. A regulatory hierarchy of developmental switches has been proposed, although the full complement of regulators remains unknown. In this paper, we present a protein–DNA network between Arabidopsis thaliana transcription factors and secondary cell wall metabolic genes with gene expression regulated by a series of feed-forward loops. This model allowed us to develop and validate new hypotheses about secondary wall gene regulation under abiotic stress. Distinct stresses are able to perturb targeted genes to potentially promote functional adaptation. Finally, these interactions will serve as a foundation for understanding the regulation of a complex, integral plant component.

  14. Magnetic domain wall conduits for single cell applications.

    PubMed

    Donolato, M; Torti, A; Kostesha, N; Deryabina, M; Sogne, E; Vavassori, P; Hansen, M F; Bertacco, R

    2011-09-07

    The ability to trap, manipulate and release single cells on a surface is important both for fundamental studies of cellular processes and for the development of novel lab-on-chip miniaturized tools for biological and medical applications. In this paper we demonstrate how magnetic domain walls generated in micro- and nano-structures fabricated on a chip surface can be used to handle single yeast cells labeled with magnetic beads. In detail, first we show that the proposed approach maintains the microorganism viable, as proven by monitoring the division of labeled yeast cells trapped by domain walls over 16 hours. Moreover, we demonstrate the controlled transport and release of individual yeast cells via displacement and annihilation of individual domain walls in micro- and nano-sized magnetic structures. These results pave the way to the implementation of magnetic devices based on domain walls technology in lab-on-chip systems devoted to accurate individual cell trapping and manipulation.

  15. Power overshoot in two-chambered microbial fuel cell (MFC).

    PubMed

    Nien, Po-Chin; Lee, Chin-Yu; Ho, Kuo-Chuan; Adav, Sunil S; Liu, Lihong; Wang, Aijie; Ren, Nanqi; Lee, Duu-Jong

    2011-04-01

    A two-chamber microbial fuel cell was started using iron-reducing strains as inoculum and acetate as carbon sources. The tested microbial fuel cell had an open-circuit voltage of 0.67 V, and reached 1045 mA m(-2) and a power density of 486 mW m(-2) at 0.46 V before power overshoot occurred. Anodic reactions were identified as the rate-determining steps. Stirring the anolyte insignificantly increased cell performance, suggesting a minimal external mass transfer resistance from the anolyte to the anodic biofilm. Data regression analysis indicates that charge transfer resistance at the biofilm-anode junction was negligible. The order of magnitude estimation of electrical conductance indicates that electron transfer resistance had an insignificant effect on microbial fuel cell performance. Resistance in electrogens for substrate utilization is proposed to induce microbial fuel cell power overshoot.

  16. On the growth of walled cells: From shells to vesicles.

    NASA Astrophysics Data System (ADS)

    Boudaoud, Arezki

    2003-03-01

    The growth of isolated walled cells is investigated. Examples of such cells range from bacteria to giant algae, and include cochlear hair, plant root hair, fungi and yeast cells. They are modeled as elastic shells inflated by a liquid. Cell growth is driven by fluid pressure and is similar to a plastic deformation of the wall. The requirement of mechanical equilibrium leads to two new scaling laws for cell size that are in quantitative agreement with the compiled biological data. Given these results, possible shapes for growing cells are computed by analogy with those of vesicle membranes.

  17. Growth of Walled Cells: From Shells to Vesicles

    NASA Astrophysics Data System (ADS)

    Boudaoud, Arezki

    2003-07-01

    The growth of isolated walled cells is investigated. Examples of such cells range from bacteria to giant algae, and include cochlear hair, plant root hair, fungi, and yeast cells. They are modeled as elastic shells containing a liquid. Cell growth is driven by fluid pressure and is is similar to a plastic deformation of the wall. The requirement of mechanical equilibrium leads to two new scaling laws for cell size that are in quantitative agreement with the compiled biological data. Given these results, possible shapes for growing cells are computed by analogy with those of vesicle membranes.

  18. Salt stress causes cell wall damage in yeast cells lacking mitochondrial DNA

    PubMed Central

    Gao, Qiuqiang; Liou, Liang-Chun; Ren, Qun; Bao, Xiaoming; Zhang, Zhaojie

    2014-01-01

    The yeast cell wall plays an important role in maintaining cell morphology, cell integrity and response to environmental stresses. Here, we report that salt stress causes cell wall damage in yeast cells lacking mitochondrial DNA (ρ0). Upon salt treatment, the cell wall is thickened, broken and becomes more sensitive to the cell wall-perturbing agent sodium dodecyl sulfate (SDS). Also, SCW11 mRNA levels are elevated in ρ0 cells. Deletion of SCW11 significantly decreases the sensitivity of ρ0 cells to SDS after salt treatment, while overexpression of SCW11 results in higher sensitivity. In addition, salt stress in ρ0 cells induces high levels of reactive oxygen species (ROS), which further damages the cell wall, causing cells to become more sensitive towards the cell wall-perturbing agent. PMID:28357227

  19. Microbial community structure elucidates performance of Glyceria maxima plant microbial fuel cell.

    PubMed

    Timmers, Ruud A; Rothballer, Michael; Strik, David P B T B; Engel, Marion; Schulz, Stephan; Schloter, Michael; Hartmann, Anton; Hamelers, Bert; Buisman, Cees

    2012-04-01

    The plant microbial fuel cell (PMFC) is a technology in which living plant roots provide electron donor, via rhizodeposition, to a mixed microbial community to generate electricity in a microbial fuel cell. Analysis and localisation of the microbial community is necessary for gaining insight into the competition for electron donor in a PMFC. This paper characterises the anode-rhizosphere bacterial community of a Glyceria maxima (reed mannagrass) PMFC. Electrochemically active bacteria (EAB) were located on the root surfaces, but they were more abundant colonising the graphite granular electrode. Anaerobic cellulolytic bacteria dominated the area where most of the EAB were found, indicating that the current was probably generated via the hydrolysis of cellulose. Due to the presence of oxygen and nitrate, short-chain fatty acid-utilising denitrifiers were the major competitors for the electron donor. Acetate-utilising methanogens played a minor role in the competition for electron donor, probably due to the availability of graphite granules as electron acceptors.

  20. Anodic and cathodic microbial communities in single chamber microbial fuel cells.

    PubMed

    Daghio, Matteo; Gandolfi, Isabella; Bestetti, Giuseppina; Franzetti, Andrea; Guerrini, Edoardo; Cristiani, Pierangela

    2015-01-25

    Microbial fuel cells (MFCs) are a rapidly growing technology for energy production from wastewater and biomasses. In a MFC, a microbial biofilm oxidizes organic matter and transfers electrons from reduced compounds to an anode as the electron acceptor by extracellular electron transfer (EET). The aim of this work was to characterize the microbial communities operating in a Single Chamber Microbial Fuel Cell (SCMFC) fed with acetate and inoculated with a biogas digestate in order to gain more insight into anodic and cathodic EET. Taxonomic characterization of the communities was carried out by Illumina sequencing of a fragment of the 16S rRNA gene. Microorganisms belonging to Geovibrio genus and purple non-sulfur (PNS) bacteria were found to be dominant in the anodic biofilm. The alkaliphilic genus Nitrincola and anaerobic microorganisms belonging to Porphyromonadaceae family were the most abundant bacteria in the cathodic biofilm.

  1. A formin-nucleated actin aster concentrates cell wall hydrolases for cell fusion in fission yeast

    PubMed Central

    Dudin, Omaya; Bendezú, Felipe O.; Groux, Raphael; Laroche, Thierry; Seitz, Arne

    2015-01-01

    Cell–cell fusion is essential for fertilization. For fusion of walled cells, the cell wall must be degraded at a precise location but maintained in surrounding regions to protect against lysis. In fission yeast cells, the formin Fus1, which nucleates linear actin filaments, is essential for this process. In this paper, we show that this formin organizes a specific actin structure—the actin fusion focus. Structured illumination microscopy and live-cell imaging of Fus1, actin, and type V myosins revealed an aster of actin filaments whose barbed ends are focalized near the plasma membrane. Focalization requires Fus1 and type V myosins and happens asynchronously always in the M cell first. Type V myosins are essential for fusion and concentrate cell wall hydrolases, but not cell wall synthases, at the fusion focus. Thus, the fusion focus focalizes cell wall dissolution within a broader cell wall synthesis zone to shift from cell growth to cell fusion. PMID:25825517

  2. AC power generation from microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Lobo, Fernanda Leite; Wang, Heming; Forrestal, Casey; Ren, Zhiyong Jason

    2015-11-01

    Microbial fuel cells (MFCs) directly convert biodegradable substrates to electricity and carry good potential for energy-positive wastewater treatment. However, the low and direct current (DC) output from MFC is not usable for general electronics except small sensors, yet commercial DC-AC converters or inverters used in solar systems cannot be directly applied to MFCs. This study presents a new DC-AC converter system for MFCs that can generate alternating voltage in any desired frequency. Results show that AC power can be easily achieved in three different frequencies tested (1, 10, 60 Hz), and no energy storage layer such as capacitors was needed. The DC-AC converter efficiency was higher than 95% when powered by either individual MFCs or simple MFC stacks. Total harmonic distortion (THD) was used to investigate the quality of the energy, and it showed that the energy could be directly usable for linear electronic loads. This study shows that through electrical conversion MFCs can be potentially used in household electronics for decentralized off-grid communities.

  3. New chemical tools to probe cell wall biosynthesis in bacteria.

    PubMed

    Gale, Robert T; Brown, Eric D

    2015-10-01

    Some of the most successful drugs in the antibiotic pharmacopeia are those that inhibit bacterial cell wall biosynthesis. However, the worldwide spread of bacterial antibiotic resistance has eroded the clinical efficacy of these drugs and the antibiotic pipeline continues to be lean as drug discovery programs struggle to bring new agents to the clinic. Nevertheless, cell wall biogenesis remains a high interest and celebrated target. Recent advances in the preparation of chemical probes and biosynthetic intermediates provide the tools necessary to better understand cell wall assembly. Likewise, these tools offer new opportunities to identify and evaluate novel biosynthetic inhibitors. This review aims to highlight these advancements and to provide context for their utility as innovative new tools to study cell wall biogenesis and for antibacterial drug discovery.

  4. A versatile strategy for grafting polymers to wood cell walls.

    PubMed

    Keplinger, T; Cabane, E; Chanana, M; Hass, P; Merk, V; Gierlinger, N; Burgert, I

    2015-01-01

    The hierarchical structure of wood is composed of a cellulose skeleton of high structural order at various length scales. At the nanoscale and microscale the specific structural features of the cells and cell walls result in a lightweight structure with an anisotropic material profile of excellent mechanical performance. By being able to specifically functionalize wood at the level of cell and cell walls one can insert new properties and inevitably upscale them along the intrinsic hierarchical structure, to a level of large-scale engineering materials applications. For this purpose, however, precise control of the spatial distribution of the modifying substances in the complex wood structure is needed. Here we demonstrate a method to insert methacryl groups into wood cell walls using two different chemistry routes. By using these methacryl groups as the anchor points for grafting, various polymers can be inserted into the wood structure. Strikingly, depending on the methacryl precursor, the spatial distribution of the polymer differs strongly. As a proof of concept we grafted polystyrene as a model compound in the second modification step. In the case of methacryloyl chloride the polymer was located mainly at the interface between the cell lumina and the cell wall covering the inner surface of the cells and being traceable up to 2-3 μm in the cell wall, whereas in the case of methacrylic anhydride the polymer was located inside the whole cell wall. Scanning electron microscopy, Fourier transform infrared spectroscopy and especially Raman spectroscopy were used for an in-depth analysis of the modified wood at the cell wall level.

  5. Pectin Biosynthesis Is Critical for Cell Wall Integrity and Immunity in Arabidopsis thaliana

    PubMed Central

    Bethke, Gerit; Thao, Amanda; Xiong, Guangyan; Hatsugai, Noriyuki; Katagiri, Fumiaki; Pauly, Markus

    2016-01-01

    Plant cell walls are important barriers against microbial pathogens. Cell walls of Arabidopsis thaliana leaves contain three major types of polysaccharides: cellulose, various hemicelluloses, and pectins. UDP-d-galacturonic acid, the key building block of pectins, is produced from the precursor UDP-d-glucuronic acid by the action of glucuronate 4-epimerases (GAEs). Pseudomonas syringae pv maculicola ES4326 (Pma ES4326) repressed expression of GAE1 and GAE6 in Arabidopsis, and immunity to Pma ES4326 was compromised in gae6 and gae1 gae6 mutant plants. These plants had brittle leaves and cell walls of leaves had less galacturonic acid. Resistance to specific Botrytis cinerea isolates was also compromised in gae1 gae6 double mutant plants. Although oligogalacturonide (OG)-induced immune signaling was unaltered in gae1 gae6 mutant plants, immune signaling induced by a commercial pectinase, macerozyme, was reduced. Macerozyme treatment or infection with B. cinerea released less soluble uronic acid, likely reflecting fewer OGs, from gae1 gae6 cell walls than from wild-type Col-0. Although both OGs and macerozyme-induced immunity to B. cinerea in Col-0, only OGs also induced immunity in gae1 gae6. Pectin is thus an important contributor to plant immunity, and this is due at least in part to the induction of immune responses by soluble pectin, likely OGs, that are released during plant-pathogen interactions. PMID:26813622

  6. Cell wall polysaccharides from fern leaves: evidence for a mannan-rich Type III cell wall in Adiantum raddianum.

    PubMed

    Silva, Giovanna B; Ionashiro, Mari; Carrara, Thalita B; Crivellari, Augusto C; Tiné, Marco A S; Prado, Jefferson; Carpita, Nicholas C; Buckeridge, Marcos S

    2011-12-01

    Primary cell walls from plants are composites of cellulose tethered by cross-linking glycans and embedded in a matrix of pectins. Cell wall composition varies between plant species, reflecting in some instances the evolutionary distance between them. In this work the monosaccharide compositions of isolated primary cell walls of nine fern species and one lycophyte were characterized and compared with those from Equisetum and an angiosperm dicot. The relatively high abundance of mannose in these plants suggests that mannans may constitute the major cross-linking glycan in the primary walls of pteridophytes and lycophytes. Pectin-related polysaccharides contained mostly rhamnose and uronic acids, indicating the presence of rhamnogalacturonan I highly substituted with galactose and arabinose. Structural and fine-structural analyses of the hemicellulose fraction of leaves of Adiantum raddianum confirmed this hypothesis. Linkage analysis showed that the mannan contains mostly 4-Man with very little 4,6-Man, indicating a low percentage of branching with galactose. Treatment of the mannan-rich fractions with endo-β-mannanase produced characteristic mannan oligosaccharides. Minor amounts of xyloglucan and xylans were also detected. These data and those of others suggest that all vascular plants contain xyloglucans, arabinoxylans, and (gluco)mannans, but in different proportions that define cell wall types. Whereas xyloglucan and pectin-rich walls define Type I walls of dicots and many monocots, arabinoxylans and lower proportion of pectin define the Type II walls of commelinoid monocots. The mannan-rich primary walls with low pectins of many ferns and a lycopod indicate a fundamentally different wall type among land plants, the Type III wall.

  7. An improved protocol to study the plant cell wall proteome

    PubMed Central

    Printz, Bruno; Dos Santos Morais, Raphaël; Wienkoop, Stefanie; Sergeant, Kjell; Lutts, Stanley; Hausman, Jean-Francois; Renaut, Jenny

    2015-01-01

    Cell wall proteins were extracted from alfalfa stems according to a three-steps extraction procedure using sequentially CaCl2, EGTA, and LiCl-complemented buffers. The efficiency of this protocol for extracting cell wall proteins was compared with the two previously published methods optimized for alfalfa stem cell wall protein analysis. Following LC-MS/MS analysis the three-steps extraction procedure resulted in the identification of the highest number of cell wall proteins (242 NCBInr identifiers) and gave the lowest percentage of non-cell wall proteins (about 30%). However, the three protocols are rather complementary than substitutive since 43% of the identified proteins were specific to one protocol. This three-step protocol was therefore selected for a more detailed proteomic characterization using 2D-gel electrophoresis. With this technique, 75% of the identified proteins were shown to be fraction-specific and 72.7% were predicted as belonging to the cell wall compartment. Although, being less sensitive than LC-MS/MS approaches in detecting and identifying low-abundant proteins, gel-based approaches are valuable tools for the differentiation and relative quantification of protein isoforms and/or modified proteins. In particular isoforms, having variations in their amino-acid sequence and/or carrying different N-linked glycan chains were detected and characterized. This study highlights how the extracting protocols as well as the analytical techniques devoted to the study of the plant cell wall proteome are complementary and how they may be combined to elucidate the dynamism of the plant cell wall proteome in biological studies. Data are available via ProteomeXchange with identifier PXD001927. PMID:25914713

  8. Polysaccharide-degrading Enzymes are Unable to Attack Plant Cell Walls without Prior Action by a "Wall-modifying Enzyme".

    PubMed

    Karr, A L; Albersheim, P

    1970-07-01

    A study of the degradation of plant cell walls by the mixture of enzymes present in Pectinol R-10 is described. A "wall-modifying enzyme" has been purified from this mixture by a combination of diethylaminoethyl cellulose, Bio Gel P-100, and carboxymethyl cellulose chromatography. Treatment of cell walls with the "wall-modifying enzyme" is shown to be a necessary prerequisite to wall degradation catalyzed by a mixture of polysaccharide-degrading enzymes prepared from Pectinol R-10 or by an alpha-galactosidase secreted by the pathogenic fungus Colletotrichum lindemuthianum. The action of the "wall-modifying enzyme" on cell walls is shown to result in both a release of water-soluble, 70% ethanol-insoluble polymers and an alteration of the residual cell wall. A purified preparation of the "wall-modifying enzyme" is unable to degrade a wide variety of polysaccharide, glycoside, and peptide substrates. However, the purified preparation of wall-modifying enzyme has a limited ability to degrade polygalacturonic acid. The fact that polygalacturonic acid inhibits the ability of the "wall-modifying enzyme" to affect cell walls suggests that the "wall-modifying enzyme" may be responsible for the limited polygalacturonic acid-degrading activity present in the purified preparation. The importance of a wall-modifying enzyme in developmental processes and in pathogenesis is discussed.

  9. Cell-based detection of microbial biomaterial contaminations.

    PubMed

    Roch, Toralf; Ma, Nan; Kratz, Karl; Lendlein, Andreas

    2015-01-01

    A major challenge in biomaterial synthesis and functionalization is the prevention of microbial contaminations such as endotoxins (lipopolysaccharides (LPS)). In addition to LPS, which are exclusively expressed by Gram negative bacteria, also other microbial products derived from fungi or Gram positive bacteria can be found as contaminations in research laboratories. Typically, the Limulus amebocyte lysate (LAL)-test is used to determine the endotoxin levels of medical devices. However, this test fails to detect material-bound LPS and other microbial contaminations and, as demonstrated in this study, detects LPS from various bacterial species with different sensitivities.In this work, a cell-based assay using genetically engineered RAW macrophages, which detect not only soluble but also material-bound microbial contaminations is introduced.The sensitivity of this cell-line towards different LPS species and different heat-inactivated microbes was investigated. As proof of principle a soft hydrophobic poly(n-butyl acrylate) network (cPnBA), which may due to adhesive properties strongly bind microbes, was deliberately contaminated with heat-inactivated bacteria. While the LAL-test failed to detect the microbial contamination, the cell-based assay clearly detected material-bound microbial contaminations. Our data demonstrate that a cell-based detection system should routinely be used as supplement to the LAL-test to determine microbial contaminations of biomaterials.

  10. Microalgae-microbial fuel cell: A mini review.

    PubMed

    Lee, Duu-Jong; Chang, Jo-Shu; Lai, Juin-Yih

    2015-12-01

    Microalgae-microbial fuel cells (mMFCs) are a device that can convert solar energy to electrical energy via biological pathways. This mini-review lists new research and development works on microalgae processes, microbial fuel cell (MFC) processes, and their combined version, mMFC. The substantial improvement and technological advancement are highlighted, with a discussion on the challenges and prospects for possible commercialization of mMFC technologies.

  11. [Biomass energy utilization in microbial fuel cells: potentials and challenges].

    PubMed

    Huang, Liping; Cheng, Shaoan

    2010-07-01

    Microbial fuel cells (MFCs) that can harvest biomass energy from organic wastes through microbial catalysis have garnered more and more attention within the past decade due to its potential benefits to ecological environment. In this article, the updated progress in MFCs is reviewed, with a focus on frontier technologies such as chamber configurations, feedstock varieties and the integration of MFCs with microbial electrolysis cells for hydrogen production. And on the other hand, the challenges like development of cost-effective electrode materials, improvement of biomass energy recovery and power output, design and optimization of commercial MFC devices are presented.

  12. Implementation of microbial fuel cell in harvesting energy using wastewater

    NASA Astrophysics Data System (ADS)

    Ramli, N. L.; Wahab, M. S. Abdul; Sharif, S. A. Md; Ramly, N. H.

    2016-02-01

    In this century, most of the companies use the electricity from the fossils fuels such as oil, gas and coal. This method will give negative impact to the environment and the fossils fuel will be run out. This project is to develop a microbial fuels cell that can produce electricity. There are several types of the microbial fuel cell, which are a single chamber, double chamber and continuous. In this paper, the double chamber microbial fuel cell was selected to investigate the effect of suspended sludge into the double chamber microbial fuels cell. The salt bridge will construct between both chambers of the double chamber microbial fuels cell. Carbon graphite rod is selected as an electrode at the cathode and anode to transfer the electron from the anode to the cathode. Electricity is generated from the anaerobic oxidation of organic matter by bacteria. At the end of this project, the microbial fuels cell was successful in generating electricity that can be used for a specific application.

  13. The Permeability of Plant Cell Walls as Measured by Gel Filtration Chromatography

    NASA Astrophysics Data System (ADS)

    Tepeer, Mark; Taylor, Iain E. P.

    1981-08-01

    The permeability of plant cell walls to macromolecules may limit the ability of enzymes to alter the biochemical and physical properties of the wall. Proteins of molecular weight up to 60,000 can permeate a substantial portion of the cell wall. Measurements of wall permeability in which cells are exposed to hypertonic solutions of macromolecules may seriously underestimate wall permeability.

  14. Characterization and Localization of Insoluble Organic Matrices Associated with Diatom Cell Walls: Insight into Their Roles during Cell Wall Formation

    PubMed Central

    Tesson, Benoit; Hildebrand, Mark

    2013-01-01

    Organic components associated with diatom cell wall silica are important for the formation, integrity, and function of the cell wall. Polysaccharides are associated with the silica, however their localization, structure, and function remain poorly understood. We used imaging and biochemical approaches to describe in detail characteristics of insoluble organic components associated with the cell wall in 5 different diatom species. Results show that an insoluble organic matrix enriched in mannose, likely the diatotepum, is localized on the proximal surface of the silica cell wall. We did not identify any organic matrix embedded within the silica. We also identified a distinct material consisting of glucose polymer with variable localization depending on the species. In some species this component was directly involved in the morphogenesis of silica structure while in others it appeared to be only a structural component of the cell wall. A novel glucose-rich structure located between daughter cells during division was also identified. This work for the first time correlates the structure, composition, and localization of insoluble organic matrices associated with diatom cell walls. Additionally we identified a novel glucose polymer and characterized its role during silica structure formation. PMID:23626714

  15. Role of the plant cell wall in gravity resistance.

    PubMed

    Hoson, Takayuki; Wakabayashi, Kazuyuki

    2015-04-01

    Gravity resistance, mechanical resistance to the gravitational force, is a principal graviresponse in plants, comparable to gravitropism. The cell wall is responsible for the final step of gravity resistance. The gravity signal increases the rigidity of the cell wall via the accumulation of its constituents, polymerization of certain matrix polysaccharides due to the suppression of breakdown, stimulation of cross-link formation, and modifications to the wall environment, in a wide range of situations from microgravity in space to hypergravity. Plants thus develop a tough body to resist the gravitational force via an increase in cell wall rigidity and the modification of growth anisotropy. The development of gravity resistance mechanisms has played an important role in the acquisition of responses to various mechanical stresses and the evolution of land plants.

  16. Ultrastructure and Composition of the Nannochloropsis gaditana Cell Wall

    PubMed Central

    Scholz, Matthew J.; Weiss, Taylor L.; Jinkerson, Robert E.; Jing, Jia; Roth, Robyn; Goodenough, Ursula; Posewitz, Matthew C.

    2014-01-01

    Marine algae of the genus Nannochloropsis are promising producers of biofuel precursors and nutraceuticals and are also harvested commercially for aquaculture feed. We have used quick-freeze, deep-etch electron microscopy, Fourier transform infrared spectroscopy, and carbohydrate analyses to characterize the architecture of the Nannochloropsis gaditana (strain CCMP 526) cell wall, whose recalcitrance presents a significant barrier to biocommodity extraction. The data indicate a bilayer structure consisting of a cellulosic inner wall (∼75% of the mass balance) protected by an outer hydrophobic algaenan layer. Cellulase treatment of walls purified after cell lysis generates highly enriched algaenan preparations without using the harsh chemical treatments typically used in algaenan isolation and characterization. Nannochloropsis algaenan was determined to comprise long, straight-chain, saturated aliphatics with ether cross-links, which closely resembles the cutan of vascular plants. Chemical identification of >85% of the isolated cell wall mass is detailed, and genome analysis is used to identify candidate biosynthetic enzymes. PMID:25239976

  17. Characterizing visible and invisible cell wall mutant phenotypes.

    PubMed

    Carpita, Nicholas C; McCann, Maureen C

    2015-07-01

    About 10% of a plant's genome is devoted to generating the protein machinery to synthesize, remodel, and deconstruct the cell wall. High-throughput genome sequencing technologies have enabled a reasonably complete inventory of wall-related genes that can be assembled into families of common evolutionary origin. Assigning function to each gene family member has been aided immensely by identification of mutants with visible phenotypes or by chemical and spectroscopic analysis of mutants with 'invisible' phenotypes of modified cell wall composition and architecture that do not otherwise affect plant growth or development. This review connects the inference of gene function on the basis of deviation from the wild type in genetic functional analyses to insights provided by modern analytical techniques that have brought us ever closer to elucidating the sequence structures of the major polysaccharide components of the plant cell wall.

  18. Analysis of oxygen reduction and microbial community of air-diffusion biocathode in microbial fuel cells.

    PubMed

    Wang, Zejie; Zheng, Yue; Xiao, Yong; Wu, Song; Wu, Yicheng; Yang, Zhaohui; Zhao, Feng

    2013-09-01

    Microbes play irreplaceable role in oxygen reduction reaction of biocathode in microbial fuel cells (MFCs). In this study, air-diffusion biocathode MFCs were set up for accelerating oxygen reduction and microbial community analysis. Linear sweep voltammetry and Tafel curve confirmed the function of cathode biofilm to catalyze oxygen reduction. Microbial community analysis revealed higher diversity and richness of community in plankton than in biofilm. Proteobacteria was the shared predominant phylum in both biofilm and plankton (39.9% and 49.8%) followed by Planctomycetes (29.9%) and Bacteroidetes (13.3%) in biofilm, while Bacteroidetes (28.2%) in plankton. Minor fraction (534, 16.4%) of the total operational taxonomic units (3252) was overlapped demonstrating the disproportionation of bacterial distribution in biofilm and plankton. Pseudomonadales, Rhizobiales and Sphingobacteriales were exoelectrogenic orders in the present study. The research obtained deep insight of microbial community and provided more comprehensive information on uncultured rare bacteria.

  19. Motion of red blood cells near microvessel walls: effects of a porous wall layer

    PubMed Central

    HARIPRASAD, DANIEL S.; SECOMB, TIMOTHY W.

    2013-01-01

    A two-dimensional model is used to simulate the motion and deformation of a single mammalian red blood cell (RBC) flowing close to the wall of a microvessel, taking into account the effects of a porous endothelial surface layer (ESL) lining the vessel wall. Migration of RBCs away from the wall leads to the formation of a cell-depleted layer near the wall, which has a large effect on the resistance to blood flow in microvessels. The objective is to examine the mechanical factors causing this migration, including the effects of the ESL. The vessel is represented as a straight parallel-sided channel. The RBC is represented as a set of interconnected viscoelastic elements, suspended in plasma, a Newtonian fluid. The ESL is represented as a porous medium, and plasma flow in the layer is computed using the Brinkman approximation. It is shown that an initially circular cell positioned close to the ESL in a shear flow is deformed into an asymmetric shape. This breaking of symmetry leads to migration away from the wall. With increasing hydraulic resistivity of the layer, the rate of lateral migration increases. It is concluded that mechanical interactions of RBCs flowing in microvessels with a porous wall layer may reduce the rate of lateral migration and hence reduce the width of the cell-depleted zone external to the ESL, relative to the cell-depleted zone that would be formed if the interface between the ESL and free-flowing plasma were replaced by an impermeable boundary. PMID:23493820

  20. Yeast surface display of dehydrogenases in microbial fuel-cells.

    PubMed

    Gal, Idan; Schlesinger, Orr; Amir, Liron; Alfonta, Lital

    2016-12-01

    Two dehydrogenases, cellobiose dehydrogenase from Corynascus thermophilus and pyranose dehydrogenase from Agaricus meleagris, were displayed for the first time on the surface of Saccharomyces cerevisiae using the yeast surface display system. Surface displayed dehydrogenases were used in a microbial fuel cell and generated high power outputs. Surface displayed cellobiose dehydrogenase has demonstrated a midpoint potential of -28mV (vs. Ag/AgCl) at pH=6.5 and was used in a mediator-less anode compartment of a microbial fuel cell producing a power output of 3.3μWcm(-2) using lactose as fuel. Surface-displayed pyranose dehydrogenase was used in a microbial fuel cell and generated high power outputs using different substrates, the highest power output that was achieved was 3.9μWcm(-2) using d-xylose. These results demonstrate that surface displayed cellobiose dehydrogenase and pyranose dehydrogenase may successfully be used in microbial bioelectrochemical systems.

  1. Rapid detection of microbial cell abundance in aquatic systems.

    PubMed

    Rocha, Andrea M; Yuan, Quan; Close, Dan M; O'Dell, Kaela B; Fortney, Julian L; Wu, Jayne; Hazen, Terry C

    2016-11-15

    The detection and quantification of naturally occurring microbial cellular densities is an essential component of environmental systems monitoring. While there are a number of commonly utilized approaches for monitoring microbial abundance, capacitance-based biosensors represent a promising approach because of their low-cost and label-free detection of microbial cells, but are not as well characterized as more traditional methods. Here, we investigate the applicability of enhanced alternating current electrokinetics (ACEK) capacitive sensing as a new application for rapidly detecting and quantifying microbial cellular densities in cultured and environmentally sourced aquatic samples. ACEK capacitive sensor performance was evaluated using two distinct and dynamic systems - the Great Australian Bight and groundwater from the Oak Ridge Reservation in Oak Ridge, TN. Results demonstrate that ACEK capacitance-based sensing can accurately determine microbial cell counts throughout cellular concentrations typically encountered in naturally occurring microbial communities (10(3)-10(6) cells/mL). A linear relationship was observed between cellular density and capacitance change correlations, allowing a simple linear curve fitting equation to be used for determining microbial abundances in unknown samples. This work provides a foundation for understanding the limits of capacitance-based sensing in natural environmental samples and supports future efforts focusing on evaluating the robustness ACEK capacitance-based within aquatic environments.

  2. Determining the polysaccharide composition of plant cell walls.

    PubMed

    Pettolino, Filomena A; Walsh, Cherie; Fincher, Geoffrey B; Bacic, Antony

    2012-09-01

    The plant cell wall is a chemically complex structure composed mostly of polysaccharides. Detailed analyses of these cell wall polysaccharides are essential for our understanding of plant development and for our use of plant biomass (largely wall material) in the food, agriculture, fabric, timber, biofuel and biocomposite industries. We present analytical techniques not only to define the fine chemical structures of individual cell wall polysaccharides but also to estimate the overall polysaccharide composition of cell wall preparations. The procedure covers the preparation of cell walls, together with gas chromatography-mass spectrometry (GC-MS)-based methods, for both the analysis of monosaccharides as their volatile alditol acetate derivatives and for methylation analysis to determine linkage positions between monosaccharide residues as their volatile partially methylated alditol acetate derivatives. Analysis time will vary depending on both the method used and the tissue type, and ranges from 2 d for a simple neutral sugar composition to 2 weeks for a carboxyl reduction/methylation linkage analysis.

  3. Isolation and characterisation of the homogalacturonan from type II cell walls of the commelinoid monocot wheat using HF-solvolysis.

    PubMed

    Wiethölter, Nicola; Graessner, Barbara; Mierau, Manfred; Willats, William G T; Knox, J Paul; Moerschbacher, Bruno M

    2003-02-14

    In contrast to the typical type I cell wall of the dicot plants, the type II cell wall of the commelinoid monocot plants is known to be relatively poor in pectins. Assuming a critical role for the remaining pectins in terms of cell wall architecture and/or as a reservoir of signalling molecules, we have compared different protocols for the isolation of the main pectin polymer, homogalacturonan, from wheat leaf cell walls. Pectin was detected in these cell walls immunochemically using the monoclonal antibodies JIM5 and JIM7, and biochemically by monosaccharide analysis. The Ca(++)-chelators CDTA and imidazole extracted a pectin rich fraction from isolated cell walls which was however contaminated with significant amounts of hemicelluloses. Pretreatment of the cell walls with anhydrous hydrogen fluoride at controlled low temperatures followed by HF/ether- and water-extraction prior to imidazole-extraction of pectins yielded a purer homogalacturonan fraction. The near absence of rhamnosyl residues proved that the isolated homogalacturonan fraction was free of rhamnogalacturonans. If HF-solvolysis was performed at -23 degrees C, the resulting homogalacturonan had a degree of methyl esterification identical to that of the pectins in the initial wheat cell wall. The antibodies JIM5 and JIM7 as well as PAM1 and LM5 proved that the isolated homogalacturonan had a low methyl ester content, was polymeric and free of galactan side chains. We can thus isolate native homogalacturonan from the type II wheat cell walls with the original in muro pattern of methyl esterification still intact, to further investigate e.g., its degradability by plant or microbial pectic enzymes.

  4. Evaluation of cell wall preparations for proteomics: a new procedure for purifying cell walls from Arabidopsis hypocotyls

    PubMed Central

    Feiz, Leila; Irshad, Muhammad; Pont-Lezica, Rafael F; Canut, Hervé; Jamet, Elisabeth

    2006-01-01

    Background The ultimate goal of proteomic analysis of a cell compartment should be the exhaustive identification of resident proteins; excluding proteins from other cell compartments. Reaching such a goal closely depends on the reliability of the isolation procedure for the cell compartment of interest. Plant cell walls possess specific difficulties: (i) the lack of a surrounding membrane may result in the loss of cell wall proteins (CWP) during the isolation procedure, (ii) polysaccharide networks of cellulose, hemicelluloses and pectins form potential traps for contaminants such as intracellular proteins. Several reported procedures to isolate cell walls for proteomic analyses led to the isolation of a high proportion (more than 50%) of predicted intracellular proteins. Since isolated cell walls should hold secreted proteins, one can imagine alternative procedures to prepare cell walls containing a lower proportion of contaminant proteins. Results The rationales of several published procedures to isolate cell walls for proteomics were analyzed, with regard to the bioinformatic-predicted subcellular localization of the identified proteins. Critical steps were revealed: (i) homogenization in low ionic strength acid buffer to retain CWP, (ii) purification through increasing density cushions, (iii) extensive washes with a low ionic strength acid buffer to retain CWP while removing as many cytosolic proteins as possible, and (iv) absence of detergents. A new procedure was developed to prepare cell walls from etiolated hypocotyls of Arabidopsis thaliana. After salt extraction, a high proportion of proteins predicted to be secreted was released (73%), belonging to the same functional classes as proteins identified using previously described protocols. Finally, removal of intracellular proteins was obtained using detergents, but their amount represented less than 3% in mass of the total protein extract, based on protein quantification. Conclusion The new cell wall

  5. Electron microscopy of Staphylococcus aureus cell wall lysis.

    PubMed

    Virgilio, R; González, C; Muñoz, N; Mendoza, S

    1966-05-01

    Virgilio, Rafael (Escuela de Química y Farmacia, Universidad de Chile, Santiago, Chile), C. González, Nubia Muñoz, and Silvia Mendoza. Electron microscopy of Staphylococcus aureus cell wall lysis. J. Bacteriol. 91:2018-2024. 1966.-A crude suspension of Staphylococcus aureus cell walls (strain Cowan III) in buffer solution was shown by electron microscopy to lyse slightly after 16 hr, probably owing to the action of autolysin. The lysis was considerably faster and more intense after the addition of lysozyme. A remarkable reduction in thickness and rigidity of the cell walls, together with the appearance of many irregular protrusions in their outlines, was observed after 2 hr; after 16 hr, there remained only a few recognizable cell wall fragments but many residual particulate remnants. When autolysin was previously inactivated by trypsin, there was a complete inhibition of the lytic action of lysozyme; on the other hand, when autolysin was inactivated by heat and lysozyme was added, a distinct decrease in the thickness of the cell walls was observed, but there was no destruction of the walls. The lytic action of lysozyme, after treatment with hot 5% trichloroacetic acid, gave rise to a marked dissolution of the structure of the cell walls, which became lost against the background, without, however, showing ostensible alteration of wall outlines. From a morphological point of view, the lytic action of autolysin plus lysozyme was quite different from that of trichloroacetic acid plus lysozyme, as shown by electron micrographs, but in both cases it was very intense. This would suggest different mechanisms of action for these agents.

  6. A model for cell wall dissolution in mating yeast cells: polarized secretion and restricted diffusion of cell wall remodeling enzymes induces local dissolution.

    PubMed

    Huberman, Lori B; Murray, Andrew W

    2014-01-01

    Mating of the budding yeast, Saccharomyces cerevisiae, occurs when two haploid cells of opposite mating types signal using reciprocal pheromones and receptors, grow towards each other, and fuse to form a single diploid cell. To fuse, both cells dissolve their cell walls at the point of contact. This event must be carefully controlled because the osmotic pressure differential between the cytoplasm and extracellular environment causes cells with unprotected plasma membranes to lyse. If the cell wall-degrading enzymes diffuse through the cell wall, their concentration would rise when two cells touched each other, such as when two pheromone-stimulated cells adhere to each other via mating agglutinins. At the surfaces that touch, the enzymes must diffuse laterally through the wall before they can escape into the medium, increasing the time the enzymes spend in the cell wall, and thus raising their concentration at the point of attachment and restricting cell wall dissolution to points where cells touch each other. We tested this hypothesis by studying pheromone treated cells confined between two solid, impermeable surfaces. This confinement increases the frequency of pheromone-induced cell death, and this effect is diminished by reducing the osmotic pressure difference across the cell wall or by deleting putative cell wall glucanases and other genes necessary for efficient cell wall fusion. Our results support the model that pheromone-induced cell death is the result of a contact-driven increase in the local concentration of cell wall remodeling enzymes and suggest that this process plays an important role in regulating cell wall dissolution and fusion in mating cells.

  7. Production Model Press for the Preparation of Bacterial Cell Walls

    PubMed Central

    Perrine, T. D.; Ribi, E.; Maki, W.; Miller, B.; Oertli, E.

    1962-01-01

    A modification of the apparatus previously described permits the preparation of cell walls in quantity. This consists of a heavy duty, double-acting hydraulic press with motor-driven pump, and a superstrength alloy steel pressure cell which is corrosion resistant. Liquid cooling of the jet is substituted for the previously used gas cooling to minimize aerosol formation and to facilitate subsequent treatment of the products. The device produces cell walls of excellent quality in good yield. The pressure cell has been used satisfactorily up to about 60,000 psi. Design details are given. Images FIG. 1 FIG. 2 FIG. 6 PMID:14485524

  8. Identification of cell-wall stress as a hexose-dependent and osmosensitive regulator of plant responses.

    PubMed

    Hamann, Thorsten; Bennett, Mark; Mansfield, John; Somerville, Christopher

    2009-03-01

    Development, abiotic and biotic stress each affect the physical architecture and chemical composition of the plant cell wall, making maintenance of cell-wall integrity an important component of many plant processes. Cellulose biosynthesis inhibition (CBI) was employed to impair the functional integrity of the cell wall, and the plant's response to this specific stress was characterized in an Arabidopsis seedling model system. CBI caused changes in the expression of genes involved in mechanoperception, the response to microbial challenge, and lignin and cell-wall polysaccharide biosynthesis. Following CBI, activation of a UDP-D-xylose 4-epimerase gene correlated with increases in arabinose and uronic acid content in seedling cell walls. Activation of pathogen response genes, lignin deposition and lesion formation were dependent on externally supplied sugars and were suppressed by osmotic support. Lignin deposition in the root elongation zone caused by CBI was reduced in atrbohd (NADPH oxidase) mutant seedlings but increased in jasmonic acid resistant1 (jar1-1) mutant seedlings. Phytohormone measurements showed that CBI-induced increases in jasmonic (JA) and salicylic acids were dependent on sugar availability and prevented by osmotic support. We show that CBI activates responses commonly attributed to both abiotic and microbial challenges. Glucose/sucrose and turgor pressure are critical components in maintenance of cell-wall integrity and the regulation of induced responses, including JA biosynthesis. Lignin deposition induced by CBI is regulated by JAR1-1 and NADPH oxidase-dependent signalling processes. Our results identify components of the mechanism that mediates the response to impairment of cell-wall integrity in Arabidopsis thaliana.

  9. An efficient magnetically modified microbial cell biocomposite for carbazole biodegradation

    NASA Astrophysics Data System (ADS)

    Li, Yufei; Du, Xiaoyu; Wu, Chao; Liu, Xueying; Wang, Xia; Xu, Ping

    2013-12-01

    Magnetic modification of microbial cells enables to prepare smart biocomposites in bioremediation. In this study, we constructed an efficient biocomposite by assembling Fe3O4 nanoparticles onto the surface of Sphingomonas sp. XLDN2-5 cells. The average particle size of Fe3O4 nanoparticles was about 20 nm with 45.5 emu g-1 saturation magnetization. The morphology of Sphingomonas sp. XLDN2-5 cells before and after Fe3O4 nanoparticle loading was verified by scanning electron microscopy and transmission electronic microscopy. Compared with free cells, the microbial cell/Fe3O4 biocomposite had the same biodegradation activity but exhibited remarkable reusability. The degradation activity of the microbial cell/Fe3O4 biocomposite increased gradually during recycling processes. Additionally, the microbial cell/Fe3O4 biocomposite could be easily separated and recycled by an external magnetic field due to the super-paramagnetic properties of Fe3O4 nanoparticle coating. These results indicated that magnetically modified microbial cells provide a promising technique for improving biocatalysts used in the biodegradation of hazardous compounds.

  10. An efficient magnetically modified microbial cell biocomposite for carbazole biodegradation

    PubMed Central

    2013-01-01

    Magnetic modification of microbial cells enables to prepare smart biocomposites in bioremediation. In this study, we constructed an efficient biocomposite by assembling Fe3O4 nanoparticles onto the surface of Sphingomonas sp. XLDN2-5 cells. The average particle size of Fe3O4 nanoparticles was about 20 nm with 45.5 emu g-1 saturation magnetization. The morphology of Sphingomonas sp. XLDN2-5 cells before and after Fe3O4 nanoparticle loading was verified by scanning electron microscopy and transmission electronic microscopy. Compared with free cells, the microbial cell/Fe3O4 biocomposite had the same biodegradation activity but exhibited remarkable reusability. The degradation activity of the microbial cell/Fe3O4 biocomposite increased gradually during recycling processes. Additionally, the microbial cell/Fe3O4 biocomposite could be easily separated and recycled by an external magnetic field due to the super-paramagnetic properties of Fe3O4 nanoparticle coating. These results indicated that magnetically modified microbial cells provide a promising technique for improving biocatalysts used in the biodegradation of hazardous compounds. PMID:24330511

  11. [Interaction of the glycoprotein from the Bacillus pumilis cell wall with liposomes].

    PubMed

    Karamushka, V I; Gruzina, T G; Podol'skaia, V I; Ul'berg, Z R

    1987-01-01

    The methods of centrifugation and gel-filtration on Sephadexes G-50 and G-150 were used to study the interaction of Bacillus pumilis cell wall glycoprotein component having the molecular weight of 50 kDa (GP-50) with lyposomes from bacterial lipids. GP-50 is shown to sorb on such liposomes and disturb their barrier properties inducing yield of low-molecular label. GP-50 exerts no effect on properties of liposomes from egg lecithin. Electrostatic forces are supposed to play a decisive role in initial acts of GP-50 interactions with lipid phase of microbial envelopes.

  12. Another brick in the cell wall: biosynthesis dependent growth model.

    PubMed

    Barbacci, Adelin; Lahaye, Marc; Magnenet, Vincent

    2013-01-01

    Expansive growth of plant cell is conditioned by the cell wall ability to extend irreversibly. This process is possible if (i) a tensile stress is developed in the cell wall due to the coupling effect between turgor pressure and the modulation of its mechanical properties through enzymatic and physicochemical reactions and if (ii) new cell wall elements can be synthesized and assembled to the existing wall. In other words, expansive growth is the result of coupling effects between mechanical, thermal and chemical energy. To have a better understanding of this process, models must describe the interplay between physical or mechanical variable with biological events. In this paper we propose a general unified and theoretical framework to model growth in function of energy forms and their coupling. This framework is based on irreversible thermodynamics. It is then applied to model growth of the internodal cell of Chara corallina modulated by changes in pressure and temperature. The results describe accurately cell growth in term of length increment but also in term of cell pectate biosynthesis and incorporation to the expanding wall. Moreover, the classical growth model based on Lockhart's equation such as the one proposed by Ortega, appears as a particular and restrictive case of the more general growth equation developed in this paper.

  13. A widespread family of bacterial cell wall assembly proteins

    PubMed Central

    Kawai, Yoshikazu; Marles-Wright, Jon; Cleverley, Robert M; Emmins, Robyn; Ishikawa, Shu; Kuwano, Masayoshi; Heinz, Nadja; Bui, Nhat Khai; Hoyland, Christopher N; Ogasawara, Naotake; Lewis, Richard J; Vollmer, Waldemar; Daniel, Richard A; Errington, Jeff

    2011-01-01

    Teichoic acids and acidic capsular polysaccharides are major anionic cell wall polymers (APs) in many bacteria, with various critical cell functions, including maintenance of cell shape and structural integrity, charge and cation homeostasis, and multiple aspects of pathogenesis. We have identified the widespread LytR–Cps2A–Psr (LCP) protein family, of previously unknown function, as novel enzymes required for AP synthesis. Structural and biochemical analysis of several LCP proteins suggest that they carry out the final step of transferring APs from their lipid-linked precursor to cell wall peptidoglycan (PG). In Bacillus subtilis, LCP proteins are found in association with the MreB cytoskeleton, suggesting that MreB proteins coordinate the insertion of the major polymers, PG and AP, into the cell wall. PMID:21964069

  14. Electricity generation in a microbial fuel cell with a microbially catalyzed cathode.

    PubMed

    Zhang, Jin-Na; Zhao, Qing-Liang; Aelterman, Peter; You, Shi-Jie; Jiang, Jun-Qiu

    2008-10-01

    A microbial fuel cell using aerobic microorganisms as the cathodic catalysts is described. By using anaerobic sludge in the anode and aerobic sludge in the cathode as inocula, the microbial fuel cell could be started up after a short lag time of 9 days, generating a stable voltage of 0.324 V (R (ex) = 500 Omega). At an aeration rate of 300 ml min(-1) in the cathode, a maximum volumetric power density of up to 24.7 W m(-3) (117.2 A m(-3)) was reached. This research demonstrates an economic system for recovering electrical energy from organic compounds.

  15. B cell-helping functions of gut microbial metabolites.

    PubMed

    Kim, Chang H

    2016-09-23

    Commensal microflora profoundly affects the host immune system. It has long been observed that commensal bacteria enhance antibody production in the host by producing antigens for B cell receptors (BCR) and ligands for Toll-like receptors (TLR). We recently reported that the microbial metabolites short-chain fatty acids (SCFAs) regulate the metabolism and gene expression in B cells to promote antibody production (Kim et al. Gut Microbial Metabolites Fuel Host Antibody Responses. Cell Host & Microbe. 2016; 20(2):202-14). The B-cell helping function of SCFAs and its implication in the host immune system are discussed in this article.

  16. B cell-helping functions of gut microbial metabolites

    PubMed Central

    Kim, Chang H.

    2016-01-01

    Commensal microflora profoundly affects the host immune system. It has long been observed that commensal bacteria enhance antibody production in the host by producing antigens for B cell receptors (BCR) and ligands for Toll-like receptors (TLR). We recently reported that the microbial metabolites short-chain fatty acids (SCFAs) regulate the metabolism and gene expression in B cells to promote antibody production (Kim et al. Gut Microbial Metabolites Fuel Host Antibody Responses. Cell Host & Microbe. 2016; 20(2):202-14). The B-cell helping function of SCFAs and its implication in the host immune system are discussed in this article. PMID:28357321

  17. Enrichment of Microbial Electrolysis Cell Biocathodes from Sediment Microbial Fuel Cell Bioanodes

    PubMed Central

    Pisciotta, John M.; Zaybak, Zehra; Call, Douglas F.; Nam, Joo-Youn

    2012-01-01

    Electron-accepting (electrotrophic) biocathodes were produced by first enriching graphite fiber brush electrodes as the anodes in sediment-type microbial fuel cells (sMFCs) using two different marine sediments and then electrically inverting the anodes to function as cathodes in two-chamber bioelectrochemical systems (BESs). Electron consumption occurred at set potentials of −439 mV and −539 mV (versus the potential of a standard hydrogen electrode) but not at −339 mV in minimal media lacking organic sources of energy. Results at these different potentials were consistent with separate linear sweep voltammetry (LSV) scans that indicated enhanced activity (current consumption) below only ca. −400 mV. MFC bioanodes not originally acclimated at a set potential produced electron-accepting (electrotrophic) biocathodes, but bioanodes operated at a set potential (+11 mV) did not. CO2 was removed from cathode headspace, indicating that the electrotrophic biocathodes were autotrophic. Hydrogen gas generation, followed by loss of hydrogen gas and methane production in one sample, suggested hydrogenotrophic methanogenesis. There was abundant microbial growth in the biocathode chamber, as evidenced by an increase in turbidity and the presence of microorganisms on the cathode surface. Clone library analysis of 16S rRNA genes indicated prominent sequences most similar to those of Eubacterium limosum (Butyribacterium methylotrophicum), Desulfovibrio sp. A2, Rhodococcus opacus, and Gemmata obscuriglobus. Transfer of the suspension to sterile cathodes made of graphite plates, carbon rods, or carbon brushes in new BESs resulted in enhanced current after 4 days, demonstrating growth by these microbial communities on a variety of cathode substrates. This report provides a simple and effective method for enriching autotrophic electrotrophs by the use of sMFCs without the need for set potentials, followed by the use of potentials more negative than −400 mV. PMID:22610438

  18. Enrichment of Microbial Electrolysis Cell Biocathodes from Sediment Microbial Fuel Cell Bioanodes

    SciTech Connect

    Pisciotta, JM; Zaybak, Z; Call, DF; Nam, JY; Logan, BE

    2012-07-18

    Electron-accepting (electrotrophic) biocathodes were produced by first enriching graphite fiber brush electrodes as the anodes in sediment-type microbial fuel cells (sMFCs) using two different marine sediments and then electrically inverting the anodes to function as cathodes in two-chamber bioelectrochemical systems (BESs). Electron consumption occurred at set potentials of -439 mV and -539 mV (versus the potential of a standard hydrogen electrode) but not at -339 mV in minimal media lacking organic sources of energy. Results at these different potentials were consistent with separate linear sweep voltammetry (LSV) scans that indicated enhanced activity (current consumption) below only ca. -400 mV. MFC bioanodes not originally acclimated at a set potential produced electron-accepting (electrotrophic) biocathodes, but bioanodes operated at a set potential (+11 mV) did not. CO, was removed from cathode headspace, indicating that the electrotrophic biocathodes were autotrophic. Hydrogen gas generation, followed by loss of hydrogen gas and methane production in one sample, suggested hydrogenotrophic methanogenesis. There was abundant microbial growth in the biocathode chamber, as evidenced by an increase in turbidity and the presence of microorganisms on the cathode surface. Clone library analysis of 16S rRNA genes indicated prominent sequences most similar to those of Eubacterium limosum (Butyribacterium methylotrophicum), Desulfovibrio sp. A2, Rhodococcus opacus, and Gemmata obscuriglobus. Transfer of the suspension to sterile cathodes made of graphite plates, carbon rods, or carbon brushes in new BESs resulted in enhanced current after 4 days, demonstrating growth by these microbial communities on a variety of cathode substrates. This report provides a simple and effective method for enriching autotrophic electrotrophs by the use of sMFCs without the need for set potentials, followed by the use of potentials more negative than -400 mV.

  19. Enrichment of microbial electrolysis cell biocathodes from sediment microbial fuel cell bioanodes.

    PubMed

    Pisciotta, John M; Zaybak, Zehra; Call, Douglas F; Nam, Joo-Youn; Logan, Bruce E

    2012-08-01

    Electron-accepting (electrotrophic) biocathodes were produced by first enriching graphite fiber brush electrodes as the anodes in sediment-type microbial fuel cells (sMFCs) using two different marine sediments and then electrically inverting the anodes to function as cathodes in two-chamber bioelectrochemical systems (BESs). Electron consumption occurred at set potentials of -439 mV and -539 mV (versus the potential of a standard hydrogen electrode) but not at -339 mV in minimal media lacking organic sources of energy. Results at these different potentials were consistent with separate linear sweep voltammetry (LSV) scans that indicated enhanced activity (current consumption) below only ca. -400 mV. MFC bioanodes not originally acclimated at a set potential produced electron-accepting (electrotrophic) biocathodes, but bioanodes operated at a set potential (+11 mV) did not. CO(2) was removed from cathode headspace, indicating that the electrotrophic biocathodes were autotrophic. Hydrogen gas generation, followed by loss of hydrogen gas and methane production in one sample, suggested hydrogenotrophic methanogenesis. There was abundant microbial growth in the biocathode chamber, as evidenced by an increase in turbidity and the presence of microorganisms on the cathode surface. Clone library analysis of 16S rRNA genes indicated prominent sequences most similar to those of Eubacterium limosum (Butyribacterium methylotrophicum), Desulfovibrio sp. A2, Rhodococcus opacus, and Gemmata obscuriglobus. Transfer of the suspension to sterile cathodes made of graphite plates, carbon rods, or carbon brushes in new BESs resulted in enhanced current after 4 days, demonstrating growth by these microbial communities on a variety of cathode substrates. This report provides a simple and effective method for enriching autotrophic electrotrophs by the use of sMFCs without the need for set potentials, followed by the use of potentials more negative than -400 mV.

  20. The composition of the cell wall of Aspergillus niger

    PubMed Central

    Johnston, I. R.

    1965-01-01

    1. The cell-wall composition of Aspergillus niger has been investigated. Analysis shows the presence of six sugars, glucose, galactose, mannose, arabinose, glucosamine and galactosamine, all in the d-configuration, except that a small amount of l-galactose may be present. Sixteen common amino acids are also present. 2. The wall consists chiefly of neutral carbohydrate (73–83%) and hexosamine (9–13%), with smaller amounts of lipid (2–7%), protein (0·5–2·5%) and phosphorus (less than 0·1%). The acetyl content (3·0–3·4%) corresponds to 1·0mole/mole of hexosamine nitrogen. 3. A fractionation of the cell-wall complex was achieved, with or without a preliminary phenol extraction, by using n-sodium hydroxide. Though this caused some degradation, 30–60% of the wall could be solubilized (depending on the preparation). Analyses on several fractions suggest that fractionation procedures bring about some separation of components although not in a clear-cut fashion. 4. Cell-wall preparations were shown to yield a fraction having [α]D approx. +240° (in n-sodium hydroxide) and consisting largely of glucose. This was separated into two subfractions, one of which had [α]D+281° (in n-sodium hydroxide) and had properties resembling the polysaccharide nigeran; the other had [α]D +231° (in n-sodium hydroxide). It is suggested that nigeran is a cell-wall component. PMID:5862404

  1. Control of Cell Wall Extensibility during Pollen Tube Growth

    PubMed Central

    Hepler, Peter K.

    2013-01-01

    In this review, we address the question of how the tip-growing pollen tube achieves its rapid rate of elongation while maintaining an intact cell wall. Although turgor is essential for growth to occur, the local expansion rate is controlled by local changes in the viscosity of the apical wall. We focus on several different structures and underlying processes that are thought to be major participants including exocytosis, the organization and activity of the actin cytoskeleton, calcium and proton physiology, and cellular energetics. We think that the actin cytoskeleton, in particular the apical cortical actin fringe, directs the flow of vesicles to the apical domain, where they fuse with the plasma membrane and contribute their contents to the expanding cell wall. While pH gradients, as generated by a proton-ATPase located on the plasma membrane along the side of the clear zone, may regulate rapid actin turnover and new polymerization in the fringe, the tip-focused calcium gradient biases secretion towards the polar axis. The recent data showing that exocytosis of new wall material precedes and predicts the process of cell elongation provide support for the idea that the intussusception of newly secreted pectin contributes to decreases in apical wall viscosity and to cell expansion. Other prime factors will be the localization and activity of the enzyme pectin methyl-esterase, and the chelation of calcium by pectic acids. Finally, we acknowledge a role for reactive oxygen species in the control of wall viscosity. PMID:23770837

  2. Control of cell wall extensibility during pollen tube growth.

    PubMed

    Hepler, Peter K; Rounds, Caleb M; Winship, Lawrence J

    2013-07-01

    In this review, we address the question of how the tip-growing pollen tube achieves its rapid rate of elongation while maintaining an intact cell wall. Although turgor is essential for growth to occur, the local expansion rate is controlled by local changes in the viscosity of the apical wall. We focus on several different structures and underlying processes that are thought to be major participants including exocytosis, the organization and activity of the actin cytoskeleton, calcium and proton physiology, and cellular energetics. We think that the actin cytoskeleton, in particular the apical cortical actin fringe, directs the flow of vesicles to the apical domain, where they fuse with the plasma membrane and contribute their contents to the expanding cell wall. While pH gradients, as generated by a proton-ATPase located on the plasma membrane along the side of the clear zone, may regulate rapid actin turnover and new polymerization in the fringe, the tip-focused calcium gradient biases secretion towards the polar axis. The recent data showing that exocytosis of new wall material precedes and predicts the process of cell elongation provide support for the idea that the intussusception of newly secreted pectin contributes to decreases in apical wall viscosity and to cell expansion. Other prime factors will be the localization and activity of the enzyme pectin methyl-esterase, and the chelation of calcium by pectic acids. Finally, we acknowledge a role for reactive oxygen species in the control of wall viscosity.

  3. Microfabricated alkali vapor cell with anti-relaxation wall coating

    SciTech Connect

    Straessle, R.; Pétremand, Y.; Briand, D.; Rooij, N. F. de; Pellaton, M.; Affolderbach, C.; Mileti, G.

    2014-07-28

    We present a microfabricated alkali vapor cell equipped with an anti-relaxation wall coating. The anti-relaxation coating used is octadecyltrichlorosilane and the cell was sealed by thin-film indium-bonding at a low temperature of 140 °C. The cell body is made of silicon and Pyrex and features a double-chamber design. Depolarizing properties due to liquid Rb droplets are avoided by confining the Rb droplets to one chamber only. Optical and microwave spectroscopy performed on this wall-coated cell are used to evaluate the cell's relaxation properties and a potential gas contamination. Double-resonance signals obtained from the cell show an intrinsic linewidth that is significantly lower than the linewidth that would be expected in case the cell had no wall coating but only contained a buffer-gas contamination on the level measured by optical spectroscopy. Combined with further experimental evidence this proves the presence of a working anti-relaxation wall coating in the cell. Such cells are of interest for applications in miniature atomic clocks, magnetometers, and other quantum sensors.

  4. Electricity production from municipal solid waste using microbial fuel cells.

    PubMed

    Chiu, H Y; Pai, T Y; Liu, M H; Chang, C A; Lo, F C; Chang, T C; Lo, H M; Chiang, C F; Chao, K P; Lo, W Y; Lo, S W; Chu, Y L

    2016-07-01

    The organic content of municipal solid waste has long been an attractive source of renewable energy, mainly as a solid fuel in waste-to-energy plants. This study focuses on the potential to use microbial fuel cells to convert municipal solid waste organics into energy using various operational conditions. The results showed that two-chamber microbial fuel cells with carbon felt and carbon felt allocation had a higher maximal power density (20.12 and 30.47 mW m(-2) for 1.5 and 4 L, respectively) than those of other electrode plate allocations. Most two-chamber microbial fuel cells (1.5 and 4 L) had a higher maximal power density than single-chamber ones with corresponding electrode plate allocations. Municipal solid waste with alkali hydrolysis pre-treatment and K3Fe(CN)6 as an electron acceptor improved the maximal power density to 1817.88 mW m(-2) (~0.49% coulomb efficiency, from 0.05-0.49%). The maximal power density from experiments using individual 1.5 and 4 L two-chamber microbial fuel cells, and serial and parallel connections of 1.5 and 4 L two-chamber microbial fuel cells, was found to be in the order of individual 4 L (30.47 mW m(-2)) > serial connection of 1.5 and 4 L (27.75) > individual 1.5 L (20.12) > parallel connection of 1.5 and 4 L (17.04) two-chamber microbial fuel cells . The power density using municipal solid waste microbial fuel cells was compared with information in the literature and discussed.

  5. Modeling of Sustainable Base Production by Microbial Electrolysis Cell.

    PubMed

    Blatter, Maxime; Sugnaux, Marc; Comninellis, Christos; Nealson, Kenneth; Fischer, Fabian

    2016-07-07

    A predictive model for the microbial/electrochemical base formation from wastewater was established and compared to experimental conditions within a microbial electrolysis cell. A Na2 SO4 /K2 SO4 anolyte showed that model prediction matched experimental results. Using Shewanella oneidensis MR-1, a strong base (pH≈13) was generated using applied voltages between 0.3 and 1.1 V. Due to the use of bicarbonate, the pH value in the anolyte remained unchanged, which is required to maintain microbial activity.

  6. Microbial communities involved in electricity generation from sulfide oxidation in a microbial fuel cell.

    PubMed

    Sun, Min; Tong, Zhong-Hua; Sheng, Guo-Ping; Chen, Yong-Zhen; Zhang, Feng; Mu, Zhe-Xuan; Wang, Hua-Lin; Zeng, Raymond J; Liu, Xian-Wei; Yu, Han-Qing; Wei, Li; Ma, Fang

    2010-10-15

    Simultaneous electricity generation and sulfide removal can be achieved in a microbial fuel cell (MFC). In electricity harvesting from sulfide oxidation in such an MFC, various microbial communities are involved. It is essential to elucidate the microbial communities and their roles in the sulfide conversion and electricity generation. In this work, an MFC was constructed to enrich a microbial consortium, which could harvest electricity from sulfide oxidation. Electrochemical analysis demonstrated that microbial catalysis was involved in electricity output in the sulfide-fed MFC. The anode-attached and planktonic communities could perform catalysis independently, and synergistic interactions occurred when the two communities worked together. A 16S rRNA clone library analysis was employed to characterize the microbial communities in the MFC. The anode-attached and planktonic communities shared similar richness and diversity, while the LIBSHUFF analysis revealed that the two community structures were significantly different. The exoelectrogenic, sulfur-oxidizing and sulfate-reducing bacteria were found in the MFC anodic chamber. The discovery of these bacteria was consistent with the community characteristics for electricity generation from sulfide oxidation. The exoelectrogenic bacteria were found both on the anode and in the solution. The sulfur-oxidizing bacteria were present in greater abundance on the anode than in the solution, while the sulfate-reducing bacteria preferably lived in the solution.

  7. Molecular Rigidity in Dry and Hydrated Onion Cell Walls.

    PubMed

    Ha, M. A.; Apperley, D. C.; Jarvis, M. C.

    1997-10-01

    Solid-state nuclear magnetic resonance relaxation experiments can provide information on the rigidity of individual molecules within a complex structure such as a cell wall, and thus show how each polymer can potentially contribute to the rigidity of the whole structure. We measured the proton magnetic relaxation parameters T2 (spin-spin) and T1p (spin-lattice) through the 13C-nuclear magnetic resonance spectra of dry and hydrated cell walls from onion (Allium cepa L.) bulbs. Dry cell walls behaved as rigid solids. The form of their T2 decay curves varied on a continuum between Gaussian, as in crystalline solids, and exponential, as in more mobile materials. The degree of molecular mobility that could be inferred from the T2 and T1p decay patterns was consistent with a crystalline state for cellulose and a glassy state for dry pectins. The theory of composite materials may be applied to explain the rigidity of dry onion cell walls in terms of their components. Hydration made little difference to the rigidity of cellulose and most of the xyloglucan shared this rigidity, but the pectic fraction became much more mobile. Therefore, the cellulose/xyloglucan microfibrils behaved as solid rods, and the most significant physical distinction within the hydrated cell wall was between the microfibrils and the predominantly pectic matrix. A minor xyloglucan fraction was much more mobile than the microfibrils and probably corresponded to cross-links between them. Away from the microfibrils, pectins expanded upon hydration into a nonhomogeneous, but much softer, almost-liquid gel. These data are consistent with a model for the stress-bearing hydrated cell wall in which pectins provide limited stiffness across the thickness of the wall, whereas the cross-linked microfibril network provides much greater rigidity in other directions.

  8. Solar energy powered microbial fuel cell with a reversible bioelectrode.

    PubMed

    Strik, David P B T B; Hamelers, Hubertus V M; Buisman, Cees J N

    2010-01-01

    The solar energy powered microbial fuel cell is an emerging technology for electricity generation via electrochemically active microorganisms fueled by solar energy via in situ photosynthesized metabolites from algae, cyanobacteria, or living higher plants. A general problem with microbial fuel cells is the pH membrane gradient which reduces cell voltage and power output. This problem is caused by acid production at the anode, alkaline production at the cathode, and the nonspecific proton exchange through the membrane. Here we report a solution for a new kind of solar energy powered microbial fuel cell via development of a reversible bioelectrode responsible for both biocatalyzed anodic and cathodic electron transfer. Anodic produced protons were used for the cathodic reduction reaction which held the formation of a pH membrane gradient. The microbial fuel cell continuously generated electricity and repeatedly reversed polarity dependent on aeration or solar energy exposure. Identified organisms within biocatalyzing biofilm of the reversible bioelectrode were algae, (cyano)bacteria and protozoa. These results encourage application of solar energy powered microbial fuel cells.

  9. Chromosome and cell wall segregation in Streptococcus faecium ATCC 9790

    SciTech Connect

    Higgins, M.L.; Glaser, D.; Dicker, D.T.; Zito, E.T.

    1989-01-01

    Segregation was studied by measuring the positions of autoradiographic grain clusters in chains formed from single cells containing on average less than one radiolabeled chromosome strand. The degree to which chromosomal and cell wall material cosegregated was quantified by using the methods of S. Cooper and M. Weinberger, dividing the number of chains labeled at the middle. This analysis indicated that in contrast to chromosomal segregation in Escherichia coli and, in some studies, to that in gram-positive rods, chromosomal segregation in Streptococcus faecium was slightly nonrandom and did not vary with growth rate. Results were not significantly affected by strand exchange. In contrast, labeled cell wall segregated predominantly nonrandomly.

  10. Challenges in microbial fuel cell development and operation.

    PubMed

    Kim, Byung Hong; Chang, In Seop; Gadd, Geoffrey M

    2007-09-01

    A microbial fuel cell (MFC) is a device that converts chemical energy into electricity through the catalytic activities of microorganisms. Although there is great potential of MFCs as an alternative energy source, novel wastewater treatment process, and biosensor for oxygen and pollutants, extensive optimization is required to exploit the maximum microbial potential. In this article, the main limiting factors of MFC operation are identified and suggestions are made to improve performance.

  11. Analyzing Cell Wall Elasticity After Hormone Treatment: An Example Using Tobacco BY-2 Cells and Auxin.

    PubMed

    Braybrook, Siobhan A

    2017-01-01

    Atomic force microscopy, and related nano-indentation techniques, is a valuable tool for analyzing the elastic properties of plant cell walls as they relate to changes in cell wall chemistry, changes in development, and response to hormones. Within this chapter I will describe a method for analyzing the effect of the phytohormone auxin on the cell wall elasticity of tobacco BY-2 cells. This general method may be easily altered for different experimental systems and hormones of interest.

  12. Understanding how the complex molecular architecture of mannan-degrading hydrolases contributes to plant cell wall degradation.

    PubMed

    Zhang, Xiaoyang; Rogowski, Artur; Zhao, Lei; Hahn, Michael G; Avci, Utku; Knox, J Paul; Gilbert, Harry J

    2014-01-24

    Microbial degradation of plant cell walls is a central component of the carbon cycle and is of increasing importance in environmentally significant industries. Plant cell wall-degrading enzymes have a complex molecular architecture consisting of catalytic modules and, frequently, multiple non-catalytic carbohydrate binding modules (CBMs). It is currently unclear whether the specificities of the CBMs or the topology of the catalytic modules are the primary drivers for the specificity of these enzymes against plant cell walls. Here, we have evaluated the relationship between CBM specificity and their capacity to enhance the activity of GH5 and GH26 mannanases and CE2 esterases against intact plant cell walls. The data show that cellulose and mannan binding CBMs have the greatest impact on the removal of mannan from tobacco and Physcomitrella cell walls, respectively. Although the action of the GH5 mannanase was independent of the context of mannan in tobacco cell walls, a significant proportion of the polysaccharide was inaccessible to the GH26 enzyme. The recalcitrant mannan, however, was fully accessible to the GH26 mannanase appended to a cellulose binding CBM. Although CE2 esterases display similar specificities against acetylated substrates in vitro, only CjCE2C was active against acetylated mannan in Physcomitrella. Appending a mannan binding CBM27 to CjCE2C potentiated its activity against Physcomitrella walls, whereas a xylan binding CBM reduced the capacity of esterases to deacetylate xylan in tobacco walls. This work provides insight into the biological significance for the complex array of hydrolytic enzymes expressed by plant cell wall-degrading microorganisms.

  13. RESEARCH ON CELL WALL CYTOCHEMISTRY OF SELECTED FUNGI.

    DTIC Science & Technology

    that the resistant material in their cell walls is chitin. All efforts to identify cellulose produced negative results. Solutions of chitinase ...fungi examined, especially Heterocephalum aurantiacum Plastid-like structures in the protoplasts are the cell organs which produce chitin. Chitin

  14. 15. View of interior, north wall of hot cell featuring ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. View of interior, north wall of hot cell featuring radioactive materials containment box, facing east - Nevada Test Site, Reactor Maintenance & Disassembly Complex, Junior Hot Cell, Jackass Flats, Area 25, South of intersection of Roads F & G, Mercury, Nye County, NV

  15. Cell-wall remodeling drives engulfment during Bacillus subtilis sporulation

    PubMed Central

    Ojkic, Nikola; López-Garrido, Javier; Pogliano, Kit; Endres, Robert G

    2016-01-01

    When starved, the Gram-positive bacterium Bacillus subtilis forms durable spores for survival. Sporulation initiates with an asymmetric cell division, creating a large mother cell and a small forespore. Subsequently, the mother cell membrane engulfs the forespore in a phagocytosis-like process. However, the force generation mechanism for forward membrane movement remains unknown. Here, we show that membrane migration is driven by cell wall remodeling at the leading edge of the engulfing membrane, with peptidoglycan synthesis and degradation mediated by penicillin binding proteins in the forespore and a cell wall degradation protein complex in the mother cell. We propose a simple model for engulfment in which the junction between the septum and the lateral cell wall moves around the forespore by a mechanism resembling the ‘template model’. Hence, we establish a biophysical mechanism for the creation of a force for engulfment based on the coordination between cell wall synthesis and degradation. DOI: http://dx.doi.org/10.7554/eLife.18657.001 PMID:27852437

  16. Brachypodium distachyon grain: characterization of endosperm cell walls.

    PubMed

    Guillon, Fabienne; Bouchet, Brigitte; Jamme, Frédéric; Robert, Paul; Quéméner, Bernard; Barron, Cécile; Larré, Colette; Dumas, Paul; Saulnier, Luc

    2011-01-01

    The wild grass Brachypodium distachyon has been proposed as an alternative model species for temperate cereals. The present paper reports on the characterization of B. distachyon grain, placing emphasis on endosperm cell walls. Brachypodium distachyon is notable for its high cell wall polysaccharide content that accounts for ∼52% (w/w) of the endosperm in comparison with 2-7% (w/w) in other cereals. Starch, the typical storage polysaccharide, is low [<10% (w/w)] in the endosperm where the main polysaccharide is (1-3) (1-4)-β-glucan [40% (w/w) of the endosperm], which in all likelihood plays a role as a storage compound. In addition to (1-3) (1-4)-β-glucan, endosperm cells contain cellulose and xylan in significant amounts. Interestingly, the ratio of ferulic acid to arabinoxylan is higher in B. distachyon grain than in other investigated cereals. Feruloylated arabinoxylan is mainly found in the middle lamella and cell junction zones of the storage endosperm, suggesting a potential role in cell-cell adhesion. The present results indicate that B. distachyon grains contain all the cell wall polysaccharides encountered in other cereal grains. Thus, due to its fully sequenced genome, its short life cycle, and the genetic tools available for mutagenesis/transformation, B. distachyon is a good model to investigate cell wall polysaccharide synthesis and function in cereal grains.

  17. Cell wall proteome analysis of Arabidopsis thaliana mature stems.

    PubMed

    Duruflé, Harold; Clemente, Hélène San; Balliau, Thierry; Zivy, Michel; Dunand, Christophe; Jamet, Elisabeth

    2017-02-02

    Plant stems carry flowers necessary for species propagation and need to be adapted to mechanical disturbance and environmental factors. The stem cell walls are different from other organs and can modify their rigidity or viscoelastic properties for the integrity and the robustness required to withstand mechanical impacts and environmental stresses. Plant cell wall is composed of complex polysaccharide networks also containing cell wall proteins (CWPs) crucial to perceive and limit the environmental effects. The CWPs are fundamental players in cell wall remodeling processes, and today, only 86 have been identified from the mature stems of the model plant Arabidopsis thaliana. With a destructive method, this study has enlarged its coverage to 302 CWPs. This new proteome is mainly composed of 27.5% proteins acting on polysaccharides, 16% proteases, 11.6% oxido-reductases, 11% possibly related to lipid metabolism and 11% of proteins with interacting domains with proteins or polysaccharides. Compared to stem cell wall proteomes already available (Brachypodium distachyon, Sacharum officinarum, Linum usitatissimum, Medicago sativa), that of A. thaliana stems has a higher proportion of proteins acting on polysaccharides and of proteases, but a lower proportion of oxido-reductases.

  18. Gene expression in Fusarium graminearum grown on plant cell wall.

    PubMed

    Carapito, Raphaël; Hatsch, Didier; Vorwerk, Sonja; Petkovski, Elizabet; Jeltsch, Jean-Marc; Phalip, Vincent

    2008-05-01

    Fusarium graminearum is a phytopathogenic filamentous fungus attacking a wide range of plants including Humulus lupulus (hop). Transcriptional analysis of F. graminearum grown on minimal media containing hop cell wall or glucose as the sole carbon source was performed by applying a highly stringent method combining microarrays and a subtracted cDNA library. In addition to genes coding for various cell wall degrading enzymes (CWDE), several metabolic pathways were induced in response to the plant cell wall substrate. Many genes participating in these pathways are probably involved in cellular transport. But the most interesting was that all the genes composing the 4-aminobutyrate-shunt (GABA-shunt) were also up-regulated in the presence of plant cell wall material and were present in the cDNA library. This study provides a description of a part of the fungal gene expression profile when it is in contact with raw biological materials, and helps in understanding the plant cell wall degradation and the infection process.

  19. Turnover of microbial groups and cell components in soil: 13C analysis of cellular biomarkers

    NASA Astrophysics Data System (ADS)

    Gunina, Anna; Dippold, Michaela; Glaser, Bruno; Kuzyakov, Yakov

    2017-01-01

    Microorganisms regulate the carbon (C) cycle in soil, controlling the utilization and recycling of organic substances. To reveal the contribution of particular microbial groups to C utilization and turnover within the microbial cells, the fate of 13C-labelled glucose was studied under field conditions. Glucose-derived 13C was traced in cytosol, amino sugars and phospholipid fatty acid (PLFA) pools at intervals of 3, 10 and 50 days after glucose addition into the soil. 13C enrichment in PLFAs ( ˜ 1.5 % of PLFA C at day 3) was an order of magnitude greater than in cytosol, showing the importance of cell membranes for initial C utilization. The 13C enrichment in amino sugars of living microorganisms at day 3 accounted for 0.57 % of total C pool; as a result, we infer that the replacement of C in cell wall components is 3 times slower than that of cell membranes. The C turnover time in the cytosol (150 days) was 3 times longer than in PLFAs (47 days). Consequently, even though the cytosol pool has the fastest processing rates compared to other cellular compartments, intensive recycling of components here leads to a long C turnover time. Both PLFA and amino-sugar profiles indicated that bacteria dominated in glucose utilization. 13C enrichment decreased with time for bacterial cell membrane components, but it remained constant or even increased for filamentous microorganisms. 13C enrichment of muramic acid was the 3.5 times greater than for galactosamine, showing a more rapid turnover of bacterial cell wall components compared to fungal. Thus, bacteria utilize a greater proportion of low-molecular-weight organic substances, whereas filamentous microorganisms are responsible for further C transformations. Thus, tracing 13C in cellular compounds with contrasting turnover rates elucidated the role of microbial groups and their cellular compartments in C utilization and recycling in soil. The results also reflect that microbial C turnover is not restricted to the death or

  20. Examining an underappreciated control on lignin decomposition in soils? Effects of reactive manganese species on intact plant cell walls

    NASA Astrophysics Data System (ADS)

    Keiluweit, M.; Bougoure, J.; Pett-Ridge, J.; Kleber, M.; Nico, P. S.

    2011-12-01

    Lignin comprises a dominant proportion of carbon fluxes into the soil (representing up to 50% of plant litter and roots). Two lines of evidence suggest that manganese (Mn) acts as a strong controlling factor on the residence time of lignin in soil ecosystems. First, Mn content is highly correlated with litter decomposition in temperate and boreal forest soil ecosystems and, second, microbial agents of lignin degradation have been reported to rely on reactive Mn(III)-complexes to specifically oxidize lignin. However, few attempts have been made to isolate the mechanisms responsible for the apparent Mn-dependence of lignin decomposition in soils. Here we tested the hypothesis that Mn(III)-oxalate complexes may act as a perforating 'pretreatment' for structurally intact plant cell walls. We propose that these diffusible oxidizers are small enough to penetrate and react with non-porous ligno-cellulose in cell walls. This process was investigated by reacting single Zinnia elegans tracheary elements with Mn(III)-oxalate complexes in a continuous flow-through microreactor. The uniformity of cultured tracheary elements allowed us to examine Mn(III)-induced changes in cell wall chemistry and ultrastructure on the micro-scale using fluorescence and electron microscopy as well as synchrotron-based infrared and X-ray spectromicroscopy. Our results show that Mn(III)-complexes substantially oxidize specific lignin components of the cell wall, solubilize decomposition products, severely undermine the cell wall integrity, and cause cell lysis. We conclude that Mn(III)-complexes induce oxidative damage in plant cell walls that renders ligno-cellulose substrates more accessible for microbial lignin- and cellulose-decomposing enzymes. Implications of our results for the rate limiting impact of soil Mn speciation and availability on litter decomposition in forest soils will be discussed.

  1. Effect of temperature on plant elongation and cell wall extensibility.

    PubMed

    Pietruszka, M; Lewicka, S

    2007-03-01

    Lockhart equation was derived for explaining plant cell expansion where both cell wall extension and water uptake must occur concomitantly. Its fundamental contribution was to express turgor pressure explicitly in terms of osmosis and wall mechanics. Here we present a new equation in which pressure is determined by temperature. It also accounts for the role of osmosis and consequently the role of water uptake in growing cell. By adopting literature data, we also attempt to report theoretically the close relation between plant elongation and cell wall extensibility. This is accomplished by the modified equation of growth solved for various temperatures in case of two different species. The results enable to interpret empirical data in terms of our model and fully confirm its applicability to the investigation of the problem of plant cell extensibility in function of environmental temperature. Moreover, by separating elastic effects from growth process we specified the characteristic temperature common for both processes which corresponds to the resonance energy of biochemical reactions as well as to the rapid softening of the elastic modes toward the high temperature end where we encountered viscoelastic and/or plastic behavior as dominating. By introducing analytical formulae connected with growth and elastic properties of the cell wall, we conclude with the statement how these both processes contribute quantitatively to the resonance-like shape of the elongation curve. In addition, the tension versus temperature "phase diagram" for a living plant cell is presented.

  2. Nanoparticle Facilitated Extracellular Electron Transfer in Microbial Fuel Cells

    DTIC Science & Technology

    2014-10-13

    KEYWORDS: Bacteria, facilitated electron transport, electrochemically active, iron sulfide, Shewanella Microbial fuel cells (MFCs) are capable of...to MFC technology is the unique capability of electrochemically active bacteria, such as Shewanella and Geobacter, to divert electrons from the... electrochemical studies also demonstra- ted that the current contribution from remote bacterial cells was significantly diminished at longer cell−electrode dis

  3. A new method for extraction of pectin from cell walls

    SciTech Connect

    Maness, N.O.; Mort, A.J. )

    1991-05-01

    Pectin is often extracted from plant tissues using the Ca{sup ++} chelators ethylenediamine tetraacetate (EDTA) or cyclohexane-trans-1,2 diamine tetraacetate (CDTA). While these chelators are effective in solubilizing pectin, even after extensive dialysis against distilled water, EDTA or CDTA remains associated with the pectin. The authors have found that if 500 mM imidazole buffer, pH 7.0 is substituted for 50 mM CDTA, pH 6.5, and for equivalent extraction periods, an equivalent amount of pectin with the same sugar composition is extracted. But, the imidazole buffer can be dialyzed away completely into distilled water. Their alternative procedure for extraction of pectin from cell walls will be presented. Utilization of the procedure for extraction of whole cell walls or cell walls pretreated with liquid hydrogen fluoride is discussed.

  4. Freezing stresses and hydration of isolated cell walls.

    PubMed

    Yoon, Yonghyeon; Pope, Jim; Wolfe, Joe

    2003-06-01

    The hydration of the cell walls of the giant alga Chara australis was measured as a function of temperature using quantitative deuterium nuclear magnetic resonance (NMR) of samples hydrated with D2O. At temperatures 23-5K below freezing, the hydration ratio (the ratio of mass of unfrozen water in microscopic phases in the cell wall to the dry mass) increases slowly with increasing temperature from about 0.2 to 0.4. It then rises rapidly with temperature in the few Kelvin below the freezing temperature. The linewidth of the NMR signal varies approximately linearly with the reciprocal of the hydration ratio, and with the freezing point depression or water potential. These empirical relations may be useful in estimating cell wall water contents in heterogeneous samples.

  5. [Stem and progenitor cells in biostructure of blood vessel walls].

    PubMed

    Korta, Krzysztof; Kupczyk, Piotr; Skóra, Jan; Pupka, Artur; Zejler, Paweł; Hołysz, Marcin; Gajda, Mariusz; Nowakowska, Beata; Barć, Piotr; Dorobisz, Andrzej T; Dawiskiba, Tomasz; Szyber, Piotr; Bar, Julia

    2013-09-18

    Development of vascular and hematopoietic systems during organogenesis occurs at the same time. During vasculogenesis, a small part of cells does not undergo complete differentiation but stays on this level, "anchored" in tissue structures described as stem cell niches. The presence of blood vessels within tissue stem cell niches is typical and led to identification of niches and ensures that they are functioning. The three-layer biostructure of vessel walls for artery and vein, tunica: intima, media and adventitia, for a long time was defined as a mechanical barrier between vessel light and the local tissue environment. Recent findings from vascular biology studies indicate that vessel walls are dynamic biostructures, which are equipped with stem and progenitor cells, described as vascular wall-resident stem cells/progenitor cells (VW-SC/PC). Distinct zones for vessel wall harbor heterogeneous subpopulations of VW-SC/PC, which are described as "subendothelial or vasculogenic zones". Recent evidence from in vitro and in vivo studies show that prenatal activity of stem and progenitor cells is not only limited to organogenesis but also exists in postnatal life, where it is responsible for vessel wall homeostasis, remodeling and regeneration. It is believed that VW-SC/PC could be engaged in progression of vascular disorders and development of neointima. We would like to summarize current knowledge about mesenchymal and progenitor stem cell phenotype with special attention to distribution and biological properties of VW-SC/PC in biostructures of intima, media and adventitia niches. It is postulated that in the near future, niches for VW-SC/PC could be a good source of stem and progenitor cells, especially in the context of vessel tissue bioengineering as a new alternative to traditional revascularization therapies.

  6. Novel insights of ethylene role in strawberry cell wall metabolism.

    PubMed

    Villarreal, Natalia M; Marina, María; Nardi, Cristina F; Civello, Pedro M; Martínez, Gustavo A

    2016-11-01

    Due to its organoleptic and nutraceutical qualities, strawberry fruit (Fragaria x ananassa, Duch) is a worldwide important commodity. The role of ethylene in the regulation of strawberry cell wall metabolism was studied in fruit from Toyonoka cultivar harvested at white stage, when most changes associated with fruit ripening have begun. Fruit were treated with ethephon, an ethylene-releasing reagent, or with 1-methylcyclopropene (1-MCP), a competitive inhibitor of ethylene action, maintaining a set of non-treated fruit as controls for each condition. Ethephon treated-fruit showed higher contents of hemicelluloses, cellulose and neutral sugars regarding controls, while 1-MCP-treated fruit showed a lower amount of those fractions. On the other hand, ethephon-treated fruit presented a lower quantity of galacturonic acid from ionically and covalently bound pectins regarding controls, while 1-MCP-treated fruit showed higher contents of those components. We also explored the ethylene effect over the mRNA accumulation of genes related to pectins and hemicelluloses metabolism, and a relationship between gene expression patterns and cell wall polysaccharides contents was shown. Moreover, we detected that strawberry necrotrophic pathogens growth more easily on plates containing cell walls from ethephon-treated fruit regarding controls, while a lower growth rate was observed when cell walls from 1-MCP treated fruit were used as the only carbon source, suggesting an effect of ethylene on cell wall structure. Around 60% of strawberry cell wall is made up of pectins, which in turns is 70% made by homogalacturonans. Our findings support the idea of a central role for pectins on strawberry fruit softening and a participation of ethylene in the regulation of this process.

  7. Functionally stable and phylogenetically diverse microbial enrichments from microbial fuel cells during wastewater treatment.

    PubMed

    Ishii, Shun'ichi; Suzuki, Shino; Norden-Krichmar, Trina M; Nealson, Kenneth H; Sekiguchi, Yuji; Gorby, Yuri A; Bretschger, Orianna

    2012-01-01

    Microbial fuel cells (MFCs) are devices that exploit microorganisms as biocatalysts to recover energy from organic matter in the form of electricity. One of the goals of MFC research is to develop the technology for cost-effective wastewater treatment. However, before practical MFC applications are implemented it is important to gain fundamental knowledge about long-term system performance, reproducibility, and the formation and maintenance of functionally-stable microbial communities. Here we report findings from a MFC operated for over 300 days using only primary clarifier effluent collected from a municipal wastewater treatment plant as the microbial resource and substrate. The system was operated in a repeat-batch mode, where the reactor solution was replaced once every two weeks with new primary effluent that consisted of different microbial and chemical compositions with every batch exchange. The turbidity of the primary clarifier effluent solution notably decreased, and 97% of biological oxygen demand (BOD) was removed after an 8-13 day residence time for each batch cycle. On average, the limiting current density was 1000 mA/m(2), the maximum power density was 13 mW/m(2), and coulombic efficiency was 25%. Interestingly, the electrochemical performance and BOD removal rates were very reproducible throughout MFC operation regardless of the sample variability associated with each wastewater exchange. While MFC performance was very reproducible, the phylogenetic analyses of anode-associated electricity-generating biofilms showed that the microbial populations temporally fluctuated and maintained a high biodiversity throughout the year-long experiment. These results suggest that MFC communities are both self-selecting and self-optimizing, thereby able to develop and maintain functional stability regardless of fluctuations in carbon source(s) and regular introduction of microbial competitors. These results contribute significantly toward the practical application

  8. Batteryless, wireless sensor powered by a sediment microbial fuel cell.

    PubMed

    Donovan, Conrad; Dewan, Alim; Heo, Deukhyoun; Beyenal, Haluk

    2008-11-15

    Sediment microbial fuel cells (SMFCs) are considered to be an alternative renewable power source for remote monitoring. There are two main challenges to using SMFCs as power sources: 1) a SMFC produces a low potential at which most sensor electronics do not operate, and 2) a SMFC cannot provide continuous power, so energy from the SMFC must be stored and then used to repower sensor electronics intermittently. In this study, we developed a SMFC and a power management system (PMS) to power a batteryless, wireless sensor. A SMFC operating with a microbial anode and cathode, located in the Palouse River, Pullman, Washington, U.S.A., was used to demonstrate the utility of the developed system. The designed PMS stored microbial energy and then started powering the wireless sensor when the SMFC potential reached 320 mV. It continued powering until the SMFC potential dropped below 52 mV. The system was repowered when the SMFC potential increased to 320 mV, and this repowering continued as long as microbial reactions continued. We demonstrated that a microbial fuel cell with a microbial anode and cathode can be used as an effective renewable power source for remote monitoring using custom-designed electronics.

  9. Particle Trajectories in Rotating Wall Cell Culture Devices

    NASA Technical Reports Server (NTRS)

    Ramachandran N.; Downey, J. P.

    1999-01-01

    Cell cultures are extremely important to the medical community since such cultures provide an opportunity to perform research on human tissue without the concerns inherent in experiments on individual humans. Development of cells in cultures has been found to be greatly influenced by the conditions of the culture. Much work has focused on the effect of the motions of cells in the culture relative to the solution. Recently rotating wall vessels have been used with success in achieving improved cellular cultures. Speculation and limited research have focused on the low shear environment and the ability of rotating vessels to keep cells suspended in solution rather than floating or sedimenting as the primary reasons for the improved cellular cultures using these devices. It is widely believed that the cultures obtained using a rotating wall vessel simulates to some degree the effect of microgravity on cultures. It has also been speculated that the microgravity environment may provide the ideal acceleration environment for culturing of cellular tissues due to the nearly negligible levels of sedimentation and shear possible. This work predicts particle trajectories of cells in rotating wall vessels of cylindrical and annular design consistent with the estimated properties of typical cellular cultures. Estimates of the shear encountered by cells in solution and the interactions with walls are studied. Comparisons of potential experiments in ground and microgravity environments are performed.

  10. Cell Walls and the Convergent Evolution of the Viral Envelope

    PubMed Central

    Buchmann, Jan P.

    2015-01-01

    SUMMARY Why some viruses are enveloped while others lack an outer lipid bilayer is a major question in viral evolution but one that has received relatively little attention. The viral envelope serves several functions, including protecting the RNA or DNA molecule(s), evading recognition by the immune system, and facilitating virus entry. Despite these commonalities, viral envelopes come in a wide variety of shapes and configurations. The evolution of the viral envelope is made more puzzling by the fact that nonenveloped viruses are able to infect a diverse range of hosts across the tree of life. We reviewed the entry, transmission, and exit pathways of all (101) viral families on the 2013 International Committee on Taxonomy of Viruses (ICTV) list. By doing this, we revealed a strong association between the lack of a viral envelope and the presence of a cell wall in the hosts these viruses infect. We were able to propose a new hypothesis for the existence of enveloped and nonenveloped viruses, in which the latter represent an adaptation to cells surrounded by a cell wall, while the former are an adaptation to animal cells where cell walls are absent. In particular, cell walls inhibit viral entry and exit, as well as viral transport within an organism, all of which are critical waypoints for successful infection and spread. Finally, we discuss how this new model for the origin of the viral envelope impacts our overall understanding of virus evolution. PMID:26378223

  11. Microbial community structure of different electrode materials in constructed wetland incorporating microbial fuel cell.

    PubMed

    Wang, Junfeng; Song, Xinshan; Wang, Yuhui; Abayneh, Befkadu; Ding, Yi; Yan, Denghua; Bai, Junhong

    2016-12-01

    The microbial fuel cell coupled with constructed wetland (CW-MFC) microcosms were operated under fed-batch mode for evaluating the effect of electrode materials on bioelectricity generation and microbial community composition. Experimental results indicated that the bioenergy output in CW-MFC increased with the substrate concentration; maximum average voltage (177mV) was observed in CW-MFC with carbon fiber felt (CFF). In addition, the four different materials resulted in the formation of significantly different microbial community distribution around the anode electrode. The relative abundance of Proteobacteria in CFF and foamed nickel (FN) was significantly higher than that in stainless steel mesh (SSM) and graphite rod (GR) samples. Notably, the findings indicate that CW-MFC utilizing FN anode electrode could apparently improve relative abundance of Dechloromonas, which has been regarded as a denitrifying and phosphate accumulating microorganism.

  12. Simultaneous microbial and electrochemical reductions of vanadium (V) with bioelectricity generation in microbial fuel cells.

    PubMed

    Zhang, Baogang; Tian, Caixing; Liu, Ying; Hao, Liting; Liu, Ye; Feng, Chuanping; Liu, Yuqian; Wang, Zhongli

    2015-03-01

    Simultaneous microbial and electrochemical reductions of vanadium (V) with bioelectricity generation were realized in microbial fuel cells (MFCs). With initial V(V) concentrations of 75 mg/l and 150 mg/l in anolyte and catholyte, respectively, stable power output of 419±11 mW/m(2) was achieved. After 12h operation, V(V) concentration in the catholyte decreased to the value similar to that of the initial one in the anolyte, meanwhile it was nearly reduced completely in the anolyte. V(IV) was the main reduction product, which subsequently precipitated, acquiring total vanadium removal efficiencies of 76.8±2.9%. Microbial community analysis revealed the emergence of the new species of Deltaproteobacteria and Bacteroidetes as well as the enhanced Spirochaetes mainly functioned in the anode. This study opens new pathways to successful remediation of vanadium contamination.

  13. Electricity generation and microbial community changes in microbial fuel cells packed with different anodic materials.

    PubMed

    Sun, Yanmei; Wei, Jincheng; Liang, Peng; Huang, Xia

    2011-12-01

    Four materials, carbon felt cube (CFC), granular graphite (GG), granular activated carbon (GAC) and granular semicoke (GS) were tested as packed anodic materials to seek a potentially practical material for microbial fuel cells (MFCs). The microbial community and its correlation with the electricity generation performance of MFCs were explored. The maximum power density was found in GAC, followed by CFC, GG and GS. In GAC and CFC packed MFCs, Geobacter was the dominating genus, while Azospira was the most populous group in GG. Results further indicated that GAC was the most favorable for Geobacter adherence and growth, and the maximum power densities had positive correlation with the total biomass and the relative abundance of Geobacter, but without apparent correlation with the microbial diversity. Due to the low content of Geobacter in GS, power generated in this system may be attributed to other microorganisms such as Synergistes, Bacteroidetes and Castellaniella.

  14. Protozoan grazing reduces the current output of microbial fuel cells.

    PubMed

    Holmes, Dawn E; Nevin, Kelly P; Snoeyenbos-West, Oona L; Woodard, Trevor L; Strickland, Justin N; Lovley, Derek R

    2015-10-01

    Several experiments were conducted to determine whether protozoan grazing can reduce current output from sediment microbial fuel cells. When marine sediments were amended with eukaryotic inhibitors, the power output from the fuel cells increased 2-5-fold. Quantitative PCR showed that Geobacteraceae sequences were 120 times more abundant on anodes from treated fuel cells compared to untreated fuel cells, and that Spirotrichea sequences in untreated fuel cells were 200 times more abundant on anode surfaces than in the surrounding sediments. Defined studies with current-producing biofilms of Geobacter sulfurreducens and pure cultures of protozoa demonstrated that protozoa that were effective in consuming G. sulfurreducens reduced current production up to 91% when added to G. sulfurreducens fuel cells. These results suggest that anode biofilms are an attractive food source for protozoa and that protozoan grazing can be an important factor limiting the current output of sediment microbial fuel cells.

  15. Interactions of Condensed Tannins with Saccharomyces cerevisiae Yeast Cells and Cell Walls: Tannin Location by Microscopy.

    PubMed

    Mekoue Nguela, Julie; Vernhet, Aude; Sieczkowski, Nathalie; Brillouet, Jean-Marc

    2015-09-02

    Interactions between grape tannins/red wine polyphenols and yeast cells/cell walls was previously studied within the framework of red wine aging and the use of yeast-derived products as an alternative to aging on lees. Results evidenced a quite different behavior between whole cells (biomass grown to elaborate yeast-derived products, inactivated yeast, and yeast inactivated after autolysis) and yeast cell walls (obtained from mechanical disruption of the biomass). Briefly, whole cells exhibited a high capacity to irreversibly adsorb grape and wine tannins, whereas only weak interactions were observed for cell walls. This last point was quite unexpected considering the literature and called into question the real role of cell walls in yeasts' ability to fix tannins. In the present work, tannin location after interactions between grape and wine tannins and yeast cells and cell walls was studied by means of transmission electron microscopy, light epifluorescence, and confocal microscopy. Microscopy observations evidenced that if tannins interact with cell walls, and especially cell wall mannoproteins, they also diffuse freely through the walls of dead cells to interact with their plasma membrane and cytoplasmic components.

  16. MECHANISM OF CELL WALL PENETRATION BY VIRUSES

    PubMed Central

    Puck, Theodore T.; Lee, Howard H.

    1954-01-01

    Treatment of radioactively labelled host cells with T1 or T2 bacteriophages induces a leakage of cellular P and S into the medium. Evidence is presented showing that this increased cell permeability is not the result of complete lysis of a small fraction of the cells, but rather is made up of contributions from all or most of the infected population. This leakage of cellular constituents exhibits the following characteristics: (a) Infection of a cell with a single virus suffices to evoke the reaction; (b) Increasing the multiplicity up to 7 to 8 virus particles per cell does not affect the extent of leakage produced; (c) Some leakage does occur at 0°C., but much less than at 37°C.; (d) Infection by T1 virus results in a smaller amount of leakage than in the case of T2, but the pattern of response to varying virus multiplicity is the same; (e) The P resulting from such leakage contains no DNA and chemically resembles that which elutes in smaller amounts from uninfected cells; (f) At 37°C. the virus-induced leakage reaction appears within a matter of seconds, and usually decreases after 2 to 3 minutes; (g) The reaction is inhibited by 0.025 M Mg++. Theoretical considerations are presented suggesting the place of this reaction in the sequence of events constituting the virus penetration reaction; its relationship to the phenomenon of lysis-from-without; and its resemblance to the leakage reaction produced by electrostatic binding of ionized compounds to cell surfaces. The existence of similar effects in avian-mammalian virus systems is noted. PMID:13163323

  17. Recognition of Microbial Glycolipids by Natural Killer T Cells

    PubMed Central

    Zajonc, Dirk M.; Girardi, Enrico

    2015-01-01

    T cells can recognize microbial antigens when presented by dedicated antigen-presenting molecules. While peptides are presented by classical members of the major histocompatibility complex (MHC) family (MHC I and II), lipids, glycolipids, and lipopeptides can be presented by the non-classical MHC member, CD1. The best studied subset of lipid-reactive T cells are type I natural killer T (iNKT) cells that recognize a variety of different antigens when presented by the non-classical MHCI homolog CD1d. iNKT cells have been shown to be important for the protection against various microbial pathogens, including B. burgdorferi, the causative agents of Lyme disease, and S. pneumoniae, which causes pneumococcal meningitis and community-acquired pneumonia. Both pathogens carry microbial glycolipids that can trigger the T cell antigen receptor (TCR), leading to iNKT cell activation. iNKT cells have an evolutionary conserved TCR alpha chain, yet retain the ability to recognize structurally diverse glycolipids. They do so using a conserved recognition mode, in which the TCR enforces a conserved binding orientation on CD1d. TCR binding is accompanied by structural changes within the TCR binding site of CD1d, as well as the glycolipid antigen itself. In addition to direct recognition of microbial antigens, iNKT cells can also be activated by a combination of cytokines (IL-12/IL-18) and TCR stimulation. Many microbes carry TLR antigens, and microbial infections can lead to TLR activation. The subsequent cytokine response in turn lower the threshold of TCR-mediated iNKT cell activation, especially when weak microbial or even self-antigens are presented during the cause of the infection. In summary, iNKT cells can be directly activated through TCR triggering of strong antigens, while cytokines produced by the innate immune response may be necessary for TCR triggering and iNKT cell activation in the presence of weak antigens. Here, we will review the molecular basis of iNKT cell

  18. Domain conservation in several volvocalean cell wall proteins.

    PubMed

    Woessner, J P; Molendijk, A J; van Egmond, P; Klis, F M; Goodenough, U W; Haring, M A

    1994-11-01

    Based on our previous work demonstrating that (SerPro)x epitopes are common to extensin-like cell wall proteins in Chlamydomonas' reinhardtii, we looked for similar proteins in the distantly related species C. eugametos. Using a polyclonal antiserum against a (SerPro)10 oligopeptide, we found distinct sets of stage-specific polypeptides immunoprecipitated from in vitro translations of C. eugametos RNA. Screening of a C. eugametos cDNA expression library with the antiserum led to the isolation of a cDNA (WP6) encoding a (SerPro)x-rich multidomain wall protein. Analysis of a similarly selected cDNA (VSP-3) from a C. reinhardtii cDNA expression library revealed that it also coded for a (SerPro)x-rich multidomain wall protein. The C-terminal rod domains of VSP-3 and WP6 are highly homologous, while the N-terminal domains are dissimilar; however, the N-terminal domain of VSP-3 is homologous to the globular domain of a cell wall protein from Volvox carteri. Exon shuffling might be responsible for this example of domain conservation over 350 million years of volvocalean cell wall protein evolution.

  19. A model of cell wall expansion based on thermodynamics of polymer networks

    NASA Technical Reports Server (NTRS)

    Veytsman, B. A.; Cosgrove, D. J.

    1998-01-01

    A theory of cell wall extension is proposed. It is shown that macroscopic properties of cell walls can be explained through the microscopic properties of interpenetrating networks of cellulose and hemicellulose. The qualitative conclusions of the theory agree with the existing experimental data. The dependence of the cell wall yield threshold on the secretion of the wall components is discussed.

  20. A Versatile Click-Compatible Monolignol Probe to Study Lignin Deposition in Plant Cell Walls

    PubMed Central

    Pandey, Jyotsna L.; Wang, Bo; Diehl, Brett G.; Richard, Tom L.; Chen, Gong; Anderson, Charles T.

    2015-01-01

    Lignin plays important structural and functional roles in plants by forming a hydrophobic matrix in secondary cell walls that enhances mechanical strength and resists microbial decay. While the importance of the lignin matrix is well documented and the biosynthetic pathways for monolignols are known, the process by which lignin precursors or monolignols are transported and polymerized to form this matrix remains a subject of considerable debate. In this study, we have synthesized and tested an analog of coniferyl alcohol that has been modified to contain an ethynyl group at the C-3 position. This modification enables fluorescent tagging and imaging of this molecule after its incorporation into plant tissue by click chemistry-assisted covalent labeling with a fluorescent azide dye, and confers a distinct Raman signature that could be used for Raman imaging. We found that this monolignol analog is incorporated into in vitro-polymerized dehydrogenation polymer (DHP) lignin and into root epidermal cell walls of 4-day-old Arabidopsis seedlings. Incorporation of the analog in stem sections of 6-week-old Arabidopsis thaliana plants and labeling with an Alexa-594 azide dye revealed the precise locations of new lignin polymerization. Results from this study indicate that this molecule can provide high-resolution localization of lignification during plant cell wall maturation and lignin matrix assembly. PMID:25884205

  1. A versatile click-compatible monolignol probe to study lignin deposition in plant cell walls.

    PubMed

    Pandey, Jyotsna L; Wang, Bo; Diehl, Brett G; Richard, Tom L; Chen, Gong; Anderson, Charles T

    2015-01-01

    Lignin plays important structural and functional roles in plants by forming a hydrophobic matrix in secondary cell walls that enhances mechanical strength and resists microbial decay. While the importance of the lignin matrix is well documented and the biosynthetic pathways for monolignols are known, the process by which lignin precursors or monolignols are transported and polymerized to form this matrix remains a subject of considerable debate. In this study, we have synthesized and tested an analog of coniferyl alcohol that has been modified to contain an ethynyl group at the C-3 position. This modification enables fluorescent tagging and imaging of this molecule after its incorporation into plant tissue by click chemistry-assisted covalent labeling with a fluorescent azide dye, and confers a distinct Raman signature that could be used for Raman imaging. We found that this monolignol analog is incorporated into in vitro-polymerized dehydrogenation polymer (DHP) lignin and into root epidermal cell walls of 4-day-old Arabidopsis seedlings. Incorporation of the analog in stem sections of 6-week-old Arabidopsis thaliana plants and labeling with an Alexa-594 azide dye revealed the precise locations of new lignin polymerization. Results from this study indicate that this molecule can provide high-resolution localization of lignification during plant cell wall maturation and lignin matrix assembly.

  2. Cell-wall composition and structure of yeast cells and conjugation tubes of Tremella mesenterica.

    PubMed

    Reid, I D; Bartnicki-Garcia, S

    1976-09-01

    Cell walls prepared from vegetative yeast cells and from hormone-induced conjugation tubes of the basidiomycete Tremella mesenterica had similar compositions. Evidence was found for 1,3-alpha-glucan (yeast 38%, tube 25%), 1,3-beta-1,6-beta-glucan (yeast 33%, tube 48%) and chitin (both less than 3%) in the walls. The walls also contained xylose (5 to 7%), mannose (6%), glucuronic acid (approx. 2%), and traces of galactose. Protein amounted to less than 2% of the wall weight. The cell capsule was very insoluble and could not be removed from the cell wall. The conjugation hormone did not appear to exert its effect on cell shape by causing gross changes in wall composition.

  3. An Arabidopsis gene regulatory network for secondary cell wall synthesis

    DOE PAGES

    Taylor-Teeples, M.; Lin, L.; de Lucas, M.; ...

    2014-12-24

    The plant cell wall is an important factor for determining cell shape, function and response to the environment. Secondary cell walls, such as those found in xylem, are composed of cellulose, hemicelluloses and lignin and account for the bulk of plant biomass. The coordination between transcriptional regulation of synthesis for each polymer is complex and vital to cell function. A regulatory hierarchy of developmental switches has been proposed, although the full complement of regulators remains unknown. In this paper, we present a protein–DNA network between Arabidopsis thaliana transcription factors and secondary cell wall metabolic genes with gene expression regulated bymore » a series of feed-forward loops. This model allowed us to develop and validate new hypotheses about secondary wall gene regulation under abiotic stress. Distinct stresses are able to perturb targeted genes to potentially promote functional adaptation. Finally, these interactions will serve as a foundation for understanding the regulation of a complex, integral plant component.« less

  4. Wood Contains a Cell-Wall Structural Protein

    NASA Astrophysics Data System (ADS)

    Bao, Wuli; O'Malley, David M.; Sederoff, Ronald R.

    1992-07-01

    A pine extensin-like protein (PELP) has been localized in metabolically active cells of differentiating xylem and in mature wood of loblolly pine (Pinus taeda L.). This proline-rich glycosylated protein was purified from cell walls of differentiating xylem by differential solubility and gel electrophoresis. Polyclonal rabbit antibodies were raised against the deglycosylated purified protein (dPELP) and purified antibody was used for immunolocalization. Immunogold and alkaline phosphatase secondary antibody staining both show antigen in secondary cell walls of earlywood and less staining in latewood. Immunoassays of milled dry wood were developed and used to show increased availability of antigen after hydrogen fluoride or cellulase treatment and decreased antigen after chlorite treatment. The specificity of the antigen-antibody reaction was confirmed by competition assays and by preadsorption of antibody to the purified protein. We propose that extensin-like protein is present in xylem cell walls during lignification and that the protein remains as a structural component of cell walls in wood for many years after xylogenesis. We suggest that such structural proteins play important roles in the differentiation of xylem and thereby could affect the properties of wood.

  5. The role of the cell wall compartment in mutualistic symbioses of plants

    PubMed Central

    Rich, Mélanie K.; Schorderet, Martine; Reinhardt, Didier

    2014-01-01

    Plants engage in mutualistic interactions with microbes that improve their mineral nutrient supply. The most wide-spread symbiotic association is arbuscular mycorrhiza (AM), in which fungi of the order Glomeromycota invade roots and colonize the cellular lumen of cortical cells. The establishment of this interaction requires a dedicated molecular-genetic program and a cellular machinery of the plant host. This program is partially shared with the root nodule symbiosis (RNS), which involves prokaryotic partners collectively referred to as rhizobia. Both, AM and RNS are endosymbioses that involve intracellular accommodation of the microbial partner in the cells of the plant host. Since plant cells are surrounded by sturdy cell walls, root penetration and cell invasion requires mechanisms to overcome this barrier while maintaining the cytoplasm of the two partners separate during development of the symbiotic association. Here, we discuss the diverse functions of the cell wall compartment in establishment and functioning of plant symbioses with the emphasis on AM and RNS, and we describe the stages of the AM association between the model organisms Petunia hybrida and Rhizophagus irregularis. PMID:24917869

  6. Rapid mapping of insertional mutations to probe cell wall regulation in Cryptococcus neoformans.

    PubMed

    Esher, Shannon K; Granek, Joshua A; Alspaugh, J Andrew

    2015-09-01

    Random insertional mutagenesis screens are important tools in microbial genetics studies. Investigators in fungal systems have used the plant pathogen Agrobacterium tumefaciens to create tagged, random mutations for genetic screens in their fungal species of interest through a unique process of trans-kingdom cellular transconjugation. However, identifying the locations of insertion has traditionally required tedious PCR-based methods, limiting the effective throughput of this system. We have developed an efficient genomic sequencing and analysis method (AIM-Seq) to facilitate identification of randomly generated genomic insertions in microorganisms. AIM-Seq combines batch sampling, whole genome sequencing, and a novel bioinformatics pipeline, AIM-HII, to rapidly identify sites of genomic insertion. We have specifically applied this technique to Agrobacterium-mediated transconjugation in the human fungal pathogen Cryptococcus neoformans. With this approach, we have screened a library of C. neoformans cell wall mutants, selecting twenty-seven mutants of interest for analysis by AIM-Seq. We identified thirty-five putative genomic insertions in known and previously unknown regulators of cell wall processes in this pathogenic fungus. We confirmed the relevance of a subset of these by creating independent mutant strains and analyzing resulting cell wall phenotypes. Through our sequence-based analysis of these mutations, we observed "typical" insertions of the Agrobacterium transfer DNA as well as atypical insertion events, including large deletions and chromosomal rearrangements. Initially applied to C. neoformans, this mutant analysis tool can be applied to a wide range of experimental systems and methods of mutagenesis, facilitating future microbial genetic screens.

  7. Cell-wall recovery after irreversible deformation of wood.

    PubMed

    Keckes, Jozef; Burgert, Ingo; Frühmann, Klaus; Müller, Martin; Kölln, Klaas; Hamilton, Myles; Burghammer, Manfred; Roth, Stephan V; Stanzl-Tschegg, Stefanie; Fratzl, Peter

    2003-12-01

    The remarkable mechanical properties of biological materials reside in their complex hierarchical architecture and in specific molecular mechanistic phenomena. The fundamental importance of molecular interactions and bond recovery has been suggested by studies on deformation and fracture of bone and nacre. Like these mineral-based materials, wood also represents a complex nanocomposite with excellent mechanical performance, despite the fact that it is mainly based on polymers. In wood, however, the mechanistic contribution of processes in the cell wall is not fully understood. Here we have combined tensile tests on individual wood cells and on wood foils with simultaneous synchrotron X-ray diffraction analysis in order to separate deformation mechanisms inside the cell wall from those mediated by cell-cell interactions. We show that tensile deformation beyond the yield point does not deteriorate the stiffness of either individual cells or foils. This indicates that there is a dominant recovery mechanism that re-forms the amorphous matrix between the cellulose microfibrils within the cell wall, maintaining its mechanical properties. This stick-slip mechanism, rather like Velcro operating at the nanometre level, provides a 'plastic response' similar to that effected by moving dislocations in metals. We suggest that the molecular recovery mechanism in the cell matrix is a universal phenomenon dominating the tensile deformation of different wood tissue types.

  8. Production Strategies and Applications of Microbial Single Cell Oils

    PubMed Central

    Ochsenreither, Katrin; Glück, Claudia; Stressler, Timo; Fischer, Lutz; Syldatk, Christoph

    2016-01-01

    Polyunsaturated fatty acids (PUFAs) of the ω-3 and ω-6 class (e.g., α-linolenic acid, linoleic acid) are essential for maintaining biofunctions in mammalians like humans. Due to the fact that humans cannot synthesize these essential fatty acids, they must be taken up from different food sources. Classical sources for these fatty acids are porcine liver and fish oil. However, microbial lipids or single cell oils, produced by oleaginous microorganisms such as algae, fungi and bacteria, are a promising source as well. These single cell oils can be used for many valuable chemicals with applications not only for nutrition but also for fuels and are therefore an ideal basis for a bio-based economy. A crucial point for the establishment of microbial lipids utilization is the cost-effective production and purification of fuels or products of higher value. The fermentative production can be realized by submerged (SmF) or solid state fermentation (SSF). The yield and the composition of the obtained microbial lipids depend on the type of fermentation and the particular conditions (e.g., medium, pH-value, temperature, aeration, nitrogen source). From an economical point of view, waste or by-product streams can be used as cheap and renewable carbon and nitrogen sources. In general, downstream processing costs are one of the major obstacles to be solved for full economic efficiency of microbial lipids. For the extraction of lipids from microbial biomass cell disruption is most important, because efficiency of cell disruption directly influences subsequent downstream operations and overall extraction efficiencies. A multitude of cell disruption and lipid extraction methods are available, conventional as well as newly emerging methods, which will be described and discussed in terms of large scale applicability, their potential in a modern biorefinery and their influence on product quality. Furthermore, an overview is given about applications of microbial lipids or derived fatty

  9. Production Strategies and Applications of Microbial Single Cell Oils.

    PubMed

    Ochsenreither, Katrin; Glück, Claudia; Stressler, Timo; Fischer, Lutz; Syldatk, Christoph

    2016-01-01

    Polyunsaturated fatty acids (PUFAs) of the ω-3 and ω-6 class (e.g., α-linolenic acid, linoleic acid) are essential for maintaining biofunctions in mammalians like humans. Due to the fact that humans cannot synthesize these essential fatty acids, they must be taken up from different food sources. Classical sources for these fatty acids are porcine liver and fish oil. However, microbial lipids or single cell oils, produced by oleaginous microorganisms such as algae, fungi and bacteria, are a promising source as well. These single cell oils can be used for many valuable chemicals with applications not only for nutrition but also for fuels and are therefore an ideal basis for a bio-based economy. A crucial point for the establishment of microbial lipids utilization is the cost-effective production and purification of fuels or products of higher value. The fermentative production can be realized by submerged (SmF) or solid state fermentation (SSF). The yield and the composition of the obtained microbial lipids depend on the type of fermentation and the particular conditions (e.g., medium, pH-value, temperature, aeration, nitrogen source). From an economical point of view, waste or by-product streams can be used as cheap and renewable carbon and nitrogen sources. In general, downstream processing costs are one of the major obstacles to be solved for full economic efficiency of microbial lipids. For the extraction of lipids from microbial biomass cell disruption is most important, because efficiency of cell disruption directly influences subsequent downstream operations and overall extraction efficiencies. A multitude of cell disruption and lipid extraction methods are available, conventional as well as newly emerging methods, which will be described and discussed in terms of large scale applicability, their potential in a modern biorefinery and their influence on product quality. Furthermore, an overview is given about applications of microbial lipids or derived fatty

  10. An emerging role of pectic rhamnogalacturonanII for cell wall integrity.

    PubMed

    Reboul, Rebecca; Tenhaken, Raimund

    2012-02-01

    The plant cell wall is a complex network of different polysaccharides and glycoproteins, showing high diversity in nature. The essential components, tethering cell wall are under debate, as novel mutants challenge established models. The mutant ugd2,3 with a reduced supply of the important wall precursor UDP-glucuronic acid reveals the critical role of the pectic compound rhamnogalacturonanII for cell wall stability. This polymer seems to be more important for cell wall integrity than the previously favored xyloglucan.

  11. Anodic microbial community diversity as a predictor of the power output of microbial fuel cells.

    PubMed

    Stratford, James P; Beecroft, Nelli J; Slade, Robert C T; Grüning, André; Avignone-Rossa, Claudio

    2014-03-01

    The relationship between the diversity of mixed-species microbial consortia and their electrogenic potential in the anodes of microbial fuel cells was examined using different diversity measures as predictors. Identical microbial fuel cells were sampled at multiple time-points. Biofilm and suspension communities were analysed by denaturing gradient gel electrophoresis to calculate the number and relative abundance of species. Shannon and Simpson indices and richness were examined for association with power using bivariate and multiple linear regression, with biofilm DNA as an additional variable. In simple bivariate regressions, the correlation of Shannon diversity of the biofilm and power is stronger (r=0.65, p=0.001) than between power and richness (r=0.39, p=0.076), or between power and the Simpson index (r=0.5, p=0.018). Using Shannon diversity and biofilm DNA as predictors of power, a regression model can be constructed (r=0.73, p<0.001). Ecological parameters such as the Shannon index are predictive of the electrogenic potential of microbial communities.

  12. Enhanced product formation in continuous fermentations with microbial cell recycle

    SciTech Connect

    Bull, D.N.; Young, M.D.

    1981-02-01

    The effect of partial recycle of microbial cells on the operation of a chemostat has been investigated for two fermentations. Stable steady states with and without partial cell recycle were obtained for the conversion of d-sorbitol to L-sorbose by Gluconobacter oxydans subsp. suboxydans 1916B and for the conversion of glucose to 2-ketogluconic acid by Serratia marcescens NRRl B-486. The employment of partial cell recycle dramatically increased product formation rates for both fermentations.

  13. Recent advances in microbial single cell genomics technology and applications

    NASA Astrophysics Data System (ADS)

    Stepanauskas, R.

    2015-12-01

    Single cell genomics is increasingly utilized as a powerful tool to decipher the metabolic potential, evolutionary histories and in situ interactions of environmental microorganisms. I will present several new developments of this exciting technology, which improve genomic data recovery from individual cells and allow its integration with cell's phenotypic properties. I will also demonstrate how these new technical capabilities help understanding the biology of the "microbial dark matter" inhabiting marine and terrestrial subsurface environments.

  14. Cell wall structure and function in lactic acid bacteria

    PubMed Central

    2014-01-01

    The cell wall of Gram-positive bacteria is a complex assemblage of glycopolymers and proteins. It consists of a thick peptidoglycan sacculus that surrounds the cytoplasmic membrane and that is decorated with teichoic acids, polysaccharides, and proteins. It plays a major role in bacterial physiology since it maintains cell shape and integrity during growth and division; in addition, it acts as the interface between the bacterium and its environment. Lactic acid bacteria (LAB) are traditionally and widely used to ferment food, and they are also the subject of more and more research because of their potential health-related benefits. It is now recognized that understanding the composition, structure, and properties of LAB cell walls is a crucial part of developing technological and health applications using these bacteria. In this review, we examine the different components of the Gram-positive cell wall: peptidoglycan, teichoic acids, polysaccharides, and proteins. We present recent findings regarding the structure and function of these complex compounds, results that have emerged thanks to the tandem development of structural analysis and whole genome sequencing. Although general structures and biosynthesis pathways are conserved among Gram-positive bacteria, studies have revealed that LAB cell walls demonstrate unique properties; these studies have yielded some notable, fundamental, and novel findings. Given the potential of this research to contribute to future applied strategies, in our discussion of the role played by cell wall components in LAB physiology, we pay special attention to the mechanisms controlling bacterial autolysis, bacterial sensitivity to bacteriophages and the mechanisms underlying interactions between probiotic bacteria and their hosts. PMID:25186919

  15. Titration of Isolated Cell Walls of Lemna minor L 1

    PubMed Central

    Morvan, Claudine; Demarty, Maurice; Thellier, Michel

    1979-01-01

    A theoretical model has been built to bypass the equation of titration of the cell wall. This equation, which is an extension of the Henderson-Hasselbach equation, underlines the importance of the exchange constant, the ionic strength as well as the rate of neutralization. The model is restricted to the case when the ionization degree is equal to the neutralization degree. The shape of the titration curve is shown to be strongly dependent on the valency of the base used. Experimental results have shown that isolated cell walls bear at least two kinds of sites. The first sites which are titrated after a short time of equilibration are attributed to polyuronic acids (capacity: 0.3 milliequivalents per gram fresh cell walls). The second sites, are obtained after a long time of equilibration (capacity: 1.2 to 1.3 milliequivalents per gram, fresh cell walls). Titrations have been performed with different bases [KOH, NaOH, and Ca(OH)2] and under different ionic strengths. The results obtained with NaOH and KOH do not exhibit any difference of selectivity. Conversely, the sites have a much bigger affinity for the Ca2+ ions than for the monovalent ones. The apparent pKa of the uronic acids was estimated to lie between 3.0 and 3.4; this is consistent with the values obtained with polyuronic acid solutions. PMID:16660868

  16. Imaging of plant cell walls by confocal Raman microscopy.

    PubMed

    Gierlinger, Notburga; Keplinger, Tobias; Harrington, Michael

    2012-09-01

    Raman imaging of plant cell walls represents a nondestructive technique that can provide insights into chemical composition in context with structure at the micrometer level (<0.5 μm). The major steps of the experimental procedure are described: sample preparation (embedding and microcutting), setting the mapping parameters, and finally the calculation of chemical images on the basis of the acquired Raman spectra. Every Raman image is based on thousands of spectra, each being a spatially resolved molecular 'fingerprint' of the cell wall. Multiple components are analyzed within the native cell walls, and insights into polymer composition as well as the orientation of the cellulose microfibrils can be gained. The most labor-intensive step of this process is often the sample preparation, as the imaging approach requires a flat surface of the plant tissue with intact cell walls. After finishing the map (acquisition time is ∼10 min to 10 h, depending on the size of the region of interest and scanning parameters), many possibilities exist for the analysis of spectral data and image generation.

  17. Polymer mobility in cell walls of cucumber hypocotyls

    NASA Technical Reports Server (NTRS)

    Fenwick, K. M.; Apperley, D. C.; Cosgrove, D. J.; Jarvis, M. C.

    1999-01-01

    Cell walls were prepared from the growing region of cucumber (Cucumis sativus) hypocotyls and examined by solid-state 13C NMR spectroscopy, in both enzymically active and inactivated states. The rigidity of individual polymer segments within the hydrated cell walls was assessed from the proton magnetic relaxation parameter, T2, and from the kinetics of cross-polarisation from 1H to 13C. The microfibrils, including most of the xyloglucan in the cell wall, as well as cellulose, behaved as very rigid solids. A minor xyloglucan fraction, which may correspond to cross-links between microfibrils, shared a lower level of rigidity with some of the pectic galacturonan. Other pectins, including most of the galactan side-chain residues of rhamnogalacturonan I, were much more mobile and behaved in a manner intermediate between the solid and liquid states. The only difference observed between the enzymically active and inactive cell walls, was the loss of a highly mobile, methyl-esterified galacturonan fraction, as the result of pectinesterase activity.

  18. Determination of carbohydrate profile in sugarbeet (Beta vulgaris) cell walls

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarbeet germplasms USH20, C869, EL55, EL54 were used, and different tissues at different developmental stages were sampled, including dry seeds, germinating seedlings, developing leaves, mature leaves, petioles, hypocotyls, mature roots, flowering stems and inflorescences. Cell Wall Composition An...

  19. Biosynthesis and assembly of cell wall polysaccharides in cereal grasses

    SciTech Connect

    Carpita, N.C.

    1991-04-01

    We have just completed the second year of a three-year project entitled Biosynthesis assembly of cell wall polysaccharides in cereal grasses.'' We made significant progress on two aspects of cell wall synthesis in grasses and greatly refined gas-liquid and high- performance liquid chromatographic techniques necessary to identify the products of synthesis in vitro and in vivo. First, Dr. David Gibeaut, a post-doctoral associate, devised a convenient procedure for the enrichment of Golgi membranes by flotation centrifugation following initial downward rate-zonal separation. Based on comparison of the IDPase marker enzyme, flotation centrifugation enriched the Golgi apparatus almost 7-fold after the initial downward separation. This system is now used in our studies of the synthesis in vitro of the mixed-linkage {beta}-D-glucan. Second, Gibeaut and I have devised a simple technique to feed radioactive sugars into intact growing seedlings and follow incorporation of radioactivity into and turnover from specific cell wall polysaccharides. The project has also provided a few spin-off projects that have been productive as well. First, in collaboration with the group of Prof. Peter Kaufman, University of Michigan, we examined changes in cell wall structure concomitant with reaction to gravistimulation in the gravisensing oat pulvinus. Second, Dr. Gibeaut developed a simple clean-up procedure for partially methylated alditol derivatives to remove a large amount of undesirable interfering compounds that confound separation of the derivatives by gas-liquid chromatography. 5 refs.

  20. A cytoplasmic peptidoglycan amidase homologue controls mycobacterial cell wall synthesis

    PubMed Central

    Boutte, Cara C; Baer, Christina E; Papavinasasundaram, Kadamba; Liu, Weiru; Chase, Michael R; Meniche, Xavier; Fortune, Sarah M; Sassetti, Christopher M; Ioerger, Thomas R; Rubin, Eric J

    2016-01-01

    Regulation of cell wall assembly is essential for bacterial survival and contributes to pathogenesis and antibiotic tolerance in Mycobacterium tuberculosis (Mtb). However, little is known about how the cell wall is regulated in stress. We found that CwlM, a protein homologous to peptidoglycan amidases, coordinates peptidoglycan synthesis with nutrient availability. Surprisingly, CwlM is sequestered from peptidoglycan (PG) by localization in the cytoplasm, and its enzymatic function is not essential. Rather, CwlM is phosphorylated and associates with MurA, the first enzyme in PG precursor synthesis. Phosphorylated CwlM activates MurA ~30 fold. CwlM is dephosphorylated in starvation, resulting in lower MurA activity, decreased cell wall metabolism, and increased tolerance to multiple antibiotics. A phylogenetic analysis of cwlM implies that localization in the cytoplasm drove the evolution of this factor. We describe a system that controls cell wall metabolism in response to starvation, and show that this regulation contributes to antibiotic tolerance. DOI: http://dx.doi.org/10.7554/eLife.14590.001 PMID:27304077

  1. Segregation of the Anodic Microbial Communities in a Microbial Fuel Cell Cascade

    PubMed Central

    Hodgson, Douglas M.; Smith, Ann; Dahale, Sonal; Stratford, James P.; Li, Jia V.; Grüning, André; Bushell, Michael E.; Marchesi, Julian R.; Avignone Rossa, C.

    2016-01-01

    Metabolic interactions within microbial communities are essential for the efficient degradation of complex organic compounds, and underpin natural phenomena driven by microorganisms, such as the recycling of carbon-, nitrogen-, and sulfur-containing molecules. These metabolic interactions ultimately determine the function, activity and stability of the community, and therefore their understanding would be essential to steer processes where microbial communities are involved. This is exploited in the design of microbial fuel cells (MFCs), bioelectrochemical devices that convert the chemical energy present in substrates into electrical energy through the metabolic activity of microorganisms, either single species or communities. In this work, we analyzed the evolution of the microbial community structure in a cascade of MFCs inoculated with an anaerobic microbial community and continuously fed with a complex medium. The analysis of the composition of the anodic communities revealed the establishment of different communities in the anodes of the hydraulically connected MFCs, with a decrease in the abundance of fermentative taxa and a concurrent increase in respiratory taxa along the cascade. The analysis of the metabolites in the anodic suspension showed a metabolic shift between the first and last MFC, confirming the segregation of the anodic communities. Those results suggest a metabolic interaction mechanism between the predominant fermentative bacteria at the first stages of the cascade and the anaerobic respiratory electrogenic population in the latter stages, which is reflected in the observed increase in power output. We show that our experimental system represents an ideal platform for optimization of processes where the degradation of complex substrates is involved, as well as a potential tool for the study of metabolic interactions in complex microbial communities. PMID:27242723

  2. Segregation of the Anodic Microbial Communities in a Microbial Fuel Cell Cascade.

    PubMed

    Hodgson, Douglas M; Smith, Ann; Dahale, Sonal; Stratford, James P; Li, Jia V; Grüning, André; Bushell, Michael E; Marchesi, Julian R; Avignone Rossa, C

    2016-01-01

    Metabolic interactions within microbial communities are essential for the efficient degradation of complex organic compounds, and underpin natural phenomena driven by microorganisms, such as the recycling of carbon-, nitrogen-, and sulfur-containing molecules. These metabolic interactions ultimately determine the function, activity and stability of the community, and therefore their understanding would be essential to steer processes where microbial communities are involved. This is exploited in the design of microbial fuel cells (MFCs), bioelectrochemical devices that convert the chemical energy present in substrates into electrical energy through the metabolic activity of microorganisms, either single species or communities. In this work, we analyzed the evolution of the microbial community structure in a cascade of MFCs inoculated with an anaerobic microbial community and continuously fed with a complex medium. The analysis of the composition of the anodic communities revealed the establishment of different communities in the anodes of the hydraulically connected MFCs, with a decrease in the abundance of fermentative taxa and a concurrent increase in respiratory taxa along the cascade. The analysis of the metabolites in the anodic suspension showed a metabolic shift between the first and last MFC, confirming the segregation of the anodic communities. Those results suggest a metabolic interaction mechanism between the predominant fermentative bacteria at the first stages of the cascade and the anaerobic respiratory electrogenic population in the latter stages, which is reflected in the observed increase in power output. We show that our experimental system represents an ideal platform for optimization of processes where the degradation of complex substrates is involved, as well as a potential tool for the study of metabolic interactions in complex microbial communities.

  3. Comparing terracotta and earthenware for multiple functionalities in microbial fuel cells.

    PubMed

    Winfield, Jonathan; Greenman, John; Huson, David; Ieropoulos, Ioannis

    2013-12-01

    The properties of earthenware and terracotta were investigated in terms of structural integrity and ion conductivity, in two microbial fuel cell (MFC) designs. Parameters such as wall thickness (4, 8, 18 mm), porosity and cathode hydration were analysed. During the early stages of operation (2 weeks), the more porous earthenware lost anolyte quickly and was unstable between feeding compared to terracotta. Three weeks later MFCs of all thicknesses were more stable and could sustain longer periods of power production without maintenance. In all cases, the denser terracotta produced higher open circuit voltage; however, earthenware the more porous and less iron-rich of the two, proved to be the better material for power production, to the extent that the thickest wall (18 mm) MFC produced 15 % higher power than the thinnest wall (4 mm) terracotta. After 6 weeks of operation, the influence of wall thickness was less exaggerated and power output was comparable between the 4 and 8 mm ceramic membranes. Cylindrical earthenware MFCs produced significantly higher current (75 %) and power (33 %) than terracotta MFCs. A continuous dripping mode of cathode hydration produced threefold higher power than when MFCs were submerged in water, perhaps because of a short-circuiting effect through the material. This shows a significant improvement in terms of biosystems engineering, since a previously high-maintenance half-cell, is now shown to be virtually self-sufficient.

  4. Magnetic studies of ferrofluid-modified microbial cells.

    PubMed

    Mosiniewicz-Szablewska, Ewa; Safarikova, Mirka; Safarik, Ivo

    2010-04-01

    Microbial cells (Kluyveromyces fragilis and Chlorella vulgaris) efficiently interacted with maghemite nanoparticles stabilized as low-pH ionic magnetic fluid, leading to the formation of magnetically labeled cells. This simple procedure allows to use the prepared materials as new cheap and easy to get magnetic affinity adsorbents to the removal of water-soluble dyes from polluted water sources using magnetic separation techniques. Magnetically modified cells were investigated by means of electron spin resonance spectroscopy and conventional magnetic methods over the temperature range 4-300 K. The magnetic behavior of these materials was dominated by the superparamagnetic relaxation of isolated single domain maghemite particles although a little amount of agglomerates was also present on the cell surface. However, these agglomerates were sufficiently small to show at static conditions the superparamagnetic behavior at room temperature. Therefore, the ferrofluid-modified microbial cells represent new interesting magnetic affinity adsorbents which could be applied for large-scale magnetic separation processes.

  5. Molecular deformation mechanisms of the wood cell wall material.

    PubMed

    Jin, Kai; Qin, Zhao; Buehler, Markus J

    2015-02-01

    Wood is a biological material with outstanding mechanical properties resulting from its hierarchical structure across different scales. Although earlier work has shown that the cellular structure of wood is a key factor that renders it excellent mechanical properties at light weight, the mechanical properties of the wood cell wall material itself still needs to be understood comprehensively. The wood cell wall material features a fiber reinforced composite structure, where cellulose fibrils act as stiff fibers, and hemicellulose and lignin molecules act as soft matrix. The angle between the fiber direction and the loading direction has been found to be the key factor controlling the mechanical properties. However, how the interactions between theses constitutive molecules contribute to the overall properties is still unclear, although the shearing between fibers has been proposed as a primary deformation mechanism. Here we report a molecular model of the wood cell wall material with atomistic resolution, used to assess the mechanical behavior under shear loading in order to understand the deformation mechanisms at the molecular level. The model includes an explicit description of cellulose crystals, hemicellulose, as well as lignin molecules arranged in a layered nanocomposite. The results obtained using this model show that the wood cell wall material under shear loading deforms in an elastic and then plastic manner. The plastic regime can be divided into two parts according to the different deformation mechanisms: yielding of the matrix and sliding of matrix along the cellulose surface. Our molecular dynamics study provides insights of the mechanical behavior of wood cell wall material at the molecular level, and paves a way for the multi-scale understanding of the mechanical properties of wood.

  6. Microbial Fuel Cell Performance with a Pressurized Cathode Chamber

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microbial fuel cell (MFC) power densities are often constrained by the oxygen reduction reaction rate on the cathode electrode. One important factor for this is the normally low solubility of oxygen in the aqueous cathode solution creating mass transport limitations, which hinder oxygen reduction a...

  7. The Microbial Fuel Cell as an Education Tool

    ERIC Educational Resources Information Center

    Dewan, Alim; Van Wie, Bernard; Beyenal, Haluk; Lewandowski, Zbigniew

    2010-01-01

    Many chemical engineering programs offer courses from a variety of disciplines to teach their students multidisciplinary concepts, but often these courses lack appropriate tools for linking newly learned concepts to principles learned in the core courses. This paper describes our experience of incorporating a microbial fuel cell education module…

  8. The first self-sustainable microbial fuel cell stack.

    PubMed

    Ledezma, Pablo; Stinchcombe, Andrew; Greenman, John; Ieropoulos, Ioannis

    2013-02-21

    This study reports for the first time on the development of a self-sustainable microbial fuel cell stack capable of self-maintenance (feeding, hydration, sensing & reporting). Furthermore, the stack system is producing excess energy, which can be used for improved functionality. The self-maintenance is performed by the stack powering single and multi-channel peristaltic pumps.

  9. Oxygen - Enemy or Friend for Microbial Fuel Cell Anode Performance?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Until recently, scientists and engineers have held a strong belief that oxygen intrusion into the anode chamber of a bioelectrochemical system (BES) is detrimental to microbial fuel cell (MFC) performance because oxygen acts as an alternate electron acceptor. This would, according to recent beliefs...

  10. Microbial community dynamics in continuous microbial fuel cells fed with synthetic wastewater and pig slurry.

    PubMed

    Sotres, Ana; Tey, Laura; Bonmatí, August; Viñas, Marc

    2016-10-01

    Two-chambered microbial fuel cells (MFCs) operating with synthetic wastewater and pig slurry were assessed. Additionally, the use of 2-bromoethanesulfonate (BES-Inh) was studied. The synthetic wastewater-fed MFC (MFCSW) showed a maximum power density (PDmax) of 2138mWm(-3), and the addition of BES-Inh (10mM) did not show any improvement in its performance (PDmax=2078mWm(-3)). When pig slurry was used as feed (MFCPS), PDmax increased up to 5623mWm(-3). The microbial community composition was affected by the type of substrate used. While, Pseudomonadaceae and Clostridiaceae were the most representative families within the acetate-based medium, Flavobacteriaceae, Chitinophagaceae, Comamonadaceae and Nitrosomonadaceae were predominant when pig slurry was used as feed. Otherwise, only the Eubacterial microbial community composition was strongly modified when adding BES-Inh, thus leading to an enrichment of the Bacteroidetes phylum. Oppositely, the Archaeal community was less affected by the addition of BES-Inh, and Methanosarcina sp., arose as the predominant family in both situations. Despite all the differences in microbial communities, 6 operational taxonomic units (OTUs) belonging to Bacteroidetes (Porphyromonadaceae and Marinilabiaceae) and Firmicutes (Clostridiales) were found to be common to both MFCs, also for different contents of COD and N-NH4(+), and therefore could be considered as the bioanode core microbiome.

  11. Metabolic Differences in Microbial Cell Populations Revealed by Nanophotonic Ionization

    SciTech Connect

    Walker, Bennett; Antonakos, Cory; Retterer, Scott T; Vertes, Akos

    2013-01-01

    ellular differences are linked to cell differentiation, the proliferation of cancer and to the development of drug resistance in microbial infections. Due to sensitivity limitations, however, large- scale metabolic analysis at the single cell level is only available for cells significantly larger in volume than Saccharomyces cerevisiae (~30 fL). Here we demonstrate that by a nanophotonic ionization platform and mass spectrometry, over one hundred up to 108 metabolites, or up to 18% of the known S. cerevisiae metabolome, can be identified in very small cell populations (n < 100). Under ideal conditions, r Relative quantitation of up to 4% of the metabolites is achieved at the single cell level.

  12. Engineering of plant cell walls for enhanced biofuel production.

    PubMed

    Loqué, Dominique; Scheller, Henrik V; Pauly, Markus

    2015-06-01

    The biomass of plants consists predominately of cell walls, a sophisticated composite material composed of various polymer networks including numerous polysaccharides and the polyphenol lignin. In order to utilize this renewable, highly abundant resource for the production of commodity chemicals such as biofuels, major hurdles have to be surpassed to reach economical viability. Recently, major advances in the basic understanding of the synthesis of the various wall polymers and its regulation has enabled strategies to alter the qualitative composition of wall materials. Such emerging strategies include a reduction/alteration of the lignin network to enhance polysaccharide accessibility, reduction of polymer derived processing inhibitors, and increases in polysaccharides with a high hexose/pentose ratio.

  13. Importance of the Candida albicans cell wall during commensalism and infection.

    PubMed

    Gow, Neil A R; Hube, Bernhard

    2012-08-01

    An imbalance of the normal microbial flora, breakage of epithelial barriers or dysfunction of the immune system favour the transition of the human pathogenic yeast Candida albicans from a commensal to a pathogen. C. albicans has evolved to be adapted as a commensal on mucosal surfaces. As a commensal it has also acquired attributes, which are necessary to avoid or overcome the host defence mechanisms. The human host has also co-evolved to recognize and eliminate potential fungal invaders. Many of the fungal genes that have been the focus of this co-evolutionary process encode cell wall components. In this review, we will discuss the transition from commensalism to pathogenesis, the key players of the fungal cell surface that are important for this transition, the role of the morphology and the mechanisms of host recognition and response.

  14. Microbial fuel cell treatment of fuel process wastewater

    DOEpatents

    Borole, Abhijeet P; Tsouris, Constantino

    2013-12-03

    The present invention is directed to a method for cleansing fuel processing effluent containing carbonaceous compounds and inorganic salts, the method comprising contacting the fuel processing effluent with an anode of a microbial fuel ell, the anode containing microbes thereon which oxidatively degrade one or more of the carbonaceous compounds while producing electrical energy from the oxidative degradation, and directing the produced electrical energy to drive an electrosorption mechanism that operates to reduce the concentration of one or more inorganic salts in the fuel processing effluent, wherein the anode is in electrical communication with a cathode of the microbial fuel cell. The invention is also directed to an apparatus for practicing the method.

  15. Coastal microbial fuel cell: scaling laws and systems

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Promode R.; McNeilly, Frank J.; Thivierge, Daniel P.; Fredette, Albert R.

    2006-05-01

    Microbes, like Geobacters, have inhabited the seafloors around the world since the early days of earth. Such regions are anaerobic and they gain energy by using the widely prevalent iron oxides and organic matters. Because they appear to colonize conducting surfaces that act as sinks of electrons, microbial fuel cells have been shown to convert organic matter to electricity. A microbial fuel cell system has been deployed in Narragansett Bay in Newport, Rhode Island for a year. Currently, the cathode and anode areas are of the order of that of a small wind mill. Measurements have been carried out to determine the marine scaling laws of power harvesting in passive benthic microbial fuel cells. The focus has been on the ocean engineering aspects such as marine scaling laws and the integration of the biochemical and the electronic systems. The characteristics examined are: the relationship of electrode surface area and power produced, the stabilization rates of ionic paths, that is, the effects of location depth of cathodes on stabilization after deployment, the effects of solar and lunar cycles in the Narragansett Bay on the dynamic components of power produced, and the hysteresis effects between periods of active power harvesting and dormancy; the effects of 'on sediment surface' versus 'in sediment' anode deployment have been examined for smaller electrode areas so far. A capacitance model of power consumption and harvesting has been proposed for the marine environment. It is assumed that the primordial benthic microbe laden layer of the earth acts like a giant capacitor. In the microbial fuel cell, this charged benthic layer acts in series with a smaller constant voltage DC power source. This giant benthic capacitance is a result of untapped accumulated charge from the microbes while the DC source originates from the real-time production due to the microbes. Finally, the microbial fuel cell is integrated with a power conversion system to intermittently energize a

  16. Resistance to antibiotics targeted to the bacterial cell wall.

    PubMed

    Nikolaidis, I; Favini-Stabile, S; Dessen, A

    2014-03-01

    Peptidoglycan is the main component of the bacterial cell wall. It is a complex, three-dimensional mesh that surrounds the entire cell and is composed of strands of alternating glycan units crosslinked by short peptides. Its biosynthetic machinery has been, for the past five decades, a preferred target for the discovery of antibacterials. Synthesis of the peptidoglycan occurs sequentially within three cellular compartments (cytoplasm, membrane, and periplasm), and inhibitors of proteins that catalyze each stage have been identified, although not all are applicable for clinical use. A number of these antimicrobials, however, have been rendered inactive by resistance mechanisms. The employment of structural biology techniques has been instrumental in the understanding of such processes, as well as the development of strategies to overcome them. This review provides an overview of resistance mechanisms developed toward antibiotics that target bacterial cell wall precursors and its biosynthetic machinery. Strategies toward the development of novel inhibitors that could overcome resistance are also discussed.

  17. Cell wall metabolism in Bacillus subtilis subsp. niger: accumulation of wall polymers in the supernatant of chemostat cultures.

    PubMed Central

    de Boer, W; Kruyssen, F J; Wouters, J T

    1981-01-01

    Cell wall polymers were measured both in the cells and in the cell-free medium of samples from steady-state chemostat cultures of Bacillus subtilis, growing at various rates under magnesium or phosphate limitation. The presence of both peptidoglycan and anionic wall polymers in the culture supernatant showed the occurrence of wall turnover in these cultures. Variable proportions of the total peptidoglycan present in the culture samples were found outside the cells in duplicate cultures, indicating that the rate of peptidoglycan turnover is variable in B. subtilis. Besides peptidoglycan, anionic wall polymers were detected in the culture supernatant: teichoic acid in magnesium-limited cultures and teichuronic acid in phosphate-limited cultures. In several samples, the ratio between the peptidoglycan and the anionic polymer concentrations was significantly lower in the extracellular fluid than in the walls. This divergency was attributed to the occurrence of direct secretion of anionic polymers after their synthesis. PMID:6787016

  18. Dynamic rheological properties of plant cell-wall particle dispersions.

    PubMed

    Day, Li; Xu, Mi; Øiseth, Sofia K; Lundin, Leif; Hemar, Yacine

    2010-12-01

    The rheological behaviour of plant cell-wall particle dispersions was investigated using dynamic oscillatory measurements. Two starting plant materials, broccoli stem and carrot were used and two types of particles were obtained by mechanically shearing blanched (80°C, 10 min) or cooked (100°C, 15 min) plant tissues. Blanching resulted in cell-wall particles made up of a collection of clusters of cells with an average particles size of ∼200 μm, while cooking generated nearly all single-cell particles with an average particle size of ∼80 μm. The rheological measurements showed that in the range of weight concentrations considered (∼0.5% to ∼8%) the dispersions behaved as elastic materials with the elastic modulus G' higher than G″ within the frequency range (0.01-10 Hz). This study shows that the behaviour of the complex modulus G* as a function of the effective volume fraction ϕ can be modelled using different theoretical equations. To do so, it is assumed that below a critical volume fraction ϕc a network of plant cell-wall particles was formed and G* as a function of ϕ obeys a power-law relationship. However above ϕc, where the particles were highly packed, G* could be modelled using theoretical equations developed for concentrated emulsions and elastic particle dispersions.

  19. Microbial Fuel Cell Transformation of Recalcitrant Organic Compounds in Support of Biosensor Research

    DTIC Science & Technology

    2014-03-27

    Microbial Fuel Cell Transformation of Recalcitrant Organic Compounds in Support of Biosensor ...in the United States. AFIT-ENV-14-M-62 Microbial Fuel Cell Transformation of Recalcitrant Organic Compounds in Support of Biosensor Research...DISTRIBUTION UNLIMITED AFIT-ENV-14-M-62 Microbial Fuel Cell Transformation of Recalcitrant Organic Compounds in Support of Biosensor Research Marc

  20. Identification of Cell Wall Synthesis Regulatory Genes Controlling Biomass Characteristics and Yield in Rice (Oryza Sativa)

    SciTech Connect

    Peng, Zhaohua PEng; Ronald, Palmela; Wang, Guo-Liang

    2013-04-26

    This project aims to identify the regulatory genes of rice cell wall synthesis pathways using a cell wall removal and regeneration system. We completed the gene expression profiling studies following the time course from cell wall removal to cell wall regeneration in rice suspension cells. We also completed, total proteome, nuclear subproteome and histone modification studies following the course from cell wall removal and cell wall regeneration process. A large number of differentially expressed regulatory genes and proteins were identified. Meanwhile, we generated RNAi and over-expression transgenic rice for 45 genes with at least 10 independent transgenic lines for each gene. In addition, we ordered T-DNA and transposon insertion mutants for 60 genes from Korea, Japan, and France and characterized the mutants. Overall, we have mutants and transgenic lines for over 90 genes, exceeded our proposed goal of generating mutants for 50 genes. Interesting Discoveries a) Cell wall re-synthesis in protoplasts may involve a novel cell wall synthesis mechanism. The synthesis of the primary cell wall is initiated in late cytokinesis with further modification during cell expansion. Phragmoplast plays an essential role in cell wall synthesis. It services as a scaffold for building the cell plate and formation of a new cell wall. Only one phragmoplast and one new cell wall is produced for each dividing cell. When the cell wall was removed enzymatically, we found that cell wall re-synthesis started from multiple locations simultaneously, suggesting that a novel mechanism is involved in cell wall re-synthesis. This observation raised many interesting questions, such as how the starting sites of cell wall synthesis are determined, whether phragmoplast and cell plate like structures are involved in cell wall re-synthesis, and more importantly whether the same set of enzymes and apparatus are used in cell wall re-synthesis as during cytokinesis. Given that many known cell wall

  1. Listeria monocytogenes cell wall constituents exert a charge effect on electroporation threshold

    PubMed Central

    Golberg, Alex; Rae, Chris S.; Rubinsky, Boris

    2012-01-01

    Genetically engineered cells with mutations of relevance to electroporation, cell membrane permeabilization by electric pulses, can become a promising new tool for fundamental research on this important biotechnology. Listeria monocytogenes mutants lacking DltA or MprF and assayed for sensitivity to the cathelicidin like anti-microbial cationic peptide (mCRAMP), were developed to study the effect of cell wall charge on electroporation. Working in the irreversible electroporation regime (IRE), we found that application of a sequence of 50 pulses, each 50 μs duration, 12.5 kV/cm field, delivered at 2 Hz led to 2.67±0.29 log reduction in wild-type L. monocytogenes, log 2.60±0.19 in the MprF-minus mutant, and log 1.33±0.13 in the DltA-minus mutant. The experimental observation that the DltA-minus mutant was highly susceptible to cationic mCRAMP and resistant to IRE suggests that the charge on the bacterial cell wall affects electroporation and shows that this approach may be promising for fundamental studies on electroporation. PMID:22100748

  2. [Microbial fuel cells as an alternative power supply].

    PubMed

    Il'in, V K; Smirnov, I A; Soldatov, P É; Korshunov, D V; Tiurin-Kuz'min, A Iu; Starkova, L V; Chumakov, P E; Emel'ianova, L K; Novikova, L M; Debabov, V G; Voeĭkova, T A

    2012-01-01

    Purpose of the work was designing and prototyping of microbial fuel cells (MFC) and comparative evaluation of the electrogenic activity of wastewater autochthonous microorganisms as well as bacterial monocultures. Objects were model electrogenic strain Shewanella oneidensis MR-1, and an Ochrobactrum sp. strain isolated from the active anode biofilm of MFC composed as an electricity generating system. The study employed the methods typically used for aerobic and anaerobic strains, current measurement, identification of new electrogenic strains in microbial association of wastewater sludge and species definition by rRNA 16-S. As a result, two MFCs prototypes were tried out. Besides, it was shown that electrogenic activity of S. oneidensis MR-1 and Ochrobactrum sp. monocultures is similar but differs from that of the microbial association of the anode biofilm.

  3. Restrictive glycosylphosphatidylinositol anchor synthesis in cwh6/gpi3 yeast cells causes aberrant biogenesis of cell wall proteins.

    PubMed Central

    Vossen, J H; Müller, W H; Lipke, P N; Klis, F M

    1997-01-01

    We previously reported that the defects in the Saccharomyces cerevisiae cwh6 Calcofluor white-hypersensitive cell wall mutant are caused by a mutation in SPT14/GPI3, a gene involved in glycosylphosphatidylinositol (GPI) anchor biosynthesis. Here we describe the effect of cwh6/spt14/gpi3 on the biogenesis of cell wall proteins. It was found that the release of precursors of cell wall proteins from the endoplasmic reticulum (ER) was retarded. This was accompanied by proliferation of ER structures. The majority of the cell wall protein precursors that eventually left the ER were not covalently incorporated into the cell wall but were secreted into the growth medium. Despite the inefficient incorporation of cell wall proteins, there was no net effect on the protein level in the cell wall. It is postulated that the availability of GPI-dependent cell wall proteins determines the rate of cell wall construction and limits growth rate. PMID:9079905

  4. Identifying the microbial communities and operational conditions for optimized wastewater treatment in microbial fuel cells.

    PubMed

    Ishii, Shun'ichi; Suzuki, Shino; Norden-Krichmar, Trina M; Wu, Angela; Yamanaka, Yuko; Nealson, Kenneth H; Bretschger, Orianna

    2013-12-01

    Microbial fuel cells (MFCs) are devices that exploit microorganisms as "biocatalysts" to recover energy from organic matter in the form of electricity. MFCs have been explored as possible energy neutral wastewater treatment systems; however, fundamental knowledge is still required about how MFC-associated microbial communities are affected by different operational conditions and can be optimized for accelerated wastewater treatment rates. In this study, we explored how electricity-generating microbial biofilms were established at MFC anodes and responded to three different operational conditions during wastewater treatment: 1) MFC operation using a 750 Ω external resistor (0.3 mA current production); 2) set-potential (SP) operation with the anode electrode potentiostatically controlled to +100 mV vs SHE (4.0 mA current production); and 3) open circuit (OC) operation (zero current generation). For all reactors, primary clarifier effluent collected from a municipal wastewater plant was used as the sole carbon and microbial source. Batch operation demonstrated nearly complete organic matter consumption after a residence time of 8-12 days for the MFC condition, 4-6 days for the SP condition, and 15-20 days for the OC condition. These results indicate that higher current generation accelerates organic matter degradation during MFC wastewater treatment. The microbial community analysis was conducted for the three reactors using 16S rRNA gene sequencing. Although the inoculated wastewater was dominated by members of Epsilonproteobacteria, Gammaproteobacteria, and Bacteroidetes species, the electricity-generating biofilms in MFC and SP reactors were dominated by Deltaproteobacteria and Bacteroidetes. Within Deltaproteobacteria, phylotypes classified to family Desulfobulbaceae and Geobacteraceae increased significantly under the SP condition with higher current generation; however those phylotypes were not found in the OC reactor. These analyses suggest that species

  5. Viscoelastic properties of cell walls of single living plant cells determined by dynamic nanoindentation.

    PubMed

    Hayot, Céline M; Forouzesh, Elham; Goel, Ashwani; Avramova, Zoya; Turner, Joseph A

    2012-04-01

    Plant development results from controlled cell divisions, structural modifications, and reorganizations of the cell wall. Thereby, regulation of cell wall behaviour takes place at multiple length scales involving compositional and architectural aspects in addition to various developmental and/or environmental factors. The physical properties of the primary wall are largely determined by the nature of the complex polymer network, which exhibits time-dependent behaviour representative of viscoelastic materials. Here, a dynamic nanoindentation technique is used to measure the time-dependent response and the viscoelastic behaviour of the cell wall in single living cells at a micron or sub-micron scale. With this approach, significant changes in storage (stiffness) and loss (loss of energy) moduli are captured among the tested cells. The results reveal hitherto unknown differences in the viscoelastic parameters of the walls of same-age similarly positioned cells of the Arabidopsis ecotypes (Col 0 and Ws 2). The technique is also shown to be sensitive enough to detect changes in cell wall properties in cells deficient in the activity of the chromatin modifier ATX1. Extensive computational modelling of the experimental measurements (i.e. modelling the cell as a viscoelastic pressure vessel) is used to analyse the influence of the wall thickness, as well as the turgor pressure, at the positions of our measurements. By combining the nanoDMA technique with finite element simulations quantifiable measurements of the viscoelastic properties of plant cell walls are achieved. Such techniques are expected to find broader applications in quantifying the influence of genetic, biological, and environmental factors on the nanoscale mechanical properties of the cell wall.

  6. Viscoelastic properties of cell walls of single living plant cells determined by dynamic nanoindentation

    PubMed Central

    Hayot, Céline M.; Forouzesh, Elham; Goel, Ashwani; Avramova, Zoya; Turner, Joseph A.

    2012-01-01

    Plant development results from controlled cell divisions, structural modifications, and reorganizations of the cell wall. Thereby, regulation of cell wall behaviour takes place at multiple length scales involving compositional and architectural aspects in addition to various developmental and/or environmental factors. The physical properties of the primary wall are largely determined by the nature of the complex polymer network, which exhibits time-dependent behaviour representative of viscoelastic materials. Here, a dynamic nanoindentation technique is used to measure the time-dependent response and the viscoelastic behaviour of the cell wall in single living cells at a micron or sub-micron scale. With this approach, significant changes in storage (stiffness) and loss (loss of energy) moduli are captured among the tested cells. The results reveal hitherto unknown differences in the viscoelastic parameters of the walls of same-age similarly positioned cells of the Arabidopsis ecotypes (Col 0 and Ws 2). The technique is also shown to be sensitive enough to detect changes in cell wall properties in cells deficient in the activity of the chromatin modifier ATX1. Extensive computational modelling of the experimental measurements (i.e. modelling the cell as a viscoelastic pressure vessel) is used to analyse the influence of the wall thickness, as well as the turgor pressure, at the positions of our measurements. By combining the nanoDMA technique with finite element simulations quantifiable measurements of the viscoelastic properties of plant cell walls are achieved. Such techniques are expected to find broader applications in quantifying the influence of genetic, biological, and environmental factors on the nanoscale mechanical properties of the cell wall. PMID:22291130

  7. Control of geometrical properties of carbon nanotube electrodes towards high-performance microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Erbay, Celal; Pu, Xiong; Choi, Woongchul; Choi, Mi-Jin; Ryu, Yeontack; Hou, Huijie; Lin, Furong; de Figueiredo, Paul; Yu, Choongho; Han, Arum

    2015-04-01

    In microbial fuel cells (MFCs), physical and electrochemical interactions between microbes and electrode surfaces are critical to performance. Nanomaterial-based electrodes have shown promising performances, however their unique characteristics have not been fully utilized. The developed electrodes here consist of multi-wall carbon nanotubes (MWCNTs) directly grown in the radial direction from the wires of stainless steel (SS) meshes, providing extremely large three-dimensional surfaces while ensuring minimal ohmic loss between CNTs and SS meshes, fully utilizing the advantages of CNTs. Systematic studies on how different lengths, packing densities, and surface conditions of CNTs affect MFC power output revealed that long and loosely packed CNTs without any amorphous carbon show the highest power production performance. The power density of this anode is 7.4-fold higher compared to bare carbon cloth, which is the highest reported improvement for MFCs with nanomaterial-decorated electrodes. The results of this study offer great potential for advancing the development of microbial electrochemical systems by providing a highly efficient nanomaterial-based electrode that delivers large surface area, high electrochemical activity, and minimum ohmic loss, as well as provide design principles for next-generation nanomaterial-based electrodes that can be broadly applicable for highly efficient microbial electrochemical cells.

  8. Penium margaritaceum as a model organism for cell wall analysis of expanding plant cells.

    PubMed

    Rydahl, Maja G; Fangel, Jonatan U; Mikkelsen, Maria Dalgaard; Johansen, I Elisabeth; Andreas, Amanda; Harholt, Jesper; Ulvskov, Peter; Jørgensen, Bodil; Domozych, David S; Willats, William G T

    2015-01-01

    The growth of a plant cell encompasses a complex set of subcellular components interacting in a highly coordinated fashion. Ultimately, these activities create specific cell wall structural domains that regulate the prime force of expansion, internally generated turgor pressure. The precise organization of the polymeric networks of the cell wall around the protoplast also contributes to the direction of growth, the shape of the cell, and the proper positioning of the cell in a tissue. In essence, plant cell expansion represents the foundation of development. Most studies of plant cell expansion have focused primarily upon late divergent multicellular land plants and specialized cell types (e.g., pollen tubes, root hairs). Here, we describe a unicellular green alga, Penium margaritaceum (Penium), which can serve as a valuable model organism for understanding cell expansion and the underlying mechanics of the cell wall in a single plant cell.

  9. (Rapid regulatory control of plant cell expansion and wall relaxation)

    SciTech Connect

    Cosgrove, D.J.

    1990-01-01

    This section presents a brief overview of accomplishments related to this project in the past 3-year period. Our work has focused on the basic mechanisms of plant cell expansion, particularly on the interrelations of water and solute transport with cell wall relaxation and expansion. To study these processes, we have developed new methods and used these methods to analyze the dynamic behavior of growth processes and to examine how various agents (GA, drought, light, genetic lesions) alter the growth machinery of the cell.

  10. Tomato Fruit Cell Wall Synthesis during Development and Senescence : In Vivo Radiolabeling of Wall Fractions Using [C]Sucrose.

    PubMed

    Mitcham, E J; Gross, K C; Ng, T J

    1989-02-01

    The pedicel of tomato fruit (Lycopersicon esculentum Mill., cv ;Rutgers') of different developmental stages from immature-green (IG) to red was injected on the vine with 7 microcuries [(14)C(U)]sucrose and harvested after 18 hours. Cell walls were isolated from outer pericarp and further fractionated yielding ionically associated pectin, covalently bound pectin, hemicellulosic fraction I, hemicellulosic fraction II, and cellulosic fraction II. The dry weight of the total cell wall and of each cell wall fraction per gram fresh weight of pericarp tissue decreased after the mature-green (MG) stage of development. Incorporation of radiolabeled sugars into each fraction decreased from the IG to MG3 (locules jellied but still green) stage. Incorporation in all fractions increased from MG3 to breaker and turning (T) and then decreased from T to red. Data indicate that cell wall synthesis continues throughout ripening and increases transiently from MG4 (locules jellied and yellow to pink in color) to T, corresponding to the peak in respiration and ethylene synthesis during the climacteric. Synthesis continued at a time when total cell wall fraction dry weight decreased indicating the occurrence of cell wall turnover. Synthesis and insertion of a modified polymer with removal of other polymers may produce a less rigid cell wall and allow softening of the tissue integrity during ripening.

  11. Orbital wall infarction in child with sickle cell disease.

    PubMed

    Janssens, C; Claeys, L; Maes, P; Boiy, T; Wojciechowski, M

    2015-12-01

    We present the case of a 17-year-old boy, known with homozygous sickle cell disease, who was admitted because of generalised pain. He developed bilateral periorbital oedema and proptosis, without pain or visual disturbances. In addition to hyperhydration, oxygen and analgesia IV antibiotics were started, to cover a possible osteomyelitis. Patients with sickle cell disease are at risk for vaso-occlusive crises, when the abnormally shaped red blood cells aggregate and block the capillaries. Such a crisis typically presents at a location with high bone marrow activity, as the vertebrae and long bones. At an early age, the bone marrow is still active at other sites, for example the orbital wall, and thus infarction can also occur there. Thus, in young persons with sickle cell disease, it is important to consider orbital wall infarction in the differential diagnosis, since the approach is different from osteomyelitis. If the disease is complicated by an orbital compression syndrome, corticosteroids or surgical intervention may be necessary to preserve the vision. In our patient, an MRI of the orbitae demonstrated periorbital oedema with bone anomalies in the orbital and frontal bones, confirming orbital wall infarction. Ophthalmological examination revealed no signs of pressure on the nervus opticus. The patient recovered gradually with conservative treatment.

  12. Microbial community structure accompanied with electricity production in a constructed wetland plant microbial fuel cell.

    PubMed

    Lu, Lu; Xing, Defeng; Ren, Zhiyong Jason

    2015-11-01

    This study reveals the complex structure of bacterial and archaeal communities associated with a Canna indica plant microbial fuel cell (PMFC) and its electricity production. The PMFC produced a maximum current of 105 mA/m(2) by utilizing rhizodeposits as the sole electron donor without any external nutrient or buffer supplements, which demonstrates the feasibility of PMFCs in practical oligotrophic conditions with low solution conductivity. The microbial diversity was significantly higher in the PMFC than non-plant controls or sediment-only controls, and pyrosequencing and clone library reveal that rhizodeposits conversion to current were carried out by syntrophic interactions between fermentative bacteria (e.g., Anaerolineaceae) and electrochemically active bacteria (e.g., Geobacter). Denitrifying bacteria and acetotrophic methanogens play a minor role in organics degradation, but abundant hydrogenotrophic methanogens and thermophilic archaea are likely main electron donor competitors.

  13. Electricity generation from food wastes and microbial community structure in microbial fuel cells.

    PubMed

    Jia, Jianna; Tang, Yu; Liu, Bingfeng; Wu, Di; Ren, Nanqi; Xing, Defeng

    2013-09-01

    Microbial fuel cell (MFC) was studied as an alternate and a novel way to dispose food wastes (FWs) in a waste-to-energy form. Different organic loading rate obviously affected the performance of MFCs fed with FWs. The maximum power density of ~18 W/m(3) (~556 mW/m(2)) was obtained at COD of 3200±400 mg/L and the maximum coulombic efficiency (CE) was ~27.0% at COD of 4900±350 mg/L. The maximum removals of COD, total carbohydrate (TC) and total nitrogen (TN) were ~86.4%, ~95.9% and ~16.1%, respectively. Microbial community analysis using 454 pyrosequencing of 16S rRNA gene demonstrated the combination of the dominant genera of the exoelectrogenic Geobacter and fermentative Bacteroides effectively drove highly efficient and reliable MFC systems with functions of organic matters degradation and electricity generation.

  14. Microbial fuel cell (MFC) for bioelectricity generation from organic wastes.

    PubMed

    Moqsud, M Azizul; Omine, Kiyoshi; Yasufuku, Noriyuki; Hyodo, Masayuki; Nakata, Yukio

    2013-11-01

    Microbial fuel cells (MFCs) have gained a lot of attention recently as a mode of converting organic matter into electricity. In this study, a compost-based microbial fuel cell that generates bioelectricity by biodegradation of organic matter is developed. Grass cuttings, along with leaf mold, rice bran, oil cake (from mustard plants) and chicken droppings (waste from chickens) were used as organic waste. The electric properties of the MFC under anaerobic fermentation condition were investigated along with the influence of different types of membranes, the mixing of fly ash, and different types of electrode materials. It is observed that the maximum voltage was increased by mixing fly ash. Cellophane showed the highest value of voltage (around 350mV). Bamboo charcoal is good for anode material; however carbon fiber is better for the cathode material in terms of optimization of power generated. This developed MFC is a simple cell to generate electricity from organic waste.

  15. Cell wall bound anionic peroxidases from asparagus byproducts.

    PubMed

    Jaramillo-Carmona, Sara; López, Sergio; Vazquez-Castilla, Sara; Jimenez-Araujo, Ana; Rodriguez-Arcos, Rocio; Guillen-Bejarano, Rafael

    2014-10-08

    Asparagus byproducts are a good source of cationic soluble peroxidases (CAP) useful for the bioremediation of phenol-contaminated wastewaters. In this study, cell wall bound peroxidases (POD) from the same byproducts have been purified and characterized. The covalent forms of POD represent >90% of the total cell wall bound POD. Isoelectric focusing showed that whereas the covalent fraction is constituted primarily by anionic isoenzymes, the ionic fraction is a mixture of anionic, neutral, and cationic isoenzymes. Covalently bound peroxidases were purified by means of ion exchange chromatography and affinity chromatography. In vitro detoxification studies showed that although CAP are more effective for the removal of 4-CP and 2,4-DCP, anionic asparagus peroxidase (AAP) is a better option for the removal of hydroxytyrosol (HT), the main phenol present in olive mill wastewaters.

  16. Characterisation of cell wall polysaccharides from rapeseed (Brassica napus) meal.

    PubMed

    Pustjens, Annemieke M; Schols, Henk A; Kabel, Mirjam A; Gruppen, Harry

    2013-11-06

    To enable structural characteristics of individual cell wall polysaccharides from rapeseed (Brassica napus) meal (RSM) to be studied, polysaccharide fractions were sequentially extracted. Fractions were analysed for their carbohydrate (linkage) composition and polysaccharide structures were also studied by enzymatic fingerprinting. The RSM fractions analysed contained pectic polysaccharides: homogalacturonan in which 60% of the galacturonic acid residues are methyl-esterified, arabinan branched at the O-2 position and arabinogalactan mainly type II. This differs from characteristics previously reported for Brassica campestris meal, another rapeseed cultivar. Also, in the alkali extracts hemicelluloses were analysed as xyloglucan both of the XXGG- and XXXG-type decorated with galactosyl, fucosyl and arabinosyl residues, and as xylan with O-methyl-uronic acid attached. The final residue after extraction still contained xyloglucan and remaining (pectic) polysaccharides next to cellulose, showing that the cell wall matrix of RSM is very strongly interconnected.

  17. Compounds active against cell walls of medically important fungi.

    PubMed Central

    Hector, R F

    1993-01-01

    A number of substances that directly or indirectly affect the cell walls of fungi have been identified. Those that actively interfere with the synthesis or degradation of polysaccharide components share the property of being produced by soil microbes as secondary metabolites. Compounds specifically interfering with chitin or beta-glucan synthesis have proven effective in studies of preclinical models of mycoses, though they appear to have a restricted spectrum of coverage. Semisynthetic derivatives of some of the natural products have offered improvements in activity, toxicology, or pharmacokinetic behavior. Compounds which act on the cell wall indirectly or by a secondary mechanism of action, such as the azoles, act against diverse fungi but are usually fungistatic in nature. Overall, these compounds are attractive candidates for further development. PMID:8457977

  18. Cell wall teichoic acids of two Brevibacterium strains.

    PubMed

    Shashkov, A S; Potekhina, N V; Evtushenko, L I; Naumova, I B

    2004-06-01

    Structurally identical teichoic acids were detected in cell walls of two soil isolates assigned to Brevibacterium linens based on phylogenetic data. Both cell walls contain unsubstituted 1,3-poly(glycerol phosphate) and poly(glycosylglycerol phosphate). Repeating units of the latter--alpha-D-GlcpNAc-(1-->4)-beta-D-Galp-(1-->1)-Gro--are bound by phosphodiester bonds including OH-3 of galactose and OH-3 of glycerol. Some of the N-acetylglucosamine residues have 4,6-pyruvic acid acetal, amounts of the latter in the two strains being unequal. Species-specificity of the structures of teichoic acids in the genus Brevibacterium is discussed.

  19. Deployable Microbial Fuel Cell and Methods

    DTIC Science & Technology

    2011-09-08

    cells and batteries and in particular to cathodes which are suitable for use in galvanic cells that use an oxidant dissolved in the electrolyte as...is preferably dried so the battery is activated when liquid contacts the electrolyte and separator layer. Water swellable particles are included...required divers to install graphite plates in the marine sediment. As noted above, this is a costly and time consuming process. In addition, the graphite

  20. Microbial Fuel Cells for Powering Navy Devices

    DTIC Science & Technology

    2014-01-20

    they can range in scale from less than 1 W to more than 1 MW. They promise relatively high energy density (Wh/L) compared to lithium batteries and...hydrogen/oxygen fuel cells and relatively high specific energy (Wh/kg) compared to lithium batteries by using nonexplosive biomass-derived organic...high energy density (Wh/L) compared to lithium batteries and hydrogen/oxygen fuel cells and relatively high specific energy (Wh/kg) compared to

  1. Dynamics of cell wall elasticity pattern shapes the cell during yeast mating morphogenesis

    PubMed Central

    Goldenbogen, Björn; Giese, Wolfgang; Hemmen, Marie; Uhlendorf, Jannis; Herrmann, Andreas

    2016-01-01

    The cell wall defines cell shape and maintains integrity of fungi and plants. When exposed to mating pheromone, Saccharomyces cerevisiae grows a mating projection and alters in morphology from spherical to shmoo form. Although structural and compositional alterations of the cell wall accompany shape transitions, their impact on cell wall elasticity is unknown. In a combined theoretical and experimental approach using finite-element modelling and atomic force microscopy (AFM), we investigated the influence of spatially and temporally varying material properties on mating morphogenesis. Time-resolved elasticity maps of shmooing yeast acquired with AFM in vivo revealed distinct patterns, with soft material at the emerging mating projection and stiff material at the tip. The observed cell wall softening in the protrusion region is necessary for the formation of the characteristic shmoo shape, and results in wider and longer mating projections. The approach is generally applicable to tip-growing fungi and plants cells. PMID:27605377

  2. Dynamics of cell wall elasticity pattern shapes the cell during yeast mating morphogenesis.

    PubMed

    Goldenbogen, Björn; Giese, Wolfgang; Hemmen, Marie; Uhlendorf, Jannis; Herrmann, Andreas; Klipp, Edda

    2016-09-01

    The cell wall defines cell shape and maintains integrity of fungi and plants. When exposed to mating pheromone, Saccharomyces cerevisiae grows a mating projection and alters in morphology from spherical to shmoo form. Although structural and compositional alterations of the cell wall accompany shape transitions, their impact on cell wall elasticity is unknown. In a combined theoretical and experimental approach using finite-element modelling and atomic force microscopy (AFM), we investigated the influence of spatially and temporally varying material properties on mating morphogenesis. Time-resolved elasticity maps of shmooing yeast acquired with AFM in vivo revealed distinct patterns, with soft material at the emerging mating projection and stiff material at the tip. The observed cell wall softening in the protrusion region is necessary for the formation of the characteristic shmoo shape, and results in wider and longer mating projections. The approach is generally applicable to tip-growing fungi and plants cells.

  3. Single-molecule imaging reveals modulation of cell wall synthesis dynamics in live bacterial cells

    PubMed Central

    Lee, Timothy K.; Meng, Kevin; Shi, Handuo; Huang, Kerwyn Casey

    2016-01-01

    The peptidoglycan cell wall is an integral organelle critical for bacterial cell shape and stability. Proper cell wall construction requires the interaction of synthesis enzymes and the cytoskeleton, but it is unclear how the activities of individual proteins are coordinated to preserve the morphology and integrity of the cell wall during growth. To elucidate this coordination, we used single-molecule imaging to follow the behaviours of the two major peptidoglycan synthases in live, elongating Escherichia coli cells and after perturbation. We observed heterogeneous localization dynamics of penicillin-binding protein (PBP) 1A, the synthase predominantly associated with cell wall elongation, with individual PBP1A molecules distributed between mobile and immobile populations. Perturbations to PBP1A activity, either directly through antibiotics or indirectly through PBP1A's interaction with its lipoprotein activator or other synthases, shifted the fraction of mobile molecules. Our results suggest that multiple levels of regulation control the activity of enzymes to coordinate peptidoglycan synthesis. PMID:27774981

  4. Proteomic Analysis to Identify Tightly-Bound Cell Wall Protein in Rice Calli

    PubMed Central

    Cho, Won Kyong; Hyun, Tae Kyung; Kumar, Dhinesh; Rim, Yeonggil; Chen, Xiong Yan; Jo, Yeonhwa; Kim, Suwha; Lee, Keun Woo; Park, Zee-Yong; Lucas, William J.; Kim, Jae-Yean

    2015-01-01

    Rice is a model plant widely used for basic and applied research programs. Plant cell wall proteins play key roles in a broad range of biological processes. However, presently, knowledge on the rice cell wall proteome is rudimentary in nature. In the present study, the tightly-bound cell wall proteome of rice callus cultured cells using sequential extraction protocols was developed using mass spectrometry and bioinformatics methods, leading to the identification of 1568 candidate proteins. Based on bioinformatics analyses, 389 classical rice cell wall proteins, possessing a signal peptide, and 334 putative non-classical cell wall proteins, lacking a signal peptide, were identified. By combining previously established rice cell wall protein databases with current data for the classical rice cell wall proteins, a comprehensive rice cell wall proteome, comprised of 496 proteins, was constructed. A comparative analysis of the rice and Arabidopsis cell wall proteomes revealed a high level of homology, suggesting a predominant conservation between monocot and eudicot cell wall proteins. This study importantly increased information on cell wall proteins, which serves for future functional analyses of these identified rice cell wall proteins. PMID:26194822

  5. Regulation of plant cells, cell walls and development by mechanical signals

    SciTech Connect

    Meyerowitz, Elliot M.

    2016-06-14

    The overall goal of the revised scope of work for the final year of funding was to characterize cell wall biosynthesis in developing cotyledons and in the shoot apical meristem of Arabidopsis thaliana, as a way of learning about developmental control of cell wall biosynthesis in plants, and interactions between cell wall biosynthesis and the microtubule cytoskeleton. The proposed work had two parts – to look at the effect of mutation in the SPIRAL2 gene on microtubule organization and reorganization, and to thoroughly characterize the glycosyltransferase genes expressed in shoot apical meristems by RNA-seq experiments, by in situ hybridization of the RNAs expressed in the meristem, and by antibody staining of the products of the glycosyltransferases in meristems. Both parts were completed; the spiral2 mutant was found to speed microtubule reorientation after ablation of adjacent cells, supporting our hypothesis that reorganization correlates with microtubule severing, the rate of which is increased by the mutation. The glycosyltransferase characterization was completed and published as Yang et al. (2016). Among the new things learned was that primary cell wall biosynthesis is strongly controlled both by cell type, and by stage of cell cycle, implying not only that different, even adjacent, cells can have different sugar linkages in their (nonshared) walls, but also that a surprisingly large proportion of glycosyltransferases is regulated in the cell cycle, and therefore that the cell cycle regulates wall maturation to a degree previously unrecognized.

  6. Lignin variability in plant cell walls: contribution of new models.

    PubMed

    Neutelings, Godfrey

    2011-10-01

    Lignin is a major component of certain plant cell walls. The enzymes and corresponding genes associated with the metabolic pathway leading to the production of this complex phenolic polymer have been studied for many years now and are relatively well characterized. The use of genetically modified model plants (Arabidopsis, tobacco, poplar.) and mutants has contributed greatly to our current understanding of this process. The recent utilisation and/or development of a number of dedicated genomic and transcriptomic tools for other species opens new perspectives for advancing our knowledge of the biological role of this important polymer in less typical situations and/or species. In this context, studies on the formation of hypolignified G-type fibres in angiosperm tension wood, and the natural hypolignification of secondary cell walls in plant bast fibre species such as hemp (Cannabis sativa), flax (Linum usitatissimum) or ramie (Boehmeria nivea) are starting to provide novel information about how plants control secondary cell wall formation. Finally, other biologically interesting species for which few molecular resources currently exist could also represent interesting future models.

  7. Cell Wall β-(1,6)-Glucan of Saccharomyces cerevisiae

    PubMed Central

    Aimanianda, Vishukumar; Clavaud, Cécile; Simenel, Catherine; Fontaine, Thierry; Delepierre, Muriel; Latgé, Jean-Paul

    2009-01-01

    Despite its essential role in the yeast cell wall, the exact composition of the β-(1,6)-glucan component is not well characterized. While solubilizing the cell wall alkali-insoluble fraction from a wild type strain of Saccharomyces cerevisiae using a recombinant β-(1,3)-glucanase followed by chromatographic characterization of the digest on an anion exchange column, we observed a soluble polymer that eluted at the end of the solvent gradient run. Further characterization indicated this soluble polymer to have a molecular mass of ∼38 kDa and could be hydrolyzed only by β-(1,6)-glucanase. Gas chromatographymass spectrometry and NMR (1H and 13C) analyses confirmed it to be a β-(1,6)-glucan polymer with, on average, branching at every fifth residue with one or two β-(1,3)-linked glucose units in the side chain. This polymer peak was significantly reduced in the corresponding digests from mutants of the kre genes (kre9 and kre5) that are known to play a crucial role in the β-(1,6)-glucan biosynthesis. In the current study, we have developed a biochemical assay wherein incubation of UDP-[14C]glucose with permeabilized S. cerevisiae yeasts resulted in the synthesis of a polymer chemically identical to the branched β-(1,6)-glucan isolated from the cell wall. Using this assay, parameters essential for β-(1,6)-glucan synthetic activity were defined. PMID:19279004

  8. Adsorption of polycyclic aromatic hydrocarbons (PAHs) on Rhizopus oryzae cell walls: application of cosolvent models for validating the cell wall-water partition coefficient.

    PubMed

    Ma, Bin; Xu, Minmin; Wang, Jiaojiao; Chen, Huaihai; He, Yan; Wu, Laosheng; Wang, Haizhen; Xu, Jianming

    2011-11-01

    The cell wall-cosolvent partition coefficients (Km) of polycyclic aromatic hydrocarbons (PAHs) were determined for Rhizopus oryzae cell walls by controlling the volume fraction of methanol (f) ranging from 0.1 to 0.5. Five cosolvent models were employed for extrapolating the cell wall-water partition coefficients (Kw) in pure water. The extrapolated Kw values of four PAHs on R. oryzae cell walls were ranged from 2.9 to 5.1. Comparison of various Kw values of pyrene generated from extrapolation and the QSPR model, together with predicted different (PD), mean percentage deviations (MPD), and root mean square errors (RSE), revealed that the performance of the LL and Bayesian models were the best among all five tested cosolvent models. This study suggests that R. oryzae cell walls play an important role in the partitioning of PAHs during bioremediation because of the high Kw of fungal cell walls.

  9. Strategies for the production of cell wall-deconstructing enzymes in lignocellulosic biomass and their utilization for biofuel production.

    PubMed

    Park, Sang-Hyuck; Ong, Rebecca Garlock; Sticklen, Mariam

    2016-06-01

    Microbial cell wall-deconstructing enzymes are widely used in the food, wine, pulp and paper, textile, and detergent industries and will be heavily utilized by cellulosic biorefineries in the production of fuels and chemicals. Due to their ability to use freely available solar energy, genetically engineered bioenergy crops provide an attractive alternative to microbial bioreactors for the production of cell wall-deconstructing enzymes. This review article summarizes the efforts made within the last decade on the production of cell wall-deconstructing enzymes in planta for use in the deconstruction of lignocellulosic biomass. A number of strategies have been employed to increase enzyme yields and limit negative impacts on plant growth and development including targeting heterologous enzymes into specific subcellular compartments using signal peptides, using tissue-specific or inducible promoters to limit the expression of enzymes to certain portions of the plant or certain times, and fusion of amplification sequences upstream of the coding region to enhance expression. We also summarize methods that have been used to access and maintain activity of plant-generated enzymes when used in conjunction with thermochemical pretreatments for the production of lignocellulosic biofuels.

  10. Characterization of microbial fuel cells at microbially and electrochemically meaningful time scales.

    PubMed

    Ren, Zhiyong; Yan, Hengjing; Wang, Wei; Mench, Matthew M; Regan, John M

    2011-03-15

    The variable biocatalyst density in a microbial fuel cell (MFC) anode biofilm is a unique feature of MFCs relative to other electrochemical systems, yet performance characterizations of MFCs typically involve analyses at electrochemically relevant time scales that are insufficient to account for these variable biocatalyst effects. This study investigated the electrochemical performance and the development of anode biofilm architecture under different external loadings, with duplicate acetate-fed single-chamber MFCs stabilized at each resistance for microbially relevant time scales. Power density curves from these steady-state reactors generally showed comparable profiles despite the fact that anode biofilm architectures and communities varied considerably, showing that steady-state biofilm differences had little influence on electrochemical performance until the steady-state external loading was much larger than the reactor internal resistance. Filamentous bacteria were dominant on the anodes under high external resistances (1000 and 5000 Ω), while more diverse rod-shaped cells formed dense biofilms under lower resistances (10, 50, and 265 Ω). Anode charge transfer resistance decreased with decreasing fixed external resistances, but was consistently 2 orders of magnitude higher than the resistance at the cathode. Cell counting showed an inverse exponential correlation between cell numbers and external resistances. This direct link of MFC anode biofilm evolution with external resistance and electricity production offers several operational strategies for system optimization.

  11. Hypergravity Effects on Dendritic Cells and Vascular Wall Interactions

    NASA Astrophysics Data System (ADS)

    Bellik, L.; Parenti, A.; Ledda, F.; Basile, V.; Romano, G.; Fusi, F.; Monici, M.

    2009-01-01

    Dendritic cells (DCs), the most potent antigen-presenting cells inducing specific immune responses, are involved in the pathogenesis of atherosclerosis. In this inflammatory disease, DCs increase in number, being particularly abundant in the shoulder regions of plaques. Since the exposure to altered gravitational conditions results in a significant impairment of the immune function, the aim of this study was to investigate the effects of hypergravity on both the function of DCs and their interactions with the vascular wall cells. Monocytes from peripheral blood mononuclear cells of healthy volunteers were sorted by CD14+ magnetic beads selection, cultured for 6 days in medium supplemented with GM-CSF and IL-4, followed by a further maturation stimulus. DC phenotype, assessed by flow cytometry, showed a high expression of the specific DC markers CD80, CD86, HLA-DR and CD83. The DCs obtained were then exposed to hypergravitational stimuli and their phenotype, cytoskeleton, ability to activate lymphocytes and interaction with vascular wall cells were investigated. The findings showed that the exposure to hypergravity conditions resulted in a significant impairment of DC cytoskeletal organization, without affecting the expression of DC markers. Moreover, an increase in DC adhesion to human vascular smooth muscle cells and in their ability to activate lymphocytes was observed.

  12. Carbon and nitrogen assimilation in deep subseafloor microbial cells.

    PubMed

    Morono, Yuki; Terada, Takeshi; Nishizawa, Manabu; Ito, Motoo; Hillion, François; Takahata, Naoto; Sano, Yuji; Inagaki, Fumio

    2011-11-08

    Remarkable numbers of microbial cells have been observed in global shallow to deep subseafloor sediments. Accumulating evidence indicates that deep and ancient sediments harbor living microbial life, where the flux of nutrients and energy are extremely low. However, their physiology and energy requirements remain largely unknown. We used stable isotope tracer incubation and nanometer-scale secondary ion MS to investigate the dynamics of carbon and nitrogen assimilation activities in individual microbial cells from 219-m-deep lower Pleistocene (460,000 y old) sediments from the northwestern Pacific off the Shimokita Peninsula of Japan. Sediment samples were incubated in vitro with (13)C- and/or (15)N-labeled glucose, pyruvate, acetate, bicarbonate, methane, ammonium, and amino acids. Significant incorporation of (13)C and/or (15)N and growth occurred in response to glucose, pyruvate, and amino acids (∼76% of total cells), whereas acetate and bicarbonate were incorporated without fostering growth. Among those substrates, a maximum substrate assimilation rate was observed at 67 × 10(-18) mol/cell per d with bicarbonate. Neither carbon assimilation nor growth was evident in response to methane. The atomic ratios between nitrogen incorporated from ammonium and the total cellular nitrogen consistently exceeded the ratios of carbon, suggesting that subseafloor microbes preferentially require nitrogen assimilation for the recovery in vitro. Our results showed that the most deeply buried subseafloor sedimentary microbes maintain potentials for metabolic activities and that growth is generally limited by energy but not by the availability of C and N compounds.

  13. Evaluating fundamental position-dependent differences in wood cell wall adhesion using nanoindentation.

    PubMed

    Obersriebnig, Michael; Konnerth, Johannes; Gindl-Altmutter, Wolfgang

    2013-01-01

    Spruce wood specimens were bonded with one-component polyurethane (PUR) and urea-formaldehyde (UF) adhesive, respectively. The adhesion of the adhesives to the wood cell wall was evaluated at two different locations by means of a new micromechanical assay based on nanoindentation. One location tested corresponded to the interface between the adhesive and the natural inner cell wall surface of the secondary cell wall layer 3 (S3), whereas the second location corresponded to the interface between the adhesive and the freshly cut secondary cell wall layer 2 (S2). Overall, a trend towards reduced cell wall adhesion was found for PUR compared to UF. Position-resolved examination revealed excellent adhesion of UF to freshly cut cell walls (S2) but significantly diminished adhesion to the inner cell wall surface (S3). In contrast, PUR showed better adhesion to the inner cell wall surface and less adhesion to freshly cut cell walls. Atomic force microscopy revealed a less polar character for the inner cell wall surface (S3) compared to freshly cut cell walls (S2). It is proposed that differences in the polarity of the used adhesives and the surface chemistry of the two cell wall surfaces examined account for the observed trends.

  14. Cell Wall Composition and Candidate Biosynthesis Gene Expression During Rice Development.

    PubMed

    Lin, Fan; Manisseri, Chithra; Fagerström, Alexandra; Peck, Matthew L; Vega-Sánchez, Miguel E; Williams, Brian; Chiniquy, Dawn M; Saha, Prasenjit; Pattathil, Sivakumar; Conlin, Brian; Zhu, Lan; Hahn, Michael G; Willats, William G T; Scheller, Henrik V; Ronald, Pamela C; Bartley, Laura E

    2016-10-01

    Cell walls of grasses, including cereal crops and biofuel grasses, comprise the majority of plant biomass and intimately influence plant growth, development and physiology. However, the functions of many cell wall synthesis genes, and the relationships among and the functions of cell wall components remain obscure. To better understand the patterns of cell wall accumulation and identify genes that act in grass cell wall biosynthesis, we characterized 30 samples from aerial organs of rice (Oryza sativa cv. Kitaake) at 10 developmental time points, 3-100 d post-germination. Within these samples, we measured 15 cell wall chemical components, enzymatic digestibility and 18 cell wall polysaccharide epitopes/ligands. We also used quantitative reverse transcription-PCR to measure expression of 50 glycosyltransferases, 15 acyltransferases and eight phenylpropanoid genes, many of which had previously been identified as being highly expressed in rice. Most cell wall components vary significantly during development, and correlations among them support current understanding of cell walls. We identified 92 significant correlations between cell wall components and gene expression and establish nine strong hypotheses for genes that synthesize xylans, mixed linkage glucan and pectin components. This work provides an extensive analysis of cell wall composition throughout rice development, identifies genes likely to synthesize grass cell walls, and provides a framework for development of genetically improved grasses for use in lignocellulosic biofuel production and agriculture.

  15. A variety of Microbial Mats cover the Chimney Walls of the Loki's Castle Hydrothermal Field

    NASA Astrophysics Data System (ADS)

    Dahle, H.; Roalkvam, I.; Jørgensen, S. L.; Stokke, R.; Thorseth, I. H.; Pedersen, R.; Steen, I.

    2010-12-01

    Active vent chimneys of the Loki’s castle hydrothermal field at 73°N are the most northerly black smokers ever located. Vent fluids reach temperatures of >300°C, have a pH of around 5.5 and high concentrations of reduced compounds representing important energy sources for microbial life. Particularly they are extremely rich in methane (13.5 mM) and hydrogen (4.9 mM) while hydrogen sulphide concentrations are more typical for black smoker fluids (4.1 mM). Another characteristic of Loki’s castle is the unusually high abundance of microbial mats on the exterior of the chimneys. During a cruise in 2009 we used a ROV equipped with a hydraulic sampling cylinder (biosyringe) to collect samples of five mats varying in color and texture. Pyrosequencing of amplified 16S rRNA gene sequences yielded 9000 - 25000 reads per sample. Although all mats were dominated by a relatively low number of OTUs, we observed large differences in microbial composition, richness, and evenness of the mats. Also, the most dominating metabolic process occurring in each mat seemed to vary considerably. Two of the mats were largely dominated (60-90% of the reads) by relatives of mesophilic sulfur oxidizing ɛ-Proteobacteria (e.g. Sulfurovum) while another mat was dominated (48 % of the reads) by organisms affiliated with methanotrophic Methylococcales. In the last two mats we found a high abundance ( >20% - >40% of the reads) of organisms clustering among thermophilic organisms such as Thermodesulfobacteriales, Archaeoglobales, Thermococcales, Thermotogales, and Aquificales. The observed variation of the microbial composition between the different mats is possibly linked to variations in temperature and chemistry of fluids diffusely venting from the chimney. The study was supplemented by pyrosequencing of environmental cDNA from three of the samples (totally 1 100 000 reads). This dataset, which is currently being analyzed, will provide more information about the most active phylotypes in the

  16. Modeling of thin, back-wall silicon solar cells

    NASA Technical Reports Server (NTRS)

    Baraona, C. R.

    1979-01-01

    The performance of silicon solar cells with p-n junctions on the nonilluminated surface (i.e., upside-down or back-wall cells) was calculated. These structures consisted of a uniformly shaped p-type substrate layer, a p(+)-type field layer on the front (illuminated) surface, and a shallow, n-type junction on the back (nonilluminated) surface. A four-layer solar cell model was used to calculate efficiency, open-circuit voltage, and short-circuit current. The effect on performance of p-layer thickness and resistivity was determined. The diffusion length was varied to simulate the effect of radiation damage. The results show that peak initial efficiencies greater than 15 percent are possible for cell thicknesses or 100 micrometers or less. After 10 years of radiation damage in geosynchronous orbit, thin (25 to 50 micrometers thick) cells made from 10 to 100 ohm cm material show the smallest decrease (approximately 10 percent) in performance.

  17. Ohmic resistance affects microbial community and electrochemical kinetics in a multi-anode microbial electrochemical cell

    NASA Astrophysics Data System (ADS)

    Dhar, Bipro Ranjan; Ryu, Hodon; Santo Domingo, Jorge W.; Lee, Hyung-Sool

    2016-11-01

    Multi-anode microbial electrochemical cells (MxCs) are considered as one of the most promising configurations for scale-up of MxCs, but understanding of anode kinetics in multiple anodes is limited in the MxCs. In this study we assessed microbial community and electrochemical kinetic parameters for biofilms on individual anodes in a multi-anode MxC to better comprehend anode fundamentals. Microbial community analysis targeting 16S rRNA Illumina sequencing showed that Geobacter genus was abundant (87%) only on the biofilm anode closest to a reference electrode (low ohmic energy loss) in which current density was the highest among three anodes. In comparison, Geobacter populations were less than 1% for biofilms on other two anodes distant from the reference electrode (high ohmic energy loss), generating small current density. Half-saturation anode potential (EKA) was the lowest at -0.251 to -0.242 V (vs. standard hydrogen electrode) for the closest biofilm anode to the reference electrode, while EKA was as high as -0.134 V for the farthest anode. Our study proves that electric potential of individual anodes changed by ohmic energy loss shifts biofilm communities on individual anodes and consequently influences electron transfer kinetics on each anode in the multi-anode MxC.

  18. Enhanced microbial reduction of vanadium (V) in groundwater with bioelectricity from microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Hao, Liting; Zhang, Baogang; Tian, Caixing; Liu, Ye; Shi, Chunhong; Cheng, Ming; Feng, Chuanping

    2015-08-01

    Bioelectricity generated from the microbial fuel cell (MFC) is applied to the bioelectrical reactor (BER) directly to enhance microbial reduction of vanadium (V) (V(V)) in groundwater. With the maximum power density of 543.4 mW m-2 from the MFC, V(V) removal is accelerated with efficiency of 93.6% during 12 h operation. Higher applied voltage can facilitate this process. V(V) removals decrease with the increase of initial V(V) concentration, while extra addition of chemical oxygen demand (COD) has little effect on performance improvement. Microbial V(V) reduction is enhanced and then suppressed with the increase of conductivity. High-throughput 16S rRNA gene pyrosequencing analysis implies the accumulated Enterobacter and Lactococcus reduce V(V) with products from fermentative microorganisms such as Macellibacteroides. The presentation of electrochemically active bacteria as Enterobacter promotes electron transfers. This study indicates that application of bioelectricity from MFCs is a promising strategy to improve the efficiency of in-situ bioremediation of V(V) polluted groundwater.

  19. Effect of electricity on microbial community of microbial fuel cell simultaneously treating sulfide and nitrate

    NASA Astrophysics Data System (ADS)

    Cai, Jing; Zheng, Ping; Xing, Yajuan; Qaisar, Mahmood

    2015-05-01

    The effect of electric current on microbial community is explored in Microbial Fuel Cells (MFCs) simultaneously treating sulfide and nitrate. The MFCs are operated under four different conditions which exhibited different characteristics of electricity generation. In batch mode, MFCs generate intermittently high current pulses in the beginning, and the current density is instable subsequently, while the current density of MFCs in continuous mode is relatively stable. All operational parameters show good capacity for substrate removal, and nitrogen and sulfate were the main reaction products. Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE) analysis is employed to obtain profiles of the bacterial communities present in inoculum and suspension of four MFCs. Based on the community diversity indices and Spearman correlation analyses, significant correlation exists between Richness of the community of anode chamber and the electricity generated, while no strong correlation is evident between other indexes (Shannon index, Simpson index and Equitability index) and the electricity. Additionally, the results of Principal Component Analysis (PCA) suggest that MFCs suffering from current shock have similar suspension communities, while the others have diverse microbial communities.

  20. Microbial cell retention in a melting High Arctic snowpack, Svalbard

    NASA Astrophysics Data System (ADS)

    Zarsky, Jakub; Björkman, Mats; Kühnel, Rafael; Hell, Katherina; Hodson, Andy; Sattler, Birgit; Psenner, Roland

    2014-05-01

    Introduction The melting snow pack represents a highly dynamic system not only for chemical compounds but also for bacterial cells. Microbial activity was found at subzero temperatures in ice veins when liquid water persists due to high concentration of ions on the surface of snow crystals and brine channels between large ice crystals in ice. Several observations also suggest microbial activity under subzero temperatures in seasonal snow. Even with regard to the spatial and temporal relevance of snow ecosystems, microbial activity in such an extreme habitat represents a relatively small proportion in the carbon flux of the global ecosystem and even of the glacial ecosystems specifically. On the other hand, it represents a remarkable piece of mosaic of the microbial activity in glacial ecosystems because the snow pack represents the first contact between the atmosphere and cryosphere. This topic also embodies vital crossovers to biogeochemistry and ecotoxicology, offering a quantitative view of utilization of various substrates relevant for downstream ecosystems. Here we present our study of the dynamics of both solvents and cells suspended in meltwater of the melting snowpack on a high arctic glacier to demonstrate the spatio-temporal constraint of interaction between solvent and bacterial cells in this environment. Method We used 6 lysimeters inserted into the bottom of the snowpack to collect replicated samples of melt water before it comes into contact with basal ice or slush layer at the base of the snow pack. The sampling site was chosen at Midre Lovénbreen (Svalbard, Kongsfjorden, MLB stake 6) where the snow pack showed melting on the surface but the basal ice was still dry. Sampling was conducted in June 2010 for a period of 10 days once per day and the snow profile was sampled according to distinguished layers in the profile at the beginning of the field mission and as bulk at its end. The height of snow above the lysimeters dropped from the initial 74 cm

  1. Stress analysis for wall structure in mobile hot cell design

    SciTech Connect

    Bahrin, Muhammad Hannan Rahman, Anwar Abdul Hamzah, Mohd Arif Mamat, Mohd Rizal; Azman, Azraf; Hasan, Hasni

    2016-01-22

    Malaysian Nuclear Agency is developing a Mobile Hot Cell (MHC) in order to handle and manage Spent High Activity Radioactive Sources (SHARS) such as teletherapy heads and irradiators. At present, there are only two units of MHC in the world, in South Africa and China. Malaysian Mobile Hot cell is developed by Malaysian Nuclear Agency with the assistance of IAEA expert, based on the design of South Africa and China, but with improved features. Stress analysis has been performed on the design in order to fulfil the safety requirement in operation of MHC. This paper discusses the loading analysis effect from the sand to the MHC wall structure.

  2. Evidence for 'silicon' within the cell walls of suspension-cultured rice cells.

    PubMed

    He, Congwu; Wang, Lijun; Liu, Jian; Liu, Xin; Li, Xiuli; Ma, Jie; Lin, Yongjun; Xu, Fangsen

    2013-11-01

    Despite the ubiquity and beneficial role of silicon (Si) in plant biology, structural and chemical mechanisms operating at the single-cell level have not been extensively studied. To obtain insights regarding the effect of Si on individual cells, we cultivated suspended rice (Oryza sativa) cells in the absence and presence of Si and analyzed single cells using a combination of physical techniques including atomic force microscopy (AFM). Si is naturally present as a constituent of the cell walls, where it is firmly bound to the cell wall matrix rather than occurring within intra- or extracellular silica deposition, as determined by using inductively coupled plasma mass spectrometry (ICP-MS) and X-ray photoelectron spectroscopy (XPS). This species of Si, linked with the cell wall matrix, improves the structural stability of cell walls during their expansion and subsequent cell division. Maintaining cell shape is thereby enhanced, which may be crucial for the function and survival of cells. This study provides further evidence that organosilicon is present in plant cell walls, which broadens our understanding of the chemical nature of 'anomalous Si' in plant biology.

  3. Produced Water Treatment Using Microbial Fuel Cell Technology

    SciTech Connect

    Borole, A. P.; Campbell, R.

    2011-05-20

    ORNL has developed a treatment for produced water using a combination of microbial fuel cells and electrosorption. A collaboration between Campbell Applied Physics and ORNL was initiated to further investigate development of the technology and apply it to treatment of field produced water. The project successfully demonstrated the potential of microbial fuel cells to generate electricity from organics in produced water. A steady voltage was continuously generated for several days using the system developed in this study. In addition to the extraction of electrical energy from the organic contaminants, use of the energy at the representative voltage was demonstrated for salts removal or desalination of the produced water. Thus, the technology has potential to remove organic as well as ionic contaminants with minimal energy input using this technology. This is a novel energy-efficient method to treat produced water. Funding to test the technology at larger scale is being pursued to enable application development.

  4. Composite materials for polymer electrolyte membrane microbial fuel cells.

    PubMed

    Antolini, Ermete

    2015-07-15

    Recently, the feasibility of using composite metal-carbon, metal-polymer, polymer-carbon, polymer-polymer and carbon-carbon materials in microbial fuel cells (MFCs) has been investigated. These materials have been tested as MFC anode catalyst (microorganism) supports, cathode catalysts and membranes. These hybrid materials, possessing the properties of each component, or even with a synergistic effect, would present improved characteristics with respect to the bare components. In this paper we present an overview of the use of these composite materials in microbial fuel cells. The characteristics of the composite materials as well as their effect on MFC performance were compared with those of the individual component and/or the conventionally used materials.

  5. New insights in Microbial Fuel Cells: novel solid phase anolyte.

    PubMed

    Tommasi, Tonia; Salvador, Gian Paolo; Quaglio, Marzia

    2016-07-04

    For the development of long lasting portable microbial fuel cells (MFCs) new strategies are necessary to overcome critical issues such as hydraulic pump system and the biochemical substrate retrieval overtime to sustain bacteria metabolism. The present work proposes the use of a synthetic solid anolyte (SSA), constituted by agar, carbonaceous and nitrogen sources dissolved into diluted seawater. Results of a month-test showed the potential of the new SSA-MFC as a long lasting low energy consuming system.

  6. New insights in Microbial Fuel Cells: novel solid phase anolyte

    PubMed Central

    Tommasi, Tonia; Salvador, Gian Paolo; Quaglio, Marzia

    2016-01-01

    For the development of long lasting portable microbial fuel cells (MFCs) new strategies are necessary to overcome critical issues such as hydraulic pump system and the biochemical substrate retrieval overtime to sustain bacteria metabolism. The present work proposes the use of a synthetic solid anolyte (SSA), constituted by agar, carbonaceous and nitrogen sources dissolved into diluted seawater. Results of a month-test showed the potential of the new SSA-MFC as a long lasting low energy consuming system. PMID:27375205

  7. New insights in Microbial Fuel Cells: novel solid phase anolyte

    NASA Astrophysics Data System (ADS)

    Tommasi, Tonia; Salvador, Gian Paolo; Quaglio, Marzia

    2016-07-01

    For the development of long lasting portable microbial fuel cells (MFCs) new strategies are necessary to overcome critical issues such as hydraulic pump system and the biochemical substrate retrieval overtime to sustain bacteria metabolism. The present work proposes the use of a synthetic solid anolyte (SSA), constituted by agar, carbonaceous and nitrogen sources dissolved into diluted seawater. Results of a month-test showed the potential of the new SSA-MFC as a long lasting low energy consuming system.

  8. The effects of multi-walled carbon nanotubes on soil microbial community functional and structural diversity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Applications of nanomaterials, including carbon nanotubes (CNTs), are increasing; however, their impact on the environment is still not well understood. A semi-arid soil was treated with multi-walled carbon nanotubes (MWCNTs) at four different concentrations (10-10000 mgMWCNTs kg-1soil), and incubat...

  9. In situ analysis of cell wall polymers associated with phloem fibre cells in stems of hemp, Cannabis sativa L.

    PubMed

    Blake, Anthony W; Marcus, Susan E; Copeland, James E; Blackburn, Richard S; Knox, J Paul

    2008-06-01

    A study of stem anatomy and the sclerenchyma fibre cells associated with the phloem tissues of hemp (Cannabis sativa L.) plants is of interest for both understanding the formation of secondary cell walls and for the enhancement of fibre utility as industrial fibres and textiles. Using a range of molecular probes for cell wall polysaccharides we have surveyed the presence of cell wall components in stems of hemp in conjunction with an anatomical survey of stem and phloem fibre development. The only polysaccharide detected to occur abundantly throughout the secondary cell walls of phloem fibres was cellulose. Pectic homogalacturonan epitopes were detected in the primary cell walls/intercellular matrices between the phloem fibres although these epitopes were present at a lower level than in the surrounding parenchyma cell walls. Arabinogalactan-protein glycan epitopes displayed a diversity of occurrence in relation to fibre development and the JIM14 epitope was specific to fibre cells, binding to the inner surface of secondary cell walls, throughout development. Xylan epitopes were found to be present in the fibre cells (and xylem secondary cell walls) and absent from adjacent parenchyma cell walls. Analysis of xylan occurrence in the phloem fibre cells of hemp and flax indicated that xylan epitopes were restricted to the primary cell walls of fibre cells and were not present in the secondary cell walls of these cells.

  10. Electricity generation from synthesis gas by microbial processes: CO fermentation and microbial fuel cell technology.

    PubMed

    Kim, Daehee; Chang, In Seop

    2009-10-01

    A microbiological process was established to harvest electricity from the carbon monoxide (CO). A CO fermenter was enriched with CO as the sole carbon source. The DGGE/DNA sequencing results showed that Acetobacterium spp. were enriched from the anaerobic digester fluid. After the fermenter was operated under continuous mode, the products were then continuously fed to the microbial fuel cell (MFC) to generate electricity. Even though the conversion yield was quite low, this study proved that synthesis gas (syn-gas) can be converted to electricity with the aid of microbes that do not possess the drawbacks of metal catalysts of conventional methods.

  11. A computational model for biofilm-based microbial fuel cells.

    PubMed

    Picioreanu, Cristian; Head, Ian M; Katuri, Krishna P; van Loosdrecht, Mark C M; Scott, Keith

    2007-07-01

    This study describes and evaluates a computational model for microbial fuel cells (MFCs) based on redox mediators with several populations of suspended and attached biofilm microorganisms, and multiple dissolved chemical species. A number of biological, chemical and electrochemical reactions can occur in the bulk liquid, in the biofilm and at the electrode surface. The evolution in time of important MFC parameters (current, charge, voltage and power production, consumption of substrates, suspended and attached biomass growth) has been simulated under several operational conditions. Model calculations evaluated the effect of different substrate utilization yields, standard potential of the redox mediator, ratio of suspended to biofilm cells, initial substrate and mediator concentrations, mediator diffusivity, mass transfer boundary layer, external load resistance, endogenous metabolism, repeated substrate additions and competition between different microbial groups in the biofilm. Two- and three-dimensional model simulations revealed the heterogeneous current distribution over the planar anode surface for younger and patchy biofilms, but becoming uniform in older and more homogeneous biofilms. For uniformly flat biofilms one-dimensional models should give sufficiently accurate descriptions of produced currents. Voltage- and power-current characteristics can also be calculated at different moments in time to evaluate the limiting regime in which the MFC operates. Finally, the model predictions are tested with previously reported experimental data obtained in a batch MFC with a Geobacter biofilm fed with acetate. The potential of the general modeling framework presented here is in the understanding and design of more complex cases of wastewater-fed microbial fuel cells.

  12. [Electricity production from surplus sludge using microbial fuel cells].

    PubMed

    Jia, Bin; Liu, Zhi-Hua; Li, Xiao-Ming; Yang, Yong-Lin; Yang, Qi; Zeng, Guang-Ming; Liu, Yi-Lin; Liu, Qian-Qian; Zheng, Shi-Wen

    2009-04-15

    A single-chamber and membrane-less microbial fuel cells were successfully started up using anaerobic sludge as inoculums without any chemical substance for 20 d. The electricity generation of the microbial fuel cell using surplus sludge as fuel and the change of substrate were investigated. The results showed that the obtained maximum voltage and power density were 495 mV and 44 mW x m(-2) (fixed 1,000 Omega), and the internal resistance was about 300 Omega during steady state. In a cycle, the removal efficiency of SS and VSS were 27.3% and 28.7%, pH was 6.5-8.0. In addition, the COD increased from 617 mg x L(-1) to 1,150 mg x L(-1) and decreased afterwards with time. The change of glucose was similar to that of COD, glucose increased from 47 mg x L(-1) to 60 mg x L(-1) and decreased afterwards with time. Consequently, the microbial fuel cell can transform chemical energy of surplus sludge into the cleanest electrical energy, and it provides a new way of sludge recycling.

  13. In Situ fuel processing in a microbial fuel cell.

    PubMed

    Bahartan, Karnit; Amir, Liron; Israel, Alvaro; Lichtenstein, Rachel G; Alfonta, Lital

    2012-09-01

    A microbial fuel cell (MFC) was designed in which fuel is generated in the cell by the enzyme glucoamylase, which is displayed on the surface of yeast. The enzyme digests starch specifically into monomeric glucose units and as a consequence enables further glucose oxidation by microorganisms present in the MFC anode. The oxidative enzyme glucose oxidase was coupled to the glucoamylase digestive enzyme. When both enzymes were displayed on the surface of yeast cells in a mixed culture, superior fuel-cell performance was observed in comparison with other combinations of yeast cells, unmodified yeast, or pure enzymes. The feasibility of the use of the green macroalgae Ulva lactuca in such a genetically modified MFC was also demonstrated. Herein, we report the performance of such fuel cells as a proof of concept for the enzymatic digestion of complex organic fuels in the anode of MFCs to render the fuel more available to microorganisms.

  14. Cell wall pH and auxin transport velocity

    NASA Technical Reports Server (NTRS)

    Hasenstein, K. H.; Rayle, D.

    1984-01-01

    According to the chemiosmotic polar diffusion hypothesis, auxin pulse velocity and basal secretion should increase with decreasing cell wall pH. Experiments were designed to test this prediction. Avena coleoptile sections were preincubated in either fusicoccin (FC), cycloheximide, pH 4.0, or pH 8.0 buffer and subsequently their polar transport capacities were determined. Relative to controls, FC enhanced auxin (IAA) uptake while CHI and pH 8.0 buffer reduced IAA uptake. Nevertheless, FC reduced IAA pulse velocity while cycloheximide increased velocity. Additional experiments showed that delivery of auxin to receivers is enhanced by increased receiver pH. This phenomenon was overcome by a pretreatment of the tissue with IAA. Our data suggest that while acidic wall pH values facilitate cellular IAA uptake, they do not enhance pulse velocity or basal secretion. These findings are inconsistent with the chemiosmotic hypothesis for auxin transport.

  15. Enzymology and molecular biology of cell wall biosynthesis. Progress report

    SciTech Connect

    Ray, P.M.

    1993-03-20

    In order to be able to explore the control of cell wall polysaccharide synthesis at the molecular level, which inter alia might eventually lead to means for useful modification of plant biomass polysaccharide production, the immediate goals of this project are to identify polypeptides responsible for wall polysaccharide synthase activities and to obtain clones of the genes that encode them. We are concentrating on plasma membraneassociated (1,3)-{beta}-glucan synthase (glucan synthase-II or GS-II) and Golgi-associated (1,4)-{beta}-glucan synthase (glucan synthase-I or GS-I), of growing pea stem tissue. Our progress has been much more rapid with respect to GS-II than regarding GS-I.

  16. Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts.

    PubMed

    Martens, Eric C; Lowe, Elisabeth C; Chiang, Herbert; Pudlo, Nicholas A; Wu, Meng; McNulty, Nathan P; Abbott, D Wade; Henrissat, Bernard; Gilbert, Harry J; Bolam, David N; Gordon, Jeffrey I

    2011-12-01

    Symbiotic bacteria inhabiting the human gut have evolved under intense pressure to utilize complex carbohydrates, primarily plant cell wall glycans in our diets. These polysaccharides are not digested by human enzymes, but are processed to absorbable short chain fatty acids by gut bacteria. The Bacteroidetes, one of two dominant bacterial phyla in the adult gut, possess broad glycan-degrading abilities. These species use a series of membrane protein complexes, termed Sus-like systems, for catabolism of many complex carbohydrates. However, the role of these systems in degrading the chemically diverse repertoire of plant cell wall glycans remains unknown. Here we show that two closely related human gut Bacteroides, B. thetaiotaomicron and B. ovatus, are capable of utilizing nearly all of the major plant and host glycans, including rhamnogalacturonan II, a highly complex polymer thought to be recalcitrant to microbial degradation. Transcriptional profiling and gene inactivation experiments revealed the identity and specificity of the polysaccharide utilization loci (PULs) that encode individual Sus-like systems that target various plant polysaccharides. Comparative genomic analysis indicated that B. ovatus possesses several unique PULs that enable degradation of hemicellulosic polysaccharides, a phenotype absent from B. thetaiotaomicron. In contrast, the B. thetaiotaomicron genome has been shaped by increased numbers of PULs involved in metabolism of host mucin O-glycans, a phenotype that is undetectable in B. ovatus. Binding studies of the purified sensor domains of PUL-associated hybrid two-component systems in conjunction with transcriptional analyses demonstrate that complex oligosaccharides provide the regulatory cues that induce PUL activation and that each PUL is highly specific for a defined cell wall polymer. These results provide a view of how these species have diverged into different carbohydrate niches by evolving genes that target unique suites of

  17. Diversity of Beetle Genes Encoding Novel Plant Cell Wall Degrading Enzymes

    PubMed Central

    Pauchet, Yannick; Wilkinson, Paul; Chauhan, Ritika; ffrench-Constant, Richard H.

    2010-01-01

    Plant cell walls are a heterogeneous mixture of polysaccharides and proteins that require a range of different enzymes to degrade them. Plant cell walls are also the primary source of cellulose, the most abundant and useful biopolymer on the planet. Plant cell wall degrading enzymes (PCWDEs) are therefore important in a wide range of biotechnological processes from the production of biofuels and food to waste processing. However, despite the fact that the last common ancestor of all deuterostomes was inferred to be able to digest, or even synthesize, cellulose using endogenous genes, all model insects whose complete genomes have been sequenced lack genes encoding such enzymes. To establish if the apparent “disappearance” of PCWDEs from insects is simply a sampling problem, we used 454 mediated pyrosequencing to scan the gut transcriptomes of beetles that feed on a variety of plant derived diets. By sequencing the transcriptome of five beetles, and surveying publicly available ESTs, we describe 167 new beetle PCWDEs belonging to eight different enzyme families. This survey proves that these enzymes are not only present in non-model insects but that the multigene families that encode them are apparently undergoing complex birth-death dynamics. This reinforces the observation that insects themselves, and not just their microbial symbionts, are a rich source of PCWDEs. Further it emphasises that the apparent absence of genes encoding PCWDEs from model organisms is indeed simply a sampling artefact. Given the huge diversity of beetles alive today, and the diversity of their lifestyles and diets, we predict that beetle guts will emerge as an important new source of enzymes for use in biotechnology. PMID:21179425

  18. Recent Advances in Genetic Technique of Microbial Report Cells and Their Applications in Cell Arrays

    PubMed Central

    Kim, Do Hyun; Kim, Moon Il; Park, Hyun Gyu

    2015-01-01

    Microbial cell arrays have attracted consistent attention for their ability to provide unique global data on target analytes at low cost, their capacity for readily detectable and robust cell growth in diverse environments, their high degree of convenience, and their capacity for multiplexing via incorporation of molecularly tailored reporter cells. To highlight recent progress in the field of microbial cell arrays, this review discusses research on genetic engineering of reporter cells, technologies for patterning live cells on solid surfaces, cellular immobilization in different polymers, and studies on their application in environmental monitoring, disease diagnostics, and other related fields. On the basis of these results, we discuss current challenges and future prospects for novel microbial cell arrays, which show promise for use as potent tools for unraveling complex biological processes. PMID:26436087

  19. Monoclonal antibodies, carbohydrate-binding modules, and the detection of polysaccharides in plant cell walls.

    PubMed

    Hervé, Cécile; Marcus, Susan E; Knox, J Paul

    2011-01-01

    Plant cell walls are diverse composites of complex polysaccharides. Molecular probes such as monoclonal antibodies (MABs) and carbohydrate-binding modules (CBMs) are important tools to detect and dissect cell wall structures in plant materials. We provide an account of methods that can be used to detect cell wall polysaccharide structures (epitopes) in plant materials and also describe treatments that can provide information on the masking of sets of polysaccharides that may prevent detection. These masking -phenomena may indicate potential interactions between sets of cell wall polysaccharides, and methods to uncover them are an important aspect of cell wall immunocytochemistry.

  20. Comparative structure and biomechanics of plant primary and secondary cell walls.

    PubMed

    Cosgrove, Daniel J; Jarvis, Michael C

    2012-01-01

    Recent insights into the physical biology of plant cell walls are reviewed, summarizing the essential differences between primary and secondary cell walls and identifying crucial gaps in our knowledge of their structure and biomechanics. Unexpected parallels are identified between the mechanism of expansion of primary cell walls during growth and the mechanisms by which hydrated wood deforms under external tension. There is a particular need to revise current "cartoons" of plant cell walls to be more consistent with data from diverse approaches and to go beyond summarizing limited aspects of cell walls, serving instead as guides for future experiments and for the application of new techniques.

  1. Scattering properties of microalgae: the effect of cell size and cell wall

    NASA Astrophysics Data System (ADS)

    Svensen, Øyvind; Frette, Øyvind; Rune Erga, Svein

    2007-08-01

    The main objective of this work was to investigate how the cell size and the presence of a cell wall influence the scattering properties of the green microalgae Chlamydomonas reinhardtii. The growth cycle of two strains, one with a cell wall and one without, was synchronized to be in the same growth phase. Measurements were conducted at two different phases of the growth cycle on both strains of the algae. It was found that the shape of the scattering phase function was very similar for both strains at both growth phases, but the regular strain with a cell wall scatters more strongly than the wall-less mutant. It was also found that the mutant strain has a stronger increase in scattering than the regular strain, as the algae grow, and that the scattering from the regular strain is more wavelength dependent than from the mutant strain.

  2. Identification of Two Saccharomyces cerevisiae Cell Wall Mannan Chemotypes

    PubMed Central

    Cawley, T. N.; Ballou, Clinton E.

    1972-01-01

    We have obtained evidence for two structurally and antigenically different Saccharomyces cerevisiae cell wall mannans. One, which occurs widely and is found in S. cerevisiae strain 238C, is already known to be a neutral mannan which yields mannose, mannobiose, mannotriose, and mannotetraose on acetolysis of the (1 → 6)-linked backbone. The other, which was found in S. cerevisiae brewer's strains, is a phosphomannan with a structure very similar to that of Kloeckera brevis mannan. S. cerevisiae (brewer's yeast strain) was agglutinated by antiserum prepared against Kloeckera brevis cells. The mannan, isolated from a proteolytic digest of the cell wall of the former, did not react with S. cerevisiae 238C antiserum, whereas it cross-reacted strongly with K. brevis antiserum. Controlled acetolysis cleaved the (1 → 6)-linkages in the polysaccharide backbone and released mannose, mannobiose, mannotriose, and mannotriose phosphate. Mild acid treatment of the phosphomannan hydrolyzed the phosphodiester linkage, yielding phosphomonoester mannan and mannose. The resulting phosphomonoester mannan reacted with antiserum prepared against K. brevis possessing monoester phosphate groups on the cell surface. α-d-Mannose-1-phosphate completely inhibited the precipitin reaction between brewer's yeast mannan and the homologous antiserum. Flocculent and nonflocculent strains of this yeast were shown to have similar structural and immunological properties. PMID:4559821

  3. [Hydroxyproline: Rich glycoproteins of the plant and cell wall

    SciTech Connect

    Varner, J.E.

    1993-01-01

    Since xylem tissue includes the main cell types which are lignified, we are interested in gene expression of glycine-rich proteins and proline-rich proteins, and other proteins which are involved in secondary cell wall thickening during xylogenesis. Since the main feature of xylogenesis is the deposition of additional wall components, study of the mechanism of xylogenesis will greatly advance our knowledge of the synthesis and assembly of wall macromolecules. We are using the in vitro xylogenesis system from isolated Zinnia mesophyll cells to isolate genes which are specifically expressed during xylogenesis. We have used subtractive hybridization methods to isolate a number of cDNA clones for differentially regulated genes from the cells after hormonal induction. So far, we have partially characterized 18 different cDNA clones from 239 positive clones. These differentially regulated genes can be divided into three sets according to the characteristics of gene expression in the induction medium and the control medium. The first set is induced in both the induction medium and the control medium without hormones. The second set is induced mainly in the induction medium and in the control medium with the addition of NAA alone. Two of thesegenes are exclusively induced by auxin. The third set of genes is induced mainly in the induction medium. Since these genes are not induced by either auxin or cytokinin alone, they may be directly involved in the process of xylogenesis. Our experiments on the localization of H[sub 2]O[sub 2] production reinforce the earlier ideas of others that H[sub 2]O[sub 2] is involved in normal lignification.

  4. The Neurospora crassa CPS-1 polysaccharide synthase functions in cell wall biosynthesis.

    PubMed

    Fu, Ci; Sokolow, Eleanor; Rupert, Christopher B; Free, Stephen J

    2014-08-01

    The Neurospora crassa cps-1 gene encodes a polysaccharide synthase with homology to the Cryptococcus neoformans hyaluronic acid synthase Cps1p. Homologs of the cps-1 gene are found in the genomes of many fungi. Loss of CPS-1 results in a cell wall defect that affects all stages of the N. crassa life cycle, including vegetative growth, protoperithecia (female mating structure) development, and conidia (asexual spore) development. The cell wall of cps-1 deletion mutants is sensitive to cell wall perturbation reagents. Our results demonstrate that CPS-1 is required for the incorporation of cell wall proteins into the cell wall and plays a critical role in cell wall biogenesis. We found that the N. crassa cell wall is devoid of hyaluronic acid, and conclude that the polysaccharide produced by the CPS-1 is not hyaluronic acid.

  5. KRE5 Suppression Induces Cell Wall Stress and Alternative ER Stress Response Required for Maintaining Cell Wall Integrity in Candida glabrata

    PubMed Central

    Sasaki, Masato; Ito, Fumie; Aoyama, Toshio; Sato-Okamoto, Michiyo; Takahashi-Nakaguchi, Azusa; Chibana, Hiroji; Shibata, Nobuyuki

    2016-01-01

    The maintenance of cell wall integrity in fungi is required for normal cell growth, division, hyphae formation, and antifungal tolerance. We observed that endoplasmic reticulum stress regulated cell wall integrity in Candida glabrata, which possesses uniquely evolved mechanisms for unfolded protein response mechanisms. Tetracycline-mediated suppression of KRE5, which encodes a predicted UDP-glucose:glycoprotein glucosyltransferase localized in the endoplasmic reticulum, significantly increased cell wall chitin content and decreased cell wall β-1,6-glucan content. KRE5 repression induced endoplasmic reticulum stress-related gene expression and MAP kinase pathway activation, including Slt2p and Hog1p phosphorylation, through the cell wall integrity signaling pathway. Moreover, the calcineurin pathway negatively regulated cell wall integrity, but not the reduction of β-1,6-glucan content. These results indicate that KRE5 is required for maintaining both endoplasmic reticulum homeostasis and cell wall integrity, and that the calcineurin pathway acts as a regulator of chitin-glucan balance in the cell wall and as an alternative mediator of endoplasmic reticulum stress in C. glabrata. PMID:27548283

  6. Soluble Signals from Cells Identified at the Cell Wall Establish a Developmental Pathway in Carrot.

    PubMed Central

    McCabe, P. F.; Valentine, T. A.; Forsberg, L. S.; Pennell, R. I.

    1997-01-01

    Cells in a plant differentiate according to their positions and use cell-cell communication to assess these positions. Similarly, single cells in suspension cultures can develop into somatic embryos, and cell-cell communication is thought to control this process. The monoclonal antibody JIM8 labels an epitope on cells in specific positions in plants. JIM8 also labels certain cells in carrot embryogenic suspension cultures. We have used JIM8 and secondary antibodies coupled to paramagnetic beads to label and immunomagnetically sort single cells in a carrot embryogenic suspension culture into pure populations. Cells in the JIM8(+) population develop into somatic embryos, whereas cells in the JIM8(-) population do not form somatic embryos. However, certain cells in JIM8(+) cultures (state B cells) undergo asymmetric divisions, resulting in daughter cells (state C cells) that do not label with JIM8 and that sort to JIM8(-) cultures. State C cells are competent to form somatic embryos, and we show here that a conditioned growth medium from a culture of JIM8(+) cells allows state C cells in a JIM8(-) culture to go on and develop into somatic embryos. JIM8 labels cells in suspension cultures at the cell wall. Therefore, a cell with a role in cell-cell communication and early cell fate selection can be identified by an epitope in its cell wall. PMID:12237357

  7. The CWB2 Cell Wall-Anchoring Module Is Revealed by the Crystal Structures of the Clostridium difficile Cell Wall Proteins Cwp8 and Cwp6.

    PubMed

    Usenik, Aleksandra; Renko, Miha; Mihelič, Marko; Lindič, Nataša; Borišek, Jure; Perdih, Andrej; Pretnar, Gregor; Müller, Uwe; Turk, Dušan

    2017-03-07

    Bacterial cell wall proteins play crucial roles in cell survival, growth, and environmental interactions. In Gram-positive bacteria, cell wall proteins include several types that are non-covalently attached via cell wall binding domains. Of the two conserved surface-layer (S-layer)-anchoring modules composed of three tandem SLH or CWB2 domains, the latter have so far eluded structural insight. The crystal structures of Cwp8 and Cwp6 reveal multi-domain proteins, each containing an embedded CWB2 module. It consists of a triangular trimer of Rossmann-fold CWB2 domains, a feature common to 29 cell wall proteins in Clostridium difficile 630. The structural basis of the intact module fold necessary for its binding to the cell wall is revealed. A comparison with previously reported atomic force microscopy data of S-layers suggests that C. difficile S-layers are complex oligomeric structures, likely composed of several different proteins.

  8. Sustainable wastewater treatment: how might microbial fuel cells contribute.

    PubMed

    Oh, Sung T; Kim, Jung Rae; Premier, Giuliano C; Lee, Tae Ho; Kim, Changwon; Sloan, William T

    2010-01-01

    The need for cost-effective low-energy wastewater treatment has never been greater. Clean water for our expanding and predominantly urban global population will be expensive to deliver, eats into our diminishing carbon-based energy reserves and consequently contributes to green house gases in the atmosphere and climate change. Thus every potential cost and energy cutting measure for wastewater treatment should be explored. Microbial fuel cells (MFCs) could potentially yield such savings but, to achieve this, requires significant advances in our understanding in a few critical areas and in our designs of the overall systems. Here we review the research which might accelerate our progress towards sustainable wastewater treatment using MFCs: system control and modelling and the understanding of the ecology of the microbial communities that catalyse the generation of electricity.

  9. Recent Progress of Nanostructure Modified Anodes in Microbial Fuel Cells.

    PubMed

    Kim, Marie; Kim, Hyeon Woo; Nam, Joo-Youn; In, Su-Il

    2015-09-01

    Microbial fuel cell (MFC) is a bio-electrochemical system which converts chemical energy into electrical energy by catalytic activity of microorganisms. Electrons produced by microbial oxidation from substrates such as organic matter, complex or renewable biomass are transferred to the anode. Protons produced at the anode migrate to the cathode via the wire and combine with oxygen to form water. Therefore MFC technologies are promising approach for generating electricity or hydrogen gas and wastewater treatment. Electrode materials are one of the keys to increase the power output of MFCs. To improve the cost effective performance of MFCs, various electrodes materials, modifications and configurations have been developed. In this paper, among other recent advances of nanostructured electrodes, especially carbon based anodes, are highlighted. The properties of these electrodes, in terms of surface characteristics, conductivity, modifications, and options were reviewed. The applications, challenges and perspectives of the current MFCs electrode for future development in bio or medical field are briefly discussed.

  10. Perchlorate reduction in microbial electrolysis cell with polyaniline modified cathode.

    PubMed

    Li, Jia-Jia; Gao, Ming-Ming; Zhang, Gang; Wang, Xin-Hua; Wang, Shu-Guang; Song, Chao; Xu, Yan-Yan

    2015-02-01

    Excellent perchlorate reduction was obtained under various initial concentrations in a non-membrane microbial electrolysis cell with polyaniline (PANI) modified graphite cathode as sole electron donor. PANI modification is conducive to the formation of biofilm due to its porous structure and good electrocatalytic performance. Compared with cathode without biofilm, over 12% higher reduction rates were acquired in the presence of biocathode. The study demonstrates that, instead of perchlorate reduction, the main contribution of biofilm is involved in facilitate electron transfer from cathode to electrolyte. Interestingly, hairlike structure, referred as to pili-like, was observed in the biofilm as well as in the electrolyte. Additionally, the results show that pili were prone to formation under the condition of external electron field as sole electron donor. Analysis of microbial community suggests that perchlorate reduction bacteria community was most consistent with Azospiraoryzae strain DSM 13638 in the subdivision of the class Proteobacteria.

  11. Transient sedimentation in a cell with top and bottom walls

    NASA Astrophysics Data System (ADS)

    Dance, Sarah; Maxey, Martin

    2002-11-01

    Wall boundary conditions may play a role in the screening of particle velocity fluctuations in Stokes suspensions. Using a Force-Coupling Method (Maxey and Patel, Int. J. Multiphase Flow 27 (2001)) we simulate transient sedimentation. The numerical scheme is a mixed Fourier-spectral element method, based on the Uzawa algorithm for Stokes flows. The sedimentation cell has top and bottom wall boundaries and periodic boundaries in the horizontal. These boundaries are chosen both for computational convenience, and to determine the relative importance of bottom and side walls in screening the velocity fluctuations. We consider several different box sizes, in an attempt to elucidate the connection between particle velocity fluctuation levels and box width. We quantify the evolution of particle mean velocities and fluctuations as well as the particle microstructure. In each case we observe an initial growth, followed by a decay in both the mean particle velocity and fluctuations. We also observe that a stable stratification develops. We suggest that the stratification is important in the evolution of the bulk mean velocity. We propose a mechanism involving particle cluster dynamics to explain the behaviour of the velocity fluctuations.

  12. A hybrid biocathode: surface display of O2-reducing enzymes for microbial fuel cell applications.

    PubMed

    Szczupak, Alon; Kol-Kalman, Dan; Alfonta, Lital

    2012-01-04

    Laccase and bilirubin oxidase were successfully displayed on the surface of yeast cells. Subsequently, these modified yeast cells were used in the cathode compartment of a microbial fuel cell. The performance of the fuel cells is compared.

  13. Cellulose-hemicellulose interaction in wood secondary cell-wall

    NASA Astrophysics Data System (ADS)

    Zhang, Ning; Li, Shi; Xiong, Liming; Hong, Yu; Chen, Youping

    2015-12-01

    The wood cell wall features a tough and relatively rigid fiber reinforced composite structure. It acts as a pressure vessel, offering protection against mechanical stress. Cellulose microfibrils, hemicellulose and amorphous lignin are the three major components of wood. The structure of secondary cell wall could be imagined as the same as reinforced concrete, in which cellulose microfibrils acts as reinforcing steel bar and hemicellulose-lignin matrices act as the concrete. Therefore, the interface between cellulose and hemicellulose/lignin plays a significant role in determine the mechanical behavior of wood secondary cell wall. To this end, we present a molecular dynamics (MD) simulation study attempting to quantify the strength of the interface between cellulose microfibrils and hemicellulose. Since hemicellulose binds with adjacent cellulose microfibrils in various patterns, the atomistic models of hemicellulose-cellulose composites with three typical binding modes, i.e. bridge, loop and random binding modes are constructed. The effect of the shape of hemicellulose chain on the strength of hemicellulose-cellulose composites under shear loadings is investigated. The contact area as well as hydrogen bonds between cellulose and hemicellulose, together with the covalent bonds in backbone of hemicellulose chain are found to be the controlling parameters which determine the strength of the interfaces in the composite system. For the bridge binding model, the effect of shear loading direction on the strength of the cellulose material is also studied. The obtained results suggest that the shear strength of wood-inspired engineering composites can be optimized through maximizing the formations of the contributing hydrogen bonds between cellulose and hemicellulose.

  14. Changes in cell wall polysaccharide composition, gene transcription and alternative splicing in germinating barley embryos.

    PubMed

    Zhang, Qisen; Zhang, Xiaoqi; Pettolino, Filomena; Zhou, Gaofeng; Li, Chengdao

    2016-02-01

    Barley (Hordeum vulgare L.) seed germination initiates many important biological processes such as DNA, membrane and mitochondrial repairs. However, little is known on cell wall modifications in germinating embryos. We have investigated cell wall polysaccharide composition change, gene transcription and alternative splicing events in four barley varieties at 24h and 48 h germination. Cell wall components in germinating barley embryos changed rapidly, with increases in cellulose and (1,3)(1,4)-β-D-glucan (20-100%) within 24h, but decreases in heteroxylan and arabinan (3-50%). There were also significant changes in the levels of type I arabinogalactans and heteromannans. Alternative splicing played very important roles in cell wall modifications. At least 22 cell wall transcripts were detected to undergo either alternative 3' splicing, alternative 5' splicing or intron retention type of alternative splicing. These genes coded enzymes catalyzing synthesis and degradation of cellulose, heteroxylan, (1,3)(1,4)-β-D-glucan and other cell wall polymers. Furthermore, transcriptional regulation also played very important roles in cell wall modifications. Transcript levels of primary wall cellulase synthase, heteroxylan synthesizing and nucleotide sugar inter-conversion genes were very high in germinating embryos. At least 50 cell wall genes changed transcript levels significantly. Expression patterns of many cell wall genes coincided with changes in polysaccharide composition. Our data showed that cell wall polysaccharide metabolism was very active in germinating barley embryos, which was regulated at both transcriptional and post-transcriptional levels.

  15. A radioimmunoassay for lignin in plant cell walls

    SciTech Connect

    Dawley, R.M.

    1989-01-01

    Lignin detection and determination in herbaceous tissue requires selective, specific assays which are not currently available. A radioimmunoassay (RIA) was developed to study lignin metabolism in these tissues. A {beta}-aryl ether lignin model compound was synthesized, linked to keyhole limpet hemocyanin using a water-soluble carbodiimide, and injected into rabbits. The highest titer of the antiserum obtained was 34 {eta}g/mL of model derivatized BSA. An in vitro system was developed to characterize the RIA. The model compound was linked to amino activated polyacrylamide beads to mimic lignin in the cell walls. {sup 125}I Radiolabelled protein A was used to detect IgG antibody binding. The RIA was shown in the in vitro system to exhibit saturable binding. The amount of antibody bound decreased when the serum was diluted. Immunoelectrophoresis and competitive binding experiments confirmed that both aromatic rings of the lignin model compound had been antigenic. Chlorogenic acid, a phenolic known to be present in plant cells, did not compete for antibody binding. The RIA was used to measure lignin in milled plant samples and barley seedlings. Antiserum binding to wheat cell walls and stressed barley segments was higher than preimmune serum binding. Antibody binding to stressed barley tissue decreased following NaClO{sub 2} delignification. The RIA was found to be less sensitive than expected, so several avenues for improving the method are discussed.

  16. Lignification in poplar tension wood lignified cell wall layers.

    PubMed

    Yoshinaga, Arata; Kusumoto, Hiroshi; Laurans, Françoise; Pilate, Gilles; Takabe, Keiji

    2012-09-01

    The lignification process in poplar tension wood lignified cell wall layers, specifically the S(1) and S(2) layers and the compound middle lamella (CML), was analysed using ultraviolet (UV) and transmission electron microscopy (TEM). Variations in the thickness of the gelatinous layer (G-layer) were also measured to clarify whether the lignified cell wall layers had completed their lignification before the deposition of G-layers, or, on the contrary, if lignification of these layers was still active during G-layer formation. Observations using UV microscopy and TEM indicated that both UV absorbance and the degree of potassium permanganate staining increased in the CML and S(1) and S(2) layers during G-layer formation, suggesting that the lignification of these lignified layers is still in progress during G-layer formation. In the context of the cell-autonomous monolignol synthesis hypothesis, our observations suggest that monolignols must go through the developing G-layer during the lignification of CML and the S(1) and S(2) layers. The alternative hypothesis of external synthesis (in the rays) does not require that monolignols go through the G-layer before being deposited in the CML, or the S(1) and S(2) layers. Interestingly, the previous observation of lignin in the poplar G-layer was not confirmed with the microscopy techniques used in the present study.

  17. The mechanisms of plant cell wall deconstruction during enzymatic hydrolysis.

    PubMed

    Thygesen, Lisbeth G; Thybring, Emil E; Johansen, Katja S; Felby, Claus

    2014-01-01

    Mechanical agitation during enzymatic hydrolysis of insoluble plant biomass at high dry matter contents is indispensable for the initial liquefaction step in biorefining. It is known that particle size reduction is an important part of liquefaction, but the mechanisms involved are poorly understood. Here we put forward a simple model based on mechanical principles capable of capturing the result of the interaction between mechanical forces and cell wall weakening via hydrolysis of glucosidic bonds. This study illustrates that basic material science insights are relevant also within biochemistry, particularly when it comes to up-scaling of processes based on insoluble feed stocks.

  18. Amino acids of the cell wall of Nocardia rubra.

    PubMed

    Beaman, B L; Kim, K S; Salton, M R; Barksdale, L

    1971-11-01

    Two classes of preparations of cell walls of Nocardia rubra strain 721-A, digested by trypsin and pepsin with or without subsequent extraction in alkaline ethanol, when examined by electron microscope and analyzed quantitatively for amino acid content differ in ultrastructure and constituent amino acids. Evidence suggests that the lipid-associated amino acids (as peptide or protein) occupy a location superficial to the basal peptido-glycan layer of this nocardia. Their removal is associated with the loss of a characteristic pattern of the outer envelope.

  19. Theoretical investigation on breaking plant cell wall by laser

    NASA Astrophysics Data System (ADS)

    Chen, Liang-cai; Wang, Jin-ji; Ma, Peng; Zuo, Du-luo; Wang, Xin-bing; Cheng, Zu-hai

    2011-11-01

    The experiment collected some spinach leaves which were irradiated by pulsed CO2 laser with energy 5.6J, 8.0J and 9.5J respectively. Each of them was soaked in three kinds of solvents (water, ethanol, the mixture of ethanol and petroleum ether) respectively. The experiment shows that the ethanol solution which contains the irradiated leaves turn dark green than the ethanol solution which contains the intact leaves and the color of solution with the leaves irradiated by CO2 laser with 9.5J changes the most significantly. Further, selective excitation on the molecular level of the cell wall were used to explain the phenomenon.

  20. Theoretical investigation on breaking plant cell wall by laser

    NASA Astrophysics Data System (ADS)

    Chen, Liang-cai; Wang, Jin-ji; Ma, Peng; Zuo, Du-luo; Wang, Xin-bing; Cheng, Zu-hai

    2012-03-01

    The experiment collected some spinach leaves which were irradiated by pulsed CO2 laser with energy 5.6J, 8.0J and 9.5J respectively. Each of them was soaked in three kinds of solvents (water, ethanol, the mixture of ethanol and petroleum ether) respectively. The experiment shows that the ethanol solution which contains the irradiated leaves turn dark green than the ethanol solution which contains the intact leaves and the color of solution with the leaves irradiated by CO2 laser with 9.5J changes the most significantly. Further, selective excitation on the molecular level of the cell wall were used to explain the phenomenon.

  1. An emerging role of pectic rhamnogalacturonanII for cell wall integrity

    PubMed Central

    Reboul, Rebecca; Tenhaken, Raimund

    2012-01-01

    The plant cell wall is a complex network of different polysaccharides and glycoproteins, showing high diversity in nature. The essential components, tethering cell wall are under debate, as novel mutants challenge established models. The mutant ugd2,3 with a reduced supply of the important wall precursor UDP-glucuronic acid reveals the critical role of the pectic compound rhamnogalacturonanII for cell wall stability. This polymer seems to be more important for cell wall integrity than the previously favored xyloglucan. PMID:22353862

  2. Genetic and biochemical characterization of the GH72 family of cell wall transglycosylases in Neurospora crassa.

    PubMed

    Ao, Jie; Free, Stephen J

    2017-04-01

    The Neurospora crassa genome encodes five GH72 family transglycosylases, and four of these enzymes (GEL-1, GEL-2, GEL-3 and GEL-5) have been found to be present in the cell wall proteome. We carried out an extensive genetic analysis on the role of these four transglycosylases in cell wall biogenesis and demonstrated that the transglycosylases are required for the formation of a normal cell wall. As suggested by the proteomic analysis, we found that multiple transglycosylases were being expressed in N. crassa cells and that different combinations of the enzymes are required in different cell types. The combination of GEL-1, GEL-2 and GEL-5 is required for the growth of vegetative hyphae, while the GEL-1, GEL-2, GEL-3 combination is needed for the production of aerial hyphae and conidia. Our data demonstrates that the enzymes are redundant with partially overlapping enzymatic activities, which provides the fungus with a robust cell wall biosynthetic system. Characterization of the transglycosylase-deficient mutants demonstrated that the incorporation of cell wall proteins was severely compromised. Interestingly, we found that the transglycosylase-deficient mutant cell walls contained more β-1,3-glucan than the wild type cell wall. Our results demonstrate that the GH72 transglycosylases are not needed for the incorporation of β-1,3-glucan into the cell wall, but they are required for the incorporation of cell wall glycoprotein into the cell wall.

  3. Heterogeneity in the chemistry, structure and function of plant cell walls.

    PubMed

    Burton, Rachel A; Gidley, Michael J; Fincher, Geoffrey B

    2010-10-01

    Higher plants resist the forces of gravity and powerful lateral forces through the cumulative strength of the walls that surround individual cells. These walls consist mainly of cellulose, noncellulosic polysaccharides and lignin, in proportions that depend upon the specific functions of the cell and its stage of development. Spatially and temporally controlled heterogeneity in the physicochemical properties of wall polysaccharides is observed at the tissue and individual cell levels, and emerging in situ technologies are providing evidence that this heterogeneity also occurs across a single cell wall. We consider the origins of cell wall heterogeneity and identify contributing factors that are inherent in the molecular mechanisms of polysaccharide biosynthesis and are crucial for the changing biological functions of the wall during growth and development. We propose several key questions to be addressed in cell wall biology, together with an alternative two-phase model for the assembly of noncellulosic polysaccharides in plants.

  4. In situ microscopic observation of chitin and fungal cells with chitinous cell walls in hydrothermal conditions

    PubMed Central

    Deguchi, Shigeru; Tsujii, Kaoru; Horikoshi, Koki

    2015-01-01

    Recent findings of intact chitin in fossil records suggest surprisingly high recalcitrance of this biopolymer during hydrothermal treatments. We also know in the experience of everyday life that mushroom, cells of which have chitinous cell walls, do not fall apart however long they are simmered. We used in situ optical microscopy to examine chitin and fungal cells with chitinous cell walls during hydrothermal treatments, and obtained direct evidence that they remained undegraded at temperatures well over 200 °C. The results show very hot and compressed water is needed to make mushrooms mushy. PMID:26148792

  5. The cell-wall glycoproteins of the green alga Scenedesmus obliquus. The predominant cell-wall polypeptide of Scenedesmus obliquus is related to the cell-wall glycoprotein gp3 of Chlamydomonas reinhardtii.

    PubMed

    Voigt, Jürgen; Stolarczyk, Adam; Zych, Maria; Malec, Przemysław; Burczyk, Jan

    2014-02-01

    The green alga Scenedesmus obliquus contains a multilayered cell wall, ultrastructurally similar to that of Chlamydomonas reinhardtii, although its proportion of hydroxyproline is considerably lower. Therefore, we have investigated the polypeptide composition of the insoluble and the chaotrope-soluble wall fractions of S. obliquus. The polypeptide pattern of the chaotrope-soluble wall fraction was strongly modified by chemical deglycosylation with anhydrous hydrogen fluoride (HF) in pyridine indicating that most of these polypeptides are glycosylated. Polypeptide constituents of the chaotrope-soluble cell-wall fraction with apparent molecular masses of 240, 270, 265, and 135 kDa cross-reacted with a polyclonal antibody raised against the 100 kDa deglycosylation product of the C. reinhardtii cell-wall glycoprotein GP3B. Chemical deglycosylation of the chaotrope-soluble wall fraction resulted in a 135 kDa major polypeptide and a 106 kDa minor component reacting with the same antibody. This antibody recognized specific peptide epitopes of GP3B. When the insoluble wall fraction of S. obliquus was treated with anhydrous HF/pyridine, three polypeptides with apparent molecular masses of 144, 135, and 65 kDa were solubilized, which also occured in the deglycosylated chaotrope-soluble wall fraction. These findings indicate that theses glycoproteins are cross-linked to the insoluble wall fraction via HF-sensitive bonds.

  6. Engineering microbial fuels cells: recent patents and new directions.

    PubMed

    Biffinger, Justin C; Ringeisen, Bradley R

    2008-01-01

    Fundamental research into how microbes generate electricity within microbial fuel cells (MFCs) has far outweighed the practical application and large scale development of microbial energy harvesting devices. MFCs are considered alternatives to standard commercial polymer electrolyte membrane (PEM) fuel cell technology because the fuel supply does not need to be purified, ambient operating temperatures are maintained with biologically compatible materials, and the biological catalyst is self-regenerating. The generation of electricity during wastewater treatment using MFCs may profoundly affect the approach to anaerobic treatment technologies used in wastewater treatment as a result of developing this energy harvesting technology. However, the materials and engineering designs for MFCs were identical to commercial fuel cells until 2003. Compared to commercial fuel cells, MFCs will remain underdeveloped as long as low power densities are generated from the best systems. The variety of designs for MFCs has expanded rapidly in the last five years in the literature, but the patent protection has lagged behind. This review will cover recent and important patents relating to MFC designs and progress.

  7. Osteoprotegerin Regulates Pancreatic β-Cell Homeostasis upon Microbial Invasion

    PubMed Central

    Kuroda, Yukiko; Maruyama, Kenta; Fujii, Hideki; Sugawara, Isamu; Ko, Shigeru B. H.; Yasuda, Hisataka; Matsui, Hidenori; Matsuo, Koichi

    2016-01-01

    Osteoprotegerin (OPG), a decoy receptor for receptor activator of NF-κB ligand (RANKL), antagonizes RANKL’s osteoclastogenic function in bone. We previously demonstrated that systemic administration of lipopolysaccharide (LPS) to mice elevates OPG levels and reduces RANKL levels in peripheral blood. Here, we show that mice infected with Salmonella, Staphylococcus, Mycobacteria or influenza virus also show elevated serum OPG levels. We then asked whether OPG upregulation following microbial invasion had an effect outside of bone. To do so, we treated mice with LPS and observed OPG production in pancreas, especially in β-cells of pancreatic islets. Insulin release following LPS administration was enhanced in mice lacking OPG, suggesting that OPG inhibits insulin secretion under acute inflammatory conditions. Consistently, treatment of MIN6 pancreatic β-cells with OPG decreased their insulin secretion following glucose stimulation in the presence of LPS. Finally, our findings suggest that LPS-induced OPG upregulation is mediated in part by activator protein (AP)-1 family transcription factors, particularly Fos proteins. Overall, we report that acute microbial infection elevates serum OPG, which maintains β-cell homeostasis by restricting glucose-stimulated insulin secretion, possibly preventing microbe-induced exhaustion of β-cell secretory capacity. PMID:26751951

  8. Design and development of synthetic microbial platform cells for bioenergy

    PubMed Central

    Lee, Sang Jun; Lee, Sang-Jae; Lee, Dong-Woo

    2013-01-01

    The finite reservation of fossil fuels accelerates the necessity of development of renewable energy sources. Recent advances in synthetic biology encompassing systems biology and metabolic engineering enable us to engineer and/or create tailor made microorganisms to produce alternative biofuels for the future bio-era. For the efficient transformation of biomass to bioenergy, microbial cells need to be designed and engineered to maximize the performance of cellular metabolisms for the production of biofuels during energy flow. Toward this end, two different conceptual approaches have been applied for the development of platform cell factories: forward minimization and reverse engineering. From the context of naturally minimized genomes,non-essential energy-consuming pathways and/or related gene clusters could be progressively deleted to optimize cellular energy status for bioenergy production. Alternatively, incorporation of non-indigenous parts and/or modules including biomass-degrading enzymes, carbon uptake transporters, photosynthesis, CO2 fixation, and etc. into chassis microorganisms allows the platform cells to gain novel metabolic functions for bioenergy. This review focuses on the current progress in synthetic biology-aided pathway engineering in microbial cells and discusses its impact on the production of sustainable bioenergy. PMID:23626588

  9. Design and development of synthetic microbial platform cells for bioenergy.

    PubMed

    Lee, Sang Jun; Lee, Sang-Jae; Lee, Dong-Woo

    2013-01-01

    The finite reservation of fossil fuels accelerates the necessity of development of renewable energy sources. Recent advances in synthetic biology encompassing systems biology and metabolic engineering enable us to engineer and/or create tailor made microorganisms to produce alternative biofuels for the future bio-era. For the efficient transformation of biomass to bioenergy, microbial cells need to be designed and engineered to maximize the performance of cellular metabolisms for the production of biofuels during energy flow. Toward this end, two different conceptual approaches have been applied for the development of platform cell factories: forward minimization and reverse engineering. From the context of naturally minimized genomes,non-essential energy-consuming pathways and/or related gene clusters could be progressively deleted to optimize cellular energy status for bioenergy production. Alternatively, incorporation of non-indigenous parts and/or modules including biomass-degrading enzymes, carbon uptake transporters, photosynthesis, CO2 fixation, and etc. into chassis microorganisms allows the platform cells to gain novel metabolic functions for bioenergy. This review focuses on the current progress in synthetic biology-aided pathway engineering in microbial cells and discusses its impact on the production of sustainable bioenergy.

  10. Penium margaritaceum: A Unicellular Model Organism for Studying Plant Cell Wall Architecture and Dynamics.

    PubMed

    Domozych, David S

    2014-11-18

    Penium margaritaceum is a new and valuable unicellular model organism for studying plant cell wall structure and developmental dynamics. This charophyte has a cell wall composition remarkably similar to the primary cell wall of many higher plants and clearly-defined inclusive zones containing specific polymers. Penium has a simple cylindrical phenotype with a distinct region of focused wall synthesis. Specific polymers, particularly pectins, can be identified using monoclonal antibodies raised against polymers of higher plant cell walls. Immunofluorescence-based labeling is easily performed using live cells that subsequently can be returned to culture and monitored. This feature allows for rapid assessment of wall expansion rates and identification of multiple polymer types in the wall microarchitecture during the cell cycle. Cryofixation by means of spray freezing provides excellent transmission electron microscopy imaging of the cell, including its elaborate endomembrane and cytoskeletal systems, both integral to cell wall development. Penium's fast growth rate allows for convenient microarray screening of various agents that alter wall biosynthesis and metabolism. Finally, recent successful development of transformed cell lines has allowed for non-invasive imaging of proteins in cells and for RNAi reverse genetics that can be used for cell wall biosynthesis studies.

  11. Daughter cell separation is controlled by cytokinetic ring-activated cell wall hydrolysis.

    PubMed

    Uehara, Tsuyoshi; Parzych, Katherine R; Dinh, Thuy; Bernhardt, Thomas G

    2010-04-21

    During bacterial cytokinesis, hydrolytic enzymes are used to split wall material shared by adjacent daughter cells to promote their separation. Precise control over these enzymes is critical to prevent breaches in wall integrity that can cause cell lysis. How these potentially lethal hydrolases are regulated has remained unknown. Here, we investigate the regulation of cell wall turnover at the Escherichia coli division site. We show that two components of the division machinery with LytM domains (EnvC and NlpD) are direct regulators of the cell wall hydrolases (amidases) responsible for cell separation (AmiA, AmiB and AmiC). Using in vitro cell wall cleavage assays, we show that EnvC activates AmiA and AmiB, whereas NlpD activates AmiC. Consistent with these findings, we show that an unregulated EnvC mutant requires functional AmiA or AmiB but not AmiC to induce cell lysis, and that the loss of NlpD phenocopies an AmiC(-) defect. Overall, our results suggest that cellular amidase activity is regulated spatially and temporally by coupling their activation to the assembly of the cytokinetic ring.

  12. Daughter cell separation is controlled by cytokinetic ring-activated cell wall hydrolysis

    PubMed Central

    Uehara, Tsuyoshi; Parzych, Katherine R; Dinh, Thuy; Bernhardt, Thomas G

    2010-01-01

    During bacterial cytokinesis, hydrolytic enzymes are used to split wall material shared by adjacent daughter cells to promote their separation. Precise control over these enzymes is critical to prevent breaches in wall integrity that can cause cell lysis. How these potentially lethal hydrolases are regulated has remained unknown. Here, we investigate the regulation of cell wall turnover at the Escherichia coli division site. We show that two components of the division machinery with LytM domains (EnvC and NlpD) are direct regulators of the cell wall hydrolases (amidases) responsible for cell separation (AmiA, AmiB and AmiC). Using in vitro cell wall cleavage assays, we show that EnvC activates AmiA and AmiB, whereas NlpD activates AmiC. Consistent with these findings, we show that an unregulated EnvC mutant requires functional AmiA or AmiB but not AmiC to induce cell lysis, and that the loss of NlpD phenocopies an AmiC− defect. Overall, our results suggest that cellular amidase activity is regulated spatially and temporally by coupling their activation to the assembly of the cytokinetic ring. PMID:20300061

  13. The Impact of Microfibril Orientations on the Biomechanics of Plant Cell Walls and Tissues.

    PubMed

    Ptashnyk, Mariya; Seguin, Brian

    2016-11-01

    The microscopic structure and anisotropy of plant cell walls greatly influence the mechanical properties, morphogenesis, and growth of plant cells and tissues. The microscopic structure and properties of cell walls are determined by the orientation and mechanical properties of the cellulose microfibrils and the mechanical properties of the cell wall matrix. Viewing the shape of a plant cell as a square prism with the axis aligning with the primary direction of expansion and growth, the orientation of the microfibrils within the side walls, i.e. the parts of the cell walls on the sides of the cells, is known. However, not much is known about their orientation at the upper and lower ends of the cell. Here we investigate the impact of the orientation of cellulose microfibrils within the upper and lower parts of the plant cell walls by solving the equations of linear elasticity numerically. Three different scenarios for the orientation of the microfibrils are considered. We also distinguish between the microstructure in the side walls given by microfibrils perpendicular to the main direction of the expansion and the situation where the microfibrils are rotated through the wall thickness. The macroscopic elastic properties of the cell wall are obtained using homogenization theory from the microscopic description of the elastic properties of the cell wall microfibrils and wall matrix. It is found that the orientation of the microfibrils in the upper and lower parts of the cell walls affects the expansion of the cell in the lateral directions and is particularly important in the case of forces acting on plant cell walls and tissues.

  14. Properties of lead deposits in cell walls of radish (Raphanus sativus) roots.

    PubMed

    Inoue, Hiroshi; Fukuoka, Daisuke; Tatai, Yuri; Kamachi, Hiroyuki; Hayatsu, Manabu; Ono, Manami; Suzuki, Suechika

    2013-01-01

    Various mechanisms are involved in detoxification of heavy metals such as lead (Pb) in plant cells. Most of the Pb taken up by plants accumulates in their roots. However, the detailed properties of Pb complexes in roots remain unclear. We have investigated the properties of Pb deposits in root cell walls of radish (Raphanus sativus L.) seedlings grown on glass beads bed containing Pb pellets, which are the source of Pb-contamination in shooting range soils. Pb deposits were tightly bound to cell walls. Cell wall fragments containing about 50,000 ppm Pb were prepared from the roots. After extracting Pb from the cell wall fragments using HCl, Pb ions were recombined with the Pb-extracted cell wall fragments in a solution containing Pb acetate. When the cell wall fragments were treated with pectinase (E.C. 3.2.1.15) and were chemically modified with 1-ethyl-3-dimethylamino-propylcarboimide, the Pb-rebinding ability of the treated cell wall fragments decreased. When acid-treated cell wall fragments were incubated in a solution containing Pb(2+) and excess amounts of a chelating agent, Pb recombined with the cell wall fragments were measured to estimate the affinity between Pb(2+) and the cell wall fragments. Our data show that Pb(2+) binds to carboxyl groups of cell walls. The source of the carboxyl groups is suggested to be pectic compounds. A stability constant of the Pb-cell wall complex was estimated to be about 10(8). The role of root cell walls in the mechanism underlying heavy metal tolerance was discussed.

  15. Microbial electricity generation in rice paddy fields: recent advances and perspectives in rhizosphere microbial fuel cells.

    PubMed

    Kouzuma, Atsushi; Kaku, Nobuo; Watanabe, Kazuya

    2014-12-01

    Microbial fuel cells (MFCs) are devices that use living microbes for the conversion of organic matter into electricity. MFC systems can be applied to the generation of electricity at water/sediment interfaces in the environment, such as bay areas, wetlands, and rice paddy fields. Using these systems, electricity generation in paddy fields as high as ∼80 mW m(-2) (based on the projected anode area) has been demonstrated, and evidence suggests that rhizosphere microbes preferentially utilize organic exudates from rice roots for generating electricity. Phylogenetic and metagenomic analyses have been conducted to identify the microbial species and catabolic pathways that are involved in the conversion of root exudates into electricity, suggesting the importance of syntrophic interactions. In parallel, pot cultures of rice and other aquatic plants have been used for rhizosphere MFC experiments under controlled laboratory conditions. The findings from these studies have demonstrated the potential of electricity generation for mitigating methane emission from the rhizosphere. Notably, however, the presence of large amounts of organics in the rhizosphere drastically reduces the effect of electricity generation on methane production. Further studies are necessary to evaluate the potential of these systems for mitigating methane emission from rice paddy fields. We suggest that paddy-field MFCs represent a promising approach for harvesting latent energy of the natural world.

  16. Ammonia inhibition and microbial adaptation in continuous single-chamber microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Woo; Nam, Joo-Youn; Shin, Hang-Sik

    2011-08-01

    Here, we report that a continuous single-chamber microbial fuel cell (MFC) is applicable to wastewaters containing a high nitrogen concentration using a process of adaptation. Continuous experiments are conducted to investigate the inhibitory effect of total ammonia nitrogen (TAN) on the MFC using influents with various concentrations of TAN ranged from 84 to 10,000 mg N L-1. As the TAN concentration increases up to 3500 mg N L-1, the maximum power density remains at 6.1 W m-3. However, as the concentration further increases, TAN significantly inhibits the maximum power density, which is reduced at saturation to 1.4 W m-3 at 10,000 mg N L-1. We confirm that the adapted electrical performance of a continuous MFC can generate approximately 44% higher power density than the conductivity control. A comparative study reveals that the power densities obtained from a continuous MFC can sustain 7-fold higher TAN concentration than that of previous batch MFCs. TAN removal efficiencies are limited to less than 10%, whereas acetate removal efficiencies remain as high as 93-99%. The increased threshold TAN of the continuous MFC suggests that microbial acclimation in a continuous MFC can allow the electrochemical functioning of the anode-attached bacteria to resist ammonia inhibition.

  17. Performance and microbial ecology of air-cathode microbial fuel cells with layered electrode assemblies.

    PubMed

    Butler, Caitlyn S; Nerenberg, Robert

    2010-05-01

    Microbial fuel cells (MFCs) can be built with layered electrode assemblies, where the anode, proton exchange membrane (PEM), and cathode are pressed into a single unit. We studied the performance and microbial community structure of MFCs with layered assemblies, addressing the effect of materials and oxygen crossover on the community structure. Four MFCs with layered assemblies were constructed using Nafion or Ultrex PEMs and a plain carbon cloth electrode or a cathode with an oxygen-resistant polytetrafluoroethylene diffusion layer. The MFC with Nafion PEM and cathode diffusion layer achieved the highest power density, 381 mW/m(2) (20 W/m(3)). The rates of oxygen diffusion from cathode to anode were three times higher in the MFCs with plain cathodes compared to those with diffusion-layer cathodes. Microsensor studies revealed little accumulation of oxygen within the anode cloth. However, the abundance of bacteria known to use oxygen as an electron acceptor, but not known to have exoelectrogenic activity, was greater in MFCs with plain cathodes. The MFCs with diffusion-layer cathodes had high abundance of exoelectrogenic bacteria within the genus Geobacter. This work suggests that cathode materials can significantly influence oxygen crossover and the relative abundance of exoelectrogenic bacteria on the anode, while PEM materials have little influence on anode community structure. Our results show that oxygen crossover can significantly decrease the performance of air-cathode MFCs with layered assemblies, and therefore limiting crossover may be of particular importance for these types of MFCs.

  18. Comparative analysis of microbial community between different cathode systems of microbial fuel cells for denitrification.

    PubMed

    Li, Chao; Xu, Ming; Lu, Yi; Fang, Fang; Cao, Jiashun

    2016-01-01

    Two types of cathodic biofilm in microbial fuel cells (MFC) were established for comparison on their performance and microbial communities. Complete autotrophic simultaneous nitrification and denitrification (SND) without organics addition was achieved in nitrifying-MFC (N-MFC) with a total nitrogen (TN) removal rate of 0.35 mg/(L·h), which was even higher than that in denitrifying-MFC (D-MFC) at same TN level. Integrated denaturing gradient gel electrophoresis analysis based on both 16S rRNA and nirK genes showed that Alpha-, Gammaproteobacteria were the main denitrifier communities. Some potential autotrophic denitrifying bacteria which can use electrons and reducing power from cathodes, such as Shewanella oneidensis, Shewanella loihica, Pseudomonas aeruginosa, Starkeya novella and Rhodopseudomonas palustris were identified and selectively enriched on cathode biofilms. Further, relative abundance of denitrifying bacteria characterized by nirK/16S ratios was much higher in biofilm than suspended sludge according to real-time polymerase chain reaction. The highest enrichment efficiency for denitrifiers was obtained in N-MFC cathode biofilms, which confirmed autotrophic denitrifying bacteria enrichment is the key factor for a D-MFC system.

  19. Use of silicone membranes to enhance gas transfer during microbial fuel cell operation on carbon monoxide.

    PubMed

    Hussain, A; Tartakovsky, B; Guiot, S R; Raghavan, V

    2011-12-01

    Electricity generation in a microbial fuel cell (MFC) using carbon monoxide (CO) or synthesis gas (syngas) as a carbon source has been demonstrated recently. A major challenge associated with CO or syngas utilization is the mass transfer limitation of these sparingly soluble gases in the aqueous phase. This study evaluated the applicability of a dense polymer silicone membrane and thin wall silicone tubing for CO mass transfer in MFCs. Replacing the sparger used in our previous study with the membrane systems for CO delivery resulted in improved MFC performance and CO transformation efficiency. A power output and CO transformation efficiency of up to 18 mW LR(-1) (normalized to anode compartment volume) and 98%, respectively, was obtained. The use of membrane systems offers the advantage of improved mass transfer and reduced reactor volume, thus increasing the volumetric power output of MFCs operating on a gaseous substrate such as CO.

  20. Chemical Profiling of the Plant Cell Wall through Raman Microspectroscopy

    SciTech Connect

    Han, Ju; Singh, Seema; Sun, Lan; Simmons, Blake; Auer, Manfred; Parvin, Bahram

    2010-03-02

    This paper presents a computational framework for chemical pro.ling of the plant cell wall through the Raman spectroscopy. The system enables query of known spectral signatures and clustering of spectral data based on intrinsic properties. As a result, presence and relative concentration of speci.c chemical bonds can be quanti.ed. The primary contribution of this paper is in representation of raman pro.le in terms of .uorescence background and multiscale peak detection at each grid point (voxel). Such a representation allows ef.cient spatial segmentation based on the coupling between high-level salient properties and low-level symbolic representation at each voxel. The high-level salient properties refer to preferred peaks and their attributes for the entire image. The low-level symbolic representations are based on .uorescence background, spectral peak locations, and their attributes. We present results on a corn stover tissue section that is imaged through Raman microscopy, and the results are consistent with the literature. In addition, automatic clustering indicates several distinct layers of the cell walls with different spectral signatures.

  1. Biosynthesis of non-cellulosic polysaccharides of plant cell walls.

    PubMed

    Dhugga, Kanwarpal S

    2012-02-01

    Enzymes that make the polymer backbones of plant cell wall polysaccharides have proven to be recalcitrant to biochemical purification. Availability of mutational genetics and genomic tools paved the way for rapid progress in identifying genes encoding various cell wall glycan synthases. Mutational genetics, the primary tool used in unraveling cellulose biosynthesis, was ineffective in assigning function to any of the hemicellulosic, polymerizing glycan synthases. A combination of comparative genomics and functional expression in a heterologous system allowed identification of various cellulose synthase-like (Csl) sequences as being involved in the formation of β-1,4-mannan, β-1,4-glucan, and mixed-linked glucan. A number of xylose-deficient mutants have led to a variety of genes, none of which thus far possesses the motifs known to be conserved among polymerizing β-glycan synthases. Except for xylan synthase, which appears to be an agglomerate of proteins just like cellulose synthase, Golgi glycan synthases already identified suggest that the catalytic polypeptide by itself is sufficient for enzyme activity, most likely as a homodimer. Several of the Csl genes remain to be assigned a function. The possibility of the involvement of various Csl genes in making more than one product remains.

  2. Ultrastructure of the Epidermal Cell Wall and Cuticle of Tomato Fruit (Solanum lycopersicum L.) during Development.

    PubMed

    Segado, Patricia; Domínguez, Eva; Heredia, Antonio

    2016-02-01

    The epidermis plays a pivotal role in plant development and interaction with the environment. However, it is still poorly understood, especially its outer epidermal wall: a singular wall covered by a cuticle. Changes in the cuticle and cell wall structures are important to fully understand their functions. In this work, an ultrastructure and immunocytochemical approach was taken to identify changes in the cuticle and the main components of the epidermal cell wall during tomato fruit development. A thin and uniform procuticle was already present before fruit set. During cell division, the inner side of the procuticle showed a globular structure with vesicle-like particles in the cell wall close to the cuticle. Transition between cell division and elongation was accompanied by a dramatic increase in cuticle thickness, which represented more than half of the outer epidermal wall, and the lamellate arrangement of the non-cutinized cell wall. Changes in this non-cutinized outer wall during development showed specific features not shared with other cell walls. The coordinated nature of the changes observed in the cuticle and the epidermal cell wall indicate a deep interaction between these two supramolecular structures. Hence, the cuticle should be interpreted within the context of the outer epidermal wall.

  3. The toughness of secondary cell wall and woody tissue

    PubMed Central

    Lucas, P. W.; Tan, H. T. W.; Cheng, P. Y.

    1997-01-01

    The 'across grain' toughness of 51 woods has been determined on thin wet sections using scissors. The moisture content of sections and the varying sharpness of the scissor blades had little effect on the results. In thin sections (less than 0.6mm), toughness rose linearly with section thickness. The intercept toughness at zero thickness, estimated from regression analysis, was proportional to relative density, consistent with values reported for non-woody plant tissues. Extrapolation of the intercept toughness of these woods and other plant tissues/materials to a relative density of 1.0 predicted a toughness of 3.45kJ m-2 , which we identify with the intrinsic toughness of the cell wall. This quantity appears to predict published results from KIC tests on woods and is related to the propensity for crack deflection. The slope of the relationship between section thickness and toughness, describing the work of plastic buckling of cells, was not proportional to relative density, the lightest (balsa) and heaviest (lignum vitae) woods fracturing with less plastic work than predicted. The size of the plastic zone around the crack tip was estimated to be 0.5mm in size. From this, the hypothetical overall toughness of a thick (greater than 1 mm) block of solid cell wall material was calculated as 39.35 kJ m-2, due to both cell wall resistance (10 per cent) and the plastic buckling of cells (90 per cent). This value successfully predicts the toughness of most commercial woods (of relative densities between 0.2 and 0.8) from 'work area' tests in tension and bending. Though density was the most important factor, both fibre width/fibre length (in hardwoods) and lignin/cellulose ratios were negatively correlated with the work of plastic buckling, after correcting for density. At low densities the work of plastic buckling in the longitudinal radial (LR) direction exceeded that in longitudinal tangential (LT), but the reverse was true for relative densities above 0.25. This could

  4. Comparison of Chemical Components of Cell Walls of Brucella abortus Strains of Low and High Virulence.

    PubMed

    Kellerman, G D; Foster, J W; Badakhsh, F F

    1970-09-01

    Amino acid, carbohydrate, and lipid components of cell walls of Brucella abortus strain 19A (low virulence) and strain 2308 (high virulence) were compared by thin layer chromatography (TLC) and by use of an amino acid analyzer. A total of 15 amino acids were detected by both chromatographic methods. Each amino acid was present in greater amounts in strain 2308 than in strain 19A when equal amounts of hydrolysates of cell wall and endotoxin-containing preparations were analyzed. A component with the same R(F) value as ethanolamine was present in strain 2308 cell wall hydrolysates but was not revealed by TLC of strain 19A cell wall hydrolysates. This component was not detected with the amino acid analyzer. TLC of cell walls tagged with 2,4-dinitrofluorobenzene prior to hydrolysis showed that phenylalanine was a terminal amino acid in cell walls of B. abortus strains 19A and 2308, B. suis strain 1776, and B. melitensis strain 2500. Carbohydrates detected in cell walls of strains 19A and 2308 by TLC were tentatively identified as glucose, mannose, rhamnose, and galactose. Colorimetric tests were also positive for 2-keto-3-deoxy-octulosonic acid, heptose, and dideoxyhexose. At least seven lipid components were detected by TLC of ether extracts of cell walls of strains 19A and 2308. It is suggested that one or more lipids is important in maintaining cell wall structure, because isolated cell walls rapidly became fragmented after exposure to ether.

  5. Plant Cell Wall Proteins: A Large Body of Data, but What about Runaways?

    PubMed Central

    Albenne, Cécile; Canut, Hervé; Hoffmann, Laurent; Jamet, Elisabeth

    2014-01-01

    Plant cell wall proteomics has been a very dynamic field of research for about fifteen years. A full range of strategies has been proposed to increase the number of identified proteins and to characterize their post-translational modifications. The protocols are still improving to enlarge the coverage of cell wall proteomes. Comparisons between these proteomes have been done based on various working strategies or different physiological stages. In this review, two points are highlighted. The first point is related to data analysis with an overview of the cell wall proteomes already described. A large body of data is now available with the description of cell wall proteomes of seventeen plant species. CWP contents exhibit particularities in relation to the major differences in cell wall composition and structure between these plants and between plant organs. The second point is related to methodology and concerns the present limitations of the coverage of cell wall proteomes. Because of the variety of cell wall structures and of the diversity of protein/polysaccharide and protein/protein interactions in cell walls, some CWPs can be missing either because they are washed out during the purification of cell walls or because they are covalently linked to cell wall components. PMID:28250379

  6. Plant Cell Wall Proteins: A Large Body of Data, but What about Runaways?

    PubMed

    Albenne, Cécile; Canut, Hervé; Hoffmann, Laurent; Jamet, Elisabeth

    2014-04-17

    Plant cell wall proteomics has been a very dynamic field of research for about fifteen years. A full range of strategies has been proposed to increase the number of identified proteins and to characterize their post-translational modifications. The protocols are still improving to enlarge the coverage of cell wall proteomes. Comparisons between these proteomes have been done based on various working strategies or different physiological stages. In this review, two points are highlighted. The first point is related to data analysis with an overview of the cell wall proteomes already described. A large body of data is now available with the description of cell wall proteomes of seventeen plant species. CWP contents exhibit particularities in relation to the major differences in cell wall composition and structure between these plants and between plant organs. The second point is related to methodology and concerns the present limitations of the coverage of cell wall proteomes. Because of the variety of cell wall structures and of the diversity of protein/polysaccharide and protein/protein interactions in cell walls, some CWPs can be missing either because they are washed out during the purification of cell walls or because they are covalently linked to cell wall components.

  7. Cell wall proteins of Sporothrix schenckii as immunoprotective agents.

    PubMed

    Alba-Fierro, Carlos A; Pérez-Torres, Armando; López-Romero, Everardo; Cuéllar-Cruz, Mayra; Ruiz-Baca, Estela

    2014-01-01

    Sporothrix schenckii is the etiological agent of sporotrichosis, an endemic subcutaneous mycosis in Latin America. Cell wall (CW) proteins located on the cell surface are inducers of cellular and humoral immune responses, potential candidates for diagnosis purposes and to generate vaccines to prevent fungal infections. This mini-review emphasizes the potential use of S. schenckii CW proteins as protective and therapeutic immune response inducers against sporotrichosis. A number of pathogenic fungi display CW components that have been characterized as inducers of protective cellular and humoral immune responses against the whole pathogen from which they were originally purified. The isolation and characterization of immunodominant protein components of the CW of S. schenckii have become relevant because of their potential in the development of protective and therapeutic immune responses against sporotrichosis. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012).

  8. Rapid regulatory control of plant cell expansion and wall relaxation

    SciTech Connect

    Cosgrove, D.J.

    1991-08-14

    The aim of this project is to elucidate the biophysical and cellular mechanisms that control plant cell expansion. At present we are attempting to characterize the kinetics of the system(s) responsible for regulatory and compensatory behavior of growing cells and tissues. This work is significantly because it indicates that biochemical loosening and biophysical stress relaxation of the wall are part of a feedback loop controlling growth. This report briefly summarizes the efforts and results of the past 12 months. In large part, we have been trying to analyze the nature of growth rate noise,'' i.e. spontaneous and often erratic variations in growth rate. We are obtaining evidence that such noise'' is not random, but rather reveals an underlying growth mechanism with complex dynamics.

  9. Monosaccharide and Chitin Content of Cell Walls of Histoplasma capsulatum and Blastomyces dermatitidis

    PubMed Central

    Domer, Judith E.

    1971-01-01

    Cell walls of Histoplasma capsulatum and Blastomyces dermatitidis, obtained by mechanical breakage of yeast- and mycelial-phase cultures, were lipid-extracted and then fractionated with ethylenediamine. Unextracted cell walls, lipid-extracted cell walls, and the three fractions resulting from ethylenediamine treatment were examined for monosaccharide and chitin content. The yeast-phase cell walls of five strains of H. capsulatum fell into two categories, designated chemotypes I and II, one of which, chemotype II, was similar to yeast-phase cell walls derived from three strains of B. dermatitidis. H. capsulatum chemotype I cell walls were characterized by lower content of material soluble in ethylenediamine, higher chitin content, and lower monosaccharide content than H. capsulatum chemotype II or B. dermatitidis cell walls. Approximately 80% of the monosaccharides of chemotype I cell walls was combined in forms susceptible to attack by mild acid hydrolysis, compared with about 50% of the monosaccharides of chemotype II and B. dermatitidis. H. capsulatum and B. dermatitidis yeast-phase cell walls could be distinguished, however, by their susceptibility to attack by a crude enzyme system derived from a Streptomyces sp. incubated with chitin as the only carbon source. Both glucose and acetylglucosamine were released from H. capsulatum cell walls, regardless of chemotype, during enzymatic hydrolysis, whereas only acetylglucosamine was released from B. dermatitidis yeast-phase cell walls. Mycelial-phase cell walls of H. capsulatum and B. dermatitidis were characterized by lower content of material soluble in ethylenediamine, higher proportions of mannose, and lower chitin content than their respective yeast phases. Glucose and acetylglucosamine were both released from all mycelial-phase cell walls, whether H. capsulatum or B. dermatitidis, by the crude enzyme system. PMID:5095293

  10. Characterization of Plant Cell Wall Damage-Associated Molecular Patterns Regulating Immune Responses.

    PubMed

    Bacete, Laura; Mélida, Hugo; Pattathil, Sivakumar; Hahn, Michael G; Molina, Antonio; Miedes, Eva

    2017-01-01

    The plant cell wall is one of the first defensive barriers that pathogens need to overcome to successfully colonize plant tissues. Plant cell wall is considered a dynamic structure that regulates both constitutive and inducible defense mechanisms. The wall is a potential source of a diverse set of Damage-Associated Molecular Patterns (DAMPs), which are signalling molecules that trigger immune responses. However, just a few active wall ligands, such as oligogalacturonic acids (OGs), have been characterized so far. To identify additional wall-derived DAMPs, we obtained different plant wall fractions and tested their capacity to trigger immune responses using a calcium read-out system. To characterize the active DAMPs structures present in these fractions, we applied Glycome Profiling, a technology that uses a large and diverse set of specific monoclonal antibodies against wall carbohydrate ligands. The methods describe here can be used in combination with other biochemical approaches to identify and purify new plant cell wall DAMPs.

  11. Microbial solar cells: applying photosynthetic and electrochemically active organisms.

    PubMed

    Strik, David P B T B; Timmers, Ruud A; Helder, Marjolein; Steinbusch, Kirsten J J; Hamelers, Hubertus V M; Buisman, Cees J N

    2011-01-01

    Microbial solar cells (MSCs) are recently developed technologies that utilize solar energy to produce electricity or chemicals. MSCs use photoautotrophic microorganisms or higher plants to harvest solar energy, and use electrochemically active microorganisms in the bioelectrochemical system to generate electrical current. Here, we review the principles and performance of various MSCs in an effort to identify the most promising systems, as well as the bottlenecks and potential solutions, for "real-life" MSC applications. We present an outlook on future applications based on the intrinsic advantages of MSCs, specifically highlighting how these living energy systems can facilitate the development of an electricity-producing green roof.

  12. Application of living microbial cells entrapped with synthetic resin prepolymers.

    PubMed

    Fukui, S; Tanaka, A

    1989-12-01

    Living and growing microbial cells were immobilized by entrapping in synthetic resin gels prepared from their prepolymers, and used in the production of various useful substances. The production of the desired metabolites and also both the activity and the stability of the catalytic systems were seriously affected by the physico-chemical properties of the prepolymers, and those of the resin gels subsequently formed, such as gel network, hydrophilicity-hydrophobicity balance and ionic nature, as well as by the type of bioreactors. Hydroxylation of steroids and production of antibiotics, polypeptides and other biologically active substances, and the effects of gel properties on them are discussed as examples.

  13. Multi-population model of a microbial electrolysis cell.

    PubMed

    Pinto, R P; Srinivasan, B; Escapa, A; Tartakovsky, B

    2011-06-01

    This work presents a multi-population dynamic model of a microbial electrolysis cell (MEC). The model describes the growth and metabolic activity of fermentative, electricigenic, methanogenic acetoclastic, and methanogenic hydrogenophilic microorganisms and is capable of simulating hydrogen production in a MEC fed with complex organic matter, such as wastewater. The model parameters were estimated with the experimental results obtained in continuous flow MECs fed with acetate or synthetic wastewater. Following successful model validation with an independent data set, the model was used to analyze and discuss the influence of applied voltage and organic load on hydrogen production and COD removal.

  14. Design of a microbial fuel cell and its transition to microbial electrolytic cell for hydrogen production by electrohydrogenesis.

    PubMed

    Gupta, Pratima; Parkhey, Piyush; Joshi, Komal; Mahilkar, Anjali

    2013-10-01

    Anaerobic bacteria were isolated from industrial wastewater and soil samples and tested for exoelectrogenic activity by current production in double chambered microbial fuel cell (MFC), which was further transitioned into a single chambered microbial electrolytic cell to test hydrogen production by electrohydrogenesis. Of all the cultures, the isolate from industrial water sample showed the maximum values for current = 0.161 mA, current density = 108.57 mA/m2 and power density = 48.85 mW/m2 with graphite electrode. Maximum voltage across the cell, however, was reported by the isolate from sewage water sample (506 mv) with copper as electrode. Tap water with KMnO4 was the best cathodic electrolyte as the highest values for all the measured MFC parameters were reported with it. Once the exoelectrogenic activity of the isolates was confirmed by current production, these were tested for hydrogen production in a single chambered microbial electrolytic cell (MEC) modified from the MFC. Hydrogen production was reported positive from co-culture of isolates of both the water samples and co-culture of one soil and one water sample. The maximum rate and yield of hydrogen production was 0.18 m3H2/m3/d and 3.2 mol H2/mol glucose respectively with total hydrogen production of 42.4 mL and energy recovery of 57.4%. Cumulative hydrogen production for a five day cycle of MEC operation was 0.16 m3H2/m3/d.

  15. The connection of cytoskeletal network with plasma membrane and the cell wall

    PubMed Central

    Liu, Zengyu; Persson, Staffan; Zhang, Yi

    2015-01-01

    The cell wall provides external support of the plant cells, while the cytoskeletons including the microtubules and the actin filaments constitute an internal framework. The cytoskeletons contribute to the cell wall biosynthesis by spatially and temporarily regulating the transportation and deposition of cell wall components. This tight control is achieved by the dynamic behavior of the cytoskeletons, but also through the tethering of these structures to the plasma membrane. This tethering may also extend beyond the plasma membrane and impact on the cell wall, possibly in the form of a feedback loop. In this review, we discuss the linking components between the cytoskeletons and the plasma membrane, and/or the cell wall. We also discuss the prospective roles of these components in cell wall biosynthesis and modifications, and aim to provide a platform for further studies in this field. PMID:25693826

  16. Murein and pseudomurein cell wall binding domains of bacteria and archaea--a comparative view.

    PubMed

    Visweswaran, Ganesh Ram R; Dijkstra, Bauke W; Kok, Jan

    2011-12-01

    The cell wall, a major barrier protecting cells from their environment, is an essential compartment of both bacteria and archaea. It protects the organism from internal turgor pressure and gives a defined shape to the cell. The cell wall serves also as an anchoring surface for various proteins and acts as an adhesion platform for bacteriophages. The walls of bacteria and archaea are mostly composed of murein and pseudomurein, respectively. Cell wall binding domains play a crucial role in the non-covalent attachment of proteins to cell walls. Here, we give an overview of the similarities and differences in the biochemical and functional properties of the two major murein and pseudomurein cell wall binding domains, i.e., the Lysin Motif (LysM) domain (Pfam PF01476) and the pseudomurein binding (PMB) domain (Pfam PF09373) of bacteria and archaea, respectively.

  17. Photosynthetic microbial fuel cells with positive light response.

    PubMed

    Zou, Yongjin; Pisciotta, John; Billmyre, R Blake; Baskakov, Ilia V

    2009-12-01

    The current study introduces an aerobic single-chamber photosynthetic microbial fuel cell (PMFC). Evaluation of PMFC performance using naturally growing fresh-water photosynthetic biofilm revealed a weak positive light response, that is, an increase in cell voltage upon illumination. When the PMFC anodes were coated with electrically conductive polymers, the rate of voltage increased and the amplitude of the light response improved significantly. The rapid immediate positive response to light was consistent with a mechanism postulating that the photosynthetic electron-transfer chain is the source of the electrons harvested on the anode surface. This mechanism is fundamentally different from the one exploited in previously designed anaerobic microbial fuel cells (MFCs), sediment MFCs, or anaerobic PMFCs, where the electrons are derived from the respiratory electron-transfer chain. The power densities produced in PMFCs were substantially lower than those that are currently reported for conventional MFC (0.95 mW/m(2) for polyaniline-coated and 1.3 mW/m(2) for polypyrrole-coated anodes). However, the PMFC did not depend on an organic substrate as an energy source and was powered only by light energy. Its operation was CO(2)-neutral and did not require buffers or exogenous electron transfer shuttles.

  18. Stacked microbial desalination cells to enhance water desalination efficiency.

    PubMed

    Chen, Xi; Xia, Xue; Liang, Peng; Cao, Xiaoxin; Sun, Haotian; Huang, Xia

    2011-03-15

    Microbial desalination cell (MDC) is a new method to obtain clean water from brackish water using electricity generated from organic matters by exoelectrogenic bacteria. Anions and cations, derived from salt solution filled in the desalination chamber between the anode and cathode, move to the anode and cathode chambers under the force of electrical field, respectively. On the basis of the primitive single-desalination-chambered MDC, stacked microbial desalination cells (SMDCs) were developed in order to promote the desalination rate in the present study. The effects of desalination chamber number and external resistance were investigated. Results showed that a remarkable increase in the total desalination rate (TDR) could be obtained by means of increasing the desalination cell number and reducing the external resistance, which caused the charge transfer efficiency increased since the SMDCs enabled more pairs of ions separated while one electron passed through the external circuit. The maximum TDR of 0.0252 g/h was obtained using a two-desalination-chambered SMDC with an external resistance of 10 Ω, which was 1.4 times that of single-desalination-chambered MDC. SMDCs proved to be an effective approach to increase the total water desalination rate if provided a proper desalination chamber number and external resistance.

  19. Environmental sensing of heavy metals through whole cell microbial biosensors: a synthetic biology approach.

    PubMed

    Bereza-Malcolm, Lara Tess; Mann, Gülay; Franks, Ashley Edwin

    2015-05-15

    Whole cell microbial biosensors are offering an alternative means for rapid, on-site heavy metal detection. Based in microorganisms, biosensing constructs are designed and constructed to produce both qualitative and quantitative outputs in response to heavy metal ions. Previous microbial biosensors designs are focused on single-input constructs; however, development of multiplexed systems is resulting in more flexible designs. The movement of microbial biosensors from laboratory based designs toward on-site, functioning heavy metal detectors has been hindered by the toxic nature of heavy metals, along with the lack of specificity of heavy metals promoter elements. Applying a synthetic biology approach with alternative microbial chassis may increase the robustness of microbial biosensors and mitigate these issues. Before full applications are achieved, further consideration has to be made regarding the risk and regulations of whole cell microbial biosensor use in the environment. To this end, a standard framework for future whole cell microbial biosensor design and use is proposed.

  20. A cell-based screening system for detection of inhibitors toward mycobacterial cell wall core.

    PubMed

    Gao, Peng; Guan, Yan; Song, Danqing; Xiao, Chunling

    2009-06-01

    Mycobacterium tuberculosis and nonpathogenic bacteria, Corynebacterium glutamicum, possess a common and unusual cell wall architecture. A cell-based screening system was designed to identify novel compounds interacting with the synthesis, assembly or regulation of the M. tuberculosis cell wall. C. glutamicum was tested in a paired medium assay in 96-well plates with natural product extracts and pure chemical compounds in the presence and absence of the osmotic stabilizer, sorbitol and some ions. Growth was visually examined over a 12-h period and detected with a microplate reader for absorbance at 544 nm. Screening hits from the osmotic stabilizer rescue were then examined by mycolic acid analysis to confirm the effect on cell wall integrity.

  1. Polysaccharide-degrading Enzymes are Unable to Attack Plant Cell Walls without Prior Action by a “Wall-modifying Enzyme” 1

    PubMed Central

    Karr, Arthur L.; Albersheim, Peter

    1970-01-01

    A study of the degradation of plant cell walls by the mixture of enzymes present in Pectinol R-10 is described. A “wall-modifying enzyme” has been purified from this mixture by a combination of diethylaminoethyl cellulose, Bio Gel P-100, and carboxymethyl cellulose chromatography. Treatment of cell walls with the “wall-modifying enzyme” is shown to be a necessary prerequisite to wall degradation catalyzed by a mixture of polysaccharide-degrading enzymes prepared from Pectinol R-10 or by an α-galactosidase secreted by the pathogenic fungus Colletotrichum lindemuthianum. The action of the “wall-modifying enzyme” on cell walls is shown to result in both a release of water-soluble, 70% ethanol-insoluble polymers and an alteration of the residual cell wall. A purified preparation of the “wall-modifying enzyme” is unable to degrade a wide variety of polysaccharide, glycoside, and peptide substrates. However, the purified preparation of wall-modifying enzyme has a limited ability to degrade polygalacturonic acid. The fact that polygalacturonic acid inhibits the ability of the “wall-modifying enzyme” to affect cell walls suggests that the “wall-modifying enzyme” may be responsible for the limited polygalacturonic acid-degrading activity present in the purified preparation. The importance of a wall-modifying enzyme in developmental processes and in pathogenesis is discussed. PMID:16657425

  2. Characterization of the Cell Surface Properties of Drinking Water Pathogens by Microbial Adhesion to Hydrocarbon and Electrophoretic Mobility Measurements

    EPA Science Inventory

    The surface characteristics of microbial cells directly influence their mobility and behavior within aqueous environments. The cell surface hydrophobicity (CSH) and electrophoretic mobility (EPM) of microbial cells impact a number of interactions and processes including aggregati...

  3. Fractionation and Structural Characterization of Arabinogalactan-Proteins from the Cell Wall of Rose Cells.

    PubMed Central

    Serpe, M. D.; Nothnagel, E. A.

    1995-01-01

    Arabinogalactan-proteins (AGPs) have been purified from Paul's Scarlet rose (Rosa sp.) cell walls. As estimated by gel permeation chromatography, the apparent molecular masses of the two major cell-wall AGP fractions were 130 and 242 kD. Since the 130-kD AGP had a ratio of arabinose/glucuronic acid that was 12 times higher than that of the 242-kD AGP, the fractions were named cell-wall AGP1 (CW-AGP1) and glucuronogalactan-protein (GGP), respectively. CW-AGP1 and GGP contained predominantly t-arabinofuranosyl residues; 3-linked, 6-linked, and 3,6-branched galactopyranosyl residues; and 4-linked and t-glucuronopyranosyl residues. The 1H-nuclear magnetic resonance spectra of CW-AGP1 and GGP showed that the arabinofuranosyl and galactopyranosyl residues were predominantly in [alpha]- and [beta]-anomeric configuration, respectively, and that GGP contained a few O-acetyl residues. The protein moieties of CW-AGP1 and GGP were both rich in hydroxyproline and alanine but differed in the percentage of various amino acids, including hydroxyproline, alanine, serine, and glycine. Cell-wall AGPs bound to ([beta]-D-glucosyl)3 Yariv phenylglycoside, but the stoichiometry of binding was about 6 times greater in GGP than in other Rosa AGPs. GGP seems to be peculiar to the cell wall, since no similar molecule was found in the culture medium. PMID:12228648

  4. Cell Wall Yield Properties of Growing Tissue 1

    PubMed Central

    Cosgrove, Daniel J.

    1985-01-01

    Growing pea stem tissue, when isolated from an external supply of water, undegoes stress relaxation because of continued loosening of the cell wall. A theoretical analysis is presented to show that such stress relaxation should result in an exponential decrease in turgor pressure down to the yield threshold (Y), with a rate constant given by φε where φ is the metabolically maintained irreversible extensibility of the cell wall and ε is the volumetric elastic modulus of the cell. This theory represents a new method to determine φ in growing tissues. Stress relaxation was measured in pea (Pisum sativus L.) stem segments using the pressure microprobe technique. From the rate of stress relaxation, φ of segments pretreated with water was calculated to be 0.08 per megapascal per hour while that of auxin-pretreated tissue was 0.24 per megapascal per hour. These values agreed closely with estimates of φ made by a steady-state technique. The yield threshold (0.29 megapascal) was not affected by auxin. Technical difficulties with measuring φ by stress relaxation may arise due to an internal water reserve or due to changes in φ subsequent to excision. These difficulties are discussed and evaluated. A theoretical analysis is also presented to show that the tissue hydraulic conductance may be estimated from the T½ of tissue swelling. Experimentally, pea stems had a swelling T½ of 2.0 minutes, corresponding to a relative hydraulic conductance of about 2.0 per megapascal per hour. This value is at least 8 times larger than φ. From these data and from computer modeling, it appears that the radial gradient in water potential which sustains water uptake in growing pea segments is small (0.04 megapascal). This means that hydraulic conductance does not substantially restrict growth. The results also demonstrate that the stimulation of growth by auxin can be entirely accounted for by the change in φ. PMID:16664243

  5. Ultrastructure of Fibre and Parenchyma Cell Walls During Early Stages of Culm Development in Dendrocalamus asper

    PubMed Central

    GRITSCH, CRISTINA SANCHIS; MURPHY, RICHARD J.

    2005-01-01

    • Background and Aims The anatomy of bamboo culms and the multilayered structure of fibre cell walls are known to be the main determinant factors for its physical and mechanical properties. Studies on the bamboo cell wall have focussed mainly on fully elongated and mature fibres. The main aim of this study was to describe the ultrastructure of primary and secondary cell walls in culm tissues of Dendrocalamus asper at different stages of development. • Methods The development of fibre and parenchyma tissues was classified into four stages based on light microscopy observations made in tissues from juvenile plants. The stages were used as a basis for transmission electron microscopy study on the ultrastructure of the cell wall during the process of primary and early secondary cell wall formation. Macerations and phloroglucinol–HCl staining were employed to investigate fibre cell elongation and fibre cell wall lignification, respectively. • Key Results The observations indicated that the primary wall is formed by the deposition of two distinct layers during the elongation of the internode and that secondary wall synthesis may begin before the complete cessation of internode and fibre elongation. Elongation was followed by a maturation phase characterized by the deposition of multiple secondary wall layers, which varied in number according to the cell type, location in the culm tissue and stage of shoot development. Lignification of fibre cell walls started at the period prior to the cessation of internode elongation. • Conclusions The structure of the primary cell wall was comprised of two layers. The fibre secondary cell wall began to be laid down while the cells were still undergoing some elongation, suggesting that it may act to cause the slow-down and eventual cessation of cell elongation. PMID:15665037

  6. Bacterial cell wall biogenesis is mediated by SEDS and PBP polymerase families functioning semi-autonomously

    PubMed Central

    Cho, Hongbaek; Wivagg, Carl N.; Kapoor, Mrinal; Barry, Zachary; Rohs, Patricia D.A.; Suh, Hyunsuk; Marto, Jarrod A.; Garner, Ethan C.; Bernhardt, Thomas G.

    2016-01-01

    Multi-protein complexes organized by cytoskeletal proteins are essential for cell wall biogenesis in most bacteria. Current models of the wall assembly mechanism assume class A penicillin-binding proteins (aPBPs), the targets of penicillin-like drugs, function as the primary cell wall polymerases within these machineries. Here, we use an in vivo cell wall polymerase assay in Escherichia coli combined with measurements of the localization dynamics of synthesis proteins to investigate this hypothesis. We find that aPBP activity is not necessary for glycan polymerization by the cell elongation machinery as is commonly believed. Instead, our results indicate that cell wall synthesis is mediated by two distinct polymerase systems, SEDS-family proteins working within the cytoskeletal machines and aPBP enzymes functioning outside of these complexes. These findings thus necessitate a fundamental change in our conception of the cell wall assembly process in bacteria. PMID:27643381

  7. The Role of Soil Organic Matter, Nutrients, and Microbial Community Structure on the Performance of Microbial Fuel Cells

    NASA Astrophysics Data System (ADS)

    Rooney-Varga, J. N.; Dunaj, S. J.; Vallino, J. J.; Hines, M. E.; Gay, M.; Kobyljanec, C.

    2011-12-01

    Microbial fuel cells (MFCs) offer the potential for generating electricity, mitigating greenhouse gas emissions, and bioremediating pollutants through utilization of a plentiful, natural, and renewable resource: soil organic carbon. In the current study, we analyzed microbial community structure, MFC performance, and soil characteristics in different microhabitats (bulk soil, anode, and cathode) within MFCs constructed from agricultural or forest soils in order to determine how soil type and microbial dynamics influence MFC performance. MFCs were constructed with soils from agricultural and hardwood forest sites at Harvard Forest (Petersham, MA). The bulk soil characteristics were analyzed, including polyphenols, short chain fatty acids, total organic C and N, abiotic macronutrients, N and P mineralization rates, CO2 respiration rates, and MFC power output. Microbial community structure of the anodes, cathodes, and bulk soils was determined with molecular fingerprinting methods, which included terminal restriction length polymorphism (T-RFLP) analysis and 16S rRNA gene sequencing analysis. Our results indicated that MFCs constructed from agricultural soil had power output about 17 times that of forest soil-based MFCs and respiration rates about 10 times higher than forest soil MFCs. Agricultural soil MFCs had lower C:N ratios, polyphenol content, and acetate concentrations than forest soil MFCs, suggesting that active agricultural MFC microbial communities were supported by higher quality organic carbon. Microbial community profile data indicate that the microbial communities at the anode of the high power MFCs were less diverse than in low power MFCs and were dominated by Deltaproteobacteria, Geobacter, and, to a lesser extent, Clostridia, while low-power MFC anode communities were dominated by Clostridia. These data suggest that the presence of organic carbon substrate (acetate) was not the major limiting factor in selecting for highly electrogenic microbial

  8. Ultrastructural Localization of a Bean Glycine-Rich Protein in Unlignified Primary Walls of Protoxylem Cells.

    PubMed Central

    Ryser, U; Keller, B

    1992-01-01

    A polyclonal antibody was used to localize a glycine-rich cell wall protein (GRP 1.8) in French bean hypocotyls with the indirect immunogold method. GRP 1.8 could be localized mainly in the unlignified primary cell walls of the oldest protoxylem elements and also in cell corners of both proto- and metaxylem elements. In addition, GRP 1.8 was detected in phloem using tissue printing. The labeled primary walls of dead protoxylem cells showed a characteristically dispersed ultrastructure, resulting from the action of hydrolases during the final steps of cell maturation and from mechanical stress due to hypocotyl growth. Primary walls of living protoxylem and adjacent parenchyma cells were only weakly labeled. This was true also for the secondary walls of proto- and metaxylem cells, which in addition showed high background labeling. Inhibition of lignification with a specific and potent inhibitor of phenylalanine ammonia-lyase did not lead to enhanced labeling of secondary walls, showing that lignin does not mask the presence of GRP 1.8 in these walls. Dictyosomes of living proto- and metaxylem cells were not labeled, but dictyosomes of xylem parenchyma cells without secondary walls, adjacent to strongly labeled protoxylem elements, were clearly labeled. These observations suggest that GRP 1.8 is not produced by xylem vessels but by xylem parenchyma cells that export the protein to the wall of protoxylem vessels. PMID:12297662

  9. Laccases Direct Lignification in the Discrete Secondary Cell Wall Domains of Protoxylem1[W][OPEN

    PubMed Central

    Schuetz, Mathias; Benske, Anika; Smith, Rebecca A.; Watanabe, Yoichiro; Tobimatsu, Yuki; Ralph, John; Demura, Taku; Ellis, Brian; Samuels, A. Lacey

    2014-01-01

    Plants precisely control lignin deposition in spiral or annular secondary cell wall domains during protoxylem tracheary element (TE) development. Because protoxylem TEs function to transport water within rapidly elongating tissues, it is important that lignin deposition is restricted to the secondary cell walls in order to preserve the plasticity of adjacent primary wall domains. The Arabidopsis (Arabidopsis thaliana) inducible VASCULAR NAC DOMAIN7 (VND7) protoxylem TE differentiation system permits the use of mutant backgrounds, fluorescent protein tagging, and high-resolution live-cell imaging of xylem cells during secondary cell wall development. Enzymes synthesizing monolignols, as well as putative monolignol transporters, showed a uniform distribution during protoxylem TE differentiation. By contrast, the oxidative enzymes LACCASE4 (LAC4) and LAC17 were spatially localized to secondary cell walls throughout protoxylem TE differentiation. These data support the hypothesis that precise delivery of oxidative enzymes determines the pattern of cell wall lignification. This view was supported by lac4lac17 mutant analysis demonstrating that laccases are necessary for protoxylem TE lignification. Overexpression studies showed that laccases are sufficient to catalyze ectopic lignin polymerization in primary cell walls when exogenous monolignols are supplied. Our data support a model of protoxylem TE lignification in which monolignols are highly mobile once exported to the cell wall, and in which precise targeting of laccases to secondary cell wall domains directs lignin deposition. PMID:25157028

  10. Laccases direct lignification in the discrete secondary cell wall domains of protoxylem.

    PubMed

    Schuetz, Mathias; Benske, Anika; Smith, Rebecca A; Watanabe, Yoichiro; Tobimatsu, Yuki; Ralph, John; Demura, Taku; Ellis, Brian; Samuels, A Lacey

    2014-10-01

    Plants precisely control lignin deposition in spiral or annular secondary cell wall domains during protoxylem tracheary element (TE) development. Because protoxylem TEs function to transport water within rapidly elongating tissues, it is important that lignin deposition is restricted to the secondary cell walls in order to preserve the plasticity of adjacent primary wall domains. The Arabidopsis (Arabidopsis thaliana) inducible VASCULAR NAC DOMAIN7 (VND7) protoxylem TE differentiation system permits the use of mutant backgrounds, fluorescent protein tagging, and high-resolution live-cell imaging of xylem cells during secondary cell wall development. Enzymes synthesizing monolignols, as well as putative monolignol transporters, showed a uniform distribution during protoxylem TE differentiation. By contrast, the oxidative enzymes LACCASE4 (LAC4) and LAC17 were spatially localized to secondary cell walls throughout protoxylem TE differentiation. These data support the hypothesis that precise delivery of oxidative enzymes determines the pattern of cell wall lignification. This view was supported by lac4lac17 mutant analysis demonstrating that laccases are necessary for protoxylem TE lignification. Overexpression studies showed that laccases are sufficient to catalyze ectopic lignin polymerization in primary cell walls when exogenous monolignols are supplied. Our data support a model of protoxylem TE lignification in which monolignols are highly mobile once exported to the cell wall, and in which precise targeting of laccases to secondary cell wall domains directs lignin deposition.

  11. Cell wall biogenesis of Arabidopsis thaliana elongating cells: transcriptomics complements proteomics

    PubMed Central

    Jamet, Elisabeth; Roujol, David; San-Clemente, Hélène; Irshad, Muhammad; Soubigou-Taconnat, Ludivine; Renou, Jean-Pierre; Pont-Lezica, Rafael

    2009-01-01

    Background Plant growth is a complex process involving cell division and elongation. Arabidopsis thaliana hypocotyls undergo a 100-fold length increase mainly by cell elongation. Cell enlargement implicates significant changes in the composition and structure of the cell wall. In order to understand cell wall biogenesis during cell elongation, mRNA profiling was made on half- (active elongation) and fully-grown (after growth arrest) etiolated hypocotyls. Results Transcriptomic analysis was focused on two sets of genes. The first set of 856 genes named cell wall genes (CWGs) included genes known to be involved in cell wall biogenesis. A significant proportion of them has detectable levels of transcripts (55.5%), suggesting that these processes are important throughout hypocotyl elongation and after growth arrest. Genes encoding proteins involved in substrate generation or in synthesis of polysaccharides, and extracellular proteins were found to have high transcript levels. A second set of 2927 genes labeled secretory pathway genes (SPGs) was studied to search for new genes encoding secreted proteins possibly involved in wall expansion. Based on transcript level, 433 genes were selected. Genes not known to be involved in cell elongation were found to have high levels of transcripts. Encoded proteins were proteases, protease inhibitors, proteins with interacting domains, and proteins involved in lipid metabolism. In addition, 125 of them encoded proteins with yet unknown function. Finally, comparison with results of a cell wall proteomic study on the same material revealed that 48 out of the 137 identified proteins were products of the genes having high or moderate level of transcripts. About 15% of the genes encoding proteins identified by proteomics showed levels of transcripts below background. Conclusion Members of known multigenic families involved in cell wall biogenesis, and new genes that might participate in cell elongation were identified. Significant

  12. Effect of anti-biofouling potential of multi-walled carbon nanotubes-filled polydimethylsiloxane composites on pioneer microbial colonization.

    PubMed

    Sun, Yuan; Lang, Yanhe; Sun, Qian; Liang, Shuang; Liu, Yongkang; Zhang, Zhizhou

    2016-09-01

    In this paper, two carbon nanotube (CNT) nanofillers, namely the multi-walled carbon nanotubes (MWCNTs) and the carboxyl-modified MWCNTs (cMWCNTs), were introduced into the polydimethylsiloxane (PDMS) matrix respectively, in order to produce the PDMS composites with reinforced anti-biofouling properties. The anti-biofouling capacity of the silicone-based coatings, including the unfilled PDMS (P0), the MWCNTs-filled PDMS (PM) and the cMWCNTs-filled PDMS (PC), was examined via the field assays conducted in Weihai, China. The effect of different silicone-based coatings on the dynamic variations of the pioneer microbial-community diversity was analyzed using the single-strand conformation polymorphism (SSCP) technique. The PM and PC surfaces have exhibited excellent anti-biofouling properties in contrast to that of the PDMS surface, with extremely low attachment of the early colonizers, such as juvenile invertebrates, seaweeds and algae sporelings. The PM and PC surfaces can effectively prevent biofouling for more than 12 weeks. These combined results suggest that the incorporation of MWCNTs or cMWCNTs into the PDMS matrix can dramatically reinforce its anti-biofouling properties. The SSCP analysis reveals that compared with the PDMS surfaces, the PM and PC surfaces have strong modulating effect on the pioneer prokaryotic and eukaryotic communities, particularly on the colonization of pioneer eukaryotic microbes. The significantly reduced pioneer eukaryotic-community diversity may contribute to the weakening of the subsequent colonization of macrofoulers.

  13. Single walled carbon nanotube networks as substrates for bone cells

    NASA Astrophysics Data System (ADS)

    Tutak, Wojtek

    A central effort in biomedical research concerns the development of materials for sustaining and controlling cell growth. Carbon nanotube based substrates have been shown to support the growth of different kinds of cells. However the underlying molecular mechanisms remain poorly defined. To address the fundamental question of mechanisms by which nanotubes promote bone mitosis and histogenesis, primary calvariae osteoblastic cells were grown on single walled carbon nanotube (SWNT) network substrates. Using a combination of biochemical and optical techniques, we demonstrate here that SWNT networks promote cell development through two distinct steps. Initially, SWNTs are absorbed in a process that resembles endocytosis, inducing acute toxicity. Nanotube mediated cell destruction, however, induces a release of endogenous factors that act to boost the activity of the surviving cells by stimulating the synthesis of extracellular matrix. In the second part of the research, minimally invasive SWNT matrices were used to further investigate network properties for biomedical applications without extensive presence of cytotoxicity. In the literature, carbon nanotube based substrates have been shown to support the growth of different cell types and, as such, have raised considerable interest in their possible use in biomedical applications. Nanotube matrices that are embedded in polymers cause inherent changes in nanotube chemical and physical film properties. Thus, it is critical to understand how the physical properties of the pristine networks affect the biology of the host tissue. Here, we investigated how the physical and chemical properties of SWNT networks impact the response of MC3T3-E1 bone osteoblasts. We found that two fundamental steps in cell growth: initial attachment to the substrate and proliferation, are strongly dependent on the energy and roughness of the surface, respectively. Thus, fine-tuning the properties of the film may represent a strategy to optimize

  14. Starting to Gel: How Arabidopsis Seed Coat Epidermal Cells Produce Specialized Secondary Cell Walls

    PubMed Central

    Voiniciuc, Cătălin; Yang, Bo; Schmidt, Maximilian Heinrich-Wilhelm; Günl, Markus; Usadel, Björn

    2015-01-01

    For more than a decade, the Arabidopsis seed coat epidermis (SCE) has been used as a model system to study the synthesis, secretion and modification of cell wall polysaccharides, particularly pectin. Our detailed re-evaluation of available biochemical data highlights that Arabidopsis seed mucilage is more than just pectin. Typical secondary wall polymers such as xylans and heteromannans are also present in mucilage. Despite their low abundance, these components appear to play essential roles in controlling mucilage properties, and should be further investigated. We also provide a comprehensive community resource by re-assessing the mucilage phenotypes of almost 20 mutants using the same conditions. We conduct an in-depth functional evaluation of all the SCE genes described in the literature and propose a revised model for mucilage production. Further investigation of SCE cells will improve our understanding of plant cell walls. PMID:25658798

  15. Composition and architecture of the cell walls of grasses and the mechanisms of synthesis of cell wall polysaccharides. Final report for period September 1, 1988 - April 30, 2001

    SciTech Connect

    Carpita, Nicholas C.

    2001-10-18

    This program was devoted toward complete understanding of the polysaccharide structure and architecture of the primary cell walls grasses and cereals, and the biosynthesis of the mixed-linkage beta-glucane, a cellulose interacting polymer that is synthesized uniquely by grass species and close relatives. With these studies as focal point, the support from DOE was instrumental in the development of new analytical means that enabled us to characterize carbohydrate structure, to reveal new features of cell wall dynamics during cell growth, and to apply these techniques in other model organisms. The support by DOE in these basic studies was acknowledged on numerous occasions in review articles covering current knowledge of cell wall structure, architecture, dynamics, biosynthesis, and in all genes related to cell wall biogenesis.

  16. Single Wall Carbon Nanotube-polymer Solar Cells

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Castro, Stephanie L.; Landi, Brian J.; Gennett, Thomas; Raffaelle, Ryne P.

    2005-01-01

    Investigation of single wall carbon nanotube (SWNT)-polymer solar cells has been conducted towards developing alternative lightweight, flexible devices for space power applications. Photovoltaic devices were constructed with regioregular poly(3-octylthiophene)-(P3OT) and purified, >95% w/w, laser-generated SWNTs. The P3OT composites were deposited on ITO-coated polyethylene terapthalate (PET) and I-V characterization was performed under simulated AM0 illumination. Fabricated devices for the 1.0% w/w SWNT-P3OT composites showed a photoresponse with an open-circuit voltage (V(sub oc)) of 0.98 V and a short-circuit current density (I(sub sc)) of 0.12 mA/sq cm. Optimization of carrier transport within these novel photovoltaic systems is proposed, specifically development of nanostructure-SWNT complexes to enhance exciton dissociation.

  17. Bacterial cell wall assembly: still an attractive antibacterial target.

    PubMed

    Bugg, Timothy D H; Braddick, Darren; Dowson, Christopher G; Roper, David I

    2011-04-01

    The development of new antibacterial agents to combat worsening antibiotic resistance is still a priority area in anti-infectives research, but in the post-genomic era it has been more difficult than expected to identify new lead compounds from high-throughput screening, and very challenging to obtain antibacterial activity for lead compounds. Bacterial cell-wall peptidoglycan biosynthesis is a well-established target for antibacterial chemotherapy, and recent developments enable the entire biosynthetic pathway to be reconstituted for detailed biochemical study and high-throughput inhibitor screening. This review article discusses recent developments in the availability of peptidoglycan biosynthetic intermediates, the identification of lead compounds for both the earlier cytoplasmic steps and the later lipid-linked steps, and the application of new methods such as structure-based drug design, phage display and surface science.

  18. Pectinous cell wall thickenings formation - A common defense strategy of plants to cope with Pb.

    PubMed

    Krzesłowska, Magdalena; Rabęda, Irena; Basińska, Aneta; Lewandowski, Michał; Mellerowicz, Ewa J; Napieralska, Anna; Samardakiewicz, Sławomir; Woźny, Adam

    2016-07-01

    Lead, one of the most abundant and hazardous trace metals affecting living organisms, has been commonly detected in plant cell walls including some tolerant plants, mining ecotypes and hyperaccumulators. We have previously shown that in tip growing Funaria sp. protonemata cell wall is remodeled in response to lead by formation of thickenings rich in low-methylesterified pectins (pectin epitope JIM5 - JIM5-P) able to bind metal ions, which accumulate large amounts of Pb. Hence, it leads to the increase of cell wall capacity for Pb compartmentalization. Here we show that diverse plant species belonging to different phyla (Arabidopsis, hybrid aspen, star duckweed), form similar cell wall thickenings in response to Pb. These thickenings are formed in tip growing cells such as the root hairs, and in diffuse growing cells such as meristematic and root cap columella cells of root apices in hybrid aspen and Arabidopsis and in mesophyll cells in star duckweed fronds. Notably, all analyzed cell wall thickenings were abundant in JIM5-P and accumulated high amounts of Pb. In addition, the co-localization of JIM5-P and Pb commonly occurred in these cells. Hence, cell wall thickenings formed the extra compartment for Pb accumulation. In this way plant cells increased cell wall capacity for compartmentalization of this toxic metal, protecting protoplast from its toxicity. As cell wall thickenings occurred in diverse plant species and cell types differing in the type of growth we may conclude that pectinous cell wall thickenings formation is a widespread defense strategy of plants to cope with Pb. Moreover, detection of natural defense strategy, increasing plant cell walls capacity for metal accumulation, reveals a promising direction for enhancing plant efficiency in phytoremediation.

  19. Mechanisms for shaping, orienting, positioning and patterning plant secondary cell walls.

    PubMed

    Pesquet, Edouard; Korolev, Andrey V; Calder, Grant; Lloyd, Clive W

    2011-06-01

    Xylem vessels are cells that develop a specifically ornamented secondary cell wall to ensure their vascular function, conferring both structural strength and impermeability. Further plasticity is given to these vascular cells by a range of different patterns described by their secondary cell walls that-as for the growth of all plant organs-are developmentally regulated. Microtubules and their associated proteins, named MAPs, are essential to define the shape, the orientation, the position and the overall pattern of these secondary cell walls. Key actors in this process are the land-plant specific MAP70 proteins which not only allow the secondary cell wall to be positioned at the cell cortex but also determine the overall pattern described by xylem vessel secondary cell walls

  20. Flow dependent performance of microfluidic microbial fuel cells.

    PubMed

    Vigolo, Daniele; Al-Housseiny, Talal T; Shen, Yi; Akinlawon, Fiyinfoluwa O; Al-Housseiny, Saif T; Hobson, Ronald K; Sahu, Amaresh; Bedkowski, Katherine I; DiChristina, Thomas J; Stone, Howard A

    2014-06-28

    The integration of Microbial Fuel Cells (MFCs) in a microfluidic geometry can significantly enhance the power density of these cells, which would have more active bacteria per unit volume. Moreover, microfluidic MFCs can be operated in a continuous mode as opposed to the traditional batch-fed mode. Here we investigate the effect of fluid flow on the performance of microfluidic MFCs. The growth and the structure of the bacterial biofilm depend to a large extent on the shear stress of the flow. We report the existence of a range of flow rates for which MFCs can achieve maximum voltage output. When operated under these optimal conditions, the power density of our microfluidic MFC is about 15 times that of a similar-size batch MFC. Furthermore, this optimum suggests a correlation between the behaviour of bacteria and fluid flow.

  1. Nitrite as a candidate substrate in microbial fuel cells.

    PubMed

    Faraghi, Neda; Ebrahimi, Sirous

    2012-08-01

    Current generation using nitrite as substrate (pH 6.9, 40 mgN l(-1)) in a nitrite-fed microbial fuel cell was investigated under anaerobic and aerobic anodic conditions as an alternative to the biological nitrite oxidation process. Cell current, coulombic efficiency (CE) and power generation of 0.04 mA, 30 ± 2 % and 19.3 ± 3.3 μW m(-2), respectively, were observed under anaerobic conditions while complete nitrite degradation (no current) was obtained under aerobic conditions. Switching from aerobic to anaerobic anode enhanced the CE and power generation (39 ± 1 % and 29 ± 4.3 μW m(-2)).

  2. Analysis of the microbial community of the biocathode of a hydrogen-producing microbial electrolysis cell.

    PubMed

    Croese, Elsemiek; Pereira, Maria Alcina; Euverink, Gert-Jan W; Stams, Alfons J M; Geelhoed, Jeanine S

    2011-12-01

    The microbial electrolysis cell (MEC) is a promising system for hydrogen production. Still, expensive catalysts such as platinum are needed for efficient hydrogen evolution at the cathode. Recently, the possibility to use a biocathode as an alternative for platinum was shown. The microorganisms involved in hydrogen evolution in such systems are not yet identified. We analyzed the microbial community of a mixed culture biocathode that was enriched in an MEC bioanode. This biocathode produced 1.1 A m(-2) and 0.63 m3 H2 m(-3) cathode liquid volume per day. The bacterial population consisted of 46% Proteobacteria, 25% Firmicutes, 17% Bacteroidetes, and 12% related to other phyla. The dominant ribotype belonged to the species Desulfovibrio vulgaris. The second major ribotype cluster constituted a novel taxonomic group at the genus level, clustering within uncultured Firmicutes. The third cluster belonged to uncultured Bacteroidetes and grouped in a taxonomic group from which only clones were described before; most of these clones originated from soil samples. The identified novel taxonomic groups developed under environmentally unusual conditions, and this may point to properties that have not been considered before. A pure culture of Desulfovibrio strain G11 inoculated in a cathode of an MEC led to a current development from 0.17 to 0.76 A m(-2) in 9 days, and hydrogen gas formation was observed. On the basis of the known characteristics of Desulfovibrio spp., including its ability to produce hydrogen, we propose a mechanism for hydrogen evolution through Desulfovibrio spp. in a biocathode system.

  3. Plant cell walls throughout evolution: towards a molecular understanding of their design principles.

    PubMed

    Sarkar, Purbasha; Bosneaga, Elena; Auer, Manfred

    2009-01-01

    Throughout their life, plants typically remain in one location utilizing sunlight for the synthesis of carbohydrates, which serve as their sole source of energy as well as building blocks of a protective extracellular matrix, called the cell wall. During the course of evolution, plants have repeatedly adapted to their respective niche, which is reflected in the changes of their body plan and the specific design of cell walls. Cell walls not only changed throughout evolution but also are constantly remodelled and reconstructed during the development of an individual plant, and in response to environmental stress or pathogen attacks. Carbohydrate-rich cell walls display complex designs, which together with the presence of phenolic polymers constitutes a barrier for microbes, fungi, and animals. Throughout evolution microbes have co-evolved strategies for efficient breakdown of cell walls. Our current understanding of cell walls and their evolutionary changes are limited as our knowledge is mainly derived from biochemical and genetic studies, complemented by a few targeted yet very informative imaging studies. Comprehensive plant cell wall models will aid in the re-design of plant cell walls for the purpose of commercially viable lignocellulosic biofuel production as well as for the timber, textile, and paper industries. Such knowledge will also be of great interest in the context of agriculture and to plant biologists in general. It is expected that detailed plant cell wall models will require integrated correlative multimodal, multiscale imaging and modelling approaches, which are currently underway.

  4. Detecting Cellulase Penetration Into Corn Stover Cell Walls by Immuno-Electron Microscopy

    SciTech Connect

    Donohoe, B. S.; Selig, M. J.; Viamajala, S.; Vinzant, T. B.; Adney, W. S.; Himmel, M. E.

    2009-06-15

    In general, pretreatments are designed to enhance the accessibility of cellulose to enzymes, allowing for more efficient conversion. In this study, we have detected the penetration of major cellulases present in a commercial enzyme preparation (Spezyme CP) into corn stem cell walls following mild-, moderate- and high-severity dilute sulfuric acid pretreatments. The Trichoderma reesei enzymes, Cel7A (CBH I) and Cel7B (EG I), as well as the cell wall matrix components xylan and lignin were visualized within digested corn stover cell walls by immuno transmission electron microscopy (TEM) using enzyme- and polymer-specific antibodies. Low severity dilute-acid pretreatment (20 min at 100 C) enabled <1% of the thickness of secondary cell walls to be penetrated by enzyme, moderate severity pretreatment at (20 min at 120 C) allowed the enzymes to penetrate {approx}20% of the cell wall, and the high severity (20 min pretreatment at 150 C) allowed 100% penetration of even the thickest cell walls. These data allow direct visualization of the dramatic effect dilute-acid pretreatment has on altering the condensed ultrastructure of biomass cell walls. Loosening of plant cell wall structure due to pretreatment and the subsequently improved access by cellulases has been hypothesized by the biomass conversion community for over two decades, and for the first time, this study provides direct visual evidence to verify this hypothesis. Further, the high-resolution enzyme penetration studies presented here provide insight into the mechanisms of cell wall deconstruction by cellulolytic enzymes.

  5. Plant cell walls throughout evolution: towards a molecular understanding of their design principles

    SciTech Connect

    Sarkar, Purbasha; Bosneaga, Elena; Auer, Manfred

    2009-02-16

    Throughout their life, plants typically remain in one location utilizing sunlight for the synthesis of carbohydrates, which serve as their sole source of energy as well as building blocks of a protective extracellular matrix, called the cell wall. During the course of evolution, plants have repeatedly adapted to their respective niche,which is reflected in the changes of their body plan and the specific design of cell walls. Cell walls not only changed throughout evolution but also are constantly remodelled and reconstructed during the development of an individual plant, and in response to environmental stress or pathogen attacks. Carbohydrate-rich cell walls display complex designs, which together with the presence of phenolic polymers constitutes a barrier for microbes, fungi, and animals. Throughout evolution microbes have co-evolved strategies for efficient breakdown of cell walls. Our current understanding of cell walls and their evolutionary changes are limited as our knowledge is mainly derived from biochemical and genetic studies, complemented by a few targeted yet very informative imaging studies. Comprehensive plant cell wall models will aid in the re-design of plant cell walls for the purpose of commercially viable lignocellulosic biofuel production as well as for the timber, textile, and paper industries. Such knowledge will also be of great interest in the context of agriculture and to plant biologists in general. It is expected that detailed plant cell wall models will require integrated correlative multimodal, multiscale imaging and modelling approaches, which are currently underway.

  6. Plasma-dependent chemotaxis of macrophages toward BCG cell walls and the mycobacterial glycolipid P3.

    PubMed

    Kelly, M T

    1977-01-01

    BCG cell walls, associated with oil droplets in the form of emulsions in saline, generate macrophage chemotactic activity from fresh guinea pig plasma. Serum and heat-inactivated plasma were inactive, suggesting involvement of complement or fibrinogen-derived chemotactic factors. Suspensions of cell walls and oil droplets each generated chemotactic activity from plasma, and the activity of the cell wall vaccine was due to the additive effects of these two components. A mycobacterial glycolipid (P3), which is a constituent of BCG cell walls, also had plasma-dependent chemotactic activity. The results suggest that macrophage chemotaxis may be an important part of the immunopotentiating activity of these mycobacterial products.

  7. Production of Bacteriolytic Enzymes by Streptomyces globisporus Regulated by Exogenous Bacterial Cell Walls

    PubMed Central

    Brönneke, Volker; Fiedler, Franz

    1994-01-01

    Mutanolysin biosynthesis and pigment production in Streptomyces globisporus ATCC 21553 were stimulated by adding bacterial cell walls to the medium. The increased bacteriolytic activity in the supernatant correlated with an increased de novo synthesis of mutanolysin and was between 4- and 20-fold higher than in cultures grown without bacterial cell walls. The increase in mutanolysin synthesis was brought about by enhanced transcription of the mutanolysin gene. The stimulation was only observed in medium which contained dextrin or starch as the carbon source. Glucose abolished the stimulation and also inhibited the low constitutive synthesis of mutanolysin. The induction of lytic activity was observed to require minimally 0.4 mg of bacterial cell walls per ml, whereas 0.6 mg of bacterial cell walls per ml yielded maximal lytic activity. Further supplements of bacterial cell walls did not result in enhanced lytic activity. The stimulation could be achieved independently of the phase of growth of the Streptomyces strain. Cultures grown in the presence of bacterial cell walls exhibited a higher growth yield. However, the accelerated growth was not the reason for the increased amount of mutanolysin produced. The growth of cultures with peptidoglycan monomers added to the medium instead of cell walls was similarly increased, but an effect on the biosynthesis of mutanolysin was not observed. All bacterial cell walls tested were capable of eliciting the stimulation of lytic activity, including cell walls of archaea, which contained pseudomurein. Images PMID:16349213

  8. Structure of the Cell Wall Anchor of Surface Proteins in Staphylococcus aureus

    NASA Astrophysics Data System (ADS)

    Schneewind, Olaf; Fowler, Audree; Faull, Kym F.

    1995-04-01

    Many surface proteins are anchored to the cell wall of Gram-positive bacteria and are involved in the pathogenesis of these organisms. A hybrid molecule was designed that, when expressed in Staphylococcus aureus, was anchored to the cell wall and could be released by controlled enzymatic digestion. By a combination of molecular biology and mass spectrometry techniques, the structure of the cell wall anchor of surface proteins in S. aureus was revealed. After cleavage of surface proteins between threonine and glycine of the conserved LPXTG motif, the carboxyl of threonine is amide-linked to the free amino group of the pentaglycine crossbridge in the staphylococcal cell wall.

  9. [Induction of a microbial colonization of the walls of copper pipes through which drinking water flows].

    PubMed

    Tuschewitzki, G J

    1990-05-01

    Bacterial colonization developed within one month on the surface of a copper pipe used for the transport of drinking water. No severe signs of corrosion could be detected within six weeks. Dividing cells and the formation of microcolonies indicated active metabolism and multiplication of the bacteria and not only a more or less passive adsorption on the copper from the bulk phase.

  10. Probabilistic Model of Microbial Cell Growth, Division, and Mortality ▿

    PubMed Central

    Horowitz, Joseph; Normand, Mark D.; Corradini, Maria G.; Peleg, Micha

    2010-01-01

    After a short time interval of length δt during microbial growth, an individual cell can be found to be divided with probability Pd(t)δt, dead with probability Pm(t)δt, or alive but undivided with the probability 1 − [Pd(t) + Pm(t)]δt, where t is time, Pd(t) expresses the probability of division for an individual cell per unit of time, and Pm(t) expresses the probability of mortality per unit of time. These probabilities may change with the state of the population and the habitat's properties and are therefore functions of time. This scenario translates into a model that is presented in stochastic and deterministic versions. The first, a stochastic process model, monitors the fates of individual cells and determines cell numbers. It is particularly suitable for small populations such as those that may exist in the case of casual contamination of a food by a pathogen. The second, which can be regarded as a large-population limit of the stochastic model, is a continuous mathematical expression that describes the population's size as a function of time. It is suitable for large microbial populations such as those present in unprocessed foods. Exponential or logistic growth with or without lag, inactivation with or without a “shoulder,” and transitions between growth and inactivation are all manifestations of the underlying probability structure of the model. With temperature-dependent parameters, the model can be used to simulate nonisothermal growth and inactivation patterns. The same concept applies to other factors that promote or inhibit microorganisms, such as pH and the presence of antimicrobials, etc. With Pd(t) and Pm(t) in the form of logistic functions, the model can simulate all commonly observed growth/mortality patterns. Estimates of the changing probability parameters can be obtained with both the stochastic and deterministic versions of the model, as demonstrated with simulated data. PMID:19915038

  11. Enhancement of Electricity Production by Graphene Oxide in Soil Microbial Fuel Cells and Plant Microbial Fuel Cells

    PubMed Central

    Goto, Yuko; Yoshida, Naoko; Umeyama, Yuto; Yamada, Takeshi; Tero, Ryugo; Hiraishi, Akira

    2015-01-01

    The effects of graphene oxide (GO) on electricity generation in soil microbial fuel cells (SMFCs) and plant microbial fuel cell (PMFCs) were investigated. GO at concentrations ranging from 0 to 1.9 g⋅kg−1 was added to soil and reduced for 10 days under anaerobic incubation. All SMFCs (GO-SMFCs) utilizing the soils incubated with GO produced electricity at a greater rate and in higher quantities than the SMFCs which did not contain GO. In fed-batch operations, the overall average electricity generation in GO-SMFCs containing 1.0 g⋅kg−1 of GO was 40 ± 19 mW⋅m−2, which was significantly higher than the value of 6.6 ± 8.9 mW⋅m−2 generated from GO-free SMFCs (p < 0.05). The increase in catalytic current at the oxidative potential was observed by cyclic voltammetry (CV) for GO-SMFC, with the CV curve suggesting the enhancement of electron transfer from oxidation of organic substances in the soil by the reduced form of GO. The GO-containing PMFC also displayed a greater generation of electricity compared to the PMFC with no added GO, with GO-PMFC producing 49 mW⋅m−2 of electricity after 27 days of operation. Collectively, this study demonstrates that GO added to soil can be microbially reduced in soil, and facilitates electron transfer to the anode in both SMFCs and PMFCs. PMID:25883931

  12. Enhancement of electricity production by graphene oxide in soil microbial fuel cells and plant microbial fuel cells.

    PubMed

    Goto, Yuko; Yoshida, Naoko; Umeyama, Yuto; Yamada, Takeshi; Tero, Ryugo; Hiraishi, Akira

    2015-01-01

    The effects of graphene oxide (GO) on electricity generation in soil microbial fuel cells (SMFCs) and plant microbial fuel cell (PMFCs) were investigated. GO at concentrations ranging from 0 to 1.9 g⋅kg(-1) was added to soil and reduced for 10 days under anaerobic incubation. All SMFCs (GO-SMFCs) utilizing the soils incubated with GO produced electricity at a greater rate and in higher quantities than the SMFCs which did not contain GO. In fed-batch operations, the overall average electricity generation in GO-SMFCs containing 1.0 g⋅kg(-1) of GO was 40 ± 19 mW⋅m(-2), which was significantly higher than the value of 6.6 ± 8.9 mW⋅m(-2) generated from GO-free SMFCs (p < 0.05). The increase in catalytic current at the oxidative potential was observed by cyclic voltammetry (CV) for GO-SMFC, with the CV curve suggesting the enhancement of electron transfer from oxidation of organic substances in the soil by the reduced form of GO. The GO-containing PMFC also displayed a greater generation of electricity compared to the PMFC with no added GO, with GO-PMFC producing 49 mW⋅m(-2) of electricity after 27 days of operation. Collectively, this study demonstrates that GO added to soil can be microbially reduced in soil, and facilitates electron transfer to the anode in both SMFCs and PMFCs.

  13. Wall extensibility: its nature, measurement and relationship to plant cell growth

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1993-01-01

    Expansive growth of plant cells is controlled principally by processes that loosen the wall and enable it to expand irreversibly. The central role of wall relaxation for cell expansion is reviewed. The most common methods for assessing the extension properties of plant cell walls ( wall extensibility') are described, categorized and assessed critically. What emerges are three fundamentally different approaches which test growing cells for their ability (a) to enlarge at different values of turgor, (b) to induce wall relaxation, and (c) to deform elastically or plastically in response to an applied tensile force. Analogous methods with isolated walls are similarly reviewed. The results of these different assays are related to the nature of plant cell growth and pertinent biophysical theory. I argue that the extensibilities' measured by these assays are fundamentally different from one another and that some are more pertinent to growth than others.

  14. DBIO Best Thesis Award: Mechanics, Dynamics, and Organization of the Bacterial Cytoskeleton and Cell Wall

    NASA Astrophysics Data System (ADS)

    Wang, Siyuan

    2012-02-01

    Bacteria come in a variety of shapes. While the peptidoglycan (PG) cell wall serves as an exoskeleton that defines the static cell shape, the internal bacterial cytoskeleton mediates cell shape by recruiting PG synthesis machinery and thus defining the pattern of cell-wall synthesis. While much is known about the chemistry and biology of the cytoskeleton and cell wall, much of their biophysics, including essential aspects of the functionality, dynamics, and organization, remain unknown. This dissertation aims to elucidate the detailed biophysical mechanisms of cytoskeleton guided wall synthesis. First, I find that the bacterial cytoskeleton MreB contributes nearly as much to the rigidity of an Escherichia coli cell as the cell wall. This conclusion implies that the cytoskeletal polymer MreB applies meaningful force to the cell wall, an idea favored by theoretical modeling of wall growth, and suggests an evolutionary origin of cytoskeleton-governed cell rigidity. Second, I observe that MreB rotates around the long axis of E. coli, and the motion depends on wall synthesis. This is the first discovery of a cell-wall assembly driven molecular motor in bacteria. Third, I prove that both cell-wall synthesis and the PG network have chiral ordering, which is established by the spatial pattern of MreB. This work links the molecular structure of the cytoskeleton and of the cell wall with organismal-scale behavior. Finally, I develop a mathematical model of cytoskeleton-cell membrane interactions, which explains the preferential orientation of different cytoskeleton components in bacteria.

  15. Vesicles between plasma membrane and cell wall prior to visible senescence of Iris and Dendrobium flowers.

    PubMed

    Kamdee, Channatika; Kirasak, Kanjana; Ketsa, Saichol; van Doorn, Wouter G

    2015-09-01

    Cut Iris flowers (Iris x hollandica, cv. Blue Magic) show visible senescence about two days after full opening. Epidermal cells of the outer tepals collapse due to programmed cell death (PCD). Transmission electron microscopy (TEM) showed irregular swelling of the cell walls, starting prior to cell collapse. Compared to cells in flowers that had just opened, wall thickness increased up to tenfold prior to cell death. Fibrils were visible in the swollen walls. After cell death very little of the cell wall remained. Prior to and during visible wall swelling, vesicles (paramural bodies) were observed between the plasma membrane and the cell walls. The vesicles were also found in groups and were accompanied by amorphous substance. They usually showed a single membrane, and had a variety of diameters and electron densities. Cut Dendrobium hybrid cv. Lucky Duan flowers exhibited visible senescence about 14 days after full flower opening. Paramural bodies were also found in Dendrobium tepal epidermis and mesophyll cells, related to wall swelling and degradation. Although alternative explanations are well possible, it is hypothesized that paramural bodies carry enzymes involved in cell wall breakdown. The literature has not yet reported such bodies in association with senescence/PCD.

  16. Characteristic Thickened Cell Walls of the Bracts of the ‘Eternal Flower’ Helichrysum bracteatum

    PubMed Central

    Nishikawa, Kuniko; Ito, Hiroaki; Awano, Tatsuya; Hosokawa, Munetaka; Yazawa, Susumu

    2008-01-01

    Background and Aims Helichrysum bracteatum is called an ‘eternal flower’ and has large, coloured, scarious bracts. These maintain their aesthetic value without wilting or discoloration for many years. There have been no research studies of cell death or cell morphology of the scarious bract, and hence the aim of this work was to elucidate these characteristics for the bract of H. bracteatum. Methods DAPI (4'6-diamidino-2-phenylindol dihydrochloride) staining and fluorescence microscopy were used for observation of cell nuclei. Light microscopy (LM), transmission electron microscopy (TEM) and polarized light microscopy were used for observation of cells, including cell wall morphology. Key Results Cell death occurred at the bract tip during the early stage of flower development. The cell wall was the most prominent characteristic of H. bracteatum bract cells. Characteristic thickened secondary cell walls on the inside of the primary cell walls were observed in both epidermal and inner cells. In addition, the walls of all cells exhibited birefringence. Characteristic thickened secondary cell walls have orientated cellulose microfibrils as well as general secondary cell walls of the tracheary elements. For comparison, these characters were not observed in the petal and bract tissues of Chrysanthemum morifolium. Conclusions Bracts at anthesis are composed of dead cells. Helichrysum bracteatum bracts have characteristic thickened secondary cell walls that have not been observed in the parenchyma of any other flowers or leaves. The cells of the H. bracteatum bract differ from other tissues with secondary cell walls, suggesting that they may be a new cell type. PMID:18436550

  17. Distinct pathways for modification of the bacterial cell wall by non-canonical D-amino acids.

    PubMed

    Cava, Felipe; de Pedro, Miguel A; Lam, Hubert; Davis, Brigid M; Waldor, Matthew K

    2011-07-26

    Production of non-canonical D-amino acids (NCDAAs) in stationary phase promotes remodelling of peptidoglycan (PG), the polymer that comprises the bacterial cell wall. Impairment of NCDAAs production leads to excessive accumulation of PG and hypersensitivity to osmotic shock; however, the mechanistic bases for these phenotypes were not previously determined. Here, we show that incorporation of NCDAAs into PG is a critical means by which NCDAAs control PG abundance and strength. We identified and reconstituted in vitro two (of at least three) distinct processes that mediate NCDAA incorporation. Diverse bacterial phyla incorporate NCDAAs into their cell walls, either through periplasmic editing of the mature PG or via incorporation into PG precursor subunits in the cytosol. Production of NCDAAs in Vibrio cholerae requires the stress response sigma factor RpoS, suggesting that NCDAAs may aid bacteria in responding to varied environmental challenges. The widespread capacity of diverse bacteria, including non-producers, to incorporate NCDAAs suggests that these amino acids may serve as both autocrine- and paracrine-like regulators of chemical and physical properties of the cell wall in microbial communities.

  18. Host-Pathogen interactions. 25. Endopolygalacturonic acid lyase from Erwinia carotovora elicits phytoalexin accumulation by releasing plant cell wall fragments

    SciTech Connect

    Davis, K.R.; Lyon, G.D.; Darvill, A.G.; Albersheim, P.

    1984-01-01

    Heat-labile elicitors of phytoalexin accumulation in soybeans (Glycine max L. Merr. cv Wayne) were detected in culture filtrates of Erwinia carotovora grown on a defined medium containing citrus pectin as the sole carbon source. The heat-labile elicitors were highly purified by cation-exchange chromatography on a CM-Sephadex (C-50) column, followed by agarose-affinity chromatography on a Bio-Gel A-0.5m gel filtration column. The heat-labile elicitor activity co-purified with two ..cap alpha..-1,4-endopolygalacturonic acid lyases (EC 4 x 2 x 2 x 2). Endopolygalacturonic acid lyase activity appeared to be necessary for elicitor activity because heat-inactivated enzyme preparations did not elicit phytoalexins. The purified endopolygalacturonic acid lyases elicited pterocarpan phytoalexins at microbial-inhibitory concentrations in the soybean-cotyledon bioassay when applied at a concentration of 55 nanograms per milliliter (1 x 10/sup -9/ molar). One of these lyases released heat-stable elicitors from soybean cell walls, citrus pectin, and sodium polypectate. The heat-stable elicitor-active material solubilized from soybean cell walls by the lyase was composed of at least 90% (w/v) uronosyl residues. These results demonstrate that endopolygalacturonic acid lyase elicits phytoalexin accumulation by releasing fragments from pectic polysaccharides in plant cell walls.

  19. Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell.

    PubMed

    Wang, Aijie; Sun, Dan; Cao, Guangli; Wang, Haoyu; Ren, Nanqi; Wu, Wei-Min; Logan, Bruce E

    2011-03-01

    Hydrogen gas production from cellulose was investigated using an integrated hydrogen production process consisting of a dark fermentation reactor and microbial fuel cells (MFCs) as power sources for a microbial electrolysis cell (MEC). Two MFCs (each 25 mL) connected in series to an MEC (72 mL) produced a maximum of 0.43 V using fermentation effluent as a feed, achieving a hydrogen production rate from the MEC of 0.48 m(3) H(2)/m(3)/d (based on the MEC volume), and a yield of 33.2 mmol H(2)/g COD removed in the MEC. The overall hydrogen production for the integrated system (fermentation, MFC and MEC) was increased by 41% compared with fermentation alone to 14.3 mmol H(2)/g cellulose, with a total hydrogen production rate of 0.24 m(3) H(2)/m(3)/d and an overall energy recovery efficiency of 23% (based on cellulose removed) without the need for any external electrical energy input.

  20. Self-sustained reduction of multiple metals in a microbial fuel cell-microbial electrolysis cell hybrid system.

    PubMed

    Li, Yan; Wu, Yining; Liu, Bingchuan; Luan, Hongwei; Vadas, Timothy; Guo, Wanqian; Ding, Jie; Li, Baikun

    2015-09-01

    A self-sustained hybrid bioelectrochemical system consisting of microbial fuel cell (MFC) and microbial electrolysis cell (MEC) was developed to reduce multiple metals simultaneously by utilizing different reaction potentials. Three heavy metals representing spontaneous reaction (chromium, Cr) and unspontaneous reaction (lead, Pb and nickel, Ni) were selected in this batch-mode study. The maximum power density of the MFC achieved 189.4 mW m(-2), and the energy recovery relative to the energy storage circuit (ESC) was ∼ 450%. At the initial concentration of 100 mg L(-1), the average reduction rate of Cr(VI) was 30.0 mg L(-1) d(-1), Pb(II) 32.7 mg L(-1) d(-1), and Ni(II) 8.9 mg L(-1) d(-1). An electrochemical model was developed to predict the change of metal concentration over time. The power output of the MFC was sufficient to meet the requirement of the ESC and MEC, and the "self-sustained metal reduction" was achieved in this hybrid system.

  1. A comparison of simultaneous organic carbon and nitrogen removal in microbial fuel cells and microbial electrolysis cells.

    PubMed

    Hussain, Abid; Manuel, Michelle; Tartakovsky, Boris

    2016-05-15

    This study demonstrates simultaneous carbon and nitrogen removal in laboratory-scale continuous flow microbial fuel cell (MFC) and microbial electrolysis cell (MEC) and provides side-by side comparison of these bioelectrochemical systems. The maximum organic carbon removal rates in MFC and MEC tests were similar at 5.1 g L(-1) d(-1) and 4.16 g L(-1) d(-1), respectively, with a near 100% carbon removal efficiency at an organic load of 3.3 g L(-1) d(-1). An ammonium removal efficiency of 30-55% with near-zero nitrite and nitrate concentrations was observed in the MFC operated at an optimal external resistance, while open-circuit MFC operation resulted in a reduced carbon and ammonium removal of 53% and 21%, respectively. In the MEC ammonium removal was limited to 7-12% under anaerobic conditions, while micro-aerobic conditions increased the removal efficiency to 31%. Also, at zero applied voltage both carbon and ammonium removal efficiencies were reduced to 42% and 4%, respectively. Based on the observed performance under different operating conditions, it was concluded that simultaneous carbon and nitrogen removal was facilitated by concurrent anaerobic and aerobic biotransformation pathways at the anode and cathode, which balanced bioelectrochemical nitrification and denitrification reactions.

  2. Changes in levels of cell wall constituents in wheat seedlings grown under continuous hypergravity conditions

    NASA Astrophysics Data System (ADS)

    Wakabayashi, K.; Soga, K.; Kamisaka, S.; Hoson, T.

    Effects of continuous hypergravity stimuli on the amounts and composition of cell wall constituents were investigated in wheat shoots. Hypergravity (300 g) treatment for three days after germination increased the net amount of cell wall polysaccharides such as hemicellulose and cellulose, but reduced the shoot elongation. As a result, the amount of cell wall polysaccharides per unit length of shoot increased under hypergravity. The hemicellulose fraction contained polysaccharides in the middle and low molecular mass range (5 kDa-1 MDa) and increased in response to hypergravity. Also, the amounts of arabinose (Ara) and xylose (Xyl), the major sugar components of the hemicellulose fraction, increased under hypergravity conditions. In addition to wall polysaccharides, hypergravity increased the amounts of cell wall-bound phenolic acids, such as ferulic acid (FA) and diferulic acid (DFA). Furthermore, the activity of phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) was enhanced under hypergravity conditions. These results suggest that continuous hypergravity stimulates the synthesis of cell wall constituents, especially hemicellulosic arabinoxylans and cell wall-bound FA and DFA in wheat shoots. The increased PAL activity may promote the formation of FA and DFA. These changes in cell wall architecture may be involved in making rigid and tough cell walls under hypergravity conditions and thereby contribute to the ability of plant to sustain their structures against gravitational stimuli.

  3. Mycobacterium tuberculosis CwsA overproduction modulates cell division and cell wall synthesis.

    PubMed

    Plocinski, P; Martinez, L; Sarva, K; Plocinska, R; Madiraju, M; Rajagopalan, M

    2013-12-01

    We recently showed that two small membrane proteins of Mycobacterium tuberculosis, CwsA and CrgA, interact with each other, and that loss of CwsA in M. smegmatis is associated with defects in the cell division and cell wall synthesis processes. Here we show that CwsA overproduction also affected growth, cell division and cell shape of M. smegmatis and M. tuberculosis. CwsA overproduction in M. tuberculosis led to increased sensitivity to cefsulodin, a penicillin-binding protein (PBP) 1A/1B targeting beta (β) -lactam, but was unaffected by other β-lactams and vancomycin. A M. smegmatis cwsA overexpressing strain showed bulgy cells, increased fluorescent vancomycin staining and altered localization of Wag31-mCherry fusion protein. However, the levels of phosphorylated Wag31, important for optimal peptidoglycan synthesis and growth in mycobacteria, were not affected. Interestingly, CwsA overproduction in E. coli led to the formation of large rounded cells that eventually lysed whereas the overproduction of FtsZ along with CwsA reversed this phenotype. Together, our results emphasize that optimal levels of CwsA are required for regulated cell wall synthesis, hence maintenance of cell shape, and that CwsA likely interacts with and modulates the activities of other cell wall synthetic components including PBPs.

  4. Transcription factors of M-phase cyclin CLB2 in the yeast cell wall integrity checkpoint.

    PubMed

    Sekiya, Mizuho; Nogami, Satoru; Ohya, Yoshikazu

    2009-08-01

    The cell wall integrity checkpoint coordinates cell wall synthesis and mitosis in the budding yeast, Saccharomyces cerevisiae. It has been reported that this checkpoint arrests the cell cycle at G2/M phase with repression of the M phase cyclin Clb2p at the transcriptional level, under perturbation of cell wall synthesis. We demonstrate that an override of this checkpoint with accumulation of CLB2 mRNA is induced when negative CLB2 transcription factors are deleted or when positive CLB2 transcription factors are overproduced in cell wall-defective cells. Our data imply that transcription factors for CLB2 are involved in the cell wall integrity checkpoint system and suggest that there are multiple regulation pathways of the checkpoint.

  5. Members of the Hsp70 family of proteins in the cell wall of Saccharomyces cerevisiae.

    PubMed Central

    López-Ribot, J L; Chaffin, W L

    1996-01-01

    Western blot (immunoblot) analysis of cell wall and cytosolic extracts obtained from parental and ssa1 and ssa2 single- and double-mutant strains of Saccharomyces cerevisiae showed that the heat shock protein 70 (Hsp70) products of these genes, previously thought to be restricted to the cell interior, are also present in the cell wall. A cell wall location was further confirmed by indirect immunofluorescence with intact cells and biotinylation of extracellular Hsp70. Hsp70s have been implicated in translocation across the membrane and as molecular chaperones, and changes in the profile of cell wall proteins suggested that these proteins may have a similar role in the cell wall. PMID:8755907

  6. Genomic Sequencing of Single Microbial Cells from Environmental Samples

    SciTech Connect

    Ishoey, Thomas; Woyke, Tanja; Stepanauskas, Ramunas; Novotny, Mark; Lasken, Roger S.

    2008-02-01

    Recently developed techniques allow genomic DNA sequencing from single microbial cells [Lasken RS: Single-cell genomic sequencing using multiple displacement amplification, Curr Opin Microbiol 2007, 10:510-516]. Here, we focus on research strategies for putting these methods into practice in the laboratory setting. An immediate consequence of single-cell sequencing is that it provides an alternative to culturing organisms as a prerequisite for genomic sequencing. The microgram amounts of DNA required as template are amplified from a single bacterium by a method called multiple displacement amplification (MDA) avoiding the need to grow cells. The ability to sequence DNA from individual cells will likely have an immense impact on microbiology considering the vast numbers of novel organisms, which have been inaccessible unless culture-independent methods could be used. However, special approaches have been necessary to work with amplified DNA. MDA may not recover the entire genome from the single copy present in most bacteria. Also, some sequence rearrangements can occur during the DNA amplification reaction. Over the past two years many research groups have begun to use MDA, and some practical approaches to single-cell sequencing have been developed. We review the consensus that is emerging on optimum methods, reliability of amplified template, and the proper interpretation of 'composite' genomes which result from the necessity of combining data from several single-cell MDA reactions in order to complete the assembly. Preferred laboratory methods are considered on the basis of experience at several large sequencing centers where >70% of genomes are now often recovered from single cells. Methods are reviewed for preparation of bacterial fractions from environmental samples, single-cell isolation, DNA amplification by MDA, and DNA sequencing.

  7. Atomic Force Microscopy in Microbiology: New Structural and Functional Insights into the Microbial Cell Surface

    PubMed Central

    2014-01-01

    ABSTRACT Microbial cells sense and respond to their environment using their surface constituents. Therefore, understanding the assembly and biophysical properties of cell surface molecules is an important research topic. With its ability to observe living microbial cells at nanometer resolution and to manipulate single-cell surface molecules, atomic force microscopy (AFM) has emerged as a powerful tool in microbiology. Here, we survey major breakthroughs made in cell surface microbiology using AFM techniques, emphasizing the most recent structural and functional insights. PMID:25053785

  8. Traffic monitors at the cell periphery: the role of cell walls during early female reproductive cell differentiation in plants.

    PubMed

    Tucker, Matthew R; Koltunow, Anna M G

    2014-02-01

    The formation of female gametes in plants occurs within the ovule, a floral organ that is also the precursor of the seed. Unlike animals, plants lack a typical germline separated from the soma early in development and rely on positional signals, including phytohormones, mobile mRNAs and sRNAs, to direct diploid somatic precursor cells onto a reproductive program. In addition, signals moving between plant cells must overcome the architectural limitations of a cell wall which surrounds the plasma membrane. Recent studies have addressed the molecular and histological signatures of young ovule cells and indicate that dynamic cell wall changes occur over a short developmental window. These changes in cell wall properties impact signal flow and ovule cell identity, thereby aiding the establishment of boundaries between reproductive and somatic ovule domains.

  9. Host-induced bacterial cell wall decomposition mediates pattern-triggered immunity in Arabidopsis

    PubMed Central

    Liu, Xiaokun; Grabherr, Heini M; Willmann, Roland; Kolb, Dagmar; Brunner, Frédéric; Bertsche, Ute; Kühner, Daniel; Franz-Wachtel, Mirita; Amin, Bushra; Felix, Georg; Ongena, Marc; Nürnberger, Thorsten; Gust, Andrea A

    2014-01-01

    Peptidoglycans (PGNs) are immunogenic bacterial surface patterns that trigger immune activation in metazoans and plants. It is generally unknown how complex bacterial structures such as PGNs are perceived by plant pattern recognition receptors (PRRs) and whether host hydrolytic activities facilitate decomposition of bacterial matrices and generation of soluble PRR ligands. Here we show that Arabidopsis thaliana, upon bacterial infection or exposure to microbial patterns, produces a metazoan lysozyme-like hydrolase (lysozyme 1, LYS1). LYS1 activity releases soluble PGN fragments from insoluble bacterial cell walls and cleavage products are able to trigger responses typically associated with plant immunity. Importantly, LYS1 mutant genotypes exhibit super-susceptibility to bacterial infections similar to that observed on PGN receptor mutants. We propose that plants employ hydrolytic activities for the decomposition of complex bacterial structures, and that soluble pattern generation might aid PRR-mediated immune activation in cell layers adjacent to infection sites. DOI: http://dx.doi.org/10.7554/eLife.01990.001 PMID:24957336

  10. A Role for Programmed Cell Death in the Microbial Loop

    PubMed Central

    Durand, Pierre M.; Whitehead, Kenia; Baliga, Nitin S.

    2013-01-01

    The microbial loop is the conventional model by which nutrients and minerals are recycled in aquatic eco-systems. Biochemical pathways in different organisms become metabolically inter-connected such that nutrients are utilized, processed, released and re-utilized by others. The result is that unrelated individuals end up impacting each others' fitness directly through their metabolic activities. This study focused on the impact of programmed cell death (PCD) on a population's growth as well as its role in the exchange of carbon between two naturally co-occurring halophilic organisms. Flow cytometric, biochemical, 14C radioisotope tracing assays, and global transcriptomic analyses show that organic algal photosynthate released by Dunalliela salina cells undergoing PCD complements the nutritional needs of other non-PCD D. salina cells. This occurs in vitro in a carbon limited environment and enhances the growth of the population. In addition, a co-occurring heterotroph Halobacterium salinarum re-mineralizes the carbon providing elemental nutrients for the mixoheterotrophic chlorophyte. The significance of this is uncertain and the archaeon can also subsist entirely on the lysate of apoptotic algae. PCD is now well established in unicellular organisms; however its ecological relevance has been difficult to decipher. In this study we found that PCD in D. salina causes the release of organic nutrients such as glycerol, which can be used by others in the population as well as a co-occurring halophilic archaeon. H. salinarum also re-mineralizes the dissolved material promoting algal growth. PCD in D. salina was the mechanism for the flow of dissolved photosynthate between unrelated organisms. Ironically, programmed death plays a central role in an organism's own population growth and in the exchange of nutrients in the microbial loop. PMID:23667496

  11. Integrated Microfluidic Flow-Through Microbial Fuel Cells.

    PubMed

    Jiang, Huawei; Ali, Md Azahar; Xu, Zhen; Halverson, Larry J; Dong, Liang

    2017-01-25

    This paper reports on a miniaturized microbial fuel cell with a microfluidic flow-through configuration: a porous anolyte chamber is formed by filling a microfluidic chamber with three-dimensional graphene foam as anode, allowing nutritional medium to flow through the chamber to intimately interact with the colonized microbes on the scaffolds of the anode. No nutritional media flow over the anode. This allows sustaining high levels of nutrient utilization, minimizing consumption of nutritional substrates, and reducing response time of electricity generation owing to fast mass transport through pressure-driven flow and rapid diffusion of nutrients within the anode. The device provides a volume power density of 745 μW/cm(3) and a surface power density of 89.4 μW/cm(2) using Shewanella oneidensis as a model biocatalyst without any optimization of bacterial culture. The medium consumption and the response time of the flow-through device are reduced by 16.4 times and 4.2 times, respectively, compared to the non-flow-through counterpart with its freeway space volume six times the volume of graphene foam anode. The graphene foam enabled microfluidic flow-through approach will allow efficient microbial conversion of carbon-containing bioconvertible substrates to electricity with smaller space, less medium consumption, and shorter start-up time.

  12. New applications of carbon nanostructures in microbial fuel cells (MFC)

    NASA Astrophysics Data System (ADS)

    Kaca, W.; Żarnowiec, P.; Keczkowska, Justyna; Suchańska, M.; Czerwosz, E.; Kozłowski, M.

    2014-11-01

    In the studies presented we proposed a new application for nanocomposite carbon films (C-Pd). These films were evaluated as an anode material for Microbial Fuel Cells (MFCs) used for electrical current generation. The results of characterization of C-Pd films composed of carbon and palladium nanograins were obtained using the Physical Vapor Deposition (PVD) method. The film obtained by this method exhibits a multiphase structure composed of fullerene nanograins, amorphous carbon and palladium nanocrystals. Raman Spectroscopy (RS) and scanning electron microscopy (SEM) are used to characterize the chemical composition, morphology and topography of these films. We observed, for MFC with C-Pd anode, the highest electrochemical activity and maximal voltage density - 458 mV (20,8 mV/cm2) for Proteus mirabilis, 426 mV (19,4 mV/cm2) for Pseudomonas aeruginosa and 652 mV (29,6 mV/cm2) for sewage bacteria as the microbial catalyst.

  13. Stimulating sediment bioremediation with benthic microbial fuel cells.

    PubMed

    Li, Wen-Wei; Yu, Han-Qing

    2015-01-01

    Efficient and sustainable technologies for cleaning up of contaminated sediments are under urgent demand. Bioremediation by utilizing the natural metabolic activities of sediment-inhabited microorganisms has been widely accepted as a viable option, but the relatively low efficiency and poor controllability severely limite its application. Here, we bring out the concept that electrochemical approaches may be used as an efficient means to stimulate sediment bioremediation. Although still at the very beginning, benthic microbial fuel cells (BMFC) as a remediation technology show many potential benefits, such as accelerated decontamination, self-sustained operation, relatively easy deployment and control, and environmental benignity. The unique features of BMFC setup and operation also give rise to substantially different challenges compared to conventional MFCs. In this review, we present a critical overview on the characteristics, possible application niches, and state-of-the-art progress of this technology. Especially, the current limitations in respect of system design, electrode selection, microbial control and selection of deployment environment are discussed in details, and the needed future research endeavors to promote its practical application are highlighted.

  14. Control of malodorous hydrogen sulfide compounds using microbial fuel cell.

    PubMed

    Eaktasang, Numfon; Min, Hyeong-Sik; Kang, Christina; Kim, Han S

    2013-10-01

    In this study, a microbial fuel cell (MFC) was used to control malodorous hydrogen sulfide compounds generated from domestic wastewaters. The electricity production demonstrated a distinct pattern of a two-step increase during 170 h of system run: the first maximum current density was 118.6 ± 7.2 mA m⁻² followed by a rebound of current density increase, reaching the second maximum of 176.8 ± 9.4 mA m⁻². The behaviors of the redox potential and the sulfate level in the anode compartment indicated that the microbial production of hydrogen sulfide compounds was suppressed in the first stage, and the hydrogen sulfide compounds generated from the system were removed effectively as a result of their electrochemical oxidation, which contributed to the additional electricity production in the second stage. This was also directly supported by sulfur deposits formed on the anode surface, which was confirmed by analyses on those solids using a scanning electron microscope equipped with energy dispersive X-ray spectroscopy as well as an elemental analyzer. To this end, the overall reduction efficiencies for HS⁻ and H₂S(g) were as high as 67.5 and 96.4 %, respectively. The correlations among current density, redox potential, and sulfate level supported the idea that the electricity signal generated in the MFC can be utilized as a potential indicator of malodor control for the domestic wastewater system.

  15. Electricity generation from tetrathionate in microbial fuel cells by acidophiles.

    PubMed

    Sulonen, Mira L K; Kokko, Marika E; Lakaniemi, Aino-Maija; Puhakka, Jaakko A

    2015-03-02

    Inorganic sulfur compounds, such as tetrathionate, are often present in mining process and waste waters. The biodegradation of tetrathionate was studied under acidic conditions in aerobic batch cultivations and in anaerobic anodes of two-chamber flow-through microbial fuel cells (MFCs). All four cultures originating from biohydrometallurgical process waters from multimetal ore heap bioleaching oxidized tetrathionate aerobically at pH below 3 with sulfate as the main soluble metabolite. In addition, all cultures generated electricity from tetrathionate in MFCs at pH below 2.5 with ferric iron as the terminal cathodic electron acceptor. The maximum current and power densities during MFC operation and in the performance analysis were 79.6 mA m(-2) and 13.9 mW m(-2) and 433 mA m(-2) and 17.6 mW m(-2), respectively. However, the low coulombic efficiency (below 5%) indicates that most of the electrons were directed to other processes, such as aerobic oxidation of tetrathionate and unmeasured intermediates. The microbial community analysis revealed that the dominant species both in the anolyte and on the anode electrode surface of the MFCs were Acidithiobacillus spp. and Ferroplasma spp. This study provides a proof of concept that tetrathionate serves as electron donor for biological electricity production in the pH range of 1.2-2.5.

  16. Integrated Microfluidic Flow-Through Microbial Fuel Cells

    NASA Astrophysics Data System (ADS)

    Jiang, Huawei; Ali, Md. Azahar; Xu, Zhen; Halverson, Larry J.; Dong, Liang

    2017-01-01

    This paper reports on a miniaturized microbial fuel cell with a microfluidic flow-through configuration: a porous anolyte chamber is formed by filling a microfluidic chamber with three-dimensional graphene foam as anode, allowing nutritional medium to flow through the chamber to intimately interact with the colonized microbes on the scaffolds of the anode. No nutritional media flow over the anode. This allows sustaining high levels of nutrient utilization, minimizing consumption of nutritional substrates, and reducing response time of electricity generation owing to fast mass transport through pressure-driven flow and rapid diffusion of nutrients within the anode. The device provides a volume power density of 745 μW/cm3 and a surface power density of 89.4 μW/cm2 using Shewanella oneidensis as a model biocatalyst without any optimization of bacterial culture. The medium consumption and the response time of the flow-through device are reduced by 16.4 times and 4.2 times, respectively, compared to the non-flow-through counterpart with its freeway space volume six times the volume of graphene foam anode. The graphene foam enabled microfluidic flow-through approach will allow efficient microbial conversion of carbon-containing bioconvertible substrates to electricity with smaller space, less medium consumption, and shorter start-up time.

  17. Integrated Microfluidic Flow-Through Microbial Fuel Cells

    PubMed Central

    Jiang, Huawei; Ali, Md. Azahar; Xu, Zhen; Halverson, Larry J.; Dong, Liang

    2017-01-01

    This paper reports on a miniaturized microbial fuel cell with a microfluidic flow-through configuration: a porous anolyte chamber is formed by filling a microfluidic chamber with three-dimensional graphene foam as anode, allowing nutritional medium to flow through the chamber to intimately interact with the colonized microbes on the scaffolds of the anode. No nutritional media flow over the anode. This allows sustaining high levels of nutrient utilization, minimizing consumption of nutritional substrates, and reducing response time of electricity generation owing to fast mass transport through pressure-driven flow and rapid diffusion of nutrients within the anode. The device provides a volume power density of 745 μW/cm3 and a surface power density of 89.4 μW/cm2 using Shewanella oneidensis as a model biocatalyst without any optimization of bacterial culture. The medium consumption and the response time of the flow-through device are reduced by 16.4 times and 4.2 times, respectively, compared to the non-flow-through counterpart with its freeway space volume six times the volume of graphene foam anode. The graphene foam enabled microfluidic flow-through approach will allow efficient microbial conversion of carbon-containing bioconvertible substrates to electricity with smaller space, less medium consumption, and shorter start-up time. PMID:28120875

  18. Heteromannan and Heteroxylan Cell Wall Polysaccharides Display Different Dynamics During the Elongation and Secondary Cell Wall Deposition Phases of Cotton Fiber Cell Development

    PubMed Central

    Hernandez-Gomez, Mercedes C.; Runavot, Jean-Luc; Guo, Xiaoyuan; Bourot, Stéphane; Benians, Thomas A.S.; Willats, William G.T.; Meulewaeter, Frank; Knox, J. Paul

    2015-01-01

    The roles of non-cellulosic polysaccharides in cotton fiber development are poorly understood. Combining glycan microarrays and in situ analyses with monoclonal antibodies, polysaccharide linkage analyses and transcript profiling, the occurrence of heteromannan and heteroxylan polysaccharides and related genes in developing and mature cotton (Gossypium spp.) fibers has been determined. Comparative analyses on cotton fibers at selected days post-anthesis indicate different temporal and spatial regulation of heteromannan and heteroxylan during fiber development. The LM21 heteromannan epitope was more abundant during the fiber elongation phase and localized mainly in the primary cell wall. In contrast, the AX1 heteroxylan epitope occurred at the transition phase and during secondary cell wall deposition, and localized in both the primary and the secondary cell walls of the cotton fiber. These developmental dynamics were supported by transcript profiling of biosynthetic genes. Whereas our data suggest a role for heteromannan in fiber elongation, heteroxylan is likely to be involved in the regulation of cellulose deposition of secondary cell walls. In addition, the relative abundance of these epitopes during fiber development varied between cotton lines with contrasting fiber characteristics from four species (G. hirsutum, G. barbadense, G. arboreum and G. herbaceum), suggesting that these non-cellulosic polysaccharides may be involved in determining final fiber quality and suitability for industrial processing. PMID:26187898

  19. Protein diffusion in plant cell plasma membranes: the cell-wall corral

    PubMed Central

    Martinière, Alexandre; Runions, John

    2013-01-01

    Studying protein diffusion informs us about how proteins interact with their environment. Work on protein diffusion over the last several decades has illustrated the complex nature of biological lipid bilayers. The plasma membrane contains an array of membrane-spanning proteins or proteins with peripheral membrane associations. Maintenance of plasma membrane microstructure can be via physical features that provide intrinsic ordering such as lipid microdomains, or from membrane-associated structures such as the cytoskeleton. Recent evidence indicates, that in the case of plant cells, the cell wall seems to be a major player in maintaining plasma membrane microstructure. This interconnection / interaction between cell-wall and plasma membrane proteins most likely plays an important role in signal transduction, cell growth, and cell physiological responses to the environment. PMID:24381579

  20. Cell wall dynamics modulate acetic acid-induced apoptotic cell death of Saccharomyces cerevisiae

    PubMed Central

    Rego, António; Duarte, Ana M.; Azevedo, Flávio; Sousa, Maria J.; Côrte-Real, Manuela; Chaves, Susana R.

    2014-01-01

    Acetic acid triggers apoptotic cell death in Saccharomyces cerevisiae, similar to mammalian apoptosis. To uncover novel regulators of this process, we analyzed whether impairing MAPK signaling affected acetic acid-induced apoptosis and found the mating-pheromone response and, especially, the cell wall integrity pathways were the major mediators, especially the latter, which we characterized further. Screening downstream effectors of this pathway, namely targets of the transcription factor Rlm1p, highlighted decreased cell wall remodeling as particularly important for acetic acid resistance. Modulation of cell surface dynamics therefore emerges as a powerful strategy to increase acetic acid resistance, with potential application in industrial fermentations using yeast, and in biomedicine to exploit the higher sensitivity of colorectal carcinoma cells to apoptosis induced by acetate produced by intestinal propionibacteria. PMID:28357256

  1. Pathobiology of Pneumocystis pneumonia: life cycle, cell wall and cell signal transduction.

    PubMed

    Skalski, Joseph H; Kottom, Theodore J; Limper, Andrew H

    2015-09-01

    Pneumocystis is a genus of ascomycetous fungi that are highly morbid pathogens in immunosuppressed humans and other mammals. Pneumocystis cannot easily be propagated in culture, which has greatly hindered understanding of its pathobiology. The Pneumocystis life cycle is intimately associated with its mammalian host lung environment, and life cycle progression is dependent on complex interactions with host alveolar epithelial cells and the extracellular matrix. The Pneumocystis cell wall is a varied and dynamic structure containing a dominant major surface glycoprotein, β-glucans and chitins that are important for evasion of host defenses and stimulation of the host immune system. Understanding of Pneumocystis cell signaling pathways is incomplete, but much has been deduced by comparison of the Pneumocystis genome with homologous genes and proteins in related fungi. In this mini-review, the pathobiology of Pneumocystis is reviewed, with particular focus on the life cycle, cell wall components and cell signal transduction.

  2. Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analyses.

    PubMed Central

    Davey, H M; Kell, D B

    1996-01-01

    The most fundamental questions such as whether a cell is alive, in the sense of being able to divide or to form a colony, may sometimes be very hard to answer, since even axenic microbial cultures are extremely heterogeneous. Analyses that seek to correlate such things as viability, which is a property of an individual cell, with macroscopic measurements of culture variables such as ATP content, respiratory activity, and so on, must inevitably fail. It is therefore necessary to make physiological measurements on individual cells. Flow cytometry is such a technique, which allows one to analyze cells rapidly and individually and permits the quantitative analysis of microbial heterogeneity. It therefore offers many advantages over conventional measurements for both routine and more exploratory analyses of microbial properties. While the technique has been widely applied to the study of mammalian cells, is use in microbiology has until recently been much more limited, largely because of the smaller size of microbes and the consequently smaller optical signals obtainable from them. Since these technical barriers no longer hold, flow cytometry with appropriate stains has been used for the rapid discrimination and identification of microbial cells, for the rapid assessment of viability and of the heterogeneous distributions of a wealth of other more detailed physiological properties, for the analysis of antimicrobial drug-cell interactions, and for the isolation of high-yielding strains of biotechnological interest. Flow cytometric analyses provide an abundance of multivariate data, and special methods have been devised to exploit these. Ongoing advances mean that modern flow cytometers may now be used by nonspecialists to effect a renaissance in our understanding of microbial heterogeneity. PMID:8987359

  3. A comparative evaluation of different types of microbial electrolysis desalination cells for malic acid production.

    PubMed

    Liu, Guangli; Zhou, Ying; Luo, Haiping; Cheng, Xing; Zhang, Renduo; Teng, Wenkai

    2015-12-01

    The aim of this study was to investigate different microbial electrolysis desalination cells for malic acid production. The systems included microbial electrolysis desalination and chemical-production cell (MEDCC), microbial electrolysis desalination cell (MEDC) with bipolar membrane and anion exchange membrane (BP-A MEDC), MEDC with bipolar membrane and cation exchange membrane (BP-C MEDC), and modified microbial desalination cell (M-MDC). The microbial electrolysis desalination cells performed differently in terms of malic acid production and energy consumption. The MEDCC performed best with the highest malic acid production rate (18.4 ± 0.6 mmol/Lh) and the lowest energy consumption (0.35 ± 0.14 kWh/kg). The best performance of MEDCC was attributable to the neutral pH condition in the anode chamber, the lowest internal resistance, and the highest Geobacter percentage of the anode biofilm population among all the reactors.

  4. Insolubilization of hydroxyproline-rich cell wall glycoprotein in aerated carrot root slices.

    PubMed

    Cooper, J B; Varner, J E

    1983-04-15

    The hydroxyproline-rich glycoprotein of plant cell walls is secreted from the cytoplasm as a soluble monomer which slowly becomes insolubilized. A tyrosine derivative, isodityrosine, is formed in the cell wall during this insolubilization and could serve as a protein-protein crosslink. Glycoprotein insolubilization is inhibited by peroxidase inhibitors and free radical scavengers, the most effective of which is L-ascorbate. These data support a hypothesis that the hydroxyproline-rich cell wall glycoprotein forms a covalently crosslinked wall network under the control of an extracellular peroxidase/ascorbate oxidase system.

  5. Cell-free layer and wall shear stress variation in microvessels.

    PubMed

    Yin, Xuewen; Zhang, Junfeng

    2012-01-01

    In this study, we simulated multiple red blood cells flowing through straight microvessels with the immersed-boundary lattice-Boltzmann model to examine the shear stress variation on the microvessel surface and its relation to the properties of cell-free layer. Significant variation in shear stress has been observed due to the irregular configuration of blood cells flowing near the microvessel wall. A low shear stress is typically found at locations where there is a cell flowing close to the wall, and a large shear stress at locations with a relatively wide gap between cell and wall. This relationship between the shear stress magnitude and the distance between cell and wall has been attributed to the reverse pressure difference developed between the front and rear sides of a cell flowing near the vessel wall. We further studied the effects of several hemodynamic factors on the variation of shear stress, including the cell deformability, the flow rate, and the aggregation among red blood cells. These simulations show that the shear stress variation is less profound in situations with wider cell-free layers, since the reverse pressure difference around the edge cells is less evident, and the influence of this pressure difference on wall shear stress becomes weaker. This study also demonstrates the complexity of the flow field in the gap between cell and wall. More precise experimental techniques are required accurately measure such shear stress variation in microcirculation.

  6. Germ tube-specific antigens of Candida albicans cell walls

    SciTech Connect

    Sundstrom, P.R.

    1986-01-01

    Studies were performed to characterize the surface differences between blastospores and germ tubes of the pathogenic, dimorphic yeast, Candida albicans, and to identify components of yeast cells responsible for these differences. Investigation of surfaces differences of the two growth forms was facilitated by the production of rabbit antiserum prepared against Formalin-treated yeast possessing germ tubes. To prepare antiserum specific for germ tubes, this serum was adsorbed with stationary phase blastospores. Whereas the unadsorbed antiserum reacted with both blastospore and germ tube forms by immunofluorescence and Enzyme-Linked Immunosorbent Assay, the adsorbed antiserum did not react with blastospores but detected germ tube-specific antigens in hyphal forms. The differences between blastospores and germ tubes of Candida albicans, were further studied by comparing enzymatic digests of cell walls of both growth forms in radiolabeled organisms. Organisms were labeled either on the surface with /sup 125/I, or metabolically with (/sup 35/S) methionine or (/sup 3/H) mannose. Three-surface-located components (as shown by antibody adsorption and elution experiments) were precipitated from Zymolase digests. All three components were mannoproteins as shown by their ability to bind Concanavalin A, and to be labeled in protein labeling procedures, and two of these (200,000 and 155,000 molecular weight) were germ tube specific, as shown by their ability to be precipitated by germ tube-specific antiserum. Monoclonal antibodies were prepared to C. albicans, using blastospores bearing germ tubes as immunogen.

  7. Polysaccharide composition of unlignified cell walls of pineapple [Ananas comosus (L.) Merr.] fruit.

    PubMed Central

    Smith, B G; Harris, P J

    1995-01-01

    The polysaccharides of cell walls isolated from the fleshy, edible part of the fruit of the monocotyledon pineapple [Ananas comosus (L.) Merr.] (family Bromeliaceae) were analyzed chemically. These cell walls were derived mostly from parenchyma cells and were shown histochemically to be unlignified, but they contained ester-linked ferulic acid. The analyses indicated that the noncellulosic polysaccharide composition of the cell walls was intermediate between that of unlignified cell walls of species of the monocotyledon family Poaceae (grasses and cereals) and that of unlignified cell walls of dicotyledons. Glucuronoarabinoxylans were the major non-cellulosic polysaccharides in the pineapple cell walls. Xyloglucans were also present, together with small amounts of pectic polysaccharides and glucomannans (or galactoglucomannans). The large amounts of glucuronoarabinoxylans and small amounts of pectic polysaccharides resemble the noncellulosic polysaccharide composition of the unlignified cell walls of the Poaceae. However, the absence of (1-->3,1-->4)-beta-glucans, the presence of relatively large amounts of xyloglucans, and the possible structure of the xyloglucans resemble the noncellulosic polysaccharide composition of the unlignified cell walls of dicotyledons. PMID:7770529

  8. Investigation of Hydrogen Storage in Single Walled Carbon Nanotubes for Fuel Cells-2

    DTIC Science & Technology

    2010-03-11

    1 Final Report Title: Investigation of hydrogen storage in Single Walled Carbon Nanotubes for fuel cells - 2 AFOSR/AOARD...SUBTITLE Investigation of hydrogen storage in single walled carbon nanotubes for fuel cells-2 5a. CONTRACT NUMBER FA23860914157 5b. GRANT NUMBER...SUPPLEMENTARY NOTES 14. ABSTRACT Single walled carbon nanotubes (SWCNTs) dispersed in 2-propanol are deposited on the alumina substrate using drop caste

  9. Scaling up microbial fuel cells and other bioelectrochemical systems.

    PubMed

    Logan, Bruce E

    2010-02-01

    Scientific research has advanced on different microbial fuel cell (MFC) technologies in the laboratory at an amazing pace, with power densities having reached over 1 kW/m(3) (reactor volume) and to 6.9 W/m(2) (anode area) under optimal conditions. The main challenge is to bring these technologies out of the laboratory and engineer practical systems for bioenergy production at larger scales. Recent advances in new types of electrodes, a better understanding of the impact of membranes and separators on performance of these systems, and results from several new pilot-scale tests are all good indicators that commercialization of the technology could be possible within a few years. Some of the newest advances and future challenges are reviewed here with respect to practical applications of these MFCs for renewable energy production and other applications.

  10. Microbial Fuel Cell Possibilities on American Indian Tribal Lands

    SciTech Connect

    Cameron, Kimberlynn

    2016-10-01

    The purpose of this paper is to present a brief background of tribal reservations, the process of how Microbial Fuel Cells (MFCs) work, and the potential benefits of using MFCs on tribal reservations to convert waste water to energy as a means to sustainably generate electricity. There have been no known studies conducted on tribal lands that would be able to add to the estimated percentage of all renewable energy resources identified. Not only does MFC technology provide a compelling, innovative solution, it could also address better management of wastewater, using it as a form of energy generation. Using wastewater for clean energy generation could provide a viable addition to community infrastructure systems improvements.

  11. Carbon nanotube modification of microbial fuel cell electrodes.

    PubMed

    Yazdi, Alireza Ahmadian; D'Angelo, Lorenzo; Omer, Nada; Windiasti, Gracia; Lu, Xiaonan; Xu, Jie

    2016-11-15

    The use of carbon nanotubes (CNTs) for energy harvesting devices is preferable due to their unique mechanical, thermal, and electrical properties. On the other hand, microbial fuel cells (MFCs) are promising devices to recover carbon-neutral energy from the organic matters, and have been hindered with major setbacks towards commercialization. Nanoengineered CNT-based materials show remarkable electrochemical properties, and therefore have provided routes towards highly effective modification of MFC compartments to ultimately reach the theoretical limits of biomass energy recovery, low-cost power production, and thus the commercialization of MFCs. Moreover, these CNT-based composites offer significant flexibility in the design of MFCs that enable their use for a broad spectrum of applications ranging from scaled-up power generation to medically related devices. This article reviews the recent advances in the modification of MFCs using CNTs and CNT-based composites, and the extent to which each modification route impacts MFC power and current generation.

  12. Performance of Denitrifying Microbial Fuel Cell with Biocathode over Nitrite

    PubMed Central

    Zhao, Huimin; Zhao, Jianqiang; Li, Fenghai; Li, Xiaoling

    2016-01-01

    Microbial fuel cell (MFC) with nitrite as an electron acceptor in cathode provided a new technology for nitrogen removal and electricity production simultaneously. The influences of influent nitrite concentration and external resistance on the performance of denitrifying MFC were investigated. The optimal effectiveness were obtained with the maximum total nitrogen (TN) removal rate of 54.80 ± 0.01 g m−3 d−1. It would be rather desirable for the TN removal than electricity generation at lower external resistance. Denaturing gradient gel electrophoresis suggested that Proteobacteria was the predominant phylum, accounting for 35.72%. Thiobacillus and Afipia might benefit to nitrite removal. The presence of nitrifying Devosia indicated that nitrite was oxidized to nitrate via a biochemical mechanism in the cathode. Ignavibacterium and Anaerolineaceae was found in the cathode as a heterotrophic bacterium with sodium acetate as substrate, which illustrated that sodium acetate in anode was likely permeated through proton exchange membrane to the cathode. PMID:27047462