Sample records for microbial co2 reduction

  1. Thermodynamic and Kinetic Response of Microbial Reactions to High CO2.

    PubMed

    Jin, Qusheng; Kirk, Matthew F

    2016-01-01

    Geological carbon sequestration captures CO 2 from industrial sources and stores the CO 2 in subsurface reservoirs, a viable strategy for mitigating global climate change. In assessing the environmental impact of the strategy, a key question is how microbial reactions respond to the elevated CO 2 concentration. This study uses biogeochemical modeling to explore the influence of CO 2 on the thermodynamics and kinetics of common microbial reactions in subsurface environments, including syntrophic oxidation, iron reduction, sulfate reduction, and methanogenesis. The results show that increasing CO 2 levels decreases groundwater pH and modulates chemical speciation of weak acids in groundwater, which in turn affect microbial reactions in different ways and to different extents. Specifically, a thermodynamic analysis shows that increasing CO 2 partial pressure lowers the energy available from syntrophic oxidation and acetoclastic methanogenesis, but raises the available energy of microbial iron reduction, hydrogenotrophic sulfate reduction and methanogenesis. Kinetic modeling suggests that high CO 2 has the potential of inhibiting microbial sulfate reduction while promoting iron reduction. These results are consistent with the observations of previous laboratory and field studies, and highlight the complexity in microbiological responses to elevated CO 2 abundance, and the potential power of biogeochemical modeling in evaluating and quantifying these responses.

  2. Thermodynamic and Kinetic Response of Microbial Reactions to High CO2

    PubMed Central

    Jin, Qusheng; Kirk, Matthew F.

    2016-01-01

    Geological carbon sequestration captures CO2 from industrial sources and stores the CO2 in subsurface reservoirs, a viable strategy for mitigating global climate change. In assessing the environmental impact of the strategy, a key question is how microbial reactions respond to the elevated CO2 concentration. This study uses biogeochemical modeling to explore the influence of CO2 on the thermodynamics and kinetics of common microbial reactions in subsurface environments, including syntrophic oxidation, iron reduction, sulfate reduction, and methanogenesis. The results show that increasing CO2 levels decreases groundwater pH and modulates chemical speciation of weak acids in groundwater, which in turn affect microbial reactions in different ways and to different extents. Specifically, a thermodynamic analysis shows that increasing CO2 partial pressure lowers the energy available from syntrophic oxidation and acetoclastic methanogenesis, but raises the available energy of microbial iron reduction, hydrogenotrophic sulfate reduction and methanogenesis. Kinetic modeling suggests that high CO2 has the potential of inhibiting microbial sulfate reduction while promoting iron reduction. These results are consistent with the observations of previous laboratory and field studies, and highlight the complexity in microbiological responses to elevated CO2 abundance, and the potential power of biogeochemical modeling in evaluating and quantifying these responses. PMID:27909425

  3. Study of Electrochemical Reduction of CO2 for Future Use in Secondary Microbial Electrochemical Technologies.

    PubMed

    Gimkiewicz, Carla; Hegner, Richard; Gutensohn, Mareike F; Koch, Christin; Harnisch, Falk

    2017-03-09

    The fluctuation and decentralization of renewable energy have triggered the search for respective energy storage and utilization. At the same time, a sustainable bioeconomy calls for the exploitation of CO 2 as feedstock. Secondary microbial electrochemical technologies (METs) allow both challenges to be tackled because the electrochemical reduction of CO 2 can be coupled with microbial synthesis. Because this combination creates special challenges, the electrochemical reduction of CO 2 was investigated under conditions allowing microbial conversions, that is, for their future use in secondary METs. A reproducible electrodeposition procedure of In on a graphite backbone allowed a systematic study of formate production from CO 2 with a high number of replicates. Coulomb efficiencies and formate production rates of up to 64.6±6.8 % and 0.013±0.002 mmol formate  h -1  cm -2 , respectively, were achieved. Electrode redeposition, reusability, and long-term performance were investigated. Furthermore, the effect of components used in microbial media, that is, yeast extract, trace elements, and phosphate salts, on the electrode performance was addressed. The results demonstrate that the integration of electrochemical reduction of CO 2 in secondary METs can become technologically relevant. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Single chamber microbial fuel cell with Ni-Co cathode

    NASA Astrophysics Data System (ADS)

    Włodarczyk, Barbara; Włodarczyk, Paweł P.; Kalinichenko, Antonina

    2017-10-01

    The possibility of wastewater treatment and the parallel energy production using the Ni-Co alloy as cathode catalyst for single chamber microbial fuel cells is presented in this research. The research included a preparation of catalyst and comparison of COD, NH4+ and NO3- reduction in the reactor without aeration, with aeration and with using a single chamber microbial fuel cell with Ni-Co cathode. The reduction time for COD with the use of microbial fuel cell with the Ni-Co catalyst is similar to the reduction time with aeration. The current density (2.4 A·m-2) and amount of energy (0.48 Wh) obtained in MFC is low, but the obtained amount of energy allows elimination of the energy needed for reactor aeration. It has been shown that the Ni-Co can be used as cathode catalyst in single chamber microbial fuel cells.

  5. Application of gas diffusion biocathode in microbial electrosynthesis from carbon dioxide.

    PubMed

    Bajracharya, Suman; Vanbroekhoven, Karolien; Buisman, Cees J N; Pant, Deepak; Strik, David P B T B

    2016-11-01

    Microbial catalysis of carbon dioxide (CO 2 ) reduction to multi-carbon compounds at the cathode is a highly attractive application of microbial electrosynthesis (MES). The microbes reduce CO 2 by either taking the electrons or reducing the equivalents produced at the cathode. While using gaseous CO 2 as the carbon source, the biological reduction process depends on the dissolution and mass transfer of CO 2 in the electrolyte. In order to deal with this issue, a gas diffusion electrode (GDE) was investigated by feeding CO 2 through the GDE into the MES reactor for its reduction at the biocathode. A combination of the catalyst layer (porous activated carbon and Teflon binder) and the hydrophobic gas diffusion layer (GDL) creates a three-phase interface at the electrode. So, CO 2 and reducing equivalents will be available to the biocatalyst on the cathode surface. An enriched inoculum consisting of acetogenic bacteria, prepared from an anaerobic sludge, was used as a biocatalyst. The cathode potential was maintained at -1.1 V vs Ag/AgCl to facilitate direct and/or hydrogen-mediated CO 2 reduction. Bioelectrochemical CO 2 reduction mainly produced acetate but also extended the products to ethanol and butyrate. Average acetate production rates of 32 and 61 mg/L/day, respectively, with 20 and 80 % CO 2 gas mixture feed were achieved with 10 cm 2 of GDE. The maximum acetate production rate remained 238 mg/L/day for 20 % CO 2 gas mixture. In conclusion, a gas diffusion biocathode supported bioelectrochemical CO 2 reduction with enhanced mass transfer rate at continuous supply of gaseous CO 2 . Graphical abstract ᅟ.

  6. Microbial reduction of vanadium (V) in groundwater: Interactions with coexisting common electron acceptors and analysis of microbial community.

    PubMed

    Liu, Hui; Zhang, Baogang; Yuan, Heyang; Cheng, Yutong; Wang, Song; He, Zhen

    2017-12-01

    Vanadium (V) pollution in groundwater has posed serious risks to the environment and public health. Anaerobic microbial reduction can achieve efficient and cost-effective remediation of V(V) pollution, but its interactions with coexisting common electron acceptors such as NO 3 - , Fe 3+ , SO 4 2- and CO 2 in groundwater remain unknown. In this study, the interactions between V(V) reduction and reduction of common electron acceptors were examined with revealing relevant microbial community and identifying dominant species. The results showed that the presence of NO 3 - slowed down the removal of V(V) in the early stage of the reaction but eventually led to a similar reduction efficiency (90.0% ± 0.4% in 72-h operation) to that in the reactor without NO 3 - . The addition of Fe 3+ , SO 4 2- , or CO 2 decreased the efficiency of V(V) reduction. Furthermore, the microbial reduction of these coexisting electron acceptors was also adversely affected by the presence of V(V). The addition of V(V) as well as the extra dose of Fe 3+ , SO 4 2- and CO 2 decreased microbial diversity and evenness, whereas the reactor supplied with NO 3 - showed the increased diversity. High-throughput 16S rRNA gene pyrosequencing analysis indicated the accumulation of Geobacter, Longilinea, Syntrophobacter, Spirochaeta and Anaerolinea, which might be responsible for the reduction of multiple electron acceptors. The findings of this study have demonstrated the feasibility of anaerobic bioremediation of V(V) and the possible influence of coexisting electron acceptors commonly found in groundwater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Application of response surface methodology to optimise microbial inactivation of shrimp and conch by supercritical carbon dioxide.

    PubMed

    Chen, Manhua; Sui, Xiao; Ma, Xixiu; Feng, Xiaomei; Han, Yuqian

    2015-03-30

    Supercritical carbon dioxide (SC-CO2 ) has been shown to have a good pasteurising effect on food. However, very few research papers have investigated the possibility to exploit this treatment for solid foods, particularly for seafood. Considering the microbial safety of raw seafood consumption, the study aimed to explore the feasibility of microbial inactivation of shrimp (Metapenaeus ensis) and conch (Rapana venosa) by SC-CO2 treatment. Response surface methodology (RSM) models were established to predict and analyse the SC-CO2 process. A 3.69-log reduction in the total aerobic plate count (TPC) of shrimp was observed by SC-CO2 treatment at 53°C, 15 MPa for 40 min, and the logarithmic reduction in TPC of conch was 3.31 at 55°C, 14 MPa for 42 min. Sensory scores of the products achieved approximately 8 (desirable). The optimal parameters for microbial inactivation of shrimp and conch by SC-CO2 might be 55°C, 15 MPa and 40 min. SC-CO2 exerted a strong bactericidal effect on the TPC of shrimp and conch, and the products maintained good organoleptic properties. This study verified the feasibility of microbial inactivation of shrimp and conch by SC-CO2 treatment. © 2014 Society of Chemical Industry.

  8. The pH and pCO2 dependence of sulfate reduction in shallow-sea hydrothermal CO2 – venting sediments (Milos Island, Greece)

    PubMed Central

    Bayraktarov, Elisa; Price, Roy E.; Ferdelman, Timothy G.; Finster, Kai

    2013-01-01

    Microbial sulfate reduction (SR) is a dominant process of organic matter mineralization in sulfate-rich anoxic environments at neutral pH. Recent studies have demonstrated SR in low pH environments, but investigations on the microbial activity at variable pH and CO2 partial pressure are still lacking. In this study, the effect of pH and pCO2 on microbial activity was investigated by incubation experiments with radioactive 35S targeting SR in sediments from the shallow-sea hydrothermal vent system of Milos, Greece, where pH is naturally decreased by CO2 release. Sediments differed in their physicochemical characteristics with distance from the main site of fluid discharge. Adjacent to the vent site (T ~40–75°C, pH ~5), maximal sulfate reduction rates (SRR) were observed between pH 5 and 6. SR in hydrothermally influenced sediments decreased at neutral pH. Sediments unaffected by hydrothermal venting (T ~26°C, pH ~8) expressed the highest SRR between pH 6 and 7. Further experiments investigating the effect of pCO2 on SR revealed a steep decrease in activity when the partial pressure increased from 2 to 3 bar. Findings suggest that sulfate reducing microbial communities associated with hydrothermal vent system are adapted to low pH and high CO2, while communities at control sites required a higher pH for optimal activity. PMID:23658555

  9. The pH and pCO2 dependence of sulfate reduction in shallow-sea hydrothermal CO2 - venting sediments (Milos Island, Greece).

    PubMed

    Bayraktarov, Elisa; Price, Roy E; Ferdelman, Timothy G; Finster, Kai

    2013-01-01

    Microbial sulfate reduction (SR) is a dominant process of organic matter mineralization in sulfate-rich anoxic environments at neutral pH. Recent studies have demonstrated SR in low pH environments, but investigations on the microbial activity at variable pH and CO2 partial pressure are still lacking. In this study, the effect of pH and pCO2 on microbial activity was investigated by incubation experiments with radioactive (35)S targeting SR in sediments from the shallow-sea hydrothermal vent system of Milos, Greece, where pH is naturally decreased by CO2 release. Sediments differed in their physicochemical characteristics with distance from the main site of fluid discharge. Adjacent to the vent site (T ~40-75°C, pH ~5), maximal sulfate reduction rates (SRR) were observed between pH 5 and 6. SR in hydrothermally influenced sediments decreased at neutral pH. Sediments unaffected by hydrothermal venting (T ~26°C, pH ~8) expressed the highest SRR between pH 6 and 7. Further experiments investigating the effect of pCO2 on SR revealed a steep decrease in activity when the partial pressure increased from 2 to 3 bar. Findings suggest that sulfate reducing microbial communities associated with hydrothermal vent system are adapted to low pH and high CO2, while communities at control sites required a higher pH for optimal activity.

  10. Temperature dependence of bioelectrochemical CO2 conversion and methane production with a mixed-culture biocathode.

    PubMed

    Yang, Hou-Yun; Bao, Bai-Ling; Liu, Jing; Qin, Yuan; Wang, Yi-Ran; Su, Kui-Zu; Han, Jun-Cheng; Mu, Yang

    2018-02-01

    This study evaluated the effect of temperature on methane production by CO 2 reduction during microbial electrosynthesis (MES) with a mixed-culture biocathode. Reactor performance, in terms of the amount and rate of methane production, current density, and coulombic efficiency, was compared at different temperatures. The microbial properties of the biocathode at each temperature were also analyzed by 16S rRNA gene sequencing. The results showed that the optimum temperature for methane production from CO 2 reduction in MES with a mixed-culture cathode was 50°C, with the highest amount and rate of methane production of 2.06±0.13mmol and 0.094±0.01mmolh -1 , respectively. In the mixed-culture biocathode MES, the coulombic efficiency of methane formation was within a range of 19.15±2.31% to 73.94±2.18% due to by-product formation at the cathode, including volatile fatty acids and hydrogen. Microbial analysis demonstrated that temperature had an impact on the diversity of microbial communities in the biofilm that formed on the MES cathode. Specifically, the hydrogenotrophic methanogen Methanobacterium became the predominant archaea for methane production from CO 2 reduction, while the abundance of the aceticlastic methanogen Methanosaeta decreased with increased temperature. Copyright © 2017. Published by Elsevier B.V.

  11. Biotransformation of carbon dioxide in bioelectrochemical systems: State of the art and future prospects

    NASA Astrophysics Data System (ADS)

    Bajracharya, Suman; Srikanth, Sandipam; Mohanakrishna, Gunda; Zacharia, Renju; Strik, David PBTB; Pant, Deepak

    2017-07-01

    Carbon dioxide (CO2) utilization/recycling for the production of chemicals and gaseous/liquid energy-carriers is a way to moderate the rising CO2 in the atmosphere. One of the possible solutions for the CO2 sequestration is the electrochemical reduction of this stable molecule to useful fuel/products. Nevertheless, the surface chemistry of CO2 reduction is a challenge due to the presence of large energy barriers, requiring noticeable catalysis. The recent approach of microbial electrocatalysis of CO2 reduction has promising prospects to reduce the carbon level sustainably, taking full advantage of CO2-derived chemical commodities. We review the currently investigated bioelectrochemical approaches that could possibly be implemented to enable the handling of CO2 emissions. This review covers the most recent advances in the bioelectrochemical approaches of CO2 transformations in terms of biocatalysts development and process design. Furthermore, the extensive research on carbon fixation and conversion to different value added chemicals is reviewed. The review concludes by detailing the key challenges and future prospects that could enable economically feasible microbial electrosynthesis technology.

  12. Methanogenesis-induced pH–Eh shifts drives aqueous metal(loid) mobility in sulfide mineral systems under CO2 enriched conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, Omar R.; Qafoku, Nikolla; Cantrell, Kirk J.

    2016-01-15

    Accounting for microbially-mediated CO2 transformation is pivotal to assessing geochemical implications for elevated CO2 in subsurface environments. A series of batch-reactor experiments were conducted to decipher links between autotrophic methanogenesis, CO2 dynamics and aqueous Fe, As and Pb concentrations in the presence of sulfide minerals. Microbially-mediated solubility-trapping followed by pseudo-first order reduction of HCO3- to CH4 (k’ = 0.28-0.59 d-1) accounted for 95% of the CO2 loss from methanogenic experiments. Bicarbonate-to-methane reduction was pivotal in the mitigation of CO2-induced acidity (~1 pH unit) and enhancement of reducing conditions (Eh change from -0.215 to -0.332V ). Methanogenesis-associated shifts in pH-Eh valuesmore » showed no significant effect on aqueous Pb but favored, 1) increased aqueous As as a result of microbially-mediated dissolution of arsenopyrite and 2) decreased aqueous Fe due to mineral-trapping of CO2-mobilized Fe as Fe-carbonate. Its order of occurrence (and magnitude), relative to solubility- and mineral-trapping, highlighted the potential for autotrophic methanogenesis to modulate both carbon sequestration and contaminant mobility in CO2-impacted subsurface environments.« less

  13. Novel mesoporous MnCo2O4 nanorods as oxygen reduction catalyst at neutral pH in microbial fuel cells.

    PubMed

    Kumar, Ravinder; Singh, Lakhveer; Wahid, Zularisam Ab; Mahapatra, Durga Madhab; Liu, Hong

    2018-04-01

    The aim of this work was to evaluate the comparative performance of hybrid metal oxide nanorods i.e. MnCo 2 O 4 nanorods (MCON) and single metal oxide nanorods i.e. Co 3 O 4 nanorods (CON) as oxygen reduction catalyst in microbial fuel cells (MFC). Compared to the single metal oxide, the hybrid MCON exhibited a higher BET surface area and provided additional positively charged ions, i.e., Co 2+ /Co 3+ and Mn 3+ /Mn 4+ on its surfaces, which increased the electro-conductivity of the cathode and improved the oxygen reduction kinetics significantly, achieved an i o of 6.01 A/m 2 that was 12.4% higher than CON. Moreover, the porous architecture of MCON facilitated the diffusion of electrolyte, reactants and electrons during the oxygen reduction, suggested by lower diffusion (R d ), activation (R act ) and ohmic resistance (R ohm ) values. This enhanced oxygen reduction by MCON boosted the power generation in MFC, achieving a maximum power density of 587 mW/m 2 that was ∼29% higher than CON. Published by Elsevier Ltd.

  14. Metabolically active microbial communities in marine sediment under high-CO2 and low-pH extremes

    PubMed Central

    Yanagawa, Katsunori; Morono, Yuki; de Beer, Dirk; Haeckel, Matthias; Sunamura, Michinari; Futagami, Taiki; Hoshino, Tatsuhiko; Terada, Takeshi; Nakamura, Ko-ichi; Urabe, Tetsuro; Rehder, Gregor; Boetius, Antje; Inagaki, Fumio

    2013-01-01

    Sediment-hosting hydrothermal systems in the Okinawa Trough maintain a large amount of liquid, supercritical and hydrate phases of CO2 in the seabed. The emission of CO2 may critically impact the geochemical, geophysical and ecological characteristics of the deep-sea sedimentary environment. So far it remains unclear whether microbial communities that have been detected in such high-CO2 and low-pH habitats are metabolically active, and if so, what the biogeochemical and ecological consequences for the environment are. In this study, RNA-based molecular approaches and radioactive tracer-based respiration rate assays were combined to study the density, diversity and metabolic activity of microbial communities in CO2-seep sediment at the Yonaguni Knoll IV hydrothermal field of the southern Okinawa Trough. In general, the number of microbes decreased sharply with increasing sediment depth and CO2 concentration. Phylogenetic analyses of community structure using reverse-transcribed 16S ribosomal RNA showed that the active microbial community became less diverse with increasing sediment depth and CO2 concentration, indicating that microbial activity and community structure are sensitive to CO2 venting. Analyses of RNA-based pyrosequences and catalyzed reporter deposition-fluorescence in situ hybridization data revealed that members of the SEEP-SRB2 group within the Deltaproteobacteria and anaerobic methanotrophic archaea (ANME-2a and -2c) were confined to the top seafloor, and active archaea were not detected in deeper sediments (13–30 cm in depth) characterized by high CO2. Measurement of the potential sulfate reduction rate at pH conditions of 3–9 with and without methane in the headspace indicated that acidophilic sulfate reduction possibly occurs in the presence of methane, even at very low pH of 3. These results suggest that some members of the anaerobic methanotrophs and sulfate reducers can adapt to the CO2-seep sedimentary environment; however, CO2 and pH in the deep-sea sediment were found to severely impact the activity and structure of the microbial community. PMID:23096400

  15. Geochemical modeling of iron, sulfur, oxygen and carbon in a coastal plain aquifer

    USGS Publications Warehouse

    Brown, C.J.; Schoonen, M.A.A.; Candela, J.L.

    2000-01-01

    Fe(III) reduction in the Magothy aquifer of Long Island, NY, results in high dissolved-iron concentrations that degrade water quality. Geochemical modeling was used to constrain iron-related geochemical processes and redox zonation along a flow path. The observed increase in dissolved inorganic carbon is consistent with the oxidation of sedimentary organic matter coupled to the reduction of O2 and SO4/2- in the aerobic zone, and to the reduction of SO4/2- in the anaerobic zone; estimated rates of CO2 production through reduction of Fe(III) were relatively minor by comparison. The rates of CO2 production calculated from dissolved inorganic carbon mass transfer (2.55 x 10-4 to 48.6 x 10-4 mmol 1-1 yr-1) generally were comparable to the calculated rates of CO2 production by the combined reduction of O2, Fe(III) and SO4/2- (1.31 x 10-4 to 15 x 10-4 mmol 1-1 yr-1). The overall increase in SO4/2- concentrations along the flow path, together with the results of mass-balance calculations, and variations in ??34S values along the flow path indicate that SO4/2- loss through microbial reduction is exceeded by SO4/2- gain through diffusion from sediments and through the oxidation of FeS2. Geochemichal and microbial data on cores indicate that Fe(III) oxyhydroxide coatings on sediment grains in local, organic carbon- and SO4/2- -rich zones have localized SO4/2- -reducing zones in which the formation of iron disulfides been depleted by microbial reduction and resulted in decreases dissolved iron concentrations. These localized zones of SO4/2- reduction, which are important for assessing zones of low dissolved iron for water-supply development, could be overlooked by aquifer studies that rely only on groundwater data from well-water samples for geochemical modeling. (C) 2000 Elsevier Science B.V.Fe(III) reduction in the Magothy aquifer of Long Island, NY, results in high dissolved-iron concentrations that degrade water quality. Geochemical modeling was used to constrain iron-related geochemical processes and redox zonation along a flow path. The observed increase in dissolved inorganic carbon is consistent with the oxidation of sedimentary organic matter coupled to the reduction of O2 and SO42- in the aerobic zone, and to the reduction of SO42- in the anaerobic zone; estimated rates of CO2 production through reduction of Fe(III) were relatively minor by comparison. The rates of CO2 production calculated from dissolved inorganic carbon mass transfer (2.55??10-4 to 48.6??10-4mmol l-1yr-1) generally were comparable to the calculated rates of CO2 production by the combined reduction of O2, Fe(III) and SO42- (1.31??10-4 to 15??10-4mmol l-1yr-1). The overall increase in SO42- concentrations along the flow path, together with the results of mass-balance calculations, and variations in ??34S values along the flow path indicate that SO42- loss through microbial reduction is exceeded by SO42- gain through diffusion from sediments and through the oxidation of FeS2. Geochemical and microbial data on cores indicate that Fe(III) oxyhydroxide coatings on sediment grains in local, organic carbon- and SO42--rich zones have been depleted by microbial reduction and resulted in localized SO42--reducing zones in which the formation of iron disulfides decreases dissolved iron concentrations. These localized zones of SO42- reduction, which are important for assessing zones of low dissolved iron for water-supply development, could be overlooked by aquifer studies that rely only on groundwater data from well-water samples for geochemical modeling.

  16. Metagenomics-guided analysis of microbial chemolithoautotrophic phosphite oxidation yields evidence of a seventh natural CO2 fixation pathway.

    PubMed

    Figueroa, Israel A; Barnum, Tyler P; Somasekhar, Pranav Y; Carlström, Charlotte I; Engelbrektson, Anna L; Coates, John D

    2018-01-02

    Dissimilatory phosphite oxidation (DPO), a microbial metabolism by which phosphite (HPO 3 2- ) is oxidized to phosphate (PO 4 3- ), is the most energetically favorable chemotrophic electron-donating process known. Only one DPO organism has been described to date, and little is known about the environmental relevance of this metabolism. In this study, we used 16S rRNA gene community analysis and genome-resolved metagenomics to characterize anaerobic wastewater treatment sludge enrichments performing DPO coupled to CO 2 reduction. We identified an uncultivated DPO bacterium, Candidatus Phosphitivorax ( Ca. P.) anaerolimi strain Phox-21, that belongs to candidate order GW-28 within the Deltaproteobacteria , which has no known cultured isolates. Genes for phosphite oxidation and for CO 2 reduction to formate were found in the genome of Ca. P. anaerolimi, but it appears to lack any of the known natural carbon fixation pathways. These observations led us to propose a metabolic model for autotrophic growth by Ca. P. anaerolimi whereby DPO drives CO 2 reduction to formate, which is then assimilated into biomass via the reductive glycine pathway.

  17. Hybrid binuclear-cobalt-phthalocyanine as oxygen reduction reaction catalyst in single chamber microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Li, Baitao; Zhou, Xiuxiu; Wang, Xiujun; Liu, Bingchuan; Li, Baikun

    2014-12-01

    A novel hybrid binuclear-cobalt-phthalocyanine (Bi-CoPc) is developed as the cathode catalyst to replace the costly platinum (Pt) in single chamber microbial fuel cells (SCMFCs). Bi-CoPc/C is integrated with metal oxides (NiO and CoO) to form macrocyclic complex for enhanced oxygen reduction rate (ORR). The characteristics of hybrid catalysts (Bi-CoPc/C-CoO and Bi-CoPc/C-NiO) are compared with Co-contained catalysts (CoPc/C and Bi-CoPc/C) and metal oxide catalysts (NiO and CoO). The increase in O and N functional groups indicates the benefits of NiO and CoO to the cathode catalysts. The cyclic voltammetry (CV) shows the reduction peak for Bi-CoPc/C-NiO and Bi-CoPc/C-CoO at -0.12 V and -0.22 V, respectively. The power densities (368 mW m-2 and 400 mW m-2) of SCMFCs with Bi-CoPc/C-CoO and Bi-CoPc-NiO/C are the highest among the cathodes tested, and close to that of Pt (450 mW m-2). This study demonstrates that hybrid Bi-CoPc/C with metal oxides has a great potential as a cost-effective catalyst in MFCs.

  18. The influence of microbial-based inoculants on N2O emissions from soil planted with corn (Zea mays L.) under greenhouse conditions with different nitrogen fertilizer regimens.

    PubMed

    Calvo, Pamela; Watts, Dexter B; Kloepper, Joseph W; Torbert, H Allen

    2016-12-01

    Nitrous oxide (N 2 O) emissions are increasing at an unprecedented rate owing to the increased use of nitrogen (N) fertilizers. Thus, new innovative management tools are needed to reduce emissions. One potential approach is the use of microbial inoculants in agricultural production. In a previous incubation study, we observed reductions in N 2 O emissions when microbial-based inoculants were added to soil (no plants present) with N fertilizers under laboratory incubations. This present study evaluated the effects of microbial-based inoculants on N 2 O and carbon dioxide (CO 2 ) emissions when applied to soil planted with corn (Zea mays L.) under controlled greenhouse conditions. Inoculant treatments consisted of (i) SoilBuilder (SB), (ii) a metabolite extract of SoilBuilder (SBF), and (iii) a mixture of 4 strains of plant-growth-promoting Bacillus spp. (BM). Experiments included an unfertilized control and 3 N fertilizers: urea, urea - ammonium nitrate with 32% N (UAN-32), and calcium - ammonium nitrate with 17% N (CAN-17). Cumulative N 2 O fluxes from pots 41 days after planting showed significant reductions in N 2 O of 15% (SB), 41% (BM), and 28% (SBF) with CAN-17 fertilizer. When UAN-32 was used, reductions of 34% (SB), 35% (SBF), and 49% (BM) were obtained. However, no reductions in N 2 O emissions occurred with urea. Microbial-based inoculants did not affect total CO 2 emissions from any of the fertilized treatments or the unfertilized control. N uptake was increased by an average of 56% with microbial inoculants compared with the control (nonmicrobial-based treatments). Significant increases in plant height, SPAD chlorophyll readings, and fresh and dry shoot mass were also observed when the microbial-based treatments were applied (with and without N). Overall, results demonstrate that microbial inoculants can reduce N 2 O emissions following fertilizer application depending on the N fertilizer type used and can enhance N uptake and plant growth. Future studies are planned to evaluate the effectiveness of these microbial inoculants in field-based trials and determine the mechanisms involved in N 2 O reduction.

  19. Novel RuCoSe as non-platinum catalysts for oxygen reduction reaction in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Rozenfeld, Shmuel; Schechter, Michal; Teller, Hanan; Cahan, Rivka; Schechter, Alex

    2017-09-01

    Microbial electrochemical cells (MECs) are explored for the conversion of acetate directly to electrical energy. This device utilizes a Geobacter sulfurreducens anode and a novel RuCoSe air cathode. RuCoSe synthesized in selected compositions by a borohydride reduction method produces amorphous structures of powdered agglomerates. Oxygen reduction reaction (ORR) was measured in a phosphate buffer solution pH 7 using a rotating disc electrode (RDE), from which the kinetic current (ik) was measured as a function of potential and composition. The results show that ik of RuxCoySe catalysts increases in the range of XRu = 0.25 > x > 0.7 and y < 0.15 for all tested potentials. A poisoning study of RuCoSe and Pt catalysts in a high concentration acetate solution shows improved tolerance of RuCoSe to this fuel at acetate concentration ≥500 mM. MEC discharge plots under physiological conditions show that ∼ RuCo2Se (sample S3) has a peak power density of 750 mW cm-2 which is comparable with Pt 900 mW cm-2.

  20. Geochemical Influence on Microbial Communities at CO2-Leakage Analog Sites.

    PubMed

    Ham, Baknoon; Choi, Byoung-Young; Chae, Gi-Tak; Kirk, Matthew F; Kwon, Man Jae

    2017-01-01

    Microorganisms influence the chemical and physical properties of subsurface environments and thus represent an important control on the fate and environmental impact of CO 2 that leaks into aquifers from deep storage reservoirs. How leakage will influence microbial populations over long time scales is largely unknown. This study uses natural analog sites to investigate the long-term impact of CO 2 leakage from underground storage sites on subsurface biogeochemistry. We considered two sites with elevated CO 2 levels (sample groups I and II) and one control site with low CO 2 content (group III). Samples from sites with elevated CO 2 had pH ranging from 6.2 to 4.5 and samples from the low-CO 2 control group had pH ranging from 7.3 to 6.2. Solute concentrations were relatively low for samples from the control group and group I but high for samples from group II, reflecting varying degrees of water-rock interaction. Microbial communities were analyzed through clone library and MiSeq sequencing. Each 16S rRNA analysis identified various bacteria, methane-producing archaea, and ammonia-oxidizing archaea. Both bacterial and archaeal diversities were low in groundwater with high CO 2 content and community compositions between the groups were also clearly different. In group II samples, sequences classified in groups capable of methanogenesis, metal reduction, and nitrate reduction had higher relative abundance in samples with relative high methane, iron, and manganese concentrations and low nitrate levels. Sequences close to Comamonadaceae were abundant in group I, while the taxa related to methanogens, Nitrospirae , and Anaerolineaceae were predominant in group II. Our findings provide insight into subsurface biogeochemical reactions that influence the carbon budget of the system including carbon fixation, carbon trapping, and CO 2 conversion to methane. The results also suggest that monitoring groundwater microbial community can be a potential tool for tracking CO 2 leakage from geologic storage sites.

  1. Geochemical Influence on Microbial Communities at CO2-Leakage Analog Sites

    PubMed Central

    Ham, Baknoon; Choi, Byoung-Young; Chae, Gi-Tak; Kirk, Matthew F.; Kwon, Man Jae

    2017-01-01

    Microorganisms influence the chemical and physical properties of subsurface environments and thus represent an important control on the fate and environmental impact of CO2 that leaks into aquifers from deep storage reservoirs. How leakage will influence microbial populations over long time scales is largely unknown. This study uses natural analog sites to investigate the long-term impact of CO2 leakage from underground storage sites on subsurface biogeochemistry. We considered two sites with elevated CO2 levels (sample groups I and II) and one control site with low CO2 content (group III). Samples from sites with elevated CO2 had pH ranging from 6.2 to 4.5 and samples from the low-CO2 control group had pH ranging from 7.3 to 6.2. Solute concentrations were relatively low for samples from the control group and group I but high for samples from group II, reflecting varying degrees of water-rock interaction. Microbial communities were analyzed through clone library and MiSeq sequencing. Each 16S rRNA analysis identified various bacteria, methane-producing archaea, and ammonia-oxidizing archaea. Both bacterial and archaeal diversities were low in groundwater with high CO2 content and community compositions between the groups were also clearly different. In group II samples, sequences classified in groups capable of methanogenesis, metal reduction, and nitrate reduction had higher relative abundance in samples with relative high methane, iron, and manganese concentrations and low nitrate levels. Sequences close to Comamonadaceae were abundant in group I, while the taxa related to methanogens, Nitrospirae, and Anaerolineaceae were predominant in group II. Our findings provide insight into subsurface biogeochemical reactions that influence the carbon budget of the system including carbon fixation, carbon trapping, and CO2 conversion to methane. The results also suggest that monitoring groundwater microbial community can be a potential tool for tracking CO2 leakage from geologic storage sites. PMID:29170659

  2. Biosurfactant as an Enhancer of Geologic Carbon Storage: Microbial Modification of Interfacial Tension and Contact Angle in Carbon dioxide/Water/Quartz Systems.

    PubMed

    Park, Taehyung; Joo, Hyun-Woo; Kim, Gyeong-Yeong; Kim, Seunghee; Yoon, Sukhwan; Kwon, Tae-Hyuk

    2017-01-01

    Injecting and storing of carbon dioxide (CO 2 ) in deep geologic formations is considered as one of the promising approaches for geologic carbon storage. Microbial wettability alteration of injected CO 2 is expected to occur naturally by microorganisms indigenous to the geologic formation or microorganisms intentionally introduced to increase CO 2 storage capacity in the target reservoirs. The question as to the extent of microbial CO 2 wettability alteration under reservoir conditions still warrants further investigation. This study investigated the effect of a lipopeptide biosurfactant-surfactin, on interfacial tension (IFT) reduction and contact angle alteration in CO 2 /water/quartz systems under a laboratory setup simulating in situ reservoir conditions. The temporal shifts in the IFT and the contact angle among CO 2 , brine, and quartz were monitored for different CO 2 phases (3 MPa, 30°C for gaseous CO 2 ; 10 MPa, 28°C for liquid CO 2 ; 10 MPa, 37°C for supercritical CO 2 ) upon cultivation of Bacillus subtilis strain ATCC6633 with induced surfactin secretion activity. Due to the secreted surfactin, the IFT between CO 2 and brine decreased: from 49.5 to 30 mN/m, by ∼39% for gaseous CO 2 ; from 28.5 to 13 mN/m, by 54% for liquid CO 2 ; and from 32.5 to 18.5 mN/m, by ∼43% for supercritical CO 2 , respectively. The contact angle of a CO 2 droplet on a quartz disk in brine increased: from 20.5° to 23.2°, by 1.16 times for gaseous CO 2 ; from 18.4° to 61.8°, by 3.36 times for liquid CO 2 ; and from 35.5° to 47.7°, by 1.34 times for supercritical CO 2 , respectively. With the microbially altered CO 2 wettability, improvement in sweep efficiency of injected and displaced CO 2 was evaluated using 2-D pore network model simulations; again the increment in sweep efficiency was the greatest in liquid CO 2 phase due to the largest reduction in capillary factor. This result provides novel insights as to the role of naturally occurring biosurfactants in CO 2 storage and suggests that biostimulation of biosurfactant production may be a feasible technique for enhancement of CO 2 storage capacity.

  3. Biosurfactant as an Enhancer of Geologic Carbon Storage: Microbial Modification of Interfacial Tension and Contact Angle in Carbon dioxide/Water/Quartz Systems

    PubMed Central

    Park, Taehyung; Joo, Hyun-Woo; Kim, Gyeong-Yeong; Kim, Seunghee; Yoon, Sukhwan; Kwon, Tae-Hyuk

    2017-01-01

    Injecting and storing of carbon dioxide (CO2) in deep geologic formations is considered as one of the promising approaches for geologic carbon storage. Microbial wettability alteration of injected CO2 is expected to occur naturally by microorganisms indigenous to the geologic formation or microorganisms intentionally introduced to increase CO2 storage capacity in the target reservoirs. The question as to the extent of microbial CO2 wettability alteration under reservoir conditions still warrants further investigation. This study investigated the effect of a lipopeptide biosurfactant—surfactin, on interfacial tension (IFT) reduction and contact angle alteration in CO2/water/quartz systems under a laboratory setup simulating in situ reservoir conditions. The temporal shifts in the IFT and the contact angle among CO2, brine, and quartz were monitored for different CO2 phases (3 MPa, 30°C for gaseous CO2; 10 MPa, 28°C for liquid CO2; 10 MPa, 37°C for supercritical CO2) upon cultivation of Bacillus subtilis strain ATCC6633 with induced surfactin secretion activity. Due to the secreted surfactin, the IFT between CO2 and brine decreased: from 49.5 to 30 mN/m, by ∼39% for gaseous CO2; from 28.5 to 13 mN/m, by 54% for liquid CO2; and from 32.5 to 18.5 mN/m, by ∼43% for supercritical CO2, respectively. The contact angle of a CO2 droplet on a quartz disk in brine increased: from 20.5° to 23.2°, by 1.16 times for gaseous CO2; from 18.4° to 61.8°, by 3.36 times for liquid CO2; and from 35.5° to 47.7°, by 1.34 times for supercritical CO2, respectively. With the microbially altered CO2 wettability, improvement in sweep efficiency of injected and displaced CO2 was evaluated using 2-D pore network model simulations; again the increment in sweep efficiency was the greatest in liquid CO2 phase due to the largest reduction in capillary factor. This result provides novel insights as to the role of naturally occurring biosurfactants in CO2 storage and suggests that biostimulation of biosurfactant production may be a feasible technique for enhancement of CO2 storage capacity. PMID:28744272

  4. Formate-Dependent Microbial Conversion of CO2 and the Dominant Pathways of Methanogenesis in Production Water of High-temperature Oil Reservoirs Amended with Bicarbonate.

    PubMed

    Yang, Guang-Chao; Zhou, Lei; Mbadinga, Serge M; Liu, Jin-Feng; Yang, Shi-Zhong; Gu, Ji-Dong; Mu, Bo-Zhong

    2016-01-01

    CO2 sequestration in deep-subsurface formations including oil reservoirs is a potential measure to reduce the CO2 concentration in the atmosphere. However, the fate of the CO2 and the ecological influences in carbon dioxide capture and storage (CDCS) facilities is not understood clearly. In the current study, the fate of CO2 (in bicarbonate form; 0∼90 mM) with 10 mM of formate as electron donor and carbon source was investigated with high-temperature production water from oilfield in China. The isotope data showed that bicarbonate could be reduced to methane by methanogens and major pathway of methanogenesis could be syntrophic formate oxidation coupled with CO2 reduction and formate methanogenesis under the anaerobic conditions. The bicarbonate addition induced the shift of microbial community. Addition of bicarbonate and formate was associated with a decrease of Methanosarcinales, but promotion of Methanobacteriales in all treatments. Thermodesulfovibrio was the major group in all the samples and Thermacetogenium dominated in the high bicarbonate treatments. The results indicated that CO2 from CDCS could be transformed to methane and the possibility of microbial CO2 conversion for enhanced microbial energy recovery in oil reservoirs.

  5. Formate-Dependent Microbial Conversion of CO2 and the Dominant Pathways of Methanogenesis in Production Water of High-temperature Oil Reservoirs Amended with Bicarbonate

    PubMed Central

    Yang, Guang-Chao; Zhou, Lei; Mbadinga, Serge M.; Liu, Jin-Feng; Yang, Shi-Zhong; Gu, Ji-Dong; Mu, Bo-Zhong

    2016-01-01

    CO2 sequestration in deep-subsurface formations including oil reservoirs is a potential measure to reduce the CO2 concentration in the atmosphere. However, the fate of the CO2 and the ecological influences in carbon dioxide capture and storage (CDCS) facilities is not understood clearly. In the current study, the fate of CO2 (in bicarbonate form; 0∼90 mM) with 10 mM of formate as electron donor and carbon source was investigated with high-temperature production water from oilfield in China. The isotope data showed that bicarbonate could be reduced to methane by methanogens and major pathway of methanogenesis could be syntrophic formate oxidation coupled with CO2 reduction and formate methanogenesis under the anaerobic conditions. The bicarbonate addition induced the shift of microbial community. Addition of bicarbonate and formate was associated with a decrease of Methanosarcinales, but promotion of Methanobacteriales in all treatments. Thermodesulfovibrio was the major group in all the samples and Thermacetogenium dominated in the high bicarbonate treatments. The results indicated that CO2 from CDCS could be transformed to methane and the possibility of microbial CO2 conversion for enhanced microbial energy recovery in oil reservoirs. PMID:27047478

  6. Microbial Stimulation and Succession following a Test Well Injection Simulating CO₂ Leakage into a Shallow Newark Basin Aquifer

    PubMed Central

    O’Mullan, Gregory; Dueker, M. Elias; Clauson, Kale; Yang, Qiang; Umemoto, Kelsey; Zakharova, Natalia; Matter, Juerg; Stute, Martin; Takahashi, Taro; Goldberg, David

    2015-01-01

    In addition to efforts aimed at reducing anthropogenic production of greenhouse gases, geological storage of CO2 is being explored as a strategy to reduce atmospheric greenhouse gas emission and mitigate climate change. Previous studies of the deep subsurface in North America have not fully considered the potential negative effects of CO2 leakage into shallow drinking water aquifers, especially from a microbiological perspective. A test well in the Newark Rift Basin was utilized in two field experiments to investigate patterns of microbial succession following injection of CO2-saturated water into an isolated aquifer interval, simulating a CO2 leakage scenario. A decrease in pH following injection of CO2 saturated aquifer water was accompanied by mobilization of trace elements (e.g. Fe and Mn), and increased bacterial cell concentrations in the recovered water. 16S ribosomal RNA gene sequence libraries from samples collected before and after the test well injection were compared to link variability in geochemistry to changes in aquifer microbiology. Significant changes in microbial composition, compared to background conditions, were found following the test well injections, including a decrease in Proteobacteria, and an increased presence of Firmicutes, Verrucomicrobia and microbial taxa often noted to be associated with iron and sulfate reduction. The concurrence of increased microbial cell concentrations and rapid microbial community succession indicate significant changes in aquifer microbial communities immediately following the experimental CO2 leakage event. Samples collected one year post-injection were similar in cell number to the original background condition and community composition, although not identical, began to revert toward the pre-injection condition, indicating microbial resilience following a leakage disturbance. This study provides a first glimpse into the in situ successional response of microbial communities to CO2 leakage after subsurface injection in the Newark Basin and the potential microbiological impact of CO2 leakage on drinking water resources. PMID:25635675

  7. Long-term operation of microbial electrosynthesis cell reducing CO2 to multi-carbon chemicals with a mixed culture avoiding methanogenesis.

    PubMed

    Bajracharya, Suman; Yuliasni, Rustiana; Vanbroekhoven, Karolien; Buisman, Cees J N; Strik, David P B T B; Pant, Deepak

    2017-02-01

    In microbial electrosynthesis (MES), CO 2 can be reduced preferably to multi-carbon chemicals by a biocathode-based process which uses electrochemically active bacteria as catalysts. A mixed anaerobic consortium from biological origin typically produces methane from CO 2 reduction which circumvents production of multi-carbon compounds. This study aimed to develop a stable and robust CO 2 reducing biocathode from a mixed culture inoculum avoiding the methane generation. An effective approach was demonstrated based on (i) an enrichment procedure involving inoculum pre-treatment and several culture transfers in H 2 :CO 2 media, (ii) a transfer from heterotrophic to autotrophic growth and (iii) a sequential batch operation. Biomass growth and gradual acclimation to CO 2 electro-reduction accomplished a maximum acetate production rate of 400mgL catholyte -1 d -1 at -1V (vs. Ag/AgCl). Methane was never detected in more than 300days of operation. Accumulation of acetate up to 7-10gL -1 was repeatedly attained by supplying (80:20) CO 2 :N 2 mixture at -0.9 to -1V (vs. Ag/AgCl). In addition, ethanol and butyrate were also produced from CO 2 reduction. Thus, a robust CO 2 reducing biocathode can be developed from a mixed culture avoiding methane generation by adopting the specific culture enrichment and operation procedures without the direct addition of chemical inhibitor. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. The biogeochemistry of microbial mats, stromatolites and the ancient biosphere

    NASA Technical Reports Server (NTRS)

    Desmarais, D. J.; Canfield, D. E.

    1991-01-01

    Stromatolites offer an unparalleled geologic record of early life, because they constitute the oldest and most abundant recognizable remains of microbial ecosystems. Microbial mats are living homologs of stromatolites; thus, the physiology of the microbiota as well as the processes which create those features of mats (e.g., biomarker organic compounds, elemental and stable isotopic compositions) which are preserved in the ancient record. Observations of the carbon isotopic composition (delta C-13) of stromatolites and microbial mats were made and are consistent with the hypothesis that atmospheric CO2 concentrations have declined by at least one to two orders of magnitude during the past 2.5 Ga. Whereas delta C-13 values of carbonate carbon average about 0 permil during both the early and mid-Proterozoic, the delta C-13 values of stromatolitic organic matter increase from an average of -35 between 2.0 and 2.6 Ga ago to an average of about -28 about 1.0 Ga ago. Modern microbial mats in hypersaline environments have delta C-13 values typically in the range of -5 to -9, relative to an inorganic bicarbonate source at 0 permil. Both microbial mats and pur cultures of cyanobacteria grown in waters in near equilibrium with current atmospheric CO2 levels exhibit minimal discrimination against C-13. In contrast, hot spring cyanobacterial mats or cyanobacterial cultures grown under higher CO2 levels exhibit substantially greater discrimination. If care is taken to compare modern mats with stromatolites from comparable environments, it might be possible to estimate ancient levels of atmospheric CO2. In modern microbial mats, a tight coupling exists between photosynthetic organic carbon production and subsequent carbon oxidation, mostly by sulfate reduction. The rate of one process fuels a high rate of the other, with much of the sulfate reduction occurring within the same depth interval as oxygenic photosynthesis. Other aspects of this study are presented.

  9. An Evaluation of Subsurface Microbial Activity Conditional to Subsurface Temperature, Porosity, and Permeability at North American Carbon Sequestration Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, B.; Mordensky, S.; Verba, Circe

    Several nations, including the United States, recognize global climate change as a force transforming the global ecosphere. Carbon dioxide (CO 2) is a greenhouse gas that contributes to the evolving climate. Reduction of atmospheric CO 2 levels is a goal for many nations and carbon sequestration which traps CO 2 in the Earth’s subsurface is one method to reduce atmospheric CO 2 levels. Among the variables that must be considered in developing this technology to a national scale is microbial activity. Microbial activity or biomass can change rock permeability, alter artificial seals around boreholes, and play a key role inmore » biogeochemistry and accordingly may determine how CO 2 is sequestered underground. Certain physical parameters of a reservoir found in literature (e.g., temperature, porosity, and permeability) may indicate whether a reservoir can host microbial communities. In order to estimate which subsurface formations may host microbes, this report examines the subsurface temperature, porosity, and permeability of underground rock formations that have high potential to be targeted for CO 2 sequestration. Of the 268 North American wellbore locations from the National Carbon Sequestration Database (NATCARB; National Energy and Technology Laboratory, 2015) and 35 sites from Nelson and Kibler (2003), 96 sequestration sites contain temperature data. Of these 96 sites, 36 sites have temperatures that would be favorable for microbial survival, 48 sites have mixed conditions for supporting microbial populations, and 11 sites would appear to be unfavorable to support microbial populations. Future studies of microbe viability would benefit from a larger database with more formation parameters (e.g. mineralogy, structure, and groundwater chemistry), which would help to increase understanding of where CO 2 sequestration could be most efficiently implemented.« less

  10. CoMn2O4-supported functionalized carbon nanotube: efficient catalyst for oxygen reduction in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Zhu, Nengwu; Lu, Yu; Liu, Bowen; Zhang, Taiping; Huang, Jianjian; Shi, Chaohong; Wu, Pingxiao; Dang, Zhi; Wang, Ruixin

    2017-10-01

    Recently, the synthesis of nonprecious metal catalysts with low cost and high oxygen reduction reaction (ORR) efficiency is paid much attention in field of microbial fuel cells (MFCs). Transition metal oxides (AMn2O4, A = Co、Ni, and Zn) supported on carbon materials such as graphene and carbon nanotube exhibit stronger electroconductivity and more active sites comparing to bare AMn2O4. Herein, we demonstrate an easy operating Hummer's method to functionalize carbon nanotubes (CNTs) with poly (diallyldimethylammonium chloride) in order to achieve effective loading of CoMn2O4 nanoparticles, named CoMn2O4/PDDA-CNTs (CMODT). After solvothermal treatment, nanoscale CoMn2O4 particles ( 80 nm) were successfully attached on the noncovalent functionalized carbon nanotube. Results show that such composites possess an outstanding electrocatalytic activity towards ORR comparable to the commercial Pt/C catalyst in neutral media. Electrochemical detections as cyclic voltammogram (CV) and rotating ring-disk electrode tests (RRDE) showed that the potential of oxygen reduction peak of 30% CMODT was at - 0.3 V (vs Ag/AgCl), onset potential was at + 0.4 V. Among them, 30% CMODT composite appeared the best candidate of oxygen reduction via 3.9 electron transfer pathway. When 30% CMODT composite was utilized as cathode catalyst in air cathode MFC, the reactor obtained 1020 mW m-2 of the highest maximum power density and 0.781 V of open circuit voltage. The excellent activity and low cost (0.2 g-1) of the hybrid materials demonstrate the potential of transition metal oxide/carbon as effective cathode ORR catalyst for microbial fuel cells. [Figure not available: see fulltext.

  11. Interactions between bacterial carbon monoxide and hydrogen consumption and plant development on recent volcanic deposits.

    PubMed

    King, Gary M; Weber, Carolyn F

    2008-02-01

    Patterns of microbial colonization and interactions between microbial processes and vascular plants on volcanic deposits have received little attention. Previous reports have shown that atmospheric CO and hydrogen contribute significantly to microbial metabolism on Kilauea volcano (Hawaii) deposits with varied ages and successional development. Relationships between CO oxidation and plant communities were not clear, however, since deposit age and vegetation status covaried. To determine plant-microbe interactions in deposits of uniform ages, CO and hydrogen dynamics have been assayed for unvegetated tephra on a 1959 deposit at Pu'u Puai (PP-bare), at the edge of tree 'islands' within the PP deposit (PP-edge) and within PP tree islands (PP-canopy). Similar assays have been conducted for vegetated and unvegetated sites on a 1969 Mauna Ulu (MU) lava flow. Net in situ atmospheric CO uptake was highest at PP-edge and PP-bare sites (2.2+/-0.5 and 1.3+/-0.1 mg CO m(-2) day(-1), respectively), and least for PP-canopy (-3.2+/-0.9 mg CO m(-2) day(-1), net emission). Respiration rates, microbial biomass and maximum CO uptake potential showed an opposing pattern. Comparisons of atmospheric CO uptake and CO(2) production rates indicate that CO contributes significantly to microbial metabolism in PP-bare and MU-unvegetated sites, but negligibly where vegetation is well developed. Nonetheless, maximum potential CO uptake rates indicate that CO oxidizer populations increase with increasing plant biomass and consume CO actively. Some of these CO oxidizers may contribute to elevated nitrogen fixation rates (acetylene reduction) measured within tree islands, and thus, support plant successional development.

  12. Gas-Flow Tailoring Fabrication of Graphene-like Co-Nx-C Nanosheet Supported Sub-10 nm PtCo Nanoalloys as Synergistic Catalyst for Air-Cathode Microbial Fuel Cells.

    PubMed

    Cao, Chun; Wei, Liling; Zhai, Qiran; Ci, Jiliang; Li, Weiwei; Wang, Gang; Shen, Jianquan

    2017-07-12

    In this work, we presented a novel, facile, and template-free strategy for fabricating graphene-like N-doped carbon as oxygen reduction catalyst in sustainable microbial fuel cells (MFCs) by using an ion-inducing and spontaneous gas-flow tailoring effect from a unique nitrogen-rich polymer gel precursor which has not been reported in materials science. Remarkably, by introduction of trace platinum- and cobalt- precursor in polymer gel, highly dispersed sub-10 nm PtCo nanoalloys can be in situ grown and anchored on graphene-like carbon. The as-prepared catalysts were investigated by a series of physical characterizations, electrochemical measurements, and microbial fuel cell tests. Interestingly, even with a low Pt content (5.13 wt %), the most active Co/N codoped carbon supported PtCo nanoalloys (Co-N-C/Pt) exhibited dramatically improved catalytic activity toward oxygen reduction reaction coupled with superior output power density (1008 ± 43 mW m -2 ) in MFCs, which was 29.40% higher than the state of the art Pt/C (20 wt %). Notability, the distinct catalytic activity of Co-N-C/Pt was attributed to the highly efficient synergistic catalytic effect of Co-Nx-C and PtCo nanoalloys. Therefore, Co-N-C/Pt should be a promising oxygen reduction catalyst for application in MFCs. Further, the novel strategy for graphene-like carbon also can be widely used in many other energy conversion and storage devices.

  13. Geochemical modeling of iron, sulfur, oxygen and carbon in a coastal plain aquifer

    NASA Astrophysics Data System (ADS)

    Brown, C. J.; Schoonen, M. A. A.; Candela, J. L.

    2000-11-01

    Fe(III) reduction in the Magothy aquifer of Long Island, NY, results in high dissolved-iron concentrations that degrade water quality. Geochemical modeling was used to constrain iron-related geochemical processes and redox zonation along a flow path. The observed increase in dissolved inorganic carbon is consistent with the oxidation of sedimentary organic matter coupled to the reduction of O 2 and SO 42- in the aerobic zone, and to the reduction of SO 42- in the anaerobic zone; estimated rates of CO 2 production through reduction of Fe(III) were relatively minor by comparison. The rates of CO 2 production calculated from dissolved inorganic carbon mass transfer (2.55×10 -4 to 48.6×10 -4 mmol l -1 yr-1) generally were comparable to the calculated rates of CO 2 production by the combined reduction of O 2, Fe(III) and SO 42- (1.31×10 -4 to 15×10 -4 mmol l -1 yr-1). The overall increase in SO 42- concentrations along the flow path, together with the results of mass-balance calculations, and variations in δ34S values along the flow path indicate that SO 42- loss through microbial reduction is exceeded by SO 42- gain through diffusion from sediments and through the oxidation of FeS 2. Geochemical and microbial data on cores indicate that Fe(III) oxyhydroxide coatings on sediment grains in local, organic carbon- and SO 42--rich zones have been depleted by microbial reduction and resulted in localized SO 42--reducing zones in which the formation of iron disulfides decreases dissolved iron concentrations. These localized zones of SO 42- reduction, which are important for assessing zones of low dissolved iron for water-supply development, could be overlooked by aquifer studies that rely only on groundwater data from well-water samples for geochemical modeling.

  14. Methanogenic pathways of coal-bed gas in the Powder River Basin, United States: The geologic factor

    USGS Publications Warehouse

    Flores, R.M.; Rice, C.A.; Stricker, G.D.; Warden, A.; Ellis, M.S.

    2008-01-01

    Coal-bed gas of the Tertiary Fort Union and Wasatch Formations in the Powder River Basin in Wyoming and Montana, U.S. was interpreted as microbial in origin by previous studies based on limited data on the gas and water composition and isotopes associated with the coal beds. To fully evaluate the microbial origin of the gas and mechanisms of methane generation, additional data for 165 gas and water samples from 7 different coal-bed methane-bearing coal-bed reservoirs were collected basinwide and correlated to the coal geology and stratigraphy. The C1/(C2 + C3) ratio and vitrinite reflectance of coal and organic shale permitted differentiation between microbial gas and transitional thermogenic gas in the central part of the basin. Analyses of methane ??13C and ??D, carbon dioxide ??13C, and water ??D values indicate gas was generated primarily from microbial CO2 reduction, but with significant gas generated by microbial methyl-type fermentation (aceticlastic) in some areas of the basin. Microbial CO2 reduction occurs basinwide, but is generally dominant in Paleocene Fort Union Formation coals in the central part of the basin, whereas microbial methyl-type fermentation is common along the northwest and east margins. Isotopically light methane ??13C is distributed along the basin margins where ??D is also depleted, indicating that both CO2-reduction and methyl-type fermentation pathways played major roles in gas generation, but gas from the latter pathway overprinted gas from the former pathway. More specifically, along the northwest basin margin gas generation by methyl-type fermentation may have been stimulated by late-stage infiltration of groundwater recharge from clinker areas, which flowed through highly fractured and faulted coal aquifers. Also, groundwater recharge controlled a change in gas composition in the shallow Eocene Wasatch Formation with the increase of nitrogen and decrease of methane composition of the coal-bed gas. Other geologic factors, such as burial, thermal and maturation history, lateral and vertical continuity, and coalification of the coal beds, also played a significant role in controlling methanogenic pathways and provided new perspectives on gas evolution and emplacement. The early-stage gas produced by CO2 reduction has mixed with transitional thermogenic gas in the deeper, central parts of the Powder River Basin to form 'old' gas, whereas along the basin margins the overprint of gas from methyl-type fermentation represents 'new' gas. Thus, a clear understanding of these geologic factors is necessary to relate the microbiological, biogeochemical, and hydrological processes involved in the generation of coal-bed gas.

  15. Potential of porous Co3O4 nanorods as cathode catalyst for oxygen reduction reaction in microbial fuel cells.

    PubMed

    Kumar, Ravinder; Singh, Lakhveer; Zularisam, A W; Hai, Faisal I

    2016-11-01

    This study aims to investigate the potential of porous Co3O4 nanorods as the cathode catalyst for oxygen reduction reaction (ORR) in aqueous air cathode microbial fuel cells (MFCs). The porous Co3O4 nanorods were synthesized by a facile and cost-effective hydrothermal method. Three different concentrations (0.5mg/cm(2), 1mg/cm(2), and 2mg/cm(2)) of Co3O4 nanorods coated on graphite electrodes were used to test its performance in MFCs. The results showed that the addition of porous Co3O4 nanorods enhanced the electrocatalytic activity and ORR kinetics significantly and the overall resistance of the system was greatly reduced. Moreover, the MFC with a higher concentration of the catalyst achieved a maximum power density of 503±16mW/m(2), which was approximately five times higher than the bare graphite electrode. The improved catalytic activity of the cathodes could be due to the porous properties of Co3O4 nanorods that provided the higher number of active sites for oxygen. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Complete cobalt recovery from lithium cobalt oxide in self-driven microbial fuel cell - Microbial electrolysis cell systems

    NASA Astrophysics Data System (ADS)

    Huang, Liping; Yao, Binglin; Wu, Dan; Quan, Xie

    2014-08-01

    Complete cobalt recovery from lithium cobalt oxide requires to firstly leach cobalt from particles LiCoO2 and then recover cobalt from aqueous Co(II). A self-driven microbial fuel cell (MFC)-microbial electrolysis cell (MEC) system can completely carry out these two processes, in which Co(II) is firstly released from particles LiCoO2 on the cathodes of MFCs and then reduced on the cathodes of MECs which are powered by the cobalt leaching MFCs. A cobalt leaching rate of 46 ± 2 mg L-1 h-1 with yield of 1.5 ± 0.1 g Co g-1 COD (MFCs) and a Co(II) reduction rate of 7 ± 0 mg L-1 h-1 with yield of 0.8 ± 0.0 g Co g-1 COD (MECs), as well as a overall system cobalt yield of 0.15 ± 0.01 g Co g-1 Co can be achieved in this self-driven MFC-MEC system. Coulombic efficiencies reach 41 ± 1% (anodic MFCs), 75 ± 0% (anodic MECs), 100 ± 2% (cathodic MFCs), and 29 ± 1% (cathodic MECs) whereas overall system efficiency averages 34 ± 1%. These results provide a new process of linking MFCs to MECs for complete recovery of cobalt and recycle of spent lithium ion batteries with no external energy consumption.

  17. Chloroethene Biodegradation Potential, ADOT/PF Peger Road Maintenance Facility, Fairbanks, Alaska

    USGS Publications Warehouse

    Bradley, Paul M.; Chapelle, Frances H.

    2004-01-01

    A series of 14C-radiotracer-based microcosm experiments were conducted to assess: 1) the extent, rate and products of microbial dechlorination of trichloroethene (TCE), cis-dichloroethene (cis-DCE) and vinyl chloride (VC) in sediments at the Peger Road site; 2) the effect of three electron donor amendments (molasses, shrimp and crab chitin, and 'Hydrogen Release Compound' (HRC)) on microbial degradation of TCE in three Peger Road sediments; and 3) the potential significance at the site of chloroethene biodegradation processes other than reductive dechlorination. In these experiments, TCE biodegradation yielded the reduced products, DCE and VC, and the oxidation product CO 2. Biodegradation of DCE and VC involved stoichiometric oxidation to CO 2. Both laboratory microcosm study and field redox assessment results indicated that the predominant terminal electron accepting process in Peger Road plume sediments under anoxic conditions was Mn/Fe-reduction. The rates of chloroethene biodegradation observed in Peger Road sediment microcosms under low temperature conditions (4?C) were within the range of those observed in sediments from temperate (20?C) aquifer systems. This result confirmed that biodegradation can be a significant mechanism for in situ contaminant remediation even in cold temperature aquifers. The fact that CO2 was the sole product of cis-DCE and VC biodegradation detected in Peger Road sediments indicated that a natural attenuation assessment based on reduced daughter product accumulation may significantly underestimate the potential for DCE and VC biodegradation at the Peger Road. Neither HRC nor molasses addition stimulated TCE reductive dechlorination. The fact that molasses and HRC amendment did stimulate Mn/Fe-reduction suggests that addition of these electron donors favored microbial Mn/Fe-reduction to the detriment of microbial TCE dechlorinating activity. In contrast, amendment of sediment microcosms with shrimp and crab chitin resulted in the establishment of mixed Mn/Fe-reducing, SO42--reducing and methanogenic conditions and enhanced TCE biodegradation in two of three Peger Road sediment treatments.

  18. Photodegradation at day, microbial decomposition at night - decomposition in arid lands

    NASA Astrophysics Data System (ADS)

    Gliksman, Daniel; Gruenzweig, Jose

    2014-05-01

    Our current knowledge of decomposition in dry seasons and its role in carbon turnover is fragmentary. So far, decomposition during dry seasons was mostly attributed to abiotic mechanisms, mainly photochemical and thermal degradation, while the contribution of microorganisms to the decay process was excluded. We asked whether microbial decomposition occurs during the dry season and explored its interaction with photochemical degradation under Mediterranean climate. We conducted a litter bag experiment with local plant litter and manipulated litter exposure to radiation using radiation filters. We found notable rates of CO2 fluxes from litter which were related to microbial activity mainly during night-time throughout the dry season. This activity was correlated with litter moisture content and high levels of air humidity and dew. Day-time CO2 fluxes were related to solar radiation, and radiation manipulation suggested photodegradation as the underlying mechanism. In addition, a decline in microbial activity was followed by a reduction in photodegradation-related CO2 fluxes. The levels of microbial decomposition and photodegradation in the dry season were likely the factors influencing carbon mineralization during the subsequent wet season. This study showed that microbial decomposition can be a dominant contributor to CO2 emissions and mass loss in the dry season and it suggests a regulating effect of microbial activity on photodegradation. Microbial decomposition is an important contributor to the dry season decomposition and impacts the annual litter turn-over rates in dry regions. Global warming may lead to reduced moisture availability and dew deposition, which may greatly influence not only microbial decomposition of plant litter, but also photodegradation.

  19. Pyrolyzed binuclear-cobalt-phthalocyanine as electrocatalyst for oxygen reduction reaction in microbial fuel cells.

    PubMed

    Li, Baitao; Wang, Mian; Zhou, Xiuxiu; Wang, Xiujun; Liu, Bingchuan; Li, Baikun

    2015-10-01

    A novel platinum (Pt)-free cathodic materials binuclear-cobalt-phthalocyanine (Bi-CoPc) pyrolyzed at different temperatures (300-1000 °C) were examined as the oxygen reduction reaction (ORR) catalysts, and compared with unpyrolyzed Bi-CoPc/C and Pt cathode in single chamber microbial fuel cells (SCMFCs). The results showed that the pyrolysis process increased the nitrogen abundance on Bi-CoPc and changed the nitrogen types. The Bi-CoPc pyrolyzed at 800 °C contained a significant amount of pyrrolic-N, and exhibited a high electrochemical catalytic activity. The power density and current density increased with temperature: Bi-CoPc/C-800 > Bi-CoPc/C-1000 > Bi-CoPc/C-600 > Bi-CoPc/C-300 > Bi-CoPc/C. The SCMFC with Bi-CoPc/C-800 cathode had a maximum power density of 604 mW m(-2). The low cost Bi-CoPc compounds developed in this study showed a potential in air-breathing MFC systems, with the proper pyrolysis temperature being chosen. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Effect of Start-Up Strategies and Electrode Materials on Carbon Dioxide Reduction on Biocathodes

    PubMed Central

    Singh, Abhijeet; Hermansson, Malte; Persson, Frank; Schnürer, Anna; Wilén, Britt-Marie; Modin, Oskar

    2017-01-01

    ABSTRACT The enrichment of CO2-reducing microbial biocathodes is challenging. Previous research has shown that a promising approach could be to first enrich bioanodes and then lower the potential so the electrodes are converted into biocathodes. However, the effect of such a transition on the microbial community on the electrode has not been studied. The goal of this study was thus to compare the start-up of biocathodes from preenriched anodes with direct start-up from bare electrodes and to investigate changes in microbial community composition. The effect of three electrode materials on the long-term performance of the biocathodes was also investigated. In this study, preenrichment of acetate-oxidizing bioanodes did not facilitate the start-up of biocathodes. It took about 170 days for the preenriched electrodes to generate substantial cathodic current, compared to 83 days for the bare electrodes. Graphite foil and carbon felt cathodes produced higher current at the beginning of the experiment than did graphite rods. However, all electrodes produced similar current densities at the end of the over 1-year-long study (2.5 A/m2). Methane was the only product detected during operation of the biocathodes. Acetate was the only product detected after inhibition of the methanogens. Microbial community analysis showed that Geobacter sp. dominated the bioanodes. On the biocathodes, the Geobacter sp. was succeeded by Methanobacterium spp., which made up more than 80% of the population. After inhibition of the methanogens, Acetobacterium sp. became dominant on the electrodes (40% relative abundance). The results suggested that bioelectrochemically generated H2 acted as an electron donor for CO2 reduction. IMPORTANCE In microbial electrochemical systems, living microorganisms function as catalysts for reactions on the anode and/or the cathode. There is a variety of potential applications, ranging from wastewater treatment and biogas generation to production of chemicals. Systems with biocathodes could be used to reduce CO2 to methane, acetate, or other high-value chemicals. The technique can be used to convert solar energy to chemicals. However, enriching biocathodes that are capable of CO2 reduction is more difficult and less studied than enriching bioanodes. The effect of different start-up strategies and electrode materials on the microbial communities that are enriched on biocathodes has not been studied. The purpose of this study was to investigate two different start-up strategies and three different electrode materials for start-up and long-term operation of biocathodes capable of reducing CO2 to valuable biochemicals. PMID:29222104

  1. Bioelectrochemical conversion of CO2 to chemicals: CO2 as a next generation feedstock for electricity-driven bioproduction in batch and continuous modes.

    PubMed

    Bajracharya, Suman; Vanbroekhoven, Karolien; Buisman, Cees J N; Strik, David P B T B; Pant, Deepak

    2017-09-21

    The recent concept of microbial electrosynthesis (MES) has evolved as an electricity-driven production technology for chemicals from low-value carbon dioxide (CO 2 ) using micro-organisms as biocatalysts. MES from CO 2 comprises bioelectrochemical reduction of CO 2 to multi-carbon organic compounds using the reducing equivalents produced at the electrically-polarized cathode. The use of CO 2 as a feedstock for chemicals is gaining much attention, since CO 2 is abundantly available and its use is independent of the food supply chain. MES based on CO 2 reduction produces acetate as a primary product. In order to elucidate the performance of the bioelectrochemical CO 2 reduction process using different operation modes (batch vs. continuous), an investigation was carried out using a MES system with a flow-through biocathode supplied with 20 : 80 (v/v) or 80 : 20 (v/v) CO 2  : N 2 gas. The highest acetate production rate of 149 mg L -1 d -1 was observed with a 3.1 V applied cell-voltage under batch mode. While running in continuous mode, high acetate production was achieved with a maximum rate of 100 mg L -1 d -1 . In the continuous mode, the acetate production was not sustained over long-term operation, likely due to insufficient microbial biocatalyst retention within the biocathode compartment (i.e. suspended micro-organisms were washed out of the system). Restarting batch mode operations resulted in a renewed production of acetate. This showed an apparent domination of suspended biocatalysts over the attached (biofilm forming) biocatalysts. Long term CO 2 reduction at the biocathode resulted in the accumulation of acetate, and more reduced compounds like ethanol and butyrate were also formed. Improvements in the production rate and different biomass retention strategies (e.g. selecting for biofilm forming micro-organisms) should be investigated to enable continuous biochemical production from CO 2 using MES. Certainly, other process optimizations will be required to establish MES as an innovative sustainable technology for manufacturing biochemicals from CO 2 as a next generation feedstock.

  2. Simultaneous microbial reduction of vanadium (V) and chromium (VI) by Shewanella loihica PV-4.

    PubMed

    Wang, Guangyu; Zhang, Baogang; Li, Shuang; Yang, Meng; Yin, Changcheng

    2017-03-01

    Toxic vanadium (V) and chromium (VI) often co-exist in wastewater from vanadium ore smelting and their reductions by bacterial strain Shewanella loihica PV-4 is realized simultaneously. After 27-d operation, 71.3% of V(V) and 91.2% of Cr(VI) were removed respectively, with citrate as organic carbon source. Enhancement of Cr(VI) bioreduction was observed with the suppressed V(V) reduction. V(IV) and Cr(III), the main reduction products, precipitated inside the organisms and attached on cell surfaces. Both membrane components containing cytochrome c and cytoplasmic fractions containing soluble proteins as well as NADH may contribute to these microbial reductions. Most Cr(VI) were reduced extracellularly and V(V) tended to be reduced through intracellular process, as revealed by mapping the microbial surface and a line scan across the cell, performed by scanning transmission electron microscopy. This study provides an efficient alternative for controlling combined pollution caused by these two metals based on microbial technology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Microbial production and oxidation of methane in deep subsurface

    NASA Astrophysics Data System (ADS)

    Kotelnikova, Svetlana

    2002-10-01

    The goal of this review is to summarize present studies on microbial production and oxidation of methane in the deep subterranean environments. Methane is a long-living gas causing the "greenhouse" effect in the planet's atmosphere. Earlier, the deep "organic carbon poor" subsurface was not considered as a source of "biogenic" methane. Evidence of active methanogenesis and presence of viable methanogens including autotrophic organisms were obtained for some subsurface environments including water-flooded oil-fields, deep sandy aquifers, deep sea hydrothermal vents, the deep sediments and granitic groundwater at depths of 10 to 2000 m below sea level. As a rule, the deep subterranean microbial populations dwell at more or less oligotrophic conditions. Molecular hydrogen has been found in a variety of subsurface environments, where its concentrations were significantly higher than in the tested surface aquatic environments. Chemolithoautotrophic microorganisms from deep aquifers that could grow on hydrogen and carbon dioxide can act as primary producers of organic carbon, initiating heterotrophic food chains in the deep subterranean environments independent of photosynthesis. "Biogenic" methane has been found all over the world. On the basis of documented occurrences, gases in reservoirs and older sediments are similar and have the isotopic character of methane derived from CO 2 reduction. Groundwater representing the methanogenic end member are characterized by a relative depletion of dissolved organic carbon (DOC) in combination with an enrichment in 13C in inorganic carbon, which is consistent with the preferential reduction of 12CO 2 by autotrophic methanogens or acetogens. The isotopic composition of methane formed via CO 2 reduction is controlled by the δ13C of the original CO 2 substrate. Literature data shows that CH 4 as heavy as -40‰ or -50‰ can be produced by the microbial reduction of isotopically heavy CO 2. Produced methane may be oxidized microbially to carbon dioxide. Microbial methane oxidation is a biogeochemical process that limits the release of methane, a greenhouse gas from anaerobic environments. Anaerobic methane oxidation plays an important role in marine sediments. Similar processes may take place in deep subsurface and thus fuel the deep microbial community. Organisms or consortia responsible for anaerobic methane oxidation have not yet been cultured, although diverse aerobic methanotrophs have been isolated from a variety of underground niches. The presence of aerobic methanotrophs in the anoxic subsurface remains to be explained. The presence of methane in the deep subsurface have been shown all over the world. The flux of gases between the deep subsurface and the atmosphere is driven by the concentration gradient from depth to the atmosphere. However, methane is consumed by methanotrophs on the way of its evolution in oxidized environments and is transformed to organic form, available for further microbial processing. When the impact of subsurface environments to global warming is estimated, it is necessary to take into account the activity of methane-producing Archaea and methane-oxidizing biofilters in groundwater. Microbial production and oxidation of methane is involved in the carbon cycle in the deep subsurface environments.

  4. Quantification of the effects of ocean acidification on sediment microbial communities in the environment: the importance of ecosystem approaches.

    PubMed

    Hassenrück, Christiane; Fink, Artur; Lichtschlag, Anna; Tegetmeyer, Halina E; de Beer, Dirk; Ramette, Alban

    2016-05-01

    To understand how ocean acidification (OA) influences sediment microbial communities, naturally CO2-rich sites are increasingly being used as OA analogues. However, the characterization of these naturally CO2-rich sites is often limited to OA-related variables, neglecting additional environmental variables that may confound OA effects. Here, we used an extensive array of sediment and bottom water parameters to evaluate pH effects on sediment microbial communities at hydrothermal CO2 seeps in Papua New Guinea. The geochemical composition of the sediment pore water showed variations in the hydrothermal signature at seep sites with comparable pH, allowing the identification of sites that may better represent future OA scenarios. At these sites, we detected a 60% shift in the microbial community composition compared with reference sites, mostly related to increases in Chloroflexi sequences. pH was among the factors significantly, yet not mainly, explaining changes in microbial community composition. pH variation may therefore often not be the primary cause of microbial changes when sampling is done along complex environmental gradients. Thus, we recommend an ecosystem approach when assessing OA effects on sediment microbial communities under natural conditions. This will enable a more reliable quantification of OA effects via a reduction of potential confounding effects. © FEMS 2016.

  5. Metal-Organic-Framework-Derived Dual Metal- and Nitrogen-Doped Carbon as Efficient and Robust Oxygen Reduction Reaction Catalysts for Microbial Fuel Cells.

    PubMed

    Tang, Haolin; Cai, Shichang; Xie, Shilei; Wang, Zhengbang; Tong, Yexiang; Pan, Mu; Lu, Xihong

    2016-02-01

    A new class of dual metal and N doped carbon catalysts with well-defined porous structure derived from metal-organic frameworks (MOFs) has been developed as a high-performance electrocatalyst for oxygen reduction reaction (ORR). Furthermore, the microbial fuel cell (MFC) device based on the as-prepared Ni/Co and N codoped carbon as air cathode catalyst achieves a maximum power density of 4335.6 mW m -2 and excellent durability.

  6. Accelerated azo dye degradation and concurrent hydrogen production in the single-chamber photocatalytic microbial electrolysis cell.

    PubMed

    Hou, Yanping; Zhang, Renduo; Yu, Zebin; Huang, Lirong; Liu, Yuxin; Zhou, Zili

    2017-01-01

    The single-chamber microbial electrolysis cell constructed with a TiO 2 -coated photocathode, termed photocatalytic microbial electrolysis cell (PMEC), was developed to accelerate methyl orange (MO) degradation and concurrent hydrogen (H 2 ) recovery under UV irradiation. Results showed that faster MO decolorization rates were achieved from the PMEC compared with those without UV irradiation or with open circuit. With increase of MO concentrations (acetate as co-substrate) from 50 to 300mg/L at an applied voltage of 0.8V, decolorization efficiencies decreased from 98% to 76% within 12h, and cyclic H 2 production declined from 113 to 68mL. As the possible mechanism of MO degradation, bioelectrochemical reduction, co-metabolism reduction, and photocatalysis were involved; and degradation intermediates (mainly sulfanilic acid and N,N-dimethylaniline) were further degraded by OH generated from photocatalysis. This makes MO mineralization be possible in the single-chamber PMEC. Hence, the PMEC is a promising system for dyeing wastewater treatment and simultaneous H 2 production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Coupled hydrology and biogeochemistry of Paleocene–Eocene coal beds, northern Gulf of Mexico

    USGS Publications Warehouse

    McIntosh, Jennifer C.; Warwick, Peter D.; Martini, Anna M.; Osborn, Stephen G.

    2010-01-01

    Thirty-six formation waters, gas, and microbial samples were collected and analyzed from natural gas and oil wells producing from the Paleocene to Eocene Wilcox Group coal beds and adjacent sandstones in north-central Louisiana, USA, to investigate the role hydrology plays on the generation and distribution of microbial methane. Major ion chemistry and Cl−Br relations of Wilcox Group formation waters suggest mixing of freshwater with halite-derived brines. High alkalinities (up to 47.8 meq/L), no detectable SO4, and elevated δ13C values of dissolved inorganic carbon (up to 20.5‰ Vienna Peedee belemnite [VPDB]) and CO2 (up to 17.67‰ VPDB) in the Wilcox Group coals and adjacent sandstones indicate the dominance of microbial methanogenesis. The δ13C and δD values of CH4, and carbon isotope fractionation of CO2 and CH4, suggest CO2 reduction is the major methanogenic pathway. Geochemical indicators for methanogenesis drop off significantly at chloride concentrations above ∼1.7 mol/L, suggesting that high salinities inhibit microbial activity at depths greater than ∼1.6 km. Formation waters in the Wilcox Group contain up to 1.6% modern carbon (A14C) to at least 1690 m depth; the covariance of δD values of co-produced H2O and CH4 indicate that the microbial methane was generated in situ with these Late Pleistocene or younger waters. The most enriched carbon isotope values for dissolved inorganic carbon (DIC) and CO2, and highest alkalinities, were detected in Wilcox Group sandstone reservoirs that were CO2 flooded in the 1980s for enhanced oil recovery, leading to the intriguing hypothesis that CO2 sequestration may actually enhance methanogenesis in organic-rich formations.

  8. The response of abyssal organisms to low pH conditions during a series of CO2-release experiments simulating deep-sea carbon sequestration

    NASA Astrophysics Data System (ADS)

    Barry, J. P.; Buck, K. R.; Lovera, C.; Brewer, P. G.; Seibel, B. A.; Drazen, J. C.; Tamburri, M. N.; Whaling, P. J.; Kuhnz, L.; Pane, E. F.

    2013-08-01

    The effects of low-pH, high-pCO2 conditions on deep-sea organisms were examined during four deep-sea CO2 release experiments simulating deep-ocean C sequestration by the direct injection of CO2 into the deep sea. We examined the survival of common deep-sea, benthic organisms (microbes; macrofauna, dominated by Polychaeta, Nematoda, Crustacea, Mollusca; megafauna, Echinodermata, Mollusca, Pisces) exposed to low-pH waters emanating as a dissolution plume from pools of liquid carbon dioxide released on the seabed during four abyssal CO2-release experiments. Microbial abundance in deep-sea sediments was unchanged in one experiment, but increased under environmental hypercapnia during another, where the microbial assemblage may have benefited indirectly from the negative impact of low-pH conditions on other taxa. Lower abyssal metazoans exhibited low survival rates near CO2 pools. No urchins or holothurians survived during 30-42 days of exposure to episodic, but severe environmental hypercapnia during one experiment (E1; pH reduced by as much as ca. 1.4 units). These large pH reductions also caused 75% mortality for the deep-sea amphipod, Haploops lodo, near CO2 pools. Survival under smaller pH reductions (ΔpH<0.4 units) in other experiments (E2, E3, E5) was higher for all taxa, including echinoderms. Gastropods, cephalopods, and fish were more tolerant than most other taxa. The gastropod Retimohnia sp. and octopus Benthoctopus sp. survived exposure to pH reductions that episodically reached -0.3 pH units. Ninety percent of abyssal zoarcids (Pachycara bulbiceps) survived exposure to pH changes reaching ca. -0.3 pH units during 30-42 day-long experiments.

  9. CO2 exposure at pressure impacts metabolism and stress responses in the model sulfate-reducing bacterium Desulfovibrio vulgaris strain Hildenborough

    PubMed Central

    Wilkins, Michael J.; Hoyt, David W.; Marshall, Matthew J.; Alderson, Paul A.; Plymale, Andrew E.; Markillie, L. Meng; Tucker, Abby E.; Walter, Eric D.; Linggi, Bryan E.; Dohnalkova, Alice C.; Taylor, Ron C.

    2014-01-01

    Geologic carbon dioxide (CO2) sequestration drives physical and geochemical changes in deep subsurface environments that impact indigenous microbial activities. The combined effects of pressurized CO2 on a model sulfate-reducing microorganism, Desulfovibrio vulgaris, have been assessed using a suite of genomic and kinetic measurements. Novel high-pressure NMR time-series measurements using 13C-lactate were used to track D. vulgaris metabolism. We identified cessation of respiration at CO2 pressures of 10 bar, 25 bar, 50 bar, and 80 bar. Concurrent experiments using N2 as the pressurizing phase had no negative effect on microbial respiration, as inferred from reduction of sulfate to sulfide. Complementary pressurized batch incubations and fluorescence microscopy measurements supported NMR observations, and indicated that non-respiring cells were mostly viable at 50 bar CO2 for at least 4 h, and at 80 bar CO2 for 2 h. The fraction of dead cells increased rapidly after 4 h at 80 bar CO2. Transcriptomic (RNA-Seq) measurements on mRNA transcripts from CO2-incubated biomass indicated that cells up-regulated the production of certain amino acids (leucine, isoleucine) following CO2 exposure at elevated pressures, likely as part of a general stress response. Evidence for other poorly understood stress responses were also identified within RNA-Seq data, suggesting that while pressurized CO2 severely limits the growth and respiration of D. vulgaris cells, biomass retains intact cell membranes at pressures up to 80 bar CO2. Together, these data show that geologic sequestration of CO2 may have significant impacts on rates of sulfate reduction in many deep subsurface environments where this metabolism is a key respiratory process. PMID:25309528

  10. CO2 exposure at pressure impacts metabolism and stress responses in the model sulfate-reducing bacterium Desulfovibrio vulgaris strain Hildenborough

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilkins, Michael J.; Hoyt, David W.; Marshall, Matthew J.

    Geologic carbon dioxide (CO2) sequestration drives physical and geochemical changes in deep subsurface environments that impact indigenous microbial activities. The combined effects of pressurized CO2 on a model sulfate-reducing microorganism, Desulfovibrio vulgaris, have been assessed using a suite of genomic and kinetic measurements. Novel high-pressure NMR time-series measurements using 13C-lactate were used to track D. vulgaris metabolism. We identified cessation of respiration at CO2 pressures of 10 bar, 25 bar, 50 bar, and 80 bar. Concurrent experiments using N2 as the pressurizing phase had no negative effect on microbial respiration, as inferred from reduction of sulfate to sulfide. Complementary pressurizedmore » batch incubations and fluorescence microscopy measurements supported NMR observations, and indicated that non-respiring cells were mostly viable at 50 bar CO2 for at least four hours, and at 80 bar CO2 for two hours. The fraction of dead cells increased rapidly after four hours at 80 bar CO2. Transcriptomic (RNA-Seq) measurements on mRNA transcripts from CO2-incubated biomass indicated that cells up-regulated the production of certain amino acids (leucine, isoleucine) following CO2 exposure at elevated pressures, likely as part of a general stress response. Evidence for other poorly understood stress responses were also identified within RNA-Seq data, suggesting that while pressurized CO2 severely limits the growth and respiration of D. vulgaris cells, biomass retains intact cell membranes at pressures up to 80 bar CO2. Together, these data show that geologic sequestration of CO2 may have significant impacts on rates of sulfate reduction in many deep subsurface environments where this metabolism is a key respiratory process.« less

  11. In vivo effect of carbon dioxide laser-skin resurfacing and mechanical abrasion on the skin's microbial flora in an animal model.

    PubMed

    Manolis, Evangelos N; Tsakris, Athanassios; Kaklamanos, Ioannis; Markogiannakis, Antonios; Siomos, Konstadinos

    2006-03-01

    Although beam-scanning carbon dioxide (CO2) lasers have provided a highly efficient tool for esthetic skin rejuvenation there has been no comprehensive animal studies looking into microbial skin changes following CO2 laser skin resurfacing. To evaluate the in vivo effects of CO2 laser skin resurfacing in an experimental rat model in comparison with mechanical abrasion on the skin microbial flora. Four separate cutaneous sections of the right dorsal surface of 10 Wistar rats were treated with a CO2 laser, operating at 18 W and delivering a radiant energy of 5.76 J/cm2, while mechanical abrasions of the skin were created on four sections of the left dorsal surface using a scalpel. Samples for culture and biopsies were obtained from the skin surfaces of the rats on day 1 of application of the CO2 laser or mechanical abrasion, as well as 10, 30, and 90 days after the procedure. The presence of four microorganisms (staphylococci, streptococci, diphtheroids, and yeasts) was evaluated as a microbe index for the skin flora, and colony counts were obtained using standard microbiological methods. Skin biopsy specimens, following CO2 laser treatment, initially showed epidermal and papillary dermal necrosis and later a re-epithelization of the epidermis as well as the generation of new collagen on the upper papillary dermis. The reduction in microbial counts on day 1 of the CO2 laser-inflicted wound was statistically significant for staphylococci and diphtheroids compared with the baseline counts (p=.004 and p<.001, respectively), and for staphylococci, diphtheroids, and yeasts compared with the scalpel-inflicted wound on the same day (p=0.029, p<.001, and p=.030, respectively). Skin resurfacing using CO2 lasers considerably reduces microbial counts of most microorganisms in comparison with either normal skin flora or a scalpel-inflicted wound. This might contribute to the positive clinical outcome of laser skin resurfacing.

  12. The effect of elevated atmospheric CO2 concentration on gross nitrogen and carbon dynamics in a permanent grassland: A field pulse-labeling study

    NASA Astrophysics Data System (ADS)

    Moser, Gerald; Gorenflo, André; Keidel, Lisa; Brenzinger, Kristof; Elias, Dafydd; McNamara, Niall; Maček, Irena; Vodnik, Dominik; Braker, Gesche; Schimmelpfennig, Sonja; Gerstner, Judith; Müller, Christoph

    2014-05-01

    To predict ecosystem reactions to elevated atmospheric CO2 (eCO2) it is essential to understand the interactions between plant carbon input, microbial community composition and activity and associated nutrient dynamics. Long-term observations (> 14 years) within the Giessen Free Air Carbon dioxide Enrichment (Giessen FACE) study on permanent grassland showed next to an enhanced biomass production an unexpected strong positive feedback effect on ecosystem respiration and nitrous oxide (N2O) production. The overall goal of this study is to understand the long-term effects of eCO2 and carbon input on microbial community composition and activity as well as the associated nitrogen dynamics, N2O production and plant N uptake in the Giessen FACE study on permanent grassland. A combination of 13CO2 pulse labelling with 15N tracing of 15NH4+ and 15NO3- was carried out in situ. Different fractions of soil organic matter (recalcitrant, labile SOM) and the various mineral N pools in the soil (NH4+, NO3-), gross N transformation rates, pool size dependent N2O and N2 emissions as well as N species dependent plant N uptake rates and the origin of the CO2 respiration have been quantified. Microbial analyses include exploring changes in the composition of microbial communities involved in the turnover of NH4+, NO3-, N2O and N2, i.e. ammonia oxidizing, denitrifying, and microbial communities involved in dissimilatory nitrate reduction to ammonia (DNRA). mRNA based analyses will be employed to comparably evaluate the long-term effects of eCO2 on the structure and abundance of these communities, while transcripts of these genes will be used to target the fractions of the communities which actively contribute to N transformations. We quantified the contribution of mycorrhizae on N2O emissions and observed the phenological development of the mycorrhizae after the labeling.

  13. Fate of Cd during microbial Fe(III) mineral reduction by a novel and Cd-tolerant Geobacter species.

    PubMed

    Muehe, E Marie; Obst, Martin; Hitchcock, Adam; Tyliszczak, Tolek; Behrens, Sebastian; Schröder, Christian; Byrne, James M; Michel, F Marc; Krämer, Ute; Kappler, Andreas

    2013-12-17

    Fe(III) (oxyhydr)oxides affect the mobility of contaminants in the environment by providing reactive surfaces for sorption. This includes the toxic metal cadmium (Cd), which prevails in agricultural soils and is taken up by crops. Fe(III)-reducing bacteria can mobilize such contaminants by Fe(III) mineral dissolution or immobilize them by sorption to or coprecipitation with secondary Fe minerals. To date, not much is known about the fate of Fe(III) mineral-associated Cd during microbial Fe(III) reduction. Here, we describe the isolation of a new Geobacter sp. strain Cd1 from a Cd-contaminated field site, where the strain accounts for 10(4) cells g(-1) dry soil. Strain Cd1 reduces the poorly crystalline Fe(III) oxyhydroxide ferrihydrite in the presence of at least up to 112 mg Cd L(-1). During initial microbial reduction of Cd-loaded ferrihydrite, sorbed Cd was mobilized. However, during continuous microbial Fe(III) reduction, Cd was immobilized by sorption to and/or coprecipitation within newly formed secondary minerals that contained Ca, Fe, and carbonate, implying the formation of an otavite-siderite-calcite (CdCO3-FeCO3-CaCO3) mixed mineral phase. Our data shows that microbially mediated turnover of Fe minerals affects the mobility of Cd in soils, potentially altering the dynamics of Cd uptake into food or phyto-remediating plants.

  14. Microbial processes and factors controlling their activities in alkaline lakes of the Mongolian plateau

    NASA Astrophysics Data System (ADS)

    Namsaraev, Zorigto B.; Zaitseva, Svetlana V.; Gorlenko, Vladimir M.; Kozyreva, Ludmila P.; Namsaraev, Bair B.

    2015-11-01

    A striking feature of the Mongolian plateau is the wide range of air temperatures during a year, -30 to 30°C. High summer temperatures, atmospheric weathering and the arid climate lead to formation of numerous alkaline soda lakes that are covered by ice during 6-7 months per year. During the study period, the lakes had pH values between 8.1 to 10.4 and salinity between 1.8 and 360 g/L. According to chemical composition, the lakes belong to sodium carbonate, sodium chloride-carbonate and sodium sulfate-carbonate types. This paper presents the data on the water chemical composition, results of the determination of the rates of microbial processes in microbial mats and sediments in the lakes studied, and the results of a Principal Component Analysis of environmental variables and microbial activity data. Temperature was the most important factor that influenced both chemical composition and microbial activity. pH and salinity are also important factors for the microbial processes. Dark CO2 fixation is impacted mostly by salinity and the chemical composition of the lake water. Total photosynthesis and sulfate-reduction are impacted mostly by pH. Photosynthesis is the dominant process of primary production, but the highest rate (386 mg C/(L•d)) determined in the lakes studied were 2-3 times lower than in microbial mats of lakes located in tropical zones. This can be explained by the relatively short warm period that lasts only 3-4 months per year. The highest measured rate of dark CO2 assimilation (59.8 mg C/(L•d)) was much lower than photosynthesis. The highest rate of sulfate reduction was 60 mg S/(L•d), while that of methanogenesis was 75.6 μL CN4/(L•d) in the alkaline lakes of Mongolian plateau. The rate of organic matter consumption during sulfate reduction was 3-4 orders of magnitude higher than that associated with methanogenesis.

  15. Temperature Effects on Microbial CH4 and CO2 Production in Permafrost-Affected Soils From the Barrow Environmental Observatory

    NASA Astrophysics Data System (ADS)

    Graham, D. E.; Roy Chowdhury, T.; Zheng, J.; Moon, J. W.; Yang, Z.; Gu, B.; Wullschleger, S. D.

    2015-12-01

    Warmer Arctic temperatures are increasing the annual soil thaw depth and prolonging the thaw season in Alaskan permafrost zones. This change exposes organic matter buried in the soils and permafrost to microbial degradation and mineralization to form CO2 and CH4. The proportion and fluxes of these greenhouse gases released into the atmosphere control the global feedback on warming. To improve representations of these biogeochemical processes in terrestrial ecosystem models we compared soil properties and microbial activities in core samples of polygonal tundra from the Barrow Environmental Observatory. Measurements of soil water potential through the soil column characterized water binding to the organic and mineral components. This suction combines with temperature to control freezing, gas diffusion and microbial activity. The temperature-dependence of CO2 and CH4 production from anoxic soil incubations at -2, +4 or +8 °C identified a significant lag in methanogenesis relative to CO2 production by anaerobic respiration and fermentation. Changes in the abundance of methanogen signature genes during incubations indicate that microbial population shifts caused by thawing and warmer temperatures drive changes in the mixtures of soil carbon degradation products. Comparisons of samples collected across the microtopographic features of ice-wedge polygons address the impacts of water saturation, iron reduction and organic matter content on CH4 production and oxidation. These combined measurements build process understanding that can be applied across scales to constrain key response factors in models that address Arctic soil warming.

  16. Efficient metal adsorption and microbial reduction from Rawal Lake wastewater using metal nanoparticle coated cotton.

    PubMed

    Ali, Attarad; Gul, Ayesha; Mannan, Abdul; Zia, Muhammad

    2018-05-17

    This study was designed to investigate removal of toxic metals and reduction of bacterial count from Rawal Lake wastewater with novel nanocomposite sorbents. Iron, zinc and silver oxide nanoparticles (NPs) were attached on cotton. The nanocomposites (iron NPs on cotton (FeCt), zinc NPs on cotton (ZnCt) and silver NPs on cotton (AgCt)) were characterized by FTIR, XRD and SEM, which showed successful adsorption of 10-30 nm size nanoparticles. Batch experiments were performed to determine the adsorption capacity of nanocomposite for metal removal. All the three adsorbents demonstrated 100% adsorption efficiency for Ag + , Co 2+ , Fe 3+ , Zn 2+ and Cu 2+ whereas less adsorption for Cd 2+ and Cr 3+ . The maximum adsorbance (qe) was exhibited by Co 2+ on ZnCt, FeCt and AgCt as 125.0, 111.1 and 100.0 mg g -1 , respectively. The efficiency of adsorbents for metal ions sorption was found as AgCt > ZnCt > FeCt while the order of adsorption for metals was observed as Fe 3+  > Co 2+  > Zn 2+  > Cu 2+  > Ag +  > Cr 3+  > Cd 2 + . The adsorption mechanism mostly follow Langmuir isotherm and pseudo-second order kinetic model. The maximum microbial reduction was exhibited by AgCt followed by ZnCt and FeCt. The microbes were further processed for staining and biochemical characteristics to evaluate resistance and sensitive microbes. The study concludes that the NPs doped on cotton can be effectively used for adsorption of heavy metals and reduction of microbial count from natural wastewater making it valuable for human consumption. In addition, the nanoparticles impregnated cotton can be efficiently used in water filtration plants. Copyright © 2018. Published by Elsevier B.V.

  17. Effect of long-term fertilization on humic redox mediators in multiple microbial redox reactions.

    PubMed

    Guo, Peng; Zhang, Chunfang; Wang, Yi; Yu, Xinwei; Zhang, Zhichao; Zhang, Dongdong

    2018-03-01

    This study investigated the effects of different long-term fertilizations on humic substances (HSs), humic acids (HAs) and humins, functioning as redox mediators for various microbial redox biotransformations, including 2,2',4,4',5,5'- hexachlorobiphenyl (PCB 153 ) dechlorination, dissimilatory iron reduction, and nitrate reduction, and their electron-mediating natures. The redox activity of HSs for various microbial redox metabolisms was substantially enhanced by long-term application of organic fertilizer (pig manure). As a redox mediator, only humin extracted from soils with organic fertilizer amendment (OF-HM) maintained microbial PCB 153 dechlorination activity (1.03 μM PCB 153 removal), and corresponding HA (OF-HA) most effectively enhanced iron reduction and nitrate reduction by Shewanella putrefaciens. Electrochemical analysis confirmed the enhancement of their electron transfer capacity and redox properties. Fourier transform infrared analysis showed that C=C and C=O bonds, and carboxylic or phenolic groups in HSs might be the redox functional groups affected by fertilization. This research enhances our understanding of the influence of anthropogenic fertility on the biogeochemical cycling of elements and in situ remediation ability in agroecosystems through microorganisms' metabolisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. The performance of spinel bulk-like oxygen-deficient CoGa2O4 as an air-cathode catalyst in microbial fuel cell

    NASA Astrophysics Data System (ADS)

    Liu, Di; Mo, Xiaoping; Li, Kexun; Liu, Yi; Wang, Junjie; Yang, Tingting

    2017-08-01

    Nano spinel bulk-like CoGa2O4 prepared via a facile hydrothermal method is used as a high efficient electrochemical catalyst in activated carbon (AC) air-cathode microbial fuel cell (MFC). The maximum power density of the modified MFC is 1911 ± 49 mW m-2, 147% higher than the MFC of untreated AC cathode. Transmission electron microscope (TEM) and X-ray diffraction (XRD) exhibit the morphology and crystal structure of CoGa2O4. Rotating disk electrode (RDE) confirms the four-electron pathway at the cathode during the oxygen reduction reaction (ORR). Thermogravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS) illustrate that the high rate oxygen vacancy exist in the CoGa2O4. The oxygen vacancy of CoGa2O4 plays an important role in catalytic activity. In a word, the prepared nano spinel bulk-like CoGa2O4 provides an alternative to the costly Pt in air-cathode for power output.

  19. CO2 leakage alters biogeochemical and ecological functions of submarine sands

    PubMed Central

    Molari, Massimiliano; Guilini, Katja; Lott, Christian; Weber, Miriam; de Beer, Dirk; Meyer, Stefanie; Ramette, Alban; Wegener, Gunter; Wenzhöfer, Frank; Martin, Daniel; Cibic, Tamara; De Vittor, Cinzia; Vanreusel, Ann; Boetius, Antje

    2018-01-01

    Subseabed CO2 storage is considered a future climate change mitigation technology. We investigated the ecological consequences of CO2 leakage for a marine benthic ecosystem. For the first time with a multidisciplinary integrated study, we tested hypotheses derived from a meta-analysis of previous experimental and in situ high-CO2 impact studies. For this, we compared ecological functions of naturally CO2-vented seafloor off the Mediterranean island Panarea (Tyrrhenian Sea, Italy) to those of nonvented sands, with a focus on biogeochemical processes and microbial and faunal community composition. High CO2 fluxes (up to 4 to 7 mol CO2 m−2 hour−1) dissolved all sedimentary carbonate, and comigration of silicate and iron led to local increases of microphytobenthos productivity (+450%) and standing stocks (+300%). Despite the higher food availability, faunal biomass (−80%) and trophic diversity were substantially lower compared to those at the reference site. Bacterial communities were also structurally and functionally affected, most notably in the composition of heterotrophs and microbial sulfate reduction rates (−90%). The observed ecological effects of CO2 leakage on submarine sands were reproduced with medium-term transplant experiments. This study assesses indicators of environmental impact by CO2 leakage and finds that community compositions and important ecological functions are permanently altered under high CO2. PMID:29441359

  20. CO2 leakage alters biogeochemical and ecological functions of submarine sands.

    PubMed

    Molari, Massimiliano; Guilini, Katja; Lott, Christian; Weber, Miriam; de Beer, Dirk; Meyer, Stefanie; Ramette, Alban; Wegener, Gunter; Wenzhöfer, Frank; Martin, Daniel; Cibic, Tamara; De Vittor, Cinzia; Vanreusel, Ann; Boetius, Antje

    2018-02-01

    Subseabed CO 2 storage is considered a future climate change mitigation technology. We investigated the ecological consequences of CO 2 leakage for a marine benthic ecosystem. For the first time with a multidisciplinary integrated study, we tested hypotheses derived from a meta-analysis of previous experimental and in situ high-CO 2 impact studies. For this, we compared ecological functions of naturally CO 2 -vented seafloor off the Mediterranean island Panarea (Tyrrhenian Sea, Italy) to those of nonvented sands, with a focus on biogeochemical processes and microbial and faunal community composition. High CO 2 fluxes (up to 4 to 7 mol CO 2 m -2 hour -1 ) dissolved all sedimentary carbonate, and comigration of silicate and iron led to local increases of microphytobenthos productivity (+450%) and standing stocks (+300%). Despite the higher food availability, faunal biomass (-80%) and trophic diversity were substantially lower compared to those at the reference site. Bacterial communities were also structurally and functionally affected, most notably in the composition of heterotrophs and microbial sulfate reduction rates (-90%). The observed ecological effects of CO 2 leakage on submarine sands were reproduced with medium-term transplant experiments. This study assesses indicators of environmental impact by CO 2 leakage and finds that community compositions and important ecological functions are permanently altered under high CO 2 .

  1. Saturated CO2 inhibits microbial processes in CO2-vented deep-sea sediments

    NASA Astrophysics Data System (ADS)

    de Beer, D.; Haeckel, M.; Neumann, J.; Wegener, G.; Inagaki, F.; Boetius, A.

    2013-02-01

    This study focused on biogeochemical processes and microbial activity in sediments of a natural deep-sea CO2 seepage area (Yonaguni Knoll IV hydrothermal system, Japan). The aim was to assess the influence of the geochemical conditions occurring in highly acidic and CO2 saturated sediments on sulphate reduction (SR) and anaerobic methane oxidation (AOM). Porewater chemistry was investigated from retrieved sediment cores and in situ by microsensor profiling. The sites sampled around a sediment-hosted hydrothermal CO2 vent were very heterogeneous in porewater chemistry, indicating a complex leakage pattern. Near the vents, droplets of liquid CO2 were observed to emanate from the sediments, and the pH reached approximately 4.5 in a sediment depth >6 cm, as determined in situ by microsensors. Methane and sulphate co-occurred in most sediment samples from the vicinity of the vents down to a depth of at least 3 m. However, SR and AOM were restricted to the upper 7-15 cm below seafloor, although neither temperature, low pH, nor the availability of methane and sulphate could be limiting microbial activity. We argue that the extremely high subsurface concentrations of dissolved CO2 (1000-1700 mM), through the ensuing high H2CO3 levels (approx. 1-2 mM) uncouples the proton-motive-force (PMF) and thus inhibits biological energy conservation by ATPase-driven phosphorylation. This limits life to the surface sediment horizons above the liquid CO2 phase, where less extreme conditions prevail. Our results may have to be taken into consideration in assessing the consequences of deep-sea CO2 sequestration on benthic element cycling and on the local ecosystem state.

  2. Salinity-gradient energy driven microbial electrosynthesis of value-added chemicals from CO2 reduction.

    PubMed

    Li, Xiaohu; Angelidaki, Irini; Zhang, Yifeng

    2018-06-14

    Biological conversion of CO 2 to value-added chemicals and biofuels has emerged as an attractive strategy to address the energy and environmental concerns caused by the over-reliance on fossil fuels. In this study, an innovative microbial reverse-electrodialysis electrolysis cell (MREC), which combines the strengths of reverse electrodialysis (RED) and microbial electrosynthesis technology platforms, was developed to achieve efficient CO 2 -to-value chemicals bioconversion by using the salinity gradient energy as driven energy sources. In the MREC, maximum acetate and ethanol concentrations of 477.5 ± 33.2 and 46.2 ± 8.2 mg L -1 were obtained at the cathode, catalyzed by Sporomusa ovata with production rates of 165.79 ± 11.52 and 25.11 ± 4.46 mmol m -2 d -1 , respectively. Electron balance analysis indicates that 94.4 ± 3.9% of the electrons derived from wastewater and salinity gradient were recovered in acetate and ethanol. This work for the first time proved the potential of innovative MREC configuration has the potential as an efficient technology platform for simultaneous CO 2 capture and electrosynthesis of valuable chemicals. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Integration of metagenomic and stable carbon isotope evidence reveals the extent and mechanisms of carbon dioxide fixation in high-temperature microbial communities

    DOE PAGES

    Jennings, Ryan de Montmollin; Moran, James J.; Jay, Zackary J.; ...

    2017-02-03

    Biological fixation of CO 2 is the primary mechanism of C reduction in natural systems, and provides a diverse suite of organic compounds utilized by chemoorganoheterotrophs. The extent and mechanisms of CO 2 fixation were evaluated across a comprehensive set of high-temperature, chemotrophic microbial communities in Yellowstone National Park by combining metagenomic and stable 13C isotope analyses. Fifteen geothermal sites representing three distinct habitat types (iron-oxide mats, anoxic sulfur sediments, and filamentous ‘streamer’ communities) were investigated. Genes of the 3-hydroxypropionate/4-hydroxybutyrate, dicarboxylate/4-hydroxybutyrate, and reverse tricarboxylic acid CO 2 fixation pathways were identified in assembled genome sequence corresponding to the predominant Crenarchaeotamore » and Aquificales observed across this habitat range. Stable 13C analyses of dissolved inorganic and organic C (DIC, DOC), and possible landscape C sources were used to interpret the 13C content of microbial community samples. Isotope mixing models showed that the minimum amounts of autotrophic C in microbial biomass were > 50 % in the majority of communities analyzed, but were also dependent on the amounts of heterotrophy and/or accumulation of landscape C. Furthermore, the significance of CO 2 as a C source in these communities provides a foundation for understanding metabolic linkages among autotrophs and heterotrophs, community assembly and succession, and the likely coevolution of deeply-branching thermophiles.« less

  4. Microbial Inactivation by Ultrasound Assisted Supercritical Fluids

    NASA Astrophysics Data System (ADS)

    Benedito, Jose; Ortuño, Carmen; Castillo-Zamudio, Rosa Isela; Mulet, Antonio

    A method combining supercritical carbon dioxide (SC-CO2) and high power ultrasound (HPU) has been developed and tested for microbial/enzyme inactivation purposes, at different process conditions for both liquid and solid matrices. In culture media, using only SC-CO2, the inactivation rate of E. coli and S. cerevisiae increased with pressure and temperature; and the total inactivation (7-8 log-cycles) was attained after 25 and 140 min of SC-CO2 (350 bar, 36 °C) treatment, respectively. Using SC-CO2+HPU, the time for the total inactivation of both microorganisms was reduced to only 1-2 min, at any condition selected. The SC-CO2+HPU inactivation of both microorganisms was slower in juices (avg. 4.9 min) than in culture media (avg. 1.5 min). In solid samples (chicken, turkey ham and dry-cured pork cured ham) treated with SC-CO2 and SC-CO2+HPU, the inactivation rate of E. coli increased with temperature. The application of HPU to the SC-CO2 treatments accelerated the inactivation rate of E. coli and that effect was more pronounced in treatments with isotonic solution surrounding the solid food samples. The application of HPU enhanced the SC-CO2 inactivation mechanisms of microorganisms, generating a vigorous agitation that facilitated the CO2 solubilization and the mass transfer process. The cavitation generated by HPU could damage the cell walls accelerating the extraction of vital constituents and the microbial death. Thus, using the combined technique, reasonable industrial processing times and mild process conditions could be used which could result into a cost reduction and lead to the minimization in the food nutritional and organoleptic changes.

  5. Evaluation on direct interspecies electron transfer in anaerobic sludge digestion of microbial electrolysis cell.

    PubMed

    Zhao, Zisheng; Zhang, Yaobin; Quan, Xie; Zhao, Huimin

    2016-01-01

    Increase of methanogenesis in methane-producing microbial electrolysis cells (MECs) is frequently believed as a result of cathodic reduction of CO2. Recent studies indicated that this electromethanogenesis only accounted for a little part of methane production during anaerobic sludge digestion. Instead, direct interspecies electron transfer (DIET) possibly plays an important role in methane production. In this study, anaerobic digestion of sludge were investigated in a single-chamber MEC reactor, a carbon-felt supplemented reactor and a common anaerobic reactor to evaluate the effects of DIET on the sludge digestion. The results showed that adding carbon felt into the reactor increased 12.9% of methane production and 17.2% of sludge reduction. Imposing a voltage on the carbon felt further improved the digestion. Current calculation showed that the cathodic reduction only contributed to 27.5% of increased methane production. Microbial analysis indicated that DIET played an important role in the anaerobic sludge digestion in the MEC. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Towards explaining excess CO2 production in wetlands - the roles of solid and dissolved organic matter as electron acceptors and of substrate quality

    NASA Astrophysics Data System (ADS)

    Knorr, Klaus-Holger; Gao, Chuanyu; Agethen, Svenja; Sander, Michael

    2017-04-01

    To understand carbon storage in water logged, anaerobic peatlands, factors controlling mineralization have been studied for decades. Temperature, substrate quality, water table position and the availability of electron acceptors for oxidation of organic carbon have been identified as major factors. However, many studies reported an excess carbon dioxide (CO2) production over methane (CH4) that cannot be explained by available electron acceptors, and peat soils did not reach strictly methanogenic conditions (i.e., a stoichiometric formation ratio of 1:1 of CO2 to CH4). It has been hypothesized that peat organic matter (OM) provides a previously unrecognized electron acceptor for microbial respiration, elevating CO2 to CH4 ratios. Microbial reduction of dissolved OM has been shown in the mid 90's, but only recently mediated electrochemical techniques opened the possibility to access stocks and changes in electron accepting capacities (EAC) of OM in dissolved and solid form. While it was shown that the EAC of OM follows redox cycles of microbial reduction and O2 reoxidation, changes in the EAC of OM were so far not related quantitatively to CO2 production. We therefore tested if CO2 production in anoxic peat incubations is balanced by the consumption of electron acceptors if EAC of OM is included. We set up anoxic incubations with peat and monitored production of CO2 and CH4, and changes in EAC of OM in the dissolved and solid phase over time. Interestingly, in all incubations, the EAC of dissolved OM was poorly related to CO2 and CH4 production. Instead, dissolved OM was rapidly reduced at the onset of the incubations and thereafter remained in reduced form. In contrast, the decrease in the EAC of particulate (i.e. non-dissolved) OM was closely linked to the observed production of non-methanogenic CO2. Thereby, the total EAC of the solid OM pool by far exceeded the EAC of the dissolved OM pool. Over the course of eight week incubations, measured decreases in the EAC of total NOM could explain 22-38 % of excess CO2 production in a weakly decomposed peat, 30-67 % of excess CO2 production in a well decomposed peat, and >100 % of excess CO2 production in a peat that had been exposed to oxygen for > 1 year. In this latter peat, EAC by OM explained 45-57 % of CO2 production, while reduction of sulfate available in this material readily explained the remaining fraction. Despite having considerable uncertainty arising from methodological challenges, the collected data demonstrated that accounting for the EACs of solid and dissolved OM may fully explain excess CO2 production. As we conservatively assumed a carbon oxidation state of zero for our budget calculations, a higher oxidation state of C in NOM as suggested by elemental analysis would result in electron equivalent budgets between EAC decreases and CO2 formation even closer to 100 %. A higher oxidation state of mineralized carbon seemed especially likely for weakly decomposed peat, as this material had higher concentrations of oxygen and showed the largest percentage of formed CO2 that could not be explained based on OM reduction.

  7. Quantitative Relationships between Photosynthetic, Nitrogen Fixing, and Fermentative H2 Metabolism in a Photosynthetic Microbial Mat

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori M.; Albert, Daniel B.; Bebout, Brad M.; Turk, Kendra A.; DesMarais, David J.

    2004-01-01

    The ultimate potential of any microbial ecosystem to contribute chemically to its environment - and therefore, to impact planetary biogeochemistry or to generate recognizable biosignatures - depends not only on the individual metabolic capabilities of constituent organisms, but also on how those capabilities are expressed through interactions with neighboring organisms. This is particularly important for microbial mats, which compress an extremely broad range of metabolic potential into a small and dynamic system. H2 participates in many of these metabolic processes, including the major elemental cycling processes of photosynthesis, nitrogen fixation, sulfate reduction, and fermentation, and may therefore serve as a mediator of microbial interactions within the mat system. Collectively, the requirements of energy, electron transfer, and biomass element stoichiometry suggest quantitative relationships among the major element cycling processes, as regards H2 metabolism We determined experimentally the major contributions to 32 cycling in hypersaline microbial mats from Baja California, Mexico, and compared them to predicted relationships. Fermentation under dark, anoxic conditions is quantitatively the most important mechanism of H2 production, consistent with expectations for non-heterocystous mats such as those under study. Up to 16% of reducing equivalents fixed by photosynthesis during the day may be released by this mechanism. The direct contribution of nitrogen fixation to H2 production is small in comparison, but this process may indirectly stimulate substantial H2 generation, by requiring higher rates of fermentation. Sulfate reduction, aerobic consumption, diffusive and ebulitive loss, and possibly H2-based photoreduction of CO2 serve as the principal H2 sinks. Collectively, these processes interact to create an orders-of-magnitude daily variation in H2 concentrations and fluxes, and thereby in the oxidation-reduction potential that is imposed on microbial processes occuring within the mat matrix.

  8. Subtask 1.22 - Microbial Cycling of CH4, CO2, and N2O in a Wetlands Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dingyi Ye; Bethany Kurz; Marc Kurz

    Soil microbial metabolic activities play an important role in determining CO{sub 2}, CH{sub 4}, and N{sub 2}O fluxes from terrestrial ecosystems. To verify and evaluate CO{sub 2} sequestration potential by wetland restoration in the Prairie Pothole Region (PPR), as well as to address concern over restoration effects on CH{sub 4} and N{sub 2}O emissions, laboratory and in situ microcosm studies on microbial cycling of CO{sub 2}, CH{sub 4}, and N{sub 2}O were initiated. In addition, to evaluate the feasibility of the use of remote sensing to detect soil gas flux from wetlands, a remote-sensing investigation was also conducted. Results ofmore » the laboratory microcosm study unequivocally proved that restoration of PPR wetlands does sequester atmospheric CO{sub 2}. Under the experimental conditions, the simulated restored wetlands did not promote neither N{sub 2}O nor CH{sub 4} fluxes. Application of ammonia enhanced both N{sub 2}O and CH{sub 4} emission, indicating that restoration of PPR wetlands may reduce both N{sub 2}O and CH{sub 4} emission by cutting N-fertilizer input. Enhancement of CO{sub 2} emission by the N-fertilizer was observed, and this observation revealed an overlooked fact that application of N-fertilizer may potentially increase CO{sub 2} emission. In addition, the CO{sub 2} results also demonstrate that wetland restoration sequesters atmospheric carbon not only by turning soil conditions from aerobic to anoxic, but also by cutting N-fertilizer input that may enhance CO{sub 2} flux. The investigation on microbial community structure and population dynamics showed that under the experimental conditions restoration of the PPR wetlands would not dramatically increase population sizes of those microorganisms that produce N{sub 2}O and CH{sub 4}. Results of the in situ study proved that restoration of the PPR wetland significantly reduced CO{sub 2} flux. Ammonia enhanced the greenhouse gas emission and linearly correlated to the CO{sub 2} flux within the experimental rate range (46-200 kg N ha{sup -1}). The results also clarified that the overall reduction in global warming potential (GWP) by the PPR wetland restoration was mainly contributed from reduction in CO{sub 2} flux. These results demonstrate that restoration of currently farmed PPR wetlands will significantly reduce the overall GWP budget. Remote sensing investigations indicate that while the 15-meter resolution of the imagery was sufficient to delineate multiple zones in larger wetlands, it was not sufficient for correlation with the ground-based gas flux measurement data, which were collected primarily for smaller wetland sites (<250 meters) in the areas evaluated by this task. To better evaluate the feasibility of using satellite imagery to quantify wetland gas flux, either higher-resolution satellite imagery or gas flux data from larger wetland sites is needed.« less

  9. Electron acceptor-based regulation of microbial greenhouse gas production from thawing permafrost

    NASA Astrophysics Data System (ADS)

    Bak, Ebbe; Jones, Eleanor; Yde, Jacob; Hodson, Andy; Mallon, Gunnar; Fisnter, Kai

    2017-04-01

    Permafrost contains about 35% of the global soil organic carbon (0-3 m depth). As a consequence of global warming, the active layer thickness is steadily increasing and its organic carbon is becoming available for degradation, causing a concomitant release of CO2 and CH4. The climate forcing feedbacks of permafrost thaw are determined by the rate of organic carbon degradation and to which degree it is released as CO2 or CH4. Methane is produced under anoxic conditions, but the factors that regulate its production are poorly constrained. In this study, we investigate how CH4 production is influenced by the presence of competing anaerobic processes with focus on the role of iron and sulfate reduction. We have collected permafrost cores to 2.2 meters depth from three different lowland sites in Adventdalen on Svalbard. From these cores, we have prepared anoxic batch incubation for each 25 cm depth interval and followed the production of CO2 and CH4 as well as the iron and sulfate reduction. This approach allows us to monitor the rate of the CO2 and CH4 production as well as to investigate the correlation between CH4 production and competing anaerobic respiration processes in the active layer as well in the permafrost. These investigations are accompanied by characterization of the carbon, iron and sulfate content in the soil and will be followed by characterization of the microbial community structure. The aim of this study is to get a better understanding of how the availability of sulfate and iron and the microbial community structure regulate the production of CO2 and CH4 in thawing permafrost, and to elucidate how the rate of the organic carbon degradation changes with depth in permafrost-affected soils. This study improves our understanding of climate feedback mechanisms operating during permafrost thaw.

  10. Bioremediation of diesel oil in a co-contaminated soil by bioaugmentation with a microbial formula tailored with native strains selected for heavy metals resistance.

    PubMed

    Alisi, Chiara; Musella, Rosario; Tasso, Flavia; Ubaldi, Carla; Manzo, Sonia; Cremisini, Carlo; Sprocati, Anna Rosa

    2009-04-01

    The aim of the work is to assess the feasibility of bioremediation of a soil, containing heavy metals and spiked with diesel oil (DO), through a bioaugmentation strategy based on the use of a microbial formula tailored with selected native strains. The soil originated from the metallurgic area of Bagnoli (Naples, Italy). The formula, named ENEA-LAM, combines ten bacterial strains selected for multiple resistance to heavy metals among the native microbial community. The biodegradation process of diesel oil was assessed in biometer flasks by monitoring the following parameters: DO composition by GC-MS, CO2 evolution rate, microbial load and composition of the community by T-RFLP, physiological profile in Biolog ECOplates and ecotoxicity of the system. The application of this microbial formula allowed to obtain, in the presence of heavy metals, the complete degradation of n-C(12-20), the total disappearance of phenantrene, a 60% reduction of isoprenoids and an overall reduction of about 75% of the total diesel hydrocarbons in 42 days. Concurrently with the increase of metabolic activity at community level and the microbial load, the gradual abatement of the ecotoxicity was observed. The T-RFLP analysis highlighted that most of the ENEA-LAM strains survived and some minor native strains, undetectable in the soil at the beginning of the experiment, developed. Such a bioaugmentation approach allows the newly established microbial community to strike a balance between the introduced and the naturally present microorganisms. The results indicate that the use of a tailored microbial formula may efficiently facilitate and speed up the bioremediation of matrices co-contaminated with hydrocarbons and heavy metals. The study represents the first step for the scale up of the system and should be verified at a larger scale. In this view, this bioaugmentation strategy may contribute to overcome a critical bottleneck of the bioremediation technology.

  11. Mineral Influence on Microbial Survival During Carbon Sequestration

    NASA Astrophysics Data System (ADS)

    Santillan, E. U.; Shanahan, T. M.; Wolfe, W. W.; Bennett, P.

    2012-12-01

    CO2 sequestered in a deep saline aquifer will perturb subsurface biogeochemistry by acidifying the groundwater and accelerating mineral diagenesis. Subsurface microbial communities heavily influence geochemistry through their metabolic processes, such as with dissimilatory iron reducing bacteria (DIRB). However, CO2 also acts as a sterilant and will perturb these communities. We investigated the role of mineralogy and its effect on the survival of microbes at high PCO2 conditions using the model DIRB Shewanella oneidensis MR-1. Batch cultures of Shewanella were grown to stationary phase and exposed to high PCO2 using modified Parr reactors. Cell viability was then determined by plating cultures after exposure. Results indicate that at low PCO2 (2 bar), growth and iron reduction are decreased and cell death occurs within 1 hour when exposed to CO2 pressures of 10 bar or greater. Further, fatty acid analysis indicates microbial lipid degradation with C18 fatty acids being the slowest lipids to degrade. When cultures were grown in the presence of rocks or minerals representative of the deep subsurface such as carbonates and silicates and exposed to 25 bar CO2, survival lasted beyond 2 hours. The most effective protecting substratum was quartz sandstone, with cultures surviving beyond 8 hours of CO2 exposure. Scanning electron microscope images reveal biofilm formation on the mineral surfaces with copious amounts of extracellular polymeric substances (EPS) present. EPS from these biofilms acts as a reactive barrier to the CO2, slowing the penetration of CO2 into cells and resulting in increased survival. When biofilm cultures were grown with Al and As to simulate the release of toxic metals from minerals such as feldspars and clays, survival time decreased, indicating mineralogy may also enhance microbial death. Biofilms were then grown on iron-coated quartz sand to determine conversely what influence biofilms may have on mineral dissolution during CO2 perturbation. Growth media was allowed to flow through a sand-packed column at a constant flow rate with pulses of liquid CO2 injected directly into the column. Preliminary data of dissolved iron measured from the effluent indicates that biofilm columns show a slight increase in dissolved iron concentrations before and after CO2 exposure in comparison to abiotic columns. These findings imply the important relationship between microbes and minerals during CO2 sequestration. The ability minerals have to contribute to the selection of microbes has important consequences to the survival of different microbial populations in the subsurface and the consequent biogeochemical changes that may happen.

  12. When CO2 kills: effects of magmatic CO2 flux on belowground biota at Mammoth Mountain, CA

    NASA Astrophysics Data System (ADS)

    McFarland, J.; Waldrop, M. P.; Mangan, M.

    2011-12-01

    The biomass, composition, and activity of the soil microbial community is tightly linked to the composition of the aboveground plant community. Microorganisms in aerobic surface soils, both free-living and plant-associated are largely structured by the availability of growth limiting carbon (C) substrates derived from plant inputs. When C availability declines following a catastrophic event such as the death of large swaths of trees, the number and composition of microorganisms in soil would be expected to decline and/or shift to unique microorganisms that have better survival strategies under starvation conditions. High concentrations of volcanic cold CO2 emanating from Mammoth Mountain near Horseshoe Lake on the southwestern edge of Long Valley Caldera, CA has resulted in a large kill zone of tree species, and associated soil microbial species. In July 2010, we assessed belowground microbial community structure in response to disturbance of the plant community along a gradient of soil CO2 concentrations grading from <0.6% (ambient forest) to >80% (no plant life). We employed a microbial community fingerprinting technique (automated ribosomal intergenic spacer analysis) to determine changes in overall community composition for three broad functional groups: fungi, bacteria, and archaea. To evaluate changes in ectomycorrhizal fungal associates along the CO2 gradient, we harvested root tips from lodgepole pine seedlings collected in unaffected forest as well as at the leading edge of colonization into the kill zone. We also measured soil C fractions (dissolved organic C, microbial biomass C, and non-extractable C) at 10 and 30 cm depth, as well as NH4+. Not surprisingly, our results indicate a precipitous decline in soil C, and microbial C with increasing soil CO2; phospholipid fatty acid analysis in conjunction with community fingerprinting indicate both a loss of fungal diversity as well as a dramatic decrease in biomass as one proceeds further into the kill zone. This observation was concomitant with a relative increase in bacterial and archaeal contributions to microbial community structure. Root tip analyses among lodgepole seedlings recolonizing the kill zone area demonstrated a significant reduction in the overall diversity of fungal symbionts, as well as a distinct shift in fungal assemblages. In particular, within elevated CO2 areas, we observed a high infection level for the ascomycetous fungi, Wilcoxina spp., which appear particularly well-adapted for colonization in disturbed environments. It remains unclear whether dominance by ascomycetes among seedlings in elevated CO2 areas represents a coordinated shift orchestrated by the plant in response to physiological stress, or whether these fungi are simply more opportunistic than their basdiomycetous counterparts. Our results demonstrate the impact of large-scale disturbances on plant-microbial interactions and belowground processes in previously forested ecosystems.

  13. Potential autotrophic metabolisms in ultra-basic reducing springs associated with present-day continental serpentinization

    NASA Astrophysics Data System (ADS)

    Morrill, P. L.; Miles, S.; Kohl, L.; Kavanagh, H.; Ziegler, S. E.; Brazelton, W. J.; Schrenk, M. O.

    2013-12-01

    Ultra-basic reducing springs at continental sites of serpentinization act as windows into the biogeochemistry of this subsurface exothermic environment rich in H2 and CH4 gases. Biogeochemical carbon transformations in these systems are of interest because serpentinization creates conditions that are amenable to abiotic and biotic reduction of carbon. However, little is known about the metabolic capabilities of the microorganisms that live in this environment. To determine the potential for autotrophic metabolisms, bicarbonate and CO substrate addition microcosm experiments were performed using water and sediment from an ultra-basic reducing spring in the Tablelands, Newfoundland, Canada, a site of present-day continental serpentinization. CO was consistently observed to be utilized in the Live but not the Killed controlled replicates amended with 10% 13C labelled CO and non-labelled (natural C isotope abundance) CO. In the Live CO microcosms with natural C isotope abundance, the residual CO became enriched in 13C (~10 ‰) consistent with a decrease in the fraction of CO remaining. In the Killed CO controlled replicates with natural C isotope abundance the CO showed little 13C enrichment (~1.3 ‰). The data from the Live CO microcosms were well described by a Rayleigh isotopic distillation model, yielding an isotopic enrichment factor for microbial CO uptake of 15.7 ×0.5 ‰ n=2. These data suggest that there was microbial CO utilization in these experiments. The sediment and water from the 13C-labelled and non-labelled, Live and Killed microcosms were extracted for phospholipid fatty acids (PLFAs) to determine changes in community composition between treatments as well as to determine the microbial uptake of CO. The difference in community composition between the Live and Killed microcosms was not readily resolvable based on PLFA distributions. Additionally, the microbial uptake of 13CO had minimal to no affect on the δ13C of the cellular biomarkers, with the exception of C16 saturated and a C16 monounsaturated PLFAs in one live microcosm which showed >2 ‰ and >10 ‰ enrichment, respectively, compared to the average δ13C values of the same PLFA in the 13C Killed controlled replicates. Therefore the uptake of CO had minimal effect on the overall biomass and community composition in the system. The 13C labelled bicarbonate anaerobic microcosm experiments showed little to no methane production. The methane detected in the 13C labelled Live experiments were not isotopically enriched in 13C compared to the CH4 in the labelled Killed controlled replicates. Therefore bicarbonate was not used as a substrate for microbial methanogenesis via the CO2 reduction pathway. These results are generally consistent with genomic and metagenomic data, which discovered the potential for a carbon fixation pathway involving carbon monoxide, but little evidence for archaea or methanogenesis in the ultra-basic springs in the Tablelands (Brazelton et al., 2012). Reference: Brazelton WJ, Nelson B, & Schrenk MO (2012) Frontiers in Microbiology 2:1-16.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jennings, Ryan de Montmollin; Moran, James J.; Jay, Zackary J.

    Biological fixation of CO 2 is the primary mechanism of C reduction in natural systems, and provides a diverse suite of organic compounds utilized by chemoorganoheterotrophs. The extent and mechanisms of CO 2 fixation were evaluated across a comprehensive set of high-temperature, chemotrophic microbial communities in Yellowstone National Park by combining metagenomic and stable 13C isotope analyses. Fifteen geothermal sites representing three distinct habitat types (iron-oxide mats, anoxic sulfur sediments, and filamentous ‘streamer’ communities) were investigated. Genes of the 3-hydroxypropionate/4-hydroxybutyrate, dicarboxylate/4-hydroxybutyrate, and reverse tricarboxylic acid CO 2 fixation pathways were identified in assembled genome sequence corresponding to the predominant Crenarchaeotamore » and Aquificales observed across this habitat range. Stable 13C analyses of dissolved inorganic and organic C (DIC, DOC), and possible landscape C sources were used to interpret the 13C content of microbial community samples. Isotope mixing models showed that the minimum amounts of autotrophic C in microbial biomass were > 50 % in the majority of communities analyzed, but were also dependent on the amounts of heterotrophy and/or accumulation of landscape C. Furthermore, the significance of CO 2 as a C source in these communities provides a foundation for understanding metabolic linkages among autotrophs and heterotrophs, community assembly and succession, and the likely coevolution of deeply-branching thermophiles.« less

  15. Real-time monitoring of subsurface microbial metabolism with graphite electrodes

    DOE PAGES

    Wardman, Colin; Nevin, Kelly P.; Lovley, Derek R.

    2014-11-21

    Monitoring in situ microbial activity in anoxic submerged soils and aquatic sediments can be labor intensive and technically difficult, especially in dynamic environments in which a record of changes in microbial activity over time is desired. Microbial fuel cell concepts have previously been adapted to detect changes in the availability of relatively high concentrations of organic compounds in waste water but, in most soils and sediments, rates of microbial activity are not linked to the concentrations of labile substrates, but rather to the turnover rates of the substrate pools with steady state concentrations in the nM-μ M range. In ordermore » to determine whether levels of current produced at a graphite anode would correspond to the rates of microbial metabolism in anoxic sediments, small graphite anodes were inserted in sediment cores and connected to graphite brush cathodes in the overlying water. Currents produced were compared with the rates of [2- 14C]-acetate metabolism. There was a direct correlation between current production and the rate that [2- 14C]-acetate was metabolized to 14CO 2 and 14CH 4 in sediments in which Fe(III) reduction, sulfate reduction, or methane production was the predominant terminal electron-accepting process. At comparable acetate turnover rates, currents were higher in the sediments in which sulfate-reduction or Fe(III) reduction predominated than in methanogenic sediments. This was attributed to reduced products (Fe(II), sulfide) produced at distance from the anode contributing to current production in addition to the current that was produced from microbial oxidation of organic substrates with electron transfer to the anode surface in all three sediment types. In conclusion, the results demonstrate that inexpensive graphite electrodes may provide a simple strategy for real-time monitoring of microbial activity in a diversity of anoxic soils and sediments.« less

  16. Microbial methane from in situ biodegradation of coal and shale: A review and reevaluation of hydrogen and carbon isotope signatures

    USGS Publications Warehouse

    Vinson, David S.; Blair, Neal E.; Martini, Anna M.; Larter, Steve; Orem, William H.; McIntosh, Jennifer C.

    2017-01-01

    Stable carbon and hydrogen isotope signatures of methane, water, and inorganic carbon are widely utilized in natural gas systems for distinguishing microbial and thermogenic methane and for delineating methanogenic pathways (acetoclastic, hydrogenotrophic, and/or methylotrophic methanogenesis). Recent studies of coal and shale gas systems have characterized in situ microbial communities and provided stable isotope data (δD-CH4, δD-H2O, δ13C-CH4, and δ13C-CO2) from a wider range of environments than available previously. Here we review the principal biogenic methane-yielding pathways in coal beds and shales and the isotope effects imparted on methane, document the uncertainties and inconsistencies in established isotopic fingerprinting techniques, and identify the knowledge gaps in understanding the subsurface processes that govern H and C isotope signatures of biogenic methane. We also compare established isotopic interpretations with recent microbial community characterization techniques, which reveal additional inconsistencies in the interpretation of microbial metabolic pathways in coal beds and shales. Collectively, the re-assessed data show that widely-utilized isotopic fingerprinting techniques neglect important complications in coal beds and shales.Isotopic fingerprinting techniques that combine δ13C-CH4 with δD-CH4 and/or δ13C-CO2have significant limitations: (1) The consistent ~ 160‰ offset between δD-H2O and δD-CH4 could imply that hydrogenotrophic methanogenesis is the dominant metabolic pathway in microbial gas systems. However, hydrogen isotopes can equilibrate between methane precursors and coexisting water, yielding a similar apparent H isotope signal as hydrogenotrophic methanogenesis, regardless of the actual methane formation pathway. (2) Non-methanogenic processes such as sulfate reduction, Fe oxide reduction, inputs of thermogenic methane, anaerobic methane oxidation, and/or formation water interaction can cause the apparent carbon isotope fractionation between δ13C-CH4 and δ13C-CO2(α13CCO2-CH4) to differ from the true methanogenic fractionation, complicating interpretation of methanogenic pathways. (3) Where little-fractionating non-methanogenic bacterial processes compete with highly-fractionating methanogenesis, the mass balance between CH4 and CO2 is affected. This has implications for δ13C values and provides an alternative interpretation for net C isotope signatures than solely the pathways used by active methanogens. (4) While most of the reviewed values of δD-H2O - δD-CH4 and α13CCO2-CH4 are apparently consistent with hydrogenotrophic methanogenesis as the dominant pathway in coal beds and shales, recent microbial community characterization techniques suggest a possible role for acetoclastic or methylotrophic methanogenesis in some basins.

  17. Biological versus mineralogical chromium reduction: potential for reoxidation by manganese oxide.

    PubMed

    Butler, Elizabeth C; Chen, Lixia; Hansel, Colleen M; Krumholz, Lee R; Elwood Madden, Andrew S; Lan, Ying

    2015-11-01

    Hexavalent chromium (Cr(vi), present predominantly as CrO4(2-) in water at neutral pH) is a common ground water pollutant, and reductive immobilization is a frequent remediation alternative. The Cr(iii) that forms upon microbial or abiotic reduction often co-precipitates with naturally present or added iron (Fe), and the stability of the resulting Fe-Cr precipitate is a function of its mineral properties. In this study, Fe-Cr solids were formed by microbial Cr(vi) reduction using Desulfovibrio vulgaris strain RCH1 in the presence of the Fe-bearing minerals hematite, aluminum substituted goethite (Al-goethite), and nontronite (NAu-2, Clay Minerals Society), or by abiotic Cr(vi) reduction by dithionite reduced NAu-2 or iron sulfide (FeS). The properties of the resulting Fe-Cr solids and their behavior upon exposure to the oxidant manganese (Mn) oxide (birnessite) differed significantly. In microcosms containing strain RCH1 and hematite or Al-goethite, there was significant initial loss of Cr(vi) in a pattern consistent with adsorption, and significant Cr(vi) was found in the resulting solids. The solid formed when Cr(vi) was reduced by FeS contained a high proportion of Cr(iii) and was poorly crystalline. In microcosms with strain RCH1 and hematite, Cr precipitates appeared to be concentrated in organic biofilms. Reaction between birnessite and the abiotically formed Cr(iii) solids led to production of significant dissolved Cr(vi) compared to the no-birnessite controls. This pattern was not observed in the solids generated by microbial Cr(vi) reduction, possibly due to re-reduction of any Cr(vi) generated upon oxidation by birnessite by active bacteria or microbial enzymes. The results of this study suggest that Fe-Cr precipitates formed in groundwater remediation may remain stable only in the presence of active anaerobic microbial reduction. If exposed to environmentally common Mn oxides such as birnessite in the absence of microbial activity, there is the potential for rapid (re)formation of dissolved Cr(vi) above regulatory levels.

  18. Comparative metagenomic analysis of the microbial communities in the surroundings of Iheya north and Iheya ridge hydrothermal fields reveals insights into the survival strategy of microorganisms in deep-sea environments

    NASA Astrophysics Data System (ADS)

    Wang, Hai-liang; Sun, Li

    2018-04-01

    In this study, metagenomic analysis was performed to investigate the taxonomic compositions and metabolic profiles of the microbial communities inhabiting the sediments in the surroundings of Iheya North and Iheya Ridge hydrothermal fields. The microbial communities in four different samples were found to be dominated by bacteria and, to a much lesser extent, archaea belonging to the phyla Proteobacteria, Actinobacteria, Planctomycetes, Firmicutes, Deinococcus-Thermus, and Nitrospirae, which play important roles in the cycling of carbon, nitrogen, and sulfur. All four microbial communities (i) contained chemoautotrophs and heterotrophs, the former probably fixed CO2 via various carbon fixation pathways, and the latter may degrade organic matters using nitrate and sulfate as electron acceptors, (ii) exhibited an abundance of DNA repair genes and bacterial sulfur oxidation mediated by reverse sulfate reduction, and (iii) harbored bacteria and archaea involved in anaerobic methane oxidation via intra-aerobic denitrification and reverse methanogenesis, which were found for the first time in hydrothermal areas. Furthermore, genes involved in DNA repair, reductive acetyl-CoA pathway, and ammonia metabolism were possibly affected by distance to the vent fields. These findings facilitate our understanding of the strategies of the microbial communities to adapt to the environments in deep sea areas associated with hydrothermal vents.

  19. Comparative Study of Effects of CO 2 Concentration and pH on Microbial Communities from a Saline Aquifer, a Depleted Oil Reservoir, and a Freshwater Aquifer

    DOE PAGES

    Gulliver, Djuna M.; Lowry, Gregory V.; Gregory, Kelvin B.

    2016-08-09

    Injected CO 2 from geologic carbon storage is expected to impact the microbial communities of proposed storage sites, such as depleted oil reservoirs and deep saline aquifers, as well as overlying freshwater aquifers at risk of receiving leaking CO 2. Microbial community change in these subsurface sites may affect injectivity of CO 2, permanence of stored CO 2, and shallow subsurface water quality. The effect of CO 2 concentration on the microbial communities in fluid collected from a depleted oil reservoir and a freshwater aquifer was examined at subsurface pressures and temperatures. The community was exposed to 0%, 1%, 10%,more » and 100% pCO 2 for 56 days. Bacterial community structure was analyzed through 16S rRNA gene clone libraries, and total bacterial abundance was estimated through quantitative polymerase chain reaction. Changes in the microbial community observed in the depleted oil reservoir samples and freshwater samples were compared to previous results from CO 2-exposed deep saline aquifer fluids. Overall, results suggest that CO 2 exposure to microbial communities will result in pH-dependent population change, and the CO 2-selected microbial communities will vary among sites. In conclusion, this is the first study to compare the response of multiple subsurface microbial communities at conditions expected during geologic carbon storage, increasing the understanding of environmental drivers for microbial community changes in CO 2-exposed environments.« less

  20. Comparative Study of Effects of CO 2 Concentration and pH on Microbial Communities from a Saline Aquifer, a Depleted Oil Reservoir, and a Freshwater Aquifer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulliver, Djuna M.; Lowry, Gregory V.; Gregory, Kelvin B.

    Injected CO 2 from geologic carbon storage is expected to impact the microbial communities of proposed storage sites, such as depleted oil reservoirs and deep saline aquifers, as well as overlying freshwater aquifers at risk of receiving leaking CO 2. Microbial community change in these subsurface sites may affect injectivity of CO 2, permanence of stored CO 2, and shallow subsurface water quality. The effect of CO 2 concentration on the microbial communities in fluid collected from a depleted oil reservoir and a freshwater aquifer was examined at subsurface pressures and temperatures. The community was exposed to 0%, 1%, 10%,more » and 100% pCO 2 for 56 days. Bacterial community structure was analyzed through 16S rRNA gene clone libraries, and total bacterial abundance was estimated through quantitative polymerase chain reaction. Changes in the microbial community observed in the depleted oil reservoir samples and freshwater samples were compared to previous results from CO 2-exposed deep saline aquifer fluids. Overall, results suggest that CO 2 exposure to microbial communities will result in pH-dependent population change, and the CO 2-selected microbial communities will vary among sites. In conclusion, this is the first study to compare the response of multiple subsurface microbial communities at conditions expected during geologic carbon storage, increasing the understanding of environmental drivers for microbial community changes in CO 2-exposed environments.« less

  1. Microbial mineralization of ethene under sulfate-reducing conditions

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.

    2002-01-01

    A limited investigation of the potential for anaerobic ethylene biodegradation under SO4-reducing conditions was performed. Microorganisms indigenous to a lake-bed sediment completely mineralized [1,2-14C] ethylene to 14CO2 when incubated under SO4-reducing conditions. Reliance on ethylene and/or ethane accumulation as a quantitative indicator of complete reductive dechlorination of chloroethylene contaminants may not be warranted. SO4 addition stimulated SO4 reduction as indicated by decreasing SO4 concentrations (> 40% decrease) and production of dissolved sulfide (880 ??M). SO4 amendment completely suppressed the production of ethane and methane. The concomitant absence of ethane and methane production under SO4-amended conditions was consistent with previous conclusions that reduction of ethylene to ethane occurred under methanogenic conditions. A lack of ethylene accumulation under SO4-reducing conditions may reflect insignificant reductive dechlorination of vinyl chloride or efficient anaerobic mineralization of ethylene to CO2.

  2. Fe-oxide grain coatings support bacterial Fe-reducing metabolisms in 1.7−2.0 km-deep subsurface quartz arenite sandstone reservoirs of the Illinois Basin (USA)

    PubMed Central

    Dong, Yiran; Sanford, Robert A.; Locke, Randall A.; Cann, Isaac K.; Mackie, Roderick I.; Fouke, Bruce W.

    2014-01-01

    The Cambrian-age Mt. Simon Sandstone, deeply buried within the Illinois Basin of the midcontinent of North America, contains quartz sand grains ubiquitously encrusted with iron-oxide cements and dissolved ferrous iron in pore-water. Although microbial iron reduction has previously been documented in the deep terrestrial subsurface, the potential for diagenetic mineral cementation to drive microbial activity has not been well studied. In this study, two subsurface formation water samples were collected at 1.72 and 2.02 km, respectively, from the Mt. Simon Sandstone in Decatur, Illinois. Low-diversity microbial communities were detected from both horizons and were dominated by Halanaerobiales of Phylum Firmicutes. Iron-reducing enrichment cultures fed with ferric citrate were successfully established using the formation water. Phylogenetic classification identified the enriched species to be related to Vulcanibacillus from the 1.72 km depth sample, while Orenia dominated the communities at 2.02 km of burial depth. Species-specific quantitative analyses of the enriched organisms in the microbial communities suggest that they are indigenous to the Mt. Simon Sandstone. Optimal iron reduction by the 1.72 km enrichment culture occurred at a temperature of 40°C (range 20–60°C) and a salinity of 25 parts per thousand (range 25–75 ppt). This culture also mediated fermentation and nitrate reduction. In contrast, the 2.02 km enrichment culture exclusively utilized hydrogen and pyruvate as the electron donors for iron reduction, tolerated a wider range of salinities (25–200 ppt), and exhibited only minimal nitrate- and sulfate-reduction. In addition, the 2.02 km depth community actively reduces the more crystalline ferric iron minerals goethite and hematite. The results suggest evolutionary adaptation of the autochthonous microbial communities to the Mt. Simon Sandstone and carries potentially important implications for future utilization of this reservoir for CO2 injection. PMID:25324834

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hornibrook, E.R.C.; Longstaffe, F.J.; Fyfe, W.S.

    The identity and distribution of substrates that support CH{sub 4} production in wetlands is poorly known at present. Organic compounds are the primary methanogenic precursor at all depths within anoxic wetland soils; however, the distribution of microbial processes by which these compounds are ultimately converted to CH{sub 4} is uncertain. Based on stable isotope measurements of CH{sub 4} and {Sigma}CO{sub 2} extracted from soil porewaters in two temperate zone wetlands, we present evidence that a systematic spatial distribution of microbial methanogenic pathways can exist in certain anoxic, organic-rich soils. CH{sub 4} production by the acetate fermentation pathway is favored inmore » the shallow subsurface. while methanogenesis from the reduction of CO{sub 2} with H{sub 2} becomes more predominant in older, less reactive peat at depth. This distribution can account for many of the reported CH{sub 4} emission characteristics of wetlands, in particular, their sensitivity to changes in primary productivity, temperature, and hydrology. These factors play an important role in controlling the short-term supply of labile substrates to fermentive methanogens in the shallow subsurface where the most intense CH{sub 4} production occurs. Predominance of the CO{sub 2}-reduction pathway at depth may help to explain reports of CH{sub 4} with a semifossil age in lower peat layers. 60 refs., 7 figs., 1 tab.« less

  4. Impact of CO 2 on the Evolution of Microbial Communities Exposed to Carbon Storage Conditions, Enhanced Oil Recovery, and CO 2 Leakage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulliver, Djuna M.; Gregory, Kelvin B.; Lowry, Gregory V.

    Geologic carbon storage (GCS) is a crucial part of a proposed mitigation strategy to reduce the anthropogenic carbon dioxide (CO 2) emissions to the atmosphere. During this process, CO 2 is injected as super critical carbon dioxide (SC-CO 2) in confined deep subsurface storage units, such as saline aquifers and depleted oil reservoirs. The deposition of vast amounts of CO 2 in subsurface geologic formations could unintentionally lead to CO 2 leakage into overlying freshwater aquifers. Introduction of CO 2 into these subsurface environments will greatly increase the CO 2 concentration and will create CO 2 concentration gradients that drivemore » changes in the microbial communities present. While it is expected that altered microbial communities will impact the biogeochemistry of the subsurface, there is no information available on how CO 2 gradients will impact these communities. The overarching goal of this project is to understand how CO 2 exposure will impact subsurface microbial communities at temperatures and pressures that are relevant to GCS and CO 2 leakage scenarios. To meet this goal, unfiltered, aqueous samples from a deep saline aquifer, a depleted oil reservoir, and a fresh water aquifer were exposed to varied concentrations of CO 2 at reservoir pressure and temperature. The microbial ecology of the samples was examined using molecular, DNA-based techniques. The results from these studies were also compared across the sites to determine any existing trends. Results reveal that increasing CO 2 leads to decreased DNA concentrations regardless of the site, suggesting that microbial processes will be significantly hindered or absent nearest the CO 2 injection/leakage plume where CO 2 concentrations are highest. At CO 2 exposures expected downgradient from the CO 2 plume, selected microorganisms emerged as dominant in the CO 2 exposed conditions. Results suggest that the altered microbial community was site specific and highly dependent on pH. The site-dependent results suggest a limited ability to predict the emerging dominant species for other CO 2-exposed environments. This study improves the understanding of how a subsurface microbial community may respond to conditions expected from GCS and CO 2 leakage. This is the first step for understanding how a CO 2-altered microbial community may impact injectivity, permanence of stored CO 2, and subsurface water quality. Future work with microbial communities from new subsurface sites would increase the current understanding of this project. Additionally, incorporation of metagenomic methods would increase understanding of potential microbial processes that may be prevalent in CO 2 exposed environments.« less

  5. Impact of CO 2 on the Evolution of Microbial Communities Exposed to Carbon Storage Conditions, Enhanced Oil Recovery, and CO 2 Leakage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulliver, Djuna; Gregory, Kelvin B.; Lowry, Gregorgy V.

    Geologic carbon storage (GCS) is a crucial part of a proposed mitigation strategy to reduce the anthropogenic carbon dioxide (CO 2) emissions to the atmosphere. During this process, CO 2 is injected as super critical carbon dioxide (SC-CO 2) in confined deep subsurface storage units, such as saline aquifers and depleted oil reservoirs. The deposition of vast amounts of CO 2 in subsurface geologic formations could unintentionally lead to CO 2 leakage into overlying freshwater aquifers. Introduction of CO 2 into these subsurface environments will greatly increase the CO 22 concentration and will create CO 2 concentration gradients that drivemore » changes in the microbial communities present. While it is expected that altered microbial communities will impact the biogeochemistry of the subsurface, there is no information available on how CO 2 gradients will impact these communities. The overarching goal of this project is to understand how CO 2 exposure will impact subsurface microbial communities at temperatures and pressures that are relevant to GCS and CO 2 leakage scenarios. To meet this goal, unfiltered, aqueous samples from a deep saline aquifer, a depleted oil reservoir, and a fresh water aquifer were exposed to varied concentrations of CO 2 at reservoir pressure and temperature. The microbial ecology of the samples was examined using molecular, DNA-based techniques. The results from these studies were also compared across the sites to determine any existing trends. Results reveal that increasing CO 2 leads to decreased DNA concentrations regardless of the site, suggesting that microbial processes will be significantly hindered or absent nearest the CO 2 injection/leakage plume where CO 2 concentrations are highest. At CO 2 exposures expected downgradient from the CO 2 plume, selected microorganisms emerged as dominant in the CO 2 exposed conditions. Results suggest that the altered microbial community was site specific and highly dependent on pH. The site-dependent results suggest a limited ability to predict the emerging dominant species for other CO 2 exposed environments. This study improves the understanding of how a subsurface microbial community may respond to conditions expected from GCS and CO 2 leakage. This is the first step for understanding how a CO 2-altered microbial community may impact injectivity, permanence of stored CO 2, and subsurface water quality. Future work with microbial communities from new subsurface sites would increase the current understanding of this project. Additionally, incorporation of metagenomic methods would increase understanding of potential microbial processes that may be prevalent in CO 2 exposed environments.« less

  6. Surface-oxidized cobalt phosphide used as high efficient electrocatalyst in activated carbon air-cathode microbial fuel cell

    NASA Astrophysics Data System (ADS)

    Yang, Tingting; Wang, Zhong; Li, Kexun; Liu, Yi; Liu, Di; Wang, Junjie

    2017-09-01

    Herein, we report a simplistic method to fabricate the surface-oxidized cobalt phosphide (CoP) nanocrystals (NCs), which is used as electrocatalyst for oxygen reduction reaction (ORR) in microbial fuel cell (MFC) for the first time. The corallite-like CoP NCs are successfully prepared by a hydrothermal reaction following a phosphating treatment in N2 atmosphere. When used as an ORR catalyst, cobalt phosphide shows comparable onset potential, inferior resistance, as well as a small Tafel slope with long-term stability in neutral media. The maximum power density of MFC embellished with 10% CoP reached 1914.4 ± 59.7 mW m-2, which is 108.5% higher than the control. The four-electron pathway, observed by the RDE, plays a crucial role in electrochemical catalytic activity. In addition, material characterizations indicate that the surface oxide layer (CoOx) around the metallic CoP core is important and beneficial for ORR. Accordingly, it can be expected that the as-synthesized CoP will be a promising candidate of the non-precious metal ORR electrocatalysts for electrochemical energy applications.

  7. Elucidation of rice rhizosphere metagenome in relation to methane and nitrogen metabolism under elevated carbon dioxide and temperature using whole genome metagenomic approach.

    PubMed

    Bhattacharyya, P; Roy, K S; Das, M; Ray, S; Balachandar, D; Karthikeyan, S; Nayak, A K; Mohapatra, T

    2016-01-15

    Carbon (C) and nitrogen (N) mineralization is one of the key processes of biogeochemical cycling in terrestrial ecosystem in general and rice ecology in particular. Rice rhizosphere is a rich niche of microbial diversity influenced by change in atmospheric temperature and concentration of carbon dioxide (CO2). Structural changes in microbial communities in rhizosphere influence the nutrient cycling. In the present study, the bacterial diversity and population dynamics were studied under ambient CO2 (a-CO2) and elevated CO2+temperature (e-CO2T) in lowland rice rhizosphere using whole genome metagenomic approach. The whole genome metagenomic sequence data of lowland rice exhibited the dominance of bacterial communities including Proteobacteria, Firmicutes, Acidobacteria, Actinobacteria and Planctomycetes. Interestingly, four genera related to methane production namely, Methanobacterium, Methanosphaera, Methanothermus and Methanothermococcus were absent in a-CO2 but noticed under e-CO2T. The acetoclastic pathway was found as the predominant pathway for methanogenesis, whereas, the serine pathway was found as the principal metabolic pathway for CH4 oxidation in lowland rice. The abundances of reads of enzymes in the acetoclastic methanogenesis pathway and serine pathways of methanotrophy were much higher in e-CO2T (328 and 182, respectively) as compared with a-CO2 (118 and 98, respectively). Rice rhizosphere showed higher structural diversities and functional activities in relation to N metabolism involving nitrogen fixation, assimilatory and dissimilatory nitrate reduction and denitrification under e-CO2T than that of a-CO2. Among the three pathways of N metabolism, dissimilarity pathways were predominant in lowland rice rhizosphere and more so under e-CO2T. Consequently, under e-CO2T, CH4 emission, microbial biomass nitrogen (MBN) and dehydrogenase activities were 45%, 20% and 35% higher than a-CO2, respectively. Holistically, a high bacterial diversity and abundances of C and N decomposing bacteria in lowland rice rhizosphere were found under e-CO2T, which could be explored further for their specific role in nutrient cycling, sustainable agriculture and environment management. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Potential for Microbial Degradation of cis-Dichloroethene and Vinyl Chloride in Streambed Sediment at the U.S. Department of Energy, Kansas City Plant, Missouri, 2008

    USGS Publications Warehouse

    Bradley, Paul M.

    2009-01-01

    A series of carbon-14 (14C) radiotracer-based microcosm experiments was conducted to assess the mechanisms and products of degradation of cis-dichloroethene (cis-DCE) and vinyl chloride (VC) in streambed sediments at the U.S. Department of Energy, Kansas City Plant in Kansas City, Missouri. The focus of the investigation was the potential for biotic and abiotic cis-DCE and VC degradation in surficial and underlying hyporheic sediment from the Blue River and its tributaries, Indian Creek and Boone Creek. Substantial degradation of [1,2-14C] cis-DCE and [1,2-14C] VC to 14C-carbon dioxide (14CO2) was observed in all viable surficial sediment microcosms prepared under oxic conditions. No significant accumulation of reductive dechlorination products was observed under these oxic incubation conditions. The results indicate that microbial mineralization processes involving direct oxidation or co-metabolic oxidation are the primary mechanisms of cis-DCE and VC biodegradation in oxic stream sediment at the Kansas City Plant. Substantial mineralization of [1,2-14C] VC also was observed in all viable surficial sediment microcosms incubated in the absence of detectable oxygen (dissolved oxygen concentrations less than 25 micrograms per liter). In general, the accumulation of mineralization products (14CO2 and 14C-methane [14CH4]) predominated with only trace-level detection of the reductive dechlorination product, 14C-ethene. In contrast, microbial degradation of [1,2-14C] cis-DCE by reductive dechlorination or mineralization was not significant in the absence of detectable oxygen. The potential for [1,2-14C] VC biodegradation also was significant in sediments from the deeper hyporheic zones under oxic conditions and in the absence of detectable oxygen. In this study, microbial degradation of [1,2-14C] cis-DCE was not significant in hyporheic sediment treatments under either oxygen condition. Taken together, the results indicate that microbial mineralization processes in streambed sediments at the Kansas City Plant can be an important component of cis-DCE and VC degradation under oxic conditions and of VC degradation even in the absence of detectable oxygen. These results demonstrate that an evaluation of the efficiency of in situ cis-DCE and VC biodegradation in streambed sediments, based solely on observed accumulations of reduced daughter products, may underestimate substantially the total extent of contaminant biodegradation and, thus, the potential importance of the hyporheic zone and streambed sediments as barriers to the discharge of contaminated groundwater.

  9. Interactions between microbial iron reduction and metal geochemistry: effect of redox cycling on transition metal speciation in iron bearing sediments.

    PubMed

    Cooper, D Craig; Picardal, Flynn F; Coby, Aaron J

    2006-03-15

    Microbial iron reduction is an important biogeochemical process that can affect metal geochemistry in sediments through direct and indirect mechanisms. With respectto Fe(III) (hydr)oxides bearing sorbed divalent metals, recent reports have indicated that (1) microbial reduction of goethite/ferrihydrite mixtures preferentially removes ferrihydrite, (2) this process can incorporate previously sorbed Zn(II) into an authigenic crystalline phase that is insoluble in 0.5 M HCl, (3) this new phase is probably goethite, and (4) the presence of nonreducible minerals can inhibit this transformation. This study demonstrates that a range of sorbed transition metals can be selectively sequestered into a 0.5 M HCl insoluble phase and that the process can be stimulated through sequential steps of microbial iron reduction and air oxidation. Microbial reduction experiments with divalent Cd, Co, Mn, Ni, Pb, and Zn indicate that all metals save Mn experienced some sequestration, with the degree of metal incorporation into the 0.5 M HCl insoluble phase correlating positively with crystalline ionic radius at coordination number = 6. Redox cycling experiments with Zn adsorbed to synthetic goethite/ferrihydrite or iron-bearing natural sediments indicate that redox cycling from iron reducing to iron oxidizing conditions sequesters more Zn within authigenic minerals than microbial iron reduction alone. In addition, the process is more effective in goethite/ferrihydrite mixtures than in iron-bearing natural sediments. Microbial reduction alone resulted in a -3x increase in 0.5 M HCl insoluble Zn and increased aqueous Zn (Zn-aq) in goethite/ferrihydrite, but did not significantly affect Zn speciation in natural sediments. Redox cycling enhanced the Zn sequestration by approximately 12% in both goethite/ferrihydrite and natural sediments and reduced Zn-aq to levels equal to the uninoculated control in goethite/ferrihydrite and less than the uninoculated control in natural sediments. These data suggest that in situ redox cycling may serve as an effective method for

  10. Cyanobacterial mats: Microanalysis of community metabolism

    NASA Technical Reports Server (NTRS)

    Cohen, Y.; Bermudes, D.; Fischer, U.; Haddad, R.; Prufert, L.; Scheulderman-Suylen, T.; Shaw, T.

    1985-01-01

    The microbial communities in two sites were studied using several approaches: (1) light microscopy; (2) the measurement of microprofiles of oxygen and sulfide at the surface of the microbial mat; (3) the study of diurnal variation of oxygen and sulfides; (4) in situ measurement of photosynthesis and sulfate reduction and study of the coupling of these two processes; (5) measurement of glutathione in the upper layers of the microbial mat as a possible oxygen quencher; (6) measurement of reduced iron as a possible intermediate electron donor along the established redoxcline in the mats; (7) measurement of dissolved phosphate as an indicator of processes of break down of organic matter in these systems; and (8) measurement of carbon dioxide in the interstitial water and its delta C-13 in an attempt to understand the flow of CO2 through the systems. Microbial processes of primary production and initial degradation at the most active zone of the microbial mat were analyzed.

  11. Microbial growth under a high-pressure CO2 environment

    NASA Astrophysics Data System (ADS)

    Thompson, J. R.; Hernandez, H. H.

    2009-12-01

    Carbon capture and storage (CCS) of CO2 has the potential to significantly reduce the emission of greenhouse gasses associated with fossil fuel combustion. The largest potential for storing captured CO2 in the United Sates is in deep geologic saline formations. Currently, little is known about the effects of CO2 storage on biologically active microbial communities found in the deep earth biosphere. Therefore, to investigate how deep earth microbial communities will be affected by the storage of CO2, we have built a high-pressure microbial growth system in which microbial samples are subjected to a supercritical CO2 (scCO2) environment. Recently we have isolated a microbial consortium that is capable of growth and extracellular matrix production in nutrient media under a supercritical CO2 headspace. This consortium was cultivated from hydrocarbon residues associated with saline formation waters and includes members of the gram-positive Bacillus genus. The cultivation of actively growing cells in an environment containing scCO2 is unexpected based on previous experimental evidence of microbial sterilization attributed to the acidic, desiccating, and solvent-like properties of scCO2. Such microbial consortia have potential for development as (i) biofilm barriers for geological carbon-dioxide sequestration, and as (ii) agents of biocatalysis in environmentally-friendly supercritical (sc) CO2 solvent systems. The discovery that microbes can remain biologically active, and grow, in these environments opens new frontiers for the use of self-regenerating biological systems in engineering applications.

  12. Molybdenum-Based Diazotrophy in a Sphagnum Peatland in Northern Minnesota

    PubMed Central

    Warren, Melissa J.; Lin, Xueju; Gaby, John C.; Kretz, Cecilia B.; Kolton, Max; Morton, Peter L.; Pett-Ridge, Jennifer; Weston, David J.; Schadt, Christopher W.; Kostka, Joel E.

    2017-01-01

    ABSTRACT Microbial N2 fixation (diazotrophy) represents an important nitrogen source to oligotrophic peatland ecosystems, which are important sinks for atmospheric CO2 and are susceptible to the changing climate. The objectives of this study were (i) to determine the active microbial group and type of nitrogenase mediating diazotrophy in an ombrotrophic Sphagnum-dominated peat bog (the S1 peat bog, Marcell Experimental Forest, Minnesota, USA); and (ii) to determine the effect of environmental parameters (light, O2, CO2, and CH4) on potential rates of diazotrophy measured by acetylene (C2H2) reduction and 15N2 incorporation. A molecular analysis of metabolically active microbial communities suggested that diazotrophy in surface peat was primarily mediated by Alphaproteobacteria (Bradyrhizobiaceae and Beijerinckiaceae). Despite higher concentrations of dissolved vanadium ([V] 11 nM) than molybdenum ([Mo] 3 nM) in surface peat, a combination of metagenomic, amplicon sequencing, and activity measurements indicated that Mo-containing nitrogenases dominate over the V-containing form. Acetylene reduction was only detected in surface peat exposed to light, with the highest rates observed in peat collected from hollows with the highest water contents. Incorporation of 15N2 was suppressed 90% by O2 and 55% by C2H2 and was unaffected by CH4 and CO2 amendments. These results suggest that peatland diazotrophy is mediated by a combination of C2H2-sensitive and C2H2-insensitive microbes that are more active at low concentrations of O2 and show similar activity at high and low concentrations of CH4. IMPORTANCE Previous studies indicate that diazotrophy provides an important nitrogen source and is linked to methanotrophy in Sphagnum-dominated peatlands. However, the environmental controls and enzymatic pathways of peatland diazotrophy, as well as the metabolically active microbial populations that catalyze this process, remain in question. Our findings indicate that oxygen levels and photosynthetic activity override low nutrient availability in limiting diazotrophy and that members of the Alphaproteobacteria (Rhizobiales) catalyze this process at the bog surface using the molybdenum-based form of the nitrogenase enzyme. PMID:28667112

  13. Molybdenum-based diazotrophy in a Sphagnum peatland in northern Minnesota.

    PubMed

    Warren, Melissa J; Lin, Xueju; Gaby, John C; Kretz, Cecilia B; Kolton, Max; Morton, Peter L; Pett-Ridge, Jennifer; Weston, David J; Schadt, Christopher W; Kostka, Joel E; Glass, Jennifer B

    2017-06-30

    Microbial N 2 fixation (diazotrophy) represents an important nitrogen source to oligotrophic peatland ecosystems, which are important sinks for atmospheric CO 2 and susceptible to changing climate. The objectives of this study were: (i) to determine the active microbial group and type of nitrogenase mediating diazotrophy in a ombrotrophic Sphagnum -dominated peat bog (the S1 peat bog, Marcell Experimental Forest, Minnesota, USA); and (ii) to determine the effect of environmental parameters (light, O 2 , CO 2 , CH 4 ) on potential rates of diazotrophy measured by acetylene (C 2 H 2 ) reduction and 15 N 2 incorporation. Molecular analysis of metabolically active microbial communities suggested that diazotrophy in surface peat was primarily mediated by Alphaproteobacteria ( Bradyrhizobiaceae and Beijerinckiaceae ). Despite higher dissolved vanadium (V; 11 nM) than molybdenum (Mo; 3 nM) in surface peat, a combination of metagenomic, amplicon sequencing and activity measurements indicated that Mo-containing nitrogenases dominate over the V-containing form. Acetylene reduction was only detected in surface peat exposed to light, with the highest rates observed in peat collected from hollows with the highest water content. Incorporation of 15 N 2 was suppressed 90% by O 2 and 55% by C 2 H 2 , and was unaffected by CH 4 and CO 2 amendments. These results suggest that peatland diazotrophy is mediated by a combination of C 2 H 2 -sensitive and C 2 H 2 -insensitive microbes that are more active at low O 2 and show similar activity at high and low CH 4 Importance Previous studies indicate that diazotrophy provides an important nitrogen source and is linked to methanotrophy in Sphagnum -dominated peatlands. However, the environmental controls and enzymatic pathways of peatland diazotrophy, as well as the metabolically active microbial populations that catalyze this process remain in question. Our findings indicate that oxygen levels and photosynthetic activity override low nutrient availability in limiting diazotrophy, and that members of the Alphaproteobacteria ( Rhizobiales ) catalyze this process at the bog surface using the molybdenum-based form of the nitrogenase enzyme. Copyright © 2017 American Society for Microbiology.

  14. Interactive effects of wildfire and permafrost on microbial communities and soil processes in an Alaskan black spruce forest

    USGS Publications Warehouse

    Waldrop, M.P.; Harden, J.W.

    2008-01-01

    Boreal forests contain significant quantities of soil carbon that may be oxidized to CO2 given future increases in climate warming and wildfire behavior. At the ecosystem scale, decomposition and heterotrophic respiration are strongly controlled by temperature and moisture, but we questioned whether changes in microbial biomass, activity, or community structure induced by fire might also affect these processes. We particularly wanted to understand whether postfire reductions in microbial biomass could affect rates of decomposition. Additionally, we compared the short-term effects of wildfire to the long-term effects of climate warming and permafrost decline. We compared soil microbial communities between control and recently burned soils that were located in areas with and without permafrost near Delta Junction, AK. In addition to soil physical variables, we quantified changes in microbial biomass, fungal biomass, fungal community composition, and C cycling processes (phenol oxidase enzyme activity, lignin decomposition, and microbial respiration). Five years following fire, organic surface horizons had lower microbial biomass, fungal biomass, and dissolved organic carbon (DOC) concentrations compared with control soils. Reductions in soil fungi were associated with reductions in phenol oxidase activity and lignin decomposition. Effects of wildfire on microbial biomass and activity in the mineral soil were minor. Microbial community composition was affected by wildfire, but the effect was greater in nonpermafrost soils. Although the presence of permafrost increased soil moisture contents, effects on microbial biomass and activity were limited to mineral soils that showed lower fungal biomass but higher activity compared with soils without permafrost. Fungal abundance and moisture were strong predictors of phenol oxidase enzyme activity in soil. Phenol oxidase enzyme activity, in turn, was linearly related to both 13C lignin decomposition and microbial respiration in incubation studies. Taken together, these results indicate that reductions in fungal biomass in postfire soils and lower soil moisture in nonpermafrost soils reduced the potential of soil heterotrophs to decompose soil carbon. Although in the field increased rates of microbial respiration can be observed in postfire soils due to warmer soil conditions, reductions in fungal biomass and activity may limit rates of decomposition. ?? 2008 The Authors Journal compilation ?? 2008 Blackwell Publishing.

  15. Abundance and diversity of CO2-fixing bacteria in grassland soils close to natural carbon dioxide springs.

    PubMed

    Videmsek, Urska; Hagn, Alexandra; Suhadolc, Marjetka; Radl, Viviane; Knicker, Heike; Schloter, Michael; Vodnik, Dominik

    2009-07-01

    Gaseous conditions at natural CO2 springs (mofettes) affect many processes in these unique ecosystems. While the response of plants to extreme and fluctuating CO2 concentrations ([CO2]) is relatively well documented, little is known on microbial life in mofette soil. Therefore, it was the aim of this study to investigate the abundance and diversity of CO2-fixing bacteria in grassland soils in different distances to a natural carbon dioxide spring. Samples of the same soil type were collected from the Stavesinci mofette, a natural CO2 spring which is known for very pure CO2 emissions, at different distances from the CO2 releasing vents, at locations that clearly differed in soil CO2 efflux (from 12.5 to over 200 micromol CO2 m(-2) s(-1) yearly average). Bulk and rhizospheric soil samples were included into analyses. The microbial response was followed by a molecular analysis of cbbL genes, encoding for the large subunit of RubisCO, a carboxylase which is of crucial importance for C assimilation in chemolitoautotrophic microbes. In all samples analyzed, the "red-like" type of cbbL genes could be detected. In contrast, the "green-like" type of cbbL could not be measured by the applied technique. Surprisingly, a reduction of "red-like" cbbL genes copies was observed in bulk soil and rhizosphere samples from the sites with the highest CO2 concentrations. Furthermore, the diversity pattern of "red-like" cbbL genes changed depending on the CO(2) regime. This indicates that only a part of the autotrophic CO2-fixing microbes could adapt to the very high CO2 concentrations and adverse life conditions that are governed by mofette gaseous regime.

  16. In vivo assimilation of one-carbon via a synthetic reductive glycine pathway in Escherichia coli.

    PubMed

    Yishai, Oren; Bouzon, Madeleine; Döring, Volker; Bar-Even, Arren

    2018-05-15

    Assimilation of one-carbon compounds presents a key biochemical challenge, which limits their use as sustainable feedstocks for microbial growth and production. The reductive glycine pathway is a synthetic metabolic route that could provide an optimal way for the aerobic assimilation of reduced C1 compounds. Here, we show that a rational integration of native and foreign enzymes enables the tetrahydrofolate and glycine cleavage/synthase systems to operate in the reductive direction, such that Escherichia coli satisfies all of its glycine and serine requirements from the assimilation of formate and CO2. Importantly, the biosynthesis of serine from formate and CO2 does not lower the growth rate, indicating high flux that is able to provide 10% of cellular carbon. Our findings assert that the reductive glycine pathway could support highly efficient aerobic assimilation of C1-feedstocks.

  17. Interactions between above- and belowground organisms modified in climate change experiments

    NASA Astrophysics Data System (ADS)

    Stevnbak, Karen; Scherber, Christoph; Gladbach, David J.; Beier, Claus; Mikkelsen, Teis N.; Christensen, Søren

    2012-11-01

    Climate change has been shown to affect ecosystem process rates and community composition, with direct and indirect effects on belowground food webs. In particular, altered rates of herbivory under future climate can be expected to influence above-belowground interactions. Here, we use a multifactor, field-scale climate change experiment and independently manipulate atmospheric CO2 concentration, air and soil temperature and drought in all combinations since 2005. We show that changes in these factors modify the interaction between above- and belowground organisms. We use an insect herbivore to experimentally increase aboveground herbivory in grass phytometers exposed to all eight combinations of climate change factors for three years. Aboveground herbivory increased the abundance of belowground protozoans, microbial growth and microbial nitrogen availability. Increased CO2 modified these links through a reduction in herbivory and cascading effects through the soil food web. Interactions between CO2, drought and warming can affect belowground protozoan abundance. Our findings imply that climate change affects aboveground-belowground interactions through changes in nutrient availability.

  18. Elevated carbon dioxide accelerates the spatial turnover of soil microbial communities

    DOE PAGES

    Deng, Ye; He, Zhili; Xiong, Jinbo; ...

    2015-10-23

    Although elevated CO 2 (eCO 2) significantly affects the -diversity, composition, function, interaction and dynamics of soil microbial communities at the local scale, little is known about eCO 2 impacts on the geographic distribution of micro-organisms regionally or globally. Here, we examined the -diversity of 110 soil microbial communities across six free air CO 2 enrichment (FACE) experimental sites using a high-throughput functional gene array. The -diversity of soil microbial communities was significantly (P<0.05) correlated with geographic distance under both CO 2 conditions, but declined significantly (P<0.05) faster at eCO 2 with a slope of -0.0250 than at ambient COmore » 2 (aCO 2) with a slope of -0.0231 although it varied within each individual site, indicating that the spatial turnover rate of soil microbial communities was accelerated under eCO 2 at a larger geographic scale (e.g. regionally). Both distance and soil properties significantly (P<0.05) contributed to the observed microbial -diversity. Furthermore, this study provides new hypotheses for further understanding their assembly mechanisms that may be especially important as global CO 2 continues to increase.« less

  19. Elevated carbon dioxide accelerates the spatial turnover of soil microbial communities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Ye; He, Zhili; Xiong, Jinbo

    Although elevated CO 2 (eCO 2) significantly affects the -diversity, composition, function, interaction and dynamics of soil microbial communities at the local scale, little is known about eCO 2 impacts on the geographic distribution of micro-organisms regionally or globally. Here, we examined the -diversity of 110 soil microbial communities across six free air CO 2 enrichment (FACE) experimental sites using a high-throughput functional gene array. The -diversity of soil microbial communities was significantly (P<0.05) correlated with geographic distance under both CO 2 conditions, but declined significantly (P<0.05) faster at eCO 2 with a slope of -0.0250 than at ambient COmore » 2 (aCO 2) with a slope of -0.0231 although it varied within each individual site, indicating that the spatial turnover rate of soil microbial communities was accelerated under eCO 2 at a larger geographic scale (e.g. regionally). Both distance and soil properties significantly (P<0.05) contributed to the observed microbial -diversity. Furthermore, this study provides new hypotheses for further understanding their assembly mechanisms that may be especially important as global CO 2 continues to increase.« less

  20. The phylogenetic composition and structure of soil microbial communities shifts in response to elevated carbon dioxide.

    PubMed

    He, Zhili; Piceno, Yvette; Deng, Ye; Xu, Meiying; Lu, Zhenmei; Desantis, Todd; Andersen, Gary; Hobbie, Sarah E; Reich, Peter B; Zhou, Jizhong

    2012-02-01

    One of the major factors associated with global change is the ever-increasing concentration of atmospheric CO(2). Although the stimulating effects of elevated CO(2) (eCO(2)) on plant growth and primary productivity have been established, its impacts on the diversity and function of soil microbial communities are poorly understood. In this study, phylogenetic microarrays (PhyloChip) were used to comprehensively survey the richness, composition and structure of soil microbial communities in a grassland experiment subjected to two CO(2) conditions (ambient, 368 p.p.m., versus elevated, 560 p.p.m.) for 10 years. The richness based on the detected number of operational taxonomic units (OTUs) significantly decreased under eCO(2). PhyloChip detected 2269 OTUs derived from 45 phyla (including two from Archaea), 55 classes, 99 orders, 164 families and 190 subfamilies. Also, the signal intensity of five phyla (Crenarchaeota, Chloroflexi, OP10, OP9/JS1, Verrucomicrobia) significantly decreased at eCO(2), and such significant effects of eCO(2) on microbial composition were also observed at the class or lower taxonomic levels for most abundant phyla, such as Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes and Acidobacteria, suggesting a shift in microbial community composition at eCO(2). Additionally, statistical analyses showed that the overall taxonomic structure of soil microbial communities was altered at eCO(2). Mantel tests indicated that such changes in species richness, composition and structure of soil microbial communities were closely correlated with soil and plant properties. This study provides insights into our understanding of shifts in the richness, composition and structure of soil microbial communities under eCO(2) and environmental factors shaping the microbial community structure.

  1. Effect of supercritical carbon dioxide pasteurization on natural microbiota, texture, and microstructure of fresh-cut coconut.

    PubMed

    Ferrentino, Giovanna; Balzan, Sara; Dorigato, Andrea; Pegoretti, Alessandro; Spilimbergo, Sara

    2012-05-01

    The objective of the present study was the evaluation of the effectiveness of supercritical carbon dioxide (SC-CO(2)) as a nonthermal technology for the pasteurization of fresh-cut coconut, as an example of ready-to-eat and minimally processed food. First, the inactivation kinetics of microbiota on coconut were determined using SC-CO(2) treatments (pressures at 8 and 12 MPa, temperatures from 24 to 45 °C, treatment times from 5 to 60 min). Second, the effects of SC-CO(2) on the hardness and microstructure of fresh-cut coconut processed at the optimal conditions for microbial reduction were investigated. SC-CO(2) treatment of 15 min at 45 °C and 12 MPa induced 4 log CFU/g reductions of mesophilic microorganisms, lactic acid bacteria, total coliforms, and yeasts and molds. The hardness of coconut was not affected by the treatment but the samples developed an irregular and disorderly microstructure. Results suggested the potential of SC-CO(2) in preserving fresh-cut fruits and ready-to-eat products. © 2012 Institute of Food Technologists®

  2. Molybdenum-Based Diazotrophy in a Sphagnum Peatland in Northern Minnesota

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, Melissa J.; Lin, Xueju; Gaby, John C.

    We present that Microbial N 2 fixation (diazotrophy) represents an important nitrogen source to oligotrophic peatland ecosystems, which are important sinks for atmospheric CO 2 and are susceptible to the changing climate. The objectives of this study were (i) to determine the active microbial group and type of nitrogenase mediating diazotrophy in an ombrotrophic Sphagnum-dominated peat bog (the S1 peat bog, Marcell Experimental Forest, Minnesota, USA); and (ii) to determine the effect of environmental parameters (light, O 2, CO 2, and CH 4) on potential rates of diazotrophy measured by acetylene (C 2H 2) reduction and 15N 2incorporation. A molecularmore » analysis of metabolically active microbial communities suggested that diazotrophy in surface peat was primarily mediated by Alphaproteobacteria (15N 2 was suppressed 90% by O 2 and 55% by C 2H 2 and was unaffected by CH 4 and CO 2 amendments. These results suggest that peatland diazotrophy is mediated by a combination of C 2H 2-sensitive and C 2H 2-insensitive microbes that are more active at low concentrations of O 2 and show similar activity at high and low concentrations of CH 4. Importance: Previous studies indicate that diazotrophy provides an important nitrogen source and is linked to methanotrophy in Sphagnum-dominated peatlands. However, the environmental controls and enzymatic pathways of peatland diazotrophy, as well as the metabolically active microbial populations that catalyze this process, remain in question. In conclusion, our findings indicate that oxygen levels and photosynthetic activity override low nutrient availability in limiting diazotrophy and that members of the Alphaproteobacteria (Rhizobiales) catalyze this process at the bog surface using the molybdenum-based form of the nitrogenase enzyme.« less

  3. Molybdenum-Based Diazotrophy in a Sphagnum Peatland in Northern Minnesota

    DOE PAGES

    Warren, Melissa J.; Lin, Xueju; Gaby, John C.; ...

    2017-06-30

    We present that Microbial N 2 fixation (diazotrophy) represents an important nitrogen source to oligotrophic peatland ecosystems, which are important sinks for atmospheric CO 2 and are susceptible to the changing climate. The objectives of this study were (i) to determine the active microbial group and type of nitrogenase mediating diazotrophy in an ombrotrophic Sphagnum-dominated peat bog (the S1 peat bog, Marcell Experimental Forest, Minnesota, USA); and (ii) to determine the effect of environmental parameters (light, O 2, CO 2, and CH 4) on potential rates of diazotrophy measured by acetylene (C 2H 2) reduction and 15N 2incorporation. A molecularmore » analysis of metabolically active microbial communities suggested that diazotrophy in surface peat was primarily mediated by Alphaproteobacteria (15N 2 was suppressed 90% by O 2 and 55% by C 2H 2 and was unaffected by CH 4 and CO 2 amendments. These results suggest that peatland diazotrophy is mediated by a combination of C 2H 2-sensitive and C 2H 2-insensitive microbes that are more active at low concentrations of O 2 and show similar activity at high and low concentrations of CH 4. Importance: Previous studies indicate that diazotrophy provides an important nitrogen source and is linked to methanotrophy in Sphagnum-dominated peatlands. However, the environmental controls and enzymatic pathways of peatland diazotrophy, as well as the metabolically active microbial populations that catalyze this process, remain in question. In conclusion, our findings indicate that oxygen levels and photosynthetic activity override low nutrient availability in limiting diazotrophy and that members of the Alphaproteobacteria (Rhizobiales) catalyze this process at the bog surface using the molybdenum-based form of the nitrogenase enzyme.« less

  4. Graphene oxide and H2 production from bioelectrochemical graphite oxidation.

    PubMed

    Lu, Lu; Zeng, Cuiping; Wang, Luda; Yin, Xiaobo; Jin, Song; Lu, Anhuai; Jason Ren, Zhiyong

    2015-11-17

    Graphene oxide (GO) is an emerging material for energy and environmental applications, but it has been primarily produced using chemical processes involving high energy consumption and hazardous chemicals. In this study, we reported a new bioelectrochemical method to produce GO from graphite under ambient conditions without chemical amendments, value-added organic compounds and high rate H2 were also produced. Compared with abiotic electrochemical electrolysis control, the microbial assisted graphite oxidation produced high rate of graphite oxide and graphene oxide (BEGO) sheets, CO2, and current at lower applied voltage. The resultant electrons are transferred to a biocathode, where H2 and organic compounds are produced by microbial reduction of protons and CO2, respectively, a process known as microbial electrosynthesis (MES). Pseudomonas is the dominant population on the anode, while abundant anaerobic solvent-producing bacteria Clostridium carboxidivorans is likely responsible for electrosynthesis on the cathode. Oxygen production through water electrolysis was not detected on the anode due to the presence of facultative and aerobic bacteria as O2 sinkers. This new method provides a sustainable route for producing graphene materials and renewable H2 at low cost, and it may stimulate a new area of research in MES.

  5. Graphene oxide and H2 production from bioelectrochemical graphite oxidation

    PubMed Central

    Lu, Lu; Zeng, Cuiping; Wang, Luda; Yin, Xiaobo; Jin, Song; Lu, Anhuai; Jason Ren, Zhiyong

    2015-01-01

    Graphene oxide (GO) is an emerging material for energy and environmental applications, but it has been primarily produced using chemical processes involving high energy consumption and hazardous chemicals. In this study, we reported a new bioelectrochemical method to produce GO from graphite under ambient conditions without chemical amendments, value-added organic compounds and high rate H2 were also produced. Compared with abiotic electrochemical electrolysis control, the microbial assisted graphite oxidation produced high rate of graphite oxide and graphene oxide (BEGO) sheets, CO2, and current at lower applied voltage. The resultant electrons are transferred to a biocathode, where H2 and organic compounds are produced by microbial reduction of protons and CO2, respectively, a process known as microbial electrosynthesis (MES). Pseudomonas is the dominant population on the anode, while abundant anaerobic solvent-producing bacteria Clostridium carboxidivorans is likely responsible for electrosynthesis on the cathode. Oxygen production through water electrolysis was not detected on the anode due to the presence of facultative and aerobic bacteria as O2 sinkers. This new method provides a sustainable route for producing graphene materials and renewable H2 at low cost, and it may stimulate a new area of research in MES. PMID:26573014

  6. Effect of redox conditions on MTBE biodegradation in surface water Sediments

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.; Landmeyer, J.E.

    2001-01-01

    Microbial degradation of methyl tert-butyl ether (MTBE) was observed in surface water-sediment microcosms under anaerobic conditions. The efficiency and products of anaerobic MTBE biodegradation were dependent on the predominant terminal electron-accepting conditions. In the presence of substantial methanogenic activity, MTBE biodegradation was nominal and involved reduction of MTBE to the toxic product, tert-butyl alcohol (TBA). In the absence of significant methanogenic activity, accumulation of [14C]TBA generally decreased, and mineralization of [U-14C]MTBE to 14CO2 generally increased as the oxidative potential of the predominant terminal electron acceptor increased in the order of SO4, Fe(III), Mn(IV) < NO3 < O2. Microbial mineralization of MTBE to CO2 under Mn(IV)or SO4-reducing conditions has not been reported previously. The results of this study indicate that microorganisms inhabiting the sediments of streams and lakes can degrade MTBE effectively under a range of anaerobic terminal electron-accepting conditions. Thus, anaerobic bed sediment microbial processes may provide a significant environmental sink for MTBE in surface water systems throughout the United States.

  7. Shelf-life extension of semi-dried buckwheat noodles by the combination of aqueous ozone treatment and modified atmosphere packaging.

    PubMed

    Bai, Yi-Peng; Guo, Xiao-Nao; Zhu, Ke-Xue; Zhou, Hui-Ming

    2017-12-15

    The present study investigated the combined effects of aqueous ozone treatment and modified atmosphere packaging (MAP) on prolonging the shelf-life of semi-dried buckwheat noodles [SBWN; moisture content (22.5±0.5%)] at 25°C. Firstly, the different concentrations of ozonated water were used to make SBWN. Subsequently, SBWN prepared with ozonated water were packaged under six different conditions and stored for 11days. Changes in microbial, chemical-physical, textural properties and sensorial qualities of SWBN were monitored during storage. Microbiological results indicated that adopting 2.21mg/L of ozonated water resulted in a 1.8 log 10 CFU/g reduction of the initial microbial loads in SBWN. In addition, MAP suppressed the microbial growth with a concomitant reduction in the rates of acidification and quality deteriorations of SBWN. Finally, the shelf-life of sample packed under N 2 :CO 2 =30:70 was extended to 9days, meanwhile textural and sensorial characteristics were maintained during the whole storage period. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Metabolism-Induced CaCO 3 Biomineralization During Reactive Transport in a Micromodel: Implications for Porosity Alteration

    DOE PAGES

    Singh, Rajveer; Yoon, Hongkyu; Sanford, Robert A.; ...

    2015-09-08

    We investigated the ability of Pseudomonas stutzeri strain DCP-Ps1 to drive CaCO 3 biomineralization in a microfluidic flowcell (i.e., micromodel) that simulates subsurface porous media. Results indicate that CaCO 3 precipitation occurs during NO 3 – reduction with a maximum saturation index (SI calcite) of ~1.56, but not when NO 3 – was removed, inactive biomass remained, and pH and alkalinity were adjusted to SI calcite ~ 1.56. CaCO 3 precipitation was promoted by metabolically active cultures of strain DCP-Ps1, which at similar values of SIcalcite, have a more negative surface charge than inactive strain DCP-Ps1. A two-stage NO 3more » – reduction (NO 3 – → NO 2 – → N 2) pore-scale reactive transport model was used to evaluate denitrification kinetics, which was observed in the micromodel as upper (NO 3 – reduction) and lower (NO 2 – reduction) horizontal zones of biomass growth with CaCO 3 precipitation exclusively in the lower zone. Our model results are consistent with two biomass growth regions and indicate that precipitation occurred in the lower zone because the largest increase in pH and alkalinity is associated with NO 2 – reduction. CaCO 3 precipitates typically occupied the entire vertical depth of pores and impacted porosity, permeability, and flow. This study provides a framework for incorporating microbial activity in biogeochemistry models, which often base biomineralization only on SI (caused by biotic or abiotic reactions) and, thereby, underpredict the extent of this complex process. Furthermore, these results have wide-ranging implications for understanding reactive transport in relevance to groundwater remediation, CO 2 sequestration, and enhanced oil recovery.« less

  9. Changes in microbial communities associated with the sea anemone Anemonia viridis in a natural pH gradient.

    PubMed

    Meron, Dalit; Buia, Maria-Cristina; Fine, Maoz; Banin, Ehud

    2013-02-01

    Ocean acidification, resulting from rising atmospheric carbon dioxide concentrations, is a pervasive stressor that can affect many marine organisms and their symbionts. Studies which examine the host physiology and microbial communities have shown a variety of responses to the ocean acidification process. Recently, several studies were conducted based on field experiments, which take place in natural CO(2) vents, exposing the host to natural environmental conditions of varying pH. This study examines the sea anemone Anemonia viridis which is found naturally along the pH gradient in Ischia, Italy, with an aim to characterize whether exposure to pH impacts the holobiont. The physiological parameters of A. viridis (Symbiodinium density, protein, and chlorophyll a+c concentration) and its microbial community were monitored. Although reduction in pH was seen to have had an impact on composition and diversity of associated microbial communities, no significant changes were observed in A. viridis physiology, and no microbial stress indicators (i.e., pathogens, antibacterial activity, etc.) were detected. In light of these results, it appears that elevated CO(2) does not have a negative influence on A. viridis that live naturally in the site. This suggests that natural long-term exposure and dynamic diverse microbial communities may contribute to the acclimation process of the host in a changing pH environment.

  10. Active Microbial Methane Production and Organic Matter Degradation in a Devonian Black Shale

    NASA Astrophysics Data System (ADS)

    Martini, A. M.; Petsch, S. T.; Nuesslein, K.; McIntosh, J. C.

    2003-12-01

    Microorganisms employ many novel strategies to derive energy and obtain nutrients, and in doing so alter the chemistry of their environments in ways that are significant for formation and transformation of geologic materials. One such strategy is natural gas generation in sedimentary basins. Previous research has shown that stable isotopic signatures of CH4, CO2 and H2O in formation waters of gas-producing black shales indicate a microbial origin for several economically viable natural gas reserves. However, these signatures leave several intriguing issues unaddressed, including the identity of the organisms and their metabolic roles and impacts on mineral, isotopic and biomarker signatures. We hypothesize that the extreme reducing conditions required for sedimentary basin methanogenesis are simply the end product of a cascade of microbial processes, initiated by anaerobic respiration of shale organic matter through NO3, SO4 and/or Fe(III) reduction, secondary processing of anaerobe biomass by fermentative organisms yielding volatile fatty acids and H2, and ultimately CO2 reduction and/or acetate fermentation to produce CH4. This research holds importance for the several aspects of the geochemical carbon cycle. It describes anaerobic hydrocarbon degradation leading to methanogenesis in a sedimentary basin; in many instances this activity has generated economically viable reserves of natural gas. It also provides a benchmark detailing how post-depositional microbial activity in rocks may confound and overprint ancient biosignatures. Interpretation of past environmental conditions depends on molecular and isotopic signatures contained in ancient sedimentary rocks, separated from signatures of metabolically similar modern microbiota living in sedimentary basins. In addition, this research sheds light on an unrecognized and thus unconstrained source of reduced gases to Earth's atmosphere, important for understanding the rates and controls on carbon cycling through geologic time.

  11. Effects of dissolved CO2 on Shallow Freshwater Microbial Communities simulating a CO2 Leakage Scenario

    NASA Astrophysics Data System (ADS)

    Gulliver, D. M.; Lowry, G. V.; Gregory, K.

    2013-12-01

    Geological carbon sequestration is likely to be part of a comprehensive strategy to minimize the atmospheric release of greenhouse gasses, establishing a concern of sequestered CO2 leakage into overlying potable aquifers. Leaking CO2 may affect existing biogeochemical processes and therefore water quality. There is a critical need to understand the evolution of CO2 exposed microbial communities that influence the biogeochemistry in these freshwater aquifers. The evolution of microbial ecology for different CO2 exposure concentrations was investigated using fluid-slurry samples obtained from a shallow freshwater aquifer (55 m depth, 0.5 MPa, 22 °C, Escatawpa, MS). The microbial community of well samples upstream and downstream of CO2 injection was characterized. In addition, batch vessel experiments were conducted with the upstream aquifer samples exposed to varying pCO2 from 0% to 100% under reservoir temperature and pressure for up to 56 days. The microbial community of the in situ experiment and the batch reactor experiment were analyzed with 16S rRNA clone libraries and qPCR. In both the in situ experiment and the batch reactor experiment, DNA concentration did not correlate with CO2 exposure. Both the in situ experiment and the batch reactors displayed a changing microbial community with increased CO2 exposure. The well water isolate, Curvibacter, appeared to be the most tolerant genus to high CO2 concentrations in the in situ experiments and to mid-CO2 concentrations in the batch reactors. In batch reactors with pCO2 concentrations higher than experienced in situ (pCO2 = 0.5 MPa), Pseudomonas appeared to be the most tolerant genus. Findings provide insight into a dynamic biogeochemical system that will alter with CO2 exposure. Adapted microbial populations will eventually give rise to the community that will impact the metal mobility and water quality. Knowledge of the surviving microbial populations will enable improved models for predicting the fate of CO2 following leakage and lead to better strategies for ensuring the quality of potable aquifer water.

  12. Divergent Responses of Forest Soil Microbial Communities under Elevated CO 2 in Different Depths of Upper Soil Layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Hao; He, Zhili; Wang, Aijie

    Numerous studies have shown that the continuous increase of atmosphere CO 2 concentrations may have profound effects on the forest ecosystem and its functions. However, little is known about the response of belowground soil microbial communities under elevated atmospheric CO 2 (eCO 2) at different soil depth profiles in forest ecosystems. In this paper, we examined soil microbial communities at two soil depths (0 to 5 cm and 5 to 15 cm) after a 10-year eCO 2 exposure using a high-throughput functional gene microarray (GeoChip). The results showed that eCO 2 significantly shifted the compositions, including phylogenetic and functional genemore » structures, of soil microbial communities at both soil depths. Key functional genes, including those involved in carbon degradation and fixation, methane metabolism, denitrification, ammonification, and nitrogen fixation, were stimulated under eCO 2 at both soil depths, although the stimulation effect of eCO 2 on these functional markers was greater at the soil depth of 0 to 5 cm than of 5 to 15 cm. Moreover, a canonical correspondence analysis suggested that NO 3-N, total nitrogen (TN), total carbon (TC), and leaf litter were significantly correlated with the composition of the whole microbial community. This study revealed a positive feedback of eCO 2 in forest soil microbial communities, which may provide new insight for a further understanding of forest ecosystem responses to global CO 2 increases. The concentration of atmospheric carbon dioxide (CO 2) has continuously been increasing since the industrial revolution. Understanding the response of soil microbial communities to elevated atmospheric CO 2 (eCO 2) is important for predicting the contribution of the forest ecosystem to global atmospheric change. This study analyzed the effect of eCO 2 on microbial communities at two soil depths (0 to 5 cm and 5 to 15 cm) in a forest ecosystem. Our findings suggest that the compositional and functional structures of microbial communities shifted under eCO 2 at both soil depths. Finally, more functional genes involved in carbon, nitrogen, and phosphorus cycling were stimulated under eCO 2 at the soil depth of 0 to 5 cm than at the depth of 5 to 15 cm.« less

  13. Divergent Responses of Forest Soil Microbial Communities under Elevated CO 2 in Different Depths of Upper Soil Layers

    DOE PAGES

    Yu, Hao; He, Zhili; Wang, Aijie; ...

    2017-10-27

    Numerous studies have shown that the continuous increase of atmosphere CO 2 concentrations may have profound effects on the forest ecosystem and its functions. However, little is known about the response of belowground soil microbial communities under elevated atmospheric CO 2 (eCO 2) at different soil depth profiles in forest ecosystems. In this paper, we examined soil microbial communities at two soil depths (0 to 5 cm and 5 to 15 cm) after a 10-year eCO 2 exposure using a high-throughput functional gene microarray (GeoChip). The results showed that eCO 2 significantly shifted the compositions, including phylogenetic and functional genemore » structures, of soil microbial communities at both soil depths. Key functional genes, including those involved in carbon degradation and fixation, methane metabolism, denitrification, ammonification, and nitrogen fixation, were stimulated under eCO 2 at both soil depths, although the stimulation effect of eCO 2 on these functional markers was greater at the soil depth of 0 to 5 cm than of 5 to 15 cm. Moreover, a canonical correspondence analysis suggested that NO 3-N, total nitrogen (TN), total carbon (TC), and leaf litter were significantly correlated with the composition of the whole microbial community. This study revealed a positive feedback of eCO 2 in forest soil microbial communities, which may provide new insight for a further understanding of forest ecosystem responses to global CO 2 increases. The concentration of atmospheric carbon dioxide (CO 2) has continuously been increasing since the industrial revolution. Understanding the response of soil microbial communities to elevated atmospheric CO 2 (eCO 2) is important for predicting the contribution of the forest ecosystem to global atmospheric change. This study analyzed the effect of eCO 2 on microbial communities at two soil depths (0 to 5 cm and 5 to 15 cm) in a forest ecosystem. Our findings suggest that the compositional and functional structures of microbial communities shifted under eCO 2 at both soil depths. Finally, more functional genes involved in carbon, nitrogen, and phosphorus cycling were stimulated under eCO 2 at the soil depth of 0 to 5 cm than at the depth of 5 to 15 cm.« less

  14. Divergent Responses of Forest Soil Microbial Communities under Elevated CO2 in Different Depths of Upper Soil Layers.

    PubMed

    Yu, Hao; He, Zhili; Wang, Aijie; Xie, Jianping; Wu, Liyou; Van Nostrand, Joy D; Jin, Decai; Shao, Zhimin; Schadt, Christopher W; Zhou, Jizhong; Deng, Ye

    2018-01-01

    Numerous studies have shown that the continuous increase of atmosphere CO 2 concentrations may have profound effects on the forest ecosystem and its functions. However, little is known about the response of belowground soil microbial communities under elevated atmospheric CO 2 (eCO 2 ) at different soil depth profiles in forest ecosystems. Here, we examined soil microbial communities at two soil depths (0 to 5 cm and 5 to 15 cm) after a 10-year eCO 2 exposure using a high-throughput functional gene microarray (GeoChip). The results showed that eCO 2 significantly shifted the compositions, including phylogenetic and functional gene structures, of soil microbial communities at both soil depths. Key functional genes, including those involved in carbon degradation and fixation, methane metabolism, denitrification, ammonification, and nitrogen fixation, were stimulated under eCO 2 at both soil depths, although the stimulation effect of eCO 2 on these functional markers was greater at the soil depth of 0 to 5 cm than of 5 to 15 cm. Moreover, a canonical correspondence analysis suggested that NO 3 -N, total nitrogen (TN), total carbon (TC), and leaf litter were significantly correlated with the composition of the whole microbial community. This study revealed a positive feedback of eCO 2 in forest soil microbial communities, which may provide new insight for a further understanding of forest ecosystem responses to global CO 2 increases. IMPORTANCE The concentration of atmospheric carbon dioxide (CO 2 ) has continuously been increasing since the industrial revolution. Understanding the response of soil microbial communities to elevated atmospheric CO 2 (eCO 2 ) is important for predicting the contribution of the forest ecosystem to global atmospheric change. This study analyzed the effect of eCO 2 on microbial communities at two soil depths (0 to 5 cm and 5 to 15 cm) in a forest ecosystem. Our findings suggest that the compositional and functional structures of microbial communities shifted under eCO 2 at both soil depths. More functional genes involved in carbon, nitrogen, and phosphorus cycling were stimulated under eCO 2 at the soil depth of 0 to 5 cm than at the depth of 5 to 15 cm. Copyright © 2017 American Society for Microbiology.

  15. Leakage of CO2 from sub-seafloor CO2 storage sites to the seabed; Impacts on sediment microorganisms and geochemical parameters during in situ and laboratory leakage experiments

    NASA Astrophysics Data System (ADS)

    Reigstad, L. J.; Hannisdal, B.; Hoffmann, F. U.; Sweetman, A. K.; Baumberger, T.; Eickmann, B.; Røy, H.; Thorseth, I. H.; Pedersen, R. B.

    2013-12-01

    Since 1996, 14 million tons of CO2 extracted from natural gas have been injected into the Utsira Formation, a saline aquifer at ~1000 m depth in the North Sea. The injected CO2 covers today an area of 4 x 2 km2. At present, there are three international treaties protecting the oceans, and all three allow CO2 storage in sub-seabed geological formations. One of these, the EU Directive 2009/31, states that monitoring must take place before, during and after CO2 storage in order to detect leakage of CO2 and significant adverse effects on the surrounding environment. However, few environmental studies have investigated the potential impacts of a CO2 leakage on the microbial life and geochemical conditions in seafloor sediment. To remedy this, we performed two experiments with abrupt CO2 acidification on the top 10 cm of the seafloor close to the North Sea storage site: 1) One laboratory CO2 acidification experiment on undisturbed sediment cores from the seafloor overlying the CO2 storage site (80 m water depth). The continuous flow of CO2 acidified seawater (pH 6.4) with 20 000 μatm pCO2 over the cores lasted for 1.5 months with sediment core terminations at regular intervals. 2) In situ CO2 acidification experiments carried out on the seafloor at 350 m water depth, with life span of 40 hours and exposure to 20 000 μatm pCO2. Both experiments showed increased O2 consumption in the water overlying the CO2 acidified sediment relative to the control sediment, indicating a rise in metabolic activity due to the treatment. After about 12 hours of acidification and throughout the laboratory experimental period, an increase in macrofauna burial activity could be seen, with dead/dying macrofauna appearing on the sediment surface. The pyrosequencing amplicon dataset obtained after bacterial and archaeal 16S rRNA amplification (RNA level) was subjected to multivariate analyses (PCA, NMDS), revealing changes in the active community on phylum, class and OTU levels. Changes were detected on all three levels in all depths investigated, but the response to acidification appeared among less-abundant prokaryotic groups in the sediment, rather than the numerically dominant groups. Quantification of the 16S rRNA genes (DNA level) indicated no increase in cell numbers in response to the treatment. However, an increase in the in situ microbial sulfate reduction rates and/or expression of marker genes for sulfate reduction (RNA level) was discovered. Analyses of marker gene expression for other prokaryotic metabolisms will be presented as well as correlations between specific organisms and geochemical parameters. Within the limitations of the experimental set up, our studies indicate that a leakage of CO2 from a sub-seafloor storage site may not dramatically change the composition of the active microbial community in the seabed sediment though we did register activity changes in some metabolisms.

  16. Altered soil microbial community at elevated CO2 leads to loss of soil carbon

    PubMed Central

    Carney, Karen M.; Hungate, Bruce A.; Drake, Bert G.; Megonigal, J. Patrick

    2007-01-01

    Increased carbon storage in ecosystems due to elevated CO2 may help stabilize atmospheric CO2 concentrations and slow global warming. Many field studies have found that elevated CO2 leads to higher carbon assimilation by plants, and others suggest that this can lead to higher carbon storage in soils, the largest and most stable terrestrial carbon pool. Here we show that 6 years of experimental CO2 doubling reduced soil carbon in a scrub-oak ecosystem despite higher plant growth, offsetting ≈52% of the additional carbon that had accumulated at elevated CO2 in aboveground and coarse root biomass. The decline in soil carbon was driven by changes in soil microbial composition and activity. Soils exposed to elevated CO2 had higher relative abundances of fungi and higher activities of a soil carbon-degrading enzyme, which led to more rapid rates of soil organic matter degradation than soils exposed to ambient CO2. The isotopic composition of microbial fatty acids confirmed that elevated CO2 increased microbial utilization of soil organic matter. These results show how elevated CO2, by altering soil microbial communities, can cause a potential carbon sink to become a carbon source. PMID:17360374

  17. Microbial redox processes in deep subsurface environments and the potential application of (per)chlorate in oil reservoirs

    PubMed Central

    Liebensteiner, Martin G.; Tsesmetzis, Nicolas; Stams, Alfons J. M.; Lomans, Bartholomeus P.

    2014-01-01

    The ability of microorganisms to thrive under oxygen-free conditions in subsurface environments relies on the enzymatic reduction of oxidized elements, such as sulfate, ferric iron, or CO2, coupled to the oxidation of inorganic or organic compounds. A broad phylogenetic and functional diversity of microorganisms from subsurface environments has been described using isolation-based and advanced molecular ecological techniques. The physiological groups reviewed here comprise iron-, manganese-, and nitrate-reducing microorganisms. In the context of recent findings also the potential of chlorate and perchlorate [jointly termed (per)chlorate] reduction in oil reservoirs will be discussed. Special attention is given to elevated temperatures that are predominant in the deep subsurface. Microbial reduction of (per)chlorate is a thermodynamically favorable redox process, also at high temperature. However, knowledge about (per)chlorate reduction at elevated temperatures is still scarce and restricted to members of the Firmicutes and the archaeon Archaeoglobus fulgidus. By analyzing the diversity and phylogenetic distribution of functional genes in (meta)genome databases and combining this knowledge with extrapolations to earlier-made physiological observations we speculate on the potential of (per)chlorate reduction in the subsurface and more precisely oil fields. In addition, the application of (per)chlorate for bioremediation, souring control, and microbial enhanced oil recovery are addressed. PMID:25225493

  18. Microbial Assimilation of Atmospheric CO2 to Synthesize Organic Matter in Soils

    NASA Astrophysics Data System (ADS)

    Ge, Tida

    2014-05-01

    Like higher plants, microbial autotrophs possess photosynthetic systems that enable them to fix CO2. Whilst present in large numbers in soils, the capacity for soil microorganisms to fix CO2 and their importance in terrestrial C cycling has not been quantified. To measure the activities of microbial autotrophs in assimilating atmospheric CO2, seven different soils were incubated with 14C labelled CO2 for 80 d, and the 14C-labelled organic C synthesized was determined. The results indicate that the synthesis rates of 14C-lablled organic C ranged from 0.0134 to 0.103 g C m-2 d-1, and were closely related to RubisCO activities and the abundance of cbbL-genes in the soils, indicating that the synthesis could be attributed to soil microbial autotrophs. This finding suggests that microbial assimilation of atmospheric CO2 is an important process in the sequestration and cycling of terrestrial C that, until now, has been largely ignored.

  19. The effects of environmental physical factors on the microbial communities and the distribution of different CO2 fixation pathways in a limestone landscape

    NASA Astrophysics Data System (ADS)

    Wun, S. R.; Huang, T. Y.; Hsu, B. M.; Fan, C. W.

    2017-12-01

    We aimed to study the effects of physical factors on the relative abundance of bacteria and their preferential admissions of autotrophic CO2 fixation pathways after subjected to environmental long-term influence. The Narrow-Sky located in upper part of Takangshan is a small gulch of Pleistocene coralline limestone formation in southern Taiwan. The physical parameters such as illumination, humidity, and temperature were varied largely in habitats around the gulch, namely on the limestone wall at the opening of gulch, on the coordinate ground soil, on the wall inside the gulch, and the water drip from limestone wall. The total organic carbon was measured in solid samples to evaluate the biomass of the habitats. A metagenomic approach was carried out to reveal their microbial community structure. After the metagenomic library of operational taxonomic units (OTUs) was constructed, a BLAST search by "nomenclature of bacteria" instead of sequences between the OTU libraries and KEGG database was carried out to generate libraries of "model microbial communities", which the complete genomes of the entire bacterial populations were available. Our results showed the biomass of habitats in the opening of gulch was twice higher than the inside, suggesting the illumination played an important role in biosynthesis. In quantitative comparison in key enzymes of CO2 fixation pathways by model communities, 70% to 90% of bacteria possessed key enzymes of Fuchs-Holo cycle, while only 5% to 20% of bacteria contained key enzymes of Calvin-Benson cycle. The key enzymes for hydroxypropionate/ hydroxybutyrate and dicarboxylate/ 4-hydroxybutyrate cycles were not found in this study. In the water sample, approximate 10% of bacteria consisted of the key enzyme for Arnon-Buchanan cycle. Less than 2% of bacteria in all habitats take the reductive acetyl-CoA cycle for CO2 fixation. This study provides a novel method to study biosynthetic process of microbial communities in natural habitats.

  20. Ocean acidification of a coastal Antarctic marine microbial community reveals a critical threshold for CO2 tolerance in phytoplankton productivity

    NASA Astrophysics Data System (ADS)

    Deppeler, Stacy; Petrou, Katherina; Schulz, Kai G.; Westwood, Karen; Pearce, Imojen; McKinlay, John; Davidson, Andrew

    2018-01-01

    High-latitude oceans are anticipated to be some of the first regions affected by ocean acidification. Despite this, the effect of ocean acidification on natural communities of Antarctic marine microbes is still not well understood. In this study we exposed an early spring, coastal marine microbial community in Prydz Bay to CO2 levels ranging from ambient (343 µatm) to 1641 µatm in six 650 L minicosms. Productivity assays were performed to identify whether a CO2 threshold existed that led to a change in primary productivity, bacterial productivity, and the accumulation of chlorophyll a (Chl a) and particulate organic matter (POM) in the minicosms. In addition, photophysiological measurements were performed to identify possible mechanisms driving changes in the phytoplankton community. A critical threshold for tolerance to ocean acidification was identified in the phytoplankton community between 953 and 1140 µatm. CO2 levels ≥ 1140 µatm negatively affected photosynthetic performance and Chl a-normalised primary productivity (csGPP14C), causing significant reductions in gross primary production (GPP14C), Chl a accumulation, nutrient uptake, and POM production. However, there was no effect of CO2 on C : N ratios. Over time, the phytoplankton community acclimated to high CO2 conditions, showing a down-regulation of carbon concentrating mechanisms (CCMs) and likely adjusting other intracellular processes. Bacterial abundance initially increased in CO2 treatments ≥ 953 µatm (days 3-5), yet gross bacterial production (GBP14C) remained unchanged and cell-specific bacterial productivity (csBP14C) was reduced. Towards the end of the experiment, GBP14C and csBP14C markedly increased across all treatments regardless of CO2 availability. This coincided with increased organic matter availability (POC and PON) combined with improved efficiency of carbon uptake. Changes in phytoplankton community production could have negative effects on the Antarctic food web and the biological pump, resulting in negative feedbacks on anthropogenic CO2 uptake. Increases in bacterial abundance under high CO2 conditions may also increase the efficiency of the microbial loop, resulting in increased organic matter remineralisation and further declines in carbon sequestration.

  1. Analysis of microbial communities in the oil reservoir subjected to CO2-flooding by using functional genes as molecular biomarkers for microbial CO2 sequestration

    PubMed Central

    Liu, Jin-Feng; Sun, Xiao-Bo; Yang, Guang-Chao; Mbadinga, Serge M.; Gu, Ji-Dong; Mu, Bo-Zhong

    2015-01-01

    Sequestration of CO2 in oil reservoirs is considered to be one of the feasible options for mitigating atmospheric CO2 building up and also for the in situ potential bioconversion of stored CO2 to methane. However, the information on these functional microbial communities and the impact of CO2 storage on them is hardly available. In this paper a comprehensive molecular survey was performed on microbial communities in production water samples from oil reservoirs experienced CO2-flooding by analysis of functional genes involved in the process, including cbbM, cbbL, fthfs, [FeFe]-hydrogenase, and mcrA. As a comparison, these functional genes in the production water samples from oil reservoir only experienced water-flooding in areas of the same oil bearing bed were also analyzed. It showed that these functional genes were all of rich diversity in these samples, and the functional microbial communities and their diversity were strongly affected by a long-term exposure to injected CO2. More interestingly, microorganisms affiliated with members of the genera Methanothemobacter, Acetobacterium, and Halothiobacillus as well as hydrogen producers in CO2 injected area either increased or remained unchanged in relative abundance compared to that in water-flooded area, which implied that these microorganisms could adapt to CO2 injection and, if so, demonstrated the potential for microbial fixation and conversion of CO2 into methane in subsurface oil reservoirs. PMID:25873911

  2. The effect of initial concentration, co-application and repeated applications on pesticide degradation in a biobed mixture.

    PubMed

    Vischetti, Costantino; Monaci, Elga; Cardinali, Alessandra; Casucci, Cristiano; Perucci, Piero

    2008-08-01

    A 180 d laboratory experiment was conducted to investigate the degradation rates of chlorpyrifos (10 and 50 mg kg(-1)) and metalaxyl (100 mg kg(-1)) separately and co-applied in a biomix constituted by topsoil, vine-branches and urban-waste-garden compost. The effect of repeated application of metalaxyl was also investigated. Microbial biomass-C (MBC) content and metabolic quotient (qCO(2)) were measured to evaluate changes in microbial biomass size and activity induced by the presence of the two pesticides. Degradation rate decreased with increasing concentration of chlorpyrifos in all treatments. Metalaxyl half-life was significantly reduced in co-application with chlorpyrifos indicating a synergic interaction between the two pesticides in favour of enhanced degradation rate for metalaxyl but not for chlorpyrifos. Furthermore, repeated application resulted in a sharp reduction of metalaxyl half-life from 37 d after first application to 4 d after third application. MBC content was negatively influenced by the addition of pesticides but it started to recover immediately, in both separate and co-applied treatments, reaching the control value when pesticide residues were about 50% of the initial concentration. The qCO(2) reached a steady-state after about 20 d in separately applied and 40 d in co-applied treatments, indicating a tendency to arrive at a new metabolic equilibrium. In conclusion, the biomix tested has been shown to degrade pesticides relatively fast and to have a microbial community that is varied enough to allow selection of those microorganisms able to degrade metalaxyl and chlorpyrifos.

  3. Microbial communities of the deep unfrozen: Do microbes in taliks increase permafrost carbon vulnerability? (Invited)

    NASA Astrophysics Data System (ADS)

    Waldrop, M. P.; Blazewicz, S.; Jones, M.; Mcfarland, J. W.; Harden, J. W.; Euskirchen, E. S.; Turetsky, M.; Hultman, J.; Jansson, J.

    2013-12-01

    The vast frozen terrain of northern latitude ecosystems is typically thought of as being nearly biologically inert for the winter period. Yet deep within the frozen ground of northern latitude soils reside microbial communities that can remain active during the winter months. As we have shown previously, microbial communities may remain active in permafrost soils just below the freezing point of water. Though perhaps more importantly, microbial communities persist in unfrozen areas of water, soil, and sediment beneath water bodies the entire year. Microbial activity in taliks may have significant impacts on biogeochemical cycling in northern latitude ecosystems because their activity is not limited by the winter months. Here we present compositional and functional data, including long term incubation data, for microbial communities within permafrost landscapes, in permafrost and taliks, and the implications of these activities on permafrost carbon decomposition and the flux of CO2 and CH4. Our experiment was conducted at the Alaska Peatland Experiment (APEX) within the Bonanza Creek LTER in interior Alaska. Our site consists of a black spruce forest on permafrost that has degraded into thermokarst bogs at various times over the last five hundred years. We assume the parent substrate of the deep (1-1.5m) thermokarst peat was similar to the nearby forest soil and permafrost C before thaw. At this site, flux tower and autochamber data show that the thermokarst bog is a sink of CO2 , but a significant source of CH4. Yet this does not tell the whole story as these data do not fully capture microbial activity within the deep unfrozen talik layer. There is published evidence that within thermokarst bogs, relatively rapid decomposition of old forest floor material may be occurring. There are several possible mechanisms for this pattern; one possible mechanism for accelerated decomposition is the overwintering activities of microbial communities in taliks of thermokarst soils. To test this idea, we conducted anaerobic incubations of deep (1m) bog soils at two different temperatures to determine microbial temperature response functions. We also measured soil profile CO2 and CH4 concentrations and functional gene assays of the deep bog microbial community. Incubation data in combination with overwinter temperature profiles show that the talik has high potential rates of CO2 and CH4 production compared to the mass of C from forest floor and permafrost C to 1m depth. Results highlight the potential importance of taliks affecting the vulnerability of permafrost carbon to decomposition and reduction to methane.

  4. Controlled cobalt doping in biogenic magnetite nanoparticles

    PubMed Central

    Byrne, J. M.; Coker, V. S.; Moise, S.; Wincott, P. L.; Vaughan, D. J.; Tuna, F.; Arenholz, E.; van der Laan, G.; Pattrick, R. A. D.; Lloyd, J. R.; Telling, N. D.

    2013-01-01

    Cobalt-doped magnetite (CoxFe3 −xO4) nanoparticles have been produced through the microbial reduction of cobalt–iron oxyhydroxide by the bacterium Geobacter sulfurreducens. The materials produced, as measured by superconducting quantum interference device magnetometry, X-ray magnetic circular dichroism, Mössbauer spectroscopy, etc., show dramatic increases in coercivity with increasing cobalt content without a major decrease in overall saturation magnetization. Structural and magnetization analyses reveal a reduction in particle size to less than 4 nm at the highest Co content, combined with an increase in the effective anisotropy of the magnetic nanoparticles. The potential use of these biogenic nanoparticles in aqueous suspensions for magnetic hyperthermia applications is demonstrated. Further analysis of the distribution of cations within the ferrite spinel indicates that the cobalt is predominantly incorporated in octahedral coordination, achieved by the substitution of Fe2+ site with Co2+, with up to 17 per cent Co substituted into tetrahedral sites. PMID:23594814

  5. Controlled cobalt doping in biogenic magnetite nanoparticles.

    PubMed

    Byrne, J M; Coker, V S; Moise, S; Wincott, P L; Vaughan, D J; Tuna, F; Arenholz, E; van der Laan, G; Pattrick, R A D; Lloyd, J R; Telling, N D

    2013-06-06

    Cobalt-doped magnetite (CoxFe3 -xO4) nanoparticles have been produced through the microbial reduction of cobalt-iron oxyhydroxide by the bacterium Geobacter sulfurreducens. The materials produced, as measured by superconducting quantum interference device magnetometry, X-ray magnetic circular dichroism, Mössbauer spectroscopy, etc., show dramatic increases in coercivity with increasing cobalt content without a major decrease in overall saturation magnetization. Structural and magnetization analyses reveal a reduction in particle size to less than 4 nm at the highest Co content, combined with an increase in the effective anisotropy of the magnetic nanoparticles. The potential use of these biogenic nanoparticles in aqueous suspensions for magnetic hyperthermia applications is demonstrated. Further analysis of the distribution of cations within the ferrite spinel indicates that the cobalt is predominantly incorporated in octahedral coordination, achieved by the substitution of Fe(2+) site with Co(2+), with up to 17 per cent Co substituted into tetrahedral sites.

  6. Alteration of Oceanic Nitrification Under Elevated Carbon Dioxide Concentrations

    NASA Astrophysics Data System (ADS)

    Beman, J.; Chow, C. E.; Popp, B. N.; Fuhrman, J. A.; Feng, Y.; Hutchins, D. A.

    2008-12-01

    Atmospheric carbon dioxide (CO2) concentrations are increasing exponentially and expected to double by the year 2100. Dissolution of excess CO2 in the upper ocean reduces pH, alters carbonate chemistry, and also represents a potential resource for autotrophic organisms that convert inorganic carbon into biomass--including a broad spectrum of marine microbes. These bacteria and archaea drive global biogeochemical cycles of carbon and nitrogen and constitute the vast majority of biomass in the sea, yet their responses to reduced pH and increased pCO2 remain largely undocumented. Here we show that elevated pCO2 may sharply reduce nitrification rates and populations of nitrifying microorganisms in the ocean. Multiple experiments were performed in the Sargasso Sea and the Southern California Bight under glacial maximum (193 ppm), present day (390 ppm), and projected (750 ppm) pCO2 concentrations, over time scales from hours to multiple days, and at depths of 45 m to 240 m. Measurement of nitrification rates using isotopically-labeled nitrogen showed 2-5 fold reduction under elevated pCO2--as well as an increase under glacial maximum pCO2. Marine Crenarchaeota are likely involved in nitrification as ammonia-oxidizing archaea (AOA) and are among the most abundant microbial groups in the ocean, yet this group decreased by 40-80% under increased pCO2, based on quantification of both 16S rRNA and ammonia monooxygenase (amoA) gene copies. Crenarchaeota also steadily declined over the course of multiple days under elevated pCO2, whereas ammonia-oxidizing (AOB) and nitrite-oxidizing bacteria (NOB) were more variable in their responses or were not detected. These findings suggest that projected increases in pCO2 and subsequent decreases in pH may strongly influence marine biogeochemistry and microbial community structure in the sea.

  7. Metagenomic Insights of Microbial Feedbacks to Elevated CO2 (Invited)

    NASA Astrophysics Data System (ADS)

    Zhou, J.; Tu, Q.; Wu, L.; He, Z.; Deng, Y.; Van Nostrand, J. D.

    2013-12-01

    Understanding the responses of biological communities to elevated CO2 (eCO2) is a central issue in ecology and global change biology, but its impacts on the diversity, composition, structure, function, interactions and dynamics of soil microbial communities remain elusive. In this study, we first examined microbial responses to eCO2 among six FACE sites/ecosystems using a comprehensive functional gene microarray (GeoChip), and then focused on details of metagenome sequencing analysis in one particular site. GeoChip is a comprehensive functional gene array for examining the relationships between microbial community structure and ecosystem functioning and is a very powerful technology for biogeochemical, ecological and environmental studies. The current version of GeoChip (GeoChip 5.0) contains approximately 162,000 probes from 378,000 genes involved in C, N, S and P cycling, organic contaminant degradation, metal resistance, antibiotic resistance, stress responses, metal homeostasis, virulence, pigment production, bacterial phage-mediated lysis, soil beneficial microorganisms, and specific probes for viruses, protists, and fungi. Our experimental results revealed that both ecosystem and CO2 significantly (p < 0.05) affected the functional composition, structure and metabolic potential of soil microbial communities with the ecosystem having much greater influence (~47%) than CO2 (~1.3%) or CO2 and ecosystem (~4.1%). On one hand, microbial responses to eCO2 shared some common patterns among different ecosystems, such as increased abundances for key functional genes involved in nitrogen fixation, carbon fixation and degradation, and denitrification. On the other hand, more ecosystem-specific microbial responses were identified in each individual ecosystem. Such changes in the soil microbial community structure were closely correlated with geographic distance, soil NO3-N, NH4-N and C/N ratio. Further metagenome sequencing analysis of soil microbial communities in one particular site showed eCO2 altered the overall structure of soil microbial communities with ambient CO2 samples retaining a higher functional gene diversity than eCO2 samples. Also the taxonomic diversity of functional genes decreased at eCO2. Random matrix theory (RMT)-based network analysis showed that the identified networks under ambient and elevated CO2 were substantially different in terms of overall network topology, network composition, node overlap, module preservation, module-based higher order organization (meta-modules), topological roles of individual nodes, and network hubs, indicating that elevated CO2 dramatically altered the network interactions among different phylogenetic and functional groups/populations. In addition, the changes in network structure were significantly correlated with soil carbon and nitrogen content, indicating the potential importance of network interactions in ecosystem functioning. Taken together, this study indicates that eCO2 may decrease the overall functional and taxonomic diversity of soil microbial communities, but such effects appeared to be ecosystem-specific, which makes it more challenging for predicting global or regional terrestrial ecosystems responses to eCO2.

  8. Sulfur transformations at the hydrogen sulfide/oxygen interface in stratified waters and in cyanobacterial mats

    NASA Technical Reports Server (NTRS)

    Cohen, Y.

    1985-01-01

    Stratified water bodies allow the development of several microbial plates along the water column. The microbial plates develop in relation to nutrient availability, light penetration, and the distribution of oxygen and sulfide. Sulfide is initially produced in the sediment by sulfate-reducing bacteria. It diffuses along the water column creating a zone of hydrogen sulfide/oxygen interface. In the chemocline of Solar Lake oxygen and sulfide coexist in a 0 to 10 cm layer that moves up and down during a diurnal cycle. The microbial plate at the chemocline is exposed to oxygen and hydrogen sulfide, alternating on a diurnal basis. The cyanobacteria occupying the interface switch from anoxygenic photosynthesis in the morning to oxygenic photosynthesis during the rest of the day which results in a temporal build up of elemental sulfur during the day and disappears at night due to both oxidation to thiosulfate and sulfate by thiobacilli, and reduction to hydrogen sulfide by Desulfuromonas sp. and anaerobically respiring cyanobacteria. Sulfate reduction was enhanced in the light at the surface of the cyanobacterial mats. Microsulfate reduction measurements showed enhanced activity of sulfate reduction even under high oxygen concentrations of 300 to 800 micrometer. Apparent aerobic SO sub 4 reduction activity is explained by the co-occurrence of H sub 2. The physiology of this apparent sulfate reduction activity is studied.

  9. Variations in microbial carbon sources and cycling in the deep continental subsurface

    NASA Astrophysics Data System (ADS)

    Simkus, Danielle N.; Slater, Greg F.; Lollar, Barbara Sherwood; Wilkie, Kenna; Kieft, Thomas L.; Magnabosco, Cara; Lau, Maggie C. Y.; Pullin, Michael J.; Hendrickson, Sarah B.; Wommack, K. Eric; Sakowski, Eric G.; van Heerden, Esta; Kuloyo, Olukayode; Linage, Borja; Borgonie, Gaetan; Onstott, Tullis C.

    2016-01-01

    Deep continental subsurface fracture water systems, ranging from 1.1 to 3.3 km below land surface (kmbls), were investigated to characterize the indigenous microorganisms and elucidate microbial carbon sources and their cycling. Analysis of phospholipid fatty acid (PLFA) abundances and direct cell counts detected varying biomass that was not correlated with depth. Compound-specific carbon isotope analyses (δ13C and Δ14C) of the phospholipid fatty acids (PLFAs) and carbon substrates combined with genomic analyses did identify, however, distinct carbon sources and cycles between the two depth ranges studied. In the shallower boreholes at circa 1 kmbls, isotopic evidence indicated microbial incorporation of biogenic CH4 by the in situ microbial community. At the shallowest site, 1.05 kmbls in Driefontein mine, this process clearly dominated the isotopic signal. At slightly deeper depths, 1.34 kmbls in Beatrix mine, the isotopic data indicated the incorporation of both biogenic CH4 and dissolved inorganic carbon (DIC) derived from CH4 oxidation. In both of these cases, molecular genetic analysis indicated that methanogenic and methanotrophic organisms together comprised a small component (<5%) of the microbial community. Thus, it appears that a relatively minor component of the prokaryotic community is supporting a much larger overall bacterial community in these samples. In the samples collected from >3 kmbls in Tau Tona mine (TT107, TT109 Bh2), the CH4 had an isotopic signature suggesting a predominantly abiogenic origin with minor inputs from microbial methanogenesis. In these samples, the isotopic enrichments (δ13C and Δ14C) of the PLFAs relative to CH4 were consistent with little incorporation of CH4 into the biomass. The most 13C-enriched PLFAs were observed in TT107 where the dominant CO2-fixation pathway was the acetyl-CoA pathway by non-acetogenic bacteria. The differences in the δ13C of the PLFAs and the DIC and DOC for TT109 Bh2 were ∼-24‰ and 0‰, respectively. The dominant CO2-fixation pathways were 3-HP/4-HB cycle > acetyl-CoA pathway > reductive pentose phosphate cycle.

  10. Responses of soil microbial activity to cadmium pollution and elevated CO2.

    PubMed

    Chen, Yi Ping; Liu, Qiang; Liu, Yong Jun; Jia, Feng An; He, Xin Hua

    2014-03-06

    To address the combined effects of cadmium (Cd) and elevated CO2 on soil microbial communities, DGGE (denaturing gradient gel electrophoresis) profiles, respiration, carbon (C) and nitrogen (N) concentrations, loessial soils were exposed to four levels of Cd, i.e., 0 (Cd0), 1.5 (Cd1.5), 3.0 (Cd3.0) and 6.0 (Cd6.0) mg Cd kg(-1) soil, and two levels of CO2, i.e., 360 (aCO2) and 480 (eCO2) ppm. Compared to Cd0, Cd1.5 increased fungal abundance but decreased bacterial abundance under both CO2 levels, whilst Cd3.0 and Cd6.0 decreased both fungal and bacterial abundance. Profiles of DGGE revealed alteration of soil microbial communities under eCO2. Soil respiration decreased with Cd concentrations and was greater under eCO2 than under aCO2. Soil total C and N were greater under higher Cd. These results suggest eCO2 could stimulate, while Cd pollution could restrain microbial reproduction and C decomposition with the restraint effect alleviated by eCO2.

  11. Changes in the microbial community during bioremediation of gasoline-contaminated soil.

    PubMed

    Leal, Aline Jaime; Rodrigues, Edmo Montes; Leal, Patrícia Lopes; Júlio, Aline Daniela Lopes; Fernandes, Rita de Cássia Rocha; Borges, Arnaldo Chaer; Tótola, Marcos Rogério

    We aimed to verify the changes in the microbial community during bioremediation of gasoline-contaminated soil. Microbial inoculants were produced from successive additions of gasoline to municipal solid waste compost (MSWC) previously fertilized with nitrogen-phosphorous. To obtain Inoculant A, fertilized MSWC was amended with gasoline every 3 days during 18 days. Inoculant B received the same application, but at every 6 days. Inoculant C included MSWC fertilized with N-P, but no gasoline. The inoculants were applied to gasoline-contaminated soil at 10, 30, or 50g/kg. Mineralization of gasoline hydrocarbons in soil was evaluated by respirometric analysis. The viability of the inoculants was evaluated after 103 days of storage under refrigeration or room temperature. The relative proportions of microbial groups in the inoculants and soil were evaluated by FAME. The dose of 50g/kg of inoculants A and B led to the largest CO 2 emission from soil. CO 2 emissions in treatments with inoculant C were inversely proportional to the dose of inoculant. Heterotrophic bacterial counts were greater in soil treated with inoculants A and B. The application of inoculants decreased the proportion of actinobacteria and increased of Gram-negative bacteria. Decline in the density of heterotrophic bacteria in inoculants occurred after storage. This reduction was bigger in inoculants stored at room temperature. The application of stored inoculants in gasoline-contaminated soil resulted in a CO 2 emission twice bigger than that observed in uninoculated soil. We concluded that MSWC is an effective material for the production of microbial inoculants for the bioremediation of gasoline-contaminated soil. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  12. Elevated CO2 benefits the soil microenvironment in the rhizosphere of Robinia pseudoacacia L. seedlings in Cd- and Pb-contaminated soils.

    PubMed

    Huang, Shuping; Jia, Xia; Zhao, Yonghua; Bai, Bo; Chang, Yafei

    2017-02-01

    Soil contamination by heavy metals in combination with elevated atmospheric CO 2 has important effects on the rhizosphere microenvironment by influencing plant growth. Here, we investigated the response of the R. pseudoacacia rhizosphere microenvironment to elevated CO 2 in combination with cadmium (Cd)- and lead (Pb)-contamination. Organic compounds (total soluble sugars, soluble phenolic acids, free amino acids, and organic acids), microbial abundance and activity, and enzyme activity (urease, dehydrogenase, invertase, and β-glucosidase) in rhizosphere soils increased significantly (p < 0.05) under elevated CO 2 relative to ambient CO 2 ; however, l-asparaginase activity decreased. Addionally, elevated CO 2 alone affected soil microbial community in the rhizosphere. Heavy metals alone resulted in an increase in total soluble sugars, free amino acids, and organic acids, a decrease in phenolic acids, microbial populations and biomass, and enzyme activity, and a change in microbial community in rhizosphere soils. Elevated CO 2 led to an increase in organic compounds, microbial populations, biomass, and activity, and enzyme activity (except for l-asparaginase), and changes in microbial community under Cd, Pb, or Cd + Pb treatments relative to ambient CO 2 . In addition, elevated CO 2 significantly (p < 0.05) enhanced the removal ratio of Cd and Pb in rhizosphere soils. Overall, elevated CO 2 benefited the rhizosphere microenvironment of R. pseudoacacia seedlings under heavy metal stress, which suggests that increased atmospheric CO 2 concentrations could have positive effects on soil fertility and rhizosphere microenvironment under heavy metals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Elevated atmospheric CO2 increases microbial growth rates and enzymes activity in soil

    NASA Astrophysics Data System (ADS)

    Blagodatskaya, Evgenia; Blagodatsky, Sergey; Dorodnikov, Maxim; Kuzyakov, Yakov

    2010-05-01

    Increasing the belowground translocation of assimilated carbon by plants grown under elevated CO2 can cause a shift in the structure and activity of the microbial community responsible for the turnover of organic matter in soil. We investigated the long-term effect of elevated CO2 in the atmosphere on microbial biomass and specific growth rates in root-free and rhizosphere soil. The experiments were conducted under two free air carbon dioxide enrichment (FACE) systems: in Hohenheim and Braunschweig, as well as in the intensively managed forest mesocosm of the Biosphere 2 Laboratory (B2L) in Oracle, AZ. Specific microbial growth rates (μ) were determined using the substrate-induced respiration response after glucose and/or yeast extract addition to the soil. We evaluated the effect of elevated CO2 on b-glucosidase, chitinase, phosphatase, and sulfatase to estimate the potential enzyme activity after soil amendment with glucose and nutrients. For B2L and both FACE systems, up to 58% higher μ were observed under elevated vs. ambient CO2, depending on site, plant species and N fertilization. The μ-values increased linearly with atmospheric CO2 concentration at all three sites. The effect of elevated CO2 on rhizosphere microorganisms was plant dependent and increased for: Brassica napus=Triticum aestivum

  14. High CO2 subsurface environment enriches for novel microbial lineages capable of autotrophic carbon fixation

    NASA Astrophysics Data System (ADS)

    Probst, A. J.; Jerett, J.; Castelle, C. J.; Thomas, B. C.; Sharon, I.; Brown, C. T.; Anantharaman, K.; Emerson, J. B.; Hernsdorf, A. W.; Amano, Y.; Suzuki, Y.; Tringe, S. G.; Woyke, T.; Banfield, J. F.

    2015-12-01

    Subsurface environments span the planet but remain little understood from the perspective of the capacity of the resident organisms to fix CO2. Here we investigated the autotrophic capacity of microbial communities in range of a high-CO2 subsurface environments via analysis of 250 near-complete microbial genomes (151 of them from distinct species) that represent the most abundant organisms over a subsurface depth transect. More than one third of the genomes belonged to the so-called candidate phyla radiation (CPR), which have limited metabolic capabilities. Approximately 30% of the community members are autotrophs that comprise 70% of the microbiome with metabolism likely supported by sulfur and nitrogen respiration. Of the carbon fixation pathways, the Calvin Benson Basham Cycle was most common, but the Wood-Ljungdhal pathway was present in the greatest phylogenetic diversity of organisms. Unexpectedly, one organism from a novel phylum sibling to the CPR is predicted to fix carbon by the reverse TCA cycle. The genome of the most abundant organism, an archaeon designated "Candidatus Altiarchaeum hamiconexum", was also found in subsurface samples from other continents including Europe and Asia. The archaeon was proven to be a carbon fixer using a novel reductive acetyl-CoA pathway. These results provide evidence that carbon dioxide is the major carbon source in these environments and suggest that autotrophy in the subsurface represents a substantial carbon dioxide sink affecting the global carbon cycle.

  15. Geochemistry of dissolved inorganic carbon in a Coastal Plain aquifer. 1. Sulfate from confining beds as an oxidant in microbial CO2 production

    USGS Publications Warehouse

    Chapelle, F.H.; McMahon, P.B.

    1991-01-01

    A primary source of dissolved inorganic carbon (DIC) in the Black Creek aquifer of South Carolina is carbon dioxide produced by microbially mediated oxidation of sedimentary organic matter. Groundwater chemistry data indicate, however, that the available mass of inorganic electron acceptors (oxygen, Fe(III), and sulfate) and observed methane production is inadequate to account for observed CO2 production. Although sulfate concentrations are low (approximately 0.05-0.10 mM) in aquifer water throughout the flow system, sulfate concentrations are greater in confining-bed pore water (0.4-20 mM). The distribution of culturable sulfate-reducing bacteria in these sediments suggests that this concentration gradient is maintained by greater sulfate-reducing activity in sands than in clays. Calculations based on Fick's Law indicate that possible rates of sulfate diffusion to aquifer sediments are sufficient to explain observed rates of CO2 production (about 10-5 mmoll-1 year-1), thus eliminating the apparent electron-acceptor deficit. Furthermore, concentrations of dissolved hydrogen in aquifer water are in the range characteristic of sulfate reduction (2-6 nM), which provides independent evidence that sulfate reduction is the predominant terminal electron-accepting process in this system. The observed accumulation of pyrite- and calcite-cemented sandstones at sand-clay interfaces is direct physical evidence that these processes have been continuing over the history of these sediments. ?? 1991.

  16. Transformation of ecofunctional parameters of soil microbial cenoses in clearings for power transmission lines in Central Siberia

    NASA Astrophysics Data System (ADS)

    Bogorodskaya, A. V.; Ponomareva, T. V.; Efimov, D. Yu.; Shishikin, A. S.

    2017-06-01

    Changes in soil microbial processes and phytocenotic parameters were studied in clearings made for power transmission lines in the subtaiga and southern taiga of Central Siberia. In these clearings, secondary meadow communities play the main environmental role. The substitution of meadow vegetation for forest vegetation, the increase in the phytomass by 40-120%, and the transformation of the hydrothermic regime in the clearings led to the intensification of the humus-accumulative process, growth of the humus content, reduction in acidity and oligotrophy of the upper horizons in the gray soils of the meadow communities, and more active microbial mineralization of organic matter. In the humus horizon of the soils under meadows, the microbial biomass (Cmicr) increased by 20-90%, and the intensity of basal respiration became higher by 60-90%. The values of the microbial metabolic quotient were also higher in these soils than in the soils under the native forests. In the 0- to 50-cm layer of the gray soils under the meadows, the total Cmicr reserves were 35-45% greater and amounted to 230-320 g/m3; the total microbial production of CO2 was 1.5-2 times higher than that in the soil of the adjacent forest and reached 770-840 mg CO2-C/m3 h. The predominance of mineralization processes in the soils under meadows in the clearings reflected changes in edaphic and trophic conditions of the soils and testified to an active inclusion of the herb falloff into the biological cycle.

  17. Distinct responses of soil microbial communities to elevated CO2 and O3 in a soybean agro-ecosystem

    PubMed Central

    He, Zhili; Xiong, Jinbo; Kent, Angela D; Deng, Ye; Xue, Kai; Wang, Gejiao; Wu, Liyou; Van Nostrand, Joy D; Zhou, Jizhong

    2014-01-01

    The concentrations of atmospheric carbon dioxide (CO2) and tropospheric ozone (O3) have been rising due to human activities. However, little is known about how such increases influence soil microbial communities. We hypothesized that elevated CO2 (eCO2) and elevated O3 (eO3) would significantly affect the functional composition, structure and metabolic potential of soil microbial communities, and that various functional groups would respond to such atmospheric changes differentially. To test these hypotheses, we analyzed 96 soil samples from a soybean free-air CO2 enrichment (SoyFACE) experimental site using a comprehensive functional gene microarray (GeoChip 3.0). The results showed the overall functional composition and structure of soil microbial communities shifted under eCO2, eO3 or eCO2+eO3. Key functional genes involved in carbon fixation and degradation, nitrogen fixation, denitrification and methane metabolism were stimulated under eCO2, whereas those involved in N fixation, denitrification and N mineralization were suppressed under eO3, resulting in the fact that the abundance of some eO3-supressed genes was promoted to ambient, or eCO2-induced levels by the interaction of eCO2+eO3. Such effects appeared distinct for each treatment and significantly correlated with soil properties and soybean yield. Overall, our analysis suggests possible mechanisms of microbial responses to global atmospheric change factors through the stimulation of C and N cycling by eCO2, the inhibition of N functional processes by eO3 and the interaction by eCO2 and eO3. This study provides new insights into our understanding of microbial functional processes in response to global atmospheric change in soybean agro-ecosystems. PMID:24108327

  18. Shifts in microbial use of carbon sources after 8 years of elevated CO2 and warming simulation in a semiarid grassland: linkages to soil C stocks

    NASA Astrophysics Data System (ADS)

    Carrillo, Y.; Dijkstra, F. A.; Pendall, E.

    2016-12-01

    Atmospheric CO2 and temperature will continue to increase in the future, potentially generating feedbacks to climate change. There is a high degree of uncertainty on the combined effects of CO2 and climate warming and on soil organic matter (SOM), which stores most terrestrial C. Although C input is an important driver of soil C dynamics, the use of this C by decomposer communities ultimately determines if inputs are retained in the ecosystem or lost to the atmosphere. We investigated impacts of eCO2 and warming on microbial assimilation and respiration of C at the Prairie Heating and CO2 Enrichment (PHACE) experiment in Wyoming, USA. We exposed this grassland to 8 years of free-air CO2 enrichment (FACE) and 7 years of warming. In this system, plant aboveground and belowground biomass were stimulated by eCO2 and this effect was enhanced by warming -with interannual variation. However, no changes in soil C have been detected. We evaluated microbial communities, heterotrophic respiration, susceptibility to priming when exposed to labile C, microbial N cycling and use of FACE-labelled C and pre-experimental soil C by individual microbial groups using 13C-PLFA.After 8 years of experimental manipulation we found main effects of both warming and eCO2, but mainly eCO2 the composition of the microbial community, specifically, an increase in the fungi to bacteria ratio. eCO2 led to greater soil respiration which was explained by a greater amount of substrate for decomposition as well as microbial biomass, both consistent with greater plant inputs. However, eCO2 led to lower susceptibility of C to priming, thus potentially counteracting enhanced respiration. Warming did not appear to have impacts on short-term total respiration or priming. However, it modified microbial use of C sources. Under eCO2 warming increased microbial use of FACE C (plant-derived C from the start of the CO2 treatment). We determined that this was explained by ca. 30% increase in the use of FACE-C by the bacterial groups (gram negative, gram positive and the actinobacteria), while the fungal use of C was not altered. Hence, increased plant inputs in future warmer, eCO2 conditions are likely being assimilated and rapidly respired by bacteria, leading to no significant changes in soil C.

  19. Methane sources and production in the northern Cascadia margin gas hydrate system

    USGS Publications Warehouse

    Pohlman, J.W.; Kaneko, M.; Heuer, V.B.; Coffin, R.B.; Whiticar, M.

    2009-01-01

    The oceanographic and tectonic conditions of accretionary margins are well-suited for several potential processes governing methane generation, storage and release. To identify the relevant methane evolution pathways in the northern Cascadia accretionary margin, a four-site transect was drilled during Integrated Ocean Drilling Program Expedition 311. The ??13C values of methane range from a minimum value of - 82.2??? on an uplifted ridge of accreted sediment near the deformation front (Site U1326, 1829 mbsl, meters below sea level) to a maximum value of - 39.5??? at the most landward location within an area of steep canyons near the shelf edge (Site U1329, 946 mbsl). An interpretation based solely on methane isotope values might conclude the 13C-enrichment of methane indicates a transition from microbially- to thermogenically-sourced methane. However, the co-existing CO2 exhibits a similar trend of 13C-enrichment along the transect with values ranging from - 22.5??? to +25.7???. The magnitude of the carbon isotope separation between methane and CO2 (??c = 63.8 ?? 5.8) is consistent with isotope fractionation during microbially mediated carbonate reduction. These results, in conjunction with a transect-wide gaseous hydrocarbon content composed of > 99.8% (by volume) methane and uniform ??DCH4 values (- 172??? ?? 8) that are distinct from thermogenic methane at a seep located 60 km from the Expedition 311 transect, suggest microbial CO2 reduction is the predominant methane source at all investigated sites. The magnitude of the intra-site downhole 13C-enrichment of CO2 within the accreted ridge (Site U1326) and a slope basin nearest the deformation front (Site U1325, 2195 mbsl) is ~ 5???. At the mid-slope site (Site U1327, 1304 mbsl) the downhole 13C-enrichment of the CO2 is ~ 25??? and increases to ~ 40??? at the near-shelf edge Site U1329. This isotope fractionation pattern is indicative of more extensive diagenetic alteration at sites with greater 13C-enrichment. The magnitude of the 13C-enrichment of CO2 correlates with decreasing sedimentation rates and a diminishing occurrence of stratigraphic gas hydrate. We suggest the decreasing sedimentation rates increase the exposure time of sedimentary organic matter to aerobic and anaerobic degradation, during burial, thereby reducing the availability of metabolizable organic matter available for methane production. This process is reflected in the occurrence and distribution of gas hydrate within the northern Cascadia margin accretionary prism. Our observations are relevant for evaluating methane production and the occurrence of stratigraphic gas hydrate within other convergent margins.

  20. Alternations of Structure and Functional Activity of Below Ground Microbial Communities at Elevated Atmospheric Carbon Dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Zhili; Xu, Meiying; Deng, Ye

    2010-05-17

    The global atmospheric concentration of CO2 has increased by more than 30percent since the industrial revolution. Although the stimulating effects of elevated CO2 (eCO2) on plant growth and primary productivity have been well studied, its influences on belowground microbial communities are poorly understood and controversial. In this study, we showed a significant change in the structure and functional potential of soil microbial communities at eCO2 in a grassland ecosystem, the BioCON (Biodiversity, CO2 and Nitrogen) experimental site (http://www.biocon.umn.edu/) using a comprehensive functional gene array, GeoChip 3.0, which contains about 28,0000 probes and covers approximately 57,000 gene variants from 292 functionalmore » gene families involved in carbon, nitrogen, phosphorus and sulfur cycles as well as other functional processes. GeoChip data indicated that the functional structure of microbial communities was markedly different between ambient CO2 (aCO2) and eCO2 by detrended correspondence analysis (DCA) of all 5001 detected functional gene probes although no significant differences were detected in the overall microbial diversity. A further analysis of 1503 detected functional genes involved in C, N, P, and S cycles showed that a considerable portion (39percent) of them were only detected under either aCO2 (14percent) or eCO2 (25percent), indicating that the functional characteristics of the microbial community were significantly altered by eCO2. Also, for those shared genes (61percent) detected, some significantly (p<0.05) changed their abundance at eCO2. Especially, genes involved in labile C degradation, such as amyA, egl, and ara for starch, cellulose, and hemicelluloses, respectively, C fixation (e.g., rbcL, pcc/acc), N fixation (nifH), and phosphorus utilization (ppx) were significantly increased under eCO2, while those involved in decomposing recalcitrant C, such as glx, lip, and mnp for lignin degradation remained unchanged. This study provides insights into our understanding of belowground microbial communities and their feedbacks to terrestrial ecosystems at eCO2.« less

  1. Influence of calcium on microbial reduction of solid phase uranium(VI).

    PubMed

    Liu, Chongxuan; Jeon, Byong-Hun; Zachara, John M; Wang, Zheming

    2007-08-15

    The effect of calcium on the dissolution and microbial reduction of a representative solid phase uranyl [U(VI)], sodium boltwoodite (NaUO(2)SiO(3)OH . 1.5H(2)O), was investigated to evaluate the rate-limiting step of microbial reduction of the solid phase U(VI). Microbial reduction experiments were performed in a culture of a dissimilatory metal-reducing bacterium (DMRB), Shewanella oneidensis strain MR-1, in a bicarbonate medium with lactate as electron donor at pH 6.8 buffered with PIPES. Calcium increased the rate of Na-boltwoodite dissolution and U(VI) bioavailability by increasing its solubility through the formation of a ternary aqueous calcium-uranyl-carbonate species. The ternary species, however, decreased the rates of microbial reduction of aqueous U(VI). Laser-induced fluorescence spectroscopy (LIFS) and transmission electron microscopy (TEM) collectively revealed that microbial reduction of solid phase U(VI) was a sequentially coupled process of Na-boltwoodite dissolution, U(VI) aqueous speciation, and microbial reduction of dissolved U(VI) to U(IV) that accumulated on bacterial surfaces/periplasm. Under studied experimental conditions, the overall rate of microbial reduction of solid phase U(VI) was limited by U(VI) dissolution reactions in solutions without calcium and limited by microbial reduction in solutions with calcium. Generally, the overall rate of microbial reduction of solid phase U(VI) was determined by the coupling of solid phase U(VI) dissolution, U(VI) aqueous speciation, and microbial reduction of dissolved U(VI) that were all affected by calcium. (c) 2007 Wiley Periodicals, Inc.

  2. Elevated CO2 shifts the functional structure and metabolic potentials of soil microbial communities in a C4 agroecosystem.

    PubMed

    Xiong, Jinbo; He, Zhili; Shi, Shengjing; Kent, Angela; Deng, Ye; Wu, Liyou; Van Nostrand, Joy D; Zhou, Jizhong

    2015-03-20

    Atmospheric CO2 concentration is continuously increasing, and previous studies have shown that elevated CO2 (eCO2) significantly impacts C3 plants and their soil microbial communities. However, little is known about effects of eCO2 on the compositional and functional structure, and metabolic potential of soil microbial communities under C4 plants. Here we showed that a C4 maize agroecosystem exposed to eCO2 for eight years shifted the functional and phylogenetic structure of soil microbial communities at both soil depths (0-5 cm and 5-15 cm) using EcoPlate and functional gene array (GeoChip 3.0) analyses. The abundances of key genes involved in carbon (C), nitrogen (N) and phosphorus (P) cycling were significantly stimulated under eCO2 at both soil depths, although some differences in carbon utilization patterns were observed between the two soil depths. Consistently, CO2 was found to be the dominant factor explaining 11.9% of the structural variation of functional genes, while depth and the interaction of depth and CO2 explained 5.2% and 3.8%, respectively. This study implies that eCO2 has profound effects on the functional structure and metabolic potential/activity of soil microbial communities associated with C4 plants, possibly leading to changes in ecosystem functioning and feedbacks to global change in C4 agroecosystems.

  3. Recovery of microbial community structure and functioning after wildfire in semi-arid environments: optimising methods for monitoring and assessment

    NASA Astrophysics Data System (ADS)

    Muñoz-Rojas, Miriam; Martini, Dylan; Erickson, Todd; Merritt, David; Dixon, Kingsley

    2015-04-01

    Introduction In semi-arid areas such as northern Western Australia, wildfires are a natural part of the environment and many ecosystems in these landscapes have evolved and developed a strong relationship with fire. Soil microbial communities play a crucial role in ecosystem processes by regulating the cycling of nutrients via decomposition, mineralization, and immobilization processes. Thus, the structure (e.g. soil microbial biomass) and functioning (e.g. soil microbial activity) of microbial communities, as well as their changes after ecosystem disturbance, can be useful indicators of soil quality and health recovery. In this research, we assess the impacts of fire on soil microbial communities and their recovery in a biodiverse semi-arid environment of Western Australia (Pilbara region). New methods for determining soil microbial respiration as an indicator of microbial activity and soil health are also tested. Methodology Soil samples were collected from 10 similar ecosystems in the Pilbara with analogous native vegetation, but differing levels of post-fire disturbance (i.e. 3 months, 1 year, 5, 7 and 14 years after wildfire). Soil microbial activity was measured with the Solvita test which determines soil microbial respiration rate based on the measurement of the CO2 burst of a dry soil after it is moistened. Soils were dried and re-wetted and a CO2 probe was inserted before incubation at constant conditions of 25°C during 24 h. Measurements were taken with a digital mini spectrometer. Microbial (bacteria and fungi) biomass and community composition were measured by phospholipid fatty acid analysis (PLFA). Results Immediately after the fire (i.e. 3 months), soil microbial activity and microbial biomass are similar to 14 years 'undisturbed' levels (53.18±3.68 ppm CO2-CO and 14.07±0.65 mg kg-1, respectively). However, after the first year post-fire, with larger plant productivity, microbial biomass and microbial activity increase rapidly, peaking after 5-7 years post fire (70.70±8.94 ppm CO2-CO and 21.67±2.62 mg kg-1, respectively). Microbial activity measured with the Solvita test was significantly correlated (R Pearson > 0.7; P < 0.001) with microbial parameters analysed with PLFA such as microbial biomass, bacteria biomass or mycorrhizhal fungi. This method has proven to be reliable, fast and easy to interpret for assessment of soil microbial activity in the recovery of soil quality during the recovery after fire. Keywords Pilbara region, biodiverse ecosystems, microbial biomass, microbial respiration, Solvita test, CO2 burst.

  4. Agriculture's impact on microbial diversity and associated fluxes of carbon dioxide and methane

    PubMed Central

    Levine, Uri Y; Teal, Tracy K; Robertson, G Philip; Schmidt, Thomas M

    2011-01-01

    Agriculture has marked impacts on the production of carbon dioxide (CO2) and consumption of methane (CH4) by microbial communities in upland soils—Earth's largest biological sink for atmospheric CH4. To determine whether the diversity of microbes that catalyze the flux of these greenhouse gases is related to the magnitude and stability of these ecosystem-level processes, we conducted molecular surveys of CH4-oxidizing bacteria (methanotrophs) and total bacterial diversity across a range of land uses and measured the in situ flux of CH4 and CO2 at a site in the upper United States Midwest. Conversion of native lands to row-crop agriculture led to a sevenfold reduction in CH4 consumption and a proportionate decrease in methanotroph diversity. Sites with the greatest stability in CH4 consumption harbored the most methanotroph diversity. In fields abandoned from agriculture, the rate of CH4 consumption increased with time along with the diversity of methanotrophs. Conversely, estimates of total bacterial diversity in soil were not related to the rate or stability of CO2 emission. These combined results are consistent with the expectation that microbial diversity is a better predictor of the magnitude and stability of processes catalyzed by organisms with highly specialized metabolisms, like CH4 oxidation, as compared with processes driven by widely distributed metabolic processes, like CO2 production in heterotrophs. The data also suggest that managing lands to conserve or restore methanotroph diversity could mitigate the atmospheric concentrations of this potent greenhouse gas. PMID:21490688

  5. Microbial activity in debris-rich basal ice; adaption to sub-zero, saline conditions

    NASA Astrophysics Data System (ADS)

    Montross, S. N.; Skidmore, M. L.; Christner, B. C.; Griggs, R.; Tison, J.; Sowers, T. A.

    2011-12-01

    Polycrystalline ice in glaciers and ice sheets has a high preservation potential for biological material and chemical compounds that can be used to document the presence of active microbial metabolism at sub-zero temperatures. The concentration and isotopic composition of gases, in conjunction with other aqueous chemical species in debris-rich basal glacier ice from Taylor Glacier, Antarctica were used as direct evidence that cells entrained in the ice remain metabolically active at temperatures as low as -17°C, likely in thin films of liquid water along ice crystal and mineral grain boundaries. δ18O2 and δ13CO2 values measured in the ice are consistent with the hypothesis that abrupt changes measured in O2 and CO2 concentrations between debris-rich and debris-poor ice are due to in situ microbial mineralization of organic carbon. Low temperature culture-based experiments conducted using organisms isolated from the ice indicate the ability to respire organic carbon to CO2 under oxic conditions and under anoxic conditions couple carbon mineralization to dissimilatory iron reduction using Fe3+ as an electron acceptor. Microorganisms that are active in the debris-rich basal ice layers in terrestrial polar ice masses need to be adapted to surviving subzero temperatures and saline conditions on extended timescales. Thus these terrestrial glacial systems and the isotopic and geochemical biomarkers therein provide good analogues for guiding exploration and analysis of debris-rich ices in extraterrestrial settings, for example, on Mars.

  6. Immobilization of a Metal-Nitrogen-Carbon Catalyst on Activated Carbon with Enhanced Cathode Performance in Microbial Fuel Cells.

    PubMed

    Yang, Wulin; Logan, Bruce E

    2016-08-23

    Applications of microbial fuel cells (MFCs) are limited in part by low power densities mainly due to cathode performance. Successful immobilization of an Fe-N-C co-catalyst on activated carbon (Fe-N-C/AC) improved the oxygen reduction reaction to nearly a four-electron transfer, compared to a twoelectron transfer achieved using AC. With acetate as the fuel, the maximum power density was 4.7±0.2 W m(-2) , which is higher than any previous report for an air-cathode MFC. With domestic wastewater as a fuel, MFCs with the Fe-N-C/AC cathode produced up to 0.8±0.03 W m(-2) , which was twice that obtained with a Pt-catalyzed cathode. The use of this Fe-N-C/AC catalyst can therefore substantially increase power production, and enable broader applications of MFCs for renewable electricity generation using waste materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Geochemical Sources of Energy for Chemolithoautotrophic Metabolisms in Global Hydrothermal Ecosystems

    NASA Astrophysics Data System (ADS)

    Lu, G. S.; Amend, J.; LaRowe, D.

    2017-12-01

    Chemolithoautotrophic microorganisms are important primary producers in hydrothermal environments. The potential catabolic energy sources that thermophilic chemolithoautotrophs can take advantage of can be quantified by combining analytical geochemical data and thermodynamic calculations. This approach explicitly considers how microbial communities are shaped by environmental conditions such as temperature, pressure, pH and the concentrations of electron donors and acceptors. In this study, we have calculated the Gibbs free energy available from 730 redox reactions in 30 terrestrial, shallow-sea, and deep-sea hydrothermal venting systems around the world (326 geochemical data sets) to better determine the relationship between microbial physiology and environment. The reactions with NO2-, O2, MnO2 and NO3- as terminal electron acceptors yield 5-20 kJ/mol e- more energy in terrestrial and shallow-sea hydrothermal systems than in deep-sea hydrothermal settings. However, reactions in which As5+, S0, FeS2 and SO42- as electron acceptors are more favorable by 5-30 kJ/mol e- in deep-sea hydrothermal systems than in the other two types of hydrothermal systems. The most exergonic reactions were predominantly NO2-, O2, MnO2 and NO3- reduction or Fe2+, pyrite, CO and CH4 oxidation. In contrast, reduction of N2, CO, and CO2 or oxidation of N2, Mn2+, and NO2-, though still often exergonic, yielded significantly less energy. Our results provide a comprehensive view of the distribution of energy supplies from redox reactions in high-temperature ecosystems on a global scale. Furthermore, the bioenergetic modeling carried out in this study can be used to test physiological predictions made from metagenomic and proteomic data sets, explore in situ biogeochemical interactions, predict possible but yet-to-be observed metabolisms and guide cultivation efforts.

  8. Influence of feedstock-to-inoculum ratio on performance and microbial community succession during solid-state thermophilic anaerobic co-digestion of pig urine and rice straw.

    PubMed

    Meng, Lingyu; Xie, Li; Kinh, Co Thi; Suenaga, Toshikazu; Hori, Tomoyuki; Riya, Shohei; Terada, Akihiko; Hosomi, Masaaki

    2018-03-01

    This study investigated the effect of the feedstock-to-inoculum (F/I) ratio on performance of the solid-state anaerobic co-digestion of pig urine and rice straw inoculated with a solid digestate, and clarified the microbial community succession. A 44-day biochemical methane potential test at F/I ratios of 0.5, 1, 2 and 3 at 55 °C and a 35-day large-scale batch test at F/I ratios of 0.5 and 3 at 55 °C were conducted to investigate the effects of F/I ratio on anaerobic digestibility and analyze microbial community succession, respectively. The highest cumulative methane yield was 353.7 m 3 /t VS in the large-scale batch test. Volatile fatty acids did not accumulate at any F/I ratios. The volatile solids reduction rate was highest at a F/I ratio of 0.5. Microbial community structures were similar between F/I ratios of 3 and 0.5, despite differences in digestion performance, suggesting that stable operation can be achieved at these ratios. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Relationships between water and gas chemistry in mature coalbed methane reservoirs of the Black Warrior Basin

    USGS Publications Warehouse

    Pashin, Jack C.; McIntyre-Redden, Marcella R.; Mann, Steven D.; Kopaska-Merkel, David C.; Varonka, Matthew S.; Orem, William H.

    2014-01-01

    Water and gas chemistry in coalbed methane reservoirs of the Black Warrior Basin reflects a complex interplay among burial processes, basin hydrodynamics, thermogenesis, and late-stage microbial methanogenesis. These factors are all important considerations for developing production and water management strategies. Produced water ranges from nearly potable sodium-bicarbonate water to hypersaline sodium-chloride brine. The hydrodynamic framework of the basin is dominated by structurally controlled fresh-water plumes that formed by meteoric recharge along the southeastern margin of the basin. The produced water contains significant quantities of hydrocarbons and nitrogen compounds, and the produced gas appears to be of mixed thermogenic-biogenic origin.Late-stage microbial methanogenesis began following unroofing of the basin, and stable isotopes in the produced gas and in mineral cements indicate that late-stage methanogenesis occurred along a CO2-reduction metabolic pathway. Hydrocarbons, as well as small amounts of nitrate in the formation water, probably helped nourish the microbial consortia, which were apparently active in fresh to hypersaline water. The produced water contains NH4+ and NH3, which correlate strongly with brine concentration and are interpreted to be derived from silicate minerals. Denitrification reactions may have generated some N2, which is the only major impurity in the coalbed gas. Carbon dioxide is a minor component of the produced gas, but significant quantities are dissolved in the formation water. Degradation of organic compounds, augmented by deionization of NH4+, may have been the principal sources of hydrogen facilitating late-stage CO2 reduction.

  10. Respiration-to-DNA ratio reflects physiological state of microorganisms in root-free and rhizosphere soil

    NASA Astrophysics Data System (ADS)

    Blagodatskaya, E.; Blagodatsky, S.; Kuzyakov, Y.

    2009-04-01

    The double-stranded DNA (dsDNA) content in soil can serve as a measure of microbial biomass under near steady-state conditions and quantitatively reflect the exponential microbial growth initiated by substrate addition. The yield of respired CO2 per microbial biomass unit (expressed as DNA content) could be a valuable physiological indicator reflecting state of soil microbial community. Therefore, investigations combining both analyses of DNA content and respiration of soil microorganisms under steady-state and during periods of rapid growth are needed. We studied the relationship between CO2 evolution and microbial dsDNA content in native and glucose-amended samples of root-free and rhizosphere soil under Beta vulgaris (Cambisol, loamy sand from the field experiment of the Institute of Agroecology FAL, Braunschweig, Germany). Quantity of dsDNA was determined by direct DNA isolation from soil with mechanic and enzymatic disruption of microbial cell walls with following spectrofluorimetric detection with PicoGreen (Blagodatskaya et al., 2003). Microbial biomass and the kinetic parameters of microbial growth were estimated by dynamics of the CO2 emission from soil amended with glucose and nutrients (Blagodatsky et al., 2000). The CO2 production rate was measured hourly at 22оС using an automated infrared-gas analyzer system. The overall increase in microbial biomass, DNA content, maximal specific growth rate and therefore, in the fraction of microorganisms with r-strategy were observed in rhizosphere as compared to bulk soil. The rhizosphere effect for microbial respiration, biomass and specific growth rate was more pronounced for plots with half-rate of N fertilizer compared to full N addition. The DNA content was significantly lower in bulk compared to rhizosphere soil both before and during microbial growth initiated by glucose amendment. Addition of glucose to the soil strongly increased the amount of CO2 respired per DNA unit. Without substrate addition the VCO2-to-total DNA ratios were lower than 0.1 µg CO2-C µg-1 total DNA h-1 whereas during exponential microbial growth these values increased consistently and exceeded 1 µg CO2-C µg-1 DNA h-1. Thus, the VCO2-to-total DNA ratio strongly changes along with the physiological state of soil microorganisms and can be used as valuable physiological parameter. In growing microorganisms the quantity of CO2 evolved per unit of newly formed DNA was identical in rhizosphere and root free soil and averaged for 13.5 ± 1.1 µg CO2-C µg-1 newly formed DNA. The CO2 yield per unit of newly formed DNA allows the estimation of microbial growth efficiency and validation of specific growth rates obtained during kinetic analysis of respiration curves. The study was supported by European Commission (Marie Curie IIF program, project MICROSOM) and by Alexander von Humboldt Foundation. References: Blagodatskaya EV, Blagodatskii SA, Anderson TH. 2003. Quantitative Isolation of Microbial DNA from Different Types of Soils of Natural and Agricultural Ecosystems. Microbiology 72(6):744-749. Blagodatsky SA, Heinemeyer O, Richter J. 2000. Estimating the active and total soil microbial biomass by kinetic respiration analysis. Biology and Fertility of Soils 32(1):73-81.

  11. Elevated CO2 shifts the functional structure and metabolic potentials of soil microbial communities in a C4 agroecosystem

    PubMed Central

    Xiong, Jinbo; He, Zhili; Shi, Shengjing; Kent, Angela; Deng, Ye; Wu, Liyou; Van Nostrand, Joy D.; Zhou, Jizhong

    2015-01-01

    Atmospheric CO2 concentration is continuously increasing, and previous studies have shown that elevated CO2 (eCO2) significantly impacts C3 plants and their soil microbial communities. However, little is known about effects of eCO2 on the compositional and functional structure, and metabolic potential of soil microbial communities under C4 plants. Here we showed that a C4 maize agroecosystem exposed to eCO2 for eight years shifted the functional and phylogenetic structure of soil microbial communities at both soil depths (0–5 cm and 5–15 cm) using EcoPlate and functional gene array (GeoChip 3.0) analyses. The abundances of key genes involved in carbon (C), nitrogen (N) and phosphorus (P) cycling were significantly stimulated under eCO2 at both soil depths, although some differences in carbon utilization patterns were observed between the two soil depths. Consistently, CO2 was found to be the dominant factor explaining 11.9% of the structural variation of functional genes, while depth and the interaction of depth and CO2 explained 5.2% and 3.8%, respectively. This study implies that eCO2 has profound effects on the functional structure and metabolic potential/activity of soil microbial communities associated with C4 plants, possibly leading to changes in ecosystem functioning and feedbacks to global change in C4 agroecosystems. PMID:25791904

  12. Perfluoroalkyl Acids Shift Microbial Community Structure Across Experimental Scales

    NASA Astrophysics Data System (ADS)

    Weathers, T. S.; Sharp, J.

    2016-12-01

    Perfluoroalkyl acids (PFAAs) are contaminants of emerging concern that have increasingly been found in groundwater and drinking water systems. Previously, we demonstrated that PFAAs significantly alter the abundance of specific microbial clades in batch reductive dechlorinating systems, resulting in decreased chlorinated solvent attenuation capabilities. To further understand the impacts of PFAA exposure on subsurface microbial processes and PFAA transport, we investigated changes in microbial community structure as a function of PFAA presence in flow-through columns simulating aquifer transport. Phylogenetic analysis using high throughput, next generation sequencing performed after exposure to 250 pore volumes of source zone concentrations of PFAAs (10 mg/L each of 11 analytes including PFOS and PFOA) resulted in patterns that mirrored those observed in batch systems, demonstrating a conservation of community dynamics across experimental scales. Of the nine clades observed in both batch and flow-through systems, six were similarly impacted as a function of PFAA exposure, regardless of the experimental differences in transport and redox state. Specifically, the presence of PFAAs enhanced the relative abundance of Archaea, Bacteroidetes (phylum), and the family Veillonellaceae in both systems. Repressed clades include the genus Sedimentibacter, Ruminococcaceae (family), and the Anaerolineales, which contains Dehalococcoides, a genus known for its ability to fully dechlorinate TCE. As PFAAs are often co-located with TCE and BTEX, changes in microbial community structure can result in hindered bioremediation of these co-contaminants. Consideration of community shifts and corresponding changes in behavior, such as repressed reductive dechlorination or increased biofilm formation, will aid in the development of conceptual site models that account for co-contaminant bioremediation potential and PFAA transport.

  13. Influence of Calcium on Microbial Reduction of Solid Phase Uranium (VI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chongxuan; Jeon, Byong-Hun; Zachara, John M.

    2007-06-27

    The effect of calcium on microbial reduction of a solid phase U(VI), sodium boltwoodite (NaUO2SiO3OH ∙1.5H2O), was evaluated in a culture of a dissimilatory metal-reducing bacterium (DMRB), Shewanella oneidensis strain MR-1. Batch experiments were performed in a non-growth bicarbonate medium with lactate as electron donor at pH 7 buffered with PIPES. Calcium increased both the rate and extent of Na-boltwoodite dissolution by increasing its solubility through the formation of a ternary aqueous calcium-uranyl-carbonate species. The ternary species, however, decreased the rates of microbial reduction of aqueous U(VI). Laser-induced fluorescence spectroscopy (LIFS) and transmission electron microscopy (TEM) revealed that microbial reductionmore » of solid phase U(VI) is a sequentially coupled process of Na-boltwoodite dissolution, U(VI) aqueous speciation, and microbial reduction of dissolved U(VI) to U(IV) that accumulated on bacterial surfaces/periplasm. The overall rates of microbial reduction of solid phase U(VI) can be described by the coupled rates of dissolution and microbial reduction that were both influenced by calcium. The results demonstrated that dissolved U(VI) concentration during microbial reduction was a complex function of solid phase U(VI) dissolution kinetics, aqueous U(VI) speciation, and microbial activity.« less

  14. Soil Biogeochemical and Microbial Feedbacks along a Snowmelt-Dominated Hillslope-to-Floodplain Transect in Colorado.

    NASA Astrophysics Data System (ADS)

    Sorensen, P.; Beller, H. R.; Bill, M.; Bouskill, N.; Brodie, E.; Chakraborty, R.; Conrad, M. E.; Karaoz, U.; Polussa, A.; Steltzer, H.; Wang, S.; Williams, K. H.; Wilmer, C.; Wu, Y.

    2017-12-01

    Nitrogen export from mountainous watersheds is a product of multiple interactions among hydrological processes and soil-microbial-plant feedbacks along the continuum from terrestrial to aquatic environments. In snow-dominated systems, like the East River Watershed (CO), seasonal processes such as snowmelt exert significant influence on the annual hydrologic cycle and may also link spatially distinct catchment subsystems, such as hillslope and adjoining riparian floodplains. Further, snowmelt is occurring earlier each year and this is predicted to result in a temporal asynchrony between historically coupled microbial nutrient release and plant nutrient demand in spring, with the potential to increase N export from the East River Watershed. Here we summarize biogeochemical data collected along a hillslope-to-riparian floodplain transect at the East River site. Starting in Fall 2016, we sampled soils at 3 depths and measured dissolved pools of soil nutrients (e.g., NH4+, NO3-, DOC, P), microbial biomass CN, and microbial community composition over a seasonal time course, through periods of snow accumulation, snowmelt, and plant senescence. Soil moisture content in the top 5 cm of floodplain soils was nearly 4X greater across sampling dates, coinciding with 2X greater microbial biomass C, larger extractable pools of NH4+, and smaller pools of NO3- in floodplain vs. hillslope soils. These results suggest that microbially mediated redox processes played an important role in N cycling along the transect. Hillslope vs. floodplain location also appeared to be a key factor that differentiated soil microbial communities (e.g., a more important factor than seasonality or soil depth or type). Snow accumulation and snowmelt exerted substantial influence on soil biogeochemistry. For example, microbial biomass accumulation increased about 2X beneath the winter snowpack. Snowmelt resulted in a precipitous crash in the microbial population, with 2.5X reductions in floodplain and 2X reductions in hillslope soils. Immediately following snowmelt, NO3- concentrations in soil porewater and soil extracts increased dramatically. Overall, these results suggest that N export is strongly influenced by distinct soil biogeochemical and microbiological patterns along hillslope-to-floodplain transects at East River.

  15. Prolonged shelf life and reduced drip loss of chicken filets by the use of carbon dioxide emitters and modified atmosphere packaging.

    PubMed

    Holck, Askild L; Pettersen, Marit K; Moen, Marie H; Sørheim, Oddvin

    2014-07-01

    Modified atmosphere packaging containing CO2 is widely used for extending the shelf life of chicken meat. Active packaging by adding CO2 emitter sachets to packages of meat is an alternative to traditional modified atmosphere packaging. The purpose of the study was to investigate the shelf life of chicken filets under different CO2 concentrations at 4°C storage. The inhibition of microbial growth was proportional to the CO2 concentration. Storage in 100% CO2 both with and without a CO2 emitter sachet gave a microbiological shelf-life extension of 7 days compared with 60% CO2. Carnobacterium divergens, Carnobacterium sp., and Lactococcus sp. were the dominating species at the end of the storage period. During storage in pure CO2, the carbon dioxide dissolved in the meat and caused the collapse of the packages. The resulting squeeze of the meat lead to a severe increase in drip loss. The drip loss was reduced profoundly by using the CO2 emitting sachet in the packages. The addition of CO2 emitters can easily be implemented at industrial packaging lines without reduction in production efficiency.

  16. The effects of elevated CO2 and eutrophication on surface elevation gain in a European salt marsh.

    PubMed

    Reef, Ruth; Spencer, Tom; Mӧller, Iris; Lovelock, Catherine E; Christie, Elizabeth K; McIvor, Anna L; Evans, Ben R; Tempest, James A

    2017-02-01

    Salt marshes can play a vital role in mitigating the effects of global environmental change by dissipating incident storm wave energy and, through accretion, tracking increasing water depths consequent upon sea level rise. Atmospheric CO 2 concentrations and nutrient availability are two key variables that can affect the biological processes that contribute to marsh surface elevation gain. We measured the effects of CO 2 concentrations and nutrient availability on surface elevation change in intact mixed-species blocks of UK salt marsh using six open-top chambers receiving CO 2 -enriched (800 ppm) or ambient (400 ppm) air. We found more rapid surface elevation gain in elevated CO 2 conditions: an average increase of 3.4 mm over the growing season relative to ambient CO 2 . Boosted regression analysis to determine the relative influence of different parameters on elevation change identified that a 10% reduction in microbial activity in elevated CO 2 -grown blocks had a positive influence on elevation. The biomass of Puccinellia maritima also had a positive influence on elevation, while other salt marsh species (e.g. Suaeda maritima) had no influence or a negative impact on elevation. Reduced rates of water use by the vegetation in the high CO 2 treatment could be contributing to elevation gain, either directly through reduced soil shrinkage or indirectly by decreasing microbial respiration rates due to lower redox levels in the soil. Eutrophication did not influence elevation change in either CO 2 treatment despite doubling aboveground biomass. The role of belowground processes (transpiration, root growth and decomposition) in the vertical adjustment of European salt marshes, which are primarily minerogenic in composition, could increase as atmospheric CO 2 concentrations rise and should be considered in future wetland models for the region. Elevated CO 2 conditions could enhance resilience in vulnerable systems such as those with low mineral sediment supply or where migration upwards within the tidal frame is constrained. © 2016 John Wiley & Sons Ltd.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sublette, K.L.

    With the continual increase in the utilization of high sulfur and high nitrogen containing fossil fuels, the release of airborne pollutants into the environment has become a critical problem. The fuel sulfur is converted to SO{sub 2} during combustion. Fuel nitrogen and a fraction of the nitrogen from the combustion air are converted to nitric oxide and nitrogen dioxide, NO{sub x}. For the past five years Combustion Engineering (now Asea Brown Boveri or ABB) and, since 1986, the University of Tulsa (TU) have been investigating the oxidation of H{sub 2}S by the facultatively anaerobic and autotrophic bacterium Thiobacillus denitrificans andmore » have developed a process, concept for the microbial removal of H{sub 2}S from a gas stream the simultaneous removal of SO{sub 2} and NO by D. desulfuricans and T. denitrificans co-cultures and cultures-in-series was demonstrated. These systems could not be sustained due to NO inhibition of D. desulfuricans. However, a preliminary economic analysis has shown that microbial reduction of SO{sub 2} to H{sub 2}S with subsequent conversion to elemental sulfur by the Claus process is both technically and economically feasible if a less expensive carbon and/or energy source can be found. It has also been demonstrated that T. denitrificans can be grown anaerobically on NO(g) as a terminal electron acceptor with reduction to elemental nitrogen. Microbial reduction of NO{sub x} is a viable process concept for the disposal of concentrated streams of NO{sub x} as may be produced by certain regenerable processes for the removal of SO{sub 2} and NO{sub x} from flue gas.« less

  18. Solar-to-chemical and solar-to-fuel production from CO2 by metabolically engineered microorganisms.

    PubMed

    Woo, Han Min

    2017-06-01

    Recent development of carbon capture utilization (CCU) for reduction of greenhouse gas emission are reviewed. In the case of CO 2 utilization, I describe development of solar-to-chemical and solar-to-fuel technology that refers to the use of solar energy to convert CO 2 to desired chemicals and fuels. Photoautotrophic cyanobacterial platforms have been extensively developed on this principle, producing a diverse range of alcohols, organic acids, and isoprenoids directly from CO 2 . Recent breakthroughs in the metabolic engineering of cyanobacteria were reviewed. In addition, adoption of the light harvesting mechanisms from nature, photovoltaics-derived water splitting technologies have recently been integrated with microbial biotechnology to produce desired chemicals. Studies on the integration of electrode material with next-generation microbes are showcased for alternative solar-to-chemical and solar-to-fuel platforms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Microbial Growth under Supercritical CO2

    PubMed Central

    Peet, Kyle C.; Freedman, Adam J. E.; Hernandez, Hector H.; Britto, Vanya; Boreham, Chris; Ajo-Franklin, Jonathan B.

    2015-01-01

    Growth of microorganisms in environments containing CO2 above its critical point is unexpected due to a combination of deleterious effects, including cytoplasmic acidification and membrane destabilization. Thus, supercritical CO2 (scCO2) is generally regarded as a sterilizing agent. We report isolation of bacteria from three sites targeted for geologic carbon dioxide sequestration (GCS) that are capable of growth in pressurized bioreactors containing scCO2. Analysis of 16S rRNA genes from scCO2 enrichment cultures revealed microbial assemblages of varied complexity, including representatives of the genus Bacillus. Propagation of enrichment cultures under scCO2 headspace led to isolation of six strains corresponding to Bacillus cereus, Bacillus subterraneus, Bacillus amyloliquefaciens, Bacillus safensis, and Bacillus megaterium. Isolates are spore-forming, facultative anaerobes and capable of germination and growth under an scCO2 headspace. In addition to these isolates, several Bacillus type strains grew under scCO2, suggesting that this may be a shared feature of spore-forming Bacillus spp. Our results provide direct evidence of microbial activity at the interface between scCO2 and an aqueous phase. Since microbial activity can influence the key mechanisms for permanent storage of sequestered CO2 (i.e., structural, residual, solubility, and mineral trapping), our work suggests that during GCS microorganisms may grow and catalyze biological reactions that influence the fate and transport of CO2 in the deep subsurface. PMID:25681188

  20. Characterizing thermogenic coalbed gas from Polish coals of different ranks by hydrous pyrolysis

    USGS Publications Warehouse

    Kotarba, M.J.; Lewan, M.D.

    2004-01-01

    To provide a better characterization of origin and volume of thermogenic gas generation from coals, hydrous pyrolysis experiments were conducted at 360??C for 72 h on Polish coals ranging in rank from lignite (0.3% R r) to semi-anthracite (2.0% Rr). Under these conditions, the lignites attained a medium-volatile bituminous rank (1.5% Rr), high-volatile bituminous coals attained a low-volatile bituminous rank (1.7% Rr), and the semi-anthracite obtained an anthracite rank (4.0% R r). Hydrous pyrolysis of a coal, irrespective of rank, provides a diagnostic ??13C value for its thermogenic hydrocarbon gases. This value can be used quantitatively to interpret mixing of indigenous thermogenic gas with microbial methane or exogenous thermogenic gas from other sources. Thermogenic methane quantities range from 20 dm3/kg of lignite (0.3% Rr) to 0.35 dm3/kg of semi-anthracite (2.0% Rr). At a vitrinite reflectance of 1.7% Rr, approximately 75% of the maximum potential for a coal to generate thermogenic methane has been expended. At a vitrinite reflectance of 1.7% Rr, more than 90% of the maximum potential for a coal to generate CO2 has been expended. Assuming that these quantities of generated CO2 remain associated with a sourcing coal bed as uplift or erosion provide conditions conducive for microbial methanogenesis, the resulting quantities of microbial methane generated by complete CO2 reduction can exceed the quantities of thermogenic methane generated from the same coal bed by a factor of 2-5. ?? 2004 Elsevier Ltd. All rights reserved.

  1. Biochar in co-contaminated soil manipulates arsenic solubility and microbiological community structure, and promotes organochlorine degradation.

    PubMed

    Gregory, Samuel J; Anderson, Christopher W N; Camps-Arbestain, Marta; Biggs, Patrick J; Ganley, Austen R D; O'Sullivan, Justin M; McManus, Michael T

    2015-01-01

    We examined the effect of biochar on the water-soluble arsenic (As) concentration and the extent of organochlorine degradation in a co-contaminated historic sheep-dip soil during a 180-d glasshouse incubation experiment. Soil microbial activity, bacterial community and structure diversity were also investigated. Biochar made from willow feedstock (Salix sp) was pyrolysed at 350 or 550°C and added to soil at rates of 10 g kg-1 and 20 g kg-1 (representing 30 t ha-1 and 60 t ha-1). The isomers of hexachlorocyclohexane (HCH) alpha-HCH and gamma-HCH (lindane), underwent 10-fold and 4-fold reductions in concentration as a function of biochar treatment. Biochar also resulted in a significant reduction in soil DDT levels (P < 0.01), and increased the DDE:DDT ratio. Soil microbial activity was significantly increased (P < 0.01) under all biochar treatments after 60 days of treatment compared to the control. 16S amplicon sequencing revealed that biochar-amended soil contained more members of the Chryseobacterium, Flavobacterium, Dyadobacter and Pseudomonadaceae which are known bioremediators of hydrocarbons. We hypothesise that a recorded short-term reduction in the soluble As concentration due to biochar amendment allowed native soil microbial communities to overcome As-related stress. We propose that increased microbiological activity (dehydrogenase activity) due to biochar amendment was responsible for enhanced degradation of organochlorines in the soil. Biochar therefore partially overcame the co-contaminant effect of As, allowing for enhanced natural attenuation of organochlorines in soil.

  2. Short-term responses and resistance of soil microbial community structure to elevated CO2 and N addition in grassland mesocosms.

    PubMed

    Simonin, Marie; Nunan, Naoise; Bloor, Juliette M G; Pouteau, Valérie; Niboyet, Audrey

    2017-05-01

    Nitrogen (N) addition is known to affect soil microbial communities, but the interactive effects of N addition with other drivers of global change remain unclear. The impacts of multiple global changes on the structure of microbial communities may be mediated by specific microbial groups with different life-history strategies. Here, we investigated the combined effects of elevated CO2 and N addition on soil microbial communities using PLFA profiling in a short-term grassland mesocosm experiment. We also examined the linkages between the relative abundance of r- and K-strategist microorganisms and resistance of the microbial community structure to experimental treatments. N addition had a significant effect on microbial community structure, likely driven by concurrent increases in plant biomass and in soil labile C and N. In contrast, microbial community structure did not change under elevated CO2 or show significant CO2 × N interactions. Resistance of soil microbial community structure decreased with increasing fungal/bacterial ratio, but showed a positive relationship with the Gram-positive/Gram-negative bacterial ratio. Our findings suggest that the Gram-positive/Gram-negative bacteria ratio may be a useful indicator of microbial community resistance and that K-strategist abundance may play a role in the short-term stability of microbial communities under global change. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Inhibitory Effects of Sulfate and Nitrate Reduction on Reductive Dechlorination of PCP in a Flooded Paddy Soil

    PubMed Central

    Xu, Yan; Xue, Lili; Ye, Qi; Franks, Ashley E.; Zhu, Min; Feng, Xi; Xu, Jianming; He, Yan

    2018-01-01

    Pentachlorophenol (PCP) is highly toxic and persistent in soils. Bioreduction of PCP often co-occurs with varying concentrations of sulfate and nitrate in flooded paddy soils where each can act as an electron acceptor. Anaerobic soil microcosms were constructed to evaluate the influence of sulfate and nitrate amendments and their redox processes. Microcosms with varying sulfate and nitrate concentrations demonstrated an inhibitory effect on reductive dechlorination of PCP compared to an untreated control. Compared to nitrate, sulfate exhibited a more significant impact on PCP dechlorination, as evidenced by a lower maximum reaction rate and a longer time to reach the maximum reaction rate. Dechlorination of PCP was initiated at the ortho-position, and then at the para- and meta-positions to form 3-CP as the final product in all microcosms. Deep sequencing of microbial communities in the microcosms revealed a strong variation in bacterial taxon among treatments. Specialized microbial groups, such as the genus of Desulfovibrio responding to the addition of sulfate, had a potential to mediate the competitive microbial dechlorination of PCP. Our results provide an insight into the competitive microbial-mediated reductive dechlorination of PCP in natural flooded soil or sediment environments. PMID:29643842

  4. Single-Cell Imaging and Spectroscopic Analyses of Cr(VI) Reduction on the Surface of Bacterial Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yuanmin; Sevinc, Papatya C.; Belchik, Sara M.

    2013-01-22

    We investigate single-cell reduction of toxic Cr(VI) by the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1 (MR-1), an important bioremediation process, using Raman spectroscopy and scanning electron microscopy (SEM) combined with energy-dispersive X-ray spectroscopy (EDX). Our experiments indicate that the toxic and highly soluble Cr(VI) can be efficiently reduced to the less toxic and non-soluble Cr2O3 nanoparticles by MR-1. Cr2O3 is observed to emerge as nanoparticles adsorbed on the cell surface and its chemical nature is identified by EDX imaging and Raman spectroscopy. Co-localization of Cr2O3 and cytochromes by EDX imaging and Raman spectroscopy suggests a terminal reductase role for MR-1more » surface-exposed cytochromes MtrC and OmcA. Our experiments revealed that the cooperation of surface proteins OmcA and MtrC makes the reduction reaction most efficient, and the sequence of the reducing reactivity of the MR-1 is: wild type > single mutant @mtrC or mutant @omcA > double mutant (@omcA-@mtrC). Moreover, our results also suggest that the direct microbial Cr(VI) reduction and Fe(II) (hematite)-mediated Cr(VI) reduction mechanisms may co-exist in the reduction processes.« less

  5. Microbial Degradation of Propylene Glycol - Modelling Approach of a Batch Experiment

    NASA Astrophysics Data System (ADS)

    Dathe, Annette; Fernandez, Perrine; Bakken, Lars; Bloem, Esther; French, Helen

    2016-04-01

    De-icing chemicals are applied in large amounts at airports during winter conditions to keep the runways and aircrafts ice-free. At Gardermoen airport, Norway, most of the applied chemicals can be captured, but about 10 to 20 % infiltrate into the soil along the runways and during take-off. While the commonly used propylene glycol (PG) is easily degradable by local microbial communities, its biological oxygen demand is high, anoxic zones can develop and soluble Fe+2 and Mn+2 ions eventually can reach the groundwater. The objectives of the presented study are to quantify the mechanisms, which control the order of reduction processes in an unsaturated sandy soil, and to test whether measured redox potentials can help to determine underlying biogeochemical reactions. To investigate the mechanisms of microbial degradation, the water phase of soil samples from Gardermoen Airport was replaced by deionized water with 10 mMol PG or 10 mMol glutamate and the samples were incubated at 10°C for about two weeks. The gas phase was sampled and analyzed automatically every three hours. Microbial degradation of the substrate (PG or glutamate) was modelled following a Monod kinetics using the FME (Flexible Modelling Environment) package of R (Project for Statistical Computing). The model was calibrated against measurements of O2 depletion and CO2 production. The initial concentrations of O2, CO2 and PG or glutamate are known and microbial yields and stoichiometric constants can be calculated from the measurements. Parameter values for the initial microbial population size, maximum microbial growth rate, the half saturation constant, and microbial degradation and respiration rates were fitted using the FME package. The model accounts for carbon from the substrate (PG or glutamate) incorporated into the biomass. Results are promising, but because of the large number of parameters needed to fit a Monod kinetics it is challenging to accurately model a whole redox sequence. The ultimate goal of implementing PG degrading processes into a soil water transport model is still a challenge, and simpler approaches like a first- and second order kinetic are investigated and compared to the behavior of the Monod kinetic.

  6. Simultaneous electricity generation and microbially-assisted electrosynthesis in ceramic MFCs.

    PubMed

    Gajda, Iwona; Greenman, John; Melhuish, Chris; Ieropoulos, Ioannis

    2015-08-01

    To date, the development of microbially assisted synthesis in Bioelectrochemical Systems (BESs) has focused on mechanisms that consume energy in order to drive the electrosynthesis process. This work reports--for the first time--on novel ceramic MFC systems that generate electricity whilst simultaneously driving the electrosynthesis of useful chemical products. A novel, inexpensive and low maintenance MFC demonstrated electrical power production and implementation into a practical application. Terracotta based tubular MFCs were able to produce sufficient power to operate an LED continuously over a 7 day period with a concomitant 92% COD reduction. Whilst the MFCs were generating energy, an alkaline solution was produced on the cathode that was directly related to the amount of power generated. The alkaline catholyte was able to fix CO2 into carbonate/bicarbonate salts. This approach implies carbon capture and storage (CCS), effectively capturing CO2 through wet caustic 'scrubbing' on the cathode, which ultimately locks carbon dioxide. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Use of Acetate, Propionate, and Butyrate for Reduction of Nitrate and Sulfate and Methanogenesis in Microcosms and Bioreactors Simulating an Oil Reservoir

    PubMed Central

    Shen, Yin; An, Dongshan; Voordouw, Gerrit

    2017-01-01

    ABSTRACT Acetate, propionate, and butyrate (volatile fatty acids [VFA]) occur in oil field waters and are frequently used for microbial growth of oil field consortia. We determined the kinetics of use of these VFA components (3 mM each) by an anaerobic oil field consortium in microcosms containing 2 mM sulfate and 0, 4, 6, 8, or 13 mM nitrate. Nitrate was reduced first, with a preference for acetate and propionate. Sulfate reduction then proceeded with propionate (but not butyrate) as the electron donor, whereas the fermentation of butyrate (but not propionate) was associated with methanogenesis. Microbial community analyses indicated that Paracoccus and Thauera (Paracoccus-Thauera), Desulfobulbus, and Syntrophomonas-Methanobacterium were the dominant taxa whose members catalyzed these three processes. Most-probable-number assays showed the presence of up to 107/ml of propionate-oxidizing sulfate-reducing bacteria (SRB) in waters from the Medicine Hat Glauconitic C field. Bioreactors with the same concentrations of sulfate and VFA responded similarly to increasing concentrations of injected nitrate as observed in the microcosms: sulfide formation was prevented by adding approximately 80% of the nitrate dose needed to completely oxidize VFA to CO2 in both. Thus, this work has demonstrated that simple time-dependent observations of the use of acetate, propionate, and butyrate for nitrate reduction, sulfate reduction, and methanogenesis in microcosms are a good proxy for these processes in bioreactors, monitoring of which is more complex. IMPORTANCE Oil field volatile fatty acids acetate, propionate, and butyrate were specifically used for nitrate reduction, sulfate reduction, and methanogenic fermentation. Time-dependent analyses of microcosms served as a good proxy for these processes in a bioreactor, mimicking a sulfide-producing (souring) oil reservoir: 80% of the nitrate dose required to oxidize volatile fatty acids to CO2 was needed to prevent souring in both. Our data also suggest that propionate is a good substrate to enumerate oil field SRB. PMID:28130297

  8. Reducing oyster-associated bacteria levels using supercritical fluid CO2 as an agent of warm pasteurization.

    PubMed

    Meujo, Damaris A F; Kevin, Dion A; Peng, Jiangnan; Bowling, John J; Liu, Jianping; Hamann, Mark T

    2010-03-31

    An innovative approach to Post-Harvest Processing (PHP) of oysters is introduced focusing on the effects of supercritical carbon dioxide (scCO(2)) on bacterial contaminants trapped in the digestive system of oysters. Oysters were exposed to scCO(2) under two conditions: (1) 100 bar and 37 degrees C for 30 min and (2) 172 bar and 60 degrees C for 60 min. Using FDA standard guidelines for food analysis, variations in the Aerobic Plate Count (APC) were assessed. It was established that exposing oysters to CO(2) at 100 bar and 37 degrees C for 30 min and at 172 bar and 60 degrees C for 60 min induced 2-log and 3-log reductions in the APC respectively. The decrease in the microbial load as a result of treatment with scCO(2) was found to be significant (P=0.002). A release of adductor muscles from the shell was noted in oysters treated at 172 bar and 60 degrees C for 60 min; this was not the case for oysters treated at 100 bar and 37 degrees C for 30 min. A blind study allowing sensory analysis of treated vs. untreated oysters was also completed and no significant change in the physical appearance, smell, or texture was recorded. In this paper, we also report the effect of scCO(2) on several bacterial isolates, including a referenced ATCC strain of a non-pathogenic Vibrio (Vibrio fischeri) as well as several other bacterial isolates cultured from oyster' tissues and found to share biochemical features common to pathogenic Vibrio strains. A complete inactivation (minimum 7-log reduction) was achieved with these latter bacterial isolates. A 6-log reduction was observed with V. fischeri. Copyright 2009 Elsevier B.V. All rights reserved.

  9. Reducing Oyster-Associated Bacteria Levels Using Supercritical Fluid CO2 as an Agent of Warm Pasteurization

    PubMed Central

    Meujo, Damaris A.F.; Kevin, Dion; Peng, Jiangnan; Bowling, John J.; Liu, Jianping; Hamann, Mark T.

    2010-01-01

    An innovative approach to Post-Harvest Processing (PHP) of oysters is introduced focusing on the effects of supercritical carbon dioxide (scCO2) on bacterial contaminants trapped in the digestive system of oysters. Oysters were exposed to scCO2 under two conditions: (1) 100 bar and 37 °C for 30 minutes and (2) 172 bar and 60 °C for 60 minutes. Using FDA standard guidelines for food analysis, variations in the Aerobic Plate Count (APC) was assessed. It was established that exposing oysters to CO2 at 100 bar and 37 °C for 30 minutes and at 172 bar and 60°C for 60 minutes induced 2-log and 3-log reductions in the APC respectively. The decrease in the microbial load as a result of treatment with scCO2 was found to be significant (P=0.002). A release of adductor muscles from the shell was noted in oysters treated at 172 bar and 60 °C for 60 minutes; this was not the case for oysters treated at 100 bar and 37 °C for 30 minutes. A blind study allowing sensory analysis of treated vs. untreated oysters was also completed and no significant change in the physical appearance, smell, or texture was recorded. In this paper, we also report the effect of scCO2 on several bacterial isolates, including a referenced ATCC strain of a non pathogenic Vibrio (V. fisherii) as well as several other bacterial isolates cultured from oyster’ tissues and found to share biochemical features common to pathogenic Vibrio strains. A complete inactivation (minimum 7-log reduction) was achieved with these latter bacterial isolates. A 6-log reduction was observed with V. fisherii. PMID:20022650

  10. Synchronous microbial vanadium (V) reduction and denitrification in groundwater using hydrogen as the sole electron donor.

    PubMed

    Jiang, Yufeng; Zhang, Baogang; He, Chao; Shi, Jiaxin; Borthwick, Alistair G L; Huang, Xueyang

    2018-05-21

    Groundwater co-contaminated by vanadium (V) (V(V)) and nitrate requires efficient remediation to prevent adverse environmental impacts. However, little is known about simultaneous bio-reductions of V(V) and nitrate supported by gaseous electron donors in aquifers. This study is among the first to examine microbial V(V) reduction and denitrification with hydrogen as the sole electron donor. V(V) removal efficiency of 91.0 ± 3.2% was achieved in test bioreactors within 7 d, with synchronous, complete removal of nitrate. V(V) was reduced to V(IV), which precipitated naturally under near-neutral conditions, and nitrate tended to be converted to nitrogen, both of which processes helped to purify the groundwater. Volatile fatty acids (VFAs) were produced from hydrogen oxidation. High-throughput 16S rRNA gene sequencing and metagenomic analyses revealed the evolutionary behavior of microbial communities and functional genes. The genera Dechloromonas and Hydrogenophaga promoted bio-reductions of V(V) and nitrate directly coupled to hydrogen oxidation. Enriched Geobacter and denitrifiers also indicated synergistic mechanism, with VFAs acting as organic carbon sources for heterotrophically functional bacteria while reducing V(V) and nitrate. These findings are likely to be useful in revealing biogeochemical fates of V(V) and nitrate in aquifer and developing technology for removing them simultaneously from groundwater. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Manganese dioxide as a new cathode catalyst in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Hu, Boxun; Suib, Steven; Lei, Yu; Li, Baikun

    This study focused on manganese oxides with a cryptomelane-type octahedral molecular sieve (OMS-2) structure to replace platinum as a cathode catalyst in microbial fuel cells (MFCs). Undoped (ud-OSM-2) and three catalysts doped with cobalt (Co-OMS-2), copper (Cu-OMS-2), and cerium (Ce-OMS-2) to enhance their catalytic performances were investigated. The novel OMS-2 cathodes were examined in granular activated carbon MFC (GACMFC) with sodium acetate as the anode reagent and oxygen in air as the cathode reagent. The results showed that after 400 h of operation, the Co-OMS-2 and Cu-OMS-2 exhibited good catalytic performance in an oxygen reduction reaction (ORR). The voltage of the Co-OMS-2 GACMFC was 217 mV, and the power density was 180 mW m -2. The voltage of the Cu-OMS-2 GACMFC was 214 mV and the power density was 165 mW m -2. The internal resistance (R in) of the OMS-2 GACMFCs (18 ± 1 Ω) was similar to that of the platinum GACMFCs (17 Ω). Furthermore, the degradation rates of organic substrates in the OMS-2 GACMFCs were twice those in the platinum GACMFCs, which enhance their wastewater treatment efficiencies. This study indicated that using OMS-2 manganese oxides to replace platinum as a cathodic catalyst enhances power generation, increases contaminant removal, and substantially reduces the cost of MFCs.

  12. Radioisotope tracer studies of inorganic carbon and Ca in microbially derived CaCO3

    USGS Publications Warehouse

    Yates, Kimberly K.; Robbins, Lisa L.

    1999-01-01

    Microbial calcification significantly impacts the cycling and deposition of inorganic carbon. This research employs 45Ca and 14C techniques as radioisotopic tracers to examine the role of cellular cycling of Ca2+ and inorganic carbon in CaCO3 precipitation by the unicellular green alga Nannochloris atomus. Implications of the effects of these physiological aspects on CaCO3 precipitation and the effects of microbial calcification on CaCO3 δ13C ratios are discussed. Results from pulse/chase experiments indicate that intracellular Ca2+ is incorporated into extracellular CaCO3. Intracellular inorganic carbon leaks from cells within 10 to 12 s after injection of unlabelled NaHCO3, providing a source of inorganic carbon for extracellular CaCO3. Cellular expulsion of calcium plays a key role in increasing the CaCO3 saturation state at the site of calcification. The δ13C ratios of microbial carbonates may vary depending on the amount of photorespiratory CO2 incorporated.

  13. Methane sources and production in the northern Cascadia margin gas hydrate system

    USGS Publications Warehouse

    Pohlman, John; Kaneko, Masanori; Heuer, Verena B.; Coffin, Richard B.; Whiticar, Michael

    2009-01-01

    The oceanographic and tectonic conditions of accretionary margins are well-suited for several potential processes governing methane generation, storage and release. To identify the relevant methane evolution pathways in the northern Cascadia accretionary margin, a four-site transect was drilled during Integrated Ocean Drilling Program Expedition 311. The δ13C values of methane range from a minimum value of − 82.2‰ on an uplifted ridge of accreted sediment near the deformation front (Site U1326, 1829 mbsl, meters below sea level) to a maximum value of − 39.5‰ at the most landward location within an area of steep canyons near the shelf edge (Site U1329, 946 mbsl). An interpretation based solely on methane isotope values might conclude the 13C-enrichment of methane indicates a transition from microbially- to thermogenically-sourced methane. However, the co-existing CO2 exhibits a similar trend of 13C-enrichment along the transect with values ranging from − 22.5‰ to +25.7‰. The magnitude of the carbon isotope separation between methane and CO2 (εc = 63.8 ± 5.8) is consistent with isotope fractionation during microbially mediated carbonate reduction. These results, in conjunction with a transect-wide gaseous hydrocarbon content composed of > 99.8% (by volume) methane and uniform δDCH4 values (− 172‰ ± 8) that are distinct from thermogenic methane at a seep located 60 km from the Expedition 311 transect, suggest microbial CO2 reduction is the predominant methane source at all investigated sites. The magnitude of the intra-site downhole 13C-enrichment of CO2 within the accreted ridge (Site U1326) and a slope basin nearest the deformation front (Site U1325, 2195 mbsl) is ~ 5‰. At the mid-slope site (Site U1327, 1304 mbsl) the downhole 13C-enrichment of the CO2 is ~ 25‰ and increases to ~ 40‰ at the near-shelf edge Site U1329. This isotope fractionation pattern is indicative of more extensive diagenetic alteration at sites with greater 13C-enrichment. The magnitude of the 13C-enrichment of CO2 correlates with decreasing sedimentation rates and a diminishing occurrence of stratigraphic gas hydrate. We suggest the decreasing sedimentation rates increase the exposure time of sedimentary organic matter to aerobic and anaerobic degradation, during burial, thereby reducing the availability of metabolizable organic matter available for methane production. This process is reflected in the occurrence and distribution of gas hydrate within the northern Cascadia margin accretionary prism. Our observations are relevant for evaluating methane production and the occurrence of stratigraphic gas hydrate within other convergent margins.

  14. From chemolithoautotrophs to electrolithoautotrophs: CO2 fixation by Fe(II)-oxidizing bacteria coupled with direct uptake of electrons from solid electron sources.

    PubMed

    Ishii, Takumi; Kawaichi, Satoshi; Nakagawa, Hirotaka; Hashimoto, Kazuhito; Nakamura, Ryuhei

    2015-01-01

    At deep-sea vent systems, hydrothermal emissions rich in reductive chemicals replace solar energy as fuels to support microbial carbon assimilation. Until recently, all the microbial components at vent systems have been assumed to be fostered by the primary production of chemolithoautotrophs; however, both the laboratory and on-site studies demonstrated electrical current generation at vent systems and have suggested that a portion of microbial carbon assimilation is stimulated by the direct uptake of electrons from electrically conductive minerals. Here we show that chemolithoautotrophic Fe(II)-oxidizing bacterium, Acidithiobacillus ferrooxidans, switches the electron source for carbon assimilation from diffusible Fe(2+) ions to an electrode under the condition that electrical current is the only source of energy and electrons. Site-specific marking of a cytochrome aa3 complex (aa3 complex) and a cytochrome bc1 complex (bc1 complex) in viable cells demonstrated that the electrons taken directly from an electrode are used for O2 reduction via a down-hill pathway, which generates proton motive force that is used for pushing the electrons to NAD(+) through a bc1 complex. Activation of carbon dioxide fixation by a direct electron uptake was also confirmed by the clear potential dependency of cell growth. These results reveal a previously unknown bioenergetic versatility of Fe(II)-oxidizing bacteria to use solid electron sources and will help with understanding carbon assimilation of microbial components living in electronically conductive chimney habitats.

  15. From chemolithoautotrophs to electrolithoautotrophs: CO2 fixation by Fe(II)-oxidizing bacteria coupled with direct uptake of electrons from solid electron sources

    PubMed Central

    Ishii, Takumi; Kawaichi, Satoshi; Nakagawa, Hirotaka; Hashimoto, Kazuhito; Nakamura, Ryuhei

    2015-01-01

    At deep-sea vent systems, hydrothermal emissions rich in reductive chemicals replace solar energy as fuels to support microbial carbon assimilation. Until recently, all the microbial components at vent systems have been assumed to be fostered by the primary production of chemolithoautotrophs; however, both the laboratory and on-site studies demonstrated electrical current generation at vent systems and have suggested that a portion of microbial carbon assimilation is stimulated by the direct uptake of electrons from electrically conductive minerals. Here we show that chemolithoautotrophic Fe(II)-oxidizing bacterium, Acidithiobacillus ferrooxidans, switches the electron source for carbon assimilation from diffusible Fe2+ ions to an electrode under the condition that electrical current is the only source of energy and electrons. Site-specific marking of a cytochrome aa3 complex (aa3 complex) and a cytochrome bc1 complex (bc1 complex) in viable cells demonstrated that the electrons taken directly from an electrode are used for O2 reduction via a down-hill pathway, which generates proton motive force that is used for pushing the electrons to NAD+ through a bc1 complex. Activation of carbon dioxide fixation by a direct electron uptake was also confirmed by the clear potential dependency of cell growth. These results reveal a previously unknown bioenergetic versatility of Fe(II)-oxidizing bacteria to use solid electron sources and will help with understanding carbon assimilation of microbial components living in electronically conductive chimney habitats. PMID:26500609

  16. Pathway engineering and synthetic biology using acetogens.

    PubMed

    Schiel-Bengelsdorf, Bettina; Dürre, Peter

    2012-07-16

    Acetogenic anaerobic bacteria are defined as organisms employing the Wood-Ljungdahl pathway to synthesize acetyl-CoA from CO(2) or CO. Their autotrophic mode of metabolism offers the biotechnological chance to combine use of abundantly available substrates with reduction of greenhouse gases. Several companies have already established pilot and demonstration plants for converting waste gases into ethanol, an important biofuel and a natural product of many acetogens. Recombinant DNA approaches now opened the door to construct acetogens, synthesizing important industrial bulk chemicals and biofuels such as acetone and butanol. Thus, novel microbial production platforms are available that no longer compete with nutritional feedstocks. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  17. Microbial succession and stimulation following a test well injection simulating CO2 leakage into shallow Newark Basin aquifers

    NASA Astrophysics Data System (ADS)

    Dueker, M.; Clauson, K.; Yang, Q.; Umemoto, K.; Seltzer, A. M.; Zakharova, N. V.; Matter, J. M.; Stute, M.; Takahashi, T.; Goldberg, D.; O'Mullan, G. D.

    2012-12-01

    Despite growing appreciation for the importance of microbes in altering geochemical reactions in the subsurface, the microbial response to geological carbon sequestration injections and the role of microbes in altering metal mobilization following leakage scenarios in shallow aquifers remain poorly constrained. A Newark Basin test well was utilized in field experiments to investigate patterns of microbial succession following injection of CO2 saturated water into isolated aquifer intervals. Additionally, laboratory mesocosm experiments, including microbially-active and inactive (autoclave sterilized) treatments, were used to constrain the microbial role in mineral dissolution, trace metal release, and gas production (e.g. hydrogen and methane). Hydrogen production was detected in both sterilized and unsterilized laboratory mesocosm treatments, indicating abiotic hydrogen production may occur following CO2 leakage, and methane production was detected in unsterilized, microbially active mesocosms. In field experiments, a decrease in pH following injection of CO2 saturated aquifer water was accompanied by mobilization of trace elements (e.g. Fe and Mn), the production of hydrogen gas, and increased bacterial cell concentrations. 16S ribosomal RNA clone libraries, from samples collected before and after the test well injection, were compared in an attempt to link variability in geochemistry to changes in aquifer microbiology. Significant changes in microbial composition, compared to background conditions, were found following the test well injection, including a decrease in Proteobacteria, and an increased presence of Firmicutes, Verrucomicrobia, Acidobacteria and other microbes associated with iron reducing and syntrophic metabolism. The concurrence of increased microbial cell concentration, and rapid microbial community succession, with increased concentrations of hydrogen gas suggests that abiotically produced hydrogen may serve as an ecologically-relevant energy source stimulating changes in aquifer microbial communities immediately following CO2 leakage.

  18. Microbial community response to the CO2 injection and storage in the saline aquifer, Ketzin, Germany

    NASA Astrophysics Data System (ADS)

    Morozova, Daria; Zettlitzer, Michael; Vieth, Andrea; Würdemann, Hilke

    2010-05-01

    The concept of CO2 capture and storage in the deep underground is currently receiving great attention as a consequence of the effects of global warming due to the accumulation of carbon dioxide gas in the atmosphere. The EU funded CO2SINK project is aimed as a pilot storage of CO2 in a saline aquifer located near Ketzin, Germany. One of the main aims of the project is to develop efficient monitoring procedures for assessing the processes that are triggered in the reservoir by CO2 injection. This study reveals analyses of the composition and activity of the microbial community of a saline CO2 storage aquifer and its response to CO2 injection. The availability of CO2 has an influence on the metabolism of both heterotrophic microorganisms, which are involved in carbon cycle, and lithoautotrophic microorganisms, which are able to use CO2 as the sole carbon source and electron acceptor. Injection of CO2 in the supercritical state (temperature above 31.1 °C, pressure above 72.9 atm) may induce metabolic shifts in the microbial communities. Furthermore, bacterial population and activity can be strongly influenced by changes in pH value, pressure, temperature, salinity and other abiotic factors, which will be all influenced by CO2 injection into the deep subsurface. Analyses of the composition of microbial communities and its changes should contribute to an evaluation of the effectiveness and reliability of the long-term CO2 storage technique. The interactions between microorganisms and the minerals of both the reservoir and the cap rock may cause major changes to the structure and chemical composition of the rock formations, which would influence the permeability within the reservoir. In addition, precipitation and corrosion may occur around the well affecting the casing and the casing cement. By using Fluorescence in situ Hybridisation (FISH) and molecular fingerprinting such as Polymerase-Chain-Reaction Single-Strand-Conformation Polymorphism (PCR-SSCP) and Denaturing Gradient Gel Electrophoresis (PCR-DGGE), we have shown that the microbial community was strongly influenced by CO2 injection. Before CO2 arrival, up to 6x106 cells ml-1 were detected by DAPI-staining at a depth of 647 m below the surface. The microbial community was dominated by the domain Bacteria, with Proteobacteria and Firmicutes as the most abundant phyla. Representatives of the sulphate-reducing bacteria, extremophilic and fermenting bacteria were identified. After CO2 injection, our study revealed temporal outcompetition of sulphate-reducing bacteria by methanogenic archaea. In addition, an enhanced activity of the microbial population after five months CO2 storage indicated that the bacterial community was able to adapt to the extreme conditions of the deep biosphere and to the extreme changes of these conditions. In order to draw broader conclusions about the microbial community in the deep biosphere, more intensive sampling and methodologies are necessary. The limiting factors such as high expenses of the downhole sampling and time-consuming analyses should be taken into consideration. This study can thus provide only an early insight into the community structure and its changes due to the CO2 injection. Further studies on the activity, quantity and physiology of these microbial communities using molecular cloning and real-time PCR are in progress.

  19. Interactive effects of seasonal drought and elevated atmospheric carbon dioxide concentration on prokaryotic rhizosphere communities.

    PubMed

    Drigo, Barbara; Nielsen, Uffe N; Jeffries, Thomas C; Curlevski, Nathalie J A; Singh, Brajesh K; Duursma, Remko A; Anderson, Ian C

    2017-08-01

    Global change models indicate that rainfall patterns are likely to shift towards more extreme events concurrent with increasing atmospheric carbon dioxide concentration ([CO 2 ]). Both changes in [CO 2 ] and rainfall regime are known to impact above- and belowground communities, but the interactive effects of these global change drivers have not been well explored, particularly belowground. In this experimental study, we examined the effects of elevated [CO 2 ] (ambient + 240 ppm; [eCO 2 ]) and changes in rainfall patterns (seasonal drought) on soil microbial communities associated with forest ecosystems. Our results show that bacterial and archaeal communities are highly resistant to seasonal drought under ambient [CO 2 ]. However, substantial taxa specific responses to seasonal drought were observed at [eCO 2 ], suggesting that [eCO 2 ] compromise the resistance of microbial communities to extreme events. Within the microbial community we were able to identify three types of taxa specific responses to drought: tolerance, resilience and sensitivity that contributed to this pattern. All taxa were tolerant to seasonal drought at [aCO 2 ], whereas resilience and sensitivity to seasonal drought were much greater in [eCO 2 ]. These results provide strong evidence that [eCO 2 ] moderates soil microbial community responses to drought in forests, with potential implications for their long-term persistence and ecosystem functioning. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. Control of Escherichia coli and Listeria monocytogenes in suckling-lamb meat evaluated using microbial challenge tests.

    PubMed

    Osés, S M; Diez, A M; Gómez, E M; Wilches-Pérez, D; Luning, P A; Jaime, I; Rovira, J

    2015-12-01

    Escherichia coli and Listeria monocytogenes microbial challenge tests were performed on fresh suckling-lamb meat. Hind leg slices were chilly stored under two modified atmosphere packaging (MAP) environments (A: 15%O2/60%CO2/25%N2, B: 15%O2/30%CO2/55%N2) and vacuum packaging (V). Only E. coli was reduced between 0.72-1.25 log cfu/g from day 1 to day 4 by the combined use of MAP/V, chilling storage and the growth of native lactic acid bacteria. However, L. monocytogenes was not inhibited by the application of V or MAP. Even do, in inoculated samples, this pathogen increased between 1.2-2.7 log cfu/g throughout the study. Consequently, a second experiment that combined the effects of MAP/V and a protective culture (Leuconostoc pseudomesenteroides PCK 18) against L. monocytogenes was designed. Two different levels of protective cultures were assayed (4 and 6 log cfu/g). Lc. pseudomesenteroides PCK 18 was able to control the growth of L. monocytogenes when the differences between them are higher than 2 log cfu/g. Moreover, when high level of protective culture was used a significant reduction of L. monocytogenes counts were noticed in samples packaged in 60% of CO2 along the storage period, although sensory properties were also affected. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. The role of acetogens in microbially influenced corrosion of steel

    PubMed Central

    Mand, Jaspreet; Park, Hyung Soo; Jack, Thomas R.; Voordouw, Gerrit

    2014-01-01

    Microbially influenced corrosion (MIC) of iron (Fe0) by sulfate-reducing bacteria (SRB) has been studied extensively. Through a mechanism, that is still poorly understood, electrons or hydrogen (H2) molecules are removed from the metal surface and used as electron donor for sulfate reduction. The resulting ferrous ions precipitate in part with the sulfide produced, forming characteristic black iron sulfide. Hydrogenotrophic methanogens can also contribute to MIC. Incubation of pipeline water samples, containing bicarbonate and some sulfate, in serum bottles with steel coupons and a headspace of 10% (vol/vol) CO2 and 90% N2, indicated formation of acetate and methane. Incubation of these samples in serum bottles, containing medium with coupons and bicarbonate but no sulfate, also indicated that formation of acetate preceded the formation of methane. Microbial community analyses of these enrichments indicated the presence of Acetobacterium, as well as of hydrogenotrophic and acetotrophic methanogens. The formation of acetate by homoacetogens, such as Acetobacterium woodii from H2 (or Fe0) and CO2, is potentially important, because acetate is a required carbon source for many SRB growing with H2 and sulfate. A consortium of the SRB Desulfovibrio vulgaris Hildenborough and A. woodii was able to grow in defined medium with H2, CO2, and sulfate, because A. woodii provides the acetate, needed by D. vulgaris under these conditions. Likewise, general corrosion rates of metal coupons incubated with D. vulgaris in the presence of acetate or in the presence of A. woodii were higher than in the absence of acetate or A. woodii, respectively. An extended MIC model capturing these results is presented. PMID:24917861

  2. Exploring the Deep Biosphere in Ophiolite-hosted Systems: What Can Metabolic Processes in Surface Seeps Tell Us About Subsurface Ecosystems in Serpentinizing Fluids?

    NASA Astrophysics Data System (ADS)

    Meyer-Dombard, D. R.; Cardace, D.; Woycheese, K. M.; Vallalar, B.; Casar, C.; Simon, A.; Arcilla, C. A.

    2016-12-01

    Serpentinization in the subsurface produces highly reduced, high pH fluids that provide microbial habitats. It is assumed that these deep subsurface fluids contain copious H2 and CH4 gas, little/no inorganic carbon, and limited electron acceptors. As serpentinized fluids reach the oxygenated surface environment, microbial biomes shift and organisms capable of metabolizing O2 thrive (Woycheese et al., 2015). However, the relationship of microbial communities found in surface expressions of serpentinizing fluids to the subsurface biosphere is still a target of exploration. Our work in the Zambales ophiolite (Philippines) defines surface microbial habitats with geochemistry, targeted culturing efforts, and community analysis (Cardace et al., 2015; Woycheese et al., 2015). Springs range from pH 9-11.5, and contain 0.06-2 ppm DO, 0-3.7 ppm sulfide, 30-800 ppm silica. Gases include H2 and CH4 > 10uM, CO2 > 1 mM, and trace amounts of CO. These surface data allow prediction of the subsurface metabolic landscape. For example, Cardace et al., (2015) predicted that metabolism of iron is important in both biospheres. Growth media were designed to target iron reduction yielding heterotrophic and autotrophic iron reducers at high pH. Reduced iron minerals were produced in several cultures (Casar et al., sub.), and isolation efforts are underway. Shotgun metagenomic analysis shows the metabolic capacity for methanogenesis, suggesting microbial origins for some CH4 present. The enzymes methyl coenzyme M reductase, and formylmethanofuran dehydrogenase were detected, and relative abundance increased near the near-anoxic spring source. The metagenomes indicate carbon cycling at these sites is reliant on methanogenesis, acetogenesis, sulfate reduction, and H2 and CH4 oxidation. In this tropical climate, cellulose is also a likely carbon source; cellulose degrading isolates have been obtained. These results indicate a metabolically flexible community at the surface where serpentinizing fluids are expressed. The next step is to understand what these surface systems might tell us about the subsurface biosphere. References: Cardace et al., 2015 Frontiers in Extreme Microbiology 6: doi: 10.3389/fmicb.2015.00010 Woycheese et al., 2015 Frontiers in Extreme Microbiology 6: doi: 10.3389/fmicb.2015.00044

  3. Structure and reactivity of ferrihydrite-soil organic carbon-calcium ternary complexes

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Adhikari, D.; Sowers, T.; Stuckey, J.; Poulson, S.; Sparks, D. L.

    2017-12-01

    Complete understanding about the interactions between soil organic carbon (SOC) and minerals is important for predicting the stability of SOC and its response to climate change. Recent studies have shown the importance of calcium (Ca)-bearing minerals and iron (Fe) oxide in associating with and stabilizing SOC. In this study, we have investigated the formation and reactivity of ferrihydrite-SOC-Ca ternary complexes. During the co-precipitation of ferrihydrite with SOC in the presence of Ca2+, 60% of SOC can be co-precipitated with ferrihydrite at a C/Fe (molar ratio) of up to 10, whereas the Ca/Fe ratio was saturated at 0.2. Increasing amount of Ca2+ did not affect the co-precipitation of SOC with ferrihydrite or the lability of ferrihydrite-bound SOC. In addition, microbial reduction of ferrihydrite and reductive release of ferrihydrite-bound SOC were not influenced by the presence of Ca, but the pathway for Fe mineral transformation during the reduction was affected by Ca. In the meantime, Fe reduction selectively released carboxylic-enriched SOC. As a comparison, the presence of SOC increased the incorporation of Ca into the structure of ferrihydrite. Our results indicate the formation of ferrihydrite-SOC-Ca complexes, with organic carbon bridging the ferrihydrite and Ca. Such ternary complexes potentially play an important role in regulating the interactions between SOC and mineral phases in soil.

  4. Nitrogen-doped graphene/CoNi alloy encased within bamboo-like carbon nanotube hybrids as cathode catalysts in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Hou, Yang; Yuan, Heyang; Wen, Zhenhai; Cui, Shumao; Guo, Xiaoru; He, Zhen; Chen, Junhong

    2016-03-01

    Cost-effective catalysts are of key importance to the successful deployment of microbial fuel cells (MFCs) for electricity generation from organic wastes. Herein, a novel catalyst prepared by one-step synthesis strategy is reported. The catalyst features N-doped bamboo-like carbon nanotube (BCNT) in which CoNi-alloy is encapsulated at the end and/or the middle section of the tube with many graphene layers inside inner cavities of BCNT (N-G@CoNi/BCNT). The prepared N-G@CoNi/BCNT exhibits a high oxygen reduction reaction (ORR) activity with an early onset potential of 0.06 V vs. Ag/AgCl and a comparable exchange current density to that of commercial Pt/C. The excellent catalytic activity is further evidenced by a high electron transfer number of 3.63. When being applied in MFCs, the N-G@CoNi/BCNT yields an average current density of 6.7 A m-2, slightly lower than that of Pt/C but with a less mass transfer potential loss. The cost of the N-G@CoNi/BCNT for constructing a 1-m2 cathode electrode is 200 times lower than that of Pt/C. With such a competitive price and excellent electrocatalytic-activity resulting from its unique morphology, CoNi-alloy/nitrogen dopants, considerable specific surface area, and carbon-coated alloy/graphene hybridization, the present catalyst is a promising candidate for ORR catalysts in MFCs for energy recovery from wastes.

  5. RESISTANCE OF MICROBIAL COMMUNITIES FROM ECUADOR ECOSYSTEMS TO REPRESENTATIVE TOXIC METALS - CrO4(2-), Co2+, Ni2+, Cu2+, Hg2+.

    PubMed

    Tashyrev, O B; Prekrasna, Ie P; Tashyreva, G O; Bielikova, O Iu

    2015-01-01

    Microbial communities of the Ecuadorian Andes and volcano Tungurahua were shown to be super resistant to representative toxic metals. Maximum permissible concentrations of toxic metals were 100 ppm of Hg2+, 500 ppm of Co2+ and Ni2+, 1000 and 1500 ppm of Cr(VI), 10000 and 20000 ppm of Cu2+. The effect of metal concentration increasing on the biomass growth, CO2 and H2 synthesis was investigated. Two types of response of microbial communities on the increasing of toxic metals concentrations were discovered. The first type of response is the catastrophic inhibition of microbial growth. The second type of response is the absence of microbial growth inhibition at certain metal concentration gradient. The succession of qualitative structure of Ecuadorian microbial communities was shown for the first time. Bacteria, yeasts and finally fungi consistently dominate in the microbial community at the Cu2+ concentration raising. Microorganisms resistant to ultra-high concentrations of toxic metals (e.g., 3000 ... 20000 ppm of Cu2+) were isolated from Ecuadorian ecosystems. These microorganisms are able to accumulate toxic metals.

  6. Quantifying microbial activity in deep subsurface sediments using a tritium based hydrognease enzyme assay

    NASA Astrophysics Data System (ADS)

    Adhikari, R.; Nickel, J.; Kallmeyer, J.

    2012-12-01

    Microbial life is widespread in Earth's subsurface and estimated to represent a significant fraction of Earth's total living biomass. However, very little is known about subsurface microbial activity and its fundamental role in biogeochemical cycles of carbon and other biologically important elements. Hydrogen is one of the most important elements in subsurface anaerobic microbial metabolism. Heterotrophic and chemoautotrophic microorganisms use hydrogen in their metabolic pathways. They either consume or produce protons for ATP synthesis. Hydrogenase (H2ase) is a ubiquitous intracellular enzyme that catalyzes the interconversion of molecular hydrogen and/or water into protons and electrons. The protons are used for the synthesis of ATP, thereby coupling energy generating metabolic processes to electron acceptors such as CO2 or sulfate. H2ase enzyme targets a key metabolic compound in cellular metabolism therefore the assay can be used as a measure for total microbial activity without the need to identify any specific metabolic process. Using the highly sensitive tritium assay we measured H2ase enzyme activity in the organic-rich sediments of Lake Van, a saline, alkaline lake in eastern Turkey, in marine sediments of the Barents Sea and in deep subseafloor sediments from the Nankai Trough. H2ase activity could be quantified at all depths of all sites but the activity distribution varied widely with depth and between sites. At the Lake Van sites H2ase activity ranged from ca. 20 mmol H2 cm-3d-1 close to the sediment-water interface to 0.5 mmol H2 cm-3d-1 at a depth of 0.8 m. In samples from the Barents Sea H2ase activity ranged between 0.1 to 2.5 mmol H2 cm-3d-1 down to a depth of 1.60 m. At all sites the sulfate reduction rate profile followed the upper part of the H2ase activity profile until sulfate reduction reached the minimum detection limit (ca. 10 pmol cm-3d-1). H2ase activity could still be quantified after the decline of sulfate reduction, indicating that other microbial processes are becoming quantitatively more important. Similarly, H2ase activity could be quantified at greater depths (ca. 400 mbsf) in Nankai Trough sediments. Nankai Trough is one of the world's most geologically active accretionary wedges, where the Philippine Plate is subducting under the southwest of Japan. Due to the transient faulting, huge amounts of energy are liberated that enhance chemical transformations of organic and inorganic matter. An increase in H2ase activity could be observed at greater depth, which suggests that microbial activity is stimulated by the fault activity. Current techniques for the quantification of microbial activity in deep sediments have already reached their physical and technical limits and-in many cases- are still not sensitive enough to quantify extremely low rates of microbial activity. Additional to the quantification of specific processes, estimates of total microbial activity will provide valuable information on energy flux and microbial metabolism in the subsurface biosphere and other low-energy environments as well as help identifying hotspots of microbial activity. The tritium H2ase assay has a potential to become a valuable tool to measure total subsurface microbial activity.

  7. Using isotopic tracers to assess the impact of tillage and straw management on the microbial metabolic network in soil

    NASA Astrophysics Data System (ADS)

    Van Groenigen, K.; Forristal, D.; Jones, M. B.; Schwartz, E.; Hungate, B. A.; Dijkstra, P.

    2013-12-01

    By decomposing soil organic matter, microbes gain energy and building blocks for biosynthesis and release CO2 to the atmosphere. Therefore, insight into the effect of management practices on microbial metabolic pathways and C use efficiency (CUE; microbial C produced per substrate C utilized) may help to predict long term changes in soil C stocks. We studied the effects of reduced (RT) and conventional tillage (CT) on the microbial central C metabolic network, using soil samples from a 12-year-old field experiment in an Irish winter wheat cropping system. Each year after harvest, straw was removed from half of the RT and CT plots or incorporated into the soil in the other half, resulting in four treatment combinations. We added 1-13C and 2,3-13C pyruvate and 1-13C and U-13C glucose as metabolic tracer isotopomers to composite soil samples taken at two depths (0-15 cm and 15-30 cm) from each treatment and used the rate of position-specific respired 13CO2 to parameterize a metabolic model. Model outcomes were then used to calculate CUE of the microbial community. We found that the composite samples differed in CUE, but the changes were small, with values ranging between 0.757-0.783 across treatments and soil depth. Increases in CUE were associated with a decrease in tricarboxylic acid cycle and reductive pentose phosphate pathway activity and increased consumption of metabolic intermediates for biosynthesis. Our results indicate that RT and straw incorporation promote soil C storage without substantially changing CUE or any of the microbial metabolic pathways. This suggests that at our site, RT and straw incorporation promote soil C storage mostly through direct effects such as increased soil C input and physical protection from decomposition, rather than by feedback responses of the microbial community.

  8. Development of a Model, Metal-reducing Microbial Community for a System Biology Level Assessment of Desulfovibrio vulgaris as part of a Community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elias, Dwayne; Schadt, Christopher; Miller, Lance

    2010-05-17

    One of the largest experimental gaps is between the simplicity of pure cultures and the complexity of open environmental systems, particularly in metal-contaminated areas. These microbial communities form ecosystem foundations, drive biogeochemical processes, and are relevant for biotechnology and bioremediation. A model, metal-reducing microbial community was constructed as either syntrophic or competitive to study microbial cell to cell interactions, cell signaling and competition for resources. The microbial community was comprised of the metal-reducing Desulfovibrio vulgaris Hildenborough and Geobacter sulfurreducens PCA. Additionally, Methanococcus maripaludis S2 was added to study complete carbon reduction and maintain a low hydrogen partial pressure for syntrophismmore » to occur. Further, considerable work has been published on D. vulgaris and the D. vulgaris/ Mc. maripaludis co-culture both with and without stress. We are extending this work by conducting the same stress conditions on the model community. Additionally, this comprehensive investigation includes physiological and metabolic analyses as well as specially designed mRNA microarrays with the genes for all three organisms on one slide so as to follow gene expression changes in the various cultivation conditions as well as being comparable to the co- and individual cultures. Further, state-of -the-art comprehensive AMT tag proteomics allows for these comparisons at the protein level for a systems biology assessment of a model, metal-reducing microbial community. Preliminary data revealed that lactate oxidation by D. vulgaris was sufficient to support both G. sulfurreducens and M. maripaludis via the excretion of H2 and acetate. Fumarate was utilized by G. sulfurreducens and reduced to succinate since neither of the other two organisms can reduce fumarate. Methane was quantified, suggesting acetate and H2 concentrations were sufficient for M. maripaludis. Steady state community cultivation will allow for a comprehensive, system biology level analysis of a metal-reducing microbial community.« less

  9. Microbial Communities in Terrestrial CO2 Springs: Insights into the Long-Term Effects of Carbon Sequestration on Subsurface Microorganisms

    NASA Astrophysics Data System (ADS)

    Santillan, E. F. U.; Major, J. R.; Bennett, P.

    2014-12-01

    Over long timescales, microbial populations and communities living in environments where CO2 has been sequestered will adapt to this environmental stress. Their presence and activities can have implications for fluid flow, geochemistry, and the fate of the stored CO2. Because of the interplay between microorganisms and environment, many environmental factors beyond CO2 will also contribute to community structure, including groundwater composition and mineralogy. To determine the long-term effect of CO2 on microbial communities, we analyzed terrestrial CO2 springs as analogues to CO2 sequestration in 3 locations in the United States: the Little Grand Wash Fault (LGW), UT; Bravo Dome (BD), NM; and Klickitat Mineral Spring (KMS), WA. These sites differed in multiple aspects such as depth, salinity, Fe content, and mineralogy. LGW and BD were located in the Colorado Plateau in sedimentary locations while KMS was located within the Columbia River Basalt Group. Sites were compared to non-CO2 springs in similar sedimentary formations for comparison. Microbial communities from sedimentary formations were characterized by low diversity and the dominance of the phylotypes Acinetobacter or Burkholderia compared to non-CO2 springs, suggesting community stress and the selection of specific organisms most resilient to CO2. Communities in the basalt formation were more diverse, though diversity is lower than a non-CO2 community sampled from the same formation (Lavalleur and Colwell 2013). Organisms present at the basalt site contained novel lineages, such as the OP candidate phyla. KMS was also the only site containing Archaea, such as Methanoplanus, suggesting CH4 production at depth. Statistical analyses indicate other factors such as depth and nutrient availability may be other factors that can affect diversity in addition to CO2. Growth of a CO2-tolerant organism from LGW also shows organisms in these environments are viable. Results confirm the presence of microbial communities at high PCO2 and suggest that while CO2 is one environmental stress that can lower diversity, many other environmental factors can also influence survival. Lavalleur, H.J., Colwell, F.S., 2013. Microbial characterization of basalt formation waters targeted for geological carbon sequestration. FEMS Microbiology Ecology 85, 62-73.

  10. Competition between Methanogens and Acetogens in Biocathodes: A Comparison between Potentiostatic and Galvanostatic Control

    PubMed Central

    Molenaar, Sam D.; Saha, Pradip; Mol, Annemerel R.; Sleutels, Tom H. J. A.; ter Heijne, Annemiek; Buisman, Cees J. N.

    2017-01-01

    Microbial electrosynthesis is a useful form of technology for the renewable production of organic commodities from biologically catalyzed reduction of CO2. However, for the technology to become applicable, process selectivity, stability and efficiency need strong improvement. Here we report on the effect of different electrochemical control modes (potentiostatic/galvanostatic) on both the start-up characteristics and steady-state performance of biocathodes using a non-enriched mixed-culture inoculum. Based on our results, it seems that kinetic differences exist between the two dominant functional microbial groups (i.e., homoacetogens and methanogens) and that by applying different current densities, these differences may be exploited to steer product selectivity and reactor performance. PMID:28106846

  11. Environmental proteomics reveals early microbial community responses to biostimulation at a uranium- and nitrate-contaminated site.

    PubMed

    Chourey, Karuna; Nissen, Silke; Vishnivetskaya, Tatiana; Shah, Manesh; Pfiffner, Susan; Hettich, Robert L; Löffler, Frank E

    2013-10-01

    High-performance MS instrumentation coupled with improved protein extraction techniques enables metaproteomics to identify active members of soil and groundwater microbial communities. Metaproteomics workflows were applied to study the initial responses (i.e. 4 days post treatment) of the indigenous aquifer microbiota to biostimulation with emulsified vegetable oil (EVO) at a uranium-contaminated site. Members of the Betaproteobacteria (i.e. Dechloromonas, Ralstonia, Rhodoferax, Polaromonas, Delftia, Chromobacterium) and the Firmicutes dominated the biostimulated aquifer community. Proteome characterization revealed distinct differences between the microbial biomass collected from groundwater influenced by biostimulation and groundwater collected upgradient of the EVO injection points. In particular, proteins involved in ammonium assimilation, EVO degradation, and polyhydroxybutyrate granule formation were prominent following biostimulation. Interestingly, the atypical NosZ of Dechloromonas spp. was highly abundant, suggesting active nitrous oxide (N2 O) respiration. c-Type cytochromes were barely detected, as was citrate synthase, a biomarker for hexavalent uranium reduction activity, suggesting that uranium reduction has not commenced 4 days post EVO amendment. Environmental metaproteomics identified microbial community responses to biostimulation and elucidated active pathways demonstrating the value of this technique as a monitoring tool and for complementing nucleic acid-based approaches. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Microbial community in a sediment-hosted CO2 lake of the southern Okinawa Trough hydrothermal system

    PubMed Central

    Inagaki, Fumio; Kuypers, Marcel M. M.; Tsunogai, Urumu; Ishibashi, Jun-ichiro; Nakamura, Ko-ichi; Treude, Tina; Ohkubo, Satoru; Nakaseama, Miwako; Gena, Kaul; Chiba, Hitoshi; Hirayama, Hisako; Nunoura, Takuro; Takai, Ken; Jørgensen, Bo B.; Horikoshi, Koki; Boetius, Antje

    2006-01-01

    Increasing levels of CO2 in the atmosphere are expected to cause climatic change with negative effects on the earth's ecosystems and human society. Consequently, a variety of CO2 disposal options are discussed, including injection into the deep ocean. Because the dissolution of CO2 in seawater will decrease ambient pH considerably, negative consequences for deep-water ecosystems have been predicted. Hence, ecosystems associated with natural CO2 reservoirs in the deep sea, and the dynamics of gaseous, liquid, and solid CO2 in such environments, are of great interest to science and society. We report here a biogeochemical and microbiological characterization of a microbial community inhabiting deep-sea sediments overlying a natural CO2 lake at the Yonaguni Knoll IV hydrothermal field, southern Okinawa Trough. We found high abundances (>109 cm−3) of microbial cells in sediment pavements above the CO2 lake, decreasing to strikingly low cell numbers (107 cm−3) at the liquid CO2/CO2-hydrate interface. The key groups in these sediments were as follows: (i) the anaerobic methanotrophic archaea ANME-2c and the Eel-2 group of Deltaproteobacteria and (ii) sulfur-metabolizing chemolithotrophs within the Gamma- and Epsilonproteobacteria. The detection of functional genes related to one-carbon assimilation and the presence of highly 13C-depleted archaeal and bacterial lipid biomarkers suggest that microorganisms assimilating CO2 and/or CH4 dominate the liquid CO2 and CO2-hydrate-bearing sediments. Clearly, the Yonaguni Knoll is an exceptional natural laboratory for the study of consequences of CO2 disposal as well as of natural CO2 reservoirs as potential microbial habitats on early Earth and other celestial bodies. PMID:16959888

  13. Air breathing cathodes for microbial fuel cell using Mn-, Fe-, Co- and Ni-containing platinum group metal-free catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kodali, Mounika; Santoro, Carlo; Serov, Alexey

    Here we discuss the oxygen reduction reaction (ORR) is one of the major factors that is limiting the overall performance output of microbial fuel cells (MFC). In this study, Platinum Group Metal-free (PGM-free) ORR catalysts based on Fe, Co, Ni, Mn and the same precursor (Aminoantipyrine, AAPyr) were synthesized using identical sacrificial support method (SSM). The catalysts were investigated for their electrochemical performance, and then integrated into an air-breathing cathode to be tested in “clean” environment and in a working microbial fuel cell (MFC). Their performances were also compared to activated carbon (AC) based cathode under similar conditions. Results showedmore » that the addition of Mn, Fe, Co and Ni to AAPyr increased the performances compared to AC. Fe-AAPyr showed the highest open circuit potential (OCP) that was 0.307 ± 0.001 V (vs. Ag/AgCl) and the highest electrocatalytic activity at pH 7.5. On the contrary, AC had an OCP of 0.203 ± 0.002 V (vs. Ag/AgCl) and had the lowest electrochemical activity. In MFC, Fe-AAPyr also had the highest output of 251 ± 2.3 μWcm –2, followed by Co-AAPyr with 196 ± 1.5 μWcm –2, Ni-AAPyr with 171 ± 3.6 μWcm –2, Mn-AAPyr with 160 ± 2.8 μWcm –2 and AC 129 ± 4.2 μWcm –2. The best performing catalyst (Fe-AAPyr) was then tested in MFC with increasing solution conductivity from 12.4 mScm –1 to 63.1 mScm –1. A maximum power density of 482 ± 5 μWcm –2 was obtained with increasing solution conductivity, which is one of the highest values reported in the field.« less

  14. Air breathing cathodes for microbial fuel cell using Mn-, Fe-, Co- and Ni-containing platinum group metal-free catalysts

    DOE PAGES

    Kodali, Mounika; Santoro, Carlo; Serov, Alexey; ...

    2017-02-07

    Here we discuss the oxygen reduction reaction (ORR) is one of the major factors that is limiting the overall performance output of microbial fuel cells (MFC). In this study, Platinum Group Metal-free (PGM-free) ORR catalysts based on Fe, Co, Ni, Mn and the same precursor (Aminoantipyrine, AAPyr) were synthesized using identical sacrificial support method (SSM). The catalysts were investigated for their electrochemical performance, and then integrated into an air-breathing cathode to be tested in “clean” environment and in a working microbial fuel cell (MFC). Their performances were also compared to activated carbon (AC) based cathode under similar conditions. Results showedmore » that the addition of Mn, Fe, Co and Ni to AAPyr increased the performances compared to AC. Fe-AAPyr showed the highest open circuit potential (OCP) that was 0.307 ± 0.001 V (vs. Ag/AgCl) and the highest electrocatalytic activity at pH 7.5. On the contrary, AC had an OCP of 0.203 ± 0.002 V (vs. Ag/AgCl) and had the lowest electrochemical activity. In MFC, Fe-AAPyr also had the highest output of 251 ± 2.3 μWcm –2, followed by Co-AAPyr with 196 ± 1.5 μWcm –2, Ni-AAPyr with 171 ± 3.6 μWcm –2, Mn-AAPyr with 160 ± 2.8 μWcm –2 and AC 129 ± 4.2 μWcm –2. The best performing catalyst (Fe-AAPyr) was then tested in MFC with increasing solution conductivity from 12.4 mScm –1 to 63.1 mScm –1. A maximum power density of 482 ± 5 μWcm –2 was obtained with increasing solution conductivity, which is one of the highest values reported in the field.« less

  15. Hollow-spherical Co/N-C nanoparticle as an efficient electrocatalyst used in air cathode microbial fuel cell.

    PubMed

    Yang, Tingting; Li, Kexun; Pu, Liangtao; Liu, Ziqi; Ge, Baochao; Pan, Yajun; Liu, Ying

    2016-12-15

    The hollow-spherical Co/N-C nanoparticle, which is synthesized via a simple hydrothermal reaction followed by heat treatment, is firstly used as electrocatalyst for oxygen reduction reaction (ORR) in air-cathode microbial fuel cell (MFC). The maximum power density of MFC with 10% Co/N-C air-cathode is as high as 2514±59mWm(-2), which is almost 174% higher than the control. The exchange current density (i0) of cathode equipped with 10% Co/N-C is 238% higher than that of untreated AC. While the total resistance of treated samples decreases from 13.017 to 10.255Ω. The intensity ratio of Raman D to G band (ID/IG) decreases from 0.93 (N-C) to 0.73 (Co/N-C), indicating the catalyst forms graphite structure. Both XRD and XPS testify that Co is bonded to N within graphitic sheets and serves as the active sites in ORR. The four-electron pathway of the Co/N-C also plays a crucial role in electrochemical catalytic activity. As a result, it can be expected that the as-synthesized Co/N-C, with extraordinary electro-catalytic performance towards ORR, will be a promising alternative to the state-of-the-art non-precious metal ORR electro-catalysts for electrochemical energy applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Bioremediation assessment of diesel-biodiesel-contaminated soil using an alternative bioaugmentation strategy.

    PubMed

    Colla, Tatiana Simonetto; Andreazza, Robson; Bücker, Francielle; de Souza, Marcela Moreira; Tramontini, Letícia; Prado, Gerônimo Rodrigues; Frazzon, Ana Paula Guedes; Camargo, Flávio Anastácio de Oliveira; Bento, Fátima Menezes

    2014-02-01

    This study investigated the effectiveness of successive bioaugmentation, conventional bioaugmentation, and biostimulation of biodegradation of B10 in soil. In addition, the structure of the soil microbial community was assessed by polymerase chain reaction-denaturing gradient gel electrophoresis. The consortium was inoculated on the initial and the 11th day of incubation for successive bioaugmentation and only on the initial day for bioaugmentation and conventional bioaugmentation. The experiment was conducted for 32 days. The microbial consortium was identified based on sequencing of 16S rRNA gene and consisted as Pseudomonas aeruginosa, Achromobacter xylosoxidans, and Ochrobactrum intermedium. Nutrient introduction (biostimulation) promoted a positive effect on microbial populations. The results indicate that the edaphic community structure and dynamics were different according to the treatments employed. CO2 evolution demonstrated no significant difference in soil microbial activity between biostimulation and bioaugmentation treatments. The total petroleum hydrocarbon (TPH) analysis indicated a biodegradation level of 35.7 and 32.2 % for the biostimulation and successive bioaugmentation treatments, respectively. Successive bioaugmentation displayed positive effects on biodegradation, with a substantial reduction in TPH levels.

  17. Soil Microbial Responses to Elevated CO2 and O3 in a Nitrogen-Aggrading Agroecosystem

    PubMed Central

    Cheng, Lei; Booker, Fitzgerald L.; Burkey, Kent O.; Tu, Cong; Shew, H. David; Rufty, Thomas W.; Fiscus, Edwin L.; Deforest, Jared L.; Hu, Shuijin

    2011-01-01

    Climate change factors such as elevated atmospheric carbon dioxide (CO2) and ozone (O3) can exert significant impacts on soil microbes and the ecosystem level processes they mediate. However, the underlying mechanisms by which soil microbes respond to these environmental changes remain poorly understood. The prevailing hypothesis, which states that CO2- or O3-induced changes in carbon (C) availability dominate microbial responses, is primarily based on results from nitrogen (N)-limiting forests and grasslands. It remains largely unexplored how soil microbes respond to elevated CO2 and O3 in N-rich or N-aggrading systems, which severely hinders our ability to predict the long-term soil C dynamics in agroecosystems. Using a long-term field study conducted in a no-till wheat-soybean rotation system with open-top chambers, we showed that elevated CO2 but not O3 had a potent influence on soil microbes. Elevated CO2 (1.5×ambient) significantly increased, while O3 (1.4×ambient) reduced, aboveground (and presumably belowground) plant residue C and N inputs to soil. However, only elevated CO2 significantly affected soil microbial biomass, activities (namely heterotrophic respiration) and community composition. The enhancement of microbial biomass and activities by elevated CO2 largely occurred in the third and fourth years of the experiment and coincided with increased soil N availability, likely due to CO2-stimulation of symbiotic N2 fixation in soybean. Fungal biomass and the fungi∶bacteria ratio decreased under both ambient and elevated CO2 by the third year and also coincided with increased soil N availability; but they were significantly higher under elevated than ambient CO2. These results suggest that more attention should be directed towards assessing the impact of N availability on microbial activities and decomposition in projections of soil organic C balance in N-rich systems under future CO2 scenarios. PMID:21731722

  18. Viability and adaptation potential of indigenous microorganisms from natural gas field fluids in high pressure incubations with supercritical CO2.

    PubMed

    Frerichs, Janin; Rakoczy, Jana; Ostertag-Henning, Christian; Krüger, Martin

    2014-01-21

    Carbon Capture and Storage (CCS) is currently under debate as large-scale solution to globally reduce emissions of the greenhouse gas CO2. Depleted gas or oil reservoirs and saline aquifers are considered as suitable reservoirs providing sufficient storage capacity. We investigated the influence of high CO2 concentrations on the indigenous bacterial population in the saline formation fluids of a natural gas field. Bacterial community changes were closely examined at elevated CO2 concentrations under near in situ pressures and temperatures. Conditions in the high pressure reactor systems simulated reservoir fluids i) close to the CO2 injection point, i.e. saturated with CO2, and ii) at the outer boundaries of the CO2 dissolution gradient. During the incubations with CO2, total cell numbers remained relatively stable, but no microbial sulfate reduction activity was detected. After CO2 release and subsequent transfer of the fluids, an actively sulfate-respiring community was re-established. The predominance of spore-forming Clostridiales provided evidence for the resilience of this taxon against the bactericidal effects of supercritical (sc)CO2. To ensure the long-term safety and injectivity, the viability of fermentative and sulfate-reducing bacteria has to be considered in the selection, design, and operation of CCS sites.

  19. Influence of co-substrate on textile wastewater treatment and microbial community changes in the anaerobic biological sulfate reduction process.

    PubMed

    Rasool, Kashif; Mahmoud, Khaled A; Lee, Dae Sung

    2015-12-15

    This study investigated the anaerobic treatment of sulfate-rich synthetic textile wastewater in three sulfidogenic sequential batch reactors (SBRs). The experimental protocol was designed to examine the effect of three different co-substrates (lactate, glucose, and ethanol) and their concentrations on wastewater treatment performance. Sulfate reduction and dye degradation were improved when lactate and ethanol were used as electron donors, as compared with glucose. Moreover, under co-substrate limited concentrations, color, sulfate, and chemical oxygen demand (COD) removal efficiencies were declined. By reducing co-substrate COD gradually from 3000 to 500 mg/L, color removal efficiencies were decreased from 98.23% to 78.46%, 63.37%, and 69.10%, whereas, sulfate removal efficiencies were decreased from 98.42%, 82.35%, and 87.0%, to 30.27%, 21.50%, and 10.13%, for lactate, glucose, and ethanol fed reactors, respectively. Fourier transform infrared spectroscopy (FTIR) and total aromatic amine analysis revealed lactate to be a potential co-substrate for further biodegradation of intermediate metabolites formed after dye degradation. Pyrosequencing analysis showed that microbial community structure was significantly affected by the co-substrate. The reactor with lactate as co-substrate showed the highest relative abundance of sulfate reducing bacteria (SRBs), followed by ethanol, whereas the glucose-fed reactor showed the lowest relative abundance of SRB. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Biochar in Co-Contaminated Soil Manipulates Arsenic Solubility and Microbiological Community Structure, and Promotes Organochlorine Degradation

    PubMed Central

    Gregory, Samuel J.; Anderson, Christopher W. N.; Camps-Arbestain, Marta; Biggs, Patrick J.; Ganley, Austen R. D.; O’Sullivan, Justin M.; McManus, Michael T.

    2015-01-01

    We examined the effect of biochar on the water-soluble arsenic (As) concentration and the extent of organochlorine degradation in a co-contaminated historic sheep-dip soil during a 180-d glasshouse incubation experiment. Soil microbial activity, bacterial community and structure diversity were also investigated. Biochar made from willow feedstock (Salix sp) was pyrolysed at 350 or 550°C and added to soil at rates of 10 g kg-1 and 20 g kg-1 (representing 30 t ha-1 and 60 t ha-1). The isomers of hexachlorocyclohexane (HCH) alpha-HCH and gamma-HCH (lindane), underwent 10-fold and 4-fold reductions in concentration as a function of biochar treatment. Biochar also resulted in a significant reduction in soil DDT levels (P < 0.01), and increased the DDE:DDT ratio. Soil microbial activity was significantly increased (P < 0.01) under all biochar treatments after 60 days of treatment compared to the control. 16S amplicon sequencing revealed that biochar-amended soil contained more members of the Chryseobacterium, Flavobacterium, Dyadobacter and Pseudomonadaceae which are known bioremediators of hydrocarbons. We hypothesise that a recorded short-term reduction in the soluble As concentration due to biochar amendment allowed native soil microbial communities to overcome As-related stress. We propose that increased microbiological activity (dehydrogenase activity) due to biochar amendment was responsible for enhanced degradation of organochlorines in the soil. Biochar therefore partially overcame the co-contaminant effect of As, allowing for enhanced natural attenuation of organochlorines in soil. PMID:25923541

  1. Distribution of anaerobic carbon monoxide dehydrogenase genes in deep subseafloor sediments.

    PubMed

    Hoshino, T; Inagaki, F

    2017-05-01

    Carbon monoxide (CO) is the simplest oxocarbon generated by the decomposition of organic compounds, and it is expected to be in marine sediments in substantial amounts. However, the availability of CO in the deep subseafloor sedimentary biosphere is largely unknown even though anaerobic oxidation of CO is a thermodynamically favourable reaction that possibly occurs with sulphate reduction, methanogenesis, acetogenesis and hydrogenesis. In this study, we surveyed for the first time the distribution of the CO dehydrogenase gene (cooS), which encodes the catalytic beta subunit of anaerobic CO dehydrogenase (CODH), in subseafloor sediment-core samples from the eastern flank of the Juan de Fuca Ridge, Mars-Ursa Basin, Kumano Basin, and off the Shimokita Peninsula, Japan, during Integrated Ocean Drilling Program (IODP) Expeditions 301, 308 and 315 and the D/V Chikyu shakedown cruise CK06-06, respectively. Our results show the occurrence of diverse cooS genes from the seafloor down to about 390 m below the seafloor, suggesting that microbial communities have metabolic functions to utilize CO in anoxic microbial ecosystems beneath the ocean floor, and that the microbial community potentially responsible for anaerobic CO oxidation differs in accordance with possible energy-yielding metabolic reactions in the deep subseafloor sedimentary biosphere. Little is known about the microbial community associated with carbon monoxide (CO) in the deep subseafloor. This study is the first survey of a functional gene encoding anaerobic carbon monoxide dehydrogenase (CODH). The widespread occurrence of previously undiscovered CO dehydrogenase genes (cooS) suggests that diverse micro-organisms are capable of anaerobic oxidation of CO in the deep subseafloor sedimentary biosphere. © 2017 The Society for Applied Microbiology.

  2. Flavins secreted by bacterial cells of Shewanella catalyze cathodic oxygen reduction.

    PubMed

    Liu, Huan; Matsuda, Shoichi; Hashimoto, Kazuhito; Nakanishi, Shuji

    2012-06-01

    On Her Majesty's Secrete Service: Oxygen reduction is an important process for microbial fuel cells (MFCs) and microbiologically-influenced corrosion (MIC). We demonstrate that flavins secreted by anode-respiring Shewanella cells can catalyze cathodic oxygen reduction via adsorption on the cathode. The findings will provide new insight for developing methods to improve MFC performance and to prevent MIC. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Soil temperature and water content drive microbial carbon fixation in grassland of permafrost area on the Tibetan plateau

    NASA Astrophysics Data System (ADS)

    Kong, W.; Guo, G.; Liu, J.

    2014-12-01

    Soil microbial communities underpin terrestrial biogeochemical cycles and are greatly influenced by global warming and global-warming-induced dryness. However, the response of soil microbial community function to global change remains largely uncertain, particularly in the ecologically vulnerable Tibetan plateau permafrost area with large carbon storage. With the concept of space for time substitution, we investigated the responses of soil CO2-fixing microbial community and its enzyme activity to climate change along an elevation gradient (4400-5100 m) of alpine grassland on the central Tibetan plateau. The elevation gradient in a south-facing hill slope leads to variation in climate and soil physicochemical parameters. The autotrophic microbial communities were characterized by quantitative PCR (qPCR), terminal restriction fragment length polymorphism analysis (T-RFLP) and cloning/sequencing targeting the CO2-fixing gene (RubisCO). The results demonstrated that the autotrophic microbial community abundance, structure and its enzyme activity were mainly driven by soil temperature and water content. Soil temperature increase and water decrease dramatically reduced the abundance of the outnumbered form IC RubisCO-containing microbes, and significantly changed the structure of form IC, IAB and ID RubisCO-containing microbial community. Structural equation model revealed that the RubisCO enzyme was directly derived from RubisCO-containing microbes and its activity was significantly reduced by soil temperature increase and water content decrease. Thus our results provide a novel positive feedback loop of climate warming and warming-induced dryness by that soil microbial carbon fixing potential will reduce by 3.77%-8.86% with the soil temperature increase of 1.94oC and water content decrease of 60%-70%. This positive feedback could be capable of amplifying the climate change given the significant contribution of soil microbial CO2-fixing up to 4.9% of total soil organic carbon.

  4. Formation of recent Pb-Ag-Au mineralization by potential sub-surface microbial activity

    NASA Astrophysics Data System (ADS)

    Tornos, Fernando; Velasco, Francisco; Menor-Salván, César; Delgado, Antonio; Slack, John F.; Escobar, Juan Manuel

    2014-08-01

    Las Cruces is a base-metal deposit in the Iberian Pyrite Belt, one of the world’s best-known ore provinces. Here we report the occurrence of major Pb-Ag-Au mineralization resulting from recent sub-surface replacement of supergene oxyhydroxides by carbonate and sulphide minerals. This is probably the largest documented occurrence of recent microbial activity producing an ore assemblage previously unknown in supergene mineralizing environments. The presence of microbial features in the sulphides suggests that these may be the first-described natural bacteriomorphs of galena. The low δ13C values of the carbonate minerals indicate formation by deep anaerobic microbial processes. Sulphur isotope values of sulphides are interpreted here as reflecting microbial reduction in a system impoverished in sulphate. We suggest that biogenic activity has produced around 3.1 × 109 moles of reduced sulphur and 1010 moles of CO2, promoting the formation of ca. 1.19 Mt of carbonates, 114,000 t of galena, 638 t of silver sulphides and 6.5 t of gold.

  5. Effects of elevated CO2 and shade on the decomposition of senesced tree foliage: impacts on microbial activity

    Treesearch

    Michael G. Kaufman; R. Malcolm Strand; Mark E. Kubiske; William J. Mattson; Daniel A. Herms; Edward D. Walker; Kurt S. Pregitzer; Richard W. Merritt

    1996-01-01

    We examined microbial respiration and carbon/nitrogen content of decomposing leaf material in microcosms used for growth studies of the treehole mosquito, Aedes triseriatus. Leaf material originated from birch and oak trees exposed to conditions of shade/sun and elevated/ambient levels of CO2. Microbial respiration as measured...

  6. Changes in the microbiota of lamb packaged in a vacuum and in modified atmospheres during chilled storage analysed by high-throughput sequencing.

    PubMed

    Wang, Taojun; Zhao, Liang; Sun, Yanan; Ren, Fazheng; Chen, Shanbin; Zhang, Hao; Guo, Huiyuan

    2016-11-01

    Changes in the microbiota of lamb were investigated under vacuum packaging (VP) and under 20% CO2/80% N2 (LC), 60% CO2/40% N2 (MC), and 100% CO2 (HC) modified atmosphere packaging (MAP) during chilled storage. Viable counts were monitored, and the total microbial communities were assessed by high-throughput sequencing. The starting community had the highest microbial diversity, after which Lactococcus and Carnobacterium spp. outcompeted during the 28-day storage. The relative abundances of Brochothrix spp. in the LC atmosphere were much higher than those of the other groups on days 7 and 28. The bacterial inhibiting effect of the MAP environments on microbial growth was positively correlated with the CO2 concentration. The HC atmosphere inhibited microbial growth and delayed changes in the microbial community composition, extending the lamb's shelf life by approximately 7days compared with the VP atmosphere. Lamb packaged in the VP atmosphere had a more desirable colour but a higher weight loss than lamb packaged in the MAP atmospheres. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Metal availability and the expanding network of microbial metabolisms in the Archaean eon

    NASA Astrophysics Data System (ADS)

    Moore, Eli K.; Jelen, Benjamin I.; Giovannelli, Donato; Raanan, Hagai; Falkowski, Paul G.

    2017-09-01

    Life is based on energy gained by electron-transfer processes; these processes rely on oxidoreductase enzymes, which often contain transition metals in their structures. The availability of different metals and substrates has changed over the course of Earth's history as a result of secular changes in redox conditions, particularly global oxygenation. New metabolic pathways using different transition metals co-evolved alongside changing redox conditions. Sulfur reduction, sulfate reduction, methanogenesis and anoxygenic photosynthesis appeared between about 3.8 and 3.4 billion years ago. The oxidoreductases responsible for these metabolisms incorporated metals that were readily available in Archaean oceans, chiefly iron and iron-sulfur clusters. Oxygenic photosynthesis appeared between 3.2 and 2.5 billion years ago, as did methane oxidation, nitrogen fixation, nitrification and denitrification. These metabolisms rely on an expanded range of transition metals presumably made available by the build-up of molecular oxygen in soil crusts and marine microbial mats. The appropriation of copper in enzymes before the Great Oxidation Event is particularly important, as copper is key to nitrogen and methane cycling and was later incorporated into numerous aerobic metabolisms. We find that the diversity of metals used in oxidoreductases has increased through time, suggesting that surface redox potential and metal incorporation influenced the evolution of metabolism, biological electron transfer and microbial ecology.

  8. Deep aquifer prokaryotic community responses to CO2 geosequestration

    NASA Astrophysics Data System (ADS)

    Mu, A.; Moreau, J. W.

    2015-12-01

    Little is known about potential microbial responses to supercritical CO2 (scCO2) injection into deep subsurface aquifers, a currently experimental means for mitigating atmospheric CO2 pollution being trialed at several locations around the world. One such site is the Paaratte Formation of the Otway Basin (~1400 m below surface; 60°C; 2010 psi), Australia. Microbial responses to scCO2 are important to understand as species selection may result in changes to carbon and electron flow. A key aim is to determine if biofilm may form in aquifer pore spaces and reduce aquifer permeability and storage. This study aimed to determine in situ, using 16S rRNA gene, and functional metagenomic analyses, how the microbial community in the Otway Basin geosequestration site responded to experimental injection of 150 tons of scCO2. We demonstrate an in situ sampling approach for detecting deep subsurface microbial community changes associated with geosequestration. First-order level analyses revealed a distinct shift in microbial community structure following the scCO2 injection event, with proliferation of genera Comamonas and Sphingobium. Similarly, functional profiling of the formation revealed a marked increase in biofilm-associated genes (encoding for poly-β-1,6-N-acetyl-D-glucosamine). Global analysis of the functional gene profile highlights that scCO2 injection potentially degraded the metabolism of CH4 and lipids. A significant decline in carboxydotrophic gene abundance (cooS) and an anaerobic carboxydotroph OTU (Carboxydocella), was observed in post-injection samples. The potential impacts on the flow networks of carbon and electrons to heterotrophs are discussed. Our findings yield insights for other subsurface systems, such as hydrocarbon-rich reservoirs and high-CO2 natural analogue sites.

  9. Soil water availability and microsite mediate fungal and bacterial phospholipid fatty acid biomarker abundances in Mojave Desert soils exposed to elevated atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Jin, V. L.; Schaeffer, S. M.; Ziegler, S. E.; Evans, R. D.

    2011-06-01

    Changes in the rates of nitrogen (N) cycling, microbial carbon (C) substrate use, and extracellular enzyme activities in a Mojave Desert ecosystem exposed to elevated atmospheric CO2 suggest shifts in the size and/or functional characteristics of microbial assemblages in two dominant soil microsites: plant interspaces and under the dominant shrub Larrea tridentata. We used ester-linked phospholipid fatty acid (PLFA) biomarkers as a proxy for microbial biomass to quantify spatial and temporal differences in soil microbial communities from February 2003 to May 2005. Further, we used the 13C signature of the fossil CO2 source for elevated CO2 plots to trace recent plant C inputs into soil organic matter (SOM) and broad microbial groups using δ13C (‰). Differences between individual δ13CPLFA and δ13CSOM for fungal biomarkers indicated active metabolism of newer C in elevated CO2 soils. Total PLFA-C was greater in shrub microsites compared to plant interspaces, and CO2 treatment differences within microsites increased under higher soil water availability. Total, fungal, and bacterial PLFA-C increased with decreasing soil volumetric water content (VWC) in both microsites, suggesting general adaptations to xeric desert conditions. Increases in fungal-to-bacterial PLFA-C ratio with decreasing VWC reflected functional group-specific responses to changing soil water availability. While temporal and spatial extremes in resource availability in desert ecosystems contribute to the difficulty in identifying common trends or mechanisms driving microbial responses in less extreme environments, we found that soil water availability and soil microsite interacted with elevated CO2 to shift fungal and bacterial biomarker abundances in Mojave Desert soils.

  10. Microbial Activity in Aquatic Environments Measured by Dimethyl Sulfoxide Reduction and Intercomparison with Commonly Used Methods

    PubMed Central

    Griebler, Christian; Slezak, Doris

    2001-01-01

    A new method to determine microbial (bacterial and fungal) activity in various freshwater habitats is described. Based on microbial reduction of dimethyl sulfoxide (DMSO) to dimethyl sulfide (DMS), our DMSO reduction method allows measurement of the respiratory activity in interstitial water, as well as in the water column. DMSO is added to water samples at a concentration (0.75% [vol/vol] or 106 mM) high enough to compete with other naturally occurring electron acceptors, as determined with oxygen and nitrate, without stimulating or inhibiting microbial activity. Addition of NaN3, KCN, and formaldehyde, as well as autoclaving, inhibited the production of DMS, which proves that the reduction of DMSO is a biotic process. DMSO reduction is readily detectable via the formation of DMS even at low microbial activities. All water samples showed significant DMSO reduction over several hours. Microbially reduced DMSO is recovered in the form of DMS from water samples by a purge and trap system and is quantified by gas chromatography and detection with a flame photometric detector. The DMSO reduction method was compared with other methods commonly used for assessment of microbial activity. DMSO reduction activity correlated well with bacterial production in predator-free batch cultures. Cell-production-specific DMSO reduction rates did not differ significantly in batch cultures with different nutrient regimes but were different in different growth phases. Overall, a cell-production-specific DMSO reduction rate of 1.26 × 10−17 ± 0.12 × 10−17 mol of DMS per produced cell (mean ± standard error; R2 = 0.78) was calculated. We suggest that the relationship of DMSO reduction rates to thymidine and leucine incorporation is linear (the R2 values ranged from 0.783 to 0.944), whereas there is an exponential relationship between DMSO reduction rates and glucose uptake, as well as incorporation (the R2 values ranged from 0.821 to 0.931). Based on our results, we conclude that the DMSO reduction method is a nonradioactive alternative to other methods commonly used to assess microbial activity. PMID:11133433

  11. Microbial activity in aquatic environments measured by dimethyl sulfoxide reduction and intercomparison with commonly used methods.

    PubMed

    Griebler, C; Slezak, D

    2001-01-01

    A new method to determine microbial (bacterial and fungal) activity in various freshwater habitats is described. Based on microbial reduction of dimethyl sulfoxide (DMSO) to dimethyl sulfide (DMS), our DMSO reduction method allows measurement of the respiratory activity in interstitial water, as well as in the water column. DMSO is added to water samples at a concentration (0.75% [vol/vol] or 106 mM) high enough to compete with other naturally occurring electron acceptors, as determined with oxygen and nitrate, without stimulating or inhibiting microbial activity. Addition of NaN(3), KCN, and formaldehyde, as well as autoclaving, inhibited the production of DMS, which proves that the reduction of DMSO is a biotic process. DMSO reduction is readily detectable via the formation of DMS even at low microbial activities. All water samples showed significant DMSO reduction over several hours. Microbially reduced DMSO is recovered in the form of DMS from water samples by a purge and trap system and is quantified by gas chromatography and detection with a flame photometric detector. The DMSO reduction method was compared with other methods commonly used for assessment of microbial activity. DMSO reduction activity correlated well with bacterial production in predator-free batch cultures. Cell-production-specific DMSO reduction rates did not differ significantly in batch cultures with different nutrient regimes but were different in different growth phases. Overall, a cell-production-specific DMSO reduction rate of 1.26 x 10(-17) +/- 0. 12 x 10(-17) mol of DMS per produced cell (mean +/- standard error; R(2) = 0.78) was calculated. We suggest that the relationship of DMSO reduction rates to thymidine and leucine incorporation is linear (the R(2) values ranged from 0.783 to 0.944), whereas there is an exponential relationship between DMSO reduction rates and glucose uptake, as well as incorporation (the R(2) values ranged from 0.821 to 0.931). Based on our results, we conclude that the DMSO reduction method is a nonradioactive alternative to other methods commonly used to assess microbial activity.

  12. Grazing reduces soil greenhouse gas fluxes in global grasslands: a meta-analysis

    NASA Astrophysics Data System (ADS)

    Tang, Shiming; Tian, Dashuan; Niu, Shuli

    2017-04-01

    Grazing causes a worldwide degradation in grassland and likely alters soil greenhouse gas fluxes (GHGs). However, the general patterns of grazing-induced changes in grassland soil GHGs and the underlying mechanisms remain unclear. Thus, we synthesized 63 independent experiments in global grasslands that examined grazing impacts on soil GHGs (CO2, CH4 and N2O). We found that grazing with light or moderate intensity did not significantly influence soil GHGs, but consistently depressed them under heavy grazing, reducing CO2 emission by 10.55%, CH4 uptake by 19.24% and N2O emission by 28.04%. The reduction in soil CO2 was mainly due to decreased activity in roots and microbes (soil respiration per unit root and microbial biomass), which was suppressed by less water availability due to higher soil temperature induced by lower community cover under heavy grazing. N2O emission decreased with grazing-caused decline in soil total N. The inhibitory effect on methanotroph activities by water stress is responsible for the decreased CH4 uptake. Furthermore, grazing duration and precipitation also influenced the direction and magnitude of responses in GHGs fluxes. Overall, our results indicate that the reduction in soil CO2 and N2O emission under heavy grazing is partially compensated by the decrease in CH4 uptake, which is mainly regulated by variations in soil moisture.

  13. Isotopic biosignatures in carbonate-rich, cyanobacteria-dominated microbial mats of the Cariboo Plateau, B.C.

    PubMed

    Brady, A L; Druschel, G; Leoni, L; Lim, D S S; Slater, G F

    2013-09-01

    Photosynthetic activity in carbonate-rich benthic microbial mats located in saline, alkaline lakes on the Cariboo Plateau, B.C. resulted in pCO2 below equilibrium and δ(13) CDIC values up to +6.0‰ above predicted carbon dioxide (CO2 ) equilibrium values, representing a biosignature of photosynthesis. Mat-associated δ(13) Ccarb values ranged from ~4 to 8‰ within any individual lake, with observations of both enrichments (up to 3.8‰) and depletions (up to 11.6‰) relative to the concurrent dissolved inorganic carbon (DIC). Seasonal and annual variations in δ(13) C values reflected the balance between photosynthetic (13) C-enrichment and heterotrophic inputs of (13) C-depleted DIC. Mat microelectrode profiles identified oxic zones where δ(13) Ccarb was within 0.2‰ of surface DIC overlying anoxic zones associated with sulphate reduction where δ(13) Ccarb was depleted by up to 5‰ relative to surface DIC reflecting inputs of (13) C-depleted DIC. δ(13) C values of sulphate reducing bacteria biomarker phospholipid fatty acids (PLFA) were depleted relative to the bulk organic matter by ~4‰, consistent with heterotrophic synthesis, while the majority of PLFA had larger offsets consistent with autotrophy. Mean δ(13) Corg values ranged from -18.7 ± 0.1 to -25.3 ± 1.0‰ with mean Δ(13) Cinorg-org values ranging from 21.1 to 24.2‰, consistent with non-CO2 -limited photosynthesis, suggesting that Precambrian δ(13) Corg values of ~-26‰ do not necessitate higher atmospheric CO2 concentrations. Rather, it is likely that the high DIC and carbonate content of these systems provide a non-limiting carbon source allowing for expression of large photosynthetic offsets, in contrast to the smaller offsets observed in saline, organic-rich and hot spring microbial mats. © 2013 John Wiley & Sons Ltd.

  14. CO2 – Intrinsic Product, Essential Substrate, and Regulatory Trigger of Microbial and Mammalian Production Processes

    PubMed Central

    Blombach, Bastian; Takors, Ralf

    2015-01-01

    Carbon dioxide formation mirrors the final carbon oxidation steps of aerobic metabolism in microbial and mammalian cells. As a consequence, CO2/HCO3− dissociation equilibria arise in fermenters by the growing culture. Anaplerotic reactions make use of the abundant CO2/HCO3− levels for refueling citric acid cycle demands and for enabling oxaloacetate-derived products. At the same time, CO2 is released manifold in metabolic reactions via decarboxylation activity. The levels of extracellular CO2/HCO3− depend on cellular activities and physical constraints such as hydrostatic pressures, aeration, and the efficiency of mixing in large-scale bioreactors. Besides, local CO2/HCO3− levels might also act as metabolic inhibitors or transcriptional effectors triggering regulatory events inside the cells. This review gives an overview about fundamental physicochemical properties of CO2/HCO3− in microbial and mammalian cultures effecting cellular physiology, production processes, metabolic activity, and transcriptional regulation. PMID:26284242

  15. Microbial potential for carbon and nutrient cycling in a geogenic supercritical carbon dioxide reservoir: Microbial life in the deep carbonated biosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freedman, Adam J. E.; Tan, BoonFei; Thompson, Janelle R.

    Microorganisms catalyze carbon cycling and biogeochemical reactions in the deep subsurface and thus may be expected to influence the fate of injected super-critical (sc) CO 2 following geological carbon sequestration (GCS). We hypothesized that natural subsurface scCO 2 reservoirs, which serve as analogs for the long-term fate of sequestered scCO 2 harbor a ‘deep carbonated biosphere’ with carbon cycling potential. We sampled subsurface fluids from scCO 2- water separators at a natural scCO 2 reservoir at McElmo Dome, Colorado for analysis of 16S rRNA gene diversity and metagenome content. Sequence annotations indicated dominance of Sulfurospirillum, Rhizobium, Desulfovibrio and four membersmore » of the Clostridiales family. Genomes extracted from metagenomes using homology and compositional approaches revealed diverse mechanisms for growth and nutrient cycling, including pathways for CO 2 and N 2 fixation, anaerobic respiration, sulfur oxidation, fermentation and potential for metabolic syntrophy. Differences in biogeochemical potential between two production well communities were consistent with differences in fluid chemical profiles, suggesting a potential link between microbial activity and geochemistry. In conclusion, the existence of a microbial ecosystem associated with the McElmo Dome scCO 2 reservoir indicates that potential impacts of the deep biosphere on CO 2 fate and transport should be taken into consideration as a component of GCS planning and modelling.« less

  16. Microbial potential for carbon and nutrient cycling in a geogenic supercritical carbon dioxide reservoir: Microbial life in the deep carbonated biosphere

    DOE PAGES

    Freedman, Adam J. E.; Tan, BoonFei; Thompson, Janelle R.

    2017-05-02

    Microorganisms catalyze carbon cycling and biogeochemical reactions in the deep subsurface and thus may be expected to influence the fate of injected super-critical (sc) CO 2 following geological carbon sequestration (GCS). We hypothesized that natural subsurface scCO 2 reservoirs, which serve as analogs for the long-term fate of sequestered scCO 2 harbor a ‘deep carbonated biosphere’ with carbon cycling potential. We sampled subsurface fluids from scCO 2- water separators at a natural scCO 2 reservoir at McElmo Dome, Colorado for analysis of 16S rRNA gene diversity and metagenome content. Sequence annotations indicated dominance of Sulfurospirillum, Rhizobium, Desulfovibrio and four membersmore » of the Clostridiales family. Genomes extracted from metagenomes using homology and compositional approaches revealed diverse mechanisms for growth and nutrient cycling, including pathways for CO 2 and N 2 fixation, anaerobic respiration, sulfur oxidation, fermentation and potential for metabolic syntrophy. Differences in biogeochemical potential between two production well communities were consistent with differences in fluid chemical profiles, suggesting a potential link between microbial activity and geochemistry. In conclusion, the existence of a microbial ecosystem associated with the McElmo Dome scCO 2 reservoir indicates that potential impacts of the deep biosphere on CO 2 fate and transport should be taken into consideration as a component of GCS planning and modelling.« less

  17. Microbial Community Response of an Organohalide Respiring Enrichment Culture to Permanganate Oxidation.

    PubMed

    Sutton, Nora B; Atashgahi, Siavash; Saccenti, Edoardo; Grotenhuis, Tim; Smidt, Hauke; Rijnaarts, Huub H M

    2015-01-01

    While in situ chemical oxidation is often used to remediate tetrachloroethene (PCE) contaminated locations, very little is known about its influence on microbial composition and organohalide respiration (OHR) activity. Here, we investigate the impact of oxidation with permanganate on OHR rates, the abundance of organohalide respiring bacteria (OHRB) and reductive dehalogenase (rdh) genes using quantitative PCR, and microbial community composition through sequencing of 16S rRNA genes. A PCE degrading enrichment was repeatedly treated with low (25 μmol), medium (50 μmol), or high (100 μmol) permanganate doses, or no oxidant treatment (biotic control). Low and medium treatments led to higher OHR rates and enrichment of several OHRB and rdh genes, as compared to the biotic control. Improved degradation rates can be attributed to enrichment of (1) OHRB able to also utilize Mn oxides as a terminal electron acceptor and (2) non-dechlorinating community members of the Clostridiales and Deltaproteobacteria possibly supporting OHRB by providing essential co-factors. In contrast, high permanganate treatment disrupted dechlorination beyond cis-dichloroethene and caused at least a 2-4 orders of magnitude reduction in the abundance of all measured OHRB and rdh genes, as compared to the biotic control. High permanganate treatments resulted in a notably divergent microbial community, with increased abundances of organisms affiliated with Campylobacterales and Oceanospirillales capable of dissimilatory Mn reduction, and decreased abundance of presumed supporters of OHRB. Although OTUs classified within the OHR-supportive order Clostridiales and OHRB increased in abundance over the course of 213 days following the final 100 μmol permanganate treatment, only limited regeneration of PCE dechlorination was observed in one of three microcosms, suggesting strong chemical oxidation treatments can irreversibly disrupt OHR. Overall, this detailed investigation into dose-dependent changes of microbial composition and activity due to permanganate treatment provides insight into the mechanisms of OHR stimulation or disruption upon chemical oxidation.

  18. Microbial Community Response of an Organohalide Respiring Enrichment Culture to Permanganate Oxidation

    PubMed Central

    Sutton, Nora B.; Atashgahi, Siavash; Saccenti, Edoardo; Grotenhuis, Tim; Smidt, Hauke; Rijnaarts, Huub H. M.

    2015-01-01

    While in situ chemical oxidation is often used to remediate tetrachloroethene (PCE) contaminated locations, very little is known about its influence on microbial composition and organohalide respiration (OHR) activity. Here, we investigate the impact of oxidation with permanganate on OHR rates, the abundance of organohalide respiring bacteria (OHRB) and reductive dehalogenase (rdh) genes using quantitative PCR, and microbial community composition through sequencing of 16S rRNA genes. A PCE degrading enrichment was repeatedly treated with low (25 μmol), medium (50 μmol), or high (100 μmol) permanganate doses, or no oxidant treatment (biotic control). Low and medium treatments led to higher OHR rates and enrichment of several OHRB and rdh genes, as compared to the biotic control. Improved degradation rates can be attributed to enrichment of (1) OHRB able to also utilize Mn oxides as a terminal electron acceptor and (2) non-dechlorinating community members of the Clostridiales and Deltaproteobacteria possibly supporting OHRB by providing essential co-factors. In contrast, high permanganate treatment disrupted dechlorination beyond cis-dichloroethene and caused at least a 2–4 orders of magnitude reduction in the abundance of all measured OHRB and rdh genes, as compared to the biotic control. High permanganate treatments resulted in a notably divergent microbial community, with increased abundances of organisms affiliated with Campylobacterales and Oceanospirillales capable of dissimilatory Mn reduction, and decreased abundance of presumed supporters of OHRB. Although OTUs classified within the OHR-supportive order Clostridiales and OHRB increased in abundance over the course of 213 days following the final 100 μmol permanganate treatment, only limited regeneration of PCE dechlorination was observed in one of three microcosms, suggesting strong chemical oxidation treatments can irreversibly disrupt OHR. Overall, this detailed investigation into dose-dependent changes of microbial composition and activity due to permanganate treatment provides insight into the mechanisms of OHR stimulation or disruption upon chemical oxidation. PMID:26244346

  19. Changes in Soil Organic Matter Abundance, Molecular Composition, and Diversity in an Arid Ecosystem in Response to Long-term Elevated CO2 Manipulation.

    NASA Astrophysics Data System (ADS)

    Hess, N. J.; Tfaily, M.; Evans, R. D.; Koyama, A.

    2017-12-01

    Little is known about how soils in arid ecosystems will respond to rising atmospheric CO2 concentration yet arid and semi-arid ecosystems cover more than 40% of Earth's land surface. Previous work in the Mojave Desert (Evans et al., 2014 Nature Climate Change) reported higher soil organic carbon (SOC) and total nitrogen (N) concentrations following 10 years exposure to elevated atmospheric CO2 at the Nevada Desert Free-Air-Carbon dioxide-Enrichment (FACE) Facility (NDFF). In this study, we investigated potential mechanisms that resulted in increased SOC and total N accumulation and stabilization using high resolution mass spectrometry at the NDFF site. Samples were collected from soil profiles to 1 m in depth with a 0.2 m a increment under the dominant evergreen shrub Larrea tridentata. The differences in the molecular composition and diversity of soil organic matter (SOM) were more evident in surface soils and declined with depth, and were consistent with higher SOC and total N concentrations under elevated than ambient CO2. Our molecular analysis also suggested increased root exudation and/or microbial necromass from stabilization of labile C and N contributed to SOM and N stocks. Increased microbial activity and metabolism under elevated CO2 compared to ambient plots suggested that elevated CO2 altered microbial carbon (C) use patterns, reflecting changes in the quality and quantity of SOC inputs. We found that plant-derived compounds were primary substrates for microbial activity under elevated CO2 and microbial products were the main constituents of stabilized SOM. Our results suggest that arid ecosystems are a potential large C sink under elevated CO2, give the extensive coverage of the land surface, and that labile compounds are transformed to stable SOM via microbial processes. Arid systems are limited by water, and thus may have a different C storage potential under changing climates than other ecosystems that are limited by nitrogen or phosphorus.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seewald, Jeffrey, S.

    Results of prior DOE supported research conducted at the Woods Hole Oceanographic Institution have demonstrated the participation of sedimentary minerals and water as reactants and catalysts in chemical transformations associated with the degradation of oil and the formation of low molecular weight organic compounds. The occurrence of such processes in natural environments can be difficult to recognize because the composition of organic alteration products may not be substantially different than those produced by thermal cracking. The goals of this study were the development of diagnostic tools based on hydrogen and carbon isotopes that can be used to identify geochemical processesmore » responsible for the formation of thermogenic natural gas. In addition, our activities were expanded to include experimental investigation of CO2 reduction in aqueous systems at elevated temperature and pressures and an assessment of microbial activity in relatively low temperature (<70°C) natural gas reservoirs in southeastern Oklahoma. Specific objectives included: A laboratory investigation of geochemical processes that regulate the hydrogen isotope composition of low molecular weight hydrocarbons in natural gas at elevated temperatures and pressures. A laboratory investigation of factors that regulate the carbon isotope composition of organic acids in basinal brines. A laboratory assessment of the role of methanol during reduction of CO2 to CH4 under hydrothermal conditions. Characterization of microbial ecosystems in coproduced fluids from the Potato Hills gas field to assess the role of microbes in the generation of natural gas.« less

  1. Effect of elevated CO2, O3, and UV radiation on soils.

    PubMed

    Formánek, Pavel; Rejšek, Klement; Vranová, Valerie

    2014-01-01

    In this work, we have attempted to review the current knowledge on the impact of elevated CO2, O3, and UV on soils. Elevated CO2 increases labile and stabile soil C pool as well as efficiency of organic pollutants rhizoremediation and phytoextraction of heavy metals. Conversely, both elevated O3 and UV radiation decrease inputs of assimilates to the rhizosphere being accompanied by inhibitory effects on decomposition processes, rhizoremediation, and heavy metals phytoextraction efficiency. Contrary to elevated CO2, O3, or UV-B decreases soil microbial biomass, metabolisable C, and soil N t content leading to higher C/N of soil organic matter. Elevated UV-B radiation shifts soil microbial community and decreases populations of soil meso- and macrofauna via direct effect rather than by induced changes of litter quality and root exudation as in case of elevated CO2 or O3. CO2 enrichment or increased UV-B is hypothesised to stimulate or inhibit both plant and microbial competitiveness for soluble soil N, respectively, whereas O3 favours only microbial competitive efficiency. Understanding the consequences of elevated CO2, O3, and UV radiation for soils, especially those related to fertility, phytotoxins inputs, elements cycling, plant-microbe interactions, and decontamination of polluted sites, presents a knowledge gap for future research.

  2. Effect of Elevated CO2, O3, and UV Radiation on Soils

    PubMed Central

    Rejšek, Klement; Vranová, Valerie

    2014-01-01

    In this work, we have attempted to review the current knowledge on the impact of elevated CO2, O3, and UV on soils. Elevated CO2 increases labile and stabile soil C pool as well as efficiency of organic pollutants rhizoremediation and phytoextraction of heavy metals. Conversely, both elevated O3 and UV radiation decrease inputs of assimilates to the rhizosphere being accompanied by inhibitory effects on decomposition processes, rhizoremediation, and heavy metals phytoextraction efficiency. Contrary to elevated CO2, O3, or UV-B decreases soil microbial biomass, metabolisable C, and soil Nt content leading to higher C/N of soil organic matter. Elevated UV-B radiation shifts soil microbial community and decreases populations of soil meso- and macrofauna via direct effect rather than by induced changes of litter quality and root exudation as in case of elevated CO2 or O3. CO2 enrichment or increased UV-B is hypothesised to stimulate or inhibit both plant and microbial competitiveness for soluble soil N, respectively, whereas O3 favours only microbial competitive efficiency. Understanding the consequences of elevated CO2, O3, and UV radiation for soils, especially those related to fertility, phytotoxins inputs, elements cycling, plant-microbe interactions, and decontamination of polluted sites, presents a knowledge gap for future research. PMID:24688424

  3. Freestanding and flexible graphene papers as bioelectrochemical cathode for selective and efficient CO2 conversion.

    PubMed

    Aryal, Nabin; Halder, Arnab; Zhang, Minwei; Whelan, Patrick R; Tremblay, Pier-Luc; Chi, Qijin; Zhang, Tian

    2017-08-22

    During microbial electrosynthesis (MES) driven CO 2 reduction, cathode plays a vital role by donating electrons to microbe. Here, we exploited the advantage of reduced graphene oxide (RGO) paper as novel cathode material to enhance electron transfer between the cathode and microbe, which in turn facilitated CO 2 reduction. The acetate production rate of Sporomusa ovata-driven MES reactors was 168.5 ± 22.4 mmol m -2 d -1 with RGO paper cathodes poised at -690 mV versus standard hydrogen electrode. This rate was approximately 8 fold faster than for carbon paper electrodes of the same dimension. The current density with RGO paper cathodes of 2580 ± 540 mA m -2 was increased 7 fold compared to carbon paper cathodes. This also corresponded to a better cathodic current response on their cyclic voltammetric curves. The coulombic efficiency for the electrons conversion into acetate was 90.7 ± 9.3% with RGO paper cathodes and 83.8 ± 4.2% with carbon paper cathodes, respectively. Furthermore, more intensive cell attachment was observed on RGO paper electrodes than on carbon paper electrodes with confocal laser scanning microscopy and scanning electron microscopy. These results highlight the potential of RGO paper as a promising cathode for MES from CO 2 .

  4. Microbial reduction of uranium

    USGS Publications Warehouse

    Lovley, D.R.; Phillips, E.J.P.; Gorby, Y.A.; Landa, E.R.

    1991-01-01

    REDUCTION of the soluble, oxidized form of uranium, U(VI), to insoluble U(IV) is an important mechanism for the immobilization of uranium in aquatic sediments and for the formation of some uranium ores1-10. U(VI) reduction has generally been regarded as an abiological reaction in which sulphide, molecular hydrogen or organic compounds function as the reductant1,2,5,11. Microbial involvement in U(VI) reduction has been considered to be limited to indirect effects, such as microbial metabolism providing the reduced compounds for abiological U(VI) reduction and microbial cell walls providing a surface to stimulate abiological U(VI) reduction1,12,13. We report here, however, that dissimilatory Fe(III)-reducing microorganisms can obtain energy for growth by electron transport to U(VI). This novel form of microbial metabolism can be much faster than commonly cited abiological mechanisms for U(VI) reduction. Not only do these findings expand the known potential terminal electron acceptors for microbial energy transduction, they offer a likely explanation for the deposition of uranium in aquatic sediments and aquifers, and suggest a method for biological remediation of environments contaminated with uranium.

  5. Diagenetic mineralization in Pennsylvanian coals from Indiana, USA: 13C/12C and 18O/16O implications for cleat origin and coalbed methane generation

    USGS Publications Warehouse

    Solano-Acosta, W.; Schimmelmann, A.; Mastalerz, Maria; Arango, I.

    2008-01-01

    Cleats and fractures in southwestern Indiana coal seams are often filled with authigenic kaolinite and/or calcite. Carbon- and oxygen-stable isotope ratios of kaolinite, calcite, and coalbed CO2 were evaluated in combination with measured values and published estimates of ??18O of coalbed paleowaters that had been present at the time of mineralization. ??18Omineral and ??18Owater values jointly constrain the paleotemperature of mineralization. The isotopic evidence and the thermal and tectonic history of this part of the Illinois Basin led to the conclusion that maximum burial and heat-sterilization of coal seams approximately 272??Ma ago was followed by advective heat redistribution and concurrent precipitation of kaolinite in cleats at a burial depth of < 1600??m at ??? 78 ?? 5????C. Post-Paleozoic uplift, the development of a second generation of cleats, and subsequent precipitation of calcite occurred at shallower burial depth between ??? 500 to ??? 1300??m at a lower temperature of 43 ?? 6????C. The available paleowater in coalbeds was likely ocean water and/or tropical meteoric water with a ??18Owater ??? - 1.25??? versus VSMOW. Inoculation of coalbeds with methanogenic CO2-reducing microbes occurred at an even later time, because modern microbially influenced 13C-enriched coalbed CO2 (i.e., the isotopically fractionated residue of microbial CO2 reduction) is out of isotopic equilibrium with 13C-depleted calcite in cleats. ?? 2007 Elsevier B.V. All rights reserved.

  6. Dolomitized cells within chert of the Permian Assistência Formation, Paraná Basin, Brazil

    NASA Astrophysics Data System (ADS)

    Calça, Cléber P.; Fairchild, Thomas R.; Cavalazzi, Barbara; Hachiro, Jorge; Petri, Setembrino; Huila, Manuel Fernando Gonzalez; Toma, Henrique E.; Araki, Koiti

    2016-04-01

    Dolomitic microscopic structures in the form of microspheres, "horseshoe- shaped" objects, and thin botryoidal crusts found within microfossiliferous chert within stromatolites of the Evaporite Bed (EB) of the Permian Assistência Formation, Irati Subgroup, Paraná Basin, Brazil, have been investigated by means of optical microscopy, X-ray fluorescence, scanning electron microscopy, Raman spectrometry and energy-dispersive X-ray spectrometry. The microspheres were identified as dolomitized coccoidal cyanobacteria based on similarity in size, spheroidal and paired hemispheroidal morphologies and colonial habit to co-occurring silicified organic-walled cyanobacteria embedded within the same microfabric and rock samples. The co-occurrence of dolomite, pyrite framboids, and abundant dispersed carbonaceous material and silicified cells is consistent with a hypersaline depositional environment with abundant cyanobacterial mats and elevated Mg2 +/Ca2 + ratios and reducing conditions with active anoxic microbial processes near the water-(bio)sediment interface. The abundance of extracellular polymeric substances facilitated anoxic microbial processes (sulfate reduction), providing essential conditions for possible primary microbially induced dolomitization. In most of the dolomitized cells dolomite occurs only as an external layer; in fully dolomitized cells magnesium is richest in the outermost layer. Presumably, the dolomitization process was favored by the presence of anoxic microbial degraders and negatively charged functional groups at the surface of the cyanobacterial cells. Botryoidal dolomite rims of silica-filled fenestrae formed by a similar process and inherited the botryoidal morphology of the cell as originally lining the fenestrae. Silicification interrupted the dolomitization of the largely organic biosediment, mostly by permineralization, but locally by substitution, thereby preserving not only dolomitic microspheres, but also huge numbers of structurally well-preserved organic-walled cyanobacteria and portions of microbial mat. Clearly, dolomitization began very early in the microbial mats, prior to compaction of the sediment or full obliteration of cellular remains, followed very closely by silicification thereby impeding continued degradation and providing a window onto very well-preserved Permian microbial mats.

  7. Microbial ecology of anaerobic digesters: the key players of anaerobiosis.

    PubMed

    Ali Shah, Fayyaz; Mahmood, Qaisar; Maroof Shah, Mohammad; Pervez, Arshid; Ahmad Asad, Saeed

    2014-01-01

    Anaerobic digestion is the method of wastes treatment aimed at a reduction of their hazardous effects on the biosphere. The mutualistic behavior of various anaerobic microorganisms results in the decomposition of complex organic substances into simple, chemically stabilized compounds, mainly methane and CO2. The conversions of complex organic compounds to CH4 and CO2 are possible due to the cooperation of four different groups of microorganisms, that is, fermentative, syntrophic, acetogenic, and methanogenic bacteria. Microbes adopt various pathways to evade from the unfavorable conditions in the anaerobic digester like competition between sulfate reducing bacteria (SRB) and methane forming bacteria for the same substrate. Methanosarcina are able to use both acetoclastic and hydrogenotrophic pathways for methane production. This review highlights the cellulosic microorganisms, structure of cellulose, inoculum to substrate ratio, and source of inoculum and its effect on methanogenesis. The molecular techniques such as DGGE (denaturing gradient gel electrophoresis) utilized for dynamic changes in microbial communities and FISH (fluorescent in situ hybridization) that deal with taxonomy and interaction and distribution of tropic groups used are also discussed.

  8. Microbial Ecology of Anaerobic Digesters: The Key Players of Anaerobiosis

    PubMed Central

    Ali Shah, Fayyaz; Mahmood, Qaisar; Maroof Shah, Mohammad; Pervez, Arshid; Ahmad Asad, Saeed

    2014-01-01

    Anaerobic digestion is the method of wastes treatment aimed at a reduction of their hazardous effects on the biosphere. The mutualistic behavior of various anaerobic microorganisms results in the decomposition of complex organic substances into simple, chemically stabilized compounds, mainly methane and CO2. The conversions of complex organic compounds to CH4 and CO2 are possible due to the cooperation of four different groups of microorganisms, that is, fermentative, syntrophic, acetogenic, and methanogenic bacteria. Microbes adopt various pathways to evade from the unfavorable conditions in the anaerobic digester like competition between sulfate reducing bacteria (SRB) and methane forming bacteria for the same substrate. Methanosarcina are able to use both acetoclastic and hydrogenotrophic pathways for methane production. This review highlights the cellulosic microorganisms, structure of cellulose, inoculum to substrate ratio, and source of inoculum and its effect on methanogenesis. The molecular techniques such as DGGE (denaturing gradient gel electrophoresis) utilized for dynamic changes in microbial communities and FISH (fluorescent in situ hybridization) that deal with taxonomy and interaction and distribution of tropic groups used are also discussed. PMID:24701142

  9. Enrichment of anaerobic syngas-converting bacteria from thermophilic bioreactor sludge.

    PubMed

    Alves, Joana I; Stams, Alfons J M; Plugge, Caroline M; Alves, M Madalena; Sousa, Diana Z

    2013-12-01

    Thermophilic (55 °C) anaerobic microbial communities were enriched with a synthetic syngas mixture (composed of CO, H2 , and CO2 ) or with CO alone. Cultures T-Syn and T-CO were incubated and successively transferred with syngas (16 transfers) or CO (9 transfers), respectively, with increasing CO partial pressures from 0.09 to 0.88 bar. Culture T-Syn, after 4 successive transfers with syngas, was also incubated with CO and subsequently transferred (9 transfers) with solely this substrate - cultures T-Syn-CO. Incubation with syngas and CO caused a rapid decrease in the microbial diversity of the anaerobic consortium. T-Syn and T-Syn-CO showed identical microbial composition and were dominated by Desulfotomaculum and Caloribacterium species. Incubation initiated with CO resulted in the enrichment of bacteria from the genera Thermincola and Thermoanaerobacter. Methane was detected in the first two to three transfers of T-Syn, but production ceased afterward. Acetate was the main product formed by T-Syn and T-Syn-CO. Enriched T-CO cultures showed a two-phase conversion, in which H2 was formed first and then converted to acetate. This research provides insight into how thermophilic anaerobic communities develop using syngas/CO as sole energy and carbon source can be steered for specific end products and subsequent microbial synthesis of chemicals. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  10. Changes in microbial communities, photosynthesis and calcification of the coral Acropora gemmifera in response to ocean acidification.

    PubMed

    Zhou, Guowei; Yuan, Tao; Cai, Lin; Zhang, Weipeng; Tian, Renmao; Tong, Haoya; Jiang, Lei; Yuan, Xiangcheng; Liu, Sheng; Qian, Peiyuan; Huang, Hui

    2016-10-27

    With the increasing anthropogenic CO 2 concentration, ocean acidification (OA) can have dramatic effects on coral reefs. However, the effects of OA on coral physiology and the associated microbes remain largely unknown. In the present study, reef-building coral Acropora gemmifera collected from a reef flat with highly fluctuating environmental condition in the South China Sea were exposed to three levels of partial pressure of carbon dioxide (pCO 2 ) (i.e., 421, 923, and 2070 μatm) for four weeks. The microbial community structures associated with A. gemmifera under these treatments were analyzed using 16S rRNA gene barcode sequencing. The results revealed that the microbial community associated with A. gemmifera was highly diverse at the genus level and dominated by Alphaproteobacteria. More importantly, the microbial community structure remained rather stable under different pCO 2 treatments. Photosynthesis and calcification in A. gemmifera, as indicated by enrichment of δ 18 O and increased depletion of δ 13 C in the coral skeleton, were significantly impaired only at the high pCO 2 (2070 μatm). These results suggest that A. gemmifera can maintain a high degree of stable microbial communities despite of significant physiological changes in response to extremely high pCO 2 .

  11. Changes in microbial communities, photosynthesis and calcification of the coral Acropora gemmifera in response to ocean acidification

    NASA Astrophysics Data System (ADS)

    Zhou, Guowei; Yuan, Tao; Cai, Lin; Zhang, Weipeng; Tian, Renmao; Tong, Haoya; Jiang, Lei; Yuan, Xiangcheng; Liu, Sheng; Qian, Peiyuan; Huang, Hui

    2016-10-01

    With the increasing anthropogenic CO2 concentration, ocean acidification (OA) can have dramatic effects on coral reefs. However, the effects of OA on coral physiology and the associated microbes remain largely unknown. In the present study, reef-building coral Acropora gemmifera collected from a reef flat with highly fluctuating environmental condition in the South China Sea were exposed to three levels of partial pressure of carbon dioxide (pCO2) (i.e., 421, 923, and 2070 μatm) for four weeks. The microbial community structures associated with A. gemmifera under these treatments were analyzed using 16S rRNA gene barcode sequencing. The results revealed that the microbial community associated with A. gemmifera was highly diverse at the genus level and dominated by Alphaproteobacteria. More importantly, the microbial community structure remained rather stable under different pCO2 treatments. Photosynthesis and calcification in A. gemmifera, as indicated by enrichment of δ18O and increased depletion of δ13C in the coral skeleton, were significantly impaired only at the high pCO2 (2070 μatm). These results suggest that A. gemmifera can maintain a high degree of stable microbial communities despite of significant physiological changes in response to extremely high pCO2.

  12. Changes in microbial communities, photosynthesis and calcification of the coral Acropora gemmifera in response to ocean acidification

    PubMed Central

    Zhou, Guowei; Yuan, Tao; Cai, Lin; Zhang, Weipeng; Tian, Renmao; Tong, Haoya; Jiang, Lei; Yuan, Xiangcheng; Liu, Sheng; Qian, Peiyuan; Huang, Hui

    2016-01-01

    With the increasing anthropogenic CO2 concentration, ocean acidification (OA) can have dramatic effects on coral reefs. However, the effects of OA on coral physiology and the associated microbes remain largely unknown. In the present study, reef-building coral Acropora gemmifera collected from a reef flat with highly fluctuating environmental condition in the South China Sea were exposed to three levels of partial pressure of carbon dioxide (pCO2) (i.e., 421, 923, and 2070 μatm) for four weeks. The microbial community structures associated with A. gemmifera under these treatments were analyzed using 16S rRNA gene barcode sequencing. The results revealed that the microbial community associated with A. gemmifera was highly diverse at the genus level and dominated by Alphaproteobacteria. More importantly, the microbial community structure remained rather stable under different pCO2 treatments. Photosynthesis and calcification in A. gemmifera, as indicated by enrichment of δ18O and increased depletion of δ13C in the coral skeleton, were significantly impaired only at the high pCO2 (2070 μatm). These results suggest that A. gemmifera can maintain a high degree of stable microbial communities despite of significant physiological changes in response to extremely high pCO2. PMID:27786309

  13. Methane flux and carbon isotope composition correlate to shifting plant and microbial communities along a permafrost thaw gradient

    NASA Astrophysics Data System (ADS)

    McCalley, C. K.; Mondav, R.; Chanton, J.; Crill, P. M.; Hodgkins, S. B.; Kim, E.; Rich, V. I.; Wehr, R.; Woodcroft, B. J.; Tyson, G. W.; Saleska, S. R.

    2012-12-01

    Methane flux from high latitude wetlands is a critical component of the global carbon budget and is highly sensitive to climate change, with observed and predicted increases as permafrost thaws. Microorganisms mediate wetland methane cycling, but connections between ecosystem-scale flux and underlying microbial dynamics are poorly understood. To address this gap we used isotopic (laser absorption spectrometry) and molecular (16S rRNA gene amplicon sequencing) techniques in a high latitude (68° N) wetland to investigate the relationship between microbial community composition and methane emissions across a permafrost thaw gradient. The transition from permafrost dominated, well drained palsas, through intermediate thaw sites dominated by Sphagnum spp., to wet sites with no underlying permafrost dominated by Eriophorum angustifolium is associated with substantial increases in methane emission. Across this thaw progression the carbon isotopic composition of emitted methane increased from -79.5 ‰ in the intermediate-thawing site to -66.4 ‰ in the thawed site, indicating a relative shift from CO2-reductive towards acetoclastic methanogenesis. Increases in methane flux under thaw were correlated with increasing abundance of methane-producing archaeal clades and increases in methane isotopic composition were associated with shifts in the archaeal community. While CO2 reducing methanogens were found throughout thawing and thawed sites, methanogens of the Methanosarcina (the order of Archaea that contains all known acetoclastic methanogens) were most associated with the fully thawed site. These results directly link microbial community composition to ecosystem scale changes in the magnitude and isotopic composition of methane emissions under permafrost thaw. If isotopic shifts of this magnitude are characteristic of methane dynamics under permafrost loss they should also become detectable in global atmospheric methane observations, providing a global scale tracer of shifting microbial communities associated with permafrost thaw.

  14. Exploring the metabolic potential of microbial communities in ultra-basic, reducing springs at The Cedars, CA, USA: Experimental evidence of microbial methanogenesis and heterotrophic acetogenesis

    NASA Astrophysics Data System (ADS)

    Kohl, Lukas; Cumming, Emily; Cox, Alison; Rietze, Amanda; Morrissey, Liam; Lang, Susan Q.; Richter, Andreas; Suzuki, Shino; Nealson, Kenneth H.; Morrill, Penny L.

    2016-04-01

    Present-day serpentinization generates groundwaters with conditions (pH > 11, Eh < -550 mV) favorable for the microbial and abiotic production of organic compounds from inorganic precursors. Elevated concentrations of methane, C2-C6 alkanes, acetate, and formate have been detected at these sites, but the microbial or abiotic origin of these compounds remains unclear. While geochemical data indicate that methane at most sites of present-day serpentinization is abiogenic, the stable carbon, hydrogen, and clumped isotope data as well as the hydrocarbon gas composition from The Cedars, CA, USA, are consistent with a microbial origin for methane. However, there is no direct evidence of methanogenesis at this site of serpentinization. We report on laboratory experiments in which the microbial communities in fluids and sediments from The Cedars were incubated with 13C labeled substrates. Increasing methane concentrations and the incorporation of 13C into methane in live experiments, but not in killed controls, demonstrated that methanogens converted methanol, formate, acetate (methyl group), and bicarbonate to methane. The apparent fractionation between methane and potential substrates (α13CCH4-CO2(g) = 1.059 to 1.105, α13CCH4-acetate = 1.042 to 1.119) indicated that methanogenesis was dominated by the carbonate reduction pathway. Increasing concentrations of volatile organic acid anions indicated microbial acetogenesis. α13CCO2(g)-acetate values (0.999 to 1.000), however, were inconsistent with autotrophic acetogenesis, thus suggesting that acetate was produced through fermentation. This is the first study to show direct evidence of microbial methanogenesis and acetogenesis by the native microbial community at a site of present-day serpentinization.

  15. Effect of elevated CO2 on degradation of azoxystrobin and soil microbial activity in rice soil.

    PubMed

    Manna, Suman; Singh, Neera; Singh, V P

    2013-04-01

    An experiment was conducted in open-top chambers (OTC) to study the effect of elevated CO2 (580 ± 20 μmol mol(-1)) on azoxystrobin degradation and soil microbial activities. Results indicated that elevated CO2 did not have any significant effect on the persistence of azoxystrobin in rice-planted soil. The half-life values for the azoxystrobin in rice soils were 20.3 days in control (rice grown at ambient CO2 outdoors), 19.3 days in rice grown under ambient CO2 atmosphere in OTC, and 17.5 days in rice grown under elevated CO2 atmosphere in OTC. Azoxystrobin acid was recovered as the only metabolite of azoxystrobin, but it did not accumulate in the soil/water and was further metabolized. Elevated CO2 enhanced soil microbial biomass (MBC) and alkaline phosphatase activity of soil. Compared with rice grown at ambient CO2 (both outdoors and in OTC), the soil MBC at elevated CO2 increased by twofold. Elevated CO2 did not affect dehydrogenase, fluorescein diacetate, and acid phosphatase activity. Azoxystrobin application to soils, both ambient and elevated CO2, inhibited alkaline phosphates activity, while no effect was observed on other enzymes. Slight increase (1.8-2 °C) in temperature inside OTC did not affect microbial parameters, as similar activities were recorded in rice grown outdoors and in OTC at ambient CO2. Higher MBC in soil at elevated CO2 could be attributed to increased carbon availability in the rhizosphere via plant metabolism and root secretion; however, it did not significantly increase azoxystrobin degradation, suggesting that pesticide degradation was not the result of soil MBC alone. Study suggested that increased CO2 levels following global warming might not adversely affect azoxystrobin degradation. However, global warming is a continuous and cumulative process, therefore, long-term studies are necessary to get more realistic assessment of global warming on fate of pesticide.

  16. Use of Acetate, Propionate, and Butyrate for Reduction of Nitrate and Sulfate and Methanogenesis in Microcosms and Bioreactors Simulating an Oil Reservoir.

    PubMed

    Chen, Chuan; Shen, Yin; An, Dongshan; Voordouw, Gerrit

    2017-04-01

    Acetate, propionate, and butyrate (volatile fatty acids [VFA]) occur in oil field waters and are frequently used for microbial growth of oil field consortia. We determined the kinetics of use of these VFA components (3 mM each) by an anaerobic oil field consortium in microcosms containing 2 mM sulfate and 0, 4, 6, 8, or 13 mM nitrate. Nitrate was reduced first, with a preference for acetate and propionate. Sulfate reduction then proceeded with propionate (but not butyrate) as the electron donor, whereas the fermentation of butyrate (but not propionate) was associated with methanogenesis. Microbial community analyses indicated that Paracoccus and Thauera ( Paracoccus - Thauera ), Desulfobulbus , and Syntrophomonas - Methanobacterium were the dominant taxa whose members catalyzed these three processes. Most-probable-number assays showed the presence of up to 10 7 /ml of propionate-oxidizing sulfate-reducing bacteria (SRB) in waters from the Medicine Hat Glauconitic C field. Bioreactors with the same concentrations of sulfate and VFA responded similarly to increasing concentrations of injected nitrate as observed in the microcosms: sulfide formation was prevented by adding approximately 80% of the nitrate dose needed to completely oxidize VFA to CO 2 in both. Thus, this work has demonstrated that simple time-dependent observations of the use of acetate, propionate, and butyrate for nitrate reduction, sulfate reduction, and methanogenesis in microcosms are a good proxy for these processes in bioreactors, monitoring of which is more complex. IMPORTANCE Oil field volatile fatty acids acetate, propionate, and butyrate were specifically used for nitrate reduction, sulfate reduction, and methanogenic fermentation. Time-dependent analyses of microcosms served as a good proxy for these processes in a bioreactor, mimicking a sulfide-producing (souring) oil reservoir: 80% of the nitrate dose required to oxidize volatile fatty acids to CO 2 was needed to prevent souring in both. Our data also suggest that propionate is a good substrate to enumerate oil field SRB. Copyright © 2017 American Society for Microbiology.

  17. Contributions of Atmospheric CO and Hydrogen Uptake to Microbial Dynamics on Recent Hawaiian Volcanic Deposits†

    PubMed Central

    King, Gary M.

    2003-01-01

    A series of sites were established on Hawaiian volcanic deposits ranging from about 18 to 300 years old. Three sites occurred in areas that supported tropical rain forests; the remaining sites were in areas that supported little or no plant growth. Sites >26 years old consumed atmospheric CO and hydrogen at rates ranging from about 0.2 to 5 mg of CO m−2 day−1 and 0.1 to 4 mg of H2 m−2 day−1, respectively. Respiration, measured as CO2 production, for a subset of the sites ranged from about 40 to >1,400 mg of CO2 m−2 day−1. CO and H2 accounted for about 13 to 25% of reducing equivalent flow for all but a forested site, where neither substrate appeared significant. Based on responses to chloroform fumigation, hydrogen utilization appeared largely due to microbial uptake. In contrast to results for CO and hydrogen, methane uptake occurred consistently only at the forest site. Increasing deposit age was generally accompanied by increasing concentrations of organic matter and microbial biomass, measured as phospholipid phosphate. Exoenzymatic activities (acid and alkaline phosphatases and α- and β-glucosidases) were positively correlated with deposit age in spite of considerable variability within sites. The diversity of substrates utilized in Biolog Ecoplate assays also increased with deposit age, possibly reflecting changes in microbial community complexity. PMID:12839783

  18. Seasonal and spatial variation in soil chemistry and anaerobic processes in an Arctic ecosystem

    NASA Astrophysics Data System (ADS)

    Lipson, D.; Mauritz, M.; Bozzolo, F.; Raab, T. K.; Santos, M. J.; Friedman, E. F.; Rosenbaum, M.; Angenent, L.

    2009-12-01

    Drained thaw lake basins (DTLB) are the dominant landform in the Arctic coastal plain near Barrow, Alaska. Our previous work in a DTLB showed that Fe(III) and humic substances are important electron acceptors in anaerobic respiration, and play a significant role in the C cycle of these organic-rich soils. In the current study, we investigated seasonal and spatial patterns of availability of electron acceptors and labile substrate, redox conditions and microbial activity. Landscapes within DTLB contain complex, fine-scale topography arising from ice wedge polygons, which produce raised and lowered areas. One goal of our study was to determine the effects of microtopographic variation on the potential for Fe(III) reduction and other anaerobic processes. Additionally, the soil in the study site has a complex vertical structure, with an organic peat layer overlying a mineral layer, overlying permafrost. We described variations in soil chemistry across depth profiles into the permafrost. Finally, we installed an integrated electrode/potentiostat system to electrochemically monitor microbial activity in the soil. Topographically low areas differed from high areas in most of the measured variables: low areas had lower oxidation-reduction potential, higher pH and electrical conductivity. Soil pore water from low areas had higher concentrations of Fe(III), Fe(II), dissolved organic C (DOC), and aromaticity (UV absorbance at 260nm, “A260”). Low areas also had higher concentrations of dissolve CO2 and CH4 in soil pore water. Laboratory incubations of soil showed a trend toward higher potentials for Fe(III) reduction in topographically low areas. Clearly, ice wedge-induced microtopography exerts a strong control on microbial processes in this DTLB landscape, with increased anaerobic activity occurring in the wetter, depressed areas. Soil water extracted from 5-15 cm depth had higher concentrations of Fe(III), Fe(II), A260, and DOC compared to soil water sampled from 0-5cm. The soil depth profile showed highest concentrations of acid-extractable Fe in the mineral layer and permafrost, though Fe(III) was highest in the surface layer. Total and soluble C increased with depth, as did the potential for CO2 and CH4 production in anaerobic incubations. Thus, the mineral layer may be a significant source of Fe for oxidation-reduction reactions that occur at shallower depths, though methanogenesis dominates in the mineral layer, while Fe(III) reduction dominates in the organic layer. Most of the ions measured in the soil pore water (Fe(III), DOC, A260) showed the same general seasonal pattern: high concentrations soon after soils thawed, declining over time until mid-August. Concentrations of Fe(II) in soil pore water were fairly stable over time. There was a significant positive relationship between A260 and Fe(III) concentrations, possibly indicating the presence of microbially-produced aromatic chelating molecules. Potentiostat measurements confirmed the presence of an electrochemically active microbial community in the soil.

  19. Acetogenic microbial degradation of vinyl chloride

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.

    2000-01-01

    Under methanogenic conditions, microbial degradation of [1,2-14C]vinyl chloride (VC) resulted in significant (14 ?? 3% maximum recovery) but transient recovery of radioactivity as 14C-acetate. Subsequently, 14C- acetate was degraded to 14CH4 and 14CO2 (18 ?? 2% and 54 ?? 3% final recoveries, respectively). In contrast, under 2-bromoethanesulfonic acid (BES) amended conditions, 14C-acetate recovery remained high (27 ?? 1% maximum recovery) throughout the study, no 14CH4 was produced, and the final recovery of 14CO2 was only 35 ?? 4%. These results demonstrate that oxidative acetogenesis may be an important mechanism for anaerobic VC biodegradation. Moreover, these results (1) demonstrate that microbial degradation of VC to CH4 and CO2 may involve oxidative acetogenesis followed by acetotrophic methanogenesis and (2) suggest that oxidative acetogenesis may be the initial step in the net oxidation of VC to CO2 reported previously under Fe(III)-reducing, SO4-reducing, and humic acids- reducing conditions.Under methanogenic conditions, microbial degradation of [1,2-14C]vinyl chloride (VC) resulted in significant (14 ?? 3% maximum recovery) but transient recovery of radioactivity as 14C-acetate. Subsequently, 14C-acetate was degraded to 14CH4 and 14CO2 (18 ?? 2% and 54 ?? 3% final recoveries respectively). In contrast, under 2-bromoethanesulfonic acid (BES) amended conditions, 14C-acetate recovery remained high (27 ?? 1% maximum recovery) throughout the study, no 14CH4 was produced, and the final recovery of 14CO2 was only 35 ?? 4%. These results demonstrate that oxidative acetogenesis may be an important mechanism for anaerobic VC biodegradation. Moreover, these results (1) demonstrate that microbial degradation of VC to CH4 and CO2 may involve oxidative acetogenesis followed by acetotrophic methanogenesis and (2) suggest that oxidative acetogenesis may be the initial step in the net oxidation of VC to CO2 reported previously under Fe(III)-reducing, SO4-reducing, and humic acids-reducing conditions.

  20. Genomic and Physiological Characterization of the Chromate-Reducing, Aquifer-Derived Firmicute Pelosinus sp. Strain HCF1

    PubMed Central

    Han, Ruyang; Karaoz, Ulas; Lim, HsiaoChien; Brodie, Eoin L.

    2013-01-01

    Pelosinus spp. are fermentative firmicutes that were recently reported to be prominent members of microbial communities at contaminated subsurface sites in multiple locations. Here we report metabolic characteristics and their putative genetic basis in Pelosinus sp. strain HCF1, an isolate that predominated anaerobic, Cr(VI)-reducing columns constructed with aquifer sediment. Strain HCF1 ferments lactate to propionate and acetate (the methylmalonyl-coenzyme A [CoA] pathway was identified in the genome), and its genome encodes two [NiFe]- and four [FeFe]-hydrogenases for H2 cycling. The reduction of Cr(VI) and Fe(III) may be catalyzed by a flavoprotein with 42 to 51% sequence identity to both ChrR and FerB. This bacterium has unexpected capabilities and gene content associated with reduction of nitrogen oxides, including dissimilatory reduction of nitrate to ammonium (two copies of NrfH and NrfA were identified along with NarGHI) and a nitric oxide reductase (NorCB). In this strain, either H2 or lactate can act as a sole electron donor for nitrate, Cr(VI), and Fe(III) reduction. Transcriptional studies demonstrated differential expression of hydrogenases and nitrate and nitrite reductases. Overall, the unexpected metabolic capabilities and gene content reported here broaden our perspective on what biogeochemical and ecological roles this species might play as a prominent member of microbial communities in subsurface environments. PMID:23064329

  1. Microbial Energetics Beneath the Taylor Glacier, Antarctica

    NASA Astrophysics Data System (ADS)

    Mikucki, J. A.; Turchyn, A. V.; Farquhar, J.; Priscu, J. C.; Schrag, D. P.; Pearson, A.

    2007-12-01

    Subglacial microbiology is controlled by glacier hydrology, bedrock lithology, and the preglacial ecosystem. These factors can all affect metabolic function by influencing electron acceptor and donor availability in the subglacial setting leaving biogeochemical signatures that can be used to determine ecosystem processes. Blood Falls, an iron-rich, episodic subglacial outflow from the Taylor Glacier in the McMurdo Dry Valleys Antarctica provides an example of how microbial community structure and function can provide insight into subglacial hydrology. This subglacial outflow contains cryoconcentrated, Pliocene-age seawater salts that pooled in the upper Taylor Valley and was subsequently covered by the advance of the Taylor Glacier. Biogeochemical measurements, culture-based techniques, and genomic analysis were used to characterize microbes and chemistry associated with the subglacial outflow. The isotopic composition of important geochemical substrates (i.e., δ34Ssulfate, Δ33Ssulfate, δ18Osulfate, δ18Owater, Δ14SDIC) were also measured to provide more detail on subglacial microbial energetics. Typically, subglacial systems, when driven to anoxia by the hydrolysis of organic matter, will follow a continuum of redox chemistries utilizing electron acceptors with decreasing reduction potential (e.g., Fe (III), sulfate, CO2). Our data provide no evidence for sulfate reduction below the Taylor Glacier despite high dissolved organic carbon (450 μM C) and measurable metabolic activity. We contend that, in the case of the Taylor Glacier, the in situ bioenergetic reduction potential has been 'short-circuited' at Fe(III)-reduction and excludes sulfate reduction and methanogenesis. Given the length of time that this marine system has been isolated from phototrophic production (~2 Mya) the ability to degrade and consume increasingly recalcitrant organic carbon is likely an important component to the observed redox chemistry. Our work indicates that glacier hydrology imparts strong feedbacks on the availability of oxygen as an electron acceptor and may be a robust regulator of the in situ metabolism. This biogeochemical regulation in turn affects the chemical nature of subglacial efflux. Blood Falls demonstrates that measurements of geochemistry and microbial diversity can support models of subglacial hydrology.

  2. Changes in biocrust cover drive carbon cycle responses to climate change in drylands.

    PubMed

    Maestre, Fernando T; Escolar, Cristina; de Guevara, Mónica Ladrón; Quero, José L; Lázaro, Roberto; Delgado-Baquerizo, Manuel; Ochoa, Victoria; Berdugo, Miguel; Gozalo, Beatriz; Gallardo, Antonio

    2013-12-01

    Dryland ecosystems account for ca. 27% of global soil organic carbon (C) reserves, yet it is largely unknown how climate change will impact C cycling and storage in these areas. In drylands, soil C concentrates at the surface, making it particularly sensitive to the activity of organisms inhabiting the soil uppermost levels, such as communities dominated by lichens, mosses, bacteria and fungi (biocrusts). We conducted a full factorial warming and rainfall exclusion experiment at two semiarid sites in Spain to show how an average increase of air temperature of 2-3 °C promoted a drastic reduction in biocrust cover (ca. 44% in 4 years). Warming significantly increased soil CO2 efflux, and reduced soil net CO2 uptake, in biocrust-dominated microsites. Losses of biocrust cover with warming through time were paralleled by increases in recalcitrant C sources, such as aromatic compounds, and in the abundance of fungi relative to bacteria. The dramatic reduction in biocrust cover with warming will lessen the capacity of drylands to sequester atmospheric CO2 . This decrease may act synergistically with other warming-induced effects, such as the increase in soil CO2 efflux and the changes in microbial communities to alter C cycling in drylands, and to reduce soil C stocks in the mid to long term. © 2013 John Wiley & Sons Ltd.

  3. Impacts of 3 years of elevated atmospheric CO2 on rhizosphere carbon flow and microbial community dynamics.

    PubMed

    Drigo, Barbara; Kowalchuk, George A; Knapp, Brigitte A; Pijl, Agata S; Boschker, Henricus T S; van Veen, Johannes A

    2013-02-01

    Carbon (C) uptake by terrestrial ecosystems represents an important option for partially mitigating anthropogenic CO2 emissions. Short-term atmospheric elevated CO2 exposure has been shown to create major shifts in C flow routes and diversity of the active soil-borne microbial community. Long-term increases in CO2 have been hypothesized to have subtle effects due to the potential adaptation of soil microorganism to the increased flow of organic C. Here, we studied the effects of prolonged elevated atmospheric CO2 exposure on microbial C flow and microbial communities in the rhizosphere. Carex arenaria (a nonmycorrhizal plant species) and Festuca rubra (a mycorrhizal plant species) were grown at defined atmospheric conditions differing in CO2 concentration (350 and 700 ppm) for 3 years. During this period, C flow was assessed repeatedly (after 6 months, 1, 2, and 3 years) by (13) C pulse-chase experiments, and label was tracked through the rhizosphere bacterial, general fungal, and arbuscular mycorrhizal fungal (AMF) communities. Fatty acid biomarker analyses and RNA-stable isotope probing (RNA-SIP), in combination with real-time PCR and PCR-DGGE, were used to examine microbial community dynamics and abundance. Throughout the experiment the influence of elevated CO2 was highly plant dependent, with the mycorrhizal plant exerting a greater influence on both bacterial and fungal communities. Biomarker data confirmed that rhizodeposited C was first processed by AMF and subsequently transferred to bacterial and fungal communities in the rhizosphere soil. Over the course of 3 years, elevated CO2 caused a continuous increase in the (13) C enrichment retained in AMF and an increasing delay in the transfer of C to the bacterial community. These results show that, not only do elevated atmospheric CO2 conditions induce changes in rhizosphere C flow and dynamics but also continue to develop over multiple seasons, thereby affecting terrestrial ecosystems C utilization processes. © 2012 Blackwell Publishing Ltd.

  4. Microbial Insight into a Pilot-Scale Enhanced Two-Stage High-Solid Anaerobic Digestion System Treating Waste Activated Sludge

    PubMed Central

    Wu, Jing; Cao, Zhiping; Hu, Yuying; Wang, Xiaolu; Wang, Guangqi; Zuo, Jiane; Wang, Kaijun; Qian, Yi

    2017-01-01

    High solid anaerobic digestion (HSAD) is a rapidly developed anaerobic digestion technique for treating municipal sludge, and has been widely used in Europe and Asia. Recently, the enhanced HSAD process with thermal treatment showed its advantages in both methane production and VS reduction. However, the understanding of the microbial community is still poor. This study investigated microbial communities in a pilot enhanced two-stage HSAD system that degraded waste activated sludge at 9% solid content. The system employed process “thermal pre-treatment (TPT) at 70 °C, thermophilic anaerobic digestion (TAD), and mesophilic anaerobic digestion (MAD)”. Hydrogenotrophic methanogens Methanothermobacter spp. dominated the system with relative abundance up to about 100% in both TAD and MAD. Syntrophic acetate oxidation (SAO) bacteria were discovered in TAD, and they converted acetate into H2 and CO2 to support hydrogenotrophic methanogenesis. The microbial composition and conversion route of this system are derived from the high solid content and protein content in raw sludge, as well as the operational conditions. This study could facilitate the understanding of the enhanced HSAD process, and is of academic and industrial importance. PMID:29189754

  5. Isotopic identification of the source of methane in subsurface sediments of an area surrounded by waste disposal facilities

    USGS Publications Warehouse

    Hackley, Keith C.; Liu, Chao-Li; Trainor, D.

    1999-01-01

    The major source of methane (CH4) in subsurface sediments on the property of a former hazardous waste treatment facility was determined using isotopic analyses measured on CH4 and associated groundwater. The site, located on an earthen pier built into a shallow wetland lake, has had a history of waste disposal practices and is surrounded by landfills and other waste management facilities. Concentrations of CH4 up to 70% were found in the headspace gases of several piezometers screened at 3 different depths (ranging from 8 to 17 m) in lacustrine and glacial till deposits. Possible sources of the CH4 included a nearby landfill, organic wastes from previous impoundments and microbial gas derived from natural organic matter in the sediments. Isotopic analyses included ??13C, ??D, 14C, and 3H on select CH4 samples and ??D and ??18O on groundwater samples. Methane from the deepest glacial till and intermediate lacustrine deposits had ??13C values from -79 to -82???, typical of natural 'drift gas' generated by microbial CO2-reduction. The CH4 from the shallow lacustrine deposits had ??13C values from -63 to -76???, interpreted as a mixture between CH4 generated by microbial fermentation and the CO2-reduction processes within the subsurface sediments. The ??D values of all the CH4 samples were quite negative ranging from -272 to -299???. Groundwater sampled from the deeper zones also showed quite negative ??D values that explained the light ??D observed for the CH4. Radiocarbon analyses of the CH4 showed decreasing 14C activity with depth, from a high of 58 pMC in the shallow sediments to 2 pMC in the deeper glacial till. The isotopic data indicated the majority of CH4 detected in the fill deposits of this site was microbial CH4 generated from naturally buried organic matter within the subsurface sediments. However, the isotopic data of CH4 from the shallow piezometers was more variable and the possibility of some mixing with oxidized landfill CH4 could not be completely ruled out.

  6. Acetylene fuels reductive dechlorination of TCE by Dehalococcoides/Pelobacter-containing microbial consortia

    NASA Astrophysics Data System (ADS)

    Oremland, R. S.; Mao, X.; Mahandra, C.; Baesman, S. M.; Gushgari, S.; Alvarez-Cohen, L.; Liu, T.

    2015-12-01

    Groundwater contamination by trichloroethene (TCE) poses a threat to health and leads to the generation of vinyl chloride (VC), a carcinogen. Dehalococcoides mccartyi is the only bacterium that can completely dechlorinate TCE to ethene (C2H4). Acetylene (C2H2) occurs in TCE-contaminated sites as a consequence of chemical degradation of TCE. Yet acetylene inhibits a variety of microbial processes including methanogesis and reductive dechlorination. Pelobacter acetylenicus and related species can metabolize acetylene via acetylene hydratase and acetaldehyde dismutatse thereby generating acetate and H2 as endproducts, which could serve as electron donor and carbon source for growth of D. mccartyi. We found that 1mM acetylene (aqueous) inhibits growth of D. mccartyi strain 195 on 0.3 mM TCE, but that the inhibition was removed after 12 days with the addition of an acetylene-utilizing isolate from San Francisco Bay, Pelobacter strain SFB93. TCE did not inhibit the growth of this Pelobacter at the concentrations tested (0.1-0.5 mM) and TCE was not consumed by strain SFB93. Co-cultures of strain 195 with strain SFB93 at 5% inoculation were established in 120 mL serum bottles containing 40 mL defined medium. TCE was supplied at a liquid concentration of 0.1 mM, with 0.1 mM acetylene and N2/CO2 (90:10 v/v) headspace at 34 °C. Co-cultures were subsequently transferred (5% vol/vol inoculation) to generate subcultures after 20 μmol TCE was reduced to VC and 36 μmol acetylene was depleted. Aqueous H2 ranged from 114 to 217 nM during TCE-dechlorination, and the cell yield of strain 195 was 3.7 ±0.3 × 107 cells μmol-1 Cl- released. In a D. mccartyi-containing enrichment culture (ANAS) under the same conditions as above, it was found that inhibition of dechlorination by acetylene was reversed after 19 days by adding SFB93. Thus we showed that a co-culture of Pelobacter SFB93 and D. mccartyi 195 could be maintained with C2H2 as the electron donor and carbon source while TCE served as the electron acceptor. Inhibition by C2H2 of reductive dechlorination in both the D. mccartyi isolate and the enrichment culture ANAS were observed, but the inhibition was eliminated by adding Pelobacter SFB93 to the cultures. These results will help facilitate the optimization of TCE-bioremediation at contaminated sites containing both TCE and C2H2.

  7. Stable isotope and microbial analyses of methane-producing process in a geothermal aquifer associated with the subsurface of the accretionary prism, Japan

    NASA Astrophysics Data System (ADS)

    Hattori, S.; Kimura, H.; Nashimoto, H.; Koba, K.; Yamada, K.; Shimizu, M.; Watanabe, H.; Yoh, M.; Yoshida, N.

    2009-04-01

    The sedimentary layer in the southern part of Japan is accretionary prism which includes enriched organic materials derived from sediment on oceanic plate. There is geothermal aquifer in which a large amount of methane (CH4) dissolved. Since CH4 is important as a greenhouse gas and an important natural gas fuel, revealing CH4-producing process in subsurface environment is required. To understand the process of the CH4 production, we collected the groundwater from the aquifer of 1,189-1,489 m depth, and analyzed by using stable isotope and microbial analyses. 16S rRNA gene analysis showed a dominancy of hydrogenotrophic methanogens in domain Archaea and a dominancy of anaerobic heterotrophes to be known to produce H2 and CO2 by fermentation process in domain Bacteria. The anaerobic enrichment cultures with the groundwater amended with organic substrates showed that CH4 was produced by co-culture between the fermenters and hydrogenotrophic methanogens. On the other hand, conventional isotopic estimations for the origin of CH4 using δ13C-CH4 and δD-CH4 as well as δ13C-CH4and molecular ratio of C1/(C2+C3) indicated that CH4 was derived from thermogenic pathway. The values of δ13C-CO2, however, had higher values and carbon isotope fractionation factors between CH4 and CO2(α(CO2-CH4)) were approximately 1.05 to 1.06 indicating the possibility of biogenic CH4 production. Therefore, the origin of CH4 production was estimated as mixing both thermogenic and CO2 reduction from isotopic data. Furthermore, we incubated these enriched co-cultures and measure stable carbon isotope ratios of CH4 and CO2 and stable hydrogen isotope ratios of H2O and CH4. We revealed that concentration of H2 were kept lower by these co-cultures between fermenters and hydrogenotrophic methanogens and α(CO2-CH4) values were higher than that of cultures with the ground water amended with high concentration of H2+ CO2. Hydrogen isotope fractionation factor between H2O and CH4 by these co-culture increased (αH values decreased) with increasing H2 concentration.

  8. Characterizing Microbial Diversity and Function in Natural Subsurface CO2 Reservoir Systems for Applied Use in Geologic Carbon Sequestration Environments

    NASA Astrophysics Data System (ADS)

    Freedman, A.; Thompson, J. R.

    2013-12-01

    The injection of CO2 into geological formations at quantities necessary to significantly reduce CO2 emissions will represent an environmental perturbation on a continental scale. The extent to which biological processes may play a role in the fate and transport of CO2 injected into geological formations has remained an open question due to the fact that at temperatures and pressures associated with reservoirs targeted for sequestration CO2 exists as a supercritical fluid (scCO2), which has generally been regarded as a sterilizing agent. Natural subsurface accumulations of CO2 serve as an excellent analogue for studying the long-term effects, implications and benefits of CO2 capture and storage (CCS). While several geologic formations bearing significant volumes of nearly pure scCO2 phases have been identified in the western United States, no study has attempted to characterize the microbial community present in these systems. Because the CO2 in the region is thought to have first accumulated millions of years ago, it is reasonable to assume that native microbial populations have undergone extensive and unique physiological and behavioral adaptations to adjust to the exceedingly high scCO2 content. Our study focuses on the microbial communities associated with the dolomite limestone McElmo Dome scCO2 Field in the Colorado Plateau region, approximately 1,000 m below the surface. Fluid samples were collected from 10 wells at an industrial CO2 production facility outside Cortez, CO. Subsamples preserved on site in 3.7% formaldehyde were treated in the lab with Syto 9 green-fluorescent nucleic acid stain, revealing 3.2E6 to 1.4E8 microbial cells per liter of produced fluid and 8.0E9 cells per liter of local pond water used in well drilling fluids. Extracted DNAs from sterivex 0.22 um filters containing 20 L of sample biomass were used as templates for PCR targeting the 16S rRNA gene. 16S rRNA amplicons from these samples were cloned, sequenced and subjected to microbial community analysis to test the hypothesis that a low but non-zero diversity that includes taxa from other subsurface environments will be present, reflecting the extreme ecological selective pressures of scCO2. A wide range of phylogenies have been identified, including genera that fall within the Proteobacteria, Bacilli, and Clostridial classes. Several species identified by 16S BLAST best hits are also known to inhabit deep subsurface environments, preliminarily confirming that a non-zero diversity has been able to survive, and possibly thrive, in the extreme scCO2-exposed deep subsurface environment at McElmo Dome. It thus appears that at least a subsection of native subsurface community biota may withstand the severe stresses associated with the injection of scCO2 for long-term geologic carbon sequestration efforts.

  9. An approach to mitigating soil CO2 emission by biochemically inhibiting cellulolytic microbial populations through mediation via the medicinal herb Isatis indigotica

    NASA Astrophysics Data System (ADS)

    Wu, Hong-Sheng; Chen, Su-Yun; Li, Ji; Liu, Dong-Yang; Zhou, Ji; Xu, Ya; Shang, Xiao-Xia; Wei, Dong-yang; Yu, Lu-ji; Fang, Xiao-hang; Li, Shun-yi; Wang, Ke-ke

    2017-06-01

    Greenhouse gases (GHGs, particularly carbon dioxide (CO2)) emissions from soil under wheat production are a significant source of agricultural carbon emissions that have not been mitigated effectively. A field experiment and a static incubation study in a lab were conducted to stimulate wheat growth and investigate its potential to reduce CO2 emissions from soil through intercropping with a traditional Chinese medicinal herb called Isatis indigotica. This work was conducted by adding I. indigotica root exudates based on the quantitative real-time PCR (qPCR) analysis of the DNA copy number of the rhizosphere or bulk soil microbial populations. This addition was performed in relation to the CO2 formation by cellulolytic microorganisms (Penicillium oxalicum, fungi and Ruminococcus albus) to elucidate the microbial ecological basis for the molecular mechanism that decreases CO2 emissions from wheat fields using I. indigotica. The results showed that the panicle weight and full grains per panicle measured through intercropping with I. indigotica (NPKWR) increased by 39% and 28.6%, respectively, compared to that of the CK (NPKW). Intercropping with I. indigotica significantly decreased the CO2 emissions from soil under wheat cultivation. Compared with CK, the total CO2 emission flux during the wheat growth period in the I. indigotica (NPKWR) intercropping treatment decreased by 29.26%. The intensity of CO2 emissions per kg of harvested wheat grain declined from 7.53 kg CO2/kg grain in the NPKW (CK) treatment to 5.55 kg CO2/kg grain in the NPKWR treatment. The qPCR analysis showed that the DNA copy number of the microbial populations of cellulolytic microorganisms (P. oxalicum, fungi and R. albus) in the field rhizosphere around I. indigotica or in the bulk soil under laboratory incubation was significantly lower than that of CK. This finding indicated that root exudates from I. indigotica inhibited the activity and number of cellulolytic microbial populations, which led to decreased CO2 emissions, suggesting this plant's potential role in mitigating agricultural GHGs and in supporting agroecology.

  10. Photochemical alteration of organic carbon draining permafrost soils shifts microbial metabolic pathways and stimulates respiration.

    PubMed

    Ward, Collin P; Nalven, Sarah G; Crump, Byron C; Kling, George W; Cory, Rose M

    2017-10-03

    In sunlit waters, photochemical alteration of dissolved organic carbon (DOC) impacts the microbial respiration of DOC to CO 2 . This coupled photochemical and biological degradation of DOC is especially critical for carbon budgets in the Arctic, where thawing permafrost soils increase opportunities for DOC oxidation to CO 2 in surface waters, thereby reinforcing global warming. Here we show how and why sunlight exposure impacts microbial respiration of DOC draining permafrost soils. Sunlight significantly increases or decreases microbial respiration of DOC depending on whether photo-alteration produces or removes molecules that native microbial communities used prior to light exposure. Using high-resolution chemical and microbial approaches, we show that rates of DOC processing by microbes are likely governed by a combination of the abundance and lability of DOC exported from land to water and produced by photochemical processes, and the capacity and timescale that microbial communities have to adapt to metabolize photo-altered DOC.The role of dissolved organic carbon (DOC) photo-alteration in the microbial respiration of DOC to CO 2 is unclear. Here, the authors show that the impact of this mechanism depends on whether photo-alteration of DOC produces or removes molecules used by native microbial communities prior to light exposure.

  11. Application of stable isotope measurements and microbiological analysis for detecting methanogenic activity in a temperate forest wetland

    NASA Astrophysics Data System (ADS)

    Itoh, M.; Katsuyama, C.; Kondo, N.; Ohte, N.; Kato, K.

    2009-12-01

    Generally, forest soils act as a sink for methane (CH4). However, wetlands in riparian zones are recently reported to be “hot spots” of CH4 emissions, especially in forests under a humid climate. To understand how environmental conditions (i.e. hydrological and/or geomorphic condition) control on CH4 production, we investigated both methanogenic pathways (CO2/H2 reduction and acetate fermentation) and metahanogenic microbial communities in a wetland in a temperate forest catchment, central Japan. We used stable carbon isotopic analysis for detecting change in methanogenic pathways, and applied microbiological analysis for understanding the structure of methanogenic community. CH4 emission rates in wetland were strongly dependent on soil temperatures, and were highest in summer and lowest in winter. δ13CO2 increased with CH4 production in every summer, suggesting preferential use of 12CO2 as substrate for CO2/H2 reduction methanogenesis during high CH4 production period. δ13CH4 also increased in summer with δ13CO2. δ13CH4 changed more wildly than δ13CO2 did in summer with normal precipitation when CH4 production was strongly activated under high temperature and high groundwater table condition. This indicates increase in acetoclastic methanogenesis under hot and wet condition, considering that acetclastic methnogens produce heavier CH4 than that from CO2/H2 reducing pathway. Methanogen community composition estimated by cloning and sequence analyses implied that both acetoclastic and CO2/H2 reducing methanogens prevailed in wetland soil sampled in summer. This was consistent with the results of isotope measuremaents. Our results contribute to understand fully how the CH4 production changes with environmental conditions, with considering the activities of both main methanogenic pathway (from CO2 and acetate).

  12. Microbial monitoring during CO2 storage in deep subsurface saline aquifers in Ketzin, Germany

    NASA Astrophysics Data System (ADS)

    Wuerdemann, H.; Wandrey, M.; Fischer, S.; Zemke, K.; Let, D.; Zettlitzer, M.; Morozova, D.

    2010-12-01

    Investigations on subsurface saline aquifers have shown an active biosphere composed of diverse groups of microorganisms in the subsurface. Since microorganisms represent very effective geochemical catalysts, they may influence the process of CO2 storage significantly. In the frames of the EU Project CO2SINK a field laboratory to study CO2 storage into saline aquifer was operated. Our studies aim at monitoring of biological and biogeochemical processes and their impact on the technical effectiveness of CO2 storage technique. The interactions between microorganisms and the minerals of both the reservoir and the cap rock may cause changes to the structure and chemical composition of the rock formations, which may influence the reservoir permeability locally. In addition, precipitation and corrosion may be induced around the well affecting the casing and the casing cement. Therefore, analyses of the composition of microbial communities and its changes should contribute to an evaluation of the effectiveness and reliability of the long-term CO2 storage technique. In order to investigate processes in the deep biosphere caused by the injection of supercritical CO2, genetic fingerprinting (PCR SSCP Single-Strand-Conformation Polymorphism) and FISH (Fluorescence in situ Hybridisation) were used for identification and quantification of microorganisms. Although saline aquifers could be characterised as an extreme habitat for microorganisms due to reduced conditions, high pressure and salinity, a high number of diverse groups of microorganisms were detected with downhole sampling in the injection and observation wells at a depth of about 650m depth. Of great importance was the identification of the sulphate reducing bacteria, which are known to be involved in corrosion processes. Microbial monitoring during CO2 injection has shown that both quantity and diversity of microbial communities were strongly influenced by the CO2 injection. In addition, the indigenous microbial communities revealed a high adaptability to the changed environments after CO2 injection. In order to investigate processes in the rock substrate, long term CO2 exposure experiments on freshly drilled, pristine Ketzin reservoir core samples were accomplished for 24 months using sterile synthetic brine under in situ pressure and temperature conditions. The composition of the microbial community dominated by chemoorganotrophic bacteria and hydrogen oxidizing bacteria changed slightly under CO2 exposure. In addition, changes in porosities were observed with time. During the experiments porosity first increased due to mineral dissolution but then tend to decrease due to mineral precipitation. These mineralogical changes are consistent with changes in fluid composition during the course of the experiments that indicate notably increased K+, Ca2+, Mg2+, and SO4 2- concentrations. K+, Ca2+, Mg2+ concentrations exceeded the reservoir brine composition significantly and can be attributed to the CO2 exposure.

  13. Disentangling the drivers of soil organic matter decay as temperature changes by integrating reductionist systems with soil data

    NASA Astrophysics Data System (ADS)

    Billings, Sharon; Ballantyne, Ford, IV; Min, Kyungjin; Lehmeier, Christoph; Ziegler, Susan

    2014-05-01

    Accurately predicting decomposition rates of soil organic matter (SOM) as temperature increases is critical for projecting future atmospheric [CO2]. SOM decay is catalyzed by exo-enzymes (EEs) produced by microorganisms and secreted into the soil. Microbes take up liberated resources for metabolic processes and release diverse compounds, including CO2. Historically, investigations of the influence of temperature on heterotrophic CO2 release have focused on CO2 response, including its isotopic composition; recent studies also assess EE activity and microbial community composition. However, it is difficult to generalize from such studies how temperature will influence SOM decay and CO2 release because the responses of EEs, microbial resource demand, biomass production rates, and respiration rates are not parsed. Quantifying the individual temperature responses of all of these processes in unaltered soil is not tractable. However, we can use experimentally simplified systems to quantify fundamental biochemical and physiological responses to temperature and compare these results to those from environmental samples. For example, we can quantify the degree to which EE kinetics in isolation induce changes in availability of microbially assimilable resources as temperature changes and calculate associated changes in relative availability of assimilable carbon and nitrogen (C:N flow ratio), in isolation from altered microbial resource demand or uptake. We also can assess EE activity and CO2 release at different temperatures in diverse soils, integrating temperature responses of EE kinetics and microbial communities. Discrepancies in the temperature responses between real soils and isolated enzyme-substrate reactions can reveal how adaptive responses of microbial communities influence the temperature responses of soil heterotrophic CO2 release. We have shown in purified reactions that C:N flow ratios increase with temperature at pH 4.5, but decline between pH 6.5 and 8.5. If soil microbes exhibited no change in resource demand or C allocation with altered C:N flow ratios and if relative C availability was tightly coupled to respiration, we would expect variation in C:N flow ratios predicted by purified solutions to be expressed in analogous, relative patterns of C mineralization. However, the positive response of heterotrophic CO2 release to similar temperature increases in five strongly acidic forest soils (three boreal, one cool temperate, and one warm temperate) was much smaller than in a neutral-pH grassland or an alkaline desert, the opposite of what we might predict if C:N flow ratio was the only driver of respiratory responses to temperature. We also observe distinct d13C of CO2 respired from pure cultures in which substrate composition and availability are strictly controlled as temperature changes, reflecting fundamental shifts in C flux through metabolic pathways. These changes in d13C-CO2 with warming are greater than those observed in soils. Combined, these CO2 and d13C-CO2 data suggest that soil microbial adaptation to temperature is a meaningful driver of heterotrophic respiratory responses to temperature. We highlight the utility of reductionist experimental systems for characterizing fundamental SOM decay rates and changes in microbial C metabolism at different temperatures, and integrating them with analogous data derived from soils to quantify the role of microbial adaptation as a driver of SOM decay.

  14. Dynamics of oxygen and carbon dioxide in rhizospheres of Lobelia dortmanna - a planar optode study of belowground gas exchange between plants and sediment.

    PubMed

    Lenzewski, Nikola; Mueller, Peter; Meier, Robert Johannes; Liebsch, Gregor; Jensen, Kai; Koop-Jakobsen, Ketil

    2018-04-01

    Root-mediated CO 2 uptake, O 2 release and their effects on O 2 and CO 2 dynamics in the rhizosphere of Lobelia dortmanna were investigated. Novel planar optode technology, imaging CO 2 and O 2 distribution around single roots, provided insights into the spatiotemporal patterns of gas exchange between roots, sediment and microbial community. In light, O 2 release and CO 2 uptake were pronounced, resulting in a distinct oxygenated zone (radius: c. 3 mm) and a CO 2 -depleted zone (radius: c. 2 mm) around roots. Simultaneously, however, microbial CO 2 production was stimulated within a larger zone around the roots (radius: c. 10 mm). This gave rise to a distinct pattern with a CO 2 minimum at the root surface and a CO 2 maximum c. 2 mm away from the root. In darkness, CO 2 uptake ceased, and the CO 2 -depleted zone disappeared within 2 h. By contrast, the oxygenated root zone remained even after 8 h, but diminished markedly over time. A tight coupling between photosynthetic processes and the spatiotemporal dynamics of O 2 and CO 2 in the rhizosphere of Lobelia was demonstrated, and we suggest that O 2 -induced stimulation of the microbial community in the sediment increases the supply of inorganic carbon for photosynthesis by building up a CO 2 reservoir in the rhizosphere. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  15. A Description of an Acidophilic, Iron Reducer, Geobacter sp. FeAm09 Isolated from Tropical Soils

    NASA Astrophysics Data System (ADS)

    Healy, O.; Souchek, J.; Heithoff, A.; LaMere, B.; Pan, D.; Hollis, G.; Yang, W. H.; Silver, W. L.; Weber, K. A.

    2014-12-01

    Iron (Fe) is the fourth most abundant element in the Earth's crust and plays a significant role controlling the geochemistry in soils, sediments, and aquatic systems. As part of a study to understand microbially-catalysed iron biogeochemical cycling in tropical soils, an iron reducing isolate, strain FeAm09, was obtained. Strain FeAm09 was isolated from acidic, Fe-rich soils collected from a tropical forest (Luquillo Experimental Forest, Puerto Rico). Strain FeAm09 is a rod-shaped, motile, Gram-negative bacterium. Taxonomic analysis of the near complete 16S rRNA gene sequence revealed that strain FeAm09 is 94.7% similar to Geobacter lovleyi, placing it in the genus Geobacter within the Family Geobacteraceae in the Deltaproteobacteria. Characterization of the optimal growth conditions revealed that strain FeAm09 is a moderate acidophile with an optimal growth pH of 5.0. The optimal growth temperature was 37°C. Growth of FeAm09 was coupled to the reduction of soluble Fe(III), Fe(III)-NTA, with H2, fumarate, ethanol, and various organic acids and sugars serving as the electron donor. Insoluble Fe(III), in the form of synthetic ferrihydrite, was reduced by strain FeAm09 using acetate or H2 as the electron donor. The use of H2 as an electron donor in the presence of CO2 and absence of organic carbon and assimilation of 14C-labelled CO2 into biomass indicate that strain FeAm09 is an autotrophic Fe(III)-reducing bacterium. Together, these data describe the first acidophilic, autotrophic Geobacter species. Iron reducing bacteria were previously shown to be as abundant in tropical soils as in saturated sediments (lake-bottoms) and saturated soils (wetlands) where Fe(III) reduction is more commonly recognized as a dominant mode of microbial respiration. Furthermore, Fe(III) reduction was identified as a primary driver of carbon mineralization in these tropical soils (Dubinsky et al. 2010). In addition to mineralizing organic carbon, Geobacter sp. FeAm09 is likely to also play an indirect role in carbon cycling by consuming H2 promoting microbial carbon fermentation in iron-rich tropical soils.

  16. Carbon black as an alternative cathode material for electrical energy recovery and transfer in a microbial battery.

    PubMed

    Zhang, Xueqin; Guo, Kun; Shen, Dongsheng; Feng, Huajun; Wang, Meizhen; Zhou, Yuyang; Jia, Yufeng; Liang, Yuxiang; Zhou, Mengjiao

    2017-08-01

    Rather than the conventional concept of viewing conductive carbon black (CB) to be chemically inert in microbial electrochemical cells (MECs), here we confirmed the redox activity of CB for its feasibility as an electron sink in the microbial battery (MB). Acting as the cathode of a MB, the solid-state CB electrode showed the highest electron capacity equivalent of 18.58 ± 0.46 C/g for the unsintered one and the lowest capacity of 2.29 ± 0.48 C/g for the one sintered under 100% N 2 atmosphere. The capacity vibrations of CBs were strongly in coincidence with the abundances of C=O moiety caused by different pretreatments and it implied one plausible mechanism based on CB's surface functionality for its electron capturing. Once subjected to electron saturation, CB could be completely regenerated by different strategies in terms of electrochemical discharging or donating electrons to biologically-catalyzed nitrate reduction. Surface characterization also revealed that CB's regeneration fully depended on the reversible shift of C=O moiety, further confirming the functionality-based mechanism for CB's feasibility as the role of MB's cathode. Moreover, resilience tests demonstrated that CB cathode was robust for the multi-cycles charging-discharging operations. These results imply that CB is a promising alternative material for the solid-state cathode in MBs.

  17. Effects of Drought Manipulation on Soil Nitrogen Cycling: A Meta-Analysis

    NASA Astrophysics Data System (ADS)

    Homyak, Peter M.; Allison, Steven D.; Huxman, Travis E.; Goulden, Michael L.; Treseder, Kathleen K.

    2017-12-01

    Many regions on Earth are expected to become drier with climate change, which may impact nitrogen (N) cycling rates and availability. We used a meta-analytical approach on the results of field experiments that reduced precipitation and measured N supply (i.e., indices of N mineralization), soil microbial biomass, inorganic N pools (ammonium (NH4+) and nitrate (NO3-)), and nitrous oxide (N2O) emissions. We hypothesized that N supply and N2O emissions would be relatively insensitive to precipitation reduction and that reducing precipitation would increase extractable NH4+ and NO3- concentrations because microbial processes continue, whereas plant N uptake diminishes with drought. In support of this hypothesis, extractable NH4+ increased by 25% overall with precipitation reduction; NH4+ also increased significantly with increasing magnitude of precipitation reduction. In contrast, N supply and extractable NO3- did not change and N2O emissions decreased with reduced precipitation. Across studies microbial biomass appeared unchanged, yet from the diversity of studies, it was clear that proportionally smaller precipitation reductions increased microbial biomass, whereas larger proportional reductions in rainfall reduced microbial biomass; there was a positive intercept (P = 0.005) and a significant negative slope (P = 0.0002) for the regression of microbial biomass versus % precipitation reduction (LnR = -0.009 × (% precipitation reduction) + 0.4021). Our analyses imply that relative to other N variables, N supply is less sensitive to reduced precipitation, whereas processes producing N2O decline. Drought intensity and duration, through sustained N supply, may control how much N becomes vulnerable to loss via hydrologic and gaseous pathways upon rewetting dry soils.

  18. Decline in Topsoil Microbial Quotient, Fungal Abundance and C Utilization Efficiency of Rice Paddies under Heavy Metal Pollution across South China

    PubMed Central

    Liu, Yongzhuo; Zhou, Tong; Crowley, David; Li, Lianqing; Liu, Dawen; Zheng, Jinwei; Yu, Xinyan; Pan, Genxing; Hussain, Qaiser; Zhang, Xuhui; Zheng, Jufeng

    2012-01-01

    Agricultural soils have been increasingly subject to heavy metal pollution worldwide. However, the impacts on soil microbial community structure and activity of field soils have been not yet well characterized. Topsoil samples were collected from heavy metal polluted (PS) and their background (BGS) fields of rice paddies in four sites across South China in 2009. Changes with metal pollution relative to the BGS in the size and community structure of soil microorganisms were examined with multiple microbiological assays of biomass carbon (MBC) and nitrogen (MBN) measurement, plate counting of culturable colonies and phospholipids fatty acids (PLFAs) analysis along with denaturing gradient gel electrophoresis (DGGE) profile of 16S rRNA and 18S rRNA gene and real-time PCR assay. In addition, a 7-day lab incubation under constantly 25°C was conducted to further track the changes in metabolic activity. While the decrease under metal pollution in MBC and MBN, as well as in culturable population size, total PLFA contents and DGGE band numbers of bacteria were not significantly and consistently seen, a significant reduction was indeed observed under metal pollution in microbial quotient, in culturable fungal population size and in ratio of fungal to bacterial PLFAs consistently across the sites by an extent ranging from 6% to 74%. Moreover, a consistently significant increase in metabolic quotient was observed by up to 68% under pollution across the sites. These observations supported a shift of microbial community with decline in its abundance, decrease in fungal proportion and thus in C utilization efficiency under pollution in the soils. In addition, ratios of microbial quotient, of fungal to bacterial and qCO2 are proved better indicative of heavy metal impacts on microbial community structure and activity. The potential effects of these changes on C cycling and CO2 production in the polluted rice paddies deserve further field studies. PMID:22701725

  19. High Carbon Use Efficiency is Not Explained by Production of Storage Compounds

    NASA Astrophysics Data System (ADS)

    Dijkstra, Paul; van Groenigen, Kees-Jan

    2015-04-01

    The efficiency with which microbes use substrate to make new microbial biomass (Carbon Use Efficiency or CUE; mol C / mol C) is an important variable in soil and ecosystem C cycling models. Estimates of CUE in soil microbial communities vary widely. It has been hypothesized that high values of CUE are associated with production of storage compounds following a sudden increases in substrate availability during CUE measurements. In that case, these high CUE values would not be representative for balanced microbial growth (i.e. the production of all compounds needed to make new microbial cells). To test this hypothesis, we added position-specific 13C-labeled glucose isotopomers in parallel incubations of a ponderosa pine and piñon-juniper soil. We compared the measured pattern of CO2 release for the six glucose C atoms with patterns of CO2 production expected for balanced growth with a low, medium, or high CUE, and with CO2 production patterns associated with production of storage compounds (glycogen, lipids, or polyhydroxybutyrate). The measured position-specific CO2 production did not match that for production of glycogen, lipids, or polyhydroxybutyrate, but agreed closely with that expected for balanced growth at high CUE and high pentose phosphate pathway activity. We conclude that soil microbial communities utilize glucose substrate for biomass growth with high CUE, and that addition of small amounts of 13C-labeled glucose tracers do not affect CUE or induce storage compounds production. We submit that the measurement of position-specific CO2 production offers a quick and easy way to test biochemically explicit hypotheses concerning microbial growth metabolism.

  20. Influence of altered precipitation pattern on greenhouse gas emissions and soil enzyme activities in Pannonian soils

    NASA Astrophysics Data System (ADS)

    Forstner, Stefan Johannes; Michel, Kerstin; Berthold, Helene; Baumgarten, Andreas; Wanek, Wolfgang; Zechmeister-Boltenstern, Sophie; Kitzler, Barbara

    2013-04-01

    Precipitation patterns are likely to be altered due to climate change. Recent models predict a reduction of mean precipitation during summer accompanied by a change in short-term precipitation variability for central Europe. Correspondingly, the risk for summer drought is likely to increase. This may especially be valid for regions which already have the potential for rare, but strong precipitation events like eastern Austria. Given that these projections hold true, soils in this area will receive water irregularly in few, heavy rainfall events and be subjected to long-lasting dry periods in between. This pattern of drying/rewetting can alter soil greenhouse gas fluxes, creating a potential feedback mechanism for climate change. Microorganisms are the key players in most soil carbon (C) and nitrogen (N) transformation processes including greenhouse gas exchange. A conceptual model proposed by Schimel and colleagues (2007) links microbial stress-response physiology to ecosystem-scale biogeochemical processes: In order to cope with decreasing soil water potential, microbes modify resource allocation patterns from growth to survival. However, it remains unclear how microbial resource acquisition via extracellular enzymes and microbial-controlled greenhouse gas fluxes respond to water stress induced by soil drying/rewetting. We designed a laboratory experiment to test for effects of multiple drying/rewetting cycles on soil greenhouse gas fluxes (CO2, CH4, N2O, NO), microbial biomass and extracellular enzyme activity. Three soils representing the main soil types of eastern Austria were collected in June 2012 at the Lysimeter Research Station of the Austrian Agency for Health and Food Safety (AGES) in Vienna. Soils were sieved to 2mm, filled in steel cylinders and equilibrated for one week at 50% water holding capacity (WHC) for each soil. Then soils were separated into two groups: One group received water several times per week (C=control), the other group received water only once in two weeks (D=dry). Both groups received same water totals for each soil. At the end of each two week drying period, greenhouse gas fluxes were measured via an open-chamber-system (CO2, NO) and a closed-chamber-approach (CH4, N2O, CO2). Additional cylinders were harvested destructively to quantify inorganic N forms, microbial biomass C, N and extracellular enzyme activity (Cellulase, Xylanase, Protease, Phenoloxidase, Peroxidase). We hypothesize that after rewetting (1) rates of greenhouse gas fluxes will generally increase, as well as (2) extracellular enzyme activity indicating enhanced microbial activity. However, response may be different for gases and enzymes involved in the C and N cycle, respectively, as drying/rewetting stress may uncouple microbial mediated biogeochemical cycles. Results will be presented at the EGU General Assembly. Reference: Schimel, J., Balser, T.C., and Wallenstein, M. (2007). Microbial stress-response physiology and its implications for ecosystem function. Ecology 88, 1386-1394.

  1. Sulfur Cycling Mediates Calcium Carbonate Geochemistry in Modern Marine Stromatolites

    NASA Technical Reports Server (NTRS)

    Visscher, P. T.; Hoeft, S. E.; Bebout, B. M.; Reid, R. P.

    2004-01-01

    Modem marine stromatolites forming in Highborne Cay, Exumas (Bahamas), contain microbial mats dominated by Schizothrix. Although saturating concentrations of Ca2+ and CO32- exist, microbes mediate CaCO3 precipitation. Cyanobacterial photosynthesis in these stromatolites aids calcium carbonate precipitation by removal of HS+ through CO2 use. Photorespiration and exopolymer production predominantly by oxygenic phototrophs fuel heterotrophic activity: aerobic respiration (approximately 60 umol/sq cm.h) and sulfate reduction (SR; 1.2 umol SO42-/sq cm.h) are the dominant C- consuming processes. Aerobic microbial respiration and the combination of SR and H2S oxidation both facilitate CaCO3 dissolution through H+ production. Aerobic respiration consumes much more C on an hourly basis, but duel fluctuating O2 and H2 depth profiles indicate that overall, SR consumes only slightly less (0.2-0.5) of the primary production. Moreover, due to low O2 concentrations when SR rates are peaking, reoxidation of the H2S formed is incomplete: both thiosulfate and polythionates are formed. The process of complete H2S oxidation yields H+. However, due to a low O2 concentration late in the day and relatively high O2 concentrations early in the following morning, a two-stage oxidation takes place: first, polythionates are formed from H2S, creating alkalinity which coincides with CaCO3 precipitation; secondly, oxidation of polythionates to sulfate yields acidity, resulting in dissolution, etc. Vertical profiles confirmed that the pH peaked late in the afternoon (greater than 8.8) and had the lowest values (less than 7.4) early in the morning. Thus, the effect of this S-cycling through alkalinity production, followed by acidification during H2S oxidation, results in a six times stronger fluctuation in acidity than photosynthesis plus aerobic respiration accomplish. This implies that anaerobic processes play a pivotal role in stromatolite formation.

  2. Interactions in the Geo-Biosphere: Processes of Carbonate Precipitation in Microbial Mats

    NASA Astrophysics Data System (ADS)

    Dupraz, C.; Visscher, P. T.

    2009-12-01

    Microbial communities are situated at the interface between the biosphere, the lithosphere and the hydrosphere. These microbes are key players in the global carbon cycle, where they influence the balance between the organic and inorganic carbon reservoirs. Microbial populations can be organized in microbial mats, which can be defined as organosedimentary biofilms that are dominated by cyanobacteria, and exhibit tight coupling of element cycles. Complex interactions between mat microbes and their surrounding environment can result in the precipitation of carbonate minerals. This process refers as ‘organomineralization sensu lato' (Dupraz et al. in press), which differs from ‘biomineralization’ (e.g., in shells and bones) by lacking genetic control on the mineral product. Organomineralization can be: (1) active, when microbial metabolic reactions are responsible for the precipitation (“biologically-induced” mineralization) or (2) passive, when mineralization within a microbial organic matrix is environmentally driven (e.g., through degassing or desiccation) (“biologically-influenced” mineralization). Studying microbe-mineral interactions is essential to many emerging fields of the biogeoscience, such as the study of life in extreme environments (e.g, deep biosphere), the origin of life, the search for traces of extraterrestrial life or the seek of new carbon sink. This research approach combines sedimentology, biogeochemistry and microbiology. Two tightly coupled components that control carbonate organomineralization s.l.: (1) the alkalinity engine and (2) the extracellular organic matter (EOM), which is ultimately the location of mineral nucleation. Carbonate alkalinity can be altered both by microbial metabolism and environmental factors. In microbial mats, the net accumulation of carbonate minerals often reflect the balance between metabolic activities that consume/produce CO2 and/or organic acids. For example, photosynthesis and sulfate reduction will increase carbonate alkalinity and the potential of precipitation, whereas aerobic respiration and sulfide oxidation will promote carbonate dissolution. The EOM is composed of two main carbon pools: the high molecular weight extracellular polymeric substances (EPS) and the low molecular weight organic carbon compounds (LMW-OC). Both pools play a critical role in carbonate precipitation by providing Ca2+ and CO32- as well as a nucleation template for mineral growth. EOM contains several negatively charged functional groups, which, depending on the pH, can be deprotonated (each group has unique pK value(s)) and, thus, bind cations. This binding capacity can deplete the surrounding environment of cations (e.g., Ca2+, Mg2+) and, thus, inhibits carbonate precipitation. Therefore, organomineralization is only possible if the inhibition potential is reduced through (1) oversaturation of the EOM binding capacity or (2) EOM degradation.

  3. Microbial communities acclimate to recurring changes in soil redox potential status

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeAngelis, Kristen M.; Silver, Whendee; Thompson, Andrew

    Rapidly fluctuating environmental conditions can significantly stress organisms, particularly when fluctuations cross thresholds of normal physiological tolerance. Redox potential fluctuations are common in humid tropical soils, and microbial community acclimation or avoidance strategies for survival will in turn shape microbial community diversity and biogeochemistry. To assess the extent to which indigenous bacterial and archaeal communities are adapted to changing in redox potential, soils were incubated under static anoxic, static oxic or fluctuating redox potential conditions, and the standing (DNA-based) and active (RNA-based) communities and biogeochemistry were determined. Fluctuating redox potential conditions permitted simultaneous CO{sub 2} respiration, methanogenesis, N{sub 2}O productionmore » and iron reduction. Exposure to static anaerobic conditions significantly changed community composition, while 4-day redox potential fluctuations did not. Using RNA: DNA ratios as a measure of activity, 285 taxa were more active under fluctuating than static conditions, compared with three taxa that were more active under static compared with fluctuating conditions. These data suggest an indigenous microbialcommunity adapted to fluctuating redox potential.« less

  4. Investigations of potential microbial methanogenic and carbon monoxide utilization pathways in ultra-basic reducing springs associated with present-day continental serpentinization: the Tablelands, NL, CAN

    PubMed Central

    Morrill, Penny L.; Brazelton, William J.; Kohl, Lukas; Rietze, Amanda; Miles, Sarah M.; Kavanagh, Heidi; Schrenk, Matthew O.; Ziegler, Susan E.; Lang, Susan Q.

    2014-01-01

    Ultra-basic reducing springs at continental sites of serpentinization act as portals into the biogeochemistry of a subsurface environment with H2 and CH4 present. Very little, however, is known about the carbon substrate utilization, energy sources, and metabolic pathways of the microorganisms that live in this ultra-basic environment. The potential for microbial methanogenesis with bicarbonate, formate, acetate, and propionate precursors and carbon monoxide (CO) utilization pathways were tested in laboratory experiments by adding substrates to water and sediment from the Tablelands, NL, CAD, a site of present-day continental serpentinization. Microbial methanogenesis was not observed after bicarbonate, formate, acetate, or propionate addition. CO was consumed in the live experiments but not in the killed controls and the residual CO in the live experiments became enriched in 13C. The average isotopic enrichment factor resulting from this microbial utilization of CO was estimated to be 11.2 ± 0.2‰. Phospholipid fatty acid concentrations and δ13C values suggest limited incorporation of carbon from CO into microbial lipids. This indicates that in our experiments, CO was used primarily as an energy source, but not for biomass growth. Environmental DNA sequencing of spring fluids collected at the same time as the addition experiments yielded a large proportion of Hydrogenophaga-related sequences, which is consistent with previous metagenomic data indicating the potential for these taxa to utilize CO. PMID:25431571

  5. Investigations of potential microbial methanogenic and carbon monoxide utilization pathways in ultra-basic reducing springs associated with present-day continental serpentinization: the Tablelands, NL, CAN.

    PubMed

    Morrill, Penny L; Brazelton, William J; Kohl, Lukas; Rietze, Amanda; Miles, Sarah M; Kavanagh, Heidi; Schrenk, Matthew O; Ziegler, Susan E; Lang, Susan Q

    2014-01-01

    Ultra-basic reducing springs at continental sites of serpentinization act as portals into the biogeochemistry of a subsurface environment with H2 and CH4 present. Very little, however, is known about the carbon substrate utilization, energy sources, and metabolic pathways of the microorganisms that live in this ultra-basic environment. The potential for microbial methanogenesis with bicarbonate, formate, acetate, and propionate precursors and carbon monoxide (CO) utilization pathways were tested in laboratory experiments by adding substrates to water and sediment from the Tablelands, NL, CAD, a site of present-day continental serpentinization. Microbial methanogenesis was not observed after bicarbonate, formate, acetate, or propionate addition. CO was consumed in the live experiments but not in the killed controls and the residual CO in the live experiments became enriched in (13)C. The average isotopic enrichment factor resulting from this microbial utilization of CO was estimated to be 11.2 ± 0.2‰. Phospholipid fatty acid concentrations and δ(13)C values suggest limited incorporation of carbon from CO into microbial lipids. This indicates that in our experiments, CO was used primarily as an energy source, but not for biomass growth. Environmental DNA sequencing of spring fluids collected at the same time as the addition experiments yielded a large proportion of Hydrogenophaga-related sequences, which is consistent with previous metagenomic data indicating the potential for these taxa to utilize CO.

  6. Evaluation of microbial community composition in thermophilic methane-producing incubation of production water from a high-temperature oil reservoir.

    PubMed

    Zhou, Fang; Mbadinga, Serge Maurice; Liu, Jin-Feng; Gu, Ji-Dong; Mu, Bo-Zhong

    2013-01-01

    Investigation of petroleum microbes is fundamental for the development and utilization of oil reservoirs' microbial resources, and also provides great opportunities for research and development of bio-energy. Production water from a high-temperature oil reservoir was incubated anaerobically at 55 degrees C for more than 400 days without amendment of any nutrients. Over the time of incubation, about 1.6 mmol of methane and up to 107 micromol of hydrogen (H2) were detected in the headspace. Methane formation indicated that methanogenesis was likely the predominant process in spite of the presence of 23.4 mM SO4(2-) in the production water. Microbial community composition of the incubation was characterized by means of 16S rRNA gene clone libraries construction. Bacterial composition changed from Pseudomonales as the dominant population initially to Hydrogenophilales-related microorganisms affiliated to Petrobacter spp. closely. After 400 days of incubation, other bacterial members detected were related to Anareolineales, beta-, gamma-, and delta-Proteobacteria. The archaeal composition of the original production water was essentially composed of obligate acetoclastic methanogens of the genus Methanosaeta, but the incubation was predominantly composed of CO2-reducing methanogens of the genus Methanothermobacter and Crenarchaeotes-related microorganisms. Our results suggest that methanogenesis could be more active than expected in oil reservoir environments and methane formation from CO2-reduction played a significant role in the methanogenic community. This conclusion is consistent with the predominant role played by H2-oxidizing methanogens in the methanogenic conversion of organic matter in high-temperature petroleum reservoirs.

  7. Constraints on hydrocarbon and organic acid abundances in hydrothermal fluids at the Von Damm vent field, Mid-Cayman Rise (Invited)

    NASA Astrophysics Data System (ADS)

    McDermott, J. M.; Seewald, J.; German, C. R.; Sylva, S. P.

    2013-12-01

    The generation of organic compounds in vent fluids has been of interest since the discovery of seafloor hydrothermal systems, due to implications for the sustenance of present-day microbial populations and their potential role in the origin of life on early Earth. Possible sources of organic compounds in hydrothermal systems include microbial production, thermogenic degradation of organic material, and abiotic synthesis. Abiotic organic synthesis reactions may occur during active circulation of seawater-derived fluids through the oceanic crust or within olivine-hosted fluid inclusions containing carbon-rich magmatic volatiles. H2-rich end-member fluids at the Von Damm vent field on the Mid-Cayman Rise, where fluid temperatures reach 226°C, provide an exciting opportunity to examine the extent of abiotic carbon transformations in a highly reducing system. Our results indicate multiple sources of carbon compounds in vent fluids at Von Damm. An ultramafic-influenced hydrothermal system located on the Mount Dent oceanic core complex at 2350 m depth, Von Damm vent fluids contain H2, CH4, and C2+ hydrocarbons in high abundance relative to basalt-hosted vent fields, and in similar abundance to other ultramafic-hosted systems, such as Rainbow and Lost City. The CO2 content and isotopic composition in end-member fluids are virtually identical to bottom seawater, suggesting that seawater DIC is unchanged during hydrothermal circulation of seawater-derived fluids. Accordingly, end-member CH4 that is present in slightly greater abundance than CO2 cannot be generated from reduction of aqueous CO2 during hydrothermal circulation. We postulate that CH4 and C2+ hydrocarbons that are abundantly present in Von Damm vent fluids reflect leaching of fluids from carbon- and H2-rich fluid inclusions hosted in plutonic rocks. Geochemical modeling of carbon speciation in the Von Damm fluids suggests that the relative abundances of CH4, C2+ hydrocarbons, and CO2 are consistent with thermodynamic equilibrium at higher temperatures and more reducing conditions than those observed in the Von Damm vent fluids. These findings are consistent with a scenario in which n-alkanes form abiotically within a high-H2, carbon-rich olivine-hosted fluid inclusion, and are subsequently liberated and transported to the seafloor during hydrothermal alteration of the lower crustal rocks exposed at the Mount Dent oceanic core complex. Mixed fluids at Von Damm show depletions in CO2 and H2, relative to conservative mixing. Multiple S isotope measurements indicate that the H2 sink cannot be attributed to sulfate reduction. Thermodynamic constraints indicate that high-H2 conditions support the active formation of formate via reduction of dissolved CO2 during hydrothermal circulation - a process that has also been described at the Lost City vent field - and could account for the concurrent depletions in CO2 and H2. The transformation of inorganic carbon to organic compounds via two distinct pathways in modern seafloor hydrothermal vents validates theoretical and experimental conceptual models regarding processes occurring in the crust and during hydrothermal circulation, and is relevant to supporting life in vent ecosystems.

  8. Quality changes of fresh filled pasta during storage: influence of modified atmosphere packaging on microbial growth and sensory properties.

    PubMed

    Sanguinetti, A M; Del Caro, A; Mangia, N P; Secchi, N; Catzeddu, P; Piga, A

    2011-02-01

    This study evaluated the shelf life of fresh pasta filled with cheese subjected to modified atmosphere packaging (MAP) or air packaging (AP). After a pasteurization treatment, fresh pasta was packaged under a 50/50 N(2)/CO(2) ratio or in air (air batch). Changes in microbial growth, in-package gas composition, chemical-physical parameters and sensory attributes were monitored for 42 days at 4 (°)C. The pasteurization treatment resulted in suitable microbiological reduction. MAP allowed a mold-free shelf life of the fresh filled pasta of 42 days, whereas air-packaged samples got spoilt between 7 and 14 days. The hurdle approach used (MAP and low storage temperature) prevented the growth of pathogens and alterative microorganisms. MAP samples maintained a high microbiological standard throughout the storage period. The panel judged MAP fresh pasta above the acceptability threshold throughout the shelf life.

  9. Investigation on energy conversion technology using biochemical reaction elements, 2

    NASA Astrophysics Data System (ADS)

    1994-03-01

    For measures taken for resource/energy and environmental issues, a study is made on utilization of microbial biochemical reaction. As a reaction system using chemical energy, cited is production of petroleum substitution substances and food/feed by CO2 fixation using hydrogen energy and hydrogen bacteria. As to photo energy utilization, regarded as promising are CO2 fixation using photo energy and microalgae, and production of hydrogen and useful carbon compound using photosynthetic organisms. As living organism/electric energy interconversion, cited is the culture of chemoautotrophic bacteria which fix CO2 using electric energy. For enhancing its conversion efficiency, it is important to develop a technology of gene manipulation of the bacteria and a system to use functional biochemical elements adaptable to the electrode reaction. With regard to utilization of the microorganism metabolic function, the paper presents emission of soluble nitrogen in the hydrosphere into the atmosphere using denitrifying bacteria, removal of phosphorus, reduction in environmental pollution caused by heavy metal dilute solutions, and recovery as resources, etc.

  10. Depth-dependent geochemical and microbiological gradients in Fe(III) deposits resulting from coal mine-derived acid mine drainage

    PubMed Central

    Brantner, Justin S.; Haake, Zachary J.; Burwick, John E.; Menge, Christopher M.; Hotchkiss, Shane T.; Senko, John M.

    2014-01-01

    We evaluated the depth-dependent geochemistry and microbiology of sediments that have developed via the microbially-mediated oxidation of Fe(II) dissolved in acid mine drainage (AMD), giving rise to a 8–10 cm deep “iron mound” that is composed primarily of Fe(III) (hydr)oxide phases. Chemical analyses of iron mound sediments indicated a zone of maximal Fe(III) reducing bacterial activity at a depth of approximately 2.5 cm despite the availability of dissolved O2 at this depth. Subsequently, Fe(II) was depleted at depths within the iron mound sediments that did not contain abundant O2. Evaluations of microbial communities at 1 cm depth intervals within the iron mound sediments using “next generation” nucleic acid sequencing approaches revealed an abundance of phylotypes attributable to acidophilic Fe(II) oxidizing Betaproteobacteria and the chloroplasts of photosynthetic microeukaryotic organisms in the upper 4 cm of the iron mound sediments. While we observed a depth-dependent transition in microbial community structure within the iron mound sediments, phylotypes attributable to Gammaproteobacterial lineages capable of both Fe(II) oxidation and Fe(III) reduction were abundant in sequence libraries (comprising ≥20% of sequences) from all depths. Similarly, abundances of total cells and culturable Fe(II) oxidizing bacteria were uniform throughout the iron mound sediments. Our results indicate that O2 and Fe(III) reduction co-occur in AMD-induced iron mound sediments, but that Fe(II)-oxidizing activity may be sustained in regions of the sediments that are depleted in O2. PMID:24860562

  11. Functional structure of the bromeliad tank microbiome is strongly shaped by local geochemical conditions.

    PubMed

    Louca, Stilianos; Jacques, Saulo M S; Pires, Aliny P F; Leal, Juliana S; González, Angélica L; Doebeli, Michael; Farjalla, Vinicius F

    2017-08-01

    Phytotelmata in tank-forming Bromeliaceae plants are regarded as potential miniature models for aquatic ecology, but detailed investigations of their microbial communities are rare. Hence, the biogeochemistry in bromeliad tanks remains poorly understood. Here we investigate the structure of bacterial and archaeal communities inhabiting the detritus within the tanks of two bromeliad species, Aechmea nudicaulis and Neoregelia cruenta, from a Brazilian sand dune forest. We used metagenomic sequencing for functional community profiling and 16S sequencing for taxonomic profiling. We estimated the correlation between functional groups and various environmental variables, and compared communities between bromeliad species. In all bromeliads, microbial communities spanned a metabolic network adapted to oxygen-limited conditions, including all denitrification steps, ammonification, sulfate respiration, methanogenesis, reductive acetogenesis and anoxygenic phototrophy. Overall, CO2 reducers dominated in abundance over sulfate reducers, and anoxygenic phototrophs largely outnumbered oxygenic photoautotrophs. Functional community structure correlated strongly with environmental variables, between and within a single bromeliad species. Methanogens and reductive acetogens correlated with detrital volume and canopy coverage, and exhibited higher relative abundances in N. cruenta. A comparison of bromeliads to freshwater lake sediments and soil from around the world, revealed stark differences in terms of taxonomic as well as functional microbial community structure. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  12. Host-associated coral reef microbes respond to the cumulative pressures of ocean warming and ocean acidification.

    PubMed

    Webster, N S; Negri, A P; Botté, E S; Laffy, P W; Flores, F; Noonan, S; Schmidt, C; Uthicke, S

    2016-01-13

    Key calcifying reef taxa are currently threatened by thermal stress associated with elevated sea surface temperatures (SST) and reduced calcification linked to ocean acidification (OA). Here we undertook an 8 week experimental exposure to near-future climate change conditions and explored the microbiome response of the corals Acropora millepora and Seriatopora hystrix, the crustose coralline algae Hydrolithon onkodes, the foraminifera Marginopora vertebralis and Heterostegina depressa and the sea urchin Echinometra sp. Microbial communities of all taxa were tolerant of elevated pCO2/reduced pH, exhibiting stable microbial communities between pH 8.1 (pCO2 479-499 μatm) and pH 7.9 (pCO2 738-835 μatm). In contrast, microbial communities of the CCA and foraminifera were sensitive to elevated seawater temperature, with a significant microbial shift involving loss of specific taxa and appearance of novel microbial groups occurring between 28 and 31 °C. An interactive effect between stressors was also identified, with distinct communities developing under different pCO2 conditions only evident at 31 °C. Microbiome analysis of key calcifying coral reef species under near-future climate conditions highlights the importance of assessing impacts from both increased SST and OA, as combinations of these global stressors can amplify microbial shifts which may have concomitant impacts for coral reef structure and function.

  13. Biogenic nanopalladium production by self-immobilized granular biomass: application for contaminant remediation.

    PubMed

    Suja, E; Nancharaiah, Y V; Venugopalan, V P

    2014-11-15

    Microbial granules cultivated in an aerobic bubble column sequencing batch reactor were used for reduction of Pd(II) and formation of biomass associated Pd(0) nanoparticles (Bio-Pd) for reductive transformation of organic and inorganic contaminants. Addition of Pd(II) to microbial granules incubated under fermentative conditions resulted in rapid formation of Bio-Pd. The reduction of soluble Pd(II) to biomass associated Pd(0) was predominantly mediated by H2 produced through fermentation. X-ray diffraction and scanning electron microscope analysis revealed that the produced Pd nanoparticles were associated with the microbial granules. The catalytic activity of Bio-Pd was determined using p-nitrophenol and Cr(VI) as model compounds. Reductive transformation of p-nitrophenol by Bio-Pd was ∼20 times higher in comparison to microbial granules without Pd. Complete reduction of up to 0.25 mM of Cr(VI) by Bio-Pd was achieved in 24 h. Bio-Pd synthesis using self-immobilized microbial granules is advantageous and obviates the need for nanoparticle encapsulation or use of barrier membranes for retaining Bio-Pd in practical applications. In short, microbial granules offer a dual purpose system for Bio-Pd production and retention, wherein in situ generated H2 serves as electron donor powering biotransformations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. How Do Deep Saline Aquifer Microbial Communities Respond to Supercritical CO2 Injection?

    NASA Astrophysics Data System (ADS)

    Mu, A.; Billman-Jacobe, H.; Boreham, C.; Schacht, U.; Moreau, J. W.

    2011-12-01

    Carbon Capture and Storage (CCS) is currently seen as a viable strategy for mitigating anthropogenic carbon dioxide pollution. The Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC) is currently conducting a field experiment in the Otway Basin (Australia) studying residual gas saturation in the water-saturated reservoir of the Paaratte Formation. As part of this study, a suite of pre-CO2 injection water samples were collected from approximately 1400 meters depth (60°C, 13.8 MPa) via an in situ sampling system. The in situ sampling system isolates aquifer water from sources of contamination while maintaining the formation pressure. Whole community DNA was extracted from these samples to investigate the prokaryotic biodiversity of the saline Paaratte aquifer (EC = 1509.6 uS/cm). Bioinformatic analysis of preliminary 16S ribosomal gene data revealed Thermincola, Acinetobacter, Sphingobium, and Dechloromonas amongst the closest related genera to environmental clone sequences obtained from a subset of pre-CO2 injection groundwater samples. Epifluorescent microscopy with 4',6-diamidino-2-phenylindole (DAPI) highlighted an abundance of filamentous cells ranging from 5 to 45 μM. Efforts are currently directed towards utilising a high throughput sequencing approach to capture an exhaustive profile of the microbial diversity of the Paaratte aquifer CO2 injection site, and to understand better the response of in situ microbial populations to the injection of large volumes (e.g. many kilotonnes) of supercritical CO2 (sc-CO2). Sequencing results will be used to direct cultivation efforts towards enrichment of a CO2-tolerant microorganism. Understanding the microbial response to sc-CO2 is an integral aspect of carbon dioxide storage, for which very little information exists in the literature. This study aims to elucidate molecular mechanisms, through genomic and cultivation-based methods, for CO2 tolerance with the prospect of engineering biofilms to enhance trapping of CO2 in saline aquifers.

  15. Anaerobic microbial dehalogenation of organohalides-state of the art and remediation strategies.

    PubMed

    Nijenhuis, Ivonne; Kuntze, Kevin

    2016-04-01

    Contamination and remediation of groundwater with halogenated organics and understanding of involved microbial reactions still poses a challenge. Over the last years, research in anaerobic microbial dehalogenation has advanced in many aspects providing information about the reaction, physiology of microorganisms as well as approaches to investigate the activity of microorganisms in situ. Recently published crystal structures of reductive dehalogenases (Rdh), heterologous expression systems and advanced analytical, proteomic and stable isotope approaches allow addressing the overall reaction and specific enzymes as well as co-factors involved during anaerobic microbial dehalogenation. In addition to Dehalococcoides spp., Dehalobacter and Dehalogenimonas strains have been recognized as important and versatile organohalide respirers. Together, these provide perspectives for integrated concepts allowing to improve and monitor in situ biodegradation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Electrobiorefineries: Unlocking the Synergy of Electrochemical and Microbial Conversions.

    PubMed

    Harnisch, Falk; Urban, Carolin

    2017-12-13

    An integrated biobased economy urges an alliance of the two realms of "chemical production" and "electric power". The concept of electrobiorefineries provides a blueprint for such an alliance. Joining the forces of microbial and electrochemical conversions in electrobiorefineries allows interfacing the production, storage, and exploitation of electricity as well as biobased chemicals. Electrobiorefineries are a technological evolution of biorefineries by the addition of (bio)electrochemical transformations. This interfacing of microbial and electrochemical conversions will result in synergies affecting the entire process line, like enlarging the product portfolio, increasing the productivity, or exploiting new feedstock. A special emphasis is given to the utilization of oxidative and reductive electroorganic reactions of microbially produced intermediates that may serve as privileged building blocks. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Similar microbial communities found on two distant seafloor basalts

    NASA Astrophysics Data System (ADS)

    Singer, E.; Chong, L. S.; Heidelberg, J. F.; Edwards, K. J.

    2016-12-01

    The oceanic crust forms two thirds of the Earth's surface and hosts a large phylogenetic and functional diversity of microorganisms. While advances have been made in the sedimentary realm, our understanding of the igneous rock portion as a microbial habitat has remained limited. We present a comparative metagenomic microbial community analysis from ocean floor basalt environments at the Lō'ihi Seamount, Hawai'i, and the East Pacific Rise (EPR) (9°N). Phylogenetic analysis indicates the presence of a total of 43 bacterial and archaeal mono-phyletic groups, dominated by Alpha- and Gammaproteobacteria, as well as Thaumarchaeota. Functional gene analysis suggests that these Thaumarchaeota play an important role in ammonium oxidation on seafloor basalts. In addition to ammonium oxidation, the seafloor basalt habitat reveals a wide spectrum of other metabolic potentials, including CO2 fixation, denitrification, dissimilatory sulfate reduction, and sulfur oxidation. Basalt communities from Lō'ihi and the EPR show considerable metabolic and phylogenetic overlap down to the genus level despite geographic distance and slightly different seafloor basalt mineralogy.

  18. Sulfur Isotope Analysis of Minerals and Fluids in a Natural CO2 Reservoir, Green River, Utah

    NASA Astrophysics Data System (ADS)

    Chen, F.; Kampman, N.; Bickle, M. J.; Busch, A.; Turchyn, A. V.

    2013-12-01

    Predicting the security of geological CO2 storage sites requires an understanding of the geochemical behavior of the stored CO2, especially of fluid-rock reactions in reservoirs, caprocks and fault zones. Factors that may influence geochemical behavior include co-injection of sulfur gases along with the CO2, either in acid-gas disposal or as contaminants in CO2 storage sites, and microbial activity, such as bacterial sulfate reduction. The latter may play an important role in buffering the redox chemistry of subsurface fluids, which could affect toxic trace metal mobilization and transport in acidic CO2-rich fluids. These processes involving sulfur are poorly understood. Natural CO2-reservoirs provide natural laboratories, where the flow and reactions of the CO2-charged fluids and the activity of microbial communities are integrated over sufficient time-scales to aid prediction of long-term CO2 storage. This study reports on sulfur isotope analyses of sulfate and sulfide minerals in rock core and in CO2-charged fluids collected from a stacked sequence of natural CO2 reservoirs at Green River, Utah. Scientific drilling adjacent to a CO2-degassing normal fault to a depth of 325m retrieved core and fluid samples from two CO2 reservoirs in the Entrada and Navajo Sandstones and from the intervening Carmel Formation caprock. Fluid samples were collected from CO2-charged springs that discharge through the faults. Sulfur exists as sulfate in the fluids, as sedimentary gypsum beds in the Carmel Formation, as remobilized gypsum veins within a fault damage zone in the Carmel Fm. and in the Entrada Sandstone, and as disseminated pyrite and pyrite-mineralized open fractures throughout the cored interval. We use the stable sulfur (δ34S) and oxygen (δ18OSO4) isotopes of the sulfate, gypsum, and pyrite to understand the source of sulfur in the reservoir as well as the timing of gypsum vein and pyrite formation. The hydration water of the gypsum is also reported to explore the different timing of gypsum vein formation. Macroscopic and microscopic gradients in the sulfur isotope composition of pyrite throughout the core and at discernible redox-reaction fronts were examined in detail to assess the role of bacteria in mediating sulfate reduction, sulfide mineralization and buffering of groundwater redox chemistry. The CO2 charged fluids and gypsum veins within the Entrada Sandstone have a narrow and very similar range in both δ34SSO4 and δ18OSO4, suggesting that the fluids (9.1-10.7‰) are the most likely source of the sulfate in the veins (11.4-12.8‰) and that the veins formed during recent fluid flow through the Entrada, with sulfate coming from remobilized gypsum beds in the Carmel. The Carmel also contains two isotopically distinct types of gypsum veins: one with δ34SSO4 values similar to the Entrada veins and one with much higher δ34SSO4 values (15.1-16.1‰). The latter are likely primary gypsum, while the former are likely secondary gypsum. Sulfur isotope fractionation between pyrite (-16.5‰ to -35.7‰) at the Carmel-Navajo interface and reservoir fluids (9.1-10.7‰) suggest that sulfur reducing bacteria play a role in producing the deposited sulfide. This data demonstrates active sulfur cycling in CO2 reservoirs with many different sulfur species cycled among various pools creating the wide isotope dispersion we observe.

  19. Influence of redox mediators and salinity level on the (bio)transformation of Direct Blue 71: kinetics aspects.

    PubMed

    Alvarez, Luis H; Meza-Escalante, Edna R; Gortáres-Moroyoqui, Pablo; Morales, Luz; Rosas, Krystal; García-Reyes, Bernardo; García-González, Alicone

    2016-12-01

    The rate-limiting step of azo dye decolorization was elucidated by exploring the microbial reduction of a model quinone and the chemical decolorization by previously reduced quinone at different salinity conditions (2-8%). Microbial experiments were performed in batch with a marine consortium. The decolorization of Direct Blue 71 (DB71) by the marine consortium at 2% salinity, mediated with anthraquinone-2,6-disulfonate (AQDS), showed the highest rate of decolorization as compared with those obtained with riboflavin, and two samples of humic acids. Moreover, the incubations at different salinity conditions (0-8%) performed with AQDS showed that the highest rate of decolorization of DB71 by the marine consortium occurred at 2% and 4% salinity. In addition, the highest microbial reduction rate of AQDS occurred in incubations at 0%, 2%, and 4% of salinity. The chemical reduction of DB71 by reduced AQDS occurred in two stages and proceeded faster at 4% and 6% salinity. The results indicate that the rate-limiting step during azo decolorization was the microbial reduction of AQDS. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Simultaneous microbial and electrochemical reductions of vanadium (V) with bioelectricity generation in microbial fuel cells.

    PubMed

    Zhang, Baogang; Tian, Caixing; Liu, Ying; Hao, Liting; Liu, Ye; Feng, Chuanping; Liu, Yuqian; Wang, Zhongli

    2015-03-01

    Simultaneous microbial and electrochemical reductions of vanadium (V) with bioelectricity generation were realized in microbial fuel cells (MFCs). With initial V(V) concentrations of 75 mg/l and 150 mg/l in anolyte and catholyte, respectively, stable power output of 419±11 mW/m(2) was achieved. After 12h operation, V(V) concentration in the catholyte decreased to the value similar to that of the initial one in the anolyte, meanwhile it was nearly reduced completely in the anolyte. V(IV) was the main reduction product, which subsequently precipitated, acquiring total vanadium removal efficiencies of 76.8±2.9%. Microbial community analysis revealed the emergence of the new species of Deltaproteobacteria and Bacteroidetes as well as the enhanced Spirochaetes mainly functioned in the anode. This study opens new pathways to successful remediation of vanadium contamination. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Enhanced microbial electrosynthesis by using defined co-cultures

    PubMed Central

    Deutzmann, Jörg S; Spormann, Alfred M

    2017-01-01

    Microbial uptake of free cathodic electrons presents a poorly understood aspect of microbial physiology. Uptake of cathodic electrons is particularly important in microbial electrosynthesis of sustainable fuel and chemical precursors using only CO2 and electricity as carbon, electron and energy source. Typically, large overpotentials (200 to 400 mV) were reported to be required for cathodic electron uptake during electrosynthesis of, for example, methane and acetate, or low electrosynthesis rates were observed. To address these limitations and to explore conceptual alternatives, we studied defined co-cultures metabolizing cathodic electrons. The Fe(0)-corroding strain IS4 was used to catalyze the electron uptake reaction from the cathode forming molecular hydrogen as intermediate, and Methanococcus maripaludis and Acetobacterium woodii were used as model microorganisms for hydrogenotrophic synthesis of methane and acetate, respectively. The IS4-M. maripaludis co-cultures achieved electromethanogenesis rates of 0.1–0.14 μmol cm−2 h−1 at −400 mV vs standard hydrogen electrode and 0.6–0.9 μmol cm−2 h−1 at −500 mV. Co-cultures of strain IS4 and A. woodii formed acetate at rates of 0.21–0.23 μmol cm−2 h−1 at −400 mV and 0.57–0.74 μmol cm−2 h−1 at −500 mV. These data show that defined co-cultures coupling cathodic electron uptake with synthesis reactions via interspecies hydrogen transfer may lay the foundation for an engineering strategy for microbial electrosynthesis. PMID:27801903

  2. Reaction-Based Reactive Transport Modeling of Iron Reduction and Uranium Immobilization at Area 2 of the NABIR Field Research Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgos, W.D.

    2009-09-02

    This report summarizes research conducted in conjunction with a project entitled “Reaction-Based Reactive Transport Modeling of Iron Reduction and Uranium Immobilization at Area 2 of the NABIR Field Research Center”, which was funded through the Integrative Studies Element of the former NABIR Program (now the Environmental Remediation Sciences Program) within the Office of Biological and Environmental Research. Dr. William Burgos (The Pennsylvania State University) was the overall PI/PD for the project, which included Brian Dempsey (Penn State), Gour-Tsyh (George) Yeh (Central Florida University), and Eric Roden (formerly at The University of Alabama, now at the University of Wisconsin) as separately-fundedmore » co-PIs. The project focused on development of a mechanistic understanding and quantitative models of coupled Fe(III)/U(VI) reduction in FRC Area 2 sediments. The work builds on our previous studies of microbial Fe(III) and U(VI) reduction, and was directly aligned with the Scheibe et al. ORNL FRC Field Project at Area 2.« less

  3. Kinetics during the redox biotransformation of pollutants mediated by immobilized and soluble humic acids.

    PubMed

    Cervantes, Francisco J; Martínez, Claudia M; Gonzalez-Estrella, Jorge; Márquez, Arturo; Arriaga, Sonia

    2013-03-01

    The aim of this study was to elucidate the kinetic constraints during the redox biotransformation of the azo dye, Reactive Red 2 (RR2), and carbon tetrachloride (CT) mediated by soluble humic acids (HAs) and immobilized humic acids (HAi), as well as by the quinoid model compounds, anthraquinone-2,6-disulfonate (AQDS) and 1,2-naphthoquinone-4-sulfonate (NQS). The microbial reduction of both HAs and HAi by anaerobic granular sludge (AGS) was the rate-limiting step during decolorization of RR2 since the reduction of RR2 by reduced HAi proceeded at more than three orders of magnitute faster than the electron-transferring rate observed during the microbial reduction of HAi by AGS. Similarly, the reduction of RR2 by reduced AQDS proceeded 1.6- and 1.9-fold faster than the microbial reduction of AQDS by AGS when this redox mediator (RM) was supplied in soluble and immobilized form, respectively. In contrast, the reduction of NQS by AGS occurred 1.6- and 19.2-fold faster than the chemical reduction of RR2 by reduced NQS when this RM was supplied in soluble and immobilized form, respectively. The microbial reduction of HAs and HAi by a humus-reducing consortium proceeded 1,400- and 790-fold faster than the transfer of electrons from reduced HAs and HAi, respectively, to achieve the reductive dechlorination of CT to chloroform. Overall, the present study provides elucidation on the rate-limiting steps involved in the redox biotransformation of priority pollutants mediated by both HAs and HAi and offers technical suggestions to overcome the kinetic restrictions identified in the redox reactions evaluated.

  4. Organic matter composition and substrate diversity under elevated CO2 in the Mojave Desert

    NASA Astrophysics Data System (ADS)

    Tfaily, M. M.; Hess, N. J.; Koyama, A.; Evans, R. D.

    2016-12-01

    Little is known about how rising atmospheric CO2 concentration will impact long-term plant biomass or the dynamics of soil organic matter (SOM) in arid ecosystems. In this study, we investigated the change in the molecular composition of SOM by high resolution mass spectrometry after 10 years exposure to elevated atmospheric CO2 concentrations at the Nevada Desert FACE Facility. Samples were collected from soil profiles from 0 to 1m in 0.2m increments under the dominant evergreen shrub (Larrea tridentata). The differences in the composition of SOM were more evident in soils close to the surface and consistent with higher bulk soil organic carbon (C) and total nitrogen (N) concentrations under elevated than ambient CO2, reflecting increased net productivity of shrubs under elevated CO2, which could be attributed to increased litter input from above-ground biomass and/or shallow roots, root exudation and/or microbial residues. This was further supported by the significant increase in the abundance of amino sugars-, protein- and carbohydrate-like compounds. These compounds are involved in diverse pathways ranging from sugars and amino-acid metabolism to lipid biosynthesis. This indicates increased activity and metabolism under elevated CO2 and suggests that elevated CO2 have altered microbial C use patterns, reflecting changes in the quality and quantity of soil C inputs. A significant increase in the mineral-bound soil organic C was also observed in the surface soils under elevated CO2. This was accompanied by increased microbial residues as identified by mass spectrometry that supports microbial lipid analysis, and reflecting accelerated microbial turnover under elevated CO2. Fungal neutral lipid fatty acids (NLFA) abundance doubled under elevated CO2. When provided with excess labile compounds, such as root exudates, and with limited supply of nutrients, fungi assimilate the excess labile C and store it as NLFA likely contributing to increased total N concentrations. This was further supported by the presence of acetyl glucosamine, a typical amino sugar, present in the chitin of fungi, under elevated than ambient CO2. Our results suggest that arid ecosystems, limited by water, may have a different C storage potential under changing climates than other ecosystems that are limited by N or P.

  5. Biogeochemical controls on microbial CH4 and CO2 production in Arctic polygon tundra

    NASA Astrophysics Data System (ADS)

    Zheng, J.

    2016-12-01

    Accurately simulating methane (CH4) and carbon dioxide (CO2) emissions from high latitude soils is critically important for reducing uncertainties in soil carbon-climate feedback predictions. The signature polygonal ground of Arctic tundra generates high level of heterogeneity in soil thermal regime, hydrology and oxygen availability, which limits the application of current land surface models with simple moisture response functions. We synthesized CH4 and CO2 production measurements from soil microcosm experiments across a wet-to dry permafrost degradation gradient from low-centered (LCP) to flat-centered (FCP), and high-centered polygons (HCP) to evaluate the relative importance of biogeochemical processes and their response to warming. More degraded polygon (HCP) showed much less carbon loss as CO2 or CH4, while the total CO2 production from FCP is comparable to that from LCP. Maximum CH4 production from the active layer of LCP was nearly 10 times that of permafrost and FCP. Multivariate analyses identifies gravimetric water content and organic carbon content as key predictors for CH4 production, and iron reduction as a key regulator of pH. The synthesized data are used to validate the geochemical model PHREEQC with extended anaerobic organic substrate turnover, fermentation, iron reduction, and methanogenesis reactions. Sensitivity analyses demonstrate that better representations of anaerobic processes and their pH dependency could significantly improve estimates of CH4 and CO2 production. The synthesized data suggest local decreases in CH4 production along the polygon degradation gradient, which is consistent with previous surface flux measurements. Methane oxidation occurring through the soil column of degraded polygons contributes to their low CH4 emissions as well.

  6. Anaerobic oxidation of methane in sediments of two boreal lakes

    NASA Astrophysics Data System (ADS)

    Rissanen, Antti J.; Karvinen, Anu; Nykänen, Hannu; Mpamah, Promise; Peura, Sari; Tiirola, Marja; Kankaala, Paula

    2014-05-01

    Anaerobic oxidation of methane (AOM) is a considerable sink for methane (CH4) in marine systems, but very little is known about the occurrence and importance of the process in freshwater systems. In addition, much about the microbial communities involved in AOM is unclear. AOM coupled with sulfate reduction is the dominant AOM process in marine systems but the scarce existing data suggest that, in freshwater systems, AOM coupled with reduction of alternative electron acceptors (nitrate/nitrite, manganese, iron) is more important. In this study, potential for AOM coupled with metal reduction was studied in boreal lake sediments. Slurries of sediment samples collected from two sites in southeastern Finland, i.e. from Lake Orivesi, Heposelkä, an vegetated littoral site, dominated by Phragmites australis (Sample Sa, sediment layer 0 - 25 cm) and from the profundal zone of a mesotrophic Lake Ätäskö (Aa, 0 - 10 cm; Ab, 10 - 30 cm; Ac, 90 - 130 cm), were incubated in laboratory in anaerobic conditions at in situ temperatures for up to 5 months. The samples were amended either 1) with 13CH4, 2) 13CH4 + manganese(II) oxide (MnO) or 3) 13CH4 + iron(III) hydroxide (Fe(OH)3), and the processes were measured by following the 13C transfer to the carbon dioxide (CO2) pool and by concentration measurements of CH4 and CO2. Changes in microbial communities were studied from DNA extracted from sediment samples before and after incubation period by next-generation sequencing (Ion Torrent) of polymerase chain reaction (PCR) - amplified bacterial and archaeal 16S rRNA and methyl coenzyme-M reductase gene (mcrA) amplicons. Increase in 13C of CO2 gas confirmed that AOM took place in sediments of both study lakes. In general, 13CO2 - production was significant both at the beginning (0 - 21 days) and at the end (84 - 151 days) of incubation period. Potential AOM rates (calculated based on 13CO2 - production) varied considerably and were much lower in deep sediment (Sample Ac), 0.1 - 0.2 nmol CH4 d-1gwetsediment-1, than in surface sediment samples (Samples Aa, Ab and Sa), 0.2 - 12.3 nmol CH4 d-1gwetsediment-1. AOM took place without metal additions in every sample type. Addition of MnO increased potential AOM rates in surface sediment samples but not in deep sediment samples. Addition of Fe(OH)3increased AOM significantly only in Aa samples. Molecular microbiological analyses are currently in progress and the results will be shown in the poster presentation.

  7. Simultaneous Wastewater Treatment, Algal Biomass Production and Electricity Generation in Clayware Microbial Carbon Capture Cells.

    PubMed

    Jadhav, Dipak A; Jain, Sumat C; Ghangrekar, Makarand M

    2017-11-01

    Performance of microbial carbon capture cells (MCCs), having a low-cost clayware separator, was evaluated in terms of wastewater treatment and electricity generation using algae Chlorella pyrenoidosa in MCC-1 and Anabaena ambigua in MCC-2 and without algae in a cathodic chamber of MCC-3. Higher power production was achieved in MCC-1 (6.4 W/m 3 ) compared to MCC-2 (4.29 W/m 3 ) and MCC-3 (3.29 W/m 3 ). Higher coulombic efficiency (15.23 ± 1.30%) and biomass production (66.4 ± 4.7 mg/(L*day)) in MCC-1 indicated the superiority of Chlorella over Anabaena algae for carbon capture and oxygen production to facilitate the cathodic reduction. Algal biofilm formation on the cathode surface of MCC-1 increased dissolved oxygen in the catholyte and decreased the cathodic charge transfer resistance with increase in reduction current. Electrochemical analyses revealed slow cathodic reactions and increase in internal resistance in MCC-2 (55 Ω) than MCC-1 (30 Ω), due to lower oxygen produced by Anabaena algae. Thus, biomass production in conjunction with wastewater treatment, CO 2 sequestration and electricity generation can be achieved using Chlorella algal biocathode in MCC.

  8. Marine phototrophic consortia transfer electrons to electrodes in response to reductive stress.

    PubMed

    Darus, Libertus; Ledezma, Pablo; Keller, Jürg; Freguia, Stefano

    2016-03-01

    This work studies how extracellular electron transfer (EET) from cyanobacteria-dominated marine microbial biofilms to solid electrodes is affected by the availability of inorganic carbon (Ci). The EET was recorded chronoamperometrically in the form of electrical current by a potentiostat in two identical photo-electrochemical cells using carbon electrodes poised at a potential of +0.6 V versus standard hydrogen electrode under 12/12 h illumination/dark cycles. The Ci was supplied by the addition of NaHCO3 to the medium and/or by sparging CO2 gas. At high Ci conditions, EET from the microbial biofilm to the electrodes was observed only during the dark phase, indicating the occurrence of a form of night-time respiration that can use insoluble electrodes as the terminal electron acceptor. At low or no Ci conditions, however, EET also occurred during illumination suggesting that, in the absence of their natural electron acceptor, some cyanobacteria are able to utilise solid electrodes as an electron sink. This may be a natural survival mechanism for cyanobacteria to maintain redox balance in environments with limiting CO2 and/or high light intensity.

  9. Dryland biological soil crust cyanobacteria show unexpected decreases in abundance under long-term elevated CO2.

    PubMed

    Steven, Blaire; Gallegos-Graves, La Verne; Yeager, Chris M; Belnap, Jayne; Evans, R David; Kuske, Cheryl R

    2012-12-01

    Biological soil crusts (biocrusts) cover soil surfaces in many drylands globally. The impacts of 10 years of elevated atmospheric CO2 on the cyanobacteria in biocrusts of an arid shrubland were examined at a large manipulated experiment in Nevada, USA. Cyanobacteria-specific quantitative PCR surveys of cyanobacteria small-subunit (SSU) rRNA genes suggested a reduction in biocrust cyanobacterial biomass in the elevated CO2 treatment relative to the ambient controls. Additionally, SSU rRNA gene libraries and shotgun metagenomes showed reduced representation of cyanobacteria in the total microbial community. Taxonomic composition of the cyanobacteria was similar under ambient and elevated CO2 conditions, indicating the decline was manifest across multiple cyanobacterial lineages. Recruitment of cyanobacteria sequences from replicate shotgun metagenomes to cyanobacterial genomes representing major biocrust orders also suggested decreased abundance of cyanobacteria sequences across the majority of genomes tested. Functional assignment of cyanobacteria-related shotgun metagenome sequences indicated that four subsystem categories, three related to oxidative stress, were differentially abundant in relation to the elevated CO2 treatment. Taken together, these results suggest that elevated CO2 affected a generalized decrease in cyanobacteria in the biocrusts and may have favoured cyanobacteria with altered gene inventories for coping with oxidative stress. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  10. Dryland biological soil crust cyanobacteria show unexpected decreases in abundance under long-term elevated CO2

    USGS Publications Warehouse

    Steven, Blaire; Gallegos-Graves, La Verne; Yeager, Chris M.; Belnap, Jayne; Evans, R. David; Kuske, Cheryl R.

    2012-01-01

    Biological soil crusts (biocrusts) cover soil surfaces in many drylands globally. The impacts of 10 years of elevated atmospheric CO2 on the cyanobacteria in biocrusts of an arid shrubland were examined at a large manipulated experiment in Nevada, USA. Cyanobacteria-specific quantitative PCR surveys of cyanobacteria small-subunit (SSU) rRNA genes suggested a reduction in biocrust cyanobacterial biomass in the elevated CO2 treatment relative to the ambient controls. Additionally, SSU rRNA gene libraries and shotgun metagenomes showed reduced representation of cyanobacteria in the total microbial community. Taxonomic composition of the cyanobacteria was similar under ambient and elevated CO2 conditions, indicating the decline was manifest across multiple cyanobacterial lineages. Recruitment of cyanobacteria sequences from replicate shotgun metagenomes to cyanobacterial genomes representing major biocrust orders also suggested decreased abundance of cyanobacteria sequences across the majority of genomes tested. Functional assignment of cyanobacteria-related shotgun metagenome sequences indicated that four subsystem categories, three related to oxidative stress, were differentially abundant in relation to the elevated CO2 treatment. Taken together, these results suggest that elevated CO2 affected a generalized decrease in cyanobacteria in the biocrusts and may have favoured cyanobacteria with altered gene inventories for coping with oxidative stress.

  11. Origin of methane and sources of high concentrations in Los Angeles groundwater

    USGS Publications Warehouse

    Kulongoski, Justin; McMahon, Peter B.; Land, Michael; Wright, Michael; Johnson, Theodore; Landon, Matthew K.

    2018-01-01

    In 2014, samples from 37 monitoring wells at 17 locations, within or near oil fields, and one site >5 km from oil fields, in the Los Angeles Basin, California, were analyzed for dissolved hydrocarbon gas isotopes and abundances. The wells sample a variety of depths of an aquifer system composed of unconsolidated and semiconsolidated sediments under various conditions of confinement. Concentrations of methane in groundwater samples ranged from 0.002 to 150 mg/L—some of the highest concentrations reported in a densely populated urban area. The δ13C and δ2H of the methane ranged from −80.8 to −45.5 per mil (‰) and −249.8 to −134.9‰, respectively, and, along with oxidation‐reduction processes, helped to identify the origin of methane as microbial methanogenesis and CO2 reduction as its main formation pathway. The distribution of methane concentrations and isotopes is consistent with the high concentrations of methane in Los Angeles Basin groundwater originating from relatively shallow microbial production in anoxic or suboxic conditions. Source of the methane is the aquifer sediments rather than the upward migration or leakage of thermogenic methane associated with oil fields in the basin.

  12. Origin of Methane and Sources of High Concentrations in Los Angeles Groundwater

    NASA Astrophysics Data System (ADS)

    Kulongoski, J. T.; McMahon, P. B.; Land, M.; Wright, M. T.; Johnson, T. A.; Landon, M. K.

    2018-03-01

    In 2014, samples from 37 monitoring wells at 17 locations, within or near oil fields, and one site >5 km from oil fields, in the Los Angeles Basin, California, were analyzed for dissolved hydrocarbon gas isotopes and abundances. The wells sample a variety of depths of an aquifer system composed of unconsolidated and semiconsolidated sediments under various conditions of confinement. Concentrations of methane in groundwater samples ranged from 0.002 to 150 mg/L—some of the highest concentrations reported in a densely populated urban area. The δ13C and δ2H of the methane ranged from -80.8 to -45.5 per mil (‰) and -249.8 to -134.9‰, respectively, and, along with oxidation-reduction processes, helped to identify the origin of methane as microbial methanogenesis and CO2 reduction as its main formation pathway. The distribution of methane concentrations and isotopes is consistent with the high concentrations of methane in Los Angeles Basin groundwater originating from relatively shallow microbial production in anoxic or suboxic conditions. Source of the methane is the aquifer sediments rather than the upward migration or leakage of thermogenic methane associated with oil fields in the basin.

  13. Biochar alters microbial community and carbon sequestration potential across different soil pH.

    PubMed

    Sheng, Yaqi; Zhu, Lizhong

    2018-05-01

    Biochar application to soil has been proposed for soil carbon sequestration and global warming mitigation. While recent studies have demonstrated that soil pH was a main factor affecting soil microbial community and stability of biochar, little information is available for the microbiome across different soil pH and the subsequently CO 2 emission. To investigate soil microbial response and CO 2 emission of biochar across different pH levels, comparative incubation studies on CO 2 emission, degradation of biochar, and microbial communities in a ferralsol (pH5.19) and a phaeozems (pH7.81) with 4 biochar addition rates (0.5%, 1.0%, 2.0%, 5.0%) were conducted. Biochar induced higher CO 2 emission in acidic ferralsol, largely due to the higher biochar degradation, while the more drastic negative priming effect (PE) of SOC resulted in decreased total CO 2 emission in alkaline phaeozems. The higher bacteria diversity, especially the enrichment of copiotrophic bacteria such as Bacteroidetes, Gemmatimonadetes, and decrease of oligotrophic bacteria such as Acidobacteria, were responsible for the increased CO 2 emission and initial positive PE of SOC in ferralsol, whereas biochar did not change the relative abundances of most bacteria at phylum level in phaeozems. The relative abundances of other bacterial taxa (i.e. Actinobacteria, Anaerolineae) known to degrade aromatic compounds were also elevated in both soils. Soil pH was considered to be the dominant factor to affect CO 2 emission by increasing the bioavailability of organic carbon and abundance of copiotrophic bacteria after biochar addition in ferralsol. However, the decreased bioavailability of SOC via adsorption of biochar resulted in higher abundance of oligotrophic bacteria in phaeozems, leading to the decrease in CO 2 emission. Copyright © 2017. Published by Elsevier B.V.

  14. Alterations in microbial community composition with increasing fCO2: a mesocosm study in the eastern Baltic Sea

    NASA Astrophysics Data System (ADS)

    Crawfurd, Katharine J.; Alvarez-Fernandez, Santiago; Mojica, Kristina D. A.; Riebesell, Ulf; Brussaard, Corina P. D.

    2017-08-01

    Ocean acidification resulting from the uptake of anthropogenic carbon dioxide (CO2) by the ocean is considered a major threat to marine ecosystems. Here we examined the effects of ocean acidification on microbial community dynamics in the eastern Baltic Sea during the summer of 2012 when inorganic nitrogen and phosphorus were strongly depleted. Large-volume in situ mesocosms were employed to mimic present, future and far future CO2 scenarios. All six groups of phytoplankton enumerated by flow cytometry ( < 20 µm cell diameter) showed distinct trends in net growth and abundance with CO2 enrichment. The picoeukaryotic phytoplankton groups Pico-I and Pico-II displayed enhanced abundances, whilst Pico-III, Synechococcus and the nanoeukaryotic phytoplankton groups were negatively affected by elevated fugacity of CO2 (fCO2). Specifically, the numerically dominant eukaryote, Pico-I, demonstrated increases in gross growth rate with increasing fCO2 sufficient to double its abundance. The dynamics of the prokaryote community closely followed trends in total algal biomass despite differential effects of fCO2 on algal groups. Similarly, viral abundances corresponded to prokaryotic host population dynamics. Viral lysis and grazing were both important in controlling microbial abundances. Overall our results point to a shift, with increasing fCO2, towards a more regenerative system with production dominated by small picoeukaryotic phytoplankton.

  15. [Effects of Different Residue Part Inputs of Corn Straws on CO2 Efflux and Microbial Biomass in Clay Loam and Sandy Loam Black Soils].

    PubMed

    Liu, Si-yi; Liang, Ai-zhen; Yang, Xue-ming; Zhang, Xiao-ping; Jia, Shu-xia; Chen, Xue-wen; Zhang, Shi-xiu; Sun, Bing-jie; Chen, Sheng-long

    2015-07-01

    The decomposed rate of crop residues is a major determinant for carbon balance and nutrient cycling in agroecosystem. In this study, a constant temperature incubation study was conducted to evaluate CO2 emission and microbial biomass based on four different parts of corn straw (roots, lower stem, upper stem and leaves) and two soils with different textures (sandy loam and clay loam) from the black soil region. The relationships between soil CO2 emission, microbial biomass and the ratio of carbon (C) to nitrogen (N) and lignin of corn residues were analyzed by the linear regression. Results showed that the production of CO2 was increased with the addition of different parts of corn straw to soil, with the value of priming effect (PE) ranged from 215. 53 µmol . g-1 to 335. 17 µmol . g -1. Except for corn leaves, the cumulative CO2 production and PE of clay loam soil were significantly higher than those in sandy loam soil. The correlation of PE with lignin/N was obviously more significant than that with lignin concentration, nitrogen concentration and C/N of corn residue. The addition of corn straw to soil increased the contents of MBC and MBN and decreased MBC/MBN, which suggested that more nitrogen rather than carbon was conserved in microbial community. The augmenter of microbial biomass in sandy loam soil was greater than that in clay loam soil, but the total dissolved nitrogen was lower. Our results indicated that the differences in CO2 emission with the addition of residues to soils were primarily ascribe to the different lignin/N ratio in different corn parts; and the corn residues added into the sandy loam soil could enhance carbon sequestration, microbial biomass and nitrogen holding ability relative to clay loam soil.

  16. Accelerated rates of in situ microbial activity after permafrost collapse estimated from a porewater isotope model

    NASA Astrophysics Data System (ADS)

    Waldrop, M. P.; Neumann, R. B.; Jones, M.; Manies, K.; Mcfarland, J. W.; Blazewicz, S.; Turetsky, M. R.

    2016-12-01

    Permafrost thaw is expected to become widespread in interior Alaska over the coming century, resulting in increased CO2 and CH4 fluxes from soils and a positive feedback to global warming. However much of our understanding of the microbial response to thaw is predicated on simple laboratory incubations that preclude the multitude of interactions occurring in soils under field situations. Here, we utilize a time series of 13CO2 and 13CH4 measured in porewater collected from thermokarst bogs of different ages to estimate in-situ reaction rates of microbial respiration, methanogenesis from acetate, methanogenesis from CO2, homoacetogenesis, and methane oxidation from porewater concentrations and 13CO2 and 13CH4. We utilized this modeling technique to test the hypothesis that microbial activities are stimulated soon after permafrost thaw and this effect declines over time. Our field site is a chronosequence of thermokarst bogs at the Alaska Peatland Experiment (APEX) in interior AK where we have observed significant losses of peatland carbon since permafrost collapse over the last half century. Concentrations of dissolved CO2 and CH4 in porewater increased with depth, and were higher in the youngest bog compared to the older bogs. With increasing depth 13CH4 became more depleted while 13CO2 became more enriched. Preliminary modeling results, based upon these porewater gas concentrations and isotope values, indicate that microbial activities are higher in the youngest bogs compared to the older bogs, supporting the hypothesis that accelerated rates of microbial activities in young thermokarst features are responsible for high rates of C losses from these systems. Additionally, model results will be compared to variation in the abundance of methanogens, methane oxidizers, and acetogens as well as process rates measured in lab incubations, providing insights into the mechanisms responsible for these losses.

  17. Effect of elevated CO2 on chlorpyriphos degradation and soil microbial activities in tropical rice soil.

    PubMed

    Adak, Totan; Munda, Sushmita; Kumar, Upendra; Berliner, J; Pokhare, Somnath S; Jambhulkar, N N; Jena, M

    2016-02-01

    Impact of elevated CO2 on chlorpyriphos degradation, microbial biomass carbon, and enzymatic activities in rice soil was investigated. Rice (variety Naveen, Indica type) was grown under four conditions, namely, chambered control, elevated CO2 (550 ppm), elevated CO2 (700 ppm) in open-top chambers and open field. Chlorpyriphos was sprayed at 500 g a.i. ha(-1) at maximum tillering stage. Chlorpyriphos degraded rapidly from rice soils, and 88.4% of initially applied chlorpyriphos was lost from the rice soil maintained under elevated CO2 (700 ppm) by day 5 of spray, whereas the loss was 80.7% from open field rice soil. Half-life values of chlorpyriphos under different conditions ranged from 2.4 to 1.7 days with minimum half-life recorded with two elevated CO2 treatments. Increased CO2 concentration led to increase in temperature (1.2 to 1.8 °C) that played a critical role in chlorpyriphos persistence. Microbial biomass carbon and soil enzymatic activities specifically, dehydrogenase, fluorescien diacetate hydrolase, urease, acid phosphatase, and alkaline phosphatase responded positively to elevated CO2 concentrations. Generally, the enzyme activities were highly correlated with each other. Irrespective of the level of CO2, short-term negative influence of chlorpyriphos was observed on soil enzymes till day 7 of spray. Knowledge obtained from this study highlights that the elevated CO2 may negatively influence persistence of pesticide but will have positive effects on soil enzyme activities.

  18. Metagenomics in methane seep detection and studies of the microbial methane sediment filter

    NASA Astrophysics Data System (ADS)

    Gunn Rike, Anne; Håvelsrud, Othilde Elise; Haverkamp, Thomas; Kristensen, Tom; Jakobsen, Kjetill

    2013-04-01

    Metanotrophic prokaryotes with their capacity to oxidize methane to biomass and CO2 contribute considerably in reduction of the global methane emission from oceans. Metagenomic studies of seabed sediments represent a new approach to detect marine methane seeps and to study whether the inhabiting microbial consortium represent a microbial methane filter. We have used next generation high throughput DNA sequencing technology to study microbial consortia and their potential metabolic processes in marine sediment samples from the Håkon Mosby mud volcano (HMMV) in the Barents Sea, the Tonya Seep in the Coal Oil Point area in California and from the pockmarked area at the Troll oil and gas field in the North Sea. Annotation of archaeal reads from the HMMV metagenome resulted in hits to all enzymes supposed to be involved in the anaerobic oxidation of methane (AOM) carried out by anaerobic methanotrophic archaea (ANME). The presence of several ANME taxa at HMMV has previously been well described (1). The stratification analysis of the Tonya seep sediment showed that both aerobic and anaerobic methanotrophs were present at both layers investigated, although total archaea, ANME-1, ANME-2 and ANME-3 were overabundant in the deepest layer. Several sulphate reducing taxa (possibly syntrophic ANME partners) were detected. The Tonya Seep sediment represent a robust methane filter where presently dominating methanotrophic taxa could be replaced by less abundant methanotrophs should the environmental conditions change (2). In the Troll pockmarked sediments several methanotrophic taxa including ANME-1, ANME-2 and candidate division NC10 were detected although there was an overabundance of autotrophic nitrifiers (e.g. Nitrosopumilis, Nitrococcus, Nitrospira) using CO2 as the carbon source. Methane migrating upwards through the sediments is probably oxidized to CO2 in AOM resulting in an upward CO2 flux. The CO2 entering the seafloor may contribute to maintain the pockmark structure and represent a carbon source for the autotrophic nitrifying community. In this way the sediments at Troll probably contributes to reduce the methane emissions to the water body and further to the atmosphere (3). References: 1) Niemann H, Lösekann T, Boetius A, Kort R, Amann R. Diversity and distribution of methanotrophic archaea at cold seeps. Appl Environ Microbiol 2005, 71(1), 467-479. 2) Håvelsrud, O. E., Haverkamp, T.H.A., Kristensen, T., Jakobsen, K.S. and Rike A.G. Metagenomic study of methane oxidation in Coal Oil Point seep sediments. BMC Microbiology 2011, 11:221 3) Håvelsrud OE, Haverkamp THA., Kristensen T, Jakobsen KS and Rike AG. Metagenomic and geochemical characterization of pockmarked sediments overlaying the Troll petroleum reservoir in the North Sea. BMC Microbiology 2012, 12:203

  19. Effect of biochar addition on short-term N2O and CO2 emissions during repeated drying and wetting of an anthropogenic alluvial soil.

    PubMed

    Yang, Fang; Lee, Xinqing; Theng, Benny K G; Wang, Bing; Cheng, Jianzhong; Wang, Qian

    2017-06-01

    Agricultural soils are an important source of greenhouse gases (GHG). Biochar application to such soils has the potential of mitigating global anthropogenic GHG emissions. Under irrigation, the topsoils in arid regions experience repeated drying and wetting during the crop growing season. Biochar incorporation into these soils would change the soil microbial environment and hence affect GHG emissions. Little information, however, is available regarding the effect of biochar addition on carbon dioxide (CO 2 ) and nitrous oxide (N 2 O) emissions from agricultural soils undergoing repeated drying and wetting. Here, we report the results of a 49-day aerobic incubation experiment, incorporating biochar into an anthropogenic alluvial soil in an arid region of Xinjiang Province, China, and measuring CO 2 and N 2 O emissions. Under both drying-wetting and constantly moist conditions, biochar amendment significantly increased cumulative CO 2 emission. At the same time, there was a significant reduction (up to ~20 %) in cumulative N 2 O emission, indicating that the addition of biochar to irrigated agricultural soils may effectively slow down global warming in arid regions of China.

  20. Fate of injected CO2 in the Wilcox Group, Louisiana, Gulf Coast Basin: Chemical and isotopic tracers of microbial–brine–rock–CO2 interactions

    USGS Publications Warehouse

    Shelton, Jenna L.; McIntosh, Jennifer C.; Warwick, Peter D.; Lee Zhi Yi, Amelia

    2014-01-01

    The “2800’ sandstone” of the Olla oil field is an oil and gas-producing reservoir in a coal-bearing interval of the Paleocene–Eocene Wilcox Group in north-central Louisiana, USA. In the 1980s, this producing unit was flooded with CO2 in an enhanced oil recovery (EOR) project, leaving ∼30% of the injected CO2 in the 2800’ sandstone post-injection. This study utilizes isotopic and geochemical tracers from co-produced natural gas, oil and brine to determine the fate of the injected CO2, including the possibility of enhanced microbial conversion of CO2 to CH4 via methanogenesis. Stable carbon isotopes of CO2, CH4 and DIC, together with mol% CO2 show that 4 out of 17 wells sampled in the 2800’ sandstone are still producing injected CO2. The dominant fate of the injected CO2appears to be dissolution in formation fluids and gas-phase trapping. There is some isotopic and geochemical evidence for enhanced microbial methanogenesis in 2 samples; however, the CO2 spread unevenly throughout the reservoir, and thus cannot explain the elevated indicators for methanogenesis observed across the entire field. Vertical migration out of the target 2800’ sandstone reservoir is also apparent in 3 samples located stratigraphically above the target sand. Reservoirs comparable to the 2800’ sandstone, located along a 90-km transect, were also sampled to investigate regional trends in gas composition, brine chemistry and microbial activity. Microbial methane, likely sourced from biodegradation of organic substrates within the formation, was found in all oil fields sampled, while indicators of methanogenesis (e.g. high alkalinity, δ13C-CO2 and δ13C-DIC values) and oxidation of propane were greatest in the Olla Field, likely due to its more ideal environmental conditions (i.e. suitable range of pH, temperature, salinity, sulfate and iron concentrations).

  1. Ocean acidification reduces induction of coral settlement by crustose coralline algae.

    PubMed

    Webster, Nicole S; Uthicke, Sven; Botté, Emanuelle S; Flores, Florita; Negri, Andrew P

    2013-01-01

    Crustose coralline algae (CCA) are a critical component of coral reefs as they accrete carbonate for reef structure and act as settlement substrata for many invertebrates including corals. CCA host a diversity of microorganisms that can also play a role in coral settlement and metamorphosis processes. Although the sensitivity of CCA to ocean acidification (OA) is well established, the response of their associated microbial communities to reduced pH and increased CO2 was previously not known. Here we investigate the sensitivity of CCA-associated microbial biofilms to OA and determine whether or not OA adversely affects the ability of CCA to induce coral larval metamorphosis. We experimentally exposed the CCA Hydrolithon onkodes to four pH/pCO2 conditions consistent with current IPCC predictions for the next few centuries (pH: 8.1, 7.9, 7.7, 7.5, pCO2 : 464, 822, 1187, 1638 μatm). Settlement and metamorphosis of coral larvae was reduced on CCA pre-exposed to pH 7.7 (pCO2  = 1187 μatm) and below over a 6-week period. Additional experiments demonstrated that low pH treatments did not directly affect the ability of larvae to settle, but instead most likely altered the biochemistry of the CCA or its microbial associates. Detailed microbial community analysis of the CCA revealed diverse bacterial assemblages that altered significantly between pH 8.1 (pCO2  = 464 μatm) and pH 7.9 (pCO2  = 822 μatm) with this trend continuing at lower pH/higher pCO2 treatments. The shift in microbial community composition primarily comprised changes in the abundance of the dominant microbes between the different pH treatments and the appearance of new (but rare) microbes at pH 7.5. Microbial shifts and the concomitant reduced ability of CCA to induce coral settlement under OA conditions projected to occur by 2100 is a significant concern for the development, maintenance and recovery of reefs globally. © 2012 Blackwell Publishing Ltd.

  2. Changes in microbial community during hydrogen and methane production in two-stage thermophilic anaerobic co-digestion process from biowaste.

    PubMed

    Zahedi, S; Solera, R; Micolucci, F; Cavinato, C; Bolzonella, D

    2016-03-01

    In this paper, the microbial community in a two-phase thermophilic anaerobic co-digestion process was investigated for its role in hydrogen and methane production, treating waste activated sludge and treating the organic fraction of municipal solid waste. In the acidogenic phase, in which hydrogen is produced, Clostridium sp. clusters represented 76% of total Firmicutes. When feeding the acidogenic effluent into the methanogenic reactors, these acidic conditions negatively influenced methanogenic microorganisms: Methanosaeta sp., (Methanobacteriales, Methanomicrobiales, Methanococcales) decreased by 75%, 50%, 38% and 52%, respectively. At the same time, methanogenic digestion lowered the numbers of Clostridium sp. clusters due to both pH increasing and substrate reduction, and an increase in both Firmicutes genera (non Clostridium) and methanogenic microorganisms, especially Methanosaeta sp. (208%). This was in accordance with the observed decrease in acetic (98%) and butyric (100%) acid contents. To ensure the activity of the acetate-utilizing methanogens (AUM) and the acetogens, high ratios of H2-utilizing methanogens (HUM)/AUM (3.6) were required. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Iron oxides stimulate sulfate-driven anaerobic methane oxidation in seeps

    DOE PAGES

    Sivan, Orit; Antler, Gilad; Turchyn, Alexandra V.; ...

    2014-09-22

    Seep sediments are dominated by intensive microbial sulfate reduction coupled to the anaerobic oxidation of methane (AOM). Through geochemical measurements of incubation experiments with methane seep sediments collected from Hydrate Ridge, we provide insight into the role of iron oxides in sulfate-driven AOM. Seep sediments incubated with 13C-labeled methane showed co-occurring sulfate reduction, AOM, and methanogenesis. The isotope fractionation factors for sulfur and oxygen isotopes in sulfate were about 40‰ and 22‰, respectively, reinforcing the difference between microbial sulfate reduction in methane seeps versus other sedimentary environments (for example, sulfur isotope fractionation above 60‰ in sulfate reduction coupled to organicmore » carbon oxidation or in diffusive sedimentary sulfate–methane transition zone). The addition of hematite to these microcosm experiments resulted in significant microbial iron reduction as well as enhancing sulfate-driven AOM. The magnitude of the isotope fractionation of sulfur and oxygen isotopes in sulfate from these incubations was lowered by about 50%, indicating the involvement of iron oxides during sulfate reduction in methane seeps. The similar relative change between the oxygen versus sulfur isotopes of sulfate in all experiments (with and without hematite addition) suggests that oxidized forms of iron, naturally present in the sediment incubations, were involved in sulfate reduction, with hematite addition increasing the sulfate recycling or the activity of sulfur-cycling microorganisms by about 40%. Furthermore, these results highlight a role for natural iron oxides during bacterial sulfate reduction in methane seeps not only as nutrient but also as stimulator of sulfur recycling.« less

  4. Impacts of zero valent iron, natural zeolite and Dnase on the fate of antibiotic resistance genes during thermophilic and mesophilic anaerobic digestion of swine manure.

    PubMed

    Zhang, Junya; Sui, Qianwen; Zhong, Hui; Meng, Xiaoshan; Wang, Ziyue; Wang, Yawei; Wei, Yuansong

    2018-06-01

    This study investigated the fate of antibiotic resistance genes (ARGs) during mesophilic (mAD) and thermophilic digestion (tAD) of swine manure through zero valent iron (ZVI), natural zeolite and Dnase addition. Changes of microbial community, intI1, heavy metal resistance genes (MRGs) and virulence factors (VFs) were followed to clarify the influencing factors to ARGs reduction. Results showed that AD could realize ARGs reduction with tAD superior to mAD, and ZVI and natural zeolite could further enhance the reduction, especially for natural zeolite addition at mAD. The reduction efficiency of the relative abundance of ARGs was increased by 33.3% and 138.5% after ZVI and natural zeolite addition, respectively, but Dnase deteriorated ARGs reduction at mAD. Most of ARGs could be reduced effectively except sulII and tetM. Network analysis and partial redundancy analysis indicated that co-occurrence of MRGs followed by microbial community contributed the most to the variation of ARGs fate among treatments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Reductive dissolution and reactive solute transport in a sewage-contaminated glacial outwash aquifer

    USGS Publications Warehouse

    Lee, R.W.; Bennett, P.C.

    1998-01-01

    Contamination of shallow ground water by sewage effluent typically contains reduced chemical species that consume dissolved oxygen, developing either a low oxygen geochemical environment or an anaerobic geochemical environment. Based on the load of reduced chemical species discharged to shallow ground water and the amounts of reactants in the aquifer matrix, it should be possible to determine chemical processes in the aquifer and compare observed results to predicted ones. At the Otis Air Base research site (Cape Cod, Massachusetts) where sewage effluent has infiltrated the shallow aquifer since 1936, bacterially mediated processes such as nitrification, denitrification, manganese reduction, and iron reduction have been observed in the contaminant plume. In specific areas of the plume, dissolved manganese and iron have increased significantly where local geochemical conditions are favorable for reduction and transport of these constituents from the aquifer matrix. Dissolved manganese and iron concentrations ranged from 0.02 to 7.3 mg/L, and 0.001 to 13.0 mg/L, respectively, for 21 samples collected from 1988 to 1989. Reduction of manganese and iron is linked to microbial oxidation of sewage carbon, producing bicarbonate and the dissolved metal ions as by-products. Calculated production and flux of CO2 through the unsaturated zone from manganese reduction in the aquifer was 0.035 g/m2/d (12% of measured CO2 flux during winter). Manganese is limited in the aquifer, however. A one-dimensional, reaction-coupled transport model developed for the mildly reducing conditions in the sewage plume nearest the source beds showed that reduction, transport, and removal of manganese from the aquifer sediments should result in iron reduction where manganese has been depleted.

  6. Upper cretaceous microbial petroleum systems in north-central Montana

    USGS Publications Warehouse

    Lillis, Paul G.

    2007-01-01

    Methanogenesis began soon after the deposition (early-stage methanogenesis) of the Cenomanian to Campanian source sediments, and was either sustained or rejuvenated by episodic meteoric water influx until sometime in the Paleogene. Methanogenesis probably continued until CO2 and hydrogen were depleted or the pore size was compacted to below tolerance levels of the methanogens. The composition of the Montana and Colorado Group gases and coproduced formation water precludes a scenario of late-stage methanogenesis like the Antrim gas system in the Michigan basin. Some portion of the methane charge was originally dissolved in the pore waters, and subsequent reduction in hydrostatic pressure caused the methane to exsolve and migrate into local stratigraphic and structural traps. The critical moment of the microbial gas systems is this timing of exsolution rather than the time of generation (methanogenesis). Other studies suggest that the reduction in hydrostatic pressure may have been caused by multiple geologic events including the lowering of sea level in the Late Cretaceous, and subsequent uplift and erosion events, the youngest of which began about 5 Ma.

  7. Effect of modified atmosphere packaging and irradiation in combination on content of nitrosamines in cooked pork sausage.

    PubMed

    Song, I H; Kim, W J; Jo, C; Ahn, H J; Kim, J H; Byun, M W

    2003-06-01

    The effect of modified atmosphere packaging and irradiation in combination on nitrosodimethylamine (NDMA) and nitrosopyrrolidine (NPYR) levels in pork sausage was studied. Emulsion-type cooked pork sausage was manufactured and packaged in aerobic, CO2 (100%), N2 (100%), and CO2/N2 (25%/75%) environments, respectively, and irradiated at 0, 5, 10, and 20 kGy with gamma irradiation. The nitrosamine contents were significantly reduced by irradiation, and the reduction of nitrosamines was more extensive with modified atmosphere packaging than with aerobic packaging. The correlation coefficient between irradiation dose and nitrosamine content indicated that irradiation can reduce the levels of nitrosamines. The combination of irradiation and modified atmosphere packaging is effective in enhancing the chemical safety of sausage by reducing nitrosamines, if present, as well as enhancing the microbial safety of cooked pork sausage.

  8. Microbe-Mineral Interactions Along Biogeochemical Gradients in Bahamian Stromatolites: Key to Lithification and Preservation

    NASA Astrophysics Data System (ADS)

    Andres, M. S.; Sumner, D. Y.; Visscher, P. T.; Swart, P. K.; Reid, R. P.

    2005-12-01

    Understanding on how modern stromatolites form and lithify is critical to properly interpreting the origins of ancient stromatolites and the early evolution of life. Lithification in Bahamian stromatolites is tied to specific, 20-60-micron thick horizons characterized by laterally continuous sheets of microcrystalline carbonate (aragonite). Microbial processes associated with these horizons are 1) photosynthetic production by cyanobacteria and 2) heterotrophic respiration by bacteria as well as the production of extrapolymeric substances (EPS). The aim of this study is to better understand the coupling of microstructure and microbial processes. The competing influences of photosynthetic CO2 uptake, sulfate reduction, and degradation of Ca-binding EPS influence both carbonate saturation states and the isotopic composition of dissolved inorganic carbon (DIC). In Bahamian stromatolites, photosynthesis and sulfate reduction are associated with specific microbial mat types creating distinctive chemical gradients that can be preserved in authigenic carbonate. Aragonite that precipitated within stromatolites is > 1 per mill depleted in 13C relative to aragonite precipitated in equilibrium with local seawater. These data suggest that more aragonite precipitates when and where respiration, rather than photosynthesis, influences local DIC, which is consistent with sulfate reduction promoting carbonate precipitation and calcium release during decay of exopolymeric substances. Biogeochemical gradients vary on a temporal and spatial scale as indicated by in-situ pH measurements across a the living mat. Highest pH correlates to maximum photosynthesis signal in the early afternoon while the lowest pH to that of maximum respiration just before sunrise. Corresponding carbon isotope analysis of authigenic carbonate precipitate will determine when microscale biological activity is captured in the mineral phase and potentially preserved.

  9. Autotrophic fixation of geogenic CO2 by microorganisms contributes to soil organic matter formation and alters isotope signatures in a wetland mofette

    NASA Astrophysics Data System (ADS)

    Nowak, M. E.; Beulig, F.; von Fischer, J.; Muhr, J.; Küsel, K.; Trumbore, S. E.

    2015-12-01

    To quantify the contribution of autotrophic microorganisms to organic matter (OM) formation in soils, we investigated natural CO2 vents (mofettes) situated in a wetland in northwest Bohemia (Czech Republic). Mofette soils had higher soil organic matter (SOM) concentrations than reference soils due to restricted decomposition under high CO2 levels. We used radiocarbon (Δ14C) and stable carbon (δ13C) isotope ratios to characterize SOM and its sources in two mofettes and compared it with respective reference soils, which were not influenced by geogenic CO2. The geogenic CO2 emitted at these sites is free of radiocarbon and enriched in 13C compared to atmospheric CO2. Together, these isotopic signals allow us to distinguish C fixed by plants from C fixed by autotrophic microorganisms using their differences in 13C discrimination. We can then estimate that up to 27 % of soil organic matter in the 0-10 cm layer of these soils was derived from microbially assimilated CO2. Isotope values of bulk SOM were shifted towards more positive δ13C and more negative Δ14C values in mofettes compared to reference soils, suggesting that geogenic CO2 emitted from the soil atmosphere is incorporated into SOM. To distinguish whether geogenic CO2 was fixed by plants or by CO2 assimilating microorganisms, we first used the proportional differences in radiocarbon and δ13C values to indicate the magnitude of discrimination of the stable isotopes in living plants. Deviation from this relationship was taken to indicate the presence of microbial CO2 fixation, as microbial discrimination should differ from that of plants. 13CO2-labelling experiments confirmed high activity of CO2 assimilating microbes in the top 10 cm, where δ13C values of SOM were shifted up to 2 ‰ towards more negative values. Uptake rates of microbial CO2 fixation ranged up to 1.59 ± 0.16 μg gdw-1 d-1. We inferred that the negative δ13C shift was caused by the activity of autotrophic microorganisms using the Calvin-Benson-Bassham (CBB) cycle, as indicated from quantification of cbbL/cbbM marker genes encoding for RubisCO by quantitative polymerase chain reaction (qPCR) and by acetogenic and methanogenic microorganisms, shown present in the mofettes by previous studies. Combined Δ14C and δ13C isotope mass balances indicated that microbially derived carbon accounted for 8-27 % of bulk SOM in this soil layer. The findings imply that autotrophic microorganisms can recycle significant amounts of carbon in wetland soils and might contribute to observed radiocarbon reservoir effects influencing Δ14C signatures in peat deposits.

  10. Autotrophic fixation of geogenic CO2 by microorganisms contributes to soil organic matter formation and alters isotope signatures in a wetland mofette

    NASA Astrophysics Data System (ADS)

    Nowak, M. E.; Beulig, F.; von Fischer, J.; Muhr, J.; Küsel, K.; Trumbore, S. E.

    2015-09-01

    To quantify the contribution of autotrophic microorganisms to organic matter formation (OM) in soils, we investigated natural CO2 vents (mofettes) situated in a wetland in NW Bohemia (Czech Republic). Mofette soils had higher SOM concentrations than reference soils due to restricted decomposition under high CO2 levels. We used radiocarbon (Δ14C) and stable carbon isotope ratios (δ13C) to characterize SOM and its sources in two moffetes and compared it with respective reference soils, which were not influenced by geogenic CO2. The geogenic CO2 emitted at these sites is free of radiocarbon and enriched in δ13C compared to atmospheric CO2. Together, these isotopic signals allow us to distinguish C fixed by plants from C fixed by autotrophic microorganisms using their differences in δ13C discrimination. We can then estimate that up to 27 % of soil organic matter in the 0-10 cm layer of these soils was derived from microbially assimilated CO2. Isotope values of bulk SOM were shifted towards more positive δ13C and more negative Δ14C values in mofettes compared to reference soils, suggesting that geogenic CO2 emitted from the soil atmosphere is incorporated into SOM. To distinguish whether geogenic CO2 was fixed by plants or by CO2 assimilating microorganisms, we first used the proportional differences in radiocarbon and δ13C values to indicate the magnitude of discrimination of the stable isotopes in living plants. Deviation from this relationship was taken to indicate the presence of microbial CO2 fixation, as microbial discrimination should differ from that of plants. 13CO2-labelling experiments confirmed high activity of CO2 assimilating microbes in the top 10 cm, where δ13C values of SOM were shifted up to 2 ‰ towards more negative values. Uptake rates of microbial CO2 fixation ranged up to 1.59 ± 0.16 μg gdw-1 d-1. We inferred that the negative δ13C shift was caused by the activity of chemo-lithoautotrophic microorganisms, as indicated from quantification of cbbL/cbbM marker genes encoding for RubisCO by quantitative polymerase chain reaction (qPCR) and by acetogenic and methanogenic microorganisms, shown present in the moffettes by previous studies. Combined Δ14C and δ13C isotope mass balances indicated that microbially derived carbon accounted for 8 to 27 % of bulk SOM in this soil layer. The findings imply that autotrophic organisms can recycle significant amounts of carbon in wetland soils and might contribute to observed reservoir effects influencing radiocarbon signatures in peat deposits.

  11. Physicochemical profile of microbial-assisted composting on empty fruit bunches of oil palm trees.

    PubMed

    Lim, Li Yee; Bong, Cassendra Phun Chien; Chua, Lee Suan; Lee, Chew Tin

    2015-12-01

    This study was carried out to investigate the physicochemical properties of compost from oil palm empty fruit bunches (EFB) inoculated with effective microorganisms (EM∙1™). The duration of microbial-assisted composting was shorter (∼7 days) than control samples (2 months) in a laboratory scale (2 kg) experiment. The temperature profile of EFB compost fluctuated between 26 and 52 °C without the presence of consistent thermophilic phase. The pH of compost changed from weak acidic (pH ∼5) to mild alkaline (pH ∼8) because of the formation of nitrogenous ions such as ammonium (NH4 (+)), nitrite (NO2 (-)), and nitrate (NO3 (-)) from organic substances during mineralization. The pH of the microbial-treated compost was less than 8.5 which is important to prevent the loss of nitrogen as ammonia gas in a strong alkaline condition. Similarly, carbon mineralization could be determined by measuring CO2 emission. The microbial-treated compost could maintain longer period (∼13 days) of high CO2 emission resulted from high microbial activity and reached the threshold value (120 mg CO2-C kg(-1) day(-1)) for compost maturity earlier (7 days). Microbial-treated compost slightly improved the content of minerals such as Mg, K, Ca, and B, as well as key metabolite, 5-aminolevulinic acid for plant growth at the maturity stage of compost. Graphical Abstract Microbial-assisted composting on empty fruit bunches.

  12. Controls on Methanogenesis in Organic-Rich Anaerobic Environments

    NASA Astrophysics Data System (ADS)

    Wilson, R.; Tfaily, M.; Chanton, J.; Rich, V. I.; Saleska, S. R.; Holmes, B.; Langford, L.; Hanson, P. J.; Bridgham, S. D.; Hopple, A.; Keller, J.; Cory, A.; Kostka, J. E.

    2017-12-01

    Peatlands contain an amount of C equal to half the CO2 in the atmosphere. That C is stored as organic C (OC) in peat deposits which form when plant productivity exceeds heterotrophic respiration. This balance has been attributed to cold, anaerobic, low pH conditions which slow microbial respiration rates, high aromatic content which may inhibit microbial decomposition, and recalcitrance of OC under terminal electron-acceptor (TEA) depleted conditions. Peat has been described as a potential C bomb which could release Gt of C into the atmosphere if rising global temperatures shifted this balance in favor of increased microbial respiration. At the Spruce and Peatlands Responses Under Changing Environments (SPRUCE) experimental site in Minnesota, U.S.A., peat up to 2 m deep was heated (+2.25°C to +9°C above ambient) both in situ and in laboratory incubations to test the response of microbial respiration to increasing temperatures. Our results demonstrated (1) that temperature did not influence CO2 or CH4 production rates in deep anaerobic peat, (2) that microbial decomposition was dominated by dissolved OC rather than the solid phase peat, and (3) that microbial decomposition in surface peat may become more methanogenic with warming. This shift towards higher CH4 production relative to CO2 has significant climate change implications since CH4 is a much stronger greenhouse gas than CO2. Under TEA-poor, anaerobic conditions, such as peat deposits, thermodynamic principles dictate that cellulose, the dominant OC form in Sphagnum peat, should be mineralized into equimolar CO2 and CH­4. However, deviations from this predicted ratio abound. The literature of rumen, a system similar to peat in many ways, revealed a potential mechanism for sustaining elevated CO2 production without accumulating inhibitory H2. Using FTICRMS, we found ubiquitous hydrogenation of unsaturated OC which could be acting as TEAs in peat deposits. This mechanism has the further advantages of alleviating the toxicity of aromatic compounds and potentially making otherwise recalcitrant aromatic molecules susceptible to anaerobic decomposition thereby providing a critical step in the diagenesis of peat. Incubation experiments adding H2 support these findings and incubations of irradiated peat suggest an abiotic contribution to CO2 production.

  13. Assessment of bacterial and archaeal community structure in Swine wastewater treatment processes.

    PubMed

    Da Silva, Marcio Luis Busi; Cantão, Mauricio Egídio; Mezzari, Melissa Paola; Ma, Jie; Nossa, Carlos Wolfgang

    2015-07-01

    Microbial communities from two field-scale swine wastewater treatment plants (WWTPs) were assessed by pyrosequencing analyses of bacterial and archaeal 16S ribosomal DNA (rDNA) fragments. Effluent samples from secondary (anaerobic covered lagoons and upflow anaerobic sludge blanket [UASB]) and tertiary treatment systems (open-pond natural attenuation lagoon and air-sparged nitrification-denitrification tank followed by alkaline phosphorus precipitation process) were analyzed. A total of 56,807 and 48,859 high-quality reads were obtained from bacterial and archaeal libraries, respectively. Dominant bacterial communities were associated with the phylum Firmicutes, Bacteroidetes, Proteobacteria, or Actinobacteria. Bacteria and archaea diversity were highest in UASB effluent sample. Escherichia, Lactobacillus, Bacteroides, and/or Prevotella were used as indicators of putative pathogen reduction throughout the WWTPs. Satisfactory pathogen reduction was observed after the open-pond natural attenuation lagoon but not after the air-sparged nitrification/denitrification followed by alkaline phosphorus precipitation treatment processes. Among the archaeal communities, 80% of the reads was related to hydrogeno-trophic methanogens Methanospirillum. Enrichment of hydrogenotrophic methanogens detected in effluent samples from the anaerobic covered lagoons and UASB suggested that CO2 reduction with H2 was the dominant methanogenic pathway in these systems. Overall, the results served to improve our current understanding of major microbial communities' changes downgradient from the pen and throughout swine WWTP as a result of different treatment processes.

  14. Evaluation of different techniques to control hydrogen sulfide and greenhouse gases from animal production systems

    NASA Astrophysics Data System (ADS)

    Gautam, Dhan Prasad

    The livestock manure management sector is one of the prime sources for the emission of greenhouse gases (GHGs) and other pollutant gases such as ammonia (NH3) and hydrogen sulfide (H2S), which may affect the human health, animal welfare, and the environment. So, worldwide investigations are going on to mitigate these gaseous emissions. The overall objective of this research was to investigate different approaches (dietary manipulation and nanotechnology) for mitigating the gaseous emissions from livestock manure system. A field study was conducted to investigate the effect of different levels of dietary proteins (12 and 16%) and fat levels (3 to 5.5%) fed to beef cattle on gaseous emission (methane-CH4, nitrous oxide-N2O, carbon dioxide-CO 2 and hydrogen sulfide-H2S) from the pen surface. To evaluate the effects of different nanoparticles (zinc oxide-nZnO; and zirconium-nZrO 2) on these gaseous emissions from livestock manure stored under anaerobic conditions, laboratory studies were conducted with different treatments (control, bare NPs, NPs entrapped alginate beads applying freely and keeping in bags, and used NPs entrapped alginate beads). Field studies showed no significant differences in the GHG and H2S emissions from the manure pen surface. Between nZnO and nZrO2, nZnO outperformed the nZrO2 in terms of gases production and concentration reduction from both swine and dairy liquid manure. Application of nZnO at a rate of 3 g L-1 showed up to 82, 78, 40 and 99% reduction on total gas production, CH 4, CO2 and H2S concentrations, respectively. The effectiveness of nZnO entrapped alginate (alginate-nZnO) beads was statistically lower than the bare nZnO, but both of them were very effective in reducing gas production and concentrations. These gaseous reductions were likely due to combination of microbial inhibition of microorganisms and chemical conversion during the treatment, which was confirmed by microbial plate count, SEM-EDS, and XPS analysis. However, further research are needed to understand the reduction mechanism and to transfer the technology in a real life application.

  15. Microbial potential for carbon and nutrient cycling in a geogenic supercritical carbon dioxide reservoir

    PubMed Central

    Freedman, Adam J.E.; Tan, BoonFei

    2017-01-01

    Summary Microorganisms catalyze carbon cycling and biogeochemical reactions in the deep subsurface and thus may be expected to influence the fate of injected supercritical (sc) CO2 following geological carbon sequestration (GCS). We hypothesized that natural subsurface scCO2 reservoirs, which serve as analogs for the long‐term fate of sequestered scCO2, harbor a ‘deep carbonated biosphere’ with carbon cycling potential. We sampled subsurface fluids from scCO2‐water separators at a natural scCO2 reservoir at McElmo Dome, Colorado for analysis of 16S rRNA gene diversity and metagenome content. Sequence annotations indicated dominance of Sulfurospirillum, Rhizobium, Desulfovibrio and four members of the Clostridiales family. Genomes extracted from metagenomes using homology and compositional approaches revealed diverse mechanisms for growth and nutrient cycling, including pathways for CO2 and N2 fixation, anaerobic respiration, sulfur oxidation, fermentation and potential for metabolic syntrophy. Differences in biogeochemical potential between two production well communities were consistent with differences in fluid chemical profiles, suggesting a potential link between microbial activity and geochemistry. The existence of a microbial ecosystem associated with the McElmo Dome scCO2 reservoir indicates that potential impacts of the deep biosphere on CO2 fate and transport should be taken into consideration as a component of GCS planning and modelling. PMID:28229521

  16. Investigating the hydrological origins of Blood Falls - geomicrobiological insights into a briny subglacial Antarctic aquifer

    NASA Astrophysics Data System (ADS)

    Mikucki, J.; Tulaczyk, S. M.; Purcell, A. M.; Dachwald, B.; Lyons, W. B.; Welch, K. A.; Auken, E.; Dugan, H. A.; Walter, J. I.; Pettit, E. C.; Doran, P. T.; Virginia, R. A.; Schamper, C.; Foley, N.; Feldmann, M.; Espe, C.; Ghosh, D.; Francke, G.

    2015-12-01

    Subglacial waters tend to accumulate solutes from extensive rock-water interactions, which, when released to the surface, can provide nutrients to surface ecosystems providing a 'hot spot' for microbial communities. Blood Falls, an iron-rich, saline feature at the terminus of Taylor Glacier in the McMurdo Dry Valleys, Antarctica is a well-studied subglacial discharge. Here we present an overview of geophysical surveys, thermomechanical drilling exploration and geomicrobiological analyses of the Blood Falls system. A helicopter-borne transient electromagnetic system (SkyTEM) flown over the Taylor Glacier revealed a surprisingly extensive subglacial aquifer and indicates that Blood Falls may be the only surface manifestation of this extensive briny groundwater. Ground-based temperature sensing and GPR data combined with the helicopter-borne TEM data enabled targeted drilling into the englacial conduit that delivers brine to the surface. During the 2014-15 austral summer field season, we used a novel ice-melting drill (the IceMole) to collect englacial brine for geomicrobiological analyses. Results from previously collected outflow and more recent samples indicate that the brine harbors a metabolically active microbial community that persists, despite cold, dark isolation. Isotope geochemistry and molecular analysis of functional genes from BF suggested that a catalytic or 'cryptic' sulfur cycle was linked to iron reduction. Recent metagenomic analysis confirms the presence of numerous genes involved in oxidative and reductive sulfur transformations. Metagenomic and metabolic activity data also indicate that subglacial dark CO2 fixation occurs via various pathways. Genes encoding key steps in CO2 fixation pathways including the Calvin Benson Basham and Wood Ljungdahl pathway were present and brine samples showed measureable uptake of 14C-labeled bicarbonate. These results support the notion that, like the deep subsurface, subglacial environments are chemosynthetic, deriving energy in part by cycling iron and sulfur compounds. Collectively our interdisciplinary dataset indicates that subsurface brines are widespread in the Taylor Valley polar desert and this previously unknown groundwater network likely supports unique microbial life.

  17. Supercritical fluid extraction and ultra performance liquid chromatography of respiratory quinones for microbial community analysis in environmental and biological samples.

    PubMed

    Hanif, Muhammad; Atsuta, Yoichi; Fujie, Koichi; Daimon, Hiroyuki

    2012-03-05

    Microbial community structure plays a significant role in environmental assessment and animal health management. The development of a superior analytical strategy for the characterization of microbial community structure is an ongoing challenge. In this study, we developed an effective supercritical fluid extraction (SFE) and ultra performance liquid chromatography (UPLC) method for the analysis of bacterial respiratory quinones (RQ) in environmental and biological samples. RQ profile analysis is one of the most widely used culture-independent tools for characterizing microbial community structure. A UPLC equipped with a photo diode array (PDA) detector was successfully applied to the simultaneous determination of ubiquinones (UQ) and menaquinones (MK) without tedious pretreatment. Supercritical carbon dioxide (scCO(2)) extraction with the solid-phase cartridge trap proved to be a more effective and rapid method for extracting respiratory quinones, compared to a conventional organic solvent extraction method. This methodology leads to a successful analytical procedure that involves a significant reduction in the complexity and sample preparation time. Application of the optimized methodology to characterize microbial communities based on the RQ profile was demonstrated for a variety of environmental samples (activated sludge, digested sludge, and compost) and biological samples (swine and Japanese quail feces).

  18. Syntrophic anaerobic photosynthesis via direct interspecies electron transfer

    DOE PAGES

    Ha, Phuc T.; Lindemann, Stephen R.; Shi, Liang; ...

    2017-01-09

    Microbial phototrophs, key primary producers on Earth, use H 2O, H 2, H 2S and other reduced inorganic compounds as electron donors. Here we describe a form of metabolism linking anoxygenic photosynthesis to anaerobic respiration that we call ‘syntrophic anaerobic photosynthesis’. We show that photoautotrophy in the green sulfur bacterium Prosthecochloris aestaurii can be driven by either electrons from a solid electrode or acetate oxidation via direct interspecies electron transfer from a heterotrophic partner bacterium, Geobacter sulfurreducens. Photosynthetic growth of P. aestuarii using reductant provided by either an electrode or syntrophy is robust and light-dependent. In contrast, P. aestuarii doesmore » not grow in co-culture with a G. sulfurreducens mutant lacking a trans-outer membrane porin-cytochrome protein complex required for direct intercellular electron transfer. Syntrophic anaerobic photosynthesis is therefore a carbon cycling process that could take place in anoxic environments. Lastly, this process could be exploited for biotechnological applications, such as waste treatment and bioenergy production, using engineered phototrophic microbial communities.« less

  19. Syntrophic anaerobic photosynthesis via direct interspecies electron transfer

    PubMed Central

    Ha, Phuc T.; Lindemann, Stephen R.; Shi, Liang; Dohnalkova, Alice C.; Fredrickson, James K.; Madigan, Michael T.; Beyenal, Haluk

    2017-01-01

    Microbial phototrophs, key primary producers on Earth, use H2O, H2, H2S and other reduced inorganic compounds as electron donors. Here we describe a form of metabolism linking anoxygenic photosynthesis to anaerobic respiration that we call ‘syntrophic anaerobic photosynthesis'. We show that photoautotrophy in the green sulfur bacterium Prosthecochloris aestaurii can be driven by either electrons from a solid electrode or acetate oxidation via direct interspecies electron transfer from a heterotrophic partner bacterium, Geobacter sulfurreducens. Photosynthetic growth of P. aestuarii using reductant provided by either an electrode or syntrophy is robust and light-dependent. In contrast, P. aestuarii does not grow in co-culture with a G. sulfurreducens mutant lacking a trans-outer membrane porin-cytochrome protein complex required for direct intercellular electron transfer. Syntrophic anaerobic photosynthesis is therefore a carbon cycling process that could take place in anoxic environments. This process could be exploited for biotechnological applications, such as waste treatment and bioenergy production, using engineered phototrophic microbial communities. PMID:28067226

  20. Exploring the Metabolic Potential of Microbial Communities in Ultra-basic Reducing Spring at The Cedars, CA: Evidence of Microbial Methanogenesis and Heterotrophic Acetogenesis

    NASA Astrophysics Data System (ADS)

    Kohl, L.; Cummings, E.; Cox, A.; Suzuki, S.; Morrrissey, L.; Lang, S. Q.; Richter, A.; Nealson, K. H.; Morrill, P. L.

    2015-12-01

    The Cedars is a complex of ultra-basic, reducing springs located in the Coastal Range Ophiolite (CA, USA), a site of present day serpentinization. Similar to other serpentinization-associated fluids, the groundwaters discharging at The Cedars contain elevated concentrations of C1-C6 alkanes and volatile organic acids (VOAs) which may originate from abiotic or thermogenic processes but can also be produced, consumed, or transformed by microbial activity. In contrast to other continental sites of serpentinization, geochemical indicators (δ13CCH4, δ2HCH4, CH4/C2-C6 alkanes) are consistent with a partial microbial origin of methane at The Cedars. These indicators, however, can provide only indirect evidence of microbial methanogenesis. To further explore the metabolic potential of the indigenous microbial communities at The Cedars, we conducted a series of microcosm experiments in which fluids and sediments collected at The Cedars were incubated with 13C labeled substrates (formate, acetate, bicarbonate, methanol) under anaerobic conditions. 13C from all amended substrates was incorporated into CH4 demonstrating that these microbial communities can convert both organic and inorganic substrates to CH4. The apparent fractionation of 13C between methane and potential substrates indicated that carbonate reduction was the dominant pathway of methanogenesis, and 16S rDNA based community profiling revealed the presence of an OTU closest related to Methanobacterium sp., an autotrophic (CO2/H2) methanogen. Concentrations of C1-C4 VOAs increased 5-fold over the course of the experiment indicating the microbial production of VOAs. This acetogenesis occurred heterotrophically as autotrophic acetogenesis can be excluded because (a) δ13C values of acetate were similar to those of inorganic carbon (inconsistent with the strong discrimination against 13C observed in autotrophic acetogenesis) and (b) no incorporation of 13C from labeled bicarbonate was into acetate was observed.

  1. Soil CO2 emissions in terms of irrigation management in an agricultural soil

    NASA Astrophysics Data System (ADS)

    Zornoza, Raúl; Acosta, José A.; María de la Rosa, José; Faz, Ángel; Domingo, Rafael; Pérez-Pastor, Alejandro; Ángeles Muñoz, María

    2014-05-01

    Irrigation water restrictions in the Mediterranean area are reaching worrying proportions and represent a serious threat to traditional crops and encourage the movement of people who choose to work in other activities. This situation has created a growing interest in water conservation, particularly among practitioners of irrigated agriculture, the main recipient of water resources (>80%). For these and other reasons, the scientific and technical irrigation scheduling of water use to maintain and even improve harvest yield and quality has been and will remain a major challenge for irrigated agriculture. Apart from environmental and economic benefits by water savings, deficit irrigation may contribute to reduce soil CO2 emissions and enhance C sequestration in soils. The reduction of soil moisture levels decreases microbial activity, with the resulting slowing down of organic matter mineralization. Besides, the application of water by irrigation may increment the precipitation rate of carbonates, favoring the storage of C, but depending on the source of calcium or bicarbonate, the net reaction can be either storage or release of C. Thus, the objective of this study was to assess if deficit irrigation, besides contributing to water savings, can reduce soil CO2 emissions and favor the accumulation of C in soils in stable forms. The experiment was carried out along 2012 in a commercial orchard from southeast Spain cultivated with nectarine trees (Prunus persica cv. 'Viowhite'). The irrigation system was drip localized. Three irrigation treatments were assayed: a control (CT), irrigated to satisfy the total hydric needs of the crop; a first deficit irrigation (DI1), irrigated as CT except for postharvest period (16 June - 28 October) were 50% of CT was applied; and a second deficit irrigation (DI2), irrigated as DI1, except for two periods in which irrigation was suppressed (16 June-6 July and 21 July-17 August). Each treatment was setup in triplicate, randomly distributed in blocks. Each repetition had 15 rows with 15 trees per row. Soil CO2 emissions, moisture and temperature were monitored every 15 days. A soil sampling (0-30 cm) was carried out every three months, to determine the evolution of organic carbon, recalcitrant carbon, labile and soluble carbon, inorganic carbon, microbial biomass carbon, β-glucosidase and arylesterase enzyme activities, and organic functional groups measured by Fourier transform infrared spectroscopy (FTIR). A soil fractionation was carried out in all samples (<50, 50-250, 250-850, >2000 µm) to assess the weight and carbon content of each particles fraction in terms of irrigation treatments. Results showed that the application of deficit caused a significant decrease in CO2 emission rates, mainly in DI2, with rates 10 µg CO2-C m-2 s-1 lower than CT during this deficit period. When cumulative CO2-C released during one year was estimated, it was verified that water deficit contributed to decreases in the release of CO2, with a total release of 410 g CO2-C m-2 in CT, 355 g CO2-C m-2 in DI1, and 251 g CO2-C m-2 in DI2. This last treatment has supposed an annual reduction of 159 g CO2-C m-2 regarding CT. Soil properties, contrarily, showed no significant differences among treatments, with similar values in the C fractions and organic carbon quality, with an average organic C content of 4.5 kg m-2, 30 kg m-2 of inorganic C, a recalcitrance index of 57%, 1.40% of organic compounds solubility index and 160 g m-2 of microbial biomass C. There were no differences among particle sizes weigh and organic or inorganic carbon contents either. Thus, since no differences in quantity and quality of organic carbon was assess in soil with regard to irrigation treatment, it seems that longer periods are needed to assess shifts in soil properties related to carbon sequestration. Key words: carbon sequestration, CO2 emissions, organic carbon quality, irrigation

  2. Investigating microbial cycling of recalcitrant organic matter in marine sediments using natural isotope respirometry in a novel, carbon-free bioreactor

    NASA Astrophysics Data System (ADS)

    Mahmoudi, N.; Beaupre, S. R.; Pearson, A.

    2016-02-01

    Marine sediments harbor complex microbial communities that play a key role in the cycling of carbon and nutrients. Reactions initiated by microbial enzymes at the molecular scale drive the rate and extent of organic matter degradation to CO2 and CH4. Organic matter is comprised of multiple carbon pools with different intrinsic turnover times. It is hypothesized that microbes will degrade younger pools with more labile compounds, while older pools with refractory compounds will remain unutilized. However, many studies have shown that microbes are capable of respiring older, refractory pools of organic matter in a number of environments. In order to better understand microbial carbon cycling and the fate of recalcitrant organic matter, we constructed a novel bioreactor system to measure carbon isotopes during microbial degradation of complex organic matter. This system enables us to measure the natural isotopic signature (δ13C and Δ14C ) of microbially-respired CO2, thereby allowing us to determine the age of the organic matter that is being respired. We investigated microbial carbon utilization in sediments from Falmouth, MA and observed a pattern of successive microbial respiration such that several peaks appear over the course of a 7-day incubation. Δ14C signatures of CO2 fractions collected during incubation ranged from -185 to +70‰ with the majority of CO2 appearing to be modern. This indicates that the microbial community is primarily are respiring labile organic matter from fast cycling pools. Interestingly, the observation of multiple peaks with similar Δ14C signatures suggests that organic matter is degraded in a step-wise manner by a succession of microbial taxa. Illumina sequencing of 16S rRNA genes will identify these successions of bacteria (and archaea), while enzymatic analyses may help determine the metabolic pathways that correspond to each peak. Our study will provide a molecular-level framework for organic matter degradation and provide insight into patterns of microbial carbon utilization, linking these observations to genomic and metabolomics information.

  3. Dynamic Succession of Groundwater Functional Microbial Communities in Response to Emulsified Vegetable Oil Amendment during Sustained In Situ U(VI) Reduction.

    PubMed

    Zhang, Ping; Wu, Wei-Min; Van Nostrand, Joy D; Deng, Ye; He, Zhili; Gihring, Thomas; Zhang, Gengxin; Schadt, Chris W; Watson, David; Jardine, Phil; Criddle, Craig S; Brooks, Scott; Marsh, Terence L; Tiedje, James M; Arkin, Adam P; Zhou, Jizhong

    2015-06-15

    A pilot-scale field experiment demonstrated that a one-time amendment of emulsified vegetable oil (EVO) reduced groundwater U(VI) concentrations for 1 year in a fast-flowing aquifer. However, little is known about how EVO amendment stimulates the functional gene composition, structure, and dynamics of groundwater microbial communities toward prolonged U(VI) reduction. In this study, we hypothesized that EVO amendment would shift the functional gene composition and structure of groundwater microbial communities and stimulate key functional genes/groups involved in EVO biodegradation and reduction of electron acceptors in the aquifer. To test these hypotheses, groundwater microbial communities after EVO amendment were analyzed using a comprehensive functional gene microarray. Our results showed that EVO amendment stimulated sequential shifts in the functional composition and structure of groundwater microbial communities. Particularly, the relative abundance of key functional genes/groups involved in EVO biodegradation and the reduction of NO3 (-), Mn(IV), Fe(III), U(VI), and SO4 (2-) significantly increased, especially during the active U(VI) reduction period. The relative abundance for some of these key functional genes/groups remained elevated over 9 months. Montel tests suggested that the dynamics in the abundance, composition, and structure of these key functional genes/groups were significantly correlated with groundwater concentrations of acetate, NO3 (-), Mn(II), Fe(II), U(VI), and SO4 (2-). Our results suggest that EVO amendment stimulated dynamic succession of key functional microbial communities. This study improves our understanding of the composition, structure, and function changes needed for groundwater microbial communities to sustain a long-term U(VI) reduction. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. Dynamic Succession of Groundwater Functional Microbial Communities in Response to Emulsified Vegetable Oil Amendment during Sustained In Situ U(VI) Reduction

    DOE PAGES

    Zhang, Ping; Wu, Wei-Min; Van Nostrand, Joy D.; ...

    2015-04-10

    A pilot-scale field experiment demonstrated that a one-time amendment of emulsified vegetable oil (EVO) reduced groundwater U(VI) concentrations for 1 year in a fast-flowing aquifer. However, little is known about how EVO amendment stimulates the functional gene composition, structure, and dynamics of groundwater microbial communities toward prolonged U(VI) reduction. In this paper, we hypothesized that EVO amendment would shift the functional gene composition and structure of groundwater microbial communities and stimulate key functional genes/groups involved in EVO biodegradation and reduction of electron acceptors in the aquifer. To test these hypotheses, groundwater microbial communities after EVO amendment were analyzed using amore » comprehensive functional gene microarray. Our results showed that EVO amendment stimulated sequential shifts in the functional composition and structure of groundwater microbial communities. Particularly, the relative abundance of key functional genes/groups involved in EVO biodegradation and the reduction of NO 3 -, Mn(IV), Fe(III), U(VI), and SO 4 2- significantly increased, especially during the active U(VI) reduction period. The relative abundance for some of these key functional genes/groups remained elevated over 9 months. Montel tests suggested that the dynamics in the abundance, composition, and structure of these key functional genes/groups were significantly correlated with groundwater concentrations of acetate, NO 3 -, Mn(II), Fe(II), U(VI), and SO 4 2-. Our results suggest that EVO amendment stimulated dynamic succession of key functional microbial communities. Finally, this study improves our understanding of the composition, structure, and function changes needed for groundwater microbial communities to sustain a long-term U(VI) reduction.« less

  5. Dynamic Succession of Groundwater Functional Microbial Communities in Response to Emulsified Vegetable Oil Amendment during Sustained In Situ U(VI) Reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ping; Wu, Wei-Min; Van Nostrand, Joy D.

    A pilot-scale field experiment demonstrated that a one-time amendment of emulsified vegetable oil (EVO) reduced groundwater U(VI) concentrations for 1 year in a fast-flowing aquifer. However, little is known about how EVO amendment stimulates the functional gene composition, structure, and dynamics of groundwater microbial communities toward prolonged U(VI) reduction. In this paper, we hypothesized that EVO amendment would shift the functional gene composition and structure of groundwater microbial communities and stimulate key functional genes/groups involved in EVO biodegradation and reduction of electron acceptors in the aquifer. To test these hypotheses, groundwater microbial communities after EVO amendment were analyzed using amore » comprehensive functional gene microarray. Our results showed that EVO amendment stimulated sequential shifts in the functional composition and structure of groundwater microbial communities. Particularly, the relative abundance of key functional genes/groups involved in EVO biodegradation and the reduction of NO 3 -, Mn(IV), Fe(III), U(VI), and SO 4 2- significantly increased, especially during the active U(VI) reduction period. The relative abundance for some of these key functional genes/groups remained elevated over 9 months. Montel tests suggested that the dynamics in the abundance, composition, and structure of these key functional genes/groups were significantly correlated with groundwater concentrations of acetate, NO 3 -, Mn(II), Fe(II), U(VI), and SO 4 2-. Our results suggest that EVO amendment stimulated dynamic succession of key functional microbial communities. Finally, this study improves our understanding of the composition, structure, and function changes needed for groundwater microbial communities to sustain a long-term U(VI) reduction.« less

  6. Iron Reduction and Carbonate Precipitation by Shewanella oneidensis

    NASA Astrophysics Data System (ADS)

    Zeng, Z.; Tice, M. M.

    2011-12-01

    This study is to contribute to better understanding of how Archean microbes induced carbonate diagenesis in mats and stromatolites. Previous studies showed sulfate reduction, a common promoter of carbonate precipitation in modern mats[1], is likely to have been less effective in Archean mats in marine fluids lower in sulfate[2]. Alternatively, iron reduction produces far more alkalinity per unit carbon respired than sulfate reduction. Therefore, we hypothesize iron reduction can promote much more carbonate precipitation than sulfate reduction. Our study might also have some relevance to banded iron formation on which microbial iron reduction played a potential role[3]. To test our hypothesis, Shewanella oneidensis MR-1, a dissimilatory iron reducing bacterium will be cultured anaerobically (79%N2, 20%CO2 and 1%H2) in basal medium to trigger iron reduction. Lactate will be used as electron donor, and the electron acceptor will be fresh ferrihydrite. Culture medium will be added with various metal ions, such as Ca2+ and Mg2+, to obtain potential carbonate precipitate. Escherichia coli (with fumarate added as an electron acceptor) will be used to provide a comparison to live but non-iron- reduction cells. After 20 days incubation, precipitate will be collected, washed and identified by X-ray diffraction (XRD). Besides, iron reduction rate (ferrozine assay)[4], PH and amount of precipitate (carbonate and oxidize fractions)[5] will be measured over time to well understand how S. oneidensis drives carbonate precipitation.

  7. Impact of hydroquinone used as a redox effector model on potential denitrification, microbial activity and redox condition of a cultivable soil.

    PubMed

    Perotti, Elda B R

    2015-01-01

    In this microcosm study, we analyzed the effect produced by hydroquinone on the expression of soil biological denitrification, in relation to the redox state of the soil, both in terms of intensity factor (Eh') and capacity factor (amount of oxidized or reduced compounds). The supplementation of an Argiudoll soil with hydroquinone decreased the soil apparent reduction potential (Eh') and soil dehydrogenase activity (formazan production from tetrazolium chloride reduction; redox capacity factor), the relationship between both factors being highly significative, r=0.99 (p<0.001). The bacterial population (measured by colony forming units) increased, and the production of N2O was greater (p<0.001) at 200 and 400μg/g dry soil doses. Furthermore, there was an inverse relationship between soil dehydrogenase activity and the number of bacteria (r=-0.82; p<0.05), increased denitrification activity and changes in the CO2/N2O ratio value. These results suggest that hydroquinone at supplemented doses modified the soil redox state and the functional structure of the microbial population. Acetate supplementation on soil with hydroquinone, to ensure the availability of an energy source for microbial development, confirmed the tendency of the results obtained with the supplementation of hydroquinone alone. The differences observed at increased doses of hydroquinone might be explained by differences on the hydroquinone redox species between treatments. Copyright © 2015 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  8. Microbial dynamics and enzyme activities in tropical Andosols depending on land use and nutrient inputs

    NASA Astrophysics Data System (ADS)

    Mganga, Kevin; Razavi, Bahar; Kuzyakov, Yakov

    2015-04-01

    Microbial decomposition of soil organic matter is mediated by enzymes and is a key source of terrestrial CO2 emissions. Microbial and enzyme activities are necessary to understand soil biochemical functioning and identify changes in soil quality. However, little is known about land use and nutrients availability effects on enzyme activities and microbial processes, especially in tropical soils of Africa. This study was conducted to examine how microbial and enzyme activities differ between different land uses and nutrient availability. As Andosols of Mt. Kilimanjaro are limited by nutrient concentrations, we hypothesize that N and P additions will stimulate enzyme activity. N and P were added to soil samples (0-20 cm) representing common land use types in East Africa: (1) savannah, (2) maize fields, (3) lower montane forest, (4) coffee plantation, (5) grasslands and (6) traditional Chagga homegardens. Total CO2 efflux from soil, microbial biomass and activities of β-glucosidase, cellobiohydrolase, chitinase and phosphatase involved in C, N and P cycling, respectively was monitored for 60 days. Total CO2 production, microbial biomass and enzyme activities varied in the order forest soils > grassland soils > arable soils. Increased β-glucosidase and cellobiohydrolase activities after N addition of grassland soils suggest that microorganisms increased N uptake and utilization to produce C-acquiring enzymes. Low N concentration in all soils inhibited chitinase activity. Depending on land use, N and P addition had an inhibitory or neutral effect on phosphatase activity. We attribute this to the high P retention of Andosols and low impact of N and P on the labile P fractions. Enhanced CO2 production after P addition suggests that increased P availability could stimulate soil organic matter biodegradation in Andosols. In conclusion, land use and nutrients influenced soil enzyme activities and microbial dynamics and demonstrated the decline in soil quality after landuse change. Key words: Andosols, β-glucosidase, Cellobiohydrolase, Chitinase, Phosphatase, Mt. Kilimanjaro

  9. Inhibition of nitrate reduction by chromium (VI) in anaerobic soil microcosms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kourtev, P. S.; Nakatsu, C. H.; Konopka, Allan

    2009-10-01

    Chromium (VI) is often found as a co-contaminant at sites polluted with organic compounds. We used microcosms amended with glucose or protein, nitrate and increasing concentrations of chromium to study nitrate reduction in Cr(VI) polluted soils. Organic carbon stimulated bacterial activity, but the addition of Cr(VI) caused a lag and then slower rates 5 of CO2 accumulation. Nitrate reduction only occurred after Cr(VI) had been reduced. Bacterial activity was again inhibited when Cr(VI) was added a second time; thus not all Cr-sensitive bacteria were removed in the first phase. Glucose and protein selected for relatively similar bacterial communities, as assayedmore » by PCR-DGGE of the 16S rRNA gene; this selection was modified by the addition of 10 Cr(VI). Cr-resistant bacteria isolated from microcosms were closely related to members of Bacillus, Enterococcus and Propionibacterium sp. Our results indicate that carbon utilization and nitrate reduction in these soils in the presence of Cr(VI) are contingent upon the reduction of the added heavy metal by a limited subset of the bacterial community. The amount of Cr(VI) required to inhibit nitrate reduction was 10-fold less than for aerobic catabolism of the same 15 substrate. We hypothesize that the resistance level of a microbial process is directly related to the diversity of microbes capable of conducting it.« less

  10. Final Report Systems Level Analysis of the Function and Adaptive Responses of Methanogenic Consortia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lovley, Derek R.

    The purpose of this research was to determine whether the syntrophic microbial associations that are central to the functioning of methane-producing terrestrial wetlands can be predictively modeled with coupled multi-species genome-scale metabolic models. Such models are important because methane is an important greenhouse gas and there is a need to predictively model how the methane-producing microbial communities will respond to environmental perturbations, such as global climate change. The research discovered that the most prodigious methane-producing microorganisms on earth participate in a previously unrecognized form of energy exchange. The methane-producers Methanosaeta and Methanosarcina forge biological electrical connections with other microbes inmore » order to obtain electrons to reduce carbon dioxide to methane. This direct interspecies electron transfer (DIET) was demonstrated in complex microbial communities as well as in defined co-cultures. For example, metatranscriptomic analysis of gene expression in both natural communities and defined co-cultures demonstrated that Methanosaeta species highly expressed genes for the enzymes for the reduction of carbon dioxide to methane. Furthermore, Methanosaeta’s electron-donating partners highly expressed genes for the biological electrical connections known as microbial nanowires. A series of studies involving transcriptomics, genome resequencing, and analysis of the metabolism of a series of strains with targeted gene deletions, further elucidated the mechanisms and energetics of DIET in methane-producing co-cultures, as well as in a co-culture of Geobacter metallireducens and Geobacter sulfurreducens, which provided a system for studying DIET with two genetically tractable partners. Genome-scale modeling of DIET in the G. metallireducens/G. sulfurreducens co-culture suggested that DIET provides more energy to the electron-donating partner that electron exchange via interspecies hydrogen transfer, but that the performance of DIET may be strongly influenced by environmental factors. These studies have significantly modified conceptual models for carbon and electron flow in methane-producing environments and have developed a computational framework for predictive modeling the influence of environmental perturbations on methane-producing microbial communities. The results have important implications for modeling the response of methane-producing microbial communities to climate change as well as for the bioenergy strategy of converting wastes and biomass to methane.« less

  11. Soil nitrogen cycling under elevated CO2: a synthesis of forest FACE experiments

    Treesearch

    Donald R. Zak; William E. Holmes; Adrien C. Finzi; Richard J. Norby; William H. Schlesinger

    2003-01-01

    The extent to which greater net primary productivity (NPP) will be sustained as the atmospheric CO2 concentration increases will depend, in part, on the long-term supply of N for plant growth. Over a two-year period, we used common field and laboratory methods to quantify microbial N, gross N mineralization, microbial N immobilization, and...

  12. Diflerent formulations of microbial respiratory losses and microbial efficiency have pronounced short and long term consequences for soil C dynamics and soil respiration

    NASA Astrophysics Data System (ADS)

    Ballantyne, F.; Billings, S. A.

    2016-12-01

    Much of the variability in projections of Earth's future C balance derives from uncertainty in how to formulate and parameterize models of biologically mediated transformations of soil organic C (SOC). Over the past decade, models of belowground decomposition have incorporated more realism, namely microbial biomass and exoenzyme pools, but it remains unclear whether microbially mediated decomposition is accurately formulated. Different models and different assumptions about how microbial efficiency, defined in terms of respiratory losses, varies with temperature exert great influence on SOC and CO2 flux projections for the future. Here, we incorporate a physiologically realistic formulation of CO2 loss from microbes, distinct from extant formulations and logically consistent with microbial C uptake and losses, into belowground dynamics and contrast its projections for SOC pools and CO2 flux from soils to those from the phenomenological formulations of efficiency in current models. We quantitatively describe how short and long term SOC dynamics are influenced by different mathematical formulations of efficiency, and that our lack of knowledge regarding loss rates from SOC and microbial biomass pools, specific respiration rate and maximum substrate uptake rate severely constrains our ability to confidently parameterize microbial SOC modules in Earth System Models. Both steady-state SOC and microbial biomass C pools, as well as transient responses to perturbations, can differ substantially depending on how microbial efficiency is derived. In particular, the discrepancy between SOC stocks for different formulations of efficiency varies from negligible to more than two orders of magnitude, depending on the relative values of respiratory versus non-respiratory losses from microbial biomass. Mass-specific respiration and proportional loss rates from soil microbes emerge as key determinants of the consequences of different formulations of efficiency for C flux in soils.

  13. Microbial electrosynthetic cells

    DOEpatents

    May, Harold D.; Marshall, Christopher W.; Labelle, Edward V.

    2018-01-30

    Methods are provided for microbial electrosynthesis of H.sub.2 and organic compounds such as methane and acetate. Method of producing mature electrosynthetic microbial populations by continuous culture is also provided. Microbial populations produced in accordance with the embodiments as shown to efficiently synthesize H.sub.2, methane and acetate in the presence of CO.sub.2 and a voltage potential. The production of biodegradable and renewable plastics from electricity and carbon dioxide is also disclosed.

  14. Reducing conditions can alter the source of respired carbon and stimulate decomposition in mineral soils

    NASA Astrophysics Data System (ADS)

    Huang, W.; Hall, S. J.

    2016-12-01

    Soil organic matter decomposition is widely thought to be constrained by reducing conditions in flooded wetland ecosystems. However, the potential impact of periodic reducing conditions on carbon (C) mineralization in terrestrial mineral soils that experience transient moisture saturation has received less attention. Here we incubated three Mollisols amended with C4 leaf litter at three different soil moisture levels (field capacity for the control, intermediate, and saturation) over three months in the laboratory. Soil CO2 and CH4 production and isotope ratios of CO2 (δ13CO2) were measured daily using a tunable diode laser for the first two weeks and weekly thereafter. Soil Eh dropped from 516 mV to -184 mV in the intermediate and saturated soils during the first seventeen days; iron (Fe) reduction occurred in both intermediate and saturated soils after the seventh day. Total CO2 production rate in the intermediate and saturated soils was initially lower than the control, but exceeded the control after the eleventh day. After three months, mean cumulative CO2 production was significantly higher in the intermediate soil moisture treatment (152 μmol CO2 g-1 soil, P < 0.01) and equivalent between the saturated and control soils (128 and 141 μmol CO2 g-1 soil, P = 0.11). The intermediate and saturated soils also induced substantial CH4 production. Differences in mean δ13CO2 (-14.0‰ for the control and -22.7‰ for the saturated soils) over the first two weeks (before CH4 production began) showed that CO2 production from the saturated soils was derived from different C source(s) compared to the control. These findings challenge traditional paradigms by showing that reducing conditions can enhance C mineralization, perhaps by facilitating microbial access to alternative or occluded C sources. We suggest that Fe reduction could be an important mechanism of C loss in mineral soils due to the release of adsorbed or co-precipitated organic matter during Fe solubilization.

  15. Cadmium (II) removal mechanisms in microbial electrolysis cells.

    PubMed

    Colantonio, Natalie; Kim, Younggy

    2016-07-05

    Cadmium is a toxic heavy metal, causing serious environmental and human health problems. Conventional methods for removing cadmium from wastewater are expensive and inefficient for low concentrations. Microbial electrolysis cells (MECs) can simultaneously treat wastewater, produce hydrogen gas, and remove heavy metals with low energy requirements. Lab-scale MECs were operated to remove cadmium under various electric conditions: applied voltages of 0.4, 0.6, 0.8, and 1.0 V; and a fixed cathode potential of -1.0 V vs. Ag/AgCl. Regardless of the electric condition, rapid removal of cadmium was demonstrated (50-67% in 24 h); however, cadmium concentration in solution increased after the electric current dropped with depleted organic substrate under applied voltage conditions. For the fixed cathode potential, the electric current was maintained even after substrate depletion and thus cadmium concentration did not increase. These results can be explained by three different removal mechanisms: cathodic reduction; Cd(OH)2 precipitation; and CdCO3 precipitation. When the current decreased with depleted substrates, local pH at the cathode was no longer high due to slowed hydrogen evolution reaction (2H(+)+2e(-)→H2); thus, the precipitated Cd(OH)2 and CdCO3 started dissolving. To prevent their dissolution, sufficient organic substrates should be provided when MECs are used for cadmium removal. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Bioreactor performance and functional gene analysis of microbial community in a limited-oxygen fed bioreactor for co-reduction of sulfate and nitrate with high organic input.

    PubMed

    Xu, Xi-jun; Chen, Chuan; Wang, Ai-jie; Yu, Hao; Zhou, Xu; Guo, Hong-liang; Yuan, Ye; Lee, Duu-jong; Zhou, Jizhong; Ren, Nan-qi

    2014-08-15

    Limited-oxygen mediated synergistic relationships between sulfate-reducing bacteria (SRB), nitrate-reducing bacteria (NRB) and sulfide-oxidizing bacteria (SOB, including nitrate-reducing, sulfide-oxidizing bacteria NR-SOB) were predicted to simultaneously remove contaminants of nitrate, sulfate and high COD, and eliminate sulfide generation. A lab-scale experiment was conducted to examine the impact of limited oxygen on these oxy-anions degradation, sulfide oxidation and associated microbial functional responses. In all scenarios tested, the reduction of both nitrate and sulfate was almost complete. When limited-oxygen was fed into bioreactors, S(0) formation was significantly improved up to ∼ 70%. GeoChip 4.0, a functional gene microarray, was used to determine the microbial gene diversity and functional potential for nitrate and sulfate reduction, and sulfide oxidation. The diversity of the microbial community in bioreactors was increased with the feeding of limited oxygen. Whereas the intensities of the functional genes involved in sulfate reduction did not show a significant difference, the abundance of the detected denitrification genes decreased in limited oxygen samples. More importantly, sulfide-oxidizing bacteria may alter their populations/genes in response to limited oxygen potentially to function more effectively in sulfide oxidation, especially to elemental sulfur. The genes fccA/fccB from nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB), such as Paracoccus denitrificans, Thiobacillus denitrificans, Beggiatoa sp., Thiomicrospira sp., and Thioalkalivibrio sp., were more abundant under limited-oxygen condition. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Microbial mineralization of cis-dichloroethene and vinyl chloride as a component of natural attenuation of chloroethene contaminants under conditions identified in the field as anoxic

    USGS Publications Warehouse

    Bradley, Paul M.

    2012-01-01

    Chlororespiration is a key component of remediation at many chloroethene-contaminated sites. In some instances, limited accumulation of reductive dechlorination daughter products may suggest that natural attenuation is not adequate for site remediation. This conclusion is justified when evidence for parent compound (tetrachloroethene, PCE, or trichloroethene, TCE) degradation is lacking. For many chloroethene-contaminated shallow aquifer systems, however, non-conservative losses of the parent compounds are clear but the mass balance between parent compound attenuation and accumulation of reductive dechlorination daughter products is incomplete. Incomplete mass balance indicates a failure to account for important contaminant attenuation mechanisms, and is consistent with contaminant degradation to non-diagnostic mineralization products. An ongoing technical debate over the potential for mineralization of dichloroethene (DCE) and vinyl chloride (VC) to CO2 in the complete absence of diatomic oxygen has largely obscured the importance of microbial DCE/VC mineralization at dissolved oxygen (DO) concentrations below the current field standard (DO < 0.1-0.5 milligrams per liter) for nominally anoxic conditions. This study demonstrates that oxygen-based microbial mineralization of DCE and VC can be substantial under field conditions that are frequently characterized as "anoxic." Because mischaracterization of operant contaminant biodegradation processes can lead to expensive and ineffective remedial actions, a modified framework for assessing the potential importance of oxygen during chloroethene biodegradation was developed.

  18. Secondary gas emissions during coal desorption, Marathon Grassim Oskolkoff-1 Well, Cook Inlet Basin, Alaska: Implications for resource assessment

    USGS Publications Warehouse

    Barker, C.E.; Dallegge, T.

    2006-01-01

    Cuttings samples of sub-bituminous humic coals from the Oligocene to Pliocene Tyonek Formation, Cook Inlet Basin, Alaska show secondary gas emissions whose geochemistry is consistent with renewed microbial methanogenesis during canister desorption. The renewed methanogenesis was noted after initial desorption measurements had ceased and a canister had an air and desorbed gas mixture backflow into the canister during a measurement. About a week after this event, a secondary emission of gas began and continued for over two years. The desorbed gas volume reached a new maximum, increasing the total from 3.3 to 4.9 litres, some 48% above the pre-contamination total volume. The gases released during desorption show a shift in the isotopic signature over time of methane from ??13CCH4 of -53.60 ??? and ??DCH4 of -312.60 ??? at the first day to ??13CCH4 of -57.06 ??? and ??DCH4 of -375.80 ??? after 809 days, when the experiment was arbitrarily stopped and the canister opened to study the coal. These isotopic data, interpreted using a Bernard Diagram, indicate a shift from a mixed thermogenic and biogenic source typical of natural gases in the coals and conventional gas reservoirs of the Cook Inlet Basin to a likely biogenic acetate-fermentation methane source. However, the appearance of CO2 during the renewed gas emissions with a ??13CCO2 of +26.08 to +21.72 ???, interpreted using the carbon isotope fractions found for acetate fermentation and CO2 reduction between CO2 and CH4 by Jenden and Kaplan (1986), indicates a biogenic CO2-reduction pathway may also be operative during renewed gas emission. Adding nutrients to the coal cuttings and canister water and culturing the microbial consortia under anaerobic conditions led to additional methane-rich gas generation in the laboratory. After this anaerobic culturing, ultraviolet microscopy showed that canister water contained common, fluorescent, rod-like microbes comparable to Methanobacterium sp. Scanning electron microscope investigations of the coal matrix showed several morphological types of microbes, including rod, cocci and spherical forms attached to the coal surface. These microbes apparently represent at least a portion of the microbial consortia needed to depolymerize coal, as well as to generate the observed secondary methane emission from the canister. The introduction of 48% more methane from secondary sources has a major impact on coal-bed methane resource assessments and also in determining the true, in-situ degree of methane saturation in coal-beds using isotherms. Canister and isotherm measurements that show "supersaturation" of methane may actually be the result of additional gases generated during secondary methanogenesis.

  19. Carbonic anhydrase distribution across organisms and environments: genomic predictors for soil enzymatic fluxes of carbon cycle tracers δ18O and COS

    NASA Astrophysics Data System (ADS)

    Meredith, L. K.; Singer, E.

    2016-12-01

    Carbonyl sulfide (COS) and the oxygen isotope composition (δ18O) of CO2 are potential tools for differentiating the contributions of photosynthesis and respiration to the balance of global carbon cycling. These processes are coupled at the leaf level via the enzyme carbonic anhydrase (CA), which hydrolyzes CO2 in the first biochemical step of the photosynthetic pathway (CO2 + H2O ⇌ HCO3- + H+) and correspondingly structural analogue COS (COS + H2O → CO2 + H2S). CA also accelerates the exchange of oxygen isotopes between CO2 and H2O leading to a distinct isotopic imprint. The biogeochemical cycles of these tracers include significant, yet poorly characterized soil processes that challenge their utility for probing the carbon cycle. In soils, microbial CA also hydrolyze COS and accelerate O isotope exchange between CO2 and soil water. Genomic predictors of microbial CA activity may help account and predict for these soil fluxes. Using a bioinformatics approach, we assess the distribution of the six known CA classes (α, β, γ, δ, η, ζ) in organisms ranging from fungi and plants to archaea and bacteria, and ask whether CA diversity is linked to soil microbial diversity. We survey the diversity and relative abundance of CA in a wide variety of environments and estimate the sensitivity of CA to biome and land use. Finally, we compare the CA distribution in soils to measurements (oxygen isotope and COS fluxes) and models of CA activity to develop genomic predictors for CA activity. This work provides the first survey of CA in soils, a step towards understanding the significant role of CA in microbial ecology and microbe-mediated biogeochemical cycles.

  20. Potential impacts of CO2 leakage from the CCS sites on seed germination and soil microbial enzyme activities

    NASA Astrophysics Data System (ADS)

    Wenmei, H.; Yoo, G.; Kim, Y.; Moonis, M.

    2015-12-01

    To ensure the safety of carbon capture and storage (CCS) technology, it is essential to assess the impacts of potential CO2 leakage on the soil and ecosystem. The changes in soil environment due to the CO2 leakage might have an enormous effect on the plant growth. As a preliminary study, we conducted a research focusing on the germination process because it is known to be especially sensitive to the environmental change. The objective of this study is to investigate the impacts of high soil CO2 concentration on the germination of different species. A laboratory experiment was designed to investigate the effect of high soil CO2 concentration on germination rate and soil physicochemical/microbial parameters. Cabbage, corn, bean, and wheat were selected for this study. The concentrations of the injected CO2 treatments were 10%, 30%, 60% and 100%, and the actual soil CO2 concentration ranged from 3.6% to 53.2%. Two types of controls were employed: the one connected with ambient air tank and the other connected with nothing. The final germination rates of four crops were not different between the controls and 10% treatment, but the delay of germination was observed in cabbage, corn, and bean. At 30% treatment, the germination rates of cabbage, corn and bean were 38%, while that of wheat was 78%. No seed was germinated at 60% and 100% treatments. After the incubation, soil pH decreased from 6.0 in the controls to 5.6 in the 100% treatment. The contents of soil total C and total N were not different among treatments. Activities of microbial fluorescein diacetate hydrolysis were not different among treatments for all plants. Five kinds of soil extracellular enzyme activities were not affected by the CO2 treatments. Our results suggest that: 1) Soil CO2 concentration at 3-4% did not inhibit germination of four crops. 2) Wheat is most resistant to high soil CO2 concentration in this study. 3) Soil microbial parameters were more tolerant during the short term injection.

  1. CO2 electroreduction characteristics of Pt-Ru/C powder and Pt-Ru sputtered electrodes under acidic condition

    NASA Astrophysics Data System (ADS)

    Furukawa, Hiroto; Matsuda, Shofu; Tanaka, Shoji; Shironita, Sayoko; Umeda, Minoru

    2018-03-01

    The objective of this study was to overcome the issue about the underpotential adsorption of the CO2 electroreductant on the surface of the Pt electrocatalyst under acidic conditions by the alloying of Pt and Ru. As evaluation parameters, the CO2 reduction onset potential and CO2-reductant reoxidation onset potential were employed. We prepared a porous microelectrode filled with Pt-Ru/C powder and a Pt-Ru sputtered electrode. For the Pt-Ru/C powder electrocatalyst, the CO2 reduction onset potential as well as the CO2-reductant reoxidation onset potential shifted in the direction of the CO2/CO2-reductant standard redox potential dependent on the Ru content, which is indicative of a decrease in the underpotential-adsorption energy of the CO2 reductant. For the Pt-Ru sputtered electrode, only the CO2 reduction onset potential shifted in the direction of the redox potential. Consequently, we demonstrated that the Pt-Ru/C powder electrode improved the reactivity of the CO2/CO2-reductant when discussing the relationship between the CO2 reduction onset potential and the CO2-reductant reoxidation onset potential. Based on our findings, the Pt-Ru/C (1:9) powder is the most effective electrocatalyst for the CO2 reduction, which could minimize the underpotential adsorption.

  2. Microbial potential for carbon and nutrient cycling in a geogenic supercritical carbon dioxide reservoir.

    PubMed

    Freedman, Adam J E; Tan, BoonFei; Thompson, Janelle R

    2017-06-01

    Microorganisms catalyze carbon cycling and biogeochemical reactions in the deep subsurface and thus may be expected to influence the fate of injected supercritical (sc) CO 2 following geological carbon sequestration (GCS). We hypothesized that natural subsurface scCO 2 reservoirs, which serve as analogs for the long-term fate of sequestered scCO 2 , harbor a 'deep carbonated biosphere' with carbon cycling potential. We sampled subsurface fluids from scCO 2 -water separators at a natural scCO 2 reservoir at McElmo Dome, Colorado for analysis of 16S rRNA gene diversity and metagenome content. Sequence annotations indicated dominance of Sulfurospirillum, Rhizobium, Desulfovibrio and four members of the Clostridiales family. Genomes extracted from metagenomes using homology and compositional approaches revealed diverse mechanisms for growth and nutrient cycling, including pathways for CO 2 and N 2 fixation, anaerobic respiration, sulfur oxidation, fermentation and potential for metabolic syntrophy. Differences in biogeochemical potential between two production well communities were consistent with differences in fluid chemical profiles, suggesting a potential link between microbial activity and geochemistry. The existence of a microbial ecosystem associated with the McElmo Dome scCO 2 reservoir indicates that potential impacts of the deep biosphere on CO 2 fate and transport should be taken into consideration as a component of GCS planning and modelling. © 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. Absorption and Metabolism of Phenolics from Digests of Polyphenol-Rich Potato Extracts Using the Caco-2/HepG2 Co-Culture System

    PubMed Central

    Sadeghi Ekbatan, Shima; Iskandar, Michele M.; Sleno, Lekha; Sabally, Kebba; Khairallah, Joelle; Prakash, Satya

    2018-01-01

    The bioactivity of dietary polyphenols depends upon gastrointestinal and hepatic metabolism of secondary microbial phenolic metabolites generated via colonic microbiota-mediated biotransformation. A polyphenol-rich potato extract (PRPE) containing chlorogenic, caffeic, and ferulic acids and rutin was digested in a dynamic multi-reactor gastrointestinal simulator of the human intestinal microbial ecosystem (GI model). Simulated digestion showed extensive degradation of the parent compounds and the generation of microbial phenolic metabolites. To characterize the transport and metabolism of microbial phenolic metabolites following digestion, a co-culture of intestinal Caco-2 and hepatic HepG2 cells was exposed to the PRPE-derived digests obtained from the colonic vessels. Following a 2 h incubation of the digesta with the Caco-2/HepG2 co-cultures, approximately 10–15% of ferulic, dihydrocaffeic, and dihydroferulic acids and 3–5% of 3-hydroxybenzoic, 3-hydroxyphenylpropionic, and coumaric acids were observed in the basolateral side, whereas 3-hydroxyphenylacetic acid, phenylpropanoic acid, and cinnamic acid were not detected. Subsequent HepG2 cellular metabolism led to major increases in ferulic, dihydrocaffeic, 3-hydroxyphenylpropionic, and coumaric acids ranging from 160–370%. These findings highlight the importance of hepatic metabolism towards the generation of secondary metabolites of polyphenols despite low selective Caco-2 cellular uptake of microbial phenolic metabolites. PMID:29329242

  4. Temporal changes in soil water repellency linked to the soil respiration and CH4 and CO2 fluxes

    NASA Astrophysics Data System (ADS)

    Qassem, Khalid; Urbanek, Emilia; van Keulen, Geertje

    2014-05-01

    Soil water repellency (SWR) is known to be a spatially and temporally variable phenomenon. The seasonal changes in soil moisture lead to development of soil water repellency, which in consequence may affect the microbial activity and in consequence alter the CO2 and CH4 fluxes from soils. Soil microbial activity is strongly linked to the temperature and moisture status of the soil. In terms of CO2 flux intermediate moisture contents are most favourable for the optimal microbial activity and highest CO2 fluxes. Methanogenesis occurs primarily in anaerobic water-logged habitats while methanotrophy is a strictly aerobic process. In the study we hypothesise that the changes in CO2 and CH4 fluxes are closely linked to critical moisture thresholds for soil water repellency. This research project aims to adopt a multi-disciplinary approach to comprehensively determine the effect of SWR on CO2 and CH4 fluxes. Research is conducted in situ at four sites exhibiting SWR in the southern UK. Flux measurements are carried out concomitant with meteorological and SWR observations Field observations are supported by laboratory measurements carried out on intact soil samples collected at the above identified field sites. The laboratory analyses are conducted under constant temperatures with controlled changes of soil moisture content. Methanogenic and Methanotrophic microbial populations are being analysed at different SWR and moisture contents using the latest metagenomic and metatranscriptomic approaches. Currently available data show that greenhouse gas flux are closely linked with soil moisture thresholds for SWR development.

  5. Microbial community composition and function beneath temperate trees exposed to elevated atmospheric carbon dioxide and ozone

    Treesearch

    Rebecca L. Phillips; Donald R. Zak; William E. Holmes; David C. White

    2002-01-01

    We hypothesized that changes in plant growth resulting from atmospheric CO2 and O3 enrichment would alter the flow of C through soil food webs and that this effect would vary with tree species. To test this idea, we traced the course of C through the soil microbial community using soils from the free-air CO2...

  6. Dissolved carbon dioxide and oxygen concentrations in purge of vacuum-packaged pork chops and the relationship to shelf life and models for estimating microbial populations.

    PubMed

    Adams, K R; Niebuhr, S E; Dickson, J S

    2015-12-01

    The objectives of this study were to determine the dissolved CO2 and O2 concentrations in the purge of vacuum-packaged pork chops over a 60 day storage period, and to elucidate the relationship of dissolved CO2 and O2 to the microbial populations and shelf life. As the populations of spoilage bacteria increased, the dissolved CO2 increased and the dissolved O2 decreased in the purge. Lactic acid bacteria dominated the spoilage microflora, followed by Enterobacteriaceae and Brochothrix thermosphacta. The surface pH decreased to 5.4 due to carbonic acid and lactic acid production before rising to 5.7 due to ammonia production. A mathematical model was developed which estimated microbial populations based on dissolved CO2 concentrations. Scanning electron microscope images were also taken of the packaging film to observe the biofilm development. The SEM images revealed a two-layer biofilm on the packaging film that was the result of the tri-phase growth environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Modeling Microbial Processes in EPIC to Estimate Greenhouse Gas Emissions from soils

    NASA Astrophysics Data System (ADS)

    Schwab, D. E.; Izaurralde, R. C.; McGill, W. B.; Williams, J. R.; Schmid, E.

    2009-12-01

    Emissions of trace gases (CO2, N2O and CH4) to the atmosphere from managed terrestrial ecosystems have been contributing significantly to the warming of Earth. Trace gas production is dominated by biospheric processes. An improved knowledge of the soil-plant-atmosphere interface is of key importance for understanding trace gas dynamics. In soils, microbial metabolism plays a key role in the release or uptake of trace gases. Here we present work on the biophysical and biogeochemical model EPIC (Environmental Policy/Integrated Climate) to extend its capabilities to simulate CO2 and N2O fluxes in managed and unmanaged ecosystems. Emphasis will be given to recently developed, microbially-based, denitrification and nitrification modules. The soil-atmosphere exchange of trace gases can be measured by using various equipments, but often these measurements exhibit extreme space-time variability. We use hourly time steps to account for the variability induced by small changes in environmental conditions. Soils are often studied as macroscopic systems, although their functions are predominantly controlled at a microscopic level; i.e. the level of the microorganisms. We include these processes to the extent that these are known and can be quantitatively described. We represent soil dynamics mathematically with routines for gas diffusion, Michael Menten processes, electron budgeting and other processes such as uptake and transformations. We hypothesize that maximization of energy capture form scarce substrates using energetic favorable reactions drives evolution and that competitive advantage can result by depriving a competitor from a substrate. This Microbe Model changes concepts of production of N-containing trace gases; it unifies understanding of N oxidation and reduction, predicts production and evolution of trace gases and is consistent with observations of anaerobic ammonium oxidation.

  8. Seawater Mg/Ca controls polymorph mineralogy of microbial CaCO3: a potential proxy for calcite-aragonite seas in Precambrian time.

    PubMed

    Ries, J B; Anderson, M A; Hill, R T

    2008-03-01

    A previously published hydrothermal brine-river water mixing model driven by ocean crust production suggests that the molar Mg/Ca ratio of seawater (mMg/Ca(sw)) has varied significantly (approximately 1.0-5.2) over Precambrian time, resulting in six intervals of aragonite-favouring seas (mMg/Ca(sw) > 2) and five intervals of calcite-favouring seas (mMg/Ca(sw) < 2) since the Late Archaean. To evaluate the viability of microbial carbonates as mineralogical proxy for Precambrian calcite-aragonite seas, calcifying microbial marine biofilms were cultured in experimental seawaters formulated over the range of Mg/Ca ratios believed to have characterized Precambrian seawater. Biofilms cultured in experimental aragonite seawater (mMg/Ca(sw) = 5.2) precipitated primarily aragonite with lesser amounts of high-Mg calcite (mMg/Ca(calcite) = 0.16), while biofilms cultured in experimental calcite seawater (mMg/Ca(sw) = 1.5) precipitated exclusively lower magnesian calcite (mMg/Ca(calcite) = 0.06). Furthermore, Mg/Ca(calcite )varied proportionally with Mg/Ca(sw). This nearly abiotic mineralogical response of the biofilm CaCO3 to altered Mg/Ca(sw) is consistent with the assertion that biofilm calcification proceeds more through the elevation of , via metabolic removal of CO2 and/or H+, than through the elevation of Ca2+, which would alter the Mg/Ca ratio of the biofilm's calcifying fluid causing its pattern of CaCO3 polymorph precipitation (aragonite vs. calcite; Mg-incorporation in calcite) to deviate from that of abiotic calcification. If previous assertions are correct that the physicochemical properties of Precambrian seawater were such that Mg/Ca(sw) was the primary variable influencing CaCO3 polymorph mineralogy, then the observed response of the biofilms' CaCO3 polymorph mineralogy to variations in Mg/Ca(sw), combined with the ubiquity of such microbial carbonates in Precambrian strata, suggests that the original polymorph mineralogy and Mg/Ca(calcite )of well-preserved microbial carbonates may be an archive of calcite-aragonite seas throughout Precambrian time. These results invite a systematic evaluation of microbial carbonate primary mineralogy to empirically constrain Precambrian seawater Mg/Ca.

  9. Determination of microbial carbon sources and cycling during remediation of petroleum hydrocarbon impacted soil using natural abundance (14)C analysis of PLFA.

    PubMed

    Cowie, Benjamin R; Greenberg, Bruce M; Slater, Gregory F

    2010-04-01

    In a petroleum impacted land-farm soil in Sarnia, Ontario, compound-specific natural abundance radiocarbon analysis identified biodegradation by the soil microbial community as a major pathway for hydrocarbon removal in a novel remediation system. During remediation of contaminated soils by a plant growth promoting rhizobacteria enhanced phytoremediation system (PEPS), the measured Delta(14)C of phospholipid fatty acid (PLFA) biomarkers ranged from -793 per thousand to -897 per thousand, directly demonstrating microbial uptake and utilization of petroleum hydrocarbons (Delta(14)C(PHC) = -1000 per thousand). Isotopic mass balance indicated that more than 80% of microbial PLFA carbon was derived from petroleum hydrocarbons (PHC) and a maximum of 20% was obtained from metabolism of more modern carbon sources. These PLFA from the contaminated soils were the most (14)C-depleted biomarkers ever measured for an in situ environmental system, and this study demonstrated that the microbial community in this soil was subsisting primarily on petroleum hydrocarbons. In contrast, the microbial community in a nearby uncontaminated control soil maintained a more modern Delta(14)C signature than total organic carbon (Delta(14)C(PLFA) = +36 per thousand to -147 per thousand, Delta(14)C(TOC) = -148 per thousand), indicating preferential consumption of the most modern plant-derived fraction of soil organic carbon. Measurements of delta(13)C and Delta(14)C of soil CO(2) additionally demonstrated that mineralization of PHC contributed to soil CO(2) at the contaminated site. The CO(2) in the uncontaminated control soil exhibited substantially more modern Delta(14)C values, and lower soil CO(2) concentrations than the contaminated soils, suggesting increased rates of soil respiration in the contaminated soils. In combination, these results demonstrated that biodegradation in the soil microbial community was a primary pathway of petroleum hydrocarbon removal in the PEPS system. This study highlights the power of natural abundance radiocarbon for determining microbial carbon sources and identifying biodegradation pathways in complex remediation systems.

  10. The Impact of Climate Change on Microbial Communities and Carbon Cycling in High Arctic Permafrost Soil from Spitsbergen, Northern Norway

    NASA Astrophysics Data System (ADS)

    de Leon, K. C.; Schwery, D.; Yoshikawa, K.; Christiansen, H. H.; Pearce, D.

    2014-12-01

    Permafrost-affected soils are among the most fragile ecosystems in which current microbial controls on organic matter decomposition are changing as a result of climate change. Warmer conditions in the high Arctic will lead to a deepening of the seasonal active layer of permafrost, provoking changes in microbial processes and possibly resulting in exacerbated carbon degradation under increasing anoxic conditions. The viable and non-viable fractions of the microbial community in a permafrost soil from Adventdalen, Spitsbergen, Norway were subjected to a comprehensive investigation using culture-dependent and culture-independent methods. Molecular analyses using FISH (with CTC-DAPI) and amplified rDNA restriction analysis (ARDRA) on a 257cm deep core, revealed the presence of all major microbial soil groups, with the active layer having more viable cells, and a higher microbial community diversity. Carbon dioxide (CO2) and methane (CH4) flux measurements were performed to show the amount of C stored in the sample. We demonstrated that the microbial community composition from the soil in the center of the core was most likely influenced by small scale variations in environmental conditions. Community structure showed distinct shift of presence of bacterial groups along the vertical temperature gradient profile and microbial counts and diversity was found to be highest in the surface layers, decreasing with depth. It was observed that soil properties driving microbial diversity and functional potential varied across the permafrost table. Data on the variability of CO2 and CH4 distribution described in peat structure heterogeneity are important for modeling emissions on a larger scale. Furthermore, linking microbial biomass to gas distribution may elucidate the cause of peak CO2 and CH4 and their changes in relation to environmental change and peat composition.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ping; Van Nostrand, Joy D.; He, Zhili

    Cr(VI) is a widespread environmental contaminant that is highly toxic and soluble. Previous work indicated that a one-time amendment of polylactate hydrogen-release compound (HRC) reduced groundwater Cr(VI) concentrations for >3.5 years at a contaminated aquifer; however, microbial communities responsible for Cr(VI) reduction are poorly understood. Here in this study, we hypothesized that HRC amendment would significantly change the composition and structure of groundwater microbial communities, and that the abundance of key functional genes involved in HRC degradation and electron acceptor reduction would increase long-term in response to this slowly degrading, complex substrate. To test these hypotheses, groundwater microbial communities weremore » monitored after HRC amendment for >1 year using a comprehensive functional gene microarray. The results showed that the overall functional composition and structure of groundwater microbial communities underwent sequential shifts after HRC amendment. Particularly, the abundance of functional genes involved in acetate oxidation, denitrification, dissimilatory nitrate reduction, metal reduction, and sulfate reduction significantly increased. The overall community dynamics was significantly correlated with changes in groundwater concentrations of microbial biomass, acetate, NO 3 -, Cr(VI), Fe(II) and SO 4 2-. Finally, our results suggest that HRC amendment primarily stimulated key functional processes associated with HRC degradation and reduction of multiple electron acceptors in the aquifer toward long-term Cr(VI) reduction.« less

  12. Deep microbial life in the Altmark natural gas reservoir: baseline characterization prior CO2 injection

    NASA Astrophysics Data System (ADS)

    Morozova, Daria; Shaheed, Mina; Vieth, Andrea; Krüger, Martin; Kock, Dagmar; Würdemann, Hilke

    2010-05-01

    Within the framework of the CLEAN project (CO2 Largescale Enhanced gas recovery in the Altmark Natural gas field) technical basics with special emphasis on process monitoring are explored by injecting CO2 into a gas reservoir. Our study focuses on the investigation of the in-situ microbial community of the Rotliegend natural gas reservoir in the Altmark, located south of the city Salzwedel, Germany. In order to characterize the microbial life in the extreme habitat we aim to localize and identify microbes including their metabolism influencing the creation and dissolution of minerals. The ability of microorganisms to speed up dissolution and formation of minerals might result in changes of the local permeability and the long-term safety of CO2 storage. However, geology, structure and chemistry of the reservoir rock and the cap rock as well as interaction with saline formation water and natural gases and the injected CO2 affect the microbial community composition and activity. The reservoir located at the depth of about 3500m, is characterised by high salinity fluid and temperatures up to 127° C. It represents an extreme environment for microbial life and therefore the main focus is on hyperthermophilic, halophilic anaerobic microorganisms. In consequence of the injection of large amounts of CO2 in the course of a commercial EGR (Enhanced Gas Recovery) the environmental conditions (e.g. pH, temperature, pressure and solubility of minerals) for the autochthonous microorganisms will change. Genetic profiling of amplified 16S rRNA genes are applied for detecting structural changes in the community by using PCR- SSCP (PCR-Single-Strand-Conformation Polymorphism) and DGGE (Denaturing Gradient Gel Electrophoresis). First results of the baseline survey indicate the presence of microorganisms similar to representatives from other saline, hot, anoxic, deep environments. However, due to the hypersaline and hyperthermophilic reservoir conditions, cell numbers are low, so that the quantification of those microorganisms as well as the determination of microbial activity was not yet possible. Microbial monitoring methods have to be further developed to study microbial activities under these extreme conditions to access their influence on the EGR technique and on enhancing the long term safety of the process by fixation of carbon dioxide by precipitation of carbonates. We would like to thank GDF SUEZ for providing the data for the Rotliegend reservoir, sample material and enabling sampling campaigns. The CLEAN project is funded by the German Federal Ministry of Education and Research (BMBF) in the frame of the Geotechnologien Program.

  13. Bimetallic platinum group metal-free catalysts for high power generating microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Kodali, Mounika; Santoro, Carlo; Herrera, Sergio; Serov, Alexey; Atanassov, Plamen

    2017-10-01

    M1-M2-N-C bimetallic catalysts with M1 as Fe and Co and M2 as Fe, Co, Ni and Mn were synthesized and investigated as cathode catalysts for oxygen reduction reaction (ORR). The catalysts were prepared by Sacrificial Support Method in which silica was the template and aminoantipyrine (AAPyr) was the organic precursor. The electro-catalytic properties of these catalysts were investigated by using rotating ring disk (RRDE) electrode setup in neutral electrolyte. Fe-Mn-AAPyr outperformed Fe-AAPyr that showed higher performances compared to Fe-Co-AAPyr and Fe-Ni-AAPyr in terms of half-wave potential. In parallel, Fe-Co-AAPyr, Co-Mn-AAPyr and Co-Ni-AAPyr outperformed Co-AAPyr. The presence of Co within the catalyst contributed to high peroxide production not desired for efficient ORR. The catalytic capability of the catalysts integrated in air-breathing cathode was also verified. It was found that Co-based catalysts showed an improvement in performance by the addition of second metal compared to simple Co- AAPyr. Fe-based bimetallic materials didn't show improvement compared to Fe-AAPyr with the exception of Fe-Mn-AAPyr catalyst that had the highest performance recorded in this study with maximum power density of 221.8 ± 6.6 μWcm-2. Activated carbon (AC) was used as control and had the lowest performances in RRDE and achieved only 95.6 ± 5.8 μWcm-2 when tested in MFC.

  14. Biogeochemical Cycle of Methanol in Anoxic Deep-Sea Sediments

    PubMed Central

    Yanagawa, Katsunori; Tani, Atsushi; Yamamoto, Naoya; Hachikubo, Akihiro; Kano, Akihiro; Matsumoto, Ryo; Suzuki, Yohey

    2016-01-01

    The biological flux and lifetime of methanol in anoxic marine sediments are largely unknown. We herein reported, for the first time, quantitative methanol removal rates in subsurface sediments. Anaerobic incubation experiments with radiotracers showed high rates of microbial methanol consumption. Notably, methanol oxidation to CO2 surpassed methanol assimilation and methanogenesis from CO2/H2 and methanol. Nevertheless, a significant decrease in methanol was not observed after the incubation, and this was attributed to the microbial production of methanol in parallel with its consumption. These results suggest that microbial reactions play an important role in the sources and sinks of methanol in subseafloor sediments. PMID:27301420

  15. Microbial community changes at a terrestrial volcanic CO2 vent induced by soil acidification and anaerobic microhabitats within the soil column.

    PubMed

    Frerichs, Janin; Oppermann, Birte I; Gwosdz, Simone; Möller, Ingo; Herrmann, Martina; Krüger, Martin

    2013-04-01

    CO2 capture and storage (CCS) in deep geological formations is one option currently evaluated to reduce greenhouse gas emissions. Consequently, the impact of a possible CO2 leakage from a storage site into surface environments has to be evaluated. During such a hypothetical leakage event, the CO2 migrates upwards along fractures entering surface soils, a scenario similar to naturally occurring CO2 vents. Therefore, such a natural analogue site at the Laacher See was chosen for an ecosystem study on the effects of high CO2 concentrations on soil chemistry and microbiology. The microbial activities revealed differences in their spatial distribution and temporal variability for CO2 -rich and reference soils. Furthermore, the abundance of several functional and group-specific gene markers revealed further differences, for example, a decrease in Geobacteraceae and an increase in sulphate-reducing prokaryotes in the vent centre. Molecular-biological fingerprinting of the microbial communities with DGGE indicated a shift in the environmental conditions within the Laacher See soil column leading to anaerobic and potentially acidic microenvironments. Furthermore, the distribution and phylogenetic affiliation of the archaeal 16S rRNA genes, the presence of ammonia-oxidizing Archaea and the biomarker analysis revealed a predominance of Thaumarchaeota as possible indicator organisms for elevated CO2 concentrations in soils. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  16. Microbial reductive dehalogenation of trihalomethanes by a Dehalobacter-containing co-culture.

    PubMed

    Zhao, Siyan; Rogers, Matthew J; He, Jianzhong

    2017-07-01

    Trihalomethanes such as chloroform and bromoform, although well-known as a prominent class of disinfection by-products, are ubiquitously distributed in the environment due to widespread industrial usage in the past decades. Chloroform and bromoform are particularly concerning, of high concentrations detected and with long half-lives up to several hundred days in soils and groundwater. In this study, we report a Dehalobacter- and Desulfovibrio-containing co-culture that exhibits dehalogenation of chloroform (~0.61 mM) to dichloromethane and bromoform (~0.67 mM) to dibromomethane within 10-15 days. This co-culture was further found to dechlorinate 1,1,1-trichloroethane (1,1,1-TCA) (~0.65 mM) to 1,1-dichloroethane within 12 days. The Dehalobacter species present in this co-culture, designated Dehalobacter sp. THM1, was found to couple growth with dehalogenation of chloroform, bromoform, and 1,1,1-TCA. Strain THM1 harbors a newly identified reductive dehalogenase (RDase), ThmA, which catalyzes chloroform, bromoform, and 1,1,1-TCA dehalogenation. Additionally, based on the sequences of thmA and other identified chloroform RDase genes, ctrA, cfrA, and tmrA, a pair of chloroform RDase gene-specific primers were designed and successfully applied to investigate the chloroform dechlorinating potential of microbial communities. The comparative analysis of chloroform RDases with tetrachloroethene RDases suggests a possible approach in predicting the substrate specificity of uncharacterized RDases in the future.

  17. Development of an NDIR CO2 Sensor-Based System for Assessing Soil Toxicity Using Substrate-Induced Respiration

    PubMed Central

    Kaur, Jasmeen; Adamchuk, Viacheslav I.; Whalen, Joann K.; Ismail, Ashraf A.

    2015-01-01

    The eco-toxicological indicators used to evaluate soil quality complement the physico-chemical criteria employed in contaminated site remediation, but their cost, time, sophisticated analytical methods and in-situ inapplicability pose a major challenge to rapidly detect and map the extent of soil contamination. This paper describes a sensor-based approach for measuring potential (substrate-induced) microbial respiration in diesel-contaminated and non-contaminated soil and hence, indirectly evaluates their microbial activity. A simple CO2 sensing system was developed using an inexpensive non-dispersive infrared (NDIR) CO2 sensor and was successfully deployed to differentiate the control and diesel-contaminated soils in terms of CO2 emission after glucose addition. Also, the sensor system distinguished glucose-induced CO2 emission from sterile and control soil samples (p ≤ 0.0001). Significant effects of diesel contamination (p ≤ 0.0001) and soil type (p ≤ 0.0001) on glucose-induced CO2 emission were also found. The developed sensing system can provide in-situ evaluation of soil microbial activity, an indicator of soil quality. The system can be a promising tool for the initial screening of contaminated environmental sites to create high spatial density maps at a relatively low cost. PMID:25730479

  18. Elevated CO2: Impact on diurnal patterns of photosynthesis in natural microbial ecosystems

    NASA Technical Reports Server (NTRS)

    Rothschild, L. J.

    1994-01-01

    Algae, including blue-green algae (cyanobacteria), are the major source of fixed carbon in many aquatic ecosystems. Previous work has shown that photosynthetic carbon fixation is often enhanced in the presence of additional carbon dioxide (CO2). This study was undertaken to determine if this CO2 fertilization effect extended to microbial mats, and, if so, at what times during the day might the addition of CO2 affect carbon fixation. Four microbial mats from diverse environments were selected, including mats from a hypersaline pond (area 5, Exportadora de Sal, Mexico), the marine intertidal (Lyngbya, Laguna Ojo de Liebre, Mexico), an acidic hotspring (Cyanidium, Nymph Creek, Yellowstone National Park), and an acidic stream at ambient temperature (Zygogonium, Yellowstone National Park). Carbon fixation in the absence of additional CO2 essentially followed the rising and falling sunlight levels, except that during the middle of the day there was a short dip in carbon fixation rates. The addition of CO2 profoundly enhanced carbon fixation rates during the daylight hours, including during the midday dip. Therefore, it is unlikely that the midday dip was due to photoinhibition. Surprisingly, enhancement of carbon fixation was often greatest in the early morning or late afternoon, times when carbon fixation would be most likely to be light limited.

  19. Quantifying the Interannual Variability in Global Carbon Fluxes from Heterotrophic Respiration using a Testbed and Pulse Response Modeling Approach.

    NASA Astrophysics Data System (ADS)

    Basile, S.; Wieder, W. R.; Hartman, M. D.; Keppel-Aleks, G.

    2017-12-01

    The atmospheric growth rate of carbon dioxide (CO2) varies interannually and is strongly correlated with climate factors, including temperature and drought. These climate drivers affect vegetation productivity and the rate of respiration of organic matter to CO2 (heterotrophic respiration). Here we quantified the interannual variability in global carbon fluxes from heterotrophic respiration and their relationship to climate drivers. We used a novel testbed approach to simulate respiration, then simulated the imprint that these modeled heterotrophic fluxes have on atmospheric CO2 using an idealized pulse response model. Two of the testbed formulations (MIMICS and CORPSE) are microbially explicit by incorporation of microbial physiological tradeoffs and microbial activity in soil near fine roots (rhizosphere soils), respectively, while the third model (CASA) uses a CENTURY-like microbially implicit framework. Modeled respiration exhibited subtle differences, with MIMICS showing the largest seasonal amplitude in the Northern Hemisphere and the strongest correlation with global temperature variations. At Mauna Loa (MLO) the simulated seasonal CO2 amplitude in response to global heterotrophic respiration ranged by a factor of 1.5 across the models with the MIMICS and CASA models producing the higher amplitude responses between 1987 and 2006. The seasonal CO2 amplitude at MLO varied by about 5% interannually, with the largest variation in the MIMICS model. In the Northern Hemisphere there was a similar response range in average peak-to-trough seasonal CO2 but all models showed slightly higher amplitude values. Comparatively in the Northern Hemisphere, the average seasonal CO2 amplitude in response to respiration ranged between 30%-41% of the seasonal CO2 amplitude in response to net primary productivity. We expect that exploring the imprint of heterotrophic respiration on atmospheric CO2 from these three different models will improve our understanding of the imprint that heterotrophic respiration imparts on atmospheric data. The aim of this work is to ultimately yield an approach for combining CO2 observations with remote sensing-based observations of terrestrial productivity to produce regional constraints on heterotrophic respiration.

  20. Exogenous addition of H2 for an in situ biogas upgrading through biological reduction of carbon dioxide into methane.

    PubMed

    Mulat, Daniel Girma; Mosbæk, Freya; Ward, Alastair James; Polag, Daniela; Greule, Markus; Keppler, Frank; Nielsen, Jeppe Lund; Feilberg, Anders

    2017-10-01

    Biological reduction of CO 2 into CH 4 by exogenous addition of H 2 is a promising technology for upgrading biogas into higher CH 4 content. The aim of this work was to study the feasibility of exogenous H 2 addition for an in situ biogas upgrading through biological conversion of the biogas CO 2 into CH 4. Moreover, this study employed systematic study with isotope analysis for providing comprehensive evidence on the underlying pathways of CH 4 production and upstream processes. Batch reactors were inoculated with digestate originating from a full-scale biogas plant and fed once with maize leaf substrate. Periodic addition of H 2 into the headspace resulted in a completely consumption of CO 2 and a concomitant increase in CH 4 content up to 89%. The microbial community and isotope analysis shows an enrichment of hydrogenotrophic Methanobacterium and the key role of hydrogenotrophic methanogenesis for biogas upgrading to higher CH 4 content. Excess H 2 was also supplied to evaluate its effect on overall process performance. The results show that excess H 2 addition resulted in accumulation of H 2 , depletion of CO 2 and inhibition of the degradation of acetate and other volatile fatty acids (VFA). A systematic isotope analysis revealed that excess H 2 supply led to an increase in dissolved H 2 to the level that thermodynamically inhibit the degradation of VFA and stimulate homo-acetogens for production of acetate from CO 2 and H 2 . The inhibition was a temporary effect and acetate degradation resumed when the excess H 2 was removed as well as in the presence of stoichiometric amount of H 2 and CO 2 . This inhibition mechanism underlines the importance of carefully regulating the H 2 addition rate and gas retention time to the CO 2 production rate, H 2 -uptake rate and growth of hydrogenotrophic methanogens in order to achieve higher CH 4 content without the accumulation of acetate and other VFA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Potential contribution of microbial degradation to natural attenuation of MTBE in surface water systems

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.; Landmeyer, J.E.

    2001-01-01

    The potential contribution of in situ biodegradation as a mechanism for natural attenuation of MTBE in surface water was studied. Surface water sediments from streams and lakes at 11 sites throughout the US. Microbial degradation of [U-14C] MTBE was observed in surface-water-sediment microcosms under anaerobic conditions, but the efficiency and products of anaerobic MTBE biodegradation were strongly dependent on the predominant terminal electron accepting conditions. In the presence of substantial methanogenic activity, MTBE biodegradation was nominal and involved reduction of MTBE to t-butanol (TBA). Under more oxidizing conditions, minimal accumulation of 14C-TBA and significant mineralization of [U-14C] MTBE to 14CO2 were observed. Microorganisms inhabiting the bed sediments of streams and lakes could degrade MTBE effectively under a range of anaerobic terminal electron accepting conditions. Thus, anaerobic bed sediment microbial processes also might contribute to natural attenuation of MTBE in surface water systems throughout the US. This is an abstract of a paper presented at the 222nd ACS National Meting (Chicago, IL 8/26-30/2001).

  2. Anaerobic U(IV) Bio-oxidation and the Resultant Remobilization of Uranium in Contaminated Sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coates, John D.

    2005-06-01

    A proposed strategy for the remediation of uranium (U) contaminated sites is based on immobilizing U by reducing the oxidized soluble U, U(VI), to form a reduced insoluble end product, U(IV). Due to the use of nitric acid in the processing of nuclear fuels, nitrate is often a co-contaminant found in many of the environments contaminated with uranium. Recent studies indicate that nitrate inhibits U(VI) reduction in sediment slurries. However, the mechanism responsible for the apparent inhibition of U(VI) reduction is unknown, i.e. preferential utilization of nitrate as an electron acceptor, direct biological oxidation of U(IV) coupled to nitrate reduction,more » and/or abiotic oxidation by intermediates of nitrate reduction. Recent studies indicates that direct biological oxidation of U(IV) coupled to nitrate reduction may exist in situ, however, to date no organisms have been identified that can grow by this metabolism. In an effort to evaluate the potential for nitrate-dependent bio-oxidation of U(IV) in anaerobic sedimentary environments, we have initiated the enumeration of nitrate-dependent U(IV) oxidizing bacteria. Sediments, soils, and groundwater from uranium (U) contaminated sites, including subsurface sediments from the NABIR Field Research Center (FRC), as well as uncontaminated sites, including subsurface sediments from the NABIR FRC and Longhorn Army Ammunition Plant, Texas, lake sediments, and agricultural field soil, sites served as the inoculum source. Enumeration of the nitrate-dependent U(IV) oxidizing microbial population in sedimentary environments by most probable number technique have revealed sedimentary microbial populations ranging from 9.3 x 101 - 2.4 x 103 cells (g sediment)-1 in both contaminated and uncontaminated sites. Interestingly uncontaminated subsurface sediments (NABIR FRC Background core FB618 and Longhorn Texas Core BH2-18) both harbored the most numerous nitrate-dependent U(IV) oxidizing population 2.4 x 103 cells (g sediment)-1. The nitrate-dependent U(IV) oxidizing microbial population in groundwaters is less numerous ranging from 0 cells mL-1 (Well FW300, Uncontaminated Background NABIR FRC) to 4.3 x 102 cells mL-1 (Well TPB16, Contaminated Area 2 NABIR FRC). The presence of nitrate-dependent U(IV) oxidizing bacteria supports our hypothesis that bacteria capable of anaerobic U(IV) oxidation are ubiquitous and indigenous to sedimentary and groundwater environments.« less

  3. Responses of Soil CO2 Emissions to Extreme Precipitation Regimes: a Simulation on Loess Soil in Semi-arid Regions

    NASA Astrophysics Data System (ADS)

    Wang, R.; Zhao, M.; Hu, Y.; Guo, S.

    2016-12-01

    Responses of soil CO2 emission to natural precipitation play an essential role in regulating regional C cycling. With more erratic precipitation regimes, mostly likely of more frequent heavy rainstorms, projected into the future, extreme precipitation would potentially affect local soil moisture, plant growth, microbial communities, and further soil CO2 emissions. However, responses of soil CO2 emissions to extreme precipitation have not yet been systematically investigated. Such performances could be of particular importance for rainfed arable soil in semi-arid regions where soil microbial respiration stress is highly sensitive to temporal distribution of natural precipitation.In this study, a simulated experiment was conducted on bare loess soil from the semi-arid Chinese Loess Plateau. Three precipitation regimes with total precipitation amounts of 150 mm, 300 mm and 600 mm were carried out to simulate the extremely dry, business as usual, and extremely wet summer. The three regimes were individually materialized by wetting soils in a series of sub-events (10 mm or 150 mm). Co2 emissions from surface soil were continuously measured in-situ for one month. The results show that: 1) Evident CO2 emission pulses were observed immediately after applying sub-events, and cumulative CO2 emissions from events of total amount of 600 mm were greater than that from 150 mm. 3) In particular, for the same total amount of 600 mm, wetting regimes by applying four times of 150 mm sub-events resulted in 20% less CO2 emissions than by applying 60 times of 10 mm sub-events. This is mostly because its harsh 150 mm storms introduced more over-wet soil microbial respiration stress days (moisture > 28%). As opposed, for the same total amount of 150 mm, CO2 emissions from wetting regimes by applying 15 times of 10 mm sub-events were 22% lower than by wetting at once with 150 mm water, probably because its deficiency of soil moisture resulted in more over-dry soil microbial respiration stress days (moisture < 15%). Overall, soil CO2 emissions not only responded to total precipitation amount, but was also sensitive to precipitation regimes. Such differentiated responses of CO2 emissions highlight the necessity to properly account for relative contributions from CO2 emissions when projecting global carbon cycling into future climate scenarios.

  4. Design of Iron(II) Phthalocyanine-Derived Oxygen Reduction Electrocatalysts for High-Power-Density Microbial Fuel Cells.

    PubMed

    Santoro, Carlo; Gokhale, Rohan; Mecheri, Barbara; D'Epifanio, Alessandra; Licoccia, Silvia; Serov, Alexey; Artyushkova, Kateryna; Atanassov, Plamen

    2017-08-24

    Iron(II) phthalocyanine (FePc) deposited onto two different carbonaceous supports was synthesized through an unconventional pyrolysis-free method. The obtained materials were studied in the oxygen reduction reaction (ORR) in neutral media through incorporation in an air-breathing cathode structure and tested in an operating microbial fuel cell (MFC) configuration. Rotating ring disk electrode (RRDE) analysis revealed high performances of the Fe-based catalysts compared with that of activated carbon (AC). The FePc supported on Black-Pearl carbon black [Fe-BP(N)] exhibits the highest performance in terms of its more positive onset potential, positive shift of the half-wave potential, and higher limiting current as well as the highest power density in the operating MFC of (243±7) μW cm -2 , which was 33 % higher than that of FePc supported on nitrogen-doped carbon nanotubes (Fe-CNT(N); 182±5 μW cm -2 ). The power density generated by Fe-BP(N) was 92 % higher than that of the MFC utilizing AC; therefore, the utilization of platinum group metal-free catalysts can boost the performances of MFCs significantly. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Probing metabolic processes of intact soil microbial communities using position-specific 13C-labeled glucose

    NASA Astrophysics Data System (ADS)

    Fairbanks, D. E.; Hungate, B. A.; KOCH, G. W.; Schwartz, E.; Dijkstra, P.

    2012-12-01

    Soils represent one of the largest carbon pools in the terrestrial biosphere and fluxes into or out of this pool may feedback to current climate change. Understanding the mechanisms behind microbial processes regulating C cycling, microbial turnover, and soil organic matter stabilization is hindered by our lack of understanding of the details of microbial physiology in soils. Position-specific 13C labeled metabolic tracers are proposed as a new way to probe microbial community energy production, biosynthesis, C use efficiency (the proportion of substrate incorporated into microbial biomass), and enables the determination of C fluxes through the various C metabolic pathways. We determined the 13CO2 production from microbial communities within a one hour time frame by adding six isotopomers (1-13C, 2-13C, 3-13C, 4-13C, 5-13C, 6-13C) of glucose in parallel incubations using a young volcanic soil (Pinyon-juniper wood, near Sunset Crater, Flagstaff, Arizona). We compared the measured rates of position-specific 13CO2 production with modeled results based on glucose (1-13C and U-13C) and pyruvate (1-13C and 2,3-13C) incubations. These labeling and modeling techniques may improve our ability to analyze the biochemistry and ecophysiology of intact soil microbial communities.

  6. Effect of acclimatization on hexavalent chromium reduction in a biocathode microbial fuel cell.

    PubMed

    Wu, Xiayuan; Zhu, Xujun; Song, Tianshun; Zhang, Lixiong; Jia, Honghua; Wei, Ping

    2015-03-01

    A simple acclimatization method for the reduction of hexavalent chromium (Cr(VI)) at a biocathode by first enriching an exoelectrogenic biofilm on a microbial fuel cell (MFC) anode, followed by direct inversion of the anode to function as the biocathode, has been established. This novel method significantly enhanced the Cr(VI) reduction efficiency of the MFC, which was mainly attributed to the higher microbial density and less resistive Cr(III) precipitates on the cathode when compared with a common biocathode acclimatization method (control). The biocathode acclimatization period was shortened by 19days and the Cr(VI) reduction rate was increased by a factor of 2.9. Microbial community analyses of biocathodes acclimatized using different methods further verified the feasibility of this electrode inversion method, indicating similar dominant bacteria species in biofilms, which mainly consist of Gamma-proteobacteria and Bacteria. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Effect of simulated tillage on microbial autotrophic CO2 fixation in paddy and upland soils

    PubMed Central

    Ge, Tida; Wu, Xiaohong; Liu, Qiong; Zhu, Zhenke; Yuan, Hongzhao; Wang, Wei; Whiteley, A. S.; Wu, Jinshui

    2016-01-01

    Tillage is a common agricultural practice affecting soil structure and biogeochemistry. To evaluate how tillage affects soil microbial CO2 fixation, we incubated and continuously labelled samples from two paddy soils and two upland soils subjected to simulated conventional tillage (CT) and no-tillage (NT) treatments. Results showed that CO2 fixation (14C-SOC) in CT soils was significantly higher than in NT soils. We also observed a significant, soil type- and depth-dependent effect of tillage on the incorporation rates of labelled C to the labile carbon pool. Concentrations of labelled C in the carbon pool significantly decreased with soil depth, irrespective of tillage. Additionally, quantitative PCR assays revealed that for most soils, total bacteria and cbbL-carrying bacteria were less abundant in CT versus NT treatments, and tended to decrease in abundance with increasing depth. However, specific CO2 fixation activity was significantly higher in CT than in NT soils, suggesting that the abundance of cbbL-containing bacteria may not always reflect their functional activity. This study highlights the positive effect of tillage on soil microbial CO2 fixation, and the results can be readily applied to the development of sustainable agricultural management. PMID:26795428

  8. Impact of CO2 leakage from sub-seabed carbon dioxide capture and storage (CCS) reservoirs on benthic virus-prokaryote interactions and functions.

    PubMed

    Rastelli, Eugenio; Corinaldesi, Cinzia; Dell'Anno, Antonio; Amaro, Teresa; Queirós, Ana M; Widdicombe, Stephen; Danovaro, Roberto

    2015-01-01

    Atmospheric CO2 emissions are a global concern due to their predicted impact on biodiversity, ecosystems functioning, and human life. Among the proposed mitigation strategies, CO2 capture and storage, primarily the injection of CO2 into marine deep geological formations has been suggested as a technically practical option for reducing emissions. However, concerns have been raised that possible leakage from such storage sites, and the associated elevated levels of pCO2 could locally impact the biodiversity and biogeochemical processes in the sediments above these reservoirs. Whilst a number of impact assessment studies have been conducted, no information is available on the specific responses of viruses and virus-host interactions. In the present study, we tested the impact of a simulated CO2 leakage on the benthic microbial assemblages, with specific focus on microbial activity and virus-induced prokaryotic mortality (VIPM). We found that exposure to levels of CO2 in the overlying seawater from 1,000 to 20,000 ppm for a period up to 140 days, resulted in a marked decrease in heterotrophic carbon production and organic matter degradation rates in the sediments, associated with lower rates of VIPM, and a progressive accumulation of sedimentary organic matter with increasing CO2 concentrations. These results suggest that the increase in seawater pCO2 levels that may result from CO2 leakage, can severely reduce the rates of microbial-mediated recycling of the sedimentary organic matter and viral infections, with major consequences on C cycling and nutrient regeneration, and hence on the functioning of benthic ecosystems.

  9. Monitoring CO2 emissions to gain a dynamic view of carbon allocation to arbuscular mycorrhizal fungi.

    PubMed

    Slavíková, Renata; Püschel, David; Janoušková, Martina; Hujslová, Martina; Konvalinková, Tereza; Gryndlerová, Hana; Gryndler, Milan; Weiser, Martin; Jansa, Jan

    2017-01-01

    Quantification of carbon (C) fluxes in mycorrhizal plants is one of the important yet little explored tasks of mycorrhizal physiology and ecology. 13 CO 2 pulse-chase labelling experiments are increasingly being used to track the fate of C in these plant-microbial symbioses. Nevertheless, continuous monitoring of both the below- and aboveground CO 2 emissions remains a challenge, although it is necessary to establish the full C budget of mycorrhizal plants. Here, a novel CO 2 collection system is presented which allows assessment of gaseous CO 2 emissions (including isotopic composition of their C) from both belowground and shoot compartments. This system then is used to quantify the allocation of recently fixed C in mycorrhizal versus nonmycorrhizal Medicago truncatula plants with comparable biomass and mineral nutrition. Using this system, we confirmed substantially greater belowground C drain in mycorrhizal versus nonmycorrhizal plants, with the belowground CO 2 emissions showing large variation because of fluctuating environmental conditions in the glasshouse. Based on the assembled 13 C budget, the C allocation to the mycorrhizal fungus was between 2.3% (increased 13 C allocation to mycorrhizal substrate) and 2.9% (reduction of 13 C allocation to mycorrhizal shoots) of the plant gross photosynthetic production. Although the C allocation to shoot respiration (measured during one night only) did not differ between the mycorrhizal and nonmycorrhizal plants under our experimental conditions, it presented a substantial part (∼10%) of the plant C budget, comparable to the amount of CO 2 released belowground. These results advocate quantification of both above- and belowground CO 2 emissions in future studies.

  10. Characterization of Co(III) EDTA-Reducing Bacteria in Metal- and Radionuclide-Contaminated Groundwater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Weimin; Gentry, Terry J; Mehlhorn, Tonia L

    The Waste Area Grouping 5 (WAG5) site at Oak Ridge National Laboratory has a potential to be a field site for evaluating the effectiveness of various bioremediation approaches and strategies. The site has been well studied in terms of its geological and geochemical properties over the past decade. However, despite the importance of microorganisms in bioremediation processes, the microbiological populations at the WAG5 site and their potential in bioremediation have not been similarly evaluated. In this study, we initiated research to characterize the microbial populations in WAG5 groundwater. Approximately 100 isolates from WAG5 groundwater were isolated and selected based onmore » colony morphology. Fifty-five unique isolates were identified by BOX-PCR and subjected to further characterization. 16S rRNA sequences indicated that these isolates belong to seventeen bacterial genera including Alcaligenes (1 isolate), Aquamonas (1), Aquaspirillum (1), Bacillus (10), Brevundimonas (5), Caulobacter (7), Dechloromonas (2), Janibacter (1), Janthinobacterium (2), Lactobacillus (1), Paenibacillus (4), Pseudomonas (9), Rhodoferax (1), Sphingomonas (1), Stenotrophomonas (6), Variovorax (2), and Zoogloea (1). Metal respiration assays identified several isolates, which phylogenically belong or are close to Caulobacter, Stenotrophomonas, Bacillus, Paenibacillus and Pseudomonas, capable of reducing Co(III)EDTA- to Co(II)EDTA{sup 2-} using the defined M1 medium under anaerobic conditions. In addition, using WAG5 groundwater directly as the inoculants, we found that organisms associated with WAG5 groundwater can reduce both Fe(III) and Co(III) under anaerobic conditions. Further assays were then performed to determine the optimal conditions for Co(III) reduction. These assays indicated that addition of various electron donors including ethanol, lactate, methanol, pyruvate, and acetate resulted in metal reduction. These experiments will provide useful background information for future bioremediation field experiments at the WAG5 site.« less

  11. Microbial lime-mud production and its relation to climate change

    USGS Publications Warehouse

    Yates, K.K.; Robbins, L.L.; Gerhard, L.C.; Harrison, W.E.; Hanson, B.M.B.

    2001-01-01

    Microbial calcification has been identified as a significant source of carbonate sediment production in modern marine and lacustrine environments around the globe. This process has been linked to the production of modern whitings and large, micritic carbonate deposits throughout the geologic record. Furthermore, carbonate deposits believed to be the result of cyanobacterial and microalgal calcification suggest that the potential exists for long-term preservation of microbial precipitates and storage of carbon dioxide (CO2). Recent research has advanced our understanding of the microbial-calcification mechanism as a photosynthetically driven process. However, little is known of the effects of this process on inorganic carbon cycling or of the effects of changing climate on microbial-calcification mechanisms.Laboratory experiments on microbial cellular physiology demonstrate that cyanobacteria and green algae can utilize different carbon species for metabolism and calcification. Cyanobacterial calcification relies on bicarbonate (HCO3–)utilization while green algae use primarily CO2. Therefore, depending on which carbonate species (HCO3– or CO2) dominates in the ocean or lacustrine environments (a condition ultimately linked to atmospheric partial pressure PCO2), the origin of lime-mud production by cyanobacteria and/or algae may fluctuate through geologic time. Trends of cyanobacteria versus algal dominance in the rock record corroborate this conclusion. These results suggest that relative species abundances of calcareous cyanobacteria and algae in the Phanerozoic may serve as potential proxies for assessing paleoclimatic conditions, including fluctuations in atmospheric PCO2.

  12. Spatial variability in photosynthetic and heterotrophic activity drives localized δ13C org fluctuations and carbonate precipitation in hypersaline microbial mats.

    PubMed

    Houghton, J; Fike, D; Druschel, G; Orphan, V; Hoehler, T M; Des Marais, D J

    2014-11-01

    Modern laminated photosynthetic microbial mats are ideal environments to study how microbial activity creates and modifies carbon and sulfur isotopic signatures prior to lithification. Laminated microbial mats from a hypersaline lagoon (Guerrero Negro, Baja California, Mexico) maintained in a flume in a greenhouse at NASA Ames Research Center were sampled for δ(13) C of organic material and carbonate to assess the impact of carbon fixation (e.g., photosynthesis) and decomposition (e.g., bacterial respiration) on δ(13) C signatures. In the photic zone, the δ(13) C org signature records a complex relationship between the activities of cyanobacteria under variable conditions of CO2 limitation with a significant contribution from green sulfur bacteria using the reductive TCA cycle for carbon fixation. Carbonate is present in some layers of the mat, associated with high concentrations of bacteriochlorophyll e (characteristic of green sulfur bacteria) and exhibits δ(13) C signatures similar to DIC in the overlying water column (-2.0‰), with small but variable decreases consistent with localized heterotrophic activity from sulfate-reducing bacteria (SRB). Model results indicate respiration rates in the upper 12 mm of the mat alter in situ pH and HCO3- concentrations to create both phototrophic CO2 limitation and carbonate supersaturation, leading to local precipitation of carbonate minerals. The measured activity of SRB with depth suggests they variably contribute to decomposition in the mat dependent on organic substrate concentrations. Millimeter-scale variability in the δ(13) C org signature beneath the photic zone in the mat is a result of shifting dominance between cyanobacteria and green sulfur bacteria with the aggregate signature overprinted by heterotrophic reworking by SRB and methanogens. These observations highlight the impact of sedimentary microbial processes on δ(13) C org signatures; these processes need to be considered when attempting to relate observed isotopic signatures in ancient sedimentary strata to conditions in the overlying water column at the time of deposition and associated inferences about carbon cycling. © 2014 John Wiley & Sons Ltd.

  13. Will anticipated future climatic conditions affect belowground C utilization? - Insights into the role of microbial functional groups in a temperate heath/grassland.

    NASA Astrophysics Data System (ADS)

    Reinsch, Sabine; Michelsen, Anders; Sárossy, Zsuzsa; Egsgaard, Helge; Kappel Schmidt, Inger; Jakobsen, Iver; Ambus, Per

    2013-04-01

    The global terrestrial soil organic matter stock is the biggest terrestrial carbon pool (1500 Pg C) of which about 4 % is turned over annually. Thus, terrestrial ecosystems have the potential to accelerate or diminish atmospheric climate change effects via belowground carbon processes. We investigated the effect of elevated CO2 (510 ppm), prolonged spring/summer droughts and increased temperature (1 ˚C) on belowground carbon allocation and on the recovery of carbon by the soil microbial community. An in-situ 13C-carbon pulse-labeling experiment was carried out in a temperate heath/grassland (Denmark) in May 2011. Recently assimilated 13C-carbon was traced into roots, soil and microbial biomass 1, 2 and 8 days after pulse-labeling. The importance of the microbial community in C utilization was investigated using 13C enrichment patterns in microbial functional groups on the basis of phospholipid fatty acids (PLFAs) in roots. Gram-negative and gram-positive bacteria were distinguished from the decomposer groups of actinomycetes (belonging to the group of gram-positive bacteria) and saprophytic fungi. Mycorrhizal fungi specific PLFAs were not detected probably due to limited sample size in combination with restricted sensitivity of the used GC-c-IRMS setup. Climate treatments did not affect 13C allocation into roots, soil and microbial biomass carbon and also the total microbial biomass size stayed unchanged as frequently observed. However, climate treatments changed the composition of the microbial community: elevated CO2 significantly reduced the abundance of gram-negative bacteria (17:0cy) but did not affect the abundance of decomposers. Drought favored the bacterial community whereas increased temperatures showed reduced abundance of gram-negative bacteria (19:0cy) and changed the actinomycetes community (10Me16:0, 10Me18:0). However, not only the microbial community composition was affected by the applied climatic conditions, but also the activity of microbial functional groups in their utilization of recently assimilated carbon. Particularly the negative effect of the future treatment combination (CO2×T×D) on actinomycetes activity was surprising. By means of activity patterns of gram-negative bacteria, we observed the fastest carbon turnover rate under elevated CO2, and the slowest under extended drought conditions. A changed soil microbial community in combination with altered activities of different microbial functional groups leads to the conclusion that carbon allocation belowground was different under ambient and future climatic conditions and indicated reduced utilization of soil organic matter in the future due to a change of actinomycetes abundance and activity.

  14. Mineral Carbonation Employing Ultramafic Mine Waste

    NASA Astrophysics Data System (ADS)

    Southam, G.; McCutcheon, J.; Power, I. M.; Harrison, A. L.; Wilson, S. A.; Dipple, G. M.

    2014-12-01

    Carbonate minerals are an important, stable carbon sink being investigated as a strategy to sequester CO2 produced by human activity. A natural playa (Atlin, BC, CAN) that has demonstrated the ability to microbially-accelerate hydromagnesite formation was used as an experimental model. Growth of microbial mats from Atlin, in a 10 m long flow-through bioreactor catalysed hydromagnesite precipitation under 'natural' conditions. To enhance mineral carbonation, chrysotile from the Clinton Creek Asbestos Mine (YT, CAN) was used as a target substrate for sulphuric acid leaching, releasing as much as 94% of the magnesium into solution via chemical weathering. This magnesium-rich 'feedstock' was used to examine the ability of the microbialites to enhance carbonate mineral precipitation using only atmospheric CO2 as the carbon source. The phototrophic consortium catalysed the precipitation of platy hydromagnesite [Mg5(CO3)4(OH)2·4H2O] accompanied by magnesite [MgCO3], aragonite [CaCO3], and minor dypingite [Mg5(CO3)4(OH)2·5H2O]. Scanning Electron Microscopy-Energy Dispersive Spectroscopy indicated that cell exteriors and extracellular polymeric substances (EPS) served as nucleation sites for carbonate precipitation. In many cases, entire cyanobacteria filaments were entombed in magnesium carbonate coatings, which appeared to contain a framework of EPS. Cell coatings were composed of small crystals, which intuitively resulted from rapid crystal nucleation. Excess nutrient addition generated eutrophic conditions in the bioreactor, resulting in the growth of a pellicle that sealed the bioreactor contents from the atmosphere. The resulting anaerobic conditions induced fermentation and subsequent acid generation, which in turn caused a drop in pH to circumneutral values and a reduction in carbonate precipitation. Monitoring of the water chemistry conditions indicated that a high pH (> 9.4), and relatively high concentrations of magnesium (> 3000 ppm), compared with the natural wetland (up to 1000 ppm), and dissolved inorganic carbon (> 20 mM C) were ideal for carbonate precipitation. Under optimum nutrient and magnesium inputs, a mass balance calculation using water chemistry data and hydromagnesite as the sole mineral product resulted in a carbon sequestration rate of 61 t C/ha/year.

  15. Microbial growth on oxalate by a route not involving glyoxylate carboligase

    PubMed Central

    Blackmore, Maureen A.; Quayle, J. R.

    1970-01-01

    1. The metabolism of oxalate by the pink-pigmented organisms, Pseudomonas AM1, Pseudomonas AM2, Protaminobacter ruber and Pseudomonas extorquens has been compared with that of the non-pigmented Pseudomonas oxalaticus. 2. During growth on oxalate, all the organisms contain oxalyl-CoA decarboxylase, formate dehydrogenase and oxalyl-CoA reductase. This is consistent with oxidation of oxalate to carbon dioxide taking place via oxalyl-CoA, formyl-CoA and formate as intermediates, and also reduction of oxalate to glyoxylate taking place via oxalyl-CoA. 3. The pink-pigmented organisms, when grown on oxalate, contain l-serine–glyoxylate aminotransferase and hydroxypyruvate reductase but do not contain glyoxylate carboligase. The converse of this obtains in oxalate-grown Ps. oxalaticus. This indicates that, in contrast with Ps. oxalaticus, synthesis of C3 compounds from oxalate by the pink-pigmented organisms occurs by a variant of the `serine pathway' used by Pseudomonas AM1 during growth on C1 compounds. 4. Evidence in favour of this scheme is provided by the finding that a mutant of Pseudomonas AM1 that lacks hydroxypyruvate reductase is not able to grow on oxalate. PMID:5472155

  16. Low ambient temperature elevates plasma triiodothyronine concentrations while reducing digesta mean retention time and methane yield in sheep.

    PubMed

    Barnett, M C; McFarlane, J R; Hegarty, R S

    2015-06-01

    Ruminant methane yield (MY) is positively correlated with mean retention time (MRT) of digesta. The hormone triiodothyronine (T3 ), which is negatively correlated with ambient temperature, is known to influence MRT. It was hypothesised that exposing sheep to low ambient temperatures would increase plasma T3 concentration and decrease MRT of digesta within the rumen of sheep, resulting in a reduction of MY. To test this hypothesis, six Merino sheep were exposed to two different ambient temperatures (cold treatment, 9 ± 1 °C; warm control 26 ± 1 °C). The effects on MY, digesta MRT, plasma T3 concentration, CO2 production, DM intake, DM digestibility, change in body weight (BW), rumen volatile fatty acid (VFA) concentrations, estimated microbial protein output, protozoa abundance, wool growth, water intake, urine output and rectal temperature were studied. Cold treatment resulted in a reduction in MY (p < 0.01); digesta MRT in rumen (p < 0.01), hindgut (p = 0.01) and total digestive tract (p < 0.01); protozoa abundance (p < 0.05); and water intake (p < 0.001). Exposure to cold temperature increased plasma T3 concentration (p < 0.05), CO2 production (p = 0.01), total VFA concentrations (p = 0.03) and estimated microbial output from the rumen (p = 0.03). The rate of wool growth increased (p < 0.01) due to cold treatment, but DM intake, DM digestibility and BW change were not affected. The results suggest that exposure of sheep to cold ambient temperatures reduces digesta retention time in the gastrointestinal tract, leading to a reduction in enteric methane yield. Further research is warranted to determine whether T3 could be used as an indirect selection tool for genetic selection of low enteric methane-producing ruminants. Journal of Animal Physiology and Animal Nutrition © 2014 Blackwell Verlag GmbH.

  17. Microbial dissolution of calcite at T = 28 °C and ambient pCO 2

    NASA Astrophysics Data System (ADS)

    Jacobson, Andrew D.; Wu, Lingling

    2009-04-01

    This study used batch reactors to quantify the mechanisms and rates of calcite dissolution in the presence and absence of a single heterotrophic bacterial species ( Burkholderia fungorum). Experiments were conducted at T = 28°C and ambient pCO 2 over time periods spanning either 21 or 35 days. Bacteria were supplied with minimal growth media containing either glucose or lactate as a C source, NH 4+ as an N source, and H 2PO 4- as a P source. Combining stoichiometric equations for microbial growth with an equilibrium mass-balance model of the H 2O-CO 2-CaCO 3 system demonstrates that B. fungorum affected calcite dissolution by modifying pH and alkalinity during utilization of ionic N and C species. Uptake of NH 4+ decreased pH and alkalinity, whereas utilization of lactate, a negatively charged organic anion, increased pH and alkalinity. Calcite in biotic glucose-bearing reactors dissolved by simultaneous reaction with H 2CO 3 generated by dissolution of atmospheric CO 2 (H 2CO 3 + CaCO 3 → Ca 2+ + 2HCO 3-) and H + released during NH 4+ uptake (H + + CaCO 3 → Ca 2+ + HCO 3-). Reaction with H 2CO 3 and H + supplied ˜45% and 55% of the total Ca 2+ and ˜60% and 40% of the total HCO 3-, respectively. The net rate of microbial calcite dissolution in the presence of glucose and NH 4+ was ˜2-fold higher than that observed for abiotic control experiments where calcite dissolved only by reaction with H 2CO 3. In lactate bearing reactors, most H + generated by NH 4+ uptake reacted with HCO 3- produced by lactate oxidation to yield CO 2 and H 2O. Hence, calcite in biotic lactate-bearing reactors dissolved by reaction with H 2CO 3 at a net rate equivalent to that calculated for abiotic control experiments. This study suggests that conventional carbonate equilibria models can satisfactorily predict the bulk fluid chemistry resulting from microbe-calcite interactions, provided that the ionic forms and extent of utilization of N and C sources can be constrained. Because the solubility and dissolution rate of calcite inversely correlate with pH, heterotrophic microbial growth in the presence of nonionic organic matter and NH 4+ appears to have the greatest potential for enhancing calcite weathering relative to abiotic conditions.

  18. Power output of microbial fuel cell emphasizing interaction of anodic binder with bacteria

    NASA Astrophysics Data System (ADS)

    Li, Hongying; Liao, Bo; Xiong, Juan; Zhou, Xingwang; Zhi, Huozhen; Liu, Xiang; Li, Xiaoping; Li, Weishan

    2018-03-01

    Electrochemically active biofilm is necessary for the electron transfer between bacteria and anodic electrode in microbial fuel cells and selecting the type of anodic electrode material that favours formation of electrochemically active biofilm is crucial for the microbial fuel cell operation. We report a new finding that the interaction of anodic binder with bacteria plays more important role than its hydrophilicity for forming an electrochemically active biofilm, which is emphasized by applying poly(bisphenol A-co-epichorohydrin) as an anodic binder of the microbial fuel cell based on carbon nanotubes as anodic electrode and Escherichia coli as bacterium. The physical characterizations and electrochemical measurements demonstrate that poly(bisphenol A-co-epichorohydrin) exhibits a strong interaction with bacteria and thus provides the microbial fuel cell with excellent power density output. The MFC using poly(bisphenol A-co-epichorohydrin) reaches a maximum power density output of 3.8 W m-2. This value is larger than that of the MFCs using polytetrafluoroethylene that has poorer hydrophilicity, or polyvinyl alcohol that has better hydrophilicity but exhibits weaker interaction with bacteria than poly(bisphenol A-co-epichorohydrin).

  19. Significant Role for Microbial Autotrophy in the Sequestration of Soil Carbon

    PubMed Central

    Yuan, Hongzhao; Ge, Tida; Chen, Caiyan; O'Donnell, Anthony G.

    2012-01-01

    Soils were incubated for 80 days in a continuously labeled 14CO2 atmosphere to measure the amount of labeled C incorporated into the microbial biomass. Microbial assimilation of 14C differed between soils and accounted for 0.12% to 0.59% of soil organic carbon (SOC). Assuming a terrestrial area of 1.4 × 108 km2, this represents a potential global sequestration of 0.6 to 4.9 Pg C year−1. Estimated global C sequestration rates suggest a “missing sink” for carbon of between 2 and 3 Pg C year−1. To determine whether 14CO2 incorporation was mediated by autotrophic microorganisms, the diversity and abundance of CO2-fixing bacteria and algae were investigated using clone library sequencing, terminal restriction fragment length polymorphism (T-RFLP), and quantitative PCR (qPCR) of the ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) gene (cbbL). Phylogenetic analysis showed that the dominant cbbL-containing bacteria were Azospirillum lipoferum, Rhodopseudomonas palustris, Bradyrhizobium japonicum, Ralstonia eutropha, and cbbL-containing chromophytic algae of the genera Xanthophyta and Bacillariophyta. Multivariate analyses of T-RFLP profiles revealed significant differences in cbbL-containing microbial communities between soils. Differences in cbbL gene diversity were shown to be correlated with differences in SOC content. Bacterial and algal cbbL gene abundances were between 106 and 108 and 103 to 105 copies g−1 soil, respectively. Bacterial cbbL abundance was shown to be positively correlated with RubisCO activity (r = 0.853; P < 0.05), and both cbbL abundance and RubisCO activity were significantly related to the synthesis rates of [14C]SOC (r = 0.967 and 0.946, respectively; P < 0.01). These data offer new insights into the importance of microbial autotrophy in terrestrial C cycling. PMID:22286999

  20. Combining Microbial Enzyme Kinetics Models with Light Use Efficiency Models to Predict CO2 and CH4 Ecosystem Exchange from Flooded and Drained Peatland Systems

    NASA Astrophysics Data System (ADS)

    Oikawa, P. Y.; Jenerette, D.; Knox, S. H.; Sturtevant, C. S.; Verfaillie, J. G.; Baldocchi, D. D.

    2014-12-01

    Under California's Cap-and-Trade program, companies are looking to invest in land-use practices that will reduce greenhouse gas (GHG) emissions. The Sacramento-San Joaquin River Delta is a drained cultivated peatland system and a large source of CO2. To slow soil subsidence and reduce CO2 emissions, there is growing interest in converting drained peatlands to wetlands. However, wetlands are large sources of CH4 that could offset CO2-based GHG reductions. The goal of our research is to provide accurate measurements and model predictions of the changes in GHG budgets that occur when drained peatlands are restored to wetland conditions. We have installed a network of eddy covariance towers across multiple land use types in the Delta and have been measuring CO2 and CH4 ecosystem exchange for multiple years. In order to upscale these measurements through space and time we are using these data to parameterize and validate a process-based biogeochemical model. To predict gross primary productivity (GPP), we are using a simple light use efficiency (LUE) model which requires estimates of light, leaf area index and air temperature and can explain 90% of the observed variation in GPP in a mature wetland. To predict ecosystem respiration we have adapted the Dual Arrhenius Michaelis-Menten (DAMM) model. The LUE-DAMM model allows accurate simulation of half-hourly net ecosystem exchange (NEE) in a mature wetland (r2=0.85). We are working to expand the model to pasture, rice and alfalfa systems in the Delta. To predict methanogenesis, we again apply a modified DAMM model, using simple enzyme kinetics. However CH4 exchange is complex and we have thus expanded the model to predict not only microbial CH4 production, but also CH4 oxidation, CH4 storage and the physical processes regulating the release of CH4 to the atmosphere. The CH4-DAMM model allows accurate simulation of daily CH4 ecosystem exchange in a mature wetland (r2=0.55) and robust estimates of annual CH4 budgets. The LUE- and CH4-DAMM models will advance understanding of biogeochemisty and microbial processes in managed peatland systems as well as aid the development of a GHG protocol in the Delta that can provide financial incentive to farmers to reduce GHG emissions under California's Cap and Trade program.

  1. Electrode Modification and Optimization in Air-Cathode Single-Chamber Microbial Fuel Cells.

    PubMed

    Wang, Yanhua; Wu, Jiayan; Yang, Shengke; Li, Huihui; Li, Xiaoping

    2018-06-27

    Due to the known problems of microbial fuel cells (MFCs), such as low electricity generation performance and high cost of operation, we modified the electrode with graphene and polyaniline (PANI) is a single-chamber air-cathode MFC and then evaluated the effects of electrode modification on MFC electricity generation performance. Carbon cloth electrodes (unmodified, CC; graphene-modified, G/CC; and polyaniline-graphene-modified, PANI-G/CC) were prepared using the impregnation method. Sulfonated cobalt phthalocyanine (CoPcS) was then introduced as a cathode catalyst. The Co-PANI-G/CC cathode showed higher catalytic activity toward oxygen reduction compared with other electrodes. The maximum power density of the MFC with Co-PANI-G/CC cathode was 32.2 mW/m², which was 1.8 and 6.1 times higher than the value obtained with Co-G/CC and Co/CC cathodes, respectively. This indicates a significant improvement in the electricity generation of single-chamber MFCs and provides a simple, effective cathode modification method. Furthermore, we constructed single-chamber MFCs using the modified anode and cathode and analyzed electricity generation and oxytetracycline (OTC) degradation with different concentrations of OTC as the fuel. With increasing added OTC concentration, the MFC performance in both electricity generation and OTC degradation gradually decreased. However, when less than 50 mg/L OTC was added, the 5-day degradation rate of OTC reached more than 90%. It is thus feasible to process OTC-containing wastewater and produce electricity using single-chamber MFCs, which provides a new concept for wastewater treatment.

  2. Fe(III) oxides accelerate microbial nitrate reduction and electricity generation by Klebsiella pneumoniae L17.

    PubMed

    Liu, Tongxu; Li, Xiaomin; Zhang, Wei; Hu, Min; Li, Fangbai

    2014-06-01

    Klebsiella pneumoniae L17 is a fermentative bacterium that can reduce iron oxide and generate electricity under anoxic conditions, as previously reported. This study reveals that K. pneumoniae L17 is also capable of dissimilatory nitrate reduction, producing NO2(-), NH4(+), NO and N2O under anoxic conditions. The presence of Fe(III) oxides (i.e., α-FeOOH, γ-FeOOH, α-Fe2O3 and γ-Fe2O3) significantly accelerates the reduction of nitrate and generation of electricity by K. pneumoniae L17, which is similar to a previous report regarding another fermentative bacterium, Bacillus. No significant nitrate reduction was observed upon treatment with Fe(2+) or α-FeOOH+Fe(2+), but a slight facilitation of nitrate reduction and electricity generation was observed upon treatment with L17+Fe(2+). This result suggests that aqueous Fe(II) or mineral-adsorbed Fe(II) cannot reduce nitrate abiotically but that L17 can catalyze the reduction of nitrate and generation of electricity in the presence of Fe(II) (which might exist as cell surface-bound Fe(II)). To rule out the potential effect of Fe(II) produced by L17 during microbial iron reduction, treatments with the addition of TiO2 or Al2O3 instead of Fe(III) oxides also exhibited accelerated microbial nitrate reduction and electricity generation, indicating that cell-mineral sorption did account for the acceleration effect. However, the acceleration caused by Fe(III) oxides is only partially attributed to the cell surface-bound Fe(II) and cell-mineral sorption but may be driven by the iron oxide conduction band-mediated electron transfer from L17 to nitrate or an electrode, as proposed previously. The current study extends the diversity of bacteria of which nitrate reduction and electricity generation can be facilitated by the presence of iron oxides and confirms the positive role of Fe(III) oxides on microbial nitrate reduction and electricity generation by particular fermentative bacteria in anoxic environments. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Greenhouse gas emissions from a Cu-contaminated soil remediated by in situ stabilization and phytomanaged by a mixed stand of poplar, willows, and false indigo-bush.

    PubMed

    Šimek, M; Elhottová, D; Mench, M; Giagnoni, L; Nannipieri, P; Renella, G

    2017-11-02

    Phytomanagement of trace element-contaminated soils can reduce soil toxicity and restore soil ecological functions, including the soil gas exchange with the atmosphere. We studied the emission rate of the greenhouse gases (GHGs) CO 2 , CH 4 , and N 2 O; the potential CH 4 oxidation; denitrification enzyme activity (DEA), and glucose mineralization of a Cu-contaminated soil amended with dolomitic limestone and compost, alone or in combination, after a 2-year phytomanagement with a mixed stand of Populus nigra, Salix viminalis, S. caprea, and Amorpha fruticosa. Soil microbial biomass and microbial community composition after analysis of the phospholipid fatty acids (PLFA) profile were determined. Phytomanagement significantly reduced Cu availability and soil toxicity, increased soil microbial biomass and glucose mineralization capacity, changed the composition of soil microbial communities, and increased the CO 2 and N 2 O emission rates and DEA. Despite such increases, microbial communities were evolving toward less GHG emission per unit of microbial biomass than in untreated soils. Overall, the aided phytostabilization option would allow methanotrophic populations to establish in the remediated soils due to decreased soil toxicity and increased nutrient availability.

  4. N fertilization reduces the losses of old soil organic carbon

    NASA Astrophysics Data System (ADS)

    Zang, H.; Blagodatskaya, E.; Wang, J.; Kuzyakov, Y.; Xu, X.

    2016-12-01

    Agricultural soils have experiencing large anthropogenic nitrogen (N) inputs, which directly and indirectly affect soil organic matter (SOM) stocks and CO2 emissions. However, current understanding of how these additional N inputs affect SOM pools of various ages and turnover remains incomplete. The δ13C values of SOM after wheat (C3) - maize (C4) vegetation change enable to calculate the contribution of C4-derived rhizodeposited C (rhizo-C) and C3-derived old SOM pools. Soil (Ap from Haplic Luvisol) sampled from maize rhizosphere was incubated over 56 days after increasing N fertilization (4 levels up to 300 kg N ha-1). N fertilization decreased soil CO2 emissions by 27-42% as compared to unfertilized control. This decrease was mainly caused by the retardation of old C mineralization. The relative availability of rhizo-C (released by maize roots within 4 weeks) for microorganisms was about 10 times higher than of old C (older than 4 weeks). Microbial biomass and dissolved organic C were unaffected by increasing N. N fertilization, however, increased relative contribution of rhizo-C to microbial biomass for 2 - 5 times and to CO2 for about 2 times. This clearly reflects acceleration of microbial biomass turnover by N addition. The decomposition rate of rhizo-C was 3.7 times higher than of old C, and it increased additionally by the factor of 6.5 under high N fertilization. Our study is the first estimated the turnover and incorporation of very recent rhizo-C (within 4 weeks). Compared with several-years old C4, the turnover of rhizo-C was about 2 times faster. Concluding, the contribution of rhizo-C to CO2 and microbial biomass was highly responsive to N fertilization. N fertilization facilitates C sequestration in agricultural soils by decreasing old SOM decomposition mainly through increase the turnover and C use efficiency of rhizo-C. Keywords: CO2 partitioning; C3-C4 vegetation; microbial biomass; SOM decomposition; Nutrient availability

  5. Low-Light Anoxygenic Photosynthesis and Fe-S-Biogeochemistry in a Microbial Mat

    PubMed Central

    Haas, Sebastian; de Beer, Dirk; Klatt, Judith M.; Fink, Artur; Rench, Rebecca McCauley; Hamilton, Trinity L.; Meyer, Volker; Kakuk, Brian; Macalady, Jennifer L.

    2018-01-01

    We report extremely low-light-adapted anoxygenic photosynthesis in a thick microbial mat in Magical Blue Hole, Abaco Island, The Bahamas. Sulfur cycling was reduced by iron oxides and organic carbon limitation. The mat grows below the halocline/oxycline at 30 m depth on the walls of the flooded sinkhole. In situ irradiance at the mat surface on a sunny December day was between 0.021 and 0.084 μmol photons m-2 s-1, and UV light (<400 nm) was the most abundant part of the spectrum followed by green wavelengths (475–530 nm). We measured a light-dependent carbon uptake rate of 14.5 nmol C cm-2 d-1. A 16S rRNA clone library of the green surface mat layer was dominated (74%) by a cluster (>97% sequence identity) of clones affiliated with Prosthecochloris, a genus within the green sulfur bacteria (GSB), which are obligate anoxygenic phototrophs. Typical photopigments of brown-colored GSB, bacteriochlorophyll e and (β-)isorenieratene, were abundant in mat samples and their absorption properties are well-adapted to harvest light in the available green and possibly even UV-A spectra. Sulfide from the water column (3–6 μmol L-1) was the main source of sulfide to the mat as sulfate reduction rates in the mats were very low (undetectable-99.2 nmol cm-3 d-1). The anoxic water column was oligotrophic and low in dissolved organic carbon (175–228 μmol L-1). High concentrations of pyrite (FeS2; 1–47 μmol cm-3) together with low microbial process rates (sulfate reduction, CO2 fixation) indicate that the mats function as net sulfide sinks mainly by abiotic processes. We suggest that abundant Fe(III) (4.3–22.2 μmol cm-3) is the major source of oxidizing power in the mat, and that abiotic Fe-S-reactions play the main role in pyrite formation. Limitation of sulfate reduction by low organic carbon availability along with the presence of abundant sulfide-scavenging iron oxides considerably slowed down sulfur cycling in these mats. PMID:29755448

  6. Low-Light Anoxygenic Photosynthesis and Fe-S-Biogeochemistry in a Microbial Mat.

    PubMed

    Haas, Sebastian; de Beer, Dirk; Klatt, Judith M; Fink, Artur; Rench, Rebecca McCauley; Hamilton, Trinity L; Meyer, Volker; Kakuk, Brian; Macalady, Jennifer L

    2018-01-01

    We report extremely low-light-adapted anoxygenic photosynthesis in a thick microbial mat in Magical Blue Hole, Abaco Island, The Bahamas. Sulfur cycling was reduced by iron oxides and organic carbon limitation. The mat grows below the halocline/oxycline at 30 m depth on the walls of the flooded sinkhole. In situ irradiance at the mat surface on a sunny December day was between 0.021 and 0.084 μmol photons m -2 s -1 , and UV light (<400 nm) was the most abundant part of the spectrum followed by green wavelengths (475-530 nm). We measured a light-dependent carbon uptake rate of 14.5 nmol C cm -2 d -1 . A 16S rRNA clone library of the green surface mat layer was dominated (74%) by a cluster (>97% sequence identity) of clones affiliated with Prosthecochloris , a genus within the green sulfur bacteria (GSB), which are obligate anoxygenic phototrophs. Typical photopigments of brown-colored GSB, bacteriochlorophyll e and (β-)isorenieratene, were abundant in mat samples and their absorption properties are well-adapted to harvest light in the available green and possibly even UV-A spectra. Sulfide from the water column (3-6 μmol L -1 ) was the main source of sulfide to the mat as sulfate reduction rates in the mats were very low (undetectable-99.2 nmol cm -3 d -1 ). The anoxic water column was oligotrophic and low in dissolved organic carbon (175-228 μmol L -1 ). High concentrations of pyrite (FeS 2 ; 1-47 μmol cm -3 ) together with low microbial process rates (sulfate reduction, CO 2 fixation) indicate that the mats function as net sulfide sinks mainly by abiotic processes. We suggest that abundant Fe(III) (4.3-22.2 μmol cm -3 ) is the major source of oxidizing power in the mat, and that abiotic Fe-S-reactions play the main role in pyrite formation. Limitation of sulfate reduction by low organic carbon availability along with the presence of abundant sulfide-scavenging iron oxides considerably slowed down sulfur cycling in these mats.

  7. Microbial Priming and Protected Carbon Responses to Elevated CO2 at Local to Global Scales: a New Modeling Approach

    NASA Astrophysics Data System (ADS)

    Sulman, B. N.; Oishi, C.; Shevliakova, E.; Pacala, S. W.

    2013-12-01

    The soil carbon formulations commonly used in global carbon cycle models and Earth System models (ESMs) are based on first-order decomposition equations, where turnover of carbon is determined only by the size of the carbon pool and empirical functions of responses to temperature and moisture. These models do not include microbial dynamics or protection of carbon in microaggregates and mineral complexes, making them incapable of simulating important soil processes like priming and the influence of soil physical structure on carbon turnover. We present a new soil carbon dynamics model - Carbon, Organisms, Respiration, and Protection in the Soil Environment (CORPSE) - that explicitly represents microbial biomass and protected carbon pools. The model includes multiple types of carbon with different chemically determined turnover rates that interact with a single dynamic microbial biomass pool, allowing the model to simulate priming effects. The model also includes the formation and turnover of protected carbon that is inaccessible to microbial decomposers. The rate of protected carbon formation increases with microbial biomass. CORPSE has been implemented both as a stand-alone model and as a component of the NOAA Geophysical Fluid Dynamics Laboratory (GFDL) ESM. We calibrated the model against measured soil carbon stocks from the Duke FACE experiment. The model successfully simulated the seasonal pattern of heterotrophic CO2 production. We investigated the roles of priming and protection in soil carbon accumulation by running the model using measured inputs of leaf litter, fine roots, and root exudates from the ambient and elevated CO2 plots at the Duke FACE experiment. Measurements from the experiment showed that elevated CO2 caused enhanced root exudation, increasing soil carbon turnover in the rhizosphere due to priming effects. We tested the impact of increased root exudation on soil carbon accumulation by comparing model simulations of carbon accumulation under elevated CO2 with and without increased root exudation. Increased root exudation stimulated microbial activity in the model, resulting in reduced accumulation of chemically recalcitrant carbon, but increasing the formation of protected carbon. This indicates that elevated CO2 could cause decreases in soil carbon storage despite increases in productivity in ecosystems where protection of soil carbon is limited. These effects have important implications for simulations of soil carbon response to elevated CO2 in current terrestrial carbon cycle models. The CORPSE model has been implemented in LM3, the terrestrial component of the GFDL ESM. In addition to the functionality described above, this model adds vertically resolved carbon pools and vertical transfers of carbon, leading to a decrease in carbon turnover rates with depth due to leaching of priming agents from the surface. We present preliminary global simulations using this model, including the variation of microbial activity and protected carbon with latitude and the resulting impacts on the sensitivity of soil carbon to climatic warming.

  8. Effects of biochar and elevated soil temperature on soil microbial activity and abundance in an agricultural system

    NASA Astrophysics Data System (ADS)

    Bamminger, Chris; Poll, Christian; Marhan, Sven

    2014-05-01

    As a consequence of Global Warming, rising surface temperatures will likely cause increased soil temperatures. Soil warming has already been shown to, at least temporarily, increase microbial activity and, therefore, the emissions of greenhouse gases like CO2 and N2O. This underlines the need for methods to stabilize soil organic matter and to prevent further boost of the greenhouse gas effect. Plant-derived biochar as a soil amendment could be a valuable tool to capture CO2 from the atmosphere and sequestrate it in soil on the long-term. During the process of pyrolysis, plant biomass is heated in an oxygen-low atmosphere producing the highly stable solid matter biochar. Biochar is generally stable against microbial degradation due to its chemical structure and it, therefore, persists in soil for long periods. Previous experiments indicated that biochar improves or changes several physical or chemical soil traits such as water holding capacity, cation exchange capacity or soil structure, but also biotic properties like microbial activity/abundance, greenhouse gas emissions and plant growth. Changes in the soil microbial abundance and community composition alter their metabolism, but likely also affect plant productivity. The interaction of biochar addition and soil temperature increase on soil microbial properties and plant growth was yet not investigated on the field scale. To investigate whether warming could change biochar effects in soil, we conducted a field experiment attached to a soil warming experiment on an agricultural experimental site near the University of Hohenheim, already running since July 2008. The biochar field experiment was set up as two-factorial randomized block design (n=4) with the factors biochar amendment (0, 30 t ha-1) and soil temperature (ambient, elevated=ambient +2.5° C) starting from August 2013. Each plot has a dimension of 1x1m and is equipped with combined soil temperature and moisture sensors. Slow pyrolysis biochar from the C4 plant Miscanthus was first put on top and then manually incorporated into 20-30 cm soil depth. Differences in the isotopic signature of the biochar and the soil organic matter make it possible to trace the flow of biochar-derived carbon into different labile C pools such as CO2 or microbial biomass. Spring barley litter of the previous growing season was mixed into soil together with the biochar. Rapeseed oil plants were sown one week after biochar application. Weekly gas sampling between the crop rows allows the determination of CO2, N2O and CH4 fluxes. In addition, 13CO2 will be measured at specific dates in order to calculate the proportion of biochar-C in emitted CO2. First soil sampling after biochar application was in November 2013 and soil was taken in three depths (0-5, 5-15 and 15-30 cm). After the first three months we could not observe any effect of biochar on CO2 and N2O emissions, but elevated soil temperature increased emissions of both gases. Data on soil microbial abundance and community composition will be available soon.

  9. Effects of coconut and fish oils on ruminal methanogenesis, fermentation, and abundance and diversity of microbial populations in vitro.

    PubMed

    Patra, A K; Yu, Z

    2013-03-01

    Coconut (CO) and fish (FO) oils were previously shown to inhibit rumen methanogenesis and biohydrogenation, which mitigates methane emission and helps improve beneficial fatty acids in meat and milk. This study aimed at investigating the comparative effects of CO and FO on the methanogenesis, fermentation, and microbial abundances and diversity in vitro rumen cultures containing different doses (0, 3.1, and 6.2 mL/L) of each oil and 400mg feed substrate using rumen fluid from lactating dairy cows as inocula. Increasing doses of CO and FO quadratically decreased concentrations of methane, but hydrogen concentrations were only increased quadratically by CO. Both oils linearly decreased dry matter and neutral detergent fiber digestibility of feeds but did not affect the concentration of total volatile fatty acids. However, CO reduced acetate percentage and acetate to propionate ratio and increased the percentages of propionate and butyrate to a greater extent than FO. Ammonia concentration was greater for CO than FO. As determined by quantitative real-time PCR, FO had greater inhibition to methanogens than CO, but the opposite was true for protozoal, Ruminococcus flavefaciens, and Fibrobacter succinogenes. Ruminococcus albus was not affected by either oil. Denaturing gradient gel electrophoresis (DGGE) profiles revealed that bacterial and archaeal community composition were changed differently by oil type. Based on Pareto-Lorenz evenness curve analysis of the DGGE profiles, CO noticeably changed the functional organization of archaea compared with FO. In conclusion, although both CO and FO decreased methane concentrations to a similar extent, the mode of reduction and the effect on abundances and diversity of archaeal and bacterial populations differed between the oils. Thus, the use of combination of CO and FO at a low dose may additively lower methanogenesis in the rumen while having little adverse effect on rumen fermentation. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Microbial, Physical and Chemical Drivers of COS and 18O-CO2 Exchange in Soils

    NASA Astrophysics Data System (ADS)

    Meredith, L. K.; Boye, K.; Whelan, M.; Pang, E.; von Sperber, C.; Brueggemann, N.; Berry, J. A.; Welander, P. V.

    2015-12-01

    Carbonyl sulfide (COS) and the oxygen isotope composition (δ18O) of CO2 are potential tools for differentiating the contributions of photosynthesis and respiration to the balance of global carbon cycling. These processes are coupled at the leaf level via the enzyme carbonic anhydrase (CA), which hydrolyzes CO2 in the first biochemical step of the photosynthetic pathway (CO2 + H2O ⇌ HCO3- + H+) and correspondingly structural analogue COS (COS + H2O → CO2 + H2S). CA also accelerates the exchange of oxygen isotopes between CO2 and H2O leading to a distinct isotopic imprint [1]. The biogeochemical cycles of these tracers include significant, yet poorly characterized soil processes that challenge their utility for probing the carbon cycle. In soils, microbial CA also hydrolyze COS and accelerate O isotope exchange between CO2 and soil water. Soils have been observed to emit COS by undetermined processes. To account for these soil processes, measurements are needed to identify the key microbial, chemical, and physical factors. In this study, we survey COS and δ18O exchange in twenty different soils spanning a variety of biomes and soil properties. By comparing COS fluxes and δ18O-CO2 values emitted from moist soils we investigate whether the same types of CA catalyze these two processes. Additionally, we seek to identify the potential chemical drivers of COS emissions by measuring COS fluxes in dry soils. These data are compared with soil physical (bulk density, volumetric water content, texture), chemical (pH, elemental analysis, sulfate, sulfur K-edge XANES), and microbial measurements (biomass and phylogeny). Furthermore, we determine the abundance and diversity of CA-encoding genes to directly link CA with measured soil function. This work will define the best predictors for COS fluxes and δ18O-CO2 values from our suite of biogeochemical measurements. The suitability of identified predictor variables can be tested in follow-up studies and applied for modeling purposes. References: [1] Von Sperber, C., Weiler, M. and Brüggemann, N.: The effect of soil moisture, soil particle size, litter layer and carbonic anhydrase on the oxygen isotopic composition of soil-released CO2, Eur. J. Soil Sci., 66(3), doi:10.1111/ejss.12241, 2015.

  11. Rates of microbial metabolism in deep coastal plain aquifers

    USGS Publications Warehouse

    Chapelle, F.H.; Lovley, D.R.

    1990-01-01

    Rates of microbial metabolism in deep anaerobic aquifers of the Atlantic coastal plain of South Carolina were investigated by both microbiological and geochemical techniques. Rates of [2-14C]acetate and [U-14C]glucose oxidation as well as geochemical evidence indicated that metabolic rates were faster in the sandy sediments composing the aquifers than in the clayey sediments of the confining layers. In the sandy aquifer sediments, estimates of the rates of CO2 production (millimoles of CO2 per liter per year) based on the oxidation of [2-14C]acetate were 9.4 x 10-3 to 2.4 x 10-1 for the Black Creek aquifer, 1.1 x 10-2 for the Middendorf aquifer, and <7 x 10-5 for the Cape Fear aquifer. These estimates were at least 2 orders of magnitude lower than previously published estimates that were based on the accumulation of CO2 in laboratory incubations of similar deep subsurface sediments. In contrast, geochemical modeling of groundwater chemistry changes along aquifer flowpaths gave rate estimates that ranged from 10-4 to 10-6 mmol of CO2 per liter per year. The age of these sediments (ca. 80 million years) and their organic carbon content suggest that average rates of CO2 production could have been no more than 10-4 mmol per liter per year. Thus, laboratory incubations may greatly overestimate the in situ rates of microbial metabolism in deep subsurface environments. This has important implications for the use of laboratory incubations in attempts to estimate biorestoration capacities of deep aquifers. The rate estimates from geochemical modeling indicate that deep aquifers are among the most oligotrophic aquatic environments in which there is ongoing microbial metabolism.

  12. Coupling between sulfur recycling and syndepositional carbonate dissolution: evidence from oxygen and sulfur isotope composition of pore water sulfate, South Florida Platform, U.S.A.

    NASA Astrophysics Data System (ADS)

    Ku, T. C. W.; Walter, L. M.; Coleman, M. L.; Blake, R. E.; Martini, A. M.

    1999-10-01

    Sulfur cycling in Fe-poor, organic-rich shelf carbonates, known to have rapid rates of SO4-2 reduction, remains poorly studied despite the volumetric significance of shelf deposits in modern and ancient carbon budgets. We investigated sulfur cycling in modern carbonates of the Florida Platform from end-member depositional environments (muddy sands from the Atlantic reef tract and finer-grained mudbank and island flank deposits from Florida Bay). Relations between pore water chemistry (SO4-2, ΣCO2, Ca-2/Cl-) and oxygen and sulfur stable isotope compositions of SO4-2 require direct coupling between sulfur redox cycling and syndepositional carbonate dissolution. Oxygen isotope compositions of pore water sulfate were remarkably shifted away from the established value for marine SO4-2 (+9.5‰), despite near normal SO4-2/Cl- ratios. Chemical evolution was least in reef tract pore waters and greatest in Florida Bay. Relative to overlying seawater, mudbank sediments exhibited sulfate depletion, with δ18OSO4 and δ34SSO4 values both increasing by about 7‰. More bioturbated island flank sediments, colonized by Thalassia grass, had a 5‰ increase in δ18OSO4, variable δ34SSO4 values (+17.7 to +23.3‰) and exceptionally high Ca+2/Cl- ratios. The large excess of Ca+2 (up to 1.7 mM) requires a much larger acid source than the amounts derived from utilization of dissolved O2 (∼0.3 mM) and small degrees of net SO4-2 reduction (<0.5 mM reduced). A conceptual model was constructed using chemical and isotopic data on natural pore waters and on sulfate isotope fractionation factors obtained from sediment incubation experiments. The model outputs show that pore water compositions can be explained by a redox cycle where microbial SO4-2 reduction is followed by very efficient H2S oxidation, thus maintaining virtually invariant SO4-2/Cl- ratios. The enhanced O2 transport may be driven by associated marine grass rhizome systems and microbial communities established in bioturbated sediments. The net result of the cycle is that the rate of sulfide oxidation, which is largely balanced by the rate of microbial sulfate reduction, is stoichiometrically related to the rate of carbonate dissolution. This is consistent with previously reported rates of carbonate dissolution (∼400 μmol/cm2-yr) and average rates of sulfate reduction (∼200 μmol/cm2-yr) from the Florida Platform and a 2:1 stoichiometry.

  13. Bioremediation of uranium-contaminated groundwater: a systems approach to subsurface biogeochemistry.

    PubMed

    Williams, Kenneth H; Bargar, John R; Lloyd, Jonathan R; Lovley, Derek R

    2013-06-01

    Adding organic electron donors to stimulate microbial reduction of highly soluble U(VI) to less soluble U(IV) is a promising strategy for immobilizing uranium in contaminated subsurface environments. Studies suggest that diagnosing the in situ physiological status of the subsurface community during uranium bioremediation with environmental transcriptomic and proteomic techniques can identify factors potentially limiting U(VI) reduction activity. Models which couple genome-scale in silico representations of the metabolism of key microbial populations with geochemical and hydrological models may be able to predict the outcome of bioremediation strategies and aid in the development of new approaches. Concerns remain about the long-term stability of sequestered U(IV) minerals and the release of co-contaminants associated with Fe(III) oxides, which might be overcome through targeted delivery of electrons to select microorganisms using in situ electrodes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. In situ detection of microbial respiration in soils and salt flats. [Nevada desert

    NASA Technical Reports Server (NTRS)

    Tew, R. W.

    1973-01-01

    Increase in CO2 partial pressures over a desert soil treated with casamino-acids glucose solution correlated with bacterial growth. Few or no increases in numbers of bacteria or CO2 concentrations were noted in similar plots treated with water only or receiving no treatment. Growth in the soil appeared to be severely nutrient limited during the 10 day experiment. Especially rapid growth took place between the third and fifth day, when temperatures ranged from 0 deg. (night) to a maximum of 17.4 deg. (day). Under the conditions of the experiment, intermittent CO2 assay was an insensitive indicator of growth, possibly because of restiction of gas escape by the desert pavement or solution, exchange, or precipitation of carbonate, but more likely because of inefficient sealing of hoods to and below the soil surface. CO2 assay was unable to detect microbial successions. The unpredictable course of these successions, plus unpredictable relative retentions mitigates against assay of organic gases as reliable in situ detection of microbial activity, except perhaps in very alkaline environments such as Owens Lake salts.

  15. Soil Mesocosm CO2 Emissions after 13C-glucose Addition, Soil Physical and Chemical Characteristics, and Microbial Biomass, Barrow, Alaska, 2014-2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lydia Vaughn; Biao Zhu; Carolin Bimueller

    Measurements made from a 2014-2016 field glucose addition experiment. Dataset includes measurements of surface trace gas emissions (Delta13C of ecosystem respiration and source-partitioned surface CO2 flux, CH4 flux, and GPP), soil profile information (concentrations of carbon, nitrogen, and soil microbial biomass carbon, Delta13C of soil organic matter and microbial biomass, gravimetric water content, and bulk density), soil mineral nitrogen availability, and field-measured soil temperature, air temperature and soil moisture. Experiment was conducted in a region of high-centered polygons on the BEO. Data will be available Fall 2017.

  16. Necessary and sufficient conditions for the successful three-phase photocatalytic reduction of CO2 by H2O over heterogeneous photocatalysts.

    PubMed

    Teramura, Kentaro; Tanaka, Tsunehiro

    2018-03-28

    Artificial photosynthesis has recently drawn an increasing amount of attention due to the fact that it allows for direct solar-to-chemical energy conversion. However, one of the basic steps of this process, namely the reduction of CO2 by H2O to afford O2 and CO2 reduction products (CO2RPs) such as HCOOH, CO, HCHO, CH3OH, and CH4, is very difficult to achieve. In contrast to the CO2 reduction in plants and homogenous systems, the reduction of CO2 to CO2RPs over heterogeneous photocatalysts was challenged by the competing reduction of H+ to H2. Unfortunately, most of the research performed so far has focused only on the reduction of CO2, rather than the characterization of the H2O oxidation and H2 production. Moreover, the fact that the heterogeneous photocatalytic reduction of CO2 into CO2RPs by H2O should satisfy several selectivity criteria has often been ignored. Herein, we propose three such evaluation criteria, namely (1) the origin of carbon in CO2RPs (determined using isotopically labeled CO2 (13CO2)), (2) the relative amount of H2 and CO2RPs produced, and (3) the amount of O2 produced by the oxidation of H2O. If all these criteria are satisfied, i.e., the carbons of CO2RPs originate from CO2, the amount of H2 produced is negligible, and a stoichiometric amount of O2 is produced by the oxidation of H2O, then CO2 introduced into the gas phase is believed to be reduced by H2O to CO2RPs in the aqueous phase.

  17. Demonstrating microbial co-occurrence pattern analyses within and between ecosystems

    PubMed Central

    Williams, Ryan J.; Howe, Adina; Hofmockel, Kirsten S.

    2014-01-01

    Co-occurrence patterns are used in ecology to explore interactions between organisms and environmental effects on coexistence within biological communities. Analysis of co-occurrence patterns among microbial communities has ranged from simple pairwise comparisons between all community members to direct hypothesis testing between focal species. However, co-occurrence patterns are rarely studied across multiple ecosystems or multiple scales of biological organization within the same study. Here we outline an approach to produce co-occurrence analyses that are focused at three different scales: co-occurrence patterns between ecosystems at the community scale, modules of co-occurring microorganisms within communities, and co-occurring pairs within modules that are nested within microbial communities. To demonstrate our co-occurrence analysis approach, we gathered publicly available 16S rRNA amplicon datasets to compare and contrast microbial co-occurrence at different taxonomic levels across different ecosystems. We found differences in community composition and co-occurrence that reflect environmental filtering at the community scale and consistent pairwise occurrences that may be used to infer ecological traits about poorly understood microbial taxa. However, we also found that conclusions derived from applying network statistics to microbial relationships can vary depending on the taxonomic level chosen and criteria used to build co-occurrence networks. We present our statistical analysis and code for public use in analysis of co-occurrence patterns across microbial communities. PMID:25101065

  18. Adaptation of the autotrophic acetogen Sporomusa ovata to methanol accelerates the conversion of CO2 to organic products.

    PubMed

    Tremblay, Pier-Luc; Höglund, Daniel; Koza, Anna; Bonde, Ida; Zhang, Tian

    2015-11-04

    Acetogens are efficient microbial catalysts for bioprocesses converting C1 compounds into organic products. Here, an adaptive laboratory evolution approach was implemented to adapt Sporomusa ovata for faster autotrophic metabolism and CO2 conversion to organic chemicals. S. ovata was first adapted to grow quicker autotrophically with methanol, a toxic C1 compound, as the sole substrate. Better growth on different concentrations of methanol and with H2-CO2 indicated the adapted strain had a more efficient autotrophic metabolism and a higher tolerance to solvent. The growth rate on methanol was increased 5-fold. Furthermore, acetate production rate from CO2 with an electrode serving as the electron donor was increased 6.5-fold confirming that the acceleration of the autotrophic metabolism of the adapted strain is independent of the electron donor provided. Whole-genome sequencing, transcriptomic, and biochemical studies revealed that the molecular mechanisms responsible for the novel characteristics of the adapted strain were associated with the methanol oxidation pathway and the Wood-Ljungdahl pathway of acetogens along with biosynthetic pathways, cell wall components, and protein chaperones. The results demonstrate that an efficient strategy to increase rates of CO2 conversion in bioprocesses like microbial electrosynthesis is to evolve the microbial catalyst by adaptive laboratory evolution to optimize its autotrophic metabolism.

  19. Metagenomics-Enabled Understanding of Soil Microbial Feedbacks to Climate Warming

    NASA Astrophysics Data System (ADS)

    Zhou, J.; Wu, L.; Zhili, H.; Kostas, K.; Luo, Y.; Schuur, E. A. G.; Cole, J. R.; Tiedje, J. M.

    2014-12-01

    Understanding the response of biological communities to climate warming is a central issue in ecology and global change biology, but it is poorly understood microbial communities. To advance system-level predictive understanding of the feedbacks of belowground microbial communities to multiple climate change factors and their impacts on soil carbon (C) and nitrogen (N) cycling processes, we have used integrated metagenomic technologies (e.g., target gene and shotgun metagenome sequencing, GeoChip, and isotope) to analyze soil microbial communities from experimental warming sites in Alaska (AK) and Oklahoma (OK), and long-term laboratory incubation. Rapid feedbacks of microbial communities to warming were observed in the AK site. Consistent with the changes in soil temperature, moisture and ecosystem respiration, microbial functional community structure was shifted after only 1.5-year warming, indicating rapid responses and high sensitivity of this permafrost ecosystem to climate warming. Also, warming stimulated not only functional genes involved in aerobic respiration of both labile and recalcitrant C, contributing to an observed 24% increase in 2010 growing season and 56% increase of decomposition of a standard substrate, but also functional genes for anaerobic processes (e.g., denitrification, sulfate reduction, methanogenesis). Further comparisons by shotgun sequencing showed significant differences of microbial community structure between AK and OK sites. The OK site was enriched in genes annotated for cellulose degradation, CO2 production, denitrification, sporulation, heat shock response, and cellular surface structures (e.g., trans-membrane transporters for glucosides), while the AK warmed plots were enriched in metabolic pathways related to labile C decomposition. Together, our results demonstrate the vulnerability of permafrost ecosystem C to climate warming and the importance of microbial feedbacks in mediating such vulnerability.

  20. SOIL FLUXES OF CO2, CO, NO AND N2O FROM AN OLD-PASTURE AND FROM NATIVE SAVANNA IN BRAZIL

    EPA Science Inventory

    We compared fluxes of CO2, CO, NO and N2O, soil microbial biomass, and N-mineralization rates in a 20-year old Brachiaria pasture and a native cerrado area (savanna in Central Brazil). In order to assess the spatial variability of CO2 fluxes, we tested the relation between elect...

  1. Deciphering the factors influencing the discrepant fate of antibiotic resistance genes in sludge and water phases during municipal wastewater treatment.

    PubMed

    Zhang, Junya; Yang, Min; Zhong, Hui; Liu, Mengmeng; Sui, Qianwen; Zheng, Libing; Tong, Juan; Wei, Yuansong

    2018-06-09

    The discrepant fate of antibiotic resistance genes (ARGs) in sludge and water phases was investigated in a municipal wastewater treatment plant, and a lab-scale A 2 O-MBR was operated to provide background value of ARGs. The influencing factors of ARGs including microbial community, co-selection from heavy metals, biomass and horizontal gene transfer were concerned. Results showed that iA 2 O (inversed A 2 O) showed better ARGs reduction, and longer SRT (sludge retention time) increased ARGs relative abundance while reduced the gene copies of ARGs in the effluent, but significantly increased the ARGs in sludge phase. Compared to background value, the most enriched ARG was tetX in water phase, while it was intI1 in sludge phase. There existed higher abundance of multi-resistant bacteria in sludge phase, and microbial community determined the fate of ARGs in both water and sludge phase, while the direct effects from horizontal gene transfer should not be overlooked especially in water phase. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Microbial oxidation as a methane sink beneath the West Antarctic Ice Sheet

    NASA Astrophysics Data System (ADS)

    Michaud, Alexander B.; Dore, John E.; Achberger, Amanda M.; Christner, Brent C.; Mitchell, Andrew C.; Skidmore, Mark L.; Vick-Majors, Trista J.; Priscu, John C.

    2017-08-01

    Aquatic habitats beneath ice masses contain active microbial ecosystems capable of cycling important greenhouse gases, such as methane (CH4). A large methane reservoir is thought to exist beneath the West Antarctic Ice Sheet, but its quantity, source and ultimate fate are poorly understood. For instance, O2 supplied by basal melting should result in conditions favourable for aerobic methane oxidation. Here we use measurements of methane concentrations and stable isotope compositions along with genomic analyses to assess the sources and cycling of methane in Subglacial Lake Whillans (SLW) in West Antarctica. We show that sub-ice-sheet methane is produced through the biological reduction of CO2 using H2. This methane pool is subsequently consumed by aerobic, bacterial methane oxidation at the SLW sediment-water interface. Bacterial oxidation consumes >99% of the methane and represents a significant methane sink, and source of biomass carbon and metabolic energy to the surficial SLW sediments. We conclude that aerobic methanotrophy may mitigate the release of methane to the atmosphere upon subglacial water drainage to ice sheet margins and during periods of deglaciation.

  3. Low Light Availability Alters Root Exudation and Reduces Putative Beneficial Microorganisms in Seagrass Roots

    PubMed Central

    Martin, Belinda C.; Gleeson, Deirdre; Statton, John; Siebers, Andre R.; Grierson, Pauline; Ryan, Megan H.; Kendrick, Gary A.

    2018-01-01

    Seagrass roots host a diverse microbiome that is critical for plant growth and health. Composition of microbial communities can be regulated in part by root exudates, but the specifics of these interactions in seagrass rhizospheres are still largely unknown. As light availability controls primary productivity, reduced light may impact root exudation and consequently the composition of the root microbiome. Hence, we analyzed the influence of light availability on root exudation and community structure of the root microbiome of three co-occurring seagrass species, Halophila ovalis, Halodule uninervis and Cymodocea serrulata. Plants were grown under four light treatments in mesocosms for 2 weeks; control (100% surface irradiance (SI), medium (40% SI), low (20% SI) and fluctuating light (10 days 20% and 4 days 100%). 16S rDNA amplicon sequencing revealed that microbial diversity, composition and predicted function were strongly influenced by the presence of seagrass roots, such that root microbiomes were unique to each seagrass species. Reduced light availability altered seagrass root exudation, as characterized using fluorescence spectroscopy, and altered the composition of seagrass root microbiomes with a reduction in abundance of potentially beneficial microorganisms. Overall, this study highlights the potential for above-ground light reduction to invoke a cascade of changes from alterations in root exudation to a reduction in putative beneficial microorganisms and, ultimately, confirms the importance of the seagrass root environment – a critical, but often overlooked space. PMID:29375529

  4. Interacting Microbe and Litter Quality Controls on Litter Decomposition: A Modeling Analysis

    PubMed Central

    Moorhead, Daryl; Lashermes, Gwenaëlle; Recous, Sylvie; Bertrand, Isabelle

    2014-01-01

    The decomposition of plant litter in soil is a dynamic process during which substrate chemistry and microbial controls interact. We more clearly quantify these controls with a revised version of the Guild-based Decomposition Model (GDM) in which we used a reverse Michaelis-Menten approach to simulate short-term (112 days) decomposition of roots from four genotypes of Zea mays that differed primarily in lignin chemistry. A co-metabolic relationship between the degradation of lignin and holocellulose (cellulose+hemicellulose) fractions of litter showed that the reduction in decay rate with increasing lignin concentration (LCI) was related to the level of arabinan substitutions in arabinoxylan chains (i.e., arabinan to xylan or A∶X ratio) and the extent to which hemicellulose chains are cross-linked with lignin in plant cell walls. This pattern was consistent between genotypes and during progressive decomposition within each genotype. Moreover, decay rates were controlled by these cross-linkages from the start of decomposition. We also discovered it necessary to divide the Van Soest soluble (labile) fraction of litter C into two pools: one that rapidly decomposed and a second that was more persistent. Simulated microbial production was consistent with recent studies suggesting that more rapidly decomposing materials can generate greater amounts of potentially recalcitrant microbial products despite the rapid loss of litter mass. Sensitivity analyses failed to identify any model parameter that consistently explained a large proportion of model variation, suggesting that feedback controls between litter quality and microbial activity in the reverse Michaelis-Menten approach resulted in stable model behavior. Model extrapolations to an independent set of data, derived from the decomposition of 12 different genotypes of maize roots, averaged within <3% of observed respiration rates and total CO2 efflux over 112 days. PMID:25264895

  5. Synthetic biology for microbial production of lipid-based biofuels.

    PubMed

    d'Espaux, Leo; Mendez-Perez, Daniel; Li, Rachel; Keasling, Jay D

    2015-12-01

    The risks of maintaining current CO2 emission trends have led to interest in producing biofuels using engineered microbes. Microbial biofuels reduce emissions because CO2 produced by fuel combustion is offset by CO2 captured by growing biomass, which is later used as feedstock for biofuel fermentation. Hydrocarbons found in petroleum fuels share striking similarity with biological lipids. Here we review synthetic metabolic pathways based on fatty acid and isoprenoid metabolism to produce alkanes and other molecules suitable as biofuels. We further discuss engineering strategies to optimize engineered biosynthetic routes, as well as the potential of synthetic biology for sustainable manufacturing. Published by Elsevier Ltd.

  6. Community structure and soil pH determine chemoautotrophic carbon dioxide fixation in drained paddy soils.

    PubMed

    Long, Xi-En; Yao, Huaiying; Wang, Juan; Huang, Ying; Singh, Brajesh K; Zhu, Yong-Guan

    2015-06-16

    Previous studies suggested that microbial photosynthesis plays a potential role in paddy fields, but little is known about chemoautotrophic carbon fixers in drained paddy soils. We conducted a microcosm study using soil samples from five paddy fields to determine the environmental factors and quantify key functional microbial taxa involved in chemoautotrophic carbon fixation. We used stable isotope probing in combination with phospholipid fatty acid (PLFA) and molecular approaches. The amount of microbial (13)CO2 fixation was determined by quantification of (13)C-enriched fatty acid methyl esters and ranged from 21.28 to 72.48 ng of (13)C (g of dry soil)(-1), and the corresponding ratio (labeled PLFA-C:total PLFA-C) ranged from 0.06 to 0.49%. The amount of incorporationof (13)CO2 into PLFAs significantly increased with soil pH except at pH 7.8. PLFA and high-throughput sequencing results indicated a dominant role of Gram-negative bacteria or proteobacteria in (13)CO2 fixation. Correlation analysis indicated a significant association between microbial community structure and carbon fixation. We provide direct evidence of chemoautotrophic C fixation in soils with statistical evidence of microbial community structure regulation of inorganic carbon fixation in the paddy soil ecosystem.

  7. Connecting biodiversity and potential functional role in modern euxinic environments by microbial metagenomics

    PubMed Central

    Llorens-Marès, Tomàs; Yooseph, Shibu; Goll, Johannes; Hoffman, Jeff; Vila-Costa, Maria; Borrego, Carles M; Dupont, Chris L; Casamayor, Emilio O

    2015-01-01

    Stratified sulfurous lakes are appropriate environments for studying the links between composition and functionality in microbial communities and are potentially modern analogs of anoxic conditions prevailing in the ancient ocean. We explored these aspects in the Lake Banyoles karstic area (NE Spain) through metagenomics and in silico reconstruction of carbon, nitrogen and sulfur metabolic pathways that were tightly coupled through a few bacterial groups. The potential for nitrogen fixation and denitrification was detected in both autotrophs and heterotrophs, with a major role for nitrogen and carbon fixations in Chlorobiaceae. Campylobacterales accounted for a large percentage of denitrification genes, while Gallionellales were putatively involved in denitrification, iron oxidation and carbon fixation and may have a major role in the biogeochemistry of the iron cycle. Bacteroidales were also abundant and showed potential for dissimilatory nitrate reduction to ammonium. The very low abundance of genes for nitrification, the minor presence of anammox genes, the high potential for nitrogen fixation and mineralization and the potential for chemotrophic CO2 fixation and CO oxidation all provide potential clues on the anoxic zones functioning. We observed higher gene abundance of ammonia-oxidizing bacteria than ammonia-oxidizing archaea that may have a geochemical and evolutionary link related to the dominance of Fe in these environments. Overall, these results offer a more detailed perspective on the microbial ecology of anoxic environments and may help to develop new geochemical proxies to infer biology and chemistry interactions in ancient ecosystems. PMID:25575307

  8. Biases of chamber methods for measuring soil CO2 efflux demonstrated with a laboratory apparatus.

    Treesearch

    S. Mark Nay; Kim G. Mattson; Bernard T. Bormann

    1994-01-01

    Investigators have historically measured soil CO2 efflux as an indicator of soil microbial and root activity and more recently in calculations of carbon budgets. The most common methods estimate CO2 efflux by placing a chamber over the soil surface and quantifying the amount of CO2 entering the...

  9. Composition and origin of coalbed gases in the Lower Silesian basin, southwest Poland

    USGS Publications Warehouse

    Kotarba, M.J.; Rice, D.D.

    2001-01-01

    Coalbed gases in the Lower Silesian Coal Basin (LSCB) of Poland are highly variable in both their molecular and stable isotope compositions. Geochemical indices and stable isotope ratios vary within the following ranges: hydrocarbon (CHC) index CHC = CH4/(C2H6+C3H8) from 1.1 to 5825, wet gas (C2+) index C2+ = (C2H6+ C3H8+ C4H10+ C5H12) / (CH4+ C2H6+ C3H8+ C4H10+ C5H12) 100 (%) from 0.0 to 48.3%, CO2-CH4 (CDMI) index CDMI = CO2/ (CO2+ CH4) 100 (%) from 0.1 to 99.9%, ??13C(CH4) from -66.1 to -24.6%o, ??D(CH4) from -266 to -117%o, ??13C(C2H6) from -27.8 to -22.8%o, and ??13C(CO2) from -26.6 to 16.8%o. Isotopic studies reveal the presence of 3 genetic types of natural gases: thermogenic (CH4, higher gaseous hydrocarbons, and CO2), endogenic CO2, and microbial CH4 and CO2. Thermogenic gases resulted from coalification processes, which were probably completed by Late Carboniferous and Early Permian time. Endogenic CO2 migrated along the deep-seated faults from upper mantle and/or magma chambers. Minor volumes of microbial CH4 and CO2 occur at shallow depths close to the abandoned mine workings. "Late-stage" microbial processes have commenced in the Upper Cretaceous and are probably active at present. However, depth-related isotopic fractionation which has resulted from physical and physicochemical (e.g. diffusion and adsorption/desorption) processes during gas migration cannot be neglected. The strongest rock and gas outbursts occur only in those parts of coal deposits of the LSCB which are dominated by large amounts of endogenic CO2. ?? 2001 Elsevier Science Ltd.

  10. Bioturbation and Manganese Cycling in Hemipelagic Sediments

    NASA Astrophysics Data System (ADS)

    Aller, R. C.

    1990-06-01

    The activities of infaunal macrobenthos have major influences on the types, rates and distributions of diagenetic reactions involving manganese in relatively carbon-rich deep-sea and nearshore sediments. In some non-sulphidic hemipelagic deposits of the eastern equatorial Pacific (Panama Basin) biogenic reworking drives internal cycles of manganese, which can apparently account for up to ca. 100% of organic carbon oxidation and reduction of O2 supplied (diffusively) to the sea floor. Heterotrophic (carbon-based) manganese reduction is stimulated by simultaneous mixing of reactive organic matter and manganese oxide into suboxic-anoxic deposits. In sulphidic sediments, biogenic reworking must also enhance a lithotrophic pathway (sulphur-based) pathway of manganese reduction by promoting contact of manganese oxides and iron sulphides. Particle reworking dramatically alters the balance between aerobic and anaerobic decomposition pathways, promoting the utilization of O2 in the reoxidaton of reduced metabolites rather than direct oxidation of carbon. Irrigated burrows create microenvironments, which increase manganese reduction-oxidation and deplete Mn2+ from deeper pore waters. This may increase net Mn2+ production rates by removal of metabolites and potential co-precipitants with Mn2+. The occurrence and geometry of manganese oxide encrusted biogenic structures imply specific adaptations of infauna to manganese based microbial activity in hemipelagic sediments like the Panama Basin.

  11. Growing Rocks: Implications of Lithification for Microbial Communities and Nutrient Cycling

    NASA Astrophysics Data System (ADS)

    Corman, J. R.; Poret-Peterson, A. T.; Elser, J. J.

    2014-12-01

    Lithifying microbial communities ("microbialites") have left their signature on Earth's rock record for over 3.4 billion years and are regarded as important players in paleo-biogeochemical cycles. In this project, we study extant microbialites to understand the interactions between lithification and resource availability. All microbes need nutrients and energy for growth; indeed, nutrients are often a factor limiting microbial growth. We hypothesize that calcium carbonate deposition can sequester bioavailable phosphorus (P) and expect the growth of microbialites to be P-limited. To test our hypothesis, we first compared nutrient limitation in lithifying and non-lithifying microbial communities in Río Mesquites, Cuatro Ciénegas. Then, we experimentally manipulated calcification rates in the Río Mesquites microbialites. Our results suggest that lithifying microbialites are indeed P-limited, while non-lithifying, benthic microbial communities tend towards co-limitation by nitrogen (N) and P. Indeed, in microbialites, photosynthesis and aerobic respiration responded positively to P additions (P<0.05). Organic carbon (OC) additions caused shifts in bacterial community composition based on analysis of 16S rRNA genes. Unexpectedly, calcification rates increased with OC additions (P<0.05), but not with P additions, suggesting that sulfate reduction may be an important pathway for calcification. Experimental reductions in calcification rates caused changes to microbial biomass OC and P concentrations (P<0.01 and P<0.001, respectively), although shifts depended on whether calcification was decreased abiotically or biotically. These results show that resource availability does influence microbialite formation and that lithification may promote phosphorus limitation; however, further investigation is required to understand the mechanism by which the later occurs.

  12. Corn residue removal and CO2 emissions

    USDA-ARS?s Scientific Manuscript database

    Carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4) are the primary greenhouse gases (GHG) emitted from the soil due to agricultural activities. In the short-term, increases in CO2 emissions indicate increased soil microbial activity. Soil micro-organisms decompose crop residues and release...

  13. Differential Nutrient Limitation of Soil Microbial Biomass and Metabolic Quotients (qCO2): Is There a Biological Stoichiometry of Soil Microbes?

    PubMed Central

    Hartman, Wyatt H.; Richardson, Curtis J.

    2013-01-01

    Background Variation in microbial metabolism poses one of the greatest current uncertainties in models of global carbon cycling, and is particularly poorly understood in soils. Biological Stoichiometry theory describes biochemical mechanisms linking metabolic rates with variation in the elemental composition of cells and organisms, and has been widely observed in animals, plants, and plankton. However, this theory has not been widely tested in microbes, which are considered to have fixed ratios of major elements in soils. Methodology/Principal Findings To determine whether Biological Stoichiometry underlies patterns of soil microbial metabolism, we compiled published data on microbial biomass carbon (C), nitrogen (N), and phosphorus (P) pools in soils spanning the global range of climate, vegetation, and land use types. We compared element ratios in microbial biomass pools to the metabolic quotient qCO2 (respiration per unit biomass), where soil C mineralization was simultaneously measured in controlled incubations. Although microbial C, N, and P stoichiometry appeared to follow somewhat constrained allometric relationships at the global scale, we found significant variation in the C∶N∶P ratios of soil microbes across land use and habitat types, and size-dependent scaling of microbial C∶N and C∶P (but not N∶P) ratios. Microbial stoichiometry and metabolic quotients were also weakly correlated as suggested by Biological Stoichiometry theory. Importantly, we found that while soil microbial biomass appeared constrained by soil N availability, microbial metabolic rates (qCO2) were most strongly associated with inorganic P availability. Conclusions/Significance Our findings appear consistent with the model of cellular metabolism described by Biological Stoichiometry theory, where biomass is limited by N needed to build proteins, but rates of protein synthesis are limited by the high P demands of ribosomes. Incorporation of these physiological processes may improve models of carbon cycling and understanding of the effects of nutrient availability on soil C turnover across terrestrial and wetland habitats. PMID:23526933

  14. Effects of elevated sulfate concentration on the mobility of arsenic in the sediment-water interface.

    PubMed

    Li, Shiyu; Yang, Changliang; Peng, Changhui; Li, Haixia; Liu, Bin; Chen, Chuan; Chen, Bingyu; Bai, Jinyue; Lin, Chen

    2018-06-15

    The adsorption/desorption of arsenic (As) at the sediment-water interface in lakes is the key to understanding whether As can enter the ecosystem and participate in material circulation. In this study, the concentrations of As(III), total arsenic [As(T)], sulfide, iron (Fe), and dissolved organic carbon (DOC) in overlying water were observed after the initial sulfate (SO 4 2- ) concentrations were increased by four gradients in the presence and absence of microbial systems. The results indicate that increased SO 4 2- concentrations in overlying water triggered As desorption from sediments. Approximately 10% of the desorbed As was desorbed directly as arsenite or arsenate by competitive adsorption sites on the iron salt surface; 21% was due to the reduction of iron (hydr)oxides; and 69% was due to microbial activity, as compared with a system with no microbial activity. The intensity of microbial activity was controlled by the SO 4 2- and DOC concentrations in the overlying water. In anaerobic systems, which had SO 4 2- and DOC concentrations higher than 47 and 7 mg/L, respectively, microbial activity was promoted by SO 4 2- and DOC; As(III) was desorbed under these indoor simulation conditions. When either the SO 4 2- or DOC concentration was lower than its respective threshold of 47 or 7 mg/L, or when either of these indices was below its concentration limit, it was difficult for microorganisms to use SO 4 2- and DOC to enhance their own activities. Therefore, conditions were insufficient for As desorption. The migration of As in lake sediments was dominated by microbial activity, which was co-limited by SO 4 2- and DOC. The concentrations of SO 4 2- and DOC in the overlying water are thus important for the prevention and control of As pollution in lakes. We recommend controlling SO 4 2- and DOC concentrations as a method for controlling As inner-source pollution in lake water. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Effect of modified atmospheric packaging on the shelf life of Kalakand and its influence on microbial, textural, sensory and physico-chemical properties.

    PubMed

    Jain, Vishal; Rasane, Prasad; Jha, Alok; Sharma, Nitya; Gautam, Anuj

    2015-07-01

    Kalakand, a popular traditional milk sweet of Indian sub-continent, was packaged under air and modified atmospheric packaging (MAP) conditions (98 % N2, 98 % CO2 and 50 % N2: 50 % CO2). The samples were stored at 10, 25 and 37 °C and evaluated for various physico-chemical, microbial, textural and sensory changes, in order to establish the applicability of MAP for storage of Kalakand. It could be established that the MAP conditions of 50 % N2: 50 % CO2and storage at 10 °C, were the most suitable conditions for preserving the Kalakand for upto 60 days.

  16. Power generation using spinel manganese-cobalt oxide as a cathode catalyst for microbial fuel cell applications.

    PubMed

    Mahmoud, Mohamed; Gad-Allah, Tarek A; El-Khatib, K M; El-Gohary, Fatma

    2011-11-01

    This study focused on the use of spinel manganese-cobalt (Mn-Co) oxide, prepared by a solid state reaction, as a cathode catalyst to replace platinum in microbial fuel cells (MFCs) applications. Spinel Mn-Co oxides, with an Mn/Co atomic ratios of 0.5, 1, and 2, were prepared and examined in an air cathode MFCs which was fed with a molasses-laden synthetic wastewater and operated in batch mode. Among the three Mn-Co oxide cathodes and after 300 h of operation, the Mn-Co oxide catalyst with Mn/Co atomic ratio of 2 (MnCo-2) exhibited the highest power generation 113 mW/m2 at cell potential of 279 mV, which were lower than those for the Pt catalyst (148 mW/m2 and 325 mV, respectively). This study indicated that using spinel Mn-Co oxide to replace platinum as a cathodic catalyst enhances power generation, increases contaminant removal, and substantially reduces the cost of MFCs. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Microbial Community Response to Warming and Correlations to Organic Carbon Degradation in an Arctic Tundra Soil

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Yang, S.; Zhou, J.; Wullschleger, S. D.; Graham, D. E.; Yang, Y.; Gu, B.

    2016-12-01

    Climate warming increases microbial activity and thus decomposition of soil organic carbon (SOC) stored in Arctic tundra, but changes in microbial community and its correlations to SOC decomposition are poorly understood. Using a microbial functional gene array (GeoChip 5.0), we examined the microbial functional community structure changes with temperature (-2 and +8 °C) in an anoxic incubation experiment with a high-centered polygon trough soil from Barrow, Alaska. Through a 122-day incubation, we show that functional community structure was significantly altered (P < 0.05) by 8 °C warming, with functional diversity decreasing in response to warming and rapid degradation of the labile soil organic substrates. In contrast, microbial community structure was largely unchanged by -2 °C incubation. In the organic layer soil, gene abundances associated with fermentation, methanogenesis, and iron reduction all decreased significantly (P < 0.05) following the incubation at 8 °C. These observations corroborate strongly with decreased methane and reducing sugar production rates and iron reduction during the incubation. These results demonstrate a rapid and sensitive microbial response to increasing soil temperature, and suggest important roles of microbial communities in moderating SOC degradation and iron cycling in warming Arctic tundra.

  18. Microbial Electrolytic Capture, Separation and Regeneration of CO2 for Biogas Upgrading.

    PubMed

    Jin, Xiangdan; Zhang, Yifeng; Li, Xiaohu; Zhao, Nannan; Angelidaki, Irini

    2017-08-15

    Biogas upgrading to natural gas quality is essential for the efficient use of biogas in various applications. Carbon dioxide (CO 2 ) which constitutes a major part of the biogas is generally removed by physicochemical methods. However, most of the methods are expensive and often present environmental challenges. In this study, an innovative microbial electrolytic system was developed to capture, separate and regenerate CO 2 for biogas upgrading without external supply of chemicals, and potentially to treat wastewater. The new system was operated at varied biogas flow rates and external applied voltages. CO 2 was effectively separated from the raw biogas and the CH 4 content in the outlet reached as high as 97.0 ± 0.2% at the external voltage of 1.2 V and gas flow rate of 19.6 mL/h. Regeneration of CO 2 was also achieved in the regeneration chamber with low pH (1.34 ± 0.04). The relatively low electric energy consumption (≤0.15 kWh/m 3 biogas) along with the H 2 production which can contribute to the energy input makes the overall energy need of the system low, and thereby makes the technology promising. This work provides the first attempt for development of a sustainable biogas upgrading technology and potentially expands the application of microbial electrochemical technologies.

  19. Effect of redox conditions on bacterial and fungal biomass and carbon dioxide production in Louisiana coastal swamp forest sediment.

    PubMed

    Seo, Dong Cheol; DeLaune, Ronald D

    2010-08-01

    Fungal and bacterial carbon dioxide (CO2) production/emission was determined under a range of redox conditions in sediment from a Louisiana swamp forest used for wastewater treatment. Sediment was incubated in microcosms at 6 Eh levels (-200, -100, 0, +100, +250 and +400 mV) covering the anaerobic range found in wetland soil and sediment. Carbon dioxide production was determined by the substrate-induced respiration (SIR) inhibition method. Cycloheximide (C15H23NO4) was used as the fungal inhibitor and streptomycin (C21H39N7O12) as the bacterial inhibitor. Under moderately reducing conditions (Eh > +250 mV), fungi contributed more than bacteria to the CO2 production. Under highly reducing conditions (Eh < or = 0 mV), bacteria contributed more than fungi to the total CO2 production. The fungi/bacteria (F/B) ratios varied between 0.71-1.16 for microbial biomass C, and 0.54-0.94 for microbial biomass N. Under moderately reducing conditions (Eh > or = +100 mV), the F/B ratios for microbial biomass C and N were higher than that for highly reducing conditions (Eh < or = 0 mV). In moderately reducing conditions (Eh > or = +100 mV), the C/N microbial biomass ratio for fungi (C/N: 13.54-14.26) was slightly higher than for bacteria (C/N: 9.61-12.07). Under highly reducing redox conditions (Eh < or = 0 mV), the C/N microbial biomass ratio for fungi (C/N: 10.79-12.41) was higher than for bacteria (C/N: 8.21-9.14). For bacteria and fungi, the C/N microbial biomass ratios under moderately reducing conditions were higher than that in highly reducing conditions. Fungal CO2 production from swamp forest could be of greater ecological significance under moderately reducing sediment conditions contributing to the greenhouse effect (GHE) and the global warming potential (GWP). However, increases in coastal submergence associated with global sea level rise and resultant decrease in sediment redox potential from increased flooding would likely shift CO2 production to bacteria rather than fungi. 2010 Elsevier B.V. All rights reserved.

  20. Enhanced microbial reduction of vanadium (V) in groundwater with bioelectricity from microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Hao, Liting; Zhang, Baogang; Tian, Caixing; Liu, Ye; Shi, Chunhong; Cheng, Ming; Feng, Chuanping

    2015-08-01

    Bioelectricity generated from the microbial fuel cell (MFC) is applied to the bioelectrical reactor (BER) directly to enhance microbial reduction of vanadium (V) (V(V)) in groundwater. With the maximum power density of 543.4 mW m-2 from the MFC, V(V) removal is accelerated with efficiency of 93.6% during 12 h operation. Higher applied voltage can facilitate this process. V(V) removals decrease with the increase of initial V(V) concentration, while extra addition of chemical oxygen demand (COD) has little effect on performance improvement. Microbial V(V) reduction is enhanced and then suppressed with the increase of conductivity. High-throughput 16S rRNA gene pyrosequencing analysis implies the accumulated Enterobacter and Lactococcus reduce V(V) with products from fermentative microorganisms such as Macellibacteroides. The presentation of electrochemically active bacteria as Enterobacter promotes electron transfers. This study indicates that application of bioelectricity from MFCs is a promising strategy to improve the efficiency of in-situ bioremediation of V(V) polluted groundwater.

  1. Shifts in microbial communities in soil, rhizosphere and roots of two major crop systems under elevated CO2 and O3

    USDA-ARS?s Scientific Manuscript database

    Rising atmospheric concentrations of CO2 and O3 are key features of global environmental change. To investigate changes in the belowground bacterial community composition in response to elevated CO2 and O3 (eCO2 and eO3) the endosphere, rhizosphere and soil were sampled from soybeans under eCO2 and ...

  2. Rate Controlling Step in the Reduction of Iron Oxides; Kinetics and Mechanism of Wüstite-Iron Step in H2, CO and H2/CO Gas Mixtures

    NASA Astrophysics Data System (ADS)

    El-Geassy, Abdel-Hady A.

    2017-09-01

    Wüstite (W1 and W2) micropellets (150-50 μm) were prepared from the reduction of pure Fe2O3 and 2.1% SiO2-doped Fe2O3 in 40%CO/CO2 gas mixture at 1000°C which were then isothermally reduced in H2, CO and H2/CO gas mixtures at 900-1100°C. The reduction reactions was followed by Thermogravimetric Analysis (TG) technique. The effect of gas composition, gas pressure and temperature on the rate of reduction was investigated. The different phases formed during the reduction were chemically and physically characterized. In SiO2-doped wüstite, fayalite (Fe2SiO3) was identified. At the initial reduction stages, the highest rate was obtained in H2 and the lowest was in CO gas. In H2/CO gas mixtures, the measured rate did not follow a simple additive equation. The addition of 5% H2 to CO led to a measurable increase in the rate of reduction compared with that in pure CO. Incubation periods were observed at the early reduction stages of W1 in CO at lower gas pressure (<0.25 atm). In SiO2-doped wüstite, reaction rate minimum was detected in H2 and H2-rich gas mixtures at 925-950°C. The influence of addition of H2 to CO or CO to H2 on the reduction reactions, nucleation and grain growth of iron was intensively studied. Unlike in pure wüstite, the presence of fayalite enhances the reduction reactions with CO and CO-rich gas mixtures. The chemical reaction equations of pure wüstite with CO are given showing the formation of carbonyl-like compound [Fem(CO2)n]*. The apparent activation energy values, at the initial stages, ranged from 53.75 to 133.97 kJ/mole indicating different reaction mechanism although the reduction was designed to proceed by the interfacial chemical reaction.

  3. Microbial imprint on soil-atmosphere H2, COS, and CO2 fluxes

    NASA Astrophysics Data System (ADS)

    Meredith, L. K.; Commane, R.; Munger, J. W.; Wofsy, S. C.; Prinn, R. G.

    2013-12-01

    Microorganisms drive large trace gas fluxes between soil and atmosphere, but the signal can be difficult to detect and quantify in the presence of stronger exchange processes in an ecosystem. Partitioning methods are often needed to estimate trace gas budgets and to develop process-based models to explore the sensitivity of microbe-mediated fluxes. In this study, we test the performance of trace gases with predominantly microbe-mediated soil fluxes as a metric of the soil microbial uptake activity of other trace gases. Using simultaneous, collocated measurements at Harvard Forest, we consider three trace gases with microbe-mediated soil fluxes of various importance relative to their other (mainly plant-mediated) ecosystem fluxes: molecular hydrogen (H2), carbonyl sulfide (COS), and carbon dioxide (CO2). These gases probe different aspects of the soil trace-gas microbiology. Soil H2 uptake is a redox reaction driving the energy metabolism of a portion of the microbial community, while soil CO2 respiration is a partial proxy for the overall soil microbial metabolism. In comparison, very little is understood about the microbiological and environmental drivers of soil COS uptake and emissions. In this study, we find that H2, COS, and CO2 soil uptake rates are often correlated, but the relative soil uptake between gases is not constant, and is influenced by seasonality and local environmental conditions. We also consider how differences in the microbial communities and pathways involved in the soil fluxes may explain differences in the observations. Our results are important for informing previous studies using tracer approaches. For example, H2 has been used to estimate COS soil uptake, which must be accounted for to use COS as a carbon cycle tracer. Furthermore, the global distribution of H2 deposition velocity has been inferred from net primary productivity (CO2). Given that insufficient measurement frequency and spatial distribution exists to partition global net ecosystem fluxes of many climate-relevant trace gases, insight into the use of certain trace gases to estimate rates of more general biogeochemical processes is useful.

  4. Effects of conventional and no-tillage soil management and compost and sludge amendment on soil CO2 fluxes and microbial activities

    NASA Astrophysics Data System (ADS)

    Garcia-Gil, Juan Carlos; Haller, Isabel; Soler-Rovira, Pedro; Polo, Alfredo

    2010-05-01

    Soil management exerts a significant influence on the dynamic of soil organic matter, which is a key issue to enhance soil quality and its ecological functions, but also affects to greenhouse gas emissions and C sequestration processes. The objective of the present research was to determine the influence of soil management (conventional deep-tillage and no-tillage) and the application of two different organic amendment -thermally-dry sewage sludge (TSL) and municipal waste compost (MWC)- on soil CO2 fluxes and microbial activities in a long-term field experiment under semi-arid conditions. Both organic amendments were applied at a rate of 30 t ha-1 prior to sowing a barley crop. The experiment was conducted on an agricultural soil (Calcic Luvisol) from the experimental farm "La Higueruela" (Santa Olalla, Toledo). Unamended soils were used as control in both conventional and no-tillage management. During the course of the experiment, soil CO2 fluxes, microbial biomass C (MBC) and enzyme activities involved in the biogeochemical cycles of C, N and P were monitored during 12 months. The results obtained during the experiment for soil CO2 fluxes showed a great seasonal fluctuation due to semi-arid climate conditions. Overall, conventional deep-tillage soils exhibited higher CO2 fluxes, which was particularly larger during the first hours after deep-tillage was performed, and smaller MBC content and significantly lower dehydrogenase, beta-glucosidase, phosphatase, urease and BAA protease activities than no-tillage soils. Both MWC and TSL amendments provoked a significant increase of CO2 fluxes in both conventional and no-tillage soils, which was larger in TSL amended soils and particularly in no-tillage soils. The application of these organic amendments also enhanced MBC content and the overall enzyme activities in amended soils, which indicate a global revitalization of soil microbial metabolism in response to the fresh input of organic compounds that are energy sources for microbial growing, especially with TSL that is a raw organic material with no stabilization treatment.

  5. Enhanced vanadium (V) reduction and bioelectricity generation in microbial fuel cells with biocathode

    NASA Astrophysics Data System (ADS)

    Qiu, Rui; Zhang, Baogang; Li, Jiaxin; Lv, Qing; Wang, Song; Gu, Qian

    2017-08-01

    Microbial fuel cells (MFCs) represent a promising approach for remediation of toxic vanadium (V) contaminated environment. Herein, enhanced V(V) reduction and bioelectricity generation are realized in MFCs with biocathode. Synergistically electrochemical and microbial reductions result in the nearly complete removals of V(V) within 7 d operation with initial concentration of 200 mg L-1. Maximum power density of 529 ± 12 mW m-2 is obtained. Electrochemical tests reveal that biocathode promotes electron transfers and reduces charge transfer resistance. XPS analysis confirms that V(IV) is the main reduction product, which precipitates naturally under neutral conditions. High-throughput 16S rRNA gene sequencing analysis indicates that the newly appeared Dysgonomonas is responsible for V(V) reduction and Klebsiella contributes mainly to bioelectricity generation in MFCs with biocathode. This study further improves the performance of remediating V(V) contaminated environment based on MFC technology.

  6. Soil Microbial Community Responses to Long-Term Global Change Factors in a California Grassland

    NASA Astrophysics Data System (ADS)

    Qin, K.; Peay, K.

    2015-12-01

    Soil fungal and bacterial communities act as mediators of terrestrial carbon and nutrient cycling, and interact with the aboveground plant community as both pathogens and mutualists. However, these soil microbial communities are sensitive to changes in their environment. A better understanding of the response of soil microbial communities to global change may help to predict future soil microbial diversity, and assist in creating more comprehensive models of terrestrial carbon and nutrient cycles. This study examines the effects of four global change factors (increased temperature, increased variability in precipitation, nitrogen deposition, and CO2 enrichment) on soil microbial communities at the Jasper Ridge Global Change Experiment (JRGCE), a full-factorial global change manipulative experiment on three hectares of California grassland. While similar studies have examined the effects of global change on soil microbial communities, few have manipulated more factors or been longer in duration than the JRGCE, which began field treatments in 1998. We find that nitrogen deposition, CO2 enrichment, and increased variability in precipitation significantly affect the structure of both fungal and bacterial communities, and explain more of the variation in the community structures than do local soil chemistry or aboveground plant community. Fungal richness is correlated positively with soil nitrogen content and negatively with soil water content. Arbuscular mycorrhizal fungi (AMF), which associate closely with herbaceous plants' roots and assist in nutrient uptake, decrease in both richness and relative abundance in elevated CO2 treatments.

  7. Day and Night Variability of CO2 Fluxes and Priming Effects under zea Mays Measured in High Resolution

    NASA Astrophysics Data System (ADS)

    Splettstoesser, Thomas; Pausch, Johanna

    2017-04-01

    Plant induced increase of soil organic matter turnover rates contribute to carbon emissions in agricultural land use systems. In order to better understand these rhizosphere priming effects, we conducted an experiment which enabled us to monitor CO2 fluxes under Zea mays plants in high resolution. The experiment was conducted in a climate chamber where the plants were grown in tightly sealed boxes for 40 days and CO2 efflux from soil was measured twice a day. Continuous 13C-CO2 label was used to allow differentiation between plant- and soil-derived CO2.This enabled us to monitor root respiration and soil organic matter turnover in the early stages of plant growth and to highlight changes in soil CO2 emissions and priming effects between day and night. The measurements were conducted with a PICARRO G2131-I C high-precision isotopic CO2 Analyzer (PICARRO INC.) utilizing an automated valve system governed by a CR1000 data logger (Campbell Scientific). After harvest roots and shoots were analyzed for 13C content. Microbial biomass, root length density and enzymatic activities in soil were measured and linked to soil organic matter turnover rates. Results show an increased soil CO2 efflux at day time periods and an overall increase with increasing plant biomass. No difference in chloroform fumigation extractable microbial biomass has been found but a strong negative priming effect was measured in the short experimental period, suggesting that the microbes shifted to the utilization of plant exudates without actual microbial growth triggered by the new labile C input. This is coherent with the observed shift in enzyme kinetics. With this experimental setup we show that measurement of priming effects in high resolution can be achieved.

  8. Seasonal dynamics of permafrost carbon emissions: A passive, quasi-continuous 14CO2 sampler

    NASA Astrophysics Data System (ADS)

    Pedron, S.; Xu, X.; Walker, J. C.; Welker, J. M.; Klein, E. S.; Euskirchen, E. S.; Czimczik, C. I.

    2017-12-01

    Millennia of carbon (C) fixation by tundra vegetation, coupled with low rates of C mineralization by soil microorganisms and preservation in permafrost, have allowed Arctic soils to accumulate vast quantities of organic C (1672 Pg C total). Today, the Arctic is rapidly warming (0.48oC decade-1) and widespread degradation of permafrost may subject permafrost C to microbial mineralization and fluxes to the atmosphere, accelerating climate change. Loss of permafrost C can be quantified in situ by measuring the radiocarbon (14C) content of soil and ecosystem respiration, because permafrost C is older (depleted in 14C) than current plant products and soil C cycling operates on timescales of years to centuries. Here, we use 14C analysis of CO2 respired from graminoid tundra in Arctic Alaska to 1) apportion how plant and microbial respiration contribute to ecosystem respiration in spring, summer, and fall, and 2) elucidate the C sources of microbial respiration throughout the year. We used a novel, passive sampling system, capable of trapping diffusive CO2 throughout the active layer of tussock sedge tundra (n=4, from mineral soil to air) over periods of 2 days to 3 weeks in June 2017. CO2 was collected into various sizes of canisters, ranging from 0.5-32 L, and analyzed for its 14C content at UC Irvine's KCCAMS laboratory. To evaluate the system's efficiency, and quantify the temporal and spatial variability of ecosystem respiration sources, we co-deployed 3 Vaisala Carbocap [CO2] and temperature probes, and traditional chambers (n=6) and gas wells (n=10) for sampling of ecosystem- and soil-respired 14CO2 over 15 min-24 hours. A comparison of traditional methods with our new sampler indicates that the system accurately sampled the expected [CO2] depth gradient. The CO2 sampling rate was positively correlated to soil [CO2] (R2=0.963), equivalent to 1.4*10-3±1.6*10-3 mg C/L/month/ppm (n=8). Gas well and probe concentrations were of the same order of magnitude on the same day at equivalent depths, indicating limited spatial variability (10-20 m) of soil [CO2]. Ongoing sampling and forthcoming 14C analyses will reveal how much plant (root) respiration contributes to ecosystem respiration in the fall, and elucidate the temporal dynamics of microbial C sources, specifically the decomposition of older permafrost C in winter.

  9. Release of 226Ra from uranium mill tailings by microbial Fe(III) reduction

    USGS Publications Warehouse

    Landa, E.R.; Phillips, E.J.P.; Lovley, D.R.

    1991-01-01

    Uranium mill tailings were anaerobically incubated in the presence of H2 with Alteromonas putrefaciens, a bacterium known to couple the oxidation of H2 and organic compounds to the reduction of Fe(III) oxides. There was a direct correlation between the extent of Fe(III) reduction and the accumulation of dissolved 226Ra. In sterile tailings in which Fe(III) was not reduced, there was negligible leaching of 226Ra. The behavior of Ba was similar to that of Ra in inoculated and sterile systems. These results demonstrate that under anaerobic conditions, microbial reduction of Fe(III) may result in the release of dissolved 226Ra from uranium mill tailings. ?? 1991.

  10. Nitrogen-mediated effects of elevated CO2 on intra-aggregate soil pore structure.

    PubMed

    Caplan, Joshua S; Giménez, Daniel; Subroy, Vandana; Heck, Richard J; Prior, Stephen A; Runion, G Brett; Torbert, H Allen

    2017-04-01

    Soil pore structure has a strong influence on water retention, and is itself influenced by plant and microbial dynamics such as root proliferation and microbial exudation. Although increased nitrogen (N) availability and elevated atmospheric CO 2 concentrations (eCO 2 ) often have interacting effects on root and microbial dynamics, it is unclear whether these biotic effects can translate into altered soil pore structure and water retention. This study was based on a long-term experiment (7 yr at the time of sampling) in which a C 4 pasture grass (Paspalum notatum) was grown on a sandy loam soil while provided factorial additions of N and CO 2 . Through an analysis of soil aggregate fractal properties supported by 3D microtomographic imagery, we found that N fertilization induced an increase in intra-aggregate porosity and a simultaneous shift toward greater accumulation of pore space in larger aggregates. These effects were enhanced by eCO 2 and yielded an increase in water retention at pressure potentials near the wilting point of plants. However, eCO 2 alone induced changes in the opposite direction, with larger aggregates containing less pore space than under control conditions, and water retention decreasing accordingly. Results on biotic factors further suggested that organic matter gains or losses induced the observed structural changes. Based on our results, we postulate that the pore structure of many mineral soils could undergo N-dependent changes as atmospheric CO 2 concentrations rise, having global-scale implications for water balance, carbon storage, and related rhizosphere functions. © 2016 John Wiley & Sons Ltd.

  11. Hydrogenation of Organic Matter as a Terminal Electron Sink Sustains High CO 2 :CH 4 Production Ratios During Anaerobic Decomposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Rachel M.; Tfaily, Malak M.; Rich, Virginia I.

    Once inorganic electron acceptors are depleted, organic matter in anoxic environments decomposes by hydrolysis, fermentation, and methanogenesis, requiring syntrophic interactions between microorganisms to achieve energetic favorability. In this classic anaerobic food chain, methanogenesis represents the terminal electron accepting (TEA) process, ultimately producing equimolar CO 2 and CH 4 for each molecule of organic matter degraded. However, CO 2:CH 4 production in Sphagnum-derived, mineral-poor, cellulosic peat often substantially exceeds this 1:1 ratio, even in the absence of measureable inorganic TEAs. Since the oxidation state of C in both cellulose-derived organic matter and acetate is 0, and CO 2 has an oxidationmore » state of +4, if CH 4 (oxidation state -4) is not produced in equal ratio, then some other compound(s) must balance CO 2 production by receiving 4 electrons. Here we present evidence for ubiquitous hydrogenation of diverse unsaturated compounds that appear to serve as organic TEAs in peat, thereby providing the necessary electron balance to sustain CO 2:CH 4 >1. While organic electron acceptors have previously been proposed to drive microbial respiration of organic matter through the reversible reduction of quinone moieties, the hydrogenation mechanism that we propose, by contrast, reduces C-C double bonds in organic matter thereby serving as 1) a terminal electron sink, 2) a mechanism for degrading complex unsaturated organic molecules, 3) a potential mechanism to regenerate electron-accepting quinones, and, in some cases, 4) a means to alleviate the toxicity of unsaturated aromatic acids. In conclusion, this mechanism for CO 2 generation without concomitant CH 4 production has the potential to regulate the global warming potential of peatlands by elevating CO 2:CH 4 production ratios.« less

  12. Hydrogenation of Organic Matter as a Terminal Electron Sink Sustains High CO 2 :CH 4 Production Ratios During Anaerobic Decomposition

    DOE PAGES

    Wilson, Rachel M.; Tfaily, Malak M.; Rich, Virginia I.; ...

    2017-07-03

    Once inorganic electron acceptors are depleted, organic matter in anoxic environments decomposes by hydrolysis, fermentation, and methanogenesis, requiring syntrophic interactions between microorganisms to achieve energetic favorability. In this classic anaerobic food chain, methanogenesis represents the terminal electron accepting (TEA) process, ultimately producing equimolar CO 2 and CH 4 for each molecule of organic matter degraded. However, CO 2:CH 4 production in Sphagnum-derived, mineral-poor, cellulosic peat often substantially exceeds this 1:1 ratio, even in the absence of measureable inorganic TEAs. Since the oxidation state of C in both cellulose-derived organic matter and acetate is 0, and CO 2 has an oxidationmore » state of +4, if CH 4 (oxidation state -4) is not produced in equal ratio, then some other compound(s) must balance CO 2 production by receiving 4 electrons. Here we present evidence for ubiquitous hydrogenation of diverse unsaturated compounds that appear to serve as organic TEAs in peat, thereby providing the necessary electron balance to sustain CO 2:CH 4 >1. While organic electron acceptors have previously been proposed to drive microbial respiration of organic matter through the reversible reduction of quinone moieties, the hydrogenation mechanism that we propose, by contrast, reduces C-C double bonds in organic matter thereby serving as 1) a terminal electron sink, 2) a mechanism for degrading complex unsaturated organic molecules, 3) a potential mechanism to regenerate electron-accepting quinones, and, in some cases, 4) a means to alleviate the toxicity of unsaturated aromatic acids. In conclusion, this mechanism for CO 2 generation without concomitant CH 4 production has the potential to regulate the global warming potential of peatlands by elevating CO 2:CH 4 production ratios.« less

  13. Hydrogenation of organic matter as a terminal electron sink sustains high CO 2 :CH 4 production ratios during anaerobic decomposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Rachel M.; Tfaily, Malak M.; Rich, Virginia I.

    Once inorganic electron acceptors are depleted, organic matter in anoxic environments decomposes by hydrolysis, fermentation, and methanogenesis, requiring syntrophic interactions between microorganisms to achieve energetic favorability. In this classic anaerobic food chain, methanogenesis represents the terminal electron accepting (TEA) process, ultimately producing equimolar CO2 and CH4 for each molecule of organic matter degraded. However, CO2:CH4 production in Sphagnum-derived, mineral-poor, cellulosic peat often substantially exceeds this 1:1 ratio, even in the absence of measureable inorganic TEAs. Since the oxidation state of C in both cellulose-derived organic matter and acetate is 0, and CO2 has an oxidation state of +4, if CH4more » (oxidation state -4) is not produced in equal ratio, then some other compound(s) must balance CO2 production by receiving 4 electrons. Here we present evidence for ubiquitous hydrogenation of diverse unsaturated compounds that appear to serve as organic TEAs in peat, thereby providing the necessary electron balance to sustain CO2:CH4 >1. While organic electron acceptors have previously been proposed to drive microbial respiration of organic matter through the reversible reduction of quinone moieties, the hydrogenation mechanism that we propose, by contrast, reduces C-C double bonds in organic matter thereby serving as 1) a terminal electron sink, 2) a mechanism for degrading complex unsaturated organic molecules, 3) a potential mechanism to regenerate electron-accepting quinones, and, in some cases, 4) a means to alleviate the toxicity of unsaturated aromatic acids. This mechanism for CO2 generation without concomitant CH4 production has the potential to regulate the global warming potential of peatlands by elevating CO2:CH4 production ratios.« less

  14. The inhibition of marine nitrification by ocean disposal of carbon dioxide.

    PubMed

    Huesemann, Michael H; Skillman, Ann D; Crecelius, Eric A

    2002-02-01

    In an attempt to reduce the threat of global warming, it has been proposed that the rise of atmospheric carbon dioxide concentrations be reduced by the ocean disposal of CO2 from the flue gases of fossil fuel-fired power plants. The release of large amounts of CO2 into mid or deep ocean waters will result in large plumes of acidified seawater with pH values ranging from 6 to 8. In an effort to determine whether these CO2-induced pH changes have any effect on marine nitrification processes, surficial (euphotic zone) and deep (aphotic zone) seawater samples were sparged with CO2 for varying time durations to achieve a specified pH reduction, and the rate of microbial ammonia oxidation was measured spectrophotometrically as a function of pH using an inhibitor technique. For both seawater samples taken from either the euphotic or aphotic zone, the nitrification rates dropped drastically with decreasing pH. Relative to nitrification rates in the original seawater at pH 8, nitrification rates were reduced by ca. 50% at pH 7 and more than 90% at pH 6.5. Nitrification was essentially completely inhibited at pH 6. These findings suggest that the disposal of CO2 into mid or deep oceans will most likely result in a drastic reduction of ammonia oxidation rates within the pH plume and the concomitant accumulation of ammonia instead of nitrate. It is unlikely that ammonia will reach the high concentration levels at which marine aquatic organisms are known to be negatively affected. However, if the ammonia-rich seawater from inside the pH plume is upwelled into the euphotic zone, it is likely that changes in phytoplankton abundance and community structure will occur. Finally, the large-scale inhibition of nitrification and the subsequent reduction of nitrite and nitrate concentrations could also result in a decrease of denitrification rates which, in turn, could lead to the buildup of nitrogen and unpredictable eutrophication phenomena. Clearly, more research on the environmental effects of ocean disposal of CO2 is needed to determine whether the potential costs related to marine ecosystem disturbance and disruption can be justified in terms of the perceived benefits that may be achieved by temporarily delaying global warming.

  15. Unique pioneer microbial communities exposed to volcanic sulfur dioxide

    PubMed Central

    Fujimura, Reiko; Kim, Seok-Won; Sato, Yoshinori; Oshima, Kenshiro; Hattori, Masahira; Kamijo, Takashi; Ohta, Hiroyuki

    2016-01-01

    Newly exposed volcanic substrates contain negligible amounts of organic materials. Heterotrophic organisms in newly formed ecosystems require bioavailable carbon and nitrogen that are provided from CO2 and N2 fixation by pioneer microbes. However, the knowledge of initial ecosystem developmental mechanisms, especially the association between microbial succession and environmental change, is still limited. This study reports the unique process of microbial succession in fresh basaltic ash, which was affected by long-term exposure to volcanic sulfur dioxide (SO2). Here we compared the microbial ecosystems among deposits affected by SO2 exposure at different levels. The results of metagenomic analysis suggested the importance of autotrophic iron-oxidizing bacteria, particularly those involved in CO2 and N2 fixation, in the heavily SO2 affected site. Changes in the chemical properties of the deposits after the decline of the SO2 impact led to an apparent decrease in the iron-oxidizer abundance and a possible shift in the microbial community structure. Furthermore, the community structure of the deposits that had experienced lower SO2 gas levels showed higher similarity with that of the control forest soil. Our results implied that the effect of SO2 exposure exerted a selective pressure on the pioneer community structure by changing the surrounding environment of the microbes. PMID:26791101

  16. Microbial Functional Gene Diversity with a Shift of Subsurface Redox Conditions during In Situ Uranium Reduction

    PubMed Central

    Liang, Yuting; Van Nostrand, Joy D.; N′Guessan, Lucie A.; Peacock, Aaron D.; Deng, Ye; Long, Philip E.; Resch, C. Tom; Wu, Liyou; He, Zhili; Li, Guanghe; Hazen, Terry C.; Lovley, Derek R.

    2012-01-01

    To better understand the microbial functional diversity changes with subsurface redox conditions during in situ uranium bioremediation, key functional genes were studied with GeoChip, a comprehensive functional gene microarray, in field experiments at a uranium mill tailings remedial action (UMTRA) site (Rifle, CO). The results indicated that functional microbial communities altered with a shift in the dominant metabolic process, as documented by hierarchical cluster and ordination analyses of all detected functional genes. The abundance of dsrAB genes (dissimilatory sulfite reductase genes) and methane generation-related mcr genes (methyl coenzyme M reductase coding genes) increased when redox conditions shifted from Fe-reducing to sulfate-reducing conditions. The cytochrome genes detected were primarily from Geobacter sp. and decreased with lower subsurface redox conditions. Statistical analysis of environmental parameters and functional genes indicated that acetate, U(VI), and redox potential (Eh) were the most significant geochemical variables linked to microbial functional gene structures, and changes in microbial functional diversity were strongly related to the dominant terminal electron-accepting process following acetate addition. The study indicates that the microbial functional genes clearly reflect the in situ redox conditions and the dominant microbial processes, which in turn influence uranium bioreduction. Microbial functional genes thus could be very useful for tracking microbial community structure and dynamics during bioremediation. PMID:22327592

  17. Microbial community dynamics and methane, carbon dioxide, oxygen, and nitrous oxide concentrations in upland forest and riparian soils across a seasonal gradient of fully saturated soils to completely dried soils

    NASA Astrophysics Data System (ADS)

    Jones, R. T.; McGlynn, B. L.; McDermott, T.; Dore, J. E.

    2015-12-01

    Gas concentrations (CH4, CO2, N2O, and O2), soil properties (soil water content and pH), and microbial community composition were measured from soils at 32 sites across the Stringer Creek Watershed in the Tenderfoot Creek Experimental Forest 7 times between June 3, 2013 and September 20, 2013. Soils were fully saturated during the initial sampling period and dried down over the course of the summer. Soils and gas were sampled from 5cm and 20cm at each site and also at 50cm at eight riparian sites. In total, 496 individual soil samples were collected. Soil moisture ranged from 3.7% to fully saturated; soil pH ranged from 3.60 to 6.68. Methane concentrations in soils ranged from 0.426 ppm to 218 ppm; Carbon dioxide concentrations ranged from 550 ppm to 42,990 ppm; Nitrous oxide concentrations ranged from 0.220 ppm to 2.111 ppm; Oxygen concentrations ranged from 10.2% to 21.5%. Soil microbial communities were characterized by DNA sequences covering the V4 region of the 16S rRNA gene. DNA sequences were generated (~30,000,000 sequences) from the 496 soil samples using the Illumina MiSeq platform. Operational Taxonomic Units were generated using USEARCH, and representative sequences were taxonomically classified according the Ribosomal Database Project's taxonomy scheme. Analysis of similarity revealed that microbial communities found within a landscape type (high upland forest, low upland forest, riparian) were more similar than among landscape types (R = 0.600; p<0.001). Similarly, communities from unique site x depths were similar across the 7 collection periods (R = 0.646; p<0.001) despite changes in soil moisture. Euclidean distances of soil properties and gas concentrations were compared to Bray-Curtis community dissimilarity matrices using Mantel tests to determine how community structure co-varies with the soil environment and gas concentrations. All variables measured significantly co-varied with microbial community membership (pH: R = 0.712, p < 0.001; CO2: R = 0.578, p < 0.001; O2: R = 0.517, p < 0.001; Soil moisture: R = 0.408, p < 0.001; N2O: R = 0.218, p = 0.003; CH4: R = 0.195, p = 0.008). Despite the rather low co-variation between methane concentrations and microbial community composition, relative abundances of methanotrophic and methanogenic lineages did co-vary strongly with methane concentrations.

  18. Metabolic engineering of Escherichia coli for production of 2-Phenylethylacetate from L-phenylalanine.

    PubMed

    Guo, Daoyi; Zhang, Lihua; Pan, Hong; Li, Xun

    2017-08-01

    In order to meet the need of consumer preferences for natural flavor compounds, microbial synthesis method has become a very attractive alternative to the chemical production. The 2-phenylethanol (2-PE) and its ester 2-phenylethylacetate (2-PEAc) are two extremely important flavor compounds with a rose-like odor. In recent years, Escherichia coli and yeast have been metabolically engineered to produce 2-PE. However, a metabolic engineering approach for 2-PEAc production is rare. Here, we designed and expressed a 2-PEAc biosynthetic pathway in E. coli. This pathway comprised four steps: aminotransferase (ARO8) for transamination of L-phenylalanine to phenylpyruvate, 2-keto acid decarboxylase KDC for the decarboxylation of the phenylpyruvate to phenylacetaldehyde, aldehyde reductase YjgB for the reduction of phenylacetaldehyde to 2-PE, alcohol acetyltransferase ATF1 for the esterification of 2-PE to 2-PEAc. Using the engineered E. coli strain for shake flasks cultivation with 1 g/L L-phenylalanine, we achieved co-production of 268 mg/L 2-PEAc and 277 mg/L 2-PE. Our results suggest that approximately 65% of L-phenylalanine was utilized toward 2-PEAc and 2-PE biosynthesis and thus demonstrate potential industrial applicability of this microbial platform. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  19. Anaerobic Methane Oxidation Driven by Microbial Reduction of Natural Organic Matter in a Tropical Wetland

    PubMed Central

    Valenzuela, Edgardo I.; Prieto-Davó, Alejandra; López-Lozano, Nguyen E.; Hernández-Eligio, Alberto; Vega-Alvarado, Leticia; Juárez, Katy; García-González, Ana Sarahí; López, Mercedes G.

    2017-01-01

    ABSTRACT Wetlands constitute the main natural source of methane on Earth due to their high content of natural organic matter (NOM), but key drivers, such as electron acceptors, supporting methanotrophic activities in these habitats are poorly understood. We performed anoxic incubations using freshly collected sediment, along with water samples harvested from a tropical wetland, amended with 13C-methane (0.67 atm) to test the capacity of its microbial community to perform anaerobic oxidation of methane (AOM) linked to the reduction of the humic fraction of its NOM. Collected evidence demonstrates that electron-accepting functional groups (e.g., quinones) present in NOM fueled AOM by serving as a terminal electron acceptor. Indeed, while sulfate reduction was the predominant process, accounting for up to 42.5% of the AOM activities, the microbial reduction of NOM concomitantly occurred. Furthermore, enrichment of wetland sediment with external NOM provided a complementary electron-accepting capacity, of which reduction accounted for ∼100 nmol 13CH4 oxidized · cm−3 · day−1. Spectroscopic evidence showed that quinone moieties were heterogeneously distributed in the wetland sediment, and their reduction occurred during the course of AOM. Moreover, an enrichment derived from wetland sediments performing AOM linked to NOM reduction stoichiometrically oxidized methane coupled to the reduction of the humic analogue anthraquinone-2,6-disulfonate. Microbial populations potentially involved in AOM coupled to microbial reduction of NOM were dominated by divergent biota from putative AOM-associated archaea. We estimate that this microbial process potentially contributes to the suppression of up to 114 teragrams (Tg) of CH4 · year−1 in coastal wetlands and more than 1,300 Tg · year−1, considering the global wetland area. IMPORTANCE The identification of key processes governing methane emissions from natural systems is of major importance considering the global warming effects triggered by this greenhouse gas. Anaerobic oxidation of methane (AOM) coupled to the microbial reduction of distinct electron acceptors plays a pivotal role in mitigating methane emissions from ecosystems. Given their high organic content, wetlands constitute the largest natural source of atmospheric methane. Nevertheless, processes controlling methane emissions in these environments are poorly understood. Here, we provide tracer analysis with 13CH4 and spectroscopic evidence revealing that AOM linked to the microbial reduction of redox functional groups in natural organic matter (NOM) prevails in a tropical wetland. We suggest that microbial reduction of NOM may largely contribute to the suppression of methane emissions from tropical wetlands. This is a novel avenue within the carbon cycle in which slowly decaying NOM (e.g., humic fraction) in organotrophic environments fuels AOM by serving as a terminal electron acceptor. PMID:28341676

  20. Anaerobic Methane Oxidation Driven by Microbial Reduction of Natural Organic Matter in a Tropical Wetland.

    PubMed

    Valenzuela, Edgardo I; Prieto-Davó, Alejandra; López-Lozano, Nguyen E; Hernández-Eligio, Alberto; Vega-Alvarado, Leticia; Juárez, Katy; García-González, Ana Sarahí; López, Mercedes G; Cervantes, Francisco J

    2017-06-01

    Wetlands constitute the main natural source of methane on Earth due to their high content of natural organic matter (NOM), but key drivers, such as electron acceptors, supporting methanotrophic activities in these habitats are poorly understood. We performed anoxic incubations using freshly collected sediment, along with water samples harvested from a tropical wetland, amended with 13 C-methane (0.67 atm) to test the capacity of its microbial community to perform anaerobic oxidation of methane (AOM) linked to the reduction of the humic fraction of its NOM. Collected evidence demonstrates that electron-accepting functional groups (e.g., quinones) present in NOM fueled AOM by serving as a terminal electron acceptor. Indeed, while sulfate reduction was the predominant process, accounting for up to 42.5% of the AOM activities, the microbial reduction of NOM concomitantly occurred. Furthermore, enrichment of wetland sediment with external NOM provided a complementary electron-accepting capacity, of which reduction accounted for ∼100 nmol 13 CH 4 oxidized · cm -3 · day -1 Spectroscopic evidence showed that quinone moieties were heterogeneously distributed in the wetland sediment, and their reduction occurred during the course of AOM. Moreover, an enrichment derived from wetland sediments performing AOM linked to NOM reduction stoichiometrically oxidized methane coupled to the reduction of the humic analogue anthraquinone-2,6-disulfonate. Microbial populations potentially involved in AOM coupled to microbial reduction of NOM were dominated by divergent biota from putative AOM-associated archaea. We estimate that this microbial process potentially contributes to the suppression of up to 114 teragrams (Tg) of CH 4 · year -1 in coastal wetlands and more than 1,300 Tg · year -1 , considering the global wetland area. IMPORTANCE The identification of key processes governing methane emissions from natural systems is of major importance considering the global warming effects triggered by this greenhouse gas. Anaerobic oxidation of methane (AOM) coupled to the microbial reduction of distinct electron acceptors plays a pivotal role in mitigating methane emissions from ecosystems. Given their high organic content, wetlands constitute the largest natural source of atmospheric methane. Nevertheless, processes controlling methane emissions in these environments are poorly understood. Here, we provide tracer analysis with 13 CH 4 and spectroscopic evidence revealing that AOM linked to the microbial reduction of redox functional groups in natural organic matter (NOM) prevails in a tropical wetland. We suggest that microbial reduction of NOM may largely contribute to the suppression of methane emissions from tropical wetlands. This is a novel avenue within the carbon cycle in which slowly decaying NOM (e.g., humic fraction) in organotrophic environments fuels AOM by serving as a terminal electron acceptor. Copyright © 2017 American Society for Microbiology.

  1. Microbial reduction of structural Fe3+ in nontronite by a thermophilic bacterium and its role in promoting the smectite to illite reaction

    USGS Publications Warehouse

    Zhang, G.; Dong, H.; Kim, J.; Eberl, D.D.

    2007-01-01

    The illitization process of Fe-rich smectite (nontronite NAu-2) promoted by microbial reduction of structural Fe3+ was investigated by using a thermophilic metal-reducing bacterium, Thermoanaerobacter ethanolicus, isolated from the deep subsurface. T. ethanolicus was incubated with lactate as the sole electron donor and structural Fe3+ in nontronite as the sole electron acceptor, and anthraquinone-2, 6-disulfonate (AQDS) as an electron shuttle in a growth medium (pH 6.2 and 9.2, 65 ??C) with or without an external supply of Al and K sources. With an external supply of Al and K, the extent of reduction of Fe3+ in NAu-2 was 43.7 and 40.4% at pH 6.2 and 9.2, respectively. X-ray diffraction and scanning and transmission electron microscopy revealed formation of discrete illite at pH 9.2 with external Al and K sources, while mixed layers of illite/smectite or highly charged smectite were detected under other conditions. The morphology of biogenic illite evolved from lath and flake to pseudo-hexagonal shape. An external supply of Al and K under alkaline conditions enhances the smectite-illite reaction during microbial Fe3+ reduction of smectite. Biogenic SiO2 was observed as a result of bioreduction under all conditions. The microbially promoted smectite-illite reaction proceeds via dissolution of smectite and precipitation of illite. Thermophilic iron reducing bacteria have a significant role in promoting the smectite to illite reaction under conditions common in sedimentary basins.

  2. Early diagenesis in the sediments of the Congo deep-sea fan dominated by massive terrigenous deposits: Part III - Sulfate- and methane- based microbial processes

    NASA Astrophysics Data System (ADS)

    Pastor, L.; Toffin, L.; Decker, C.; Olu, K.; Cathalot, C.; Lesongeur, F.; Caprais, J.-C.; Bessette, S.; Brandily, C.; Taillefert, M.; Rabouille, C.

    2017-08-01

    Geochemical profiles (SO42-, H2S, CH4, δ13CH4) and phylogenetic diversity of Archaea and Bacteria from two oceanographic cruises dedicated to the lobes sediments of the Congo deep-sea fan are presented in this paper. In this area, organic-rich turbidites reach 5000 m and allow the establishment of patchy cold-seep-like habitats including microbial mats, reduced sediments, and vesicomyid bivalves assemblages. These bivalves live in endosymbiosis with sulfur-oxidizing bacteria and use sulfides to perform chemosynthesis. In these habitats, unlike classical abyssal sediments, anoxic processes are dominant. Total oxygen uptake fluxes and methane fluxes measured with benthic chambers are in the same range as those of active cold-seep environments, and oxygen is mainly used for reoxidation of reduced compounds, especially in bacterial mats and reduced sediments. High concentrations of methane and sulfate co-exist in the upper 20 cm of sediments, and evidence indicates that sulfate-reducing microorganisms and methanogens co-occur in the shallow layers of these sediments. Simultaneously, anaerobic oxidation of methane (AOM) with sulfate as the electron acceptor is evidenced by the presence of ANMEs (ANaerobic MEthanotroph). Dissolved sulfide produced through the reduction of sulfate is reoxidized through several pathways depending on the habitat. These pathways include vesicomyid bivalves uptake (adults or juveniles in the bacterial mats habitats), reoxidation by oxygen or iron phases within the reduced sediment, or reoxidation by microbial mats. Sulfide uptake rates by vesicomyids measured in sulfide-rich sea water (90±18 mmol S m-2 d-1) were similar to sulfide production rates obtained by modelling the sulfate profile with different bioirrigation constants, highlighting the major control of vesicomyids on sulfur cycle in their habitats.

  3. Synthetic biology for microbial production of lipid-based biofuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    d’Espaux, Leo; Mendez-Perez, Daniel; Li, Rachel

    The risks of maintaining current CO 2 emission trends have led to interest in producing biofuels using engineered microbes. Microbial biofuels reduce emissions because CO 2 produced by fuel combustion is offset by CO2 captured by growing biomass, which is later used as feedstock for biofuel fermentation. Hydrocarbons found in petroleum fuels share striking similarity with biological lipids. Here in this paper we review synthetic metabolic pathways based on fatty acid and isoprenoid metabolism to produce alkanes and other molecules suitable as biofuels. Lastly, we further discuss engineering strategies to optimize engineered biosynthetic routes, as well as the potential ofmore » synthetic biology for sustainable manufacturing.« less

  4. Changes in the microbial community structure of bacteria, archaea and fungi in response to elevated CO(2) and warming in an Australian native grassland soil.

    PubMed

    Hayden, Helen L; Mele, Pauline M; Bougoure, Damian S; Allan, Claire Y; Norng, Sorn; Piceno, Yvette M; Brodie, Eoin L; Desantis, Todd Z; Andersen, Gary L; Williams, Amity L; Hovenden, Mark J

    2012-12-01

    The microbial community structure of bacteria, archaea and fungi is described in an Australian native grassland soil after more than 5 years exposure to different atmospheric CO2 concentrations ([CO2]) (ambient, +550 ppm) and temperatures (ambient, + 2°C) under different plant functional types (C3 and C4 grasses) and at two soil depths (0-5 cm and 5-10 cm). Archaeal community diversity was influenced by elevated [CO2], while under warming archaeal 16S rRNA gene copy numbers increased for C4 plant Themeda triandra and decreased for the C3 plant community (P < 0.05). Fungal community diversity resulted in three groups based upon elevated [CO2], elevated [CO2] plus warming and ambient [CO2]. Overall bacterial community diversity was influenced primarily by depth. Specific bacterial taxa changed in richness and relative abundance in response to climate change factors when assessed by a high-resolution 16S rRNA microarray (PhyloChip). Operational taxonomic unit signal intensities increased under elevated [CO2] for both Firmicutes and Bacteroidetes, and increased under warming for Actinobacteria and Alphaproteobacteria. For the interaction of elevated [CO2] and warming there were 103 significant operational taxonomic units (P < 0.01) representing 15 phyla and 30 classes. The majority of these operational taxonomic units increased in abundance for elevated [CO2] plus warming plots, while abundance declined in warmed or elevated [CO2] plots. Bacterial abundance (16S rRNA gene copy number) was significantly different for the interaction of elevated [CO2] and depth (P < 0.05) with decreased abundance under elevated [CO2] at 5-10 cm, and for Firmicutes under elevated [CO2] (P < 0.05). Bacteria, archaea and fungi in soil responded differently to elevated [CO2], warming and their interaction. Taxa identified as significantly climate-responsive could show differing trends in the direction of response ('+' or '-') under elevated CO2 or warming, which could then not be used to predict their interactive effects supporting the need to investigate interactive effects for climate change. The approach of focusing on specific taxonomic groups provides greater potential for understanding complex microbial community changes in ecosystems under climate change. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  5. Large Fractions of CO2-Fixing Microorganisms in Pristine Limestone Aquifers Appear To Be Involved in the Oxidation of Reduced Sulfur and Nitrogen Compounds

    PubMed Central

    Herrmann, Martina; Rusznyák, Anna; Akob, Denise M.; Schulze, Isabel; Opitz, Sebastian; Totsche, Kai Uwe

    2015-01-01

    The traditional view of the dependency of subsurface environments on surface-derived allochthonous carbon inputs is challenged by increasing evidence for the role of lithoautotrophy in aquifer carbon flow. We linked information on autotrophy (Calvin-Benson-Bassham cycle) with that from total microbial community analysis in groundwater at two superimposed—upper and lower—limestone groundwater reservoirs (aquifers). Quantitative PCR revealed that up to 17% of the microbial population had the genetic potential to fix CO2 via the Calvin cycle, with abundances of cbbM and cbbL genes, encoding RubisCO (ribulose-1,5-bisphosphate carboxylase/oxygenase) forms I and II, ranging from 1.14 × 103 to 6 × 106 genes liter−1 over a 2-year period. The structure of the active microbial communities based on 16S rRNA transcripts differed between the two aquifers, with a larger fraction of heterotrophic, facultative anaerobic, soil-related groups in the oxygen-deficient upper aquifer. Most identified CO2-assimilating phylogenetic groups appeared to be involved in the oxidation of sulfur or nitrogen compounds and harbored both RubisCO forms I and II, allowing efficient CO2 fixation in environments with strong oxygen and CO2 fluctuations. The genera Sulfuricella and Nitrosomonas were represented by read fractions of up to 78 and 33%, respectively, within the cbbM and cbbL transcript pool and accounted for 5.6 and 3.8% of 16S rRNA sequence reads, respectively, in the lower aquifer. Our results indicate that a large fraction of bacteria in pristine limestone aquifers has the genetic potential for autotrophic CO2 fixation, with energy most likely provided by the oxidation of reduced sulfur and nitrogen compounds. PMID:25616797

  6. Effect of ocean acidification on growth and otolith condition of juvenile scup, Stenotomus chrysops.

    PubMed

    Perry, Dean M; Redman, Dylan H; Widman, James C; Meseck, Shannon; King, Andrew; Pereira, Jose J

    2015-09-01

    Increasing amounts of atmospheric carbon dioxide (CO2) from human industrial activities are causing changes in global ocean carbonate chemistry, resulting in a reduction in pH, a process termed "ocean acidification." It is important to determine which species are sensitive to elevated levels of CO2 because of potential impacts to ecosystems, marine resources, biodiversity, food webs, populations, and effects on economies. Previous studies with marine fish have documented that exposure to elevated levels of CO2 caused increased growth and larger otoliths in some species. This study was conducted to determine whether the elevated partial pressure of CO2 (pCO2) would have an effect on growth, otolith (ear bone) condition, survival, or the skeleton of juvenile scup, Stenotomus chrysops, a species that supports both important commercial and recreational fisheries. Elevated levels of pCO2 (1200-2600 μatm) had no statistically significant effect on growth, survival, or otolith condition after 8 weeks of rearing. Field data show that in Long Island Sound, where scup spawn, in situ levels of pCO2 are already at levels ranging from 689 to 1828 μatm due to primary productivity, microbial activity, and anthropogenic inputs. These results demonstrate that ocean acidification is not likely to cause adverse effects on the growth and survivability of every species of marine fish. X-ray analysis of the fish revealed a slightly higher incidence of hyperossification in the vertebrae of a few scup from the highest treatments compared to fish from the control treatments. Our results show that juvenile scup are tolerant to increases in seawater pCO2, possibly due to conditions this species encounters in their naturally variable environment and their well-developed pH control mechanisms.

  7. Biodegradation of Poly(butylene succinate) Powder in a Controlled Compost at 58 °C Evaluated by Naturally-Occurring Carbon 14 Amounts in Evolved CO2 Based on the ISO 14855-2 Method

    PubMed Central

    Kunioka, Masao; Ninomiya, Fumi; Funabashi, Masahiro

    2009-01-01

    The biodegradabilities of poly(butylene succinate) (PBS) powders in a controlled compost at 58 °C have been studied using a Microbial Oxidative Degradation Analyzer (MODA) based on the ISO 14855-2 method, entitled “Determination of the ultimate aerobic biodegradability of plastic materials under controlled composting conditions—Method by analysis of evolved carbon dioxide—Part 2: Gravimetric measurement of carbon dioxide evolved in a laboratory-scale test”. The evolved CO2 was trapped by an additional aqueous Ba(OH)2 solution. The trapped BaCO3 was transformed into graphite via a serial vaporization and reduction reaction using a gas-tight tube and vacuum manifold system. This graphite was analyzed by accelerated mass spectrometry (AMS) to determine the percent modern carbon [pMC (sample)] based on the 14C radiocarbon concentration. By using the theory that pMC (sample) was the sum of the pMC (compost) (109.87%) and pMC (PBS) (0%) as the respective ratio in the determined period, the CO2 (respiration) was calculated from only one reaction vessel. It was found that the biodegradabilities determined by the CO2 amount from PBS in the sample vessel were about 30% lower than those based on the ISO method. These differences between the ISO and AMS methods are caused by the fact that part of the carbons from PBS are changed into metabolites by the microorganisms in the compost, and not changed into CO2. PMID:20057944

  8. Arsenic metabolism in high altitude modern stromatolites revealed by metagenomic analysis.

    PubMed

    Kurth, Daniel; Amadio, Ariel; Ordoñez, Omar F; Albarracín, Virginia H; Gärtner, Wolfgang; Farías, María E

    2017-04-21

    Modern stromatolites thrive only in selected locations in the world. Socompa Lake, located in the Andean plateau at 3570 masl, is one of the numerous extreme Andean microbial ecosystems described over recent years. Extreme environmental conditions include hypersalinity, high UV incidence, and high arsenic content, among others. After Socompa's stromatolite microbial communities were analysed by metagenomic DNA sequencing, taxonomic classification showed dominance of Proteobacteria, Bacteroidetes and Firmicutes, and a remarkably high number of unclassified sequences. A functional analysis indicated that carbon fixation might occur not only by the Calvin-Benson cycle, but also through alternative pathways such as the reverse TCA cycle, and the reductive acetyl-CoA pathway. Deltaproteobacteria were involved both in sulfate reduction and nitrogen fixation. Significant differences were found when comparing the Socompa stromatolite metagenome to the Shark Bay (Australia) smooth mat metagenome: namely, those involving stress related processes, particularly, arsenic resistance. An in-depth analysis revealed a surprisingly diverse metabolism comprising all known types of As resistance and energy generating pathways. While the ars operon was the main mechanism, an important abundance of arsM genes was observed in selected phyla. The data resulting from this work will prove a cornerstone for further studies on this rare microbial community.

  9. Metabolite recycling and bidirectional C fluxes: Revolutionizing our view on microbial C cycling in soils

    NASA Astrophysics Data System (ADS)

    Dippold, M. A.; Apostel, C.; Kuzyakov, Y.

    2016-12-01

    Biogeochemists' view on microbial C transformation in soil has rarely exceed a strongly simplified concept assuming that C gets either oxidized to CO2 via the microbial catabolism or incorporated into biomass via the anabolism. However, life in a C limited environment as challenging as soil requires microbial adaptation strategies at all levels of metabolism. By coupling of position-specific labeling of core metabolites with compound-specific isotope analysis we demonstrated that catabolic oxidation of these metabolites exists in parallel to reductive, energy consuming pathways, reducing them for anabolic purposes. Up to 55% of glucose, incorporated into the glucose derivative glucosamine, first passed glycolysis before allocated back via gluconeogenesis. Similarly, glutamate-derived C is allocated via anaplerotic pathways towards fatty acid synthesis and in parallel to its oxidation in the citric acid cycle. Furthermore, position-specific labeling of rather `cost-intensive' biomass compounds such as fatty acids revealed that intact recycling of metabolites is a crucial microbial adaptation to C scarcity in soils. Both processes are unlikely to occur in pure cultures, where constant growth conditions under high C supply allow a straight unidirectional regulation of C metabolism. However, unstable environmental conditions, C scarcity and interactions between a still unknown diversity of microorganisms in soils are likely to induce the observed metabolic diversity. To understand how microorganisms catalyze the biogeochemical fluxes in soil, a profound understanding of their metabolic adaptation strategies such as recycling or switching between bidirectional fluxes is crucial. Metabolic flux models adapted to soil microbial communities and their regulatory strategies will not only deepen our understanding on the microorganims' reactions to environmental changes but also create the prerequisits for a quantitative prediction of biogeochemical fluxes based on the underlying microbial processes.

  10. Impact of natural organic matter coatings on the microbial reduction of iron oxides

    NASA Astrophysics Data System (ADS)

    Poggenburg, Christine; Mikutta, Robert; Schippers, Axel; Dohrmann, Reiner; Guggenberger, Georg

    2018-03-01

    Iron (Fe) oxyhydroxides are important constituents of the soil mineral phase known to stabilize organic matter (OM) under oxic conditions. In an anoxic milieu, however, these Fe-organic associations are exposed to microbial reduction, releasing OM into soil solution. At present, only few studies have addressed the influence of adsorbed natural OM (NOM) on the reductive dissolution of Fe oxyhydroxides. This study therefore examined the impact of both the composition and concentration of adsorbed NOM on microbial Fe reduction with regard to (i) electron shuttling, (ii) complexation of Fe(II,III), (iii) surface site coverage and/or pore blockage, and (iv) aggregation. Adsorption complexes with varying carbon loadings were synthesized using different Fe oxyhydroxides (ferrihydrite, lepidocrocite, goethite, hematite, magnetite) and NOM of different origin (extracellular polymeric substances from Bacillus subtilis, OM extracted from soil Oi and Oa horizons). The adsorption complexes were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), N2 gas adsorption, electrophoretic mobility and particle size measurements, and OM desorption. Incubation experiments under anaerobic conditions were conducted for 16 days comparing two different strains of dissimilatory Fe(III)-reducing bacteria (Shewanella putrefaciens, Geobacter metallireducens). Mineral transformation during reduction was assessed via XRD and FTIR. Microbial reduction of the pure Fe oxyhydroxides was controlled by the specific surface area (SSA) and solubility of the minerals. For Shewanella putrefaciens, the Fe reduction of adsorption complexes strongly correlated with the concentration of potentially usable electron-shuttling molecules for NOM concentrations <2 mg C L-1, whereas for Geobacter metallireducens, Fe reduction depended on the particle size and thus aggregation of the adsorption complexes. These diverging results suggest that the influence of NOM on the stability of Fe-organic associations in soils cannot easily be assessed without considering the composition of the microbial soil community.

  11. Adaptation of the autotrophic acetogen Sporomusa ovata to methanol accelerates the conversion of CO2 to organic products

    PubMed Central

    Tremblay, Pier-Luc; Höglund, Daniel; Koza, Anna; Bonde, Ida; Zhang, Tian

    2015-01-01

    Acetogens are efficient microbial catalysts for bioprocesses converting C1 compounds into organic products. Here, an adaptive laboratory evolution approach was implemented to adapt Sporomusa ovata for faster autotrophic metabolism and CO2 conversion to organic chemicals. S. ovata was first adapted to grow quicker autotrophically with methanol, a toxic C1 compound, as the sole substrate. Better growth on different concentrations of methanol and with H2-CO2 indicated the adapted strain had a more efficient autotrophic metabolism and a higher tolerance to solvent. The growth rate on methanol was increased 5-fold. Furthermore, acetate production rate from CO2 with an electrode serving as the electron donor was increased 6.5-fold confirming that the acceleration of the autotrophic metabolism of the adapted strain is independent of the electron donor provided. Whole-genome sequencing, transcriptomic, and biochemical studies revealed that the molecular mechanisms responsible for the novel characteristics of the adapted strain were associated with the methanol oxidation pathway and the Wood-Ljungdahl pathway of acetogens along with biosynthetic pathways, cell wall components, and protein chaperones. The results demonstrate that an efficient strategy to increase rates of CO2 conversion in bioprocesses like microbial electrosynthesis is to evolve the microbial catalyst by adaptive laboratory evolution to optimize its autotrophic metabolism. PMID:26530351

  12. Characterising microbial reduction of arsenate sorbed to ferrihydrite and its concurrence with iron reduction and the consequent impact on arsenic mobilisation

    NASA Astrophysics Data System (ADS)

    Huang, Jen-How

    2014-05-01

    Mobilisation of solid phase arsenic under reducing conditions involves a combination of microbial arsenate and iron reduction and is affected by secondary reactions of released products. A series of model anoxic incubations were performed to understand the concurrence between arsenate and ferrihydrite reduction by Shewanella putrefaciens strain CN-32 at different concentrations of arsenate, ferrihydrite and lactate, and with given ΔGrxn for arsenate and ferrihydrite reduction in non-growth conditions at pH 7. The reduction kinetics of arsenate sorbed to ferrihydrite is predominately controlled by the availability of dissolved arsenate, which is measured by the integral of dissolved arsenate concentrations against incubation time and shown to correlate with the first order rate constants. Thus, the mobilisation of adsorbed As(V) can be regarded as the rate determining step of microbial reduction of As(V) sorbed to ferrihydrite. High lactate concentrations slightly slowed down the rate of arsenate reduction due to the competition with arsenate for microbial contact. Under all experimental conditions, simultaneous arsenate and ferrihydrite reduction occurred following addition of S. putrefaciens inoculums and suggested no apparent competition between these two enzymatic reductions. Ferrous ions released from iron reduction might retard microbial arsenate reduction at high arsenate and ferrihydrite concentrations due to formation of ferrous arsenate. At high arsenate to ferrihydrite ratios, reductive dissolution of ferrihydrite shifted arsenate from sorption to dissolution and hence accelerated arsenate reduction. Reductive dissolution of ferrihydrite may cause additional releases of adsorbed As(V) into solution, which is especially effective at high As(V) to ferrihydrite ratios. In comparison, formation of Fe(II) secondary minerals during microbial Fe(III) reduction were responsible for trapping solution As(V) in the systems with high ferrihydrite but low As(V) concentrations. In summary, the interaction between microbial arsenate and ferrihydrite reduction did not correlate with ΔGrxn, but instead was governed by geochemical and microbial parameters, which may substantially influence the mobility of arsenic.

  13. A defined co-culture of Geobacter sulfurreducens and Escherichia coli in a membrane-less microbial fuel cell.

    PubMed

    Bourdakos, Nicholas; Marsili, Enrico; Mahadevan, Radhakrishnan

    2014-04-01

    Wastewater-fed microbial fuel cells (MFCs) are a promising technology to treat low-organic carbon wastewater and recover part of the chemical energy in wastewater as electrical power. However, the interactions between electrochemically active and fermentative microorganisms cannot be easily studied in wastewater-fed MFCs because of their complex microbial communities. Defined co-culture MFCs provide a detailed understanding of such interactions. In this study, we characterize the extracellular metabolites in laboratory-scale membrane-less MFCs inoculated with Geobacter sulfurreducens and Escherichia coli co-culture and compare them with pure culture MFCs. G. sulfurreducens MFCs are sparged to maintain anaerobic conditions, while co-culture MFCs rely on E. coli for oxygen removal. G. sulfurreducens MFCs have a power output of 128 mW m(-2) , compared to 63 mW m(-2) from the co-culture MFCs. Analysis of metabolites shows that succinate production in co-culture MFCs decreases current production by G. sulfurreducens and that the removal of succinate is responsible for the increased current density in the late co-culture MFCs. Interestingly, pH adjustment is not required for co-culture MFCs but a base addition is necessary for E. coli MFCs and cultures in vials. Our results show that defined co-culture MFCs provide clear insights into metabolic interactions among bacteria while maintaining a low operational complexity. © 2013 Wiley Periodicals, Inc.

  14. Kinetics of nitrate and sulfate removal using a mixed microbial culture with or without limited-oxygen fed.

    PubMed

    Xu, Xi-Jun; Chen, Chuan; Wang, Ai-Jie; Guo, Hong-Liang; Yuan, Ye; Lee, Duu-Jong; Ren, Nan-Qi

    2014-07-01

    The biological degradation of nitrate and sulfate was investigated using a mixed microbial culture and lactate as the carbon source, with or without limited-oxygen fed. It was found that sulfate reduction was slightly inhibited by nitrate, since after nitrate depletion the sulfate reduction rate increased from 0.37 mg SO4 (2-)/mg VSS d to 0.71 mg SO4 (2-)/mg VSS d, and the maximum rate of sulfate reduction in the presence of nitrate corresponded to 56 % of the non-inhibited sulfate reduction rate determined after nitrate depleted. However, simultaneous but not sequential reduction of both oxy-anions was observed in this study, unlike some literature reports in which sulfate reduction starts only after depletion of nitrate, and this case might be due to the fact that lactate was always kept above the limiting conditions. At limited oxygen, the inhibited effect on sulfate reduction by nitrate was relieved, and the sulfate reduction rate seemed relatively higher than that obtained without limited-oxygen fed, whereas kept almost constant (0.86-0.89 mg SO4 (2-)/mg VSS d) cross the six ROS states. In contrast, nitrate reduction rates decreased substantially with the increase in the initial limited-oxygen fed, showing an inhibited effect on nitrate reduction by oxygen. Kinetic parameters determined for the mixed microbial culture showed that the maximum specific sulfate utilization rate obtained (0.098 ± 0.022 mg SO4 (2-)/(mg VSS h)) was similar to the reported typical value (0.1 mg SO4 (2-)/(mg VSS h)), also indicating a moderate inhibited effect by nitrate.

  15. Influence of Bicarbonate, Sulfate, and Electron Donors on Biological reduction of Uranium and Microbial Community Composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Wensui; Zhou, Jizhong; Wu, Weimin

    2007-01-01

    A microcosm study was performed to investigate the effect of ethanol and acetate on uranium(VI) biological reduction and microbial community changes under various geochemical conditions. Each microcosm contained an uranium-contaminated sediment (up to 2.8 g U/kg) suspended in buffer with bicarbonate at concentrations of either 1 mM or 40 mM and sulfate at either 1.1 or 3.2 mM. Ethanol or acetate was used as an electron donor. Results indicate that ethanol yielded in significantly higher U(VI) reduction rates than acetate. A low bicarbonate concentration (1 mM) was favored for U(VI) bioreduction to occur in sediments, but high concentrations of bicarbonatemore » (40 mM) and sulfate (3.2 mM) decreased the reduction rates of U(VI). Microbial communities were dominated by species from the Geothrix genus and Proteobacteria phylum in all microcosms. However, species in the Geobacteraceae family capable of reducing U(VI) were significantly enriched by ethanol and acetate in low bicarbonate buffer. Ethanol increased the population of unclassified Desulfuromonales, while acetate increased the population of Desulfovibrio. Additionally, species in the Geobacteraceae family were not enriched in high bicarbonate buffer, but the Geothrix and the unclassified Betaproteobacteria species were enriched. This study concludes that ethanol could be a better electron donor than acetate for reducing U(VI) under given experimental conditions, and electron donor and geoundwater geochemistry alter microbial communities responsible for U(VI) reduction.« less

  16. The Microbial Contribution to Shale Gas: How Much Have They Done, and How Fast Can They Do It?

    NASA Astrophysics Data System (ADS)

    Martini, A. M.

    2014-12-01

    Over the past few decades, the importance of microbial contributions to our natural gas supply has been widely recognized, even leading to efforts to enhance the rate of methanogenesis in reservoirs whether the substrate is oil, coal or the organic matter in shale. The identification of biogenic gas was first established with gas compositional and isotopic data. More recently, molecular genomic data has been applied, giving us a glimpse into bacterial and archaeal communities in the subsurface, both in reservoirs where the microbial community was expected by the geochemical signature, but also in flowback waters from formations where there was no indication of anything other than thermogenic gas. With these microbes, it is not so much a question of "build it and they will come", but more that the community lies in wait for conditions to improve and allow them to flourish. Conditions for microbial methanogenesis are well constrained: temperatures up to ~80oC, low sulfate concentration, and chloride concentrations under 2M. However, these are rather expansive boundaries and within each range there lies constant turnover in population density as well specific microbial abundances. In addition, the rates at which these microbes are able convert complex organic matter into methane depend upon environmental conditions. Confounding our evaluation of these subsurface communities is the effect that production incurs. Over the past two decades, wells under production in the Antrim Shale have exhibited changes in the geochemistry of formation fluids, most notably a drop in dissolved inorganic carbon of ~10mM. Gas chemistry has also shifted, with increasing concentrations of carbon dioxide that have also become more enriched in 13C, while the co-produced methane has become more depleted in 13C over the 20 years that these few wells have been monitored. Perhaps not unsurprisingly, the microbial community has also shifted with the water's chemical evolution. Most intriguing is the correlation of the deuterium in the water to the methane, where CO2-reduction seems to remain the dominant methanogenic pathway and the gas composition is responding to changes in the water source. This may signify a relatively high proportion of recently produced methane in the system.

  17. Carbon isotope discrepancy between precambrian stromatolites and their modern analogs: Inferences from hypersaline microbial mats of the sinai coast

    NASA Astrophysics Data System (ADS)

    Schidlowski, Manfred

    1985-12-01

    The isotopic composition of organic carbon from extant stromatolite-type microbial ecosystems is commonly slanted toward heavy δ13 C values as compared to respective compositions of average organic matter (including that from Precambrian stromatolites). This seems the more enigmatic as the bulk of primary producers from benthic microbial communities are known to fix carbon via the C3 pathway normally entailing the sizable fractionations of the RuBP carboxylase reaction. There is reason to believe that the small fractionations displayed by aquatic microorganisms result from the limitations of a diffusion-controlled assimilatory pathway in which the isotope effect of the enzymatic reaction is largely suppressed. Apart from the diffusion-control exercised by the aqueous environment, transport of CO2 to the photosynthetically active sites will be further impeded by the protective slime (polysaccharide) coatings commonly covering microbial mats in which gas diffusivities are extremely low. Ineffective discrimination against13C becomes, however, most pronounced in hypersaline environments where substantially reduced CO2 solubilities tend to push carbon into the role of a limiting nutrient (brine habitats constitute preferential sanctuaries of mat-forming microbenthos since the emergence of Metazoan grazers ˜ 0.7 Ga ago). As the same microbial communities had been free to colonize normal marine environments during the Precambrian, the CO2 concentration effect was irrelevant to the carbon-fixing pathway of these ancient forms. Therefore, it might not surprise that organic matter from Precambrian stromatolites displays the large fractionations commonly associated with C3 photosynthesis. Increased mixing ratios of CO2 in the Precambrian atmosphere may have additionally contributed to the elimination of the diffusion barrier in the carbon-fixing pathways of ancient mat-forming microbiota.

  18. Biological Activity Assessment in Mexican Tropical Soils with Different Hydrocarbon Contamination Histories.

    PubMed

    Riveroll-Larios, Jessica; Escalante-Espinosa, Erika; Fócil-Monterrubio, Reyna L; Díaz-Ramírez, Ildefonso J

    The use of soil health indicators linked to microbial activities, such as key enzymes and respirometric profiles, helps assess the natural attenuation potential of soils contaminated with hydrocarbons. In this study, the intrinsic physicochemical characteristics, biological activity and biodegradation potential were recorded for two soils with different contamination histories (>5 years and <1 months). The enzymatic activity (lipase and dehydrogenase) as well as microbiological and mineralisation profiles were measured in contaminated soil samples. Soil suspensions were tested as microbial inocula in biodegradation potential assays using contaminated perlite as an inert support. The basal respiratory rate of the recently contaminated soil was 15-38 mg C-CO 2  kg -1 h -1 , while the weathered soil presented a greater basal mineralisation capacity of 55-70 mg C-CO 2 kg -1 h -1 . The basal levels of lipase and dehydrogenase were significantly greater than those recorded in non-contaminated soils (551 ± 21 μg pNP g -1 ). Regarding the biodegradation potential assessment, the lipase (1000-3000 μg pNP g -1 of perlite) and dehydrogenase (~3000 μg INF g -1 of perlite) activities in the inoculum of the recently contaminated soil were greater than those recorded in the inoculum of the weathered soil. This was correlated with a high mineralisation rate (~30 mg C-CO 2 kg -1 h -1 ) in the recently contaminated soil and a reduction in hydrocarbon concentration (~30 %). The combination of an inert support and enzymatic and respirometric analyses made it possible to detect the different biodegradation capacities of the studied inocula and the natural attenuation potential of a recently contaminated soil at high hydrocarbon concentrations.

  19. Methanogenesis at low temperatures by microflora of tundra wetland soil.

    PubMed

    Kotsyurbenko, O R; Nozhevnikova, A N; Soloviova, T I; Zavarzin, G A

    1996-01-01

    Active methanogenesis from organic matter contained in soil samples from tundra wetland occurred even at 6 degrees C. Methane was the only end product in balanced microbial community with H2/CO2 as a substrate, besides acetate was produced as an intermediate at temperatures below 10 degrees C. The activity of different microbial groups of methanogenic community in the temperature range of 6-28 degrees C was investigated using 5% of tundra soil as inoculum. Anaerobic microflora of tundra wetland fermented different organic compounds with formation of hydrogen, volatile fatty acids (VFA) and alcohols. Methane was produced at the second step. Homoacetogenic and methanogenic bacteria competed for such substrates as hydrogen, formate, carbon monoxide and methanol. Acetogens out competed methanogens in an excess of substrate and low density of microbial population. Kinetic analysis of the results confirmed the prevalence of hydrogen acetogenesis on methanogenesis. Pure culture of acetogenic bacteria was isolated at 6 degrees C. Dilution of tundra soil and supply with the excess of substrate disbalanced the methanoigenic microbial community. It resulted in accumulation of acetate and other VFA. In balanced microbial community obviously autotrophic methanogens keep hydrogen concentration below a threshold for syntrophic degradation of VFA. Accumulation of acetate- and H2/CO2-utilising methanogens should be very important in methanogenic microbial community operating at low temperatures.

  20. Utilization of subsurface microbial electrochemical systems to elucidate the mechanisms of competition between methanogenesis and microbial iron(III)/humic acid reduction in Arctic peat soils

    NASA Astrophysics Data System (ADS)

    Friedman, E. S.; Miller, K.; Lipson, D.; Angenent, L. T.

    2012-12-01

    High-latitude peat soils are a major carbon reservoir, and there is growing concern that previously dormant carbon from this reservoir could be released to the atmosphere as a result of continued climate change. Microbial processes, such as methanogenesis and carbon dioxide production via iron(III) or humic acid reduction, are at the heart of the carbon cycle in Arctic peat soils [1]. A deeper understanding of the factors governing microbial dominance in these soils is crucial for predicting the effects of continued climate change. In previous years, we have demonstrated the viability of a potentiostatically-controlled subsurface microbial electrochemical system-based biosensor that measures microbial respiration via exocellular electron transfer [2]. This system utilizes a graphite working electrode poised at 0.1 V NHE to mimic ferric iron and humic acid compounds. Microbes that would normally utilize these compounds as electron acceptors donate electrons to the electrode instead. The resulting current is a measure of microbial respiration with the electrode and is recorded with respect to time. Here, we examine the mechanistic relationship between methanogenesis and iron(III)- or humic acid-reduction by using these same microbial-three electrode systems to provide an inexhaustible source of alternate electron acceptor to microbes in these soils. Chamber-based carbon dioxide and methane fluxes were measured from soil collars with and without microbial three-electrode systems over a period of four weeks. In addition, in some collars we simulated increased fermentation by applying acetate treatments to understand possible effects of continued climate change on microbial processes in these carbon-rich soils. The results from this work aim to increase our fundamental understanding of competition between electron acceptors, and will provide valuable data for climate modeling scenarios. 1. Lipson, D.A., et al., Reduction of iron (III) and humic substances plays a major role in anaerobic respiration in an Arctic peat soil. Journal of Geophysical Research-Biogeosciences, 2010. 115. 2. Friedman, E.S., et al., A cost-effective and field-ready potentiostat that poises subsurface electrodes to monitor bacterial respiration. Biosensors and Bioelectronics, 2012. 32(1): p. 309-313.

  1. Iron oxide nanoparticles in geomicrobiology: from biogeochemistry to bioremediation.

    PubMed

    Braunschweig, Juliane; Bosch, Julian; Meckenstock, Rainer U

    2013-09-25

    Iron oxides are important constituents of soils and sediments and microbial iron reduction is considered to be a significant anaerobic respiration process in the subsurface, however low microbial reduction rates of macroparticulate Fe oxides in laboratory studies led to an underestimation of the role of Fe oxides in the global Fe redox cycle. Recent studies show the high potential of nano-sized Fe oxides in the environment as, for example, electron acceptor for microbial respiration, electron shuttle between different microorganisms, and scavenger for heavy metals. Biotic and abiotic reactivity of iron macroparticles differ significantly from nano-sized Fe oxides, which are usually much more reactive. Factors such as particle size, solubility, ferrous iron, crystal structure, and organic molecules were identified to influence the reactivity. This review discusses factors influencing the microbial reactivity of Fe oxides. It highlights the differences between natural and synthetic Fe oxides especially regarding the presence of organic molecules such as humic acids and natural organic matter. Attention is given to the transport behavior of Fe oxides in laboratory systems and in the environment, because of the high affinity of different contaminants to Fe oxide surfaces and associated co-transport of pollutants. The high reactivity of Fe oxides and their potential as adsorbents for different pollutants are discussed with respect to application and development of remediation technologies. Copyright © 2013. Published by Elsevier B.V.

  2. Microbial Habitability in Gale Crater: Sample Analysis at Mars (SAM) Instrument Detection of Microbial Essential Carbon and Nitrogen

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Ming, D. W.; Eigenbrode, J. E.; Steele, A.; Stern, J. C.; Gonzalez, R. N.; McAdam, A. C.; Mahaffy, P. R.

    2016-01-01

    Chemical analyses of Mars soils and sediments from previous landed missions have demonstrated that Mars surface materials possessed major (e.g., P, K, Ca, Mg, S) and minor (e.g., Fe, Mn, Zn, Ni, Cl) elements essential to support microbial life. However, the detection of microbial essential organic-carbon (C) and nitrate have been more elusive until the Mars Science Laboratory (MSL) rover mission. Nitrate and organic-C in Gale Crater, Mars have been detected by the Sample Analysis at Mars (SAM) instrument onboard the MSL Curiosity rover. Eolian fines and drilled sedimentary rock samples were heated in the SAM oven from approximately 30 to 860 degrees Centigrade where evolved gases (e.g., nitrous oxide (NO) and CO2) were released and analyzed by SAM’s quadrupole mass spectrometer (MS). The temperatures of evolved NO was assigned to nitrate while evolved CO2 was assigned to organic-C and carbonate. The CO2 releases in several samples occurred below 450 degrees Centigrade suggesting organic-C dominated in those samples. As much as 7 micromoles NO3-N per gram and 200 micromoles CO2-C per gram have been detected in the Gale Crater materials. These N and C levels coupled with assumed microbial biomass (9 x 10 (sup -7) micrograms per cell) C (0.5 micrograms C per micrograms cell) and N (0.14 micrograms N per micrograms cell) requirements, suggests that less than 1 percent and less than 10 percent of Gale Crater C and N, respectively, would be required if available, to accommodate biomass requirements of 1 by 10 (sup 5) cells per gram sediment. While nitrogen is the limiting nutrient, the potential exists that sufficient N and organic-C were present to support limited heterotrophic microbial populations that may have existed on ancient Mars.

  3. Microbial Reduction of Structural Fe3+ in Nontronite by a Thermophilic Bacterium and its Role in Promoting the Smectite to Illite Reaction

    DTIC Science & Technology

    2007-01-01

    role in promoting the smectite to Hike reaction GENGXIN ZHANG,’ HAIUANG DONG, 1 * JINWOOK KIM,2 AND D.D. EBERL3 ’Department of Geology, Miami...Geological Survey, Boulder, Colorado 80303, USA. ABSTRACT The illitization process of Fe-rich smectite (nontronite NAu-2) promoted by microbial reduction of...layers of illite/ smectite or highly charged smectite were detected under other conditions. The morphology of biogenic illite evolved from lath and flake

  4. Metabolic adaptation and in situ attenuation of chlorinated ethenes by naturally occurring microorganisms in a fractured dolomite aquifer near Niagara Falls, New York

    USGS Publications Warehouse

    Yager, R.M.; Bilotta, S.E.; Mann, C.L.; Madsen, E.L.

    1997-01-01

    A combination of hydrogeological, geochemical, and microbiological methods was used to document the biotransformation of trichloroethene (TCE) to ethene, a completely dechlorinated and environmentally benign compound, by naturally occurring microorganisms within a fractured dolomite aquifer. Analyses of groundwater samples showed that three microbially produced TCE breakdown products (cis-1,2-dichloroethene, vinyl chloride, and ethene) were present in the contaminant plume. Hydrogen (H2) concentrations in groundwater indicated that iron reduction was the predominant terminal electron-accepting process in the most contaminated geologic zone of the site. Laboratory microcosms prepared with groundwater demonstrated complete sequential dechlorination of TCE to ethene. Microcosm assays also revealed that reductive dechlorination activity was present in waters from the center but not from the periphery of the contaminant plume. This dechlorination activity indicated that naturally occurring microorganisms have adapted to utilize chlorinated ethenes and suggested that dehalorespiring rather than cometabolic, microbial processes were the cause of the dechlorination. The addition of pulverized dolomite to microcosms enhanced the rate of reductive dechlorination, suggesting that hydrocarbons in the dolomite aquifer may serve as electron donors to drive microbially mediated reductive dechlorination reactions. Biodegradation of the chlorinated ethenes appears to contribute significantly to decontamination of the site.A combination of hydrogeological, geochemical, and microbiological methods was used to document the biotransformation of trichloroethene (TCE) to ethene, a completely dechlorinated and environmentally benign compound, by naturally occurring microorganisms within a fractured dolomite aquifer. Analyses of groundwater samples showed that three microbially produced TCE breakdown products (cis-1,2-dichloroethene, vinyl chloride, and ethene) were present in the contaminant plume. Hydrogen (H2) concentrations in groundwater indicated that iron reduction was the predominant terminal electron-accepting process in the most contaminated geologic zone of the site. Laboratory microcosms prepared with groundwater demonstrated complete sequential dechlorination of TCE to ethene. Microcosm assays also revealed that reductive dechlorination activity was present in waters from the center but not from the periphery of the contaminant plume. This dechlorination activity indicated that naturally occurring microorganisms have adapted to utilize chlorinated ethenes and suggested that dehalorespiring rather than cometabolic, microbial processes were the cause of the dechlorination. The addition of pulverized dolomite to microcosms enhanced the rate of reductive dechlorination, suggesting that hydrocarbons in the dolomite aquifer may serve as electron donors to drive microbially mediated reductive dechlorination reactions. Biodegradation of the chlorinated ethenes appears to contribute significantly to decontamination of the site.

  5. The Sample at Mars Analysis (SAM) Detections of CO2 and CO in Sedimentary Material from Gale Crater, Mars: Implications for the Presence of Organic Carbon and Microbial Habitability on Mars

    NASA Technical Reports Server (NTRS)

    Sutter, Brad

    2016-01-01

    Sedimentary rock samples heated to 860 C in the SAM instrument evolved CO2 and CO indicating the presence of organic-carbon(C) in Gale Crater materials. Martian or exogenous (meteoritic, interplanetary dust) CO2 and CO could be derived from combustion of simple organics (less than 300 C), complex refractory organics/amorphous carbon (300-600 C), and/or magmatic carbon (greater than 600 C) as result of thermal decomposition of Gale Crater perchlorates, and sulfates present that produce O2. Oxidized organic compounds could also evolve CO2 and CO over broad temperature range (150 to 800 C) and such organics are expected on Mars via exogenous sources. Alternatively, organic-C could also have been oxidized to carboxylic acids [e.g, mellitic acid (RCOOH), acetate (CH3CO2(-)), and oxalates ((2)C2O4(-))] by oxidative radiolytic weathering, or other oxidation processes. The presence of oxidized organics is consistent with the limited detection of reduced organic-C phases by the SAM-gas chromatography. Organic-C content as determined by CO2 and CO contents could range between 800 and 2400 ppm C indicating that substantial organic-C component is present in Gale Crater. There are contributions from SAM background however, even in worse case scenarios, this would only account for as much as half of the detected CO2 and CO. Nevertheless, if organic-C levels were assumed to have existed in a reduced form on ancient Mars and this was bioavailable C, then less than 1% of C in Gale Crater sediments could have supported an exclusively heterotrophic microbial population of 1 x 10(exp 5) cells/g sediment (assumes 9 x 10(exp -7) microgram/cell and 0.5 micrograms C/microgram cell). While other essential nutrients (e.g., S and P) could be limiting, organic-C contents, may have been sufficient to support limited heterotrophic microbial populations on ancient Mars.

  6. Chemolithoautotrophy in a shallow-sea hydrothermal system, Milos Island, Greece

    NASA Astrophysics Data System (ADS)

    Lu, G. S.; LaRowe, D.; Gilhooly, W., III; Druschel, G. K.; Fike, D. A.; Amend, J.

    2017-12-01

    In recent decades, numerous (hyper)thermophilic microorganisms have been isolated from hydrothermal venting systems. Although they have been shown to have the capabilities to catalyze a wide variety of reactions to gain energy, few pure cultures have been isolated from these environments. In order to more fully understand the catabolic potential of organisms living in and near hydrothermal vents, we have calculated the Gibbs energies (ΔGr) of 730 redox reactions that could be supplying energy to organisms in the shallow-sea hydrothermal sediments of Paleochori Bay, Milos Island, Greece. This analysis required in-depth geochemical data on the pore fluids and minerals in these sediments near the vent site at several depths. The geochemical profiles of Saganaki vent show steep gradients in temperature, pH, and redox-sensitive compounds resulting from the mixing of hot ( 75oC), acidic ( pH 4), chemically reduced venting fluid with colder, slightly basic and oxidized seawater. We determined values of ΔGr for 47 sediment porewater samples along a 20cm x 2m transect for metabolic reactions involving 23 inorganic H-, O-, C-, N-, S-, Fe-, Mn-, and As- bearing compounds. 379 of the reactions considered were exergonic at one or more sampling locations. The most exergonic reactions were anaerobic CO oxidation with NO2- (136 - 162 kJ/mol e-), followed by the O2/CO, NO3-/CO, and NO2-/ H2S redox pairs. ΔGr values exhibit significant variation among sites as temperature, pH and chemical concentration vary, especially concentrations of Fe2+, Mn2+, and H2S. A great diversity of energy sources are available for microbial populations to exploit: in hotter sediments, sulfide oxidation coupled to nitrite reduction yields large amounts of energy per kg of sediment, whereas aerobic S0 oxidation is more energy-yielding in cooler areas. Our results show that at Saganaki there is a substantial amount of energy available from to microorganisms from sulfur-redox reactions. 16S rRNA pyrotag sequencing data point to diverse microbial populations at Saganaki, which is consistent with our bioenergetic profile, particularly when the thermodynamic calculations are normalized per kg of venting fluid. These data suggest a complex spatial distribution of microbial physiologies that is in good agreement with predicted energy yields.

  7. Soil water content drives spatiotemporal patterns of CO2 and N2O emissions from a Mediterranean riparian forest soil

    NASA Astrophysics Data System (ADS)

    Poblador, Sílvia; Lupon, Anna; Sabaté, Santiago; Sabater, Francesc

    2017-09-01

    Riparian zones play a fundamental role in regulating the amount of carbon (C) and nitrogen (N) that is exported from catchments. However, C and N removal via soil gaseous pathways can influence local budgets of greenhouse gas (GHG) emissions and contribute to climate change. Over a year, we quantified soil effluxes of carbon dioxide (CO2) and nitrous oxide (N2O) from a Mediterranean riparian forest in order to understand the role of these ecosystems on catchment GHG emissions. In addition, we evaluated the main soil microbial processes that produce GHG (mineralization, nitrification, and denitrification) and how changes in soil properties can modify the GHG production over time and space. Riparian soils emitted larger amounts of CO2 (1.2-10 g C m-2 d-1) than N2O (0.001-0.2 mg N m-2 d-1) to the atmosphere attributed to high respiration and low denitrification rates. Both CO2 and N2O emissions showed a marked (but antagonistic) spatial gradient as a result of variations in soil water content across the riparian zone. Deep groundwater tables fueled large soil CO2 effluxes near the hillslope, while N2O emissions were higher in the wet zones adjacent to the stream channel. However, both CO2 and N2O emissions peaked after spring rewetting events, when optimal conditions of soil water content, temperature, and N availability favor microbial respiration, nitrification, and denitrification. Overall, our results highlight the role of water availability on riparian soil biogeochemistry and GHG emissions and suggest that climate change alterations in hydrologic regimes can affect the microbial processes that produce GHG as well as the contribution of these systems to regional and global biogeochemical cycles.

  8. Residual effect of storage in an elevated carbon dioxide atmosphere on the microbial flora of rock cod (Sebastes spp. )

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, M.Y.; Ogrydziak, D.M.

    1986-10-01

    A residual inhibitory effect on microbial growth due to modified-atmosphere (MA) storage (MA, 80% CO/sub 2/-20% air) was demonstrated for rock cod fillets stored in MA and transferred to air at 4/sup 0/C. Results of measurements of CO/sub 2/ concentrations of the fillets suggested that the residual effect after transfer from MA to air was not due to retention of CO/sup 2/ at the surface of the fillets but was probably due to the microbial ecology of the system. Lactobacillus spp. and tan Alteromonas spp. (TAN) predominated after 7 and 14 days of storage in MA. During storage in MA,more » Pseudomonas spp. were inhibited or killed. Following transfer from MA to air, the percentage of the total flora represented by Lactobacillus spp. and TAN bacteria decreased, and 6 days after transfer Pseudomonas spp. were again dominant.« less

  9. Raman microspectroscopy for in situ examination of carbon-microbe-mineral interactions

    NASA Astrophysics Data System (ADS)

    Creamer, C.; Foster, A. L.; Lawrence, C. R.; Mcfarland, J. W.; Waldrop, M. P.

    2016-12-01

    The changing paradigm of soil organic matter formation and turnover is focused at the nexus of microbe-carbon-mineral interactions. However, visualizing biotic and abiotic stabilization of C on mineral surfaces is difficult given our current techniques. Therefore we investigated Raman microspectroscopy as a potential tool to examine microbially mediated organo-mineral associations. Raman microspectroscopy is a non-destructive technique that has been used to identify microorganisms and minerals, and to quantify microbial assimilation of 13C labeled substrates in culture. We developed a partial least squares regression (PLSR) model to accurately quantify (within 5%) adsorption of four model 12C substrates (glucose, glutamic acid, oxalic acid, p-hydroxybenzoic acid) on a range of soil minerals. We also developed a PLSR model to quantify the incorporation of 13C into E. coli cells. Using these two models, along with measures of the 13C content of respired CO2, we determined the allocation of glucose-derived C into mineral-associated microbial biomass and respired CO2 in situ and through time. We observed progressive 13C enrichment of microbial biomass with incubation time, as well as 13C enrichment of CO2 indicating preferential decomposition of glucose-derived C. We will also present results on the application of our in situ chamber to quantify the formation of organo-mineral associations under both abiotic and biotic conditions with a variety of C and mineral substrates, as well as the rate of turnover and stabilization of microbial residues. Application of Raman microspectroscopy to microbial-mineral interactions represents a novel method to quantify microbial transformation of C substrates and subsequent mineral stabilization without destructive sampling, and has the potential to provide new insights to our conceptual understanding of carbon-microbe-mineral interactions.

  10. Identifying the role of plant-microbial interactions in driving Arctic carbon cycle changes using a 13C isotope tracer

    NASA Astrophysics Data System (ADS)

    Hough, M.; Tfaily, M. M.; Blazewicz, S.; Dorrepaal, E.; Crill, P. M.; Rich, V. I.; Saleska, S. R.

    2017-12-01

    Thawing arctic permafrost (which contains 30-50% of global soil carbon) is expected to drive substantial alterations to carbon (C) cycling that will accelerate climate change. As permafrost thaws, old C may decompose more rapidly and be released as methane (CH4) and carbon dioxide (CO2), but thawing soil can also increase plant productivity as perennial shrub communities transition to faster growing annual wetland plants. The effect of plant community changes on the C cycle is not yet well understood. It could mitigate C loss if C input rates are high enough, or it could increase contributions to CH4 emission (a more potent greenhouse gas than CO2) if it decomposes anaerobically. To investigate the influence of fresh plant litter inputs on peat organic material, microbial communities, and greenhouse gas emissions we traced 13C-enriched plant material from Eriophorum and Sphagnum plants added to arctic peat decomposition incubations into each of these components. High resolution FT-ICR mass spectrometry showed changes in the types of enriched compounds over time indicative of microbial processing. Density fractionation of microbial DNA showed enrichment of the microbial community indicating uptake of 13C-enriched compounds from the plant litter. CO2 and CH4 fluxes were highly 13C enriched and showed three distinct phases of flux after litter addition which were not seen in incubations with no litter added. Together, these lines of evidence indicate that fresh litter inputs may play an important role in structuring microbial decomposition. Future work will explore this influence through closer examination of organic matter and microbial community changes during decomposition.

  11. Enhanced performance of microbial fuel cell with in situ preparing dual graphene modified bioelectrode.

    PubMed

    Chen, Junfeng; Hu, Yongyou; Tan, Xiaojun; Zhang, Lihua; Huang, Wantang; Sun, Jian

    2017-10-01

    This study proposed a three-step method to prepare dual graphene modified bioelectrode (D-GM-BE) by in situ microbial-induced reduction of GO and polarity reversion in microbial fuel cell (MFC). Both graphene modified bioanode (GM-BA) and biocathode (GM-BC) were of 3D graphene/biofilm architectures; the viability and thickness of microbial biofilm decreased compared with control bioelectrode (C-BE). The coulombic efficiency (CE) of GM-BA was 2.1 times of the control bioanode (C-BA), which demonstrated higher rate of substrates oxidation; the relationship between peak current and scan rates data meant that GM-BC was of higher efficiency of catalyzing oxygen reduction than the control biocathode (C-BC). The maximum power density obtained in D-GM-BE MFC was 122.4±6.9mWm -2 , the interfacial charge transfer resistance of GM-BA and GM-BC were decreased by 79% and 75.7%. The excellent electrochemical performance of D-GM-BE MFC was attributed to the enhanced extracellular electron transfer (EET) process and catalyzing oxygen reduction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Coupled eco-hydrology and biogeochemistry algorithms enable the simulation of water table depth effects on boreal peatland net CO2 exchange

    NASA Astrophysics Data System (ADS)

    Mezbahuddin, Mohammad; Grant, Robert F.; Flanagan, Lawrence B.

    2017-12-01

    Water table depth (WTD) effects on net ecosystem CO2 exchange of boreal peatlands are largely mediated by hydrological effects on peat biogeochemistry and the ecophysiology of peatland vegetation. The lack of representation of these effects in carbon models currently limits our predictive capacity for changes in boreal peatland carbon deposits under potential future drier and warmer climates. We examined whether a process-level coupling of a prognostic WTD with (1) oxygen transport, which controls energy yields from microbial and root oxidation-reduction reactions, and (2) vascular and nonvascular plant water relations could explain mechanisms that control variations in net CO2 exchange of a boreal fen under contrasting WTD conditions, i.e., shallow vs. deep WTD. Such coupling of eco-hydrology and biogeochemistry algorithms in a process-based ecosystem model, ecosys, was tested against net ecosystem CO2 exchange measurements in a western Canadian boreal fen peatland over a period of drier-weather-driven gradual WTD drawdown. A May-October WTD drawdown of ˜ 0.25 m from 2004 to 2009 hastened oxygen transport to microbial and root surfaces, enabling greater microbial and root energy yields and peat and litter decomposition, which raised modeled ecosystem respiration (Re) by 0.26 µmol CO2 m-2 s-1 per 0.1 m of WTD drawdown. It also augmented nutrient mineralization, and hence root nutrient availability and uptake, which resulted in improved leaf nutrient (nitrogen) status that facilitated carboxylation and raised modeled vascular gross primary productivity (GPP) and plant growth. The increase in modeled vascular GPP exceeded declines in modeled nonvascular (moss) GPP due to greater shading from increased vascular plant growth and moss drying from near-surface peat desiccation, thereby causing a net increase in modeled growing season GPP by 0.39 µmol CO2 m-2 s-1 per 0.1 m of WTD drawdown. Similar increases in GPP and Re caused no significant WTD effects on modeled seasonal and interannual variations in net ecosystem productivity (NEP). These modeled trends were corroborated well by eddy covariance measured hourly net CO2 fluxes (modeled vs. measured: R2 ˜ 0.8, slopes ˜ 1 ± 0.1, intercepts ˜ 0.05 µmol m-2 s-1), hourly measured automated chamber net CO2 fluxes (modeled vs. measured: R2 ˜ 0.7, slopes ˜ 1 ± 0.1, intercepts ˜ 0.4 µmol m-2 s-1), and other biometric and laboratory measurements. Modeled drainage as an analog for WTD drawdown induced by climate-change-driven drying showed that this boreal peatland would switch from a large carbon sink (NEP ˜ 160 g C m-2 yr-1) to carbon neutrality (NEP ˜ 10 g C m-2 yr-1) should the water table deepen by a further ˜ 0.5 m. This decline in projected NEP indicated that a further WTD drawdown at this fen would eventually lead to a decline in GPP due to water limitation. Therefore, representing the effects of interactions among hydrology, biogeochemistry and plant physiological ecology on ecosystem carbon, water, and nutrient cycling in global carbon models would improve our predictive capacity for changes in boreal peatland carbon sequestration under changing climates.

  13. Environmental Assessment for Potential Impacts of Ocean CO2 Storage on Marine Biogeochemical Cycles

    NASA Astrophysics Data System (ADS)

    Yamada, N.; Tsurushima, N.; Suzumura, M.; Shibamoto, Y.; Harada, K.

    2008-12-01

    Ocean CO2 storage that actively utilizes the ocean potential to dissolve extremely large amounts of CO2 is a useful option with the intent of diminishing atmospheric CO2 concentration. CO2 storage into sub-seabed geological formations is also considered as the option which has been already put to practical reconnaissance in some projects. Direct release of CO2 in the ocean storage and potential CO2 leakage from geological formations into the bottom water can alter carbonate system as well as pH of seawater. It is essential to examine to what direction and extent chemistry change of seawater induced by CO2 can affect the marine environments. Previous studies have shown direct and acute effects by increasing CO2 concentrations on physiology of marine organisms. It is also a serious concern that chemistry change can affect the rates of chemical, biochemical and microbial processes in seawater resulting in significant influences on marine biogeochemical cycles of the bioelements including carbon, nutrients and trace metals. We, AIST, have conducted a series of basic researches to assess the potential impacts of ocean CO2 storage on marine biogeochemical processes including CaCO3 dissolution, and bacterial and enzymatic decomposition of organic matter. By laboratory experiments using a special high pressure apparatus, the improved empirical equation was obtained for CaCO3 dissolution rate in the high CO2 concentrations. Based on the experimentally obtained kinetics with a numerical simulation for a practical scenario of oceanic CO2 sequestration where 50 Mton CO2 per year is continuously injected to 1,000-2,500 m depth within 100 x 333 km area for 30 years, we could illustrate precise 3-D maps for the predicted distributions of the saturation depth of CaCO3, in situ Ω value and CaCO3 dissolution rate in the western North Pacific. The result showed no significant change in the bathypelagic CaCO3 flux due to chemistry change induced by ocean CO2 sequestration. Both bacteria and hydrolytic enzymes are known as the essential promoters for organic matter decomposition in marine ecosystems. Bacterial activity and metabolisms under various CO2 concentrations and pH were examined on total cell abundance, 3H-leucine incorporation rate, and viable cell abundance. Our in vitro experiments demonstrated that acute effect by high CO2 conditions was negligible on the activities of bathypelagic bacteria at pH 7 or higher. However, our results suggested that bacterial assemblage in some organic-rich "microbial hot-spots" in seawater such as organic aggregates sinking particles, exhibited high sensitivity to acidification. Furthermore, it was indicated that CO2 injection seems to be the trigger to alter the microbial community structure between Eubacteria and Archaea. The activities of five types of hydrolytic enzymes showed no significant change with acidification as those observed in the bacterial activity. As to acute effects on microbial and biochemical processes examined by our laboratory studies, no significant influence was exhibited in the simulated ocean CO2 storage on marine biogeochemical cycling. Uncertainties in chronic and large-scale impacts, however, remain and should be addressed for more understanding the potential benefits and risks of the ocean storage.

  14. Analysis of the functional gene structure and metabolic potential of microbial community in high arsenic groundwater.

    PubMed

    Li, Ping; Jiang, Zhou; Wang, Yanhong; Deng, Ye; Van Nostrand, Joy D; Yuan, Tong; Liu, Han; Wei, Dazhun; Zhou, Jizhong

    2017-10-15

    Microbial functional potential in high arsenic (As) groundwater ecosystems remains largely unknown. In this study, the microbial community functional composition of nineteen groundwater samples was investigated using a functional gene array (GeoChip 5.0). Samples were divided into low and high As groups based on the clustering analysis of geochemical parameters and microbial functional structures. The results showed that As related genes (arsC, arrA), sulfate related genes (dsrA and dsrB), nitrogen cycling related genes (ureC, amoA, and hzo) and methanogen genes (mcrA, hdrB) in groundwater samples were correlated with As, SO 4 2- , NH 4 + or CH 4 concentrations, respectively. Canonical correspondence analysis (CCA) results indicated that some geochemical parameters including As, total organic content, SO 4 2- , NH 4 + , oxidation-reduction potential (ORP) and pH were important factors shaping the functional microbial community structures. Alkaline and reducing conditions with relatively low SO 4 2- , ORP, and high NH 4 + , as well as SO 4 2- and Fe reduction and ammonification involved in microbially-mediated geochemical processes could be associated with As enrichment in groundwater. This study provides an overall picture of functional microbial communities in high As groundwater aquifers, and also provides insights into the critical role of microorganisms in As biogeochemical cycling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Soil respiration, labile carbon pools, and enzyme activities as affected by tillage practices in a tropical rice-maize-cowpea cropping system.

    PubMed

    Neogi, S; Bhattacharyya, P; Roy, K S; Panda, B B; Nayak, A K; Rao, K S; Manna, M C

    2014-07-01

    In order to identify the viable option of tillage practices in rice-maize-cowpea cropping system that could cut down soil carbon dioxide (CO2) emission, sustain grain yield, and maintain better soil quality in tropical low land rice ecology soil respiration in terms of CO2 emission, labile carbon (C) pools, water-stable aggregate C fractions, and enzymatic activities were investigated in a sandy clay loam soil. Soil respiration is the major pathway of gaseous C efflux from terrestrial systems and acts as an important index of ecosystem functioning. The CO2-C emissions were quantified in between plants and rows throughout the year in rice-maize-cowpea cropping sequence both under conventional tillage (CT) and minimum tillage (MT) practices along with soil moisture and temperature. The CO2-C emissions, as a whole, were 24 % higher in between plants than in rows, and were in the range of 23.4-78.1, 37.1-128.1, and 28.6-101.2 mg m(-2) h(-1) under CT and 10.7-60.3, 17.3-99.1, and 17.2-79.1 mg m(-2) h(-1) under MT in rice, maize, and cowpea, respectively. The CO2-C emission was found highest under maize (44 %) followed by rice (33 %) and cowpea (23 %) irrespective of CT and MT practices. In CT system, the CO2-C emission increased significantly by 37.1 % with respect to MT on cumulative annual basis including fallow. The CO2-C emission per unit yield was at par in rice and cowpea signifying the beneficial effect of MT in maintaining soil quality and reduction of CO2 emission. The microbial biomass C (MBC), readily mineralizable C (RMC), water-soluble C (WSC), and permanganate-oxidizable C (PMOC) were 19.4, 20.4, 39.5, and 15.1 % higher under MT than CT. The C contents in soil aggregate fraction were significantly higher in MT than CT. Soil enzymatic activities like, dehydrogenase, fluorescein diacetate, and β-glucosidase were significantly higher by 13.8, 15.4, and 27.4 % under MT compared to CT. The soil labile C pools, enzymatic activities, and heterotrophic microbial populations were in the order of maize > cowpea > rice, irrespective of the tillage treatments. Environmental sustainability point of view, minimum tillage practices in rice-maize-cowpea cropping system in tropical low land soil could be adopted to minimize CO2-C emission, sustain yield, and maintain soil health.

  16. Soil microbial responses to elevated CO2 and O3 in a nitrogen-aggrading agroecosystem

    USDA-ARS?s Scientific Manuscript database

    Despite decades of study, the underlying mechanisms by which soil microbes respond to rising atmospheric CO2 and ozone remain poorly understood. A prevailing hypothesis, which states that changes in C availability induced by elevated CO2 and ozone drive alterations in soil microbes and the processe...

  17. Climate change interactions affect soil carbon dioxide efflux and microbial functioning in a post-harvest forest.

    PubMed

    McDaniel, M D; Kaye, J P; Kaye, M W; Bruns, M A

    2014-04-01

    Forest disturbances, including whole-tree harvest, will increase with a growing human population and its rising affluence. Following harvest, forests become sources of C to the atmosphere, partly because wetter and warmer soils (relative to pre-harvest) increase soil CO2 efflux. This relationship between soil microclimate and CO2 suggests that climate changes predicted for the northeastern US may exacerbate post-harvest CO2 losses. We tested this hypothesis using a climate-manipulation experiment within a recently harvested northeastern US forest with warmed (H; +2.5 °C), wetted (W; +23% precipitation), warmed + wetted (H+W), and ambient (A) treatments. The cumulative soil CO2 effluxes from H and W were 35% (P = 0.01) and 22% (P = 0.07) greater than A. However, cumulative efflux in H+W was similar to A and W, and 24% lower than in H (P = 0.02). These findings suggest that with higher precipitation soil CO2 efflux attenuates rapidly to warming, perhaps due to changes in substrate availability or microbial communities. Microbial function measured as CO2 response to 15 C substrates in warmed soils was distinct from non-warmed soils (P < 0.001). Furthermore, wetting lowered catabolic evenness (P = 0.04) and fungi-to-bacteria ratios (P = 0.03) relative to non-wetted treatments. A reciprocal transplant incubation showed that H+W microorganisms had lower laboratory respiration on their home soils (i.e., home substrates) than on soils from other treatments (P < 0.01). We inferred that H+W microorganisms may use a constrained suite of C substrates that become depleted in their "home" soils, and that in some disturbed ecosystems, a precipitation-induced attenuation (or suppression) of soil CO2 efflux to warming may result from fine-tuned microbe-substrate linkages.

  18. Electrochemical reduction of CO2 to CO over Zn in propylene carbonate/tetrabutylammonium perchlorate

    NASA Astrophysics Data System (ADS)

    Shen, Feng-xia; Shi, Jin; Chen, Tian-you; Shi, Feng; Li, Qing-yuan; Zhen, Jian-zheng; Li, Yun-fei; Dai, Yong-nian; Yang, Bin; Qu, Tao

    2018-02-01

    Developing low cost and high efficient electrode for carbon dioxide (CO2) reduction in organic media is essential for practical application. Zn is a cheap metal and has high catalytic effects on CO2 reduction to carbon monoxide (CO) in aqueous solution. However, little attention has been given to investigate the performance of Zn in organic media for CO2 reduction. In present work, we have conducted CO2 reduction in propylene carbonate/tetrabutylammonium perchlorate on Zn due to that propylene carbonate is a widely used industrial absorber, and tetrabutylammonium perchlorate is a commonly used organic supporting electrolyte. In addition, because electrochemical reduction of CO2 to CO naturally produces H2O, we have discussed water effects on CO2 reduction in propylene carbonate/tetrabutylammonium perchlorate+6.8 wt % H2O. Our experiment results reveal that the faradaic efficiency for CO formation reaches to 83%, and the current density remains stable at 6.72 mA/cm2 at voltage -2.3 V for 4 h. Interestingly, Zn presents higher catalytic activity than Ag, and slightly lower than Au. X-ray photoelectron spectroscopy results confirm that no poisonous species is formed and absorbed on the cathode, which is an important advantage in practical application.

  19. Nitrogen Deposition Enhances Carbon Sequestration by Plantations in Northern China

    PubMed Central

    Du, Zhihong; Wang, Wei; Zeng, Wenjing; Zeng, Hui

    2014-01-01

    Nitrogen (N) deposition and its ecological effects on forest ecosystems have received global attention. Plantations play an important role in mitigating climate change through assimilating atmospheric CO2. However, the mechanisms by which increasing N additions affect net ecosystem production (NEP) of plantations remain poorly understood. A field experiment was initialized in May 2009, which incorporated additions of four rates of N (control (no N addition), low-N (5 g N m−2 yr−1), medium-N (10 g N m−2 yr−1), and high-N (15 g N m−2 yr−1)) at the Saihanba Forestry Center, Hebei Province, northern China, a locality that contains the largest area of plantations in China. Net primary production (NPP), soil respiration, and its autotrophic and heterotrophic components were measured. Plant tissue carbon (C) and N concentrations (including foliage, litter, and fine roots), microbial biomass, microbial community composition, extracellular enzyme activities, and soil pH were also measured. N addition significantly increased NPP, which was associated with increased litter N concentrations. Autotrophic respiration (AR) increased but heterotrophic respiration (HR) decreased in the high N compared with the medium N plots, although the HR in high and medium N plots did not significantly differ from that in the control. The increased AR may derive from mycorrhizal respiration and rhizospheric microbial respiration, not live root respiration, because fine root biomass and N concentrations showed no significant differences. Although the HR was significantly suppressed in the high-N plots, soil microbial biomass, composition, or activity of extracellular enzymes were not significantly changed. Reduced pH with fertilization also could not explain the pattern of HR. The reduction of HR may be related to altered microbial C use efficiency. NEP was significantly enhanced by N addition, from 149 to 426.6 g C m−2 yr−1. Short-term N addition may significantly enhance the role of plantations as an important C sink. PMID:24498416

  20. The Sample at Mars Analysis (SAM) Detections of CO2 and CO in Sedimentary Material from Gale Crater, Mars: Implications for the Presence of Organic Carbon and Microbial Habitability on Mars

    NASA Technical Reports Server (NTRS)

    Sutter, Brad; Eigenbrode, Jennifer L.; Steele, Andrew; Ming, Douglas W.

    2016-01-01

    Sedimentary rock samples heated to 860 degrees Centigrade in the SAM (Sample at Mars) instrument evolved CO2 and CO indicating the presence of organic-carbon(C) in Gale Crater materials. Martian or exogenous (meteoritic, interplanetary dust) CO2 and CO could be derived from combustion of simple organics (less than 300 degrees Centigrade), complex refractory organics/amorphous carbon (300-600 degrees Centigrade), and/or magmatic carbon (greater than 600 degrees Centigrade) as result of thermal decomposition of Gale Crater perchlorates, and sulfates present that produce O2. Oxidized organic compounds could also evolve CO2 and CO over broad temperature range (150 to 800 degrees Centigrade) and such organics are expected on Mars via exogenous sources. Alternatively, organic-C could also have been oxidized to carboxylic acids [e.g, mellitic acid (RCOOH), acetate (CH3CO2-), and oxalates (C2O42-)] by oxidative radiolytic weathering, or other oxidation processes. The presence of oxidized organics is consistent with the limited detection of reduced organic-C phases by the SAM-gas chromatography. Organic-C content as determined by CO2 and CO contents could range between 800 and 2400 parts per million C indicating that substantial organic-C component is present in Gale Crater. There are contributions from SAM background however, even in worst-case scenarios, this would only account for as much as half of the detected CO2 and CO. Nevertheless, if organic-C levels were assumed to have existed in a reduced form on ancient Mars and this was bioavailable C, then less than 1 percent of C in Gale Crater sediments could have supported an exclusively heterotrophic microbial population of 1 by 10 (sup 5) cells per gram sediment (assumes 9 by 10 (sup -7) microgram per cell and 0.5 micrograms C per microgram cell). While other essential nutrients (e.g., S and P) could be limiting, organic-C contents, may have been sufficient to support limited heterotrophic microbial populations on ancient Mars.

  1. Boron-doped diamond semiconductor electrodes: Efficient photoelectrochemical CO2 reduction through surface modification

    NASA Astrophysics Data System (ADS)

    Roy, Nitish; Hirano, Yuiri; Kuriyama, Haruo; Sudhagar, Pitchaimuthu; Suzuki, Norihiro; Katsumata, Ken-Ichi; Nakata, Kazuya; Kondo, Takeshi; Yuasa, Makoto; Serizawa, Izumi; Takayama, Tomoaki; Kudo, Akihiko; Fujishima, Akira; Terashima, Chiaki

    2016-11-01

    Competitive hydrogen evolution and multiple proton-coupled electron transfer reactions limit photoelectrochemical CO2 reduction in aqueous electrolyte. Here, oxygen-terminated lightly boron-doped diamond (BDDL) thin films were synthesized as a semiconductor electron source to accelerate CO2 reduction. However, BDDL alone could not stabilize the intermediates of CO2 reduction, yielding a negligible amount of reduction products. Silver nanoparticles were then deposited on BDDL because of their selective electrochemical CO2 reduction ability. Excellent selectivity (estimated CO:H2 mass ratio of 318:1) and recyclability (stable for five cycles of 3 h each) for photoelectrochemical CO2 reduction were obtained for the optimum silver nanoparticle-modified BDDL electrode at -1.1 V vs. RHE under 222-nm irradiation. The high efficiency and stability of this catalyst are ascribed to the in situ photoactivation of the BDDL surface during the photoelectrochemical reaction. The present work reveals the potential of BDDL as a high-energy electron source for use with co-catalysts in photochemical conversion.

  2. Role of heteroatoms in S, N-codoped nanoporous carbons in CO2 (photo)electrochemical reduction.

    PubMed

    Bandosz, Teresa; Li, Wanlu

    2018-06-19

    Thiourea-modified wood-based activated carbons were evaluated as catalysts for CO2 electrochemical reduction reaction (CO2ERR). The materials obtained at 950oC showed a long stability. The results indicated that thiophenic sulfur provides catalytic activity for CO formation. However, it was not as active for CH4 formation as was pyridinic-N. Tafel plots suggested that the nanoporous structure enhanced the kinetics for CO2 reduction. The electric conductivity limited the activity for CO2ERR in the materials modified at 600, 800 and 900oC. The effect of visible light on CO2ERR was also investigated in this study. Upon irradiation, photocurrent was generated, and a current density increased during CO2 reduction process. Combined with a band-gap alignment, the results indicate that thiophenic-S in the carbon matrix contributed to sample's photoactivity in visible light. These species enhance the overall reduction process promoting both hydrogen evolution reaction and CO2 reduction to CO. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Geochemistry of dissolved inorganic carbon in a Coastal Plain aquifer. 2. Modeling carbon sources, sinks, and δ13C evolution

    USGS Publications Warehouse

    McMahon, Peter B.; Chapelle, Francis H.

    1991-01-01

    Stable isotope data for dissolved inorganic carbon (DIC), carbonate shell material and cements, and microbial CO2 were combined with organic and inorganic chemical data from aquifer and confining-bed pore waters to construct geochemical reaction models along a flowpath in the Black Creek aquifer of South Carolina. Carbon-isotope fractionation between DIC and precipitating cements was treated as a Rayleigh distillation process. Organic matter oxidation was coupled to microbial fermentation and sulfate reduction. All reaction models reproduced the observed chemical and isotopic compositions of final waters. However, model 1, in which all sources of carbon and electron-acceptors were assumed to be internal to the aquifer, was invalidated owing to the large ratio of fermentation CO2 to respiration CO2 predicted by the model (5–49) compared with measured ratios (two or less). In model 2, this ratio was reduced by assuming that confining beds adjacent to the aquifer act as sources of dissolved organic carbon and sulfate. This assumption was based on measured high concentrations of dissolved organic acids and sulfate in confining-bed pore waters (60–100 μM and 100–380 μM, respectively) relative to aquifer pore waters (from less than 30 μM and 2–80 μM, respectively). Sodium was chosen as the companion ion to organic-acid and sulfate transport from confining beds because it is the predominant cation in confining-bed pore waters. As a result, excessive amounts of Na-for-Ca ion exchange and calcite precipitation (three to four times more cement than observed in the aquifer) were required by model 2 to achieve mass and isotope balance of final water. For this reason, model 2 was invalidated. Agreement between model-predicted and measured amounts of carbonate cement and ratios of fermentation CO2 to respiration CO2 were obtained in a reaction model that assumed confining beds act as sources of DIC, as well as organic acids and sulfate. This assumption was supported by measured high concentrations of DIC in confining beds (2.6–2.7 mM). Results from this study show that geochemical models of confined aquifer systems must incorporate the effects of adjacent confining beds to reproduce observed groundwater chemistry accurately.

  4. Geochemistry of dissolved inorganic carbon in a Coastal Plain aquifer. 2. Modeling carbon sources, sinks, and δ13C evolution

    USGS Publications Warehouse

    McMahon, Peter B.; Chapelle, Francis H.

    1991-01-01

    Stable isotope data for dissolved inorganic carbon (DIC), carbonate shell material and cements, and microbial CO2 were combined with organic and inorganic chemical data from aquifer and confining-bed pore waters to construct geochemical reaction models along a flowpath in the Black Creek aquifer of South Carolina. Carbon-isotope fractionation between DIC and precipitating cements was treated as a Rayleigh distillation process. Organic matter oxidation was coupled to microbial fermentation and sulfate reduction. All reaction models reproduced the observed chemical and isotopic compositions of final waters. However, model 1, in which all sources of carbon and electron-acceptors were assumed to be internal to the aquifer, was invalidated owing to the large ratio of fermentation CO2 to respiration CO2 predicted by the model (5–49) compared with measured ratios (two or less). In model 2, this ratio was reduced by assuming that confining beds adjacent to the aquifer act as sources of dissolved organic carbon and sulfate. This assumption was based on measured high concentrations of dissolved organic acids and sulfate in confining-bed pore waters (60–100 μM and 100–380 μM, respectively) relative to aquifer pore waters (from less than 30 μM and 2–80 μM, respectively). Sodium was chosen as the companion ion to organic-acid and sulfate transport from confining beds because it is the predominant cation in confining-bed pore waters. As a result, excessive amounts of Na-for-Ca ion exchange and calcite precipitation (three to four times more cement than observed in the aquifer) were required by model 2 to achieve mass and isotope balance of final water. For this reason, model 2 was invalidated. Agreement between model-predicted and measured amounts of carbonate cement and ratios of fermentation CO2 to respiration CO2 were obtained in a reaction model that assumed confining beds act as sources of DIC, as well as organic acids and sulfate. This assumption was supported by measured high concentrations of DIC in confining beds (2.6–2.7 mM). Results from this study show that geochemical models of confined aquifer systems must incorporate the effects of adjacent confining beds to reproduce observed groundwater chemistry accurately.

  5. Recovery of Elemental Tellurium Nanoparticles by the Reduction of Tellurium Oxyanions in a Methanogenic Microbial Consortium.

    PubMed

    Ramos-Ruiz, Adriana; Field, Jim A; Wilkening, Jean V; Sierra-Alvarez, Reyes

    2016-02-02

    This research focuses on the microbial recovery of elemental tellurium (Te(0)) from aqueous streams containing soluble tellurium oxyanions, tellurate (Te(VI)), and tellurite (Te(IV)). An anaerobic mixed microbial culture occurring in methanogenic granular sludge was able to biocatalyze the reduction of both Te oxyanions to produce Te(0) nanoparticles (NPs) in sulfur-free medium. Te(IV) reduction was seven times faster than that of Te(VI), such that Te(IV) did not accumulate to a great extent during Te(VI) reduction. Endogenous substrates in the granular sludge provided the electron equivalents required to reduce Te oxyanions; however, the reduction rates were modestly increased with an exogenous electron donor such as H2. The effect of four redox mediators (anthraquinone-2,6-disulfonate, hydroxocobalamin, riboflavin, and lawsone) was also tested. Riboflavin increased the rate of Te(IV) reduction eleven-fold and also enhanced the fraction Te recovered as extracellular Te(0) NPs from 21% to 64%. Lawsone increased the rate of Te(VI) reduction five-fold, and the fraction of Te recovered as extracellular material increased from 49% to 83%. The redox mediators and electron donors also impacted the morphologies and localization of Te(0) NPs, suggesting that NP production can be tailored for a particular application.

  6. Recovery of Elemental Tellurium Nanoparticles by the Reduction of Tellurium Oxyanions in a Methanogenic Microbial Consortium

    PubMed Central

    Ramos-Ruiz, Adriana; Field, Jim A.; Wilkening, Jean V.; Sierra-Alvarez, Reyes

    2016-01-01

    This research focuses on the microbial recovery of elemental tellurium (Te0) from aqueous streams containing soluble tellurium oxyanions, tellurate (TeVI) and tellurite (TeIV). An anaerobic mixed microbial culture occurring in methanogenic granular sludge was able to biocatalyze the reduction of both Te oxyanions to produce Te0 nanoparticles (NPs) in sulfur-free medium. TeIV reduction was 7-fold faster than that of TeVI, such that TeIV did not accumulate to a great extent during TeVI reduction. Endogenous substrates in the granular sludge provided the electron equivalents required to reduce Te oxyanions; however, the reduction rates were modestly increased with an exogenous electron donor such as H2. The effect of four redox mediators (anthraquinone-2,6-disulfonate, hydroxocobalamin, riboflavin, and lawsone) was also tested. Riboflavin increased the rate of TeIV reduction by 11-fold and also enhanced the fraction Te recovered as extracellular Te0 NPs from 21% to 64%. Lawsone increased the rate of TeVI reduction by 5-fold and the fraction of Te recovered as extracellular material increased from 49% to 83%. The redox mediators and electron donors also impacted the morphologies and localization of Te0 NPs, suggesting that NP production can be tailored for a particular application. PMID:26735010

  7. Responses of microbial respiration in grazed and ungrazed grasslands to glucose addition

    NASA Astrophysics Data System (ADS)

    Xu, Xingliang; Liu, Qianyuan; Pang, Rui

    2017-04-01

    Grazing can change species composition, alter soil properties, and thus modify microbial activities, affecting biogeochemical processes in grasslands. However, it remains unclear how microbial respiration in grazed and ungrazed grasslands responds to glucose addition. Here we hypothesize that microbial respiration in grazed grasslands will respond more strongly to glucose addition than in ungrazed grasslands because moderate grazing can enhance microbial activity. To examine the hypothesis above, we collected the upper 10 cm soil from grazed and ungrazed grasslands at five sites of China. Three sites (Hulunbuir 1, Hulunbuir 2 and Xielingele) were located in Inner Mongolia and two in the Tibet Plateau) Soils were incubated with low glucose input (50% MBC), high glucose input (150% MBC), and water for 60 days in 21oC. CO2 released from soil was trapped with 1 M NaOH. The results showed that the effect of grazing on microbial respiration has two distinct patterns, depending on soil types and addition amount. After glucose addition, cumulative CO2 efflux from grazed soils was significantly higher than from ungrazed soils in two temperate grasslands (Hulunbuir 1 and Xielingele). This may be ascribed to that moderate grazing promoted microbial activity. On the contrary, microbial respirations from grazed soils were lower than ungrazed soils in two alpine meadows of Haibei and Dangxiong and in Hulunbuir 2. This effect of grazing was not obvious in Hulunbeier 2 soils at low carbon addition level. Grazing may decrease soil organic carbon, nitrogen availability and thus microbial activity in alpine grasslands. These findings indicate that soil microorganisms could have different adaptation mechanisms to grazing in temperate and alpine grasslands.

  8. Biotic and abiotic effects on CO2 sequestration during microbially-induced calcium carbonate precipitation.

    PubMed

    Okyay, Tugba Onal; Rodrigues, Debora F

    2015-03-01

    In this study, CO2 sequestration was investigated through the microbially-induced calcium carbonate precipitation (MICP) process with isolates obtained from a cave called 'Cave Without A Name' (Boerne, TX, USA) and the Pamukkale travertines (Denizli, Turkey). The majority of the bacterial isolates obtained from these habitats belonged to the genera Sporosarcina, Brevundimonas, Sphingobacterium and Acinetobacter. The isolates were investigated for their capability to precipitate calcium carbonate and sequester CO2. Biotic and abiotic effects of CO2 sequestration during MICP were also investigated. In the biotic effect, we observed that the rate and concentration of CO2 sequestered was dependent on the species or strains. The main abiotic factors affecting CO2 sequestration during MICP were the pH and medium components. The increase in pH led to enhanced CO2 sequestration by the growth medium. The growth medium components, on the other hand, were shown to affect both the urease activity and CO2 sequestration. Through the Plackett-Burman experimental design, the most important growth medium component involved in CO2 sequestration was determined to be urea. The optimized medium composition by the Plackett-Burman design for each isolate led to a statistically significant increase, of up to 148.9%, in CO2 uptake through calcification mechanisms. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Cumulative response of ecosystem carbon and nitrogen stocks to chronic CO2 exposure in a subtropical oak woodland

    PubMed Central

    Hungate, Bruce A; Dijkstra, Paul; Wu, Zhuoting; Duval, Benjamin D; Day, Frank P; Johnson, Dale W; Megonigal, J Patrick; Brown, Alisha L P; Garland, Jay L

    2013-01-01

    Summary Rising atmospheric carbon dioxide (CO2) could alter the carbon (C) and nitrogen (N) content of ecosystems, yet the magnitude of these effects are not well known. We examined C and N budgets of a subtropical woodland after 11 yr of exposure to elevated CO2. We used open-top chambers to manipulate CO2 during regrowth after fire, and measured C, N and tracer 15N in ecosystem components throughout the experiment. Elevated CO2 increased plant C and tended to increase plant N but did not significantly increase whole-system C or N. Elevated CO2 increased soil microbial activity and labile soil C, but more slowly cycling soil C pools tended to decline. Recovery of a long-term 15N tracer indicated that CO2 exposure increased N losses and altered N distribution, with no effect on N inputs. Increased plant C accrual was accompanied by higher soil microbial activity and increased C losses from soil, yielding no statistically detectable effect of elevated CO2 on net ecosystem C uptake. These findings challenge the treatment of terrestrial ecosystems responses to elevated CO2 in current biogeochemical models, where the effect of elevated CO2 on ecosystem C balance is described as enhanced photosynthesis and plant growth with decomposition as a first-order response. PMID:23718224

  10. Greenhouse gas, animal performance, and bacterial population structure responses to dietary monensin fed to dairy cows.

    PubMed

    Hamilton, Scott W; DePeters, Edward J; McGarvey, Jeffery A; Lathrop, Jeremy; Mitloehner, Frank M

    2010-01-01

    The present study investigated the effects of a feed additive and rumen microbial modifier, monensin sodium (monensin), on selected variables in lactating dairy cows. Monensin fed cows (MON, 600 mg d(-1)) were compared with untreated control cows (CON, 0 mg d(-1)) with respect to the effects of monensin on the production of three greenhouse gases (GHG), methane (CH(4)), nitrous oxide (N(2)O), and carbon dioxide (CO(2)), along with animal performance (dry matter intake; DMI), milk production, milk components, plasma urea nitrogen (PUN), milk urea nitrogen (MUN), and the microbial population structure of fresh feces. Measurements of GHG were collected at Days 14 and 60 in an environmental chamber simulating commercial dairy freestall housing conditions. Milk production and DMI measurements were collected twice daily over the 60-d experimental period; milk components, PUN, and MUN were measured on Days 14 and 60. The microbial population structure of feces from 6 MON and 6 CON cows was examined on three different occasions (Days 14, 30, and 60). Monensin did not affect emissions of methane (CH(4)), nitrous oxide (N(2)O), and carbon dioxide (CO(2)). Over a 24-h period, emissions of CH(4), N(2)O, and CO(2) decreased in both MON and CON groups. Animal performance and the microbial population structure of the animal fresh waste were also unaffected for MON vs. CON cows.

  11. Trace Metal Requirements for Microbial Enzymes Involved in the Production and Consumption of Methane and Nitrous Oxide

    PubMed Central

    Glass, Jennifer B.; Orphan, Victoria J.

    2011-01-01

    Fluxes of greenhouse gases to the atmosphere are heavily influenced by microbiological activity. Microbial enzymes involved in the production and consumption of greenhouse gases often contain metal cofactors. While extensive research has examined the influence of Fe bioavailability on microbial CO2 cycling, fewer studies have explored metal requirements for microbial production and consumption of the second- and third-most abundant greenhouse gases, methane (CH4), and nitrous oxide (N2O). Here we review the current state of biochemical, physiological, and environmental research on transition metal requirements for microbial CH4 and N2O cycling. Methanogenic archaea require large amounts of Fe, Ni, and Co (and some Mo/W and Zn). Low bioavailability of Fe, Ni, and Co limits methanogenesis in pure and mixed cultures and environmental studies. Anaerobic methane oxidation by anaerobic methanotrophic archaea (ANME) likely occurs via reverse methanogenesis since ANME possess most of the enzymes in the methanogenic pathway. Aerobic CH4 oxidation uses Cu or Fe for the first step depending on Cu availability, and additional Fe, Cu, and Mo for later steps. N2O production via classical anaerobic denitrification is primarily Fe-based, whereas aerobic pathways (nitrifier denitrification and archaeal ammonia oxidation) require Cu in addition to, or possibly in place of, Fe. Genes encoding the Cu-containing N2O reductase, the only known enzyme capable of microbial N2O conversion to N2, have only been found in classical denitrifiers. Accumulation of N2O due to low Cu has been observed in pure cultures and a lake ecosystem, but not in marine systems. Future research is needed on metalloenzymes involved in the production of N2O by enrichment cultures of ammonia oxidizing archaea, biological mechanisms for scavenging scarce metals, and possible links between metal bioavailability and greenhouse gas fluxes in anaerobic environments where metals may be limiting due to sulfide-metal scavenging. PMID:22363333

  12. Optimization of microbial detoxification for an aquatic mercury-contaminated environment.

    PubMed

    Figueiredo, Neusa L; Canário, João; Serralheiro, Maria Luísa; Carvalho, Cristina

    2017-01-01

    Mercury (Hg) reduction performed by microorganisms is well recognized as a biological means for remediation of contaminated environment. Recently, studies demonstrated that Hg-resistant microorganisms of Tagus Estuary are involved in metal reduction processes. In the present study, aerobic microbial community isolated from a highly Hg-contaminated area of Tagus Estuary was used to determine the optimization of the reduction process in conditions such as the contaminated ecosystem. Factorial design methodology was employed to examine the influence of glucose, sulfate, iron, and chloride on Hg reduction. In the presence of several concentrations of these elements, microbial community reduced Hg in a range of 37-61% of the initial 0.1 mg/ml Hg 2+ levels. The response prediction through central composite design showed that the increase of sulfate concentration led to an optimal response in Hg reduction by microbial community, while the rise in chloride levels markedly decreased metal reduction. Iron may exert antagonistic effects depending upon the media composition. These results are useful in understanding the persistence of Hg contamination in Tagus Estuary after inactivation of critical industrial units, as well as data might also be beneficial for development of new bioremediation strategies either in Tagus Estuary and/or in other Hg-contaminated aquatic environments.

  13. Role of CaCO3 and Charcoal Application on Organic Matter Retention in Silt-sized Aggregates

    NASA Astrophysics Data System (ADS)

    Berhe, A. A.; Kaiser, M.; Ghezzehei, T.; Myrold, D.; Kleber, M.

    2011-12-01

    The effectiveness of charcoal and calcium carbonate (CaCO3) applications to improve soil conditions has been well documented. However, their influence on the formation of silt-sized aggregates and the amount and protection of associated organic matter (OM) against microbial decomposition under differing soil mineralogical and microbiological conditions are still unknown. For sustainable management of agricultural soils, silt-sized aggregates (2-50 μm) are of particularly large importance because they store up to 60% of soil organic carbon and with mean residence times between 70 and 400 years. The objectives of this study are i) to analyze the ability of soil amendments (CaCO3, charcoal and their combined application) to increase the amount of silt-sized aggregates and associated organic matter, ii) vary soil mineral conditions to establish relevant boundary conditions for amendment-induced aggregation process, iii) to determine how amendment-induced changes in formation of silt-sized aggregates relate to microbial decomposition of OM. We set up artificial high reactive (clay: 40%, sand: 57%, SOM: 3%) and low reactive soils (clay: 10%, sand: 89%, SOM: 1%) and mixed them with charcoal (1%) and/or CaCO3 (0.2%). The samples were adjusted to a water potential of 0.3 bar using a nutrient solution and sub samples were incubated with microbial innoculum. After four months, silt-sized aggregates are separated by a combination of wet-sieving and sedimentation. We hypothesize that the relative increase in amount of silt-sized aggregates and associated OM is larger for less reactive soils than for high reactive soils because of a relative larger increase in binding agents by addition of charcoal and/or CaCO3 in less reactive soils. The effect of charcoal and/or CaCO3 application on the amount of silt-sized aggregates and associated OM is expected to increases with an increase in microbial activity. Between different treatments, we expect the incubated 'charcoal+CaCO3' combination to have the largest effect on silt-size scale aggregation processes because the amount of microbial derived cementing agents, charcoal derived functional groups containing OM, and Ca2+ ions are enhanced at the same time.

  14. Personalized microbial network inference via co-regularized spectral clustering.

    PubMed

    Imangaliyev, Sultan; Keijser, Bart; Crielaard, Wim; Tsivtsivadze, Evgeni

    2015-07-15

    We use Human Microbiome Project (HMP) cohort (Peterson et al., 2009) to infer personalized oral microbial networks of healthy individuals. To determine clustering of individuals with similar microbial profiles, co-regularized spectral clustering algorithm is applied to the dataset. For each cluster we discovered, we compute co-occurrence relationships among the microbial species that determine microbial network per cluster of individuals. The results of our study suggest that there are several differences in microbial interactions on personalized network level in healthy oral samples acquired from various niches. Based on the results of co-regularized spectral clustering we discover two groups of individuals with different topology of their microbial interaction network. The results of microbial network inference suggest that niche-wise interactions are different in these two groups. Our study shows that healthy individuals have different microbial clusters according to their oral microbiota. Such personalized microbial networks open a better understanding of the microbial ecology of healthy oral cavities and new possibilities for future targeted medication. The scripts written in scientific Python and in Matlab, which were used for network visualization, are provided for download on the website http://learning-machines.com/. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Effect of packaging atmospheres on storage quality characteristics of heavily marbled beef longissimus steaks.

    PubMed

    Yang, Xiaoyin; Zhang, Yimin; Zhu, Lixian; Han, Mingshan; Gao, Shujuan; Luo, Xin

    2016-07-01

    The objective of this study was to investigate the effects of modified atmosphere packaging (MAP) systems on shelf-life and quality of beef steaks with high marbling. Four packaging types were used including 80% O2 MAP (80% O2+20% CO2), 50% O2 MAP (50% O2+30% CO2+20% N2), carbon monoxide MAP (0.4% CO+30% CO2+69.6% N2) and vacuum packaging (VP). Steaks were displayed under simulated retail conditions at 4°C for 12days. Purge loss, pH, color stability, oxidative stability and microbial counts were monitored. Aerobically packaged steaks exhibited a bright-red color at the first 4days. However, discoloration and oxidation became major factors limiting their shelf-life to 8days. Compared with aerobic packaging, anaerobic packaging extended shelf-life of heavily marbled beef steaks, due to better color stability, together with lower oxidation and microbial populations. Among all packaging methods, CO-MAP had the best preservation for steaks, with more red color than other packaging types. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Structure and co-occurrence patterns in microbial communities under acute environmental stress reveal ecological factors fostering resilience.

    PubMed

    Mandakovic, Dinka; Rojas, Claudia; Maldonado, Jonathan; Latorre, Mauricio; Travisany, Dante; Delage, Erwan; Bihouée, Audrey; Jean, Géraldine; Díaz, Francisca P; Fernández-Gómez, Beatriz; Cabrera, Pablo; Gaete, Alexis; Latorre, Claudio; Gutiérrez, Rodrigo A; Maass, Alejandro; Cambiazo, Verónica; Navarrete, Sergio A; Eveillard, Damien; González, Mauricio

    2018-04-12

    Understanding the factors that modulate bacterial community assembly in natural soils is a longstanding challenge in microbial community ecology. In this work, we compared two microbial co-occurrence networks representing bacterial soil communities from two different sections of a pH, temperature and humidity gradient occurring along a western slope of the Andes in the Atacama Desert. In doing so, a topological graph alignment of co-occurrence networks was used to determine the impact of a shift in environmental variables on OTUs taxonomic composition and their relationships. We observed that a fraction of association patterns identified in the co-occurrence networks are persistent despite large environmental variation. This apparent resilience seems to be due to: (1) a proportion of OTUs that persist across the gradient and maintain similar association patterns within the community and (2) bacterial community ecological rearrangements, where an important fraction of the OTUs come to fill the ecological roles of other OTUs in the other network. Actually, potential functional features suggest a fundamental role of persistent OTUs along the soil gradient involving nitrogen fixation. Our results allow identifying factors that induce changes in microbial assemblage configuration, altering specific bacterial soil functions and interactions within the microbial communities in natural environments.

  17. The role of priming effects on the conversion of blue carbon to CO2 in the coastal zone

    NASA Astrophysics Data System (ADS)

    Morrison, E.; Ward, N. D.; Arellano, A. R.; Liu, Y.; Rivas-Ubach, A.; Ogram, A.; Osborne, T.; Vaughn, D.; Bianchi, T. S.

    2017-12-01

    Coastal ecosystems are recognized as valuable but vulnerable carbon (C) sinks, and the C stored in these systems is often referred to as blue C. These systems face many threats, particularly along low-relief coastlines such as Florida, which are susceptible to erosion and C loss as sea levels rise. Peat-derived organic matter (OM) may be degraded within downstream estuarine systems, and its degradation may be enhanced in the presence of labile algal-derived OM via microbial priming effects. To investigate the role of microbial priming effects on the degradation of peat-derived blue C, incubations were established and a suite of analyses were conducted to evaluate changes in peat-derived OM, CO2 production, metabolites, and microbial community structure (via metagenomic sequencing) over the course of the experiment. Four treatments were established: seawater with peat and algal leachate (SWPA), seawater and peat leachate (SWP), seawater and algal leachate (SWA), and seawater alone (SW). Treatments containing peat leachate (SWPA and SWP) harbored greater total DOC concentrations compared to SWA and SW treatments. Over the course of the incubation, CO2 concentrations increased in all treatments, with the highest CO2 levels in treatments with algal-derived DOM (SWA and SWPA). Both treatments with algal-derived DOM (SWA and SWPA) showed an increase in 13C-labeled CO2 over the course of the incubation, and stable isotope mass balance indicated that the conversion of peat-derived OC to CO2 occurred approximately 30% faster with the presence of algal-derived DOC. Aromaticity indices from absorption spectra were significantly lower in the SWP treatment when compared to the SWPA treatment. Dissolved organic matter molecular formulae detected by Fourier-transformed ion cyclotron resonance spectrometry indicated an increase in the degradation of peat-derived compounds when algal material was present. Overall, these findings suggest that there is an increase in microbial degradation of peat when in the presence of algal-derived DOM, which may drive the conversion of blue carbon stocks to CO2 when exported to estuarine systems.

  18. Modification of soil microbial activity and several hydrolases in a forest soil artificially contaminated with copper

    NASA Astrophysics Data System (ADS)

    Bellas, Rosa; Leirós, Mā Carmen; Gil-Sotres, Fernando; Trasar-Cepeda, Carmen

    2010-05-01

    Soils have long been exposed to the adverse effects of human activities, which negatively affect soil biological activity. As a result of their functions and ubiquitous presence microorganisms can serve as environmental indicators of soil pollution. Some features of soil microorganisms, such as the microbial biomass size, respiration rate, and enzyme activity are often used as bioindicators of the ecotoxicity of heavy metals. Although copper is essential for microorganisms, excessive concentrations have a negative influence on processes mediated by microorganisms. In this study we measured the response of some microbial indicators to Cu pollution in a forest soil, with the aim of evaluating their potential for predicting Cu contamination. Samples of an Ah horizon from a forest soil under oakwood vegetation (Quercus robur L.) were contaminated in the laboratory with copper added at different doses (0, 120, 360, 1080 and 3240 mg kg-1) as CuCl2×2H2O. The soil samples were kept for 7 days at 25 °C and at a moisture content corresponding to the water holding capacity, and thereafter were analysed for carbon and nitrogen mineralization capacity, microbial biomass C, seed germination and root elongation tests, and for urease, phosphomonoesterase, catalase and ß-glucosidase activities. In addition, carbon mineralization kinetics were studied, by plotting the log of residual C against incubation time, and the metabolic coefficient, qCO2, was estimated. Both organic carbon and nitrogen mineralization were lower in polluted samples, with the greatest decrease observed in the sample contaminated with 1080 mg kg-1. In all samples carbon mineralization followed first order kinetics; the C mineralization constant was lower in contaminated than in uncontaminated samples and, in general, decreased with increasing doses of copper. Moreover, it appears that copper contamination not only reduced the N mineralization capacity, but also modified the N mineralization process, since in the contaminated samples all of the inorganic nitrogen was present as ammonium, probably because of inhibition of nitrification. There was a marked decrease in biomass-C with addition of copper, and the decrease was more acute at intermediate doses (average decrease, 73%). Despite the decreases in microbial biomass and mineralized C, the value of qCO2 increased after the addition of copper. Urease activity was strongly affected by the presence of copper and the decrease was proportional to the dose; the activity at the highest dose was only 96% of that in the uncontaminated sample. Phosphomonoesterase activity was also affected by addition of copper; the reduction in activity was less than for urease and the greatest reduction was observed for the dose of 1080 mg kg-1 of copper. Catalase activity was affected by the contamination, but no clear trend was observed in relation to the dose of copper. ß-glucosidase was scarcely modified by the contamination but an increase in activity was observed at the highest dose of copper. Seed germination was not affected by copper contamination, since it only showed a clear decrease for the sample contaminated with the highest dose of copper, while root elongation decreased sharply with doses higher than 120 mg kg-1 of copper. The combined germination-elongation index followed a similar pattern to that of root elongation. For all investigated properties showing a reduction of more than 50%, the response to copper contamination was fitted to a sigmoidal dose-response model, in order to estimate the ED50 values. The ED50 values were calculated for microbial biomass, urease, root elongation and germination-elongation index, and similar values were obtained, ranging from 340 to 405 mg kg-1 Cu. The ED50 values may therefore provide a good estimation of soil deterioration.

  19. Microbial consortia controlling biogenic gas formation in the Qaidam Basin of western China

    NASA Astrophysics Data System (ADS)

    Shuai, Yanhua; Zhang, Shuichang; Grasby, Stephen E.; Hou, Weiguo; Chen, Zhuoheng; Huang, Ling; Kui, Mingqing; Xu, Yirui; Wang, Yang

    2016-08-01

    Knowledge of what controls the activity of subsurface microbial communities is critical for assessing and managing biogenic methane resources. In this study, 19 formation waters and five gas samples were collected at depths of 800 to 1900 m from Quaternary biogenic gas fields of the Qaidam Basin, China. The formation waters were brines with chloride (Cl) concentrations from 1200 to 2700 mM. Bacterial 16S rRNA gene copies ranged from 3.75 × 104 to 2.23 × 106 copies mL-1 of water, and those of archaea ranged from 2.44 × 103 to 4.66 × 107 copies mL-1 of water. Both bacterial and archaea 16 s rRNA gene copies were negatively correlated with Cl concentration. The microbial community structure differed significantly depending on Cl concentrations. At high Cl waters (>1800 mM), the microbial community showed a halophilic signature made up of several abundant taxonomic groups within Firmicules, γ-Proteobacteria, and methylotrophic Methanosarcinales. At low Cl, Firmicules and hydrogenotrophic methanogens were dominant members. The proportion of inferred hydrogenotrophic methanogens decreased from 89% to 14% of total archaeal reads with increasing Cl concentration; in contrast, methylotrophic species increased from 11% to 85%. Given that the proportion of hydrogenotrophic species was positively correlated with the archaeal gene abundances, we suggest that Cl concentrations primarily constrain the activity of archaea catalyzing H2 reduction of CO2. Our results show that dilution of formation waters is critical in the process of biogenic gas formation, suggesting that an engineered decrease in Cl concentrations may induce methanogenesis as a potential method to increase gas reserves in such areas in the future.

  20. Perchlorate reduction by hydrogen autotrophic bacteria and microbial community analysis using high-throughput sequencing.

    PubMed

    Wan, Dongjin; Liu, Yongde; Niu, Zhenhua; Xiao, Shuhu; Li, Daorong

    2016-02-01

    Hydrogen autotrophic reduction of perchlorate have advantages of high removal efficiency and harmless to drinking water. But so far the reported information about the microbial community structure was comparatively limited, changes in the biodiversity and the dominant bacteria during acclimation process required detailed study. In this study, perchlorate-reducing hydrogen autotrophic bacteria were acclimated by hydrogen aeration from activated sludge. For the first time, high-throughput sequencing was applied to analyze changes in biodiversity and the dominant bacteria during acclimation process. The Michaelis-Menten model described the perchlorate reduction kinetics well. Model parameters q(max) and K(s) were 2.521-3.245 (mg ClO4(-)/gVSS h) and 5.44-8.23 (mg/l), respectively. Microbial perchlorate reduction occurred across at pH range 5.0-11.0; removal was highest at pH 9.0. The enriched mixed bacteria could use perchlorate, nitrate and sulfate as electron accepter, and the sequence of preference was: NO3(-) > ClO4(-) > SO4(2-). Compared to the feed culture, biodiversity decreased greatly during acclimation process, the microbial community structure gradually stabilized after 9 acclimation cycles. The Thauera genus related to Rhodocyclales was the dominated perchlorate reducing bacteria (PRB) in the mixed culture.

Top