Sample records for microbial community biofabrics

  1. Microbial community biofabrics in a geothermal mine adit.

    PubMed

    Spear, John R; Barton, Hazel A; Robertson, Charles E; Francis, Christopher A; Pace, Norman R

    2007-10-01

    Speleothems such as stalactites and stalagmites are usually considered to be mineralogical in composition and origin; however, microorganisms have been implicated in the development of some speleothems. We have identified and characterized the biological and mineralogical composition of mat-like biofabrics in two novel kinds of speleothems from a 50 degrees C geothermal mine adit near Glenwood Springs, CO. One type of structure consists of 2- to 3-cm-long, 3- to 4-mm-wide, leather-like, hollow, soda straw stalactites. Light and electron microscopy indicated that the stalactites are composed of a mineralized biofabric with several cell morphotypes in a laminated form, with gypsum and sulfur as the dominant mineral components. A small-subunit rRNA gene phylogenetic community analysis along the stalactite length yielded a diverse gradient of organisms, with a relatively simple suite of main constituents: Thermus spp., crenarchaeotes, Chloroflexi, and Gammaproteobacteria. PCR analysis also detected putative crenarchaeal ammonia monooxygenase subunit A (amoA) genes in this community, the majority related to sequences from other geothermal systems. The second type of speleothem, dumpling-like rafts floating on a 50 degrees C pool on the floor of the adit, showed a mat-like fabric of evidently living organisms on the outside of the dumpling, with a multimineral, amorphous, gypsum-based internal composition. These two novel types of biofabrics are examples of the complex roles that microbes can play in mineralization, weathering, and deposition processes in karst environments.

  2. Microbial Community Biofabrics in a Geothermal Mine Adit▿ †

    PubMed Central

    Spear, John R.; Barton, Hazel A.; Robertson, Charles E.; Francis, Christopher A.; Pace, Norman R.

    2007-01-01

    Speleothems such as stalactites and stalagmites are usually considered to be mineralogical in composition and origin; however, microorganisms have been implicated in the development of some speleothems. We have identified and characterized the biological and mineralogical composition of mat-like biofabrics in two novel kinds of speleothems from a 50°C geothermal mine adit near Glenwood Springs, CO. One type of structure consists of 2- to 3-cm-long, 3- to 4-mm-wide, leather-like, hollow, soda straw stalactites. Light and electron microscopy indicated that the stalactites are composed of a mineralized biofabric with several cell morphotypes in a laminated form, with gypsum and sulfur as the dominant mineral components. A small-subunit rRNA gene phylogenetic community analysis along the stalactite length yielded a diverse gradient of organisms, with a relatively simple suite of main constituents: Thermus spp., crenarchaeotes, Chloroflexi, and Gammaproteobacteria. PCR analysis also detected putative crenarchaeal ammonia monooxygenase subunit A (amoA) genes in this community, the majority related to sequences from other geothermal systems. The second type of speleothem, dumpling-like rafts floating on a 50°C pool on the floor of the adit, showed a mat-like fabric of evidently living organisms on the outside of the dumpling, with a multimineral, amorphous, gypsum-based internal composition. These two novel types of biofabrics are examples of the complex roles that microbes can play in mineralization, weathering, and deposition processes in karst environments. PMID:17693567

  3. Biofabrication: reappraising the definition of an evolving field.

    PubMed

    Groll, Jürgen; Boland, Thomas; Blunk, Torsten; Burdick, Jason A; Cho, Dong-Woo; Dalton, Paul D; Derby, Brian; Forgacs, Gabor; Li, Qing; Mironov, Vladimir A; Moroni, Lorenzo; Nakamura, Makoto; Shu, Wenmiao; Takeuchi, Shoji; Vozzi, Giovanni; Woodfield, Tim B F; Xu, Tao; Yoo, James J; Malda, Jos

    2016-01-08

    Biofabrication is an evolving research field that has recently received significant attention. In particular, the adoption of Biofabrication concepts within the field of Tissue Engineering and Regenerative Medicine has grown tremendously, and has been accompanied by a growing inconsistency in terminology. This article aims at clarifying the position of Biofabrication as a research field with a special focus on its relation to and application for Tissue Engineering and Regenerative Medicine. Within this context, we propose a refined working definition of Biofabrication, including Bioprinting and Bioassembly as complementary strategies within Biofabrication.

  4. Biofabricated constructs as tissue models: a short review.

    PubMed

    Costa, Pedro F

    2015-04-01

    Biofabrication is currently able to provide reliable models for studying the development of cells and tissues into multiple environments. As the complexity of biofabricated constructs is becoming increasingly higher their ability to closely mimic native tissues and organs is also increasing. Various biofabrication technologies currently allow to precisely build cell/tissue constructs at multiple dimension ranges with great accuracy. Such technologies are also able to assemble together multiple types of cells and/or materials and generate constructs closely mimicking various types of tissues. Furthermore, the high degree of automation involved in these technologies enables the study of large arrays of testing conditions within increasingly smaller and automated devices both in vitro and in vivo. Despite not yet being able to generate constructs similar to complex tissues and organs, biofabrication is rapidly evolving in that direction. One major hurdle to be overcome in order for such level of complex detail to be achieved is the ability to generate complex vascular structures within biofabricated constructs. This review describes several of the most relevant technologies and methodologies currently utilized within biofabrication and provides as well a brief overview of their current and future potential applications.

  5. Organ printing: from bioprinter to organ biofabrication line.

    PubMed

    Mironov, Vladimir; Kasyanov, Vladimir; Markwald, Roger R

    2011-10-01

    Organ printing, or the layer by layer additive robotic biofabrication of functional three-dimensional tissue and organ constructs using self-assembling tissue spheroid building blocks, is a rapidly emerging technology that promises to transform tissue engineering into a commercially successful biomedical industry. It is increasingly obvious that similar well-established industries implement automated robotic systems on the path to commercial translation and economic success. The use of robotic bioprinters alone however is not sufficient for the development of large industrial scale organ biofabrication. The design and development of a fully integrated organ biofabrication line is imperative for the commercial translation of organ printing technology. This paper presents recent progress and challenges in the development of the essential components of an organ biofabrication line. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Desert Varnish - Preservation of Biofabrics/Implcations for Mars

    NASA Technical Reports Server (NTRS)

    Probst, Luke W.; Allen, Carlton C.; Thomas-Keprta, Kathie L.; Clemett, Simon J.; Longazo, Teresa G.; Nelman-Gonzalez, Mayra A.; Sams, Clarence

    2002-01-01

    Desert varnish is the orange to dark brown rind that accumulates on exposed rock surfaces in many arid environments. Samples from the Sonoran Desert of Arizona are composed predominantly of clays (illite, smectite) and Mn- and Fe- oxides (birnessite, hematite). Features that appear to be single organisms are found within the varnish and at the rock-varnish interface. Many of these features are embedded in films that strongly resemble the water-rich extracellular polysaccharides produced by diverse microorganisms. Most common are rod-shaped celllike objects, 0.5-2 microns in the longest dimension, located within the varnish coatings. Some of these objects are shown to contain amines by fluorescence microscopy. The rod-shaped objects are observed in various states of degradation, as indicated by C and S abundances. Rods with higher C and S abundances appear less degraded than those with lower concentrations of these two elements. Regions rich in apparent microbes are present, while other regions display Mn- and Fe-rich mineral fabrics with microbe-sized voids and no obvious cells. These textures are interpreted as biofabrics, preserved by the precipitation of Mn and Fe minerals. We are researching the preservation of biofabrics by desert varnish in Earth's geological record. Rock coatings may similarly preserve evidence of microbial life on the hyper-arid surface of Mars.

  7. Bioprinting is coming of age: Report from the International Conference on Bioprinting and Biofabrication in Bordeaux (3B'09).

    PubMed

    Guillemot, Fabien; Mironov, Vladimir; Nakamura, Makoto

    2010-03-01

    The International Conference on Bioprinting and Biofabrication in Bordeaux (3B'09) demonstrated that the field of bioprinting and biofabrication continues to evolve. The increasing number and broadening geography of participants, the emergence of new exciting bioprinting technologies, and the attraction of young investigators indicates the strong growth potential of this emerging field. Bioprinting can be defined as the use of computer-aided transfer processes for patterning and assembling living and non-living materials with a prescribed 2D or 3D organization in order to produce bio-engineered structures serving in regenerative medicine, pharmacokinetic and basic cell biology studies. The use of bioprinting technology for biofabrication of in vitro assay has been shown to be a realistic short-term application. At the same time, the principal feasibility of bioprinting vascularized human organs as well as in vivo bioprinting has been demonstrated. The bioprinting of complex 3D human tissues and constructs in vitro and especially in vivo are exciting, but long-term, applications. It was decided that the 5th International Conference on Bioprinting and Biofabrication would be held in Philadelphia, USA in October 2010. The specially appointed 'Eploratory Committee' will consider the possibility of turning the growing bioprinting community into a more organized entity by creating a new bioprinting and biofabrication society. The new journal Biofabrication was also presented at 3B'09. This is an important milestone per se which provides additional objective evidence that the bioprinting and biofabrication field is consolidating and maturing. Thus, it is safe to state that bioprinting technology is coming of age.

  8. Biofabrication strategies for 3D in vitro models and regenerative medicine

    NASA Astrophysics Data System (ADS)

    Moroni, Lorenzo; Burdick, Jason A.; Highley, Christopher; Lee, Sang Jin; Morimoto, Yuya; Takeuchi, Shoji; Yoo, James J.

    2018-05-01

    Organs are complex systems composed of different cells, proteins and signalling molecules that are arranged in a highly ordered structure to orchestrate a myriad of functions in our body. Biofabrication strategies can be applied to engineer 3D tissue models in vitro by mimicking the structure and function of native tissue through the precise deposition and assembly of materials and cells. This approach allows the spatiotemporal control over cell-cell and cell-extracellular matrix communication and thus the recreation of tissue-like structures. In this Review, we examine biofabrication strategies for the construction of functional tissue replacements and organ models, focusing on the development of biomaterials, such as supramolecular and photosensitive materials, that can be processed using biofabrication techniques. We highlight bioprinted and bioassembled tissue models and survey biofabrication techniques for their potential to recreate complex tissue properties, such as shape, vasculature and specific functionalities. Finally, we discuss challenges, such as scalability and the foreign body response, and opportunities in the field and provide an outlook to the future of biofabrication in regenerative medicine.

  9. Hard tissue remodeling using biofabricated coralline biomaterials.

    PubMed

    Vago, Razi; Plotquin, Daniel; Bunin, Alex; Sinelnikov, Igor; Atar, Dan; Itzhak, David

    2002-01-04

    Biotechnical and biomedical approaches were combined in an attempt to identify potential uses of biofabricated marine carbonate materials in biomedical applications, particularly as biomatrices for remodeling bone and cartilage tissue. After grafting, it is desirable for bone ingrowth to proceed as quickly as possible because the strength of the implanted region depends on a good mechanical bond forming between the implant and surrounding regions in the body. Ingrowth can take place as a result of growth of tissue and cells into the implanted porous material, or it may be promoted by transplanting cells seeded onto such a material. The rate at which ingrowth occurs is dependent on many factors, including pore size and the interconnectivity of the implanted structure. In vivo graftings into osteochondral defects demonstrated that our biofabricated porous material is highly biocompatible with cartilage and bone tissue. The biofabricated matrix was well incorporated into the biphasic osteochondral area. Resorption was followed by bone and cartilage formation, and after 4 months, the biomaterial had been replaced by new tissue. Ossification was induced and enhanced without introduction of additional factors. We believe that this is the first time that such biofabricated materials have been used for biomedical purposes. In face of the obvious environmental disadvantages of harvesting from limited natural resources, we propose the use of bioengineered coralline and other materials such as those cultured by our group under field and laboratory conditions as a possible biomatrix for hard tissue remodeling.

  10. Ethical considerations in the translation of regenerative biofabrication technologies into clinic and society.

    PubMed

    Otto, I A; Breugem, C C; Malda, J; Bredenoord, A L

    2016-10-07

    Biofabrication technologies have the potential to improve healthcare by providing highly advanced and personalized biomedical products for research, treatment and prevention. As the combining of emerging techniques and integrating various biological and synthetic components becomes increasingly complex, it is important that relevant stakeholders anticipate the translation of biofabricated 3D tissue products into patients and society. Ethics is sometimes regarded as a brake on scientific progress, yet from our perspective, ethics in parallel with research anticipates societal impacts of emerging technologies and stimulates responsible innovation. For the ethical assessment, the biofabrication field benefits from similarities to regenerative medicine and an increasing ethical awareness in the development of tissue-engineered products. However, the novelty of the technology itself, the increase in attainable structural complexity, and the potential for automation and personalization are distinguishing facets of biofabrication that call for a specific exploration of the ethics of biofabrication. This review aims to highlight important points of existing ethical discussions, as well as to call attention to emerging issues specific to 3D biofabrication in bench and bedside research and the translation to society.

  11. From intricate to integrated: Biofabrication of articulating joints.

    PubMed

    Groen, Wilhelmina Margaretha; Diloksumpan, Paweena; van Weeren, Paul René; Levato, Riccardo; Malda, Jos

    2017-10-01

    Articulating joints owe their function to the specialized architecture and the complex interplay between multiple tissues including cartilage, bone and synovium. Especially the cartilage component has limited self-healing capacity and damage often leads to the onset of osteoarthritis, eventually resulting in failure of the joint as an organ. Although in its infancy, biofabrication has emerged as a promising technology to reproduce the intricate organization of the joint, thus enabling the introduction of novel surgical treatments, regenerative therapies, and new sets of tools to enhance our understanding of joint physiology and pathology. Herein, we address the current challenges to recapitulate the complexity of articulating joints and how biofabrication could overcome them. The combination of multiple materials, biological cues and cells in a layer-by-layer fashion, can assist in reproducing both the zonal organization of cartilage and the gradual transition from resilient cartilage toward the subchondral bone in biofabricated osteochondral grafts. In this way, optimal integration of engineered constructs with the natural surrounding tissues can be obtained. Mechanical characteristics, including the smoothness and low friction that are hallmarks of the articular surface, can be tuned with multi-head or hybrid printers by controlling the spatial patterning of printed structures. Moreover, biofabrication can use digital medical images as blueprints for printing patient-specific implants. Finally, the current rapid advances in biofabrication hold significant potential for developing joint-on-a-chip models for personalized medicine and drug testing or even for the creation of implants that may be used to treat larger parts of the articulating joint. © 2017 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. on behalf of the Orthopaedic Research Society. J Orthop Res 35:2089-2097, 2017. © 2017 The Authors. Journal of Orthopaedic

  12. 3D Biofabrication Strategies for Tissue Engineering and Regenerative Medicine

    PubMed Central

    Bajaj, Piyush; Schweller, Ryan M.; Khademhosseini, Ali; West, Jennifer L.; Bashir, Rashid

    2014-01-01

    Over the past several decades, there has been an ever-increasing demand for organ transplants. However, there is a severe shortage of donor organs, and as a result of the increasing demand, the gap between supply and demand continues to widen. A potential solution to this problem is to grow or fabricate organs using biomaterial scaffolds and a person’s own cells. Although the realization of this solution has been limited, the development of new biofabrication approaches has made it more realistic. This review provides an overview of natural and synthetic biomaterials that have been used for organ/tissue development. It then discusses past and current biofabrication techniques, with a brief explanation of the state of the art. Finally, the review highlights the need for combining vascularization strategies with current biofabrication techniques. Given the multitude of applications of biofabrication technologies, from organ/tissue development to drug discovery/screening to development of complex in vitro models of human diseases, these manufacturing technologies can have a significant impact on the future of medicine and health care. PMID:24905875

  13. Modeling microbial communities: current, developing, and future technologies for predicting microbial community interaction.

    PubMed

    Larsen, Peter; Hamada, Yuki; Gilbert, Jack

    2012-07-31

    Never has there been a greater opportunity for investigating microbial communities. Not only are the profound effects of microbial ecology on every aspect of Earth's geochemical cycles beginning to be understood, but also the analytical and computational tools for investigating microbial Earth are undergoing a rapid revolution. This environmental microbial interactome, the system of interactions between the microbiome and the environment, has shaped the planet's past and will undoubtedly continue to do so in the future. We review recent approaches for modeling microbial community structures and the interactions of microbial populations with their environments. Different modeling approaches consider the environmental microbial interactome from different aspects, and each provides insights to different facets of microbial ecology. We discuss the challenges and opportunities for the future of microbial modeling and describe recent advances in microbial community modeling that are extending current descriptive technologies into a predictive science. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Microbial Communities as Experimental Units

    PubMed Central

    DAY, MITCH D.; BECK, DANIEL; FOSTER, JAMES A.

    2011-01-01

    Artificial ecosystem selection is an experimental technique that treats microbial communities as though they were discrete units by applying selection on community-level properties. Highly diverse microbial communities associated with humans and other organisms can have significant impacts on the health of the host. It is difficult to find correlations between microbial community composition and community-associated diseases, in part because it may be impossible to define a universal and robust species concept for microbes. Microbial communities are composed of potentially thousands of unique populations that evolved in intimate contact, so it is appropriate in many situations to view the community as the unit of analysis. This perspective is supported by recent discoveries using metagenomics and pangenomics. Artificial ecosystem selection experiments can be costly, but they bring the logical rigor of biological model systems to the emerging field of microbial community analysis. PMID:21731083

  15. Fundamentals of Microbial Community Resistance and Resilience

    PubMed Central

    Shade, Ashley; Peter, Hannes; Allison, Steven D.; Baho, Didier L.; Berga, Mercè; Bürgmann, Helmut; Huber, David H.; Langenheder, Silke; Lennon, Jay T.; Martiny, Jennifer B. H.; Matulich, Kristin L.; Schmidt, Thomas M.; Handelsman, Jo

    2012-01-01

    Microbial communities are at the heart of all ecosystems, and yet microbial community behavior in disturbed environments remains difficult to measure and predict. Understanding the drivers of microbial community stability, including resistance (insensitivity to disturbance) and resilience (the rate of recovery after disturbance) is important for predicting community response to disturbance. Here, we provide an overview of the concepts of stability that are relevant for microbial communities. First, we highlight insights from ecology that are useful for defining and measuring stability. To determine whether general disturbance responses exist for microbial communities, we next examine representative studies from the literature that investigated community responses to press (long-term) and pulse (short-term) disturbances in a variety of habitats. Then we discuss the biological features of individual microorganisms, of microbial populations, and of microbial communities that may govern overall community stability. We conclude with thoughts about the unique insights that systems perspectives – informed by meta-omics data – may provide about microbial community stability. PMID:23267351

  16. What is microbial community ecology?

    PubMed

    Konopka, Allan

    2009-11-01

    The activities of complex communities of microbes affect biogeochemical transformations in natural, managed and engineered ecosystems. Meaningfully defining what constitutes a community of interacting microbial populations is not trivial, but is important for rigorous progress in the field. Important elements of research in microbial community ecology include the analysis of functional pathways for nutrient resource and energy flows, mechanistic understanding of interactions between microbial populations and their environment, and the emergent properties of the complex community. Some emergent properties mirror those analyzed by community ecologists who study plants and animals: biological diversity, functional redundancy and system stability. However, because microbes possess mechanisms for the horizontal transfer of genetic information, the metagenome may also be considered as a community property.

  17. In-Drift Microbial Communities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. Jolley

    2000-11-09

    As directed by written work direction (CRWMS M and O 1999f), Performance Assessment (PA) developed a model for microbial communities in the engineered barrier system (EBS) as documented here. The purpose of this model is to assist Performance Assessment and its Engineered Barrier Performance Section in modeling the geochemical environment within a potential repository drift for TSPA-SR/LA, thus allowing PA to provide a more detailed and complete near-field geochemical model and to answer the key technical issues (KTI) raised in the NRC Issue Resolution Status Report (IRSR) for the Evolution of the Near Field Environment (NFE) Revision 2 (NRC 1999).more » This model and its predecessor (the in-drift microbial communities model as documented in Chapter 4 of the TSPA-VA Technical Basis Document, CRWMS M and O 1998a) was developed to respond to the applicable KTIs. Additionally, because of the previous development of the in-drift microbial communities model as documented in Chapter 4 of the TSPA-VA Technical Basis Document (CRWMS M and O 1998a), the M and O was effectively able to resolve a previous KTI concern regarding the effects of microbial processes on seepage and flow (NRC 1998). This document supercedes the in-drift microbial communities model as documented in Chapter 4 of the TSPA-VA Technical Basis Document (CRWMS M and O 1998a). This document provides the conceptual framework of the revised in-drift microbial communities model to be used in subsequent performance assessment (PA) analyses.« less

  18. Modeling Fusion of Cellular Aggregates in Biofabrication Using Phase Field Theories (Preprint)

    DTIC Science & Technology

    2011-01-01

    biofabrication process known as bioprinting [25], live multicellular aggregates/clusters are used to make tissue or organ constructs via the layer-by-layer...recipient organism , where the maturation of the new organ takes place [17, 24]. In a novel biomimetic biofabrication process, called “ bioprinting ...fundamental biophysical process in emerging organ bioprinting technology. The bio-constructs ranging from the ones comprised of tissue spheroids to

  19. Environmental Microbial Community Proteomics: Status, Challenges and Perspectives.

    PubMed

    Wang, Da-Zhi; Kong, Ling-Fen; Li, Yuan-Yuan; Xie, Zhang-Xian

    2016-08-05

    Microbial community proteomics, also termed metaproteomics, is an emerging field within the area of microbiology, which studies the entire protein complement recovered directly from a complex environmental microbial community at a given point in time. Although it is still in its infancy, microbial community proteomics has shown its powerful potential in exploring microbial diversity, metabolic potential, ecological function and microbe-environment interactions. In this paper, we review recent advances achieved in microbial community proteomics conducted in diverse environments, such as marine and freshwater, sediment and soil, activated sludge, acid mine drainage biofilms and symbiotic communities. The challenges facing microbial community proteomics are also discussed, and we believe that microbial community proteomics will greatly enhance our understanding of the microbial world and its interactions with the environment.

  20. Environmental Regulation of Microbial Community Structure

    NASA Technical Reports Server (NTRS)

    Bebout, Leslie; DesMarais, D.; Heyenga, G.; Nelson, F.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    Most naturally occurring microbes live in complex microbial communities consisting of thousands of phylotypes of microorganisms living in close proximity. Each of these draws nutrients from the environment and releases metabolic waste products, which may in turn serve as substrates for other microbial groups. Gross environmental changes, such as irradiance level, hydrodynamic flow regime, temperature or water chemistry can directly affect the productivity of some community members, which in turn will affect other dependent microbial populations and rate processes. As a first step towards the development of "standard" natural communities of microorganisms for a variety of potential NASA applications, we are measuring biogeochemical cycling in artificially structured communities of microorganisms, created using natural microbial mat communities as inoculum. The responses of these artificially assembled communities of microorganisms to controlled shifts in ecosystem incubation conditions is being determined. This research requires close linking of environmental monitoring, with community composition in a closed and controlled incubation setting. We are developing new incubation chamber designs to allow for this integrated approach to examine the interplay between environmental conditions, microbial community composition and biogeochemical processes.

  1. Patterns and Processes of Microbial Community Assembly

    PubMed Central

    Schmidt, Steven K.; Fukami, Tadashi; O'Neill, Sean P.; Bilinski, Teresa M.; Stanish, Lee F.; Knelman, Joseph E.; Darcy, John L.; Lynch, Ryan C.; Wickey, Phillip; Ferrenberg, Scott

    2013-01-01

    SUMMARY Recent research has expanded our understanding of microbial community assembly. However, the field of community ecology is inaccessible to many microbial ecologists because of inconsistent and often confusing terminology as well as unnecessarily polarizing debates. Thus, we review recent literature on microbial community assembly, using the framework of Vellend (Q. Rev. Biol. 85:183–206, 2010) in an effort to synthesize and unify these contributions. We begin by discussing patterns in microbial biogeography and then describe four basic processes (diversification, dispersal, selection, and drift) that contribute to community assembly. We also discuss different combinations of these processes and where and when they may be most important for shaping microbial communities. The spatial and temporal scales of microbial community assembly are also discussed in relation to assembly processes. Throughout this review paper, we highlight differences between microbes and macroorganisms and generate hypotheses describing how these differences may be important for community assembly. We end by discussing the implications of microbial assembly processes for ecosystem function and biodiversity. PMID:24006468

  2. 3D Printing and Biofabrication for Load Bearing Tissue Engineering.

    PubMed

    Jeong, Claire G; Atala, Anthony

    2015-01-01

    Cell-based direct biofabrication and 3D bioprinting is becoming a dominant technological platform and is suggested as a new paradigm for twenty-first century tissue engineering. These techniques may be our next step in surpassing the hurdles and limitations of conventional scaffold-based tissue engineering, and may offer the industrial potential of tissue engineered products especially for load bearing tissues. Here we present a topically focused review regarding the fundamental concepts, state of the art, and perspectives of this new technology and field of biofabrication and 3D bioprinting, specifically focused on tissue engineering of load bearing tissues such as bone, cartilage, osteochondral and dental tissue engineering.

  3. Microbial interactions in building of communities

    PubMed Central

    Wright, Christopher J.; Burns, Logan H.; Jack, Alison A.; Back, Catherine R.; Dutton, Lindsay C.; Nobbs, Angela H.; Lamont, Richard J.; Jenkinson, Howard F.

    2012-01-01

    SUMMARY Establishment of a community is considered to be essential for microbial growth and survival in the human oral cavity. Biofilm communities have increased resilience to physical forces, antimicrobial agents, and nutritional variations. Specific cell-to-cell adherence processes, mediated by adhesin-receptor pairings on respective microbial surfaces, are able to direct community development. These interactions co-localize species in mutually beneficial relationships, such as streptococci, veillonellae, Porphyromonas gingivalis and Candida albicans. In transition from the planktonic mode of growth to a biofilm community, microorganisms undergo major transcriptional and proteomic changes. These occur in response to sensing of diffusible signals, such as autoinducer molecules, and to contact with host tissues or other microbial cells. Underpinning many of these processes are intracellular phosphorylation events that regulate a large number of microbial interactions relevant to community formation and development. PMID:23253299

  4. Bioprinting for vascular and vascularized tissue biofabrication.

    PubMed

    Datta, Pallab; Ayan, Bugra; Ozbolat, Ibrahim T

    2017-03-15

    Bioprinting is a promising technology to fabricate design-specific tissue constructs due to its ability to create complex, heterocellular structures with anatomical precision. Bioprinting enables the deposition of various biologics including growth factors, cells, genes, neo-tissues and extra-cellular matrix-like hydrogels. Benefits of bioprinting have started to make a mark in the fields of tissue engineering, regenerative medicine and pharmaceutics. Specifically, in the field of tissue engineering, the creation of vascularized tissue constructs has remained a principal challenge till date. However, given the myriad advantages over other biofabrication methods, it becomes organic to expect that bioprinting can provide a viable solution for the vascularization problem, and facilitate the clinical translation of tissue engineered constructs. This article provides a comprehensive account of bioprinting of vascular and vascularized tissue constructs. The review is structured as introducing the scope of bioprinting in tissue engineering applications, key vascular anatomical features and then a thorough coverage of 3D bioprinting using extrusion-, droplet- and laser-based bioprinting for fabrication of vascular tissue constructs. The review then provides the reader with the use of bioprinting for obtaining thick vascularized tissues using sacrificial bioink materials. Current challenges are discussed, a comparative evaluation of different bioprinting modalities is presented and future prospects are provided to the reader. Biofabrication of living tissues and organs at the clinically-relevant volumes vitally depends on the integration of vascular network. Despite the great progress in traditional biofabrication approaches, building perfusable hierarchical vascular network is a major challenge. Bioprinting is an emerging technology to fabricate design-specific tissue constructs due to its ability to create complex, heterocellular structures with anatomical precision

  5. Microbial Community Functional Change during Vertebrate Carrion Decomposition

    PubMed Central

    Pechal, Jennifer L.; Crippen, Tawni L.; Tarone, Aaron M.; Lewis, Andrew J.; Tomberlin, Jeffery K.; Benbow, M. Eric

    2013-01-01

    Microorganisms play a critical role in the decomposition of organic matter, which contributes to energy and nutrient transformation in every ecosystem. Yet, little is known about the functional activity of epinecrotic microbial communities associated with carrion. The objective of this study was to provide a description of the carrion associated microbial community functional activity using differential carbon source use throughout decomposition over seasons, between years and when microbial communities were isolated from eukaryotic colonizers (e.g., necrophagous insects). Additionally, microbial communities were identified at the phyletic level using high throughput sequencing during a single study. We hypothesized that carrion microbial community functional profiles would change over the duration of decomposition, and that this change would depend on season, year and presence of necrophagous insect colonization. Biolog EcoPlates™ were used to measure the variation in epinecrotic microbial community function by the differential use of 29 carbon sources throughout vertebrate carrion decomposition. Pyrosequencing was used to describe the bacterial community composition in one experiment to identify key phyla associated with community functional changes. Overall, microbial functional activity increased throughout decomposition in spring, summer and winter while it decreased in autumn. Additionally, microbial functional activity was higher in 2011 when necrophagous arthropod colonizer effects were tested. There were inconsistent trends in the microbial function of communities isolated from remains colonized by necrophagous insects between 2010 and 2011, suggesting a greater need for a mechanistic understanding of the process. These data indicate that functional analyses can be implemented in carrion studies and will be important in understanding the influence of microbial communities on an essential ecosystem process, carrion decomposition. PMID:24265741

  6. Cross-Site Soil Microbial Communities under Tillage Regimes: Fungistasis and Microbial Biomarkers

    PubMed Central

    Yrjälä, Kim; Alakukku, Laura; Palojärvi, Ansa

    2012-01-01

    The exploitation of soil ecosystem services by agricultural management strategies requires knowledge of microbial communities in different management regimes. Crop cover by no-till management protects the soil surface, reducing the risk of erosion and nutrient leaching, but might increase straw residue-borne and soilborne plant-pathogenic fungi. A cross-site study of soil microbial communities and Fusarium fungistasis was conducted on six long-term agricultural fields with no-till and moldboard-plowed treatments. Microbial communities were studied at the topsoil surface (0 to 5 cm) and bottom (10 to 20 cm) by general bacterial and actinobacterial terminal restriction fragment length polymorphism (T-RFLP) and phospholipid fatty acid (PLFA) analyses. Fusarium culmorum soil fungistasis describing soil receptivity to plant-pathogenic fungi was explored by using the surface layer method. Soil depth had a significant impact on general bacterial as well as actinobacterial communities and PLFA profiles in no-till treatment, with a clear spatial distinction of communities (P < 0.05), whereas the depth-related separation of microbial communities was not observed in plowed fields. The fungal biomass was higher in no-till surface soil than in plowed soil (P < 0.07). Soil total microbial biomass and fungal biomass correlated with fungistasis (P < 0.02 for the sum of PLFAs; P < 0.001 for PLFA 18:2ω6). Our cross-site study demonstrated that agricultural management strategies can have a major impact on soil microbial community structures, indicating that it is possible to influence the soil processes with management decisions. The interactions between plant-pathogenic fungi and soil microbial communities are multifaceted, and a high level of fungistasis could be linked to the high microbial biomass in soil but not to the specific management strategy. PMID:22983972

  7. A phase field approach for multicellular aggregate fusion in biofabrication.

    PubMed

    Yang, Xiaofeng; Sun, Yi; Wang, Qi

    2013-07-01

    We present a modeling and computational approach to study fusion of multicellular aggregates during tissue and organ fabrication, which forms the foundation for the scaffold-less biofabrication of tissues and organs known as bioprinting. It is known as the phase field method, where multicellular aggregates are modeled as mixtures of multiphase complex fluids whose phase mixing or separation is governed by interphase force interactions, mimicking the cell-cell interaction in the multicellular aggregates, and intermediate range interaction mediated by the surrounding hydrogel. The material transport in the mixture is dictated by hydrodynamics as well as forces due to the interphase interactions. In a multicellular aggregate system with fixed number of cells and fixed amount of the hydrogel medium, the effect of cell differentiation, proliferation, and death are neglected in the current model, which can be readily included in the model, and the interaction between different components is dictated by the interaction energy between cell and cell as well as between cell and medium particles, respectively. The modeling approach is applicable to transient simulations of fusion of cellular aggregate systems at the time and length scale appropriate to biofabrication. Numerical experiments are presented to demonstrate fusion and cell sorting during tissue and organ maturation processes in biofabrication.

  8. Stochastic Assembly of Bacteria in Microwell Arrays Reveals the Importance of Confinement in Community Development

    PubMed Central

    Hansen, Ryan H.; Timm, Andrea C.; Timm, Collin M.; Bible, Amber N.; Morrell-Falvey, Jennifer L.; Pelletier, Dale A.; Simpson, Michael L.; Doktycz, Mitchel J.; Retterer, Scott T.

    2016-01-01

    The structure and function of microbial communities is deeply influenced by the physical and chemical architecture of the local microenvironment and the abundance of its community members. The complexity of this natural parameter space has made characterization of the key drivers of community development difficult. In order to facilitate these characterizations, we have developed a microwell platform designed to screen microbial growth and interactions across a wide variety of physical and initial conditions. Assembly of microbial communities into microwells was achieved using a novel biofabrication method that exploits well feature sizes for control of innoculum levels. Wells with incrementally smaller size features created populations with increasingly larger variations in inoculum levels. This allowed for reproducible growth measurement in large (20 μm diameter) wells, and screening for favorable growth conditions in small (5, 10 μm diameter) wells. We demonstrate the utility of this approach for screening and discovery using 5 μm wells to assemble P. aeruginosa colonies across a broad distribution of innoculum levels, and identify those conditions that promote the highest probability of survivial and growth under spatial confinement. Multi-member community assembly was also characterized to demonstrate the broad potential of this platform for studying the role of member abundance on microbial competition, mutualism and community succession. PMID:27152511

  9. Metabolic Network Modeling of Microbial Communities

    PubMed Central

    Biggs, Matthew B.; Medlock, Gregory L.; Kolling, Glynis L.

    2015-01-01

    Genome-scale metabolic network reconstructions and constraint-based analysis are powerful methods that have the potential to make functional predictions about microbial communities. Current use of genome-scale metabolic networks to characterize the metabolic functions of microbial communities includes species compartmentalization, separating species-level and community-level objectives, dynamic analysis, the “enzyme-soup” approach, multi-scale modeling, and others. There are many challenges inherent to the field, including a need for tools that accurately assign high-level omics signals to individual community members, new automated reconstruction methods that rival manual curation, and novel algorithms for integrating omics data and engineering communities. As technologies and modeling frameworks improve, we expect that there will be proportional advances in the fields of ecology, health science, and microbial community engineering. PMID:26109480

  10. Nanotechnology in vascular tissue engineering: from nanoscaffolding towards rapid vessel biofabrication.

    PubMed

    Mironov, Vladimir; Kasyanov, Vladimir; Markwald, Roger R

    2008-06-01

    The existing methods of biofabrication for vascular tissue engineering are still bioreactor-based, extremely expensive, laborious and time consuming and, furthermore, not automated, which would be essential for an economically successful large-scale commercialization. The advances in nanotechnology can bring additional functionality to vascular scaffolds, optimize internal vascular graft surface and even help to direct the differentiation of stem cells into the vascular cell phenotype. The development of rapid nanotechnology-based methods of vascular tissue biofabrication represents one of most important recent technological breakthroughs in vascular tissue engineering because it dramatically accelerates vascular tissue assembly and, importantly, also eliminates the need for a bioreactor-based scaffold cellularization process.

  11. Segregation of the Anodic Microbial Communities in a Microbial Fuel Cell Cascade

    PubMed Central

    Hodgson, Douglas M.; Smith, Ann; Dahale, Sonal; Stratford, James P.; Li, Jia V.; Grüning, André; Bushell, Michael E.; Marchesi, Julian R.; Avignone Rossa, C.

    2016-01-01

    Metabolic interactions within microbial communities are essential for the efficient degradation of complex organic compounds, and underpin natural phenomena driven by microorganisms, such as the recycling of carbon-, nitrogen-, and sulfur-containing molecules. These metabolic interactions ultimately determine the function, activity and stability of the community, and therefore their understanding would be essential to steer processes where microbial communities are involved. This is exploited in the design of microbial fuel cells (MFCs), bioelectrochemical devices that convert the chemical energy present in substrates into electrical energy through the metabolic activity of microorganisms, either single species or communities. In this work, we analyzed the evolution of the microbial community structure in a cascade of MFCs inoculated with an anaerobic microbial community and continuously fed with a complex medium. The analysis of the composition of the anodic communities revealed the establishment of different communities in the anodes of the hydraulically connected MFCs, with a decrease in the abundance of fermentative taxa and a concurrent increase in respiratory taxa along the cascade. The analysis of the metabolites in the anodic suspension showed a metabolic shift between the first and last MFC, confirming the segregation of the anodic communities. Those results suggest a metabolic interaction mechanism between the predominant fermentative bacteria at the first stages of the cascade and the anaerobic respiratory electrogenic population in the latter stages, which is reflected in the observed increase in power output. We show that our experimental system represents an ideal platform for optimization of processes where the degradation of complex substrates is involved, as well as a potential tool for the study of metabolic interactions in complex microbial communities. PMID:27242723

  12. High-resolution phylogenetic microbial community profiling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singer, Esther; Bushnell, Brian; Coleman-Derr, Devin

    Over the past decade, high-throughput short-read 16S rRNA gene amplicon sequencing has eclipsed clone-dependent long-read Sanger sequencing for microbial community profiling. The transition to new technologies has provided more quantitative information at the expense of taxonomic resolution with implications for inferring metabolic traits in various ecosystems. We applied single-molecule real-time sequencing for microbial community profiling, generating full-length 16S rRNA gene sequences at high throughput, which we propose to name PhyloTags. We benchmarked and validated this approach using a defined microbial community. When further applied to samples from the water column of meromictic Sakinaw Lake, we show that while community structuresmore » at the phylum level are comparable between PhyloTags and Illumina V4 16S rRNA gene sequences (iTags), variance increases with community complexity at greater water depths. PhyloTags moreover allowed less ambiguous classification. Last, a platform-independent comparison of PhyloTags and in silico generated partial 16S rRNA gene sequences demonstrated significant differences in community structure and phylogenetic resolution across multiple taxonomic levels, including a severe underestimation in the abundance of specific microbial genera involved in nitrogen and methane cycling across the Lake's water column. Thus, PhyloTags provide a reliable adjunct or alternative to cost-effective iTags, enabling more accurate phylogenetic resolution of microbial communities and predictions on their metabolic potential.« less

  13. High-resolution phylogenetic microbial community profiling

    DOE PAGES

    Singer, Esther; Bushnell, Brian; Coleman-Derr, Devin; ...

    2016-02-09

    Over the past decade, high-throughput short-read 16S rRNA gene amplicon sequencing has eclipsed clone-dependent long-read Sanger sequencing for microbial community profiling. The transition to new technologies has provided more quantitative information at the expense of taxonomic resolution with implications for inferring metabolic traits in various ecosystems. We applied single-molecule real-time sequencing for microbial community profiling, generating full-length 16S rRNA gene sequences at high throughput, which we propose to name PhyloTags. We benchmarked and validated this approach using a defined microbial community. When further applied to samples from the water column of meromictic Sakinaw Lake, we show that while community structuresmore » at the phylum level are comparable between PhyloTags and Illumina V4 16S rRNA gene sequences (iTags), variance increases with community complexity at greater water depths. PhyloTags moreover allowed less ambiguous classification. Last, a platform-independent comparison of PhyloTags and in silico generated partial 16S rRNA gene sequences demonstrated significant differences in community structure and phylogenetic resolution across multiple taxonomic levels, including a severe underestimation in the abundance of specific microbial genera involved in nitrogen and methane cycling across the Lake's water column. Thus, PhyloTags provide a reliable adjunct or alternative to cost-effective iTags, enabling more accurate phylogenetic resolution of microbial communities and predictions on their metabolic potential.« less

  14. Biofabrication: an overview of the approaches used for printing of living cells.

    PubMed

    Ferris, Cameron J; Gilmore, Kerry G; Wallace, Gordon G; In het Panhuis, Marc

    2013-05-01

    The development of cell printing is vital for establishing biofabrication approaches as clinically relevant tools. Achieving this requires bio-inks which must not only be easily printable, but also allow controllable and reproducible printing of cells. This review outlines the general principles and current progress and compares the advantages and challenges for the most widely used biofabrication techniques for printing cells: extrusion, laser, microvalve, inkjet and tissue fragment printing. It is expected that significant advances in cell printing will result from synergistic combinations of these techniques and lead to optimised resolution, throughput and the overall complexity of printed constructs.

  15. Metabolic interactions and dynamics in microbial communities

    NASA Astrophysics Data System (ADS)

    Segre', Daniel

    Metabolism, in addition to being the engine of every living cell, plays a major role in the cell-cell and cell-environment relations that shape the dynamics and evolution of microbial communities, e.g. by mediating competition and cross-feeding interactions between different species. Despite the increasing availability of metagenomic sequencing data for numerous microbial ecosystems, fundamental aspects of these communities, such as the unculturability of many isolates, and the conditions necessary for taxonomic or functional stability, are still poorly understood. We are developing mechanistic computational approaches for studying the interactions between different organisms based on the knowledge of their entire metabolic networks. In particular, we have recently built an open source platform for the Computation of Microbial Ecosystems in Time and Space (COMETS), which combines metabolic models with convection-diffusion equations to simulate the spatio-temporal dynamics of metabolism in microbial communities. COMETS has been experimentally tested on small artificial communities, and is scalable to hundreds of species in complex environments. I will discuss recent developments and challenges towards the implementation of models for microbiomes and synthetic microbial communities.

  16. Seasonality in ocean microbial communities.

    PubMed

    Giovannoni, Stephen J; Vergin, Kevin L

    2012-02-10

    Ocean warming occurs every year in seasonal cycles that can help us to understand long-term responses of plankton to climate change. Rhythmic seasonal patterns of microbial community turnover are revealed when high-resolution measurements of microbial plankton diversity are applied to samples collected in lengthy time series. Seasonal cycles in microbial plankton are complex, but the expansion of fixed ocean stations monitoring long-term change and the development of automated instrumentation are providing the time-series data needed to understand how these cycles vary across broad geographical scales. By accumulating data and using predictive modeling, we gain insights into changes that will occur as the ocean surface continues to warm and as the extent and duration of ocean stratification increase. These developments will enable marine scientists to predict changes in geochemical cycles mediated by microbial communities and to gauge their broader impacts.

  17. Biofabricated Structures Reconstruct Functional Urinary Bladders in Radiation-injured Rat Bladders.

    PubMed

    Imamura, Tetsuya; Shimamura, Mitsuru; Ogawa, Teruyuki; Minagawa, Tomonori; Nagai, Takashi; Silwal Gautam, Sudha; Ishizuka, Osamu

    2018-05-08

    The ability to repair damaged urinary bladders through the application of bone marrow-derived cells is in the earliest stages of development. We investigated the application of bone marrow-derived cells to repair radiation-injured bladders. We used a three-dimensional (3D) bioprinting robot system to biofabricate bone marrow-derived cell structures. We then determined if the biofabricated structures could restore the tissues and functions of radiation-injured bladders. The bladders of female 10-week-old Sprague-Dawley (SD) rats were irradiated with 2-Gy once a week for 5 weeks. Adherent and proliferating bone marrow-derived cells harvested from the femurs of male 17-week-old green fluorescence protein-transfected Tg-SD rats were cultured in collagen-coated flasks. Bone marrow-derived cell spheroids were formed in 96-well plates. Three layers of spheroids were assembled by the bioprinter onto a 9x9 microneedle array. The assembled spheroids were perfusion cultured for 7 days, and then the microneedle array was removed. Two weeks after the last radiation treatment, the biofabricated structures were transplanted into an incision on the anterior wall of the bladders (n=10). Control rats received the same surgery but without the biofabricated structures (sham-structure, n=12). At 2 and 4 weeks after surgery, the sham-structure control bladder tissues exhibited disorganized smooth muscle layers, decreased nerve cells, and significant fibrosis with increased presence of fibrosis-marker P4HB-positive cells and hypoxia-marker HIF1α-positive cells. The transplanted structures survived within the recipient tissues, and blood vessels extended within them from the recipient tissues. The bone marrow-derived cells in the structures differentiated into smooth muscle cells and formed smooth muscle clusters. The recipient tissues near the transplanted structures had distinct smooth muscle layers and reconstructed nerve cells, and only minimal fibrosis with decreased presence of P4

  18. Impact of Ferrous Iron on Microbial Community of the Biofilm in Microbial Fuel Cells.

    PubMed

    Liu, Qian; Liu, Bingfeng; Li, Wei; Zhao, Xin; Zuo, Wenjing; Xing, Defeng

    2017-01-01

    The performance of microbial electrochemical cells depends upon microbial community structure and metabolic activity of the electrode biofilms. Iron as a signal affects biofilm development and enrichment of exoelectrogenic bacteria. In this study, the effect of ferrous iron on microbial communities of the electrode biofilms in microbial fuel cells (MFCs) was investigated. Voltage production showed that ferrous iron of 100 μM facilitated MFC start-up compared to 150 μM, 200 μM, and without supplement of ferrous iron. However, higher concentration of ferrous iron had an inhibitive influence on current generation after 30 days of operation. Illumina Hiseq sequencing of 16S rRNA gene amplicons indicated that ferrous iron substantially changed microbial community structures of both anode and cathode biofilms. Principal component analysis showed that the response of microbial communities of the anode biofilms to higher concentration of ferrous iron was more sensitive. The majority of predominant populations of the anode biofilms in MFCs belonged to Geobacter , which was different from the populations of the cathode biofilms. An obvious shift of community structures of the cathode biofilms occurred after ferrous iron addition. This study implied that ferrous iron influenced the power output and microbial community of MFCs.

  19. [Characterization and microbial community shifts of rice strawdegrading microbial consortia].

    PubMed

    Wang, Chunfang; Ma, Shichun; Huang, Yan; Liu, Laiyan; Fan, Hui; Deng, Yu

    2016-12-04

    To study the relationship between microbial community and degradation rate of rice straw, we compared and analyzed cellulose-decomposing ability, microbial community structures and shifts of microbial consortia F1 and F2. We determined exoglucanase activity by 3, 5-dinitrosalicylic acid colorimetry. We determined content of cellulose, hemicellulose and lignin in rice straw by Van Soest method, and calculated degradation rates of rice straw by the weight changes before and after a 10-day incubation. We analyzed and compared the microbial communities and functional microbiology shifts by clone libraries, Miseq analysis and real time-PCR based on the 16S rRNA gene and cel48 genes. Total degradation rate, cellulose, and hemicellulose degradation rate of microbial consortia F1 were significantly higher than that of F2. The variation trend of exoglucanase activity in both microbial consortia F1 and F2 was consistent with that of cel48 gene copies. Microbial diversity of F1 was complex with aerobic bacteria as dominant species, whereas that of F2 was simple with a high proportion of anaerobic cellulose decomposing bacteria in the later stage of incubation. In the first 4 days, unclassified Bacillales and Bacillus were dominant in both F1 and F2. The dominant species and abundance became different after 4-day incubation, Bacteroidetes and Firmicutes were dominant phyla of F1 and F2, respectively. Although Petrimonas and Pusillimonas were common dominant species in F1 and F2, abundance of Petrimonas in F2 (38.30%) was significantly higher than that in F1 (9.47%), and the abundance of Clostridiales OPB54 in F2 increased to 14.85% after 8-day incubation. The abundance of cel48 gene related with cellulose degradation rate and exoglucanase activity, and cel48 gene has the potential as a molecular marker to monitor the process of cellulose degradation. Microbial community structure has a remarkable impact on the degradation efficiency of straw cellulose, and Petrimonas

  20. Functional Diversity of Microbial Communities in Sludge-Amended Soils

    NASA Astrophysics Data System (ADS)

    Sun, Y. H.; Yang, Z. H.; Zhao, J. J.; Li, Q.

    The BIOLOG method was applied to exploration of functional diversity of soil microbial communities in sludge-amended soils sampled from the Yangtze River Delta. Results indicated that metabolic profile, functional diversity indexes and Kinetic parameters of the soil microbial communities changed following soil amendment with sewage sludge, suggesting that the changes occurred in population of the microbes capable of exploiting carbon substrates and in this capability as well. The kinetic study of the functional diversity revealed that the metabolic profile of the soil microbial communities exhibited non-linear correlation with the incubation time, showing a curse of sigmoid that fits the dynamic model of growth of the soil microbial communities. In all the treatments, except for treatments of coastal fluvo-aquic soil amended with fresh sludge and dried sludge from Hangzhou, kinetic parameters K and r of the functional diversity of the soil microbial communities decreased significantly and parameter S increased. Changes in characteristics of the functional diversity well reflected differences in C utilizing capacity and model of the soil microbial communities in the sludge-amended soils, and changes in functional diversity of the soil microbial communities in a particular eco-environment, like soil amended with sewage sludge.

  1. Molecular Survey of Concrete Biofilm Microbial Communities

    EPA Science Inventory

    Although several studies have shown that bacteria can deteriorate concrete structures, there is very little information on the composition of concrete microbial communities. To this end, we studied different microbial communities associated with concrete biofilms using 16S rRNA g...

  2. Surface reflectance degradation by microbial communities

    DOE PAGES

    Cheng, Meng -Dawn; Allman, Steve L.; Graham, David E.; ...

    2015-11-05

    Building envelope, such as a roof, is the interface between a building structure and the environment. Understanding of the physics of microbial interactions with the building envelope is limited. In addition to the natural weathering, microorganisms and airborne particulate matter that attach to a cool roof tend to reduce the roof reflectance over time, compromising the energy efficiency advantages of the reflective coating designs. We applied microbial ecology analysis to identify the natural communities present on the exposed coatings and investigated the reduction kinetics of the surface reflectance upon the introduction of a defined mixture of both photoautotrophic and heterotrophicmore » microorganisms representing the natural communities. The result are (1) reflectance degradation by microbial communities follows a first-order kinetic relationship and (2) more than 50% of degradation from the initial reflectance value can be caused by microbial species alone in much less time than 3 years required by the current standard ENERGY STAR® test methods.« less

  3. High-resolution phylogenetic microbial community profiling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singer, Esther; Coleman-Derr, Devin; Bowman, Brett

    2014-03-17

    The representation of bacterial and archaeal genome sequences is strongly biased towards cultivated organisms, which belong to merely four phylogenetic groups. Functional information and inter-phylum level relationships are still largely underexplored for candidate phyla, which are often referred to as microbial dark matter. Furthermore, a large portion of the 16S rRNA gene records in the GenBank database are labeled as environmental samples and unclassified, which is in part due to low read accuracy, potential chimeric sequences produced during PCR amplifications and the low resolution of short amplicons. In order to improve the phylogenetic classification of novel species and advance ourmore » knowledge of the ecosystem function of uncultivated microorganisms, high-throughput full length 16S rRNA gene sequencing methodologies with reduced biases are needed. We evaluated the performance of PacBio single-molecule real-time (SMRT) sequencing in high-resolution phylogenetic microbial community profiling. For this purpose, we compared PacBio and Illumina metagenomic shotgun and 16S rRNA gene sequencing of a mock community as well as of an environmental sample from Sakinaw Lake, British Columbia. Sakinaw Lake is known to contain a large age of microbial species from candidate phyla. Sequencing results show that community structure based on PacBio shotgun and 16S rRNA gene sequences is highly similar in both the mock and the environmental communities. Resolution power and community representation accuracy from SMRT sequencing data appeared to be independent of GC content of microbial genomes and was higher when compared to Illumina-based metagenome shotgun and 16S rRNA gene (iTag) sequences, e.g. full-length sequencing resolved all 23 OTUs in the mock community, while iTags did not resolve closely related species. SMRT sequencing hence offers various potential benefits when characterizing uncharted microbial communities.« less

  4. Microbial communities inhabiting hypersaline microbial mats from the Abu Dhabi sabkha

    NASA Astrophysics Data System (ADS)

    Andrade, Luiza; Dutton, Kirsten; Paul, Andreas; van der Land, Cees; Sherry, Angela; Lokier, Stephen; Head, Ian

    2017-04-01

    Microbial mats are organo-sedimentary structures that are typically found in areas with extreme environmental conditions. Since these ecosystems are considered to be representative of the oldest forms of life on Earth, the study of microbial mats can inform our understanding of the development of life early in the history of our planet. In this study, we used hypersaline microbial mats from the Abu Dhabi sabkha (coastal salt flats). Cores of microbial mats (ca. 90 mm depth) were collected within an intertidal region. The cores were sliced into layers 2-3 mm thick and genomic DNA was extracted from each layer. A fragment of the 16S rRNA encoding gene was amplified in all DNA extracts, using barcoded primers, and the amplicons sequenced with the Ion Torrent platform to investigate the composition of the microbial communities down the depth of the cores. Preliminary results revealed a high proportion of Archaea (15.5-40.8% abundance) in all layers, with Halobacteria appearing to be more significant in the first 40 mm (0.4-10.3% of the total microbial community). Members of the Deltaproteobacteria were dominant in almost all layers of the microbial mat (≤ 48.6% relative abundance); however this dominance was not reflected in the first 8 mm, where the abundance was less than 2%. Chloroflexi and Anaerolinea, representing 93% of bacterial abundance, dominated the first 8 mm depth and decreased at greater depth (≤ 3% relative abundance). Cyanobacteria were found only in the top 10 mm, with unexpected low abundance (≤ 3% of the total number of reads). These results show a vertical zonation of microbial communities and processes in the microbial mats. Further analyses are underway to investigate if these patterns are repeated at other sites along a transect of the sabkha, and to relate the microbial composition to the physical-chemical conditions of the sites.

  5. Steering air bubbles with an add-on vacuum layer for biopolymer membrane biofabrication in PDMS microfluidics.

    PubMed

    Pham, Phu; Vo, Thanh; Luo, Xiaolong

    2017-01-17

    Membrane functionality is crucial in microfluidics for realizing operations such as filtration, separation, concentration, signaling among cells and gradient generation. Currently, common methods often sandwich commercially available membranes in multi-layer devices, or use photopolymerization or temperature-induced gelation to fabricate membrane structures in one-layer devices. Biofabrication offers an alternative to forming membrane structures with biomimetic materials and mechanisms in mild conditions. We have recently developed a biofabrication strategy to form parallel biopolymer membranes in gas-permeable polydimethylsiloxane (PDMS) microfluidic devices, which used positive pressure to dissipate air bubbles through PDMS to initiate membrane formation but required careful pressure balancing between two flows. Here, we report a technical innovation by simply placing as needed an add-on PDMS vacuum layer on PDMS microfluidic devices to dissipate air bubbles and guide the biofabrication of biopolymer membranes. Vacuuming through PDMS was simply achieved by either withdrawing a syringe or releasing a squeezed nasal aspirator. Upon vacuuming, air bubbles dissipated within minutes, membranes were effortlessly formed, and the add-on vacuum layer can be removed. Subsequent membrane growth could be robustly controlled with the flows and pH of solutions. This new process is user-friendly and has achieved a 100% success rate in more than 200 trials in membrane biofabrication.

  6. Integrated Circuit-Based Biofabrication with Common Biomaterials for Probing Cellular Biomechanics.

    PubMed

    Sung, Chun-Yen; Yang, Chung-Yao; Yeh, J Andrew; Cheng, Chao-Min

    2016-02-01

    Recent advances in bioengineering have enabled the development of biomedical tools with modifiable surface features (small-scale architecture) to mimic extracellular matrices and aid in the development of well-controlled platforms that allow for the application of mechanical stimulation for studying cellular biomechanics. An overview of recent developments in common biomaterials that can be manufactured using integrated circuit-based biofabrication is presented. Integrated circuit-based biofabrication possesses advantages including mass and diverse production capacities for fabricating in vitro biomedical devices. This review highlights the use of common biomaterials that have been most frequently used to study cellular biomechanics. In addition, the influence of various small-scale characteristics on common biomaterial surfaces for a range of different cell types is discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Impacts of chemical gradients on microbial community structure.

    PubMed

    Chen, Jianwei; Hanke, Anna; Tegetmeyer, Halina E; Kattelmann, Ines; Sharma, Ritin; Hamann, Emmo; Hargesheimer, Theresa; Kraft, Beate; Lenk, Sabine; Geelhoed, Jeanine S; Hettich, Robert L; Strous, Marc

    2017-04-01

    Succession of redox processes is sometimes assumed to define a basic microbial community structure for ecosystems with oxygen gradients. In this paradigm, aerobic respiration, denitrification, fermentation and sulfate reduction proceed in a thermodynamically determined order, known as the 'redox tower'. Here, we investigated whether redox sorting of microbial processes explains microbial community structure at low-oxygen concentrations. We subjected a diverse microbial community sampled from a coastal marine sediment to 100 days of tidal cycling in a laboratory chemostat. Oxygen gradients (both in space and time) led to the assembly of a microbial community dominated by populations that each performed aerobic and anaerobic metabolism in parallel. This was shown by metagenomics, transcriptomics, proteomics and stable isotope incubations. Effective oxygen consumption combined with the formation of microaggregates sustained the activity of oxygen-sensitive anaerobic enzymes, leading to braiding of unsorted redox processes, within and between populations. Analyses of available metagenomic data sets indicated that the same ecological strategies might also be successful in some natural ecosystems.

  8. Effects of heavy metals on soil microbial community

    NASA Astrophysics Data System (ADS)

    Chu, Dian

    2018-02-01

    Soil is one of the most important environmental natural resources for human beings living, which is of great significance to the quality of ecological environment and human health. The study of the function of arable soil microbes exposed to heavy metal pollution for a long time has a very important significance for the usage of farmland soil. In this paper, the effects of heavy metals on soil microbial community were reviewed. The main contents were as follows: the effects of soil microbes on soil ecosystems; the effects of heavy metals on soil microbial activity, soil enzyme activities and the composition of soil microbial community. In addition, a brief description of main methods of heavy metal detection for soil pollution is given, and the means of researching soil microbial community composition are introduced as well. Finally, it is concluded that the study of soil microbial community can well reflect the degree of soil heavy metal pollution and the impact of heavy metal pollution on soil ecology.

  9. Response of microbial community composition and function to soil climate change

    USGS Publications Warehouse

    Waldrop, M.P.; Firestone, M.K.

    2006-01-01

    Soil microbial communities mediate critical ecosystem carbon and nutrient cycles. How microbial communities will respond to changes in vegetation and climate, however, are not well understood. We reciprocally transplanted soil cores from under oak canopies and adjacent open grasslands in a California oak-grassland ecosystem to determine how microbial communities respond to changes in the soil environment and the potential consequences for the cycling of carbon. Every 3 months for up to 2 years, we monitored microbial community composition using phospholipid fatty acid analysis (PLFA), microbial biomass, respiration rates, microbial enzyme activities, and the activity of microbial groups by quantifying 13C uptake from a universal substrate (pyruvate) into PLFA biomarkers. Soil in the open grassland experienced higher maximum temperatures and lower soil water content than soil under the oak canopies. Soil microbial communities in soil under oak canopies were more sensitive to environmental change than those in adjacent soil from the open grassland. Oak canopy soil communities changed rapidly when cores were transplanted into the open grassland soil environment, but grassland soil communities did not change when transplanted into the oak canopy environment. Similarly, microbial biomass, enzyme activities, and microbial respiration decreased when microbial communities were transplanted from the oak canopy soils to the grassland environment, but not when the grassland communities were transplanted to the oak canopy environment. These data support the hypothesis that microbial community composition and function is altered when microbes are exposed to new extremes in environmental conditions; that is, environmental conditions outside of their "life history" envelopes. ?? 2006 Springer Science+Business Media, Inc.

  10. A trait-based approach for examining microbial community assembly

    NASA Astrophysics Data System (ADS)

    Prest, T. L.; Nemergut, D.

    2015-12-01

    Microorganisms regulate all of Earth's major biogeochemical cycles and an understanding of how microbial communities assemble is a key part in evaluating controls over many types of ecosystem processes. Rapid advances in technology and bioinformatics have led to a better appreciation for the variation in microbial community structure in time and space. Yet, advances in theory are necessary to make sense of these data and allow us to generate unifying hypotheses about the causes and consequences of patterns in microbial biodiversity and what they mean for ecosystem function. Here, I will present a metaanalysis of microbial community assembly from a variety of successional and post-disturbance systems. Our analysis shows various distinct patterns in community assembly, and the potential importance of nutrients and dispersal in shaping microbial community beta diversity in these systems. We also used a trait-based approach to generate hypotheses about the mechanisms driving patterns of microbial community assembly and the implications for function. Our work reveals the importance of rRNA operon copy number as a community aggregated trait in helping to reconcile differences in community dynamics between distinct types of successional and disturbed systems. Specifically, our results demonstrate that decreases in average copy number can be a common feature of communities across various drivers of ecological succession, supporting a transition from an r-selected to a K-selected community. Importantly, our work supports the scaling of the copy number trait over multiple levels of biological organization, from cells to populations and communities, and has implications for both ecology and evolution. Trait-based approaches are an important next step to generate and test hypotheses about the forces structuring microbial communities and the subsequent consequences for ecosystem function.

  11. A conceptual framework for invasion in microbial communities.

    PubMed

    Kinnunen, Marta; Dechesne, Arnaud; Proctor, Caitlin; Hammes, Frederik; Johnson, David; Quintela-Baluja, Marcos; Graham, David; Daffonchio, Daniele; Fodelianakis, Stilianos; Hahn, Nicole; Boon, Nico; Smets, Barth F

    2016-12-01

    There is a growing interest in controlling-promoting or avoiding-the invasion of microbial communities by new community members. Resource availability and community structure have been reported as determinants of invasion success. However, most invasion studies do not adhere to a coherent and consistent terminology nor always include rigorous interpretations of the processes behind invasion. Therefore, we suggest that a consistent set of definitions and a rigorous conceptual framework are needed. We define invasion in a microbial community as the establishment of an alien microbial type in a resident community and argue how simple criteria to define aliens, residents, and alien establishment can be applied for a wide variety of communities. In addition, we suggest an adoption of the community ecology framework advanced by Vellend (2010) to clarify potential determinants of invasion. This framework identifies four fundamental processes that control community dynamics: dispersal, selection, drift and diversification. While selection has received ample attention in microbial community invasion research, the three other processes are often overlooked. Here, we elaborate on the relevance of all four processes and conclude that invasion experiments should be designed to elucidate the role of dispersal, drift and diversification, in order to obtain a complete picture of invasion as a community process.

  12. A conceptual framework for invasion in microbial communities

    PubMed Central

    Kinnunen, Marta; Dechesne, Arnaud; Proctor, Caitlin; Hammes, Frederik; Johnson, David; Quintela-Baluja, Marcos; Graham, David; Daffonchio, Daniele; Fodelianakis, Stilianos; Hahn, Nicole; Boon, Nico; Smets, Barth F

    2016-01-01

    There is a growing interest in controlling—promoting or avoiding—the invasion of microbial communities by new community members. Resource availability and community structure have been reported as determinants of invasion success. However, most invasion studies do not adhere to a coherent and consistent terminology nor always include rigorous interpretations of the processes behind invasion. Therefore, we suggest that a consistent set of definitions and a rigorous conceptual framework are needed. We define invasion in a microbial community as the establishment of an alien microbial type in a resident community and argue how simple criteria to define aliens, residents, and alien establishment can be applied for a wide variety of communities. In addition, we suggest an adoption of the community ecology framework advanced by Vellend (2010) to clarify potential determinants of invasion. This framework identifies four fundamental processes that control community dynamics: dispersal, selection, drift and diversification. While selection has received ample attention in microbial community invasion research, the three other processes are often overlooked. Here, we elaborate on the relevance of all four processes and conclude that invasion experiments should be designed to elucidate the role of dispersal, drift and diversification, in order to obtain a complete picture of invasion as a community process. PMID:27137125

  13. Syntrophic exchange in synthetic microbial communities

    PubMed Central

    Mee, Michael T.; Collins, James J.; Church, George M.; Wang, Harris H.

    2014-01-01

    Metabolic crossfeeding is an important process that can broadly shape microbial communities. However, little is known about specific crossfeeding principles that drive the formation and maintenance of individuals within a mixed population. Here, we devised a series of synthetic syntrophic communities to probe the complex interactions underlying metabolic exchange of amino acids. We experimentally analyzed multimember, multidimensional communities of Escherichia coli of increasing sophistication to assess the outcomes of synergistic crossfeeding. We find that biosynthetically costly amino acids including methionine, lysine, isoleucine, arginine, and aromatics, tend to promote stronger cooperative interactions than amino acids that are cheaper to produce. Furthermore, cells that share common intermediates along branching pathways yielded more synergistic growth, but exhibited many instances of both positive and negative epistasis when these interactions scaled to higher dimensions. In more complex communities, we find certain members exhibiting keystone species-like behavior that drastically impact the community dynamics. Based on comparative genomic analysis of >6,000 sequenced bacteria from diverse environments, we present evidence suggesting that amino acid biosynthesis has been broadly optimized to reduce individual metabolic burden in favor of enhanced crossfeeding to support synergistic growth across the biosphere. These results improve our basic understanding of microbial syntrophy while also highlighting the utility and limitations of current modeling approaches to describe the dynamic complexities underlying microbial ecosystems. This work sets the foundation for future endeavors to resolve key questions in microbial ecology and evolution, and presents a platform to develop better and more robust engineered synthetic communities for industrial biotechnology. PMID:24778240

  14. Microbial community succession in alkaline, saline bauxite residue: a cross-refinery study

    NASA Astrophysics Data System (ADS)

    Santini, T.; Malcolm, L. I.; Tyson, G. W.; Warren, L. A.

    2015-12-01

    Bauxite residue, a byproduct of the Bayer process for alumina refining, is an alkaline, saline tailings material that is generally considered to be inhospitable to microbial life. In situ remediation strategies promote soil formation in bauxite residue by enhancing leaching of saline, alkaline pore water, and through incorporation of amendments to boost organic matter content, decrease pH, and improve physical structure. The amelioration of chemical and physical conditions in bauxite residue is assumed to support diversification of microbial communities from narrow, poorly functioning microbial communities towards diverse, well-functioning communities. This study aimed to characterise microbial communities in fresh and remediated bauxite residues from refineries worldwide, to identify (a) whether initial microbial communities differed between refineries; (b) major environmental controls on microbial community composition; and (c) whether remediation successfully shifts the composition of microbial communities in bauxite residue towards those found in reference (desired endpoint) soils. Samples were collected from 16 refineries and characterised using 16S amplicon sequencing to examine microbial community composition and structure, in conjunction with physicochemical analyses. Initial microbial community composition was similar across refineries but partitioned into two major groups. Microbial community composition changes slowly over time and indicates that alkalinity and salinity inhibit diversification. Microbially-based strategies for in situ remediation should consider the initial microbial community composition and whether the pre-treatment of chemical properties would optimise subsequent bioremediation outcomes. During in situ remediation, microbial communities become more diverse and develop wider functional capacity, indicating progression towards communities more commonly observed in natural grassland and forest soils.

  15. Synthetic networks in microbial communities

    NASA Astrophysics Data System (ADS)

    Suel, Gurol

    2015-03-01

    While bacteria are single celled organisms, they predominantly reside in structured communities known as biofilms. Cells in biofilms are encapsulated and protected by the extracellular matrix (ECM), which also confines cells in space. During biofilm development, microbial cells are organized in space and over time. Little is known regarding the processes that drive the spatio-temporal organization of microbial communities. Here I will present our latest efforts that utilize synthetic biology approaches to uncover the organizational principles that drive biofilm development. I will also discuss the possible implications of our recent findings in terms of the cost and benefit to biofilm cells.

  16. Successive DNA extractions improve characterization of soil microbial communities

    PubMed Central

    de Hollander, Mattias; Smidt, Hauke; van Veen, Johannes A.

    2017-01-01

    Currently, characterization of soil microbial communities relies heavily on the use of molecular approaches. Independently of the approach used, soil DNA extraction is a crucial step, and success of downstream procedures will depend on how well DNA extraction was performed. Often, studies describing and comparing soil microbial communities are based on a single DNA extraction, which may not lead to a representative recovery of DNA from all organisms present in the soil. The use of successive DNA extractions might improve soil microbial characterization, but the benefit of this approach has only been limitedly studied. To determine whether successive DNA extractions of the same soil sample would lead to different observations in terms of microbial abundance and community composition, we performed three successive extractions, with two widely used commercial kits, on a range of clay and sandy soils. Successive extractions increased DNA yield considerably (1–374%), as well as total bacterial and fungal abundances in most of the soil samples. Analysis of the 16S and 18S ribosomal RNA genes using 454-pyrosequencing, revealed that microbial community composition (taxonomic groups) observed in the successive DNA extractions were similar. However, successive DNA extractions did reveal several additional microbial groups. For some soil samples, shifts in microbial community composition were observed, mainly due to shifts in relative abundance of a number of microbial groups. Our results highlight that performing successive DNA extractions optimize DNA yield, and can lead to a better picture of overall community composition. PMID:28168105

  17. Microbial community structure elucidates performance of Glyceria maxima plant microbial fuel cell.

    PubMed

    Timmers, Ruud A; Rothballer, Michael; Strik, David P B T B; Engel, Marion; Schulz, Stephan; Schloter, Michael; Hartmann, Anton; Hamelers, Bert; Buisman, Cees

    2012-04-01

    The plant microbial fuel cell (PMFC) is a technology in which living plant roots provide electron donor, via rhizodeposition, to a mixed microbial community to generate electricity in a microbial fuel cell. Analysis and localisation of the microbial community is necessary for gaining insight into the competition for electron donor in a PMFC. This paper characterises the anode-rhizosphere bacterial community of a Glyceria maxima (reed mannagrass) PMFC. Electrochemically active bacteria (EAB) were located on the root surfaces, but they were more abundant colonising the graphite granular electrode. Anaerobic cellulolytic bacteria dominated the area where most of the EAB were found, indicating that the current was probably generated via the hydrolysis of cellulose. Due to the presence of oxygen and nitrate, short-chain fatty acid-utilising denitrifiers were the major competitors for the electron donor. Acetate-utilising methanogens played a minor role in the competition for electron donor, probably due to the availability of graphite granules as electron acceptors.

  18. Effect of Substrate Conversion on Performance of Microbial Fuel Cells and Anodic Microbial Communities.

    PubMed

    Zhao, Yang-Guo; Zhang, Yi; She, Zonglian; Shi, Yue; Wang, Min; Gao, Mengchun; Guo, Liang

    2017-09-01

    Performance of microbial fuel cells (MFCs) was monitored during the influent nutrient change from lactate to glucose/acetate/propionate and then to lactate. Meanwhile, anodic microbial communities were characterized by culture-independent molecular biotechnologies. Results showed MFC performance recovered rapidly when the lactate was replaced by one of its metabolic intermediates acetate, while it needed a longer time to recover if lactate substrate was converted to glucose/propionate or acetate to lactate. Secondary lactate feed enhanced the enrichment of bacterial populations dominating in first lactate feed. Electricity-producing bacteria, Geobacter spp., and beneficial helpers, Anaeromusa spp. and Pseudomonas spp., revived from a low abundance as lactate secondary supply, but microbial communities were hard to achieve former profiles in structure and composition. Hence, microbial community profiles tended to recover when outside environmental condition were restored. Different substrates selected unique functional microbial populations.

  19. Integrating ecological and engineering concepts of resilience in microbial communities

    DOE PAGES

    Song, Hyun -Seob; Renslow, Ryan S.; Fredrickson, Jim K.; ...

    2015-12-01

    We note that many definitions of resilience have been proffered for natural and engineered ecosystems, but a conceptual consensus on resilience in microbial communities is still lacking. Here, we argue that the disconnect largely results from the wide variance in microbial community complexity, which range from simple synthetic consortia to complex natural communities, and divergence between the typical practical outcomes emphasized by ecologists and engineers. Viewing microbial communities as elasto-plastic systems, we argue that this gap between the engineering and ecological definitions of resilience stems from their respective emphases on elastic and plastic deformation, respectively. We propose that the twomore » concepts may be fundamentally united around the resilience of function rather than state in microbial communities and the regularity in the relationship between environmental variation and a community’s functional response. Furthermore, we posit that functional resilience is an intrinsic property of microbial communities, suggesting that state changes in response to environmental variation may be a key mechanism driving resilience in microbial communities.« less

  20. Effects of Actinomycete Secondary Metabolites on Sediment Microbial Communities.

    PubMed

    Patin, Nastassia V; Schorn, Michelle; Aguinaldo, Kristen; Lincecum, Tommie; Moore, Bradley S; Jensen, Paul R

    2017-02-15

    Marine sediments harbor complex microbial communities that remain poorly studied relative to other biomes such as seawater. Moreover, bacteria in these communities produce antibiotics and other bioactive secondary metabolites, yet little is known about how these compounds affect microbial community structure. In this study, we used next-generation amplicon sequencing to assess native microbial community composition in shallow tropical marine sediments. The results revealed complex communities comprised of largely uncultured taxa, with considerable spatial heterogeneity and known antibiotic producers comprising only a small fraction of the total diversity. Organic extracts from cultured strains of the sediment-dwelling actinomycete genus Salinispora were then used in mesocosm studies to address how secondary metabolites shape sediment community composition. We identified predatory bacteria and other taxa that were consistently reduced in the extract-treated mesocosms, suggesting that they may be the targets of allelopathic interactions. We tested related taxa for extract sensitivity and found general agreement with the culture-independent results. Conversely, several taxa were enriched in the extract-treated mesocosms, suggesting that some bacteria benefited from the interactions. The results provide evidence that bacterial secondary metabolites can have complex and significant effects on sediment microbial communities. Ocean sediments represent one of Earth's largest and most poorly studied biomes. These habitats are characterized by complex microbial communities where competition for space and nutrients can be intense. This study addressed the hypothesis that secondary metabolites produced by the sediment-inhabiting actinomycete Salinispora arenicola affect community composition and thus mediate interactions among competing microbes. Next-generation amplicon sequencing of mesocosm experiments revealed complex communities that shifted following exposure to S

  1. Stochastic Community Assembly: Does It Matter in Microbial Ecology?

    PubMed

    Zhou, Jizhong; Ning, Daliang

    2017-12-01

    Understanding the mechanisms controlling community diversity, functions, succession, and biogeography is a central, but poorly understood, topic in ecology, particularly in microbial ecology. Although stochastic processes are believed to play nonnegligible roles in shaping community structure, their importance relative to deterministic processes is hotly debated. The importance of ecological stochasticity in shaping microbial community structure is far less appreciated. Some of the main reasons for such heavy debates are the difficulty in defining stochasticity and the diverse methods used for delineating stochasticity. Here, we provide a critical review and synthesis of data from the most recent studies on stochastic community assembly in microbial ecology. We then describe both stochastic and deterministic components embedded in various ecological processes, including selection, dispersal, diversification, and drift. We also describe different approaches for inferring stochasticity from observational diversity patterns and highlight experimental approaches for delineating ecological stochasticity in microbial communities. In addition, we highlight research challenges, gaps, and future directions for microbial community assembly research. Copyright © 2017 American Society for Microbiology.

  2. Impacts of chemical gradients on microbial community structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jianwei; Hanke, Anna; Tegetmeyer, Halina E.

    Succession of redox processes is sometimes assumed to define a basic microbial community structure for ecosystems with oxygen gradients. In this paradigm, aerobic respiration, denitrification, fermentation and sulfate reduction proceed in a thermodynamically determined order, known as the ‘redox tower’. Here, we investigated whether redox sorting of microbial processes explains microbial community structure at low-oxygen concentrations. We subjected a diverse microbial community sampled from a coastal marine sediment to 100 days of tidal cycling in a laboratory chemostat. Oxygen gradients (both in space and time) led to the assembly of a microbial community dominated by populations that each performed aerobicmore » and anaerobic metabolism in parallel. This was shown by metagenomics, transcriptomics, proteomics and stable isotope incubations. Effective oxygen consumption combined with the formation of microaggregates sustained the activity of oxygen-sensitive anaerobic enzymes, leading to braiding of unsorted redox processes, within and between populations. Analyses of available metagenomic data sets indicated that the same ecological strategies might also be successful in some natural ecosystems.« less

  3. Impacts of chemical gradients on microbial community structure

    PubMed Central

    Chen, Jianwei; Hanke, Anna; Tegetmeyer, Halina E; Kattelmann, Ines; Sharma, Ritin; Hamann, Emmo; Hargesheimer, Theresa; Kraft, Beate; Lenk, Sabine; Geelhoed, Jeanine S; Hettich, Robert L; Strous, Marc

    2017-01-01

    Succession of redox processes is sometimes assumed to define a basic microbial community structure for ecosystems with oxygen gradients. In this paradigm, aerobic respiration, denitrification, fermentation and sulfate reduction proceed in a thermodynamically determined order, known as the ‘redox tower'. Here, we investigated whether redox sorting of microbial processes explains microbial community structure at low-oxygen concentrations. We subjected a diverse microbial community sampled from a coastal marine sediment to 100 days of tidal cycling in a laboratory chemostat. Oxygen gradients (both in space and time) led to the assembly of a microbial community dominated by populations that each performed aerobic and anaerobic metabolism in parallel. This was shown by metagenomics, transcriptomics, proteomics and stable isotope incubations. Effective oxygen consumption combined with the formation of microaggregates sustained the activity of oxygen-sensitive anaerobic enzymes, leading to braiding of unsorted redox processes, within and between populations. Analyses of available metagenomic data sets indicated that the same ecological strategies might also be successful in some natural ecosystems. PMID:28094795

  4. Impacts of chemical gradients on microbial community structure

    DOE PAGES

    Chen, Jianwei; Hanke, Anna; Tegetmeyer, Halina E.; ...

    2017-01-17

    Succession of redox processes is sometimes assumed to define a basic microbial community structure for ecosystems with oxygen gradients. In this paradigm, aerobic respiration, denitrification, fermentation and sulfate reduction proceed in a thermodynamically determined order, known as the ‘redox tower’. Here, we investigated whether redox sorting of microbial processes explains microbial community structure at low-oxygen concentrations. We subjected a diverse microbial community sampled from a coastal marine sediment to 100 days of tidal cycling in a laboratory chemostat. Oxygen gradients (both in space and time) led to the assembly of a microbial community dominated by populations that each performed aerobicmore » and anaerobic metabolism in parallel. This was shown by metagenomics, transcriptomics, proteomics and stable isotope incubations. Effective oxygen consumption combined with the formation of microaggregates sustained the activity of oxygen-sensitive anaerobic enzymes, leading to braiding of unsorted redox processes, within and between populations. Analyses of available metagenomic data sets indicated that the same ecological strategies might also be successful in some natural ecosystems.« less

  5. Mangrove succession enriches the sediment microbial community in South China

    PubMed Central

    Chen, Quan; Zhao, Qian; Li, Jing; Jian, Shuguang; Ren, Hai

    2016-01-01

    Sediment microorganisms help create and maintain mangrove ecosystems. Although the changes in vegetation during mangrove forest succession have been well studied, the changes in the sediment microbial community during mangrove succession are poorly understood. To investigate the changes in the sediment microbial community during succession of mangroves at Zhanjiang, South China, we used phospholipid fatty acid (PLFA) analysis and the following chronosequence from primary to climax community: unvegetated shoal; Avicennia marina community; Aegiceras corniculatum community; and Bruguiera gymnorrhiza + Rhizophora stylosa community. The PLFA concentrations of all sediment microbial groups (total microorganisms, fungi, gram-positive bacteria, gram-negative bacteria, and actinomycetes) increased significantly with each stage of mangrove succession. Microbial PLFA concentrations in the sediment were significantly lower in the wet season than in the dry season. Regression and ordination analyses indicated that the changes in the microbial community with mangrove succession were mainly associated with properties of the aboveground vegetation (mainly plant height) and the sediment (mainly sediment organic matter and total nitrogen). The changes in the sediment microbial community can probably be explained by increases in nutrients and microhabitat heterogeneity during mangrove succession. PMID:27265262

  6. Mangrove succession enriches the sediment microbial community in South China.

    PubMed

    Chen, Quan; Zhao, Qian; Li, Jing; Jian, Shuguang; Ren, Hai

    2016-06-06

    Sediment microorganisms help create and maintain mangrove ecosystems. Although the changes in vegetation during mangrove forest succession have been well studied, the changes in the sediment microbial community during mangrove succession are poorly understood. To investigate the changes in the sediment microbial community during succession of mangroves at Zhanjiang, South China, we used phospholipid fatty acid (PLFA) analysis and the following chronosequence from primary to climax community: unvegetated shoal; Avicennia marina community; Aegiceras corniculatum community; and Bruguiera gymnorrhiza + Rhizophora stylosa community. The PLFA concentrations of all sediment microbial groups (total microorganisms, fungi, gram-positive bacteria, gram-negative bacteria, and actinomycetes) increased significantly with each stage of mangrove succession. Microbial PLFA concentrations in the sediment were significantly lower in the wet season than in the dry season. Regression and ordination analyses indicated that the changes in the microbial community with mangrove succession were mainly associated with properties of the aboveground vegetation (mainly plant height) and the sediment (mainly sediment organic matter and total nitrogen). The changes in the sediment microbial community can probably be explained by increases in nutrients and microhabitat heterogeneity during mangrove succession.

  7. Ohmic resistance affects microbial community and ...

    EPA Pesticide Factsheets

    Multi-anode microbial electrochemical cells (MXCs) are considered as one of the most promising configurations for scale-up of MXCs, but fundamental understanding of anode kinetics governing current density is limited in the MXCs. In this study we first assessed microbial community and electrochemical kinetic parameters for biofilms on individual anodes in a multi-anode MXC to better comprehend anode fundamentals. Microbial community analysis using 16S rRNA illumine sequencing showed that Geobactor genus, one of the most kinetically efficient anode-respiring bacteria (ARB), was abundant (87%) only on the biofilm anode closest to a reference electrode in which current density was the highest among four anodes. In comparison, Geobacter populations were less than 11% for other three anodes more distant from the reference electrode, generating small current density. Half-saturation anode potential (EKA) was the lowest at -0.251 to -0.242 V (vs. standard hydrogen electrode) for the closest anode, while EKA was as high as -0.134 V for the farthest anode. Our study clearly proves that ohmic resistance changes anode potential which mainly causes different biofilm communities on individual anodes and consequently influences anode kinetics. This study explored the use of multiple anodes in microelectrochemical cells and the microbial community on these anodes, as a function of the efficiency in producing hydrogen peroxide.

  8. Nutrient addition dramatically accelerates microbial community succession.

    PubMed

    Knelman, Joseph E; Schmidt, Steven K; Lynch, Ryan C; Darcy, John L; Castle, Sarah C; Cleveland, Cory C; Nemergut, Diana R

    2014-01-01

    The ecological mechanisms driving community succession are widely debated, particularly for microorganisms. While successional soil microbial communities are known to undergo predictable changes in structure concomitant with shifts in a variety of edaphic properties, the causal mechanisms underlying these patterns are poorly understood. Thus, to specifically isolate how nutrients--important drivers of plant succession--affect soil microbial succession, we established a full factorial nitrogen (N) and phosphorus (P) fertilization plot experiment in recently deglaciated (∼3 years since exposure), unvegetated soils of the Puca Glacier forefield in Southeastern Peru. We evaluated soil properties and examined bacterial community composition in plots before and one year after fertilization. Fertilized soils were then compared to samples from three reference successional transects representing advancing stages of soil development ranging from 5 years to 85 years since exposure. We found that a single application of +NP fertilizer caused the soil bacterial community structure of the three-year old soils to most resemble the 85-year old soils after one year. Despite differences in a variety of soil edaphic properties between fertilizer plots and late successional soils, bacterial community composition of +NP plots converged with late successional communities. Thus, our work suggests a mechanism for microbial succession whereby changes in resource availability drive shifts in community composition, supporting a role for nutrient colimitation in primary succession. These results suggest that nutrients alone, independent of other edaphic factors that change with succession, act as an important control over soil microbial community development, greatly accelerating the rate of succession.

  9. Nutrient Addition Dramatically Accelerates Microbial Community Succession

    PubMed Central

    Knelman, Joseph E.; Schmidt, Steven K.; Lynch, Ryan C.; Darcy, John L.; Castle, Sarah C.; Cleveland, Cory C.; Nemergut, Diana R.

    2014-01-01

    The ecological mechanisms driving community succession are widely debated, particularly for microorganisms. While successional soil microbial communities are known to undergo predictable changes in structure concomitant with shifts in a variety of edaphic properties, the causal mechanisms underlying these patterns are poorly understood. Thus, to specifically isolate how nutrients – important drivers of plant succession – affect soil microbial succession, we established a full factorial nitrogen (N) and phosphorus (P) fertilization plot experiment in recently deglaciated (∼3 years since exposure), unvegetated soils of the Puca Glacier forefield in Southeastern Peru. We evaluated soil properties and examined bacterial community composition in plots before and one year after fertilization. Fertilized soils were then compared to samples from three reference successional transects representing advancing stages of soil development ranging from 5 years to 85 years since exposure. We found that a single application of +NP fertilizer caused the soil bacterial community structure of the three-year old soils to most resemble the 85-year old soils after one year. Despite differences in a variety of soil edaphic properties between fertilizer plots and late successional soils, bacterial community composition of +NP plots converged with late successional communities. Thus, our work suggests a mechanism for microbial succession whereby changes in resource availability drive shifts in community composition, supporting a role for nutrient colimitation in primary succession. These results suggest that nutrients alone, independent of other edaphic factors that change with succession, act as an important control over soil microbial community development, greatly accelerating the rate of succession. PMID:25050551

  10. Microbial astronauts: assembling microbial communities for advanced life support systems

    NASA Technical Reports Server (NTRS)

    Roberts, M. S.; Garland, J. L.; Mills, A. L.

    2004-01-01

    Extension of human habitation into space requires that humans carry with them many of the microorganisms with which they coexist on Earth. The ubiquity of microorganisms in close association with all living things and biogeochemical processes on Earth predicates that they must also play a critical role in maintaining the viability of human life in space. Even though bacterial populations exist as locally adapted ecotypes, the abundance of individuals in microbial species is so large that dispersal is unlikely to be limited by geographical barriers on Earth (i.e., for most environments "everything is everywhere" given enough time). This will not be true for microbial communities in space where local species richness will be relatively low because of sterilization protocols prior to launch and physical barriers between Earth and spacecraft after launch. Although community diversity will be sufficient to sustain ecosystem function at the onset, richness and evenness may decline over time such that biological systems either lose functional potential (e.g., bioreactors may fail to reduce BOD or nitrogen load) or become susceptible to invasion by human-associated microorganisms (pathogens) over time. Research at the John F. Kennedy Space Center has evaluated fundamental properties of microbial diversity and community assembly in prototype bioregenerative systems for NASA Advanced Life Support. Successional trends related to increased niche specialization, including an apparent increase in the proportion of nonculturable types of organisms, have been consistently observed. In addition, the stability of the microbial communities, as defined by their resistance to invasion by human-associated microorganisms, has been correlated to their diversity. Overall, these results reflect the significant challenges ahead for the assembly of stable, functional communities using gnotobiotic approaches, and the need to better define the basic biological principles that define ecosystem

  11. Microbial astronauts: assembling microbial communities for advanced life support systems.

    PubMed

    Roberts, M S; Garland, J L; Mills, A L

    2004-02-01

    Extension of human habitation into space requires that humans carry with them many of the microorganisms with which they coexist on Earth. The ubiquity of microorganisms in close association with all living things and biogeochemical processes on Earth predicates that they must also play a critical role in maintaining the viability of human life in space. Even though bacterial populations exist as locally adapted ecotypes, the abundance of individuals in microbial species is so large that dispersal is unlikely to be limited by geographical barriers on Earth (i.e., for most environments "everything is everywhere" given enough time). This will not be true for microbial communities in space where local species richness will be relatively low because of sterilization protocols prior to launch and physical barriers between Earth and spacecraft after launch. Although community diversity will be sufficient to sustain ecosystem function at the onset, richness and evenness may decline over time such that biological systems either lose functional potential (e.g., bioreactors may fail to reduce BOD or nitrogen load) or become susceptible to invasion by human-associated microorganisms (pathogens) over time. Research at the John F. Kennedy Space Center has evaluated fundamental properties of microbial diversity and community assembly in prototype bioregenerative systems for NASA Advanced Life Support. Successional trends related to increased niche specialization, including an apparent increase in the proportion of nonculturable types of organisms, have been consistently observed. In addition, the stability of the microbial communities, as defined by their resistance to invasion by human-associated microorganisms, has been correlated to their diversity. Overall, these results reflect the significant challenges ahead for the assembly of stable, functional communities using gnotobiotic approaches, and the need to better define the basic biological principles that define ecosystem

  12. [Biofabrication: new approaches for tissue regeneration].

    PubMed

    Horch, Raymund E; Weigand, Annika; Wajant, Harald; Groll, Jürgen; Boccaccini, Aldo R; Arkudas, Andreas

    2018-04-01

    The advent of Tissue Engineering (TE) in the early 1990ies was fostered by the increasing need for functional tissue and organ replacement. Classical TE was based on the combination of carrier matrices, cells and growth factors to reconstitute lost or damaged tissue and organs. Despite considerable results in vitro and in experimental settings the lack of early vascularization has hampered its translation into daily clinical practice so far. A new field of research, called "biofabrication" utilizing latest 3D printing technologies aims at hierarchically and spatially incorporating different cells, biomaterials and molecules into a matrix to alleviate a directed maturation of artificial tissue. A literature research of the relevant publications regarding biofabrication and bioprinting was performed using the PubMed data base. Relevant papers were selected and evaluated with secondary analysis of specific citations on the bioprinting techniques. 180 relevant papers containing the key words were identified and evaluated. Basic principles into the developing field of bioprinting technology could be discerned. Key elements comprise the high-throughput assembly of cells and the fabrication of complex and functional hierarchically organized tissue constructs. Five relevant technological principles for bioprinting were identified, such as stereolithography, extrusion-based printing, laser-assisted printing, inkjet-based printing and nano-bioprinting. The different technical methods of 3D printing were found to be associated with various positive but also negative effects on cells and proteins during the printing process. Research efforts in this field obviously aim towards the development of optimizing the so called bioinks and the printing technologies. This review details the evolution of the classical methods of TE in Regenerative Medicine into the evolving field of biofabrication by bioprinting. The advantages of 3D bioprinting over traditional tissue engineering

  13. Microbial community structures differentiated in a single-chamber air-cathode microbial fuel cell fueled with rice straw hydrolysate.

    PubMed

    Wang, Zejie; Lee, Taekwon; Lim, Bongsu; Choi, Chansoo; Park, Joonhong

    2014-01-17

    The microbial fuel cell represents a novel technology to simultaneously generate electric power and treat wastewater. Both pure organic matter and real wastewater can be used as fuel to generate electric power and the substrate type can influence the microbial community structure. In the present study, rice straw, an important feedstock source in the world, was used as fuel after pretreatment with diluted acid method for a microbial fuel cell to obtain electric power. Moreover, the microbial community structures of anodic and cathodic biofilm and planktonic culturewere analyzed and compared to reveal the effect of niche on microbial community structure. The microbial fuel cell produced a maximum power density of 137.6 ± 15.5 mW/m2 at a COD concentration of 400 mg/L, which was further increased to 293.33 ± 7.89 mW/m2 through adjusting the electrolyte conductivity from 5.6 mS/cm to 17 mS/cm. Microbial community analysis showed reduction of the microbial diversities of the anodic biofilm and planktonic culture, whereas diversity of the cathodic biofilm was increased. Planktonic microbial communities were clustered closer to the anodic microbial communities compared to the cathodic biofilm. The differentiation in microbial community structure of the samples was caused by minor portion of the genus. The three samples shared the same predominant phylum of Proteobacteria. The abundance of exoelectrogenic genus was increased with Desulfobulbus as the shared most abundant genus; while the most abundant exoelectrogenic genus of Clostridium in the inoculum was reduced. Sulfate reducing bacteria accounted for large relative abundance in all the samples, whereas the relative abundance varied in different samples. The results demonstrated that rice straw hydrolysate can be used as fuel for microbial fuel cells; microbial community structure differentiated depending on niches after microbial fuel cell operation; exoelectrogens were enriched; sulfate from rice straw

  14. Microbial community structures differentiated in a single-chamber air-cathode microbial fuel cell fueled with rice straw hydrolysate

    PubMed Central

    2014-01-01

    Background The microbial fuel cell represents a novel technology to simultaneously generate electric power and treat wastewater. Both pure organic matter and real wastewater can be used as fuel to generate electric power and the substrate type can influence the microbial community structure. In the present study, rice straw, an important feedstock source in the world, was used as fuel after pretreatment with diluted acid method for a microbial fuel cell to obtain electric power. Moreover, the microbial community structures of anodic and cathodic biofilm and planktonic culturewere analyzed and compared to reveal the effect of niche on microbial community structure. Results The microbial fuel cell produced a maximum power density of 137.6 ± 15.5 mW/m2 at a COD concentration of 400 mg/L, which was further increased to 293.33 ± 7.89 mW/m2 through adjusting the electrolyte conductivity from 5.6 mS/cm to 17 mS/cm. Microbial community analysis showed reduction of the microbial diversities of the anodic biofilm and planktonic culture, whereas diversity of the cathodic biofilm was increased. Planktonic microbial communities were clustered closer to the anodic microbial communities compared to the cathodic biofilm. The differentiation in microbial community structure of the samples was caused by minor portion of the genus. The three samples shared the same predominant phylum of Proteobacteria. The abundance of exoelectrogenic genus was increased with Desulfobulbus as the shared most abundant genus; while the most abundant exoelectrogenic genus of Clostridium in the inoculum was reduced. Sulfate reducing bacteria accounted for large relative abundance in all the samples, whereas the relative abundance varied in different samples. Conclusion The results demonstrated that rice straw hydrolysate can be used as fuel for microbial fuel cells; microbial community structure differentiated depending on niches after microbial fuel cell operation; exoelectrogens were

  15. Microbial communities in blueberry soils

    USDA-ARS?s Scientific Manuscript database

    Microbial communities thrive in the soil of the plant root zone and it is clear that these communities play a role in plant health. Although blueberry fields can be productive for decades, yields are sometimes below expectations and fields that are replanted sometimes underperform and/or take too lo...

  16. Diversity and Phylogenetic Structure of Two Complex Marine Microbial Communities

    DTIC Science & Technology

    2004-09-01

    Science 190 and Engineering DOCTORAL DISSERTATION Diversity and Phylogenetic Structure of Two Complex Marine Microbial Communities by Vanja Klepac-Ceraj...Two Complex Marine Microbial Communities by Vanja Klepac-Ceraj Massachusetts Institute of Technology Cambridge, Massachusetts 02139 and Woods Hole...Phylogenetic Structure of Two Complex Marine Microbial Communities. Ph.D. Thesis. MIT/WHOI, 2004-11. Approved for publication; distribution unlimited

  17. Reprint of Design of synthetic microbial communities for biotechnological production processes.

    PubMed

    Jagmann, Nina; Philipp, Bodo

    2014-12-20

    In their natural habitats microorganisms live in multi-species communities, in which the community members exhibit complex metabolic interactions. In contrast, biotechnological production processes catalyzed by microorganisms are usually carried out with single strains in pure cultures. A number of production processes, however, may be more efficiently catalyzed by the concerted action of microbial communities. This review will give an overview of organismic interactions between microbial cells and of biotechnological applications of microbial communities. It focuses on synthetic microbial communities that consist of microorganisms that have been genetically engineered. Design principles for such synthetic communities will be exemplified based on plausible scenarios for biotechnological production processes. These design principles comprise interspecific metabolic interactions via cross-feeding, regulation by interspecific signaling processes via metabolites and autoinducing signal molecules, and spatial structuring of synthetic microbial communities. In particular, the implementation of metabolic interdependencies, of positive feedback regulation and of inducible cell aggregation and biofilm formation will be outlined. Synthetic microbial communities constitute a viable extension of the biotechnological application of metabolically engineered single strains and enlarge the scope of microbial production processes. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Microbial diversity and interactions in subgingival biofilm communities.

    PubMed

    Diaz, Patricia I

    2012-01-01

    The human subgingival environment is a complex environmental niche where microorganisms from the three domains of life meet to form diverse biofilm communities that exist in close proximity to the host. Bacteria constitute the most abundant, diverse and ultimately well-studied component of these communities with about 500 bacterial taxa reported to occur in this niche. Cultivation and molecular approaches are revealing the breadth and depth of subgingival biofilm diversity as part of an effort to understand the subgingival microbiome, the collection of microorganisms that inhabit the gingival crevices. Although these investigations are constructing a pretty detailed taxonomical census of subgingival microbial communities, including inter-subject and temporal variability in community structure, as well as differences according to periodontal health status, we are still at the front steps in terms of understanding community function. Clinical studies that evaluate community structure need to be coupled with biologically relevant models that allow evaluation of the ecological determinants of subgingival biofilm maturation. Functional characteristics of subgingival biofilm communities that still need to be clarified include main metabolic processes that support microbial communities, identification of keystone species, microbial interactions and signaling events that lead to community maturation and the relationship of different communities with the host. This manuscript presents a summary of our current understanding of subgingival microbial diversity and an overview of experimental models used to dissect the functional characteristics of subgingival communities. Future coupling of 'omics'-based approaches with such models will facilitate a better understanding of subgingival ecology opening opportunities for community manipulation. Copyright © 2012 S. Karger AG, Basel.

  19. SEAGRASS RHIZOSPHERE MICROBIAL COMMUNITIES

    EPA Science Inventory

    Devereux, Richard. 2005. Seagrass Rhizosphere Microbial Communities. In: Interactions Between Macro- and Microorganisms in Marine Sediments. E. Kristense, J.E. Kostka and R.H. Haese, Editors. American Geophysical Union, Washington, DC. p199-216. (ERL,GB 1213).

    Seagrasses ...

  20. Soil microbial community successional patterns during forest ecosystem restoration.

    PubMed

    Banning, Natasha C; Gleeson, Deirdre B; Grigg, Andrew H; Grant, Carl D; Andersen, Gary L; Brodie, Eoin L; Murphy, D V

    2011-09-01

    Soil microbial community characterization is increasingly being used to determine the responses of soils to stress and disturbances and to assess ecosystem sustainability. However, there is little experimental evidence to indicate that predictable patterns in microbial community structure or composition occur during secondary succession or ecosystem restoration. This study utilized a chronosequence of developing jarrah (Eucalyptus marginata) forest ecosystems, rehabilitated after bauxite mining (up to 18 years old), to examine changes in soil bacterial and fungal community structures (by automated ribosomal intergenic spacer analysis [ARISA]) and changes in specific soil bacterial phyla by 16S rRNA gene microarray analysis. This study demonstrated that mining in these ecosystems significantly altered soil bacterial and fungal community structures. The hypothesis that the soil microbial community structures would become more similar to those of the surrounding nonmined forest with rehabilitation age was broadly supported by shifts in the bacterial but not the fungal community. Microarray analysis enabled the identification of clear successional trends in the bacterial community at the phylum level and supported the finding of an increase in similarity to nonmined forest soil with rehabilitation age. Changes in soil microbial community structure were significantly related to the size of the microbial biomass as well as numerous edaphic variables (including pH and C, N, and P nutrient concentrations). These findings suggest that soil bacterial community dynamics follow a pattern in developing ecosystems that may be predictable and can be conceptualized as providing an integrated assessment of numerous edaphic variables.

  1. Relating Anaerobic Digestion Microbial Community and Process Function.

    PubMed

    Venkiteshwaran, Kaushik; Bocher, Benjamin; Maki, James; Zitomer, Daniel

    2015-01-01

    Anaerobic digestion (AD) involves a consortium of microorganisms that convert substrates into biogas containing methane for renewable energy. The technology has suffered from the perception of being periodically unstable due to limited understanding of the relationship between microbial community structure and function. The emphasis of this review is to describe microbial communities in digesters and quantitative and qualitative relationships between community structure and digester function. Progress has been made in the past few decades to identify key microorganisms influencing AD. Yet, more work is required to realize robust, quantitative relationships between microbial community structure and functions such as methane production rate and resilience after perturbations. Other promising areas of research for improved AD may include methods to increase/control (1) hydrolysis rate, (2) direct interspecies electron transfer to methanogens, (3) community structure-function relationships of methanogens, (4) methanogenesis via acetate oxidation, and (5) bioaugmentation to study community-activity relationships or improve engineered bioprocesses.

  2. Cooperation in microbial communities and their biotechnological applications

    PubMed Central

    Cavaliere, Matteo; Feng, Song; Soyer, Orkun S.

    2017-01-01

    Summary Microbial communities are increasingly utilized in biotechnology. Efficiency and productivity in many of these applications depends on the presence of cooperative interactions between members of the community. Two key processes underlying these interactions are the production of public goods and metabolic cross‐feeding, which can be understood in the general framework of ecological and evolutionary (eco‐evo) dynamics. In this review, we illustrate the relevance of cooperative interactions in microbial biotechnological processes, discuss their mechanistic origins and analyse their evolutionary resilience. Cooperative behaviours can be damaged by the emergence of ‘cheating’ cells that benefit from the cooperative interactions but do not contribute to them. Despite this, cooperative interactions can be stabilized by spatial segregation, by the presence of feedbacks between the evolutionary dynamics and the ecology of the community, by the role of regulatory systems coupled to the environmental conditions and by the action of horizontal gene transfer. Cooperative interactions enrich microbial communities with a higher degree of robustness against environmental stress and can facilitate the evolution of more complex traits. Therefore, the evolutionary resilience of microbial communities and their ability to constraint detrimental mutants should be considered to design robust biotechnological applications. PMID:28447371

  3. Planktonic microbial community responses to added copper.

    PubMed

    Le Jeune, Anne-Hélène; Charpin, Marie; Sargos, Denis; Lenain, Jean-François; Deluchat, Véronique; Ngayila, Nadine; Baudu, Michel; Amblard, Christian

    2007-07-20

    It is generally agreed that autotrophic organisms and especially phytoplanktonic species can be harmed by copper through its effect on photosystem. However, the impact of copper on other components of the pelagic food web, such as the microbial loop (autotrophic and heterotrophic picoplankton, pigmented and non-pigmented flagellates and ciliates) has received little attention. Indoor experiments were conducted to evaluate the direct and indirect effects of copper, supplied in the range of concentrations used to control cyanobacteria growth in ponds, on non-targeted organisms of natural microbial loop communities sampled in spring and summer. Two copper concentrations were tested (80microgL(-1) and 160microgL(-1) final concentrations), set, respectively, below and above the ligand binding capacity of the water samples. Both caused a significant decrease in the biomass and diversity of pigmented organisms (picophytoplankton and pigmented flagellates). Conversely, the heterotrophic bacterioplankton and the heterotrophic flagellates did not seem to be directly affected by either copper treatment in terms of biomass or diversity, according to the descriptor chosen. The ciliate biomass was significantly reduced with increasing copper concentrations, but differences in sensitivity appeared between spring and summer communities. Potential mixotrophic and nanoplanktorivorous ciliates appeared to be more sensitive to copper treatments than bacterivorous ciliates, suggesting a stronger direct and (or) indirect effect of copper on the former. Copper sulphate treatments had a significant restructuring effect on the microbial loop communities, resulting in a dominance of heterotrophic bacterioplankton among microbial microorganisms 27 days after the beginning of the treatment. The spring microbial communities exhibited a greater sensitivity than the summer communities with respect to their initial compositions.

  4. Mechanistic links between gut microbial community dynamics, microbial functions and metabolic health.

    PubMed

    Ha, Connie W Y; Lam, Yan Y; Holmes, Andrew J

    2014-11-28

    Gut microbes comprise a high density, biologically active community that lies at the interface of an animal with its nutritional environment. Consequently their activity profoundly influences many aspects of the physiology and metabolism of the host animal. A range of microbial structural components and metabolites directly interact with host intestinal cells and tissues to influence nutrient uptake and epithelial health. Endocrine, neuronal and lymphoid cells in the gut also integrate signals from these microbial factors to influence systemic responses. Dysregulation of these host-microbe interactions is now recognised as a major risk factor in the development of metabolic dysfunction. This is a two-way process and understanding the factors that tip host-microbiome homeostasis over to dysbiosis requires greater appreciation of the host feedbacks that contribute to regulation of microbial community composition. To date, numerous studies have employed taxonomic profiling approaches to explore the links between microbial composition and host outcomes (especially obesity and its comorbidities), but inconsistent host-microbe associations have been reported. Available data indicates multiple factors have contributed to discrepancies between studies. These include the high level of functional redundancy in host-microbiome interactions combined with individual variation in microbiome composition; differences in study design, diet composition and host system between studies; and inherent limitations to the resolution of rRNA-based community profiling. Accounting for these factors allows for recognition of the common microbial and host factors driving community composition and development of dysbiosis on high fat diets. New therapeutic intervention options are now emerging.

  5. Mechanistic links between gut microbial community dynamics, microbial functions and metabolic health

    PubMed Central

    Ha, Connie WY; Lam, Yan Y; Holmes, Andrew J

    2014-01-01

    Gut microbes comprise a high density, biologically active community that lies at the interface of an animal with its nutritional environment. Consequently their activity profoundly influences many aspects of the physiology and metabolism of the host animal. A range of microbial structural components and metabolites directly interact with host intestinal cells and tissues to influence nutrient uptake and epithelial health. Endocrine, neuronal and lymphoid cells in the gut also integrate signals from these microbial factors to influence systemic responses. Dysregulation of these host-microbe interactions is now recognised as a major risk factor in the development of metabolic dysfunction. This is a two-way process and understanding the factors that tip host-microbiome homeostasis over to dysbiosis requires greater appreciation of the host feedbacks that contribute to regulation of microbial community composition. To date, numerous studies have employed taxonomic profiling approaches to explore the links between microbial composition and host outcomes (especially obesity and its comorbidities), but inconsistent host-microbe associations have been reported. Available data indicates multiple factors have contributed to discrepancies between studies. These include the high level of functional redundancy in host-microbiome interactions combined with individual variation in microbiome composition; differences in study design, diet composition and host system between studies; and inherent limitations to the resolution of rRNA-based community profiling. Accounting for these factors allows for recognition of the common microbial and host factors driving community composition and development of dysbiosis on high fat diets. New therapeutic intervention options are now emerging. PMID:25469018

  6. Human and Environmental Impacts on River Sediment Microbial Communities

    DOE PAGES

    Gibbons, Sean M.; Jones, Edwin; Bearquiver, Angelita; ...

    2014-05-19

    Sediment microbial communities are responsible for a majority of the metabolic activity in river and stream ecosystems. Understanding the dynamics in community structure and function across freshwater environments will help us to predict how these ecosystems will change in response to human land-use practices. Here we present a spatiotemporal study of sediments in the Tongue River (Montana, USA), comprising six sites along 134 km of river sampled in both spring and fall for two years. Sequencing of 16S rRNA amplicons and shotgun metagenomes revealed that these sediments are the richest (~65,000 microbial ‘species’ identified) and most novel (93% of OTUsmore » do not match known microbial diversity) ecosystems analyzed by the Earth Microbiome Project to date, and display more functional diversity than was detected in a recent review of global soil metagenomes. Community structure and functional potential have been significantly altered by anthropogenic drivers, including increased pathogenicity and antibiotic metabolism markers near towns and metabolic signatures of coal and coalbed methane extraction byproducts. The core (OTUs shared across all samples) and the overall microbial community exhibited highly similar structure, and phylogeny was weakly coupled with functional potential. Together, these results suggest that microbial community structure is shaped by environmental drivers and niche filtering, though stochastic assembly processes likely play a role as well. These results indicate that sediment microbial communities are highly complex and sensitive to changes in land use practices.« less

  7. Scaffold-free, label-free and nozzle-free biofabrication technology using magnetic levitational assembly.

    PubMed

    Parfenov, Vladislav A; Koudan, Elizaveta V; Bulanova, Elena A; Karalkin, Pavel A; Pereira, Frederico DAS; Norkin, Nikita E; Knyazeva, Alisa D; Gryadunova, Anna A; Petrov, Oleg F; Vasiliev, M M; Myasnikov, Maxim; Chernikov, Valery P; Kasyanov, Vladimir A; Marchenkov, Artem Yu; Brakke, Kenneth A; Khesuani, Yusef D; Demirci, Utkan; Mironov, Vladimir A

    2018-05-31

    Tissue spheroids have been proposed as building blocks in 3D biofabrication. Conventional magnetic force-driven 2D patterning of tissue spheroids requires prior cell labeling by magnetic nanoparticles, meanwhile a label-free approach for 3D magnetic levitational assembly has been introduced. Here we present first-time report on rapid assembly of 3D tissue construct using scaffold-free, nozzle-free and label-free magnetic levitation of tissue spheroids. Chondrospheres of standard size, shape and capable to fusion have been biofabricated from primary sheep chondrocytes using non-adhesive technology. Label-free magnetic levitation was performed using a prototype device equipped with permanent magnets in presence of gadolinium (Gd3+) in culture media, which enables magnetic levitation. Mathematical modeling and computer simulations were used for prediction of magnetic field and kinetics of tissue spheroids assembly into 3D tissue constructs. First, we used polystyrene beads to simulate the assembly of tissue spheroids and to determine the optimal settings for magnetic levitation in presence of Gd3+. Second, we proved the ability of chondrospheres to assemble rapidly into 3D tissue construct in the permanent magnetic field in the presence of Gd3+. Thus, scaffold- and label-free magnetic levitation of tissue spheroids is a promising approach for rapid 3D biofabrication and attractive alternative to label-based magnetic force-driven tissue engineering. . © 2018 IOP Publishing Ltd.

  8. Microbial Communities Model Parameter Calculation for TSPA/SR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. Jolley

    2001-07-16

    This calculation has several purposes. First the calculation reduces the information contained in ''Committed Materials in Repository Drifts'' (BSC 2001a) to useable parameters required as input to MING V1.O (CRWMS M&O 1998, CSCI 30018 V1.O) for calculation of the effects of potential in-drift microbial communities as part of the microbial communities model. The calculation is intended to replace the parameters found in Attachment II of the current In-Drift Microbial Communities Model revision (CRWMS M&O 2000c) with the exception of Section 11-5.3. Second, this calculation provides the information necessary to supercede the following DTN: M09909SPAMING1.003 and replace it with a newmore » qualified dataset (see Table 6.2-1). The purpose of this calculation is to create the revised qualified parameter input for MING that will allow {Delta}G (Gibbs Free Energy) to be corrected for long-term changes to the temperature of the near-field environment. Calculated herein are the quadratic or second order regression relationships that are used in the energy limiting calculations to potential growth of microbial communities in the in-drift geochemical environment. Third, the calculation performs an impact review of a new DTN: M00012MAJIONIS.000 that is intended to replace the currently cited DTN: GS9809083 12322.008 for water chemistry data used in the current ''In-Drift Microbial Communities Model'' revision (CRWMS M&O 2000c). Finally, the calculation updates the material lifetimes reported on Table 32 in section 6.5.2.3 of the ''In-Drift Microbial Communities'' AMR (CRWMS M&O 2000c) based on the inputs reported in BSC (2001a). Changes include adding new specified materials and updating old materials information that has changed.« less

  9. Does iron inhibit cryptoendolithic microbial communities?

    NASA Technical Reports Server (NTRS)

    Johnston, C. G.; Vestal, J. R.; Friedmann, E. I. (Principal Investigator)

    1988-01-01

    Photosynthetic activity of three cryptoendolithic microbial communities was studied under controlled conditions in the laboratory. In two of these communities, the dominant organisms were lichens, collected from Linnaeus Terrace and from Battleship Promontory. The third community, dominated by cyanobacteria, was collected from Battleship Promontory. Both sites are in the ice-free valleys of southern Victoria Land. Previous efforts have shown how physical conditions can influence metabolic activity in endolithic communities (Kappen and Friedmann 1983; Kappen, Friedmann, and Garty 1981; Vestal, Federle, and Friedmann 1984). Biological activity can also be strongly influenced by the chemical environment. Inorganic nutrients such as nitrate, ammonia, and phosphate are often limiting factors, so their effects on photosynthetic carbon-14 bicarbonate incorporation were investigated. Iron and manganese are two metals present in Linnaeus Terrace and Battleship Promontory sandstones, and their effects on photosynthesis were also studied. The results may add to our understanding of biogeochemical interactions within this unique microbial community.

  10. Microbial Communities Are Well Adapted to Disturbances in Energy Input

    PubMed Central

    Vallino, Joseph J.

    2016-01-01

    ABSTRACT Although microbial systems are well suited for studying concepts in ecological theory, little is known about how microbial communities respond to long-term periodic perturbations beyond diel oscillations. Taking advantage of an ongoing microcosm experiment, we studied how methanotrophic microbial communities adapted to disturbances in energy input over a 20-day cycle period. Sequencing of bacterial 16S rRNA genes together with quantification of microbial abundance and ecosystem function were used to explore the long-term dynamics (510 days) of methanotrophic communities under continuous versus cyclic chemical energy supply. We observed that microbial communities appeared inherently well adapted to disturbances in energy input and that changes in community structure in both treatments were more dependent on internal dynamics than on external forcing. The results also showed that the rare biosphere was critical to seeding the internal community dynamics, perhaps due to cross-feeding or other strategies. We conclude that in our experimental system, internal feedbacks were more important than external drivers in shaping the community dynamics over time, suggesting that ecosystems can maintain their function despite inherently unstable community dynamics. IMPORTANCE Within the broader ecological context, biological communities are often viewed as stable and as only experiencing succession or replacement when subject to external perturbations, such as changes in food availability or the introduction of exotic species. Our findings indicate that microbial communities can exhibit strong internal dynamics that may be more important in shaping community succession than external drivers. Dynamic “unstable” communities may be important for ecosystem functional stability, with rare organisms playing an important role in community restructuring. Understanding the mechanisms responsible for internal community dynamics will certainly be required for understanding and

  11. Perspective for Aquaponic Systems: "Omic" Technologies for Microbial Community Analysis.

    PubMed

    Munguia-Fragozo, Perla; Alatorre-Jacome, Oscar; Rico-Garcia, Enrique; Torres-Pacheco, Irineo; Cruz-Hernandez, Andres; Ocampo-Velazquez, Rosalia V; Garcia-Trejo, Juan F; Guevara-Gonzalez, Ramon G

    2015-01-01

    Aquaponics is the combined production of aquaculture and hydroponics, connected by a water recirculation system. In this productive system, the microbial community is responsible for carrying out the nutrient dynamics between the components. The nutrimental transformations mainly consist in the transformation of chemical species from toxic compounds into available nutrients. In this particular field, the microbial research, the "Omic" technologies will allow a broader scope of studies about a current microbial profile inside aquaponics community, even in those species that currently are unculturable. This approach can also be useful to understand complex interactions of living components in the system. Until now, the analog studies were made to set up the microbial characterization on recirculation aquaculture systems (RAS). However, microbial community composition of aquaponics is still unknown. "Omic" technologies like metagenomic can help to reveal taxonomic diversity. The perspectives are also to begin the first attempts to sketch the functional diversity inside aquaponic systems and its ecological relationships. The knowledge of the emergent properties inside the microbial community, as well as the understanding of the biosynthesis pathways, can derive in future biotechnological applications. Thus, the aim of this review is to show potential applications of current "Omic" tools to characterize the microbial community in aquaponic systems.

  12. Dispersal-Based Microbial Community Assembly Decreases Biogeochemical Function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, Emily B.; Stegen, James C.

    Ecological mechanisms influence relationships among microbial communities, which in turn impact biogeochemistry. In particular, microbial communities are assembled by deterministic (e.g., selection) and stochastic (e.g., dispersal) processes, and the relative balance of these two process types is hypothesized to alter the influence of microbial communities over biogeochemical function. We used an ecological simulation model to evaluate this hypothesis, defining biogeochemical function generically to represent any biogeochemical reaction of interest. We assembled receiving communities under different levels of dispersal from a source community that was assembled purely by selection. The dispersal scenarios ranged from no dispersal (i.e., selection-only) to dispersal ratesmore » high enough to overwhelm selection (i.e., homogenizing dispersal). We used an aggregate measure of community fitness to infer a given community’s biogeochemical function relative to other communities. We also used ecological null models to further link the relative influence of deterministic assembly to function. We found that increasing rates of dispersal decrease biogeochemical function by increasing the proportion of maladapted taxa in a local community. Niche breadth was also a key determinant of biogeochemical function, suggesting a tradeoff between the function of generalist and specialist species. Finally, we show that microbial assembly processes exert greater influence over biogeochemical function when there is variation in the relative contributions of dispersal and selection among communities. Taken together, our results highlight the influence of spatial processes on biogeochemical function and indicate the need to account for such effects in models that aim to predict biogeochemical function under future environmental scenarios.« less

  13. Dispersal-Based Microbial Community Assembly Decreases Biogeochemical Function

    DOE PAGES

    Graham, Emily B.; Stegen, James C.

    2017-11-01

    Ecological mechanisms influence relationships among microbial communities, which in turn impact biogeochemistry. In particular, microbial communities are assembled by deterministic (e.g., selection) and stochastic (e.g., dispersal) processes, and the relative balance of these two process types is hypothesized to alter the influence of microbial communities over biogeochemical function. We used an ecological simulation model to evaluate this hypothesis, defining biogeochemical function generically to represent any biogeochemical reaction of interest. We assembled receiving communities under different levels of dispersal from a source community that was assembled purely by selection. The dispersal scenarios ranged from no dispersal (i.e., selection-only) to dispersal ratesmore » high enough to overwhelm selection (i.e., homogenizing dispersal). We used an aggregate measure of community fitness to infer a given community’s biogeochemical function relative to other communities. We also used ecological null models to further link the relative influence of deterministic assembly to function. We found that increasing rates of dispersal decrease biogeochemical function by increasing the proportion of maladapted taxa in a local community. Niche breadth was also a key determinant of biogeochemical function, suggesting a tradeoff between the function of generalist and specialist species. Finally, we show that microbial assembly processes exert greater influence over biogeochemical function when there is variation in the relative contributions of dispersal and selection among communities. Taken together, our results highlight the influence of spatial processes on biogeochemical function and indicate the need to account for such effects in models that aim to predict biogeochemical function under future environmental scenarios.« less

  14. Composition and physiological profiling of sprout-associated microbial communities

    NASA Technical Reports Server (NTRS)

    Matos, Anabelle; Garland, Jay L.; Fett, William F.

    2002-01-01

    The native microfloras of various types of sprouts (alfalfa, clover, sunflower, mung bean, and broccoli sprouts) were examined to assess the relative effects of sprout type and inoculum factors (i.e., sprout-growing facility, seed lot, and inoculation with sprout-derived inocula) on the microbial community structure of sprouts. Sprouts were sonicated for 7 min or hand shaken with glass beads for 2 min to recover native microfloras from the surface, and the resulting suspensions were diluted and plated. The culturable fraction was characterized by the density (log CFU/g), richness (e.g., number of types of bacteria), and diversity (e.g., microbial richness and evenness) of colonies on tryptic soy agar plates incubated for 48 h at 30 degrees C. The relative similarity between sprout-associated microbial communities was assessed with the use of community-level physiological profiles (CLPPs) based on patterns of utilization of 95 separate carbon sources. Aerobic plate counts of 7.96 +/- 0.91 log CFU/g of sprout tissue (fresh weight) were observed, with no statistically significant differences in microbial cell density, richness, or diversity due to sprout type, sprout-growing facility, or seed lot. CLPP analyses revealed that the microbial communities associated with alfalfa and clover sprouts are more similar than those associated with the other sprout types tested. Variability among sprout types was more extensive than any differences between microbial communities associated with alfalfa and clover sprouts from different sprout-growing facilities and seed lots. These results indicate that the subsequent testing of biocontrol agents should focus on similar organisms for alfalfa and clover, but alternative types may be most suitable for the other sprout types tested. The inoculation of alfalfa sprouts with communities derived from various sprout types had a significant, source-independent effect on microbial community structure, indicating that the process of

  15. Seasonal variation in functional properties of microbial communities in beech forest soil

    PubMed Central

    Koranda, Marianne; Kaiser, Christina; Fuchslueger, Lucia; Kitzler, Barbara; Sessitsch, Angela; Zechmeister-Boltenstern, Sophie; Richter, Andreas

    2013-01-01

    Substrate quality and the availability of nutrients are major factors controlling microbial decomposition processes in soils. Seasonal alteration in resource availability, which is driven by plants via belowground C allocation, nutrient uptake and litter fall, also exerts effects on soil microbial community composition. Here we investigate if seasonal and experimentally induced changes in microbial community composition lead to alterations in functional properties of microbial communities and thus microbial processes. Beech forest soils characterized by three distinct microbial communities (winter and summer community, and summer community from a tree girdling plot, in which belowground carbon allocation was interrupted) were incubated with different 13C-labeled substrates with or without inorganic N supply and analyzed for substrate use and various microbial processes. Our results clearly demonstrate that the three investigated microbial communities differed in their functional response to addition of various substrates. The winter communities revealed a higher capacity for degradation of complex C substrates (cellulose, plant cell walls) than the summer communities, indicated by enhanced cellulase activities and reduced mineralization of soil organic matter. In contrast, utilization of labile C sources (glucose) was lower in winter than in summer, demonstrating that summer and winter community were adapted to the availability of different substrates. The saprotrophic community established in girdled plots exhibited a significantly higher utilization of complex C substrates than the more plant root associated community in control plots if additional nitrogen was provided. In this study we were able to demonstrate experimentally that variation in resource availability as well as seasonality in temperate forest soils cause a seasonal variation in functional properties of soil microorganisms, which is due to shifts in community structure and physiological adaptations

  16. The Role of Soil Organic Matter, Nutrients, and Microbial Community Structure on the Performance of Microbial Fuel Cells

    NASA Astrophysics Data System (ADS)

    Rooney-Varga, J. N.; Dunaj, S. J.; Vallino, J. J.; Hines, M. E.; Gay, M.; Kobyljanec, C.

    2011-12-01

    Microbial fuel cells (MFCs) offer the potential for generating electricity, mitigating greenhouse gas emissions, and bioremediating pollutants through utilization of a plentiful, natural, and renewable resource: soil organic carbon. In the current study, we analyzed microbial community structure, MFC performance, and soil characteristics in different microhabitats (bulk soil, anode, and cathode) within MFCs constructed from agricultural or forest soils in order to determine how soil type and microbial dynamics influence MFC performance. MFCs were constructed with soils from agricultural and hardwood forest sites at Harvard Forest (Petersham, MA). The bulk soil characteristics were analyzed, including polyphenols, short chain fatty acids, total organic C and N, abiotic macronutrients, N and P mineralization rates, CO2 respiration rates, and MFC power output. Microbial community structure of the anodes, cathodes, and bulk soils was determined with molecular fingerprinting methods, which included terminal restriction length polymorphism (T-RFLP) analysis and 16S rRNA gene sequencing analysis. Our results indicated that MFCs constructed from agricultural soil had power output about 17 times that of forest soil-based MFCs and respiration rates about 10 times higher than forest soil MFCs. Agricultural soil MFCs had lower C:N ratios, polyphenol content, and acetate concentrations than forest soil MFCs, suggesting that active agricultural MFC microbial communities were supported by higher quality organic carbon. Microbial community profile data indicate that the microbial communities at the anode of the high power MFCs were less diverse than in low power MFCs and were dominated by Deltaproteobacteria, Geobacter, and, to a lesser extent, Clostridia, while low-power MFC anode communities were dominated by Clostridia. These data suggest that the presence of organic carbon substrate (acetate) was not the major limiting factor in selecting for highly electrogenic microbial

  17. [Oxidation of sulfur-containing substrates by aboriginal and experimentally designed microbial communities].

    PubMed

    Pivovarova, T A; Bulaev, A G; Roshchupko, P V; Belyĭ, A V; Kondrat'eva, T F

    2012-01-01

    Aboriginal and experimental (constructed of pure microbial cultures) communities of acidophilic chemolithotrophs have been studied. The oxidation of elemental sulfur, sodium thiosulfate, and potassium tetrathionate as sole sources of energy has been monitored. The oxidation rate of the experimental community is higher as compared to the aboriginal community isolated from a flotation concentrate of pyrrhotine-containing pyrite-arsenopyrite gold-arsenic sulfide ore. The degree of oxidation of the mentioned S substrates amounts to 17.91, 68.30, and 93.94% for the experimental microbial community and to 10.71, 56.03, and 79.50% for the aboriginal community, respectively. The degree of oxidation of sulfur sulfide forms in the ore flotation concentrate is 59.15% by the aboriginal microbial community and 49.40% by the experimental microbial community. Despite a higher rate of oxidation of S substrates as a sole source of energy by the experimental microbial community, the aboriginal community oxidizes S substrates at a higher rate in the flotation concentrate of pyrrhotine-containing pyrite-arsenopyrite gold-arsenic sulfide ore, from which it was isolated. Bacterial-chemical oxidation of the flotation concentrate by the aboriginal microbial community allows for the extraction of an additional 32.3% of gold from sulfide minerals, which is by 5.7% larger compared to the yield obtained by the experimental microbial community.

  18. Microbial communities associated with wet flue gas desulfurization systems

    PubMed Central

    Brown, Bryan P.; Brown, Shannon R.; Senko, John M.

    2012-01-01

    Flue gas desulfurization (FGD) systems are employed to remove SOx gasses that are produced by the combustion of coal for electric power generation, and consequently limit acid rain associated with these activities. Wet FGDs represent a physicochemically extreme environment due to the high operating temperatures and total dissolved solids (TDS) of fluids in the interior of the FGD units. Despite the potential importance of microbial activities in the performance and operation of FGD systems, the microbial communities associated with them have not been evaluated. Microbial communities associated with distinct process points of FGD systems at several coal-fired electricity generation facilities were evaluated using culture-dependent and -independent approaches. Due to the high solute concentrations and temperatures in the FGD absorber units, culturable halothermophilic/tolerant bacteria were more abundant in samples collected from within the absorber units than in samples collected from the makeup waters that are used to replenish fluids inside the absorber units. Evaluation of bacterial 16S rRNA genes recovered from scale deposits on the walls of absorber units revealed that the microbial communities associated with these deposits are primarily composed of thermophilic bacterial lineages. These findings suggest that unique microbial communities develop in FGD systems in response to physicochemical characteristics of the different process points within the systems. The activities of the thermophilic microbial communities that develop within scale deposits could play a role in the corrosion of steel structures in FGD systems. PMID:23226147

  19. Seasonal dynamics of microbial community composition and function in oak canopy and open grassland soils

    USGS Publications Warehouse

    Waldrop, M.P.; Firestone, M.K.

    2006-01-01

    Soil microbial communities are closely associated with aboveground plant communities, with multiple potential drivers of this relationship. Plants can affect available soil carbon, temperature, and water content, which each have the potential to affect microbial community composition and function. These same variables change seasonally, and thus plant control on microbial community composition may be modulated or overshadowed by annual climatic patterns. We examined microbial community composition, C cycling processes, and environmental data in California annual grassland soils from beneath oak canopies and in open grassland areas to distinguish factors controlling microbial community composition and function seasonally and in association with the two plant overstory communities. Every 3 months for up to 2 years, we monitored microbial community composition using phospholipid fatty acid (PLFA) analysis, microbial biomass, respiration rates, microbial enzyme activities, and the activity of microbial groups using isotope labeling of PLFA biomarkers (13C-PLFA) . Distinct microbial communities were associated with oak canopy soils and open grassland soils and microbial communities displayed seasonal patterns from year to year. The effects of plant species and seasonal climate on microbial community composition were similar in magnitude. In this Mediterranean ecosystem, plant control of microbial community composition was primarily due to effects on soil water content, whereas the changes in microbial community composition seasonally appeared to be due, in large part, to soil temperature. Available soil carbon was not a significant control on microbial community composition. Microbial community composition (PLFA) and 13C-PLFA ordination values were strongly related to intra-annual variability in soil enzyme activities and soil respiration, but microbial biomass was not. In this Mediterranean climate, soil microclimate appeared to be the master variable controlling

  20. Carbon availability structures microbial community composition and function in soil aggregate fractions

    NASA Astrophysics Data System (ADS)

    Hofmockel, K. S.; Bach, E.; Williams, R.; Howe, A.

    2014-12-01

    Identifying the microbial metabolic pathways that most strongly influence ecosystem carbon (C) cycling requires a deeper understanding of the availability and accessibility of microbial substrates. A first step towards this goal is characterizing the relationships between microbial community function and soil C chemistry in a field context. For this perspective, soil aggregate fractions can be used as model systems that scale between microbe-substrate interactions and ecosystem C cycling and storage. The present study addresses how physicochemical variation among soil aggregate fractions influences the composition and functional potential of C cycling microbial communities. We report variation across soil aggregates using plot scale biological replicates from biofuel agroecosystems (fertilized, reconstructed, tallgrass prairie). Our results suggest that C and nitrogen (N) chemistry significantly differ among aggregate fractions. This leads to variation in microbial community composition, which was better characterized among aggregates than by using the whole soil. In fact by considering soil aggregation, we were able to characterize almost 2000 more taxa than whole soil alone, resulting in 65% greater community richness. Availability of C and N strongly influenced the composition of microbial communities among soil aggregate fractions. The normalized abundance of microbial functional guilds among aggregate fractions correlated with C and N chemistry, as did functional potential, measured by extracellular enzyme activity. Metagenomic results suggest that soil aggregate fractions select for functionally distinct microbial communities, which may significantly influence decomposition and soil C storage. Our study provides support for the premise that integration of soil aggregate chemistry, especially microaggregates that have greater microbial richness and occur at spatial scales relevant to microbial community functioning, may be necessary to understand the role of

  1. A hydrogen-based subsurface microbial community dominated by methanogens

    USGS Publications Warehouse

    Chapelle, F.H.; O'Neil, Kyle; Bradley, P.M.; Methe, B.A.; Ciufo, S.A.; Knobel, L.L.; Lovley, D.R.

    2002-01-01

    The search for extraterrestrial life may be facilitated if ecosystems can be found on Earth that exist under conditions analogous to those present on other planets or moons. It has been proposed, on the basis of geochemical and thermodynamic considerations, that geologically derived hydrogen might support subsurface microbial communities on Mars and Europa in which methanogens form the base of the ecosystem1-5. Here we describe a unique subsurface microbial community in which hydrogen-consuming, methane-producing Archaea far outnumber the Bacteria. More than 90% of the 16s ribosomal DNA sequences recovered from hydrothermal waters circulating through deeply buried igneous rocks in Idaho are related to hydrogen-using methanogenic microorganisms. Geochemical characterization indicates that geothermal hydrogen, not organic carbon, is the primary energy source for this methanogen-dominated microbial community. These results demonstrate that hydrogen-based methanogenic communities do occur in Earth's subsurface, providing an analogue for possible subsurface microbial ecosystems on other planets.

  2. Response of soil microbial activities and microbial community structure to vanadium stress.

    PubMed

    Xiao, Xi-Yuan; Wang, Ming-Wei; Zhu, Hui-Wen; Guo, Zhao-Hui; Han, Xiao-Qing; Zeng, Peng

    2017-08-01

    High levels of vanadium (V) have long-term, hazardous impacts on soil ecosystems and biological processes. In the present study, the effects of V on soil enzymatic activities, basal respiration (BR), microbial biomass carbon (MBC), and the microbial community structure were investigated through 12-week greenhouse incubation experiments. The results showed that V content affected soil dehydrogenase activity (DHA), BR, and MBC, while urease activity (UA) was less sensitive to V stress. The average median effective concentration (EC 50 ) thresholds of V were predicted using a log-logistic dose-response model, and they were 362mgV/kg soil for BR and 417mgV/kg soil for DHA. BR and DHA were more sensitive to V addition and could be used as biological indicators for soil V pollution. According to a polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis, the structural diversity of the microbial community decreased for soil V contents ranged between 254 and 1104mg/kg after 1 week of incubation. As the incubation time increased, the diversity of the soil microbial community structure increased for V contents ranged between 354 and 1104mg/kg, indicating that some new V-tolerant bacterial species might have replicated under these conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Microbial community composition affects soil fungistasis.

    PubMed

    de Boer, Wietse; Verheggen, Patrick; Klein Gunnewiek, Paulien J A; Kowalchuk, George A; van Veen, Johannes A

    2003-02-01

    Most soils inhibit fungal germination and growth to a certain extent, a phenomenon known as soil fungistasis. Previous observations have implicated microorganisms as the causal agents of fungistasis, with their action mediated either by available carbon limitation (nutrient deprivation hypothesis) or production of antifungal compounds (antibiosis hypothesis). To obtain evidence for either of these hypotheses, we measured soil respiration and microbial numbers (as indicators of nutrient stress) and bacterial community composition (as an indicator of potential differences in the composition of antifungal components) during the development of fungistasis. This was done for two fungistatic dune soils in which fungistasis was initially fully or partly relieved by partial sterilization treatment or nutrient addition. Fungistasis development was measured as restriction of the ability of the fungi Chaetomium globosum, Fusarium culmorum, Fusarium oxysporum, and Trichoderma harzianum to colonize soils. Fungistasis did not always reappear after soil treatments despite intense competition for carbon, suggesting that microbial community composition is important in the development of fungistasis. Both microbial community analysis and in vitro antagonism tests indicated that the presence of pseudomonads might be essential for the development of fungistasis. Overall, the results lend support to the antibiosis hypothesis.

  4. Microbial Community Composition Affects Soil Fungistasis†

    PubMed Central

    de Boer, Wietse; Verheggen, Patrick; Klein Gunnewiek, Paulien J. A.; Kowalchuk, George A.; van Veen, Johannes A.

    2003-01-01

    Most soils inhibit fungal germination and growth to a certain extent, a phenomenon known as soil fungistasis. Previous observations have implicated microorganisms as the causal agents of fungistasis, with their action mediated either by available carbon limitation (nutrient deprivation hypothesis) or production of antifungal compounds (antibiosis hypothesis). To obtain evidence for either of these hypotheses, we measured soil respiration and microbial numbers (as indicators of nutrient stress) and bacterial community composition (as an indicator of potential differences in the composition of antifungal components) during the development of fungistasis. This was done for two fungistatic dune soils in which fungistasis was initially fully or partly relieved by partial sterilization treatment or nutrient addition. Fungistasis development was measured as restriction of the ability of the fungi Chaetomium globosum, Fusarium culmorum, Fusarium oxysporum, and Trichoderma harzianum to colonize soils. Fungistasis did not always reappear after soil treatments despite intense competition for carbon, suggesting that microbial community composition is important in the development of fungistasis. Both microbial community analysis and in vitro antagonism tests indicated that the presence of pseudomonads might be essential for the development of fungistasis. Overall, the results lend support to the antibiosis hypothesis. PMID:12571002

  5. Adaptation of microbial community of the anode biofilm in microbial fuel cells to temperature.

    PubMed

    Mei, Xiaoxue; Xing, Defeng; Yang, Yang; Liu, Qian; Zhou, Huihui; Guo, Changhong; Ren, Nanqi

    2017-10-01

    Temperature as an important ecological factor affects biofilm development and microbial metabolic activity. Here, the performances and microbial communities of microbial fuel cells (MFCs) at different temperature were analyzed. As the temperature decreased, the power output of MFCs declined. A maximum power density of 894.3±48.6mW/m 2 was obtained in MFCs operating at 30°C, which was 18.5% and 64.5% higher than that in MFCs at 20°C and 10°C, respectively. Illumina sequencing of 16S rRNA gene amplicons showed that a distinct difference in microbial community structure of the anode biofilms occurred. This resulted in different power outputs of MFCs. Species diversity analyses indicated that species evenness of the anode biofilms shifted beyond species richness at different temperatures. The predominant populations of the anode biofilm shifted from Geobacter and Azonexus (30°C) to Pelobacter (20°C) or Acidovorax, Zoogloea and Simplicispira, (10°C). These results indicate that temperature plays an important role in shaping microbial communities of the anode biofilms in MFCs through changes in species evenness. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Lipid Biomarkers for a Hypersaline Microbial Mat Community

    NASA Technical Reports Server (NTRS)

    Jahnke, Linda L.; Embaye, Tsege; Turk, Kendra A.

    2003-01-01

    The use of lipid biomarkers and their carbon isotopic compositions are valuable tools for establishing links to ancient microbial ecosystems. As witnessed by the stromatolite record, benthic microbial mats grew in shallow water lagoonal environments where microorganisms had virtually no competition apart from the harsh conditions of hypersalinity, desiccation and intense light. Today, the modern counterparts of these microbial ecosystems find appropriate niches in only a few places where extremes eliminate eukaryotic grazers. Answers to many outstanding questions about the evolution of microorganisms and their environments on early Earth are best answered through study of these extant analogs. Lipids associated with various groups of bacteria can be valuable biomarkers for identification of specific groups of microorganisms both in ancient organic-rich sedimentary rocks (geolipids) and contemporary microbial communities (membrane lipids). Use of compound specific isotope analysis adds additional refinement to the identification of biomarker source, so that it is possible to take advantage of the 3C-depletions associated with various functional groups of organisms (i.e. autotrophs, heterotrophs, methanotrophs, methanogens) responsible for the cycling of carbon within a microbial community. Our recent work has focused on a set of hypersaline evaporation ponds at Guerrero Negro, Baja California Sur, Mexico which support the abundant growth of Microcoleus-dominated microbial mats. Specific biomarkers for diatoms, cyanobacteria, archaea, green nonsulfur (GNS), sulfate reducing, and methanotrophic bacteria have been identified. Analyses of the ester-bound fatty acids indicate a highly diverse microbial community, dominated by photosynthetic organisms at the surface.

  7. Reactor performances and microbial communities of biogas reactors: effects of inoculum sources.

    PubMed

    Han, Sheng; Liu, Yafeng; Zhang, Shicheng; Luo, Gang

    2016-01-01

    Anaerobic digestion is a very complex process that is mediated by various microorganisms, and the understanding of the microbial community assembly and its corresponding function is critical in order to better control the anaerobic process. The present study investigated the effect of different inocula on the microbial community assembly in biogas reactors treating cellulose with various inocula, and three parallel biogas reactors with the same inoculum were also operated in order to reveal the reproducibility of both microbial communities and functions of the biogas reactors. The results showed that the biogas production, volatile fatty acid (VFA) concentrations, and pH were different for the biogas reactors with different inocula, and different steady-state microbial community patterns were also obtained in different biogas reactors as reflected by Bray-Curtis similarity matrices and taxonomic classification. It indicated that inoculum played an important role in shaping the microbial communities of biogas reactor in the present study, and the microbial community assembly in biogas reactor did not follow the niche-based ecology theory. Furthermore, it was found that the microbial communities and reactor performances of parallel biogas reactors with the same inoculum were different, which could be explained by the neutral-based ecology theory and stochastic factors should played important roles in the microbial community assembly in the biogas reactors. The Bray-Curtis similarity matrices analysis suggested that inoculum affected more on the microbial community assembly compared to stochastic factors, since the samples with different inocula had lower similarity (10-20 %) compared to the samples from the parallel biogas reactors (30 %).

  8. Microbial Community Structure of an Alluvial Aquifer Treated to Encourage Microbial Induced Calcite Precipitation

    NASA Astrophysics Data System (ADS)

    Ohan, J.; Saneiyan, S.; Lee, J.; Ntarlagiannis, D.; Burns, S.; Colwell, F. S.

    2017-12-01

    An oligotrophic aquifer in the Colorado River floodplain (Rifle, CO) was treated with molasses and urea to encourage microbial induced calcite precipitation (MICP). This would stabilize the soil mass by reducing porosity and strengthening the mineral fabric. Over the course of a 15-day treatment period, microbial biomass was collected from monitoring well groundwater for DNA extraction and sequencing. Bromide, a conservative tracer, was co-injected and subsequently detected in downgradient wells, confirming effective nutrient delivery. Conductivity increased during the injection regime and an overall decrease in pH was observed. Groundwater chemistry showed a marked increase in ammonia, suggesting urea hydrolysis - a process catalyzed by the enzyme urease - the primary enzyme implicated in MICP. Additionally, soluble iron was detected, suggesting a general increase in microbial activity; possibly as iron-reducing bacteria changed insoluble ferric oxide to soluble ferrous hydroxide in the anoxic aquifer. DNA sequencing of the 16S rRNA gene confirmed the presence of iron reducing bacteria, including Shewanella and Desulfuromonadales. Generally, a decrease in microbial community diversity was observed when pre-injection community taxa were compared with post-injection community taxa. Phyla indicative of anoxic aquifers were represented in accordance with previous literature at the Rifle site. Linear discriminant analysis showed significant differences in representative phyla over the course of the injection series. Geophysical monitoring of the site further suggested changes that could be due to MICP. Induced polarization increased the phase shift in the primary treated area, in agreement with laboratory experiments. Cross-hole seismic testing confirmed that the shear wave velocities increased in the treated soil mass, implying the soil matrix became more stable. Future investigations will help elucidate the viability and efficacy of MICP treatment in changing

  9. [Carbon sources metabolic characteristics of airborne microbial communities in constructed wetlands].

    PubMed

    Song, Zhi-Wen; Wang, Lin; Xu, Ai-Ling; Wu, Deng-Deng; Xia, Yan

    2015-02-01

    Using BIOLOG-GN plates, this article describes the carbon sources metabolic characteristics of airborne microbial communities in a free surface-flow constructed wetland in different seasons and clarify the correlation between airborne microbial metabolic functions and environmental factors. The average well color development (AWCD), carbon metabolic profiles and McIntosh values of airborne microbial communities in different seasons were quite different. Analysis of the variations showed that AWCD in spring and summer differed significantly from that in autumn and winter (P < 0.01). In the same season, the degree of utilization of different types of carbon by airborne microbes was different. Summer had a significant difference from other seasons (P < 0.05). Dominant communities of airborne microbes in four seasons were carboxylic acids metabolic community, carbohydrates metabolic community, polymers metabolic community and carboxylic acids metabolic community respectively. Principal component analysis showed that the carbon metabolic characteristics of airborne microbial community in autumn were similar to those in winter but different from those in spring and summer. The characteristics of carbon metabolism revealed differences between summer and spring, autumn, or winter. These differences were mainly caused by amines or amides while the differences between spring and autumn or winter were mainly caused by carboxylic acids. Environmental factors, including changes in wind speed, temperature, and humidity acted to influence the carbon sources metabolic properties of airborne microbial community. The dominant environmental factors that acted to influence the carbon sources metabolic properties of airborne microbial community varied between different seasons.

  10. The Bio-Community Perl toolkit for microbial ecology.

    PubMed

    Angly, Florent E; Fields, Christopher J; Tyson, Gene W

    2014-07-01

    The development of bioinformatic solutions for microbial ecology in Perl is limited by the lack of modules to represent and manipulate microbial community profiles from amplicon and meta-omics studies. Here we introduce Bio-Community, an open-source, collaborative toolkit that extends BioPerl. Bio-Community interfaces with commonly used programs using various file formats, including BIOM, and provides operations such as rarefaction and taxonomic summaries. Bio-Community will help bioinformaticians to quickly piece together custom analysis pipelines and develop novel software. Availability an implementation: Bio-Community is cross-platform Perl code available from http://search.cpan.org/dist/Bio-Community under the Perl license. A readme file describes software installation and how to contribute. © The Author 2014. Published by Oxford University Press.

  11. Carbon and nitrogen inputs affect soil microbial community structure and function

    NASA Astrophysics Data System (ADS)

    Liu, X. J. A.; Mau, R. L.; Hayer, M.; Finley, B. K.; Schwartz, E.; Dijkstra, P.; Hungate, B. A.

    2016-12-01

    Climate change has been projected to increase energy and nutrient inputs to soils, affecting soil organic matter (SOM) decomposition (priming effect) and microbial communities. However, many important questions remain: how do labile C and/or N inputs affect priming and microbial communities? What is the relationship between them? To address these questions, we applied N (NH4NO3 ; 100 µg N g-1 wk-1), C (13C glucose; 1000 µg C g-1 wk-1), C+N to four different soils for five weeks. We found: 1) N showed no effect, whereas C induced the greatest priming, and C+N had significantly lower priming than C. 2) C and C+N additions increased the relative abundance of actinobacteria, proteobacteria, and firmicutes, but reduced relative abundance of acidobacteria, chloroflexi, verrucomicrobia, planctomycetes, and gemmatimonadetes. 3) Actinobacteria and proteobacteria increased relative abundance over time, but most others decreased over time. 4) substrate additions (N, C, C+N) significantly reduced microbial alpha diversity, which also decreased over time. 5) For beta diversity, C and C+N formed significantly different communities compare to the control and N treatments. Overtime, microbial community structure significantly altered. Four soils have drastically different community structures. These results indicate amounts of substrate C were determinant factors in modulating the rate of SOM decomposition and microbial communities. Variable responses of different microbial communities to labile C and N inputs indicate that complex relationships between priming and microbial functions. In general, we demonstrate that energy inputs can quickly accelerate SOM decomposition whereas extra N input can slow this process, though both had similar microbial community responses.

  12. Population dynamics of electrogenic microbial communities in microbial fuel cells started with three different inoculum sources.

    PubMed

    Ishii, Shun'ichi; Suzuki, Shino; Yamanaka, Yuko; Wu, Angela; Nealson, Kenneth H; Bretschger, Orianna

    2017-10-01

    Microbial fuel cells (MFCs) are one of the bioelectrochemical systems that exploit microorganisms as biocatalysts to degrade organic matters and recover energy as electric power. Here, we explored how the established electrogenic microbial communities were influenced by three different inoculum sources; anaerobic sludge of the wastewater plant, rice paddy field soil, and coastal lagoon sediment. We periodically characterized both electricity generation with sucrose consumption and 16S rRNA-basis microbial community composition. The electrochemical features of MFCs were slightly different among three inocula, and the lagoon sediment-inoculated MFC showed the highest performance in terms of the treatment time. Meanwhile, although the inoculated microbial communities were highly diverse and quite different, only twelve genera affiliated with δ-Proteobacteria, γ-Proteobacteria, Bacilli, Clostridia/Negativicutes or Bacteroidetes were abundantly enriched in all MFC anode communities. Within them, several fermentative genera were clearly different due to the inocula, while the inocula-specific phylotypes were identified in an electrogenic genus Geobacter. The relative abundances of phylotypes closely-related to Geobacter metallireducens were increased in later stages of all the sucrose-fed MFCs. These results indicate that key microbial members for the functional electrogenic community widely exist in natural ecosystems, but the community members presenting in inoculum sources affected the MFC performances. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Signaling in host-associated microbial communities

    PubMed Central

    Fischbach, Michael A.; Segre, Julia A.

    2016-01-01

    Human-associated microbiota form and stabilize communities based on interspecies interactions. We review how these microbe-microbe and microbe-host interactions are communicated to shape communities over a human’s lifespan, including periods of health and disease. Modeling and dissecting signaling in host-associated communities is crucial to understand their function, and will open the door to therapies that prevent or correct microbial community dysfunction to promote health and treat disease. PMID:26967294

  14. A Synthetic Community System for Probing Microbial Interactions Driven by Exometabolites

    PubMed Central

    Chodkowski, John L.

    2017-01-01

    ABSTRACT Though most microorganisms live within a community, we have modest knowledge about microbial interactions and their implications for community properties and ecosystem functions. To advance understanding of microbial interactions, we describe a straightforward synthetic community system that can be used to interrogate exometabolite interactions among microorganisms. The filter plate system (also known as the Transwell system) physically separates microbial populations, but allows for chemical interactions via a shared medium reservoir. Exometabolites, including small molecules, extracellular enzymes, and antibiotics, are assayed from the reservoir using sensitive mass spectrometry. Community member outcomes, such as growth, productivity, and gene regulation, can be determined using flow cytometry, biomass measurements, and transcript analyses, respectively. The synthetic community design allows for determination of the consequences of microbiome diversity for emergent community properties and for functional changes over time or after perturbation. Because it is versatile, scalable, and accessible, this synthetic community system has the potential to practically advance knowledge of microbial interactions that occur within both natural and artificial communities. IMPORTANCE Understanding microbial interactions is a fundamental objective in microbiology and ecology. The synthetic community system described here can set into motion a range of research to investigate how the diversity of a microbiome and interactions among its members impact its function, where function can be measured as exometabolites. The system allows for community exometabolite profiling to be coupled with genome mining, transcript analysis, and measurements of member productivity and population size. It can also facilitate discovery of natural products that are only produced within microbial consortia. Thus, this synthetic community system has utility to address fundamental questions

  15. Coupling among Microbial Communities, Biogeochemistry, and Mineralogy across Biogeochemical Facies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stegen, James C.; Konopka, Allan; McKinely, Jim

    Physical properties of sediments are commonly used to define subsurface lithofacies and these same physical properties influence subsurface microbial communities. This suggests an (unexploited) opportunity to use the spatial distribution of facies to predict spatial variation in biogeochemically relevant microbial attributes. Here, we characterize three biogeochemical facies—oxidized, reduced, and transition—within one lithofacies and elucidate relationships among facies features and microbial community biomass, diversity, and community composition. Consistent with previous observations of biogeochemical hotspots at environmental transition zones, we find elevated biomass within a biogeochemical facies that occurred at the transition between oxidized and reduced biogeochemical facies. Microbial diversity—the number ofmore » microbial taxa—was lower within the reduced facies and was well-explained by a combination of pH and mineralogy. Null modeling revealed that microbial community composition was influenced by ecological selection imposed by redox state and mineralogy, possibly due to effects on nutrient availability or transport. As an illustrative case, we predict microbial biomass concentration across a three-dimensional spatial domain by coupling the spatial distribution of subsurface biogeochemical facies with biomass-facies relationships revealed here. We expect that merging such an approach with hydro-biogeochemical models will provide important constraints on simulated dynamics, thereby reducing uncertainty in model predictions.« less

  16. Flat laminated microbial mat communities

    NASA Astrophysics Data System (ADS)

    Franks, Jonathan; Stolz, John F.

    2009-10-01

    Flat laminated microbial mats are complex microbial ecosystems that inhabit a wide range of environments (e.g., caves, iron springs, thermal springs and pools, salt marshes, hypersaline ponds and lagoons, methane and petroleum seeps, sea mounts, deep sea vents, arctic dry valleys). Their community structure is defined by physical (e.g., light quantity and quality, temperature, density and pressure) and chemical (e.g., oxygen, oxidation/reduction potential, salinity, pH, available electron acceptors and donors, chemical species) parameters as well as species interactions. The main primary producers may be photoautotrophs (e.g., cyanobacteria, purple phototrophs, green phototrophs) or chemolithoautophs (e.g., colorless sulfur oxidizing bacteria). Anaerobic phototrophy may predominate in organic rich environments that support high rates of respiration. These communities are dynamic systems exhibiting both spatial and temporal heterogeneity. They are characterized by steep gradients with microenvironments on the submillimeter scale. Diel oscillations in the physical-chemical profile (e.g., oxygen, hydrogen sulfide, pH) and species distribution are typical for phototroph-dominated communities. Flat laminated microbial mats are often sites of robust biogeochemical cycling. In addition to well-established modes of metabolism for phototrophy (oxygenic and non-oxygenic), respiration (both aerobic and anaerobic), and fermentation, novel energetic pathways have been discovered (e.g., nitrate reduction couple to the oxidation of ammonia, sulfur, or arsenite). The application of culture-independent techniques (e.g., 16S rRNA clonal libraries, metagenomics), continue to expand our understanding of species composition and metabolic functions of these complex ecosystems.

  17. Linking geology and microbiology: inactive pockmarks affect sediment microbial community structure.

    PubMed

    Haverkamp, Thomas H A; Hammer, Øyvind; Jakobsen, Kjetill S

    2014-01-01

    Pockmarks are geological features that are found on the bottom of lakes and oceans all over the globe. Some are active, seeping oil or methane, while others are inactive. Active pockmarks are well studied since they harbor specialized microbial communities that proliferate on the seeping compounds. Such communities are not found in inactive pockmarks. Interestingly, inactive pockmarks are known to have different macrofaunal communities compared to the surrounding sediments. It is undetermined what the microbial composition of inactive pockmarks is and if it shows a similar pattern as the macrofauna. The Norwegian Oslofjord contains many inactive pockmarks and they are well suited to study the influence of these geological features on the microbial community in the sediment. Here we present a detailed analysis of the microbial communities found in three inactive pockmarks and two control samples at two core depth intervals. The communities were analyzed using high-throughput amplicon sequencing of the 16S rRNA V3 region. Microbial communities of surface pockmark sediments were indistinguishable from communities found in the surrounding seabed. In contrast, pockmark communities at 40 cm sediment depth had a significantly different community structure from normal sediments at the same depth. Statistical analysis of chemical variables indicated significant differences in the concentrations of total carbon and non-particulate organic carbon between 40 cm pockmarks and reference sample sediments. We discuss these results in comparison with the taxonomic classification of the OTUs identified in our samples. Our results indicate that microbial communities at the sediment surface are affected by the water column, while the deeper (40 cm) sediment communities are affected by local conditions within the sediment.

  18. A Comparison of Microbial Community Structures by Depth and Season Under Switchgrass

    NASA Astrophysics Data System (ADS)

    Fansler, S. J.; Smith, J. L.; Bolton, H.; Bailey, V. L.

    2008-12-01

    As part of a multidisciplinary study of C sequestration in switchgrass production systems, the soil microbial community structure was monitored at 6 different depths (reaching 90 cm) in both spring and autumn. Microbial community structure was assessed using ribosomal intergenic spacer analysis (RISA), and primers were used specific to either bacteria or fungi, generating microbial community fingerprints for each taxonomic group. Diverse microbial communities for both groups were detected throughout the soil profile. It is notable that while community structure clearly changed with depth, there was the deepest soil samples still retained relatively diverse communities. Seasonally, differences are clearly evident within plots at the surface. As the plots were replicated, significant differences in the community fingerprints with depth and season are reported.

  19. High-Resolution Microbial Community Succession of Microbially Induced Concrete Corrosion in Working Sanitary Manholes

    PubMed Central

    Ling, Alison L.; Robertson, Charles E.; Harris, J. Kirk; Frank, Daniel N.; Kotter, Cassandra V.; Stevens, Mark J.; Pace, Norman R.; Hernandez, Mark T.

    2015-01-01

    Microbially-induced concrete corrosion in headspaces threatens wastewater infrastructure worldwide. Models for predicting corrosion rates in sewer pipe networks rely largely on information from culture-based investigations. In this study, the succession of microbes associated with corroding concrete was characterized over a one-year monitoring campaign using rRNA sequence-based phylogenetic methods. New concrete specimens were exposed in two highly corrosive manholes (high concentrations of hydrogen sulfide and carbon dioxide gas) on the Colorado Front Range for up to a year. Community succession on corroding surfaces was assessed using Illumina MiSeq sequencing of 16S bacterial rRNA amplicons and Sanger sequencing of 16S universal rRNA clones. Microbial communities associated with corrosion fronts presented distinct succession patterns which converged to markedly low α-diversity levels (< 10 taxa) in conjunction with decreasing pH. The microbial community succession pattern observed in this study agreed with culture-based models that implicate acidophilic sulfur-oxidizer Acidithiobacillus spp. in advanced communities, with two notable exceptions. Early communities exposed to alkaline surface pH presented relatively high α-diversity, including heterotrophic, nitrogen-fixing, and sulfur-oxidizing genera, and one community exposed to neutral surface pH presented a diverse transition community comprised of less than 20% sulfur-oxidizers. PMID:25748024

  20. High-resolution microbial community succession of microbially induced concrete corrosion in working sanitary manholes.

    PubMed

    Ling, Alison L; Robertson, Charles E; Harris, J Kirk; Frank, Daniel N; Kotter, Cassandra V; Stevens, Mark J; Pace, Norman R; Hernandez, Mark T

    2015-01-01

    Microbially-induced concrete corrosion in headspaces threatens wastewater infrastructure worldwide. Models for predicting corrosion rates in sewer pipe networks rely largely on information from culture-based investigations. In this study, the succession of microbes associated with corroding concrete was characterized over a one-year monitoring campaign using rRNA sequence-based phylogenetic methods. New concrete specimens were exposed in two highly corrosive manholes (high concentrations of hydrogen sulfide and carbon dioxide gas) on the Colorado Front Range for up to a year. Community succession on corroding surfaces was assessed using Illumina MiSeq sequencing of 16S bacterial rRNA amplicons and Sanger sequencing of 16S universal rRNA clones. Microbial communities associated with corrosion fronts presented distinct succession patterns which converged to markedly low α-diversity levels (< 10 taxa) in conjunction with decreasing pH. The microbial community succession pattern observed in this study agreed with culture-based models that implicate acidophilic sulfur-oxidizer Acidithiobacillus spp. in advanced communities, with two notable exceptions. Early communities exposed to alkaline surface pH presented relatively high α-diversity, including heterotrophic, nitrogen-fixing, and sulfur-oxidizing genera, and one community exposed to neutral surface pH presented a diverse transition community comprised of less than 20% sulfur-oxidizers.

  1. Copper removal and microbial community analysis in single-chamber microbial fuel cell.

    PubMed

    Wu, Yining; Zhao, Xin; Jin, Min; Li, Yan; Li, Shuai; Kong, Fanying; Nan, Jun; Wang, Aijie

    2018-04-01

    In this study, copper removal and electricity generation were investigated in a single-chamber microbial fuel cell (MFC). Result showed that copper was efficiently removed in the membrane-less MFC with removal efficiency of 98.3% at the tolerable Cu 2+ concentration of 12.5 mg L -1 , the corresponding open circuit voltage and maximum power density were 0.78 V and 10.2 W m -3 , respectively. The mechanism analysis demonstrated that microbial electrochemical reduction contributed to the copper removal with the products of Cu and Cu 2 O deposited at biocathode. Moreover, the microbial community analysis indicated that microbial communities changed with different copper concentrations. The dominant phyla were Proteobacteria and Bacteroidetes which could play key roles in electricity generation, while Actinobacteria and Acidobacteria were also observed which were responsible for Cu-resistant and copper removal. It will be of important guiding significance for the recovery of copper from low concentration wastewater through single-chamber MFC with simultaneous energy recovery. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Strong linkage between active microbial communities and microbial carbon usage in a deglaciated terrain of the High Arctic

    NASA Astrophysics Data System (ADS)

    Kim, M.; Gyeong, H. R.; Lee, Y. K.

    2017-12-01

    Soil microorganisms play pivotal roles in ecosystem development and carbon cycling in newly exposed glacier forelands. However, little is known about carbon utilization pattern by metabolically active microbes over the course of ecosystem succession in these nutrient-poor environments. We investigated RNA-based microbial community dynamics and its relation to microbial carbon usage along the chronosequence of a High Arctic glacier foreland. Among microbial taxa surveyed (bacteria, archaea and fungi), bacteria are among the most metabolically active taxa with a dominance of Cyanobacteria and Actinobacteria. There was a strong association between microbial carbon usage and active Actinobacterial communities, suggesting that member of Actinobacteria are actively involved in organic carbon degradation in glacier forelands. Both bacterial community and microbial carbon usage are converged towards later stage of succession, indicating that the composition of soil organic carbon plays important roles in structuring bacterial decomposer communities during ecosystem development.

  3. Perspective for Aquaponic Systems: “Omic” Technologies for Microbial Community Analysis

    PubMed Central

    Munguia-Fragozo, Perla; Alatorre-Jacome, Oscar; Rico-Garcia, Enrique; Cruz-Hernandez, Andres; Ocampo-Velazquez, Rosalia V.; Garcia-Trejo, Juan F.; Guevara-Gonzalez, Ramon G.

    2015-01-01

    Aquaponics is the combined production of aquaculture and hydroponics, connected by a water recirculation system. In this productive system, the microbial community is responsible for carrying out the nutrient dynamics between the components. The nutrimental transformations mainly consist in the transformation of chemical species from toxic compounds into available nutrients. In this particular field, the microbial research, the “Omic” technologies will allow a broader scope of studies about a current microbial profile inside aquaponics community, even in those species that currently are unculturable. This approach can also be useful to understand complex interactions of living components in the system. Until now, the analog studies were made to set up the microbial characterization on recirculation aquaculture systems (RAS). However, microbial community composition of aquaponics is still unknown. “Omic” technologies like metagenomic can help to reveal taxonomic diversity. The perspectives are also to begin the first attempts to sketch the functional diversity inside aquaponic systems and its ecological relationships. The knowledge of the emergent properties inside the microbial community, as well as the understanding of the biosynthesis pathways, can derive in future biotechnological applications. Thus, the aim of this review is to show potential applications of current “Omic” tools to characterize the microbial community in aquaponic systems. PMID:26509157

  4. Microbial community assembly and metabolic function during mammalian corpse decomposition

    USGS Publications Warehouse

    Metcalf, Jessica L; Xu, Zhenjiang Zech; Weiss, Sophie; Lax, Simon; Van Treuren, Will; Hyde, Embriette R.; Song, Se Jin; Amir, Amnon; Larsen, Peter; Sangwan, Naseer; Haarmann, Daniel; Humphrey, Greg C; Ackermann, Gail; Thompson, Luke R; Lauber, Christian; Bibat, Alexander; Nicholas, Catherine; Gebert, Matthew J; Petrosino, Joseph F; Reed, Sasha C.; Gilbert, Jack A; Lynne, Aaron M; Bucheli, Sibyl R; Carter, David O; Knight, Rob

    2016-01-01

    Vertebrate corpse decomposition provides an important stage in nutrient cycling in most terrestrial habitats, yet microbially mediated processes are poorly understood. Here we combine deep microbial community characterization, community-level metabolic reconstruction, and soil biogeochemical assessment to understand the principles governing microbial community assembly during decomposition of mouse and human corpses on different soil substrates. We find a suite of bacterial and fungal groups that contribute to nitrogen cycling and a reproducible network of decomposers that emerge on predictable time scales. Our results show that this decomposer community is derived primarily from bulk soil, but key decomposers are ubiquitous in low abundance. Soil type was not a dominant factor driving community development, and the process of decomposition is sufficiently reproducible to offer new opportunities for forensic investigations.

  5. Coupling Spatiotemporal Community Assembly Processes to Changes in Microbial Metabolism.

    PubMed

    Graham, Emily B; Crump, Alex R; Resch, Charles T; Fansler, Sarah; Arntzen, Evan; Kennedy, David W; Fredrickson, Jim K; Stegen, James C

    2016-01-01

    Community assembly processes generate shifts in species abundances that influence ecosystem cycling of carbon and nutrients, yet our understanding of assembly remains largely separate from ecosystem-level functioning. Here, we investigate relationships between assembly and changes in microbial metabolism across space and time in hyporheic microbial communities. We pair sampling of two habitat types (i.e., attached and planktonic) through seasonal and sub-hourly hydrologic fluctuation with null modeling and temporally explicit multivariate statistics. We demonstrate that multiple selective pressures-imposed by sediment and porewater physicochemistry-integrate to generate changes in microbial community composition at distinct timescales among habitat types. These changes in composition are reflective of contrasting associations of Betaproteobacteria and Thaumarchaeota with ecological selection and with seasonal changes in microbial metabolism. We present a conceptual model based on our results in which metabolism increases when oscillating selective pressures oppose temporally stable selective pressures. Our conceptual model is pertinent to both macrobial and microbial systems experiencing multiple selective pressures and presents an avenue for assimilating community assembly processes into predictions of ecosystem-level functioning.

  6. Biochar affects soil organic matter cycling and microbial functions but does not alter microbial community structure in a paddy soil.

    PubMed

    Tian, Jing; Wang, Jingyuan; Dippold, Michaela; Gao, Yang; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2016-06-15

    The application of biochar (BC) in conjunction with mineral fertilizers is one of the most promising management practices recommended to improve soil quality. However, the interactive mechanisms of BC and mineral fertilizer addition affecting microbial communities and functions associated with soil organic matter (SOM) cycling are poorly understood. We investigated the SOM in physical and chemical fractions, microbial community structure (using phospholipid fatty acid analysis, PLFA) and functions (by analyzing enzymes involved in C and N cycling and Biolog) in a 6-year field experiment with BC and NPK amendment. BC application increased total soil C and particulate organic C for 47.4-50.4% and 63.7-74.6%, respectively. The effects of BC on the microbial community and C-cycling enzymes were dependent on fertilization. Addition of BC alone did not change the microbial community compared with the control, but altered the microbial community structure in conjunction with NPK fertilization. SOM fractions accounted for 55% of the variance in the PLFA-related microbial community structure. The particulate organic N explained the largest variation in the microbial community structure. Microbial metabolic activity strongly increased after BC addition, particularly the utilization of amino acids and amines due to an increase in the activity of proteolytic (l-leucine aminopeptidase) enzymes. These results indicate that microorganisms start to mine N from the SOM to compensate for high C:N ratios after BC application, which consequently accelerate cycling of stable N. Concluding, BC in combination with NPK fertilizer application strongly affected microbial community composition and functions, which consequently influenced SOM cycling. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Sources of Variation in the Gut Microbial Community of Lycaeides melissa Caterpillars.

    PubMed

    Chaturvedi, Samridhi; Rego, Alexandre; Lucas, Lauren K; Gompert, Zachariah

    2017-09-12

    Microbes can mediate insect-plant interactions and have been implicated in major evolutionary transitions to herbivory. Whether microbes also play a role in more modest host shifts or expansions in herbivorous insects is less clear. Here we evaluate the potential for gut microbial communities to constrain or facilitate host plant use in the Melissa blue butterfly (Lycaeides melissa). We conducted a larval rearing experiment where caterpillars from two populations were fed plant tissue from two hosts. We used 16S rRNA sequencing to quantify the relative effects of sample type (frass versus whole caterpillar), diet (plant species), butterfly population and development (caterpillar age) on the composition and diversity of the caterpillar gut microbial communities, and secondly, to test for a relationship between microbial community and larval performance. Gut microbial communities varied over time (that is, with caterpillar age) and differed between frass and whole caterpillar samples. Diet (host plant) and butterfly population had much more limited effects on microbial communities. We found no evidence that gut microbe community composition was associated with caterpillar weight, and thus, our results provide no support for the hypothesis that variation in microbial community affects performance in L. melissa.

  8. Seasonality and vertical structure of microbial communities in an ocean gyre.

    PubMed

    Treusch, Alexander H; Vergin, Kevin L; Finlay, Liam A; Donatz, Michael G; Burton, Robert M; Carlson, Craig A; Giovannoni, Stephen J

    2009-10-01

    Vertical, seasonal and geographical patterns in ocean microbial communities have been observed in many studies, but the resolution of community dynamics has been limited by the scope of data sets, which are seldom up to the task of illuminating the highly structured and rhythmic patterns of change found in ocean ecosystems. We studied vertical and temporal patterns in the microbial community composition in a set of 412 samples collected from the upper 300 m of the water column in the northwestern Sargasso Sea, on cruises between 1991 and 2004. The region sampled spans the extent of deep winter mixing and the transition between the euphotic and the upper mesopelagic zones, where most carbon fixation and reoxidation occurs. A bioinformatic pipeline was developed to de-noise, normalize and align terminal restriction fragment length polymorphism (T-RFLP) data from three restriction enzymes and link T-RFLP peaks to microbial clades. Non-metric multidimensional scaling statistics resolved three microbial communities with distinctive composition during seasonal stratification: a surface community in the region of lowest nutrients, a deep chlorophyll maximum community and an upper mesopelagic community. A fourth microbial community was associated with annual spring blooms of eukaryotic phytoplankton that occur in the northwestern Sargasso Sea as a consequence of winter convective mixing that entrains nutrients to the surface. Many bacterial clades bloomed in seasonal patterns that shifted with the progression of stratification. These richly detailed patterns of community change suggest that highly specialized adaptations and interactions govern the success of microbial populations in the oligotrophic ocean.

  9. Factors Affecting Soil Microbial Community Structure in Tomato Cropping Systems

    USDA-ARS?s Scientific Manuscript database

    Soil and rhizosphere microbial communities in agroecosystems may be affected by soil, climate, plant species, and management. We identified some of the most important factors controlling microbial biomass and community structure in an agroecosystem utilizing tomato plants with the following nine tre...

  10. Adaptation of Aquatic Microbial Communities to Hg2+ Stress †

    PubMed Central

    Barkay, Tamar

    1987-01-01

    The mechanism of adaptation to Hg2+ in four aquatic habitats was studied by correlating microbially mediated Hg2+ volatilization with the adaptive state of the exposed communities. Community diversity, heterotrophic activity, and Hg2+ resistance measurements indicated that adaptation of all four communities was stimulated by preexposure to Hg2+. In saline water communities, adaptation was associated with rapid volatilization after an initial lag period. This mechanism, however, did not promote adaptation in a freshwater sample, in which Hg2+ was volatilized slowly, regardless of the resistance level of the microbial community. Distribution of the mer operon among representative colonies of the communities was not related to adaptation to Hg2+. Thus, although volatilization enabled some microbial communities to sustain their functions in Hg2+-stressed environments, it was not mediated by the genes that serve as a model system in molecular studies of bacterial resistance to mercurials. PMID:16347488

  11. Soil microbial community response to precipitation change in a semi-arid ecosystem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cregger, Melissa; Schadt, Christopher Warren; McDowell, Nathan

    2012-01-01

    Microbial communities regulate many belowground carbon cycling processes; thus, the impact of climate change on the struc- ture and function of soil microbial communities could, in turn, impact the release or storage of carbon in soils. Here we used a large-scale precipitation manipulation ( 18%, 50%, or ambient) in a pi on-juniper woodland (Pinus edulis-Juniperus mono- sperma) to investigate how changes in precipitation amounts altered soil microbial communities as well as what role seasonal variation in rainfall and plant composition played in the microbial community response. Seasonal variability in precipitation had a larger role in determining the composition of soilmore » microbial communities in 2008 than the direct effect of the experimental precipitation treatments. Bacterial and fungal communities in the dry, relatively moisture-limited premonsoon season were compositionally distinct from communities in the monsoon season, when soil moisture levels and periodicity varied more widely across treatments. Fungal abundance in the drought plots during the dry premonsoon season was particularly low and was 4.7 times greater upon soil wet-up in the monsoon season, suggesting that soil fungi were water limited in the driest plots, which may result in a decrease in fungal degradation of carbon substrates. Additionally, we found that both bacterial and fungal communities beneath pi on pine and juniper were distinct, suggesting that microbial functions beneath these trees are different. We conclude that predicting the response of microbial communities to climate change is highly dependent on seasonal dynam- ics, background climatic variability, and the composition of the associated aboveground community.« less

  12. Succession in a microbial mat community - A Gaian perspective

    NASA Technical Reports Server (NTRS)

    Stolz, J. F.

    1984-01-01

    The contribution of prokaryotes to Gaian control systems is discussed. The survival of the Microcoleus-dominated stratified microbial community at Laguna Figueroa, after heavy rains flooded the evaporite flat with up to 3 m of water and deposited 5-10 cm of allocthonous sediment, demonstrates the resiliency of these communities to short-term perturbations while the microbial fossil record attests to their persistence over geologic time. It is shown that the great diversity of microbial species and their short generation time make them uniquely suited for Gaian mechanisms.

  13. Response of the microbial community structure of biofilms to ferric iron in microbial fuel cells.

    PubMed

    Liu, Qian; Yang, Yang; Mei, Xiaoxue; Liu, Bingfeng; Chen, Chuan; Xing, Defeng

    2018-08-01

    Ferric iron can affect the current generation of microbial electrochemical system (MES); however, how it influences microbial biofilm formation and metabolic activity has not been reported. Here, we describe the response of microbial electrode biofilm communities to insoluble ferric iron (Fe 3+ ) at different concentrations in microbial fuel cells (MFCs). Insoluble ferric iron (200μM) improved electrochemical activity of the MFCs microbial biofilms during start-up and resulted in a higher maximum power density of 0.95W/m 2 , compared with the control (0.76W/m 2 ), 500μM Fe 3+ (0.83W/m 2 ), 1000μM Fe 3+ (0.73W/m 2 ), and 2000μM Fe 3+ (0.59W/m 2 ) treatments. Illumina Hiseq sequencing of 16S rRNA gene amplicons indicated that the predominant populations in the anode biofilms of the MFCs belonged to Geobacter, with relative abundance of 66-75%. Microbial cathode biofilm communities were more susceptible to Fe 3+ , as an obvious shift in the cathode biofilm community structures occurred as Fe 3+ concentration was increased. The most predominant populations in the MFC cathode biofilms without Fe 3+ and with 200μM Fe 3+ were affiliated with Thauera (46% and 35%), whereas no absolutely predominant populations were present in the MFC cathode biofilm with 1000μM Fe 3+ . The results demonstrate that a low concentration of Fe 3+ facilitated the power output of MFCs and shaped community structures of the electrode biofilm. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Effects of a simulated hurricane disturbance on forest floor microbial communities

    Treesearch

    Sharon A. Cantrell; Marirosa Molina; D. Jean Lodge; Francisco J. Rivera-Figueroa; Maria Ortiz; Albany A. Marchetti; Mike J. Cyterski; José R. Pérez-Jiménez

    2014-01-01

    Forest floor microbial communities play a critical role in the processes of decomposition and nutrient cycling. The impact of cultivation, contamination, fire, and land management on soil microbial communities have been studied but there are few studies of microbial responses to the effects of tropical storms. The Canopy Trimming Experiment was executed in the Luquillo...

  15. Microbial community assembly and metabolic function during mammalian corpse decomposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metcalf, J. L.; Xu, Z. Z.; Weiss, S.

    2015-12-10

    Vertebrate corpse decomposition provides an important stage in nutrient cycling in most terrestrial habitats, yet microbially mediated processes are poorly understood. Here we combine deep microbial community characterization, community-level metabolic reconstruction, and soil biogeochemical assessment to understand the principles governing microbial community assembly during decomposition of mouse and human corpses on different soil substrates. We find a suite of bacterial and fungal groups that contribute to nitrogen cycling and a reproducible network of decomposers that emerge on predictable time scales. Our results show that this decomposer community is derived primarily from bulk soil, but key decomposers are ubiquitous in lowmore » abundance. Soil type was not a dominant factor driving community development, and the process of decomposition is sufficiently reproducible to offer new opportunities for forensic investigations.« less

  16. Ecological restoration alters microbial communities in mine tailings profiles

    NASA Astrophysics Data System (ADS)

    Li, Yang; Jia, Zhongjun; Sun, Qingye; Zhan, Jing; Yang, Yang; Wang, Dan

    2016-04-01

    Ecological restoration of mine tailings have impact on soil physiochemical properties and microbial communities. The surface soil has been a primary concern in the past decades, however it remains poorly understood about the adaptive response of microbial communities along the profile during ecological restoration of the tailings. In this study, microbial communities along a 60-cm profile were investigated in a mine tailing pond during ecological restoration of the bare waste tailings (BW) with two vegetated soils of Imperata cylindrica (IC) and Chrysopogon zizanioides (CZ) plants. Revegetation of both IC and CZ could retard soil degradation of mine tailing by stimulation of soil pH at 0-30 cm soils and altered the bacterial communities at 0-20 cm depths of the mine tailings. Significant differences existed in the relative abundance of the phyla Alphaproteobacteria, Deltaproteobacteria, Acidobacteria, Firmicutes and Nitrospira. Slight difference of bacterial communities were found at 30-60 cm depths of mine tailings. Abundance and activity analysis of nifH genes also explained the elevated soil nitrogen contents at the surface 0-20 cm of the vegetated soils. These results suggest that microbial succession occurred primarily at surface tailings and vegetation of pioneering plants might have promoted ecological restoration of mine tailings.

  17. Ecological restoration alters microbial communities in mine tailings profiles.

    PubMed

    Li, Yang; Jia, Zhongjun; Sun, Qingye; Zhan, Jing; Yang, Yang; Wang, Dan

    2016-04-29

    Ecological restoration of mine tailings have impact on soil physiochemical properties and microbial communities. The surface soil has been a primary concern in the past decades, however it remains poorly understood about the adaptive response of microbial communities along the profile during ecological restoration of the tailings. In this study, microbial communities along a 60-cm profile were investigated in a mine tailing pond during ecological restoration of the bare waste tailings (BW) with two vegetated soils of Imperata cylindrica (IC) and Chrysopogon zizanioides (CZ) plants. Revegetation of both IC and CZ could retard soil degradation of mine tailing by stimulation of soil pH at 0-30 cm soils and altered the bacterial communities at 0-20 cm depths of the mine tailings. Significant differences existed in the relative abundance of the phyla Alphaproteobacteria, Deltaproteobacteria, Acidobacteria, Firmicutes and Nitrospira. Slight difference of bacterial communities were found at 30-60 cm depths of mine tailings. Abundance and activity analysis of nifH genes also explained the elevated soil nitrogen contents at the surface 0-20 cm of the vegetated soils. These results suggest that microbial succession occurred primarily at surface tailings and vegetation of pioneering plants might have promoted ecological restoration of mine tailings.

  18. Ecological restoration alters microbial communities in mine tailings profiles

    PubMed Central

    Li, Yang; Jia, Zhongjun; Sun, Qingye; Zhan, Jing; Yang, Yang; Wang, Dan

    2016-01-01

    Ecological restoration of mine tailings have impact on soil physiochemical properties and microbial communities. The surface soil has been a primary concern in the past decades, however it remains poorly understood about the adaptive response of microbial communities along the profile during ecological restoration of the tailings. In this study, microbial communities along a 60-cm profile were investigated in a mine tailing pond during ecological restoration of the bare waste tailings (BW) with two vegetated soils of Imperata cylindrica (IC) and Chrysopogon zizanioides (CZ) plants. Revegetation of both IC and CZ could retard soil degradation of mine tailing by stimulation of soil pH at 0–30 cm soils and altered the bacterial communities at 0–20 cm depths of the mine tailings. Significant differences existed in the relative abundance of the phyla Alphaproteobacteria, Deltaproteobacteria, Acidobacteria, Firmicutes and Nitrospira. Slight difference of bacterial communities were found at 30–60 cm depths of mine tailings. Abundance and activity analysis of nifH genes also explained the elevated soil nitrogen contents at the surface 0–20 cm of the vegetated soils. These results suggest that microbial succession occurred primarily at surface tailings and vegetation of pioneering plants might have promoted ecological restoration of mine tailings. PMID:27126064

  19. Response of a salt marsh microbial community to metal contamination

    NASA Astrophysics Data System (ADS)

    Mucha, Ana P.; Teixeira, Catarina; Reis, Izabela; Magalhães, Catarina; Bordalo, Adriano A.; Almeida, C. Marisa R.

    2013-09-01

    Salt marshes are important sinks for contaminants, namely metals that tend to accumulate around plant roots and could eventually be taken up in a process known as phytoremediation. On the other hand, microbial communities display important roles in the salt marsh ecosystems, such as recycling of nutrients and/or degradation of organic contaminants. Thus, plants can benefit from the microbial activity in the phytoremediation process. Nevertheless, above certain levels, metals are known to be toxic to microorganisms, fact that can eventually compromise their ecological functions. In this vein, the aim of present study was to investigate, in the laboratory, the effect of selected metals (Cd, Cu and Pb) on the microbial communities associated to the roots of two salt marsh plants. Sediments colonized by Juncus maritimus and Phragmites australis were collected in the River Lima estuary (NW Portugal), and spiked with each of the metals at three different Effects Range-Median (ERM) concentrations (1, 10×, 50×), being ERM the sediment quality guideline that indicates the concentration above which adverse biological effects may frequently occur. Spiked sediments were incubated with a nutritive saline solution, being left in the dark under constant agitation for 7 days. The results showed that, despite the initial sediments colonized by J. maritimus and P. australis displayed significant (p < 0.05) differences in terms of microbial community structure (evaluated by ARISA), they presented similar microbial abundances (estimated by DAPI). Also, in terms of microbial abundance, both sediments showed a similar response to metal addition, with a decrease in number of cells only observed for the higher addition of Cu. Nevertheless, both Cu and Pb, at intermediate metals levels promote a shift in the microbial community structure, with possibly effect on the ecological function of these microbial communities in salt marshes. These changes may affect plants phytoremediation

  20. Metaproteogenomic Profiling of Microbial Communities Colonizing Actively Venting Hydrothermal Chimneys

    PubMed Central

    Pjevac, Petra; Meier, Dimitri V.; Markert, Stephanie; Hentschker, Christian; Schweder, Thomas; Becher, Dörte; Gruber-Vodicka, Harald R.; Richter, Michael; Bach, Wolfgang; Amann, Rudolf; Meyerdierks, Anke

    2018-01-01

    At hydrothermal vent sites, chimneys consisting of sulfides, sulfates, and oxides are formed upon contact of reduced hydrothermal fluids with oxygenated seawater. The walls and surfaces of these chimneys are an important habitat for vent-associated microorganisms. We used community proteogenomics to investigate and compare the composition, metabolic potential and relative in situ protein abundance of microbial communities colonizing two actively venting hydrothermal chimneys from the Manus Basin back-arc spreading center (Papua New Guinea). We identified overlaps in the in situ functional profiles of both chimneys, despite differences in microbial community composition and venting regime. Carbon fixation on both chimneys seems to have been primarily mediated through the reverse tricarboxylic acid cycle and fueled by sulfur-oxidation, while the abundant metabolic potential for hydrogen oxidation and carbon fixation via the Calvin–Benson–Bassham cycle was hardly utilized. Notably, the highly diverse microbial community colonizing the analyzed black smoker chimney had a highly redundant metabolic potential. In contrast, the considerably less diverse community colonizing the diffusely venting chimney displayed a higher metabolic versatility. An increased diversity on the phylogenetic level is thus not directly linked to an increased metabolic diversity in microbial communities that colonize hydrothermal chimneys. PMID:29696004

  1. Taxonomic and Functional Differences between Microbial Communities in Qinghai Lake and Its Input Streams

    PubMed Central

    Ren, Ze; Wang, Fang; Qu, Xiaodong; Elser, James J.; Liu, Yang; Chu, Limin

    2017-01-01

    Understanding microbial communities in terms of taxon and function is essential to decipher the biogeochemical cycling in aquatic ecosystems. Lakes and their input streams are highly linked. However, the differences between microbial assemblages in streams and lakes are still unclear. In this study, we conducted an intensive field sampling of microbial communities from lake water and stream biofilms in the Qinghai Lake watershed, the largest lake in China. We determined bacterial communities using high-throughput 16S rRNA gene sequencing and predicted functional profiles using PICRUSt to determine the taxonomic and functional differences between microbial communities in stream biofilms and lake water. The results showed that stream biofilms and lake water harbored distinct microbial communities. The microbial communities were different taxonomically and functionally between stream and lake. Moreover, streams biofilms had a microbial network with higher connectivity and modularity than lake water. Functional beta diversity was strongly correlated with taxonomic beta diversity in both the stream and lake microbial communities. Lake microbial assemblages displayed greater predicted metabolic potentials of many metabolism pathways while the microbial assemblages in stream biofilms were more abundant in xenobiotic biodegradation and metabolism and lipid metabolism. Furthermore, lake microbial assemblages had stronger predicted metabolic potentials in amino acid metabolism, carbon fixation, and photosynthesis while stream microbial assemblages were higher in carbohydrate metabolism, oxidative phosphorylation, and nitrogen metabolism. This study adds to our knowledge of stream-lake linkages from the functional and taxonomic composition of microbial assemblages. PMID:29213266

  2. Genome-based Modeling and Design of Metabolic Interactions in Microbial Communities

    PubMed Central

    Mahadevan, Radhakrishnan; Henson, Michael A.

    2012-01-01

    Biotechnology research is traditionally focused on individual microbial strains that are perceived to have the necessary metabolic functions, or the capability to have these functions introduced, to achieve a particular task. For many important applications, the development of such omnipotent microbes is an extremely challenging if not impossible task. By contrast, nature employs a radically different strategy based on synergistic combinations of different microbial species that collectively achieve the desired task. These natural communities have evolved to exploit the native metabolic capabilities of each species and are highly adaptive to changes in their environments. However, microbial communities have proven difficult to study due to a lack of suitable experimental and computational tools. With the advent of genome sequencing, omics technologies, bioinformatics and genome-scale modeling, researchers now have unprecedented capabilities to analyze and engineer the metabolism of microbial communities. The goal of this review is to summarize recent applications of genome-scale metabolic modeling to microbial communities. A brief introduction to lumped community models is used to motivate the need for genome-level descriptions of individual species and their metabolic interactions. The review of genome-scale models begins with static modeling approaches, which are appropriate for communities where the extracellular environment can be assumed to be time invariant or slowly varying. Dynamic extensions of the static modeling approach are described, and then applications of genome-scale models for design of synthetic microbial communities are reviewed. The review concludes with a summary of metagenomic tools for analyzing community metabolism and an outlook for future research. PMID:24688668

  3. Genome-based Modeling and Design of Metabolic Interactions in Microbial Communities.

    PubMed

    Mahadevan, Radhakrishnan; Henson, Michael A

    2012-01-01

    Biotechnology research is traditionally focused on individual microbial strains that are perceived to have the necessary metabolic functions, or the capability to have these functions introduced, to achieve a particular task. For many important applications, the development of such omnipotent microbes is an extremely challenging if not impossible task. By contrast, nature employs a radically different strategy based on synergistic combinations of different microbial species that collectively achieve the desired task. These natural communities have evolved to exploit the native metabolic capabilities of each species and are highly adaptive to changes in their environments. However, microbial communities have proven difficult to study due to a lack of suitable experimental and computational tools. With the advent of genome sequencing, omics technologies, bioinformatics and genome-scale modeling, researchers now have unprecedented capabilities to analyze and engineer the metabolism of microbial communities. The goal of this review is to summarize recent applications of genome-scale metabolic modeling to microbial communities. A brief introduction to lumped community models is used to motivate the need for genome-level descriptions of individual species and their metabolic interactions. The review of genome-scale models begins with static modeling approaches, which are appropriate for communities where the extracellular environment can be assumed to be time invariant or slowly varying. Dynamic extensions of the static modeling approach are described, and then applications of genome-scale models for design of synthetic microbial communities are reviewed. The review concludes with a summary of metagenomic tools for analyzing community metabolism and an outlook for future research.

  4. Impact of diverse soil microbial communities on crop residues decomposition

    NASA Astrophysics Data System (ADS)

    Mrad, Fida; Bennegadi-Laurent, Nadia; Ailhas, Jérôme; Leblanc, Nathalie; Trinsoutrot-Gattin, Isabelle; Laval, Karine; Gattin, Richard

    2017-04-01

    Soils provide many basic ecosystem services for our society and most of these services are carried out by the soil communities, thus influencing soils quality. Soil organic matter (SOM) can be considered as one of the most important soil quality indices for it plays a determinant role in many physical, chemical and biological processes, such as soil structure and erosion resistance, cation exchange capacity, nutrient cycling and biological activity (Andrews et al., 2004). Since a long time, exogenous organic inputs are largely used for improving agricultural soils, affecting highly soil fertility and productivity. The use of organic amendments such as crop residues influences the soil microbial populations' diversity and abundance. In the meantime, soil microbial communities play a major role in the organic matter degradation, and the effect of different microbial communities on the decomposition of crop residues is not well documented. In this context, studying the impact of crop residues on soil microbial ecology and the processes controlling the fate of plant residues in different management practices is essential for understanding the long-term environmental and agronomic effects on soil and organic matters. Our purpose in the present work was to investigate the decomposition by two contrasting microbial communities of three crop residues, and compare the effect of different residues amendments on the abundance and function of each soil microbial communities. Among the main crops which produce large amounts of residues, we focused on three different plants: wheat (Triticum aestivum L.), rape (Brassica napus) and sunflower (Helianthus annuus). The residues degradation in two soils of different management practices and the microbial activity were evaluated by: microbial abundance (microbial carbon, culturable bacteria, total DNA, qPCR), in combination with functional indicators (enzymatic assays and Biolog substrate utilization), kinetics of C and N

  5. Groundwater Isolation Governs Chemistry and Microbial Community Structure along Hydrologic Flowpaths

    PubMed Central

    Ben Maamar, Sarah; Aquilina, Luc; Quaiser, Achim; Pauwels, Hélène; Michon-Coudouel, Sophie; Vergnaud-Ayraud, Virginie; Labasque, Thierry; Roques, Clément; Abbott, Benjamin W.; Dufresne, Alexis

    2015-01-01

    This study deals with the effects of hydrodynamic functioning of hard-rock aquifers on microbial communities. In hard-rock aquifers, the heterogeneous hydrologic circulation strongly constrains groundwater residence time, hydrochemistry, and nutrient supply. Here, residence time and a wide range of environmental factors were used to test the influence of groundwater circulation on active microbial community composition, assessed by high throughput sequencing of 16S rRNA. Groundwater of different ages was sampled along hydrogeologic paths or loops, in three contrasting hard-rock aquifers in Brittany (France). Microbial community composition was driven by groundwater residence time and hydrogeologic loop position. In recent groundwater, in the upper section of the aquifers or in their recharge zone, surface water inputs caused high nitrate concentration and the predominance of putative denitrifiers. Although denitrification does not seem to fully decrease nitrate concentrations due to low dissolved organic carbon concentrations, nitrate input has a major effect on microbial communities. The occurrence of taxa possibly associated with the application of organic fertilizers was also noticed. In ancient isolated groundwater, an ecosystem based on Fe(II)/Fe(III) and S/SO4 redox cycling was observed down to several 100 of meters below the surface. In this depth section, microbial communities were dominated by iron oxidizing bacteria belonging to Gallionellaceae. The latter were associated to old groundwater with high Fe concentrations mixed to a small but not null percentage of recent groundwater inducing oxygen concentrations below 2.5 mg/L. These two types of microbial community were observed in the three sites, independently of site geology and aquifer geometry, indicating hydrogeologic circulation exercises a major control on microbial communities. PMID:26733990

  6. Engineering chemical interactions in microbial communities.

    PubMed

    Kenny, Douglas J; Balskus, Emily P

    2018-03-05

    Microbes living within host-associated microbial communities (microbiotas) rely on chemical communication to interact with surrounding organisms. These interactions serve many purposes, from supplying the multicellular host with nutrients to antagonizing invading pathogens, and breakdown of chemical signaling has potentially negative consequences for both the host and microbiota. Efforts to engineer microbes to take part in chemical interactions represent a promising strategy for modulating chemical signaling within these complex communities. In this review, we discuss prominent examples of chemical interactions found within host-associated microbial communities, with an emphasis on the plant-root microbiota and the intestinal microbiota of animals. We then highlight how an understanding of such interactions has guided efforts to engineer microbes to participate in chemical signaling in these habitats. We discuss engineering efforts in the context of chemical interactions that enable host colonization, promote host health, and exclude pathogens. Finally, we describe prominent challenges facing this field and propose new directions for future engineering efforts.

  7. HPMCD: the database of human microbial communities from metagenomic datasets and microbial reference genomes.

    PubMed

    Forster, Samuel C; Browne, Hilary P; Kumar, Nitin; Hunt, Martin; Denise, Hubert; Mitchell, Alex; Finn, Robert D; Lawley, Trevor D

    2016-01-04

    The Human Pan-Microbe Communities (HPMC) database (http://www.hpmcd.org/) provides a manually curated, searchable, metagenomic resource to facilitate investigation of human gastrointestinal microbiota. Over the past decade, the application of metagenome sequencing to elucidate the microbial composition and functional capacity present in the human microbiome has revolutionized many concepts in our basic biology. When sufficient high quality reference genomes are available, whole genome metagenomic sequencing can provide direct biological insights and high-resolution classification. The HPMC database provides species level, standardized phylogenetic classification of over 1800 human gastrointestinal metagenomic samples. This is achieved by combining a manually curated list of bacterial genomes from human faecal samples with over 21000 additional reference genomes representing bacteria, viruses, archaea and fungi with manually curated species classification and enhanced sample metadata annotation. A user-friendly, web-based interface provides the ability to search for (i) microbial groups associated with health or disease state, (ii) health or disease states and community structure associated with a microbial group, (iii) the enrichment of a microbial gene or sequence and (iv) enrichment of a functional annotation. The HPMC database enables detailed analysis of human microbial communities and supports research from basic microbiology and immunology to therapeutic development in human health and disease. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Nitrogen amendments have predictable effects on soil microbial communities and processes

    NASA Astrophysics Data System (ADS)

    Ramirez, K. S.; Craine, J. M.; Fierer, N.

    2011-12-01

    Ecosystems worldwide are receiving increasing amounts of reactive nitrogen (N) through anthropogenic activities. While there has been much effort devoted to quantifying aboveground impacts of anthropogenic N effects, less work has focused on identifying belowground impacts. Bacteria play critical roles in ecosystem processes and identifying how anthropogenic N impacts bacterial communities may elucidate how critical microbially-mediated ecosystem functions are altered by N additions. In order to connect changes in soil processes to changes in the microbial community, we need to first determine if the changes are consistent across different soil types and ecosystems. We assessed the patterns of N effects across a variety of ecosystems in two ways. First, utilizing long-term experimental N gradients at Cedar Creek LTER, MN and Kellogg Biological Station LTER, MI, we examined the response of microbial communities to anthropogenic N additions. Using high-throughput pyrosequencing techniques we quantified changes in soil microbial communities across the nitrogen gradients. We observed strong directional shifts in community composition at both sites; N fertilization consistently impacted both the phylogenetic and taxonomic structure of soil bacterial community structure in a predictable manner regardless of ecosystem type. For example, at both sites Acidobacteria experienced significant declines as nitrogen increased, while other groups such as Actinobacteria and Bacteroidetes increased in relative abundance. Our results suggest that bacterial communities across these N fertility gradients are structured by either nitrogen and/or soil carbon availability, rather than by shifts in the plant community or soil pH indirectly associated with the elevated nitrogen inputs. Still, this field-work does not incorporate changes in soil processes (e.g. soil respiration) or microbial activity (e.g. microbial biomass and extracellular enzyme activity), or separate N from C effects. To

  9. Citrate and malonate increase microbial activity and alter microbial community composition in uncontaminated and diesel-contaminated soil microcosms

    NASA Astrophysics Data System (ADS)

    Martin, Belinda C.; George, Suman J.; Price, Charles A.; Shahsavari, Esmaeil; Ball, Andrew S.; Tibbett, Mark; Ryan, Megan H.

    2016-09-01

    Petroleum hydrocarbons (PHCs) are among the most prevalent sources of environmental contamination. It has been hypothesized that plant root exudation of low molecular weight organic acid anions (carboxylates) may aid degradation of PHCs by stimulating heterotrophic microbial activity. To test their potential implication for bioremediation, we applied two commonly exuded carboxylates (citrate and malonate) to uncontaminated and diesel-contaminated microcosms (10 000 mg kg-1; aged 40 days) and determined their impact on the microbial community and PHC degradation. Every 48 h for 18 days, soil received 5 µmol g-1 of (i) citrate, (ii) malonate, (iii) citrate + malonate or (iv) water. Microbial activity was measured daily as the flux of CO2. After 18 days, changes in the microbial community were assessed by a community-level physiological profile (CLPP) and 16S rRNA bacterial community profiles determined by denaturing gradient gel electrophoresis (DGGE). Saturated PHCs remaining in the soil were assessed by gas chromatography-mass spectrometry (GC-MS). Cumulative soil respiration increased 4- to 6-fold with the addition of carboxylates, while diesel contamination resulted in a small, but similar, increase across all carboxylate treatments. The addition of carboxylates resulted in distinct changes to the microbial community in both contaminated and uncontaminated soils but only a small increase in the biodegradation of saturated PHCs as measured by the n-C17 : pristane biomarker. We conclude that while the addition of citrate and malonate had little direct effect on the biodegradation of saturated hydrocarbons present in diesel, their effect on the microbial community leads us to suggest further studies using a variety of soils and organic acids, and linked to in situ studies of plants, to investigate the role of carboxylates in microbial community dynamics.

  10. Mass Spectrometry Imaging of Complex Microbial Communities

    PubMed Central

    2016-01-01

    Conspectus In the two decades since mass spectrometry imaging (MSI) was first applied to visualize the distribution of peptides across biological tissues and cells, the technique has become increasingly effective and reliable. MSI excels at providing complementary information to existing methods for molecular analysis—such as genomics, transcriptomics, and metabolomics—and stands apart from other chemical imaging modalities through its capability to generate information that is simultaneously multiplexed and chemically specific. Today a diverse family of MSI approaches are applied throughout the scientific community to study the distribution of proteins, peptides, and small-molecule metabolites across many biological models. The inherent strengths of MSI make the technique valuable for studying microbial systems. Many microbes reside in surface-attached multicellular and multispecies communities, such as biofilms and motile colonies, where they work together to harness surrounding nutrients, fend off hostile organisms, and shield one another from adverse environmental conditions. These processes, as well as many others essential for microbial survival, are mediated through the production and utilization of a diverse assortment of chemicals. Although bacterial cells are generally only a few microns in diameter, the ecologies they influence can encompass entire ecosystems, and the chemical changes that they bring about can occur over time scales ranging from milliseconds to decades. Because of their incredible complexity, our understanding of and influence over microbial systems requires detailed scientific evaluations that yield both chemical and spatial information. MSI is well-positioned to fulfill these requirements. With small adaptations to existing methods, the technique can be applied to study a wide variety of chemical interactions, including those that occur inside single-species microbial communities, between cohabitating microbes, and between microbes

  11. Mass Spectrometry Imaging of Complex Microbial Communities.

    PubMed

    Dunham, Sage J B; Ellis, Joseph F; Li, Bin; Sweedler, Jonathan V

    2017-01-17

    In the two decades since mass spectrometry imaging (MSI) was first applied to visualize the distribution of peptides across biological tissues and cells, the technique has become increasingly effective and reliable. MSI excels at providing complementary information to existing methods for molecular analysis-such as genomics, transcriptomics, and metabolomics-and stands apart from other chemical imaging modalities through its capability to generate information that is simultaneously multiplexed and chemically specific. Today a diverse family of MSI approaches are applied throughout the scientific community to study the distribution of proteins, peptides, and small-molecule metabolites across many biological models. The inherent strengths of MSI make the technique valuable for studying microbial systems. Many microbes reside in surface-attached multicellular and multispecies communities, such as biofilms and motile colonies, where they work together to harness surrounding nutrients, fend off hostile organisms, and shield one another from adverse environmental conditions. These processes, as well as many others essential for microbial survival, are mediated through the production and utilization of a diverse assortment of chemicals. Although bacterial cells are generally only a few microns in diameter, the ecologies they influence can encompass entire ecosystems, and the chemical changes that they bring about can occur over time scales ranging from milliseconds to decades. Because of their incredible complexity, our understanding of and influence over microbial systems requires detailed scientific evaluations that yield both chemical and spatial information. MSI is well-positioned to fulfill these requirements. With small adaptations to existing methods, the technique can be applied to study a wide variety of chemical interactions, including those that occur inside single-species microbial communities, between cohabitating microbes, and between microbes and their

  12. Linking microbial community structure and microbial processes: An empirical and conceptual overview

    USGS Publications Warehouse

    Bier, R.L.; Bernhardt, Emily S.; Boot, Claudia M.; Graham, Emily B.; Hall, Edward K.; Lennon, Jay T.; Nemergut, Diana R.; Osborne, Brooke B.; Ruiz-Gonzalez, Clara; Schimel, Joshua P.; Waldrop, Mark P.; Wallenstein, Matthew D.

    2015-01-01

    A major goal of microbial ecology is to identify links between microbial community structure and microbial processes. Although this objective seems straightforward, there are conceptual and methodological challenges to designing studies that explicitly evaluate this link. Here, we analyzed literature documenting structure and process responses to manipulations to determine the frequency of structure-process links and whether experimental approaches and techniques influence link detection. We examined nine journals (published 2009–13) and retained 148 experimental studies measuring microbial community structure and processes. Many qualifying papers (112 of 148) documented structure and process responses, but few (38 of 112 papers) reported statistically testing for a link. Of these tested links, 75% were significant and typically used Spearman or Pearson's correlation analysis (68%). No particular approach for characterizing structure or processes was more likely to produce significant links. Process responses were detected earlier on average than responses in structure or both structure and process. Together, our findings suggest that few publications report statistically testing structure-process links. However, when links are tested for they often occur but share few commonalities in the processes or structures that were linked and the techniques used for measuring them.

  13. Rapid Response of Eastern Mediterranean Deep Sea Microbial Communities to Oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jiang; Techtmann, Stephen M.; Woo, Hannah L.

    Deep marine oil spills like the Deepwater Horizon (DWH) in the Gulf of Mexico have the potential to drastically impact marine systems. Crude oil contamination in marine systems remains a concern, especially for countries around the Mediterranean Sea with off shore oil production. The goal of this study was to investigate the response of indigenous microbial communities to crude oil in the deep Eastern Mediterranean Sea (E. Med.) water column and to minimize potential bias associated with storage and shifts in microbial community structure from sample storage. 16S rRNA amplicon sequencing was combined with GeoChip metagenomic analysis to monitor themore » microbial community changes to the crude oil and dispersant in on-ship microcosms set up immediately after water collection. After 3 days of incubation at 14 °C, the microbial communities from two different water depths: 824 m and 1210 m became dominated by well-known oil degrading bacteria. The archaeal population and the overall microbial community diversity drastically decreased. Similarly, GeoChip metagenomic analysis revealed a tremendous enrichment of genes related to oil biodegradation, which was consistent with the results from the DWH oil spill. These results highlight a rapid microbial adaption to oil contamination in the deep E. Med., and indicate strong oil biodegradation potentia« less

  14. Characterization of Microbial Communities in Gas Industry Pipelines

    PubMed Central

    Zhu, Xiang Y.; Lubeck, John; Kilbane, John J.

    2003-01-01

    Culture-independent techniques, denaturing gradient gel electrophoresis (DGGE) analysis, and random cloning of 16S rRNA gene sequences amplified from community DNA were used to determine the diversity of microbial communities in gas industry pipelines. Samples obtained from natural gas pipelines were used directly for DNA extraction, inoculated into sulfate-reducing bacterium medium, or used to inoculate a reactor that simulated a natural gas pipeline environment. The variable V2-V3 (average size, 384 bp) and V3-V6 (average size, 648 bp) regions of bacterial and archaeal 16S rRNA genes, respectively, were amplified from genomic DNA isolated from nine natural gas pipeline samples and analyzed. A total of 106 bacterial 16S rDNA sequences were derived from DGGE bands, and these formed three major clusters: beta and gamma subdivisions of Proteobacteria and gram-positive bacteria. The most frequently encountered bacterial species was Comamonas denitrificans, which was not previously reported to be associated with microbial communities found in gas pipelines or with microbially influenced corrosion. The 31 archaeal 16S rDNA sequences obtained in this study were all related to those of methanogens and phylogenetically fall into three clusters: order I, Methanobacteriales; order III, Methanomicrobiales; and order IV, Methanosarcinales. Further microbial ecology studies are needed to better understand the relationship among bacterial and archaeal groups and the involvement of these groups in the process of microbially influenced corrosion in order to develop improved ways of monitoring and controlling microbially influenced corrosion. PMID:12957923

  15. mcaGUI: microbial community analysis R-Graphical User Interface (GUI).

    PubMed

    Copeland, Wade K; Krishnan, Vandhana; Beck, Daniel; Settles, Matt; Foster, James A; Cho, Kyu-Chul; Day, Mitch; Hickey, Roxana; Schütte, Ursel M E; Zhou, Xia; Williams, Christopher J; Forney, Larry J; Abdo, Zaid

    2012-08-15

    Microbial communities have an important role in natural ecosystems and have an impact on animal and human health. Intuitive graphic and analytical tools that can facilitate the study of these communities are in short supply. This article introduces Microbial Community Analysis GUI, a graphical user interface (GUI) for the R-programming language (R Development Core Team, 2010). With this application, researchers can input aligned and clustered sequence data to create custom abundance tables and perform analyses specific to their needs. This GUI provides a flexible modular platform, expandable to include other statistical tools for microbial community analysis in the future. The mcaGUI package and source are freely available as part of Bionconductor at http://www.bioconductor.org/packages/release/bioc/html/mcaGUI.html

  16. Linking the development and functioning of a carnivorous pitcher plant's microbial digestive community.

    PubMed

    Armitage, David W

    2017-11-01

    Ecosystem development theory predicts that successional turnover in community composition can influence ecosystem functioning. However, tests of this theory in natural systems are made difficult by a lack of replicable and tractable model systems. Using the microbial digestive associates of a carnivorous pitcher plant, I tested hypotheses linking host age-driven microbial community development to host functioning. Monitoring the yearlong development of independent microbial digestive communities in two pitcher plant populations revealed a number of trends in community succession matching theoretical predictions. These included mid-successional peaks in bacterial diversity and metabolic substrate use, predictable and parallel successional trajectories among microbial communities, and convergence giving way to divergence in community composition and carbon substrate use. Bacterial composition, biomass, and diversity positively influenced the rate of prey decomposition, which was in turn positively associated with a host leaf's nitrogen uptake efficiency. Overall digestive performance was greatest during late summer. These results highlight links between community succession and ecosystem functioning and extend succession theory to host-associated microbial communities.

  17. Microbial community assembly and metabolic function during mammalian corpse decomposition.

    PubMed

    Metcalf, Jessica L; Xu, Zhenjiang Zech; Weiss, Sophie; Lax, Simon; Van Treuren, Will; Hyde, Embriette R; Song, Se Jin; Amir, Amnon; Larsen, Peter; Sangwan, Naseer; Haarmann, Daniel; Humphrey, Greg C; Ackermann, Gail; Thompson, Luke R; Lauber, Christian; Bibat, Alexander; Nicholas, Catherine; Gebert, Matthew J; Petrosino, Joseph F; Reed, Sasha C; Gilbert, Jack A; Lynne, Aaron M; Bucheli, Sibyl R; Carter, David O; Knight, Rob

    2016-01-08

    Vertebrate corpse decomposition provides an important stage in nutrient cycling in most terrestrial habitats, yet microbially mediated processes are poorly understood. Here we combine deep microbial community characterization, community-level metabolic reconstruction, and soil biogeochemical assessment to understand the principles governing microbial community assembly during decomposition of mouse and human corpses on different soil substrates. We find a suite of bacterial and fungal groups that contribute to nitrogen cycling and a reproducible network of decomposers that emerge on predictable time scales. Our results show that this decomposer community is derived primarily from bulk soil, but key decomposers are ubiquitous in low abundance. Soil type was not a dominant factor driving community development, and the process of decomposition is sufficiently reproducible to offer new opportunities for forensic investigations. Copyright © 2016, American Association for the Advancement of Science.

  18. Temperature sensitivity of soil microbial communities: An application of macromolecular rate theory to microbial respiration

    NASA Astrophysics Data System (ADS)

    Alster, Charlotte J.; Koyama, Akihiro; Johnson, Nels G.; Wallenstein, Matthew D.; von Fischer, Joseph C.

    2016-06-01

    There is compelling evidence that microbial communities vary widely in their temperature sensitivity and may adapt to warming through time. To date, this sensitivity has been largely characterized using a range of models relying on versions of the Arrhenius equation, which predicts an exponential increase in reaction rate with temperature. However, there is growing evidence from laboratory and field studies that observe nonmonotonic responses of reaction rates to variation in temperature, indicating that Arrhenius is not an appropriate model for quantitatively characterizing temperature sensitivity. Recently, Hobbs et al. (2013) developed macromolecular rate theory (MMRT), which incorporates thermodynamic temperature optima as arising from heat capacity differences between isoenzymes. We applied MMRT to measurements of respiration from soils incubated at different temperatures. These soils were collected from three grassland sites across the U.S. Great Plains and reciprocally transplanted, allowing us to isolate the effects of microbial community type from edaphic factors. We found that microbial community type explained roughly 30% of the variation in the CO2 production rate from the labile C pool but that temperature and soil type were most important in explaining variation in labile and recalcitrant C pool size. For six out of the nine soil × inoculum combinations, MMRT was superior to Arrhenius. The MMRT analysis revealed that microbial communities have distinct heat capacity values and temperature sensitivities sometimes independent of soil type. These results challenge the current paradigm for modeling temperature sensitivity of soil C pools and understanding of microbial enzyme dynamics.

  19. Warm-adapted microbial communities enhance their carbon-use efficiency in warmed soils

    NASA Astrophysics Data System (ADS)

    Rousk, Johannes; Frey, Serita

    2017-04-01

    Ecosystem models predict that climate warming will stimulate microbial decomposition of soil carbon (C), resulting in a positive feedback to increasing temperatures. The current generation of models assume that the temperature sensitivities of microbial processes do not respond to warming. However, recent studies have suggested that the ability of microbial communities to adapt to warming can lead both strengthened and weakened feedbacks. A further complication is that the balance between microbial C used for growth to that used for respiration - the microbial carbon-use efficiency (CUE) - also has been shown through both modelling and empirical study to respond to warming. In our study, we set out to assess how chronic warming (+5°C over ambient during 9 years) of a temperate hardwood forest floor (Harvard Forest LTER, USA) affected temperature sensitivities of microbial processes in soil. To do this, we first determined the temperature relationships for bacterial growth, fungal growth, and respiration in plots exposed to warmed or ambient conditions. Secondly, we parametrised the established temperature functions microbial growth and respiration with plot-specific measured soil temperature data at a hourly time-resolution over the course of 3 years to estimate the real-time variation of in situ microbial C production and respiration. To estimate the microbial CUE, we also divided the microbial C production with the sum of microbial C production and respiration as a proxy for substrate use. We found that warm-adapted bacterial and fungal communities both shifted their temperature relationships to grow at higher rates in warm conditions which coincided with reduced rates at cool conditions. As such, their optimal temperature (Topt), minimum temperature (Tmin) and temperature sensitivity (Q10) were all increased. The temperature relationship for temperature, in contrast, was only marginally shifted in the same direction, but at a much smaller effect size, with

  20. Microbial community profiles and microbial carbon cycling in Orca Basin

    NASA Astrophysics Data System (ADS)

    Hyde, A.; Teske, A.; Joye, S. B.; Montoya, J. P.; Nigro, L.

    2016-12-01

    Orca Basin is the largest seafloor brine pools in the world, covering over 400 km2 and reaching brine layer depths of 200 m. The brine pool contains water 8 times denser than the overlying seawater and is separated from the overlying water column by a sharp pycnocline that prevents vertical mixing. The transition from ambient seawater to brine occurs over 100 m [2150 to 2250 m] and is characterized by distinct changes in temperature, salinity, chemical conditions, oxygen, and organic matter concentration. The sharp brine-seawater interface results in a sharp pycnocline, which serves as a particle trap for sinking marine organic matter. Previous studies have used lipids to show that this organic-rich interface is host to an active microbial community which is potentially involved in deep-sea carbon remineralization and metal-cycling. Additionally, previous work on methane, ethane, and propane concentrations and 13C-isotopic signatures has also implicated the brine pool, as well as the interface, as sources for biogenic low-molecular weight hydrocarbons, resulting from the high concentration of suspended organic matter above and within the brine pool. Here we investigate the profiles of microbial community composition and metabolic potential in Orca Basin, ranging from seawater through the Orca Basin chemocline and into the deep Orca Basin brine. To characterize the microbial community and stratification, we used high-throughput bacterial and archaeal 16S rRNA gene sequencing of filtered water above, within, and below the Orca Basin chemocline. Our sequence data shows that three distinct and unique communities exist in the Orca Basin water column. We also use thermodynamic modeling of hydrocarbon degradation to investigate the favorability of C1-C3 hydrocarbon oxidation at the brine-seawater interface and the potential for Orca Basin to serve as a deep-sea hydrocarbon sink.

  1. Genome-reconstruction for eukaryotes from complex natural microbial communities.

    PubMed

    West, Patrick T; Probst, Alexander J; Grigoriev, Igor V; Thomas, Brian C; Banfield, Jillian F

    2018-04-01

    Microbial eukaryotes are integral components of natural microbial communities, and their inclusion is critical for many ecosystem studies, yet the majority of published metagenome analyses ignore eukaryotes. In order to include eukaryotes in environmental studies, we propose a method to recover eukaryotic genomes from complex metagenomic samples. A key step for genome recovery is separation of eukaryotic and prokaryotic fragments. We developed a k -mer-based strategy, EukRep, for eukaryotic sequence identification and applied it to environmental samples to show that it enables genome recovery, genome completeness evaluation, and prediction of metabolic potential. We used this approach to test the effect of addition of organic carbon on a geyser-associated microbial community and detected a substantial change of the community metabolism, with selection against almost all candidate phyla bacteria and archaea and for eukaryotes. Near complete genomes were reconstructed for three fungi placed within the Eurotiomycetes and an arthropod. While carbon fixation and sulfur oxidation were important functions in the geyser community prior to carbon addition, the organic carbon-impacted community showed enrichment for secreted proteases, secreted lipases, cellulose targeting CAZymes, and methanol oxidation. We demonstrate the broader utility of EukRep by reconstructing and evaluating relatively high-quality fungal, protist, and rotifer genomes from complex environmental samples. This approach opens the way for cultivation-independent analyses of whole microbial communities. © 2018 West et al.; Published by Cold Spring Harbor Laboratory Press.

  2. Microbial community assembly and evolution in subseafloor sediment.

    PubMed

    Starnawski, Piotr; Bataillon, Thomas; Ettema, Thijs J G; Jochum, Lara M; Schreiber, Lars; Chen, Xihan; Lever, Mark A; Polz, Martin F; Jørgensen, Bo B; Schramm, Andreas; Kjeldsen, Kasper U

    2017-03-14

    Bacterial and archaeal communities inhabiting the subsurface seabed live under strong energy limitation and have growth rates that are orders of magnitude slower than laboratory-grown cultures. It is not understood how subsurface microbial communities are assembled and whether populations undergo adaptive evolution or accumulate mutations as a result of impaired DNA repair under such energy-limited conditions. Here we use amplicon sequencing to explore changes of microbial communities during burial and isolation from the surface to the >5,000-y-old subsurface of marine sediment and identify a small core set of mostly uncultured bacteria and archaea that is present throughout the sediment column. These persisting populations constitute a small fraction of the entire community at the surface but become predominant in the subsurface. We followed patterns of genome diversity with depth in four dominant lineages of the persisting populations by mapping metagenomic sequence reads onto single-cell genomes. Nucleotide sequence diversity was uniformly low and did not change with age and depth of the sediment. Likewise, there was no detectable change in mutation rates and efficacy of selection. Our results indicate that subsurface microbial communities predominantly assemble by selective survival of taxa able to persist under extreme energy limitation.

  3. Cellulolytic potential under environmental changes in microbial communities from grassland litter

    DOE PAGES

    Berlemont, Renaud; Allison, Steven D.; Weihe, Claudia; ...

    2014-11-25

    We report that in many ecosystems, global changes are likely to profoundly affect microorganisms. In Southern California, changes in precipitation and nitrogen deposition may influence the composition and functional potential of microbial communities and their resulting ability to degrade plant material. To test whether such environmental changes impact the distribution of functional groups involved in leaf litter degradation, we determined how the genomic diversity of microbial communities in a semi-arid grassland ecosystem changed under reduced precipitation or increased N deposition. We monitored communities seasonally over a period of 2 years to place environmental change responses into the context of naturalmore » variation. Fungal and bacterial communities displayed strong seasonal patterns, Fungi being mostly detected during the dry season whereas Bacteria were common during wet periods. Most putative cellulose degraders were associated with 33 bacterial genera and predicted to constitute 18% of the microbial community. Precipitation reduction reduced bacterial abundance and cellulolytic potential whereas nitrogen addition did not affect the cellulolytic potential of the microbial community. Finally, we detected a strong correlation between the frequencies of genera of putative cellulose degraders and cellulase genes. Thus, microbial taxonomic composition was predictive of cellulolytic potential. This work provides a framework for how environmental changes affect microorganisms responsible for plant litter deconstruction.« less

  4. [Characteristics of microbial community and operation efficiency in biofilter process for drinking water purification].

    PubMed

    Xiang, Hong; Lü, Xi-Wu; Yang, Fei; Yin, Li-Hong; Zhu, Guang-Can

    2011-04-01

    In order to explore characteristics of microbial community and operation efficiency in biofilter (biologically-enhanced active filter and biological activated carbon filter) process for drinking water purification, Biolog and polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) techniques were applied to analyze the metabolic function and structure of microbial community developing in biofilters. Water quality parameters, such as NH; -N, NO; -N, permanganate index, UV254 and BDOC etc, were determined in inflow and outflow of biofilters for investigation of operation efficiency of the biofilters. The results show that metabolic capacity of microbial community of the raw water is reduced after the biofilters, which reflect that metabolically active microbial communities in the raw water can be intercepted by biofilters. After 6 months operation of biofilters, the metabolic profiles of microbial communities are similar between two kinds of biologically-enhanced active filters, and utilization of carbon sources of microbial communities in the two filters are 73.4% and 75.5%, respectively. The metabolic profiles of microbial communities in two biological activated carbon filters showed significant difference. The carbon source utilization rate of microbial community in granule-activated carbon filter is 79.6%, which is obviously higher than 53.8% of the rate in the columnar activated carbon filter (p < 0.01). The analysis results of PCR-SSCP indicate that microbial communities in each biofilter are variety, but the structure of dominant microorganisms is similar among different biofilters. The results also show that the packing materials had little effect on the structure and metabolic function of microbial community in biologically-enhanced active filters, and the difference between two biofilters for the water purification efficiency was not significant (p > 0.05). However, in biological activated carbon filters, granule-activated carbon is

  5. Alteration of soil microbial communities and water quality in restored wetlands

    USGS Publications Warehouse

    Bossio, D.A.; Fleck, J.A.; Scow, K.M.; Fujii, R.

    2006-01-01

    Land usage is a strong determinant of soil microbial community composition and activity, which in turn determine organic matter decomposition rates and decomposition products in soils. Microbial communities in permanently flooded wetlands, such as those created by wetland restoration on Sacramento-San Joaquin Delta islands in California, function under restricted aeration conditions that result in increasing anaerobiosis with depth. It was hypothesized that the change from agricultural management to permanently flooded wetland would alter microbial community composition, increase the amount and reactivity of dissolved organic carbon (DOC) compounds in Delta waters; and have a predominant impact on microbial communities as compared with the effects of other environmental factors including soil type and agricultural management. Based on phospholipid fatty acid (PLFA) analysis, active microbial communities of the restored wetlands were changed significantly from those of the agricultural fields, and wetland microbial communities varied widely with soil depth. The relative abundance of monounsaturated fatty acids decreased with increasing soil depth in both wetland and agricultural profiles, whereas branched fatty acids were relatively more abundant at all soil depths in wetlands as compared to agricultural fields. Decomposition conditions were linked to DOC quantity and quality using fatty acid functional groups to conclude that restricted aeration conditions found in the wetlands were strongly related to production of reactive carbon compounds. But current vegetation may have had an equally important role in determining DOC quality in restored wetlands. In a larger scale analysis, that included data from wetland and agricultural sites on Delta islands and data from two previous studies from the Sacramento Valley, an aeration gradient was defined as the predominant determinant of active microbial communities across soil types and land usage. ?? 2005 Elsevier Ltd. All

  6. Mathematical Modeling of Microbial Community Dynamics: A Methodological Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Hyun-Seob; Cannon, William R.; Beliaev, Alex S.

    Microorganisms in nature form diverse communities that dynamically change in structure and function in response to environmental variations. As a complex adaptive system, microbial communities show higher-order properties that are not present in individual microbes, but arise from their interactions. Predictive mathematical models not only help to understand the underlying principles of the dynamics and emergent properties of natural and synthetic microbial communities, but also provide key knowledge required for engineering them. In this article, we provide an overview of mathematical tools that include not only current mainstream approaches, but also less traditional approaches that, in our opinion, can bemore » potentially useful. We discuss a broad range of methods ranging from low-resolution supra-organismal to high-resolution individual-based modeling. Particularly, we highlight the integrative approaches that synergistically combine disparate methods. In conclusion, we provide our outlook for the key aspects that should be further developed to move microbial community modeling towards greater predictive power.« less

  7. Microbial community pattern detection in human body habitats via ensemble clustering framework.

    PubMed

    Yang, Peng; Su, Xiaoquan; Ou-Yang, Le; Chua, Hon-Nian; Li, Xiao-Li; Ning, Kang

    2014-01-01

    The human habitat is a host where microbial species evolve, function, and continue to evolve. Elucidating how microbial communities respond to human habitats is a fundamental and critical task, as establishing baselines of human microbiome is essential in understanding its role in human disease and health. Recent studies on healthy human microbiome focus on particular body habitats, assuming that microbiome develop similar structural patterns to perform similar ecosystem function under same environmental conditions. However, current studies usually overlook a complex and interconnected landscape of human microbiome and limit the ability in particular body habitats with learning models of specific criterion. Therefore, these methods could not capture the real-world underlying microbial patterns effectively. To obtain a comprehensive view, we propose a novel ensemble clustering framework to mine the structure of microbial community pattern on large-scale metagenomic data. Particularly, we first build a microbial similarity network via integrating 1920 metagenomic samples from three body habitats of healthy adults. Then a novel symmetric Nonnegative Matrix Factorization (NMF) based ensemble model is proposed and applied onto the network to detect clustering pattern. Extensive experiments are conducted to evaluate the effectiveness of our model on deriving microbial community with respect to body habitat and host gender. From clustering results, we observed that body habitat exhibits a strong bound but non-unique microbial structural pattern. Meanwhile, human microbiome reveals different degree of structural variations over body habitat and host gender. In summary, our ensemble clustering framework could efficiently explore integrated clustering results to accurately identify microbial communities, and provide a comprehensive view for a set of microbial communities. The clustering results indicate that structure of human microbiome is varied systematically across body

  8. Microbial community pattern detection in human body habitats via ensemble clustering framework

    PubMed Central

    2014-01-01

    Background The human habitat is a host where microbial species evolve, function, and continue to evolve. Elucidating how microbial communities respond to human habitats is a fundamental and critical task, as establishing baselines of human microbiome is essential in understanding its role in human disease and health. Recent studies on healthy human microbiome focus on particular body habitats, assuming that microbiome develop similar structural patterns to perform similar ecosystem function under same environmental conditions. However, current studies usually overlook a complex and interconnected landscape of human microbiome and limit the ability in particular body habitats with learning models of specific criterion. Therefore, these methods could not capture the real-world underlying microbial patterns effectively. Results To obtain a comprehensive view, we propose a novel ensemble clustering framework to mine the structure of microbial community pattern on large-scale metagenomic data. Particularly, we first build a microbial similarity network via integrating 1920 metagenomic samples from three body habitats of healthy adults. Then a novel symmetric Nonnegative Matrix Factorization (NMF) based ensemble model is proposed and applied onto the network to detect clustering pattern. Extensive experiments are conducted to evaluate the effectiveness of our model on deriving microbial community with respect to body habitat and host gender. From clustering results, we observed that body habitat exhibits a strong bound but non-unique microbial structural pattern. Meanwhile, human microbiome reveals different degree of structural variations over body habitat and host gender. Conclusions In summary, our ensemble clustering framework could efficiently explore integrated clustering results to accurately identify microbial communities, and provide a comprehensive view for a set of microbial communities. The clustering results indicate that structure of human microbiome is

  9. Molecular Analysis of Endolithic Microbial Communities in Volcanic Glasses

    NASA Astrophysics Data System (ADS)

    di Meo, C. A.; Giovannoni, S.; Fisk, M.

    2002-12-01

    Terrestrial and marine volcanic glasses become mineralogically and chemically altered, and in many cases this alteration has been attributed to microbial activity. We have used molecular techniques to study the resident microbial communities from three different volcanic environments that may be responsible for this crustal alteration. Total microbial DNA was extracted from rhyolite glass of the 7 million year old Rattlesnake Tuff in eastern Oregon. The DNA was amplified using the polymerase chain reaction (PCR) with bacterial primers targeting the 16S rRNA gene. This 16S rDNA was cloned and screened with restriction fragment length polymorphism (RFLP). Out of 89 total clones screened, 46 belonged to 13 different clone families containing two or more members, while 43 clones were unique. Sequences of eight clones representing the most dominant clone families in the library were 92 to 97% similar to soil bacterial species. In a separate study, young pillow basalts (<20 yrs old) from six different sites along the ridge axis at 9°N, East Pacific Rise were examined for microbial life. Total DNA was extracted from the basalt glass and screened for the presence of both bacteria and archaea using the PCR. Repeated attempts with different primer sets yielded no bacterial genes, whereas archaeal genes were quite abundant. A genetic fingerprinting technique, terminal restriction fragment length polymorphism (T-RFLP), was used to compare the archaeal community compositions among the six different basalts. Filtered deep-sea water samples (~15 L) were examined in parallel to identify any overlap between rock- and seawater-associated archaea. The six rock community profiles were quite similar to each other, and the background water communities were also similar, respectively. Both the rock and water communities shared the same dominant peak. To identify the T-RFLP peaks corresponding to the individual members of the rock and seawater communities, clone libraries of the archaeal

  10. Microbial community dynamics in Inferno Crater Lake, a thermally fluctuating geothermal spring

    PubMed Central

    Ward, Laura; Taylor, Michael W; Power, Jean F; Scott, Bradley J; McDonald, Ian R; Stott, Matthew B

    2017-01-01

    Understanding how microbial communities respond and adjust to ecosystem perturbation is often difficult to interpret due to multiple and often simultaneous variations in observed conditions. In this research, we investigated the microbial community dynamics of Inferno Crater Lake, an acidic geothermal spring in New Zealand with a unique thermal cycle that varies between 30 and 80 °C over a period of 40–60 days. Using a combination of next-generation sequencing, geochemical analysis and quantitative PCR we found that the microbial community composition was predominantly chemolithotrophic and strongly associated with the thermal cycle. At temperatures >65 °C, the microbial community was dominated almost exclusively by sulphur-oxidising archaea (Sulfolobus-like spp.). By contrast, at mesophilic temperatures the community structure was more mixed, comprising both archaea and bacteria but dominated primarily by chemolithotrophic sulphur and hydrogen oxidisers. Multivariate analysis of physicochemical data confirmed that temperature was the only significant variable associated with community turnover. This research contributes to our understanding of microbial community dynamics in variable environments, using a naturally alternating system as a model and extends our limited knowledge of acidophile ecology in geothermal habitats. PMID:28072418

  11. Microbial community dynamics in Inferno Crater Lake, a thermally fluctuating geothermal spring.

    PubMed

    Ward, Laura; Taylor, Michael W; Power, Jean F; Scott, Bradley J; McDonald, Ian R; Stott, Matthew B

    2017-05-01

    Understanding how microbial communities respond and adjust to ecosystem perturbation is often difficult to interpret due to multiple and often simultaneous variations in observed conditions. In this research, we investigated the microbial community dynamics of Inferno Crater Lake, an acidic geothermal spring in New Zealand with a unique thermal cycle that varies between 30 and 80 °C over a period of 40-60 days. Using a combination of next-generation sequencing, geochemical analysis and quantitative PCR we found that the microbial community composition was predominantly chemolithotrophic and strongly associated with the thermal cycle. At temperatures >65 °C, the microbial community was dominated almost exclusively by sulphur-oxidising archaea (Sulfolobus-like spp.). By contrast, at mesophilic temperatures the community structure was more mixed, comprising both archaea and bacteria but dominated primarily by chemolithotrophic sulphur and hydrogen oxidisers. Multivariate analysis of physicochemical data confirmed that temperature was the only significant variable associated with community turnover. This research contributes to our understanding of microbial community dynamics in variable environments, using a naturally alternating system as a model and extends our limited knowledge of acidophile ecology in geothermal habitats.

  12. Challenges in Bio-fabrication of Organoid Cultures.

    PubMed

    Peng, Weijie; Datta, Pallab; Wu, Yang; Dey, Madhuri; Ayan, Bugra; Dababneh, Amer; Ozbolat, Ibrahim T

    2018-06-01

    Three-dimensional (3D) organoids have shown advantages in cell culture over traditional two-dimensional (2D) culture, and have great potential in various applications of tissue engineering. However, there are limitations in current organoid fabrication technologies, such as uncontrolled size, poor reproductively, and inadequate complexity of organoids. In this chapter, we present the existing techniques and discuss the major challenges for 3D organoid biofabrication. Future perspectives on organoid bioprinting are also discussed, where bioprinting technologies are expected to make a major contribution in organoid fabrication, such as realizing mass production and constructing complex heterotypic tissues, and thus further advance the translational application of organoids in tissue engineering and regenerative medicine as well drug testing and pharmaceutics.

  13. 4D bioprinting: the next-generation technology for biofabrication enabled by stimuli-responsive materials.

    PubMed

    Li, Yi-Chen; Zhang, Yu Shrike; Akpek, Ali; Shin, Su Ryon; Khademhosseini, Ali

    2016-12-02

    Four-dimensional (4D) bioprinting, encompassing a wide range of disciplines including bioengineering, materials science, chemistry, and computer sciences, is emerging as the next-generation biofabrication technology. By utilizing stimuli-responsive materials and advanced three-dimensional (3D) bioprinting strategies, 4D bioprinting aims to create dynamic 3D patterned biological structures that can transform their shapes or behavior under various stimuli. In this review, we highlight the potential use of various stimuli-responsive materials for 4D printing and their extension into biofabrication. We first discuss the state of the art and limitations associated with current 3D printing modalities and their transition into the inclusion of the additional time dimension. We then suggest the potential use of different stimuli-responsive biomaterials as the bioink that may achieve 4D bioprinting where transformation of fabricated biological constructs can be realized. We finally conclude with future perspectives.

  14. Soil Microbial Community Successional Patterns during Forest Ecosystem Restoration ▿†

    PubMed Central

    Banning, Natasha C.; Gleeson, Deirdre B.; Grigg, Andrew H.; Grant, Carl D.; Andersen, Gary L.; Brodie, Eoin L.; Murphy, D. V.

    2011-01-01

    Soil microbial community characterization is increasingly being used to determine the responses of soils to stress and disturbances and to assess ecosystem sustainability. However, there is little experimental evidence to indicate that predictable patterns in microbial community structure or composition occur during secondary succession or ecosystem restoration. This study utilized a chronosequence of developing jarrah (Eucalyptus marginata) forest ecosystems, rehabilitated after bauxite mining (up to 18 years old), to examine changes in soil bacterial and fungal community structures (by automated ribosomal intergenic spacer analysis [ARISA]) and changes in specific soil bacterial phyla by 16S rRNA gene microarray analysis. This study demonstrated that mining in these ecosystems significantly altered soil bacterial and fungal community structures. The hypothesis that the soil microbial community structures would become more similar to those of the surrounding nonmined forest with rehabilitation age was broadly supported by shifts in the bacterial but not the fungal community. Microarray analysis enabled the identification of clear successional trends in the bacterial community at the phylum level and supported the finding of an increase in similarity to nonmined forest soil with rehabilitation age. Changes in soil microbial community structure were significantly related to the size of the microbial biomass as well as numerous edaphic variables (including pH and C, N, and P nutrient concentrations). These findings suggest that soil bacterial community dynamics follow a pattern in developing ecosystems that may be predictable and can be conceptualized as providing an integrated assessment of numerous edaphic variables. PMID:21724890

  15. Molecular ecology of hydrothermal vent microbial communities.

    PubMed

    Jeanthon, C

    2000-02-01

    The study of the structure and diversity of hydrothermal vent microbial communities has long been restricted to the morphological description of microorganisms and the use of enrichment culture-based techniques. Until recently the identification of the culturable fraction required the isolation of pure cultures followed by testing for multiple physiological and biochemical traits. However, peculiar inhabitants of the hydrothermal ecosystem such as the invertebrate endosymbionts and the dense microbial mat filaments have eluded laboratory cultivation. Substantial progress has been achieved in recent years in techniques for the identification of microorganisms in natural environments. Application of molecular approaches has revealed the existence of unique and previously unrecognized microorganisms. These have provided fresh insight into the ecology, diversity and evolution of mesophilic and thermophilic microbial communities from the deep-sea hydrothermal ecosystem. This review reports the main discoveries made through the introduction of these powerful techniques in the study of deep-sea hydrothermal vent microbiology.

  16. Reactivation of Deep Subsurface Microbial Community in Response to Methane or Methanol Amendment

    PubMed Central

    Rajala, Pauliina; Bomberg, Malin

    2017-01-01

    Microbial communities in deep subsurface environments comprise a large portion of Earth’s biomass, but the microbial activity in these habitats is largely unknown. Here, we studied how microorganisms from two isolated groundwater fractures at 180 and 500 m depths of the Outokumpu Deep Drillhole (Finland) responded to methane or methanol amendment, in the presence or absence of sulfate as an additional electron acceptor. Methane is a plausible intermediate in the deep subsurface carbon cycle, and electron acceptors such as sulfate are critical components for oxidation processes. In fact, the majority of the available carbon in the Outokumpu deep biosphere is present as methane. Methanol is an intermediate of methane oxidation, but may also be produced through degradation of organic matter. The fracture fluid samples were incubated in vitro with methane or methanol in the presence or absence of sulfate as electron acceptor. The metabolic response of microbial communities was measured by staining the microbial cells with fluorescent redox sensitive dye combined with flow cytometry, and DNA or cDNA-derived amplicon sequencing. The microbial community of the fracture zone at the 180 m depth was originally considerably more respiratory active and 10-fold more numerous (105 cells ml-1 at 180 m depth and 104 cells ml-1 at 500 m depth) than the community of the fracture zone at the 500 m. However, the dormant microbial community at the 500 m depth rapidly reactivated their transcription and respiration systems in the presence of methane or methanol, whereas in the shallower fracture zone only a small sub-population was able to utilize the newly available carbon source. In addition, the composition of substrate activated microbial communities differed at both depths from original microbial communities. The results demonstrate that OTUs representing minor groups of the total microbial communities play an important role when microbial communities face changes in

  17. Shifts in microbial community composition following surface application of dredged river sediments.

    PubMed

    Baniulyte, Dovile; Favila, Emmanuel; Kelly, John J

    2009-01-01

    Sediment input to the Illinois River has drastically decreased river depth and reduced habitats for aquatic organisms. Dredging is being used to remove sediment from the Illinois River, and the dredged sediment is being applied to the surface of a brownfield site in Chicago with the goal of revegetating the site. In order to determine the effects of this drastic habitat change on sediment microbial communities, we examined sediment physical, chemical, and microbial characteristics at the time of sediment application to the soil surface as well as 1 and 2 years after application. Microbial community biomass was determined by measurement of lipid phosphate. Microbial community composition was assessed using phospholipid fatty acid (PLFA) analysis, terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes, and clone library sequencing of 16S rRNA genes. Results indicated that the moisture content, organic carbon, and total nitrogen content of the sediment all decreased over time. Total microbial biomass did not change over the course of the study, but there were significant changes in the composition of the microbial communities. PLFA analysis revealed relative increases in fungi, actinomycetes, and Gram positive bacteria. T-RFLP analysis indicated a significant shift in bacterial community composition within 1 year of application, and clone library analysis revealed relative increases in Proteobacteria, Gemmatimonadetes, and Bacteriodetes and relative decreases in Acidobacteria, Spirochaetes, and Planctomycetes. These results provide insight into microbial community shifts following land application of dredged sediment.

  18. Considering the Lives of Microbes in Microbial Communities.

    PubMed

    Shank, Elizabeth A

    2018-01-01

    Over the last decades, sequencing technologies have transformed our ability to investigate the composition and functional capacity of microbial communities. Even so, critical questions remain about these complex systems that cannot be addressed by the bulk, community-averaged data typically provided by sequencing methods. In this Perspective, I propose that future advances in microbiome research will emerge from considering "the lives of microbes": we need to create methods to explicitly interrogate how microbes exist and interact in native-setting-like microenvironments. This approach includes developing approaches that expose the phenotypic heterogeneity of microbes; exploring the effects of coculture cues on cellular differentiation and metabolite production; and designing visualization systems that capture features of native microbial environments while permitting the nondestructive observation of microbial interactions over space and time with single-cell resolution.

  19. Microbial Communities Associated with Phosphorite-bearing Sediments

    NASA Astrophysics Data System (ADS)

    Zoss, R.; Bailey, J.; Flood, B.; Jones, D. S.

    2016-12-01

    Phosphorus is a limiting nutrient in the environment and is an important component of many biological molecules. Calcium phosphate mineral deposits known as phosphorites, are also the primary source of P for agriculture. Understanding phosphorite formation may improve management of P resources. However, the processes that mediate calcium phosphate mineral precipitation in certain marine pore waters remain poorly understood. Phosphogenesis occurs in sediments beneath some oceanic upwelling zones that harbor polyphosphate-accumulating giant sulfur bacteria (GSB). These bacteria may concentrate phosphate in sediment pore waters - creating supersaturated conditions with respect to apatite. However, the relationship between microbes and phosphogenesis is not fully resolved. To further study this relationship, we examined microbial communities from two sources: sediment cores recovered from the shelf of the Benguela region, and DNA extracted from washed phosphorites recovered from those same sediments. We used itag and clone library sequencing of the 16S rRNA gene to examine the microbial communities and their relationship with the environment. We found that many of our sediments shared large numbers of phylotypes with one another, and that the same metabolic guilds were represented at localities across the shelf. Sulfur-reducing bacteria and sulfur-oxidizing bacteria were abundant in our datasets. Phylotypes that are known to carry out nitrification and/or anammox (anaerobic ammonia oxidation) were also well-represented. Our phosphorite extraction, however, contained a distinct microbial community from those observed in the modern sediments. We observed both an enrichment of certain common microbial classes and a complete absence of others. These results could represent an ancient microbial assemblage that was present when the apatite precipitated. While these taxa may or may not have contributed to apatite precipitation, several groups represented in the phosphorite

  20. Taxonomical and functional microbial community selection in soybean rhizosphere

    PubMed Central

    Mendes, Lucas W; Kuramae, Eiko E; Navarrete, Acácio A; van Veen, Johannes A; Tsai, Siu M

    2014-01-01

    This study addressed the selection of the rhizospheric microbial community from the bulk soil reservoir under agricultural management of soybean in Amazon forest soils. We used a shotgun metagenomics approach to investigate the taxonomic and functional diversities of microbial communities in the bulk soil and in the rhizosphere of soybean plants and tested the validity of neutral and niche theories to explain the rhizosphere community assembly processes. Our results showed a clear selection at both taxonomic and functional levels operating in the assembly of the soybean rhizosphere community. The taxonomic analysis revealed that the rhizosphere community is a subset of the bulk soil community. Species abundance in rhizosphere fits the log-normal distribution model, which is an indicator of the occurrence of niche-based processes. In addition, the data indicate that the rhizosphere community is selected based on functional cores related to the metabolisms of nitrogen, iron, phosphorus and potassium, which are related to benefits to the plant, such as growth promotion and nutrition. The network analysis including bacterial groups and functions was less complex in rhizosphere, suggesting the specialization of some specific metabolic pathways. We conclude that the assembly of the microbial community in the rhizosphere is based on niche-based processes as a result of the selection power of the plant and other environmental factors. PMID:24553468

  1. Spartina alterniflora invasion alters soil microbial community composition and microbial respiration following invasion chronosequence in a coastal wetland of China

    PubMed Central

    Yang, Wen; Jeelani, Nasreen; Leng, Xin; Cheng, Xiaoli; An, Shuqing

    2016-01-01

    The role of exotic plants in regulating soil microbial community structure and activity following invasion chronosequence remains unclear. We investigated soil microbial community structure and microbial respiration following Spartina alterniflora invasion in a chronosequence of 6-, 10-, 17-, and 20-year-old by comparing with bare flat in a coastal wetland of China. S. alterniflora invasion significantly increased soil moisture and salinity, the concentrations of soil water-soluble organic carbon and microbial biomass carbon (MBC), the quantities of total and various types of phospholipid fatty acids (PLFAs), the fungal:bacterial PLFAs ratio and cumulative microbial respiration compared with bare flat. The highest MBC, gram-negative bacterial and saturated straight-chain PLFAs were found in 10-year-old S. alterniflora soil, while the greatest total PLFAs, bacterial and gram-positive bacterial PLFAs were found in 10- and 17-year-old S. alterniflora soils. The monounsaturated:branched PLFAs ratio declined, and cumulative microbial respiration on a per-unit-PLFAs increased following S. alterniflora invasion in the chronosequence. Our results suggest that S. alterniflora invasion significantly increased the biomass of soil various microbial groups and microbial respiration compared to bare flat soil by increasing soil available substrate, and modifying soil physiochemical properties. Soil microbial community reached the most enriched condition in the 10-year-old S. alterniflora community. PMID:27241173

  2. Microarray-Based Analysis of Subnanogram Quantities of Microbial Community DNAs by Using Whole-Community Genome Amplification†

    PubMed Central

    Wu, Liyou; Liu, Xueduan; Schadt, Christopher W.; Zhou, Jizhong

    2006-01-01

    Microarray technology provides the opportunity to identify thousands of microbial genes or populations simultaneously, but low microbial biomass often prevents application of this technology to many natural microbial communities. We developed a whole-community genome amplification-assisted microarray detection approach based on multiple displacement amplification. The representativeness of amplification was evaluated using several types of microarrays and quantitative indexes. Representative detection of individual genes or genomes was obtained with 1 to 100 ng DNA from individual or mixed genomes, in equal or unequal abundance, and with 1 to 500 ng community DNAs from groundwater. Lower concentrations of DNA (as low as 10 fg) could be detected, but the lower template concentrations affected the representativeness of amplification. Robust quantitative detection was also observed by significant linear relationships between signal intensities and initial DNA concentrations ranging from (i) 0.04 to 125 ng (r2 = 0.65 to 0.99) for DNA from pure cultures as detected by whole-genome open reading frame arrays, (ii) 0.1 to 1,000 ng (r2 = 0.91) for genomic DNA using community genome arrays, and (iii) 0.01 to 250 ng (r2 = 0.96 to 0.98) for community DNAs from ethanol-amended groundwater using 50-mer functional gene arrays. This method allowed us to investigate the oligotrophic microbial communities in groundwater contaminated with uranium and other metals. The results indicated that microorganisms containing genes involved in contaminant degradation and immobilization are present in these communities, that their spatial distribution is heterogeneous, and that microbial diversity is greatly reduced in the highly contaminated environment. PMID:16820490

  3. Microbial Community Profiles in Wastewaters from Onsite Wastewater Treatment Systems Technology

    PubMed Central

    Jałowiecki, Łukasz; Chojniak, Joanna Małgorzata; Dorgeloh, Elmar; Hegedusova, Berta; Ejhed, Helene; Magnér, Jörgen; Płaza, Grażyna Anna

    2016-01-01

    The aim of the study was to determine the potential of community-level physiological profiles (CLPPs) methodology as an assay for characterization of the metabolic diversity of wastewater samples and to link the metabolic diversity patterns to efficiency of select onsite biological wastewater facilities. Metabolic fingerprints obtained from the selected samples were used to understand functional diversity implied by the carbon substrate shifts. Three different biological facilities of onsite wastewater treatment were evaluated: fixed bed reactor (technology A), trickling filter/biofilter system (technology B), and aerated filter system (the fluidized bed reactor, technology C). High similarities of the microbial community functional structures were found among the samples from the three onsite wastewater treatment plants (WWTPs), as shown by the diversity indices. Principal components analysis (PCA) showed that the diversity and CLPPs of microbial communities depended on the working efficiency of the wastewater treatment technologies. This study provided an overall picture of microbial community functional structures of investigated samples in WWTPs and discerned the linkages between microbial communities and technologies of onsite WWTPs used. The results obtained confirmed that metabolic profiles could be used to monitor treatment processes as valuable biological indicators of onsite wastewater treatment technologies efficiency. This is the first step toward understanding relations of technology types with microbial community patterns in raw and treated wastewaters. PMID:26807728

  4. Root controls on soil microbial community structure in forest soils.

    PubMed

    Brant, Justin B; Myrold, David D; Sulzman, Elizabeth W

    2006-07-01

    We assessed microbial community composition as a function of altered above- and belowground inputs to soil in forest ecosystems of Oregon, Pennsylvania, and Hungary as part of a larger Detritus Input and Removal Treatment (DIRT) experiment. DIRT plots, which include root trenching, aboveground litter exclusion, and doubling of litter inputs, have been established in forested ecosystems in the US and Europe that vary with respect to dominant tree species, soil C content, N deposition rate, and soil type. This study used phospholipid fatty-acid (PLFA) analysis to examine changes in the soil microbial community size and composition in the mineral soil (0-10 cm) as a result of the DIRT treatments. At all sites, the PLFA profiles from the plots without roots were significantly different from all other treatments. PLFA analysis showed that the rootless plots generally contained larger quantities of actinomycete biomarkers and lower amounts of fungal biomarkers. At one of the sites in an old-growth coniferous forest, seasonal changes in PLFA profiles were also examined. Seasonal differences in soil microbial community composition were greater than treatment differences. Throughout the year, treatments without roots continued to have a different microbial community composition than the treatments with roots, although the specific PLFA biomarkers responsible for these differences varied by season. These data provide direct evidence that root C inputs exert a large control on microbial community composition in the three forested ecosystems studied.

  5. Plant community influence on soil microbial response after a wildfire in Sierra Nevada National Park (Spain).

    PubMed

    Bárcenas-Moreno, Gema; García-Orenes, Fuensanta; Mataix-Solera, Jorge; Mataix-Beneyto, Jorge

    2016-12-15

    Plant community influence on microbial response after fire has been studied in a Sierra Nevada National Park area affected by a wildfire in 2005. Two different plant communities adapted to different altitudes were selected to analyse possible differences on soil microbial recolonisation process after fire, in oak forest and high mountain shrub communities. Microbial abundance, activity and community composition were monitored to evaluate medium-term changes. Microbial abundance was studied by mean of microbial biomass carbon and plate count methods; microbial activity was analysed by microbial respiration and bacterial growth while microbial community composition was determined by analysing phospholipid fatty acid pattern. Under unburnt conditions oak forest showed higher nutrient content, pH and microbial abundance and activity values than the high mountain shrubs community. Different parameters studied showed different trends with time, highlighting important changes in microbial community composition in high mountain shrubs from first sampling to the second one. Post-fire recolonisation process was different depending on plant community studied. Highlighting fungal response and microbial activity were stimulated in burnt high mountain shrubs community whilst it was negatively affected in oak forest. Fire induced changes in oak forest were almost neutralized 20months after the fire, while high mountain shrubs community still showed fire-induced changes at the end of the study. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Microbial community dynamics in continuous microbial fuel cells fed with synthetic wastewater and pig slurry.

    PubMed

    Sotres, Ana; Tey, Laura; Bonmatí, August; Viñas, Marc

    2016-10-01

    Two-chambered microbial fuel cells (MFCs) operating with synthetic wastewater and pig slurry were assessed. Additionally, the use of 2-bromoethanesulfonate (BES-Inh) was studied. The synthetic wastewater-fed MFC (MFCSW) showed a maximum power density (PDmax) of 2138mWm(-3), and the addition of BES-Inh (10mM) did not show any improvement in its performance (PDmax=2078mWm(-3)). When pig slurry was used as feed (MFCPS), PDmax increased up to 5623mWm(-3). The microbial community composition was affected by the type of substrate used. While, Pseudomonadaceae and Clostridiaceae were the most representative families within the acetate-based medium, Flavobacteriaceae, Chitinophagaceae, Comamonadaceae and Nitrosomonadaceae were predominant when pig slurry was used as feed. Otherwise, only the Eubacterial microbial community composition was strongly modified when adding BES-Inh, thus leading to an enrichment of the Bacteroidetes phylum. Oppositely, the Archaeal community was less affected by the addition of BES-Inh, and Methanosarcina sp., arose as the predominant family in both situations. Despite all the differences in microbial communities, 6 operational taxonomic units (OTUs) belonging to Bacteroidetes (Porphyromonadaceae and Marinilabiaceae) and Firmicutes (Clostridiales) were found to be common to both MFCs, also for different contents of COD and N-NH4(+), and therefore could be considered as the bioanode core microbiome. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. The role of macrobiota in structuring microbial communities along rocky shores

    PubMed Central

    Gilbert, Jack A.; Gibbons, Sean M.

    2014-01-01

    Rocky shore microbial diversity presents an excellent system to test for microbial habitat specificity or generality, enabling us to decipher how common macrobiota shape microbial community structure. At two coastal locations in the northeast Pacific Ocean, we show that microbial composition was significantly different between inert surfaces, the biogenic surfaces that included rocky shore animals and an alga, and the water column plankton. While all sampled entities had a core of common OTUs, rare OTUs drove differences among biotic and abiotic substrates. For the mussel Mytilus californianus, the shell surface harbored greater alpha diversity compared to internal tissues of the gill and siphon. Strikingly, a 7-year experimental removal of this mussel from tidepools did not significantly alter the microbial community structure of microbes associated with inert surfaces when compared with unmanipulated tidepools. However, bacterial taxa associated with nitrate reduction had greater relative abundance with mussels present, suggesting an impact of increased animal-derived nitrogen on a subset of microbial metabolism. Because the presence of mussels did not affect the structure and diversity of the microbial community on adjacent inert substrates, microbes in this rocky shore environment may be predominantly affected through direct physical association with macrobiota. PMID:25337459

  8. Water regime history drives responses of soil Namib Desert microbial communities to wetting events

    NASA Astrophysics Data System (ADS)

    Frossard, Aline; Ramond, Jean-Baptiste; Seely, Mary; Cowan, Don A.

    2015-07-01

    Despite the dominance of microorganisms in arid soils, the structures and functional dynamics of microbial communities in hot deserts remain largely unresolved. The effects of wetting event frequency and intensity on Namib Desert microbial communities from two soils with different water-regime histories were tested over 36 days. A total of 168 soil microcosms received wetting events mimicking fog, light rain and heavy rainfall, with a parallel “dry condition” control. T-RFLP data showed that the different wetting events affected desert microbial community structures, but these effects were attenuated by the effects related to the long-term adaptation of both fungal and bacterial communities to soil origins (i.e. soil water regime histories). The intensity of the water pulses (i.e. the amount of water added) rather than the frequency of wetting events had greatest effect in shaping bacterial and fungal community structures. In contrast to microbial diversity, microbial activities (enzyme activities) showed very little response to the wetting events and were mainly driven by soil origin. This experiment clearly demonstrates the complexity of microbial community responses to wetting events in hyperarid hot desert soil ecosystems and underlines the dynamism of their indigenous microbial communities.

  9. Water regime history drives responses of soil Namib Desert microbial communities to wetting events.

    PubMed

    Frossard, Aline; Ramond, Jean-Baptiste; Seely, Mary; Cowan, Don A

    2015-07-21

    Despite the dominance of microorganisms in arid soils, the structures and functional dynamics of microbial communities in hot deserts remain largely unresolved. The effects of wetting event frequency and intensity on Namib Desert microbial communities from two soils with different water-regime histories were tested over 36 days. A total of 168 soil microcosms received wetting events mimicking fog, light rain and heavy rainfall, with a parallel "dry condition" control. T-RFLP data showed that the different wetting events affected desert microbial community structures, but these effects were attenuated by the effects related to the long-term adaptation of both fungal and bacterial communities to soil origins (i.e. soil water regime histories). The intensity of the water pulses (i.e. the amount of water added) rather than the frequency of wetting events had greatest effect in shaping bacterial and fungal community structures. In contrast to microbial diversity, microbial activities (enzyme activities) showed very little response to the wetting events and were mainly driven by soil origin. This experiment clearly demonstrates the complexity of microbial community responses to wetting events in hyperarid hot desert soil ecosystems and underlines the dynamism of their indigenous microbial communities.

  10. Microbial community functional structures in wastewater treatment plants as characterized by GeoChip.

    PubMed

    Wang, Xiaohui; Xia, Yu; Wen, Xianghua; Yang, Yunfeng; Zhou, Jizhong

    2014-01-01

    Biological WWTPs must be functionally stable to continuously and steadily remove contaminants which rely upon the activity of complex microbial communities. However, knowledge is still lacking in regard to microbial community functional structures and their linkages to environmental variables. To investigate microbial community functional structures of activated sludge in wastewater treatment plants (WWTPs) and to understand the effects of environmental factors on their structure. 12 activated sludge samples were collected from four WWTPs in Beijing. A comprehensive functional gene array named GeoChip 4.2 was used to determine the microbial functional genes involved in a variety of biogeochemical processes such as carbon, nitrogen, phosphorous and sulfur cycles, metal resistance, antibiotic resistance and organic contaminant degradation. High similarities of the microbial community functional structures were found among activated sludge samples from the four WWTPs, as shown by both diversity indices and the overlapped genes. For individual gene category, such as egl, amyA, lip, nirS, nirK, nosZ, ureC, ppx, ppk, aprA, dsrA, sox and benAB, there were a number of microorganisms shared by all 12 samples. Canonical correspondence analysis (CCA) showed that the microbial functional patterns were highly correlated with water temperature, dissolved oxygen (DO), ammonia concentrations and loading rate of chemical oxygen demand (COD). Based on the variance partitioning analyses (VPA), a total of 53% of microbial community variation from GeoChip data can be explained by wastewater characteristics (25%) and operational parameters (23%), respectively. This study provided an overall picture of microbial community functional structures of activated sludge in WWTPs and discerned the linkages between microbial communities and environmental variables in WWTPs.

  11. Manipulating soil microbial communities in extensive green roof substrates.

    PubMed

    Molineux, Chloe J; Connop, Stuart P; Gange, Alan C

    2014-09-15

    There has been very little investigation into the soil microbial community on green roofs, yet this below ground habitat is vital for ecosystem functioning. Green roofs are often harsh environments that would greatly benefit from having a healthy microbial system, allowing efficient nutrient cycling and a degree of drought tolerance in dry summer months. To test if green roof microbial communities could be manipulated, we added mycorrhizal fungi and a microbial mixture ('compost tea') to green roof rootzones, composed mainly of crushed brick or crushed concrete. The study revealed that growing media type and depth play a vital role in the microbial ecology of green roofs. There are complex relationships between depth and type of substrate and the biomass of different microbial groups, with no clear pattern being observed. Following the addition of inoculants, bacterial groups tended to increase in biomass in shallower substrates, whereas fungal biomass change was dependent on depth and type of substrate. Increased fungal biomass was found in shallow plots containing more crushed concrete and deeper plots containing more crushed brick where compost tea (a live mixture of beneficial bacteria) was added, perhaps due to the presence of helper bacteria for arbuscular mycorrhizal fungi (AMF). Often there was not an additive affect of the microbial inoculations but instead an antagonistic interaction between the added AM fungi and the compost tea. This suggests that some species of microbes may not be compatible with others, as competition for limited resources occurs within the various substrates. The overall results suggest that microbial inoculations of green roof habitats are sustainable. They need only be done once for increased biomass to be found in subsequent years, indicating that this is a novel and viable method of enhancing roof community composition. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Constraint-based stoichiometric modelling from single organisms to microbial communities

    PubMed Central

    Olivier, Brett G.; Bruggeman, Frank J.; Teusink, Bas

    2016-01-01

    Microbial communities are ubiquitously found in Nature and have direct implications for the environment, human health and biotechnology. The species composition and overall function of microbial communities are largely shaped by metabolic interactions such as competition for resources and cross-feeding. Although considerable scientific progress has been made towards mapping and modelling species-level metabolism, elucidating the metabolic exchanges between microorganisms and steering the community dynamics remain an enormous scientific challenge. In view of the complexity, computational models of microbial communities are essential to obtain systems-level understanding of ecosystem functioning. This review discusses the applications and limitations of constraint-based stoichiometric modelling tools, and in particular flux balance analysis (FBA). We explain this approach from first principles and identify the challenges one faces when extending it to communities, and discuss the approaches used in the field in view of these challenges. We distinguish between steady-state and dynamic FBA approaches extended to communities. We conclude that much progress has been made, but many of the challenges are still open. PMID:28334697

  13. Life in the "plastisphere": microbial communities on plastic marine debris.

    PubMed

    Zettler, Erik R; Mincer, Tracy J; Amaral-Zettler, Linda A

    2013-07-02

    Plastics are the most abundant form of marine debris, with global production rising and documented impacts in some marine environments, but the influence of plastic on open ocean ecosystems is poorly understood, particularly for microbial communities. Plastic marine debris (PMD) collected at multiple locations in the North Atlantic was analyzed with scanning electron microscopy (SEM) and next-generation sequencing to characterize the attached microbial communities. We unveiled a diverse microbial community of heterotrophs, autotrophs, predators, and symbionts, a community we refer to as the "Plastisphere". Pits visualized in the PMD surface conformed to bacterial shapes suggesting active hydrolysis of the hydrocarbon polymer. Small-subunit rRNA gene surveys identified several hydrocarbon-degrading bacteria, supporting the possibility that microbes play a role in degrading PMD. Some Plastisphere members may be opportunistic pathogens (the authors, unpublished data) such as specific members of the genus Vibrio that dominated one of our plastic samples. Plastisphere communities are distinct from surrounding surface water, implying that plastic serves as a novel ecological habitat in the open ocean. Plastic has a longer half-life than most natural floating marine substrates, and a hydrophobic surface that promotes microbial colonization and biofilm formation, differing from autochthonous substrates in the upper layers of the ocean.

  14. Predicting taxonomic and functional structure of microbial communities in acid mine drainage

    PubMed Central

    Kuang, Jialiang; Huang, Linan; He, Zhili; Chen, Linxing; Hua, Zhengshuang; Jia, Pu; Li, Shengjin; Liu, Jun; Li, Jintian; Zhou, Jizhong; Shu, Wensheng

    2016-01-01

    Predicting the dynamics of community composition and functional attributes responding to environmental changes is an essential goal in community ecology but remains a major challenge, particularly in microbial ecology. Here, by targeting a model system with low species richness, we explore the spatial distribution of taxonomic and functional structure of 40 acid mine drainage (AMD) microbial communities across Southeast China profiled by 16S ribosomal RNA pyrosequencing and a comprehensive microarray (GeoChip). Similar environmentally dependent patterns of dominant microbial lineages and key functional genes were observed regardless of the large-scale geographical isolation. Functional and phylogenetic β-diversities were significantly correlated, whereas functional metabolic potentials were strongly influenced by environmental conditions and community taxonomic structure. Using advanced modeling approaches based on artificial neural networks, we successfully predicted the taxonomic and functional dynamics with significantly higher prediction accuracies of metabolic potentials (average Bray–Curtis similarity 87.8) as compared with relative microbial abundances (similarity 66.8), implying that natural AMD microbial assemblages may be better predicted at the functional genes level rather than at taxonomic level. Furthermore, relative metabolic potentials of genes involved in many key ecological functions (for example, nitrogen and phosphate utilization, metals resistance and stress response) were extrapolated to increase under more acidic and metal-rich conditions, indicating a critical strategy of stress adaptation in these extraordinary communities. Collectively, our findings indicate that natural selection rather than geographic distance has a more crucial role in shaping the taxonomic and functional patterns of AMD microbial community that readily predicted by modeling methods and suggest that the model-based approach is essential to better understand natural

  15. Predicting taxonomic and functional structure of microbial communities in acid mine drainage.

    PubMed

    Kuang, Jialiang; Huang, Linan; He, Zhili; Chen, Linxing; Hua, Zhengshuang; Jia, Pu; Li, Shengjin; Liu, Jun; Li, Jintian; Zhou, Jizhong; Shu, Wensheng

    2016-06-01

    Predicting the dynamics of community composition and functional attributes responding to environmental changes is an essential goal in community ecology but remains a major challenge, particularly in microbial ecology. Here, by targeting a model system with low species richness, we explore the spatial distribution of taxonomic and functional structure of 40 acid mine drainage (AMD) microbial communities across Southeast China profiled by 16S ribosomal RNA pyrosequencing and a comprehensive microarray (GeoChip). Similar environmentally dependent patterns of dominant microbial lineages and key functional genes were observed regardless of the large-scale geographical isolation. Functional and phylogenetic β-diversities were significantly correlated, whereas functional metabolic potentials were strongly influenced by environmental conditions and community taxonomic structure. Using advanced modeling approaches based on artificial neural networks, we successfully predicted the taxonomic and functional dynamics with significantly higher prediction accuracies of metabolic potentials (average Bray-Curtis similarity 87.8) as compared with relative microbial abundances (similarity 66.8), implying that natural AMD microbial assemblages may be better predicted at the functional genes level rather than at taxonomic level. Furthermore, relative metabolic potentials of genes involved in many key ecological functions (for example, nitrogen and phosphate utilization, metals resistance and stress response) were extrapolated to increase under more acidic and metal-rich conditions, indicating a critical strategy of stress adaptation in these extraordinary communities. Collectively, our findings indicate that natural selection rather than geographic distance has a more crucial role in shaping the taxonomic and functional patterns of AMD microbial community that readily predicted by modeling methods and suggest that the model-based approach is essential to better understand natural

  16. Mineralogic control on abundance and diversity of surface-adherent microbial communities

    USGS Publications Warehouse

    Mauck, Brena S.; Roberts, Jennifer A.

    2007-01-01

    In this study, we investigated the role of mineral-bound P and Fe in defining microbial abundance and diversity in a carbon-rich groundwater. Field colonization experiments of initially sterile mineral surfaces were combined with community structure characterization of the attached microbial population. Silicate minerals containing varying concentrations of P (∼1000 ppm P) and Fe (∼4 wt % Fe 2 O3), goethite (FeOOH), and apatite [Ca5(PO4)3(OH)] were incubated for 14 months in three biogeochemically distinct zones within a petroleum-contaminated aquifer. Phospholipid fatty acid analysis of incubated mineral surfaces and groundwater was used as a measure of microbial community structure and biomass. Microbial biomass on minerals exhibited distinct trends as a function of mineralogy depending on the environment of incubation. In the carbon-rich, aerobic groundwater attached biomass did not correlate to the P- or Fe- content of the mineral. In the methanogenic groundwater, however, biomass was most abundant on P-containing minerals. Similarly, in the Fe-reducing groundwater a correlation between Fe-content and biomass was observed. The community structure of the mineral-adherent microbial population was compared to the native groundwater community. These two populations were significantly different regardless of mineralogy, suggesting differentiation of the planktonic community through attachment, growth, and death of colonizing cells. Biomarkers specific for dissimilatory Fe-reducing bacteria native to the aquifer were identified only on Fe-containing minerals in the Fe-reducing groundwater. These results demonstrate that the trace nutrient content of minerals affects both the abundance and diversity of surface-adherent microbial communities. This behavior may be a means to access limiting nutrients from the mineral, creating a niche for a particular microbial population. These results suggest that heterogeneity of microbial populations and their associated

  17. Microbial community redundancy in anaerobic digestion drives process recovery after salinity exposure.

    PubMed

    De Vrieze, Jo; Christiaens, Marlies E R; Walraedt, Diego; Devooght, Arno; Ijaz, Umer Zeeshan; Boon, Nico

    2017-03-15

    Anaerobic digestion of high-salinity wastewaters often results in process inhibition due to the susceptibility of the methanogenic archaea. The ability of the microbial community to deal with increased salinity levels is of high importance to ensure process perseverance or recovery after failure. The exact strategy of the microbial community to ensure process endurance is, however, often unknown. In this study, we investigated how the microbial community is able to recover process performance following a disturbance through the application of high-salinity molasses wastewater. After a stable start-up, methane production quickly decreased from 625 ± 17 to 232 ± 35 mL CH 4 L -1 d -1 with a simultaneous accumulation in volatile fatty acids up to 20.5 ± 1.4 g COD L -1 , indicating severe process disturbance. A shift in feedstock from molasses wastewater to waste activated sludge resulted in complete process recovery. However, the bacterial and archaeal communities did not return to their original composition as before the disturbance, despite similar process conditions. Microbial community diversity was recovered to similar levels as before disturbance, which indicates that the metabolic potential of the community was maintained. A mild increase in ammonia concentration after process recovery did not influence methane production, indicating a well-balanced microbial community. Hence, given the change in community composition following recovery after salinity disturbance, it can be assumed that microbial community redundancy was the major strategy to ensure the continuation of methane production, without loss of functionality or metabolic flexibility. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Succession in a microbial mat community: A gaian perspective

    NASA Astrophysics Data System (ADS)

    Stolz, J. F.

    The Gaia hypothesis originally proposed by James E. Lovelock states that the composition, oxidation-reduction state and temperature of the troposphere are actively regulated by the activities of the biota. The gaian concept has been extrapolated to include the composition of surface sediments through the process of biomineralization. The stratified microbial community dominated by the cyanobacterium Microcoleus chthonoplastes is actively involved in the deposition of laminated sediments at Laguna Figueroa, Baja California, Mexico. Unusually heavy rains in the winters of 1979 and 1980 flooded the evaporite flat with up to 3 meters of meteoric water and deposited 5 - 10 cm of allocthonous sediment. The composition of the microbial community changed as a succession of dominating microbial species ensued, ultimately leading to the recolonization of the surface sediment by the original Microcoleus-dominated community. The resiliency of bacterial communities is suggested to be an important mechanism of gaian control systems. Present address: Control and Energy Conversion Division, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, U.S.A.

  19. Microbial community controls on decomposition and soil carbon storage

    NASA Astrophysics Data System (ADS)

    Frey, S. D.

    2016-12-01

    Soil is one of the most diverse habitats on Earth and one of the least characterized in terms of the identification and ecological roles of soil organisms. Soils also contain the largest repository of organic C in the terrestrial biosphere and the activities of heterotrophic soil organisms are responsible for one of the largest annual fluxes of CO2 to the atmosphere. A fundamental controversy in ecosystem ecology is the degree to which identification of microbial taxa informs our ability to understand and model ecosystem-scale processes, such as soil carbon storage and fluxes. We have evidence that microbial identity does matter, particularly in a global change context where soil microorganisms experience selective pressures to adapt to changing environments. In particular, our work at the Harvard Forest Long-term Ecological Research (LTER) site demonstrates that the microbial community is fundamentally altered by global change stressors (climate warming, nitrogen deposition, biotic invasion) and that microbial taxa exposed to long-term environmental change exhibit an altered capacity to decompose organic matter. This talk will discuss the relative importance of changes in microbial community structure versus microbial physiology for soil organic matter degradation and stabilization.

  20. Microbial diversity and community structure in an antimony-rich tailings dump.

    PubMed

    Xiao, Enzong; Krumins, Valdis; Dong, Yiran; Xiao, Tangfu; Ning, Zengping; Xiao, Qingxiang; Sun, Weimin

    2016-09-01

    To assess the impact of antimony (Sb) on microbial community structure, 12 samples were taken from an Sb tailings pile in Guizhou Province, Southwest China. All 12 samples exhibited elevated Sb concentrations, but the mobile and bioaccessible fractions were small in comparison to total Sb concentrations. Besides the geochemical analyses, microbial communities inhabiting the tailing samples were characterized to investigate the interplay between the microorganisms and environmental factors in mine tailings. In all samples, Proteobacteria and Actinobacteria were the most dominant phyla. At the genus level, Thiobacillus, Limnobacter, Nocardioides, Lysobacter, Phormidium, and Kaistobacter demonstrated relatively high abundances. The two most abundant genera, Thiobacillus and Limnobacter, are characterized as sulfur-oxidizing bacteria and thiosulfate-oxidizing bacteria, respectively, while the genus Lysobacter contains arsenic (As)-resistant bacteria. Canonical correspondence analysis (CCA) indicates that TOC and the sulfate to sulfide ratio strongly shaped the microbial communities, suggesting the influence of the environmental factors in the indigenous microbial communities.

  1. Changes in microbial community structure in the wake of Hurricanes Katrina and Rita

    PubMed Central

    Amaral-Zettler, Linda A.; Rocca, Jennifer D.; LaMontagne, Michael G.; Dennett, Mark R.; Gast, Rebecca J.

    2009-01-01

    Hurricanes have the potential to alter the structures of coastal ecosystems and generate pathogen-laden floodwaters that threaten public health. To examine the impact of hurricanes on urban systems, we compared microbial community structures in samples collected after Hurricane Katrina and before and after Hurricane Rita. We extracted environmental DNA and sequenced small-subunit ribosomal RNA (SSU rRNA) gene clone libraries to survey microbial communities in floodwater, water and sediment samples collected from Lake Charles, Lake Pontchartrain, the 17th Street and Industrial Canals in New Orleans and raw sewage. Correspondence Analysis showed that microbial communities associated with sediments formed one cluster while communities associated with lake and Industrial Canal water formed a second. Communities associated with water from the 17th Street Canal and floodwaters collected in New Orleans showed similarity to communities in raw sewage and contained a number of sequences associated with possible pathogenic microbes. This suggests that a distinct microbial community developed in floodwaters following Hurricane Katrina and that microbial community structures as a whole might be sensitive indicators of ecosystem health and serve as “sentinels” of water quality in the environment. PMID:19174873

  2. Changes in microbial community structure in the wake of Hurricanes Katrina and Rita.

    PubMed

    Amaral-Zettler, Linda A; Rocca, Jennifer D; Lamontagne, Michael G; Dennett, Mark R; Gast, Rebecca J

    2008-12-15

    Hurricanes have the potential to alter the structures of coastal ecosystems and generate pathogen-laden floodwaters thatthreaten public health. To examine the impact of hurricanes on urban systems, we compared microbial community structures in samples collected after Hurricane Katrina and before and after Hurricane Rita. We extracted environmental DNA and sequenced small-subunit rRNA (SSU rRNA) gene clone libraries to survey microbial communities in floodwater, water, and sediment samples collected from Lake Charles, Lake Pontchartrain, the 17th Street and Industrial Canals in New Orleans, and raw sewage. Correspondence analysis showed that microbial communities associated with sediments formed one cluster while communities associated with lake and Industrial Canal water formed a second. Communities associated with water from the 17th Street Canal and floodwaters collected in New Orleans showed similarity to communities in raw sewage and contained a number of sequences associated with possible pathogenic microbes. This suggests that a distinct microbial community developed in floodwaters following Hurricane Katrina and that microbial community structures as a whole might be sensitive indicators of ecosystem health and serve as "sentinels" of water quality in the environment.

  3. Soil microbial communities of three grassland ecosystems in the Bayinbuluke, China.

    PubMed

    Shao, Keqiang; Gao, Guang

    2018-03-01

    The microbial community plays an important role in soil nutrient cycles and energy transformations in alpine grassland. In this study, we investigated the composition of the soil microbial community collected from alpine cold swamp meadow (ASM), alpine cold meadow (AM), and alpine cold desert steppe (ADS) within the Bayinbuluke alpine grassland, China, using Illumina amplicon sequencing. Of the 147 271 sequences obtained, 36 microbial phyla or groups were detected. The results showed that the ADS had lower microbial diversity than the ASM and AM, as estimated by the Shannon index. The Verrucomicrobia, Chloroflexi, Planctomycetes, Proteobacteria, and Actinobacteria were the predominant phyla in all 3 ecosystems. Particularly, Thaumarchaeota was only abundant in ASM, Bacteroidetes in AM, and Acidobacteria in ADS. Additionally, the predominant genus also differed with each ecosystem. Candidatus Nitrososphaera was predominant in ADS, the Pir4 lineage in ASM, and Sphingomonas in AM. Our results indicated that the soil microbial community structure was different for each grassland ecosystem in the Bayinbuluke.

  4. Microbial communities change in an anaerobic digestion after application of microbial electrolysis cells.

    PubMed

    Lee, Beom; Park, Jun-Gyu; Shin, Won-Beom; Tian, Dong-Jie; Jun, Hang-Bae

    2017-06-01

    Microbial electrolysis cells (MECs) are being studied to improve the efficiency of anaerobic digesters and biogas production. In the present study, we investigated the effects of electrochemical reactions in AD-MEC (anaerobic digester combined with MECs) on changes in the microbial communities of bulk sludge through 454-pyrosequencing analysis, as well as the effect of these changes on anaerobic digestion. Methanobacterium beijingense and Methanobacterium petrolearium were the dominant archaeal species in AD, while Methanosarcina thermophila and Methanobacterium formicicum were dominant in AD-MEC at steady-state. There were no substantial differences in dominant bacterial species. Clostridia class was more abundant than Bacteroidia class in both reactors. Compared to AD, AD-MEC showed a 40% increase in overall bacterial population, increasing the removal of organic matters and the conversion of volatile fatty acids (VFAs). Thus, the MEC reaction more effectively converts organic matters to VFAs and activates microbial communities favorable for methane production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Influences of space, soil, nematodes and plants on microbial community composition of chalk grassland soils.

    PubMed

    Yergeau, Etienne; Bezemer, T Martijn; Hedlund, Katarina; Mortimer, Simon R; Kowalchuk, George A; Van Der Putten, Wim H

    2010-08-01

    Microbial communities respond to a variety of environmental factors related to resources (e.g. plant and soil organic matter), habitat (e.g. soil characteristics) and predation (e.g. nematodes, protozoa and viruses). However, the relative contribution of these factors on microbial community composition is poorly understood. Here, we sampled soils from 30 chalk grassland fields located in three different chalk hill ridges of Southern England, using a spatially explicit sampling scheme. We assessed microbial communities via phospholipid fatty acid (PLFA) analyses and PCR-denaturing gradient gel electrophoresis (DGGE) and measured soil characteristics, as well as nematode and plant community composition. The relative influences of space, soil, vegetation and nematodes on soil microorganisms were contrasted using variation partitioning and path analysis. Results indicate that soil characteristics and plant community composition, representing habitat and resources, shape soil microbial community composition, whereas the influence of nematodes, a potential predation factor, appears to be relatively small. Spatial variation in microbial community structure was detected at broad (between fields) and fine (within fields) scales, suggesting that microbial communities exhibit biogeographic patterns at different scales. Although our analysis included several relevant explanatory data sets, a large part of the variation in microbial communities remained unexplained (up to 92% in some analyses). However, in several analyses, significant parts of the variation in microbial community structure could be explained. The results of this study contribute to our understanding of the relative importance of different environmental and spatial factors in driving the composition of soil-borne microbial communities. © 2009 Society for Applied Microbiology and Blackwell Publishing Ltd.

  6. Response of soil microbial communities and microbial interactions to long-term heavy metal contamination.

    PubMed

    Li, Xiaoqi; Meng, Delong; Li, Juan; Yin, Huaqun; Liu, Hongwei; Liu, Xueduan; Cheng, Cheng; Xiao, Yunhua; Liu, Zhenghua; Yan, Mingli

    2017-12-01

    Due to the persistence of metals in the ecosystem and their threat to all living organisms, effects of heavy metal on soil microbial communities were widely studied. However, little was known about the interactions among microorganisms in heavy metal-contaminated soils. In the present study, microbial communities in Non (CON), moderately (CL) and severely (CH) contaminated soils were investigated through high-throughput Illumina sequencing of 16s rRNA gene amplicons, and networks were constructed to show the interactions among microbes. Results showed that the microbial community composition was significantly, while the microbial diversity was not significantly affected by heavy metal contamination. Bacteria showed various response to heavy metals. Bacteria that positively correlated with Cd, e.g. Acidobacteria_Gp and Proteobacteria_thiobacillus, had more links between nodes and more positive interactions among microbes in CL- and CH-networks, while bacteria that negatively correlated with Cd, e.g. Longilinea, Gp2 and Gp4 had fewer network links and more negative interactions in CL and CH-networks. Unlike bacteria, members of the archaeal domain, i.e. phyla Crenarchaeota and Euryarchaeota, class Thermoprotei and order Thermoplasmatales showed only positive correlation with Cd and had more network interactions in CH-networks. The present study indicated that (i) the microbial community composition, as well as network interactions was shift to strengthen adaptability of microorganisms to heavy metal contamination, (ii) archaea were resistant to heavy metal contamination and may contribute to the adaption to heavy metals. It was proposed that the contribution might be achieved either by improving environment conditions or by cooperative interactions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Microbial community changes as a possible factor controlling carbon sequestration in subsoil

    NASA Astrophysics Data System (ADS)

    Strücker, Juliane; Jörgensen, Rainer Georg

    2015-04-01

    In order to gain more knowledge regarding the microbial community and their influence on carbon sequestration in subsoil two depth profiles with different soil organic carbon (SOC) concentrations were sampled. The SOC concentrations developed naturally due to deposition and erosion. This experiment offers the opportunity to investigate to which extend natural SOC availability or other subsoil specific conditions influence the composition and the functional diversity of the microbial community and in return if there is any evidence how the microbial community composition affects carbon sequestration under these conditions. Soil samples were taken at four different depths on two neighbouring arable sites; one Kolluvisol with high SOC concentrations (8-12 g/kg) throughout the profile and one Luvisol with low SOC concentrations (3-4 g/kg) below 30 cm depth. The multi substrate induced respiration (MSIR) method was used to identify shifts in the functional diversity of the microbial community along the depth profiles. Amino sugars Muramic Acid and Glucosamine were measured as indicators for bacterial and fungal residues and ergosterol was determined as marker for saprotrophic fungi. The results of the discriminant analysis of the respiration values obtained from the 17 substrates used in the MSIR show that the substrate use in subsoil is different from the substrate use in topsoil. The amino sugar analysis and the ratio of ergosterol to microbial biomass C indicate that the fungal dominance of the microbial community decreases with depth. The results from this study support previous findings, which also observed decreasing fungal dominance with depth. Furthermore the MSIR approach shows clearly that not only the composition of the microbial community but also their substrate use changes with depth. Thus, a different microbial community with altered substrate requirements could be an important reason for enhanced carbon sequestration in subsoil. The fact that the MSIR

  8. Microbial community related to lysozyme digestion process for boosting waste activated sludge biodegradability.

    PubMed

    Xin, Xiao-Dong; He, Jun-Guo; Qiu, Wei; Tang, Jian; Liu, Tian-Tian

    2015-01-01

    Waste activated sludge from a lab-scale sequencing batch reactor was used to investigate the potential relation of microbial community with lysozyme digestion process for sludge solubilization. The results showed the microbial community shifted conspicuously as sludge suffered lysozyme digestion. Soluble protein and polysaccharide kept an increasing trend in solution followed with succession of microbial community. The rise of lysozyme dosage augmented the dissimilarity among communities in various digested sludge. A negative relationship presented between community diversity and lysozyme digestion process under various lysozyme/TS from 0 to 240min (correlation coefficient R(2) exceeded 0.9). Pareto-Lorenz curves demonstrated that microbial community tended to be even with sludge disintegration process by lysozyme. Finally, with diversity (H) decrease and community distribution getting even, the SCOD/TCOD increased steadily in solution which suggested the sludge with high community diversity and uneven population distribution might have tremendous potential for improving their biodegradability by lysozyme digestion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Spatial Distribution of Viruses Associated with Planktonic and Attached Microbial Communities in Hydrothermal Environments

    PubMed Central

    Nunoura, Takuro; Kazama, Hiromi; Noguchi, Takuroh; Inoue, Kazuhiro; Akashi, Hironori; Yamanaka, Toshiro; Toki, Tomohiro; Yamamoto, Masahiro; Furushima, Yasuo; Ueno, Yuichiro; Yamamoto, Hiroyuki; Takai, Ken

    2012-01-01

    Viruses play important roles in marine surface ecosystems, but little is known about viral ecology and virus-mediated processes in deep-sea hydrothermal microbial communities. In this study, we examined virus-like particle (VLP) abundances in planktonic and attached microbial communities, which occur in physical and chemical gradients in both deep and shallow submarine hydrothermal environments (mixing waters between hydrothermal fluids and ambient seawater and dense microbial communities attached to chimney surface areas or macrofaunal bodies and colonies). We found that viruses were widely distributed in a variety of hydrothermal microbial habitats, with the exception of the interior parts of hydrothermal chimney structures. The VLP abundance and VLP-to-prokaryote ratio (VPR) in the planktonic habitats increased as the ratio of hydrothermal fluid to mixing water increased. On the other hand, the VLP abundance in attached microbial communities was significantly and positively correlated with the whole prokaryotic abundance; however, the VPRs were always much lower than those for the surrounding hydrothermal waters. This is the first report to show VLP abundance in the attached microbial communities of submarine hydrothermal environments, which presented VPR values significantly lower than those in planktonic microbial communities reported before. These results suggested that viral lifestyles (e.g., lysogenic prevalence) and virus interactions with prokaryotes are significantly different among the planktonic and attached microbial communities that are developing in the submarine hydrothermal environments. PMID:22210205

  10. Elevated carbon dioxide accelerates the spatial turnover of soil microbial communities

    DOE PAGES

    Deng, Ye; He, Zhili; Xiong, Jinbo; ...

    2015-10-23

    Although elevated CO 2 (eCO 2) significantly affects the -diversity, composition, function, interaction and dynamics of soil microbial communities at the local scale, little is known about eCO 2 impacts on the geographic distribution of micro-organisms regionally or globally. Here, we examined the -diversity of 110 soil microbial communities across six free air CO 2 enrichment (FACE) experimental sites using a high-throughput functional gene array. The -diversity of soil microbial communities was significantly (P<0.05) correlated with geographic distance under both CO 2 conditions, but declined significantly (P<0.05) faster at eCO 2 with a slope of -0.0250 than at ambient COmore » 2 (aCO 2) with a slope of -0.0231 although it varied within each individual site, indicating that the spatial turnover rate of soil microbial communities was accelerated under eCO 2 at a larger geographic scale (e.g. regionally). Both distance and soil properties significantly (P<0.05) contributed to the observed microbial -diversity. Furthermore, this study provides new hypotheses for further understanding their assembly mechanisms that may be especially important as global CO 2 continues to increase.« less

  11. Elevated carbon dioxide accelerates the spatial turnover of soil microbial communities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Ye; He, Zhili; Xiong, Jinbo

    Although elevated CO 2 (eCO 2) significantly affects the -diversity, composition, function, interaction and dynamics of soil microbial communities at the local scale, little is known about eCO 2 impacts on the geographic distribution of micro-organisms regionally or globally. Here, we examined the -diversity of 110 soil microbial communities across six free air CO 2 enrichment (FACE) experimental sites using a high-throughput functional gene array. The -diversity of soil microbial communities was significantly (P<0.05) correlated with geographic distance under both CO 2 conditions, but declined significantly (P<0.05) faster at eCO 2 with a slope of -0.0250 than at ambient COmore » 2 (aCO 2) with a slope of -0.0231 although it varied within each individual site, indicating that the spatial turnover rate of soil microbial communities was accelerated under eCO 2 at a larger geographic scale (e.g. regionally). Both distance and soil properties significantly (P<0.05) contributed to the observed microbial -diversity. Furthermore, this study provides new hypotheses for further understanding their assembly mechanisms that may be especially important as global CO 2 continues to increase.« less

  12. Microbial community and performance of slaughterhouse wastewater treatment filters.

    PubMed

    Stets, M I; Etto, R M; Galvão, C W; Ayub, R A; Cruz, L M; Steffens, M B R; Barana, A C

    2014-06-16

    The performance of anaerobic filter bioreactors (AFs) is influenced by the composition of the substrate, support medium, and the microbial species present in the sludge. In this study, the efficiency of a slaughterhouse effluent treatment using three AFs containing different support media was tested, and the microbial diversity was investigated by amplified ribosomal DNA restriction analysis and 16S rRNA gene sequencing. The physicochemical analysis of the AF systems tested suggested their feasibility, with rates of chemical oxygen demand removal of 72±8% in hydraulic retention times of 1 day. Analysis of pH, alkalinity, volatile acidity, total solids, total volatile solids, total Kjeldahl nitrogen, and the microbial community structures indicated high similarity among the three AFs. The composition of prokaryotic communities showed a prevalence of Proteobacteria (27.3%) and Bacteroidetes (18.4%) of the Bacteria domain and Methanomicrobiales (36.4%) and Methanosarcinales (35.3%) of the Archaea domain. Despite the high similarity of the microbial communities among the AFs, the reactor containing pieces of clay brick as a support medium presented the highest richness and diversity of bacterial and archaeal operational taxonomic units.

  13. Comparison of electrochemical performances and microbial community structures of two photosynthetic microbial fuel cells.

    PubMed

    Zheng, Wei; Cai, Teng; Huang, Manhong; Chen, Donghui

    2017-11-01

    Microbial fuel cells (MFCs) have attracted intensive interest for their power generation and pollutants removal characteristics. Electrochemical performances and community structures of two algae cathode photosynthetic MFCs were investigated and compared. Microbial consortia of these two MFCs were taken from wetland sediment (named SMFC) and an up-flow anaerobic wastewater treatment reactor (named UMFC). Maximum power density of the SMFC and UMFC achieved 202.9 ± 18.1 mW/m 2 and 158.2±15.1 mW/m 2 , respectively. The SMFC displayed higher columbic efficiency but lower chemical oxygen demand (COD) removal efficiency than that of UMFC. The results also revealed the addition of riboflavin (RF) and neutral red (NR) decreased the redox current of the SMFC but promoted that of UMFC. Community structure analysis showed the SMFC was dominated by photosynthetic genus Rhodopseudomonas (61.25%), while bacterial genera in the UMFC were more evenly distributed. The difference of electrochemical activities of the two MFCs was caused by the different roles of exoelectrogens such as Rhodopseudomonas spp. and Citrobacter spp. in the electron transfer process. Newly developed photosynthetic microbial fuel cells (PMFCs) provide a suitable process to generate power and remove pollutants. The consortia have a significant role in the performance and microbial community of the system. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. SteadyCom: Predicting microbial abundances while ensuring community stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Siu Hung Joshua; Simons, Margaret N.; Maranas, Costas D.

    Genome-scale metabolic modeling has become widespread for analyzing microbial metabolism. Extending this established paradigm to more complex microbial communities is emerging as a promising way to unravel the interactions and biochemical repertoire of these omnipresent systems. While several modeling techniques have been developed for microbial communities, little emphasis has been placed on the need to impose a time-averaged constant growth rate across all members for a community to ensure co-existence and stability. In the absence of this constraint, the faster growing organism will ultimately displace all other microbes in the community. This is particularly important for predicting steady-state microbiota compositionmore » as it imposes significant restrictions on the allowable community membership, composition and phenotypes. In this study, we introduce the SteadyCom optimization framework for predicting metabolic flux distributions consistent with the steady-state requirement. SteadyCom can be rapidly converged by iteratively solving linear programming (LP) problem and the number of iterations is independent of the number of organisms. A significant advantage of SteadyCom is compatibility with flux variability analysis. SteadyCom is first demonstrated for a community of four E. coli double auxotrophic mutants and is then applied to a gut microbiota model consisting of nine species, with representatives from the phyla Bacteroidetes, Firmicutes, Actinobacteria and Proteobacteria. In contrast to the direct use of FBA, SteadyCom is able to predict the change in species abundance in response to changes in diets with minimal additional imposed constraints on the model. Furthermore, by randomizing the uptake rates of microbes, an abundance profile with a good agreement to experimental gut microbiota is inferred. SteadyCom provides an important step towards the cross-cutting task of predicting the composition of a microbial community in a given environment.« less

  15. SteadyCom: Predicting microbial abundances while ensuring community stability

    DOE PAGES

    Chan, Siu Hung Joshua; Simons, Margaret N.; Maranas, Costas D.; ...

    2017-05-15

    Genome-scale metabolic modeling has become widespread for analyzing microbial metabolism. Extending this established paradigm to more complex microbial communities is emerging as a promising way to unravel the interactions and biochemical repertoire of these omnipresent systems. While several modeling techniques have been developed for microbial communities, little emphasis has been placed on the need to impose a time-averaged constant growth rate across all members for a community to ensure co-existence and stability. In the absence of this constraint, the faster growing organism will ultimately displace all other microbes in the community. This is particularly important for predicting steady-state microbiota compositionmore » as it imposes significant restrictions on the allowable community membership, composition and phenotypes. In this study, we introduce the SteadyCom optimization framework for predicting metabolic flux distributions consistent with the steady-state requirement. SteadyCom can be rapidly converged by iteratively solving linear programming (LP) problem and the number of iterations is independent of the number of organisms. A significant advantage of SteadyCom is compatibility with flux variability analysis. SteadyCom is first demonstrated for a community of four E. coli double auxotrophic mutants and is then applied to a gut microbiota model consisting of nine species, with representatives from the phyla Bacteroidetes, Firmicutes, Actinobacteria and Proteobacteria. In contrast to the direct use of FBA, SteadyCom is able to predict the change in species abundance in response to changes in diets with minimal additional imposed constraints on the model. Furthermore, by randomizing the uptake rates of microbes, an abundance profile with a good agreement to experimental gut microbiota is inferred. SteadyCom provides an important step towards the cross-cutting task of predicting the composition of a microbial community in a given environment.« less

  16. The microbial community structure in petroleum-contaminated sediments corresponds to geophysical signatures

    USGS Publications Warehouse

    Allen, J.P.; Atekwana, E.A.; Duris, J.W.; Werkema, D.D.; Rossbach, S.

    2007-01-01

    The interdependence between geoelectrical signatures at underground petroleum plumes and the structures of subsurface microbial communities was investigated. For sediments contaminated with light non-aqueousphase liquids, anomalous high conductivity values have been observed. Vertical changes in the geoelectrical properties of the sediments were concomitant with significant changes in the microbial community structures as determined by the construction and evaluation of 16S rRNA gene libraries. DNA sequencing of clones from four 16S rRNA gene libraries from different depths of a contaminated field site and two libraries from an uncontaminated background site revealed spatial heterogeneity in the microbial community structures. Correspondence analysis showed that the presence of distinct microbial populations, including the various hydrocarbon-degrading, syntrophic, sulfate-reducing, and dissimilatory-iron-reducing populations, was a contributing factor to the elevated geoelectrical measurements. Thus, through their growth and metabolic activities, microbial populations that have adapted to the use of petroleum as a carbon source can strongly influence their geophysical surroundings. Since changes in the geophysical properties of contaminated sediments parallel changes in the microbial community compositions, it is suggested that geoelectrical measurements can be a cost-efficient tool to guide microbiological sampling for microbial ecology studies during the monitoring of natural or engineered bioremediation processes. Copyright ?? 2007, American Society for Microbiology. All Rights Reserved.

  17. Gastric microbial community profiling reveals a dysbiotic cancer-associated microbiota

    PubMed Central

    Pereira-Marques, Joana; Pinto-Ribeiro, Ines; Costa, Jose L; Carneiro, Fatima; Machado, Jose C

    2018-01-01

    Objective Gastric carcinoma development is triggered by Helicobacter pylori. Chronic H. pylori infection leads to reduced acid secretion, which may allow the growth of a different gastric bacterial community. This change in the microbiome may increase aggression to the gastric mucosa and contribute to malignancy. Our aim was to evaluate the composition of the gastric microbiota in chronic gastritis and in gastric carcinoma. Design The gastric microbiota was retrospectively investigated in 54 patients with gastric carcinoma and 81 patients with chronic gastritis by 16S rRNA gene profiling, using next-generation sequencing. Differences in microbial composition of the two patient groups were assessed using linear discriminant analysis effect size. Associations between the most relevant taxa and clinical diagnosis were validated by real-time quantitative PCR. Predictive functional profiling of microbial communities was obtained with PICRUSt. Results The gastric carcinoma microbiota was characterised by reduced microbial diversity, by decreased abundance of Helicobacter and by the enrichment of other bacterial genera, mostly represented by intestinal commensals. The combination of these taxa into a microbial dysbiosis index revealed that dysbiosis has excellent capacity to discriminate between gastritis and gastric carcinoma. Analysis of the functional features of the microbiota was compatible with the presence of a nitrosating microbial community in carcinoma. The major observations were confirmed in validation cohorts from different geographic origins. Conclusions Detailed analysis of the gastric microbiota revealed for the first time that patients with gastric carcinoma exhibit a dysbiotic microbial community with genotoxic potential, which is distinct from that of patients with chronic gastritis. PMID:29102920

  18. Coupled Spatiotemporal Dynamics of Microbial Community Ecology, Biogeochemistry, and Hydrologic Mixing

    NASA Astrophysics Data System (ADS)

    Stegen, J.; Johnson, T. C.; Fredrickson, J.; Wilkins, M.; Konopka, A.; Nelson, W.; Arntzen, E.; Chrisler, W.; Chu, R. K.; Fansler, S.; Kennedy, D.; Resch, T.; Tfaily, M. M.

    2015-12-01

    The hyporheic zone (HZ) is a critical ecosystem component that links terrestrial, surface water, and groundwater ecosystems. A dominant feature of the HZ is groundwater-surface water mixing and the input of terrestrially—as well as aquatically—derived organic carbon. In many systems the HZ has a relatively small spatial extent, but in larger riverine systems groundwater-surface water mixing can occur 100s of meters beyond the surface water shoreline; we consider these more distal locations to be within the 'subsurface interaction zone' (SIZ) as they are beyond the traditional HZ. Microbial communities in the HZ and SIZ drive biogeochemical processes in these system components, yet relatively little is known about the ecological processes that drive HZ and SIZ microbial communities. Here, we applied ecological theory, aqueous biogeochemistry, DNA sequencing, and ultra-high resolution organic carbon profiling to field samples collected through space (400m spatial extent) and time (7 month temporal extent) within the Hanford Site 300 Area. These data streams were integrated to evaluate how the influence of groundwater-surface water mixing on microbial communities changes when moving from the HZ to the broader SIZ. Our results indicate that groundwater-surface water mixing (i) consistently stimulated heterotrophic respiration, but only above a threshold of surface water intrusion, (ii) did not stimulate denitrification, (iii) caused deterministic shifts in HZ microbial communities due to changes in organic carbon composition, and (iv) did not cause shifts in SIZ microbial communities. These results suggest that microbial communities and the biogeochemical processes they drive are impacted by groundwater-surface water mixing primarily in the HZ and to a lesser extent in the SIZ.

  19. Trajectories of Microbial Community Function in Response to Accelerated Remediation of Subsurface Metal Contaminants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Firestone, Mary

    Objectives of proposed research were to; Determine if the trajectories of microbial community composition and function following organic carbon amendment can be related to, and predicted by, key environmental determinants; Assess the relative importance of the characteristics of the indigenous microbial community, sediment, groundwater, and concentration of organic carbon amendment as the major determinants of microbial community functional response and bioremediation capacity; and Provide a fundamental understanding of the microbial community ecology underlying subsurface metal remediation requisite to successful application of accelerated remediation and long-term stewardship of DOE-IFC sites.

  20. Dynamics of microbial communities in untreated and autoclaved food waste anaerobic digesters.

    PubMed

    Blasco, Lucia; Kahala, Minna; Tampio, Elina; Ervasti, Satu; Paavola, Teija; Rintala, Jukka; Joutsjoki, Vesa

    2014-10-01

    This study describes the microbial community richness and dynamics of two semi-continuously stirred biogas reactors during a time-course study of 120 days. The reactors were fed with untreated and autoclaved (160 °C, 6.2 bar) food waste. The microbial community was analysed using a bacteria- and archaea-targeting 16S rRNA gene-based Terminal-Restriction Fragment Length Polymorphism (T-RFLP) approach. Compared with the archaeal community, the structures and functions of the bacterial community were found to be more complex and diverse. With the principal coordinates analysis it was possible to separate both microbial communities with 75 and 50% difference for bacteria and archaea, respectively, in the two reactors fed with the same waste but with different pretreatment. Despite the use of the same feeding material, anaerobic reactors showed a distinct community profile which could explain the differences in methane yield (2-17%). The community composition was highly dynamic for bacteria and archaea during the entire studied period. This study illustrates that microbial communities are dependent on feeding material and that correlations among specific bacterial and archaeal T-RFs can be established. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Shift in soil microbial communities with shrub encroachment in Inner Mongolia grasslands, China

    NASA Astrophysics Data System (ADS)

    Shen, H.; Li, H.; Zhang, J.; Hu, H.; Chen, L.; Zhu, Y.; Fang, J.

    2017-12-01

    The ongoing expansion of shrub encroachment into grasslands represents a unique form of land cover change. How this process affects soil microbial communities is poorly understood. In this study, we aim to assess the effects of shrub encroachment on soil microbial biomass, abundance and composition by comparing data between shrub patches and neighboring herb patches in shrub-encroached grasslands (SEGs) in Inner Mongolia, China. Fourteen SEG sites from two ecosystem types (typical and desert grasslands) were investigated. The phospholipid fatty acid (PLFA) method was used to analyze the composition and biomass of the soil microbial community. Our results showed that the top-soil microbial biomass and abundances of gram-negative bacteria, arbuscular mycorrhizal fungi, and actinomycetes were significantly higher in shrub patches than in herb patches in both typical and desert grasslands (P < 0.05). The fungi to bacteria ratio was significantly higher in shrub patches than in herb patches in desert grassland (P < 0.05). The microbial biomass was positively associated with mean annual precipitation, total nitrogen and available phosphorus, and negatively associated with mean annual temperature. Our results also indicated that the variation in microbial composition was largely explained by edaphic factors, followed by climate factors. In conclusion, shrub encroachment in Inner Mongolia grasslands has significantly influenced the structure and abundance of soil microbial communities, which makes the microbial communities toward a fresh organic carbon-based structure. This study highlights the importance of edaphic and climate factors in microbial community shifts in SEGs.

  2. Hydrolytic microbial communities in terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Manucharova, Natalia; Chernov, Timofey; Kolcova, Ekaterina; Zelezova, Alena; Lukacheva, Euhenia; Zenova, Galina

    2014-05-01

    Hydrolytic microbial communities in terrestrial ecosystems Manucharova N.A., Chernov T.I., Kolcova E.M., Zelezova A.D., Lukacheva E.G. Lomonosov Moscow State University, Russia Vertical differentiation of terrestrial biogeocenoses is conditioned by the formation of vertical tiers that differ considerably in the composition and structure of microbial communities. All the three tiers, phylloplane, litter and soil, are united by a single flow of organic matter, and are spatially separated successional stages of decomposition of organic substances. Decomposition of organic matter is mainly due to the activity of microorganisms producing enzymes - hydrolase and lyase - which destroy complex organic compounds. Application of molecular biological techniques (FISH) in environmental studies provides a more complete information concerning the taxonomic diversity and potential hydrolytic activity of microbial complexes of terrestrial ecosystems that exist in a wide range of environmental factors (moisture, temperature, redox potential, organic matter). The combination of two molecular biological techniques (FISH and DGGE-analysis of fragments of gene 16S rRNA total amplificate) enables an informative assessment of the differences in the structure of dominant and minor components of hydrolytic complexes formed in different tiers of terrestrial ecosystems. The functional activity of hydrolytic microbial complexes of terrestrial ecosystems is determined by the activity of dominant and minor components, which also have a high gross enzymatic activity. Degradation of biopolymers in the phylloplane is mainly due to the representatives of the Proteobacteria phylogenetic group (classes alpha and beta). In mineral soil horizons, the role of hydrolytic representatives of Firmicutes and Actinobacteria increases. Among the key environmental parameters that determine the functional activity of the hydrolytic (chitinolytic) complex of soil layer (moisture, nutrient supply, successional

  3. Antibacterial and antimitotic potential of bio-fabricated zinc oxide nanoparticles of Cochlospermum religiosum (L.).

    PubMed

    Mahendra, C; Murali, M; Manasa, G; Ponnamma, Pooja; Abhilash, M R; Lakshmeesha, T R; Satish, A; Amruthesh, K N; Sudarshana, M S

    2017-09-01

    Zinc oxide nanoparticles synthesized through eco-friendly approach has gained importance among researchers due to its broad applications. In the present work, hexagonal wurtzite shape nanoparticles (below 100 nm size) were obtained using aqueous leaf extract of Cochlospermum religiosum which was confirmed through X-Ray diffraction (XRD) analysis. The synthesized ZnO-NPs showed an absorption peak at 305 nm which is one of the characteristic features of ZnO-NPs.The bio-fabricated ZnO-NPs were of high purity with an average size of ∼76 nm analyzed through Dynamic Light Scattering (DLS) analysis supporting the findings of XRD. The SEM images confirmed the same with agglomeration of smaller nanoparticles. The composition of aqueous leaf extract and ZnO-NPs was explored with Fourier Transform Infrared Spectroscopy (FT-IR). The plant extract as well as bio-fabricated ZnO-NPs offered significant inhibition against Gram-positive (B. subtilis and Staph. aureus) and Gram-negative (P. aeruginosa and E. coli) bacteria. The minimum inhibitory concentration (MIC) of bio-fabricated ZnO-NPs and plant extract was found between 4.8 and 625 μg/ml against test pathogens, which was authenticated with live and dead cell analysis. Apart from antibacterial potentiality, antimitotic activity was also observed with a mitotic index of 75.42% (ID 50 0.40 μg mL -1 ) and 61.41% (ID 50 0.58 μg mL -1 ) in ZnO-NPs and plant extract, respectively. The results affirm that plant extract and its mediated ZnO-NPs possess biological properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The role of macrobiota in structuring microbial communities along rocky shores

    DOE PAGES

    Pfister, Catherine A.; Gilbert, Jack A.; Gibbons, Sean M.

    2014-10-16

    Rocky shore microbial diversity presents an excellent system to test for microbial habitat specificity or generality, enabling us to decipher how common macrobiota shape microbial community structure. At two coastal locations in the northeast Pacific Ocean, we show that microbial composition was significantly different between inert surfaces, the biogenic surfaces that included rocky shore animals and an alga, and the water column plankton. While all sampled entities had a core of common OTUs, rare OTUs drove differences among biotic and abiotic substrates. For the mussel Mytilus californianus, the shell surface harbored greater alpha diversity compared to internal tissues of themore » gill and siphon. Strikingly, a 7-year experimental removal of this mussel from tidepools did not significantly alter the microbial community structure of microbes associated with inert surfaces when compared with unmanipulated tidepools. However, bacterial taxa associated with nitrate reduction had greater relative abundance with mussels present, suggesting an impact of increased animal-derived nitrogen on a subset of microbial metabolism. Because the presence of mussels did not affect the structure and diversity of the microbial community on adjacent inert substrates, microbes in this rocky shore environment may be predominantly affected through direct physical association with macrobiota.« less

  5. Microbial Communities in Pre-Columbian Coprolites

    PubMed Central

    Santiago-Rodriguez, Tasha M.; Narganes-Storde, Yvonne M.; Chanlatte, Luis; Crespo-Torres, Edwin; Toranzos, Gary A.; Jimenez-Flores, Rafael; Hamrick, Alice; Cano, Raul J.

    2013-01-01

    The study of coprolites from earlier cultures represents a great opportunity to study an “unaltered” composition of the intestinal microbiota. To test this, pre-Columbian coprolites from two cultures, the Huecoid and Saladoid, were evaluated for the presence of DNA, proteins and lipids by cytochemical staining, human and/or dog-specific Bacteroides spp. by PCR, as well as bacteria, fungi and archaea using Terminal Restriction Fragment analyses. DNA, proteins and lipids, and human-specific Bacteroides DNA were detected in all coprolites. Multidimensional scaling analyses resulted in spatial arrangements of microbial profiles by culture, further supported by cluster analysis and ANOSIM. Differences between the microbial communities were positively correlated with culture, and SIMPER analysis indicated 68.8% dissimilarity between the Huecoid and Saladoid. Proteobacteria, Bacteroidetes and methanogens were found in all coprolite samples. Propionebacteria, Shewanella and lactic acid bacteria dominated in the Huecoid samples, while Acidobacteria, and peptococci were dominant in Saladoid samples. Yeasts, including Candida albicans and Crypotococcus spp. were found in all samples. Basidiomycetes were the most notable fungi in Huecoid samples while Ascomycetes predominated in Saladoid samples, suggesting differences in dietary habits. Our study provides an approach for the study of the microbial communities of coprolite samples from various cultures. PMID:23755194

  6. Mechanisms Controlling the Plant Diversity Effect on Soil Microbial Community Composition and Soil Microbial Diversity

    NASA Astrophysics Data System (ADS)

    Mellado Vázquez, P. G.; Lange, M.; Griffiths, R.; Malik, A.; Ravenek, J.; Strecker, T.; Eisenhauer, N.; Gleixner, G.

    2015-12-01

    Soil microorganisms are the main drivers of soil organic matter cycling. Organic matter input by living plants is the major energy and matter source for soil microorganisms, higher organic matter inputs are found in highly diverse plant communities. It is therefore relevant to understand how plant diversity alters the soil microbial community and soil organic matter. In a general sense, microbial biomass and microbial diversity increase with increasing plant diversity, however the mechanisms driving these interactions are not fully explored. Working with soils from a long-term biodiversity experiment (The Jena Experiment), we investigated how changes in the soil microbial dynamics related to plant diversity were explained by biotic and abiotic factors. Microbial biomass quantification and differentiation of bacterial and fungal groups was done by phospholipid fatty acid (PLFA) analysis; terminal-restriction fragment length polymorphism was used to determine the bacterial diversity. Gram negative (G-) bacteria predominated in high plant diversity; Gram positive (G+) bacteria were more abundant in low plant diversity and saprotrophic fungi were independent from plant diversity. The separation between G- and G+ bacteria in relation to plant diversity was governed by a difference in carbon-input related factors (e.g. root biomass and soil moisture) between plant diversity levels. Moreover, the bacterial diversity increased with plant diversity and the evenness of the PLFA markers decreased. Our results showed that higher plant diversity favors carbon-input related factors and this in turn favors the development of microbial communities specialized in utilizing new carbon inputs (i.e. G- bacteria), which are contributing to the export of new C from plants to soils.

  7. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes.

    PubMed

    Fierer, Noah; Leff, Jonathan W; Adams, Byron J; Nielsen, Uffe N; Bates, Scott Thomas; Lauber, Christian L; Owens, Sarah; Gilbert, Jack A; Wall, Diana H; Caporaso, J Gregory

    2012-12-26

    For centuries ecologists have studied how the diversity and functional traits of plant and animal communities vary across biomes. In contrast, we have only just begun exploring similar questions for soil microbial communities despite soil microbes being the dominant engines of biogeochemical cycles and a major pool of living biomass in terrestrial ecosystems. We used metagenomic sequencing to compare the composition and functional attributes of 16 soil microbial communities collected from cold deserts, hot deserts, forests, grasslands, and tundra. Those communities found in plant-free cold desert soils typically had the lowest levels of functional diversity (diversity of protein-coding gene categories) and the lowest levels of phylogenetic and taxonomic diversity. Across all soils, functional beta diversity was strongly correlated with taxonomic and phylogenetic beta diversity; the desert microbial communities were clearly distinct from the nondesert communities regardless of the metric used. The desert communities had higher relative abundances of genes associated with osmoregulation and dormancy, but lower relative abundances of genes associated with nutrient cycling and the catabolism of plant-derived organic compounds. Antibiotic resistance genes were consistently threefold less abundant in the desert soils than in the nondesert soils, suggesting that abiotic conditions, not competitive interactions, are more important in shaping the desert microbial communities. As the most comprehensive survey of soil taxonomic, phylogenetic, and functional diversity to date, this study demonstrates that metagenomic approaches can be used to build a predictive understanding of how microbial diversity and function vary across terrestrial biomes.

  8. Microbial communities mediating algal detritus turnover under anaerobic conditions

    PubMed Central

    Morrison, Jessica M.; Murphy, Chelsea L.; Baker, Kristina; Zamor, Richard M.; Nikolai, Steve J.; Wilder, Shawn; Elshahed, Mostafa S.

    2017-01-01

    Background Algae encompass a wide array of photosynthetic organisms that are ubiquitously distributed in aquatic and terrestrial habitats. Algal species often bloom in aquatic ecosystems, providing a significant autochthonous carbon input to the deeper anoxic layers in stratified water bodies. In addition, various algal species have been touted as promising candidates for anaerobic biogas production from biomass. Surprisingly, in spite of its ecological and economic relevance, the microbial community involved in algal detritus turnover under anaerobic conditions remains largely unexplored. Results Here, we characterized the microbial communities mediating the degradation of Chlorella vulgaris (Chlorophyta), Chara sp. strain IWP1 (Charophyceae), and kelp Ascophyllum nodosum (phylum Phaeophyceae), using sediments from an anaerobic spring (Zodlteone spring, OK; ZDT), sludge from a secondary digester in a local wastewater treatment plant (Stillwater, OK; WWT), and deeper anoxic layers from a seasonally stratified lake (Grand Lake O’ the Cherokees, OK; GL) as inoculum sources. Within all enrichments, the majority of algal biomass was metabolized within 13–16 weeks, and the process was accompanied by an increase in cell numbers and a decrease in community diversity. Community surveys based on the V4 region of the 16S rRNA gene identified different lineages belonging to the phyla Bacteroidetes, Proteobacteria (alpha, delta, gamma, and epsilon classes), Spirochaetes, and Firmicutes that were selectively abundant under various substrate and inoculum conditions. Within all kelp enrichments, the microbial communities structures at the conclusion of the experiment were highly similar regardless of the enrichment source, and were dominated by the genus Clostridium, or family Veillonellaceae within the Firmicutes. In all other enrichments the final microbial community was dependent on the inoculum source, rather than the type of algae utilized as substrate. Lineages enriched

  9. The Role of Microbial Community Composition in Controlling Soil Respiration Responses to Temperature

    PubMed Central

    Khachane, Amit; Dungait, Jennifer A. J.; Fraser, Fiona; Hopkins, David W.; Wookey, Philip A.; Singh, Brajesh K.; Freitag, Thomas E.; Hartley, Iain P.; Prosser, James I.

    2016-01-01

    Rising global temperatures may increase the rates of soil organic matter decomposition by heterotrophic microorganisms, potentially accelerating climate change further by releasing additional carbon dioxide (CO2) to the atmosphere. However, the possibility that microbial community responses to prolonged warming may modify the temperature sensitivity of soil respiration creates large uncertainty in the strength of this positive feedback. Both compensatory responses (decreasing temperature sensitivity of soil respiration in the long-term) and enhancing responses (increasing temperature sensitivity) have been reported, but the mechanisms underlying these responses are poorly understood. In this study, microbial biomass, community structure and the activities of dehydrogenase and β-glucosidase enzymes were determined for 18 soils that had previously demonstrated either no response or varying magnitude of enhancing or compensatory responses of temperature sensitivity of heterotrophic microbial respiration to prolonged cooling. The soil cooling approach, in contrast to warming experiments, discriminates between microbial community responses and the consequences of substrate depletion, by minimising changes in substrate availability. The initial microbial community composition, determined by molecular analysis of soils showing contrasting respiration responses to cooling, provided evidence that the magnitude of enhancing responses was partly related to microbial community composition. There was also evidence that higher relative abundance of saprophytic Basidiomycota may explain the compensatory response observed in one soil, but neither microbial biomass nor enzymatic capacity were significantly affected by cooling. Our findings emphasise the key importance of soil microbial community responses for feedbacks to global change, but also highlight important areas where our understanding remains limited. PMID:27798702

  10. The Role of Microbial Community Composition in Controlling Soil Respiration Responses to Temperature.

    PubMed

    Auffret, Marc D; Karhu, Kristiina; Khachane, Amit; Dungait, Jennifer A J; Fraser, Fiona; Hopkins, David W; Wookey, Philip A; Singh, Brajesh K; Freitag, Thomas E; Hartley, Iain P; Prosser, James I

    2016-01-01

    Rising global temperatures may increase the rates of soil organic matter decomposition by heterotrophic microorganisms, potentially accelerating climate change further by releasing additional carbon dioxide (CO2) to the atmosphere. However, the possibility that microbial community responses to prolonged warming may modify the temperature sensitivity of soil respiration creates large uncertainty in the strength of this positive feedback. Both compensatory responses (decreasing temperature sensitivity of soil respiration in the long-term) and enhancing responses (increasing temperature sensitivity) have been reported, but the mechanisms underlying these responses are poorly understood. In this study, microbial biomass, community structure and the activities of dehydrogenase and β-glucosidase enzymes were determined for 18 soils that had previously demonstrated either no response or varying magnitude of enhancing or compensatory responses of temperature sensitivity of heterotrophic microbial respiration to prolonged cooling. The soil cooling approach, in contrast to warming experiments, discriminates between microbial community responses and the consequences of substrate depletion, by minimising changes in substrate availability. The initial microbial community composition, determined by molecular analysis of soils showing contrasting respiration responses to cooling, provided evidence that the magnitude of enhancing responses was partly related to microbial community composition. There was also evidence that higher relative abundance of saprophytic Basidiomycota may explain the compensatory response observed in one soil, but neither microbial biomass nor enzymatic capacity were significantly affected by cooling. Our findings emphasise the key importance of soil microbial community responses for feedbacks to global change, but also highlight important areas where our understanding remains limited.

  11. Arctic gypsum endoliths: a biogeochemical characterization of a viable and active microbial community

    NASA Astrophysics Data System (ADS)

    Ziolkowski, L. A.; Mykytczuk, N. C. S.; Omelon, C. R.; Johnson, H.; Whyte, L. G.; Slater, G. F.

    2013-11-01

    Extreme environmental conditions such as those found in the polar regions on Earth are thought to test the limits of life. Microorganisms living in these environments often seek protection from environmental stresses such as high UV exposure, desiccation and rapid temperature fluctuations, with one protective habitat found within rocks. Such endolithic microbial communities, which often consist of bacteria, fungi, algae and lichens, are small-scale ecosystems comprised of both producers and consumers. However, the harsh environmental conditions experienced by polar endolithic communities are thought to limit microbial diversity and therefore the rate at which they cycle carbon. In this study, we characterized the microbial community diversity, turnover rate and microbe-mineral interactions of a gypsum-based endolithic community in the polar desert of the Canadian high Arctic. 16S/18S/23S rRNA pyrotag sequencing demonstrated the presence of a diverse community of phototrophic and heterotrophic bacteria, archaea, algae and fungi. Stable carbon isotope analysis of the viable microbial membranes, as phospholipid fatty acids and glycolipid fatty acids, confirmed the diversity observed by molecular techniques and indicated that present-day atmospheric carbon is assimilated into the microbial community biomass. Uptake of radiocarbon from atmospheric nuclear weapons testing during the 1960s into microbial lipids was used as a pulse label to determine that the microbial community turns over carbon on the order of 10 yr, equivalent to 4.4 g C m-2 yr-1 gross primary productivity. Scanning electron microscopy (SEM) micrographs indicated that mechanical weathering of gypsum by freeze-thaw cycles leads to increased porosity, which ultimately increases the habitability of the rock. In addition, while bacteria were adhered to these mineral surfaces, chemical analysis by micro-X-ray fluorescence (μ-XRF) spectroscopy suggests little evidence for microbial alteration of minerals

  12. Effects of Cd and Pb on soil microbial community structure and activities.

    PubMed

    Khan, Sardar; Hesham, Abd El-Latif; Qiao, Min; Rehman, Shafiqur; He, Ji-Zheng

    2010-02-01

    Soil contamination with heavy metals occurs as a result of both anthropogenic and natural activities. Heavy metals could have long-term hazardous impacts on the health of soil ecosystems and adverse influences on soil biological processes. Soil enzymatic activities are recognized as sensors towards any natural and anthropogenic disturbance occurring in the soil ecosystem. Similarly, microbial biomass carbon (MBC) is also considered as one of the important soil biological activities frequently influenced by heavy metal contamination. The polymerase chain reaction-denaturing gradient gel electrophoresis (DGGE) has recently been used to investigate changes in soil microbial community composition in response to environmental stresses. Soil microbial community structure and activities are difficult to elucidate using single monitoring approach; therefore, for a better insight and complete depiction of the soil microbial situation, different approaches need to be used. This study was conducted in a greenhouse for a period of 12 weeks to evaluate the changes in indigenous microbial community structure and activities in the soil amended with different application rates of Cd, Pb, and Cd/Pb mix. In a field environment, soil is contaminated with single or mixed heavy metals; so that, in this research, we used the selected metals in both single and mixed forms at different application rates and investigated their toxic effects on microbial community structure and activities, using soil enzyme assays, plate counting, and advanced molecular DGGE technique. Soil microbial activities, including acid phosphatase (ACP), urease (URE), and MBC, and microbial community structure were studied. A soil sample (0-20 cm) with an unknown history of heavy metal contamination was collected and amended with Cd, Pb, and Cd/Pb mix using the CdSO(4) and Pb(NO(3))(2) solutions at different application rates. The amended soils were incubated in the greenhouse at 25 +/- 4 degrees C and 60% water

  13. Microbial Community Responses to Glycine Addition in Kansas Prairie Soils

    NASA Astrophysics Data System (ADS)

    Bottos, E.; Roy Chowdhury, T.; White, R. A., III; Brislawn, C.; Fansler, S.; Kim, Y. M.; Metz, T. O.; McCue, L. A.; Jansson, J.

    2015-12-01

    Advances in sequencing technologies are rapidly expanding our abilities to unravel aspects of microbial community structure and function in complex systems like soil; however, characterizing the highly diverse communities is problematic, due primarily to challenges in data analysis. To tackle this problem, we aimed to constrain the microbial diversity in a soil by enriching for particular functional groups within a community through addition of "trigger substrates". Such trigger substrates, characterized by low molecular weight, readily soluble and diffusible in soil solution, representative of soil organic matter derivatives, would also be rapidly degradable. A relatively small energy investment to maintain the cell in a state of metabolic alertness for such substrates would be a better evolutionary strategy and presumably select for a cohort of microorganisms with the energetics and cellular machinery for utilization and growth. We chose glycine, a free amino acid (AA) known to have short turnover times (in the range of hours) in soil. As such, AAs are a good source of nitrogen and easily degradable, and can serve as building blocks for microbial proteins and other biomass components. We hypothesized that the addition of glycine as a trigger substrate will decrease microbial diversity and evenness, as taxa capable of metabolizing it are enriched in relation to those that are not. We tested this hypothesis by incubating three Kansas native prairie soils with glycine for 24 hours at 21 degree Celsius, and measured community level responses by 16S rRNA gene sequencing, metagenomics, and metatranscriptomics. Preliminary evaluation of 16S rRNA gene sequences revealed minor changes in bacterial community composition in response to glycine addition. We will also present data on functional gene abundance and expression. The results of these analyses will be useful in designing sequencing strategies aimed at dissecting and deciphering complex microbial communities.

  14. Methods for understanding microbial community structures and functions in microbial fuel cells: a review.

    PubMed

    Zhi, Wei; Ge, Zheng; He, Zhen; Zhang, Husen

    2014-11-01

    Microbial fuel cells (MFCs) employ microorganisms to recover electric energy from organic matter. However, fundamental knowledge of electrochemically active bacteria is still required to maximize MFCs power output for practical applications. This review presents microbiological and electrochemical techniques to help researchers choose the appropriate methods for the MFCs study. Pre-genomic and genomic techniques such as 16S rRNA based phylogeny and metagenomics have provided important information in the structure and genetic potential of electrode-colonizing microbial communities. Post-genomic techniques such as metatranscriptomics allow functional characterizations of electrode biofilm communities by quantifying gene expression levels. Isotope-assisted phylogenetic analysis can further link taxonomic information to microbial metabolisms. A combination of electrochemical, phylogenetic, metagenomic, and post-metagenomic techniques offers opportunities to a better understanding of the extracellular electron transfer process, which in turn can lead to process optimization for power output. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Microbial community structure of different electrode materials in constructed wetland incorporating microbial fuel cell.

    PubMed

    Wang, Junfeng; Song, Xinshan; Wang, Yuhui; Abayneh, Befkadu; Ding, Yi; Yan, Denghua; Bai, Junhong

    2016-12-01

    The microbial fuel cell coupled with constructed wetland (CW-MFC) microcosms were operated under fed-batch mode for evaluating the effect of electrode materials on bioelectricity generation and microbial community composition. Experimental results indicated that the bioenergy output in CW-MFC increased with the substrate concentration; maximum average voltage (177mV) was observed in CW-MFC with carbon fiber felt (CFF). In addition, the four different materials resulted in the formation of significantly different microbial community distribution around the anode electrode. The relative abundance of Proteobacteria in CFF and foamed nickel (FN) was significantly higher than that in stainless steel mesh (SSM) and graphite rod (GR) samples. Notably, the findings indicate that CW-MFC utilizing FN anode electrode could apparently improve relative abundance of Dechloromonas, which has been regarded as a denitrifying and phosphate accumulating microorganism. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Mapping and determinism of soil microbial community distribution across an agricultural landscape

    PubMed Central

    Constancias, Florentin; Terrat, Sébastien; Saby, Nicolas P A; Horrigue, Walid; Villerd, Jean; Guillemin, Jean-Philippe; Biju-Duval, Luc; Nowak, Virginie; Dequiedt, Samuel; Ranjard, Lionel; Chemidlin Prévost-Bouré, Nicolas

    2015-01-01

    Despite the relevance of landscape, regarding the spatial patterning of microbial communities and the relative influence of environmental parameters versus human activities, few investigations have been conducted at this scale. Here, we used a systematic grid to characterize the distribution of soil microbial communities at 278 sites across a monitored agricultural landscape of 13 km². Molecular microbial biomass was estimated by soil DNA recovery and bacterial diversity by 16S rRNA gene pyrosequencing. Geostatistics provided the first maps of microbial community at this scale and revealed a heterogeneous but spatially structured distribution of microbial biomass and diversity with patches of several hundreds of meters. Variance partitioning revealed that both microbial abundance and bacterial diversity distribution were highly dependent of soil properties and land use (total variance explained ranged between 55% and 78%). Microbial biomass and bacterial richness distributions were mainly explained by soil pH and texture whereas bacterial evenness distribution was mainly related to land management. Bacterial diversity (richness, evenness, and Shannon index) was positively influenced by cropping intensity and especially by soil tillage, resulting in spots of low microbial diversity in soils under forest management. Spatial descriptors also explained a small but significant portion of the microbial distribution suggesting that landscape configuration also shapes microbial biomass and bacterial diversity. PMID:25833770

  17. Mapping and determinism of soil microbial community distribution across an agricultural landscape.

    PubMed

    Constancias, Florentin; Terrat, Sébastien; Saby, Nicolas P A; Horrigue, Walid; Villerd, Jean; Guillemin, Jean-Philippe; Biju-Duval, Luc; Nowak, Virginie; Dequiedt, Samuel; Ranjard, Lionel; Chemidlin Prévost-Bouré, Nicolas

    2015-06-01

    Despite the relevance of landscape, regarding the spatial patterning of microbial communities and the relative influence of environmental parameters versus human activities, few investigations have been conducted at this scale. Here, we used a systematic grid to characterize the distribution of soil microbial communities at 278 sites across a monitored agricultural landscape of 13 km². Molecular microbial biomass was estimated by soil DNA recovery and bacterial diversity by 16S rRNA gene pyrosequencing. Geostatistics provided the first maps of microbial community at this scale and revealed a heterogeneous but spatially structured distribution of microbial biomass and diversity with patches of several hundreds of meters. Variance partitioning revealed that both microbial abundance and bacterial diversity distribution were highly dependent of soil properties and land use (total variance explained ranged between 55% and 78%). Microbial biomass and bacterial richness distributions were mainly explained by soil pH and texture whereas bacterial evenness distribution was mainly related to land management. Bacterial diversity (richness, evenness, and Shannon index) was positively influenced by cropping intensity and especially by soil tillage, resulting in spots of low microbial diversity in soils under forest management. Spatial descriptors also explained a small but significant portion of the microbial distribution suggesting that landscape configuration also shapes microbial biomass and bacterial diversity. © 2015 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  18. Microbial community variation and its relationship with nitrogen mineralization in historically altered forests

    Treesearch

    Jennifer M. Fraterrigo; Teri C. Balser; Monica g. Turner

    2006-01-01

    Past land use can impart soil legacies that have important implications for ecosystem function. Although these legacies have been linked with microbially mediated processes, little is known about the long-term influence of land use on soil microbial communities themselves. We examined whether historical land use affected soil microbial community composition (lipid...

  19. Linking microbial community structure to function in representative simulated systems.

    PubMed

    Marcus, Ian M; Wilder, Hailey A; Quazi, Shanin J; Walker, Sharon L

    2013-04-01

    Pathogenic bacteria are generally studied as a single strain under ideal growing conditions, although these conditions are not the norm in the environments in which pathogens typically proliferate. In this investigation, a representative microbial community along with Escherichia coli O157:H7, a model pathogen, was studied in three environments in which such a pathogen could be found: a human colon, a septic tank, and groundwater. Each of these systems was built in the lab in order to retain the physical/chemical and microbial complexity of the environments while maintaining control of the feed into the models. The microbial community in the colon was found to have a high percentage of bacteriodetes and firmicutes, while the septic tank and groundwater systems were composed mostly of proteobacteria. The introduction of E. coli O157:H7 into the simulated systems elicited a shift in the structures and phenotypic cell characteristics of the microbial communities. The fate and transport of the microbial community with E. coli O157:H7 were found to be significantly different from those of E. coli O157:H7 studied as a single isolate, suggesting that the behavior of the organism in the environment was different from that previously conceived. The findings in this study clearly suggest that to gain insight into the fate of pathogens, cells should be grown and analyzed under conditions simulating those of the environment in which the pathogens are present.

  20. Linking Microbial Community Structure to Function in Representative Simulated Systems

    PubMed Central

    Marcus, Ian M.; Wilder, Hailey A.; Quazi, Shanin J.

    2013-01-01

    Pathogenic bacteria are generally studied as a single strain under ideal growing conditions, although these conditions are not the norm in the environments in which pathogens typically proliferate. In this investigation, a representative microbial community along with Escherichia coli O157:H7, a model pathogen, was studied in three environments in which such a pathogen could be found: a human colon, a septic tank, and groundwater. Each of these systems was built in the lab in order to retain the physical/chemical and microbial complexity of the environments while maintaining control of the feed into the models. The microbial community in the colon was found to have a high percentage of bacteriodetes and firmicutes, while the septic tank and groundwater systems were composed mostly of proteobacteria. The introduction of E. coli O157:H7 into the simulated systems elicited a shift in the structures and phenotypic cell characteristics of the microbial communities. The fate and transport of the microbial community with E. coli O157:H7 were found to be significantly different from those of E. coli O157:H7 studied as a single isolate, suggesting that the behavior of the organism in the environment was different from that previously conceived. The findings in this study clearly suggest that to gain insight into the fate of pathogens, cells should be grown and analyzed under conditions simulating those of the environment in which the pathogens are present. PMID:23396331

  1. High taxonomic variability despite stable functional structure across microbial communities.

    PubMed

    Louca, Stilianos; Jacques, Saulo M S; Pires, Aliny P F; Leal, Juliana S; Srivastava, Diane S; Parfrey, Laura Wegener; Farjalla, Vinicius F; Doebeli, Michael

    2016-12-05

    Understanding the processes that are driving variation of natural microbial communities across space or time is a major challenge for ecologists. Environmental conditions strongly shape the metabolic function of microbial communities; however, other processes such as biotic interactions, random demographic drift or dispersal limitation may also influence community dynamics. The relative importance of these processes and their effects on community function remain largely unknown. To address this uncertainty, here we examined bacterial and archaeal communities in replicate 'miniature' aquatic ecosystems contained within the foliage of wild bromeliads. We used marker gene sequencing to infer the taxonomic composition within nine metabolic functional groups, and shotgun environmental DNA sequencing to estimate the relative abundances of these groups. We found that all of the bromeliads exhibited remarkably similar functional community structures, but that the taxonomic composition within individual functional groups was highly variable. Furthermore, using statistical analyses, we found that non-neutral processes, including environmental filtering and potentially biotic interactions, at least partly shaped the composition within functional groups and were more important than spatial dispersal limitation and demographic drift. Hence both the functional structure and taxonomic composition within functional groups of natural microbial communities may be shaped by non-neutral and roughly separate processes.

  2. Localized electron transfer rates and microelectrode-based enrichment of microbial communities within a phototrophic microbial mat.

    PubMed

    Babauta, Jerome T; Atci, Erhan; Ha, Phuc T; Lindemann, Stephen R; Ewing, Timothy; Call, Douglas R; Fredrickson, James K; Beyenal, Haluk

    2014-01-01

    Phototrophic microbial mats frequently exhibit sharp, light-dependent redox gradients that regulate microbial respiration on specific electron acceptors as a function of depth. In this work, a benthic phototrophic microbial mat from Hot Lake, a hypersaline, epsomitic lake located near Oroville in north-central Washington, was used to develop a microscale electrochemical method to study local electron transfer processes within the mat. To characterize the physicochemical variables influencing electron transfer, we initially quantified redox potential, pH, and dissolved oxygen gradients by depth in the mat under photic and aphotic conditions. We further demonstrated that power output of a mat fuel cell was light-dependent. To study local electron transfer processes, we deployed a microscale electrode (microelectrode) with tip size ~20 μm. To enrich a subset of microorganisms capable of interacting with the microelectrode, we anodically polarized the microelectrode at depth in the mat. Subsequently, to characterize the microelectrode-associated community and compare it to the neighboring mat community, we performed amplicon sequencing of the V1-V3 region of the 16S gene. Differences in Bray-Curtis beta diversity, illustrated by large changes in relative abundance at the phylum level, suggested successful enrichment of specific mat community members on the microelectrode surface. The microelectrode-associated community exhibited substantially reduced alpha diversity and elevated relative abundances of Prosthecochloris, Loktanella, Catellibacterium, other unclassified members of Rhodobacteraceae, Thiomicrospira, and Limnobacter, compared with the community at an equivalent depth in the mat. Our results suggest that local electron transfer to an anodically polarized microelectrode selected for a specific microbial population, with substantially more abundance and diversity of sulfur-oxidizing phylotypes compared with the neighboring mat community.

  3. Localized electron transfer rates and microelectrode-based enrichment of microbial communities within a phototrophic microbial mat

    PubMed Central

    Babauta, Jerome T.; Atci, Erhan; Ha, Phuc T.; Lindemann, Stephen R.; Ewing, Timothy; Call, Douglas R.; Fredrickson, James K.; Beyenal, Haluk

    2014-01-01

    Phototrophic microbial mats frequently exhibit sharp, light-dependent redox gradients that regulate microbial respiration on specific electron acceptors as a function of depth. In this work, a benthic phototrophic microbial mat from Hot Lake, a hypersaline, epsomitic lake located near Oroville in north-central Washington, was used to develop a microscale electrochemical method to study local electron transfer processes within the mat. To characterize the physicochemical variables influencing electron transfer, we initially quantified redox potential, pH, and dissolved oxygen gradients by depth in the mat under photic and aphotic conditions. We further demonstrated that power output of a mat fuel cell was light-dependent. To study local electron transfer processes, we deployed a microscale electrode (microelectrode) with tip size ~20 μm. To enrich a subset of microorganisms capable of interacting with the microelectrode, we anodically polarized the microelectrode at depth in the mat. Subsequently, to characterize the microelectrode-associated community and compare it to the neighboring mat community, we performed amplicon sequencing of the V1–V3 region of the 16S gene. Differences in Bray-Curtis beta diversity, illustrated by large changes in relative abundance at the phylum level, suggested successful enrichment of specific mat community members on the microelectrode surface. The microelectrode-associated community exhibited substantially reduced alpha diversity and elevated relative abundances of Prosthecochloris, Loktanella, Catellibacterium, other unclassified members of Rhodobacteraceae, Thiomicrospira, and Limnobacter, compared with the community at an equivalent depth in the mat. Our results suggest that local electron transfer to an anodically polarized microelectrode selected for a specific microbial population, with substantially more abundance and diversity of sulfur-oxidizing phylotypes compared with the neighboring mat community. PMID:24478768

  4. Proteomic Characterization of Central Pacific Oxygen Minimum Zone Microbial Communities

    NASA Astrophysics Data System (ADS)

    Saunders, J. K.; McIlvin, M. M.; Moran, D.; Held, N.; Futrelle, J.; Webb, E.; Santoro, A.; Dupont, C.; Saito, M.

    2018-05-01

    Microbial proteomic profiles are excellent for surveying vast expanses of pelagic ecosystems for links between microbial communities and the biogeochemical cycles they mediate. Data from the ProteOMZ expedition supports the utility of this method.

  5. Effects of Nutrient Enrichment on Microbial Communities and Carbon Cycling in Wetland Soils

    NASA Astrophysics Data System (ADS)

    Hartman, W.; Neubauer, S. C.; Richardson, C. J.

    2013-12-01

    Soil microbial communities are responsible for catalyzing biogeochemical transformations underlying critical wetland functions, including cycling of carbon (C) and nutrients, and emissions of greenhouse gasses (GHG). Alteration of nutrient availability in wetland soils may commonly occur as the result of anthropogenic impacts including runoff from human land uses in uplands, alteration of hydrology, and atmospheric deposition. However, the impacts of altered nutrient availability on microbial communities and carbon cycling in wetland soils are poorly understood. To assess these impacts, soil microbial communities and carbon cycling were determined in replicate experimental nutrient addition plots (control, +N, +P, +NP) across several wetland types, including pocosin peat bogs (NC), freshwater tidal marshes (GA), and tidal salt marshes (SC). Microbial communities were determined by pyrosequencing (Roche 454) extracted soil DNA, targeting both bacteria (16S rDNA) and fungi (LSU) at a depth of ca. 1000 sequences per plot. Wetland carbon cycling was evaluated using static chambers to determine soil GHG fluxes, and plant inclusion chambers were used to determine ecosystem C cycling. Soil bacterial communities responded to nutrient addition treatments in freshwater and tidal marshes, while fungal communities did not respond to treatments in any of our sites. We also compared microbial communities to continuous biogeochemical variables in soil, and found that bacterial community composition was correlated only with the content and availability of soil phosphorus, while fungi responded to phosphorus stoichiometry and soil pH. Surprisingly, we did not find a significant effect of our nutrient addition treatments on most metrics of carbon cycling. However, we did find that several metrics of soil carbon cycling appeared much more related to soil phosphorus than to nitrogen or soil carbon pools. Finally, while overall microbial community composition was weakly correlated with

  6. Counteraction of antibiotic production and degradation stabilizes microbial communities

    PubMed Central

    Kelsic, Eric D.; Zhao, Jeffrey; Vetsigian, Kalin; Kishony, Roy

    2015-01-01

    Summary A major challenge in theoretical ecology is understanding how natural microbial communities support species diversity1-8, and in particular how antibiotic producing, sensitive and resistant species coexist9-15. While cyclic “rock-paper-scissors” interactions can stabilize communities in spatial environments9-11, coexistence in unstructured environments remains an enigma12,16. Here, using simulations and analytical models, we show that the opposing actions of antibiotic production and degradation enable coexistence even in well-mixed environments. Coexistence depends on 3-way interactions where an antibiotic degrading species attenuates the inhibitory interactions between two other species. These 3-way interactions enable coexistence that is robust to substantial differences in inherent species growth rates and to invasion by “cheating” species that cease producing or degrading antibiotics. At least two antibiotics are required for stability, with greater numbers of antibiotics enabling more complex communities and diverse dynamical behaviors ranging from stable fixed-points to limit cycles and chaos. Together, these results show how multi-species antibiotic interactions can generate ecological stability in both spatial and mixed microbial communities, suggesting strategies for engineering synthetic ecosystems and highlighting the importance of toxin production and degradation for microbial biodiversity. PMID:25992546

  7. [Effect of long-term fertilization on microbial community functional diversity in black soil].

    PubMed

    Liu, Jing-xin; Chi, Feng-qin; Xu, Xiu-hong; Kuang, En-jun; Zhang, Jiu-ming; Su, Qing-rui; Zhou, Bao-ku

    2015-10-01

    In order to study the effects of long-term different fertilization on microbial community functional diversity in arable black. soil, we examined microbial metabolic activities in two soil la- yers (0-20 cm, 20-40 cm) under four treatments (CK, NPK, M, MNPK) from a 35-year continuous fertilization field at the Ministry of Agriculture Key Field Observation Station of Harbin Black Soil Ecology Environment using Biolog-ECO method. The results showed that: in the 0-20 cm soil layer, combined application of organic and inorganic fertilizer(MNPK) increased the rate of soil microbial carbon source utilization and community metabolism richness, diversity and dominance; In the 20-40 cm layer, these indices of the MNPK treatment was lower than that of the NPK treat- ment; while NPK treatment decreased soil microbial community metabolism evenness in both layers. Six groups of carbon sources used by soil microbes of all the treatments were different between the two soil layers, and the difference was significant among all treatments in each soil layer (P < 0.05) , while the variations among treatments were different in the two soil layers. Canonical correspondence analysis (CCA) showed that soil microbial community metabolic function of all the treatments was different between the two soil layers, and there was difference among all treatments in each soil layer, while the influences of soil nutrients on soil microbial community metabolic function of all treatments were similar in each soil layer. It was concluded that long-term different fertilization affected soil microbial community functional diversity in both tillage soil layer and down soil layers, and chemical fertilization alone had a larger influence on the microbial community functional diversity in the 20-40 cm layer.

  8. Effect of Increasing Nitrogen Deposition on Soil Microbial Communities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Shengmu; Xue, Kai; He, Zhili

    2010-05-17

    Increasing nitrogen deposition, increasing atmospheric CO2, and decreasing biodiversity are three main environmental changes occurring on a global scale. The BioCON (Biodiversity, CO2, and Nitrogen) ecological experiment site at the University of Minnesota's Cedar Creek Ecosystem Science Reserve started in 1997, to better understand how these changes would affect soil systems. To understand how increasing nitrogen deposition affects the microbial community diversity, heterogeneity, and functional structure impact soil microbial communities, 12 samples were collected from the BioCON plots in which nitrogenous fertilizer was added to simulate the effect of increasing nitrogen deposition and 12 samples from without added fertilizer. DNAmore » from the 24 samples was extracted using a freeze-grind protocol, amplified, labeled with a fluorescent dye, and then hybridized to GeoChip, a functional gene array containing probes for genes involved in N, S and C cycling, metal resistance and organic contaminant degradation. Detrended correspondence analysis (DCA) of all genes detected was performed to analyze microbial community patterns. The first two axes accounted for 23.5percent of the total variation. The samples fell into two major groups: fertilized and non-fertilized, suggesting that nitrogenous fertilizer had a significant impact on soil microbial community structure and diversity. The functional gene numbers detected in fertilized samples was less that detected in non-fertilizer samples. Functional genes involving in the N cycling were mainly discussed.« less

  9. Microbial Community Structure in the Rhizosphere of Rice Plants

    PubMed Central

    Breidenbach, Björn; Pump, Judith; Dumont, Marc G.

    2016-01-01

    The microbial community in the rhizosphere environment is critical for the health of land plants and the processing of soil organic matter. The objective of this study was to determine the extent to which rice plants shape the microbial community in rice field soil over the course of a growing season. Rice (Oryza sativa) was cultivated under greenhouse conditions in rice field soil from Vercelli, Italy and the microbial community in the rhizosphere of planted soil microcosms was characterized at four plant growth stages using quantitative PCR and 16S rRNA gene pyrotag analysis and compared to that of unplanted bulk soil. The abundances of 16S rRNA genes in the rice rhizosphere were on average twice that of unplanted bulk soil, indicating a stimulation of microbial growth in the rhizosphere. Soil environment type (i.e., rhizosphere versus bulk soil) had a greater effect on the community structure than did time (e.g., plant growth stage). Numerous phyla were affected by the presence of rice plants, but the strongest effects were observed for Gemmatimonadetes, Proteobacteria, and Verrucomicrobia. With respect to functional groups of microorganisms, potential iron reducers (e.g., Geobacter, Anaeromyxobacter) and fermenters (e.g., Clostridiaceae, Opitutaceae) were notably enriched in the rhizosphere environment. A Herbaspirillum species was always more abundant in the rhizosphere than bulk soil and was enriched in the rhizosphere during the early stage of plant growth. PMID:26793175

  10. Coastal urbanisation affects microbial communities on a dominant marine holobiont.

    PubMed

    Marzinelli, Ezequiel M; Qiu, Zhiguang; Dafforn, Katherine A; Johnston, Emma L; Steinberg, Peter D; Mayer-Pinto, Mariana

    2018-01-01

    Host-associated microbial communities play a fundamental role in the life of eukaryotic hosts. It is increasingly argued that hosts and their microbiota must be studied together as 'holobionts' to better understand the effects of environmental stressors on host functioning. Disruptions of host-microbiota interactions by environmental stressors can negatively affect host performance and survival. Substantial ecological impacts are likely when the affected hosts are habitat-forming species (e.g., trees, kelps) that underpin local biodiversity. In marine systems, coastal urbanisation via the addition of artificial structures is a major source of stress to habitat formers, but its effect on their associated microbial communities is unknown. We characterised kelp-associated microbial communities in two of the most common and abundant artificial structures in Sydney Harbour-pier-pilings and seawalls-and in neighbouring natural rocky reefs. The kelp Ecklonia radiata is the dominant habitat-forming species along 8000 km of the temperate Australian coast. Kelp-associated microbial communities on pilings differed significantly from those on seawalls and natural rocky reefs, possibly due to differences in abiotic (e.g., shade) and biotic (e.g., grazing) factors between habitats. Many bacteria that were more abundant on kelp on pilings belonged to taxa often associated with macroalgal diseases, including tissue bleaching in Ecklonia . There were, however, no differences in kelp photosynthetic capacity between habitats. The observed differences in microbial communities may have negative effects on the host by promoting fouling by macroorganisms or by causing and spreading disease over time. This study demonstrates that urbanisation can alter the microbiota of key habitat-forming species with potential ecological consequences.

  11. Soil microbial communities alter leaf chemistry and influence allelopathic potential among coexisting plant species.

    PubMed

    Meiners, Scott J; Phipps, Kelsey K; Pendergast, Thomas H; Canam, Thomas; Carson, Walter P

    2017-04-01

    While both plant-soil feedbacks and allelochemical interactions are key drivers of plant community dynamics, the potential for these two drivers to interact with each other remains largely unexplored. If soil microbes influence allelochemical production, this would represent a novel dimension of heterogeneity in plant-soil feedbacks. To explore the linkage between soil microbial communities and plant chemistry, we experimentally generated soil microbial communities and evaluated their impact on leaf chemical composition and allelopathic potential. Four native perennial old-field species (two each of Aster and Solidago) were grown in pairwise combination with each species' soil microbial community as well as a sterilized inoculum. We demonstrated unequivocally that variation in soil microbial communities altered leaf chemical fingerprints for all focal plant species and also changed their allelopathic potential. Soil microbes reduced allelopathic potential in bioassays by increasing germination 25-54% relative to sterile control soils in all four species. Plants grown with their own microbial communities had the lowest allelopathic potential, suggesting that allelochemical production may be lessened when growing with microbes from conspecifics. The allelopathic potential of plants grown in congener and confamilial soils was indistinguishable from each other, indicating an equivalent response to all non-conspecific microbial communities within these closely related genera. Our results clearly demonstrated that soil microbial communities cause changes in leaf tissue chemistry that altered their allelopathic properties. These findings represent a new mechanism of plant-soil feedbacks that may structure perennial plant communities over very small spatial scales that must be explored in much more detail.

  12. Vertically distinct microbial communities in the Mariana and Kermadec trenches

    PubMed Central

    Donaldson, Sierra; Osuntokun, Oladayo; Xia, Qing; Nelson, Alex; Blanton, Jessica; Allen, Eric E.; Church, Matthew J.; Bartlett, Douglas H.

    2018-01-01

    Hadal trenches, oceanic locations deeper than 6,000 m, are thought to have distinct microbial communities compared to those at shallower depths due to high hydrostatic pressures, topographical funneling of organic matter, and biogeographical isolation. Here we evaluate the hypothesis that hadal trenches contain unique microbial biodiversity through analyses of the communities present in the bottom waters of the Kermadec and Mariana trenches. Estimates of microbial protein production indicate active populations under in situ hydrostatic pressures and increasing adaptation to pressure with depth. Depth, trench of collection, and size fraction are important drivers of microbial community structure. Many putative hadal bathytypes, such as members related to the Marinimicrobia, Rhodobacteraceae, Rhodospirilliceae, and Aquibacter, are similar to members identified in other trenches. Most of the differences between the two trench microbiomes consists of taxa belonging to the Gammaproteobacteria whose distributions extend throughout the water column. Growth and survival estimates of representative isolates of these taxa under deep-sea conditions suggest that some members may descend from shallower depths and exist as a potentially inactive fraction of the hadal zone. We conclude that the distinct pelagic communities residing in these two trenches, and perhaps by extension other trenches, reflect both cosmopolitan hadal bathytypes and ubiquitous genera found throughout the water column. PMID:29621268

  13. Unique pioneer microbial communities exposed to volcanic sulfur dioxide

    PubMed Central

    Fujimura, Reiko; Kim, Seok-Won; Sato, Yoshinori; Oshima, Kenshiro; Hattori, Masahira; Kamijo, Takashi; Ohta, Hiroyuki

    2016-01-01

    Newly exposed volcanic substrates contain negligible amounts of organic materials. Heterotrophic organisms in newly formed ecosystems require bioavailable carbon and nitrogen that are provided from CO2 and N2 fixation by pioneer microbes. However, the knowledge of initial ecosystem developmental mechanisms, especially the association between microbial succession and environmental change, is still limited. This study reports the unique process of microbial succession in fresh basaltic ash, which was affected by long-term exposure to volcanic sulfur dioxide (SO2). Here we compared the microbial ecosystems among deposits affected by SO2 exposure at different levels. The results of metagenomic analysis suggested the importance of autotrophic iron-oxidizing bacteria, particularly those involved in CO2 and N2 fixation, in the heavily SO2 affected site. Changes in the chemical properties of the deposits after the decline of the SO2 impact led to an apparent decrease in the iron-oxidizer abundance and a possible shift in the microbial community structure. Furthermore, the community structure of the deposits that had experienced lower SO2 gas levels showed higher similarity with that of the control forest soil. Our results implied that the effect of SO2 exposure exerted a selective pressure on the pioneer community structure by changing the surrounding environment of the microbes. PMID:26791101

  14. Lateral gene transfer in a heavy metal-contaminated-groundwater microbial community

    DOE PAGES

    Hemme, Christopher L.; Green, Stefan J.; Rishishwar, Lavanya; ...

    2016-04-05

    Here, unraveling the drivers controlling the response and adaptation of biological communities to environmental change, especially anthropogenic activities, is a central but poorly understood issue in ecology and evolution. Comparative genomics studies suggest that lateral gene transfer (LGT) is a major force driving microbial genome evolution, but its role in the evolution of microbial communities remains elusive.

  15. Temperature sensitivity of soil respiration rates enhanced by microbial community response.

    PubMed

    Karhu, Kristiina; Auffret, Marc D; Dungait, Jennifer A J; Hopkins, David W; Prosser, James I; Singh, Brajesh K; Subke, Jens-Arne; Wookey, Philip A; Agren, Göran I; Sebastià, Maria-Teresa; Gouriveau, Fabrice; Bergkvist, Göran; Meir, Patrick; Nottingham, Andrew T; Salinas, Norma; Hartley, Iain P

    2014-09-04

    Soils store about four times as much carbon as plant biomass, and soil microbial respiration releases about 60 petagrams of carbon per year to the atmosphere as carbon dioxide. Short-term experiments have shown that soil microbial respiration increases exponentially with temperature. This information has been incorporated into soil carbon and Earth-system models, which suggest that warming-induced increases in carbon dioxide release from soils represent an important positive feedback loop that could influence twenty-first-century climate change. The magnitude of this feedback remains uncertain, however, not least because the response of soil microbial communities to changing temperatures has the potential to either decrease or increase warming-induced carbon losses substantially. Here we collect soils from different ecosystems along a climate gradient from the Arctic to the Amazon and investigate how microbial community-level responses control the temperature sensitivity of soil respiration. We find that the microbial community-level response more often enhances than reduces the mid- to long-term (90 days) temperature sensitivity of respiration. Furthermore, the strongest enhancing responses were observed in soils with high carbon-to-nitrogen ratios and in soils from cold climatic regions. After 90 days, microbial community responses increased the temperature sensitivity of respiration in high-latitude soils by a factor of 1.4 compared to the instantaneous temperature response. This suggests that the substantial carbon stores in Arctic and boreal soils could be more vulnerable to climate warming than currently predicted.

  16. Cheese rind communities provide tractable systems for in situ and in vitro studies of microbial diversity

    PubMed Central

    Wolfe, Benjamin E.; Button, Julie E.; Santarelli, Marcela; Dutton, Rachel J.

    2014-01-01

    SUMMARY Tractable microbial communities are needed to bridge the gap between observations of patterns of microbial diversity and mechanisms that can explain these patterns. We developed cheese rinds as model microbial communities by characterizing in situ patterns of diversity and by developing an in vitro system for community reconstruction. Sequencing of 137 different rind communities across 10 countries revealed 24 widely distributed and culturable genera of bacteria and fungi as dominant community members. Reproducible community types formed independent of geographic location of production. Intensive temporal sampling demonstrated that assembly of these communities is highly reproducible. Patterns of community composition and succession observed in situ can be recapitulated in a simple in vitro system. Widespread positive and negative interactions were identified between bacterial and fungal community members. Cheese rind microbial communities represent an experimentally tractable system for defining mechanisms that influence microbial community assembly and function. PMID:25036636

  17. Utilization of Alternate Chirality Enantiomers in Microbial Communities

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Hoover, Richard B.

    2010-01-01

    Our previous study of chirality led to interesting findings for some anaerobic extremophiles: the ability to metabolize substrates with alternate chirality enantiomers of amino acids and sugars. We have subsequently found that not just separate microbial species or strains but entire microbial communities have this ability. The functional division within a microbial community on proteo- and sugarlytic links was also reflected in a microbial diet with L-sugars and D-amino acids. Several questions are addressed in this paper. Why and when was this feature developed in a microbial world? Was it a secondary de novo adaptation in a bacterial world? Or is this a piece of genetic information that has been left in modern genomes as an atavism? Is it limited exclusively to prokaryotes, or does this ability also occur in eukaryotes? In this article, we have used a broader approach to study this phenomenon using anaerobic extremophilic strains from our laboratory collection. A series of experiments were performed on physiologically different groups of extremophilic anaerobes (pure and enrichment cultures). The following characteristics were studied: 1) the ability to grow on alternate chirality enantiomers -- L-sugars and D- amino acids; 2) Growth-inhibitory effect of alternate chirality enantiomers; 3) Stickland reaction with alternate chirality amino acids. The results of this research are presented in this paper.

  18. The Inter-Valley Soil Comparative Survey: the ecology of Dry Valley edaphic microbial communities

    PubMed Central

    Lee, Charles K; Barbier, Béatrice A; Bottos, Eric M; McDonald, Ian R; Cary, Stephen Craig

    2012-01-01

    Recent applications of molecular genetics to edaphic microbial communities of the McMurdo Dry Valleys and elsewhere have rejected a long-held belief that Antarctic soils contain extremely limited microbial diversity. The Inter-Valley Soil Comparative Survey aims to elucidate the factors shaping these unique microbial communities and their biogeography by integrating molecular genetic approaches with biogeochemical analyses. Although the microbial communities of Dry Valley soils may be complex, there is little doubt that the ecosystem's food web is relatively simple, and evidence suggests that physicochemical conditions may have the dominant role in shaping microbial communities. To examine this hypothesis, bacterial communities from representative soil samples collected in four geographically disparate Dry Valleys were analyzed using molecular genetic tools, including pyrosequencing of 16S rRNA gene PCR amplicons. Results show that the four communities are structurally and phylogenetically distinct, and possess significantly different levels of diversity. Strikingly, only 2 of 214 phylotypes were found in all four valleys, challenging a widespread assumption that the microbiota of the Dry Valleys is composed of a few cosmopolitan species. Analysis of soil geochemical properties indicated that salt content, alongside altitude and Cu2+, was significantly correlated with differences in microbial communities. Our results indicate that the microbial ecology of Dry Valley soils is highly localized and that physicochemical factors potentially have major roles in shaping the microbiology of ice-free areas of Antarctica. These findings hint at links between Dry Valley glacial geomorphology and microbial ecology, and raise previously unrecognized issues related to environmental management of this unique ecosystem. PMID:22170424

  19. Microbial community diversity, structure and assembly across oxygen gradients in meromictic marine lakes, Palau.

    PubMed

    Meyerhof, Matthew S; Wilson, Jesse M; Dawson, Michael N; Michael Beman, J

    2016-12-01

    Microbial communities consume oxygen, alter biogeochemistry and compress habitat in aquatic ecosystems, yet our understanding of these microbial-biogeochemical-ecological interactions is limited by a lack of systematic analyses of low-oxygen ecosystems. Marine lakes provide an ideal comparative system, as they range from well-mixed holomictic lakes to stratified, anoxic, meromictic lakes that vary in their vertical extent of anoxia. We examined microbial communities inhabiting six marine lakes and one ocean site using pyrosequencing of 16S rRNA genes. Microbial richness and evenness was typically highest in the anoxic monimolimnion of meromictic lakes, with common marine bacteria present in mixolimnion communities replaced by anoxygenic phototrophs, sulfate-reducing bacteria and SAR406 in the monimolimnion. These sharp changes in community structure were linked to environmental gradients (constrained variation in redundancy analysis = 68%-76%) - particularly oxygen and pH. However, in those lakes with the steepest oxygen gradients, salinity and dissolved nutrients were important secondary constraining variables, indicating that subtle but substantive differences in microbial communities occur within similar low-oxygen habitats. Deterministic processes were a dominant influence on whole community assembly (all nearest taxon index values >4), demonstrating that the strong environmental gradients present in meromictic marine lakes drive microbial community assembly. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. Habitat generalists and specialists in microbial communities across a terrestrial-freshwater gradient

    NASA Astrophysics Data System (ADS)

    Monard, C.; Gantner, S.; Bertilsson, S.; Hallin, S.; Stenlid, J.

    2016-11-01

    Observations of distributions of microorganisms and their differences in community composition across habitats provide evidence of biogeographical patterns. However, little is known about the processes controlling transfers across habitat gradients. By analysing the overall microbial community composition (bacteria, fungi, archaea) across a terrestrial-freshwater gradient, the aim of this study was to understand the spatial distribution patterns of populations and identify taxa capable of crossing biome borders. Barcoded 454 pyrosequencing of taxonomic gene markers was used to describe the microbial communities in adjacent soil, freshwater and sediment samples and study the role of biotic and spatial factors in shaping their composition. Few habitat generalists but a high number of specialists were detected indicating that microbial community composition was mainly regulated by species sorting and niche partitioning. Biotic interactions within microbial groups based on an association network underlined the importance of Actinobacteria, Sordariomycetes, Agaricomycetes and Nitrososphaerales in connecting among biomes. Even if dispersion seemed limited, the shore of the lake represented a transition area, allowing populations to cross the biome boundaries. In finding few broadly distributed populations, our study points to biome specialization within microbial communities with limited potential for dispersal and colonization of new habitats along the terrestrial-freshwater continuum.

  1. Cultivation Of Deep Subsurface Microbial Communities

    NASA Astrophysics Data System (ADS)

    Obrzut, Natalia; Casar, Caitlin; Osburn, Magdalena R.

    2018-01-01

    The potential habitability of surface environments on other planets in our solar system is limited by exposure to extreme radiation and desiccation. In contrast, subsurface environments may offer protection from these stressors and are potential reservoirs for liquid water and energy that support microbial life (Michalski et al., 2013) and are thus of interest to the astrobiology community. The samples used in this project were extracted from the Deep Mine Microbial Observatory (DeMMO) in the former Homestake Mine at depths of 800 to 2000 feet underground (Osburn et al., 2014). Phylogenetic data from these sites indicates the lack of cultured representatives within the community. We used geochemical data to guide media design to cultivate and isolate organisms from the DeMMO communities. Media used for cultivation varied from heterotrophic with oxygen, nitrate or sulfate to autotrophic media with ammonia or ferrous iron. Environmental fluid was used as inoculum in batch cultivation and strains were isolated via serial transfers or dilution to extinction. These methods resulted in isolating aerobic heterotrophs, nitrate reducers, sulfate reducers, ammonia oxidizers, and ferric iron reducers. DNA sequencing of these strains is underway to confirm which species they belong to. This project is part of the NASA Astrobiology Institute Life Underground initiative to detect and characterize subsurface microbial life; by characterizing the intraterrestrials, the life living deep within Earth’s crust, we aim to understand the controls on how and where life survives in subsurface settings. Cultivation of terrestrial deep subsurface microbes will provide insight into the survival mechanisms of intraterrestrials guiding the search for these life forms on other planets.

  2. Antibacterial and Cytotoxic Efficacy of Extracellular Silver Nanoparticles Biofabricated from Chromium Reducing Novel OS4 Strain of Stenotrophomonas maltophilia

    PubMed Central

    Oves, Mohammad; Khan, Mohammad Saghir; Zaidi, Almas; Ahmed, Arham S.; Ahmed, Faheem; Ahmad, Ejaz; Sherwani, Asif; Owais, Mohammad; Azam, Ameer

    2013-01-01

    Biofabricated metal nanoparticles are generally biocompatible, inexpensive, and ecofriendly, therefore, are used preferably in industries, medical and material science research. Considering the importance of biofabricated materials, we isolated, characterized and identified a novel bacterial strain OS4 of Stenotrophomonas maltophilia (GenBank: JN247637.1). At neutral pH, this Gram negative bacterial strain significantly reduced hexavalent chromium, an important heavy metal contaminant found in the tannery effluents and minings. Subsequently, even at room temperature the supernatant of log phase grown culture of strain OS4 also reduced silver nitrate (AgNO3) to generate nanoparticles (AgNPs). These AgNPs were further characterized by UV–visible, Nanophox particle size analyzer, XRD, SEM and FTIR. As evident from the FTIR data, plausibly the protein components of supernatant caused the reduction of AgNO3. The cuboid and homogenous AgNPs showed a characteristic UV-visible peak at 428 nm with average size of ∼93 nm. The XRD spectra exhibited the characteristic Bragg peaks of 111, 200, 220 and 311 facets of the face centred cubic symmetry of nanoparticles suggesting that these nanoparticles were crystalline in nature. From the nanoparticle release kinetics data, the rapid release of AgNPs was correlated with the particle size and increasing surface area of the nanoparticles. A highly significant antimicrobial activity against medically important bacteria by the biofabricated AgNPs was also revealed as decline in growth of Staphylococcus aureus (91%), Escherichia coli (69%) and Serratia marcescens (66%) substantially. Additionally, different cytotoxic assays showed no toxicity of AgNPs to liver function, RBCs, splenocytes and HeLa cells, hence these particles were safe to use. Therefore, this novel bacterial strain OS4 is likely to provide broad spectrum benefits for curing chromium polluted sites, for biofabrication of AgNPs and ultimately in the nanoparticle based

  3. Anodic microbial community diversity as a predictor of the power output of microbial fuel cells.

    PubMed

    Stratford, James P; Beecroft, Nelli J; Slade, Robert C T; Grüning, André; Avignone-Rossa, Claudio

    2014-03-01

    The relationship between the diversity of mixed-species microbial consortia and their electrogenic potential in the anodes of microbial fuel cells was examined using different diversity measures as predictors. Identical microbial fuel cells were sampled at multiple time-points. Biofilm and suspension communities were analysed by denaturing gradient gel electrophoresis to calculate the number and relative abundance of species. Shannon and Simpson indices and richness were examined for association with power using bivariate and multiple linear regression, with biofilm DNA as an additional variable. In simple bivariate regressions, the correlation of Shannon diversity of the biofilm and power is stronger (r=0.65, p=0.001) than between power and richness (r=0.39, p=0.076), or between power and the Simpson index (r=0.5, p=0.018). Using Shannon diversity and biofilm DNA as predictors of power, a regression model can be constructed (r=0.73, p<0.001). Ecological parameters such as the Shannon index are predictive of the electrogenic potential of microbial communities. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Comparative Metagenomic Analysis of Electrogenic Microbial Communities in Differentially Inoculated Swine Wastewater-Fed Microbial Fuel Cells

    PubMed Central

    Sorokin, Anatoly A.; Kiseleva, Larisa; Simpson, David J. W.; Fedorovich, V.; Sharipova, Margarita R.; Kainuma, Mami; Cohen, Michael F.; Goryanin, Igor

    2017-01-01

    Bioelectrochemical systems such as microbial fuel cells (MFCs) are promising new technologies for efficient removal of organic compounds from industrial wastewaters, including that generated from swine farming. We inoculated two pairs of laboratory-scale MFCs with sludge granules from a beer wastewater-treating anaerobic digester (IGBS) or from sludge taken from the bottom of a tank receiving swine wastewater (SS). The SS-inoculated MFC outperformed the IGBS-inoculated MFC with regard to COD and VFA removal and electricity production. Using a metagenomic approach, we describe the microbial diversity of the MFC planktonic and anodic communities derived from the different inocula. Proteobacteria (mostly Deltaproteobacteria) became the predominant phylum in both MFC anodic communities with amplification of the electrogenic genus Geobacter being the most pronounced. Eight dominant and three minor species of Geobacter were found in both MFC anodic communities. The anodic communities of the SS-inoculated MFCs had a higher proportion of Clostridium and Bacteroides relative to those of the IGBS-inoculated MFCs, which were enriched with Pelobacter. The archaeal populations of the SS- and IGBS-inoculated MFCs were dominated by Methanosarcina barkeri and Methanothermobacter thermautotrophicus, respectively. Our results show a long-term influence of inoculum type on the performance and microbial community composition of swine wastewater-treating MFCs. PMID:29158944

  5. Shifts of microbial communities of wheat (Triticum aestivum L.) cultivation in a closed artificial ecosystem.

    PubMed

    Qin, Youcai; Fu, Yuming; Dong, Chen; Jia, Nannan; Liu, Hong

    2016-05-01

    The microbial communities of plant ecosystems are in relation to plant growing environment, but the alteration in biodiversity of rhizosphere and phyllosphere microbial communities in closed and controlled environments is unknown. The purpose of this study is to analyze the change regularity of microbial communities with wheat plants dependent-cultivated in a closed artificial ecosystem. The microbial community structures in closed-environment treatment plants were investigated by a culture-dependent approach, polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), and Illumina Miseq high-throughput sequencing. The results indicated that the number of microbes decreased along with time, and the magnitude of bacteria, fungi, and actinomycetes were 10(7)-10(8), 10(5), and 10(3)-10(4) CFU/g (dry weight), respectively. The analysis of PCR-DGGE and Illumina Miseq revealed that the wheat leaf surface and near-root substrate had different microbial communities at different periods of wheat ecosystem development and showed that the relative highest diversity of microbial communities appeared at late and middle periods of the plant ecosystem, respectively. The results also indicated that the wheat leaf and substrate had different microbial community compositions, and the wheat substrate had higher richness of microbial community than the leaf. Flavobacterium, Pseudomonas, Paenibacillus, Enterobacter, Penicillium, Rhodotorula, Acremonium, and Alternaria were dominant in the wheat leaf samples, and Pedobacter, Flavobacterium, Halomonas, Marinobacter, Salinimicrobium, Lysobacter, Pseudomonas, Halobacillus, Xanthomonas, Acremonium, Monographella, and Penicillium were dominant populations in the wheat near-root substrate samples.

  6. ANALYSIS OF AQUATIC MICROBIAL COMMUNITIES IMPACTED BY LARGE POULTRY FORMS

    EPA Science Inventory

    Microbial communities often respond more rapidly and extensively to environmental change than communities of higher organisms. Thus, characterizing shifts in the structure of native bacterial communities as a response to changes in nutrients, antimicrobials, and invading pathogen...

  7. Environmental drivers of differences in microbial community structure in crude oil reservoirs across a methanogenic gradient

    USGS Publications Warehouse

    Shelton, Jenna L.; Akob, Denise M.; McIntosh, Jennifer C.; Fierer, Noah; Spear, John R.; Warwick, Peter D.; McCray, John E.

    2016-01-01

    Stimulating in situ microbial communities in oil reservoirs to produce natural gas is a potentially viable strategy for recovering additional fossil fuel resources following traditional recovery operations. Little is known about what geochemical parameters drive microbial population dynamics in biodegraded, methanogenic oil reservoirs. We investigated if microbial community structure was significantly impacted by the extent of crude oil biodegradation, extent of biogenic methane production, and formation water chemistry. Twenty-two oil production wells from north central Louisiana, USA, were sampled for analysis of microbial community structure and fluid geochemistry. Archaea were the dominant microbial community in the majority of the wells sampled. Methanogens, including hydrogenotrophic and methylotrophic organisms, were numerically dominant in every well, accounting for, on average, over 98% of the total Archaea present. The dominant Bacteria groups were Pseudomonas, Acinetobacter, Enterobacteriaceae, and Clostridiales, which have also been identified in other microbially-altered oil reservoirs. Comparing microbial community structure to fluid (gas, water, and oil) geochemistry revealed that the relative extent of biodegradation, salinity, and spatial location were the major drivers of microbial diversity. Archaeal relative abundance was independent of the extent of methanogenesis, but closely correlated to the extent of crude oil biodegradation; therefore, microbial community structure is likely not a good sole predictor of methanogenic activity, but may predict the extent of crude oil biodegradation. However, when the shallow, highly biodegraded, low salinity wells were excluded from the statistical analysis, no environmental parameters could explain the differences in microbial community structure. This suggests that the microbial community structure of the 5 shallow, up-dip wells was different than the 17 deeper, down-dip wells. Also, the 17 down-dip wells

  8. Uncoupling of microbial community structure and function in decomposing litter across beech forest ecosystems in Central Europe.

    PubMed

    Purahong, Witoon; Schloter, Michael; Pecyna, Marek J; Kapturska, Danuta; Däumlich, Veronika; Mital, Sanchit; Buscot, François; Hofrichter, Martin; Gutknecht, Jessica L M; Krüger, Dirk

    2014-11-12

    The widespread paradigm in ecology that community structure determines function has recently been challenged by the high complexity of microbial communities. Here, we investigate the patterns of and connections between microbial community structure and microbially-mediated ecological function across different forest management practices and temporal changes in leaf litter across beech forest ecosystems in Central Europe. Our results clearly indicate distinct pattern of microbial community structure in response to forest management and time. However, those patterns were not reflected when potential enzymatic activities of microbes were measured. We postulate that in our forest ecosystems, a disconnect between microbial community structure and function may be present due to differences between the drivers of microbial growth and those of microbial function.

  9. Response and resilience of soil microbial communities inhabiting in edible oil stress/contamination from industrial estates.

    PubMed

    Patel, Vrutika; Sharma, Anukriti; Lal, Rup; Al-Dhabi, Naif Abdullah; Madamwar, Datta

    2016-03-22

    Gauging the microbial community structures and functions become imperative to understand the ecological processes. To understand the impact of long-term oil contamination on microbial community structure soil samples were taken from oil fields located in different industrial regions across Kadi, near Ahmedabad, India. Soil collected was hence used for metagenomic DNA extraction to study the capabilities of intrinsic microbial community in tolerating the oil perturbation. Taxonomic profiling was carried out by two different complementary approaches i.e. 16S rDNA and lowest common ancestor. The community profiling revealed the enrichment of phylum "Proteobacteria" and genus "Chromobacterium," respectively for polluted soil sample. Our results indicated that soil microbial diversity (Shannon diversity index) decreased significantly with contamination. Further, assignment of obtained metagenome reads to Clusters of Orthologous Groups (COG) of protein and Kyoto Encyclopedia of Genes and Genomes (KEGG) hits revealed metabolic potential of indigenous microbial community. Enzymes were mapped on fatty acid biosynthesis pathway to elucidate their roles in possible catalytic reactions. To the best of our knowledge this is first study for influence of edible oil on soil microbial communities via shotgun sequencing. The results indicated that long-term oil contamination significantly affects soil microbial community structure by acting as an environmental filter to decrease the regional differences distinguishing soil microbial communities.

  10. Effects of environmental temperature on the gut microbial communities of tadpoles.

    PubMed

    Kohl, Kevin D; Yahn, Jeremiah

    2016-05-01

    Numerous studies have investigated the effects of diet, phylogeny and immune status on the gut microbial communities of animals. Most of these studies are conducted on endotherms, especially mammals, which maintain constant body temperature in the face of environmental temperature variability. However, the majority of animals and vertebrates are ectotherms, which often experience fluctuations in body temperature as a result of their environment. While there have been several studies investigating the gut microbial diversity of ectotherms, we lack an understanding of how environmental temperature affects these communities. Here, we used high-throughput sequencing to inventory the gut microbial communities of tadpoles exposed to cool (18°C) or warm (28°C) temperature treatments. We found that temperature significantly impacted the community structure and membership of the tadpole gut. Specifically, tadpoles in the warm treatment exhibited higher abundances of the phylum Planctomycetes and the genus Mycobacterium. These results may be due to the direct effects of temperature, or mediated through changes in host physiology. Given that environmental temperatures are expected to increase due to global climate change, understanding the effects of temperature on the diversity and function of gut microbial communities is critical. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  11. Temporal Microbial Community Dynamics in Microbial Electrolysis Cells – Influence of Acetate and Propionate Concentration

    PubMed Central

    Hari, Ananda Rao; Venkidusamy, Krishnaveni; Katuri, Krishna P.; Bagchi, Samik; Saikaly, Pascal E.

    2017-01-01

    Microbial electrolysis cells (MECs) are widely considered as a next generation wastewater treatment system. However, fundamental insight on the temporal dynamics of microbial communities associated with MEC performance under different organic types with varied loading concentrations is still unknown, nevertheless this knowledge is essential for optimizing this technology for real-scale applications. Here, the temporal dynamics of anodic microbial communities associated with MEC performance was examined at low (0.5 g COD/L) and high (4 g COD/L) concentrations of acetate or propionate, which are important intermediates of fermentation of municipal wastewaters and sludge. The results showed that acetate-fed reactors exhibited higher performance in terms of maximum current density (I: 4.25 ± 0.23 A/m2), coulombic efficiency (CE: 95 ± 8%), and substrate degradation rate (98.8 ± 1.2%) than propionate-fed reactors (I: 2.7 ± 0.28 A/m2; CE: 68 ± 9.5%; substrate degradation rate: 84 ± 13%) irrespective of the concentrations tested. Despite of the repeated sampling of the anodic biofilm over time, the high-concentration reactors demonstrated lower and stable performance in terms of current density (I: 1.1 ± 0.14 to 4.2 ± 0.21 A/m2), coulombic efficiency (CE: 44 ± 4.1 to 103 ± 7.2%) and substrate degradation rate (64.9 ± 6.3 to 99.7 ± 0.5%), while the low-concentration reactors produced higher and dynamic performance (I: 1.1 ± 0.12 to 4.6 ± 0.1 A/m2; CE: 52 ± 2.5 to 105 ± 2.7%; substrate degradation rate: 87.2 ± 0.2 to 99.9 ± 0.06%) with the different substrates tested. Correlating reactor’s performance with temporal dynamics of microbial communities showed that relatively similar anodic microbial community composition but with varying relative abundances was observed in all the reactors despite differences in the substrate and concentrations tested. Particularly, Geobacter was the predominant bacteria on the anode biofilm of all MECs over time suggesting

  12. Lake microbial communities are resilient after a whole-ecosystem disturbance

    PubMed Central

    Shade, Ashley; Read, Jordan S; Youngblut, Nicholas D; Fierer, Noah; Knight, Rob; Kratz, Timothy K; Lottig, Noah R; Roden, Eric E; Stanley, Emily H; Stombaugh, Jesse; Whitaker, Rachel J; Wu, Chin H; McMahon, Katherine D

    2012-01-01

    Disturbances act as powerful structuring forces on ecosystems. To ask whether environmental microbial communities have capacity to recover after a large disturbance event, we conducted a whole-ecosystem manipulation, during which we imposed an intense disturbance on freshwater microbial communities by artificially mixing a temperate lake during peak summer thermal stratification. We employed environmental sensors and water chemistry analyses to evaluate the physical and chemical responses of the lake, and bar-coded 16S ribosomal RNA gene pyrosequencing and automated ribosomal intergenic spacer analysis (ARISA) to assess the bacterial community responses. The artificial mixing increased mean lake temperature from 14 to 20 °C for seven weeks after mixing ended, and exposed the microorganisms to very different environmental conditions, including increased hypolimnion oxygen and increased epilimnion carbon dioxide concentrations. Though overall ecosystem conditions remained altered (with hypolimnion temperatures elevated from 6 to 20 °C), bacterial communities returned to their pre-manipulation state as some environmental conditions, such as oxygen concentration, recovered. Recovery to pre-disturbance community composition and diversity was observed within 7 (epilimnion) and 11 (hypolimnion) days after mixing. Our results suggest that some microbial communities have capacity to recover after a major disturbance. PMID:22739495

  13. Microbial Community Composition and Putative Biogeochemical Functions in the Sediment and Water of Tropical Granite Quarry Lakes.

    PubMed

    Kumar, Amit; Ng, Daphne H P; Wu, Yichao; Cao, Bin

    2018-05-28

    Re-naturalized quarry lakes are important ecosystems, which support complex communities of flora and fauna. Microorganisms associated with sediment and water form the lowest trophic level in these ecosystems and drive biogeochemical cycles. A direct comparison of microbial taxa in water and sediment microbial communities is lacking, which limits our understanding of the dominant functions that are carried out by the water and sediment microbial communities in quarry lakes. In this study, using the 16S rDNA amplicon sequencing approach, we compared microbial communities in the water and sediment in two re-naturalized quarry lakes in Singapore and elucidated putative functions of the sediment and water microbial communities in driving major biogeochemical processes. The richness and diversity of microbial communities in sediments of the quarry lakes were higher than those in the water. The composition of the microbial communities in the sediments from the two quarries was highly similar to one another, while those in the water differed greatly. Although the microbial communities of the sediment and water samples shared some common members, a large number of microbial taxa (at the phylum and genus levels) were prevalent either in sediment or water alone. Our results provide valuable insights into the prevalent biogeochemical processes carried out by water and sediment microbial communities in tropical granite quarry lakes, highlighting distinct microbial processes in water and sediment that contribute to the natural purification of the resident water.

  14. Localized electron transfer rates and microelectrode-based enrichment of microbial communities within a phototrophic microbial mat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babauta, Jerome T.; Atci, Erhan; Ha, Phuc T.

    2014-01-01

    Phototrophic microbial mats frequently exhibit sharp, light-dependent redox gradients that regulate microbial respiration on specific electron acceptors as a function of depth. In this work, a benthic phototrophic microbial mat from Hot Lake, a hypersaline, epsomitic lake located near Oroville in north-central Washington, was used to develop a microscale electrochemical method to study local electron transfer processes within the mat. To characterize the physicochemical variables influencing electron transfer, we initially quantified redox potential, pH, and dissolved oxygen gradients by depth in the mat under photic and aphotic conditions. We further demonstrated that power output of a mat fuel cell wasmore » light-dependent. To study local electron transfer processes, we deployed a microscale electrode (microelectrode) with tip size ~20 μm. To enrich a subset of microorganisms capable of interacting with the microelectrode, we anodically polarized the microelectrode at depth in the mat. Subsequently, to characterize the microelectrode- associated community and compare it to the neighboring mat community, we performed amplicon sequencing of the V1-V3 region of the 16S gene. Differences in Bray-Curtis beta diversity, illustrated by large changes in relative abundance at the phylum level, suggested successful enrichment of specific mat community members on the microelectrode surface. The microelectrode-associated community exhibited substantially reduced alpha diversity and elevated relative abundances of Prosthecochloris, Loktanella, Catellibacterium, other unclassified members of Rhodobacteraceae, Thiomicrospira, and Limnobacter, compared with the community at an equivalent depth in the mat. Our results suggest that local electron transfer to an anodically polarized microelectrode selected for a specific microbial population, with substantially more abundance and diversity of sulfur-oxidizing phylotypes compared with the neighboring mat community.« less

  15. Microbial community structure in a shallow hydrocarbon-contaminated aquifer associated with high electrical conductivity

    NASA Astrophysics Data System (ADS)

    Duris, J. W.; Rossbach, S.; Atekwana, E. A.; Werkema, D., Jr.

    2003-04-01

    Little is known about the complex interactions between microbial communities and electrical properties in contaminated aquifers. In order to investigate possible connections between these parameters a study was undertaken to investigate the hypothesis that the degradation of hydrocarbons by resident microbial communities causes a local increase in organic acid concentrations, which in turn cause an increase in native mineral weathering and a concurrent increase in the bulk electrical conductivity of soil. Microbial community structure was analyzed using a 96-well most probable number (MPN) method and rDNA intergenic spacer region analysis (RISA). Microbial community structure was found to change in the presence of hydrocarbon contaminants and these changes were consistently observed in regions of high electrical conductivity. We infer from this relationship that geophysical methods for monitoring the subsurface are a promising new technology for monitoring changes in microbial community structure and simultaneous changes in geochemistry that are associated with hydrocarbon degradation.

  16. Biomass-C specific temperature responses of microbial C transformations reveal consistency regardless of microbial community structure across diverse timescales of inquiry

    NASA Astrophysics Data System (ADS)

    Min, K.; Buckeridge, K. M.; Ziegler, S. E.; Edwards, K. A.; Bagchi, S.; Billings, S. A.

    2016-12-01

    The responses of heterotrophic microbial process rates to temperature in soils are often investigated in the short-term (hours to months), making it difficult to predict longer-term temperature responses. Here, we integrate the temperature sensitivity obtained from the Arrhenius model with the concepts of microbial resistance, resilience, and susceptibility to assess temporal dynamics of microbial temperature responses. We collected soils along a boreal forest climate gradient (long-term effect), and quantified exo-enzyme activities and CO2 respiration at 5, 15, and 25°C for 84 days (relatively short-term effect). Microbial process rates were examined at two levels (per g microbial biomass-C; and per g dry soil) along with community structure, to characterize driving mechanisms for temporal patterns (e.g., size of biomass, physiological plasticity, community composition). Although temperature sensitivity of exo-enzyme activities on a per g dry soil basis showed both resistance and resilience depending on the types of exo-enzyme, biomass -C-specific responses always exhibited resistance regardless of distinct community composition. Temperature sensitivity of CO2 respiration was constant across time and different communities at both units. This study advances our knowledge in two ways. First, resistant temperature sensitivity of exo-enzymes and respiration at biomass-C specific level across distinct communities and diverse timescales indicates a common relationship between microbial physiology and temperature at a fundamental level, a useful feature allowing microbial process models to be reasonably simplified. Second, different temporal responses of exo-enzymes depending on the unit selected provide a cautionary tale for those projecting future microbial behaviors, because interpretation of ecosystem process rates may vary with the unit of observation.

  17. Do temperate tree species diversity and identity influence soil microbial community function and composition?

    PubMed

    Khlifa, Rim; Paquette, Alain; Messier, Christian; Reich, Peter B; Munson, Alison D

    2017-10-01

    Studies of biodiversity-ecosystem function in treed ecosystems have generally focused on aboveground functions. This study investigates intertrophic links between tree diversity and soil microbial community function and composition. We examined how microbial communities in surface mineral soil responded to experimental gradients of tree species richness (SR), functional diversity (FD), community-weighted mean trait value (CWM), and tree identity. The site was a 4-year-old common garden experiment near Montreal, Canada, consisting of deciduous and evergreen tree species mixtures. Microbial community composition, community-level physiological profiles, and respiration were evaluated using phospholipid fatty acid (PLFA) analysis and the MicroResp ™ system, respectively. The relationship between tree species richness and glucose-induced respiration (GIR), basal respiration (BR), metabolic quotient (qCO 2 ) followed a positive but saturating shape. Microbial communities associated with species mixtures were more active (basal respiration [BR]), with higher biomass (glucose-induced respiration [GIR]), and used a greater number of carbon sources than monocultures. Communities associated with deciduous tree species used a greater number of carbon sources than those associated with evergreen species, suggesting a greater soil carbon storage capacity. There were no differences in microbial composition (PLFA) between monocultures and SR mixtures. The FD and the CWM of several functional traits affected both BR and GIR. In general, the CWM of traits had stronger effects than did FD, suggesting that certain traits of dominant species have more effect on ecosystem processes than does FD. Both the functions of GIR and BR were positively related to aboveground tree community productivity. Both tree diversity (SR) and identity (species and functional identity-leaf habit) affected soil microbial community respiration, biomass, and composition. For the first time, we identified

  18. Differential sensitivity of total and active soil microbial communities to drought and forest management.

    PubMed

    Bastida, Felipe; Torres, Irene F; Andrés-Abellán, Manuela; Baldrian, Petr; López-Mondéjar, Rubén; Větrovský, Tomáš; Richnow, Hans H; Starke, Robert; Ondoño, Sara; García, Carlos; López-Serrano, Francisco R; Jehmlich, Nico

    2017-10-01

    Climate change will affect semiarid ecosystems through severe droughts that increase the competition for resources in plant and microbial communities. In these habitats, adaptations to climate change may consist of thinning-that reduces competition for resources through a decrease in tree density and the promotion of plant survival. We deciphered the functional and phylogenetic responses of the microbial community to 6 years of drought induced by rainfall exclusion and how forest management affects its resistance to drought, in a semiarid forest ecosystem dominated by Pinus halepensis Mill. A multiOMIC approach was applied to reveal novel, community-based strategies in the face of climate change. The diversity and the composition of the total and active soil microbiome were evaluated by 16S rRNA gene (bacteria) and ITS (fungal) sequencing, and by metaproteomics. The microbial biomass was analyzed by phospholipid fatty acids (PLFAs), and the microbially mediated ecosystem multifunctionality was studied by the integration of soil enzyme activities related to the cycles of C, N, and P. The microbial biomass and ecosystem multifunctionality decreased in drought-plots, as a consequence of the lower soil moisture and poorer plant development, but this decrease was more notable in unthinned plots. The structure and diversity of the total bacterial community was unaffected by drought at phylum and order level, but did so at genus level, and was influenced by seasonality. However, the total fungal community and the active microbial community were more sensitive to drought and were related to ecosystem multifunctionality. Thinning in plots without drought increased the active diversity while the total diversity was not affected. Thinning promoted the resistance of ecosystem multifunctionality to drought through changes in the active microbial community. The integration of total and active microbiome analyses avoids misinterpretations of the links between the soil microbial

  19. PanFP: pangenome-based functional profiles for microbial communities.

    PubMed

    Jun, Se-Ran; Robeson, Michael S; Hauser, Loren J; Schadt, Christopher W; Gorin, Andrey A

    2015-09-26

    For decades there has been increasing interest in understanding the relationships between microbial communities and ecosystem functions. Current DNA sequencing technologies allows for the exploration of microbial communities in two principle ways: targeted rRNA gene surveys and shotgun metagenomics. For large study designs, it is often still prohibitively expensive to sequence metagenomes at both the breadth and depth necessary to statistically capture the true functional diversity of a community. Although rRNA gene surveys provide no direct evidence of function, they do provide a reasonable estimation of microbial diversity, while being a very cost-effective way to screen samples of interest for later shotgun metagenomic analyses. However, there is a great deal of 16S rRNA gene survey data currently available from diverse environments, and thus a need for tools to infer functional composition of environmental samples based on 16S rRNA gene survey data. We present a computational method called pangenome-based functional profiles (PanFP), which infers functional profiles of microbial communities from 16S rRNA gene survey data for Bacteria and Archaea. PanFP is based on pangenome reconstruction of a 16S rRNA gene operational taxonomic unit (OTU) from known genes and genomes pooled from the OTU's taxonomic lineage. From this lineage, we derive an OTU functional profile by weighting a pangenome's functional profile with the OTUs abundance observed in a given sample. We validated our method by comparing PanFP to the functional profiles obtained from the direct shotgun metagenomic measurement of 65 diverse communities via Spearman correlation coefficients. These correlations improved with increasing sequencing depth, within the range of 0.8-0.9 for the most deeply sequenced Human Microbiome Project mock community samples. PanFP is very similar in performance to another recently released tool, PICRUSt, for almost all of survey data analysed here. But, our method is unique

  20. Horizontal gene transfer in an acid mine drainage microbial community.

    PubMed

    Guo, Jiangtao; Wang, Qi; Wang, Xiaoqi; Wang, Fumeng; Yao, Jinxian; Zhu, Huaiqiu

    2015-07-04

    Horizontal gene transfer (HGT) has been widely identified in complete prokaryotic genomes. However, the roles of HGT among members of a microbial community and in evolution remain largely unknown. With the emergence of metagenomics, it is nontrivial to investigate such horizontal flow of genetic materials among members in a microbial community from the natural environment. Because of the lack of suitable methods for metagenomics gene transfer detection, microorganisms from a low-complexity community acid mine drainage (AMD) with near-complete genomes were used to detect possible gene transfer events and suggest the biological significance. Using the annotation of coding regions by the current tools, a phylogenetic approach, and an approximately unbiased test, we found that HGTs in AMD organisms are not rare, and we predicted 119 putative transferred genes. Among them, 14 HGT events were determined to be transfer events among the AMD members. Further analysis of the 14 transferred genes revealed that the HGT events affected the functional evolution of archaea or bacteria in AMD, and it probably shaped the community structure, such as the dominance of G-plasma in archaea in AMD through HGT. Our study provides a novel insight into HGT events among microorganisms in natural communities. The interconnectedness between HGT and community evolution is essential to understand microbial community formation and development.

  1. Microbial communities in carbonate rocks-from soil via groundwater to rocks.

    PubMed

    Meier, Aileen; Singh, Manu K; Kastner, Anne; Merten, Dirk; Büchel, Georg; Kothe, Erika

    2017-09-01

    Microbial communities in soil, groundwater, and rock of two sites in limestone were investigated to determine community parameters differentiating habitats in two lithostratigraphic untis. Lower Muschelkalk and Middle Muschelkalk associated soils, groundwater, and rock samples showed different, but overlapping microbial communities linked to carbon fluxes. The microbial diversities in soil were highest, groundwater revealed overlapping taxa but lower diversity, and rock samples were predominantly characterized by endospore forming bacteria and few archaea. Physiological profiles could establish a differentiation between habitats (soil, groundwater, rock). From community analyses and physiological profiles, different element cycles in limestone could be identified for the three habitats. While in soil, nitrogen cycling was identified as specific determinant, in rock methanogenesis linked carbonate rock to atmospheric methane cycles. These patterns specifically allowed for delineation of lithostratigraphic connections to physiological parameters. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Metaproteomics of complex microbial communities in biogas plants

    PubMed Central

    Heyer, Robert; Kohrs, Fabian; Reichl, Udo; Benndorf, Dirk

    2015-01-01

    Production of biogas from agricultural biomass or organic wastes is an important source of renewable energy. Although thousands of biogas plants (BGPs) are operating in Germany, there is still a significant potential to improve yields, e.g. from fibrous substrates. In addition, process stability should be optimized. Besides evaluating technical measures, improving our understanding of microbial communities involved into the biogas process is considered as key issue to achieve both goals. Microscopic and genetic approaches to analyse community composition provide valuable experimental data, but fail to detect presence of enzymes and overall metabolic activity of microbial communities. Therefore, metaproteomics can significantly contribute to elucidate critical steps in the conversion of biomass to methane as it delivers combined functional and phylogenetic data. Although metaproteomics analyses are challenged by sample impurities, sample complexity and redundant protein identification, and are still limited by the availability of genome sequences, recent studies have shown promising results. In the following, the workflow and potential pitfalls for metaproteomics of samples from full-scale BGP are discussed. In addition, the value of metaproteomics to contribute to the further advancement of microbial ecology is evaluated. Finally, synergistic effects expected when metaproteomics is combined with advanced imaging techniques, metagenomics, metatranscriptomics and metabolomics are addressed. PMID:25874383

  3. Distinct microbial communities in the active and permafrost layers on the Tibetan Plateau.

    PubMed

    Chen, Yong-Liang; Deng, Ye; Ding, Jin-Zhi; Hu, Hang-Wei; Xu, Tian-Le; Li, Fei; Yang, Gui-Biao; Yang, Yuan-He

    2017-12-01

    Permafrost represents an important understudied genetic resource. Soil microorganisms play important roles in regulating biogeochemical cycles and maintaining ecosystem function. However, our knowledge of patterns and drivers of permafrost microbial communities is limited over broad geographic scales. Using high-throughput Illumina sequencing, this study compared soil bacterial, archaeal and fungal communities between the active and permafrost layers on the Tibetan Plateau. Our results indicated that microbial alpha diversity was significantly higher in the active layer than in the permafrost layer with the exception of fungal Shannon-Wiener index and Simpson's diversity index, and microbial community structures were significantly different between the two layers. Our results also revealed that environmental factors such as soil fertility (soil organic carbon, dissolved organic carbon and total nitrogen contents) were the primary drivers of the beta diversity of bacterial, archaeal and fungal communities in the active layer. In contrast, environmental variables such as the mean annual precipitation and total phosphorus played dominant roles in driving the microbial beta diversity in the permafrost layer. Spatial distance was important for predicting the bacterial and archaeal beta diversity in both the active and permafrost layers, but not for fungal communities. Collectively, these results demonstrated different driving factors of microbial beta diversity between the active layer and permafrost layer, implying that the drivers of the microbial beta diversity observed in the active layer cannot be used to predict the biogeographic patterns of the microbial beta diversity in the permafrost layer. © 2017 John Wiley & Sons Ltd.

  4. Agroforestry management in vineyards: effects on soil microbial communities

    NASA Astrophysics Data System (ADS)

    Montagne, Virginie; Nowak, Virginie; Guilland, Charles; Gontier, Laure; Dufourcq, Thierry; Guenser, Josépha; Grimaldi, Juliette; Bourgade, Emilie; Ranjard, Lionel

    2017-04-01

    Some vineyard practices (tillage, chemical weeding or pest management) are generally known to impact the environment with particular negative effects on the diversity and the abundance of soil microorganisms, and cause water and soil pollutions. In an agro-ecological context, innovative cropping systems have been developed to improve ecosystem services. Among them, agroforestry offers strategies of sustainable land management practices. It consists in intercropping trees with annual/perennial/fodder crop on the same plot but it is weakly referenced with grapevine. The present study assesses the effects of intercropped and neighbouring trees on the soil of three agroforestry vineyards, in south-western France regions. More precisely soils of the different plots were sampled and the impact of the distance to the tree or to the neighbouring trees (forest) on soil microbial community has been considered. Indigenous soil microbial communities were characterized by a metagenomic approach that consisted in extracting the molecular microbial biomass, then in calculating the soil fungi/bacteria ratio - obtained by qPCR - and then in characterizing the soil microbial diversity - through Illumina sequencing of 16S and 18S regions. Our results showed a significant difference between the soil of agroforestry vineyards and the soil sampled in the neighbouring forest in terms of microbial abundance and diversity. However, only structure and composition of bacterial community seem to be influenced by the implanted trees in the vine plots. In addition, the comparison of microbial co-occurrence networks between vine and forest plots as well as inside vine plots according to distance to the tree allow revealing a more sensitive impact of agroforestry practices. Altogether, the results we obtained build up the first references for concerning the soil of agroforestry vineyards which will be interpreted in terms of soil quality, functioning and sustainability.

  5. Rooting Theories of Plant Community Ecology in Microbial Interactions

    PubMed Central

    Bever, James D.; Dickie, Ian A.; Facelli, Evelina; Facelli, Jose M.; Klironomos, John; Moora, Mari; Rillig, Matthias C.; Stock, William D.; Tibbett, Mark; Zobel, Martin

    2010-01-01

    Predominant frameworks for understanding plant ecology have an aboveground bias that neglects soil micro-organisms. This is inconsistent with recent work illustrating the importance of soil microbes in terrestrial ecology. Microbial effects have been incorporated into plant community dynamics using ideas of niche modification and plant-soil community feedbacks. Here, we expand and integrate qualitative conceptual models of plant niche and feedback to explore implications of microbial interactions for understanding plant community ecology. At the same time we review the empirical evidence for these processes. We also consider common mycorrhizal networks, and suggest these are best interpreted within the feedback framework. Finally, we apply our integrated model of niche and feedback to understanding plant coexistence, monodominance, and invasion ecology. PMID:20557974

  6. Plant rhizosphere species-specific stoichiometry and regulation of extracellular enzyme and microbial community structure

    NASA Astrophysics Data System (ADS)

    Bell, C. W.; Calderon, F.; Pendall, E.; Wallenstein, M. D.

    2012-12-01

    Plant communities affect the activity and composition of soil microbial communities through alteration of the soil environment during root growth; substrate availability through root exudation; nutrient availability through plant uptake; and moisture regimes through transpiration. As a result, positive feedbacks in soil properties can result from alterations in microbial community composition and function in the rhizosphere zone. At the ecosystem-scale, many properties of soil microbial communities can vary between forest stands dominated by different species, including community composition and stoichiometry. However, the influence of smaller individual plants on grassland soils and microbial communities is less well documented. There is evidence to suggest that some plants can modify their soil environment in a manner that favors their persistence. For example, when Bromus tectorum plants invade, soil microbial communities tend to have higher N mineralization rates (in the rhizosphere zone) relative to native plants. If tight linkages between individual plant species and microbial communities inhabiting the rhizosphere exist, we hypothesized that any differences among plant species specific rhizosphere zones could be observed by shifts in: 1) soil -rhizosphere microbial community structure, 2) enzymatic C:N:P acquisition activities, 3) alterations in the soil C chemistry composition in the rhizosphere, and 4) plant - soil - microbial C:N:P elemental stoichiometry. We selected and grew 4 different C3 grasses species including three species native to the Shortgrass Steppe region (Pascopyrum smithii, Koeleria macrantha, and Vulpia octoflora) and one exotic invasive plant species (B. tectorum) in root-boxes that are designed to allow for easy access to the rhizosphere. The field soil was homogenized using a 4mm sieve and mixed 1:1 with sterile sand and seeded as monocultures (24 replicate root - boxes for each species). Plant and soil samples (along with no - plant

  7. Modular spectral imaging system for discrimination of pigments in cells and microbial communities.

    PubMed

    Polerecky, Lubos; Bissett, Andrew; Al-Najjar, Mohammad; Faerber, Paul; Osmers, Harald; Suci, Peter A; Stoodley, Paul; de Beer, Dirk

    2009-02-01

    Here we describe a spectral imaging system for minimally invasive identification, localization, and relative quantification of pigments in cells and microbial communities. The modularity of the system allows pigment detection on spatial scales ranging from the single-cell level to regions whose areas are several tens of square centimeters. For pigment identification in vivo absorption and/or autofluorescence spectra are used as the analytical signals. Along with the hardware, which is easy to transport and simple to assemble and allows rapid measurement, we describe newly developed software that allows highly sensitive and pigment-specific analyses of the hyperspectral data. We also propose and describe a number of applications of the system for microbial ecology, including identification of pigments in living cells and high-spatial-resolution imaging of pigments and the associated phototrophic groups in complex microbial communities, such as photosynthetic endolithic biofilms, microbial mats, and intertidal sediments. This system provides new possibilities for studying the role of spatial organization of microorganisms in the ecological functioning of complex benthic microbial communities or for noninvasively monitoring changes in the spatial organization and/or composition of a microbial community in response to changing environmental factors.

  8. Physicochemical Drivers of Microbial Community Structure in Sediments of Lake Hazen, Nunavut, Canada.

    PubMed

    Ruuskanen, Matti O; St Pierre, Kyra A; St Louis, Vincent L; Aris-Brosou, Stéphane; Poulain, Alexandre J

    2018-01-01

    The Arctic is undergoing rapid environmental change, potentially affecting the physicochemical constraints of microbial communities that play a large role in both carbon and nutrient cycling in lacustrine environments. However, the microbial communities in such Arctic environments have seldom been studied, and the drivers of their composition are poorly characterized. To address these gaps, we surveyed the biologically active surface sediments in Lake Hazen, the largest lake by volume north of the Arctic Circle, and a small lake and shoreline pond in its watershed. High-throughput amplicon sequencing of the 16S rRNA gene uncovered a community dominated by Proteobacteria, Bacteroidetes, and Chloroflexi, similar to those found in other cold and oligotrophic lake sediments. We also show that the microbial community structure in this Arctic polar desert is shaped by pH and redox gradients. This study lays the groundwork for predicting how sediment microbial communities in the Arctic could respond as climate change proceeds to alter their physicochemical constraints.

  9. Metabarcoding of the kombucha microbial community grown in different microenvironments.

    PubMed

    Reva, Oleg N; Zaets, Iryna E; Ovcharenko, Leonid P; Kukharenko, Olga E; Shpylova, Switlana P; Podolich, Olga V; de Vera, Jean-Pierre; Kozyrovska, Natalia O

    2015-12-01

    Introducing of the DNA metabarcoding analysis of probiotic microbial communities allowed getting insight into their functioning and establishing a better control on safety and efficacy of the probiotic communities. In this work the kombucha poly-microbial probiotic community was analysed to study its flexibility under different growth conditions. Environmental DNA sequencing revealed a complex and flexible composition of the kombucha microbial culture (KMC) constituting more bacterial and fungal organisms in addition to those found by cultural method. The community comprised bacterial and yeast components including cultured and uncultivable microorganisms. Culturing the KMC under different conditions revealed the core part of the community which included acetobacteria of two genera Komagataeibacter (former Gluconacetobacter) and Gluconobacter, and representatives of several yeast genera among which Brettanomyces/Dekkera and Pichia (including former Issatchenkia) were dominant. Herbaspirillum spp. and Halomonas spp., which previously had not been described in KMC, were found to be minor but permanent members of the community. The community composition was dependent on the growth conditions. The bacterial component of KMC was relatively stable, but may include additional member-lactobacilli. The yeast species composition was significantly variable. High-throughput sequencing showed complexity and variability of KMC that may affect the quality of the probiotic drink. It was hypothesized that the kombucha core community might recruit some environmental bacteria, particularly lactobacilli, which potentially may contribute to the fermentative capacity of the probiotic drink. As many KMC-associated microorganisms cannot be cultured out of the community, a robust control for community composition should be provided by using DNA metabarcoding.

  10. Functional Potential of Soil Microbial Communities in the Maize Rhizosphere

    PubMed Central

    Xiong, Jingbo; Li, Jiabao; He, Zhili; Zhou, Jizhong; Yannarell, Anthony C.; Mackie, Roderick I.

    2014-01-01

    Microbial communities in the rhizosphere make significant contributions to crop health and nutrient cycling. However, their ability to perform important biogeochemical processes remains uncharacterized. Here, we identified important functional genes that characterize the rhizosphere microbial community to understand metabolic capabilities in the maize rhizosphere using the GeoChip-based functional gene array method. Significant differences in functional gene structure were apparent between rhizosphere and bulk soil microbial communities. Approximately half of the detected gene families were significantly (p<0.05) increased in the rhizosphere. Based on the detected gyrB genes, Gammaproteobacteria, Betaproteobacteria, Firmicutes, Bacteroidetes and Cyanobacteria were most enriched in the rhizosphere compared to those in the bulk soil. The rhizosphere niche also supported greater functional diversity in catabolic pathways. The maize rhizosphere had significantly enriched genes involved in carbon fixation and degradation (especially for hemicelluloses, aromatics and lignin), nitrogen fixation, ammonification, denitrification, polyphosphate biosynthesis and degradation, sulfur reduction and oxidation. This research demonstrates that the maize rhizosphere is a hotspot of genes, mostly originating from dominant soil microbial groups such as Proteobacteria, providing functional capacity for the transformation of labile and recalcitrant organic C, N, P and S compounds. PMID:25383887

  11. Exploring ancient microbial community assemblages by creating complex lipid biomarker profiles for stromatolites and microbial mats in Hamelin Pool, Shark Bay, Australia

    NASA Astrophysics Data System (ADS)

    Myers, E.; Summons, R. E.; Schubotz, F.; Matys, E. D.

    2015-12-01

    Stromatolites that are biogenic in origin, a characteristic that can be determined by the coexistence of microbial mats (active microbial communities) and stromatolites (lithified structures) like in Hamelin Pool, comprise one of the best modern analogs to ancient microbial community assemblages. Comprehensive lipid biomarker profiles that include lipids of varying persistence in the rock record can help determine how previously living microbial communities are represented in lithified stromatolites. To create these profiles, the samples analyzed included non-lithified smooth, pustular, and colloform microbial mats, as well as smooth and colloform stromatolites. Select samples were separated into upper and lower layers of 5cm depth each. Intact polar lipids, glycerol dialkyl glycerol tetraethers, and bacteriohopanepolyols were analyzed via liquid chromatography-mass spectrometry (LC-MS) coupled to a Quadropole Time-of-Flight (QTOF) mass spectrometer; additionally, fatty acids from each sample were analyzed using gas chromatography-mass spectrometry (GC-MS) to prove consistent signatures with those determined by Allen et al. in 2010 for similar microbial mat samples. In accordance with those findings, 2-methylhopanoids were detected, as well as limited signals from higher (vascular) plants, the latter of which suggests terrestrial inputs, potentially from runoff. The rarely detected presence of 3-methylhopanoids appears in a significant portion of the samples, though further isolations of the molecule are needed to confirm. While all lipid profiles were relatively similar, certain differences in relative composition are likely attributable to morphological differences of the mats, some of which allow deeper oxygen and/or sunlight penetration, which influence the microbial community. However, overall similarities of transient and persistent lipids suggest that the microbial communities of both the non-lithified microbial mats and stromatolites are similar.

  12. Testing the functional significance of microbial community composition.

    Treesearch

    Michael S. Strickland; Christian Lauber; Noah Fierer; Mark A. Bradford

    2009-01-01

    A critical assumption underlying terrestrial ecosystem models is that soil microbial communities, when placed in a common environment, will function in an identical manner regardless of the composition...

  13. Seasonal Patterns in Microbial Community Composition in Denitrifying Bioreactors Treating Subsurface Agricultural Drainage.

    PubMed

    Porter, Matthew D; Andrus, J Malia; Bartolerio, Nicholas A; Rodriguez, Luis F; Zhang, Yuanhui; Zilles, Julie L; Kent, Angela D

    2015-10-01

    Denitrifying bioreactors, consisting of water flow control structures and a woodchip-filled trench, are a promising approach for removing nitrate from agricultural subsurface or tile drainage systems. To better understand the seasonal dynamics and the ecological drivers of the microbial communities responsible for denitrification in these bioreactors, we employed microbial community "fingerprinting" techniques in a time-series examination of three denitrifying bioreactors over 2 years, looking at bacteria, fungi, and the denitrifier functional group responsible for the final step of complete denitrification. Our analysis revealed that microbial community composition responds to depth and seasonal variation in moisture content and inundation of the bioreactor media, as well as temperature. Using a geostatistical analysis approach, we observed recurring temporal patterns in bacterial and denitrifying bacterial community composition in these bioreactors, consistent with annual cycling. The fungal communities were more stable, having longer temporal autocorrelations, and did not show significant annual cycling. These results suggest a recurring seasonal cycle in the denitrifying bioreactor microbial community, likely due to seasonal variation in moisture content.

  14. Correlation between vegetation and underground microbial communities on a micro-landscape of the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zhang, G.; Hu, A.; Wang, J.

    2016-12-01

    Aboveground vegetation and underground microbes are tightly associated and form a systematic entity to maintain terrestrial ecosystem functions; however, the roles and relative importance of vegetation to corresponding underlying microbial community remain clearly unresolved. Here we studied the vegetation and corresponding underground microbial communities along an elevation range of 704-3,760 m a.s.l on the Tibetan Plateau, which covering from a tropical forest to frigid shrub meadow ecosystem. By substituting space for time, we explored how the alteration of vegetation and abiotic environments jointly affect the underlying microbial communities. We found that vegetation showed a hump-shaped elevational pattern in diversity, while microbial community exhibited a two-section elevational pattern at a tipping point of 2400m elevation where vegetation diversity approximately peaks. The statistical analyses and regression modelling of the measures of underground microbial community including biomass, diversity, phylogenetic structure and community composition provided evidences of this threshold. Our findings highlighted that vegetation is a good predictor of underground microbial communities. Further statistical analyses suggested that alteration of vegetation and environmental filtering processes might be the vital driving forces jointly structuring underground microbial communities along an elevational gradient. Specifically, vegetation is a major contributor to underground microbes primarily through soil pH below the threshold (that is, in tropical and subtropical zones), while vegetation could directly influence underground microbes and also partly through its effects on several abiotic factors such as soil pH and WSOC above the threshold (that is, in temperate and frigid zones). These insights into the alteration of vegetation types and corresponding underground microbial communities provide new perspective on the aboveground and belowground interactions in

  15. Microbial community composition along a 50 000-year lacustrine sediment sequence

    PubMed Central

    Ariztegui, Daniel; Horn, Fabian; Kallmeyer, Jens; Orsi, William D

    2018-01-01

    Abstract For decades, microbial community composition in subseafloor sediments has been the focus of extensive studies. In deep lacustrine sediments, however, the taxonomic composition of microbial communities remains undercharacterized. Greater knowledge on microbial diversity in lacustrine sediments would improve our understanding of how environmental factors, and resulting selective pressures, shape subsurface biospheres in marine and freshwater sediments. Using high-throughput sequencing of 16S rRNA genes across high-resolution climate intervals covering the last 50 000 years in Laguna Potrok Aike, Argentina, we identified changes in microbial populations in response to both past environmental conditions and geochemical changes of the sediment during burial. Microbial communities in Holocene sediments were most diverse, reflecting a layering of taxa linked to electron acceptors availability. In deeper intervals, the data show that salinity, organic matter and the depositional conditions over the Last Glacial-interglacial cycle were all selective pressures in the deep lacustrine assemblage resulting in a genetically distinct biosphere from the surface dominated primarily by Bathyarchaeota and Atribacteria groups. However, similar to marine sediments, some dominant taxa in the shallow subsurface persisted into the subsurface as minor fraction of the community. The subsequent establishment of a deep subsurface community likely results from a combination of paleoenvironmental factors that have shaped the pool of available substrates, together with substrate depletion and/or reworking of organic matter with depth. PMID:29471361

  16. Characterization of fatty acid-producing wastewater microbial communities using next generation sequencing technologies

    EPA Science Inventory

    While wastewater represents a viable source of bacterial biodiesel production, very little is known on the composition of these microbial communities. We studied the taxonomic diversity and succession of microbial communities in bioreactors accumulating fatty acids using 454-pyro...

  17. Community Structure of Lithotrophically-Driven Hydrothermal Microbial Mats from the Mariana Arc and Back-Arc

    PubMed Central

    Hager, Kevin W.; Fullerton, Heather; Butterfield, David A.; Moyer, Craig L.

    2017-01-01

    The Mariana region exhibits a rich array of hydrothermal venting conditions in a complex geological setting, which provides a natural laboratory to study the influence of local environmental conditions on microbial community structure as well as large-scale patterns in microbial biogeography. We used high-throughput amplicon sequencing of the bacterial small subunit (SSU) rRNA gene from 22 microbial mats collected from four hydrothermally active locations along the Mariana Arc and back-arc to explore the structure of lithotrophically-based microbial mat communities. The vent effluent was classified as iron- or sulfur-rich corresponding with two distinct community types, dominated by either Zetaproteobacteria or Epsilonproteobacteria, respectively. The Zetaproteobacterial-based communities had the highest richness and diversity, which supports the hypothesis that Zetaproteobacteria function as ecosystem engineers creating a physical habitat within a chemical environment promoting enhanced microbial diversity. Gammaproteobacteria were also high in abundance within the iron-dominated mats and some likely contribute to primary production. In addition, we also compare sampling scale, showing that bulk sampling of microbial mats yields higher diversity than micro-scale sampling. We present a comprehensive analysis and offer new insights into the community structure and diversity of lithotrophically-driven microbial mats from a hydrothermal region associated with high microbial biodiversity. Our study indicates an important functional role of for the Zetaproteobacteria altering the mat habitat and enhancing community interactions and complexity. PMID:28970817

  18. Effects of biochar blends on microbial community composition in two coastal plain soils

    EPA Science Inventory

    The amendment of soil with biochar has been demonstrated to have an effect not only on the soil physicochemical properties, but also on soil microbial community composition and activity. Previous reports have demonstrated significant impacts on soil microbial community structure....

  19. Gut microbial communities of American pikas (Ochotona princeps): Evidence for phylosymbiosis and adaptations to novel diets.

    PubMed

    Kohl, Kevin D; Varner, Johanna; Wilkening, Jennifer L; Dearing, M Denise

    2018-03-01

    Gut microbial communities provide many physiological functions to their hosts, especially in herbivorous animals. We still lack an understanding of how these microbial communities are structured across hosts in nature, especially within a given host species. Studies on laboratory mice have demonstrated that host genetics can influence microbial community structure, but that diet can overwhelm these genetic effects. We aimed to test these ideas in a natural system, the American pika (Ochotona princeps). First, pikas are high-elevation specialists with significant population structure across various mountain ranges in the USA, allowing us to investigate whether similarities in microbial communities match host genetic differences. Additionally, pikas are herbivorous, with some populations exhibiting remarkable dietary plasticity and consuming high levels of moss, which is exceptionally high in fibre and low in protein. This allows us to investigate adaptations to an herbivorous diet, as well as to the especially challenging diet of moss. Here, we inventoried the microbial communities of pika caecal pellets from various populations using 16S rRNA sequencing to investigate structuring of microbial communities across various populations with different natural diets. Microbial communities varied significantly across populations, and differences in microbial community structure were congruent with genetic differences in host population structure, a pattern known as "phylosymbiosis." Several microbial members (Ruminococcus, Prevotella, Oxalobacter and Coprococcus) were detected across all samples, and thus likely represent a "core microbiome." These genera are known to perform a number of services for herbivorous hosts such as fibre fermentation and the degradation of plant defensive compounds, and thus are likely important for herbivory in pikas. Moreover, pikas that feed on moss harboured microbial communities highly enriched in Melainabacteria. This uncultivable

  20. Metagenomic insights into evolution of heavy metal-contaminated groundwater microbial community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hemme, C.L.; Deng, Y.; Gentry, T.J.

    2010-07-01

    Understanding adaptation of biological communities to environmental change is a central issue in ecology and evolution. Metagenomic analysis of a stressed groundwater microbial community reveals that prolonged exposure to high concentrations of heavy metals, nitric acid and organic solvents ({approx}50 years) has resulted in a massive decrease in species and allelic diversity as well as a significant loss of metabolic diversity. Although the surviving microbial community possesses all metabolic pathways necessary for survival and growth in such an extreme environment, its structure is very simple, primarily composed of clonal denitrifying {gamma}- and {beta}-proteobacterial populations. The resulting community is overabundant inmore » key genes conferring resistance to specific stresses including nitrate, heavy metals and acetone. Evolutionary analysis indicates that lateral gene transfer could have a key function in rapid response and adaptation to environmental contamination. The results presented in this study have important implications in understanding, assessing and predicting the impacts of human-induced activities on microbial communities ranging from human health to agriculture to environmental management, and their responses to environmental changes.« less

  1. MetaSort untangles metagenome assembly by reducing microbial community complexity

    PubMed Central

    Ji, Peifeng; Zhang, Yanming; Wang, Jinfeng; Zhao, Fangqing

    2017-01-01

    Most current approaches to analyse metagenomic data rely on reference genomes. Novel microbial communities extend far beyond the coverage of reference databases and de novo metagenome assembly from complex microbial communities remains a great challenge. Here we present a novel experimental and bioinformatic framework, metaSort, for effective construction of bacterial genomes from metagenomic samples. MetaSort provides a sorted mini-metagenome approach based on flow cytometry and single-cell sequencing methodologies, and employs new computational algorithms to efficiently recover high-quality genomes from the sorted mini-metagenome by the complementary of the original metagenome. Through extensive evaluations, we demonstrated that metaSort has an excellent and unbiased performance on genome recovery and assembly. Furthermore, we applied metaSort to an unexplored microflora colonized on the surface of marine kelp and successfully recovered 75 high-quality genomes at one time. This approach will greatly improve access to microbial genomes from complex or novel communities. PMID:28112173

  2. Short-term parasite-infection alters already the biomass, activity and functional diversity of soil microbial communities

    PubMed Central

    Li, Jun-Min; Jin, Ze-Xin; Hagedorn, Frank; Li, Mai-He

    2014-01-01

    Native parasitic plants may be used to infect and control invasive plants. We established microcosms with invasive Mikania micrantha and native Coix lacryma-jobi growing in mixture on native soils, with M. micrantha being infected by parasitic Cuscuta campestris at four intensity levels for seven weeks to estimate the top-down effects of plant parasitism on the biomass and functional diversity of soil microbial communities. Parasitism significantly decreased root biomass and altered soil microbial communities. Soil microbial biomass decreased, but soil respiration increased at the two higher infection levels, indicating a strong stimulation of soil microbial metabolic activity (+180%). Moreover, a Biolog assay showed that the infection resulted in a significant change in the functional diversity indices of soil microbial communities. Pearson correlation analysis indicated that microbial biomass declined significantly with decreasing root biomass, particularly of the invasive M. micrantha. Also, the functional diversity indices of soil microbial communities were positively correlated with soil microbial biomass. Therefore, the negative effects on the biomass, activity and functional diversity of soil microbial community by the seven week long plant parasitism was very likely caused by decreased root biomass and root exudation of the invasive M. micrantha. PMID:25367357

  3. Short-term parasite-infection alters already the biomass, activity and functional diversity of soil microbial communities

    NASA Astrophysics Data System (ADS)

    Li, Jun-Min; Jin, Ze-Xin; Hagedorn, Frank; Li, Mai-He

    2014-11-01

    Native parasitic plants may be used to infect and control invasive plants. We established microcosms with invasive Mikania micrantha and native Coix lacryma-jobi growing in mixture on native soils, with M. micrantha being infected by parasitic Cuscuta campestris at four intensity levels for seven weeks to estimate the top-down effects of plant parasitism on the biomass and functional diversity of soil microbial communities. Parasitism significantly decreased root biomass and altered soil microbial communities. Soil microbial biomass decreased, but soil respiration increased at the two higher infection levels, indicating a strong stimulation of soil microbial metabolic activity (+180%). Moreover, a Biolog assay showed that the infection resulted in a significant change in the functional diversity indices of soil microbial communities. Pearson correlation analysis indicated that microbial biomass declined significantly with decreasing root biomass, particularly of the invasive M. micrantha. Also, the functional diversity indices of soil microbial communities were positively correlated with soil microbial biomass. Therefore, the negative effects on the biomass, activity and functional diversity of soil microbial community by the seven week long plant parasitism was very likely caused by decreased root biomass and root exudation of the invasive M. micrantha.

  4. Deep-Subterranean Microbial Habitats in the Hishikari Epithermal Gold Mine: Active Thermophilic Microbial Communities and Endolithic Ancient Microbial Relicts.

    NASA Astrophysics Data System (ADS)

    Hirayama, H.; Takai, K.; Inagaki, F.; Horikoshi, K.

    2001-12-01

    Deep subterranean microbial community structures in an epithermal gold-silver deposit, Hishikari gold mine, southern part of Kyusyu Japan, were evaluated through the combined use of enrichment culture methods and culture-independent molecular surveys. The geologic setting of the Hishikari deposit is composed of three lithologies; basement oceanic sediments of the Cretaceous Shimanto Supergroup, Quaternary andesites, and auriferous quartz vein. We studied the drilled core rock of these, and the geothermal hot waters from the basement aquifers collected by means of the dewatering system located at the deepest level in the mining sites. Culture-independent molecular phylogenetic analyses of PCR-amplified ribosomal DNA (rDNA) recovered from drilled cores suggested that the deep-sea oceanic microbial communities were present as ancient indigenous relicts confined in the Shimanto basement. On the other hand, genetic signals of active thermophilic microbial communities, mainly consisting of thermophilic hydrogen-oxidizer within Aquificales, thermophilic methanotroph within g-Proteobacteria and yet-uncultivated bacterium OPB37 within b-Proteobacteria, were detected with these of oceanic relicts from the subterranean geothermal hot aquifers (temp. 70-100ºC). Successful cultivation and FISH analyses strongly supported that these thermophilic lithotrophic microorganisms could be exactly active and they grew using geochemically produced hydrogen and methane gasses as nutrients. Based on these results, the deep-subsurface biosphere occurring in the Hishikari epithermal gold mine was delineated as endolithic ancient microbial relicts and modern habitats raising active lithotrophic thermophiles associated with the geological and geochemical features of the epithermal gold deposit.

  5. Influence of geogenic factors on microbial communities in metallogenic Australian soils

    PubMed Central

    Reith, Frank; Brugger, Joel; Zammit, Carla M; Gregg, Adrienne L; Goldfarb, Katherine C; Andersen, Gary L; DeSantis, Todd Z; Piceno, Yvette M; Brodie, Eoin L; Lu, Zhenmei; He, Zhili; Zhou, Jizhong; Wakelin, Steven A

    2012-01-01

    Links between microbial community assemblages and geogenic factors were assessed in 187 soil samples collected from four metal-rich provinces across Australia. Field-fresh soils and soils incubated with soluble Au(III) complexes were analysed using three-domain multiplex-terminal restriction fragment length polymorphism, and phylogenetic (PhyloChip) and functional (GeoChip) microarrays. Geogenic factors of soils were determined using lithological-, geomorphological- and soil-mapping combined with analyses of 51 geochemical parameters. Microbial communities differed significantly between landforms, soil horizons, lithologies and also with the occurrence of underlying Au deposits. The strongest responses to these factors, and to amendment with soluble Au(III) complexes, was observed in bacterial communities. PhyloChip analyses revealed a greater abundance and diversity of Alphaproteobacteria (especially Sphingomonas spp.), and Firmicutes (Bacillus spp.) in Au-containing and Au(III)-amended soils. Analyses of potential function (GeoChip) revealed higher abundances of metal-resistance genes in metal-rich soils. For example, genes that hybridised with metal-resistance genes copA, chrA and czcA of a prevalent aurophillic bacterium, Cupriavidus metallidurans CH34, occurred only in auriferous soils. These data help establish key links between geogenic factors and the phylogeny and function within soil microbial communities. In particular, the landform, which is a crucial factor in determining soil geochemistry, strongly affected microbial community structures. PMID:22673626

  6. Influence of geogenic factors on microbial communities in metallogenic Australian soils.

    PubMed

    Reith, Frank; Brugger, Joel; Zammit, Carla M; Gregg, Adrienne L; Goldfarb, Katherine C; Andersen, Gary L; DeSantis, Todd Z; Piceno, Yvette M; Brodie, Eoin L; Lu, Zhenmei; He, Zhili; Zhou, Jizhong; Wakelin, Steven A

    2012-11-01

    Links between microbial community assemblages and geogenic factors were assessed in 187 soil samples collected from four metal-rich provinces across Australia. Field-fresh soils and soils incubated with soluble Au(III) complexes were analysed using three-domain multiplex-terminal restriction fragment length polymorphism, and phylogenetic (PhyloChip) and functional (GeoChip) microarrays. Geogenic factors of soils were determined using lithological-, geomorphological- and soil-mapping combined with analyses of 51 geochemical parameters. Microbial communities differed significantly between landforms, soil horizons, lithologies and also with the occurrence of underlying Au deposits. The strongest responses to these factors, and to amendment with soluble Au(III) complexes, was observed in bacterial communities. PhyloChip analyses revealed a greater abundance and diversity of Alphaproteobacteria (especially Sphingomonas spp.), and Firmicutes (Bacillus spp.) in Au-containing and Au(III)-amended soils. Analyses of potential function (GeoChip) revealed higher abundances of metal-resistance genes in metal-rich soils. For example, genes that hybridised with metal-resistance genes copA, chrA and czcA of a prevalent aurophillic bacterium, Cupriavidus metallidurans CH34, occurred only in auriferous soils. These data help establish key links between geogenic factors and the phylogeny and function within soil microbial communities. In particular, the landform, which is a crucial factor in determining soil geochemistry, strongly affected microbial community structures.

  7. Salinity shapes microbial diversity and community structure in surface sediments of the Qinghai-Tibetan Lakes.

    PubMed

    Yang, Jian; Ma, Li'an; Jiang, Hongchen; Wu, Geng; Dong, Hailiang

    2016-04-26

    Investigating microbial response to environmental variables is of great importance for understanding of microbial acclimatization and evolution in natural environments. However, little is known about how microbial communities responded to environmental factors (e.g. salinity, geographic distance) in lake surface sediments of the Qinghai-Tibetan Plateau (QTP). In this study, microbial diversity and community structure in the surface sediments of nine lakes on the QTP were investigated by using the Illumina Miseq sequencing technique and the resulting microbial data were statistically analyzed in combination with environmental variables. The results showed total microbial community of the studied lakes was significantly correlated (r = 0.631, P < 0.001) with lake salinity instead of geographic distance. This suggests that lake salinity is more important than geographic distance in shaping the microbial diversity and community structure in the studied samples. In addition, the abundant and rare taxa (OTUs with relative abundance higher than 1% and lower than 0.01% within one sample, respectively) were significantly (P < 0.05) correlated (r = 0.427 and 0.783, respectively) with salinity, suggesting rare taxa might be more sensitive to salinity than their abundant counterparts, thus cautions should be taken in future when evaluating microbial response (abundant vs. rare sub-communities) to environmental conditions.

  8. Linking Microbial Community Structure to β-Glucosidic Function in Soil Aggregates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, Vanessa L.; Fansler, Sarah J.; Stegen, James C.

    2013-10-01

    To link microbial community 16S structure to a measured function in a natural soil we have scaled both DNA and β-glucosidase assays down to a volume of soil that may approach a unique microbial community. β-glucosidase activity was assayed in 450 individual aggregates which were then sorted into classes of high or low activities, from which groups of 10 or 11 aggregates were identified and grouped for DNA extraction and pyrosequencing. Tandem assays of ATP were conducted for each aggregate in order to normalize these small groups of aggregates for biomass size. In spite of there being no significant differencesmore » in the richness or diversity of the microbial communities associated with high β-glucosidase activities compared with the communities associated with low β-glucosidase communities, several analyses of variance clearly show that the communities of these two groups differ. The separation of these groups is partially driven by the differential abundances of members of the Chitinophagaceae family. It may be that observed functional differences in otherwise similar soil aggregates can be largely attributed to differences in resource availability, rather than to presence or absence of particular taxonomic groups.« less

  9. Preservation of microbial communities enriched on lignocellulose under thermophilic and high-solid conditions.

    PubMed

    Yu, Chaowei; Reddy, Amitha P; Simmons, Christopher W; Simmons, Blake A; Singer, Steven W; VanderGheynst, Jean S

    2015-01-01

    Microbial communities enriched from diverse environments have shown considerable promise for the targeted discovery of microorganisms and enzymes for bioconversion of lignocellulose to liquid fuels. While preservation of microbial communities is important for commercialization and research, few studies have examined storage conditions ideal for preservation. The goal of this study was to evaluate the impact of preservation method on composition of microbial communities enriched on switchgrass before and after storage. The enrichments were completed in a high-solid and aerobic environment at 55 °C. Community composition was examined for each enrichment to determine when a stable community was achieved. Preservation methods included cryopreservation with the cryoprotective agents DMSO and glycerol, and cryopreservation without cryoprotective agents. Revived communities were examined for their ability to decompose switchgrass under high-solid and thermophilic conditions. High-throughput 16S rRNA gene sequencing of DNA extracted from enrichment samples showed that the majority of the shift in composition of the switchgrass-degrading community occurred during the initial three 2-week enrichments. Shifts in community structure upon storage occurred in all cryopreserved samples. Storage in liquid nitrogen in the absence of cryoprotectant resulted in variable preservation of dominant microorganisms in enriched samples. Cryopreservation with either DMSO or glycerol provided consistent and equivalent preservation of dominant organisms. A stable switchgrass-degrading microbial community was achieved after three 2-week enrichments. Dominant microorganisms were preserved equally well with DMSO and glycerol. DMSO-preserved communities required more incubation time upon revival to achieve pre-storage activity levels during high-solid thermophilic cultivation on switchgrass. Despite shifts in the community with storage, the samples were active upon revival under thermophilic and

  10. Preservation of microbial communities enriched on lignocellulose under thermophilic and high-solid conditions

    DOE PAGES

    Yu, Chaowei; Reddy, Amitha P.; Simmons, Christopher W.; ...

    2015-12-02

    Microbial communities enriched from diverse environments have shown considerable promise for the targeted discovery of microorganisms and enzymes for bioconversion of lignocellulose to liquid fuels. While preservation of microbial communities is important for commercialization and research, few studies have examined storage conditions ideal for preservation. The goal of this study was to evaluate the impact of preservation method on composition of microbial communities enriched on switchgrass before and after storage. The enrichments were completed in a high-solid and aerobic environment at 55 °C. Community composition was examined for each enrichment to determine when a stable community was achieved. Preservation methodsmore » included cryopreservation with the cryoprotective agents DMSO and glycerol, and cryopreservation without cryoprotective agents. Revived communities were examined for their ability to decompose switchgrass under high-solid and thermophilic conditions. High-throughput 16S rRNA gene sequencing of DNA extracted from enrichment samples showed that the majority of the shift in composition of the switchgrass-degrading community occurred during the initial three 2-week enrichments. Shifts in community structure upon storage occurred in all cryopreserved samples. Storage in liquid nitrogen in the absence of cryoprotectant resulted in variable preservation of dominant microorganisms in enriched samples. Cryopreservation with either DMSO or glycerol provided consistent and equivalent preservation of dominant organisms. In conclusion, a stable switchgrass-degrading microbial community was achieved after three 2-week enrichments. Dominant microorganisms were preserved equally well with DMSO and glycerol. DMSO-preserved communities required more incubation time upon revival to achieve pre-storage activity levels during high-solid thermophilic cultivation on switchgrass. Despite shifts in the community with storage, the samples were active upon revival

  11. Monitoring of microbial communities in anaerobic digestion sludge for biogas optimisation.

    PubMed

    Lim, Jun Wei; Ge, Tianshu; Tong, Yen Wah

    2018-01-01

    This study characterised and compared the microbial communities of anaerobic digestion (AD) sludge using three different methods - (1) Clone library; (2) Pyrosequencing; and (3) Terminal restriction fragment length polymorphism (T-RFLP). Although high-throughput sequencing techniques are becoming increasingly popular and affordable, the reliance of such techniques for frequent monitoring of microbial communities may be a financial burden for some. Furthermore, the depth of microbial analysis revealed by high-throughput sequencing may not be required for monitoring purposes. This study aims to develop a rapid, reliable and economical approach for the monitoring of microbial communities in AD sludge. A combined approach where genetic information of sequences from clone library was used to assign phylogeny to T-RFs determined experimentally was developed in this study. In order to assess the effectiveness of the combined approach, microbial communities determined by the combined approach was compared to that characterised by pyrosequencing. Results showed that both pyrosequencing and clone library methods determined the dominant bacteria phyla to be Proteobacteria, Firmicutes, Bacteroidetes, and Thermotogae. Both methods also found that sludge A and B were predominantly dominated by acetogenic methanogens followed by hydrogenotrophic methanogens. The number of OTUs detected by T-RFLP was significantly lesser than that detected by the clone library. In this study, T-RFLP analysis identified majority of the dominant species of the archaeal consortia. However, many of the more highly diverse bacteria consortia were missed. Nevertheless, the combined approach developed in this study where clone sequences from the clone library were used to assign phylogeny to T-RFs determined experimentally managed to accurately predict the same dominant microbial groups for both sludge A and sludge B, as compared to the pyrosequencing results. Results showed that the combined approach of

  12. Methane dynamics regulated by microbial community response to permafrost thaw.

    PubMed

    McCalley, Carmody K; Woodcroft, Ben J; Hodgkins, Suzanne B; Wehr, Richard A; Kim, Eun-Hae; Mondav, Rhiannon; Crill, Patrick M; Chanton, Jeffrey P; Rich, Virginia I; Tyson, Gene W; Saleska, Scott R

    2014-10-23

    Permafrost contains about 50% of the global soil carbon. It is thought that the thawing of permafrost can lead to a loss of soil carbon in the form of methane and carbon dioxide emissions. The magnitude of the resulting positive climate feedback of such greenhouse gas emissions is still unknown and may to a large extent depend on the poorly understood role of microbial community composition in regulating the metabolic processes that drive such ecosystem-scale greenhouse gas fluxes. Here we show that changes in vegetation and increasing methane emissions with permafrost thaw are associated with a switch from hydrogenotrophic to partly acetoclastic methanogenesis, resulting in a large shift in the δ(13)C signature (10-15‰) of emitted methane. We used a natural landscape gradient of permafrost thaw in northern Sweden as a model to investigate the role of microbial communities in regulating methane cycling, and to test whether a knowledge of community dynamics could improve predictions of carbon emissions under loss of permafrost. Abundance of the methanogen Candidatus 'Methanoflorens stordalenmirensis' is a key predictor of the shifts in methane isotopes, which in turn predicts the proportions of carbon emitted as methane and as carbon dioxide, an important factor for simulating the climate feedback associated with permafrost thaw in global models. By showing that the abundance of key microbial lineages can be used to predict atmospherically relevant patterns in methane isotopes and the proportion of carbon metabolized to methane during permafrost thaw, we establish a basis for scaling changing microbial communities to ecosystem isotope dynamics. Our findings indicate that microbial ecology may be important in ecosystem-scale responses to global change.

  13. Decoding molecular interactions in microbial communities

    PubMed Central

    Abreu, Nicole A.; Taga, Michiko E.

    2016-01-01

    Microbial communities govern numerous fundamental processes on earth. Discovering and tracking molecular interactions among microbes is critical for understanding how single species and complex communities impact their associated host or natural environment. While recent technological developments in DNA sequencing and functional imaging have led to new and deeper levels of understanding, we are limited now by our inability to predict and interpret the intricate relationships and interspecies dependencies within these communities. In this review, we highlight the multifaceted approaches investigators have taken within their areas of research to decode interspecies molecular interactions that occur between microbes. Understanding these principles can give us greater insight into ecological interactions in natural environments and within synthetic consortia. PMID:27417261

  14. Sediment microbial communities in Great Boiling Spring are controlled by temperature and distinct from water communities

    PubMed Central

    Cole, Jessica K; Peacock, Joseph P; Dodsworth, Jeremy A; Williams, Amanda J; Thompson, Daniel B; Dong, Hailiang; Wu, Geng; Hedlund, Brian P

    2013-01-01

    Great Boiling Spring is a large, circumneutral, geothermal spring in the US Great Basin. Twelve samples were collected from water and four different sediment sites on four different dates. Microbial community composition and diversity were assessed by PCR amplification of a portion of the small subunit rRNA gene using a universal primer set followed by pyrosequencing of the V8 region. Analysis of 164 178 quality-filtered pyrotags clearly distinguished sediment and water microbial communities. Water communities were extremely uneven and dominated by the bacterium Thermocrinis. Sediment microbial communities grouped according to temperature and sampling location, with a strong, negative, linear relationship between temperature and richness at all taxonomic levels. Two sediment locations, Site A (87–80 °C) and Site B (79 °C), were predominantly composed of single phylotypes of the bacterial lineage GAL35 (p̂=36.1%), Aeropyrum (p̂=16.6%), the archaeal lineage pSL4 (p̂=15.9%), the archaeal lineage NAG1 (p̂=10.6%) and Thermocrinis (p̂=7.6%). The ammonia-oxidizing archaeon ‘Candidatus Nitrosocaldus' was relatively abundant in all sediment samples <82 °C (p̂=9.51%), delineating the upper temperature limit for chemolithotrophic ammonia oxidation in this spring. This study underscores the distinctness of water and sediment communities in GBS and the importance of temperature in driving microbial diversity, composition and, ultimately, the functioning of biogeochemical cycles. PMID:23235293

  15. The Fecal Microbial Community of Breast-fed Infants from Armenia and Georgia

    PubMed Central

    Lewis, Zachery T; Sidamonidze, Ketevan; Tsaturyan, Vardan; Tsereteli, David; Khachidze, Nika; Pepoyan, Astghik; Zhgenti, Ekaterine; Tevzadze, Liana; Manvelyan, Anahit; Balayan, Marine; Imnadze, Paata; Torok, Tamas; Lemay, Danielle G.; Mills, David A.

    2017-01-01

    Multiple factors help shape the infant intestinal microbiota early in life. Environmental conditions such as the presence of bioactive molecules from breast milk dictate gut microbial growth and survival. Infants also receive distinct, personalized, bacterial exposures leading to differential colonization. Microbial exposures and gut environmental conditions differ between infants in different locations, as does the typical microbial community structure in an infant’s gut. Here we evaluate potential influences on the infant gut microbiota through a longitudinal study on cohorts of breast-fed infants from the neighboring countries of Armenia and Georgia, an area of the world for which the infant microbiome has not been previously investigated. Marker gene sequencing of 16S ribosomal genes revealed that the gut microbial communities of infants from these countries were dominated by bifidobacteria, were different from each other, and were marginally influenced by their mother’s secretor status. Species-level differences in the bifidobacterial communities of each country and birth method were also observed. These community differences suggest that environmental variation between individuals in different locations may influence the gut microbiota of infants. PMID:28150690

  16. Direct and indirect influence of parental bedrock on streambed microbial community structure in forested streams.

    PubMed

    Mosher, Jennifer J; Findlay, Robert H

    2011-11-01

    A correlative study was performed to determine if variation in streambed microbial community structure in low-order forested streams can be directly or indirectly linked to the chemical nature of the parental bedrock of the environments through which the streams flow. Total microbial and photosynthetic biomass (phospholipid phosphate [PLP] and chlorophyll a), community structure (phospholipid fatty acid analysis), and physical and chemical parameters were measured in six streams, three located in sandstone and three in limestone regions of the Bankhead National Forest in northern Alabama. Although stream water flowing through the two different bedrock types differed significantly in chemical composition, there were no significant differences in total microbial and photosynthetic biomass in the sediments. In contrast, sedimentary microbial community structure differed between the bedrock types and was significantly correlated with stream water ion concentrations. A pattern of seasonal variation in microbial community structure was also observed. Further statistical analysis indicated dissolved organic matter (DOM) quality, which was previously shown to be influenced by geological variation, correlated with variation in bacterial community structure. These results indicate that the geology of underlying bedrock influences benthic microbial communities directly via changes in water chemistry and also indirectly via stream water DOM quality.

  17. Biotic and Abiotic Properties Mediating Plant Diversity Effects on Soil Microbial Communities in an Experimental Grassland

    PubMed Central

    Lange, Markus; Habekost, Maike; Eisenhauer, Nico; Roscher, Christiane; Bessler, Holger; Engels, Christof; Oelmann, Yvonne; Scheu, Stefan; Wilcke, Wolfgang; Schulze, Ernst-Detlef; Gleixner, Gerd

    2014-01-01

    Plant diversity drives changes in the soil microbial community which may result in alterations in ecosystem functions. However, the governing factors between the composition of soil microbial communities and plant diversity are not well understood. We investigated the impact of plant diversity (plant species richness and functional group richness) and plant functional group identity on soil microbial biomass and soil microbial community structure in experimental grassland ecosystems. Total microbial biomass and community structure were determined by phospholipid fatty acid (PLFA) analysis. The diversity gradient covered 1, 2, 4, 8, 16 and 60 plant species and 1, 2, 3 and 4 plant functional groups (grasses, legumes, small herbs and tall herbs). In May 2007, soil samples were taken from experimental plots and from nearby fields and meadows. Beside soil texture, plant species richness was the main driver of soil microbial biomass. Structural equation modeling revealed that the positive plant diversity effect was mainly mediated by higher leaf area index resulting in higher soil moisture in the top soil layer. The fungal-to-bacterial biomass ratio was positively affected by plant functional group richness and negatively by the presence of legumes. Bacteria were more closely related to abiotic differences caused by plant diversity, while fungi were more affected by plant-derived organic matter inputs. We found diverse plant communities promoted faster transition of soil microbial communities typical for arable land towards grassland communities. Although some mechanisms underlying the plant diversity effect on soil microorganisms could be identified, future studies have to determine plant traits shaping soil microbial community structure. We suspect differences in root traits among different plant communities, such as root turnover rates and chemical composition of root exudates, to structure soil microbial communities. PMID:24816860

  18. The social structure of microbial community involved in colonization resistance.

    PubMed

    He, Xuesong; McLean, Jeffrey S; Guo, Lihong; Lux, Renate; Shi, Wenyuan

    2014-03-01

    It is well established that host-associated microbial communities can interfere with the colonization and establishment of microbes of foreign origins, a phenomenon often referred to as bacterial interference or colonization resistance. However, due to the complexity of the indigenous microbiota, it has been extremely difficult to elucidate the community colonization resistance mechanisms and identify the bacterial species involved. In a recent study, we have established an in vitro mice oral microbial community (O-mix) and demonstrated its colonization resistance against an Escherichia coli strain of mice gut origin. In this study, we further analyzed the community structure of the O-mix by using a dilution/regrowth approach and identified the bacterial species involved in colonization resistance against E. coli. Our results revealed that, within the O-mix there were three different types of bacterial species forming unique social structure. They act as 'Sensor', 'Mediator' and 'Killer', respectively, and have coordinated roles in initiating the antagonistic action and preventing the integration of E. coli. The functional role of each identified bacterial species was further confirmed by E. coli-specific responsiveness of the synthetic communities composed of different combination of the identified players. The study reveals for the first time the sophisticated structural and functional organization of a colonization resistance pathway within a microbial community. Furthermore, our results emphasize the importance of 'Facilitation' or positive interactions in the development of community-level functions, such as colonization resistance.

  19. Perfluoroalkyl Acids Shift Microbial Community Structure Across Experimental Scales

    NASA Astrophysics Data System (ADS)

    Weathers, T. S.; Sharp, J.

    2016-12-01

    Perfluoroalkyl acids (PFAAs) are contaminants of emerging concern that have increasingly been found in groundwater and drinking water systems. Previously, we demonstrated that PFAAs significantly alter the abundance of specific microbial clades in batch reductive dechlorinating systems, resulting in decreased chlorinated solvent attenuation capabilities. To further understand the impacts of PFAA exposure on subsurface microbial processes and PFAA transport, we investigated changes in microbial community structure as a function of PFAA presence in flow-through columns simulating aquifer transport. Phylogenetic analysis using high throughput, next generation sequencing performed after exposure to 250 pore volumes of source zone concentrations of PFAAs (10 mg/L each of 11 analytes including PFOS and PFOA) resulted in patterns that mirrored those observed in batch systems, demonstrating a conservation of community dynamics across experimental scales. Of the nine clades observed in both batch and flow-through systems, six were similarly impacted as a function of PFAA exposure, regardless of the experimental differences in transport and redox state. Specifically, the presence of PFAAs enhanced the relative abundance of Archaea, Bacteroidetes (phylum), and the family Veillonellaceae in both systems. Repressed clades include the genus Sedimentibacter, Ruminococcaceae (family), and the Anaerolineales, which contains Dehalococcoides, a genus known for its ability to fully dechlorinate TCE. As PFAAs are often co-located with TCE and BTEX, changes in microbial community structure can result in hindered bioremediation of these co-contaminants. Consideration of community shifts and corresponding changes in behavior, such as repressed reductive dechlorination or increased biofilm formation, will aid in the development of conceptual site models that account for co-contaminant bioremediation potential and PFAA transport.

  20. Wastewater treatment plant effluent introduces recoverable shifts in microbial community composition in urban streams

    NASA Astrophysics Data System (ADS)

    Ledford, S. H.; Price, J. R.; Ryan, M. O.; Toran, L.; Sales, C. M.

    2017-12-01

    New technologies are allowing for intense scrutiny of the impact of land use on microbial communities in stream networks. We used a combination of analytical chemistry, real-time polymerase chain reaction (qPCR) and targeted amplicon sequencing for a preliminary study on the impact of wastewater treatment plant effluent discharge on urban streams. Samples were collected on two dates above and below treatment plants on the Wissahickon Creek, and its tributary, Sandy Run, in Montgomery County, PA, USA. As expected, effluent was observed to be a significant source of nutrients and human and non-specific fecal associated taxa. There was an observed increase in the alpha diversity at locations immediately below effluent outflows, which contributed many taxa involved in wastewater treatment processes and nutrient cycling to the stream's microbial community. Unexpectedly, modeling of microbial community shifts along the stream was not controlled by concentrations of measured nutrients. Furthermore, partial recovery, in the form of decreasing abundances of bacteria and nutrients associated with wastewater treatment plant processes, nutrient cycling bacteria, and taxa associated with fecal and sewage sources, was observed between effluent sources. Antecedent moisture conditions impacted overall microbial community diversity, with higher diversity occurring after rainfall. These findings hint at resilience in stream microbial communities to recover from wastewater treatment plant effluent and are vital to understanding the impacts of urbanization on microbial stream communities.

  1. Short- and long-term influence of stand density on soil microbial communities in ponderosa pine forests

    Treesearch

    Steven T. Overby

    2009-01-01

    Soil microbial communities process plant detritus and returns nutrients needed for plant growth. Increased knowledge of this intimate linkage between plant and soil microbial communities will provide a better understanding of ecosystem response to changing abiotic and biotic conditions. This dissertation consists of three studies to determine soil microbial community...

  2. Identifying the key taxonomic categories that characterize microbial community diversity using full-scale classification: a case study of microbial communities in the sediments of Hangzhou Bay.

    PubMed

    Dai, Tianjiao; Zhang, Yan; Tang, Yushi; Bai, Yaohui; Tao, Yile; Huang, Bei; Wen, Donghui

    2016-10-01

    Coastal areas are land-sea transitional zones with complex natural and anthropogenic disturbances. Microorganisms in coastal sediments adapt to such disturbances both individually and as a community. The microbial community structure changes spatially and temporally under environmental stress. In this study, we investigated the microbial community structure in the sediments of Hangzhou Bay, a seriously polluted bay in China. In order to identify the roles and contribution of all microbial taxa, we set thresholds as 0.1% for rare taxa and 1% for abundant taxa, and classified all operational taxonomic units into six exclusive categories based on their abundance. The results showed that the key taxa in differentiating the communities are abundant taxa (AT), conditionally abundant taxa (CAT), and conditionally rare or abundant taxa (CRAT). A large population in conditionally rare taxa (CRT) made this category collectively significant in differentiating the communities. Both bacteria and archaea demonstrated a distance decay pattern of community similarity in the bay, and this pattern was strengthened by rare taxa, CRT and CRAT, but weakened by AT and CAT. This implied that the low abundance taxa were more deterministically distributed, while the high abundance taxa were more ubiquitously distributed. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Development of a Novel Method for Temporal Analysis of Airborne Microbial Communities

    NASA Astrophysics Data System (ADS)

    Spring, A.; Domingue, K. D.; Mooney, M. M.; Kerber, T. V.; Lemmer, K. M.; Docherty, K. M.

    2017-12-01

    Microorganisms are ubiquitous in the atmosphere, which serves as an important vector for microbial dispersal to all terrestrial habitats. Very little is known about the mechanisms that control microbial dispersal, because sampling of airborne microbial communities beyond 2 m above the ground is limited. The goal of this study was to construct and test an airborne microbial sampling system to collect sufficient DNA for conducting next generation sequencing and microbial community analyses. The system we designed employs helium-filled helikites as a mechanism for launching samplers to various altitudes. The samplers use a passive collection dish system, weigh under 6 lbs and are operated by remote control from the ground. We conducted several troubleshooting experiments to test sampler functionality. We extracted DNA from sterile collection dish surfaces and examined communities using amplicons of the V4 region of 16S rRNA in bacteria using Illumina Mi-Seq. The results of these experiments demonstrate that the samplers we designed 1) remain decontaminated when closed and collect sufficient microbial biomass for DNA-based analyses when open for 6 hours; 2) are optimally decontaminated with 15 minutes of UV exposure; 3) require 8 collection dish surfaces to collect sufficient biomass. We also determined that DNA extraction conducted within 24 hours of collection has less of an impact on community composition than extraction after frozen storage. Using this sampling system, we collected samples from multiple altitudes in December 2016 and May 2017 at 3 sites in Kalamazoo and Pellston, Michigan. In Kalamazoo, areas sampled were primarily developed or agricultural, while in Pellston they were primarily forested. We observed significant differences between airborne bacterial communities collected at each location and time point. Additionally, bacterial communities did not differ with altitude, suggesting that terrestrial land use has an important influence on the upward

  4. Survival of a microbial soil community under Martian conditions

    NASA Astrophysics Data System (ADS)

    Hansen, A. A.; Noernberg, P.; Merrison, J.; Lomstein, B. Aa.; Finster, K. W.

    2003-04-01

    Because of the similarities between Earth and Mars early history the hypothesis was forwarded that Mars is a site where extraterrestrial life might have and/or may still occur(red). Sample-return missions are planned by NASA and ESA to test this hypothesis. The enormous economic costs and the logistic challenges of these missions make earth-based model facilities inevitable. The Mars simulation system at University of Aarhus, Denmark allows microbiological experiments under Mars analogue conditions. Thus detailed studies on the effect of Mars environmental conditions on the survival and the activity of a natural microbial soil community were carried out. Changes in the soil community were determined with a suite of different approaches: 1) total microbial respiration activity was investigated with 14C-glucose, 2) the physiological profile was investigated by the EcoLog-system, 3) colony forming units were determined by plate counts and 4) the microbial diversity on the molecular level was accessed with Denaturing Gradient Gel Electrophoresis. The simulation experiments showed that a part of the bacterial community survived Martian conditions corresponding to 9 Sol. These and future simulation experiments will contribute to our understanding of the possibility for extraterrestrial and terrestrial life on Mars.

  5. Deciphering microbial interactions in synthetic human gut microbiome communities.

    PubMed

    Venturelli, Ophelia S; Carr, Alex C; Fisher, Garth; Hsu, Ryan H; Lau, Rebecca; Bowen, Benjamin P; Hromada, Susan; Northen, Trent; Arkin, Adam P

    2018-06-21

    The ecological forces that govern the assembly and stability of the human gut microbiota remain unresolved. We developed a generalizable model-guided framework to predict higher-dimensional consortia from time-resolved measurements of lower-order assemblages. This method was employed to decipher microbial interactions in a diverse human gut microbiome synthetic community. We show that pairwise interactions are major drivers of multi-species community dynamics, as opposed to higher-order interactions. The inferred ecological network exhibits a high proportion of negative and frequent positive interactions. Ecological drivers and responsive recipient species were discovered in the network. Our model demonstrated that a prevalent positive and negative interaction topology enables robust coexistence by implementing a negative feedback loop that balances disparities in monospecies fitness levels. We show that negative interactions could generate history-dependent responses of initial species proportions that frequently do not originate from bistability. Measurements of extracellular metabolites illuminated the metabolic capabilities of monospecies and potential molecular basis of microbial interactions. In sum, these methods defined the ecological roles of major human-associated intestinal species and illuminated design principles of microbial communities. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.

  6. Soil amendments yield persisting effects on the microbial communities--a 7-year study

    USDA-ARS?s Scientific Manuscript database

    Soil microbial communities are sensitive to carbon amendments and largely control the decomposition and accumulation of soil organic matter. In this study, we evaluated whether the type of carbon amendment applied to wheat-cropped or fallow soil imparted lasting effects on the microbial community w...

  7. Structure, inter-annual recurrence, and global-scale connectivity of airborne microbial communities.

    PubMed

    Barberán, Albert; Henley, Jessica; Fierer, Noah; Casamayor, Emilio O

    2014-07-15

    Dust coming from the large deserts on Earth, such as the Sahara, can travel long distances and be dispersed over thousands of square kilometers. Remote dust deposition rates are increasing as a consequence of global change and may represent a mechanism for intercontinental microbial dispersal. Remote oligotrophic alpine lakes are particularly sensitive to dust inputs and can serve as sentinels of airborne microbial transport and the ecological consequences of accelerated intercontinental microbial migration. In this study, we applied high-throughput sequencing techniques (16S rRNA amplicon pyrosequencing) to characterize the microbial communities of atmospheric deposition collected in the Central Pyrenees (NE Spain) along three years. Additionally, bacteria from soils in Mauritania and from the air-water interface of high altitude Pyrenean lakes were also examined. Communities in aerosol deposition varied in time with a strong seasonal component of interannual similarity. Communities from the same season tended to resemble more each other than those from different seasons. Samples from disparate dates, in turn, slightly tended to have more dissimilar microbial assemblages (i.e., temporal distance decay), overall suggesting that atmospheric deposition may influence sink habitats in a temporally predictable manner. The three habitats examined (soil, deposition, and air-water interface) harbored distinct microbial communities, although airborne samples collected in the Pyrenees during Saharan dust outbreaks were closer to Mauritian soil samples than those collected during no Saharan dust episodes. The three habitats shared c.a. 1.4% of the total number of microbial sequences in the dataset. Such successful immigrants were spread in different bacterial classes. Overall, this study suggests that local and regional features may generate global trends in the dynamics and distribution of airborne microbial assemblages, and that the diversity of viable cells in the high

  8. Microbial communities may modify how litter quality affects potential decomposition rates as tree species migrate

    Treesearch

    Ashley D. Keiser; Jennifer D. Knoepp; Mark A. Bradford

    2013-01-01

    Background and aims Climate change alters regional plant species distributions, creating new combinations of litter species and soil communities. Biogeographic patterns in microbial communities relate to dissimilarity in microbial community function, meaning novel litters to communities may decompose differently than predicted from their chemical composition. Therefore...

  9. [Microbial Community Structure on the Root Surface of Patients with Periodontitis.

    PubMed

    Zhang, Ju-Mei; Zhou, Jian-Ye; Bo, Lei; Hu, Xiao-Pan; Jiao, Kang-Li; Li, Zhi-Jie; Li, Yue-Hong; Li, Zhi-Qiang

    2016-11-01

    To study the microbial community structure on the root surface of patients with periodontitis. Bacterial plaque and tissues from the root neck (RN group),root middle (RM group) and root tine (RT group) of six teeth with mobility 3 in one patient with periodontitis were sampled.The V3V4 region of 16S rRNA was sequenced on the Illumina MiSeq platform.The microbial community structure was analyzed by Mothur,Qiime and SPSS software. The principal component analysis (PCoA) results indicated that the RM samples had a similar microbial community structure as that of the RT samples,which was significant different from that of the RN samples.Thirteen phyla were detected in the three groups of samples,which included 7 dominant phyla.29 dominant genera were detected in 184 genera.The abundance of Bacteroidetes _[G-6] and Peptostre ptococcaceae _[XI][G-4] had a positive correlation with the depth of the collection site of samples ( P <0.05),while the abundance of Prevotella,Selenomonas,Corynebacterium and Olsenella had a negative correlation with the depth of the collection site of samples ( P <0.05). There is region-specificity of microbial community structure on the root surface of patients with periodontitis.

  10. The interacting roles of climate, soils, and plant production on soil microbial communities at a continental scale

    USGS Publications Warehouse

    Waldrop, Mark P.; Holloway, JoAnn M.; Smith, David; Goldhaber, Martin B.; Drenovsky, R.E.; Scow, K.M.; Dick, R.; Howard, Daniel M.; Wylie, Bruce K.; Grace, James B.

    2017-01-01

    Soil microbial communities control critical ecosystem processes such as decomposition, nutrient cycling, and soil organic matter formation. Continental scale patterns in the composition and functioning of microbial communities are related to climatic, biotic, and edaphic factors such as temperature and precipitation, plant community composition, and soil carbon, nitrogen, and pH. Although these relationships have been well explored individually, the examination of the factors that may act directly on microbial communities vs. those that may act indirectly through other ecosystem properties has not been well developed. To further such understanding, we utilized structural equation modeling (SEM) to evaluate a set of hypotheses about the direct and indirect effects of climatic, biotic, and edaphic variables on microbial communities across the continental United States. The primary goals of this work were to test our current understanding of the interactions among climate, soils, and plants in affecting microbial community composition, and to examine whether variation in the composition of the microbial community affects potential rates of soil enzymatic activities. A model of interacting factors created through SEM shows several expected patterns. Distal factors such as climate had indirect effects on microbial communities by influencing plant productivity, soil mineralogy, and soil pH, but factors related to soil organic matter chemistry had the most direct influence on community composition. We observed that both plant productivity and soil mineral composition were important indirect influences on community composition at the continental scale, both interacting to affect organic matter content and microbial biomass and ultimately community composition. Although soil hydrolytic enzymes were related to the moisture regime and soil carbon, oxidative enzymes were also affected by community composition, reflected in the abundance of soil fungi. These results highlight

  11. Different substrates and starter inocula govern microbial community structures in biogas reactors.

    PubMed

    Satpathy, Preseela; Steinigeweg, Sven; Cypionka, Heribert; Engelen, Bert

    2016-01-01

    The influence of different starter inocula on the microbial communities in biogas batch reactors fed with fresh maize and maize silage as substrates was investigated. Molecular biological analysis by Denaturing Gradient Gel Electrophoresis (DGGE) of 16S rRNA gene fragments showed that each inoculum bore specific microbial communities with varying predominant phylotypes. Both, bacterial and archaeal DGGE profiles displayed three distinct communities that developed depending on the type of inoculum. Although maize and silage are similar substrates, different communities dominated the lactate-rich silage compared to lactate-free fresh maize. Cluster analysis of DGGE gels showed the communities of the same substrates to be stable with their respective inoculum. Bacteria-specific DGGE analysis revealed a rich diversity with Firmicutes being predominant. The other abundant phylotypes were Bacteroidetes and Synergistetes. Archaea-specific DGGE analysis displayed less diverse community structures, identifying members of the Methanosarcinales as the dominant methanogens present in all the three biogas digesters. In general, the source of inoculum played a significant role in shaping microbial communities. Adaptability of the inoculum to the substrates fed also influenced community compositions which further impacted the rates of biogas production.

  12. A study of microbial communities on terracotta separator and on biocathode of air breathing microbial fuel cells.

    PubMed

    Rago, Laura; Zecchin, Sarah; Marzorati, Stefania; Goglio, Andrea; Cavalca, Lucia; Cristiani, Pierangela; Schievano, Andrea

    2018-04-01

    Recently, terracotta has attracted interest as low-cost and biocompatible material to build separators in microbial fuel cells (MFCs). However, the influence of a non-conductive material like terracotta on electroactive microbiological communities remains substantially unexplored. This study aims at describing the microbial pools developed from two different seed inocula (bovine and swine sewage) in terracotta-based air-breathing MFC. A statistical approach on microbiological data confirmed different community enrichment in the MFCs, depending mainly on the inoculum. Terracotta separators impeded the growth of electroactive communities in contact with cathodes (biocathodes), while a thick biofilm was observed on the surface (anolyte-side) of the terracotta separator. Terracotta-free MFCs, set as control experiments, showed a well-developed biocathode, Biocathode-MFCs resulted in 4 to 6-fold higher power densities. All biofilms were analyzed by high-throughput Illumina sequencing applied to 16S rRNA gene. The results showed more abundant (3- to 5-fold) electroactive genera (mainly Geobacter, Pseudomonas, Desulfuromonas and Clostridia MBA03) in terracotta-free biocathodes. Nevertheless, terracotta separators induced only slight changes in anodic microbial communities. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Anaerobic decomposition of cellulose by alkaliphilic microbial community of Owens Lake, California

    NASA Astrophysics Data System (ADS)

    Pikuta, Elena V.; Itoh, Takashi; Hoover, Richard B.

    2005-09-01

    The study of alkaliphilic microbial communities from anaerobic sediments of Owens and Mono Lakes in California has established the presence of active microbial cellulolytic processes in both studied lakes. The prior study of the microbial diversity of anaerobes in Mono Lake showed that the trophic chain of organic decomposition includes secondary anaerobes that previously were found to be unknown species (Spirochaeta americana, Tindallia californiensis, and Desulfonatronum thiodismutans). As we published earlier, the secondary anaerobes of Owens Lake morphologically were found to be very similar to those of Mono Lake. However, detailed comparison of the physiology and genetics has led to the conclusion that some links of organic decomposition in the trophic chain of the Owens Lake community are represented by a different unknown species. A new isolate of a sugarlytics free-living spirochete from Owens Lake ASpC2, which morphologically was similar to S. americana AspG1T isolated from Mono Lake, was found to have a different metabolic capacity such as the lack of capability to produce hydrogen during the fermentation of sugars. Furthermore, from the same microbial community of Owens Lake, another sugarlytics spore-forming alkaliphilic strain SCA was isolated in pure culture and described. Here we discuss the universal structure of the microbial community, types of microbial communities, review some hypothesis about Earth's Primordial Ocean and relevant new discoveries about water on Mars. This paper also presents some of the characteristics of novel isolates from anaerobic sediments of Owens Lake as a unique relic ecosystem of Astrobiological significance, and describes the participation of these strains in the process of cellulose degradation.

  14. Functional Responses of Salt Marsh Microbial Communities to Long-Term Nutrient Enrichment

    PubMed Central

    Graves, Christopher J.; Makrides, Elizabeth J.; Schmidt, Victor T.; Giblin, Anne E.; Cardon, Zoe G.

    2016-01-01

    ABSTRACT Environmental nutrient enrichment from human agricultural and waste runoff could cause changes to microbial communities that allow them to capitalize on newly available resources. Currently, the response of microbial communities to nutrient enrichment remains poorly understood, and, while some studies have shown no clear changes in community composition in response to heavy nutrient loading, others targeting specific genes have demonstrated clear impacts. In this study, we compared functional metagenomic profiles from sediment samples taken along two salt marsh creeks, one of which was exposed for more than 40 years to treated sewage effluent at its head. We identified strong and consistent increases in the relative abundance of microbial genes related to each of the biochemical steps in the denitrification pathway at enriched sites. Despite fine-scale local increases in the abundance of denitrification-related genes, the overall community structures based on broadly defined functional groups and taxonomic annotations were similar and varied with other environmental factors, such as salinity, which were common to both creeks. Homology-based taxonomic assignments of nitrous oxide reductase sequences in our data show that increases are spread over a broad taxonomic range, thus limiting detection from taxonomic data alone. Together, these results illustrate a functionally targeted yet taxonomically broad response of microbial communities to anthropogenic nutrient loading, indicating some resolution to the apparently conflicting results of existing studies on the impacts of nutrient loading in sediment communities. IMPORTANCE In this study, we used environmental metagenomics to assess the response of microbial communities in estuarine sediments to long-term, nutrient-rich sewage effluent exposure. Unlike previous studies, which have mainly characterized communities based on taxonomic data or primer-based amplification of specific target genes, our whole

  15. Functional Responses of Salt Marsh Microbial Communities to Long-Term Nutrient Enrichment.

    PubMed

    Graves, Christopher J; Makrides, Elizabeth J; Schmidt, Victor T; Giblin, Anne E; Cardon, Zoe G; Rand, David M

    2016-05-01

    Environmental nutrient enrichment from human agricultural and waste runoff could cause changes to microbial communities that allow them to capitalize on newly available resources. Currently, the response of microbial communities to nutrient enrichment remains poorly understood, and, while some studies have shown no clear changes in community composition in response to heavy nutrient loading, others targeting specific genes have demonstrated clear impacts. In this study, we compared functional metagenomic profiles from sediment samples taken along two salt marsh creeks, one of which was exposed for more than 40 years to treated sewage effluent at its head. We identified strong and consistent increases in the relative abundance of microbial genes related to each of the biochemical steps in the denitrification pathway at enriched sites. Despite fine-scale local increases in the abundance of denitrification-related genes, the overall community structures based on broadly defined functional groups and taxonomic annotations were similar and varied with other environmental factors, such as salinity, which were common to both creeks. Homology-based taxonomic assignments of nitrous oxide reductase sequences in our data show that increases are spread over a broad taxonomic range, thus limiting detection from taxonomic data alone. Together, these results illustrate a functionally targeted yet taxonomically broad response of microbial communities to anthropogenic nutrient loading, indicating some resolution to the apparently conflicting results of existing studies on the impacts of nutrient loading in sediment communities. In this study, we used environmental metagenomics to assess the response of microbial communities in estuarine sediments to long-term, nutrient-rich sewage effluent exposure. Unlike previous studies, which have mainly characterized communities based on taxonomic data or primer-based amplification of specific target genes, our whole-genome metagenomics

  16. Pre-genomic, genomic and post-genomic study of microbial communities involved in bioenergy.

    PubMed

    Rittmann, Bruce E; Krajmalnik-Brown, Rosa; Halden, Rolf U

    2008-08-01

    Microorganisms can produce renewable energy in large quantities and without damaging the environment or disrupting food supply. The microbial communities must be robust and self-stabilizing, and their essential syntrophies must be managed. Pre-genomic, genomic and post-genomic tools can provide crucial information about the structure and function of these microbial communities. Applying these tools will help accelerate the rate at which microbial bioenergy processes move from intriguing science to real-world practice.

  17. Soil inoculation with microbial communities - can this become a useful tool in soil remediation?

    NASA Astrophysics Data System (ADS)

    Krug, Angelika; Wang, Fang; Dörfler, Ulrike; Munch, Jean Charles; Schroll, Reiner

    2010-05-01

    We artificially loaded different type of agricultural soils with model 14C-labelled chemicals, and we inoculated such soils with different microbial communities as well as isolated strains to enhance the mineralization of such chemicals. Inocula were introduced by different approaches: (i) soil inocula, (ii) application of isolated strain as well as microbial community via media, (iii) isolated strain as well as microbial community attached to a carrier material. Most of the inoculation experiments were conducted in laboratory but we also tested one of these approaches under real environmental conditions in lysimeters and we could show that the approach was successful. We already could show that inoculating soils with microbial communities attached on a specific carrier material shows the highest mineralization effectiveness and also the highest sustainability. Microbes attached on clay particles preserved their function over a long time period even if the specific microbial substrate was already degraded or at least not detectable any more. Additionally we already could show that in specific cases some soil parameters might reduce the effectiveness of such an approach. Results on isoproturon as a model for phenylurea-herbicides and 1,2,4-trichlorobenzene as an example for an industrially used chemical as well as the corresponding chemicals` degrading microbial communities and isolated strain will be presented.

  18. PanFP: Pangenome-based functional profiles for microbial communities

    DOE PAGES

    Jun, Se -Ran; Hauser, Loren John; Schadt, Christopher Warren; ...

    2015-09-26

    For decades there has been increasing interest in understanding the relationships between microbial communities and ecosystem functions. Current DNA sequencing technologies allows for the exploration of microbial communities in two principle ways: targeted rRNA gene surveys and shotgun metagenomics. For large study designs, it is often still prohibitively expensive to sequence metagenomes at both the breadth and depth necessary to statistically capture the true functional diversity of a community. Although rRNA gene surveys provide no direct evidence of function, they do provide a reasonable estimation of microbial diversity, while being a very cost effective way to screen samples of interestmore » for later shotgun metagenomic analyses. However, there is a great deal of 16S rRNA gene survey data currently available from diverse environments, and thus a need for tools to infer functional composition of environmental samples based on 16S rRNA gene survey data. As a result, we present a computational method called pangenome based functional profiles (PanFP), which infers functional profiles of microbial communities from 16S rRNA gene survey data for Bacteria and Archaea. PanFP is based on pangenome reconstruction of a 16S rRNA gene operational taxonomic unit (OTU) from known genes and genomes pooled from the OTU s taxonomic lineage. From this lineage, we derive an OTU functional profile by weighting a pangenome s functional profile with the OTUs abundance observed in a given sample. We validated our method by comparing PanFP to the functional profiles obtained from the direct shotgun metagenomic measurement of 65 diverse communities via Spearman correlation coefficients. These correlations improved with increasing sequencing depth, within the range of 0.8 0.9 for the most deeply sequenced Human Microbiome Project mock community samples. PanFP is very similar in performance to another recently released tool, PICRUSt, for almost all of survey data analysed here. But

  19. Soil microbial community responses to antibiotic-contaminated manure under different soil moisture regimes.

    PubMed

    Reichel, Rüdiger; Radl, Viviane; Rosendahl, Ingrid; Albert, Andreas; Amelung, Wulf; Schloter, Michael; Thiele-Bruhn, Sören

    2014-01-01

    Sulfadiazine (SDZ) is an antibiotic frequently administered to livestock, and it alters microbial communities when entering soils with animal manure, but understanding the interactions of these effects to the prevailing climatic regime has eluded researchers. A climatic factor that strongly controls microbial activity is soil moisture. Here, we hypothesized that the effects of SDZ on soil microbial communities will be modulated depending on the soil moisture conditions. To test this hypothesis, we performed a 49-day fully controlled climate chamber pot experiments with soil grown with Dactylis glomerata (L.). Manure-amended pots without or with SDZ contamination were incubated under a dynamic moisture regime (DMR) with repeated drying and rewetting changes of >20 % maximum water holding capacity (WHCmax) in comparison to a control moisture regime (CMR) at an average soil moisture of 38 % WHCmax. We then monitored changes in SDZ concentration as well as in the phenotypic phospholipid fatty acid and genotypic 16S rRNA gene fragment patterns of the microbial community after 7, 20, 27, 34, and 49 days of incubation. The results showed that strongly changing water supply made SDZ accessible to mild extraction in the short term. As a result, and despite rather small SDZ effects on community structures, the PLFA-derived microbial biomass was suppressed in the SDZ-contaminated DMR soils relative to the CMR ones, indicating that dynamic moisture changes accelerate the susceptibility of the soil microbial community to antibiotics.

  20. Elevated temperature alters carbon cycling in a model microbial community

    NASA Astrophysics Data System (ADS)

    Mosier, A.; Li, Z.; Thomas, B. C.; Hettich, R. L.; Pan, C.; Banfield, J. F.

    2013-12-01

    Earth's climate is regulated by biogeochemical carbon exchanges between the land, oceans and atmosphere that are chiefly driven by microorganisms. Microbial communities are therefore indispensible to the study of carbon cycling and its impacts on the global climate system. In spite of the critical role of microbial communities in carbon cycling processes, microbial activity is currently minimally represented or altogether absent from most Earth System Models. Method development and hypothesis-driven experimentation on tractable model ecosystems of reduced complexity, as presented here, are essential for building molecularly resolved, benchmarked carbon-climate models. Here, we use chemoautotropic acid mine drainage biofilms as a model community to determine how elevated temperature, a key parameter of global climate change, regulates the flow of carbon through microbial-based ecosystems. This study represents the first community proteomics analysis using tandem mass tags (TMT), which enable accurate, precise, and reproducible quantification of proteins. We compare protein expression levels of biofilms growing over a narrow temperature range expected to occur with predicted climate changes. We show that elevated temperature leads to up-regulation of proteins involved in amino acid metabolism and protein modification, and down-regulation of proteins involved in growth and reproduction. Closely related bacterial genotypes differ in their response to temperature: Elevated temperature represses carbon fixation by two Leptospirillum genotypes, whereas carbon fixation is significantly up-regulated at higher temperature by a third closely related genotypic group. Leptospirillum group III bacteria are more susceptible to viral stress at elevated temperature, which may lead to greater carbon turnover in the microbial food web through the release of viral lysate. Overall, this proteogenomics approach revealed the effects of climate change on carbon cycling pathways and other

  1. Soil Microbial Community Responses to Long-Term Global Change Factors in a California Grassland

    NASA Astrophysics Data System (ADS)

    Qin, K.; Peay, K.

    2015-12-01

    Soil fungal and bacterial communities act as mediators of terrestrial carbon and nutrient cycling, and interact with the aboveground plant community as both pathogens and mutualists. However, these soil microbial communities are sensitive to changes in their environment. A better understanding of the response of soil microbial communities to global change may help to predict future soil microbial diversity, and assist in creating more comprehensive models of terrestrial carbon and nutrient cycles. This study examines the effects of four global change factors (increased temperature, increased variability in precipitation, nitrogen deposition, and CO2 enrichment) on soil microbial communities at the Jasper Ridge Global Change Experiment (JRGCE), a full-factorial global change manipulative experiment on three hectares of California grassland. While similar studies have examined the effects of global change on soil microbial communities, few have manipulated more factors or been longer in duration than the JRGCE, which began field treatments in 1998. We find that nitrogen deposition, CO2 enrichment, and increased variability in precipitation significantly affect the structure of both fungal and bacterial communities, and explain more of the variation in the community structures than do local soil chemistry or aboveground plant community. Fungal richness is correlated positively with soil nitrogen content and negatively with soil water content. Arbuscular mycorrhizal fungi (AMF), which associate closely with herbaceous plants' roots and assist in nutrient uptake, decrease in both richness and relative abundance in elevated CO2 treatments.

  2. An algorithm for designing minimal microbial communities with desired metabolic capacities

    PubMed Central

    Eng, Alexander; Borenstein, Elhanan

    2016-01-01

    Motivation: Recent efforts to manipulate various microbial communities, such as fecal microbiota transplant and bioreactor systems’ optimization, suggest a promising route for microbial community engineering with numerous medical, environmental and industrial applications. However, such applications are currently restricted in scale and often rely on mimicking or enhancing natural communities, calling for the development of tools for designing synthetic communities with specific, tailored, desired metabolic capacities. Results: Here, we present a first step toward this goal, introducing a novel algorithm for identifying minimal sets of microbial species that collectively provide the enzymatic capacity required to synthesize a set of desired target product metabolites from a predefined set of available substrates. Our method integrates a graph theoretic representation of network flow with the set cover problem in an integer linear programming (ILP) framework to simultaneously identify possible metabolic paths from substrates to products while minimizing the number of species required to catalyze these metabolic reactions. We apply our algorithm to successfully identify minimal communities both in a set of simple toy problems and in more complex, realistic settings, and to investigate metabolic capacities in the gut microbiome. Our framework adds to the growing toolset for supporting informed microbial community engineering and for ultimately realizing the full potential of such engineering efforts. Availability and implementation: The algorithm source code, compilation, usage instructions and examples are available under a non-commercial research use only license at https://github.com/borenstein-lab/CoMiDA. Contact: elbo@uw.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27153571

  3. Changes in microbial community characteristics and soil organic matter with nitrogen additions in two tropical forests.

    PubMed

    Cusack, Daniela F; Silver, Whendee L; Torn, Margaret S; Burton, Sarah D; Firestone, Mary K

    2011-03-01

    Microbial communities and their associated enzyme activities affect the amount and chemical quality of carbon (C) in soils. Increasing nitrogen (N) deposition, particularly in N-rich tropical forests, is likely to change the composition and behavior of microbial communities and feed back on ecosystem structure and function. This study presents a novel assessment of mechanistic links between microbial responses to N deposition and shifts in soil organic matter (SOM) quality and quantity. We used phospholipid fatty acid (PLFA) analysis and microbial enzyme assays in soils to assess microbial community responses to long-term N additions in two distinct tropical rain forests. We used soil density fractionation and 13C nuclear magnetic resonance (NMR) spectroscopy to measure related changes in SOM pool sizes and chemical quality. Microbial biomass increased in response to N fertilization in both tropical forests and corresponded to declines in pools of low-density SOM. The chemical quality of this soil C pool reflected ecosystem-specific changes in microbial community composition. In the lower-elevation forest, there was an increase in gram-negative bacteria PLFA biomass, and there were significant losses of labile C chemical groups (O-alkyls). In contrast, the upper-elevation tropical forest had an increase in fungal PLFAs with N additions and declines in C groups associated with increased soil C storage (alkyls). The dynamics of microbial enzymatic activities with N addition provided a functional link between changes in microbial community structure and SOM chemistry. Ecosystem-specific changes in microbial community composition are likely to have far-reaching effects on soil carbon storage and cycling. This study indicates that microbial communities in N-rich tropical forests can be sensitive to added N, but we can expect significant variability in how ecosystem structure and function respond to N deposition among tropical forest types.

  4. Analysis of stability to cheaters in models of antibiotic degrading microbial communities.

    PubMed

    Szilágyi, András; Boza, Gergely; Scheuring, István

    2017-06-21

    Antibiotic resistance carried out by antibiotic degradation has been suggested recently as a new mechanism to maintain coexistence of microbial species competing on a single limiting resource, even in well-mixed homogeneous environments. Species diversity and community stability, however, critically depend on resistance against social cheaters, mutants that do not invest in production, but still enjoy the benefits provided by others. Here we investigate how different mutant cheaters affect the stability of antibiotic producing and degrading microbial communities. We consider two cheater types, production and degradation cheaters. We generalize the mixed inhibition-zone and chemostat models introduced previously [Kelsic, E. D., Zhao, J., Vetsigian, K., Kishony, R., 2015. Counteraction of an tibiotic production and degradation stabilizes microbial communities. Nature521, 516-519.] to study the population dynamics of microbial communities in well-mixed environment, and analyze the invasion of different cheaters in these models. We show that production cheaters, mutants that cease producing antibiotics, always destroy coexistence whenever there is a cost of producing these antibiotics. Degradation cheaters, mutants that loose their function of producing extracellular antibiotic degrading molecules, induce community collapse only if the cost of producing the degradation factors is above a critical level. Our analytical studies, supported by numerical simulations, highlight the sensitivity of antibiotic producing and degrading communities to loss-of-function mutants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Linking microbial community structure to membrane biofouling associated with varying dissolved oxygen concentrations.

    PubMed

    Gao, Da-wen; Fu, Yuan; Tao, Yu; Li, Xin-xin; Xing, Min; Gao, Xiu-hong; Ren, Nan-qi

    2011-05-01

    In order to elucidate how dissolved oxygen (DO) concentration influenced the generation of extracellular polymeric substance (EPS) and soluble microbial products (SMP) in mixed liquor and biocake, 16S rDNA fingerprinting analyses were performed to investigate the variation of the microbial community in an aerobic membrane bioreactor (MBR). The function of microbial community structure was proved to be ultimately responsible for biofouling. Obvious microbial community succession from the subphylum of Betaproteobacteria to Deltaproteobacteria was observed in biocake. High concentration of EPS in biocake under the low DO concentration (0.5 mg L(-1)) caused severe biofouling. The correlation coefficient of membrane fouling rate with EPS content in biocake (0.9941-0.9964) was much higher than that in mixed liquor (0.6689-0.8004). Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Resilience of the prokaryotic microbial community of Acropora digitifera to elevated temperature.

    PubMed

    Gajigan, Andrian P; Diaz, Leomir A; Conaco, Cecilia

    2017-08-01

    The coral is a holobiont formed by the close interaction between the coral animal and a diverse community of microorganisms, including dinoflagellates, bacteria, archaea, fungi, and viruses. The prokaryotic symbionts of corals are important for host fitness but are also highly sensitive to changes in the environment. In this study, we used 16S ribosomal RNA (rRNA) sequencing to examine the response of the microbial community associated with the coral, Acropora digitifera, to elevated temperature. The A. digitifera microbial community is dominated by operational taxonomic unit (OTUs) affiliated with classes Alphaproteobacteria and Gammaproteobacteria. The prokaryotic community in the coral tissue is distinct from that of the mucus and the surrounding seawater. Remarkably, the overall microbial community structure of A. digitifera remained stable for 10 days of continuous exptosure at 32°C compared to corals maintained at 27°C. However, the elevated temperature regime resulted in a decrease in the abundance of OTUs affiliated with certain groups of bacteria, such as order Rhodobacterales. On the other hand, some OTUs affiliated with the orders Alteromonadales, Vibrionales, and Flavobacteriales, which are often associated with diseased and stressed corals, increased in abundance. Thus, while the A. digitifera bacterial community structure appears resilient to higher temperature, prolonged exposure and intensified stress results in changes in the abundance of specific microbial community members that may affect the overall metabolic state and health of the coral holobiont. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  7. Electrochemical performance and microbial community profiles in microbial fuel cells in relation to electron transfer mechanisms.

    PubMed

    Uria, Naroa; Ferrera, Isabel; Mas, Jordi

    2017-10-18

    Microbial fuel cells (MFCs) operating with complex microbial communities have been extensively reported in the past, and are commonly used in applications such as wastewater treatment, bioremediation or in-situ powering of environmental sensors. However, our knowledge on how the composition of the microbial community and the different types of electron transfer to the anode affect the performance of these bioelectrochemical systems is far from complete. To fill this gap of knowledge, we designed a set of three MFCs with different constrains limiting direct and mediated electron transfer to the anode. The results obtained indicate that MFCs with a naked anode on which a biofilm was allowed unrestricted development (MFC-A) had the most diverse archaeal and bacterial community, and offered the best performance. In this MFC both, direct and mediated electron transfer, occurred simultaneously, but direct electron transfer was the predominant mechanism. Microbial fuel cells in which the anode was enclosed in a dialysis membrane and biofilm was not allowed to develop (MFC-D), had a much lower power output (about 60% lower), and a prevalence of dissolved redox species that acted as putative electron shuttles. In the anolyte of this MFC, Arcobacter and Methanosaeta were the prevalent bacteria and archaea respectively. In the third MFC, in which the anode had been covered by a cation selective nafion membrane (MFC-N), power output decreased a further 5% (95% less than MFC-A). In this MFC, conventional organic electron shuttles could not operate and the low power output obtained was presumably attributed to fermentation end-products produced by some of the organisms present in the anolyte, probably Pseudomonas or Methanosaeta. Electron transfer mechanisms have an impact on the development of different microbial communities and in turn on MFC performance. Although a stable current was achieved in all cases, direct electron transfer MFC showed the best performance concluding

  8. Archean Microbial Mat Communities

    NASA Astrophysics Data System (ADS)

    Tice, Michael M.; Thornton, Daniel C. O.; Pope, Michael C.; Olszewski, Thomas D.; Gong, Jian

    2011-05-01

    Much of the Archean record of microbial communities consists of fossil mats and stromatolites. Critical physical emergent properties governing the evolution of large-scale (centimeters to meters) topographic relief on the mat landscape are (a) mat surface roughness relative to the laminar sublayer and (b) cohesion. These properties can be estimated for fossil samples under many circumstances. A preliminary analysis of Archean mat cohesion suggests that mats growing in shallow marine environments from throughout this time had cohesions similar to those of modern shallow marine mats. There may have been a significant increase in mat strength at the end of the Archean.

  9. Effects of Soil Organic Matter Properties and Microbial Community Composition on Enzyme Activities in Cryoturbated Arctic Soils

    PubMed Central

    Schnecker, Jörg; Wild, Birgit; Hofhansl, Florian; Eloy Alves, Ricardo J.; Bárta, Jiří; Čapek, Petr; Fuchslueger, Lucia; Gentsch, Norman; Gittel, Antje; Guggenberger, Georg; Hofer, Angelika; Kienzl, Sandra; Knoltsch, Anna; Lashchinskiy, Nikolay; Mikutta, Robert; Šantrůčková, Hana; Shibistova, Olga; Takriti, Mounir; Urich, Tim; Weltin, Georg; Richter, Andreas

    2014-01-01

    Enzyme-mediated decomposition of soil organic matter (SOM) is controlled, amongst other factors, by organic matter properties and by the microbial decomposer community present. Since microbial community composition and SOM properties are often interrelated and both change with soil depth, the drivers of enzymatic decomposition are hard to dissect. We investigated soils from three regions in the Siberian Arctic, where carbon rich topsoil material has been incorporated into the subsoil (cryoturbation). We took advantage of this subduction to test if SOM properties shape microbial community composition, and to identify controls of both on enzyme activities. We found that microbial community composition (estimated by phospholipid fatty acid analysis), was similar in cryoturbated material and in surrounding subsoil, although carbon and nitrogen contents were similar in cryoturbated material and topsoils. This suggests that the microbial community in cryoturbated material was not well adapted to SOM properties. We also measured three potential enzyme activities (cellobiohydrolase, leucine-amino-peptidase and phenoloxidase) and used structural equation models (SEMs) to identify direct and indirect drivers of the three enzyme activities. The models included microbial community composition, carbon and nitrogen contents, clay content, water content, and pH. Models for regular horizons, excluding cryoturbated material, showed that all enzyme activities were mainly controlled by carbon or nitrogen. Microbial community composition had no effect. In contrast, models for cryoturbated material showed that enzyme activities were also related to microbial community composition. The additional control of microbial community composition could have restrained enzyme activities and furthermore decomposition in general. The functional decoupling of SOM properties and microbial community composition might thus be one of the reasons for low decomposition rates and the persistence of 400 Gt

  10. Impact of an indigenous microbial enhanced oil recovery field trial on microbial community structure in a high pour-point oil reservoir.

    PubMed

    Zhang, Fan; She, Yue-Hui; Li, Hua-Min; Zhang, Xiao-Tao; Shu, Fu-Chang; Wang, Zheng-Liang; Yu, Long-Jiang; Hou, Du-Jie

    2012-08-01

    Based on preliminary investigation of microbial populations in a high pour-point oil reservoir, an indigenous microbial enhanced oil recovery (MEOR) field trial was carried out. The purpose of the study is to reveal the impact of the indigenous MEOR process on microbial community structure in the oil reservoir using 16Sr DNA clone library technique. The detailed monitoring results showed significant response of microbial communities during the field trial and large discrepancies of stimulated microorganisms in the laboratory and in the natural oil reservoir. More specifically, after nutrients injection, the original dominant populations of Petrobacter and Alishewanella in the production wells almost disappeared. The expected desirable population of Pseudomonas aeruginosa, determined by enrichment experiments in laboratory, was stimulated successfully in two wells of the five monitored wells. Unexpectedly, another potential population of Pseudomonas pseudoalcaligenes which were not detected in the enrichment culture in laboratory was stimulated in the other three monitored production wells. In this study, monitoring of microbial community displayed a comprehensive alteration of microbial populations during the field trial to remedy the deficiency of culture-dependent monitoring methods. The results would help to develop and apply more MEOR processes.

  11. GPU-Meta-Storms: computing the structure similarities among massive amount of microbial community samples using GPU.

    PubMed

    Su, Xiaoquan; Wang, Xuetao; Jing, Gongchao; Ning, Kang

    2014-04-01

    The number of microbial community samples is increasing with exponential speed. Data-mining among microbial community samples could facilitate the discovery of valuable biological information that is still hidden in the massive data. However, current methods for the comparison among microbial communities are limited by their ability to process large amount of samples each with complex community structure. We have developed an optimized GPU-based software, GPU-Meta-Storms, to efficiently measure the quantitative phylogenetic similarity among massive amount of microbial community samples. Our results have shown that GPU-Meta-Storms would be able to compute the pair-wise similarity scores for 10 240 samples within 20 min, which gained a speed-up of >17 000 times compared with single-core CPU, and >2600 times compared with 16-core CPU. Therefore, the high-performance of GPU-Meta-Storms could facilitate in-depth data mining among massive microbial community samples, and make the real-time analysis and monitoring of temporal or conditional changes for microbial communities possible. GPU-Meta-Storms is implemented by CUDA (Compute Unified Device Architecture) and C++. Source code is available at http://www.computationalbioenergy.org/meta-storms.html.

  12. Mapping the ecological networks of microbial communities.

    PubMed

    Xiao, Yandong; Angulo, Marco Tulio; Friedman, Jonathan; Waldor, Matthew K; Weiss, Scott T; Liu, Yang-Yu

    2017-12-11

    Mapping the ecological networks of microbial communities is a necessary step toward understanding their assembly rules and predicting their temporal behavior. However, existing methods require assuming a particular population dynamics model, which is not known a priori. Moreover, those methods require fitting longitudinal abundance data, which are often not informative enough for reliable inference. To overcome these limitations, here we develop a new method based on steady-state abundance data. Our method can infer the network topology and inter-taxa interaction types without assuming any particular population dynamics model. Additionally, when the population dynamics is assumed to follow the classic Generalized Lotka-Volterra model, our method can infer the inter-taxa interaction strengths and intrinsic growth rates. We systematically validate our method using simulated data, and then apply it to four experimental data sets. Our method represents a key step towards reliable modeling of complex, real-world microbial communities, such as the human gut microbiota.

  13. Native soil organic matter conditions the response of microbial communities to organic inputs with different stability

    NASA Astrophysics Data System (ADS)

    Yanardaǧ, Ibrahim H.; Zornoza, Raúl; Bastida, Felipe; Büyükkiliç-Yanardaǧ, Asuman; Acosta, Jose A.; García, Carlos; Faz, Ángel; Mermut, Ahmet R.

    2017-04-01

    The response of soil microbial communities from soils with different soil organic matter (SOM) content to organic inputs with different stability is still poorly understood. Thus, an incubation experiment was designed to study how the addition of pig slurry (PS), its manure (M) and its biochar (BC) affect soil microbial community and activity in three soils differing in SOM content (Regosol, Luvisol and Kastanozem). The evolution of different C and N fractions, microbial biomass C and N, enzyme activities and microbial community structure by the use of phospholipid fatty acid (PLFA) analysis was assessed for 60 days. Results showed that the different amendments had different effect on microbial properties depending on the soil type. The addition of M caused the highest increase in all microbial properties in the three soils, followed by PS. These changes were more intense in the soil with the lowest SOM (Regosol). The addition of M and PS caused changes in the microbial community structure in all soils, which were more related to the presence of available sources of N than to the labile fractions of C. The addition of BC was followed by increases in the proportions of fungi and Gram positive bacteria in the Regosol, while enhanced the proportion of actinobacteria in all soil types, related to increments in pH and soil C recalcitrance. Thus, native SOM determined the response of microbial communities to external inputs with different stability, soils with low SOM being more prone to increase microbial biomass and activity and change microbial community structure.

  14. Effects of a ciliate protozoa predator on microbial communities in pitcher plant (Sarracenia purpurea) leaves.

    PubMed

    Paisie, Taylor K; Miller, Thomas E; Mason, Olivia U

    2014-01-01

    The aquatic communities found within the water filled leaves of the pitcher plant, Sarracenia purpurea, have a simple trophic structure providing an ideal system to study microscale interactions between protozoan predators and their bacterial prey. In this study, replicate communities were maintained with and without the presence of the bactivorous protozoan, Colpoda steinii, to determine the effects of grazing on microbial communities. Changes in microbial (Archaea and Bacteria) community structure were assessed using iTag sequencing of 16S rRNA genes. The microbial communities were similar with and without the protozoan predator, with>1000 species. Of these species, Archaea were negligible, with Bacteria comprising 99.99% of the microbial community. The Proteobacteria and Bacteroidetes were the most dominant phyla. The addition of a protozoan predator did not have a significant effect on microbial evenness nor richness. However, the presence of the protozoan did cause a significant shift in the relative abundances of a number of bacterial species. This suggested that bactivorous protozoan may target specific bacterial species and/or that certain bacterial species have innate mechanisms by which they evade predators. These findings help to elucidate the effect that trophic structure perturbations have on predator prey interactions in microbial systems.

  15. Effects of a Ciliate Protozoa Predator on Microbial Communities in Pitcher Plant (Sarracenia purpurea) Leaves

    PubMed Central

    Paisie, Taylor K.; Miller, Thomas E.; Mason, Olivia U.

    2014-01-01

    The aquatic communities found within the water filled leaves of the pitcher plant, Sarracenia purpurea, have a simple trophic structure providing an ideal system to study microscale interactions between protozoan predators and their bacterial prey. In this study, replicate communities were maintained with and without the presence of the bactivorous protozoan, Colpoda steinii, to determine the effects of grazing on microbial communities. Changes in microbial (Archaea and Bacteria) community structure were assessed using iTag sequencing of 16S rRNA genes. The microbial communities were similar with and without the protozoan predator, with>1000 species. Of these species, Archaea were negligible, with Bacteria comprising 99.99% of the microbial community. The Proteobacteria and Bacteroidetes were the most dominant phyla. The addition of a protozoan predator did not have a significant effect on microbial evenness nor richness. However, the presence of the protozoan did cause a significant shift in the relative abundances of a number of bacterial species. This suggested that bactivorous protozoan may target specific bacterial species and/or that certain bacterial species have innate mechanisms by which they evade predators. These findings help to elucidate the effect that trophic structure perturbations have on predator prey interactions in microbial systems. PMID:25423622

  16. 16S rRNA Gene Survey of Microbial Communities in Winogradsky Columns

    PubMed Central

    Rundell, Ethan A.; Banta, Lois M.; Ward, Doyle V.; Watts, Corey D.; Birren, Bruce; Esteban, David J.

    2014-01-01

    A Winogradsky column is a clear glass or plastic column filled with enriched sediment. Over time, microbial communities in the sediment grow in a stratified ecosystem with an oxic top layer and anoxic sub-surface layers. Winogradsky columns have been used extensively to demonstrate microbial nutrient cycling and metabolic diversity in undergraduate microbiology labs. In this study, we used high-throughput 16s rRNA gene sequencing to investigate the microbial diversity of Winogradsky columns. Specifically, we tested the impact of sediment source, supplemental cellulose source, and depth within the column, on microbial community structure. We found that the Winogradsky columns were highly diverse communities but are dominated by three phyla: Proteobacteria, Bacteroidetes, and Firmicutes. The community is structured by a founding population dependent on the source of sediment used to prepare the columns and is differentiated by depth within the column. Numerous biomarkers were identified distinguishing sample depth, including Cyanobacteria, Alphaproteobacteria, and Betaproteobacteria as biomarkers of the soil-water interface, and Clostridia as a biomarker of the deepest depth. Supplemental cellulose source impacted community structure but less strongly than depth and sediment source. In columns dominated by Firmicutes, the family Peptococcaceae was the most abundant sulfate reducer, while in columns abundant in Proteobacteria, several Deltaproteobacteria families, including Desulfobacteraceae, were found, showing that different taxonomic groups carry out sulfur cycling in different columns. This study brings this historical method for enrichment culture of chemolithotrophs and other soil bacteria into the modern era of microbiology and demonstrates the potential of the Winogradsky column as a model system for investigating the effect of environmental variables on soil microbial communities. PMID:25101630

  17. Quantitative comparison of the in situ microbial communities in different biomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, D.C.; Ringelberg, D.B.; Palmer, R.J.

    1995-12-31

    A system to define microbial communities in different biomes requires the application of non-traditional methodology. Classical microbiological methods have severe limitations for the analysis of environmental samples. Pure-culture isolation, biochemical testing, and/or enumeration by direct microscopic counting are not well suited for the estimation of total biomass or the assessment of community composition within environmental samples. Such methods provide little insight into the in situ phenotypic activity of the extant microbiota since these techniques are dependent on microbial growth and thus select against many environmental microorganisms which are non- culturable under a wide range of conditions. It has been repeatedlymore » documented in the literature that viable counts or direct counts of bacteria attached to sediment grains are difficult to quantitative and may grossly underestimate the extent of the existing community. The traditional tests provide little indication of the in situ nutritional status or for evidence of toxicity within the microbial community. A more recent development (MIDI Microbial Identification System), measure free and ester-linked fatty acids from isolated microorganisms. Bacterial isolates are identified by comparing their fatty acid profiles to the MIKI database which contains over 8000 entries. The application of the MIKI system to the analysis of environmental samples however, has significant drawbacks. The MIDI system was developed to identify clinical microorganisms and requires their isolation and culture on trypticase soy agar at 27{degrees}C. Since many isolates are unable to grow at these restrictive growth conditions, the system does not lend itself to identification of some environmental organisms. A more applicable methodology for environmental microbial analysis is based on the liquid extrication and separation of microbial lipids from environmental samples, followed by quantitative analysis using gas

  18. Predicting effects of climate change on the composition and function of soil microbial communities

    NASA Astrophysics Data System (ADS)

    Dubinsky, E.; Brodie, E.; Myint, C.; Ackerly, D.; van Nostrand, J.; Bird, J.; Zhou, J.; Andersen, G.; Firestone, M.

    2008-12-01

    Complex soil microbial communities regulate critical ecosystem processes that will be altered by climate change. A critical step towards predicting the impacts of climate change on terrestrial ecosystems is to determine the primary controllers of soil microbial community composition and function, and subsequently evaluate climate change scenarios that alter these controllers. We surveyed complex soil bacterial and archaeal communities across a range of climatic and edaphic conditions to identify critical controllers of soil microbial community composition in the field and then tested the resulting predictions using a 2-year manipulation of precipitation and temperature using mesocosms of California annual grasslands. Community DNA extracted from field soils sampled from six different ecosystems was assayed for bacterial and archaeal communities using high-density phylogenetic microarrays as well as functional gene arrays. Correlations among the relative abundances of thousands of microbial taxa and edaphic factors such as soil moisture and nutrient content provided a basis for predicting community responses to changing soil conditions. Communities of soil bacteria and archaea were strongly structured by single environmental predictors, particularly variables related to soil water. Bacteria in the Actinomycetales and Bacilli consistently demonstrated a strong negative response to increasing soil moisture, while taxa in a greater variety of lineages responded positively to increasing soil moisture. In the climate change experiment, overall bacterial community structure was impacted significantly by total precipitation but not by plant species. Changes in soil moisture due to decreased rainfall resulted in significant and predictable alterations in community structure. Over 70% of the bacterial taxa in common with the cross-ecosystem study responded as predicted to altered precipitation, with the most conserved response from Actinobacteria. The functional consequences

  19. Development of transparent microwell arrays for optical monitoring and dissection of microbial communities

    DOE PAGES

    Halsted, Michelle; Wilmoth, Jared L.; Briggs, Paige A.; ...

    2016-09-29

    Microbial communities are incredibly complex systems that dramatically and ubiquitously influence our lives. They help to shape our climate and environment, impact agriculture, drive business, and have a tremendous bearing on healthcare and physical security. Spatial confinement, as well as local variations in physical and chemical properties, affects development and interactions within microbial communities that occupy critical niches in the environment. Recent work has demonstrated the use of silicon based microwell arrays, combined with parylene lift-off techniques, to perform both deterministic and stochastic assembly of microbial communities en masse, enabling the high-throughput screening of microbial communities for their response tomore » growth in confined environments under different conditions. The implementation of a transparent microwell array platform can expand and improve the imaging modalities that can be used to characterize these assembled communities. In this paper, the fabrication and characterization of a next generation transparent microwell array is described. The transparent arrays, comprised of SU-8 patterned on a glass coverslip, retain the ability to use parylene lift-off by integrating a low temperature atomic layer deposition of silicon dioxide into the fabrication process. This silicon dioxide layer prevents adhesion of the parylene material to the patterned SU-8, facilitating dry lift-off, and maintaining the ability to easily assemble microbial communities within the microwells. These transparent microwell arrays can screen numerous community compositions using continuous, high resolution, imaging. Finally, the utility of the design was successfully demonstrated through the stochastic seeding and imaging of green fluorescent protein expressing Escherichia coli using both fluorescence and brightfield microscopies.« less

  20. Subsurface Environment Sampler for Improved In Situ Characterization of Subsurface Microbial Communities

    NASA Astrophysics Data System (ADS)

    Barnhart, E. P.; Ruppert, L. F.; Orem, W. H.; McIntosh, J. C.; Cunningham, A. B.; Fields, M. W.; Hiebert, R.; Hyatt, R.

    2016-12-01

    There is an increasing threat that deep aquifers, an important drinking water resource, may be contaminated by the extraction and transport of fossil fuels. This threat increases the need for improved groundwater monitoring and the ability to predict the extent to which microbial activity may remediate such contamination. The characterization of subsurface microbial communities could provide an ideal biomonitoring tool for the assessment of subsurface contamination due to prokaryotes environmental ubiquity, rapidity of response to environmental perturbation and the important role they play in hydrocarbon degradation and bioremediation. New DNA sequencing technologies provide the opportunity to cost-effectively identify the vast subsurface microbial ecosystem, but use of this new technology is restricted due to issues with sampling. Prior subsurface microbiology studies have relied on core samples that are expensive to obtain hard to collect aseptically and/or ground water samples that do not reflect in situ microbial densities or activities. The development of down-well incubation of sterile sediment with a Diffusive Microbial Sampler (DMS) has emerged as an alternative method to sample subsurface microbial communities that minimizes cost and contamination issues associated with traditional methods. We have designed a Subsurface Environment Sampler with a DMS module that could enable the anaerobic transport of the in situ microbial community from the field for laboratory bioremediation studies. This sampler could provide an inexpensive and standard method for subsurface microbial sampling which would make this tool useful for Federal, State, private and local agencies interested in monitoring contamination or the effectiveness of bioremediation activities in subsurface aquifers.

  1. Characterization of Microbial Community in Lascaux Cave by High Throughput Sequencing

    NASA Astrophysics Data System (ADS)

    Alonso, Lise; Dubost, Audrey; Luis, Patricia; Pommier, Thomas; Moënne-Loccoz, Yvan

    2017-04-01

    The Lascaux Cave in South-Est France is an archeological landmark renowned for its Paleolithic paintings dating back c.18.000 years. Extensive touristic frequenting and repeated chemical treatments have resulted in the development of microbial stains on cave walls, which is a major issue in terms of art conservation. Therefore, it is of prime importance to better understand the microbial ecology of Lascaux Cave. Like many other caves, Lascaux is quite heterogeneous in terms of the nature and surface properties of rock walls within cave rooms, as well as the succession of rooms/galleries from the entrance to deeper areas of the cave. Lascaux Cave displays an additional levels of heterogeneity related to the presence of discontinuous stains on certain types of cave walls. We compared the microbial community (i.e. both prokaryotic and eukaryotic microbial populations) colonizing cave walls of different rooms/galleries, in and outside stains and in different cave layers, in successive years. Quantitative PCR analysis of cave wall samples gave in the order of 102 copies of 18S rRNA genes and 105 copies of 16S rRNA genes per ng of DNA, indicating significant colonization of all cave walls by micro-eukaryotes and especially bacteria. Illumina metagenomic analyses of cave wall samples was carried out based on four ribosomal DNA markers targeting bacteria, archaea, fungi, and other micro-eukaryotes. The results showed that the four microbial communities were highly diverse in and outside stains, as several hundred genera of microorganisms were identified in each. Proteobacteria were more prominent within stains whereas Bacteroidetes and Sordariomycetes were more prominent outside stains. High-throughput sequencing also showed that the nature/surface properties of cave walls were the main factor determining the structure and composition of microbial communities, ahead of the other heterogeneity factors studied i.e. location within the cave, presence of stain and sampling

  2. Membrane biofouling process correlated to the microbial community succession in an A/O MBR.

    PubMed

    Chen, Chun-Hong; Fu, Yuan; Gao, Da-Wen

    2015-12-01

    The microbial community succession of the biofouling layer in a submerged anoxic/oxic membrane biological reactor (A/O MBR) that fed with synthesized domestic wastewater was investigated under three different flux conditions without the changing of the nutrient load. The noticeable microbial community succession and its significant correlation with the metabolic products were observed under the subcritical flux condition. Under the supercritical flux condition, the microbial community shift was in a different pattern compared with that under the subcritical flux condition and it was affected by the increased permeable suction more than the metabolic products. The most abundant microorganisms in the foulants were β-proteobacteria and γ-proteobacteria which can reach more than 20% of the microbial community. However the microorganisms which had significant correlation with the metabolic products were in lower abundance. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. The Fecal Microbial Community of Breast-fed Infants from Armenia and Georgia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Zachery T.; Sidamonidze, Ketevan; Tsaturyan, Vardan

    Multiple factors help shape the infant intestinal microbiota early in life. Environmental conditions such as the presence of bioactive molecules from breast milk dictate gut microbial growth and survival. Infants also receive distinct, personalized, bacterial exposures leading to differential colonization. Microbial exposures and gut environmental conditions differ between infants in different locations, as does the typical microbial community structure in an infant’s gut. Here we evaluate potential influences on the infant gut microbiota through a longitudinal study on cohorts of breast-fed infants from the neighboring countries of Armenia and Georgia, an area of the world for which the infant microbiomemore » has not been previously investigated. Marker gene sequencing of 16S ribosomal genes revealed that the gut microbial communities of infants from these countries were dominated by bifidobacteria, were different from each other, and were marginally influenced by their mother’s secretor status. Species-level differences in the bifidobacterial communities of each country and birth method were also observed. These community differences suggest that environmental variation between individuals in different locations may influence the gut microbiota of infants.« less

  4. Growth and element flux at fine taxonomic resolution in natural microbial communities

    NASA Astrophysics Data System (ADS)

    Hungate, Bruce; Mau, Rebecca; Schwartz, Egbert; Caporaso, J. Gregory; Dijkstra, Paul; van Gestel, Natasja; Koch, Benjamin J.; Liu, Cindy M.; McHugh, Theresa; Marks, Jane C.; Morrissey, Ember; Price, Lance B.

    2015-04-01

    Microorganisms are the engines of global biogeochemical cycles, driving half of all photosynthesis and nearly all decomposition. Yet, quantifying the rates at which uncultured microbial taxa grow and transform elements in intact and highly diverse natural communities in the environment remains among the most pressing challenges in microbial ecology today. Here, we show how shifts in the density of DNA caused by stable isotope incorporation can be used to estimate the growth rates of individual bacterial taxa in intact soil communities. We found that the distribution of growth rates followed the familiar lognormal distribution observed for the abundances, biomasses, and traits of many organisms. Growth rates of most bacterial taxa increased in response to glucose amendment, though the increase in growth observed for many taxa was larger than could be explained by direct utilization of the added glucose for growth, illustrating that glucose addition indirectly stimulated the utilization of other substrates. Variation in growth rates and phylogenetic distances were quantitatively related, connecting evolutionary history and biogeochemical function in intact soil microbial communities. Our approach has the potential to identify biogeochemically significant taxa in the microbial community and quantify their contributions to element transformations and ecosystem processes.

  5. The Fecal Microbial Community of Breast-fed Infants from Armenia and Georgia

    DOE PAGES

    Lewis, Zachery T.; Sidamonidze, Ketevan; Tsaturyan, Vardan; ...

    2017-02-02

    Multiple factors help shape the infant intestinal microbiota early in life. Environmental conditions such as the presence of bioactive molecules from breast milk dictate gut microbial growth and survival. Infants also receive distinct, personalized, bacterial exposures leading to differential colonization. Microbial exposures and gut environmental conditions differ between infants in different locations, as does the typical microbial community structure in an infant’s gut. Here we evaluate potential influences on the infant gut microbiota through a longitudinal study on cohorts of breast-fed infants from the neighboring countries of Armenia and Georgia, an area of the world for which the infant microbiomemore » has not been previously investigated. Marker gene sequencing of 16S ribosomal genes revealed that the gut microbial communities of infants from these countries were dominated by bifidobacteria, were different from each other, and were marginally influenced by their mother’s secretor status. Species-level differences in the bifidobacterial communities of each country and birth method were also observed. These community differences suggest that environmental variation between individuals in different locations may influence the gut microbiota of infants.« less

  6. Metagenomics Reveals the Influence of Land Use and Rain on the Benthic Microbial Communities in a Tropical Urban Waterway.

    PubMed

    Saxena, Gourvendu; Mitra, Suparna; Marzinelli, Ezequiel M; Xie, Chao; Wei, Toh Jun; Steinberg, Peter D; Williams, Rohan B H; Kjelleberg, Staffan; Lauro, Federico M; Swarup, Sanjay

    2018-01-01

    Growing demands for potable water have led to extensive reliance on waterways in tropical megacities. Attempts to manage these waterways in an environmentally sustainable way generally lack an understanding of microbial processes and how they are influenced by urban factors, such as land use and rain. Here, we describe the composition and functional potential of benthic microbial communities from an urban waterway network and analyze the effects of land use and rain perturbations on these communities. With a sequence depth of 3 billion reads from 48 samples, these metagenomes represent nearly full coverage of microbial communities. The predominant taxa in these waterways were Nitrospira and Coleofasciculus , indicating the presence of nitrogen and carbon fixation in this system. Gene functions from carbohydrate, protein, and nucleic acid metabolism suggest the presence of primary and secondary productivity in such nutrient-deficient systems. Comparison of microbial communities by land use type and rain showed that while there are significant differences in microbial communities in land use, differences due to rain perturbations were rain event specific. The more diverse microbial communities in the residential areas featured a higher abundance of reads assigned to genes related to community competition. However, the less diverse communities from industrial areas showed a higher abundance of reads assigned to specialized functions such as organic remediation. Finally, our study demonstrates that microbially diverse populations in well-managed waterways, where contaminant levels are within defined limits, are comparable to those in other relatively undisturbed freshwater systems. IMPORTANCE Unravelling the microbial metagenomes of urban waterway sediments suggest that well-managed urban waterways have the potential to support diverse sedimentary microbial communities, similar to those of undisturbed natural freshwaters. Despite the fact that these urban waterways are

  7. Integrated metagenomics and network analysis of soil microbial community of the forest timberline

    PubMed Central

    Ding, Junjun; Zhang, Yuguang; Deng, Ye; Cong, Jing; Lu, Hui; Sun, Xin; Yang, Caiyun; Yuan, Tong; Van Nostrand, Joy D.; Li, Diqiang; Zhou, Jizhong; Yang, Yunfeng

    2015-01-01

    The forest timberline responds quickly and markedly to climate changes, rendering it a ready indicator. Climate warming has caused an upshift of the timberline worldwide. However, the impact on belowground ecosystem and biogeochemical cycles remain elusive. To understand soil microbial ecology of the timberline, we analyzed microbial communities via 16s rRNA Illumina sequencing, a microarray-based tool named GeoChip 4.0 and a random matrix theory-based association network approach. We selected 24 sampling sites at two vegetation belts forming the timberline of Shennongjia Mountain in Hubei Province of China, a region with extraordinarily rich biodiversity. We found that temperature, among all of measured environmental parameters, showed the most significant and extensive linkages with microbial biomass, microbial diversity and composition at both taxonomic and functional gene levels, and microbial association network. Therefore, temperature was the best predictor for microbial community variations in the timberline. Furthermore, abundances of nitrogen cycle and phosphorus cycle genes were concomitant with NH4+-N, NO3−-N and total phosphorus, offering tangible clues to the underlying mechanisms of soil biogeochemical cycles. As the first glimpse at both taxonomic and functional compositions of soil microbial community of the timberline, our findings have major implications for predicting consequences of future timberline upshift. PMID:25613225

  8. [Carbon Source Utilization Characteristics of Soil Microbial Community for Apple Orchard with Interplanting Herbage].

    PubMed

    Du, Yi-fei; Fang, Kai-kai; Wang, Zhi-kang; Li, Hui-ke; Mao, Peng-juan; Zhang, Xiang-xu; Wang, Jing

    2015-11-01

    As soil fertility in apple orchard with clean tillage is declined continuously, interplanting herbage in orchard, which is a new orchard management model, plays an important role in improving orchard soil conditions. By using biolog micro-plate technique, this paper studied the functional diversity of soil microbial community under four species of management model in apple orchards, including clear tillage model, interplanting white clover model, interplanting small crown flower model and interplanting cocksfoot model, and the carbon source utilization characteristics of microbial community were explored, which could provide a reference for revealing driving mechanism of ecological process of orchard soil. The results showed that the functional diversity of microbial community had a significant difference among different treatments and in the order of white clover > small crown flower > cocksfoot > clear tillage. The correlation analysis showed that the average well color development (AWCD), Shannon index, Richness index and McIntosh index were all highly significantly positively correlated with soil organic carbon, total nitrogen, microbial biomass carbon, and Shannon index was significantly positively correlated with soil pH. The principal component analysis and the fingerprints of the physiological carbon metabolism of the microbial community demonstrated that grass treatments improved carbon source metabolic ability of soil microbial community, and the soil microbes with perennial legumes (White Clover and small crown flower) had a significantly higher utilization rate in carbohydrates (N-Acetyl-D-Glucosamine, D-Mannitol, β-Methyl-D-Glucoside), amino acids (Glycyl-L-Glutamic acid, L-Serine, L-Threonine) and polymers (Tween 40, Glycogen) than the soil microbes with clear tillage. It was considered that different treatments had the unique microbial community structure and peculiar carbon source utilization characteristics.

  9. Recovery of microbial communities and carbon cycling processes following drought manipulation in southern California

    NASA Astrophysics Data System (ADS)

    Allison, S. D.; Martiny, J. B. H.; Martiny, A.; Berlemont, R.; Treseder, K. K.; Goulden, M.; Brodie, E.

    2016-12-01

    Predicting the functioning of microbial communities under changing environmental conditions remains a key challenge in Earth system science. Metagenomics and other high-throughput molecular approaches can help address this challenge by revealing the functional potential of microbial communities. We coupled metagenomics with models and experimental manipulations to address microbial responses to drought in a California grassland ecosystem along with the consequences for carbon cycling. We developed an approach for extracting trait information from metagenomic data and asked: 1) What is the phylogenetic structure of drought response traits? 2) What is the relationship between these traits and those involved in carbohydrate degradation? 3) How do both classes of traits vary seasonally and with precipitation manipulation? 4) How resilient are these traits in the face of perturbation? We found that drought response traits are phylogenetically conserved at an equivalent of 5-8% ribosomal RNA gene sequence dissimilarity. Experimental drought treatment selected for the genetic potential to degrade starch, xylan, and mixed polysaccharides, suggesting a link between drought response and carbon cycling traits. In addition, microbial communities exposed to experimental drought showed a reduced potential to degrade plant biomass. Particularly among bacteria, seasonal drought had a larger impact on microbial composition, abundance, and carbohydrate-degrading genes compared to experimental drought. Bacterial communities were also more resilient to drought perturbation than fungal communities, which showed legacies of drought perturbation for up to three years. Altogether, these findings imply that microbial communities exhibit trait diversity that facilitates resilience but with substantial time lags and consequences for carbon turnover. This information is being used to inform new trait-based models that address the challenge of predicting microbial functioning under

  10. Distinctive Sediment and Adjacent Groundwater Microbial Communities in Bangladesh Aquifers Suggested Through Microbial Lipid Distribution and δ13C Analysis

    NASA Astrophysics Data System (ADS)

    Martin, K. J. W.; van Geen, A.; Bostick, B. C.; Mailloux, B. J.; Ahmed, K. M.; Choudhury, I.; Slater, G.

    2016-12-01

    Arsenic groundwater contamination throughout shallow aquifer sediments in Southern Asia has resulted in a large-scale human health crisis. There is a strong consensus that microbial iron reduction coupled to organic carbon oxidation is the predominant mechanism driving this arsenic release. However, limited research has examined the composition and functioning of the indigenous microbial communities. Further, such research has varied between studies targeting microbial communities associated with groundwater versus those associated with sediments. The overall aim of this research study was to use microbial lipid biomarkers of bacterial and micro-eukaryal (phospholipid fatty acids (PLFA)) and archaea (di- and tetra- bound ether lipids) distributions and δ13C analysis to compare the indigenous sedimentary-associated microbial communities with the groundwater-associated microbial communities in Bangladesh aquifers. Field sampling was carried out at four locations (Site B, F, SAM and CAT) in the Araihazar Upazila, Bangladesh in 2013 and 2015. A significant difference (p<0.00001) was found between the cell abundances in the groundwater-associated (2.8 x 101 to 3.0 x 102 cells/mL) (n=9) and the sediment-associated communities (averaging 1.1 x 107 cells/gram (n=19). Long-chain fatty acid methyl esters (FAME's) (C22-C29) derived from micro-eukaryotes were present in the sediments of both Site B and F comprising up to 17 % and 7% (mole %) of the total FAME distribution respectively but not detected in any of the groundwater filters. Shallow Site B sedimentary PLFA showed a progressive depletion in δ13C with depth from -24 to -31 ‰, whereas Site F sedimentary PLFA from similar depths did not show the same trend. Groundwater PLFA from Site B (14 m) contained FAME 18:1 with an average δ13C of -41‰, possibly indicating methanogenic activity (methanogen lipid analysis is ongoing). The results of this study highly suggests that Bangaldesh aquifer sediment and groundwater

  11. The Influence of Ecological Isolation on the Structural and Functional Stability of Complex Microbial Communities

    NASA Technical Reports Server (NTRS)

    Franklin, R. B.; Garland, J. L.; Mills, A. L.

    2005-01-01

    To help understand how the behavior of microorganisms and microbial communities in insular space habitats may differ from the behavior of these groups on Earth, long-term incubations (100+ days) were conducting using wastewater bioreactors (batch fed) designed to mimic "closed" and "open" ecological systems. The issue of immigration was considered, and the goal of the research was to determine whether the stability of microbial communities in space is reduced due to their prolonged isolation. Bioreactors were established by inoculating flasks of sterile synthetic wastewater with the microbial community obtained from a local treatment facility; each day, one-third of the medium in the flask was replaced with an equal volume of sterile artificial wastewater. Flasks were divided into two treatments: "closed" and "open" to recruitment of additional microorganisms. "Closed" flasks were maintained as described above, while the medium used to feed the "open" flasks was supplemented daily with a small amount of raw sewage (which provided a continuous source of new potential community members). Significant differences in microbial community structure and function developed in the two sets of communities, and the results suggest that the open community was more stable and better able to adjust to changing environmental conditions. Each community's resistance to environmental (temperature fluctuations) and biological stresses (starvation and invasion by an opportunistic pathogen Pseudomonas aeruginosa) was monitored. Experiments were also conducted to determine whether the effect of isolation changes depending on the microbial communities' initial diversity or composition; communities with a low(er) initial diversity were less stable. Overall, the results indicate that isolation will be an important factor influencing the activity of microbial communities on board spacecraft. A possible way of mitigating these effects would be to include communities with high initial

  12. Interactions between metals and microbial communities in New Bedford Harbor, Massachusetts.

    PubMed Central

    Ford, T; Sorci, J; Ika, R; Shine, J

    1998-01-01

    The fate of toxic metals in marine sediments depends on a combination of the physical, chemical, and biologic conditions encountered in any given environment. These conditions may vary dramatically, both spatially and temporally, in response to factors ranging from seasonal changes and storm events to human activities such as dredging or remediation efforts. This paper describes a program designed to evaluate the interrelationships between the microbial community and pollutants in the New Bedford Harbor, Massachusetts, area, a U.S. Environmental Protection Agency designated Superfund site. Research has focused on establishing distributional relationships between contaminant metals, fluxes of metals between sediments and the overlying water, changes in microbial diversity in response to metals, and potential use of the microbial community as a biomarker of contaminant availability. This research has shown that a significant flux of metals to the water column is mediated by benthic biologic activity, and that microbial communities may be a responsive marker of contaminant stress. A combination of biogeochemical studies and the use of molecular tools can be used to improve our understanding of the fate and effect of heavy metals released to aquatic systems. Images Figure 1 Figure 3 Figure 4 PMID:9703489

  13. Differences in Hyporheic-Zone Microbial Community Structure along a Heavy-Metal Contamination Gradient

    PubMed Central

    Feris, Kevin; Ramsey, Philip; Frazar, Chris; Moore, Johnnie N.; Gannon, James E.; Holben, William E.

    2003-01-01

    The hyporheic zone of a river is nonphotic, has steep chemical and redox gradients, and has a heterotrophic food web based on the consumption of organic carbon entrained from downwelling surface water or from upwelling groundwater. The microbial communities in the hyporheic zone are an important component of these heterotrophic food webs and perform essential functions in lotic ecosystems. Using a suite of methods (denaturing gradient gel electrophoresis, 16S rRNA phylogeny, phospholipid fatty acid analysis, direct microscopic enumeration, and quantitative PCR), we compared the microbial communities inhabiting the hyporheic zone of six different river sites that encompass a wide range of sediment metal loads resulting from large base-metal mining activity in the region. There was no correlation between sediment metal content and the total hyporheic microbial biomass present within each site. However, microbial community structure showed a significant linear relationship with the sediment metal loads. The abundances of four phylogenetic groups (groups I, II, III, and IV) most closely related to α-, β-, and γ-proteobacteria and the cyanobacteria, respectively, were determined. The sediment metal content gradient was positively correlated with group III abundance and negatively correlated with group II abundance. No correlation was apparent with regard to group I or IV abundance. This is the first documentation of a relationship between fluvially deposited heavy-metal contamination and hyporheic microbial community structure. The information presented here may be useful in predicting long-term effects of heavy-metal contamination in streams and provides a basis for further studies of metal effects on hyporheic microbial communities. PMID:12957946

  14. Statistical differences between relative quantitative molecular fingerprints from microbial communities.

    PubMed

    Portillo, M C; Gonzalez, J M

    2008-08-01

    Molecular fingerprints of microbial communities are a common method for the analysis and comparison of environmental samples. The significance of differences between microbial community fingerprints was analyzed considering the presence of different phylotypes and their relative abundance. A method is proposed by simulating coverage of the analyzed communities as a function of sampling size applying a Cramér-von Mises statistic. Comparisons were performed by a Monte Carlo testing procedure. As an example, this procedure was used to compare several sediment samples from freshwater ponds using a relative quantitative PCR-DGGE profiling technique. The method was able to discriminate among different samples based on their molecular fingerprints, and confirmed the lack of differences between aliquots from a single sample.

  15. Effects of uranium concentration on microbial community structure and functional potential.

    PubMed

    Sutcliffe, Brodie; Chariton, Anthony A; Harford, Andrew J; Hose, Grant C; Greenfield, Paul; Elbourne, Liam D H; Oytam, Yalchin; Stephenson, Sarah; Midgley, David J; Paulsen, Ian T

    2017-08-01

    Located in the Northern Territory of Australia, Ranger uranium mine is directly adjacent to the UNESCO World Heritage listed Kakadu National Park, with rehabilitation targets needed to ensure the site can be incorporated into the park following the mine's closure in 2026. This study aimed to understand the impact of uranium concentration on microbial communities, in order to identify and describe potential breakpoints in microbial ecosystem services. This is the first study to report in situ deployment of uranium-spiked sediments along a concentration gradient (0-4000 mg U kg -1 ), with the study design maximising the advantages of both field surveys and laboratory manipulative studies. Changes to microbial communities were characterised through the use of amplicon and shotgun metagenomic next-generation sequencing. Significant changes to taxonomic and functional community assembly occurred at a concentration of 1500 mg U kg -1 sediment and above. At uranium concentrations of ≥ 1500 mg U kg -1 , genes associated with methanogenic consortia and processes increased in relative abundance, while numerous significant changes were also seen in the relative abundances of genes involved in nitrogen cycling. Such alterations in carbon and nitrogen cycling pathways suggest that taxonomic and functional changes to microbial communities may result in changes in ecosystem processes and resilience. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  16. Soil microbial community responses to acid exposure and neutralization treatment.

    PubMed

    Shin, Doyun; Lee, Yunho; Park, Jeonghyun; Moon, Hee Sun; Hyun, Sung Pil

    2017-12-15

    Changes in microbial community induced by acid shock were studied in the context of potential release of acids to the environment due to chemical accidents. The responses of microbial communities in three different soils to the exposure to sulfuric or hydrofluoric acid and to the subsequent neutralization treatment were investigated as functions of acid concentration and exposure time by using 16S-rRNA gene based pyrosequencing and DGGE (Denaturing Gradient Gel Electrophoresis). Measurements of soil pH and dissolved ion concentrations revealed that the added acids were neutralized to different degrees, depending on the mineral composition and soil texture. Hydrofluoric acid was more effectively neutralized by the soils, compared with sulfuric acid at the same normality. Gram-negative ß-Proteobacteria were shown to be the most acid-sensitive bacterial strains, while spore-forming Gram-positive Bacilli were the most acid-tolerant. The results of this study suggest that the Gram-positive to Gram-negative bacterial ratio may serve as an effective bio-indicator in assessing the impact of the acid shock on the microbial community. Neutralization treatments helped recover the ratio closer to their original values. The findings of this study show that microbial community changes as well as geochemical changes such as pH and dissolved ion concentrations need to be considered in estimating the impact of an acid spill, in selecting an optimal remediation strategy, and in deciding when to end remedial actions at the acid spill impacted site. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Biotic Interactions in Microbial Communities as Modulators of Biogeochemical Processes: Methanotrophy as a Model System

    PubMed Central

    Ho, Adrian; Angel, Roey; Veraart, Annelies J.; Daebeler, Anne; Jia, Zhongjun; Kim, Sang Yoon; Kerckhof, Frederiek-Maarten; Boon, Nico; Bodelier, Paul L. E.

    2016-01-01

    Microbial interaction is an integral component of microbial ecology studies, yet the role, extent, and relevance of microbial interaction in community functioning remains unclear, particularly in the context of global biogeochemical cycles. While many studies have shed light on the physico-chemical cues affecting specific processes, (micro)biotic controls and interactions potentially steering microbial communities leading to altered functioning are less known. Yet, recent accumulating evidence suggests that the concerted actions of a community can be significantly different from the combined effects of individual microorganisms, giving rise to emergent properties. Here, we exemplify the importance of microbial interaction for ecosystem processes by analysis of a reasonably well-understood microbial guild, namely, aerobic methane-oxidizing bacteria (MOB). We reviewed the literature which provided compelling evidence for the relevance of microbial interaction in modulating methane oxidation. Support for microbial associations within methane-fed communities is sought by a re-analysis of literature data derived from stable isotope probing studies of various complex environmental settings. Putative positive interactions between active MOB and other microbes were assessed by a correlation network-based analysis with datasets covering diverse environments where closely interacting members of a consortium can potentially alter the methane oxidation activity. Although, methanotrophy is used as a model system, the fundamentals of our postulations may be applicable to other microbial guilds mediating other biogeochemical processes. PMID:27602021

  18. Peatland Microbial Communities and Decomposition Processes in the James Bay Lowlands, Canada

    PubMed Central

    Preston, Michael D.; Smemo, Kurt A.; McLaughlin, James W.; Basiliko, Nathan

    2012-01-01

    Northern peatlands are a large repository of atmospheric carbon due to an imbalance between primary production by plants and microbial decomposition. The James Bay Lowlands (JBL) of northern Ontario are a large peatland-complex but remain relatively unstudied. Climate change models predict the region will experience warmer and drier conditions, potentially altering plant community composition, and shifting the region from a long-term carbon sink to a source. We collected a peat core from two geographically separated (ca. 200 km) ombrotrophic peatlands (Victor and Kinoje Bogs) and one minerotrophic peatland (Victor Fen) located near Victor Bog within the JBL. We characterized (i) archaeal, bacterial, and fungal community structure with terminal restriction fragment length polymorphism of ribosomal DNA, (ii) estimated microbial activity using community level physiological profiling and extracellular enzymes activities, and (iii) the aeration and temperature dependence of carbon mineralization at three depths (0–10, 50–60, and 100–110 cm) from each site. Similar dominant microbial taxa were observed at all three peatlands despite differences in nutrient content and substrate quality. In contrast, we observed differences in basal respiration, enzyme activity, and the magnitude of substrate utilization, which were all generally higher at Victor Fen and similar between the two bogs. However, there was no preferential mineralization of carbon substrates between the bogs and fens. Microbial community composition did not correlate with measures of microbial activity but pH was a strong predictor of activity across all sites and depths. Increased peat temperature and aeration stimulated CO2 production but this did not correlate with a change in enzyme activities. Potential microbial activity in the JBL appears to be influenced by the quality of the peat substrate and the presence of microbial inhibitors, which suggests the existing peat substrate will have a large

  19. Changes in microbial communities along redox gradients in polygonized Arctic wet tundra soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipson, David A.; Raab, Theodore K.; Parker, Melanie

    2015-07-21

    This study investigated how microbial community structure and diversity varied with depth and topography in ice wedge polygons of wet tundra of the Arctic Coastal Plain in northern Alaska, and what soil variables explain these patterns. We observed strong changes in community structure and diversity with depth, and more subtle changes between areas of high and low topography, with the largest differences apparent near the soil surface. These patterns are most strongly correlated with redox gradients (measured using the ratio of reduced Fe to total Fe in acid extracts as a proxy): conditions grew more reducing with depth and weremore » most oxidized in shallow regions of polygon rims. Organic matter and pH also changed with depth and topography, but were less effective predictors of the microbial community structure and relative abundance of specific taxa. Of all other measured variables, lactic acid concentration was the best, in combination with redox, for describing the microbial community. We conclude that redox conditions are the dominant force in shaping microbial communities in this landscape. Oxygen and other electron acceptors allowed for the greatest diversity of microbes: at depth the community was reduced to a simpler core of anaerobes, dominated by fermenters ( Bacteroidetes and Firmicutes).« less

  20. Changes in microbial communities along redox gradients in polygonized Arctic wet tundra soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipson, David A.; Raab, Theodore K.; Parker, Melanie

    2015-08-01

    Summary This study investigated how microbial community structure and diversity varied with depth and topography in ice wedge polygons of wet tundra of the Arctic Coastal Plain in northern Alaska and what soil variables explain these patterns. We observed strong changes in community structure and diversity with depth, and more subtle changes between areas of high and low topography, with the largest differences apparent near the soil surface. These patterns are most strongly correlated with redox gradients (measured using the ratio of reduced Fe to total Fe in acid extracts as a proxy): conditions grew more reducing with depth andmore » were most oxidized in shallow regions of polygon rims. Organic matter and pH also changed with depth and topography but were less effective predictors of the microbial community structure and relative abundance of specific taxa. Of all other measured variables, lactic acid concentration was the best, in combination with redox, for describing the microbial community. We conclude that redox conditions are the dominant force in shaping microbial communities in this landscape. Oxygen and other electron acceptors allowed for the greatest diversity of microbes: at depth the community was reduced to a simpler core of anaerobes,« less

  1. Investigation of the microbial communities colonizing prepainted steel used for roofing and walling.

    PubMed

    Huynh, Tran T; Jamil, Ili; Pianegonda, Nicole A; Blanksby, Stephen J; Barker, Philip J; Manefield, Mike; Rice, Scott A

    2017-04-01

    Microbial colonization of prepainted steel, commonly used in roofing applications, impacts their aesthetics, durability, and functionality. Understanding the relevant organisms and the mechanisms by which colonization occurs would provide valuable information that can be subsequently used to design fouling prevention strategies. Here, next-generation sequencing and microbial community finger printing (T-RFLP) were used to study the community composition of microbes colonizing prepainted steel roofing materials at Burrawang, Australia and Kapar, Malaysia over a 52-week period. Community diversity was low and was dominated by Bacillus spp., cyanobacteria, actinobacteria, Cladosporium sp., Epicoccum nigrum, and Teratosphaeriaceae sp. Cultivation-based methods isolated approximately 20 different fungi and bacteria, some of which, such as E. nigrum and Cladosporium sp., were represented in the community sequence data. Fluorescence in situ hybridization imaging showed that fungi were the most dominant organisms present. Analysis of the sequence and T-RFLP data indicated that the microbial communities differed significantly between locations and changed significantly over time. The study demonstrates the utility of molecular ecology tools to identify and characterize microbial communities associated with the fouling of painted steel surfaces and ultimately can enable the targeted development of control strategies based on the dominant species responsible for fouling. © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  2. Changes in microbial communities along redox gradients in polygonized Arctic wet tundra soils.

    PubMed

    Lipson, David A; Raab, Theodore K; Parker, Melanie; Kelley, Scott T; Brislawn, Colin J; Jansson, Janet

    2015-08-01

    This study investigated how microbial community structure and diversity varied with depth and topography in ice wedge polygons of wet tundra of the Arctic Coastal Plain in northern Alaska and what soil variables explain these patterns. We observed strong changes in community structure and diversity with depth, and more subtle changes between areas of high and low topography, with the largest differences apparent near the soil surface. These patterns are most strongly correlated with redox gradients (measured using the ratio of reduced Fe to total Fe in acid extracts as a proxy): conditions grew more reducing with depth and were most oxidized in shallow regions of polygon rims. Organic matter and pH also changed with depth and topography but were less effective predictors of the microbial community structure and relative abundance of specific taxa. Of all other measured variables, lactic acid concentration was the best, in combination with redox, for describing the microbial community. We conclude that redox conditions are the dominant force in shaping microbial communities in this landscape. Oxygen and other electron acceptors allowed for the greatest diversity of microbes: at depth the community was reduced to a simpler core of anaerobes, dominated by fermenters (Bacteroidetes and Firmicutes). © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. Proteogenemic Approaches for the Molecular Characterization of Natural Microbial Communities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banfield, Jillian F.

    2014-04-25

    Microbial biofilms involved in acid mine drainage formation have served as a model systems for the study of microbial communities. Over the grant period we developed community metagenomic methods for recovery of genomes of uncultivated bacteria, archaea, viruses/phage, and plasmids from natural systems. We leveraged highly curated metagenomic datasets to develop methods to monitor microbial function in situ. Beyond new insight into extremophilic microbial ecosystems, we have shown that our strain-resolved proteogenomic methods can be applied to other systems. Our studies have uncovered new patters of inter-species recombination that likely lead to fine-scale environmental adaptation, defined the importance of inter-speciesmore » vs. intra-species recombination in archaea, and evaluated the processes shaping fine-scale sequence variation. The project was the subject of study for six Ph.D. students, two of whom are now Associate Professors, the others are post docs; for M.S. or undergraduate researchers, and thirteen post docs, ten of which are now Assistant or Associate professors. The research generated 53 publications, five of which appeard in Science or Nature.« less

  4. Microbial Community Response to Warming and Correlations to Organic Carbon Degradation in an Arctic Tundra Soil

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Yang, S.; Zhou, J.; Wullschleger, S. D.; Graham, D. E.; Yang, Y.; Gu, B.

    2016-12-01

    Climate warming increases microbial activity and thus decomposition of soil organic carbon (SOC) stored in Arctic tundra, but changes in microbial community and its correlations to SOC decomposition are poorly understood. Using a microbial functional gene array (GeoChip 5.0), we examined the microbial functional community structure changes with temperature (-2 and +8 °C) in an anoxic incubation experiment with a high-centered polygon trough soil from Barrow, Alaska. Through a 122-day incubation, we show that functional community structure was significantly altered (P < 0.05) by 8 °C warming, with functional diversity decreasing in response to warming and rapid degradation of the labile soil organic substrates. In contrast, microbial community structure was largely unchanged by -2 °C incubation. In the organic layer soil, gene abundances associated with fermentation, methanogenesis, and iron reduction all decreased significantly (P < 0.05) following the incubation at 8 °C. These observations corroborate strongly with decreased methane and reducing sugar production rates and iron reduction during the incubation. These results demonstrate a rapid and sensitive microbial response to increasing soil temperature, and suggest important roles of microbial communities in moderating SOC degradation and iron cycling in warming Arctic tundra.

  5. Lineage-specific responses of microbial communities to environmental change.

    PubMed

    Youngblut, Nicholas D; Shade, Ashley; Read, Jordan S; McMahon, Katherine D; Whitaker, Rachel J

    2013-01-01

    A great challenge facing microbial ecology is how to define ecologically relevant taxonomic units. To address this challenge, we investigated how changing the definition of operational taxonomic units (OTUs) influences the perception of ecological patterns in microbial communities as they respond to a dramatic environmental change. We used pyrosequenced tags of the bacterial V2 16S rRNA region, as well as clone libraries constructed from the cytochrome oxidase C gene ccoN, to provide additional taxonomic resolution for the common freshwater genus Polynucleobacter. At the most highly resolved taxonomic scale, we show that distinct genotypes associated with the abundant Polynucleobacter lineages exhibit divergent spatial patterns and dramatic changes over time, while the also abundant Actinobacteria OTUs are highly coherent. This clearly demonstrates that different bacterial lineages demand different taxonomic definitions to capture ecological patterns. Based on the temporal distribution of highly resolved taxa in the hypolimnion, we demonstrate that change in the population structure of a single genotype can provide additional insight into the mechanisms of community-level responses. These results highlight the importance and feasibility of examining ecological change in microbial communities across taxonomic scales while also providing valuable insight into the ecological characteristics of ecologically coherent groups in this system.

  6. Molecular assessment of the sensitivity of sulfate-reducing microbial communities remediating mine drainage to aerobic stress.

    PubMed

    Lefèvre, Emilie; Pereyra, Luciana P; Hiibel, Sage R; Perrault, Elizabeth M; De Long, Susan K; Reardon, Kenneth F; Pruden, Amy

    2013-09-15

    Sulfate-reducing permeable reactive zones (SR-PRZs) are microbially-driven anaerobic systems designed for the removal of heavy metals and sulfate in mine drainage. Environmental perturbations, such as oxygen exposure, may adversely affect system stability and long-term performance. The objective of this study was to examine the effect of two successive aerobic stress events on the performance and microbial community composition of duplicate laboratory-scale lignocellulosic SR-PRZs operated using the following microbial community management strategies: biostimulation with ethanol or carboxymethylcellulose; bioaugmentation with sulfate-reducing or cellulose-degrading enrichments; inoculation with dairy manure only; and no inoculation. A functional gene-based approach employing terminal restriction fragment length polymorphism and quantitative polymerase chain reaction targeting genes of sulfate-reducing (dsrA), cellulose-degrading (cel5, cel48), fermentative (hydA), and methanogenic (mcrA) microbes was applied. In terms of performance (i.e., sulfate removal), biostimulation with ethanol was the only strategy that clearly had an effect (positive) following exposure to oxygen. In terms of microbial community composition, significant shifts were observed over the course of the experiment. Results suggest that exposure to oxygen more strongly influenced microbial community shifts than the different microbial community management strategies. Sensitivity to oxygen exposure varied among different populations and was particularly pronounced for fermentative bacteria. Although the community structure remained altered after exposure, system performance recovered, indicating that SR-PRZ microbial communities were functionally redundant. Results suggest that pre-exposure to oxygen might be a more effective strategy to improve the resilience of SR-PRZ microbial communities relative to bioaugmentation or biostimulation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Microbial Community Response during the Iron Fertilization Experiment LOHAFEX

    PubMed Central

    Thiele, Stefan; Ramaiah, Nagappa; Amann, Rudolf

    2012-01-01

    Iron fertilization experiments in high-nutrient, low-chlorophyll areas are known to induce phytoplankton blooms. However, little is known about the response of the microbial community upon iron fertilization. As part of the LOHAFEX experiment in the southern Atlantic Ocean, Bacteria and Archaea were monitored within and outside an induced bloom, dominated by Phaeocystis-like nanoplankton, during the 38 days of the experiment. The microbial production increased 1.6-fold (thymidine uptake) and 2.1-fold (leucine uptake), while total cell numbers increased only slightly over the course of the experiment. 454 tag pyrosequencing of partial 16S rRNA genes and catalyzed reporter deposition fluorescence in situ hybridization (CARD FISH) showed that the composition and abundance of the bacterial and archaeal community in the iron-fertilized water body were remarkably constant without development of typical bloom-related succession patterns. Members of groups usually found in phytoplankton blooms, such as Roseobacter and Gammaproteobacteria, showed no response or only a minor response to the bloom. However, sequence numbers and total cell numbers of the SAR11 and SAR86 clades increased slightly but significantly toward the end of the experiment. It seems that although microbial productivity was enhanced within the fertilized area, a succession-like response of the microbial community upon the algal bloom was averted by highly effective grazing. Only small-celled members like the SAR11 and SAR86 clades could possibly escape the grazing pressure, explaining a net increase of those clades in numbers. PMID:23064339

  8. 4D Biofabrication of Branching Multicellular Structures: A Morphogenesis Simulation Based on Turing’s Reaction-Diffusion Dynamics

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaolu; Yang, Hao

    2017-12-01

    The recently emerged four-dimensional (4D) biofabrication technique aims to create dynamic three-dimensional (3D) biological structures that can transform their shapes or functionalities with time when an external stimulus is imposed or when cell postprinting self-assembly occurs. The evolution of 3D pattern of branching geometry via self-assembly of cells is critical for 4D biofabrication of artificial organs or tissues with branched geometry. However, it is still unclear that how the formation and evolution of these branching pattern are biologically encoded. We study the 4D fabrication of lung branching structures utilizing a simulation model on the reaction-diffusion mechanism, which is established using partial differential equations of four variables, describing the reaction and diffusion process of morphogens with time during the development process of lung branching. The simulation results present the forming process of 3D branching pattern, and also interpret the behaviors of side branching and tip splitting as the stalk growing, through 3D visualization of numerical simulation.

  9. Termite hindguts and the ecology of microbial communities in the sequencing age.

    PubMed

    Tai, Vera; Keeling, Patrick J

    2013-01-01

    Advances in high-throughput nucleic acid sequencing have improved our understanding of microbial communities in a number of ways. Deeper sequence coverage provides the means to assess diversity at the resolution necessary to recover ecological and biogeographic patterns, and at the same time single-cell genomics provides detailed information about the interactions between members of a microbial community. Given the vastness and complexity of microbial ecosystems, such analyses remain challenging for most environments, so greater insight can also be drawn from analysing less dynamic ecosystems. Here, we outline the advantages of one such environment, the wood-digesting hindgut communities of termites and cockroaches, and how it is a model to examine and compare both protist and bacterial communities. Beyond the analysis of diversity, our understanding of protist community ecology will depend on using statistically sound sampling regimes at biologically relevant scales, transitioning from discovery-based to experimental ecology, incorporating single-cell microbiology and other data sources, and continued development of analytical tools. © 2013 The Author(s) Journal of Eukaryotic Microbiology © 2013 International Society of Protistologists.

  10. Metagenomic Insights into Evolution of a Heavy Metal-Contaminated Groundwater Microbial Community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hemme, Christopher L.; Deng, Ye; Gentry, Terry J.

    2010-02-15

    Understanding adaptation of biological communities to environmental change is a central issue in ecology and evolution. Metagenomic analysis of a stressed groundwater microbial community reveals that prolonged exposure to high concentrations of heavy metals, nitric acid and organic solvents (~;;50 years) have resulted in a massive decrease in species and allelic diversity as well as a significant loss of metabolic diversity. Although the surviving microbial community possesses all metabolic pathways necessary for survival and growth in such an extreme environment, its structure is very simple, primarily composed of clonal denitrifying ?- and ?-proteobacterial populations. The resulting community is over-abundant inmore » key genes conferring resistance to specific stresses including nitrate, heavy metals and acetone. Evolutionary analysis indicates that lateral gene transfer could be a key mechanism in rapidly responding and adapting to environmental contamination. The results presented in this study have important implications in understanding, assessing and predicting the impacts of human-induced activities on microbial communities ranging from human health to agriculture to environmental management, and their responses to environmental changes.« less

  11. Small-scale spatial heterogeneity of ecosystem properties, microbial community composition and microbial activities in a temperate mountain forest soil.

    PubMed

    Štursová, Martina; Bárta, Jiří; Šantrůčková, Hana; Baldrian, Petr

    2016-12-01

    Forests are recognised as spatially heterogeneous ecosystems. However, knowledge of the small-scale spatial variation in microbial abundance, community composition and activity is limited. Here, we aimed to describe the heterogeneity of environmental properties, namely vegetation, soil chemical composition, fungal and bacterial abundance and community composition, and enzymatic activity, in the topsoil in a small area (36 m 2 ) of a highly heterogeneous regenerating temperate natural forest, and to explore the relationships among these variables. The results demonstrated a high level of spatial heterogeneity in all properties and revealed differences between litter and soil. Fungal communities had substantially higher beta-diversity than bacterial communities, which were more uniform and less spatially autocorrelated. In litter, fungal communities were affected by vegetation and appeared to be more involved in decomposition. In the soil, chemical composition affected both microbial abundance and the rates of decomposition, whereas the effect of vegetation was small. Importantly, decomposition appeared to be concentrated in hotspots with increased activity of multiple enzymes. Overall, forest topsoil should be considered a spatially heterogeneous environment in which the mean estimates of ecosystem-level processes and microbial community composition may confound the existence of highly specific microenvironments. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Diversity and Function of Microbial Community in Chinese Strong-Flavor Baijiu Ecosystem: A Review

    PubMed Central

    Zou, Wei; Zhao, Changqing; Luo, Huibo

    2018-01-01

    Strong flavor baijiu (SFB), also called Luzhou-flavor liquor, is the most popular Chinese baijiu. It is manufactured via solid fermentation, with daqu as the starter. Microbial diversity of the SFB ecosystem and the synergistic effects of the enzymes and compounds produced by them are responsible for the special flavor and mouthfeel of SFB. The present review covers research studies focused on microbial community analysis of the SFB ecosystem, including the culturable microorganisms, their metabolic functions, microbial community diversity and their interactions. The review specifically emphasizes on the most recently conducted culture-independent analysis of SFB microbial community diversity. Furthermore, the possible application of systems biology approaches for elucidating the molecular mechanisms of SFB production were also reviewed and prospected. PMID:29686656

  13. Spatial and temporal dynamics of microbial communities in a human-perturbed estuary of China

    NASA Astrophysics Data System (ADS)

    Hu, A.; Yu, C. P.; Hou, L.

    2015-12-01

    Estuaries are responsible for the transport and transformation of nutrients and organic matters from the continent to the adjacent coastal zone, and therefore play critical roles in global biogeochemical cycles. They are under increasing stress from human activities, especially in China, yet we still know little about the responses of microbial communities that mediate biogeochemical processes. Here, we investigated planktonic and benthic microbial communities in the human-perturbed Jiulong River estuary (JRE), southern China by using Illumina 16S ribosomal RNA amplicon sequencing. The results of taxonomic assignments indicated that Beta- (23.32%), Alpha- (22.21%), Gammaproteobacteria (14.83%), Actinobacteria (8.67%), and Flavobacteria (7.56%) were the five most abundant classes in estuarine surface waters, while benthic microbial communities were dominated by Gamma- (20.09%), Delta- (14.68%), Beta- (9.82%), Alphaproteobacteria (7.63%), and Anaerolineae (7.25%). The results of Adnois and ANOSIM tests confirmed that the compositions of microbial communities from waters and sediments of the JRE were significantly different from each other, and then salinity may be the primary factor controlling spatial distributions of planktonic and benthic microbial communities in this estuary. At the temporal scale, planktonic communities showed a more clear variation pattern. Remarkably, the ratios of Thaumarchaeota (putative ammonia-oxidizing archaea) to Nitrosomonadales (ammonia-oxidizing bacteria) either in water or sediments of the JRE increased from freshwater to marine end, suggesting that bacterial and archaeal nitrifiers occupy low-salinity and high-salinity niches, respectively. The nutrient concentrations and salinity might be the most important factors which are responsible for this niche diversification. Overall, this study shed light on our understanding of the biogeographic patterns and its ecological drivers of estuarine microbial communities.

  14. Long-term no-tillage and organic input management enhanced the diversity and stability of soil microbial community.

    PubMed

    Wang, Yi; Li, Chunyue; Tu, Cong; Hoyt, Greg D; DeForest, Jared L; Hu, Shuijin

    2017-12-31

    Intensive tillage and high inputs of chemicals are frequently used in conventional agriculture management, which critically depresses soil properties and causes soil erosion and nonpoint source pollution. Conservation practices, such as no-tillage and organic farming, have potential to enhance soil health. However, the long-term impact of no-tillage and organic practices on soil microbial diversity and community structure has not been fully understood, particularly in humid, warm climate regions such as the southeast USA. We hypothesized that organic inputs will lead to greater microbial diversity and a more stable microbial community, and that the combination of no-tillage and organic inputs will maximize soil microbial diversity. We conducted a long-term experiment in the southern Appalachian mountains of North Carolina, USA to test these hypotheses. The results showed that soil microbial diversity and community structure diverged under different management regimes after long term continuous treatments. Organic input dominated the effect of management practices on soil microbial properties, although no-tillage practice also exerted significant impacts. Both no-tillage and organic inputs significantly promoted soil microbial diversity and community stability. The combination of no-tillage and organic management increased soil microbial diversity over the conventional tillage and led to a microbial community structure more similar to the one in an adjacent grassland. These results indicate that effective management through reducing tillage and increasing organic C inputs can enhance soil microbial diversity and community stability. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Using a trait-based approach to link microbial community composition and functioning to soil salinity

    NASA Astrophysics Data System (ADS)

    Rath, Kristin; Fierer, Noah; Rousk, Johannes

    2017-04-01

    Our knowledge of the dynamics structuring microbial communities and the consequences this has for soil functions is rudimentary. In particular, predictions of the response of microbial communities to environmental change and the implications for associated ecosystem processes remain elusive. Understanding how environmental factors structure microbial communities and regulate the functions they perform is key to a mechanistic understanding of how biogeochemical cycles respond to environmental change. Soil salinization is an agricultural problem in many parts of the world. The activity of soil microorganisms is reduced in saline soils compared to non-saline soil. However, soil salinity often co-varies with other factors, making it difficult to assign responses of microbial communities to direct effects of salinity. A trait-based approach allows us to connect the environmental factor salinity with the responses of microbial community composition and functioning. Salinity along a salinity gradient serves as a filter for the community trait distribution of salt tolerance, selecting for higher salt tolerance at more saline sites. This trait-environment relationship can be used to predict responses of microbial communities to environmental change. Our aims were to (i) use salinity along natural salinity gradients as an environmental filter, and (ii) link the resulting filtered trait-distributions of the communities (the trait being salt tolerance) to the community composition. Soil samples were obtained from two replicated salinity gradients along an Australian salt lake, spanning a wide range of soil salinities (0.1 dS m-1 to >50 dS m-1). In one of the two gradients salinity was correlated with pH. Community trait distributions for salt tolerance were assessed by establishing dose-dependences for extracted bacterial communities using growth rate assays. In addition, functional parameters were measured along the salt gradients. Community composition of sites was compared

  16. Deciphering Diversity Indices for a Better Understanding of Microbial Communities.

    PubMed

    Kim, Bo-Ra; Shin, Jiwon; Guevarra, Robin; Lee, Jun Hyung; Kim, Doo Wan; Seol, Kuk-Hwan; Lee, Ju-Hoon; Kim, Hyeun Bum; Isaacson, Richard

    2017-12-28

    The past decades have been a golden era during which great tasks were accomplished in the field of microbiology, including food microbiology. In the past, culture-dependent methods have been the primary choice to investigate bacterial diversity. However, using cultureindependent high-throughput sequencing of 16S rRNA genes has greatly facilitated studies exploring the microbial compositions and dynamics associated with health and diseases. These culture-independent DNA-based studies generate large-scale data sets that describe the microbial composition of a certain niche. Consequently, understanding microbial diversity becomes of greater importance when investigating the composition, function, and dynamics of the microbiota associated with health and diseases. Even though there is no general agreement on which diversity index is the best to use, diversity indices have been used to compare the diversity among samples and between treatments with controls. Tools such as the Shannon- Weaver index and Simpson index can be used to describe population diversity in samples. The purpose of this review is to explain the principles of diversity indices, such as Shannon- Weaver and Simpson, to aid general microbiologists in better understanding bacterial communities. In this review, important questions concerning microbial diversity are addressed. Information from this review should facilitate evidence-based strategies to explore microbial communities.

  17. Functional and Structural Succession of Soil Microbial Communities below Decomposing Human Cadavers

    PubMed Central

    Cobaugh, Kelly L.; Schaeffer, Sean M.; DeBruyn, Jennifer M.

    2015-01-01

    The ecological succession of microbes during cadaver decomposition has garnered interest in both basic and applied research contexts (e.g. community assembly and dynamics; forensic indicator of time since death). Yet current understanding of microbial ecology during decomposition is almost entirely based on plant litter. We know very little about microbes recycling carcass-derived organic matter despite the unique decomposition processes. Our objective was to quantify the taxonomic and functional succession of microbial populations in soils below decomposing cadavers, testing the hypotheses that a) periods of increased activity during decomposition are associated with particular taxa; and b) human-associated taxa are introduced to soils, but do not persist outside their host. We collected soils from beneath four cadavers throughout decomposition, and analyzed soil chemistry, microbial activity and bacterial community structure. As expected, decomposition resulted in pulses of soil C and nutrients (particularly ammonia) and stimulated microbial activity. There was no change in total bacterial abundances, however we observed distinct changes in both function and community composition. During active decay (7 - 12 days postmortem), respiration and biomass production rates were high: the community was dominated by Proteobacteria (increased from 15.0 to 26.1% relative abundance) and Firmicutes (increased from 1.0 to 29.0%), with reduced Acidobacteria abundances (decreased from 30.4 to 9.8%). Once decay rates slowed (10 - 23 d postmortem), respiration was elevated, but biomass production rates dropped dramatically; this community with low growth efficiency was dominated by Firmicutes (increased to 50.9%) and other anaerobic taxa. Human-associated bacteria, including the obligately anaerobic Bacteroides, were detected at high concentrations in soil throughout decomposition, up to 198 d postmortem. Our results revealed the pattern of functional and compositional succession

  18. [Influence of Submerged Plants on Microbial Community Structure in Sediment of Hongze Lake].

    PubMed

    Zhang, Ding-yu; Zhang, Ting-xi; Dong, Dan-ping; Li, De-fang; Wang, Guo-xiang

    2016-05-15

    Phospholipid fatty acids (PLFAs) method was applied to analyze the influence of submerged plants on sediment microbial community structure, in order to investigate the changes of sediment microbial community structure for different kinds of the submerged plants in different growth periods. Particularly, Potamogeton crispus L., Potamogeton pectinatus L and the mixed group were chosen as the typical submerged plants in Hongze Lake for investigation in this paper. The results indicated that the change of total PLFAs in different periods was significant, on the contrary, the PLFA change for different groups in the same period was insignificant. The values of G⁺ PLFA/G⁻ PLFA in the submerged plant group were also highly related to the different growth periods, which demonstrated that the root function of the submerged plant had a severe impact on the microbial community in sediment. Furthermore, some environmental factors, such as Temperature, pH, TOC and DO, were correlated to characteristic phospholipid of PLFAs in sediment, which means the environmental factors could also affect the microbial community structure.

  19. Distinct microbial communities associated with buried soils in the Siberian tundra

    PubMed Central

    Gittel, Antje; Bárta, Jiří; Kohoutová, Iva; Mikutta, Robert; Owens, Sarah; Gilbert, Jack; Schnecker, Jörg; Wild, Birgit; Hannisdal, Bjarte; Maerz, Joeran; Lashchinskiy, Nikolay; Čapek, Petr; Šantrůčková, Hana; Gentsch, Norman; Shibistova, Olga; Guggenberger, Georg; Richter, Andreas; Torsvik, Vigdis L; Schleper, Christa; Urich, Tim

    2014-01-01

    Cryoturbation, the burial of topsoil material into deeper soil horizons by repeated freeze–thaw events, is an important storage mechanism for soil organic matter (SOM) in permafrost-affected soils. Besides abiotic conditions, microbial community structure and the accessibility of SOM to the decomposer community are hypothesized to control SOM decomposition and thus have a crucial role in SOM accumulation in buried soils. We surveyed the microbial community structure in cryoturbated soils from nine soil profiles in the northeastern Siberian tundra using high-throughput sequencing and quantification of bacterial, archaeal and fungal marker genes. We found that bacterial abundances in buried topsoils were as high as in unburied topsoils. In contrast, fungal abundances decreased with depth and were significantly lower in buried than in unburied topsoils resulting in remarkably low fungal to bacterial ratios in buried topsoils. Fungal community profiling revealed an associated decrease in presumably ectomycorrhizal (ECM) fungi. The abiotic conditions (low to subzero temperatures, anoxia) and the reduced abundance of fungi likely provide a niche for bacterial, facultative anaerobic decomposers of SOM such as members of the Actinobacteria, which were found in significantly higher relative abundances in buried than in unburied topsoils. Our study expands the knowledge on the microbial community structure in soils of Northern latitude permafrost regions, and attributes the delayed decomposition of SOM in buried soils to specific microbial taxa, and particularly to a decrease in abundance and activity of ECM fungi, and to the extent to which bacterial decomposers are able to act as their functional substitutes. PMID:24335828

  20. Modeling microbial community structure and functional diversity across time and space.

    PubMed

    Larsen, Peter E; Gibbons, Sean M; Gilbert, Jack A

    2012-07-01

    Microbial communities exhibit exquisitely complex structure. Many aspects of this complexity, from the number of species to the total number of interactions, are currently very difficult to examine directly. However, extraordinary efforts are being made to make these systems accessible to scientific investigation. While recent advances in high-throughput sequencing technologies have improved accessibility to the taxonomic and functional diversity of complex communities, monitoring the dynamics of these systems over time and space - using appropriate experimental design - is still expensive. Fortunately, modeling can be used as a lens to focus low-resolution observations of community dynamics to enable mathematical abstractions of functional and taxonomic dynamics across space and time. Here, we review the approaches for modeling bacterial diversity at both the very large and the very small scales at which microbial systems interact with their environments. We show that modeling can help to connect biogeochemical processes to specific microbial metabolic pathways. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  1. The unique chemistry of Eastern Mediterranean water masses selects for distinct microbial communities by depth.

    PubMed

    Techtmann, Stephen M; Fortney, Julian L; Ayers, Kati A; Joyner, Dominique C; Linley, Thomas D; Pfiffner, Susan M; Hazen, Terry C

    2015-01-01

    The waters of the Eastern Mediterranean are characterized by unique physical and chemical properties within separate water masses occupying different depths. Distinct water masses are present throughout the oceans, which drive thermohaline circulation. These water masses may contain specific microbial assemblages. The goal of this study was to examine the effect of physical and geological phenomena on the microbial community of the Eastern Mediterranean water column. Chemical measurements were combined with phospholipid fatty acid (PLFA) analysis and high-throughput 16S rRNA sequencing to characterize the microbial community in the water column at five sites. We demonstrate that the chemistry and microbial community of the water column were stratified into three distinct water masses. The salinity and nutrient concentrations vary between these water masses. Nutrient concentrations increased with depth, and salinity was highest in the intermediate water mass. Our PLFA analysis indicated different lipid classes were abundant in each water mass, suggesting that distinct groups of microbes inhabit these water masses. 16S rRNA gene sequencing confirmed the presence of distinct microbial communities in each water mass. Taxa involved in autotrophic nitrogen cycling were enriched in the intermediate water mass suggesting that microbes in this water mass may be important to the nitrogen cycle of the Eastern Mediterranean. The Eastern Mediterranean also contains numerous active hydrocarbon seeps. We sampled above the North Alex Mud Volcano, in order to test the effect of these geological features on the microbial community in the adjacent water column. The community in the waters overlaying the mud volcano was distinct from other communities collected at similar depths and was enriched in known hydrocarbon degrading taxa. Our results demonstrate that physical phenomena such stratification as well as geological phenomena such as mud volcanoes strongly affect microbial

  2. The Unique Chemistry of Eastern Mediterranean Water Masses Selects for Distinct Microbial Communities by Depth

    PubMed Central

    Techtmann, Stephen M.; Fortney, Julian L.; Ayers, Kati A.; Joyner, Dominique C.; Linley, Thomas D.; Pfiffner, Susan M.; Hazen, Terry C.

    2015-01-01

    The waters of the Eastern Mediterranean are characterized by unique physical and chemical properties within separate water masses occupying different depths. Distinct water masses are present throughout the oceans, which drive thermohaline circulation. These water masses may contain specific microbial assemblages. The goal of this study was to examine the effect of physical and geological phenomena on the microbial community of the Eastern Mediterranean water column. Chemical measurements were combined with phospholipid fatty acid (PLFA) analysis and high-throughput 16S rRNA sequencing to characterize the microbial community in the water column at five sites. We demonstrate that the chemistry and microbial community of the water column were stratified into three distinct water masses. The salinity and nutrient concentrations vary between these water masses. Nutrient concentrations increased with depth, and salinity was highest in the intermediate water mass. Our PLFA analysis indicated different lipid classes were abundant in each water mass, suggesting that distinct groups of microbes inhabit these water masses. 16S rRNA gene sequencing confirmed the presence of distinct microbial communities in each water mass. Taxa involved in autotrophic nitrogen cycling were enriched in the intermediate water mass suggesting that microbes in this water mass may be important to the nitrogen cycle of the Eastern Mediterranean. The Eastern Mediterranean also contains numerous active hydrocarbon seeps. We sampled above the North Alex Mud Volcano, in order to test the effect of these geological features on the microbial community in the adjacent water column. The community in the waters overlaying the mud volcano was distinct from other communities collected at similar depths and was enriched in known hydrocarbon degrading taxa. Our results demonstrate that physical phenomena such stratification as well as geological phenomena such as mud volcanoes strongly affect microbial

  3. Genome-wide association study of Arabidopsis thaliana leaf microbial community.

    PubMed

    Horton, Matthew W; Bodenhausen, Natacha; Beilsmith, Kathleen; Meng, Dazhe; Muegge, Brian D; Subramanian, Sathish; Vetter, M Madlen; Vilhjálmsson, Bjarni J; Nordborg, Magnus; Gordon, Jeffrey I; Bergelson, Joy

    2014-11-10

    Identifying the factors that influence the outcome of host-microbial interactions is critical to protecting biodiversity, minimizing agricultural losses and improving human health. A few genes that determine symbiosis or resistance to infectious disease have been identified in model species, but a comprehensive examination of how a host genotype influences the structure of its microbial community is lacking. Here we report the results of a field experiment with the model plant Arabidopsis thaliana to identify the fungi and bacteria that colonize its leaves and the host loci that influence the microbe numbers. The composition of this community differs among accessions of A. thaliana. Genome-wide association studies (GWAS) suggest that plant loci responsible for defense and cell wall integrity affect variation in this community. Furthermore, species richness in the bacterial community is shaped by host genetic variation, notably at loci that also influence the reproduction of viruses, trichome branching and morphogenesis.

  4. Postmortem microbial communities in burial soil layers of skeletonized humans.

    PubMed

    Thomas, Torri B; Finley, Sheree J; Wilkinson, Jeremy E; Wescott, Daniel J; Gorski, Azriel; Javan, Gulnaz T

    2017-07-01

    Microorganisms are major ecological participants in the successional decomposition of vertebrates. The relative abundance, or the scarcity, of certain microbial taxa in gravesoil has the potential to determine the ecological status of skeletons. However, there are substantial knowledge gaps that warrant consideration in the context of the surrounding terrestrial ecosystem. In the current study, we hypothesized that i.) soil microbial diversity is disparate in the latter stage of decomposition (skeletonization) compared to the earlier stages (fresh, bloat, active and advanced decay), and ii.) the three layers of gravesoil (top, middle, and bottom) encompass similar microbial taxa and are analogous with control soil. To test these hypotheses, microbial communities in layers of burial soil of skeletonized bodies (treated) and from control soil, obtained from burial plots with no bodies (untreated), were compared using sequencing data of the 16S rRNA gene. The results demonstrated that Acidobacteria was confirmed as the most abundant microbial genus in all treated and untreated soil layers. Furthermore, Proteobacteria demonstrated a relatively low abundance in skeletonized gravesoil which is dissimilar from previous findings that assessed soil from earlier stages of human decomposition. Also, these results determined that soil microbial signatures were analogous in all three soil layers under the effects of similar abiotic and biotic factors, and they were similar to the communities in untreated soil. Therefore, the current study produced empirical data that give conclusive evidence of soil microbial successional changes, particularly for Proteobacteria, for potential use in forensic microbiology research. Copyright © 2017 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  5. Sulfur Metabolizing Microbes Dominate Microbial Communities in Andesite-Hosted Shallow-Sea Hydrothermal Systems

    PubMed Central

    Zhang, Yao; Zhao, Zihao; Chen, Chen-Tung Arthur; Tang, Kai; Su, Jianqiang; Jiao, Nianzhi

    2012-01-01

    To determine microbial community composition, community spatial structure and possible key microbial processes in the shallow-sea hydrothermal vent systems off NE Taiwan’s coast, we examined the bacterial and archaeal communities of four samples collected from the water column extending over a redoxocline gradient of a yellow and four from a white hydrothermal vent. Ribosomal tag pyrosequencing based on DNA and RNA showed statistically significant differences between the bacterial and archaeal communities of the different hydrothermal plumes. The bacterial and archaeal communities from the white hydrothermal plume were dominated by sulfur-reducing Nautilia and Thermococcus, whereas the yellow hydrothermal plume and the surface water were dominated by sulfide-oxidizing Thiomicrospira and Euryarchaeota Marine Group II, respectively. Canonical correspondence analyses indicate that methane (CH4) concentration was the only statistically significant variable that explains all community cluster patterns. However, the results of pyrosequencing showed an essential absence of methanogens and methanotrophs at the two vent fields, suggesting that CH4 was less tied to microbial processes in this shallow-sea hydrothermal system. We speculated that mixing between hydrothermal fluids and the sea or meteoric water leads to distinctly different CH4 concentrations and redox niches between the yellow and white vents, consequently influencing the distribution patterns of the free-living Bacteria and Archaea. We concluded that sulfur-reducing and sulfide-oxidizing chemolithoautotrophs accounted for most of the primary biomass synthesis and that microbial sulfur metabolism fueled microbial energy flow and element cycling in the shallow hydrothermal systems off the coast of NE Taiwan. PMID:22970260

  6. Sulfur metabolizing microbes dominate microbial communities in Andesite-hosted shallow-sea hydrothermal systems.

    PubMed

    Zhang, Yao; Zhao, Zihao; Chen, Chen-Tung Arthur; Tang, Kai; Su, Jianqiang; Jiao, Nianzhi

    2012-01-01

    To determine microbial community composition, community spatial structure and possible key microbial processes in the shallow-sea hydrothermal vent systems off NE Taiwan's coast, we examined the bacterial and archaeal communities of four samples collected from the water column extending over a redoxocline gradient of a yellow and four from a white hydrothermal vent. Ribosomal tag pyrosequencing based on DNA and RNA showed statistically significant differences between the bacterial and archaeal communities of the different hydrothermal plumes. The bacterial and archaeal communities from the white hydrothermal plume were dominated by sulfur-reducing Nautilia and Thermococcus, whereas the yellow hydrothermal plume and the surface water were dominated by sulfide-oxidizing Thiomicrospira and Euryarchaeota Marine Group II, respectively. Canonical correspondence analyses indicate that methane (CH(4)) concentration was the only statistically significant variable that explains all community cluster patterns. However, the results of pyrosequencing showed an essential absence of methanogens and methanotrophs at the two vent fields, suggesting that CH(4) was less tied to microbial processes in this shallow-sea hydrothermal system. We speculated that mixing between hydrothermal fluids and the sea or meteoric water leads to distinctly different CH(4) concentrations and redox niches between the yellow and white vents, consequently influencing the distribution patterns of the free-living Bacteria and Archaea. We concluded that sulfur-reducing and sulfide-oxidizing chemolithoautotrophs accounted for most of the primary biomass synthesis and that microbial sulfur metabolism fueled microbial energy flow and element cycling in the shallow hydrothermal systems off the coast of NE Taiwan.

  7. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients.

    PubMed

    Fierer, Noah; Lauber, Christian L; Ramirez, Kelly S; Zaneveld, Jesse; Bradford, Mark A; Knight, Rob

    2012-05-01

    Terrestrial ecosystems are receiving elevated inputs of nitrogen (N) from anthropogenic sources and understanding how these increases in N availability affect soil microbial communities is critical for predicting the associated effects on belowground ecosystems. We used a suite of approaches to analyze the structure and functional characteristics of soil microbial communities from replicated plots in two long-term N fertilization experiments located in contrasting systems. Pyrosequencing-based analyses of 16S rRNA genes revealed no significant effects of N fertilization on bacterial diversity, but significant effects on community composition at both sites; copiotrophic taxa (including members of the Proteobacteria and Bacteroidetes phyla) typically increased in relative abundance in the high N plots, with oligotrophic taxa (mainly Acidobacteria) exhibiting the opposite pattern. Consistent with the phylogenetic shifts under N fertilization, shotgun metagenomic sequencing revealed increases in the relative abundances of genes associated with DNA/RNA replication, electron transport and protein metabolism, increases that could be resolved even with the shallow shotgun metagenomic sequencing conducted here (average of 75 000 reads per sample). We also observed shifts in the catabolic capabilities of the communities across the N gradients that were significantly correlated with the phylogenetic and metagenomic responses, indicating possible linkages between the structure and functioning of soil microbial communities. Overall, our results suggest that N fertilization may, directly or indirectly, induce a shift in the predominant microbial life-history strategies, favoring a more active, copiotrophic microbial community, a pattern that parallels the often observed replacement of K-selected with r-selected plant species with elevated N.

  8. The impact of zero-valent iron nanoparticles upon soil microbial communities is context dependent.

    PubMed

    Pawlett, Mark; Ritz, Karl; Dorey, Robert A; Rocks, Sophie; Ramsden, Jeremy; Harris, Jim A

    2013-02-01

    Nanosized zero-valent iron (nZVI) is an effective land remediation tool, but there remains little information regarding its impact upon and interactions with the soil microbial community. nZVI stabilised with sodium carboxymethyl cellulose was applied to soils of three contrasting textures and organic matter contents to determine impacts on soil microbial biomass, phenotypic (phospholipid fatty acid (PLFA)), and functional (multiple substrate-induced respiration (MSIR)) profiles. The nZVI significantly reduced microbial biomass by 29 % but only where soil was amended with 5 % straw. Effects of nZVI on MSIR profiles were only evident in the clay soils and were independent of organic matter content. PLFA profiling indicated that the soil microbial community structure in sandy soils were apparently the most, and clay soils the least, vulnerable to nZVI suggesting a protective effect imparted by clays. Evidence of nZVI bactericidal effects on Gram-negative bacteria and a potential reduction of arbuscular mycorrhizal fungi are presented. Data imply that the impact of nZVI on soil microbial communities is dependent on organic matter content and soil mineral type. Thereby, evaluations of nZVI toxicity on soil microbial communities should consider context. The reduction of AM fungi following nZVI application may have implications for land remediation.

  9. Growing Rocks: Implications of Lithification for Microbial Communities and Nutrient Cycling

    NASA Astrophysics Data System (ADS)

    Corman, J. R.; Poret-Peterson, A. T.; Elser, J. J.

    2014-12-01

    Lithifying microbial communities ("microbialites") have left their signature on Earth's rock record for over 3.4 billion years and are regarded as important players in paleo-biogeochemical cycles. In this project, we study extant microbialites to understand the interactions between lithification and resource availability. All microbes need nutrients and energy for growth; indeed, nutrients are often a factor limiting microbial growth. We hypothesize that calcium carbonate deposition can sequester bioavailable phosphorus (P) and expect the growth of microbialites to be P-limited. To test our hypothesis, we first compared nutrient limitation in lithifying and non-lithifying microbial communities in Río Mesquites, Cuatro Ciénegas. Then, we experimentally manipulated calcification rates in the Río Mesquites microbialites. Our results suggest that lithifying microbialites are indeed P-limited, while non-lithifying, benthic microbial communities tend towards co-limitation by nitrogen (N) and P. Indeed, in microbialites, photosynthesis and aerobic respiration responded positively to P additions (P<0.05). Organic carbon (OC) additions caused shifts in bacterial community composition based on analysis of 16S rRNA genes. Unexpectedly, calcification rates increased with OC additions (P<0.05), but not with P additions, suggesting that sulfate reduction may be an important pathway for calcification. Experimental reductions in calcification rates caused changes to microbial biomass OC and P concentrations (P<0.01 and P<0.001, respectively), although shifts depended on whether calcification was decreased abiotically or biotically. These results show that resource availability does influence microbialite formation and that lithification may promote phosphorus limitation; however, further investigation is required to understand the mechanism by which the later occurs.

  10. Metagenomics Reveals the Influence of Land Use and Rain on the Benthic Microbial Communities in a Tropical Urban Waterway

    PubMed Central

    2018-01-01

    ABSTRACT Growing demands for potable water have led to extensive reliance on waterways in tropical megacities. Attempts to manage these waterways in an environmentally sustainable way generally lack an understanding of microbial processes and how they are influenced by urban factors, such as land use and rain. Here, we describe the composition and functional potential of benthic microbial communities from an urban waterway network and analyze the effects of land use and rain perturbations on these communities. With a sequence depth of 3 billion reads from 48 samples, these metagenomes represent nearly full coverage of microbial communities. The predominant taxa in these waterways were Nitrospira and Coleofasciculus, indicating the presence of nitrogen and carbon fixation in this system. Gene functions from carbohydrate, protein, and nucleic acid metabolism suggest the presence of primary and secondary productivity in such nutrient-deficient systems. Comparison of microbial communities by land use type and rain showed that while there are significant differences in microbial communities in land use, differences due to rain perturbations were rain event specific. The more diverse microbial communities in the residential areas featured a higher abundance of reads assigned to genes related to community competition. However, the less diverse communities from industrial areas showed a higher abundance of reads assigned to specialized functions such as organic remediation. Finally, our study demonstrates that microbially diverse populations in well-managed waterways, where contaminant levels are within defined limits, are comparable to those in other relatively undisturbed freshwater systems. IMPORTANCE Unravelling the microbial metagenomes of urban waterway sediments suggest that well-managed urban waterways have the potential to support diverse sedimentary microbial communities, similar to those of undisturbed natural freshwaters. Despite the fact that these urban

  11. Sequencing, Assembly and Analysis of Human Microbial Communities

    ScienceCinema

    Petrosino, Joe

    2018-02-02

    Joe Petrosino of Baylor College of Medicine discusses using next generation sequencing technologies to study human microbial communities associated with health and disease on June 4, 2010 at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM.

  12. Molecular Survey of Concrete Sewer Biofilm Microbial Communities

    EPA Science Inventory

    Although bacteria are implicated in deteriorating concrete structures, there is very little information on the composition of concrete microbial communities. To this end, we studied different concrete biofilms by performing sequence analysis of 16S rDNA concrete clone libraries. ...

  13. Oceanographic structure drives the assembly processes of microbial eukaryotic communities

    PubMed Central

    Monier, Adam; Comte, Jérôme; Babin, Marcel; Forest, Alexandre; Matsuoka, Atsushi; Lovejoy, Connie

    2015-01-01

    Arctic Ocean microbial eukaryote phytoplankton form subsurface chlorophyll maximum (SCM), where much of the annual summer production occurs. This SCM is particularly persistent in the Western Arctic Ocean, which is strongly salinity stratified. The recent loss of multiyear sea ice and increased particulate-rich river discharge in the Arctic Ocean results in a greater volume of fresher water that may displace nutrient-rich saltier waters to deeper depths and decrease light penetration in areas affected by river discharge. Here, we surveyed microbial eukaryotic assemblages in the surface waters, and within and below the SCM. In most samples, we detected the pronounced SCM that usually occurs at the interface of the upper mixed layer and Pacific Summer Water (PSW). Poorly developed SCM was seen under two conditions, one above PSW and associated with a downwelling eddy, and the second in a region influenced by the Mackenzie River plume. Four phylogenetically distinct communities were identified: surface, pronounced SCM, weak SCM and a deeper community just below the SCM. Distance–decay relationships and phylogenetic structure suggested distinct ecological processes operating within these communities. In the pronounced SCM, picophytoplanktons were prevalent and community assembly was attributed to water mass history. In contrast, environmental filtering impacted the composition of the weak SCM communities, where heterotrophic Picozoa were more numerous. These results imply that displacement of Pacific waters to greater depth and increased terrigenous input may act as a control on SCM development and result in lower net summer primary production with a more heterotroph dominated eukaryotic microbial community. PMID:25325383

  14. Oceanographic structure drives the assembly processes of microbial eukaryotic communities.

    PubMed

    Monier, Adam; Comte, Jérôme; Babin, Marcel; Forest, Alexandre; Matsuoka, Atsushi; Lovejoy, Connie

    2015-03-17

    Arctic Ocean microbial eukaryote phytoplankton form subsurface chlorophyll maximum (SCM), where much of the annual summer production occurs. This SCM is particularly persistent in the Western Arctic Ocean, which is strongly salinity stratified. The recent loss of multiyear sea ice and increased particulate-rich river discharge in the Arctic Ocean results in a greater volume of fresher water that may displace nutrient-rich saltier waters to deeper depths and decrease light penetration in areas affected by river discharge. Here, we surveyed microbial eukaryotic assemblages in the surface waters, and within and below the SCM. In most samples, we detected the pronounced SCM that usually occurs at the interface of the upper mixed layer and Pacific Summer Water (PSW). Poorly developed SCM was seen under two conditions, one above PSW and associated with a downwelling eddy, and the second in a region influenced by the Mackenzie River plume. Four phylogenetically distinct communities were identified: surface, pronounced SCM, weak SCM and a deeper community just below the SCM. Distance-decay relationships and phylogenetic structure suggested distinct ecological processes operating within these communities. In the pronounced SCM, picophytoplanktons were prevalent and community assembly was attributed to water mass history. In contrast, environmental filtering impacted the composition of the weak SCM communities, where heterotrophic Picozoa were more numerous. These results imply that displacement of Pacific waters to greater depth and increased terrigenous input may act as a control on SCM development and result in lower net summer primary production with a more heterotroph dominated eukaryotic microbial community.

  15. A Comparison of Microbial Communities from Deep Igneous Crust

    NASA Astrophysics Data System (ADS)

    Smith, A. R.; Flores, G. E.; Fisk, M. R.; Colwell, F. S.; Thurber, A. R.; Mason, O. U.; Popa, R.

    2013-12-01

    Recent investigations of life in Earth's crust have revealed common themes in organism function, taxonomy, and diversity. Capacities for hydrogen oxidation, carbon fixation, methanogenesis and methanotrophy, iron and sulfur metabolisms, and hydrocarbon degradation often predominate in deep life communities, and crustal mineralogy has been hypothesized as a driving force for determining deep life community assemblages. Recently, we found that minerals characteristic of the igneous crust harbored unique communities when incubated in the Juan de Fuca Ridge flank borehole IODP 1301A. Here we present attached mineral biofilm morphologies and a comparison of our mineral communities to those from a variety of locations, contamination states, and igneous crustal or mineralogical types. We found that differences in borehole mineral communities were reflected in biofilm morphologies. Olivine biofilms were thick, carbon-rich films with embedded cells of uniform size and shape and often contained secondary minerals. Encrusted cells, spherical and rod-shaped cells, and tubes were indicative of glass surfaces. We also found that the attached communities from incubated borehole minerals were taxonomically more similar to native, attached communities from marine and continental crust than to communities from the aquifer water that seeded it. Our findings further support the hypothesis that mineralogy selects for microbial communities that have distinct phylogenetic, morphological, and potentially functional, signatures. This has important implications for resolving ecosystem function and microbial distributions in igneous crust, the largest deep habitat on Earth.

  16. Monitoring the microbial community during solid-state acetic acid fermentation of Zhenjiang aromatic vinegar.

    PubMed

    Xu, Wei; Huang, Zhiyong; Zhang, Xiaojun; Li, Qi; Lu, Zhenming; Shi, Jinsong; Xu, Zhenghong; Ma, Yanhe

    2011-09-01

    Zhenjiang aromatic vinegar is one of the most famous Chinese traditional vinegars. In this study, change of the microbial community during its fermentation process was investigated. DGGE results showed that microbial community was comparatively stable, and the diversity has a disciplinary series of changes during the fermentation process. It was suggested that domestication of microbes and unique cycle-inoculation style used in the fermentation of Zhenjiang aromatic vinegar were responsible for comparatively stable of the microbial community. Furthermore, two clone libraries were constructed. The results showed that bacteria presented in the fermentation belonged to genus Lactobacillus, Acetobacter, Gluconacetobacter, Staphylococcus, Enterobacter, Pseudomonas, Flavobacterium and Sinorhizobium, while the fungi were genus Saccharomyces. DGGE combined with clone library analysis was an effective and credible technique for analyzing the microbial community during the fermentation process of Zhenjiang aromatic vinegar. Real-time PCR results suggested that the biomass showed a "system microbes self-domestication" process in the first 5 days, then reached a higher level at the 7th day before gradually decreasing until the fermentation ended at the 20th day. This is the first report to study the changes of microbial community during fermentation process of Chinese traditional solid-state fermentation of vinegar. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Dining local: the microbial diet of a snail that grazes microbial communities is geographically structured.

    PubMed

    O'Rorke, Richard; Cobian, Gerald M; Holland, Brenden S; Price, Melissa R; Costello, Vincent; Amend, Anthony S

    2015-05-01

    Achatinella mustelina is a critically endangered tree snail that subsists entirely by grazing microbes from leaf surfaces of native trees. Little is known about the fundamental aspects of these microbe assemblages: not taxonomic composition, how this varies with host plant or location, nor whether snails selectively consume microbes. To address these questions, we collected 102 snail faecal samples as a proxy for diet, and 102 matched-leaf samples from four locations. We used Illumina amplicon sequencing to determine bacterial and fungal community composition. Microbial community structure was significantly distinct between snail faeces and leaf samples, but the same microbes occurred in both. We conclude that snails are not 'picky' eaters at the microbial level, but graze the surface of whatever plant they are on. In a second experiment, the gut was dissected from non-endangered native tree snails in the same family as Achatinella to confirm that faecal samples reflect gut contents. Over 60% of fungal reads were shared between faeces, gut and leaf samples. Overall, location, sample type (faeces or leaf) and host plant identity all significantly explained the community composition and variation among samples. Understanding the microbial ecology of microbes grazed by tree snails enables effective management when conservation requires captive breeding or field relocation. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  18. Control of Boreal Forest Soil Microbial Communities and Processes by Plant Secondary Compounds

    NASA Astrophysics Data System (ADS)

    Leewis, M. C.; Leigh, M. B.

    2016-12-01

    Plants release an array of secondary plant metabolites (SPMEs), which vary widely between plant species/progenies and may drive shifts in soil microbial community structure and function. We hypothesize that SPMEs released through litterfall and root turnover in the boreal forest control ecosystem carbon cycling by inhibiting microbial decomposition processes, which are overcome partially by increased aromatic biodegradation of microbial communities that also fortuitously prime soils for accelerated biodegradation of contaminants. Soils and litter (stems, roots, senescing leaves) were collected from 3 different birch progenies from Iceland, Finland, and Siberia that have been reported to contain different SPME content (low, medium, high, respectively) due to differences in herbivory pressure over their natural history, as well as black spruce, all growing in a long-term common tree garden at the Kevo Subarctic Field Research Institute, Finland. We characterized the SPME content of these plant progenies and used a variety of traditional microbiological techniques (e.g., enzyme assays, litter decomposition and contaminant biodegradation rates) and molecular techniques (e.g., high-throughput amplicon sequencing for bacteria and fungi) to assess how different levels of SPMEs may correlate to shifts in microbial community structure and function. Microbial communities (bacterial and fungal) significantly varied in composition as well as leaf litter and diesel biodegradation rates, in accordance with the phytochemistry of the trees present. This study offers novel, fundamental information about phytochemical controls on ecosystem processes, resilience to contaminants, and microbial decomposition processes.

  19. Impact of Substratum Surface on Microbial Community Structure and Treatment Performance in Biological Aerated Filters

    PubMed Central

    Kim, Lavane; Pagaling, Eulyn; Zuo, Yi Y.

    2014-01-01

    The impact of substratum surface property change on biofilm community structure was investigated using laboratory biological aerated filter (BAF) reactors and molecular microbial community analysis. Two substratum surfaces that differed in surface properties were created via surface coating and used to develop biofilms in test (modified surface) and control (original surface) BAF reactors. Microbial community analysis by 16S rRNA gene-based PCR-denaturing gradient gel electrophoresis (DGGE) showed that the surface property change consistently resulted in distinct profiles of microbial populations during replicate reactor start-ups. Pyrosequencing of the bar-coded 16S rRNA gene amplicons surveyed more than 90% of the microbial diversity in the microbial communities and identified 72 unique bacterial species within 19 bacterial orders. Among the 19 orders of bacteria detected, Burkholderiales and Rhodocyclales of the Betaproteobacteria class were numerically dominant and accounted for 90.5 to 97.4% of the sequence reads, and their relative abundances in the test and control BAF reactors were different in consistent patterns during the two reactor start-ups. Three of the five dominant bacterial species also showed consistent relative abundance changes between the test and control BAF reactors. The different biofilm microbial communities led to different treatment efficiencies, with consistently higher total organic carbon (TOC) removal in the test reactor than in the control reactor. Further understanding of how surface properties affect biofilm microbial communities and functional performance would enable the rational design of new generations of substrata for the improvement of biofilm-based biological treatment processes. PMID:24141134

  20. Nitrogen addition shifts the microbial community in the rhizosphere of Pinus tabuliformis in Northwestern China

    PubMed Central

    Lv, Fenglian; Xue, Sha; Wang, Guoliang; Zhang, Chao

    2017-01-01

    Atmospheric nitrogen (N) deposition profoundly alters the soil microbial communities and will thus affect nutrient cycles. The effects of N availability on microbial community, however, are not clear. We used PLFA analysis to evaluate the effects of a gradient of N addition (0, 2.8, 5.6, 11.2, and 22.4 g N m-2 y-1) for three years on the rhizospheric microbial community of Pinus tabuliformis seedlings. The main factors influencing the community were quantified using structural equation modelling and redundancy analysis. At the microbial-community level, N addition increased the total phospholipid fatty acids content by increasing the dissolved organic carbon (DOC) and root biomass. Increases in soil microbial biomass carbon and N, however, was attributed to the increased DOC, N content and decreased pH. At the microbial-groups level, Fungal, arbuscular mycorrhizal fungal (AMF), gram-positive bacterial (GP) abundances and the GP:GN ratio first increased and then decreased with N addition. Nitrogen addition increased the abundances of bacteria, fungi, and actinomycetes mainly by increasing the DOC content and decreasing root biomass. Additionally, the decrease of pH and ammonium N caused by N addition increased the fungal abundances and reduced actinomycete abundances, respectively. Nitrogen addition shifted the rhizospheric microbial community mainly by altering the DOC content and root biomass. The current rate of N deposition (2.5 g N m-2 y-1) benefits plant growth and increases the abundances of fungi, arbuscular mycorrhizal fungi, GP, actinomycetes and the GP:GN ratio. PMID:28234932

  1. Changes in coral-associated microbial communities during a bleaching event.

    PubMed

    Bourne, David; Iida, Yuki; Uthicke, Sven; Smith-Keune, Carolyn

    2008-04-01

    Environmental stressors such as increased sea surface temperatures are well-known for contributing to coral bleaching; however, the effect of increased temperatures and subsequent bleaching on coral-associated microbial communities is poorly understood. Colonies of the hard coral Acropora millepora were tagged on a reef flat off Magnetic Island (Great Barrier Reef) and surveyed over 2.5 years, which included a severe bleaching event in January/February 2002. Daily average water temperatures exceeded the previous 10-year average by more than 1 degrees C for extended periods with field-based visual surveys recording all tagged colonies displaying signs of bleaching. During the bleaching period, direct counts of coral zooxanthellae densities decreased by approximately 64%, before recovery to pre-bleaching levels after the thermal stress event. A subset of three tagged coral colonies were sampled through the bleaching event and changes in the microbial community elucidated. Denaturing gradient gel electrophoresis (DGGE) analysis demonstrated conserved bacterial banding profiles between the three coral colonies, confirming previous studies highlighting specific microbial associations. As coral colonies bleached, the microbial community shifted and redundancy analysis (RDA) of DGGE banding patterns revealed a correlation of increasing temperature with the appearance of Vibrio-affiliated sequences. Interestingly, this shift to a Vibrio-dominated community commenced prior to visual signs of bleaching. Clone libraries hybridized with Vibrio-specific oligonucleotide probes confirmed an increase in the fraction of Vibrio-affiliated clones during the bleaching period. Post bleaching, the coral microbial associations again shifted, returning to a profile similar to the fingerprints prior to bleaching. This provided further evidence for corals selecting and shaping their microbial partners. For non-bleached samples, a close association with Spongiobacter-related sequences were

  2. Exposure to dairy manure leads to greater antibiotic resistance and increased mass-specific respiration in soil microbial communities

    PubMed Central

    Avera, Bethany; Badgley, Brian; Barrett, John E.; Franklin, Josh; Knowlton, Katharine F.; Ray, Partha P.; Smitherman, Crystal

    2017-01-01

    Intensifying livestock production to meet the demands of a growing global population coincides with increases in both the administration of veterinary antibiotics and manure inputs to soils. These trends have the potential to increase antibiotic resistance in soil microbial communities. The effect of maintaining increased antibiotic resistance on soil microbial communities and the ecosystem processes they regulate is unknown. We compare soil microbial communities from paired reference and dairy manure-exposed sites across the USA. Given that manure exposure has been shown to elicit increased antibiotic resistance in soil microbial communities, we expect that manure-exposed sites will exhibit (i) compositionally different soil microbial communities, with shifts toward taxa known to exhibit resistance; (ii) greater abundance of antibiotic resistance genes; and (iii) corresponding maintenance of antibiotic resistance would lead to decreased microbial efficiency. We found that bacterial and fungal communities differed between reference and manure-exposed sites. Additionally, the β-lactam resistance gene ampC was 5.2-fold greater under manure exposure, potentially due to the use of cephalosporin antibiotics in dairy herds. Finally, ampC abundance was positively correlated with indicators of microbial stress, and microbial mass-specific respiration, which increased 2.1-fold under manure exposure. These findings demonstrate that the maintenance of antibiotic resistance associated with manure inputs alters soil microbial communities and ecosystem function. PMID:28356447

  3. Exposure to dairy manure leads to greater antibiotic resistance and increased mass-specific respiration in soil microbial communities.

    PubMed

    Wepking, Carl; Avera, Bethany; Badgley, Brian; Barrett, John E; Franklin, Josh; Knowlton, Katharine F; Ray, Partha P; Smitherman, Crystal; Strickland, Michael S

    2017-03-29

    Intensifying livestock production to meet the demands of a growing global population coincides with increases in both the administration of veterinary antibiotics and manure inputs to soils. These trends have the potential to increase antibiotic resistance in soil microbial communities. The effect of maintaining increased antibiotic resistance on soil microbial communities and the ecosystem processes they regulate is unknown. We compare soil microbial communities from paired reference and dairy manure-exposed sites across the USA. Given that manure exposure has been shown to elicit increased antibiotic resistance in soil microbial communities, we expect that manure-exposed sites will exhibit (i) compositionally different soil microbial communities, with shifts toward taxa known to exhibit resistance; (ii) greater abundance of antibiotic resistance genes; and (iii) corresponding maintenance of antibiotic resistance would lead to decreased microbial efficiency. We found that bacterial and fungal communities differed between reference and manure-exposed sites. Additionally, the β-lactam resistance gene ampC was 5.2-fold greater under manure exposure, potentially due to the use of cephalosporin antibiotics in dairy herds. Finally, ampC abundance was positively correlated with indicators of microbial stress, and microbial mass-specific respiration, which increased 2.1-fold under manure exposure. These findings demonstrate that the maintenance of antibiotic resistance associated with manure inputs alters soil microbial communities and ecosystem function. © 2017 The Author(s).

  4. Common Hydraulic Fracturing Fluid Additives Alter the Structure and Function of Anaerobic Microbial Communities.

    PubMed

    Mumford, Adam C; Akob, Denise M; Klinges, J Grace; Cozzarelli, Isabelle M

    2018-04-15

    The development of unconventional oil and gas (UOG) resources results in the production of large volumes of wastewater containing a complex mixture of hydraulic fracturing chemical additives and components from the formation. The release of these wastewaters into the environment poses potential risks that are poorly understood. Microbial communities in stream sediments form the base of the food chain and may serve as sentinels for changes in stream health. Iron-reducing organisms have been shown to play a role in the biodegradation of a wide range of organic compounds, and so to evaluate their response to UOG wastewater, we enriched anaerobic microbial communities from sediments collected upstream (background) and downstream (impacted) of an UOG wastewater injection disposal facility in the presence of hydraulic fracturing fluid (HFF) additives: guar gum, ethylene glycol, and two biocides, 2,2-dibromo-3-nitrilopropionamide (DBNPA) and bronopol (C 3 H 6 BrNO 4 ). Iron reduction was significantly inhibited early in the incubations with the addition of biocides, whereas amendment with guar gum and ethylene glycol stimulated iron reduction relative to levels in the unamended controls. Changes in the microbial community structure were observed across all treatments, indicating the potential for even small amounts of UOG wastewater components to influence natural microbial processes. The microbial community structure differed between enrichments with background and impacted sediments, suggesting that impacted sediments may have been preconditioned by exposure to wastewater. These experiments demonstrated the potential for biocides to significantly decrease iron reduction rates immediately following a spill and demonstrated how microbial communities previously exposed to UOG wastewater may be more resilient to additional spills. IMPORTANCE Organic components of UOG wastewater can alter microbial communities and biogeochemical processes, which could alter the rates of

  5. Deterministic mechanisms define the long-term anaerobic digestion microbiome and its functionality regardless of the initial microbial community.

    PubMed

    Peces, M; Astals, S; Jensen, P D; Clarke, W P

    2018-05-17

    The impact of the starting inoculum on long-term anaerobic digestion performance, process functionality and microbial community composition remains unclear. To understand the impact of starting inoculum, active microbial communities from four different full-scale anaerobic digesters were each used to inoculate four continuous lab-scale anaerobic digesters, which were operated identically for 295 days. Digesters were operated at 15 days solid retention time, an organic loading rate of 1 g COD L r -1 d -1 (75:25 - cellulose:casein) and 37 °C. Results showed that long-term process performance, metabolic rates (hydrolytic, acetogenic, and methanogenic) and microbial community are independent of the inoculum source. Digesters process performance converged after 80 days, while metabolic rates and microbial communities converged after 120-145 days. The convergence of the different microbial communities towards a core-community proves that the deterministic factors (process operational conditions) were a stronger driver than the initial microbial community composition. Indeed, the core-community represented 72% of the relative abundance among the four digesters. Moreover, a number of positive correlations were observed between higher metabolic rates and the relative abundance of specific microbial groups. These correlations showed that both substrate consumers and suppliers trigger higher metabolic rates, expanding the knowledge of the nexus between microorganisms and functionality. Overall, these results support that deterministic factors control microbial communities in bioreactors independently of the inoculum source. Hence, it seems plausible that a desired microbial composition and functionality can be achieved by tuning process operational conditions. Copyright © 2018. Published by Elsevier Ltd.

  6. Carcass mass has little influence on the structure of gravesoil microbial communities.

    PubMed

    Weiss, Sophie; Carter, David O; Metcalf, Jessica L; Knight, Rob

    2016-01-01

    Little is known about how variables, such as carcass mass, affect the succession pattern of microbes in soils during decomposition. To investigate the effects of carcass mass on the soil microbial community, soils associated with swine (Sus scrofa domesticus) carcasses of four different masses were sampled until the 15th day of decomposition during the month of June in a pasture near Lincoln, Nebraska. Soils underneath swine of 1, 20, 40, and 50 kg masses were investigated in triplicate, as well as control sites not associated with a carcass. Soil microbial communities were characterized by sequencing the archaeal, bacterial (16S), and eukaryotic (18S) rRNA genes in soil samples. We conclude that time of decomposition was a significant influence on the microbial community, but carcass mass was not. The gravesoil associated with 1 kg mass carcasses differs most compared to the gravesoil associated with other carcass masses. We also identify the 15 most abundant bacterial and eukaryotic taxa, and discuss changes in their abundance as carcass decomposition progressed. Finally, we show significant decreases in alpha diversity for carcasses of differing mass in pre-carcass rupture (days 0, 1, 2, 4, 5, and 6 postmortem) versus post-carcass rupture (days 9 and 15 postmortem) microbial communities.

  7. DETERMINATION OF MICROBIAL COMMUNITY STRUCTURE IN UNTREATED WASTEWATER FROM DIFFERENT GEOGRAPHIC LOCALES

    EPA Science Inventory

    Microbial sewage communities consist of a combination of human faecal microorganisms and urban infrastructure-derived microbes originating from infiltration of rainwater and stormwater inputs. Together these different sources of microbial diversity form a unique population struc...

  8. Effects of application of corn straw on soil microbial community structure during the maize growing season.

    PubMed

    Lu, Ping; Lin, Yin-Hua; Yang, Zhong-Qi; Xu, Yan-Peng; Tan, Fei; Jia, Xu-Dong; Wang, Miao; Xu, De-Rong; Wang, Xi-Zhuo

    2015-01-01

    This study investigated the influence of corn straw application on soil microbial communities and the relationship between such communities and soil properties in black soil. The crop used in this study was maize (Zea mays L.). The five treatments consisted of applying a gradient (50, 100, 150, and 200%) of shattered corn straw residue to the soil. Soil samples were taken from May through September during the 2012 maize growing season. The microbial community structure was determined using phospholipid fatty acid (PLFA) analysis. Our results revealed that the application of corn straw influenced the soil properties and increased the soil organic carbon and total nitrogen. Applying corn straw to fields also influenced the variation in soil microbial biomass and community composition, which is consistent with the variations found in soil total nitrogen (TN) and soil respiration (SR). However, the soil carbon-to-nitrogen ratio had no effect on soil microbial communities. The abundance of PLFAs, TN, and SR was higher in C1.5 than those in other treatments, suggesting that the soil properties and soil microbial community composition were affected positively by the application of corn straw to black soil. A Principal Component Analysis indicated that soil microbial communities were different in the straw decomposition processes. Moreover, the soil microbial communities from C1.5 were significantly different from those of CK (p < 0.05). We also found a high ratio of fungal-to-bacterial PLFAs in black soil and significant variations in the ratio of monounsaturated-to-branched fatty acids with different straw treatments that correlated with SR (p < 0.05). These results indicated that the application of corn straw positively influences soil properties and soil microbial communities and that these properties affect these communities. The individual PLFA signatures were sensitive indicators that reflected the changes in the soil environment condition. © 2015 WILEY

  9. The phylogenetic composition and structure of soil microbial communities shifts in response to elevated carbon dioxide.

    PubMed

    He, Zhili; Piceno, Yvette; Deng, Ye; Xu, Meiying; Lu, Zhenmei; Desantis, Todd; Andersen, Gary; Hobbie, Sarah E; Reich, Peter B; Zhou, Jizhong

    2012-02-01

    One of the major factors associated with global change is the ever-increasing concentration of atmospheric CO(2). Although the stimulating effects of elevated CO(2) (eCO(2)) on plant growth and primary productivity have been established, its impacts on the diversity and function of soil microbial communities are poorly understood. In this study, phylogenetic microarrays (PhyloChip) were used to comprehensively survey the richness, composition and structure of soil microbial communities in a grassland experiment subjected to two CO(2) conditions (ambient, 368 p.p.m., versus elevated, 560 p.p.m.) for 10 years. The richness based on the detected number of operational taxonomic units (OTUs) significantly decreased under eCO(2). PhyloChip detected 2269 OTUs derived from 45 phyla (including two from Archaea), 55 classes, 99 orders, 164 families and 190 subfamilies. Also, the signal intensity of five phyla (Crenarchaeota, Chloroflexi, OP10, OP9/JS1, Verrucomicrobia) significantly decreased at eCO(2), and such significant effects of eCO(2) on microbial composition were also observed at the class or lower taxonomic levels for most abundant phyla, such as Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes and Acidobacteria, suggesting a shift in microbial community composition at eCO(2). Additionally, statistical analyses showed that the overall taxonomic structure of soil microbial communities was altered at eCO(2). Mantel tests indicated that such changes in species richness, composition and structure of soil microbial communities were closely correlated with soil and plant properties. This study provides insights into our understanding of shifts in the richness, composition and structure of soil microbial communities under eCO(2) and environmental factors shaping the microbial community structure.

  10. An Integrated Insight into the Relationship between Soil Microbial Community and Tobacco Bacterial Wilt Disease

    PubMed Central

    Yang, Hongwu; Li, Juan; Xiao, Yunhua; Gu, Yabing; Liu, Hongwei; Liang, Yili; Liu, Xueduan; Hu, Jin; Meng, Delong; Yin, Huaqun

    2017-01-01

    The soil microbial communities play an important role in plant health, however, the relationship between the below-ground microbiome and above-ground plant health remains unclear. To reveal such a relationship, we analyzed soil microbial communities through sequencing of 16S rRNA gene amplicons from 15 different tobacco fields with different levels of wilt disease in the central south part of China. We found that plant health was related to the soil microbial diversity as plants may benefit from the diverse microbial communities. Also, those 15 fields were grouped into ‘healthy’ and ‘infected’ samples based upon soil microbial community composition analyses such as unweighted paired-group method with arithmetic means (UPGMA) and principle component analysis, and furthermore, molecular ecological network analysis indicated that some potential plant-beneficial microbial groups, e.g., Bacillus and Actinobacteria could act as network key taxa, thus reducing the chance of plant soil-borne pathogen invasion. In addition, we propose that a more complex soil ecology network may help suppress tobacco wilt, which was also consistent with highly diversity and composition with plant-beneficial microbial groups. This study provides new insights into our understanding the relationship between the soil microbiome and plant health. PMID:29163453

  11. Microbial community dynamics and biogas production from manure fractions in sludge bed anaerobic digestion.

    PubMed

    Nordgård, A S R; Bergland, W H; Bakke, R; Vadstein, O; Østgaard, K; Bakke, I

    2015-12-01

    To elucidate how granular sludge inoculum and particle-rich organic loading affect the structure of the microbial communities and process performance in upflow anaerobic sludge bed (UASB) reactors. We investigated four reactors run on dairy manure filtrate and four on pig manure supernatant for three months achieving similar methane yields. The reactors fed with less particle rich pig manure stabilized faster and had highest capacity. Microbial community dynamics analysed by a PCR/denaturing gradient gel electrophoresis approach showed that influent was a major determinant for the composition of the reactor communities. Comparisons of pre- and non-adapted inoculum in the reactors run on pig manure supernatant showed that the community structure of the nonadapted inoculum adapted in approximately two months. Microbiota variance partitioning analysis revealed that running time, organic loading rate and inoculum together explained 26 and 31% of the variance in bacterial and archaeal communities respectively. The microbial communities of UASBs adapted to the reactor conditions in treatment of particle rich manure fractions, obtaining high capacity, especially on pig manure supernatant. These findings provide relevant insight into the microbial community dynamics in startup and operation of sludge bed reactors for methane production from slurry fractions, a major potential source of biogas. © 2015 The Society for Applied Microbiology.

  12. Culture-independent phylogenetic analysis of the microbial community in industrial sugarcane bagasse feedstock piles.

    PubMed

    Rattanachomsri, Ukrit; Kanokratana, Pattanop; Eurwilaichitr, Lily; Igarashi, Yasuo; Champreda, Verawat

    2011-01-01

    Sugarcane bagasse is an important lignocellulosic by-product with potential for conversion to biofuels and chemicals in biorefinery. As a step towards an understanding of microbial diversity and the processes existing in bagasse collection sites, the microbial community in industrial bagasse feedstock piles was investigated. Molecular biodiversity analysis of 16S rDNA sequences revealed the presence of a complex bacterial community. A diverse group of mainly aerobic and facultative anaerobic bacteria was identified reflecting the aerobic and high temperature microenvironmental conditions under the pile surface. The major bacterial taxa present were identified as Firmicutes, Alpha- and Gammaproteobacteria, Acidobacteria, Bacteroidetes, and Actinobacteria. Analysis of the eukaryotic microbial assemblage based on an internal transcribed spacer revealed the predominance of diverse cellulolytic and hemicellulolytic ascomycota. A microbial interaction model is proposed, focusing on lignocellulose degradation and methane metabolism. The insights into the microbial community in this study provide a basis for efficient utilization of bagasse in lignocellulosic biomass-based industries.

  13. The microbial community in decaying fallen logs varies with critical period in an alpine forest.

    PubMed

    Chang, Chenhui; Wu, Fuzhong; Yang, Wanqin; Xu, Zhenfeng; Cao, Rui; He, Wei; Tan, Bo; Justine, Meta Francis

    2017-01-01

    Little information has been available on the shifts in the microbial community in decaying fallen logs during critical periods in cold forests. Minjiang fir (Abies faxoniana) fallen logs in decay classes I-V were in situ incubated on the forest floor of an alpine forest in the eastern Tibet Plateau. The microbial community was investigated during the seasonal snow cover period (SP), snow thawing period (TP), early growing season (EG) and late growing season (LG) using Phosphorous Lipid Fatty Acid (PLFA) analysis. Total microbial biomass and microbial diversity in fallen logs were much more affected by critical period than decay class, whereas decay class had a stronger effect on microbial diversity than on microbial biomass. Abundant microbial biomass and microbial diversity in logs even without the cover of snow were observed in winter, which could not be linked to thermal insulation by snow cover. The freshly decayed logs functioned as an excellent buffer of environmental variation for microbial organisms during the sharp fluctuations in temperature in winter. We also found distinct decay patterns along with seasonality for heartwood, sapwood and bark, which requires further detailed research. Gram- bacteria mainly dominated the shifts in microbial community composition from SP to EG, while fungi and Gram+ bacteria mainly dominated it from SP to TP. Based on previous work and the present study, we conclude that fallen logs on the forest floor alter ecological processes by influencing microbial communities on woody debris and beneath the soil and litter. Our study also emphasizes the need to maintain a number of fallen logs, especially fresh ones, on the forest floor.

  14. The microbial community in decaying fallen logs varies with critical period in an alpine forest

    PubMed Central

    Chang, Chenhui; Wu, Fuzhong; Xu, Zhenfeng; Cao, Rui; He, Wei; Tan, Bo; Justine, Meta Francis

    2017-01-01

    Little information has been available on the shifts in the microbial community in decaying fallen logs during critical periods in cold forests. Minjiang fir (Abies faxoniana) fallen logs in decay classes I-V were in situ incubated on the forest floor of an alpine forest in the eastern Tibet Plateau. The microbial community was investigated during the seasonal snow cover period (SP), snow thawing period (TP), early growing season (EG) and late growing season (LG) using Phosphorous Lipid Fatty Acid (PLFA) analysis. Total microbial biomass and microbial diversity in fallen logs were much more affected by critical period than decay class, whereas decay class had a stronger effect on microbial diversity than on microbial biomass. Abundant microbial biomass and microbial diversity in logs even without the cover of snow were observed in winter, which could not be linked to thermal insulation by snow cover. The freshly decayed logs functioned as an excellent buffer of environmental variation for microbial organisms during the sharp fluctuations in temperature in winter. We also found distinct decay patterns along with seasonality for heartwood, sapwood and bark, which requires further detailed research. Gram- bacteria mainly dominated the shifts in microbial community composition from SP to EG, while fungi and Gram+ bacteria mainly dominated it from SP to TP. Based on previous work and the present study, we conclude that fallen logs on the forest floor alter ecological processes by influencing microbial communities on woody debris and beneath the soil and litter. Our study also emphasizes the need to maintain a number of fallen logs, especially fresh ones, on the forest floor. PMID:28787465

  15. Antibiotic activity and microbial community of the temperate sponge, Haliclona sp.

    PubMed

    Hoppers, A; Stoudenmire, J; Wu, S; Lopanik, N B

    2015-02-01

    Sessile marine invertebrates engage in a diverse array of beneficial interactions with bacterial symbionts. One feature of some of these relationships is the presence of bioactive natural products that can defend the holobiont from predation, competition or disease. In this study, we investigated the antimicrobial activity and microbial community of a common temperate sponge from coastal North Carolina. The sponge was identified as a member of the genus Haliclona, a prolific source of bioactive natural products, based on its 18S rRNA gene sequence. The crude chemical extract and methanol partition had broad activity against the assayed Gram-negative and Gram-positive pathogenic bacteria. Further fractionation resulted in two groups of compounds with differing antimicrobial activity, primarily against Gram-positive test organisms. There was, however, notable activity against the Gram-negative marine pathogen, Vibrio parahaemolyticus. Microbial community analysis of the sponge and surrounding sea water via denaturing gradient gel electrophoresis (DGGE) indicates that it harbours a distinct group of bacterial associates. The common temperate sponge, Haliclona sp., is a source of multiple antimicrobial compounds and has some consistent microbial community members that may play a role in secondary metabolite production. These data suggest that common temperate sponges can be a source of bioactive chemical and microbial diversity. Further studies may reveal the importance of the microbial associates to the sponge and natural product biosynthesis. © 2014 The Society for Applied Microbiology.

  16. Microbial communities along biogeochemical gradients in a hydrocarbon-contaminated aquifer.

    PubMed

    Tischer, Karolin; Kleinsteuber, Sabine; Schleinitz, Kathleen M; Fetzer, Ingo; Spott, Oliver; Stange, Florian; Lohse, Ute; Franz, Janett; Neumann, Franziska; Gerling, Sarah; Schmidt, Christian; Hasselwander, Eyk; Harms, Hauke; Wendeberg, Annelie

    2013-09-01

    Micro-organisms are known to degrade a wide range of toxic substances. How the environment shapes microbial communities in polluted ecosystems and thus influences degradation capabilities is not yet fully understood. In this study, we investigated microbial communities in a highly complex environment: the capillary fringe and subjacent sediments in a hydrocarbon-contaminated aquifer. Sixty sediment sections were analysed using terminal restriction fragment length polymorphism (T-RFLP) fingerprinting, cloning and sequencing of bacterial and archaeal 16S rRNA genes, complemented by chemical analyses of petroleum hydrocarbons, methane, oxygen and alternative terminal electron acceptors. Multivariate statistics revealed concentrations of contaminants and the position of the water table as significant factors shaping the microbial community composition. Micro-organisms with highest T-RFLP abundances were related to sulphate reducers belonging to the genus Desulfosporosinus, fermenting bacteria of the genera Sedimentibacter and Smithella, and aerobic hydrocarbon degraders of the genus Acidovorax. Furthermore, the acetoclastic methanogens Methanosaeta, and hydrogenotrophic methanogens Methanocella and Methanoregula were detected. Whereas sulphate and sulphate reducers prevail at the contamination source, the detection of methane, fermenting bacteria and methanogenic archaea further downstream points towards syntrophic hydrocarbon degradation. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.

  17. Changes in Soil Microbial Community Structure with Flooding

    USDA-ARS?s Scientific Manuscript database

    Flooding disturbs both above- and below-ground ecosystem processes. Although often ignored, changes in below-ground environments are no less important than those that occur above-ground. Shifts in soil microbial community structure are expected when anaerobic conditions develop from flooding. The ...

  18. Design and integration of a problem-based biofabrication course into an undergraduate biomedical engineering curriculum.

    PubMed

    Raman, Ritu; Mitchell, Marlon; Perez-Pinera, Pablo; Bashir, Rashid; DeStefano, Lizanne

    2016-01-01

    The rapidly evolving discipline of biological and biomedical engineering requires adaptive instructional approaches that teach students to target and solve multi-pronged and ill-structured problems at the cutting edge of scientific research. Here we present a modular approach to designing a lab-based course in the emerging field of biofabrication and biological design, leading to a final capstone design project that requires students to formulate and test a hypothesis using the scientific method. Students were assessed on a range of metrics designed to evaluate the format of the course, the efficacy of the format for teaching new topics and concepts, and the depth of the contribution this course made to students training for biological engineering careers. The evaluation showed that the problem-based format of the course was well suited to teaching students how to use the scientific method to investigate and uncover the fundamental biological design rules that govern the field of biofabrication. We show that this approach is an efficient and effective method of translating emergent scientific principles from the lab bench to the classroom and training the next generation of biological and biomedical engineers for careers as researchers and industry practicians.

  19. A dynamic microbial community with high functional redundancy inhabits the cold, oxic subseafloor aquifer.

    PubMed

    Tully, Benjamin J; Wheat, C Geoff; Glazer, Brain T; Huber, Julie A

    2018-01-01

    The rock-hosted subseafloor crustal aquifer harbors a reservoir of microbial life that may influence global marine biogeochemical cycles. Here we utilized metagenomic libraries of crustal fluid samples from North Pond, located on the flanks of the Mid-Atlantic Ridge, a site with cold, oxic subseafloor fluid circulation within the upper basement to query microbial diversity. Twenty-one samples were collected during a 2-year period to examine potential microbial metabolism and community dynamics. We observed minor changes in the geochemical signatures over the 2 years, yet the microbial community present in the crustal fluids underwent large shifts in the dominant taxonomic groups. An analysis of 195 metagenome-assembled genomes (MAGs) were generated from the data set and revealed a connection between litho- and autotrophic processes, linking carbon fixation to the oxidation of sulfide, sulfur, thiosulfate, hydrogen, and ferrous iron in members of the Proteobacteria, specifically the Alpha-, Gamma- and Zetaproteobacteria, the Epsilonbacteraeota and the Planctomycetes. Despite oxic conditions, analysis of the MAGs indicated that members of the microbial community were poised to exploit hypoxic or anoxic conditions through the use of microaerobic cytochromes, such as cbb 3 - and bd-type cytochromes, and alternative electron acceptors, like nitrate and sulfate. Temporal and spatial trends from the MAGs revealed a high degree of functional redundancy that did not correlate with the shifting microbial community membership, suggesting functional stability in mediating subseafloor biogeochemical cycles. Collectively, the repeated sampling at multiple sites, together with the successful binning of hundreds of genomes, provides an unprecedented data set for investigation of microbial communities in the cold, oxic crustal aquifer.

  20. A dynamic microbial community with high functional redundancy inhabits the cold, oxic subseafloor aquifer

    PubMed Central

    Tully, Benjamin J; Wheat, C Geoff; Glazer, Brain T; Huber, Julie A

    2018-01-01

    The rock-hosted subseafloor crustal aquifer harbors a reservoir of microbial life that may influence global marine biogeochemical cycles. Here we utilized metagenomic libraries of crustal fluid samples from North Pond, located on the flanks of the Mid-Atlantic Ridge, a site with cold, oxic subseafloor fluid circulation within the upper basement to query microbial diversity. Twenty-one samples were collected during a 2-year period to examine potential microbial metabolism and community dynamics. We observed minor changes in the geochemical signatures over the 2 years, yet the microbial community present in the crustal fluids underwent large shifts in the dominant taxonomic groups. An analysis of 195 metagenome-assembled genomes (MAGs) were generated from the data set and revealed a connection between litho- and autotrophic processes, linking carbon fixation to the oxidation of sulfide, sulfur, thiosulfate, hydrogen, and ferrous iron in members of the Proteobacteria, specifically the Alpha-, Gamma- and Zetaproteobacteria, the Epsilonbacteraeota and the Planctomycetes. Despite oxic conditions, analysis of the MAGs indicated that members of the microbial community were poised to exploit hypoxic or anoxic conditions through the use of microaerobic cytochromes, such as cbb3- and bd-type cytochromes, and alternative electron acceptors, like nitrate and sulfate. Temporal and spatial trends from the MAGs revealed a high degree of functional redundancy that did not correlate with the shifting microbial community membership, suggesting functional stability in mediating subseafloor biogeochemical cycles. Collectively, the repeated sampling at multiple sites, together with the successful binning of hundreds of genomes, provides an unprecedented data set for investigation of microbial communities in the cold, oxic crustal aquifer. PMID:29099490

  1. Taxonomic and Functional Responses of Soil Microbial Communities to Annual Removal of Aboveground Plant Biomass

    PubMed Central

    Guo, Xue; Zhou, Xishu; Hale, Lauren; Yuan, Mengting; Feng, Jiajie; Ning, Daliang; Shi, Zhou; Qin, Yujia; Liu, Feifei; Wu, Liyou; He, Zhili; Van Nostrand, Joy D.; Liu, Xueduan; Luo, Yiqi; Tiedje, James M.; Zhou, Jizhong

    2018-01-01

    Clipping, removal of aboveground plant biomass, is an important issue in grassland ecology. However, few studies have focused on the effect of clipping on belowground microbial communities. Using integrated metagenomic technologies, we examined the taxonomic and functional responses of soil microbial communities to annual clipping (2010–2014) in a grassland ecosystem of the Great Plains of North America. Our results indicated that clipping significantly (P < 0.05) increased root and microbial respiration rates. Annual temporal variation within the microbial communities was much greater than the significant changes introduced by clipping, but cumulative effects of clipping were still observed in the long-term scale. The abundances of some bacterial and fungal lineages including Actinobacteria and Bacteroidetes were significantly (P < 0.05) changed by clipping. Clipping significantly (P < 0.05) increased the abundances of labile carbon (C) degrading genes. More importantly, the abundances of recalcitrant C degrading genes were consistently and significantly (P < 0.05) increased by clipping in the last 2 years, which could accelerate recalcitrant C degradation and weaken long-term soil carbon stability. Furthermore, genes involved in nutrient-cycling processes including nitrogen cycling and phosphorus utilization were also significantly increased by clipping. The shifts of microbial communities were significantly correlated with soil respiration and plant productivity. Intriguingly, clipping effects on microbial function may be highly regulated by precipitation at the interannual scale. Altogether, our results illustrated the potential of soil microbial communities for increased soil organic matter decomposition under clipping land-use practices. PMID:29904372

  2. The microbial community at laguna Figueroa, Baja California Mexico: From miles to microns

    NASA Astrophysics Data System (ADS)

    Stolz, John F.

    1985-12-01

    Laguna Figueroa is a lagoonal complex on the Pacific coast of the Baja California penisula 200 km south of the Mexican-United States border. The hypersaline lagoon is 16 km long and 2 3 km wide with a salt marsh and evaporite flat and is separated from the ocean by a barrier dune and beach. At the salt marsh-evaporite flat interface a stratified microbial community dominated byMicrocoleus chthonoplastes is depositing laminated sediments. Similar stratiform deposits with associated microbial mat communities have been found in cherts of the Fig Tree Group, South Africa which are 3.4 GE in age. Heavy rains in the winters of 1978 1979 and 1979 1980 flooded the evaporite flat with 1 3 meters of meteoric water and buried the laminated sediment under 5 10 cm of siliciclastic and clay sediment. These flooding events had a dramatic effect on the composition of the mat community. TheMicrocoleus dominated community, with species ofChloroflexus sp. and anEctothiorhodospira-like filamentous purple phototroph, disappeared leaving a community dominated by the purple phototrophsChromatium sp. andThiocapsa sp. Recolonization of the surface by species of the cyanobacteriaOscillatoria sp. andSpirulina sp. preceded the return of theMicrocoleus community. Field conditions were monitored by ground based observations and supplemented with LandSat and Skylab imagery. The microbial community was studied with light microscopy and transmission electron microscopy. The change in dominating microbial species was correlated with the episodes of flooding.

  3. Relationship between dissolved organic matter quality and microbial community composition across polar glacial environments.

    PubMed

    Smith, H J; Dieser, M; McKnight, D M; SanClements, M D; Foreman, C M

    2018-05-14

    Vast expanses of Earth's surface are covered by ice, with microorganisms in these systems affecting local and global biogeochemical cycles. We examined microbial assemblages from habitats fed by glacial meltwater within the McMurdo Dry Valleys, Antarctica, and on the west Greenland Ice Sheet, (GrIS) evaluating potential physicochemical factors explaining trends in community structure. Microbial assemblages present in the different Antarctic dry valley habitats were dominated by Sphingobacteria and Flavobacteria, while Gammaproteobacteria and Sphingobacteria prevailed in west GrIS supraglacial environments. Microbial assemblages clustered by location (Canada Glacier, Cotton Glacier, west GrIS) and were separated by habitat type (i.e. ice, cryoconite holes, supraglacial lakes, sediment, and stream water). Community dissimilarities were strongly correlated with dissolved organic matter (DOM) quality. Microbial meltwater assemblages were most closely associated with different protein-like components of the DOM pool. Microbes in environments with mineral particles (i.e. stream sediments, cryoconite holes) were linked to DOM containing more humic-like fluorescence. Our results demonstrate the establishment of distinct microbial communities within ephemeral glacial meltwater habitats, with DOM-microbe interactions playing an integral role in shaping communities on local and polar spatial scales.

  4. Pyrosequencing-based assessment of microbial community shifts in leachate from animal carcass burial lysimeter.

    PubMed

    Kim, Hyun Young; Seo, Jiyoung; Kim, Tae-Hun; Shim, Bomi; Cha, Seok Mun; Yu, Seungho

    2017-06-01

    This study examined the use of microbial community structure as a bio-indicator of decomposition levels. High-throughput pyrosequencing technology was used to assess the shift in microbial community of leachate from animal carcass lysimeter. The leachate samples were collected monthly for one year and a total of 164,639 pyrosequencing reads were obtained and used in the taxonomic classification and operational taxonomy units (OTUs) distribution analysis based on sequence similarity. Our results show considerable changes in the phylum-level bacterial composition, suggesting that the microbial community is a sensitive parameter affected by the burial environment. The phylum classification results showed that Proteobacteria (Pseudomonas) were the most influential taxa in earlier decomposition stage whereas Firmicutes (Clostridium, Sporanaerobacter, and Peptostreptococcus) were dominant in later stage under anaerobic conditions. The result of this study can provide useful information on a time series of leachate profiles of microbial community structures and suggest patterns of microbial diversity in livestock burial sites. In addition, this result can be applicable to predict the decomposition stages under clay loam based soil conditions of animal livestock. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. The Arsenite Oxidation Potential of Native Microbial Communities from Arsenic-Rich Freshwaters.

    PubMed

    Fazi, Stefano; Crognale, Simona; Casentini, Barbara; Amalfitano, Stefano; Lotti, Francesca; Rossetti, Simona

    2016-07-01

    Microorganisms play an important role in speciation and mobility of arsenic in the environment, by mediating redox transformations of both inorganic and organic species. Since arsenite [As(III)] is more toxic than arsenate [As(V)] to the biota, the microbial driven processes of As(V) reduction and As(III) oxidation may play a prominent role in mediating the environmental impact of arsenic contamination. However, little is known about the ecology and dynamics of As(III)-oxidizing populations within native microbial communities exposed to natural high levels of As. In this study, two techniques for single cell quantification (i.e., flow cytometry, CARD-FISH) were used to analyze the structure of aquatic microbial communities across a gradient of arsenic (As) contamination in different freshwater environments (i.e., groundwaters, surface and thermal waters). Moreover, we followed the structural evolution of these communities and their capacity to oxidize arsenite, when experimentally exposed to high As(III) concentrations in experimental microcosms. Betaproteobacteria and Deltaproteobacteria were the main groups retrieved in groundwaters and surface waters, while Beta and Gammaproteobacteria dominated the bacteria community in thermal waters. At the end of microcosm incubations, the communities were able to oxidize up to 95 % of arsenite, with an increase of Alphaproteobacteria in most of the experimental conditions. Finally, heterotrophic As(III)-oxidizing strains (one Alphaproteobacteria and two Gammaproteobacteria) were isolated from As rich waters. Our findings underlined that native microbial communities from different arsenic-contaminated freshwaters can efficiently perform arsenite oxidation, thus contributing to reduce the overall As toxicity to the aquatic biota.

  6. Effects of long-term drainage on microbial community composition vary between peatland types

    NASA Astrophysics Data System (ADS)

    Urbanová, Zuzana; Barta, Jiri

    2016-04-01

    Peatlands represent an important reservoir of carbon, but their functioning can be threatened by water level drawdown caused by climate or land use change. Knowledge of how microbial communities respond to long-term drainage in different peatland types could help improve predictions of the effect of climate change on these ecosystems. We investigated the effect of long-term drainage on microbial community composition in bog, fen and spruce swamp forests (SSF) in the Sumava Mountains (Czech Republic), using high-throughput barcoded sequencing, in relation to peat biochemical properties. Longterm drainage had substantial effects, which depended strongly on peatland type, on peat biochemical properties and microbial community composition. The effect of drainage was most apparent on fen, followed by SSF, and lowest on bog. Long-term drainage led to lower pH, reduced peat decomposability and increased bulk density, which was reflected by reduced microbial activity. Bacterial diversity decreased and Acidobacteria became the dominant phylum on drained sites, reflecting a convergence in bacterial community composition across peatlands after long-term drainage. The archaeal communities changed very strongly and became similar across drained peatlands. Overall, the characteristic differences between distinct peatland types under natural conditions were diminished by long-term drainage. Bog represented a relatively resilient system while fen seemed to be very sensitive to environmental changes.

  7. Community proteogenomics reveals the systemic impact of phosphorus availability on microbial functions in tropical soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Qiuming; Li, Zhou; Song, Yang

    Phosphorus (P) is a scarce nutrient in many tropical ecosystems, yet how soil microbial communities cope with growth-limiting P deficiency at the gene and protein levels remains unknown. Here we report a metagenomic and metaproteomic comparison of microbial communities in P-deficient and P-rich soils in a 17-year fertilization experiment in a tropical forest. The large-scale proteogenomics analyses provided extensive coverage of many microbial functions and taxa in the complex soil communities. A >4-fold increase in the gene abundance of 3-phytase was the strongest response of soil communities to P deficiency. Phytase catalyzes the release of phosphate from phytate, the mostmore » recalcitrant P-containing compound in soil organic matter. Genes and proteins for the degradation of P-containing nucleic acids and phospholipids as well as the decomposition of labile carbon and nitrogen were also enhanced in the P-deficient soils. In contrast, microbial communities in the P-rich soils showed increased gene abundances for the degradation of recalcitrant aromatic compounds, the transformation of nitrogenous compounds, and the assimilation of sulfur. Overall, these results demonstrate the adaptive allocation of genes and proteins in soil microbial communities in response to shifting nutrient constraints.« less

  8. The gut microbial community of Midas cichlid fish in repeatedly evolved limnetic-benthic species pairs.

    PubMed

    Franchini, Paolo; Fruciano, Carmelo; Frickey, Tancred; Jones, Julia C; Meyer, Axel

    2014-01-01

    Gut bacterial communities are now known to influence a range of fitness related aspects of organisms. But how different the microbial community is in closely related species, and if these differences can be interpreted as adaptive is still unclear. In this study we compared microbial communities in two sets of closely related sympatric crater lake cichlid fish species pairs that show similar adaptations along the limnetic-benthic axis. The gut microbial community composition differs in the species pair inhabiting the older of two crater lakes. One major difference, relative to other fish, is that in these cichlids that live in hypersaline crater lakes, the microbial community is largely made up of Oceanospirillales (52.28%) which are halotolerant or halophilic bacteria. This analysis opens up further avenues to identify candidate symbiotic or co-evolved bacteria playing a role in adaptation to similar diets and life-styles or even have a role in speciation. Future functional and phylosymbiotic analyses might help to address these issues.

  9. Hydration status and diurnal trophic interactions shape microbial community function in desert biocrusts

    NASA Astrophysics Data System (ADS)

    Kim, Minsu; Or, Dani

    2017-12-01

    Biological soil crusts (biocrusts) are self-organised thin assemblies of microbes, lichens, and mosses that are ubiquitous in arid regions and serve as important ecological and biogeochemical hotspots. Biocrust ecological function is intricately shaped by strong gradients of water, light, oxygen, and dynamics in the abundance and spatial organisation of the microbial community within a few millimetres of the soil surface. We report a mechanistic model that links the biophysical and chemical processes that shape the functioning of biocrust representative microbial communities that interact trophically and respond dynamically to cycles of hydration, light, and temperature. The model captures key features of carbon and nitrogen cycling within biocrusts, such as microbial activity and distribution (during early stages of biocrust establishment) under diurnal cycles and the associated dynamics of biogeochemical fluxes at different hydration conditions. The study offers new insights into the highly dynamic and localised processes performed by microbial communities within thin desert biocrusts.

  10. Changes in microbial structure and functional communities at different soil depths during 13C labelled root litter degradation

    NASA Astrophysics Data System (ADS)

    Sanaullah, Muhammad; Baumann, Karen; Chabbi, Abad; Dignac, Marie-France; Maron, Pierre-Alain; Kuzyakov, Yakov; Rumpel, Cornelia

    2014-05-01

    Soil organic matter turnover depends on substrate quality and microbial activity in soil but little is known about how addition of freshly added organic material modifies the diversity of soil microbial communities with in a soil profile. We took advantage of a decomposition experiment, which was carried out at different soil depths under field conditions and sampled litterbags with 13C-labelled wheat roots, incubated in subsoil horizons at 30, 60 and 90 cm depth for up to 36 months. The effect of root litter addition on microbial community structure, diversity and activity was studied by determining total microbial biomass, PLFA signatures, molecular tools (DNA genotyping and pyrosequencing of 16S and 18S rDNAs) and extracellular enzyme activities. Automated ribosomal intergenic spacer analysis (ARISA) was also carried out to determine the differences in microbial community structure. We found that with the addition of root litter, total microbial biomass as well as microbial community composition and structure changed at different soil depths and change was significantly higher at top 30cm soil layer. Moreover, in the topsoil, population of both gram-positive and gram-negative bacteria increased with root litter addition over time, while subsoil horizons were relatively dominated by fungal community. Extra-cellular enzyme activities confirmed relatively higher fungal community at subsoil horizons compared with surface soil layer with bacteria dominant microbial population. Bacterial-ARISA profiling illustrated that the addition of root litter enhanced the abundance of Actinobacteria and Proteobacteria, at all three soil depths. These bacteria correspond to copiotrophic attributes, which can preferentially consume of labile soil organic C pools. While disappearance of oligotrophic Acidobacteria confirmed the shifting of microbial communities due to the addition of readily available substrate. We concluded that root litter mixing altered microbial community

  11. Opportunistic Pathogens and Microbial Communities and Their Associations with Sediment Physical Parameters in Drinking Water Storage Tank Sediments.

    PubMed

    Qin, Ke; Struewing, Ian; Domingo, Jorge Santo; Lytle, Darren; Lu, Jingrang

    2017-10-26

    The occurrence and densities of opportunistic pathogens (OPs), the microbial community structure, and their associations with sediment elements from eight water storage tanks in Ohio, West Virginia, and Texas were investigated. The elemental composition of sediments was measured through X-ray fluorescence (XRF) spectra. The occurrence and densities of OPs and amoeba hosts (i.e., Legionella spp. and L . pneumophila , Mycobacterium spp., P. aeruginosa , V. vermiformis, Acanthamoeba spp.) were determined using genus- or species-specific qPCR assays. Microbial community analysis was performed using next generation sequencing on the Illumina Miseq platform. Mycobacterium spp. were most frequently detected in the sediments and water samples (88% and 88%), followed by Legionella spp. (50% and 50%), Acanthamoeba spp. (63% and 13%), V. vermiformis (50% and 25%), and P. aeruginosa (0 and 50%) by qPCR method. Comamonadaceae (22.8%), Sphingomonadaceae (10.3%), and Oxalobacteraceae (10.1%) were the most dominant families by sequencing method. Microbial communities in water samples were mostly separated with those in sediment samples, suggesting differences of communities between two matrices even in the same location. There were associations of OPs with microbial communities. Both OPs and microbial community structures were positively associated with some elements (Al and K) in sediments mainly from pipe material corrosions. Opportunistic pathogens presented in both water and sediments, and the latter could act as a reservoir of microbial contamination. There appears to be an association between potential opportunistic pathogens and microbial community structures. These microbial communities may be influenced by constituents within storage tank sediments. The results imply that compositions of microbial community and elements may influence and indicate microbial water quality and pipeline corrosion, and that these constituents may be important for optimal storage tank

  12. Opportunistic Pathogens and Microbial Communities and Their Associations with Sediment Physical Parameters in Drinking Water Storage Tank Sediments

    PubMed Central

    Qin, Ke; Struewing, Ian; Domingo, Jorge Santo; Lytle, Darren

    2017-01-01

    The occurrence and densities of opportunistic pathogens (OPs), the microbial community structure, and their associations with sediment elements from eight water storage tanks in Ohio, West Virginia, and Texas were investigated. The elemental composition of sediments was measured through X-ray fluorescence (XRF) spectra. The occurrence and densities of OPs and amoeba hosts (i.e., Legionella spp. and L. pneumophila, Mycobacterium spp., P. aeruginosa, V. vermiformis, Acanthamoeba spp.) were determined using genus- or species-specific qPCR assays. Microbial community analysis was performed using next generation sequencing on the Illumina Miseq platform. Mycobacterium spp. were most frequently detected in the sediments and water samples (88% and 88%), followed by Legionella spp. (50% and 50%), Acanthamoeba spp. (63% and 13%), V. vermiformis (50% and 25%), and P. aeruginosa (0 and 50%) by qPCR method. Comamonadaceae (22.8%), Sphingomonadaceae (10.3%), and Oxalobacteraceae (10.1%) were the most dominant families by sequencing method. Microbial communities in water samples were mostly separated with those in sediment samples, suggesting differences of communities between two matrices even in the same location. There were associations of OPs with microbial communities. Both OPs and microbial community structures were positively associated with some elements (Al and K) in sediments mainly from pipe material corrosions. Opportunistic pathogens presented in both water and sediments, and the latter could act as a reservoir of microbial contamination. There appears to be an association between potential opportunistic pathogens and microbial community structures. These microbial communities may be influenced by constituents within storage tank sediments. The results imply that compositions of microbial community and elements may influence and indicate microbial water quality and pipeline corrosion, and that these constituents may be important for optimal storage tank management

  13. Profile Changes in the Soil Microbial Community When Desert Becomes Oasis

    PubMed Central

    Li, Chen-hua; Tang, Li-song; Jia, Zhong-jun; Li, Yan

    2015-01-01

    The conversion of virgin desert into oasis farmland creates two contrasting types of land-cover. During oasis formation with irrigation and fertilizer application, however, the changes in the soil microbial population, which play critical roles in the ecosystem, remain poorly understood. We applied high-throughput pyrosequencing to investigate bacterial and archaeal communities throughout the profile (0–3 m) in an experimental field, where irrigation and fertilization began in 1990 and cropped with winter wheat since then. To assess the effects of cultivation, the following treatments were compared with the virgin desert: CK (no fertilizer), PK, NK, NP, NPK, NPKR, and NPKM (R: straw residue; M: manure fertilizer). Irrigation had a greater impact on the overall microbial community than fertilizer application. The greatest impact occurred in topsoil (0–0.2 m), e.g., Cyanobacteria (25% total abundance) were most abundant in desert soil, while Actinobacteria (26%) were most abundant in oasis soil. The proportions of extremophilic and photosynthetic groups (e.g., Deinococcus-Thermus and Cyanobacteria) decreased, while the proportions of R-strategy (e.g., Gammaproteobacteria including Xanthomonadales), nitrifying (e.g., Nitrospirae), and anaerobic bacteria (e.g., Anaerolineae) increased throughout the oasis profile. Archaea occurred only in oasis soil. The impact of fertilizer application was mainly reflected in the non-dominant communities or finer taxonomic divisions. Oasis formation led to a dramatic shift in microbial community and enhanced soil enzyme activities. The rapidly increased soil moisture and decreased salt caused by irrigation were responsible for this shift. Furthermore, difference in fertilization and crop growth altered the organic carbon contents in the soil, which resulted in differences of microbial communities within oasis. PMID:26426279

  14. The effect of thermal stratification on microbial community diversity and structure in a temperate reservoir

    NASA Astrophysics Data System (ADS)

    Qu, Jiangqi; Jia, Chengxia; Zhao, Meng; Li, Wentong; Liu, Pan; Yang, Mu; Zhang, Qingjing

    2018-02-01

    Miyun reservoir is a typical temperate deep reservoir located in the northeast of Beijing, China. In order to explore the effect of thermal stratification on microbial community diversity, structure and its influencing environmental factors, stratified sampling at three sites was conducted during the summer period. Field observations indicate that the water temperature and dissolved oxygen concentrations dropped to 11.9 °C and 1.57 mg/L, respectively, leading to the development of anoxia in the hypolimnetic layer. The Illumina Miseq sequencing results showed that microbial communities from different thermal stratification showed obvious differences, the highest microbial diversity and richness in the hypolimnion samples. RDA ordination analysis suggested that the microbial communities in the epilimnion and metalimnion were mainly affected by water temperature, pH and dissolved oxygen, while total nitrogen was the key environmental factor which shaped the microbial structure in hypolimnion.

  15. Energy Gradients Structure Microbial Communities Across Sediment Horizons in Deep Marine Sediments of the South China Sea

    PubMed Central

    Graw, Michael F.; D'Angelo, Grace; Borchers, Matthew; Thurber, Andrew R.; Johnson, Joel E.; Zhang, Chuanlun; Liu, Haodong; Colwell, Frederick S.

    2018-01-01

    The deep marine subsurface is a heterogeneous environment in which the assembly of microbial communities is thought to be controlled by a combination of organic matter deposition, electron acceptor availability, and sedimentology. However, the relative importance of these factors in structuring microbial communities in marine sediments remains unclear. The South China Sea (SCS) experiences significant variability in sedimentation across the basin and features discrete changes in sedimentology as a result of episodic deposition of turbidites and volcanic ashes within lithogenic clays and siliceous or calcareous ooze deposits throughout the basin's history. Deep subsurface microbial communities were recently sampled by the International Ocean Discovery Program (IODP) at three locations in the SCS with sedimentation rates of 5, 12, and 20 cm per thousand years. Here, we used Illumina sequencing of the 16S ribosomal RNA gene to characterize deep subsurface microbial communities from distinct sediment types at these sites. Communities across all sites were dominated by several poorly characterized taxa implicated in organic matter degradation, including Atribacteria, Dehalococcoidia, and Aerophobetes. Sulfate-reducing bacteria comprised only 4% of the community across sulfate-bearing sediments from multiple cores and did not change in abundance in sediments from the methanogenic zone at the site with the lowest sedimentation rate. Microbial communities were significantly structured by sediment age and the availability of sulfate as an electron acceptor in pore waters. However, microbial communities demonstrated no partitioning based on the sediment type they inhabited. These results indicate that microbial communities in the SCS are structured by the availability of electron donors and acceptors rather than sedimentological characteristics. PMID:29696012

  16. Differences in Temperature and Water Chemistry Shape Distinct Diversity Patterns in Thermophilic Microbial Communities

    PubMed Central

    Chiriac, Cecilia M.; Szekeres, Edina; Rudi, Knut; Baricz, Andreea; Hegedus, Adriana; Dragoş, Nicolae

    2017-01-01

    ABSTRACT This report describes the biodiversity and ecology of microbial mats developed in thermal gradients (20 to 65°C) in the surroundings of three drillings (Chiraleu [CH], Ciocaia [CI], and Mihai Bravu [MB]) tapping a hyperthermal aquifer in Romania. Using a metabarcoding approach, 16S rRNA genes were sequenced from both DNA and RNA transcripts (cDNA) and compared. The relationships between the microbial diversity and the physicochemical factors were explored. Additionally, the cDNA data were used for in silico functionality predictions, bringing new insights into the functional potential and dynamics of these communities. The results showed that each hot spring determined the formation of distinct microbial communities. In the CH mats (40 to 53°C), the abundance of Cyanobacteria decreased with temperature, opposite to those of Chloroflexi and Proteobacteria. Ectothiorhodospira, Oscillatoria, and methanogenic archaea dominated the CI communities (20 to 65°C), while the MB microbial mats (53 to 65°C) were mainly composed of Chloroflexi, Hydrogenophilus, Thermi, and Aquificae. Alpha-diversity was negatively correlated with the increase in water temperature, while beta-diversity was shaped in each hot spring by the unique combination of physicochemical parameters, regardless of the type of nucleic acid analyzed (DNA versus cDNA). The rank correlation analysis revealed a unique model that associated environmental data with community composition, consisting in the combined effect of Na+, K+, HCO3−, and PO43− concentrations, together with temperature and electrical conductivity. These factors seem to determine the grouping of samples according to location, rather than with the similarities in thermal regimes, showing that other parameters beside temperature are significant drivers of biodiversity. IMPORTANCE Hot spring microbial mats represent a remarkable manifestation of life on Earth and have been intensively studied for decades. Moreover, as hot spring

  17. Relationships among plants, soils and microbial communities along a hydrological gradient in the New Jersey Pinelands, USA

    PubMed Central

    Yu, Shen; Ehrenfeld, Joan G.

    2010-01-01

    Background and Aims Understanding the role of different components of hydrology in structuring wetland communities is not well developed. A sequence of adjacent wetlands located on a catenary sequence of soils and receiving the same sources and qualities of water is used to examine specifically the role of water-table median position and variability in affecting plant and microbial community composition and soil properties. Methods Two replicates of three types of wetland found adjacent to each other along a hydrological gradient in the New Jersey Pinelands (USA) were studied. Plant-community and water-table data were obtained within a 100-m2 plot in each community (pine swamp, maple swamp and Atlantic-white-cedar swamp). Monthly soil samples from each plot were analysed for soil moisture, organic matter, extractable nitrogen fractions, N mineralization rate and microbial community composition. Multivariate ordination methods were used to compare patterns among sites within and between data sets. Key Results The maple and pine wetlands were more similar to each other in plant community composition, soil properties and microbial community composition than either was to the cedar swamps. However, maple and pine wetlands differed from each other in water-table descriptors as much as they differed from the cedar swamps. All microbial communities were dominated by Gram-positive bacteria despite hydrologic differences among the sites. Water-table variability was as important as water-table level in affecting microbial communities. Conclusions Water tables affect wetland communities through both median level and variability. Differentiation of both plant and microbial communities are not simple transforms of differences in water-table position, even when other hydrologic factors are kept constant. Rather, soil genesis, a result of both water-table position and geologic history, appears to be the main factor affecting plant and microbial community similarities. PMID

  18. Short-term responses and resistance of soil microbial community structure to elevated CO2 and N addition in grassland mesocosms.

    PubMed

    Simonin, Marie; Nunan, Naoise; Bloor, Juliette M G; Pouteau, Valérie; Niboyet, Audrey

    2017-05-01

    Nitrogen (N) addition is known to affect soil microbial communities, but the interactive effects of N addition with other drivers of global change remain unclear. The impacts of multiple global changes on the structure of microbial communities may be mediated by specific microbial groups with different life-history strategies. Here, we investigated the combined effects of elevated CO2 and N addition on soil microbial communities using PLFA profiling in a short-term grassland mesocosm experiment. We also examined the linkages between the relative abundance of r- and K-strategist microorganisms and resistance of the microbial community structure to experimental treatments. N addition had a significant effect on microbial community structure, likely driven by concurrent increases in plant biomass and in soil labile C and N. In contrast, microbial community structure did not change under elevated CO2 or show significant CO2 × N interactions. Resistance of soil microbial community structure decreased with increasing fungal/bacterial ratio, but showed a positive relationship with the Gram-positive/Gram-negative bacterial ratio. Our findings suggest that the Gram-positive/Gram-negative bacteria ratio may be a useful indicator of microbial community resistance and that K-strategist abundance may play a role in the short-term stability of microbial communities under global change. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Effects of Hydraulic Frac Fluids on Subsurface Microbial Communities in Gas Shales

    NASA Astrophysics Data System (ADS)

    Jiménez, Núria; Krüger, Martin

    2014-05-01

    Shale gas is being considered as a complementary energy resource to coal or other fossil fuels. The exploitation of unconventional gas reservoirs requires the use of advanced drilling techniques and hydraulic stimulation (fracking). During fracking operations, large amounts of fluids (fresh water, proppants and chemical additives) are injected at high pressures into the formations, to produce fractures and fissures, and thus to release gas from the source rock into the wellbore. The injected fluids partly remain in the formation, while about 20 to 40% of the originally injected fluid flows back to the surface, together with formation waters, sometimes containing dissolved hydrocarbons, high salt concentrations, etc. The overall production operation will likely affect and be affected by subsurface microbial communities associated to the shale formations. On the one hand microbial activity (like growth, biofilm formation) can cause unwanted processes like corrosion, clogging, etc. On the other hand, the introduction of frac fluids could either enhance microbial growth or cause toxicity to the shale-associated microbial communities. To investigate the potential impacts of changing environmental reservoir conditions, like temperature, salinity, oxgen content and pH, as well as the introduction of frac or geogenic chemicals on subsurface microbial communities, laboratory experiments under in situ conditions (i.e. high temperatures and pressures) are being conducted. Enrichment cultures with samples from several subsurface environments (e.g. shale and coal deposits, gas reservoirs, geothermal fluids) have been set up using a variety of carbon sources, including hydrocarbons and typical frac chemicals. Classical microbiological and molecular analysis are used to determine changes in the microbial abundance, community structure and function after the exposure to different single frac chemicals, "artificial" frac fluids or production waters. On the other hand, potential

  20. Inferring Intra-Community Microbial Interaction Patterns from Metagenomic Datasets Using Associative Rule Mining Techniques

    PubMed Central

    Mande, Sharmila S.

    2016-01-01

    The nature of inter-microbial metabolic interactions defines the stability of microbial communities residing in any ecological niche. Deciphering these interaction patterns is crucial for understanding the mode/mechanism(s) through which an individual microbial community transitions from one state to another (e.g. from a healthy to a diseased state). Statistical correlation techniques have been traditionally employed for mining microbial interaction patterns from taxonomic abundance data corresponding to a given microbial community. In spite of their efficiency, these correlation techniques can capture only 'pair-wise interactions'. Moreover, their emphasis on statistical significance can potentially result in missing out on several interactions that are relevant from a biological standpoint. This study explores the applicability of one of the earliest association rule mining algorithm i.e. the 'Apriori algorithm' for deriving 'microbial association rules' from the taxonomic profile of given microbial community. The classical Apriori approach derives association rules by analysing patterns of co-occurrence/co-exclusion between various '(subsets of) features/items' across various samples. Using real-world microbiome data, the efficiency/utility of this rule mining approach in deciphering multiple (biologically meaningful) association patterns between 'subsets/subgroups' of microbes (constituting microbiome samples) is demonstrated. As an example, association rules derived from publicly available gut microbiome datasets indicate an association between a group of microbes (Faecalibacterium, Dorea, and Blautia) that are known to have mutualistic metabolic associations among themselves. Application of the rule mining approach on gut microbiomes (sourced from the Human Microbiome Project) further indicated similar microbial association patterns in gut microbiomes irrespective of the gender of the subjects. A Linux implementation of the Association Rule Mining (ARM

  1. Inferring Intra-Community Microbial Interaction Patterns from Metagenomic Datasets Using Associative Rule Mining Techniques.

    PubMed

    Tandon, Disha; Haque, Mohammed Monzoorul; Mande, Sharmila S

    2016-01-01

    The nature of inter-microbial metabolic interactions defines the stability of microbial communities residing in any ecological niche. Deciphering these interaction patterns is crucial for understanding the mode/mechanism(s) through which an individual microbial community transitions from one state to another (e.g. from a healthy to a diseased state). Statistical correlation techniques have been traditionally employed for mining microbial interaction patterns from taxonomic abundance data corresponding to a given microbial community. In spite of their efficiency, these correlation techniques can capture only 'pair-wise interactions'. Moreover, their emphasis on statistical significance can potentially result in missing out on several interactions that are relevant from a biological standpoint. This study explores the applicability of one of the earliest association rule mining algorithm i.e. the 'Apriori algorithm' for deriving 'microbial association rules' from the taxonomic profile of given microbial community. The classical Apriori approach derives association rules by analysing patterns of co-occurrence/co-exclusion between various '(subsets of) features/items' across various samples. Using real-world microbiome data, the efficiency/utility of this rule mining approach in deciphering multiple (biologically meaningful) association patterns between 'subsets/subgroups' of microbes (constituting microbiome samples) is demonstrated. As an example, association rules derived from publicly available gut microbiome datasets indicate an association between a group of microbes (Faecalibacterium, Dorea, and Blautia) that are known to have mutualistic metabolic associations among themselves. Application of the rule mining approach on gut microbiomes (sourced from the Human Microbiome Project) further indicated similar microbial association patterns in gut microbiomes irrespective of the gender of the subjects. A Linux implementation of the Association Rule Mining (ARM

  2. An improved method to set significance thresholds for β diversity testing in microbial community comparisons.

    PubMed

    Gülay, Arda; Smets, Barth F

    2015-09-01

    Exploring the variation in microbial community diversity between locations (β diversity) is a central topic in microbial ecology. Currently, there is no consensus on how to set the significance threshold for β diversity. Here, we describe and quantify the technical components of β diversity, including those associated with the process of subsampling. These components exist for any proposed β diversity measurement procedure. Further, we introduce a strategy to set significance thresholds for β diversity of any group of microbial samples using rarefaction, invoking the notion of a meta-community. The proposed technique was applied to several in silico generated operational taxonomic unit (OTU) libraries and experimental 16S rRNA pyrosequencing libraries. The latter represented microbial communities from different biological rapid sand filters at a full-scale waterworks. We observe that β diversity, after subsampling, is inflated by intra-sample differences; this inflation is avoided in the proposed method. In addition, microbial community evenness (Gini > 0.08) strongly affects all β diversity estimations due to bias associated with rarefaction. Where published methods to test β significance often fail, the proposed meta-community-based estimator is more successful at rejecting insignificant β diversity values. Applying our approach, we reveal the heterogeneous microbial structure of biological rapid sand filters both within and across filters. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. Contrasting microbial community changes during mass extinctions at the Middle/Late Permian and Permian/Triassic boundaries

    NASA Astrophysics Data System (ADS)

    Xie, Shucheng; Algeo, Thomas J.; Zhou, Wenfeng; Ruan, Xiaoyan; Luo, Genming; Huang, Junhua; Yan, Jiaxin

    2017-02-01

    Microbial communities are known to expand as a result of environmental deterioration during mass extinctions, but differences in microbial community changes between extinction events and their underlying causes have received little study to date. Here, we present a systematic investigation of microbial lipid biomarkers spanning ∼20 Myr (Middle Permian to Early Triassic) at Shangsi, South China, to contrast microbial changes associated with the Guadalupian-Lopingian boundary (GLB) and Permian-Triassic boundary (PTB) mass extinctions. High-resolution analysis of the PTB crisis interval reveals a distinct succession of microbial communities based on secular variation in moretanes, 2-methylhopanes, aryl isoprenoids, steranes, n-alkyl cyclohexanes, and other biomarkers. The first episode of the PTB mass extinction (ME1) was associated with increases in red algae and nitrogen-fixing bacteria along with evidence for enhanced wildfires and elevated soil erosion, whereas the second episode was associated with expansions of green sulfur bacteria, nitrogen-fixing bacteria, and acritarchs coinciding with climatic hyperwarming, ocean stratification, and seawater acidification. This pattern of microbial community change suggests that marine environmental deterioration was greater during the second extinction episode (ME2). The GLB shows more limited changes in microbial community composition and more limited environmental deterioration than the PTB, consistent with differences in species-level extinction rates (∼71% vs. 90%, respectively). Microbial biomarker records have the potential to refine our understanding of the nature of these crises and to provide insights concerning possible outcomes of present-day anthropogenic stresses on Earth's ecosystems.

  4. Microbial Fingerprints of Community Structure Correlate with Changes in Ecosystem Function Induced by Perturbing the Redox Environment

    NASA Astrophysics Data System (ADS)

    Mills, A. L.; Ford, R. M.; Vallino, J. J.; Herman, J. S.; Hornberger, G. M.

    2001-12-01

    Restoration of high-quality groundwater has been an elusive engineering goal. Consequently, natural microbially-mediated reactions are increasingly relied upon to degrade organic contaminants, including hydrocarbons and many synthetic compounds. Of concern is how the introduction of an organic chemical contaminant affects the indigenous microbial communities, the geochemistry of the aquifer, and the function of the ecosystem. The presence of functional redundancy in microbial communities suggests that recovery of the community after a disturbance such as a contamination event could easily result in a community that is similar in function to that which existed prior to the contamination, but which is compositionally quite different. To investigate the relationship between community structure and function we observed the response of a diverse microbial community obtained from raw sewage to a dynamic redox environment using an aerobic/anaerobic/aerobic cycle. To evaluate changes in community function CO2, pH, ammonium and nitrate levels were monitored. A phylogenetically-based DNA technique (tRFLP) was used to assess changes in microbial community structure. Principal component analysis of the tRFLP data revealed significant changes in the composition of the microbial community that correlated well with changes in community function. Results from our experiments will be discussed in the context of a metabolic model based the biogeochemistry of the system. The governing philosophy of this thermodynamically constrained metabolic model is that living systems synthesize and allocate cellular machinery in such a way as to "optimally" utilize available resources in the environment. The robustness of this optimization-based approach provides a powerful tool for studying relationships between microbial diversity and ecosystem function.

  5. Burning fire-prone Mediterranean shrublands: immediate changes in soil microbial community structure and ecosystem functions.

    PubMed

    Goberna, M; García, C; Insam, H; Hernández, M T; Verdú, M

    2012-07-01

    Wildfires subject soil microbes to extreme temperatures and modify their physical and chemical habitat. This might immediately alter their community structure and ecosystem functions. We burned a fire-prone shrubland under controlled conditions to investigate (1) the fire-induced changes in the community structure of soil archaea, bacteria and fungi by analysing 16S or 18S rRNA gene amplicons separated through denaturing gradient gel electrophoresis; (2) the physical and chemical variables determining the immediate shifts in the microbial community structure; and (3) the microbial drivers of the change in ecosystem functions related to biogeochemical cycling. Prokaryotes and eukaryotes were structured by the local environment in pre-fire soils. Fire caused a significant shift in the microbial community structure, biomass C, respiration and soil hydrolases. One-day changes in bacterial and fungal community structure correlated to the rise in total organic C and NO(3)(-)-N caused by the combustion of plant residues. In the following week, bacterial communities shifted further forced by desiccation and increasing concentrations of macronutrients. Shifts in archaeal community structure were unrelated to any of the 18 environmental variables measured. Fire-induced changes in the community structure of bacteria, rather than archaea or fungi, were correlated to the enhanced microbial biomass, CO(2) production and hydrolysis of C and P organics. This is the first report on the combined effects of fire on the three biological domains in soils. We concluded that immediately after fire the biogeochemical cycling in Mediterranean shrublands becomes less conservative through the increased microbial biomass, activity and changes in the bacterial community structure.

  6. Soil biochar amendment shapes the composition of N2O-reducing microbial communities.

    PubMed

    Harter, Johannes; Weigold, Pascal; El-Hadidi, Mohamed; Huson, Daniel H; Kappler, Andreas; Behrens, Sebastian

    2016-08-15

    Soil biochar amendment has been described as a promising tool to improve soil quality, sequester carbon, and mitigate nitrous oxide (N2O) emissions. N2O is a potent greenhouse gas. The main sources of N2O in soils are microbially-mediated nitrogen transformation processes such as nitrification and denitrification. While previous studies have focused on the link between N2O emission mitigation and the abundance and activity of N2O-reducing microorganisms in biochar-amended soils, the impact of biochar on the taxonomic composition of the nosZ gene carrying soil microbial community has not been subject of systematic study to date. We used 454 pyrosequencing in order to study the microbial diversity in biochar-amended and biochar-free soil microcosms. We sequenced bacterial 16S rRNA gene amplicons as well as fragments of common (typical) nosZ genes and the recently described 'atypical' nosZ genes. The aim was to describe biochar-induced shifts in general bacterial community diversity and taxonomic variations among the nosZ gene containing N2O-reducing microbial communities. While soil biochar amendment significantly altered the 16S rRNA gene-based community composition and structure, it also led to the development of distinct functional traits capable of N2O reduction containing typical and atypical nosZ genes related to nosZ genes found in Pseudomonas stutzeri and Pedobacter saltans, respectively. Our results showed that biochar amendment can affect the relative abundance and taxonomic composition of N2O-reducing functional microbial traits in soil. Thus these findings broaden our knowledge on the impact of biochar on soil microbial community composition and nitrogen cycling. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Influences of Different Halophyte Vegetation on Soil Microbial Community at Temperate Salt Marsh.

    PubMed

    Chaudhary, Doongar R; Kim, Jinhyun; Kang, Hojeong

    2018-04-01

    Salt marshes are transitional zone between terrestrial and aquatic ecosystems, occupied mainly by halophytic vegetation which provides numerous ecological services to coastal ecosystem. Halophyte-associated microbial community plays an important role in the adaptation of plants to adverse condition and also affected habitat characteristics. To explore the relationship between halophytes and soil microbial community, we studied the soil enzyme activities, soil microbial community structure, and functional gene abundance in halophytes- (Carex scabrifolia, Phragmites australis, and Suaeda japonica) covered and un-vegetated (mud flat) soils at Suncheon Bay, South Korea. Higher concentrations of total, Gram-positive, Gram-negative, total bacterial, and actinomycetes PLFAs (phospholipid fatty acids) were observed in the soil underneath the halophytes compared with mud flat soil and were highest in Carex soil. Halophyte-covered soils had different microbial community composition due to higher abundance of Gram-negative bacteria than mud flat soil. Similar to PLFA concentrations, the increased activities of β-glucosidase, cellulase, phosphatase, and sulfatase enzymes were observed under halophyte soil compared to mud flat soil and Carex exhibited highest activities. The abundance of archaeal 16S rRNA, fungal ITS, and denitrifying genes (nirK, nirS, and nosZ) were not influenced by the halophytes. Abundance bacterial 16S rRNA and dissimilatory (bi)sulfite (dsrA) genes were highest in Carex-covered soil. The abundance of functional genes involved in methane cycle (mcrA and pmoA) was not affected by the halophytes. However, the ratios of mcrA/pmoA and mcrA/dsrA increased in halophyte-covered soils which indicate higher methanogenesis activities. The finding of the study also suggests that halophytes had increased the microbial and enzyme activities, and played a pivotal role in shaping microbial community structure.

  8. Microbial Community Structure in Relation to Water Quality in ...

    EPA Pesticide Factsheets

    Weeks Bay is a shallow, microtidal, eutrophic sub-estuary of Mobile Bay, AL. High watershed nutrient inputs to the estuary contribute to a eutrophic condition characterized by frequent summertime diel-cycling hypoxia and dissolved oxygen (DO) oversaturation. Spatial and seasonal variability of microbial communities that contribute to estuarine ecosystem metabolism were characterized using high-throughput DNA sequencing. Surface water samples were collected from spring to fall at three sites along a transect of Weeks Bay from the Fish River to Mobile Bay. Water samples were analyzed for physiochemical properties and were also filtered onto Sterivex filters for DNA extraction. Genes for 16S rRNA and 18S rRNA were amplified and sequenced according to Earth Microbiome Project protocols. Sequences were assembled into contigs and clustered into OTUs with mothur using the Silva database. The prokaryotes were dominated by Cyanobacteria, Actinobacteria, and Spartobacteria, whereas the eukaryotes were dominated by Bacillariophyta (diatoms). Multivariate statistical analysis of microbial community composition and environmental data showed that Bacteria, Archaea and Eukaryota were clustered by season. BEST analysis by station showed that prokaryotic community structure was associated with salinity and CDOM (Rho=0.924), whereas eukaryotic community structure was most associated with salinity (Rho=0.846). Prokaryotic community structure within seasons was associated with six

  9. Functional and taxonomic dynamics of an electricity-consuming methane-producing microbial community.

    PubMed

    Bretschger, Orianna; Carpenter, Kayla; Phan, Tony; Suzuki, Shino; Ishii, Shun'ichi; Grossi-Soyster, Elysse; Flynn, Michael; Hogan, John

    2015-11-01

    The functional and taxonomic microbial dynamics of duplicate electricity-consuming methanogenic communities were observed over a 6 months period to characterize the reproducibility, stability and recovery of electromethanogenic consortia. The highest rate of methanogenesis was 0.72 mg-CH4/L/day, which occurred during the third month of enrichment when multiple methanogenic phylotypes and associated Desulfovibrionaceae phylotypes were present in the electrode-associated microbial community. Results also suggest that electromethanogenic microbial communities are very sensitive to electron donor-limiting open-circuit conditions. A 45 min exposure to open-circuit conditions induced an 87% drop in volumetric methane production rates. Methanogenic performance recovered after 4 months to a maximum value of 0.30 mg-CH4/L/day under set potential operation (-700 mV vs Ag/AgCl); however, current consumption and biomass production was variable over time. Long-term functional and taxonomic analyses from experimental replicates provide new knowledge toward understanding how to enrich electromethanogenic communities and operate bioelectrochemical systems for stable and reproducible performance. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Anaerobic microbial communities in Lake Pavin, a unique meromictic lake in France.

    PubMed

    Lehours, Anne-C; Bardot, Corinne; Thenot, Aurelie; Debroas, Didier; Fonty, Gerard

    2005-11-01

    The Bacteria and Archaea from the meromictic Lake Pavin were analyzed in samples collected along a vertical profile in the anoxic monimolimnion and were compared to those in samples from the oxic mixolimnion. Nine targeted 16S rRNA oligonucleotide probes were used to assess the distribution of Bacteria and Archaea and to investigate the in situ occurrence of sulfate-reducing bacteria and methane-producing Archaea involved in the terminal steps of the anaerobic degradation of organic material. The diversity of the complex microbial communities was assessed from the 16S rRNA polymorphisms present in terminal restriction fragment (TRF) depth patterns. The densities of the microbial community increased in the anoxic layer, and Archaea detected with probe ARCH915 represented the largest microbial group in the water column, with a mean Archaea/Eubacteria ratio of 1.5. Terminal restriction fragment length polymorphism (TRFLP) analysis revealed an elevated archaeal and bacterial phylotype richness in anoxic bottom-water samples. The structure of the Archaea community remained rather homogeneous, while TRFLP patterns for the eubacterial community revealed a heterogeneous distribution of eubacterial TRFs.

  11. Soil organic matter quantity and quality shape microbial community compositions of subtropical broadleaved forests.

    PubMed

    Ding, Junjun; Zhang, Yuguang; Wang, Mengmeng; Sun, Xin; Cong, Jing; Deng, Ye; Lu, Hui; Yuan, Tong; Van Nostrand, Joy D; Li, Diqiang; Zhou, Jizhong; Yang, Yunfeng

    2015-10-01

    As two major forest types in the subtropics, broadleaved evergreen and broadleaved deciduous forests have long interested ecologists. However, little is known about their belowground ecosystems despite their ecological importance in driving biogeochemical cycling. Here, we used Illumina MiSeq sequencing targeting 16S rRNA gene and a microarray named GeoChip targeting functional genes to analyse microbial communities in broadleaved evergreen and deciduous forest soils of Shennongjia Mountain of Central China, a region known as 'The Oriental Botanic Garden' for its extraordinarily rich biodiversity. We observed higher plant diversity and relatively richer nutrients in the broadleaved evergreen forest than the deciduous forest. In odds to our expectation that plant communities shaped soil microbial communities, we found that soil organic matter quantity and quality, but not plant community parameters, were the best predictors of microbial communities. Actinobacteria, a copiotrophic phylum, was more abundant in the broadleaved evergreen forest, while Verrucomicrobia, an oligotrophic phylum, was more abundant in the broadleaved deciduous forest. The density of the correlation network of microbial OTUs was higher in the broadleaved deciduous forest but its modularity was smaller, reflecting lower resistance to environment changes. In addition, keystone OTUs of the broadleaved deciduous forest were mainly oligotrophic. Microbial functional genes associated with recalcitrant carbon degradation were also more abundant in the broadleaved deciduous forests, resulting in low accumulation of organic matters. Collectively, these findings revealed the important role of soil organic matter in shaping microbial taxonomic and functional traits. © 2015 John Wiley & Sons Ltd.

  12. Subgingival Microbial Communities in Leukocyte Adhesion Deficiency and Their Relationship with Local Immunopathology

    PubMed Central

    Moutsopoulos, Niki M.; Abusleme, Loreto; Greenwell-Wild, Teresa; Dutzan, Nicolas; Paster, Bruce J.; Munson, Peter J.; Fine, Daniel H.; Uzel, Gulbu; Holland, Steven M.

    2015-01-01

    Leukocyte Adhesion Deficiency I (LAD-I) is a primary immunodeficiency caused by single gene mutations in the CD18 subunit of β2 integrins which result in defective transmigration of neutrophils into the tissues. Affected patients suffer from recurrent life threatening infections and severe oral disease (periodontitis). Microbial communities in the local environment (subgingival plaque) are thought to be the triggers for inflammatory periodontitis, yet little is known regarding the microbial communities associated with LAD-I periodontitis. Here we present the first comprehensive characterization of the subgingival communities in LAD-I, using a 16S rRNA gene-based microarray, and investigate the relationship of this tooth adherent microbiome to the local immunopathology of periodontitis. We show that the LAD subgingival microbiome is distinct from that of health and Localized Aggressive Periodontitits. Select periodontitis-associated species in the LAD microbiome included Parvimonas micra, Porphyromonas endodontalis, Eubacterium brachy and Treponema species. Pseudomonas aeruginosa, a bacterium not typically found in subgingival plaque is detected in LAD-I. We suggest that microbial products from LAD-associated communities may have a role in stimulating the local inflammatory response. We demonstrate that bacterial LPS translocates into the lesions of LAD-periodontitis potentially triggering immunopathology. We also show in in vitro assays with human macrophages and in vivo in animal models that microbial products from LAD-associated subgingival plaque trigger IL-23-related immune responses, which have been shown to dominate in patient lesions. In conclusion, our current study characterizes the subgingival microbial communities in LAD-periodontitis and supports their role as triggers of disease pathogenesis. PMID:25741691

  13. Subgingival microbial communities in Leukocyte Adhesion Deficiency and their relationship with local immunopathology.

    PubMed

    Moutsopoulos, Niki M; Chalmers, Natalia I; Barb, Jennifer J; Abusleme, Loreto; Greenwell-Wild, Teresa; Dutzan, Nicolas; Paster, Bruce J; Munson, Peter J; Fine, Daniel H; Uzel, Gulbu; Holland, Steven M

    2015-03-01

    Leukocyte Adhesion Deficiency I (LAD-I) is a primary immunodeficiency caused by single gene mutations in the CD18 subunit of β2 integrins which result in defective transmigration of neutrophils into the tissues. Affected patients suffer from recurrent life threatening infections and severe oral disease (periodontitis). Microbial communities in the local environment (subgingival plaque) are thought to be the triggers for inflammatory periodontitis, yet little is known regarding the microbial communities associated with LAD-I periodontitis. Here we present the first comprehensive characterization of the subgingival communities in LAD-I, using a 16S rRNA gene-based microarray, and investigate the relationship of this tooth adherent microbiome to the local immunopathology of periodontitis. We show that the LAD subgingival microbiome is distinct from that of health and Localized Aggressive Periodontitits. Select periodontitis-associated species in the LAD microbiome included Parvimonas micra, Porphyromonas endodontalis, Eubacterium brachy and Treponema species. Pseudomonas aeruginosa, a bacterium not typically found in subgingival plaque is detected in LAD-I. We suggest that microbial products from LAD-associated communities may have a role in stimulating the local inflammatory response. We demonstrate that bacterial LPS translocates into the lesions of LAD-periodontitis potentially triggering immunopathology. We also show in in vitro assays with human macrophages and in vivo in animal models that microbial products from LAD-associated subgingival plaque trigger IL-23-related immune responses, which have been shown to dominate in patient lesions. In conclusion, our current study characterizes the subgingival microbial communities in LAD-periodontitis and supports their role as triggers of disease pathogenesis.

  14. [Effects of intercropping Chinese milk vetch on functional characteristics of soil microbial community in rape rhizosphere].

    PubMed

    Zhou, Quan; Wang, Long Chang; Xing, Yi; Ma, Shu Min; Zhang, Xiao Duan; Chen, Jiao; Shi, Chao

    2018-03-01

    The application of green manure is facing serious problems in purple soil region of southwest China. With the aim to explore the potential application of green manure, we examined the functional characteristics of soil microbial community in a system of Chinese milk vetch intercropped with rape. The innovations are the application of Chinese milk vetch in dry land of the southwest China and the establishment of new planting pattern of rape by providing empirical data. Results showed that the intercropping with Chinese milk vetch decreased the carbon resource use efficiency of microbial community in rape rhizosphere, especially for the utilization of carbohydrates. At the same time, Shannon index, Simpson index, and richness were reduced, but evenness index was increased by intercropping. Those results from cluster analysis and principal component analysis suggest that the soil microbial community composition was significantly different between monocropping and intercropping. The carbohydrates, amino acids and carboxylic acids were the sensitive carbon sources for differentiating the changes of the microbial community induced by monocropping and intercropping. Intercropping Chinese milk vetch could decrease functional activity, change community composition, and reduce diversity of soil microbial community in rape rhizosphere.

  15. Functional Tradeoffs Underpin Salinity-Driven Divergence in Microbial Community Composition

    PubMed Central

    Yooseph, Shibu; Ininbergs, Karolina; Goll, Johannes; Asplund-Samuelsson, Johannes; McCrow, John P.; Celepli, Narin; Allen, Lisa Zeigler; Ekman, Martin; Lucas, Andrew J.; Hagström, Åke; Thiagarajan, Mathangi; Brindefalk, Björn; Richter, Alexander R.; Andersson, Anders F.; Tenney, Aaron; Lundin, Daniel; Tovchigrechko, Andrey; Nylander, Johan A. A.; Brami, Daniel; Badger, Jonathan H.; Allen, Andrew E.; Rusch, Douglas B.; Hoffman, Jeff; Norrby, Erling; Friedman, Robert; Pinhassi, Jarone; Venter, J. Craig; Bergman, Birgitta

    2014-01-01

    Bacterial community composition and functional potential change subtly across gradients in the surface ocean. In contrast, while there are significant phylogenetic divergences between communities from freshwater and marine habitats, the underlying mechanisms to this phylogenetic structuring yet remain unknown. We hypothesized that the functional potential of natural bacterial communities is linked to this striking divide between microbiomes. To test this hypothesis, metagenomic sequencing of microbial communities along a 1,800 km transect in the Baltic Sea area, encompassing a continuous natural salinity gradient from limnic to fully marine conditions, was explored. Multivariate statistical analyses showed that salinity is the main determinant of dramatic changes in microbial community composition, but also of large scale changes in core metabolic functions of bacteria. Strikingly, genetically and metabolically different pathways for key metabolic processes, such as respiration, biosynthesis of quinones and isoprenoids, glycolysis and osmolyte transport, were differentially abundant at high and low salinities. These shifts in functional capacities were observed at multiple taxonomic levels and within dominant bacterial phyla, while bacteria, such as SAR11, were able to adapt to the entire salinity gradient. We propose that the large differences in central metabolism required at high and low salinities dictate the striking divide between freshwater and marine microbiomes, and that the ability to inhabit different salinity regimes evolved early during bacterial phylogenetic differentiation. These findings significantly advance our understanding of microbial distributions and stress the need to incorporate salinity in future climate change models that predict increased levels of precipitation and a reduction in salinity. PMID:24586863

  16. Functional tradeoffs underpin salinity-driven divergence in microbial community composition.

    PubMed

    Dupont, Chris L; Larsson, John; Yooseph, Shibu; Ininbergs, Karolina; Goll, Johannes; Asplund-Samuelsson, Johannes; McCrow, John P; Celepli, Narin; Allen, Lisa Zeigler; Ekman, Martin; Lucas, Andrew J; Hagström, Åke; Thiagarajan, Mathangi; Brindefalk, Björn; Richter, Alexander R; Andersson, Anders F; Tenney, Aaron; Lundin, Daniel; Tovchigrechko, Andrey; Nylander, Johan A A; Brami, Daniel; Badger, Jonathan H; Allen, Andrew E; Rusch, Douglas B; Hoffman, Jeff; Norrby, Erling; Friedman, Robert; Pinhassi, Jarone; Venter, J Craig; Bergman, Birgitta

    2014-01-01

    Bacterial community composition and functional potential change subtly across gradients in the surface ocean. In contrast, while there are significant phylogenetic divergences between communities from freshwater and marine habitats, the underlying mechanisms to this phylogenetic structuring yet remain unknown. We hypothesized that the functional potential of natural bacterial communities is linked to this striking divide between microbiomes. To test this hypothesis, metagenomic sequencing of microbial communities along a 1,800 km transect in the Baltic Sea area, encompassing a continuous natural salinity gradient from limnic to fully marine conditions, was explored. Multivariate statistical analyses showed that salinity is the main determinant of dramatic changes in microbial community composition, but also of large scale changes in core metabolic functions of bacteria. Strikingly, genetically and metabolically different pathways for key metabolic processes, such as respiration, biosynthesis of quinones and isoprenoids, glycolysis and osmolyte transport, were differentially abundant at high and low salinities. These shifts in functional capacities were observed at multiple taxonomic levels and within dominant bacterial phyla, while bacteria, such as SAR11, were able to adapt to the entire salinity gradient. We propose that the large differences in central metabolism required at high and low salinities dictate the striking divide between freshwater and marine microbiomes, and that the ability to inhabit different salinity regimes evolved early during bacterial phylogenetic differentiation. These findings significantly advance our understanding of microbial distributions and stress the need to incorporate salinity in future climate change models that predict increased levels of precipitation and a reduction in salinity.

  17. Subarctic Lake Sediment Microbial Community Contributions to Methane Emission Patterns

    NASA Astrophysics Data System (ADS)

    Emerson, J. B.; Varner, R. K.; Parks, D.; Wik, M.; Neumann, R.; Johnson, J. E.; Singleton, C. M.; Woodcroft, B. J.; Tollerson, R., II; Owusu-Dommey, A.; Binder, M.; Freitas, N. L.; Crill, P. M.; Saleska, S. R.; Tyson, G. W.; Rich, V. I.

    2017-12-01

    Northern post-glacial lakes have recently been identified as a significant and increasing source of carbon to the atmosphere, largely through ebullition (bubbling) of microbially produced methane from the sediments. Ebullitive methane flux has been shown to correlate significantly with sediment surface temperatures, suggesting that solar radiation is the primary driver of methane emissions from these lakes. However, the slope of this relationship (i.e., the extent to which increasing temperature increases ebullitive methane emissions) differs spatially, both within and among lakes. As microbes are responsible for both methane generation and removal in lakes, we hypothesized that microbial communities—previously uncharacterized in post-glacial lake sediments—could be contributing to spatiotemporal differences in methane emission responses to temperature. We compared methane emission data with sediment microbial (metagenomic and amplicon), isotopic, and geochemical characterizations across two post-glacial lakes in Northern Sweden. With increasing temperatures, the increase in methane emissions was greater in lake middles (deeper water) than lake edges (shallower water), consistent with higher abundances of methanogens in sediments from lake middles than edges, along with significant differences in microbial community composition between these regions. Using sparse partial least squares statistical modeling, microbial abundances (including the abundances of methane-cycling microorganisms and of reconstructed population genomes, e.g., from Planctomycetes, Thermoplasmatales, and Candidate Phylum Aminicenantes) were better predictors of porewater methane concentrations than abiotic variables. These results suggest that, although temperature controls methane emissions, microbial community composition and function may drive the rate and magnitude of this temperature response in subarctic post-glacial lakes.

  18. Relating microbial community structure to functioning in forest soil organic carbon transformation and turnover.

    PubMed

    You, Yeming; Wang, Juan; Huang, Xueman; Tang, Zuoxin; Liu, Shirong; Sun, Osbert J

    2014-03-01

    Forest soils store vast amounts of terrestrial carbon, but we are still limited in mechanistic understanding on how soil organic carbon (SOC) stabilization or turnover is controlled by biotic and abiotic factors in forest ecosystems. We used phospholipid fatty acids (PLFAs) as biomarker to study soil microbial community structure and measured activities of five extracellular enzymes involved in the degradation of cellulose (i.e., β-1,4-glucosidase and cellobiohydrolase), chitin (i.e., β-1,4-N-acetylglucosaminidase), and lignin (i.e., phenol oxidase and peroxidase) as indicators of soil microbial functioning in carbon transformation or turnover across varying biotic and abiotic conditions in a typical temperate forest ecosystem in central China. Redundancy analysis (RDA) was performed to determine the interrelationship between individual PFLAs and biotic and abiotic site factors as well as the linkage between soil microbial structure and function. Path analysis was further conducted to examine the controls of site factors on soil microbial community structure and the regulatory pathway of changes in SOC relating to microbial community structure and function. We found that soil microbial community structure is strongly influenced by water, temperature, SOC, fine root mass, clay content, and C/N ratio in soils and that the relative abundance of Gram-negative bacteria, saprophytic fungi, and actinomycetes explained most of the variations in the specific activities of soil enzymes involved in SOC transformation or turnover. The abundance of soil bacterial communities is strongly linked with the extracellular enzymes involved in carbon transformation, whereas the abundance of saprophytic fungi is associated with activities of extracellular enzymes driving carbon oxidation. Findings in this study demonstrate the complex interactions and linkage among plant traits, microenvironment, and soil physiochemical properties in affecting SOC via microbial regulations.

  19. The effect of D123 wheat as a companion crop on soil enzyme activities, microbial biomass and microbial communities in the rhizosphere of watermelon.

    PubMed

    Xu, Weihui; Wang, Zhigang; Wu, Fengzhi

    2015-01-01

    The growth of watermelon is often threatened by Fusarium oxysporum f. sp. niveum (Fon) in successively monocultured soil, which results in economic loss. The objective of this study was to investigate the effect of D123 wheat as a companion crop on soil enzyme activities, microbial biomass and microbial communities in the rhizosphere of watermelon and to explore the relationship between the effect and the incidence of wilt caused by Fon. The results showed that the activities of soil polyphenol oxidase, urease and invertase were increased, the microbial biomass nitrogen (MBN) and microbial biomass phosphorus (MBP) were significantly increased, and the ratio of MBC/MBN was decreased (P < 0.05). Real-time PCR analysis showed that the Fon population declined significantly in the watermelon/wheat companion system compared with the monoculture system (P < 0.05). The analysis of microbial communities showed that the relative abundance of microbial communities was changed in the rhizosphere of watermelon. Compared with the monoculture system, the relative abundances of Alphaproteobacteria, Actinobacteria, Gemmatimonadetes and Sordariomycetes were increased, and the relative abundances of Gammaproteobacteria, Sphingobacteria, Cytophagia, Pezizomycetes, and Eurotiomycetes were decreased in the rhizosphere of watermelon in the watermelon/wheat companion system; importantly, the incidence of Fusarium wilt was also decreased in the watermelon/wheat companion system. In conclusion, this study indicated that D123 wheat as a companion crop increased soil enzyme activities and microbial biomass, decreased the Fon population, and changed the relative abundance of microbial communities in the rhizosphere of watermelon, which may be related to the reduction of Fusarium wilt in the watermelon/wheat companion system.

  20. Soil Microbial Community Responses to Short-term Multiple Experimental Climate Change Drivers

    NASA Astrophysics Data System (ADS)

    Li, Guanlin; Lee, Jongyeol; Lee, Sohye; Roh, Yujin; Son, Yowhan

    2016-04-01

    It is agreed that soil microbial communities are responsible for the cycling of carbon and nutrients in ecosystems; however, the response of these microbial communities to climate change has not been clearly understood. In this study, we measured the direct and interactive effects of climate change drivers on soil bacterial and fungal communities (abundance and composition) in an open-field multifactor climate change experiment. The experimental treatment system was established with two-year-old Pinus densiflora seedlings at Korea University in April 2013, and consisted of six different treatments with three replicates: two levels of air temperature warming (control and +3° C) were crossed with three levels of precipitation manipulation (control, -30% and +30%). After 2.5 years of treatments, in August, 2015, soil samples were collected from the topsoil (0-15cm) of all plots (n=18). High-throughput sequencing technology was used to assess the abundance and composition of soil bacterial and fungal community. Analysis of variance for a blocked split-plot design was used to detect the effects of climate change drivers and their interaction on the abundance and composition of soil bacterial and fungal community. Our results showed that 1) only the significant effect of warming on fungal community abundance was observed (P <0.05); 2) on average, warming decreased both bacterial and fungal community abundance by 20.90% and 32.30%, 6.69% and 45.89%, 14.71% and 19.56% in control, decreased, and increased precipitation plots, respectively; 3) however, warming increased the relative bacterium/fungus ratio on average by 14.03%, 37.03% and 14.31% in control, decreased, and increased precipitation plots, respectively; 4) the phylogenetic distribution of bacterial and fungal groups and their relative abundance varied among treatments; 5) treatments altered the relative abundance of Ascomycota and Basidiomycota, where Ascomycota decreased with a concomitant increase in the

  1. The unique chemistry of Eastern Mediterranean water masses selects for distinct microbial communities by depth

    DOE PAGES

    Techtmann, Stephen M.; Fortney, Julian L.; Ayers, Kati A.; ...

    2015-03-25

    The waters of the Eastern Mediterranean are characterized by unique physical and chemical properties within separate water masses occupying different depths. Distinct water masses are present throughout the oceans, which drive thermohaline circulation. These water masses may contain specific microbial assemblages. The goal of this study was to examine the effect of physical and geological phenomena on the microbial community of the Eastern Mediterranean water column. Chemical measurements were combined with phospholipid fatty acid (PLFA) analysis and high-throughput 16S rRNA sequencing to characterize the microbial community in the water column at five sites. We demonstrate that the chemistry and microbialmore » community of the water column were stratified into three distinct water masses. The salinity and nutrient concentrations vary between these water masses. Nutrient concentrations increased with depth, and salinity was highest in the intermediate water mass. Our PLFA analysis indicated different lipid classes were abundant in each water mass, suggesting that distinct groups of microbes inhabit these water masses. 16S rRNA gene sequencing confirmed the presence of distinct microbial communities in each water mass. Taxa involved in autotrophic nitrogen cycling were enriched in the intermediate water mass suggesting that microbes in this water mass may be important to the nitrogen cycle of the Eastern Mediterranean. The Eastern Mediterranean also contains numerous active hydrocarbon seeps. We sampled above the North Alex Mud Volcano, in order to test the effect of these geological features on the microbial community in the adjacent water column. The community in the waters overlaying the mud volcano was distinct from other communities collected at similar depths and was enriched in known hydrocarbon degrading taxa. Furthermore, our results demonstrate that physical phenomena such stratification as well as geological phenomena such as mud volcanoes strongly

  2. Community living long before man: fossil and living microbial mats and early life

    NASA Technical Reports Server (NTRS)

    Margulis, L.; Lopez Baluja, L.; Awramik, S. M.; Sagan, D.

    1986-01-01

    Microbial mats are layered communities of bacteria that form cohesive structures, some of which are preserved in sedimentary rocks as stromatolites. Certain rocks, approximately three and a half thousand million years old and representing the oldest known fossils, are interpreted to derive from microbial mats and to contain fossils of microorganisms. Modern microbial mats (such as the one described here from Matanzas, Cuba) and their fossil counterparts are of great interest in the interpretation of early life on Earth. Since examination of microbial mats and stromatolites increases our understanding of long-term stability and change, within the global environment, such structures should be protected wherever possible as natural science preserves. Furthermore, since they have existed virtually from the time of life's origin, microbial mats have developed exemplary mechanisms of local community persistence and may even play roles in the larger global environment that we do not understand.

  3. Comparative metagenomic and metatranscriptomic analyses of microbial communities in acid mine drainage.

    PubMed

    Chen, Lin-xing; Hu, Min; Huang, Li-nan; Hua, Zheng-shuang; Kuang, Jia-liang; Li, Sheng-jin; Shu, Wen-sheng

    2015-07-01

    The microbial communities in acid mine drainage have been extensively studied to reveal their roles in acid generation and adaption to this environment. Lacking, however, are integrated community- and organism-wide comparative gene transcriptional analyses that could reveal the response and adaptation mechanisms of these extraordinary microorganisms to different environmental conditions. In this study, comparative metagenomics and metatranscriptomics were performed on microbial assemblages collected from four geochemically distinct acid mine drainage (AMD) sites. Taxonomic analysis uncovered unexpectedly high microbial biodiversity of these extremely acidophilic communities, and the abundant taxa of Acidithiobacillus, Leptospirillum and Acidiphilium exhibited high transcriptional activities. Community-wide comparative analyses clearly showed that the AMD microorganisms adapted to the different environmental conditions via regulating the expression of genes involved in multiple in situ functional activities, including low-pH adaptation, carbon, nitrogen and phosphate assimilation, energy generation, environmental stress resistance, and other functions. Organism-wide comparative analyses of the active taxa revealed environment-dependent gene transcriptional profiles, especially the distinct strategies used by Acidithiobacillus ferrivorans and Leptospirillum ferrodiazotrophum in nutrients assimilation and energy generation for survival under different conditions. Overall, these findings demonstrate that the gene transcriptional profiles of AMD microorganisms are closely related to the site physiochemical characteristics, providing clues into the microbial response and adaptation mechanisms in the oligotrophic, extremely acidic environments.

  4. Community-Level Physiological Profiling of Microbial Communities in Constructed Wetlands: Effects of Sample Preparation.

    PubMed

    Button, Mark; Weber, Kela; Nivala, Jaime; Aubron, Thomas; Müller, Roland Arno

    2016-03-01

    Community-level physiological profiling (CLPP) using BIOLOG® EcoPlates™ has become a popular method for characterizing and comparing the functional diversity, functional potential, and metabolic activity of heterotrophic microbial communities. The method was originally developed for profiling soil communities; however, its usage has expanded into the fields of ecotoxicology, agronomy, and the monitoring and profiling of microbial communities in various wastewater treatment systems, including constructed wetlands for water pollution control. When performing CLPP on aqueous samples from constructed wetlands, a wide variety of sample characteristics can be encountered and challenges may arise due to excessive solids, color, or turbidity. The aim of this study was to investigate the impacts of different sample preparation methods on CLPP performed on a variety of aqueous samples covering a broad range of physical and chemical characteristics. The results show that using filter paper, centrifugation, or settling helped clarify samples for subsequent CLPP analysis, however did not do so as effectively as dilution for the darkest samples. Dilution was able to provide suitable clarity for the darkest samples; however, 100-fold dilution significantly affected the carbon source utilization patterns (CSUPs), particularly with samples that were already partially or fully clear. Ten-fold dilution also had some effect on the CSUPs of samples which were originally clear; however, the effect was minimal. Based on these findings, for this specific set of samples, a 10-fold dilution provided a good balance between ease of use, sufficient clarity (for dark samples), and limited effect on CSUPs. The process and findings outlined here can hopefully serve future studies looking to utilize CLPP for functional analysis of microbial communities and also assist in comparing data from studies where different sample preparation methods were utilized.

  5. An assessment of microbial communities associated with surface mining-disturbed overburden.

    PubMed

    Poncelet, Dominique M; Cavender, Nicole; Cutright, Teresa J; Senko, John M

    2014-03-01

    To assess the microbiological changes that occur during the maturation of overburden that has been disturbed by surface mining of coal, a surface mining-disturbed overburden unit in southeastern Ohio, USA was characterized. Overburden from the same unit that had been disturbed for 37 and 16 years were compared to undisturbed soil from the same region. Overburden and soil samples were collected as shallow subsurface cores from each subregion of the mined area (i.e., land 16 years and 37 years post-mining, and unmined land). Chemical and mineralogical characteristics of overburden samples were determined, as were microbial respiration rates. The composition of microbial communities associated with overburden and soil were determined using culture-independent, nucleic acid-based approaches. Chemical and mineralogical evaluation of overburden suggested that weathering of disturbed overburden gave rise to a setting with lower pH and more oxidized chemical constituents. Overburden-associated microbial biomass and respiration rates increased with time after overburden disturbance. Evaluation of 16S rRNA gene libraries that were produced by "next-generation" sequencing technology revealed that recently disturbed overburden contained an abundance of phylotypes attributable to sulfur-oxidizing Limnobacter spp., but with increasing time post-disturbance, overburden-associated microbial communities developed a structure similar to that of undisturbed soil, but retained characteristics of more recently disturbed overburden. Our results indicate that over time, the biogeochemical weathering of disturbed overburden leads to the development of geochemical conditions and microbial communities that approximate those of undisturbed soil, but that this transition is incomplete after 37 years of overburden maturation.

  6. Nutrient and Rainfall Additions Shift Phylogenetically Estimated Traits of Soil Microbial Communities.

    PubMed

    Gravuer, Kelly; Eskelinen, Anu

    2017-01-01

    Microbial traits related to ecological responses and functions could provide a common currency facilitating synthesis and prediction; however, such traits are difficult to measure directly for all taxa in environmental samples. Past efforts to estimate trait values based on phylogenetic relationships have not always distinguished between traits with high and low phylogenetic conservatism, limiting reliability, especially in poorly known environments, such as soil. Using updated reference trees and phylogenetic relationships, we estimated two phylogenetically conserved traits hypothesized to be ecologically important from DNA sequences of the 16S rRNA gene from soil bacterial and archaeal communities. We sampled these communities from an environmental change experiment in California grassland applying factorial addition of late-season precipitation and soil nutrients to multiple soil types for 3 years prior to sampling. Estimated traits were rRNA gene copy number, which contributes to how rapidly a microbe can respond to an increase in resources and may be related to its maximum growth rate, and genome size, which suggests the breadth of environmental and substrate conditions in which a microbe can thrive. Nutrient addition increased community-weighted mean estimated rRNA gene copy number and marginally increased estimated genome size, whereas precipitation addition decreased these community means for both estimated traits. The effects of both treatments on both traits were associated with soil properties, such as ammonium, available phosphorus, and pH. Estimated trait responses within several phyla were opposite to the community mean response, indicating that microbial responses, although largely consistent among soil types, were not uniform across the tree of life. Our results show that phylogenetic estimation of microbial traits can provide insight into how microbial ecological strategies interact with environmental changes. The method could easily be applied to

  7. Forest soil microbial communities: Using metagenomic approaches to survey permanent plots

    Treesearch

    Amy L. Ross-Davis; Jane E. Stewart; John W. Hanna; John D. Shaw; Andrew T. Hudak; Theresa B. Jain; Robert J. Denner; Russell T. Graham; Deborah S. Page-Dumroese; Joanne M. Tirocke; Mee-Sook Kim; Ned B. Klopfenstein

    2014-01-01

    Forest soil ecosystems include some of the most complex microbial communities on Earth (Fierer et al. 2012). These assemblages of archaea, bacteria, fungi, and protists play essential roles in biogeochemical cycles (van der Heijden et al. 2008) and account for considerable terrestrial biomass (Nielsen et al. 2011). Yet, determining the microbial composition of forest...

  8. Comparative analysis of fecal microbial communities in cattle and Bactrian camels

    PubMed Central

    Ming, Liang; Yi, Li; Siriguleng; Hasi, Surong; He, Jing; Hai, Le; Wang, Zhaoxia; Guo, Fucheng; Qiao, Xiangyu; Jirimutu

    2017-01-01

    Bactrian camels may have a unique gastrointestinal (GI) microbiome because of their distinctive digestive systems, unique eating habits and extreme living conditions. However, understanding of the microbial communities in the Bactrian camel GI tract is still limited. In this study, microbial communities were investigated by comparative analyses of 16S rRNA hypervariable region V4 sequences of fecal bacteria sampled from 94 animals in four population groups: Inner Mongolian cattle (IMG-Cattle), Inner Mongolian domestic Bactrian camels (IMG-DBC), Mongolian domestic Bactrian camels (MG-DBC), and Mongolian wild Bactrian camels (MG-WBC). A total of 2,097,985 high-quality reads were obtained and yielded 471,767,607 bases of sequence. Firmicutes was the predominant phylum in the population groups IMG-Cattle, IMG-DBC and MG-WBC, followed (except in the Inner Mongolian cattle) by Verrucomicrobia. Bacteroidetes were abundant in the IMG-DBC and MG-WBC populations. Hierarchical clustered heatmap analysis revealed that the microbial community composition within the three Bactrian camel groups was relatively similar, and somewhat distinct from that in the cattle. A similar result was determined by principal component analysis, in which the camels grouped together. We also found several species-specific differences in microbial communities at the genus level: for example, Desulfovibrio was abundant in the IMG-DBC and MG-WBC groups; Pseudomonas was abundant in the IMG-Cattle group; and Fibrobacter, Coprobacillus, and Paludibacter were scarce in the MG-WBC group. Such differences may be related to different eating habits and living conditions of the cattle and the various camel populations. PMID:28301489

  9. Temporal assessment of microbial communities in soils of two contrasting mangroves.

    PubMed

    Rigonato, Janaina; Kent, Angela D; Gumiere, Thiago; Branco, Luiz Henrique Zanini; Andreote, Fernando Dini; Fiore, Marli Fátima

    Variations in microbial communities promoted by alterations in environmental conditions are reflected in similarities/differences both at taxonomic and functional levels. Here we used a natural gradient within mangroves from seashore to upland, to contrast the natural variability in bacteria, cyanobacteria and diazotroph assemblages in a pristine area compared to an oil polluted area along a timespan of three years, based on ARISA (bacteria and cyanobacteria) and nifH T-RFLP (diazotrophs) fingerprinting. The data presented herein indicated that changes in all the communities evaluated were mainly driven by the temporal effect in the contaminated area, while local effects were dominant on the pristine mangrove. A positive correlation of community structure between diazotrophs and cyanobacteria was observed, suggesting the functional importance of this phylum as nitrogen fixers in mangroves soils. Different ecological patterns explained the microbial behavior in the pristine and polluted mangroves. Stochastic models in the pristine mangrove indicate that there is not a specific environmental factor that determines the bacterial distribution, while cyanobacteria and diazotrophs better fitted in deterministic model in the same area. For the contaminated mangrove site, deterministic models better represented the variations in the communities, suggesting that the presence of oil might change the microbial ecological structures over time. Mangroves represent a unique environment threatened by global change, and this study contributed to the knowledge of the microbial distribution in such areas and its response on persistent contamination historic events. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  10. Dynamics of the microbial community during continuous methane fermentation in continuously stirred tank reactors.

    PubMed

    Tang, Yue-Qin; Shigematsu, Toru; Morimura, Shigeru; Kida, Kenji

    2015-04-01

    Methane fermentation is an attractive technology for the treatment of organic wastes and wastewaters. However, the process is difficult to control, and treatment rates and digestion efficiency require further optimization. Understanding the microbiology mechanisms of methane fermentation is of fundamental importance to improving this process. In this review, we summarize the dynamics of microbial communities in methane fermentation chemostats that are operated using completely stirred tank reactors (CSTRs). Each chemostat was supplied with one substrate as the sole carbon source. The substrates include acetate, propionate, butyrate, long-chain fatty acids, glycerol, protein, glucose, and starch. These carbon sources are general substrates and intermediates of methane fermentation. The factors that affect the structure of the microbial community are discussed. The carbon source, the final product, and the operation conditions appear to be the main factors that affect methane fermentation and determine the structure of the microbial community. Understanding the structure of the microbial community during methane fermentation will guide the design and operation of practical wastewater treatments. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. The roles of host evolutionary relationships (genus: Nasonia) and development in structuring microbial communities.

    PubMed

    Brucker, Robert M; Bordenstein, Seth R

    2012-02-01

    The comparative structure of bacterial communities among closely related host species remains relatively unexplored. For instance, as speciation events progress from incipient to complete stages, does divergence in the composition of the species' microbial communities parallel the divergence of host nuclear genes? To address this question, we used the recently diverged species of the parasitoid wasp genus Nasonia to test whether the evolutionary relationships of their bacterial microbiotas recapitulate the Nasonia phylogenetic history. We also assessed microbial diversity in Nasonia at different stages of development to determine the role that host age plays in microbiota structure. The results indicate that all three species of Nasonia share simple larval microbiotas dominated by the γ-proteobacteria class; however, bacterial species diversity increases as Nasonia develop into pupae and adults. Finally, under identical environmental conditions, the relationships of the microbial communities reflect the phylogeny of the Nasonia host species at multiple developmental stages, which suggests that the structure of an animal's microbial community is closely allied with divergence of host genes. These findings highlight the importance of host evolutionary relationships on microbiota composition and have broad implications for future studies of microbial symbiosis and animal speciation. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  12. Spatial P heterogeneity in forest soil: Influence on microbial P uptake and community structure

    NASA Astrophysics Data System (ADS)

    Zilla, Thomas; Angulo-Schipper, Bridith; Méndez, Juan Carlos; Dippold, Michaela A.; Kuzyakov, Yakov; Spielvogel, Sandra

    2017-04-01

    Other than nitrogen, phosphorus (P) is the most important growth limiting nutrient in soils. Yet, little information is available concerning the spatial heterogeneity of P content in forest soils. More so, the effects of a homogeneous vs. heterogeneous soil P distribution on microbial P acquisition and community structure have yet to be determined. Thus, a rhizotron experiment based on a P-deficient forest soil was conducted to investigate competitive P uptake strategies of microbes. F. sylvatica-bearing rhizotrons were labeled with Fe33PO4, a relatively immobile P source native to the study soil. Homogeneous and heterogeneous P patterns were created to study the effects of spatial P heterogeneity on plant and microbial P acquisition. P mobilization by microorganisms was tracked by an improved 33P-PLFA method, linking 33P incorporation in microbes with changes in microbial community structure in soils in situ. The microbial P uptake was enhanced in rhizotrons with high P availability and in those with a patchy P distribution. Characteristic PLFAs indicate a congregation of beech-associated ectomycorrhizal fungi in P-rich patches. These ectomycorrhizal fungi are likely to strongly increase P mobilization from the used Fe33PO4 in high P habitats. In contrast, habitats with low P availability require a more complex microbial community structure without a dominant group to mobilize this inaccessible P source. Therefore, hotspots of P are likely to promote the efforts of fungal hyphae for P mobilization - an effect which decreases with lower P content. Additionally, gram positive and negative bacteria exhibit a vastly higher P uptake under increasingly patchy P distributions. However, they form a smaller portion of the microbial community than in homogeneously P enriched rhizotrons, suggesting that filamentous organisms benefit from the patchy P distribution. Thus, only a heterogeneous P distribution promotes P acquisition of forest microbial communities from mineral P

  13. PHYLOGENETIC AND FUNCTIONAL DIVERSITY OF SEAGULL AND CANADIAN GEESE FECAL MICROBIAL COMMUNITIES

    EPA Science Inventory

    In spite of increasing public health concerns on the risks associated with swimming in waters contaminated with waterfowl feces, there is little information on the gut microbial communities of aquatic birds. To address the molecular microbial diversity of waterfowl, 16S rDNA and ...

  14. Electrosynthesis of Commodity Chemicals by an Autotrophic Microbial Community

    PubMed Central

    Marshall, Christopher W.; Ross, Daniel E.; Fichot, Erin B.; Norman, R. Sean

    2012-01-01

    A microbial community originating from brewery waste produced methane, acetate, and hydrogen when selected on a granular graphite cathode poised at −590 mV versus the standard hydrogen electrode (SHE) with CO2 as the only carbon source. This is the first report on the simultaneous electrosynthesis of these commodity chemicals and the first description of electroacetogenesis by a microbial community. Deep sequencing of the active community 16S rRNA revealed a dynamic microbial community composed of an invariant Archaea population of Methanobacterium spp. and a shifting Bacteria population. Acetobacterium spp. were the most abundant Bacteria on the cathode when acetogenesis dominated. Methane was generally the dominant product with rates increasing from <1 to 7 mM day−1 (per cathode liquid volume) and was concomitantly produced with acetate and hydrogen. Acetogenesis increased to >4 mM day−1 (accumulated to 28.5 mM over 12 days), and methanogenesis ceased following the addition of 2-bromoethanesulfonic acid. Traces of hydrogen accumulated during initial selection and subsequently accelerated to >11 mM day−1 (versus 0.045 mM day−1 abiotic production). The hypothesis of electrosynthetic biocatalysis occurring at the microbe-electrode interface was supported by a catalytic wave (midpoint potential of −460 mV versus SHE) in cyclic voltammetry scans of the biocathode, the lack of redox active components in the medium, and the generation of comparatively high amounts of products (even after medium exchange). In addition, the volumetric production rates of these three commodity chemicals are marked improvements for electrosynthesis, advancing the process toward economic feasibility. PMID:23001672

  15. Degradation of oxytetracycline and its impacts on biogas-producing microbial community structure.

    PubMed

    Coban, Halil; Ertekin, Emine; Ince, Orhan; Turker, Gokhan; Akyol, Çağrı; Ince, Bahar

    2016-07-01

    The effect of veterinary antibiotics in anaerobic digesters is a concern where methane production efficiency is highly dependent on microbial community structure. In this study, both anaerobic degradation of a common veterinary antibiotic, oxytetracycline (OTC), and its effects on an anaerobic digester microbial community were investigated. Qualitative and quantitative molecular tools were used to monitor changes in microbial community structure during a 60-day batch incubation period of cow manure with the addition of different concentrations of the antibiotic. Molecular data were interpreted by a further redundancy analysis as a multivariate statistics approach. At the end of the experiment, approximately 48, 33, and 17 % of the initially added 50, 100, and 200 mg l(-1) of OTC was still present in the serum bottles which reduced the biogas production via accumulation of some of the volatile fatty acids (VFAs). Biogas production was highly correlated with Methanobacteriales and Methanosarcinales gene copy numbers, and those parameters were negatively affected with oxytetracycline and VFA concentrations.

  16. Toward Linking Aboveground Vegetation Properties and Soil Microbial Communities Using Remote Sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamada, Yuki; Gilbert, Jack A.; Larsen, Peter E.

    2014-04-01

    Despite their vital role in terrestrial ecosystem function, the distributions and dynamics of soil microbial communities (SMCs) are poorly understood. Vegetation and soil properties are the primary factors that influence SMCs. This paper discusses the potential effectiveness of remote sensing science and technologies for mapping SMC biogeography by characterizing surface biophysical properties (e.g., plant traits and community composition) strongly correlated with SMCs. Using remotely sensed biophysical properties to predict SMC distributions is extremely challenging because of the intricate interactions between biotic and abiotic factors and between above- and belowground ecosystems. However, the integration of biophysical and soil remote sensing withmore » geospatial information about the e nvironment holds great promise for mapping SMC biogeography. Additional research needs invol ve microbial taxonomic definition, soil environmental complexity, and scaling strategies. The collaborative effort of experts from diverse disciplines is essential to linking terrestrial surface biosphere observations with subsurface microbial community distributions using remote sensing.« less

  17. Toward Linking Aboveground Vegetation Properties and Soil Microbial Communities Using Remote Sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamada, Yuki; Gilbert, Jack A.; Larsen, Peter E.

    2014-04-01

    Despite their vital role in terrestrial ecosystem function, the distributions and dynamics of soil microbial communities (SMCs) are poorly understood. Vegetation and soil properties are the primary factors that influence SMCs. This paper discusses the potential effectiveness of remote sensing science and technologies for mapping SMC biogeography by characterizing surface biophysical properties (e.g., plant traits and community composition) strongly correlated with SMCs. Using remotely sensed biophysical properties to predict SMC distributions is extremely challenging because of the intricate interactions between biotic and abiotic factors and between above- and below-ground ecosystems. However, the integration of biophysical and soil remote sensing withmore » geospatial information about the environment holds great promise for mapping SMC biogeography. Additional research needs involve microbial taxonomic definition, soil environmental complexity, and scaling strategies. The collaborative effort of experts from diverse disciplines is essential to linking terrestrial surface biosphere observations with subsurface microbial community distributions using remote sensing.« less

  18. Microbial Community Dynamics of an Urban Drinking Water Distribution System Subjected to Phases of Chloramination and Chlorination Treatments

    PubMed Central

    Hwang, Chiachi; Ling, Fangqiong; Andersen, Gary L.; LeChevallier, Mark W.

    2012-01-01

    Water utilities in parts of the U.S. control microbial regrowth in drinking water distribution systems (DWDS) by alternating postdisinfection methods between chlorination and chloramination. To examine how this strategy influences drinking water microbial communities, an urban DWDS (population ≅ 40,000) with groundwater as the source water was studied for approximately 2 years. Water samples were collected at five locations in the network at different seasons and analyzed for their chemical and physical characteristics and for their microbial community composition and structure by examining the 16S rRNA gene via terminal restriction fragment length polymorphism and DNA pyrosequencing technology. Nonmetric multidimension scaling and canonical correspondence analysis of microbial community profiles could explain >57% of the variation. Clustering of samples based on disinfection types (free chlorine versus combined chlorine) and sampling time was observed to correlate to the shifts in microbial communities. Sampling location and water age (<21.2 h) had no apparent effects on the microbial compositions of samples from most time points. Microbial community analysis revealed that among major core populations, Cyanobacteria, Methylobacteriaceae, Sphingomonadaceae, and Xanthomonadaceae were more abundant in chlorinated water, and Methylophilaceae, Methylococcaceae, and Pseudomonadaceae were more abundant in chloraminated water. No correlation was observed with minor populations that were detected frequently (<0.1% of total pyrosequences), which were likely present in source water and survived through the treatment process. Transient microbial populations including Flavobacteriaceae and Clostridiaceae were also observed. Overall, reversible shifts in microbial communities were especially pronounced with chloramination, suggesting stronger selection of microbial populations from chloramines than chlorine. PMID:22941076

  19. Microbial community dynamics of an urban drinking water distribution system subjected to phases of chloramination and chlorination treatments.

    PubMed

    Hwang, Chiachi; Ling, Fangqiong; Andersen, Gary L; LeChevallier, Mark W; Liu, Wen-Tso

    2012-11-01

    Water utilities in parts of the U.S. control microbial regrowth in drinking water distribution systems (DWDS) by alternating postdisinfection methods between chlorination and chloramination. To examine how this strategy influences drinking water microbial communities, an urban DWDS (population ≅ 40,000) with groundwater as the source water was studied for approximately 2 years. Water samples were collected at five locations in the network at different seasons and analyzed for their chemical and physical characteristics and for their microbial community composition and structure by examining the 16S rRNA gene via terminal restriction fragment length polymorphism and DNA pyrosequencing technology. Nonmetric multidimension scaling and canonical correspondence analysis of microbial community profiles could explain >57% of the variation. Clustering of samples based on disinfection types (free chlorine versus combined chlorine) and sampling time was observed to correlate to the shifts in microbial communities. Sampling location and water age (<21.2 h) had no apparent effects on the microbial compositions of samples from most time points. Microbial community analysis revealed that among major core populations, Cyanobacteria, Methylobacteriaceae, Sphingomonadaceae, and Xanthomonadaceae were more abundant in chlorinated water, and Methylophilaceae, Methylococcaceae, and Pseudomonadaceae were more abundant in chloraminated water. No correlation was observed with minor populations that were detected frequently (<0.1% of total pyrosequences), which were likely present in source water and survived through the treatment process. Transient microbial populations including Flavobacteriaceae and Clostridiaceae were also observed. Overall, reversible shifts in microbial communities were especially pronounced with chloramination, suggesting stronger selection of microbial populations from chloramines than chlorine.

  20. Temporal dynamics of hot desert microbial communities reveal structural and functional responses to water input

    PubMed Central

    Armstrong, Alacia; Valverde, Angel; Ramond, Jean-Baptiste; Makhalanyane, Thulani P.; Jansson, Janet K.; Hopkins, David W.; Aspray, Thomas J.; Seely, Mary; Trindade, Marla I.; Cowan, Don A.

    2016-01-01

    The temporal dynamics of desert soil microbial communities are poorly understood. Given the implications for ecosystem functioning under a global change scenario, a better understanding of desert microbial community stability is crucial. Here, we sampled soils in the central Namib Desert on sixteen different occasions over a one-year period. Using Illumina-based amplicon sequencing of the 16S rRNA gene, we found that α-diversity (richness) was more variable at a given sampling date (spatial variability) than over the course of one year (temporal variability). Community composition remained essentially unchanged across the first 10 months, indicating that spatial sampling might be more important than temporal sampling when assessing β-diversity patterns in desert soils. However, a major shift in microbial community composition was found following a single precipitation event. This shift in composition was associated with a rapid increase in CO2 respiration and productivity, supporting the view that desert soil microbial communities respond rapidly to re-wetting and that this response may be the result of both taxon-specific selection and changes in the availability or accessibility of organic substrates. Recovery to quasi pre-disturbance community composition was achieved within one month after rainfall. PMID:27680878