Science.gov

Sample records for microbial genes transforming

  1. Functional Analysis and Discovery of Microbial Genes Transforming Metallic and Organic Pollutants: Database and Experimental Tools

    SciTech Connect

    Lawrence P. Wackett; Lynda B.M. Ellis

    2004-12-09

    Microbial functional genomics is faced with a burgeoning list of genes which are denoted as unknown or hypothetical for lack of any knowledge about their function. The majority of microbial genes encode enzymes. Enzymes are the catalysts of metabolism; catabolism, anabolism, stress responses, and many other cell functions. A major problem facing microbial functional genomics is proposed here to derive from the breadth of microbial metabolism, much of which remains undiscovered. The breadth of microbial metabolism has been surveyed by the PIs and represented according to reaction types on the University of Minnesota Biocatalysis/Biodegradation Database (UM-BBD): http://umbbd.ahc.umn.edu/search/FuncGrps.html The database depicts metabolism of 49 chemical functional groups, representing most of current knowledge. Twice that number of chemical groups are proposed here to be metabolized by microbes. Thus, at least 50% of the unique biochemical reactions catalyzed by microbes remain undiscovered. This further suggests that many unknown and hypothetical genes encode functions yet undiscovered. This gap will be partly filled by the current proposal. The UM-BBD will be greatly expanded as a resource for microbial functional genomics. Computational methods will be developed to predict microbial metabolism which is not yet discovered. Moreover, a concentrated effort to discover new microbial metabolism will be conducted. The research will focus on metabolism of direct interest to DOE, dealing with the transformation of metals, metalloids, organometallics and toxic organics. This is precisely the type of metabolism which has been characterized most poorly to date. Moreover, these studies will directly impact functional genomic analysis of DOE-relevant genomes.

  2. Microbial transformation of sesquiterpenoids.

    PubMed

    Bhatti, Haq N; Zubair, Muhammad; Rasool, Nasir; Hassan, Zahid; Ahmad, Viqar U

    2009-08-01

    Biotransformations are useful methods for producing medicinal and agricultural chemicals from both active and inactive natural products with the introduction of chemical functions into remote sites of the molecules. Research on microbial biotransformations of commonly available sesquiterpenoids into more valuable derivatives has always been of interest because of their economical potential to the perfume, food, chemical and pharmaceutical industries. Fungal transformations of sesquiterpenoids have been less frequently studied compared with many other natural products. In recent years, however, much attention has been given to the exploitation of new products with enhanced biological activity using microorganisms. This review, covering the period from 1990 to 2006, summarizes our knowledge of the biotransformations of sesquiterpenoids by various fungi. Such transformations could lead to the discovery of new reaction pathways that might be useful in the design of new value-added products.

  3. Microbial transformations of isocupressic acid.

    PubMed

    Lin, S J; Rosazza, J P

    1998-07-01

    Microbial transformations of the labdane-diterpene isocupressic acid (1) with different microorganisms yielded several oxygenated metabolites that were isolated and characterized by MS and NMR spectroscopic analyses. Nocardia aurantia (ATCC 12674) catalyzed the cleavage of the 13,14-double bond to yield a new nor-labdane metabolite, 2. Cunninghamella elegans (-) (NRRL 1393) gave 7beta-hydroxyisocupressic acid (3) and labda-7,13(E)-diene-6beta,15, 17-triol-19-oic acid (4), and Mucor mucedo (ATCC 20094) gave 2alpha-hydroxyisocupressic acid (5) and labda-8(17),14-diene-2alpha, 13-diol-19-oic acid (6).

  4. Microbial sulfur transformations in sediments from Subglacial Lake Whillans.

    PubMed

    Purcell, Alicia M; Mikucki, Jill A; Achberger, Amanda M; Alekhina, Irina A; Barbante, Carlo; Christner, Brent C; Ghosh, Dhritiman; Michaud, Alexander B; Mitchell, Andrew C; Priscu, John C; Scherer, Reed; Skidmore, Mark L; Vick-Majors, Trista J; The Wissard Science Team

    2014-01-01

    Diverse microbial assemblages inhabit subglacial aquatic environments. While few of these environments have been sampled, data reveal that subglacial organisms gain energy for growth from reduced minerals containing nitrogen, iron, and sulfur. Here we investigate the role of microbially mediated sulfur transformations in sediments from Subglacial Lake Whillans (SLW), Antarctica, by examining key genes involved in dissimilatory sulfur oxidation and reduction. The presence of sulfur transformation genes throughout the top 34 cm of SLW sediments changes with depth. SLW surficial sediments were dominated by genes related to known sulfur-oxidizing chemoautotrophs. Sequences encoding the adenosine-5'-phosphosulfate (APS) reductase gene, involved in both dissimilatory sulfate reduction and sulfur oxidation, were present in all samples and clustered into 16 distinct operational taxonomic units. The majority of APS reductase sequences (74%) clustered with known sulfur oxidizers including those within the "Sideroxydans" and Thiobacillus genera. Reverse-acting dissimilatory sulfite reductase (rDSR) and 16S rRNA gene sequences further support dominance of "Sideroxydans" and Thiobacillus phylotypes in the top 2 cm of SLW sediments. The SLW microbial community has the genetic potential for sulfate reduction which is supported by experimentally measured low rates (1.4 pmol cm(-3)d(-1)) of biologically mediated sulfate reduction and the presence of APS reductase and DSR gene sequences related to Desulfobacteraceae and Desulfotomaculum. Our results also infer the presence of sulfur oxidation, which can be a significant energetic pathway for chemosynthetic biosynthesis in SLW sediments. The water in SLW ultimately flows into the Ross Sea where intermediates from subglacial sulfur transformations can influence the flux of solutes to the Southern Ocean.

  5. Microbial sulfur transformations in sediments from Subglacial Lake Whillans

    PubMed Central

    Purcell, Alicia M.; Mikucki, Jill A.; Achberger, Amanda M.; Alekhina, Irina A.; Barbante, Carlo; Christner, Brent C.; Ghosh, Dhritiman; Michaud, Alexander B.; Mitchell, Andrew C.; Priscu, John C.; Scherer, Reed; Skidmore, Mark L.; Vick-Majors, Trista J.; the WISSARD Science Team

    2014-01-01

    Diverse microbial assemblages inhabit subglacial aquatic environments. While few of these environments have been sampled, data reveal that subglacial organisms gain energy for growth from reduced minerals containing nitrogen, iron, and sulfur. Here we investigate the role of microbially mediated sulfur transformations in sediments from Subglacial Lake Whillans (SLW), Antarctica, by examining key genes involved in dissimilatory sulfur oxidation and reduction. The presence of sulfur transformation genes throughout the top 34 cm of SLW sediments changes with depth. SLW surficial sediments were dominated by genes related to known sulfur-oxidizing chemoautotrophs. Sequences encoding the adenosine-5′-phosphosulfate (APS) reductase gene, involved in both dissimilatory sulfate reduction and sulfur oxidation, were present in all samples and clustered into 16 distinct operational taxonomic units. The majority of APS reductase sequences (74%) clustered with known sulfur oxidizers including those within the “Sideroxydans” and Thiobacillus genera. Reverse-acting dissimilatory sulfite reductase (rDSR) and 16S rRNA gene sequences further support dominance of “Sideroxydans” and Thiobacillus phylotypes in the top 2 cm of SLW sediments. The SLW microbial community has the genetic potential for sulfate reduction which is supported by experimentally measured low rates (1.4 pmol cm-3d-1) of biologically mediated sulfate reduction and the presence of APS reductase and DSR gene sequences related to Desulfobacteraceae and Desulfotomaculum. Our results also infer the presence of sulfur oxidation, which can be a significant energetic pathway for chemosynthetic biosynthesis in SLW sediments. The water in SLW ultimately flows into the Ross Sea where intermediates from subglacial sulfur transformations can influence the flux of solutes to the Southern Ocean. PMID:25477865

  6. Microbial Transformations of Actinides and Other Radionuclides

    SciTech Connect

    Francis,A.J.; Dodge, C. J.

    2009-01-07

    Microorganisms can affect the stability and mobility of the actinides and other radionuclides released from nuclear fuel cycle and from nuclear fuel reprocessing plants. Under appropriate conditions, microorganisms can alter the chemical speciation, solubility and sorption properties and thus could increase or decrease the concentrations of radionuclides in solution in the environment and the bioavailability. Dissolution or immobilization of radionuclides is brought about by direct enzymatic action or indirect non-enzymatic action of microorganisms. Although the physical, chemical, and geochemical processes affecting dissolution, precipitation, and mobilization of radionuclides have been extensively investigated, we have only limited information on the effects of microbial processes and biochemical mechanisms which affect the stability and mobility of radionuclides. The mechanisms of microbial transformations of the major and minor actinides U, Pu, Cm, Am, Np, the fission products and other radionuclides such as Ra, Tc, I, Cs, Sr, under aerobic and anaerobic conditions in the presence of electron donors and acceptors are reviewed.

  7. Nitrogen transformations in stratified aquatic microbial ecosystems.

    PubMed

    Revsbech, Niels Peter; Risgaard-Petersen, Nils; Schramm, Andreas; Nielsen, Lars Peter

    2006-11-01

    New analytical methods such as advanced molecular techniques and microsensors have resulted in new insights about how nitrogen transformations in stratified microbial systems such as sediments and biofilms are regulated at a microm-mm scale. A large and ever-expanding knowledge base about nitrogen fixation, nitrification, denitrification, and dissimilatory reduction of nitrate to ammonium, and about the microorganisms performing the processes, has been produced by use of these techniques. During the last decade the discovery of anammmox bacteria and migrating, nitrate accumulating bacteria performing dissimilatory reduction of nitrate to ammonium have given new dimensions to the understanding of nitrogen cycling in nature, and the occurrence of these organisms and processes in stratified microbial communities will be described in detail.

  8. Microbial transformation of Isopimpinellin by Glomerella cingulata.

    PubMed

    Marumoto, Shinsuke; Miyazawa, Mitsuo

    2011-01-01

    Microbial transformation studies conducted on isopimpinellin (1) by the fungus Glomerella cingulata have revealed that 1 was metabolized to give the corresponding reduced acid, 5,8-dimethoxy-6,7-furano-hydrocoumaric acid (2). The structure of metabolite 2 was elucidated by high-resolution mass spectrometry (HR-MS), extensive NMR techniques, including (1)H NMR, (13)C NMR, (1)H-(1)H correlation spectroscopy (COSY), heteronuclear multiple quantum coherence (HMQC) and heteonuclear multiple bond coherence (HMBC). The biotransformed product 2 showed weak a in vitro β-secretase (BACE1) inhibitory effect. PMID:22027023

  9. Microbial transformation of elements: the case of arsenic and selenium.

    PubMed

    Stolz, J F; Basu, P; Oremland, R S

    2002-12-01

    Microbial activity is responsible for the transformation of at least one third of the elements in the periodic table. These transformations are the result of assimilatory, dissimilatory, or detoxification processes and form the cornerstones of many biogeochemical cycles. Arsenic and selenium are two elements whose roles in microbial ecology have only recently been recognized. Known as "essential toxins", they are required in trace amounts for growth and metabolism but are toxic at elevated concentrations. Arsenic is used as an osmolite in some marine organisms while selenium is required as selenocysteine (i.e. the twenty-first amino acid) or as a ligand to metal in some enzymes (e.g. FeNiSe hydrogenase). Arsenic resistance involves a small-molecular-weight arsenate reductase (ArsC). The use of arsenic and selenium oxyanions for energy is widespread in prokaryotes with representative organisms from the Crenarchaeota, thermophilic bacteria, low and high G+C gram-positive bacteria, and Proteobacteria. Recent studies have shown that both elements are actively cycled and play a significant role in carbon mineralization in certain environments. The occurrence of multiple mechanisms involving different enzymes for arsenic and selenium transformation indicates several different evolutionary pathways (e.g. convergence and lateral gene transfer) and underscores the environmental significance and selective impact in microbial evolution of these two elements.

  10. Microbial transformation of uranium in wastes

    SciTech Connect

    Francis, A.J.; Dodge, C.J.; Gillow, J.B.; Cline, J.E.; Oak Ridge Y-12 Plant, TN )

    1989-01-01

    Contamination of soils, water, and sediments by radionuclides and toxic metals from the disposal of uranium processing wastes is a major national concern. Although much is known about the physico- chemical aspects of U, we have little information on the effects of aerobic and anaerobic microbial activities on the mobilization or immobilization of U and other toxic metals in mixed wastes. In order to understand the mechanisms of microbial transformations of uranium, we examined a contaminated pond sediment and a sludge sample from the uranium processing facility at Y-12 Plant, Oak Ridge, TN. The uranium concentration in the sediment and sludge samples was 923 and 3080 ug/g dry wt, respectively. In addition to U, the sediment and sludge samples contained high levels of toxic metals such as Cd, Cr, Cu, Hg, Pb, Ni, and Zn. The association of uranium with the various mineral fractions of the sediment and sludge was determined by selective chemical extraction techniques. Uranium was associated to varying degrees with the exchangeable carbonate, iron oxide, organic, and inert fractions in both samples. Initial results in samples amended with carbon and nitrogen indicate immobilization of U due to enhanced indigenous microbial activity under anaerobic conditions. 23 refs., 4 figs., 5 tabs.

  11. Uses of antimicrobial genes from microbial genome

    DOEpatents

    Sorek, Rotem; Rubin, Edward M.

    2013-08-20

    We describe a method for mining microbial genomes to discover antimicrobial genes and proteins having broad spectrum of activity. Also described are antimicrobial genes and their expression products from various microbial genomes that were found using this method. The products of such genes can be used as antimicrobial agents or as tools for molecular biology.

  12. Phylogenetic analysis of an anaerobic, trichlorobenzene-transforming microbial consortium

    SciTech Connect

    Wintzingerode, F. von; Goebel, U.B.; Selent, B.; Hegemann, W.

    1999-01-01

    A culture-independent phylogenetic survey for an anaerobic trichlorobenzene-transforming microbial community was carried out. Small-subunit rRNA genes were PCR amplified from community DNA by using primers specific for Bacteria or Euryarchaeota and were subsequently cloned. Application of a new hybridization-based screening approach revealed 51 bacterial clone families, one of which was closely related to dechlorinating Dehalobacter species. Several clone sequences clustered to rDNA sequences obtained from a molecular study of an anaerobic aquifer contaminated with hydrocarbons and chlorinated solvents.

  13. Microbial transformation of citral by Penicillium sp..

    PubMed

    Esmaeili, Akbar; Tavassoli, Afsaneh

    2010-01-01

    Thymol is present in the essential oils from herbs and spices, such as thyme. It is produced by these plant species as a chemical defense against phytopathogenic microorganisms. Therefore, this compound has attracted great attention in food industry, i.e., it has been used as a natural preservative in foods such as cheese to prevent fungal growth. Previous studies concerning the biotransformation of nerol by Penicillium sp. and microbial transformation of citral by sporulated surface cultures method (SSCM) of Penicillium digitatum have been reported. The objective of this research was to study the pathway involved during biotransformation of citral by Penicillium sp. using two methods. The culture preparation was done using different microbial methods and incubation periods to obtain Penicillium for citral biotransformation. The biotransformation products were identified by gas chromatography (GC) and gas chromatography/mass spectroscopy (GC/MS). A comparison of the two methods showed that SSCM was more effective, its major products were thymol (21.5 %), geranial (18.6 %) and nerol (13.7 %). LM produced only one compound — thymol — with a low efficiency. PMID:20842292

  14. Microbial transformations of actinides in the environment

    NASA Astrophysics Data System (ADS)

    Livens, F. R.; Al-Bokari, M.; Fomina, M.; Gadd, G. M.; Geissler, A.; Lloyd, J. R.; Renshaw, J. C.; Vaughan, D. J.

    2010-03-01

    The diversity of microorganisms is still far from understood, although many examples of the microbial biotransformation of stable, pollutant and radioactive elements, involving Bacteria, Archaea and Fungi, are known. In estuarine sediments from the Irish Sea basin, which have been labelled by low level effluent discharges, there is evidence of an annual cycle in Pu solubility, and microcosm experiments have demonstrated both shifts in the bacterial community and changes in Pu solubility as a result of changes in redox conditions. In the laboratory, redox transformation of both U and Pu by Geobacter sulfurreducens has been demonstrated and EXAFS spectroscopy has been used to understand the inability of G. sufurreducens to reduce Np(V). Fungi promote corrosion of metallic U alloy through production of a range of carboxylic acid metabolites, and are capable of translocating the dissolved U before precipitating it externally to the hyphae, as U(VI) phosphate phases. These examples illustrate the far-reaching but complex effects which microorganisms can have on actinide behaviour.

  15. Nutrient Limitation and Adaptation of Microbial Populations to Chemical Transformations

    PubMed Central

    Lewis, David L.; Kollig, Heinz P.; Hodson, Robert E.

    1986-01-01

    Using field-collected periphyton and bacterial isolates, we determined adaptation lag periods for microbial transformation of p-cresol. Lag periods were longer for periphyton samples collected from field sites that were low in dissolved inorganic nitrogen and phosphorus. Moreover, lag periods decreased in samples amended with N or P. Our data suggest that adaptation lag periods for microbial transformation of low concentrations of chemicals may correlate with limiting nutrient concentrations, and this correlation may provide a basis for predictive mathematical modeling of lag periods. PMID:16347021

  16. Role of cryptic genes in microbial evolution.

    PubMed

    Hall, B G; Yokoyama, S; Calhoun, D H

    1983-12-01

    Cryptic genes are phenotypically silent DNA sequences, not normally expressed during the life cycle of an individual. They may, however, be activated in a few individuals of a large population by mutation, recombination, insertion elements, or other genetic mechanisms. A consideration of the microbial literature concerning biochemical evolution, physiology, and taxonomy provides the basis for a hypothesis of microbial adaptation and evolution by mutational activation of cryptic genes. Evidence is presented, and a mathematical model is derived, indicating that powerful and biologically important mechanisms exist to prevent the loss of cryptic genes. We propose that cryptic genes persist as a vital element of the genetic repertoire, ready for recall by mutational activation in future generations. Cryptic genes provide a versatile endogenous genetic reservoir that enhances the adaptive potential of a species by a mechanism that is independent of genetic exchange.

  17. Gene flow and bacterial transformation

    SciTech Connect

    Dixon, B.

    1993-07-01

    It is common knowledge that Salmonella which should be removed during the processing of sewage can persist is sewage sludge that is sprayed as agricultural fertilizer. Currently, researchers have found that Salmonella may become nonculturable by conventional means, while remaining viable. The issue raised by this article is the knowledge of lateral gene flow as secure as scientist suppose The author sites several research papers that suggest that intergeneric transformation can and does take place in marine environments such as tropical and subtropical estuaries.

  18. MICROBIAL TRANSFORMATIONS OF URANIUM COMPLEXED WITH ORGANIC AND INORGANIC LIGANDS.

    SciTech Connect

    FRANCIS,A.J.

    2002-09-15

    Biotransformation of various chemical forms of uranium present in wastes, contaminated soils and materials by microorganisms under different process conditions such as aerobic and anaerobic (denitrifying, iron-reducing, fermentative, and sulfate-reducing) conditions will affect the solubility, bioavailability, and mobility of uranium in the natural environment. Fundamental understanding of the mechanisms of microbial transformations of uranium under a variety of environmental conditions will be useful in developing appropriate remediation and waste management strategies as well as predicting the microbial impacts on the long-term stewardship of contaminated sites.

  19. The microbial carbon pump: from genes to ecosystems.

    PubMed

    Jiao, Nianzhi; Zheng, Qiang

    2011-11-01

    The majority of marine dissolved organic carbon (DOC) is resistant to biological degradation and thus can remain in the water column for thousands of years, constituting carbon sequestration in the ocean. To date the origin of such recalcitrant DOC (RDOC) is unclear. A recently proposed conceptual framework, the microbial carbon pump (MCP), emphasizes the microbial transformation of organic carbon from labile to recalcitrant states. The MCP is concerned with both microbial uptakes and outputs of DOC compounds, covering a wide range from gene to ecosystem levels. In this minireview, the ATP binding cassette (ABC) transporter is used as an example for the microbial processing of DOC at the genetic level. The compositions of the ABC transporter genes of the two major marine bacterial clades Roseobacter and SAR11 demonstrate that they have distinct patterns in DOC utilization: Roseobacter strains have the advantage of taking up carbohydrate DOC, while SAR11 bacteria prefer nitrogen-containing DOC. At the ecosystem level, bacterially derived RDOC based on d-amino acid biomarkers is reported to be responsible for about a quarter of the total marine RDOC pool. Under future global warming scenarios, partitioning of primary production into DOC could be enhanced, and thus the MCP could play an even more important role in carbon sequestration by the ocean. Joint efforts to study the MCP from multiple disciplines are required to obtain a better understanding of ocean carbon cycle and its coupling with global change.

  20. Microbial transformation of oxandrolone with Macrophomina phaseolina and Cunninghamella blakesleeana.

    PubMed

    Smith, Colin; Wahab, Atia-Tul-; Khan, Mahwish Shafi Ahmed; Ahmad, Malik Shoaib; Farran, Dina; Iqbal Choudhary, M; Baydoun, Elias

    2015-10-01

    Microbial transformation of oxandrolone (1) was carried out by using Cunninghamella blakesleeana and Macrophomina phaseolina. Biotransformation of 1 with M. phaseolina yielded four new metabolites, 11β,17β-dihydroxy-17α-(hydroxymethyl)-2-oxa-5α-androstan-3-one (2), 5α,11β,17β-trihydroxy-17α-methyl-2-oxa-androstan-3-one (3), 17β-hydroxy-17α-methyl-2-oxa-5α-androstan-3,11-dione (4), and 11β,17β-dihydroxy-17α-methyl-2-oxa-5α-androstan-3-one (5). Whereas a new metabolite, 12β,17β-dihydroxy-17α-methyl-2-oxa-5α-androstan-3-one (6), was obtained through the microbial transformation of oxandrolone (1) with C. blakesleeana. The structures of isolated metabolites were characterized on the basis of MS and NMR spectroscopic data. PMID:26095204

  1. Microbial ecology and transformations associated with munitions contaminated soils

    SciTech Connect

    Martin, J.L.; Li, Z.; Kokjohn, T.A.; Shea, P.J.; Comfort, S.D.

    1994-12-31

    Many acres of soil at the former Nebraska Ordnance Plant (NOP) are contaminated with TNT and other munitions residues. In some areas, solid phase TNT is present and controls the concentration of the soil solution. Native microbial populations in uncontaminated soils similar to those at the NOP site were severely reduced when solid phase TNT was allowed to control the soil solution TNT concentration. However, examination of NOP soil revealed an active population of Pseudomonas sp. A single species that could utilize TNT as a sole C source was isolated from the contaminated soil and tentatively identified as Pseudomonas corrugata through the BIOLOG system. Subsequent growth and characterization experiments indicate that the Pseudomonad metabolizes TNT while in the exponential phase of growth in medium containing glucose as a sole N source. Low TNT mineralization rates (measured by CO{sub 2} evolution) in soil and media using the various isolates suggest reduced availability due to sorption and incorporation of transformation intermediates into the organic matrix and microbial biomass. Pretreatment of TNT by acid-metal catalyzed reduction resulted in an initially higher rate of mineralization following addition to TNT-contaminated soil. Observations indicate more rapid microbial utilization of the 2,4,6-triaminotoluene (TAT) reduction product and its spontaneous decay product, methylphloroglucinol (2,4,6-trihydroxytoluene), than TNT. Abiotic pretreatment may be useful in enhancing microbial transformation and detoxification of TNT in highly contaminated soils.

  2. Microbial Transformation of 14-Anhydrodigoxigenin by Alternaria alternata.

    PubMed

    Liu, Jimei; Tang, Wanxia; Chen, Ridao; Dai, Jungui

    2015-12-01

    The microbial transformation of 14-anhydrodigoxigenin (1) by Alternaria alternata CGMCC 3.577 led to the production of seven new metabolites, 2-8. Their structures were determined by extensive spectroscopic (CD, IR, 1D- and 2D-NMR, and HR-ESI-MS) data analyses. The reactions in the bioprocess exhibited diversity, including specific oxidation, hydroxylation, reduction, epoxidation, and dehydration. In addition, a hypothetical biocatalytic pathway is proposed.

  3. Mass effects meet species sorting: transformations of microbial assemblages in epiphreatic subsurface karst water pools.

    PubMed

    Shabarova, Tanja; Widmer, Franco; Pernthaler, Jakob

    2013-09-01

    We investigated the transformations of the microbial communities in epiphreatic karst cave pools with different flooding frequencies. Fingerprinting of 16S rRNA genes was combined with microscopic and sequence analysis to examine if source water would transport comparable microbial inocula into the pools at consecutive flood events, and to assess possible effects of residence time on the microbial assemblages during stagnant periods. Variability in the concentrations of dissolved organic carbon and conductivity indicated differences between floods and changes of pool water over time. High numbers of Betaproteobacteria affiliated with Methylophilaceae and Comamonadaceae were introduced into the pools during floodings. While the former persisted in the pools, the latter exhibited considerable microdiversification. These Betaproteobacteria might thus represent core microbial groups in karst water. A decrease in the estimated total diversity of the remaining bacterial taxa was apparent after a few weeks of residence: Some were favoured by stagnant conditions, whereas the majority was rapidly outcompeted. Thus, the microbial communities consisted of different components governed by complementary assembly mechanisms (dispersal versus environmental filtering) upon introduction into the pools. High overlap of temporary and persistent community members between samplings from two winters, moreover, reflected the seasonal recurrence of the studied microbial assemblages.

  4. Microbial interactions affecting the natural transformation of Bacillus subtilis in a model aquatic ecosystem.

    PubMed

    Matsui, Kazuaki; Ishii, Nobuyoshi; Kawabata, Zen'ichiro

    2003-08-01

    The involvement of microbial interactions in natural transformation of bacteria was evaluated using an aquatic model system. For this purpose, the naturally transformable Bacillus subtilis was used as the model bacterium which was co-cultivated with the protist Tetrahymena thermophila (a consumer) and/or the photosynthetic alga Euglena gracilis (a producer). Co-cultivation with as few as 10(2) individuals ml(-1) of T. thermophila lowered the number of transformants to less than the detectable level (<1x10(0) ml(-1)), while co-cultivation with E. gracilis did not. Metabolites from co-cultures of T. thermophila and B. subtilis also decreased the number of transformants to less than the detectable level, while metabolites from co-culture of T. thermophila and B. subtilis with E. gracilis did not. Thus, the introduction of transformation inhibitory factor(s) by the grazing of T. thermophila and the attenuation of this inhibitory factor(s) by E. gracilis is indicated. These observations suggest that biological components do affect the natural transformation of B. subtilis. The study described is the first to suggest that ecological interactions are responsible not only for the carbon and energy cycles, but also for the processes governing horizontal transfer of genes, in microbial ecosystems.

  5. MICROBIAL TRANSFORMATIONS OF RADIONUCLIDES RELEASED FROM NUCLEAR FUEL REPROCESSING PLANTS.

    SciTech Connect

    FRANCIS,A.J.

    2006-10-18

    Microorganisms can affect the stability and mobility of the actinides U, Pu, Cm, Am, Np, and the fission products Tc, I, Cs, Sr, released from nuclear fuel reprocessing plants. Under appropriate conditions, microorganisms can alter the chemical speciation, solubility and sorption properties and thus could increase or decrease the concentrations of radionuclides in solution and the bioavailability. Dissolution or immobilization of radionuclides is brought about by direct enzymatic action or indirect non-enzymatic action of microorganisms. Although the physical, chemical, and geochemical processes affecting dissolution, precipitation, and mobilization of radionuclides have been investigated, we have only limited information on the effects of microbial processes. The mechanisms of microbial transformations of the major and minor actinides and the fission products under aerobic and anaerobic conditions in the presence of electron donors and acceptors are reviewed.

  6. Microbial transformations of arsenic: Mobilization from glauconitic sediments to water

    USGS Publications Warehouse

    Mumford, Adam C.; Barringer, Julia L.; Benzel, William M.; Reilly, Pamela A.; Young, L.Y.

    2012-01-01

    In the Inner Coastal Plain of New Jersey, arsenic (As) is released from glauconitic sediment to carbon- and nutrient-rich shallow groundwater. This As-rich groundwater discharges to a major area stream. We hypothesize that microbes play an active role in the mobilization of As from glauconitic subsurface sediments into groundwater in the Inner Coastal Plain of New Jersey. We have examined the potential impact of microbial activity on the mobilization of arsenic from subsurface sediments into the groundwater at a site on Crosswicks Creek in southern New Jersey. The As contents of sediments 33–90 cm below the streambed were found to range from 15 to 26.4 mg/kg, with siderite forming at depth. Groundwater beneath the streambed contains As at concentrations up to 89 μg/L. Microcosms developed from site sediments released 23 μg/L of As, and active microbial reduction of As(V) was observed in microcosms developed from site groundwater. DNA extracted from site sediments was amplified with primers for the 16S rRNA gene and the arsenate respiratory reductase gene, arrA, and indicated the presence of a diverse anaerobic microbial community, as well as the presence of potential arsenic-reducing bacteria. In addition, high iron (Fe) concentrations in groundwater and the presence of iron-reducing microbial genera suggests that Fe reduction in minerals may provide an additional mechanism for release of associated As, while arsenic-reducing microorganisms may serve to enhance the mobility of As in groundwater at this site.

  7. Microbial Transformations of Selenium Species of Relevance to Bioremediation.

    PubMed

    Eswayah, Abdurrahman S; Smith, Thomas J; Gardiner, Philip H E

    2016-08-15

    Selenium species, particularly the oxyanions selenite (SeO3 (2-)) and selenate (SeO4 (2-)), are significant pollutants in the environment that leach from rocks and are released by anthropogenic activities. Selenium is also an essential micronutrient for organisms across the tree of life, including microorganisms and human beings, particularly because of its presence in the 21st genetically encoded amino acid, selenocysteine. Environmental microorganisms are known to be capable of a range of transformations of selenium species, including reduction, methylation, oxidation, and demethylation. Assimilatory reduction of selenium species is necessary for the synthesis of selenoproteins. Dissimilatory reduction of selenate is known to support the anaerobic respiration of a number of microorganisms, and the dissimilatory reduction of soluble selenate and selenite to nanoparticulate elemental selenium greatly reduces the toxicity and bioavailability of selenium and has a major role in bioremediation and potentially in the production of selenium nanospheres for technological applications. Also, microbial methylation after reduction of Se oxyanions is another potentially effective detoxification process if limitations with low reaction rates and capture of the volatile methylated selenium species can be overcome. This review discusses microbial transformations of different forms of Se in an environmental context, with special emphasis on bioremediation of Se pollution. PMID:27260359

  8. Effects of myclobutanil on soil microbial biomass, respiration, and soil nitrogen transformations.

    PubMed

    Ju, Chao; Xu, Jun; Wu, Xiaohu; Dong, Fengshou; Liu, Xingang; Zheng, Yongquan

    2016-01-01

    A 3-month-long experiment was conducted to ascertain the effects of different concentrations of myclobutanil (0.4 mg kg(-1) soil [T1]; 1.2 mg kg(-1) soil [T3]; and 4 mg kg(-1) soil [T10]) on soil microbial biomass, respiration, and soil nitrogen transformations using two typical agricultural soils (Henan fluvo-aquic soil and Shanxi cinnamon soil). Soil was sampled after 7, 15, 30, 60, and 90 days of incubation to determine myclobutanil concentration and microbial parameters: soil basal respiration (RB), microbial biomass carbon (MBC) and nitrogen (MBN), NO(-)3-N and NH(+)4-N concentrations, and gene abundance of total bacteria, N2-fixing bacteria, fungi, ammonia-oxidizing archaea (AOA), and ammonia-oxidizing bacteria (AOB). The half-lives of the different doses of myclobutanil varied from 20.3 to 69.3 d in the Henan soil and from 99 to 138.6 d in the Shanxi soil. In the Henan soil, the three treatments caused different degrees of short-term inhibition of RB and MBC, NH(+)4-N, and gene abundance of total bacteria, fungi, N2-fixing bacteria, AOA, and AOB, with the exception of a brief increase in NO(-)3-N content during the T10 treatment. The MBN (immobilized nitrogen) was not affected. In the Shanxi soil, MBC, the populations of total bacteria, fungi, and N2-fixing bacteria, and NH(+)4-N concentration were not significantly affected by myclobutanil. The RB and MBN were decreased transitorily in the T10 treatment. The NO(-)3-N concentrations and the abundance of both AOA and AOB were erratically stimulated by myclobutanil. Regardless of whether stimulation or suppression occurred, the effects of myclobutanil on the two soil types were short term. In summary, myclobutanil had no long-term negative effects on the soil microbial biomass, respiration, and soil nitrogen transformations in the two types of soil, even at 10-fold the recommended dosage.

  9. Microbial transformations of the antimelanoma agent betulinic acid.

    PubMed

    Kouzi, S A; Chatterjee, P; Pezzuto, J M; Hamann, M T

    2000-12-01

    Microbial transformation studies of the antimelanoma agent betulinic acid (1) were conducted. Screening experiments showed a number of microorganisms capable of biotransforming 1. Three of these cultures, Bacillus megaterium ATCC 14581, Cunninghamella elegans ATCC 9244, and Mucor mucedo UI-4605, were selected for preparative scale transformation. Bioconversion of 1 with resting-cell suspensions of phenobarbital-induced B. megaterium ATCC 14581 resulted in the production of the known betulonic acid (2) and two new metabolites: 3beta,7beta-dihydroxy-lup-20(29)-en-28-oic acid (3) and 3beta,6alpha, 7beta-trihydroxy-lup-20(29)-en-28-oic acid (4). Biotransformation of 1 with growing cultures of C. elegans ATCC 9244 produced one new metabolite characterized as 1beta,3beta, 7beta-trihydroxy-lup-20(29)-en-28-oic acid (5). Incubation of 1 with growing cultures of M. mucedo UI-4605 afforded metabolite 3. Structure elucidation of all metabolites was based on NMR and HRMS analyses. In addition, the antimelanoma activity of metabolites 2-5 was evaluated against two human melanoma cell lines, Mel-1 (lymph node) and Mel-2 (pleural fluid).

  10. Microbial transformations of the antimelanoma agent betulinic acid.

    PubMed

    Kouzi, S A; Chatterjee, P; Pezzuto, J M; Hamann, M T

    2000-12-01

    Microbial transformation studies of the antimelanoma agent betulinic acid (1) were conducted. Screening experiments showed a number of microorganisms capable of biotransforming 1. Three of these cultures, Bacillus megaterium ATCC 14581, Cunninghamella elegans ATCC 9244, and Mucor mucedo UI-4605, were selected for preparative scale transformation. Bioconversion of 1 with resting-cell suspensions of phenobarbital-induced B. megaterium ATCC 14581 resulted in the production of the known betulonic acid (2) and two new metabolites: 3beta,7beta-dihydroxy-lup-20(29)-en-28-oic acid (3) and 3beta,6alpha, 7beta-trihydroxy-lup-20(29)-en-28-oic acid (4). Biotransformation of 1 with growing cultures of C. elegans ATCC 9244 produced one new metabolite characterized as 1beta,3beta, 7beta-trihydroxy-lup-20(29)-en-28-oic acid (5). Incubation of 1 with growing cultures of M. mucedo UI-4605 afforded metabolite 3. Structure elucidation of all metabolites was based on NMR and HRMS analyses. In addition, the antimelanoma activity of metabolites 2-5 was evaluated against two human melanoma cell lines, Mel-1 (lymph node) and Mel-2 (pleural fluid). PMID:11141108

  11. Microbial Transformation of TRU and Mixed Wastes: Actinide Speciation and Waste Volume Reduction

    SciTech Connect

    Halada, Gary P.

    2004-12-01

    I. To characterize the biodegradation of cellulosic materials using Fourier Transform Infrared (FTIR) Spectroscopy. II. To develop an electrochemical/spectroscopic methodology to characterize TRU waste microbial transformation III. To develop molecular models of TRU complexes in order to understand microbial transformation In all cases, objectives are designed to compliment the efforts from other team members, and will be periodically coordinated through the lead P.I. at Brookhaven National Laboratory (BNL), A.J. Francis.

  12. Microbial transformation of low-level radioactive waste

    SciTech Connect

    Francis, A.J.

    1980-06-01

    Microorganisms play a significant role in the transformation of the radioactive waste and waste forms disposed of at shallow-land burial sites. Microbial degradation products of organic wastes may influence the transport of buried radionuclides by leaching, solubilization, and formation of organoradionuclide complexes. The ability of indigenous microflora of the radioactive waste to degrade the organic compounds under aerobic and anaerobic conditions was examined. Leachate samples were extracted with methylene chloried and analyzed for organic compounds by gas chromatography and mass spectrometry. In general, several of the organic compounds in the leachates were degraded under aerobic conditions. Under anaerobic conditions, the degradation of the organics was very slow, and changes in concentrations of several acidic compounds were observed. Several low-molecular-weight organic acids are formed by breakdown of complex organic materials and are further metabolized by microorganisms; hence these compounds are in a dynamic state, being both synthesized and destroyed. Tributyl phosphate, a compound used in the extraction of metal ions from solutions of reactor products, was not degraded under anaerobic conditions.

  13. Plant transformation via pollen tube-mediated gene transfer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic transformation using foreign genes and the subsequent development of transgenic plants has been employed to develop enhanced elite germplasm. Although some skepticism exits regarding pollen tube-mediated gene transfer (PTT), reports demonstrating improved transformation efficiency with PTT ...

  14. New Anti-Inflammatory Metabolites by Microbial Transformation of Medrysone

    PubMed Central

    Bano, Saira; Wahab, Atia-tul-; Yousuf, Sammer; Jabeen, Almas; Mesaik, Mohammad Ahmed; Rahman, Atta-ur-; Choudhary, M. Iqbal

    2016-01-01

    Microbial transformation of the anti-inflammatory steroid medrysone (1) was carried out for the first time with the filamentous fungi Cunninghamella blakesleeana (ATCC 8688a), Neurospora crassa (ATCC 18419), and Rhizopus stolonifer (TSY 0471). The objective was to evaluate the anti-inflammatory potential of the substrate (1) and its metabolites. This yielded seven new metabolites, 14α-hydroxy-6α-methylpregn-4-ene-3,11,20-trione (2), 6β-hydroxy-6α-methylpregn-4-ene-3,11,20-trione (3), 15β-hydroxy-6α-methylpregn-4-ene-3,11,20-trione (4), 6β,17α-dihydroxy-6α-methylpregn-4-ene-3,11,20-trione (5), 6β,20S-dihydroxy-6α-methylpregn-4-ene-3,11-dione (6), 11β,16β-dihydroxy-6α-methylpregn-4-ene-3,11-dione (7), and 15β,20R-dihydroxy-6α-methylpregn-4-ene-3,11-dione (8). Single-crystal X-ray diffraction technique unambiguously established the structures of the metabolites 2, 4, 6, and 8. Fungal transformation of 1 yielded oxidation at the C-6β, -11β, -14α, -15β, -16β positions. Various cellular anti-inflammatory assays, including inhibition of phagocyte oxidative burst, T-cell proliferation, and cytokine were performed. Among all the tested compounds, metabolite 6 (IC50 = 30.3 μg/mL) moderately inhibited the reactive oxygen species (ROS) produced from zymosan-induced human whole blood cells. Compounds 1, 4, 5, 7, and 8 strongly inhibited the proliferation of T-cells with IC50 values between <0.2–10.4 μg/mL. Compound 7 was found to be the most potent inhibitor (IC50 < 0.2 μg/mL), whereas compounds 2, 3, and 6 showed moderate levels of inhibition (IC50 = 14.6–20.0 μg/mL). Compounds 1, and 7 also inhibited the production of pro-inflammatory cytokine TNF-α. All these compounds were found to be non-toxic to 3T3 cells (mouse fibroblast), and also showed no activity when tested against HeLa (human epithelial carcinoma), or against PC3 (prostate cancer) cancer cell lines. PMID:27104348

  15. Migration and horizontal gene transfer divide microbial genomes into multiple niches.

    PubMed

    Niehus, Rene; Mitri, Sara; Fletcher, Alexander G; Foster, Kevin R

    2015-01-01

    Horizontal gene transfer is central to microbial evolution, because it enables genetic regions to spread horizontally through diverse communities. However, how gene transfer exerts such a strong effect is not understood. Here we develop an eco-evolutionary model and show how genetic transfer, even when rare, can transform the evolution and ecology of microbes. We recapitulate existing models, which suggest that asexual reproduction will overpower horizontal transfer and greatly limit its effects. We then show that allowing immigration completely changes these predictions. With migration, the rates and impacts of horizontal transfer are greatly increased, and transfer is most frequent for loci under positive natural selection. Our analysis explains how ecologically important loci can sweep through competing strains and species. In this way, microbial genomes can evolve to become ecologically diverse where different genomic regions encode for partially overlapping, but distinct, ecologies. Under these conditions ecological species do not exist, because genes, not species, inhabit niches. PMID:26592443

  16. Migration and horizontal gene transfer divide microbial genomes into multiple niches

    PubMed Central

    Niehus, Rene; Mitri, Sara; Fletcher, Alexander G.; Foster, Kevin R.

    2015-01-01

    Horizontal gene transfer is central to microbial evolution, because it enables genetic regions to spread horizontally through diverse communities. However, how gene transfer exerts such a strong effect is not understood. Here we develop an eco-evolutionary model and show how genetic transfer, even when rare, can transform the evolution and ecology of microbes. We recapitulate existing models, which suggest that asexual reproduction will overpower horizontal transfer and greatly limit its effects. We then show that allowing immigration completely changes these predictions. With migration, the rates and impacts of horizontal transfer are greatly increased, and transfer is most frequent for loci under positive natural selection. Our analysis explains how ecologically important loci can sweep through competing strains and species. In this way, microbial genomes can evolve to become ecologically diverse where different genomic regions encode for partially overlapping, but distinct, ecologies. Under these conditions ecological species do not exist, because genes, not species, inhabit niches. PMID:26592443

  17. Microbial Impacts on Clay Mineral Transformation and Reactivity

    NASA Astrophysics Data System (ADS)

    Dong, H.; Jaisi, D.; Fredrickson, J.; Plymale, A.

    2006-05-01

    Clays and clay minerals are ubiquitous in soils, sedimentary rocks, and pelagic oozes. They play important roles in environmental processes such as nutrient cycling, plant growth, contaminant migration, organic matter maturation, and petroleum production. Iron is a major constituent in clay minerals, and its mobility and stability in different environmental processes is, in part, controlled by the oxidation state. Recent studies have shown that biological reduction of structural Fe(III) in clay minerals can change the physical and chemical properties of clay minerals, such as swelling, cation exchange and fixation capacity, specific surface area, color, and magnetic exchange interactions. As a result of biological reduction of Fe(III), clay minerals also undergo mineral transformations, such as dissolution of smectite and precipitation of illite, siderite and vivianite. These chemical, structural and mineralogical changes of clay minerals have a profound effect on clay mineral reactivity, such as their reactivity with organic and inorganic (i.e., heavy metals and radionuclides) contaminants. Our latest data show that biologically reduced nontronite (a smectite variety) is much more effective in reducing soluble and mobile Tc(VII) to Tc(IV) than unreduced nontronite. The reduced Tc(IV) is insoluble in groundwater and soil and thus is immobile. Biologically reduced nontronite can be prepared by microbially reducing Fe(III) in nontronite by Shewanella putrefaciens in the absence of oxygen. Approximately 30% of structurally Fe(III) can be reduced in this manner. Biogenic Fe(II) can then serve as an electron donor to reduce Tc(VII). Nearly all Fe(II) is available to reduce Tc(VII), with the rate of reduction (typically within weeks) possibly depending on the speciation of Fe(II) (surface sorbed Fe(II) vs. structural Fe(II)). Further investigations are underway to further assess the reversibility of Tc reduction upon exposure to oxygen and to elucidate Tc reduction

  18. Thioarsenate transformation by filamentous microbial mats thriving in an alkaline, sulfidic hot spring.

    PubMed

    Härtig, Cornelia; Cornelia, Härtig; Planer-Friedrich, Britta; Britta, Planer-Friedrich

    2012-04-17

    Thioarsenates dominate arsenic speciation in sulfidic geothermal waters, yet little is known about their fate in the environment. At Conch Spring, an alkaline hot spring in Yellowstone National Park, trithioarsenate transforms to arsenate under increasingly oxidizing conditions along the drainage channel, accompanied by an initial increase, then decrease of monothioarsenate and arsenite. On-site incubation tests were conducted using sterile-filtered water with and without addition of filamentous microbial mats from the drainage channel to distinguish the role of abiotic and biotic processes for arsenic species transformation. Abiotically, trithioarsenate was desulfidized to arsenate coupled to sulfide oxidation. Monothioarsenate, however, was inert. Biotic incubations proved that the intermediate accumulation of arsenite in the drainage channel is microbially catalyzed. In the presence of sulfide, microbially enhanced sulfide oxidation coupled to reduction of arsenate to arsenite could simply enhance abiotic desulfidation of trithioarsenate and potentially also monothioarsenate. However, we were also able to show, in sulfide-free medium, direct microbial transformation of monothioarsenate to arsenate. Some arsenite formed intermediately, which was subsequently also microbially oxidized to arsenate. This study is the first evidence for microbially mediated thioarsenate species transformation by (hyper)thermophilic prokaryotes. PMID:22380721

  19. Thioarsenate transformation by filamentous microbial mats thriving in an alkaline, sulfidic hot spring.

    PubMed

    Härtig, Cornelia; Cornelia, Härtig; Planer-Friedrich, Britta; Britta, Planer-Friedrich

    2012-04-17

    Thioarsenates dominate arsenic speciation in sulfidic geothermal waters, yet little is known about their fate in the environment. At Conch Spring, an alkaline hot spring in Yellowstone National Park, trithioarsenate transforms to arsenate under increasingly oxidizing conditions along the drainage channel, accompanied by an initial increase, then decrease of monothioarsenate and arsenite. On-site incubation tests were conducted using sterile-filtered water with and without addition of filamentous microbial mats from the drainage channel to distinguish the role of abiotic and biotic processes for arsenic species transformation. Abiotically, trithioarsenate was desulfidized to arsenate coupled to sulfide oxidation. Monothioarsenate, however, was inert. Biotic incubations proved that the intermediate accumulation of arsenite in the drainage channel is microbially catalyzed. In the presence of sulfide, microbially enhanced sulfide oxidation coupled to reduction of arsenate to arsenite could simply enhance abiotic desulfidation of trithioarsenate and potentially also monothioarsenate. However, we were also able to show, in sulfide-free medium, direct microbial transformation of monothioarsenate to arsenate. Some arsenite formed intermediately, which was subsequently also microbially oxidized to arsenate. This study is the first evidence for microbially mediated thioarsenate species transformation by (hyper)thermophilic prokaryotes.

  20. MICROBIAL TRANSFORMATIONS OF TRU AND MIXED WASTES: ACTINIDE SPECIATION AND WASTE VOLUME REDUCTION

    SciTech Connect

    Francis, A.J.; Dodge, C.J.

    2006-06-01

    The overall goals of this research project are to determine the mechanism of microbial dissolution and stabilization of actinides in Department of Energy’s (DOE) TRU wastes, contaminated sludges, soils, and sediments. This includes (i) investigations on the fundamental aspects of microbially catalyzed radionuclide and metal transformations (oxidation/reduction reactions, dissolution, precipitation, chelation); (ii) understanding of the microbiological processes that control speciation and alter the chemical forms of complex inorganic/organic contaminant mixtures; and (iii) development of new and improved microbially catalyzed processes resulting in immobilization of metals and radionuclides in the waste with concomitant waste volume reduction.

  1. MICROBIAL TRANSFORMATIONS OF TRU AND MIXED WASTES: ACTINIDE SPECIATION AND WASTE VOLUME REDUCTION.

    SciTech Connect

    FRANCIS, A.J.; DODGE, C.J.

    2006-11-16

    The overall goals of this research project are to determine the mechanism of microbial dissolution and stabilization of actinides in Department of Energy's (DOE) TRU wastes, contaminated sludges, soils, and sediments. This includes (1) investigations on the fundamental aspects of microbially catalyzed radionuclide and metal transformations (oxidation/reduction reactions, dissolution, precipitation, chelation); (2) understanding of the microbiological processes that control speciation and alter the chemical forms of complex inorganic/organic contaminant mixtures; and (3) development of new and improved microbially catalyzed processes resulting in immobilization of metals and radionuclides in the waste with concomitant waste volume reduction.

  2. MICROBIAL TRANSFORMATIONS OF TRU AND MIXED WASTES: ACTINIDE SPECIATION AND WASTE VOLUME REDUCTION

    SciTech Connect

    Francis, A.J.; Dodge, C.J.

    2006-06-01

    The overall goals of this research project are to determine the mechanism of microbial dissolution and stabilization of actinides in Department of Energy's (DOE) TRU wastes, contaminated sludges, soils, and sediments. This includes (1) investigations on the fundamental aspects of microbially catalyzed radionuclide and metal transformations (oxidation/reduction reactions, dissolution, precipitation, chelation); (2) understanding of the microbiological processes that control speciation and alter the chemical forms of complex inorganic/organic contaminant mixtures; and (3) development of new and improved microbially catalyzed processes resulting in immobilization of metals and radionuclides in the waste with concomitant waste volume reduction.

  3. MICROBIAL TRANSFORMATIONS OF PLUTONIUM AND IMPLICATIONS FOR ITS MOBILITY.

    SciTech Connect

    FRANCIS, A.J.

    2000-09-30

    The current state of knowledge of the effect of plutonium on microorganisms and microbial activity is reviewed, and also the microbial processes affecting its mobilization and immobilization. The dissolution of plutonium is predominantly due to their production of extracellular metabolic products, organic acids, such as citric acid, and sequestering agents, such as siderophores. Plutonium may be immobilized by the indirect actions of microorganisms resulting in changes in Eh and its reduction from a higher to lower oxidation state, with the precipitation of Pu, its bioaccumulation by biomass, and bioprecipitation reactions. In addition, the abundance of microorganisms in Pu-contaminated soils, wastes, natural analog sites, and backfill materials that will be used for isolating the waste and role of microbes as biocolloids in the transport of Pu is discussed.

  4. Microbial transformations in phosphonate biosynthesis and catabolism, and their importance in nutrient cycling.

    PubMed

    Chin, Jason P; McGrath, John W; Quinn, John P

    2016-04-01

    Phosphorus cycling in the biosphere has traditionally been thought to involve almost exclusively transformations of the element in its pentavalent oxidation state. Recent evidence, however, suggests that a significant fraction of environmental phosphorus may exist in a more reduced form. Most abundant of these reduced phosphorus compounds are the phosphonates, with their direct carbon-phosphorus bonds, and striking progress has recently been made in elucidating the biochemistry of microbial phosphonate transformations. These advances are now presented in the context of their contribution to our understanding of phosphorus biogeochemistry and of such diverse fields as the productivity of the oceans, marine methanogenesis and the discovery of novel microbial antimetabolites.

  5. Long- and short-term temperature responses of microbially-mediated boreal soil organic matter transformations

    NASA Astrophysics Data System (ADS)

    Min, K.; Buckeridge, K. M.; Edwards, K. A.; Ziegler, S. E.; Billings, S. A.

    2015-12-01

    Microorganisms use exoenzymes to decay soil organic matter into assimilable substrates, some of which are transformed into CO2. Microbial CO2 efflux contributes up to 60% of soil respiration, a feature that can change with temperature due to altered exoenzyme activities (short-term) and microbial communities producing different exoenzymes (longer-term). Often, however, microbial temperature responses are masked by factors that also change with temperature in soil, making accurate projections of microbial CO2 efflux with warming challenging. Using soils along a natural climate gradient similar in most respects except for temperature regime (Newfoundland Labrador Boreal Ecosystem Latitudinal Transect), we investigated short-vs. long-term temperature responses of microbially-mediated organic matter transformations. While incubating soils at 5, 15, and 25°C for 84 days, we measured exoenzyme activities, CO2 efflux rates and biomass, and extracted DNA at multiple times. We hypothesized that short-term, temperature-induced increases in exoenzyme activities and CO2 losses would be smaller in soils from warmer regions, because microbes presumably adapted to warmer regions should use assimilable substrates more efficiently and thus produce exoenzymes at a lower rate. While incubation temperature generally induced greater exoenzyme activities (p<0.001), exoenzymes' temperature responses depended on enzymes and regions (p<0.001). Rate of CO2 efflux was affected by incubation temperature (P<0.001), but not by region. Microbial biomass and DNA sequencing will reveal how microbial community abundance and composition change with short-vs. longer-term temperature change. Though short-term microbial responses to temperature suggest higher CO2 efflux and thus lower efficiency of resource use with warming, longer-term adaptations of microbial communities to warmer climates remain unknown; this work helps fill that knowledge gap.

  6. Microbial exudate promoted dissolution and transformation of chromium containing minerals

    NASA Astrophysics Data System (ADS)

    Saad, E. M.; Sun, J.; Tang, Y.

    2015-12-01

    Because of its utility in many industrial processes, chromium has become the second most common metal contaminant in the United States. The two most common oxidation states of chromium in nature are Cr(III), which is highly immobile, and Cr(VI), which is highly mobile and toxic. In both natural and engineered environments, the most common remediation of Cr(VI) is through reduction, which results in chromium sequestration in the low solubility mixed Cr(III)-Fe(III) (oxy)hydroxide phases. Consequently, the stability of these minerals must be examined to assess the fate of chromium in the subsurface. We examined the dissolution of mixed Cr(III)-Fe(III) (oxy)hydroxides in the presence of common microbial exudates, including the siderophore desferrioxamine B (DFOB; a common organic ligand secreted by most microbes with high affinity for ferric iron and other trivalent metal ions) and oxalate (a common organic acid produced by microbes). The solids exhibited incongruent dissolution with preferential leaching of Fe from the solid phase. Over time, this leads to a more Cr rich mineral, which is known to be more soluble than the corresponding mixed mineral phase. We are currently investigating the structure of the reacted mineral phases and soluble Cr(III) species, as well as the potential oxidation and remobilization of the soluble Cr species. Results from this study will provide insights regarding the long term transport and fate of chromium in the natural environment in the presence of microbial activities.

  7. Microbial Transformations of Nitrogen, Sulfur, and Iron Dictate Vegetation Composition in Wetlands: A Review

    PubMed Central

    Lamers, Leon P. M.; van Diggelen, Josepha M. H.; Op den Camp, Huub J. M.; Visser, Eric J. W.; Lucassen, Esther C. H. E. T.; Vile, Melanie A.; Jetten, Mike S. M.; Smolders, Alfons J. P.; Roelofs, Jan G. M.

    2012-01-01

    The majority of studies on rhizospheric interactions focus on pathogens, mycorrhizal symbiosis, or carbon transformations. Although the biogeochemical transformations of N, S, and Fe have profound effects on vegetation, these effects have received far less attention. This review, meant for microbiologists, biogeochemists, and plant scientists includes a call for interdisciplinary research by providing a number of challenging topics for future ecosystem research. Firstly, all three elements are plant nutrients, and microbial activity significantly changes their availability. Secondly, microbial oxidation with oxygen supplied by radial oxygen loss from roots in wetlands causes acidification, while reduction using alternative electron acceptors leads to generation of alkalinity, affecting pH in the rhizosphere, and hence plant composition. Thirdly, reduced species of all three elements may become phytotoxic. In addition, Fe cycling is tightly linked to that of S and P. As water level fluctuations are very common in wetlands, rapid changes in the availability of oxygen and alternative terminal electron acceptors will result in strong changes in the prevalent microbial redox reactions, with significant effects on plant growth. Depending on geological and hydrological settings, these interacting microbial transformations change the conditions and resource availability for plants, which are both strong drivers of vegetation development and composition by changing relative competitive strengths. Conversely, microbial composition is strongly driven by vegetation composition. Therefore, the combination of microbiological and plant ecological knowledge is essential to understand the biogeochemical and biological key factors driving heterogeneity and total (i.e., microorganisms and vegetation) community composition at different spatial and temporal scales. PMID:22539932

  8. Microbial transformations of nitrogen, sulfur, and iron dictate vegetation composition in wetlands: a review.

    PubMed

    Lamers, Leon P M; van Diggelen, Josepha M H; Op den Camp, Huub J M; Visser, Eric J W; Lucassen, Esther C H E T; Vile, Melanie A; Jetten, Mike S M; Smolders, Alfons J P; Roelofs, Jan G M

    2012-01-01

    The majority of studies on rhizospheric interactions focus on pathogens, mycorrhizal symbiosis, or carbon transformations. Although the biogeochemical transformations of N, S, and Fe have profound effects on vegetation, these effects have received far less attention. This review, meant for microbiologists, biogeochemists, and plant scientists includes a call for interdisciplinary research by providing a number of challenging topics for future ecosystem research. Firstly, all three elements are plant nutrients, and microbial activity significantly changes their availability. Secondly, microbial oxidation with oxygen supplied by radial oxygen loss from roots in wetlands causes acidification, while reduction using alternative electron acceptors leads to generation of alkalinity, affecting pH in the rhizosphere, and hence plant composition. Thirdly, reduced species of all three elements may become phytotoxic. In addition, Fe cycling is tightly linked to that of S and P. As water level fluctuations are very common in wetlands, rapid changes in the availability of oxygen and alternative terminal electron acceptors will result in strong changes in the prevalent microbial redox reactions, with significant effects on plant growth. Depending on geological and hydrological settings, these interacting microbial transformations change the conditions and resource availability for plants, which are both strong drivers of vegetation development and composition by changing relative competitive strengths. Conversely, microbial composition is strongly driven by vegetation composition. Therefore, the combination of microbiological and plant ecological knowledge is essential to understand the biogeochemical and biological key factors driving heterogeneity and total (i.e., microorganisms and vegetation) community composition at different spatial and temporal scales. PMID:22539932

  9. Microbial transformations of natural organic compounds and radionuclides in subsurface environments

    SciTech Connect

    Francis, A.J.

    1985-10-01

    A major national concern in the subsurface disposal of energy wastes is the contamination of ground and surface waters by waste leachates containing radionuclides, toxic metals, and organic compounds. Microorganisms play an important role in the transformation of organic compounds, radionuclides, and toxic metals present in the waste and affect their mobility in subsurface environments. Microbial processes involved in dissolution, mobilization, and immobilization of toxic metals under aerobic and anaerobic conditions are briefly reviewed. Metal complexing agents and several organic acids produced by microbial action affect mobilization of radionuclides and toxic metals in subsurface environments. Information on the persistence of and biodegradation rates of synthetic as well as microbiologically produced complexing agents is scarce but important in determining the mobility of metal organic complexes in subsoils. Several gaps in knowledge in the area of microbial transformation of naturally occurring organics, radionuclides, and toxic metals have been identified, and further basic research has been suggested. 31 refs., 1 fig., 3 tabs.

  10. Evaluation of different pretreatments on microbial transformation of saponins in Dioscorea zingiberensis for diosgenin production

    PubMed Central

    Zheng, Tianxiang; Yu, Lidan; Zhu, Yuling; Zhao, Bin

    2014-01-01

    In order to evaluate the effects of different pretreatments on microbial transformation of saponins in Dioscorea zingiberensis (DZW), various methods have been systematically studied on a large scale. Five pretreatments, including physical separation, catalytic solvent extraction, ultrasonic fermentation, complex enzymatic hydrolyzation and enzymatic saccharification, were performed on DZW. Compared with other methods, complex enzymatic hydrolyzation significantly improved the efficiency of microbial transformation. Due to the pretreatment, a diosgenin yield of 92.6%, and diosgenin accumulation of 27.3 mg/g DZW were achieved. The high efficiency of this method was attributed to the separation of 84.3% starch and 76.5% fibre from DZW in the form of a sugar. Analysis of saponins in this microbial transformation process showed that the residual rates of the intermediate products were much lower than those obtained from other pretreatments. The results demonstrate that complex enzymatic hydrolyzation is a practical and effective pretreatment method for production of diosgenin from DZW in a microbial transformation way. PMID:26019558

  11. Bacterial gene transfer by natural genetic transformation in the environment.

    PubMed Central

    Lorenz, M G; Wackernagel, W

    1994-01-01

    Natural genetic transformation is the active uptake of free DNA by bacterial cells and the heritable incorporation of its genetic information. Since the famous discovery of transformation in Streptococcus pneumoniae by Griffith in 1928 and the demonstration of DNA as the transforming principle by Avery and coworkers in 1944, cellular processes involved in transformation have been studied extensively by in vitro experimentation with a few transformable species. Only more recently has it been considered that transformation may be a powerful mechanism of horizontal gene transfer in natural bacterial populations. In this review the current understanding of the biology of transformation is summarized to provide the platform on which aspects of bacterial transformation in water, soil, and sediments and the habitat of pathogens are discussed. Direct and indirect evidence for gene transfer routes by transformation within species and between different species will be presented, along with data suggesting that plasmids as well as chromosomal DNA are subject to genetic exchange via transformation. Experiments exploring the prerequisites for transformation in the environment, including the production and persistence of free DNA and factors important for the uptake of DNA by cells, will be compiled, as well as possible natural barriers to transformation. The efficiency of gene transfer by transformation in bacterial habitats is possibly genetically adjusted to submaximal levels. The fact that natural transformation has been detected among bacteria from all trophic and taxonomic groups including archaebacteria suggests that transformability evolved early in phylogeny. Probable functions of DNA uptake other than gene acquisition will be discussed. The body of information presently available suggests that transformation has a great impact on bacterial population dynamics as well as on bacterial evolution and speciation. PMID:7968924

  12. Microbial community dynamics and transformation of vascular plant detritus in two wetland ecosystems

    SciTech Connect

    Moran, M.A.

    1987-01-01

    The microbial ecology of two wetland ecosystems in southeastern Georgia, USA, was studied with respect to microbial community dynamics and microbially-mediated transformations of vascular plant detritus. In the Okefenokee Swamp, biomass of microorganisms in the water column and sediments was generally lower in winter months and higher during spring and summer. Biomass and activity (measured as /sup 14/C-lignocellulose mineralization) differed significantly among five habitats within the Okefenokee, and also among locations within each habitat. Significant heterogeneity in the structure of Okefenokee microbial communities was found at scales from 30 cm to 150 m. In field and laboratory studies of vascular plant decomposition in the Okefenokee and a salt marsh on Sapelo Island, the mathematical model which best describes decomposition kinetics is the decaying coefficient model.

  13. Relating microbial community structure to functioning in forest soil organic carbon transformation and turnover

    PubMed Central

    You, Yeming; Wang, Juan; Huang, Xueman; Tang, Zuoxin; Liu, Shirong; Sun, Osbert J

    2014-01-01

    Forest soils store vast amounts of terrestrial carbon, but we are still limited in mechanistic understanding on how soil organic carbon (SOC) stabilization or turnover is controlled by biotic and abiotic factors in forest ecosystems. We used phospholipid fatty acids (PLFAs) as biomarker to study soil microbial community structure and measured activities of five extracellular enzymes involved in the degradation of cellulose (i.e., β-1,4-glucosidase and cellobiohydrolase), chitin (i.e., β-1,4-N-acetylglucosaminidase), and lignin (i.e., phenol oxidase and peroxidase) as indicators of soil microbial functioning in carbon transformation or turnover across varying biotic and abiotic conditions in a typical temperate forest ecosystem in central China. Redundancy analysis (RDA) was performed to determine the interrelationship between individual PFLAs and biotic and abiotic site factors as well as the linkage between soil microbial structure and function. Path analysis was further conducted to examine the controls of site factors on soil microbial community structure and the regulatory pathway of changes in SOC relating to microbial community structure and function. We found that soil microbial community structure is strongly influenced by water, temperature, SOC, fine root mass, clay content, and C/N ratio in soils and that the relative abundance of Gram-negative bacteria, saprophytic fungi, and actinomycetes explained most of the variations in the specific activities of soil enzymes involved in SOC transformation or turnover. The abundance of soil bacterial communities is strongly linked with the extracellular enzymes involved in carbon transformation, whereas the abundance of saprophytic fungi is associated with activities of extracellular enzymes driving carbon oxidation. Findings in this study demonstrate the complex interactions and linkage among plant traits, microenvironment, and soil physiochemical properties in affecting SOC via microbial regulations. PMID

  14. A novel Nrf2 activator from microbial transformation inhibits radiation-induced dermatitis in mice

    PubMed Central

    Nakagami, Yasuhiro; Masuda, Kayoko

    2016-01-01

    Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcriptional factor that regulates many antioxidants, and we have recently succeeded in obtaining a novel Nrf2 activator, RS9, from microbial transformation. RS9 is categorized as a triterpenoid, and well-known triterpenoids such as RTA 402 (bardoxolone methyl) and RTA 408 have been tested in clinical trials. RTA 408 lotion is currently being tested in patients at risk for radiation dermatitis. This prompted us to study the profiles of RS9 in the skin. All the above triterpenoids increased the level of an Nrf2-targeted gene, NADPH:quinone oxidoreductase-1, in normal human epidermal keratinocytes. Among them, the activity of RS9 was prominent; furthermore, the cellular toxicity was less compared with RTA compounds. BALB/c mice were irradiated with 30 Gy/day on Day 0, and compounds were topically applied on the back once daily from Day 1 to Day 30. Dermatitis scores peaked on Day 18, with a score of 2.6 in vehicle-treated mice, and topical applications of 0.1% RTA 402, RTA 408 and RS9 reduced the scores to 1.8, 2.0 and 1.4, respectively. Moreover, the percentage of animals with scores ≥2 was analyzed, and 0.1% RS9 suppressed the percentage from 100% to 47%. These results imply that RS9 has potential efficacy for treating radiation dermatitis. PMID:27242339

  15. Dynamics of gene duplication and transposons in microbial genomes following a sudden environmental change

    NASA Astrophysics Data System (ADS)

    Chia, Nicholas; Goldenfeld, Nigel

    2011-02-01

    A variety of genome transformations can occur as a microbial population adapts to a large environmental change. In particular, genomic surveys indicate that, following the transition to an obligate, host-dependent symbiont, the density of transposons first rises, then subsequently declines over evolutionary time. Here we show that these observations can be accounted for by a class of generic stochastic models for the evolution of genomes in the presence of continuous selection and gene duplication. The models use a fitness function that allows for partial contributions from multiple gene copies, is an increasing but bounded function of copy number, and is optimal for one fully adapted gene copy. We use Monte Carlo simulation to show that the dynamics result in an initial rise in gene copy number followed by a subsequent falloff due to adaptation to the new environmental parameters. These results are robust for reasonable gene duplication and mutation parameters when adapting to a novel target sequence. Our model provides a generic explanation for the dynamics of microbial transposon density following a large environmental change such as host restriction.

  16. Microbial transformations of antimicrobial quinolones and related drugs.

    PubMed

    Parshikov, Igor A; Sutherland, John B

    2012-12-01

    The quinolones are an important group of synthetic antimicrobial drugs used for treating bacterial diseases of humans and animals. Microorganisms transform antimicrobial quinolones (including fluoroquinolones) and the pharmacologically related naphthyridones, pyranoacridones, and cinnolones to a variety of metabolites. The biotransformation processes involve hydroxylation of methyl groups; hydroxylation of aliphatic and aromatic rings; oxidation of alcohols and amines; reduction of carboxyl groups; removal of methyl, carboxyl, fluoro, and cyano groups; addition of formyl, acetyl, nitrosyl, and cyclopentenone groups; and cleavage of aliphatic and aromatic rings. Most of these reactions greatly reduce or eliminate the antimicrobial activity of the quinolones. PMID:23007957

  17. Impacts of Pristine and Transformed Ag and Cu Engineered Nanomaterials on Surficial Sediment Microbial Communities Appear Short-Lived.

    PubMed

    Moore, Joe D; Stegemeier, John P; Bibby, Kyle; Marinakos, Stella M; Lowry, Gregory V; Gregory, Kelvin B

    2016-03-01

    Laboratory-based studies have shown that many soluble metal and metal oxide engineered nanomaterials (ENM) exert strong toxic effects on microorganisms. However, laboratory-based studies lack the complexity of natural systems and often use "as manufactured" ENMs rather than more environmentally relevant transformed ENMs, leaving open the question of whether natural ligands and seasonal variation will mitigate ENM impacts. Because ENMs will accumulate in subaquatic sediments, we examined the effects of pristine and transformed Ag and Cu ENMs on surficial sediment microbial communities in simulated freshwater wetlands. Five identical mesocosms were dosed through the water column with either Ag(0), Ag2S, CuO or CuS ENMs (nominal sizes of 4.67 ± 1.4, 18.1 ± 3.2, 31.1 ± 12, and 12.4 ± 4.1, respectively) or Cu(2+). Microbial communities were examined at 0, 7, 30, 90, 180, and 300 d using qPCR and high-throughput 16S rRNA gene sequencing. Results suggest differential short-term impacts of Ag(0) and Ag2S, similarities between CuO and CuS, and differences between Cu ENMs and Cu(2+). PICRUSt-predicted metagenomes displayed differential effects of Ag treatments on photosynthesis and of Cu treatments on methane metabolism. By 300 d, all metrics pointed to reconvergence of ENM-dosed mesocosm microbial community structure and composition, suggesting that the long-term microbial community impacts from a pulse of Ag or Cu ENMs are limited. PMID:26841726

  18. GeoChip-based insights into the microbial functional gene repertoire of marine sponges (high microbial abundance, low microbial abundance) and seawater.

    PubMed

    Bayer, Kristina; Moitinho-Silva, Lucas; Brümmer, Franz; Cannistraci, Carlo V; Ravasi, Timothy; Hentschel, Ute

    2014-12-01

    The GeoChip 4.2 gene array was employed to interrogate the microbial functional gene repertoire of sponges and seawater collected from the Red Sea and the Mediterranean. Complementary amplicon sequencing confirmed the microbial community composition characteristic of high microbial abundance (HMA) and low microbial abundance (LMA) sponges. By use of GeoChip, altogether 20,273 probes encoding for 627 functional genes and representing 16 gene categories were identified. Minimum curvilinear embedding analyses revealed a clear separation between the samples. The HMA/LMA dichotomy was stronger than any possible geographic pattern, which is shown here for the first time on the level of functional genes. However, upon inspection of individual genes, very few specific differences were discernible. Differences were related to microbial ammonia oxidation, ammonification, and archaeal autotrophic carbon fixation (higher gene abundance in sponges over seawater) as well as denitrification and radiation-stress-related genes (lower gene abundance in sponges over seawater). Except for few documented specific differences the functional gene repertoire between the different sources appeared largely similar. This study expands previous reports in that functional gene convergence is not only reported between HMA and LMA sponges but also between sponges and seawater.

  19. MICROBIAL TRANSFORMATIONS OF URANIUM AND ENVIRONMENTAL RESTORATION THROUGH BIOREMEDIATION.

    SciTech Connect

    FRANCIS,A.J.

    2002-09-10

    Microorganisms present in the natural environment play a significant role in the mobilization and immobilization of uranium. Fundamental understanding of the mechanisms of microbiological transformations of various chemical forms of uranium present in wastes and contaminated soils and water has led to the development of novel bioremediation processes. One process uses anaerobic bacteria to stabilize the radionuclides and toxic metals from the waste, with a concurrent reduction in volume due to the dissolution and removal of nontoxic elements from the waste matrix. In an another process, uranium and other toxic metals are removed from contaminated soils and wastes by extracting with the chelating agent citric acid. Uranium is recovered from the citric acid extract after biodegradation/photodegradation in a concentrated form as UO{sub 3} {center_dot} 2H{sub 2}O for recycling or appropriate disposal.

  20. Microbial transformations of arsenic in the environment: From soda lakes to aquifers

    USGS Publications Warehouse

    Lloyd, J.R.; Oremland, R.S.

    2006-01-01

    Arsenic is a highly toxic element that supports a surprising range of biogeochemical transformations. The biochemical basis of these microbial interactions is described, with an emphasis on energy-yielding redox biotransformations that cycle between the As5+ and As3+ oxidation states. The subsequent impact of As3+-oxidising and As 5+-reducing prokaryotes on the chemistry of selected environments is also described, focusing on soda lakes with naturally high concentrations of the metalloid and on Southeast Asian aquifer sediments, where the microbial reduction of sorbed As5+ and subsequent mobilisation of As 3+ into water abstracted for drinking and irrigation threaten the lives of millions.

  1. Microbial Transformation of Polycyclic Aromatic Hydrocarbons in Pristine and Petroleum-Contaminated Sediments †

    PubMed Central

    Herbes, S. E.; Schwall, L. R.

    1978-01-01

    To determine rates of microbial transformation of polycyclic aromatic hydrocarbons (PAH) in freshwater sediments, 14C-labeled PAH were incubated with samples from both pristine and petroleum-contaminated streams. Evolved 14CO2 was trapped in KOH, unaltered PAH and polar metabolic intermediate fractions were quantitated after sediment extraction and column chromatography, and bound cellular 14C was measured in sediment residues. Large fractions of 14C were incorporated into microbial cellular material; therefore, measurement of rates of 14CO2 evolution alone would seriously underestimate transformation rates of [14C]naphthalene and [14C]anthracene. PAH compound turnover times in petroleum-contaminated sediment increased from 7.1 h for naphthalene to 400 h for anthracene, 10,000 h for benz(a)anthracene, and more than 30,000 h for benz(a)pyrene. Turnover times in uncontaminated stream sediment were 10 to 400 times greater than in contaminated samples, while absolute rates of PAH transformation (micrograms of PAH per gram of sediment per hour) were 3,000 to 125,000 times greater in contaminated sediment. The data indicate that four- and five-ring PAH compounds, several of which are carcinogenic, may persist even in sediments that have received chronic PAH inputs and that support microbial populations capable of transforming two- and three-ring PAH compounds. PMID:16345270

  2. Microbial production and chemical transformation of poly-γ-glutamate.

    PubMed

    Ashiuchi, Makoto

    2013-11-01

    Poly-γ-glutamate (PGA), a novel polyamide material with industrial applications, possesses a nylon-like backbone, is structurally similar to polyacrylic acid, is biodegradable and is safe for human consumption. PGA is frequently found in the mucilage of natto, a Japanese traditional fermented food. To date, three different types of PGA, namely a homo polymer of D-glutamate (D-PGA), a homo polymer of L-glutamate (L-PGA), and a random copolymer consisting of D- and L-glutamate (DL-PGA), are known. This review will detail the occurrence and physiology of PGA. The proposed reaction mechanism of PGA synthesis including its localization and the structure of the involved enzyme, PGA synthetase, are described. The occurrence of multiple carboxyl residues in PGA likely plays a role in its relative unsuitability for the development of bio-nylon plastics and thus, establishment of an efficient PGA-reforming strategy is of great importance. Aside from the potential applications of PGA proposed to date, a new technique for chemical transformation of PGA is also discussed. Finally, some techniques for PGA and its derivatives in advanced material technology are presented.

  3. Microbial production and chemical transformation of poly-γ-glutamate

    PubMed Central

    Ashiuchi, Makoto

    2013-01-01

    Poly-γ-glutamate (PGA), a novel polyamide material with industrial applications, possesses a nylon-like backbone, is structurally similar to polyacrylic acid, is biodegradable and is safe for human consumption. PGA is frequently found in the mucilage of natto, a Japanese traditional fermented food. To date, three different types of PGA, namely a homo polymer of d-glutamate (D-PGA), a homo polymer of l-glutamate (L-PGA), and a random copolymer consisting of d- and l-glutamate (DL-PGA), are known. This review will detail the occurrence and physiology of PGA. The proposed reaction mechanism of PGA synthesis including its localization and the structure of the involved enzyme, PGA synthetase, are described. The occurrence of multiple carboxyl residues in PGA likely plays a role in its relative unsuitability for the development of bio-nylon plastics and thus, establishment of an efficient PGA-reforming strategy is of great importance. Aside from the potential applications of PGA proposed to date, a new technique for chemical transformation of PGA is also discussed. Finally, some techniques for PGA and its derivatives in advanced material technology are presented. PMID:23855427

  4. Microbial production and chemical transformation of poly-γ-glutamate.

    PubMed

    Ashiuchi, Makoto

    2013-11-01

    Poly-γ-glutamate (PGA), a novel polyamide material with industrial applications, possesses a nylon-like backbone, is structurally similar to polyacrylic acid, is biodegradable and is safe for human consumption. PGA is frequently found in the mucilage of natto, a Japanese traditional fermented food. To date, three different types of PGA, namely a homo polymer of D-glutamate (D-PGA), a homo polymer of L-glutamate (L-PGA), and a random copolymer consisting of D- and L-glutamate (DL-PGA), are known. This review will detail the occurrence and physiology of PGA. The proposed reaction mechanism of PGA synthesis including its localization and the structure of the involved enzyme, PGA synthetase, are described. The occurrence of multiple carboxyl residues in PGA likely plays a role in its relative unsuitability for the development of bio-nylon plastics and thus, establishment of an efficient PGA-reforming strategy is of great importance. Aside from the potential applications of PGA proposed to date, a new technique for chemical transformation of PGA is also discussed. Finally, some techniques for PGA and its derivatives in advanced material technology are presented. PMID:23855427

  5. MICROBIAL TRANSFORMATIONS OF RADIONUCLIDES AND ENVIRONMENTAL RESTORATION THROUGH BIOREMEDIATION.

    SciTech Connect

    FRANCIS, A.J.

    2006-09-29

    Treatment of waste streams containing radionuclides, the remediation of contaminated materials, soils, and water, and the safe and economical disposal of radionuclides and toxic metals containing wastes is a major concern. Radionuclides may exist in various oxidation states and may be present as oxide, coprecipitates, inorganic, and organic complexes depending on the process and waste stream. Unlike organic contaminants, the metals cannot be destroyed, but must either be converted to a stable form or removed. Microorganisms present in the natural environment play a major role in the mobilization and immobilization of radionuclides and toxic metals by direct enzymatic or indirect non-enzymatic actions and could affect the chemical nature of the radionuclides by altering the speciation, solubility and sorption properties and thus could increase or decrease the concentrations of radionuclides in solution. Fundamental understanding of the mechanisms of microbiological transformations of various chemical forms of uranium present in wastes and contaminated soils and water has led to the development of novel bioremediation processes. One process uses anaerobic bacteria to stabilize the radionuclides by reductive precipitation from higher to lower oxidation state with a concurrent reduction in volume due to the dissolution and removal of nontoxic elements from the waste matrix. In an another process, uranium and other toxic metals are removed from contaminated surfaces, soils, and wastes by extracting with the chelating agent citric acid. Uranium is recovered from the citric acid extract after biodegradation followed by photodegradation in a concentrated form as UO{sub 3} {center_dot} 2H{sub 2}O for recycling or appropriate disposal. These processes use all naturally occurring materials, common soil bacteria, naturally occurring organic compound citric acid and sunlight.

  6. Microbial Functional Gene Diversity with a Shift of Subsurface Redox Conditions during In Situ Uranium Reduction

    PubMed Central

    Liang, Yuting; Van Nostrand, Joy D.; N′Guessan, Lucie A.; Peacock, Aaron D.; Deng, Ye; Long, Philip E.; Resch, C. Tom; Wu, Liyou; He, Zhili; Li, Guanghe; Hazen, Terry C.; Lovley, Derek R.

    2012-01-01

    To better understand the microbial functional diversity changes with subsurface redox conditions during in situ uranium bioremediation, key functional genes were studied with GeoChip, a comprehensive functional gene microarray, in field experiments at a uranium mill tailings remedial action (UMTRA) site (Rifle, CO). The results indicated that functional microbial communities altered with a shift in the dominant metabolic process, as documented by hierarchical cluster and ordination analyses of all detected functional genes. The abundance of dsrAB genes (dissimilatory sulfite reductase genes) and methane generation-related mcr genes (methyl coenzyme M reductase coding genes) increased when redox conditions shifted from Fe-reducing to sulfate-reducing conditions. The cytochrome genes detected were primarily from Geobacter sp. and decreased with lower subsurface redox conditions. Statistical analysis of environmental parameters and functional genes indicated that acetate, U(VI), and redox potential (Eh) were the most significant geochemical variables linked to microbial functional gene structures, and changes in microbial functional diversity were strongly related to the dominant terminal electron-accepting process following acetate addition. The study indicates that the microbial functional genes clearly reflect the in situ redox conditions and the dominant microbial processes, which in turn influence uranium bioreduction. Microbial functional genes thus could be very useful for tracking microbial community structure and dynamics during bioremediation. PMID:22327592

  7. Detection of divergent genes in microbial aCGH experiments

    PubMed Central

    Snipen, Lars; Repsilber, Dirk; Nyquist, Ludvig; Ziegler, Andreas; Aakra, Ågot; Aastveit, Are

    2006-01-01

    Background Array-based comparative genome hybridization (aCGH) is a tool for rapid comparison of genomes from different bacterial strains. The purpose of such analysis is to detect highly divergent or absent genes in a sample strain compared to an index strain. Development of methods for analyzing aCGH data has primarily focused on copy number abberations in cancer research. In microbial aCGH analyses, genes are typically ranked by log-ratios, and classification into divergent or present is done by choosing a cutoff log-ratio, either manually or by statistics calculated from the log-ratio distribution. As experimental settings vary considerably, it is not possible to develop a classical discriminant or statistical learning approach. Methods We introduce a more efficient method for analyzing microbial aCGH data using a finite mixture model and a data rotation scheme. Using the average posterior probabilities from the model fitted to log-ratios before and after rotation, we get a score for each gene, and demonstrate its advantages for ranking and detecting divergent genes with enlarged specificity and sensitivity. Results The procedure is tested and compared to other approaches on simulated data sets, as well as on four experimental validation data sets for aCGH analysis on fully sequenced strains of Staphylococcus aureus and Streptococcus pneumoniae. Conclusion When tested on simulated data as well as on four different experimental validation data sets from experiments with only fully sequenced strains, our procedure out-competes the standard procedures of using a simple log-ratio cutoff for classification into present and divergent genes. PMID:16573812

  8. Microbial transformation products of benzoxazolinone and benzoxazinone allelochemicals--a review.

    PubMed

    Fomsgaard, Inge S; Mortensen, Anne G; Carlsen, Sandra C K

    2004-02-01

    Cyclic hydroxamic acids and lactams are allelochemicals present in the common agricultural crops wheat, rye, and maize. The hydroxamic acids are mainly present in the plants as glucosides. Upon injury or insect attack or when exuded to the soil environment, the hydroxamic acids occur in their unstable agluconic form. In the first step in the transformation of hydroxamic acids, benzoxazolinones are formed spontaneously. It is necessary to elucidate the further microbial transformation of these compounds in the soil environment for a purposeful exploitation of the allelopathic properties of wheat, rye, and maize. In the present paper, the existing knowledge on microbial transformation products of benzoxazolin-2-one (BOA), 6-methoxy-benzoxazolin-2-one (MBOA), and 2-hydroxy-1,4-benzoxazin-3-one (HBOA) was reviewed. Three main groups of transformation products were identified: aminophenoxazinones, malonamic acids, and acetamides. Future research needs concerning the transformation of these chemicals in soil are discussed, when their properties for suppressing weeds and soil-borne diseases are going to be exploited.

  9. Production of diosgenin from Dioscorea zingiberensis tubers through enzymatic saccharification and microbial transformation.

    PubMed

    Zhu, Yu-Ling; Huang, Wen; Ni, Jin-Ren; Liu, Wei; Li, Hui

    2010-02-01

    In order to develop a clean and effective approach for producing the valuable drug diosgenin from Dioscorea zingiberensis tubers, two successive processes, enzymatic saccharification and microbial transformation, were used. With enzymatic saccharification, 98.0% of starch was excluded from the raw herb, releasing saponins from the network structure of starch. Subsequently, the treated tubers were fermented with Trichoderma reesei under optimal conditions for 156 h. During microbial transformation, glycosidic bonds, which link beta-D-glucose or alpha-L-rhamnose with aglycone at the C-3 position in saponins, were broken down effectively to give a diosgenin yield of 90.6+/-2.45%, 42.4% higher than that obtained from bioconversion of raw tubers directly. Scaled up fermentation was conducted in a 5.0-l bioreactor and gave a diosgenin yield of 91.2+/-3.21%. This is the first report on the preparation of diosgenin from herbs through microbial transformation as well as utilizing other available components in the raw material, providing an environmentally friendly alternative to diosgenin production.

  10. Genetic transformation and gene expression in white pine (pinus strobus)

    SciTech Connect

    Minocha, R.

    1987-10-01

    The objectives of the study were: (1) to develop protocols for transformation of white pine (Pinus strobus) embryonic tissue; and (2) to analyze the regulation of foreign gene expression in Pinus strobus. A number of Agrobacterium tumefaciens strains containing chimeric genes for neomycin phosphotransferase (NPTII for kanamycin resistance) and chloramphenicol acetyl transferase (CAT) under the control of either a constitutive promoter (NOS-nopaline synthase) or light-inducible promoters (RuBisCO small subunit and chlorophyll a/b binding protein) were used. A variety of tissues from white pine seedlings and mature trees was used. The techniques for transformation were modified from those used for tobacco transformation. The results show that white pine tissue from young seedlings is high suitable for transformation by A. tumefaciens. Whereas the normal tissues are very sensitive to kanamycin, transformed callus was quite resistant to this antibiotic.

  11. Anaerobic transformation of carbon monoxide by microbial communities of Kamchatka hot springs.

    PubMed

    Kochetkova, Tatiana V; Rusanov, Igor I; Pimenov, Nikolay V; Kolganova, Tatyana V; Lebedinsky, Alexander V; Bonch-Osmolovskaya, Elizaveta A; Sokolova, Tatyana G

    2011-05-01

    Carbon monoxide (CO) is one of the common gaseous compounds found in hot volcanic environments. It is known to serve as the growth substrate for a number of thermophilic prokaryotes, both aerobic and anaerobic. The goal of this work was to study the process of anaerobic transformation of CO by microbial communities inhabiting natural thermal environments: hot springs of Uzon Caldera, Kamchatka. The anaerobic microbial community of Treshchinny Spring (80°C, pH 6.5) was found to exhibit two peaks of affinity for CO (K (S1) = 54 nM and K (S2) = 1 μM). The actual rate of anaerobic CO transformation by the microbial community of this spring, calculated after obtaining the concentration dependence curve and extrapolated to the natural concentration of CO dissolved in the hot spring water (20 nM), was found to be 120 μmol l(-1) of sediment day(-1). In all the hot springs studied, more than 90% of the carbon of (14)CO upon anaerobic incubation was recovered as (14)CO(2). From 1 to 5% of (14)CO was transformed to volatile fatty acids (VFA). The number of microorganisms capable of anaerobic CO oxidation determined by dilution-to-extinction method reached 10(6) cells ml(-1) of sediment. CO-transforming anaerobic thermophilic microorganisms isolated from the springs under study exhibited hydrogenogenic type of CO oxidation and belonged to the bacterial genera Carboxydocella and Dictyoglomus. These data suggest a significant role of hydrogenogenic carboxydotrophic prokaryotes in anaerobic CO transformation in Uzon Caldera hot springs.

  12. Microbial metabolism fuels ecosystem-scale organic matter transformations: an integrated biological and chemical perspective

    NASA Astrophysics Data System (ADS)

    Wrighton, K. C.; Narrowe, A. B.; Angle, J.; Stefanik, K. S.; Daly, R. A.; Johnston, M.; Miller, C. S.

    2014-12-01

    Freshwater saturated sediments and soils represent vital ecosystems due to their nutrient cycling capacities and their prominent contribution to global greenhouse gas emissions. However, the diversity of microorganisms and metabolic pathways involved in carbon cycling, and the impacts of these processes on other biogeochemical cycles remain poorly understood. Major advances in DNA sequencing have helped forge linkages between the previously disconnected biological and chemical components of these systems. Here, we present data on the use of assembly-based metagenomics to generate hypotheses on microbial carbon degradation and biogeochemical cycling in waterlogged sediments and soils. DNA sequencing from a fresh water aquifer adjacent to the Colorado River in Rifle, CO yielded extensive genome recovery from multiple previously unknown bacterial lineages. Fermentative metabolisms encoded by these genomes drive nitrogen, hydrogen, and sulfur cycling in this subsurface system. We are also applying a similar approach to identify microbial processes in a freshwater wetland on Lake Erie, OH. Given the increased diversity (increased richness, decreased evenness, and strain variation) of wetland sediment microbial communities, we modified methods for specialized assembly of long taxonomic marker gene amplicons (EMIRGE) to create a biogeographical map of Fungi, Archaea, and Bacteria along depth and hydrological transects. This map reveals that the microbial community associated with the top two depths (>7 cm) is significantly different from bottom depths (7-40 cm). Dissolved organic matter (DOM) molecular weight and the presence of oxidized terminal electron acceptors best predict differences in microbial community structure. Laboratory mesocosms amended with pore-water DOM, in situ soil communities, and variable oxygen conditions link DOM composition and redox to microbial metabolic networks, biogeochemical cycles, and green house gas emission. Organism identities from

  13. Microbial toxicity and characterization of DNAN (bio)transformation product mixtures.

    PubMed

    Olivares, Christopher I; Sierra-Alvarez, Reyes; Alvarez-Nieto, Cristina; Abrell, Leif; Chorover, Jon; Field, Jim A

    2016-07-01

    2,4-Dinitroanisole (DNAN) is an emerging insensitive munitions compound. It undergoes rapid (bio)transformation in soils and anaerobic sludge. The primary transformation pathway catalyzed by a combination of biotic and abiotic factors is nitrogroup reduction followed by coupling of reactive intermediates to form azo-dimers. Additional pathways include N-acetylation and O-demethoxylation. Toxicity due to (bio)transformation products of DNAN has received little attention. In this study, the toxicity of DNAN (bio)transformation monomer products and azo-dimer and trimer surrogates to acetoclastic methanogens and the marine bioluminescent bacterium, Allivibrio fischeri, were evaluated. Methanogens were severely inhibited by 3-nitro-4-methoxyaniline (MENA), with a 50%-inhibiting concentration (IC50) of 25 μM, which is more toxic than DNAN with the same assay, but posed a lower toxicity to Allivibrio fischeri (IC50 = 219 μM). On the other hand, N-(5-amino-2-methoxyphenyl) acetamide (Ac-DAAN) was the least inhibitory test-compound for both microbial targets. Azo-dimer and trimer surrogates were very highly toxic to both microbial systems, with a toxicity similar or stronger than that of DNAN. A semi-quantitative LC-QTOF-MS method was employed to determine product mixture profiles at different stages of biotransformation, and compared with the microbial toxicity of the product-mixtures formed. Methanogenic toxicity increased due to putative reactive nitroso-intermediates as DNAN was reduced. However, the inhibition later attenuated as dimers became the predominant products in the mixtures. In contrast, A. fischeri tolerated the initial biotransformation products but were highly inhibited by the predominant azo-dimer products formed at longer incubation times, suggesting these ultimate products are more toxic than DNAN.

  14. Analytical determination of the microbial utilization and transformation of humic acids extracted from municipal refuse.

    PubMed

    Filip, Z; Berthelin, J

    2001-11-01

    Humic substances are usually the refractory part of natural organic matter, and in a landfill they can retain inorganic and organic micropollutants. This study has investigated analytically whether humic acids (HA) extracted by use of alkali from either fresh municipal refuse or from refuse disposed of in a landfill for up to 12 months can resist microbial degradation under aerobic conditions. When added as a supplementary nutrient source, up to 63.6% of HA was utilized and this percentage was enhanced to a mean value of 88.5% when different HA preparations were used as the sole source of carbon. In cultures of a soil microbial community containing the same preparations as sole sources of nitrogen, HA was usually completely utilized. The remaining HA re-isolated from some microbial cultures were highly depleted in carbon and, simultaneously, the nitrogen content was enhanced. The FTIR spectra were indicative of strong participation of aliphatic structural units in the refuse-related HA preparations. Because of the microbial activity, different carbonaceous substances were primarily removed from the HA structure, and an increase in nitrogenous molecular groups became apparent. The structural transformations brought about by soil microorganisms "in vitro" corresponded to those occurring naturally in HA obtained from refuse aged for 12 months in a landfill.

  15. Molecular transformation, gene cloning, and gene expression systems for filamentous fungi

    USGS Publications Warehouse

    Gold, Scott E.; Duick, John W.; Redman, Regina S.; Rodriguez, Rusty J.

    2001-01-01

    This chapter discusses the molecular transformation, gene cloning, and gene expression systems for filamentous fungi. Molecular transformation involves the movement of discrete amounts of DNA into cells, the expression of genes on the transported DNA, and the sustainable replication of the transforming DNA. The ability to transform fungi is dependent on the stable replication and expression of genes located on the transforming DNA. Three phenomena observed in bacteria, that is, competence, plasmids, and restriction enzymes to facilitate cloning, were responsible for the development of molecular transformation in fungi. Initial transformation success with filamentous fungi, involving the complementation of auxotrophic mutants by exposure to sheared genomic DNA or RNA from wt isolates, occurred with low transformation efficiencies. In addition, it was difficult to retrieve complementing DNA fragments and isolate genes of interest. This prompted the development of transformation vectors and methods to increase efficiencies. The physiological studies performed with fungi indicated that the cell wall could be removed to generate protoplasts. It was evident that protoplasts could be transformed with significantly greater efficiencies than walled cells.

  16. Mapping microbial ecosystems and spoilage-gene flow in breweries highlights patterns of contamination and resistance.

    PubMed

    Bokulich, Nicholas A; Bergsveinson, Jordyn; Ziola, Barry; Mills, David A

    2015-01-01

    Distinct microbial ecosystems have evolved to meet the challenges of indoor environments, shaping the microbial communities that interact most with modern human activities. Microbial transmission in food-processing facilities has an enormous impact on the qualities and healthfulness of foods, beneficially or detrimentally interacting with food products. To explore modes of microbial transmission and spoilage-gene frequency in a commercial food-production scenario, we profiled hop-resistance gene frequencies and bacterial and fungal communities in a brewery. We employed a Bayesian approach for predicting routes of contamination, revealing critical control points for microbial management. Physically mapping microbial populations over time illustrates patterns of dispersal and identifies potential contaminant reservoirs within this environment. Habitual exposure to beer is associated with increased abundance of spoilage genes, predicting greater contamination risk. Elucidating the genetic landscapes of indoor environments poses important practical implications for food-production systems and these concepts are translatable to other built environments. PMID:25756611

  17. Microbial Transformation of Triadimefon to Triadimenol in Soils: Selective Production Rates of Triadimenol Stereoisomers Affect Exposure and Risk

    EPA Science Inventory

    The microbial transformation of triadimefon, an agricultural fungicide of the 1,2,4-triazole class, was followed at a nominal concentration of 50 μg/mL over 4 months under aerobic conditions in three different soil types. Rates and products of transformation were measured, as wel...

  18. Stereoselective Microbial Transformation of Triadimefon to Triadimenol in Soils: Varying Production Rates of Triadimenol Stereoisomers Could Impact Risk Assessment

    EPA Science Inventory

    The microbial transformation of triadimefon, an agricultural fungicide of the 1,2,4-triazole class, was followed over several months under aerobic conditions in 3 different soil types to observe rates and products of transformation as well as enantiomer fractions of parent and pr...

  19. Photochemical and microbial transformation of emerging flame retardants: cause for concern?

    PubMed

    Chen, Da; Hale, Robert C; Letcher, Robert J

    2015-04-01

    Among anthropogenic chemicals, flame retardants have attracted mounting environmental concerns. In recent years, an increasing number of studies have been conducted worldwide to investigate flame-retardant sources, environmental distribution, wildlife and human exposure, and toxicity. Data generated have demonstrated that some flame-retardant substances such as polybrominated diphenyl ethers (PBDE) are persistent, bioaccumulative, and toxic to exposed organisms. However, comparatively much less attention has been paid to the mechanisms and products of environmental transformation of flame retardants. This lack of information undermines our understanding of the environmental behavior and fate of flame retardants, as well as the associated risks to environmental and human health. Photochemical and microbial transformation of flame retardants in various matrices and environmental compartments can elevate the toxicological significance of flame retardant exposure, via the formation of, for example, lesser halogenated but more bioaccumulative degradation products and toxic radicals. Such pathways raise concerns related to the environmental safety of some alternative flame retardants that are presumably safe and used to replace PBDEs. To fully assess the environmental risks, more research is needed to investigate the environmental transformation potential of emerging flame retardants including polymeric flame retardants. Enhanced analytical efforts are needed to better characterize transformation products and transient radicals. Additional mesocosm and field studies are needed to elucidate transformation kinetics and consequences under environmentally relevant conditions. PMID:25809099

  20. Photochemical and microbial transformation of emerging flame retardants: cause for concern?

    PubMed

    Chen, Da; Hale, Robert C; Letcher, Robert J

    2015-04-01

    Among anthropogenic chemicals, flame retardants have attracted mounting environmental concerns. In recent years, an increasing number of studies have been conducted worldwide to investigate flame-retardant sources, environmental distribution, wildlife and human exposure, and toxicity. Data generated have demonstrated that some flame-retardant substances such as polybrominated diphenyl ethers (PBDE) are persistent, bioaccumulative, and toxic to exposed organisms. However, comparatively much less attention has been paid to the mechanisms and products of environmental transformation of flame retardants. This lack of information undermines our understanding of the environmental behavior and fate of flame retardants, as well as the associated risks to environmental and human health. Photochemical and microbial transformation of flame retardants in various matrices and environmental compartments can elevate the toxicological significance of flame retardant exposure, via the formation of, for example, lesser halogenated but more bioaccumulative degradation products and toxic radicals. Such pathways raise concerns related to the environmental safety of some alternative flame retardants that are presumably safe and used to replace PBDEs. To fully assess the environmental risks, more research is needed to investigate the environmental transformation potential of emerging flame retardants including polymeric flame retardants. Enhanced analytical efforts are needed to better characterize transformation products and transient radicals. Additional mesocosm and field studies are needed to elucidate transformation kinetics and consequences under environmentally relevant conditions.

  1. Microbial transformation of acetyl-11-keto-boswellic acid by Cunninghamella elegans.

    PubMed

    Xin, Xiu-Lan; Huo, Hua; Chen, Liang; Li, Jian; Sun, Jiang-Hao; Zheng, Peng-Wu; Sun, Yue; Wu, Zhi-Ming; Xiong, Ying-Hua

    2013-11-01

    Microbial biotransformation of acetyl-11-keto-boswellic acid by Cunninghamella elegans AS 3.1207 was carried out, and totally four transformed products were isolated. On the basis of the extensive spectral data, their structures were characterized as 7β-hydroxy-11-keto-boswellic acid (1), 7β,30-dihydroxy-11-keto-boswellic acid (2), 7β,16α-dihydroxy-3-acetyl-11-keto-boswellic acid (3), and 7β,15α,21β-trihydroxy-3-acetyl-11-keto-boswellic acid (4), respectively. Among them, products 1 and 2 are the new compounds.

  2. Investigating the role for adaptation of the microbial community to transform trace organic chemicals during managed aquifer recharge.

    PubMed

    Alidina, Mazahirali; Li, Dong; Drewes, Jörg E

    2014-06-01

    This study was undertaken to investigate whether adaptation by pre-exposure to trace organic chemicals (TOrCs) was necessary for microbial transformation during managed aquifer recharge (MAR). Two pairs of laboratory-scale soil columns, each receiving a different primary substrate, were utilized to simulate the dominant bulk organic carbon present in MAR systems receiving wastewater effluent of varying quality and having undergone different degrees of pre-treatment, as well as organic carbon prevalent at different stages of subsurface travel. Each pair of columns consisted of duplicate set-ups receiving the same feed solution with only one pre-exposed to a suite of eight TOrCs for approximately ten months. Following the pre-exposure period, a spiking experiment was conducted in which the non-exposed columns also received the same suite of TOrCs. TOrC attenuation was quantified for the pre- and non-exposed columns of each pair during the spiking experiment. The microbial community structure and function of these systems were characterized by pyrosequencing of 16S rRNA gene and metagenomics, respectively. Biotransformation rather than sorption was identified as the dominant removal mechanism for almost all the TOrCs (except triclocarban). Similar removal efficiencies were observed between pre-exposed and non-exposed columns for most TOrCs. No obvious differences in microbial community structure were revealed between pre- and non-exposed columns. Using metagenomics, biotransformation capacity potentials of the microbial community present were also similar between pre- and non-exposed columns of each pair. Overall, the pre-exposure of MAR systems to TOrCs at ng/L levels did not affect their attenuation and had no obvious influence on the resulting microbial community structure and function. Thus, other factors such as bioavailability of the primary substrate play a greater role regarding biotransformation of TOrCs. These results indicate that MAR systems adapted to a

  3. Efficient gene replacement and direct hyphal transformation in Sclerotinia sclerotiorum.

    PubMed

    Levy, M; Erental, A; Yarden, O

    2008-09-01

    Homologous recombination is required for gene-targeted procedures such as gene disruption and gene replacement. Ku80 is part of the non-homologous end-joining DNA repair mechanism in many organisms. We identified and disrupted the Ku80 homologue in Sclerotinia sclerotiorum and generated heterokaryon mutants enriched with Ku80-deficient nuclei (ssku80). Sclerotial formation and pathogenicity of ssku80 mutants were normal on tomato fruits. The frequencies of homologous recombination in these strains were much higher than those of the wild type when transformed with a cna1 (encoding calcineurin) replacement construct. We coupled the increase in homologous recombination with a direct BIM-LAB-mediated transformation procedure, which utilizes compressed air to assist the transforming DNA in penetrating fungal hyphae of S. sclerotiorum. We found this method to be efficient and reproducible, and it did not alter the fitness of the mutants. We also demonstrated the first case of direct transformation of sclerotia. Nourseothricin was introduced as a selectable marker in S. sclerotiorum. The tools and procedures described will improve our ability to study gene function in S. sclerotiorum and are most likely to be adaptable for use in other plant pathogens. PMID:19019000

  4. A closed concept of extractive whole cell microbial transformation of benzaldehyde into L-phenylacetylcarbinol by Saccharomyces cerevisiae in novel polyethylene-glycol-induced cloud-point system.

    PubMed

    Wang, Zhilong; Liang, Rui; Xu, Jian-He; Liu, Yubo; Qi, Hanshi

    2010-03-01

    Extractive microbial transformation of benzaldehyde into L-phenylacetylcarbinol (L-PAC) by Saccharomyces cerevisiae (Baker's yeast) has been carried out in a novel polyethylene-glycol-induced cloud-point system (PEG-CPS). The extractive microbial transformation in the PEG-CPS and a downstream process for stripping of the product from the microbial transformation broth with microemulsion extraction are demonstrated. The results indicate that the PEG-CPS maintains the advantage of CPS for in situ extraction of polar product in the microbial transformation. At the same time, the utilization of hydrophilic nonionic surfactant in the PEG-CPS is favorable for stripping of product from the nonionic surfactant in the microbial transformation broth by Winsor I microemulsion extraction. Thus, a closed concept of in situ extraction of polar product in microbial transformation and its downstream process of product recovery are fulfilled at the same time.

  5. Characteristics of nitrogen transformation and microbial community in an aerobic composting reactor under two typical temperatures.

    PubMed

    Li, Q; Wang, X C; Zhang, H H; Shi, H L; Hu, T; Ngo, H H

    2013-06-01

    Batch experiments were conducted for feces composting using an aerobic composting reactor with sawdust as bulky matrix. In the 14-day composting processes at 35±2 and 55±2°C, compost samples were collected daily and chemical analyses and PCR-DGGE were carried out for investigating the influence of composting temperature on organic decomposition, nitrogen transformation, and microbial communities. At 55±2°C, in addition to a slightly higher COD removal, nitrogen loss was greatly restrained. As organic nitrogen took about 85% of the total nitrogen originated from human feces, the suppression of ammonification process under thermophilic environment might be the main reason for less nitrogen loss at 55±2°C. By PCR-DGGE analysis, the microbial community was found to undergo successions differently at 35±2 and 55±2°C. Certain sequences identified from the compost at 55±2°C represented the microbial species which could perform nitrogen-fixation or sustain a lower pH in the compost so that gaseous ammonia emission was suppressed.

  6. Spectral induced polarization and electrodic potential monitoring of microbially mediated iron sulfide transformations

    NASA Astrophysics Data System (ADS)

    Personna, Yves Robert; Ntarlagiannis, Dimitrios; Slater, Lee; Yee, Nathan; O'Brien, Michael; Hubbard, Susan

    2008-06-01

    Stimulated sulfate-reduction is a bioremediation technique utilized for the sequestration of heavy metals in the subsurface. We performed laboratory column experiments to investigate the geoelectrical response of iron sulfide transformations by Desulfovibrio vulgaris. Two geoelectrical methods, (1) spectral induced polarization (SIP), and (2) electrodic potential measurements, were investigated. Aqueous geochemistry (sulfate, lactate, sulfide, and acetate), observations of precipitates (identified from electron microscopy as iron sulfide), and electrodic potentials on bisulfide ion (HS-) sensitive silver-silver chloride (Ag-AgCl) electrodes (˜-630 mV) were diagnostic of induced transitions between anaerobic iron sulfide forming conditions and aerobic conditions promoting iron sulfide dissolution. The SIP data showed ˜10 mrad anomalies during iron sulfide mineralization accompanying microbial activity under an anaerobic transition. These anomalies disappeared during iron sulfide dissolution under the subsequent aerobic transition. SIP model parameters based on a Cole-Cole relaxation model of the polarization at the mineral-fluid interface were converted to (1) estimated biomineral surface area to pore volume (Sp), and (2) an equivalent polarizable sphere diameter (d) controlling the relaxation time. The temporal variation in these model parameters is consistent with filling and emptying of pores by iron sulfide biofilms, as the system transitions between anaerobic (pore filling) and aerobic (pore emptying) conditions. The results suggest that combined SIP and electrodic potential measurements might be used to monitor spatiotemporal variability in microbial iron sulfide transformations in the field.

  7. Spectral induced polarization and electrodic potential monitoring of microbially mediated iron sulfide transformations

    SciTech Connect

    Hubbard, Susan; Personna, Y.R.; Ntarlagiannis, D.; Slater, L.; Yee, N.; O'Brien, M.; Hubbard, S.

    2008-02-15

    Stimulated sulfate-reduction is a bioremediation technique utilized for the sequestration of heavy metals in the subsurface.We performed laboratory column experiments to investigate the geoelectrical response of iron sulfide transformations by Desulfo vibriovulgaris. Two geoelectrical methods, (1) spectral induced polarization (SIP), and (2) electrodic potential measurements, were investigated. Aqueous geochemistry (sulfate, lactate, sulfide, and acetate), observations of precipitates (identified from electron microscopy as iron sulfide), and electrodic potentials on bisulfide ion (HS) sensitive silver-silver chloride (Ag-AgCl) electrodes (630 mV) were diagnostic of induced transitions between an aerobic iron sulfide forming conditions and aerobic conditions promoting iron sulfide dissolution. The SIP data showed 10m rad anomalies during iron sulfide mineralization accompanying microbial activity under an anaerobic transition. These anomalies disappeared during iron sulfide dissolution under the subsequent aerobic transition. SIP model parameters based on a Cole-Cole relaxation model of the polarization at the mineral-fluid interface were converted to (1) estimated biomineral surface area to pore volume (Sp), and (2) an equivalent polarizable sphere diameter (d) controlling the relaxation time. The temporal variation in these model parameters is consistent with filling and emptying of pores by iron sulfide biofilms, as the system transitions between anaerobic (pore filling) and aerobic (pore emptying) conditions. The results suggest that combined SIP and electrodic potential measurements might be used to monitor spatiotemporal variability in microbial iron sulfide transformations in the field.

  8. TRANSFORMATION

    SciTech Connect

    LACKS,S.A.

    2003-10-09

    Transformation, which alters the genetic makeup of an individual, is a concept that intrigues the human imagination. In Streptococcus pneumoniae such transformation was first demonstrated. Perhaps our fascination with genetics derived from our ancestors observing their own progeny, with its retention and assortment of parental traits, but such interest must have been accelerated after the dawn of agriculture. It was in pea plants that Gregor Mendel in the late 1800s examined inherited traits and found them to be determined by physical elements, or genes, passed from parents to progeny. In our day, the material basis of these genetic determinants was revealed to be DNA by the lowly bacteria, in particular, the pneumococcus. For this species, transformation by free DNA is a sexual process that enables cells to sport new combinations of genes and traits. Genetic transformation of the type found in S. pneumoniae occurs naturally in many species of bacteria (70), but, initially only a few other transformable species were found, namely, Haemophilus influenzae, Neisseria meningitides, Neisseria gonorrheae, and Bacillus subtilis (96). Natural transformation, which requires a set of genes evolved for the purpose, contrasts with artificial transformation, which is accomplished by shocking cells either electrically, as in electroporation, or by ionic and temperature shifts. Although such artificial treatments can introduce very small amounts of DNA into virtually any type of cell, the amounts introduced by natural transformation are a million-fold greater, and S. pneumoniae can take up as much as 10% of its cellular DNA content (40).

  9. Analyses of soil microbial community compositions and functional genes reveal potential consequences of natural forest succession

    PubMed Central

    Cong, Jing; Yang, Yunfeng; Liu, Xueduan; Lu, Hui; Liu, Xiao; Zhou, Jizhong; Li, Diqiang; Yin, Huaqun; Ding, Junjun; Zhang, Yuguang

    2015-01-01

    The succession of microbial community structure and function is a central ecological topic, as microbes drive the Earth’s biogeochemical cycles. To elucidate the response and mechanistic underpinnings of soil microbial community structure and metabolic potential relevant to natural forest succession, we compared soil microbial communities from three adjacent natural forests: a coniferous forest (CF), a mixed broadleaf forest (MBF) and a deciduous broadleaf forest (DBF) on Shennongjia Mountain in central China. In contrary to plant communities, the microbial taxonomic diversity of the DBF was significantly (P < 0.05) higher than those of CF and MBF, rendering their microbial community compositions markedly different. Consistently, microbial functional diversity was also highest in the DBF. Furthermore, a network analysis of microbial carbon and nitrogen cycling genes showed the network for the DBF samples was relatively large and tight, revealing strong couplings between microbes. Soil temperature, reflective of climate regimes, was important in shaping microbial communities at both taxonomic and functional gene levels. As a first glimpse of both the taxonomic and functional compositions of soil microbial communities, our results suggest that microbial community structure and function potentials will be altered by future environmental changes, which have implications for forest succession. PMID:25943705

  10. Analyses of soil microbial community compositions and functional genes reveal potential consequences of natural forest succession.

    PubMed

    Cong, Jing; Yang, Yunfeng; Liu, Xueduan; Lu, Hui; Liu, Xiao; Zhou, Jizhong; Li, Diqiang; Yin, Huaqun; Ding, Junjun; Zhang, Yuguang

    2015-01-01

    The succession of microbial community structure and function is a central ecological topic, as microbes drive the Earth's biogeochemical cycles. To elucidate the response and mechanistic underpinnings of soil microbial community structure and metabolic potential relevant to natural forest succession, we compared soil microbial communities from three adjacent natural forests: a coniferous forest (CF), a mixed broadleaf forest (MBF) and a deciduous broadleaf forest (DBF) on Shennongjia Mountain in central China. In contrary to plant communities, the microbial taxonomic diversity of the DBF was significantly (P < 0.05) higher than those of CF and MBF, rendering their microbial community compositions markedly different. Consistently, microbial functional diversity was also highest in the DBF. Furthermore, a network analysis of microbial carbon and nitrogen cycling genes showed the network for the DBF samples was relatively large and tight, revealing strong couplings between microbes. Soil temperature, reflective of climate regimes, was important in shaping microbial communities at both taxonomic and functional gene levels. As a first glimpse of both the taxonomic and functional compositions of soil microbial communities, our results suggest that microbial community structure and function potentials will be altered by future environmental changes, which have implications for forest succession. PMID:25943705

  11. Analyses of soil microbial community compositions and functional genes reveal potential consequences of natural forest succession

    NASA Astrophysics Data System (ADS)

    Cong, Jing; Yang, Yunfeng; Liu, Xueduan; Lu, Hui; Liu, Xiao; Zhou, Jizhong; Li, Diqiang; Yin, Huaqun; Ding, Junjun; Zhang, Yuguang

    2015-05-01

    The succession of microbial community structure and function is a central ecological topic, as microbes drive the Earth’s biogeochemical cycles. To elucidate the response and mechanistic underpinnings of soil microbial community structure and metabolic potential relevant to natural forest succession, we compared soil microbial communities from three adjacent natural forests: a coniferous forest (CF), a mixed broadleaf forest (MBF) and a deciduous broadleaf forest (DBF) on Shennongjia Mountain in central China. In contrary to plant communities, the microbial taxonomic diversity of the DBF was significantly (P < 0.05) higher than those of CF and MBF, rendering their microbial community compositions markedly different. Consistently, microbial functional diversity was also highest in the DBF. Furthermore, a network analysis of microbial carbon and nitrogen cycling genes showed the network for the DBF samples was relatively large and tight, revealing strong couplings between microbes. Soil temperature, reflective of climate regimes, was important in shaping microbial communities at both taxonomic and functional gene levels. As a first glimpse of both the taxonomic and functional compositions of soil microbial communities, our results suggest that microbial community structure and function potentials will be altered by future environmental changes, which have implications for forest succession.

  12. Analyses of soil microbial community compositions and functional genes reveal potential consequences of natural forest succession.

    PubMed

    Cong, Jing; Yang, Yunfeng; Liu, Xueduan; Lu, Hui; Liu, Xiao; Zhou, Jizhong; Li, Diqiang; Yin, Huaqun; Ding, Junjun; Zhang, Yuguang

    2015-05-06

    The succession of microbial community structure and function is a central ecological topic, as microbes drive the Earth's biogeochemical cycles. To elucidate the response and mechanistic underpinnings of soil microbial community structure and metabolic potential relevant to natural forest succession, we compared soil microbial communities from three adjacent natural forests: a coniferous forest (CF), a mixed broadleaf forest (MBF) and a deciduous broadleaf forest (DBF) on Shennongjia Mountain in central China. In contrary to plant communities, the microbial taxonomic diversity of the DBF was significantly (P < 0.05) higher than those of CF and MBF, rendering their microbial community compositions markedly different. Consistently, microbial functional diversity was also highest in the DBF. Furthermore, a network analysis of microbial carbon and nitrogen cycling genes showed the network for the DBF samples was relatively large and tight, revealing strong couplings between microbes. Soil temperature, reflective of climate regimes, was important in shaping microbial communities at both taxonomic and functional gene levels. As a first glimpse of both the taxonomic and functional compositions of soil microbial communities, our results suggest that microbial community structure and function potentials will be altered by future environmental changes, which have implications for forest succession.

  13. The microbial gene diversity along an elevation gradient of the Tibetan grassland

    PubMed Central

    Yang, Yunfeng; Gao, Ying; Wang, Shiping; Xu, Depeng; Yu, Hao; Wu, Linwei; Lin, Qiaoyan; Hu, Yigang; Li, Xiangzhen; He, Zhili; Deng, Ye; Zhou, Jizhong

    2014-01-01

    Tibet is one of the most threatened regions by climate warming, thus understanding how its microbial communities function may be of high importance for predicting microbial responses to climate changes. Here, we report a study to profile soil microbial structural genes, which infers functional roles of microbial communities, along four sites/elevations of a Tibetan mountainous grassland, aiming to explore the potential microbial responses to climate changes via a strategy of space-for-time substitution. Using a microarray-based metagenomics tool named GeoChip 4.0, we showed that microbial communities were distinct for most but not all of the sites. Substantial variations were apparent in stress, N and C-cycling genes, but they were in line with the functional roles of these genes. Cold shock genes were more abundant at higher elevations. Also, gdh converting ammonium into urea was more abundant at higher elevations, whereas ureC converting urea into ammonium was less abundant, which was consistent with soil ammonium contents. Significant correlations were observed between N-cycling genes (ureC, gdh and amoA) and nitrous oxide flux, suggesting that they contributed to community metabolism. Lastly, we found by Canonical correspondence analysis, Mantel tests and the similarity tests that soil pH, temperature, NH4+–N and vegetation diversity accounted for the majority (81.4%) of microbial community variations, suggesting that these four attributes were major factors affecting soil microbial communities. On the basis of these observations, we predict that climate changes in the Tibetan grasslands are very likely to change soil microbial community functional structure, with particular impacts on microbial N-cycling genes and consequently microbe-mediated soil N dynamics. PMID:23985745

  14. In situ extraction of polar product of whole cell microbial transformation with polyethylene glycol-induced cloud point system.

    PubMed

    Wang, Zhilong; Xu, Jian-He; Zhang, Wenzhi; Zhuang, Baohua; Qi, Hanshi

    2008-01-01

    A novel polyethylene glycol-induced cloud point system (PEG-CPS) was developed for in situ extraction of moderate polar product by setting a microbial transformation of benzaldehyde into L-phenylacetylcarbinol (L-PAC) with Saccharomyces cerevisiae (baker's yeast) as a model reaction. The biocompatibility of the microorganism in PEG-CPS was comparatively studied with a series of water-organic solvent two-phase partitioning systems. The tolerance of microorganism to the toxic substrate benzaldehyde was increased and the moderate polar product L-PAC was extracted into the surfactant-rich phase in the PEG-CPS. The novel PEG-CPS fills the gap of in situ extraction of polar product in microbial transformation left by water-organic solvent two-phase partitioning system. At the same time, the application of PEG-CPS in a microbial transformation also avoids expensive solvent when compared with that of aqueous two-phase system or CPS.

  15. Lateral gene transfer in a heavy metal-contaminated-groundwater microbial community

    DOE PAGESBeta

    Hemme, Christopher L.; Green, Stefan J.; Rishishwar, Lavanya; Prakash, Om; Pettenato, Angelica; Chakraborty, Romy; Deutschbauer, Adam M.; Van Nostrand, Joy D.; Wu, Liyou; He, Zhili; et al

    2016-04-05

    Here, unraveling the drivers controlling the response and adaptation of biological communities to environmental change, especially anthropogenic activities, is a central but poorly understood issue in ecology and evolution. Comparative genomics studies suggest that lateral gene transfer (LGT) is a major force driving microbial genome evolution, but its role in the evolution of microbial communities remains elusive.

  16. Microbial transformation of curcumin to its derivatives with a novel Pichia kudriavzevii ZJPH0802 strain.

    PubMed

    Zhang, Weiyu; Huang, Jin; Wo, Xingde; Wang, Pu

    2013-07-01

    Curcumin, a polyphenolic compound, has shown a wide range of pharmacological activities and has been widely used as a food additive. However, the clinical use of curcumin is limited to some extent because of its poor water solubility and low bioavailability. To overcome these problems, many approaches have been attempted and structural modification of curcumin by microbial transformation has been proven to be an alternative. In this study, we isolated a novel yeast strain Pichia kudriavzevii ZJPH0802 from a soil sample, which is capable of converting curcumin to its derivatives. The transformed products by this strain were evaluated by HPLC, (+) electrospray ionization (ESI)-MS(n), and (1)H nuclear magnetic resonance methods. Compared with controls, two new peaks of the transformed broth appeared at retention times of 26 min (I) and 62 min (II) by HPLC analysis. The two transformed products were then further identified by (+) ESI-MS(n). The spectrum showed that compound I had an accurate [M+H+NH3](+) ion at m/z 392, [M+H](+) ion at m/z 375, [M+H-H2O](+) ion at m/z 357, and (+) ESI-MS(3) spectrum showed that ion at m/z 357 could further form fragment ions at m/z 339, 177, and 163; compound II had an accurate [M+H](+) ion at m/z 373, [M+H-H2O](+) ion at m/z 355, and (+) ESI-MS(3) spectrum showed that ion at m/z 355 could further form fragment ions at m/z 219, 179, 177, 163, and 137. These two transformed products thereby were confirmed as hexahydrocurcumin (I) and tetrahydrocurcumin (II). PMID:23636653

  17. [Effects of specific microbial biocides on N transformation in soil with glucose amendment].

    PubMed

    Wang, Ge; He, Hongbo; Zhang, Xudong; Li, Jiandong; Han, Lin; Wang, Jingkuan

    2006-05-01

    In an incubation test of soil with glucose amendment, two kinds of nitrogenous fertilizer and three kinds of specific microbial biocides were applied, and the contents of soil NH(4+)-N, NO3(-)-N, glucosamine and muramic acid were measured to differentiate the relative contribution and timing characteristics of soil microbes in nitrogen immobilization. The results showed that penicillin and streptomycin decreased the transformation rate of NH(4+)-N markedly, with more significant effects than actidione. The amount ratio of glucosamine to muramic acid after applying penicillin and streptomycin rapidly increased first, and tended to equilibrium then. With the application of actidione, the transformation rate of NO3(-)-N decreased continuously, and the synthesis of glucosamine was inhibited, while penicillin and streptomycin had no significant effects on them. At the early stage of incubation, bacteria could rapidly immobilize both NH(4+)-N and NO3(-)-N, with NH(4+)-N preferred, while at the later stage of incubation, fungi were the dominant contributor to nitrogen transformation, and had much stronger ability of utilizing NO3(-)-N than bacteria. PMID:16883809

  18. Long-Term Oil Contamination Alters the Molecular Ecological Networks of Soil Microbial Functional Genes.

    PubMed

    Liang, Yuting; Zhao, Huihui; Deng, Ye; Zhou, Jizhong; Li, Guanghe; Sun, Bo

    2016-01-01

    With knowledge on microbial composition and diversity, investigation of within-community interactions is a further step to elucidate microbial ecological functions, such as the biodegradation of hazardous contaminants. In this work, microbial functional molecular ecological networks were studied in both contaminated and uncontaminated soils to determine the possible influences of oil contamination on microbial interactions and potential functions. Soil samples were obtained from an oil-exploring site located in South China, and the microbial functional genes were analyzed with GeoChip, a high-throughput functional microarray. By building random networks based on null model, we demonstrated that overall network structures and properties were significantly different between contaminated and uncontaminated soils (P < 0.001). Network connectivity, module numbers, and modularity were all reduced with contamination. Moreover, the topological roles of the genes (module hub and connectors) were altered with oil contamination. Subnetworks of genes involved in alkane and polycyclic aromatic hydrocarbon degradation were also constructed. Negative co-occurrence patterns prevailed among functional genes, thereby indicating probable competition relationships. The potential "keystone" genes, defined as either "hubs" or genes with highest connectivities in the network, were further identified. The network constructed in this study predicted the potential effects of anthropogenic contamination on microbial community co-occurrence interactions.

  19. Long-Term Oil Contamination Alters the Molecular Ecological Networks of Soil Microbial Functional Genes

    PubMed Central

    Liang, Yuting; Zhao, Huihui; Deng, Ye; Zhou, Jizhong; Li, Guanghe; Sun, Bo

    2016-01-01

    With knowledge on microbial composition and diversity, investigation of within-community interactions is a further step to elucidate microbial ecological functions, such as the biodegradation of hazardous contaminants. In this work, microbial functional molecular ecological networks were studied in both contaminated and uncontaminated soils to determine the possible influences of oil contamination on microbial interactions and potential functions. Soil samples were obtained from an oil-exploring site located in South China, and the microbial functional genes were analyzed with GeoChip, a high-throughput functional microarray. By building random networks based on null model, we demonstrated that overall network structures and properties were significantly different between contaminated and uncontaminated soils (P < 0.001). Network connectivity, module numbers, and modularity were all reduced with contamination. Moreover, the topological roles of the genes (module hub and connectors) were altered with oil contamination. Subnetworks of genes involved in alkane and polycyclic aromatic hydrocarbon degradation were also constructed. Negative co-occurrence patterns prevailed among functional genes, thereby indicating probable competition relationships. The potential “keystone” genes, defined as either “hubs” or genes with highest connectivities in the network, were further identified. The network constructed in this study predicted the potential effects of anthropogenic contamination on microbial community co-occurrence interactions. PMID:26870020

  20. Microbial transformations of uranium in wastes and implication on its mobility

    SciTech Connect

    Suzuki,Y.; Nankawa, T.; Ozaki, T.; Ohnuki, T.; Francis, A.J.; Enokida, Y.; Yamamoto, I.

    2008-09-14

    Uranium exists in several chemical forms in mining and mill tailings and in nuclear and weapons production wastes. Under appropriate conditions, microorganisms can affect the stability and mobility of U in wastes by altering the chemical speciation, solubility and sorption properties and thus could increase or decrease the concentrations of U in solution and the bioavailability. Dissolution or immobilization of U is brought about by direct enzymatic action or indirect nonenzymatic action of microorganisms. Although the physical, chemical, and geochemical processes affecting dissolution, precipitation, and mobilization of U have been extensively investigated, we have only limited information on the mechanisms of microbial transformations of various chemical forms of U in the presence of electron donors and acceptors.

  1. Microbial transformation of (+)-nootkatone and the antiproliferative activity of its metabolites.

    PubMed

    Gliszczyńska, Anna; Łysek, Agnieszka; Janeczko, Tomasz; Świtalska, Marta; Wietrzyk, Joanna; Wawrzeńczyk, Czesław

    2011-04-01

    Six metabolites were obtained as a result of microbial transformation of (+)-nootkatone (1) by the fungal strains: Botrytis, Didymosphaeria, Aspergillus, Chaetomium and Fusarium. Their structure were established as (+)-(4R,5S,7R,9R)-9α-hydroxynootkatone (2), (+)-(4R,5S,7R)-13-hydroxynootkatone (3) and (+)-(4R,5S,7R,9R,11S)-11,12-epoxy-9α-hydroxynootkatone (4), (+)-(4R,5S,7R,11S)-11,12-epoksynootkatone (5), (+)-(4R,5S,7R)-11,12-dihydroxynootkatone (6) and (+)-(4R,5S,7R)-7,11,12-trihydroxynootkatone (7) on the basis of their spectral data. Two products: (4) and (7) were not previously reported in the literature. The antiproliferative activity of (+)-nootkatone (1) and isolated metabolites (2-7) of its biotransformation has been evaluated. PMID:21377882

  2. Anaerobic microbial transformation of halogenated aromatics and fate prediction using electron density modeling.

    PubMed

    Cooper, Myriel; Wagner, Anke; Wondrousch, Dominik; Sonntag, Frank; Sonnabend, Andrei; Brehm, Martin; Schüürmann, Gerrit; Adrian, Lorenz

    2015-05-19

    Halogenated homo- and heterocyclic aromatics including disinfectants, pesticides and pharmaceuticals raise concern as persistent and toxic contaminants with often unknown fate. Remediation strategies and natural attenuation in anaerobic environments often build on microbial reductive dehalogenation. Here we describe the transformation of halogenated anilines, benzonitriles, phenols, methoxylated, or hydroxylated benzoic acids, pyridines, thiophenes, furoic acids, and benzenes by Dehalococcoides mccartyi strain CBDB1 and environmental fate modeling of the dehalogenation pathways. The compounds were chosen based on structural considerations to investigate the influence of functional groups present in a multitude of commercially used halogenated aromatics. Experimentally obtained growth yields were 0.1 to 5 × 10(14) cells mol(-1) of halogen released (corresponding to 0.3-15.3 g protein mol(-1) halogen), and specific enzyme activities ranged from 4.5 to 87.4 nkat mg(-1) protein. Chlorinated electron-poor pyridines were not dechlorinated in contrast to electron-rich thiophenes. Three different partial charge models demonstrated that the regioselective removal of halogens is governed by the least negative partial charge of the halogen. Microbial reaction pathways combined with computational chemistry and pertinent literature findings on Co(I) chemistry suggest that halide expulsion during reductive dehalogenation is initiated through single electron transfer from B12Co(I) to the apical halogen site.

  3. Microbial Internal Storage Alters the Carbon Transformation in Dynamic Anaerobic Fermentation.

    PubMed

    Ni, Bing-Jie; Batstone, Damien; Zhao, Bai-Hang; Yu, Han-Qing

    2015-08-01

    Microbial internal storage processes have been demonstrated to occur and play an important role in activated sludge systems under both aerobic and anoxic conditions when operating under dynamic conditions. High-rate anaerobic reactors are often operated at a high volumetric organic loading and a relatively dynamic profile, with large amounts of fermentable substrates. These dynamic operating conditions and high catabolic energy availability might also facilitate the formation of internal storage polymers by anaerobic microorganisms. However, so far information about storage under anaerobic conditions (e.g., anaerobic fermentation) as well as its consideration in anaerobic process modeling (e.g., IWA Anaerobic Digestion Model No. 1, ADM1) is still sparse. In this work, the accumulation of storage polymers during anaerobic fermentation was evaluated by batch experiments using anaerobic methanogenic sludge and based on mass balance analysis of carbon transformation. A new mathematical model was developed to describe microbial storage in anaerobic systems. The model was calibrated and validated by using independent data sets from two different anaerobic systems, with significant storage observed, and effectively simulated in both systems. The inclusion of the new anaerobic storage processes in the developed model allows for more successful simulation of transients due to lower accumulation of volatile fatty acids (correction for the overestimation of volatile fatty acids), which mitigates pH fluctuations. Current models such as the ADM1 cannot effectively simulate these dynamics due to a lack of anaerobic storage mechanisms.

  4. Microbial Transformation of TRU and Mixed Waste: Actinide Speciation and Waste Volume

    SciTech Connect

    Halada, Gary P

    2008-04-10

    In order to understand the susceptibility of transuranic and mixed waste to microbial degradation (as well as any mechanism which depends upon either complexation and/or redox of metal ions), it is essential to understand the association of metal ions with organic ligands present in mixed wastes. These ligands have been found in our previous EMSP study to limit electron transfer reactions and strongly affect transport and the eventual fate of radionuclides in the environment. As transuranic waste (and especially mixed waste) will be retained in burial sites and in legacy containment for (potentially) many years while awaiting treatment and removal (or remaining in place under stewardship agreements at government subsurface waste sites), it is also essential to understand the aging of mixed wastes and its implications for remediation and fate of radionuclides. Mixed waste containing actinides and organic materials are especially complex and require extensive study. The EMSP program described in this report is part of a joint program with the Environmental Sciences Department at Brookhaven National Laboratory. The Stony Brook University portion of this award has focused on the association of uranium (U(VI)) and transuranic analogs (Ce(III) and Eu(III)) with cellulosic materials and related compounds, with development of implications for microbial transformation of mixed wastes. The elucidation of the chemical nature of mixed waste is essential for the formulation of remediation and encapsulation technologies, for understanding the fate of contaminant exposed to the environment, and for development of meaningful models for contaminant storage and recovery.

  5. Microbial nitrogen transformation potential in surface run-off leachate from a tropical landfill

    SciTech Connect

    Mangimbulude, Jubhar C.; Straalen, Nico M. van; Roeling, Wilfred F.M.

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Microbial nitrogen transformations can alleviate toxic ammonium discharge. Black-Right-Pointing-Pointer Aerobic ammonium oxidation was rate-limiting in Indonesian landfill leachate. Black-Right-Pointing-Pointer Organic nitrogen ammonification was most dominant. Black-Right-Pointing-Pointer Anaerobic nitrate reduction and ammonium oxidation potential were also high. Black-Right-Pointing-Pointer A two-stage aerobic-anaerobic nitrogen removal system needs to be implemented. - Abstract: Ammonium is one of the major toxic compounds and a critical long-term pollutant in landfill leachate. Leachate from the Jatibarang landfill in Semarang, Indonesia, contains ammonium in concentrations ranging from 376 to 929 mg N L{sup -1}. The objective of this study was to determine seasonal variation in the potential for organic nitrogen ammonification, aerobic nitrification, anaerobic nitrate reduction and anaerobic ammonium oxidation (anammox) at this landfilling site. Seasonal samples from leachate collection treatment ponds were used as an inoculum to feed synthetic media to determine potential rates of nitrogen transformations. Aerobic ammonium oxidation potential (<0.06 mg N L{sup -1} h{sup -1}) was more than a hundred times lower than the anaerobic nitrogen transformation processes and organic nitrogen ammonification, which were of the same order of magnitude. Anaerobic nitrate oxidation did not proceed beyond nitrite; isolates grown with nitrate as electron acceptor did not degrade nitrite further. Effects of season were only observed for aerobic nitrification and anammox, and were relatively minor: rates were up to three times higher in the dry season. To completely remove the excess ammonium from the leachate, we propose a two-stage treatment system to be implemented. Aeration in the first leachate pond would strongly contribute to aerobic ammonium oxidation to nitrate by providing the currently missing oxygen in the anaerobic

  6. Functional gene diversity of soil microbial communities from five oil-contaminated fields in China

    PubMed Central

    Liang, Yuting; Van Nostrand, Joy D; Deng, Ye; He, Zhili; Wu, Liyou; Zhang, Xu; Li, Guanghe; Zhou, Jizhong

    2011-01-01

    To compare microbial functional diversity in different oil-contaminated fields and to know the effects of oil contaminant and environmental factors, soil samples were taken from typical oil-contaminated fields located in five geographic regions of China. GeoChip, a high-throughput functional gene array, was used to evaluate the microbial functional genes involved in contaminant degradation and in other major biogeochemical/metabolic processes. Our results indicated that the overall microbial community structures were distinct in each oil-contaminated field, and samples were clustered by geographic locations. The organic contaminant degradation genes were most abundant in all samples and presented a similar pattern under oil contaminant stress among the five fields. In addition, alkane and aromatic hydrocarbon degradation genes such as monooxygenase and dioxygenase were detected in high abundance in the oil-contaminated fields. Canonical correspondence analysis indicated that the microbial functional patterns were highly correlated to the local environmental variables, such as oil contaminant concentration, nitrogen and phosphorus contents, salt and pH. Finally, a total of 59% of microbial community variation from GeoChip data can be explained by oil contamination, geographic location and soil geochemical parameters. This study provided insights into the in situ microbial functional structures in oil-contaminated fields and discerned the linkages between microbial communities and environmental variables, which is important to the application of bioremediation in oil-contaminated sites. PMID:20861922

  7. Molecular docking simulation studies on potent butyrylcholinesterase inhibitors obtained from microbial transformation of dihydrotestosterone

    PubMed Central

    2013-01-01

    Background Biotransformation is an effective technique for the synthesis of libraries of bioactive compounds. Current study on microbial transformation of dihydrotestosterone (DHT) (1) was carried out to produce various functionalized metabolites. Results Microbial transformation of DHT (1) by using two fungal cultures resulted in potent butyrylcholinesterase (BChE) inhibitors. Biotransformation with Macrophomina phaseolina led to the formation of two known products, 5α-androstan-3β,17β-diol (2), and 5β-androstan-3α,17β-diol (3), while biotransformation with Gibberella fujikuroi yielded six known metabolites, 11α,17β-dihydroxyandrost-4-en-3-one (4), androst-1,4-dien-3,17-dione (5), 11α-hydroxyandrost-4-en-3,17-dione (6), 11α-hydroxyandrost-1,4-dien-3,17-dione (7), 12β-hydroxyandrost-1,4-dien-3,17-dione (8), and 16α-hydroxyandrost-1,4-dien-3,17-dione (9). Metabolites 2 and 3 were found to be inactive, while metabolite 4 only weakly inhibited the enzyme. Metabolites 5–7 were identified as significant inhibitors of BChE. Furthermore, predicted results from docking simulation studies were in complete agreement with experimental data. Theoretical results were found to be helpful in explaining the possible mode of action of these newly discovered potent BChE inhibitors. Compounds 8 and 9 were not evaluated for enzyme inhibition activity both in vitro and in silico, due to lack of sufficient quantities. Conclusion Biotransformation of DHT (1) with two fungal cultures produced eight known metabolites. Metabolites 5–7 effectively inhibited the BChE activity. Cholinesterase inhibition is among the key strategies in the management of Alzheimer’s disease (AD). The experimental findings were further validated by in silico inhibition studies and possible modes of action were deduced. PMID:24103815

  8. Dramatic Increases of Soil Microbial Functional Gene Diversity at the Treeline Ecotone of Changbai Mountain

    PubMed Central

    Shen, Congcong; Shi, Yu; Ni, Yingying; Deng, Ye; Van Nostrand, Joy D.; He, Zhili; Zhou, Jizhong; Chu, Haiyan

    2016-01-01

    The elevational and latitudinal diversity patterns of microbial taxa have attracted great attention in the past decade. Recently, the distribution of functional attributes has been in the spotlight. Here, we report a study profiling soil microbial communities along an elevation gradient (500–2200 m) on Changbai Mountain. Using a comprehensive functional gene microarray (GeoChip 5.0), we found that microbial functional gene richness exhibited a dramatic increase at the treeline ecotone, but the bacterial taxonomic and phylogenetic diversity based on 16S rRNA gene sequencing did not exhibit such a similar trend. However, the β-diversity (compositional dissimilarity among sites) pattern for both bacterial taxa and functional genes was similar, showing significant elevational distance-decay patterns which presented increased dissimilarity with elevation. The bacterial taxonomic diversity/structure was strongly influenced by soil pH, while the functional gene diversity/structure was significantly correlated with soil dissolved organic carbon (DOC). This finding highlights that soil DOC may be a good predictor in determining the elevational distribution of microbial functional genes. The finding of significant shifts in functional gene diversity at the treeline ecotone could also provide valuable information for predicting the responses of microbial functions to climate change. PMID:27524983

  9. Dramatic Increases of Soil Microbial Functional Gene Diversity at the Treeline Ecotone of Changbai Mountain.

    PubMed

    Shen, Congcong; Shi, Yu; Ni, Yingying; Deng, Ye; Van Nostrand, Joy D; He, Zhili; Zhou, Jizhong; Chu, Haiyan

    2016-01-01

    The elevational and latitudinal diversity patterns of microbial taxa have attracted great attention in the past decade. Recently, the distribution of functional attributes has been in the spotlight. Here, we report a study profiling soil microbial communities along an elevation gradient (500-2200 m) on Changbai Mountain. Using a comprehensive functional gene microarray (GeoChip 5.0), we found that microbial functional gene richness exhibited a dramatic increase at the treeline ecotone, but the bacterial taxonomic and phylogenetic diversity based on 16S rRNA gene sequencing did not exhibit such a similar trend. However, the β-diversity (compositional dissimilarity among sites) pattern for both bacterial taxa and functional genes was similar, showing significant elevational distance-decay patterns which presented increased dissimilarity with elevation. The bacterial taxonomic diversity/structure was strongly influenced by soil pH, while the functional gene diversity/structure was significantly correlated with soil dissolved organic carbon (DOC). This finding highlights that soil DOC may be a good predictor in determining the elevational distribution of microbial functional genes. The finding of significant shifts in functional gene diversity at the treeline ecotone could also provide valuable information for predicting the responses of microbial functions to climate change. PMID:27524983

  10. RELATIONSHIPS BETWEEN CULTURABLE SOIL MICROBIAL POPULATIONS AND GROSS NITROGEN TRANSFORMATION PROCESSES IN A CLAY LOAM SOIL ACROSS ECOSYSTEMS

    EPA Science Inventory

    The size and quality of soil organic matter (SOM) pool can vary between ecosystems and can affect many soil properties. The objective of this study was to examine the relationship between gross N transformation rates and microbial populations and to investigate the role that SOM...

  11. Short-Term Nitrogen Transformations Associated with Soil Aggregates and Microbial Community Composition in Three Different Tillage Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantifying soil nitrogen transformation processes associated with soil aggregates is noteworthy as microbial communities central to N cycle reside in the soil aggregates of different sizes. The objective of this investigation was to determine both the rates of ammonium production and consumption pr...

  12. Ecogenomics: Ensemble Analysis of Gene Expression in Microbial Communities

    NASA Technical Reports Server (NTRS)

    Sogin, Mitchell; DesMarais, David J.; Stahl, D. A.; Pace, Norman R.

    2001-01-01

    The hierarchical organization of microbial ecosystems determines process rates that shape Earth's environment, create the biomarker sedimentary and atmospheric signatures of life, and define the stage upon which major evolutionary events occurred. In order to understand how microorganisms have shaped the global environment of Earth and, potentially, other worlds, we must develop an experimental paradigm that links biogeochemical processes with ever-changing temporal and spatial distributions of microbial populations and their metabolic properties. Additional information is contained in the original extended abstract.

  13. Functional Ecological Gene Networks to Reveal the Changes Among Microbial Interactions Under Elevated Carbon Dioxide Conditions

    SciTech Connect

    Deng, Ye; Zhou, Jizhong; Luo, Feng; He, Zhili; Tu, Qichao; Zhi, Xiaoyang

    2010-05-17

    Biodiversity and its responses to environmental changes is a central issue in ecology, and for society. Almost all microbial biodiversity researches focus on species richness and abundance but ignore the interactions among different microbial species/populations. However, determining the interactions and their relationships to environmental changes in microbial communities is a grand challenge, primarily due to the lack of information on the network structure among different microbial species/populations. Here, a novel random matrix theory (RMT)-based conceptual framework for identifying functional ecological gene networks (fEGNs) is developed with the high throughput functional gene array hybridization data from the grassland microbial communities in a long-term FACE (Free Air CO2 Enrichment) experiment. Both fEGNs under elevated CO2 (eCO2) and ambient CO2 (aCO2) possessed general characteristics of many complex systems such as scale-free, small-world, modular and hierarchical. However, the topological structure of the fEGNs is distinctly different between eCO2 and aCO2, suggesting that eCO2 dramatically altered the interactions among different microbial functional groups/populations. In addition, the changes in network structure were significantly correlated with soil carbon and nitrogen dynamics, and plant productivity, indicating the potential importance of network interactions in ecosystem functioning. Elucidating network interactions in microbial communities and their responses to environmental changes are fundamentally important for research in microbial ecology, systems microbiology, and global change.

  14. Effects of microbially induced transformations and shift in bacterial community on arsenic mobility in arsenic-rich deep aquifer sediments.

    PubMed

    Das, Suvendu; Liu, Chia-Chuan; Jean, Jiin-Shuh; Lee, Chuan-Chun; Yang, Huai-Jen

    2016-06-01

    Elevated concentration of arsenic (As) prevailed in deep aquifers of Chianan Plain, Taiwan. Arsenic release in relation to microbially induced transformations and shift in bacterial communities in deep aquifer sediments of Budai, southwestern Taiwan were investigated using microcosm experiments and substrate amendments over 90 days of anaerobic incubation. The results revealed that As reduction was independent of Fe reduction and a modest rate of sedimentary As release into aqueous phase occurred at the expense of the native organic carbon. Addition of lactate resulted in a parallel increase in As(III) (3.7-fold), Fe(II) (6.2-fold) and Mn (3.5 fold) in aqueous phase compared to un-amended slurries and the enrichment of sequences related to mostly Bacillus, Flavisolibacter, and Geobacter spp, suggesting the important role of these bacteria in As enrichment through reductive dissolution of As-bearing Fe and Mn minerals. The increase in phosphate-extractable As in solid phase with concomitant rise in As in aqueous phase over the course of incubation further attested to the importance of reductive dissolution in promoting As release. Furthermore, the increase in arrA gene abundance with addition of labile carbon suggests that dissimilatory As reduction also may contribute to As enrichment in the water of the deep aquifer of Budai.

  15. Effects of microbially induced transformations and shift in bacterial community on arsenic mobility in arsenic-rich deep aquifer sediments.

    PubMed

    Das, Suvendu; Liu, Chia-Chuan; Jean, Jiin-Shuh; Lee, Chuan-Chun; Yang, Huai-Jen

    2016-06-01

    Elevated concentration of arsenic (As) prevailed in deep aquifers of Chianan Plain, Taiwan. Arsenic release in relation to microbially induced transformations and shift in bacterial communities in deep aquifer sediments of Budai, southwestern Taiwan were investigated using microcosm experiments and substrate amendments over 90 days of anaerobic incubation. The results revealed that As reduction was independent of Fe reduction and a modest rate of sedimentary As release into aqueous phase occurred at the expense of the native organic carbon. Addition of lactate resulted in a parallel increase in As(III) (3.7-fold), Fe(II) (6.2-fold) and Mn (3.5 fold) in aqueous phase compared to un-amended slurries and the enrichment of sequences related to mostly Bacillus, Flavisolibacter, and Geobacter spp, suggesting the important role of these bacteria in As enrichment through reductive dissolution of As-bearing Fe and Mn minerals. The increase in phosphate-extractable As in solid phase with concomitant rise in As in aqueous phase over the course of incubation further attested to the importance of reductive dissolution in promoting As release. Furthermore, the increase in arrA gene abundance with addition of labile carbon suggests that dissimilatory As reduction also may contribute to As enrichment in the water of the deep aquifer of Budai. PMID:26897570

  16. Transformation of tetrahymena thermophila with hypermethylated rRNA genes

    SciTech Connect

    Karrer, K.M.; Yao, M.C.

    1988-04-01

    The extrachromosomal rRNA genes (rDNA) of Tetrahymena thermophila contain 0.4% N/sup 6/-methyladenine. C3 strain rDNA was isolated, hypermethylated in vitro, and microinjected into B strain host cells. Clonal cell lines were established, and transformants were selected on the basis of resistance to paromomycin, conferred by the injected rDNA. The effects of methylation by three enzymes which methylate the sequence 5'-NAT-3'', the dam, EcoRI, and ClaI methylases, were tested. Hypermethylation of the injected rDNA had no effect on transformation efficiency relative to mock-methylated controls. The injected C3 strain rDNA efficiently replaced host rDNA as the major constituent of the population of rDNA molecules. Hypermethylation of the injected DNA was not maintained through 20 to 25 cell generations.

  17. Effects of soil type and farm management on soil ecological functional genes and microbial activities

    SciTech Connect

    Reeve, Jennifer; Schadt, Christopher Warren; Carpenter-Boggs, Lynne; Kang, S.; Zhou, Jizhong; Reganold, John P.

    2010-01-01

    Relationships between soil microbial diversity and soil function are the subject of much debate. Process-level analyses have shown that microbial function varies with soil type and responds to soil management. However, such measurements cannot determine the role of community structure and diversity in soil function. The goal of this study was to investigate the role of gene frequency and diversity, measured by microarray analysis, on soil processes. The study was conducted in an agro-ecosystem characterized by contrasting management practices and soil types. Eight pairs of adjacent commercial organic and conventional strawberry fields were matched for soil type, strawberry variety, and all other environmental conditions. Soil physical, chemical and biological analyses were conducted including functional gene microarrays (FGA). Soil physical and chemical characteristics were primarily determined by soil textural type (coarse vs fine-textured), but biological and FGA measures were more influenced by management (organic vs conventional). Organically managed soils consistently showed greater functional activity as well as FGA signal intensity (SI) and diversity. Overall FGA SI and diversity were correlated to total soil microbial biomass. Functional gene group SI and/or diversity were correlated to related soil chemical and biological measures such as microbial biomass, cellulose, dehydrogenase, ammonium and sulfur. Management was the dominant determinant of soil biology as measured by microbial gene frequency and diversity, which paralleled measured microbial processes.

  18. Investigating microbial transformations of soil organic matter: synthesizing knowledge from disparate fields to guide new experimentation

    NASA Astrophysics Data System (ADS)

    Billings, S. A.; Tiemann, L. K.; Ballantyne, F., IV; Lehmeier, C. A.; Min, K.

    2015-04-01

    Discerning why some soil organic matter (SOM) leaves soil profiles relatively quickly while other compounds, especially at depth, can be retained for decades to millennia is challenging for a multitude of reasons. Simultaneous with soil-specific advances, multiple other disciplines have enhanced their knowledge bases in ways potentially useful for future investigations of SOM decay. In this article, we highlight observations highly relevant for those investigating SOM decay and retention but often emanating from disparate fields and residing in literature seldom cited in SOM research. We focus on recent work in two key areas. First, we turn to experimental approaches using natural and artificial aquatic environments to investigate patterns of microbially mediated OM transformations as environmental conditions change, and highlight how aquatic microbial responses to environmental change can reveal processes likely important to OM decay and retention in soils. Second, we emphasize the importance of establishing intrinsic patterns of decay kinetics for purified substrates commonly found in soils to develop baseline rates. These decay kinetics - which represent the upper limit of the reaction rates - can then be compared to substrate decay kinetics observed in natural samples, which integrate intrinsic decay reaction rates and edaphic factors essential to the site under study but absent in purified systems. That comparison permits the site-specific factors to be parsed from the fundamental decay kinetics, an important advance in our understanding of SOM decay (and thus persistence) in natural systems. We then suggest ways in which empirical observations from aquatic systems and purified substrate-enzyme reaction kinetics can be used to advance recent theoretical efforts in SOM-focused research. Finally, we suggest how the observations in aquatic and purified substrate-enzyme systems could be used to help unravel the puzzles presented by oft-observed patterns of SOM

  19. Anoxic carbon degradation in Arctic sediments: Microbial transformations of complex substrates

    NASA Astrophysics Data System (ADS)

    Arnosti, C.; Finke, N.; Larsen, O.; Ghobrial, S.

    2005-05-01

    Complex substrates are degraded in anoxic sediments by the concerted activities of diverse microbial communities. To explore the effects of substrate complexity on carbon transformations in permanently cold anoxic sediments, four substrates— Spirulina cells, Isochrysis cells, and soluble high molecular weight carbohydrate-rich extracts of these cells (Spir-Ex and Iso-Ex)—were added to sediments collected from Svalbard. The sediments were homogenized, incubated anaerobically in gas-tight bags at 0°C, and enzyme activities, fermentation, and terminal respiration were monitored over a 1134 h time course. All substrate additions yielded a fraction (8%-13%) of carbon that was metabolized to CO 2 over the first 384 h of incubation. The timecourse of VFA (volatile fatty acid) production and consumption, as well as the suite of VFAs produced, was similar for all substrates. After this phase, pathways of carbon degradation diverged, with an additional 43%, 32%, 33%, and 8% of Isochrysis, Iso-Ex, Spirulina, and Spir-Ex carbon respired to CO 2 over the next 750 h of incubation. Somewhat surprisingly, the soluble, carbohydrate-rich extracts did not prove to be more labile substrates than the whole cells from which they were derived. Although Spirulina and Iso-Ex differed in physical and chemical characteristics (solid/soluble, C/N ratio, lipid and carbohydrate content), nearly identical quantities of carbon were respired to CO 2. In contrast, only 15% of Spir-Ex carbon was respired, despite the initial burst of activity that it fueled, its soluble nature, and its relatively high (50%) carbohydrate content. The microbial community in these cold anoxic sediments clearly has the capacity to react rapidly to carbon input; extent and timecourse of remineralization of added carbon is similar to observations made at much higher temperatures in temperate sediments. The extent of carbon remineralization from these specific substrates, however, would not likely have been predicted

  20. Investigating microbial transformations of soil organic matter: synthesizing knowledge from disparate fields to guide new experimentation

    NASA Astrophysics Data System (ADS)

    Billings, S. A.; Tiemann, L. K.; Ballantyne, F., IV; Lehmeier, C.; Min, K.

    2014-12-01

    Investigators of soil organic matter (SOM) transformations struggle with a deceptively simple-sounding question: "Why does some SOM leave the soil profile relatively quickly, while other compounds, especially those at depth, appear to be retained on timescales ranging from the decadal to the millennial?" This question is important on both practical and academic levels, but addressing it is challenging for a multitude of reasons. Simultaneous with soil-specific advances, multiple other disciplines have enhanced their knowledge bases in ways potentially useful for future investigations of SOM decay. In this article, we highlight observations highly relevant for those investigating SOM decay and retention but often emanating from disparate fields and residing in literature seldom cited in SOM research. We focus on recent work in two key areas. First, we turn to experimental approaches using natural and artificial aquatic environments to investigate patterns of microbially-mediated OM transformations as environmental conditions change, and highlight how aquatic microbial responses to environmental change can reveal processes likely important to OM decay and retention in soils. Second, we emphasize the importance of establishing intrinsic patterns of decay kinetics for purified substrates commonly found in soils to develop baseline rates. These decay kinetics - which represent the upper limit of the reaction rates - can then be compared to substrate decay kinetics observed in natural samples, which integrate intrinsic decay reaction rates and edaphic factors essential to the site under study but absent in purified systems. That comparison permits the site-specific factors to be parsed from the fundamental decay kinetics, an important advance in our understanding of SOM decay (and thus persistence) in natural systems. We then suggest ways in which empirical observations from aquatic systems and purified enzyme-substrate reaction kinetics can be used to advance recent

  1. Use of attenuated total reflectance Fourier transform infrared spectroscopy to identify microbial metabolic products on carbonate mineral surfaces.

    PubMed

    Bullen, Heather A; Oehrle, Stuart A; Bennett, Ariel F; Taylor, Nicholas M; Barton, Hazel A

    2008-07-01

    This paper demonstrates the use of attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy to detect microbial metabolic products on carbonate mineral surfaces. By creating an ATR-FTIR spectral database for specific organic acids using ATR-FTIR spectroscopy we were able to distinguish metabolic acids on calcite surfaces following Escherichia coli growth. The production of these acids by E. coli was verified using high-performance liquid chromatography with refractive index detection. The development of this technique has allowed us to identify microbial metabolic products on carbonate surfaces in nutrient-limited cave environments.

  2. Use of Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy To Identify Microbial Metabolic Products on Carbonate Mineral Surfaces▿ †

    PubMed Central

    Bullen, Heather A.; Oehrle, Stuart A.; Bennett, Ariel F.; Taylor, Nicholas M.; Barton, Hazel A.

    2008-01-01

    This paper demonstrates the use of attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy to detect microbial metabolic products on carbonate mineral surfaces. By creating an ATR-FTIR spectral database for specific organic acids using ATR-FTIR spectroscopy we were able to distinguish metabolic acids on calcite surfaces following Escherichia coli growth. The production of these acids by E. coli was verified using high-performance liquid chromatography with refractive index detection. The development of this technique has allowed us to identify microbial metabolic products on carbonate surfaces in nutrient-limited cave environments. PMID:18502924

  3. Taxa-area Relationship (TAR) of Microbial Functional Genes with Long-TGerm Fertilization

    SciTech Connect

    Liang, Yuting; Wu, Liyou; Clark, Ian; Xue, Kai; Van Nostrand, Joy D.; Deng, Ye; He, Zhili; Hirsch, Penny; Mcgrath, Steve; Zhou, Jizhong

    2010-05-17

    Diversity and spatial patterns in plant and animal communities are well documented as a positive-power law of a taxa-area relationship (TAR). At present little is known whether this also applies to soil microbial communities and whether long-term fertilization has an influence on the underlying microbial diversity. To test the effects of long-term fertilization on above-ground botanical diversity and below-ground microbial diversity, a nested sampling approach on Park Grass plots (12d& 11/2c) of Rothamsted Reseach in United Kingdom, both at ~;; pH 5 but with plant diversities of between 42 and 13 respectively were used. GeoChip 3.0, covering approximately 57, 000 gene sequences of 292 gene families involved in nitrogen, carbon, sulfur and phosphorus cycling, metal reduction and resistance, and organic contaminant degradation, was used to determine the gene area relationships for both functional and phylogenetic groups and the relationship to plant diversity. Our analysis indicated that the microbial communities were separated by different plant diversity based on DCA. The soil microbial diversity was in accord with plant diversity. Soil microbial community exhibited different z value with different plant diversity, z = 0.0449 with higher plant diversity and z = 0.0583 with lower plant diversity (P< 0.0001). These results suggest that the turnover in space of microorganisms may be higher with long-term fertilization.

  4. Mapping microbial ecosystems and spoilage-gene flow in breweries highlights patterns of contamination and resistance

    PubMed Central

    Bokulich, Nicholas A; Bergsveinson, Jordyn; Ziola, Barry; Mills, David A

    2015-01-01

    Distinct microbial ecosystems have evolved to meet the challenges of indoor environments, shaping the microbial communities that interact most with modern human activities. Microbial transmission in food-processing facilities has an enormous impact on the qualities and healthfulness of foods, beneficially or detrimentally interacting with food products. To explore modes of microbial transmission and spoilage-gene frequency in a commercial food-production scenario, we profiled hop-resistance gene frequencies and bacterial and fungal communities in a brewery. We employed a Bayesian approach for predicting routes of contamination, revealing critical control points for microbial management. Physically mapping microbial populations over time illustrates patterns of dispersal and identifies potential contaminant reservoirs within this environment. Habitual exposure to beer is associated with increased abundance of spoilage genes, predicting greater contamination risk. Elucidating the genetic landscapes of indoor environments poses important practical implications for food-production systems and these concepts are translatable to other built environments. DOI: http://dx.doi.org/10.7554/eLife.04634.001 PMID:25756611

  5. Bioremediation of petroleum hydrocarbons: catabolic genes, microbial communities, and applications.

    PubMed

    Fuentes, Sebastián; Méndez, Valentina; Aguila, Patricia; Seeger, Michael

    2014-06-01

    Bioremediation is an environmental sustainable and cost-effective technology for the cleanup of hydrocarbon-polluted soils and coasts. In spite of that longer times are usually required compared with physicochemical strategies, complete degradation of the pollutant can be achieved, and no further confinement of polluted matrix is needed. Microbial aerobic degradation is achieved by the incorporation of molecular oxygen into the inert hydrocarbon molecule and funneling intermediates into central catabolic pathways. Several families of alkane monooxygenases and ring hydroxylating dioxygenases are distributed mainly among Proteobacteria, Actinobacteria, Firmicutes and Fungi strains. Catabolic routes, regulatory networks, and tolerance/resistance mechanisms have been characterized in model hydrocarbon-degrading bacteria to understand and optimize their metabolic capabilities, providing the basis to enhance microbial fitness in order to improve hydrocarbon removal. However, microbial communities taken as a whole play a key role in hydrocarbon pollution events. Microbial community dynamics during biodegradation is crucial for understanding how they respond and adapt to pollution and remediation. Several strategies have been applied worldwide for the recovery of sites contaminated with persistent organic pollutants, such as polycyclic aromatic hydrocarbons and petroleum derivatives. Common strategies include controlling environmental variables (e.g., oxygen availability, hydrocarbon solubility, nutrient balance) and managing hydrocarbon-degrading microorganisms, in order to overcome the rate-limiting factors that slow down hydrocarbon biodegradation.

  6. Microbial transformations of azaarenes in creosite-contaminated soil and ground water: Laboratory and field studies

    USGS Publications Warehouse

    Pereira, W.E.; Rostad, C.E.; Updegraff, D.M.; Bennett, J.L.

    1988-01-01

    Azaarenes or aromatic nitrogen heterocycles are a class of compounds found in wood-preservative wastes containing creosote. The fate and movement of these compounds in contaminated aquifers is not well understood. Water-quality studies in an aquifer contaminated with creosote near Pensacola, Florida, indicated that ground water was contaminated with several azaarenes and their oxygenated and alkylated derivatives, suggesting that these oxygenated compounds may be products of microbial transformation reactions. Accordingly, laboratory studies were designed to investigate the fate of these compounds. Under aerobic conditions, soil pseudomonads isolated from creosote-contaminated soil converted quinoline to 2(1H)quinoline that subsequently was degraded to unknown products. A methanogenic consortium isolated from an anaerobic sewage digestor, in presence of ground-water and creosote-contaminated soil, converted quinoline, isoquinoline, and 4-methylquinoline to their respective oxygenated analogs. In addition, N-, C-, and O-methylated analogs of oxygenated azaarenes were identified by gas chromatography-mass spectrometry (GC-MS) in aerobic cultures. Under the experimental conditions, 2-methylquinoline was biorefractory. Presence of similar biotransformation products in anaerobic cultures and contaminated ground water from the Pensacola site provided further evidence that these compounds indeed were mivrobial transformation products. Stable isotope labeling studies indicated that the source of the oxygen atom for this hydroxylation reaction under aerobic and anaerobic conditions was water. A mechanism was proposed for this hydroxylation reaction. Whereas parent azaarenes are biodegradable in both anaerobic and aerobic zones, oxygenated and alkylated analogs are more biorefractory and, hence, persistent in anaerobic zones of contaminated aquifers.

  7. X-ray spectroscopic studies of uranium transformations in microbial cultures

    SciTech Connect

    Dodge, C.J.; Francis, A.J.; Clayton, C.R.

    1995-12-31

    Microbial transformations of uranyl nitrate, U:citric acid, and mixed metal U:Fe:citric acid complex were investigated. X-ray photoelectron spectroscopy (XPS) and X-ray absorption near edge structure (XANES) analyses showed that soluble U{sup 6+} was reduced to insoluble U{sup 4+} by Clostridium sp. and was associated with the bacterial surface, whereas U{sup 3+} was observed within the biomass. Uranium forms a binuclear complex with citric acid involving two carboxylic acid groups and the hydroxyl group. Biodegradation studies of U:citric acid and U:Fe:citric acid complexes using Pseudomonas fluorescens showed they were recalcitrant. The lack of biodegradation was due to the nature of the metal-citrate complex species and not due to toxicity. Characterization of the mixed metal U:Fe:citric acid complex by extended X-ray absorption fine structure (EXAFS) indicated that Fe was associated with the U and citric acid, resulting in formation of a bionuclear mixed metal citrate complex.

  8. The functional gene composition and metabolic potential of coral-associated microbial communities

    PubMed Central

    Zhang, Yanying; Ling, Juan; Yang, Qingsong; Wen, Chongqing; Yan, Qingyun; Sun, Hongyan; Van Nostrand, Joy D.; Shi, Zhou; Zhou, Jizhong; Dong, Junde

    2015-01-01

    The phylogenetic diversity of coral-associated microbes has been extensively examined, but some contention remains regarding whether coral-associated microbial communities are species-specific or site-specific. It is suggested that corals may associate with microbes in terms of function, although little is known about the differences in coral-associated microbial functional gene composition and metabolic potential among coral species. Here, 16S rRNA Illumina sequencing and functional gene array (GeoChip 5.0) were used to assess coral-associated microbial communities. Our results indicate that both host species and environmental variables significantly correlate with shifts in the microbial community structure and functional potential. Functional genes related to key biogeochemical cycles including carbon, nitrogen, sulfur and phosphorus cycling, metal homeostasis, organic remediation, antibiotic resistance and secondary metabolism were shown to significantly vary between and among the four study corals (Galaxea astreata, Porites lutea, Porites andrewsi and Pavona decussata). Genes specific for anammox were also detected for the first time in the coral holobiont and positively correlated with ammonium. This study reveals that variability in the functional potential of coral-associated microbial communities is largely driven by changes in environmental factors and further demonstrates the importance of linking environmental parameters with genomic data in complex environmental systems. PMID:26536917

  9. The functional gene composition and metabolic potential of coral-associated microbial communities.

    PubMed

    Zhang, Yanying; Ling, Juan; Yang, Qingsong; Wen, Chongqing; Yan, Qingyun; Sun, Hongyan; Van Nostrand, Joy D; Shi, Zhou; Zhou, Jizhong; Dong, Junde

    2015-01-01

    The phylogenetic diversity of coral-associated microbes has been extensively examined, but some contention remains regarding whether coral-associated microbial communities are species-specific or site-specific. It is suggested that corals may associate with microbes in terms of function, although little is known about the differences in coral-associated microbial functional gene composition and metabolic potential among coral species. Here, 16S rRNA Illumina sequencing and functional gene array (GeoChip 5.0) were used to assess coral-associated microbial communities. Our results indicate that both host species and environmental variables significantly correlate with shifts in the microbial community structure and functional potential. Functional genes related to key biogeochemical cycles including carbon, nitrogen, sulfur and phosphorus cycling, metal homeostasis, organic remediation, antibiotic resistance and secondary metabolism were shown to significantly vary between and among the four study corals (Galaxea astreata, Porites lutea, Porites andrewsi and Pavona decussata). Genes specific for anammox were also detected for the first time in the coral holobiont and positively correlated with ammonium. This study reveals that variability in the functional potential of coral-associated microbial communities is largely driven by changes in environmental factors and further demonstrates the importance of linking environmental parameters with genomic data in complex environmental systems.

  10. Changes in Microbial Nitrogen Transformation Processes along a Chronosequence in the Forefield of the Damma Glacier

    NASA Astrophysics Data System (ADS)

    Töwe, S.; Brankatschk, R.; Schauß, K.; Munch, J. C.; Zeyer, J.; Schloter, M.

    2009-04-01

    Due to the retreat of glaciers, the development of initial soil ecosystems can nicely be observed. Especially in young ecosystems the nitrogen cycle plays a major role because nitrogen is an important factor for the functionality and development of biotic communities. Especially dinitrogen fixation plays an important role for the additional nitrogen input into the soil. Furthermore an optimal nitrogen turnover, including an efficient mineralization of organic nitrogen compounds and low denitrification rates are important for a sustainable development of vegetation. The aim of this study was to characterize the N turnover mainly nitrogen fixation, nitrification, denitrification and mineralization on gene and enzyme levels at different development stages of the soil ecosystem. For this purpose soil samples were taken along a chronosequence (10, 50, 70, 120, and older than 1000 years) from the forefield of the Damma Glacier (Canton Uri, Switzerland). We determined potential enzyme activities of each of the four mentioned processes and measured by quantitative PCR the corresponding functional bacterial genes nifH (nitrogenase), amoA (ammonia monooxygenase of bacteria and archaea), nirK and nirS (nitrite reductases), nosZ (nitrous oxide reductase), npr (neutral metallopeptidase) and apr (alkaline metallopeptidase). Additionally, we investigated the concentrations of dissolved organic carbon (DOC), dissolved organic nitrogen (DON), nitrate (NO3-) and ammonium (NH4+) and quantified the microbial biomass carbon (Cmic). First results show an increase in potential nitrification and denitrification activities with increasing soil age which is confirmed by qPCR. However, gene abundances related to the biomass exhibit higher numbers of denitrifying and nitrifiying bacteria in young development stages than in the more developed soils. Especially nirS denitrifying bacteria and bacterial ammonia oxidizers seem to play a major role in young soil development stages. The measurement

  11. Microbial co-habitation and lateral gene transfer: what transposases can tell us

    SciTech Connect

    Hooper, Sean D.; Mavromatis, Konstantinos; Kyrpides, Nikos C.

    2009-03-01

    Determining the habitat range for various microbes is not a simple, straightforward matter, as habitats interlace, microbes move between habitats, and microbial communities change over time. In this study, we explore an approach using the history of lateral gene transfer recorded in microbial genomes to begin to answer two key questions: where have you been and who have you been with? All currently sequenced microbial genomes were surveyed to identify pairs of taxa that share a transposase that is likely to have been acquired through lateral gene transfer. A microbial interaction network including almost 800 organisms was then derived from these connections. Although the majority of the connections are between closely related organisms with the same or overlapping habitat assignments, numerous examples were found of cross-habitat and cross-phylum connections. We present a large-scale study of the distributions of transposases across phylogeny and habitat, and find a significant correlation between habitat and transposase connections. We observed cases where phylogenetic boundaries are traversed, especially when organisms share habitats; this suggests that the potential exists for genetic material to move laterally between diverse groups via bridging connections. The results presented here also suggest that the complex dynamics of microbial ecology may be traceable in the microbial genomes.

  12. Altered phenotypes in plants transformed with chimeric tobacco peroxidase genes

    SciTech Connect

    Lagrimini, L.M.

    1990-12-31

    Peroxidases have been implicated in a variety of secondary metabolic reactions including lignification, cross-linking of cell wall polysaccharides, oxidation of indole-3-acetic acid, regulation of cell elongation, wound-healing, phenol oxidation, and pathogen defense. However, due to the many different isoenzymes and even more potential substrates, it has proven difficult to verify actual physiological roles for peroxidase. We are studying the molecular biology of the tobacco peroxidase genes, and have utilized genetic engineering techniques to produce transgenic plants which differ only in their expression of an individual peroxidase isoenzyme. Many of the in planta functions for any individual isoenzyme may be predicted through the morphological and physiological analysis of transformed plants.

  13. Altered phenotypes in plants transformed with chimeric tobacco peroxidase genes

    SciTech Connect

    Lagrimini, L.M.

    1990-01-01

    Peroxidases have been implicated in a variety of secondary metabolic reactions including lignification, cross-linking of cell wall polysaccharides, oxidation of indole-3-acetic acid, regulation of cell elongation, wound-healing, phenol oxidation, and pathogen defense. However, due to the many different isoenzymes and even more potential substrates, it has proven difficult to verify actual physiological roles for peroxidase. We are studying the molecular biology of the tobacco peroxidase genes, and have utilized genetic engineering techniques to produce transgenic plants which differ only in their expression of an individual peroxidase isoenzyme. Many of the in planta functions for any individual isoenzyme may be predicted through the morphological and physiological analysis of transformed plants.

  14. Distribution of Toxin Genes and Enterotoxins in Bacillus thuringiensis Isolated from Microbial Insecticide Products.

    PubMed

    Cho, Seung-Hak; Kang, Suk-Ho; Lee, Yea-Eun; Kim, Sung-Jo; Yoo, Young-Bin; Bak, Yeong-Seok; Kim, Jung-Beom

    2015-12-28

    Bacillus thuringiensis microbial insecticide products have been applied worldwide. Although a few cases of B. thuringiensis foodborne illness have been reported, little is known about the toxigenic properties of B. thuringiensis isolates. The aims of this study were to estimate the pathogenic potential of B. thuringiensis selected from microbial insecticide products, based on its possession of toxin genes and production of enterotoxins. Fifty-two B. thuringiensis strains selected from four kinds of microbial insecticide products were analyzed. PCR assay for detection of toxin genes and immunoassay for detection of enterotoxins were performed. The hemolysin BL complex as a major enterotoxin was produced by 17 (32.7%), whereas the nonhemolytic enterotoxin complex was detected in 1 (1.9%) of 52 B. thuringiensis strains. However, cytK, entFM, and ces genes were not detected in any of the tested B. thuringiensis strains. The potential risk of food poisoning by B. thuringiensis along with concerns over B. thuringiensis microbial insecticide products has gained attention recently. Thus, microbial insecticide products based on B. thuringiensis should be carefully controlled.

  15. [Diversity of microbial genes in paddy soil stressed by cadmium using DGGE].

    PubMed

    Duan, Xue-jun; Min, Hang

    2004-09-01

    Variations of diversity of microbial genes in submerged paddy soil stressed by heavy metal cadmium were studied using modern molecular biotechnology which includes directly extracting total DNA from paddy soil, amplifying 16S rDNA and their V3 variable region by PCR, the denaturing gradient gel electrophoresis (DGGE). Two methods for extraction and purification of microbial DNA were compared. Bacterial communities were quantified by analyzing the DGGE band patterns. The genetic clusters and correlative comparison of bacterial communities were analyzed based on the DGGE finger-print. The results showed that there are some significant differences between bacterial communities in paddy soils treated with different concentrations of cadmium. The information about effect of cadium on microbial population based on molecular biological techniques are conformed with that from traditional methods, but that obtained about variations of microbial genes in paddy soil is much more than results based on the latter methods. It could provide a new way and foundation to research microbial gene diversity in contaminated environment.

  16. Transformation Experiment Using Bioluminescence Genes of "Vibrio fischeri."

    ERIC Educational Resources Information Center

    Slock, James

    1995-01-01

    Bioluminescence transformation experiments show students the excitement and power of recombinant DNA technology. This laboratory experiment utilizes two plasmids of "Vibrio fischeri" in a transformation experiment. (LZ)

  17. Warming Alters Expressions of Microbial Functional Genes Important to Ecosystem Functioning

    PubMed Central

    Xue, Kai; Xie, Jianping; Zhou, Aifen; Liu, Feifei; Li, Dejun; Wu, Liyou; Deng, Ye; He, Zhili; Van Nostrand, Joy D.; Luo, Yiqi; Zhou, Jizhong

    2016-01-01

    Soil microbial communities play critical roles in ecosystem functioning and are likely altered by climate warming. However, so far, little is known about effects of warming on microbial functional gene expressions. Here, we applied functional gene array (GeoChip 3.0) to analyze cDNA reversely transcribed from total RNA to assess expressed functional genes in active soil microbial communities after nine years of experimental warming in a tallgrass prairie. Our results showed that warming significantly altered the community wide gene expressions. Specifically, expressed genes for degrading more recalcitrant carbon were stimulated by warming, likely linked to the plant community shift toward more C4 species under warming and to decrease the long-term soil carbon stability. In addition, warming changed expressed genes in labile C degradation and N cycling in different directions (increase and decrease), possibly reflecting the dynamics of labile C and available N pools during sampling. However, the average abundances of expressed genes in phosphorus and sulfur cycling were all increased by warming, implying a stable trend of accelerated P and S processes which might be a mechanism to sustain higher plant growth. Furthermore, the expressed gene composition was closely related to both dynamic (e.g., soil moisture) and stable environmental attributes (e.g., C4 leaf C or N content), indicating that RNA analyses could also capture certain stable trends in the long-term treatment. Overall, this study revealed the importance of elucidating functional gene expressions of soil microbial community in enhancing our understanding of ecosystem responses to warming. PMID:27199978

  18. Warming Alters Expressions of Microbial Functional Genes Important to Ecosystem Functioning.

    PubMed

    Xue, Kai; Xie, Jianping; Zhou, Aifen; Liu, Feifei; Li, Dejun; Wu, Liyou; Deng, Ye; He, Zhili; Van Nostrand, Joy D; Luo, Yiqi; Zhou, Jizhong

    2016-01-01

    Soil microbial communities play critical roles in ecosystem functioning and are likely altered by climate warming. However, so far, little is known about effects of warming on microbial functional gene expressions. Here, we applied functional gene array (GeoChip 3.0) to analyze cDNA reversely transcribed from total RNA to assess expressed functional genes in active soil microbial communities after nine years of experimental warming in a tallgrass prairie. Our results showed that warming significantly altered the community wide gene expressions. Specifically, expressed genes for degrading more recalcitrant carbon were stimulated by warming, likely linked to the plant community shift toward more C4 species under warming and to decrease the long-term soil carbon stability. In addition, warming changed expressed genes in labile C degradation and N cycling in different directions (increase and decrease), possibly reflecting the dynamics of labile C and available N pools during sampling. However, the average abundances of expressed genes in phosphorus and sulfur cycling were all increased by warming, implying a stable trend of accelerated P and S processes which might be a mechanism to sustain higher plant growth. Furthermore, the expressed gene composition was closely related to both dynamic (e.g., soil moisture) and stable environmental attributes (e.g., C4 leaf C or N content), indicating that RNA analyses could also capture certain stable trends in the long-term treatment. Overall, this study revealed the importance of elucidating functional gene expressions of soil microbial community in enhancing our understanding of ecosystem responses to warming.

  19. Pituitary-tumour-transforming-gene 1 expression in testicular cancer.

    PubMed

    Pierconti, F; Milardi, D; Martini, M; Grande, G; Cenci, T; Gulino, G; Larocca, L M; Rindi, G; Pontecorvi, A; De Marinis, L

    2015-05-01

    Genomic instability is a feature of germ cell tumours. The pituitary-tumour-transforming-gene 1 (PTTG1) is the major effector of chromosome segregation during mitosis, protecting the cell from aneuploidy. The protein expression of this gene has been evaluated in testicular tumours by immunohistochemistry. Formalin-fixed and paraffin-embedded specimens of testicular tissues from 83 patients undergoing therapeutic orchidectomy for seminomas (n = 53), embryonal carcinoma (n = 10), yolk sac tumour (n = 10) and teratoma (n = 10) were examined. Seminoma was associated with in situ carcinoma (CIS) in 23 samples. PTTG1 immunostaining was performed using rabbit anti-PTTG1 as a primary antibody. In CIS, only isolated cells showed nuclear staining for PTTG1. In the peripheral area of seminoma, PTTG1 was mostly detected as localised in the nucleus; in the central area of seminoma, PTTG1 staining was more intense in cytoplasm. PTTG1-positive cells were also present in the areas of seminoma infiltration. On the other hand, in embryonal carcinoma, cells had a diffuse positive immunostaining, mainly cytoplasmatic, while we did not observe an expression of PTTG1 in yolk sac tumour and mature teratoma. We firstly identified the PTTG1 expression pattern in normal testis, CIS and testicular cancer. Further investigation is needed to clarify the functional activity of PTTG1 in testicular oncogenesis. PMID:24754453

  20. Microbial gene functions enriched in the Deepwater Horizon deep-sea oil plume

    SciTech Connect

    Lu, Z.; Deng, Y.; Nostrand, J.D. Van; He, Z.; Voordeckers, J.; Zhou, A.; Lee, Y.-J.; Mason, O.U.; Dubinsky, E.; Chavarria, K.; Tom, L.; Fortney, J.; Lamendella, R.; Jansson, J.K.; D?haeseleer, P.; Hazen, T.C.; Zhou, J.

    2011-06-15

    The Deepwater Horizon oil spill in the Gulf of Mexico is the deepest and largest offshore spill in U.S. history and its impacts on marine ecosystems are largely unknown. Here, we showed that the microbial community functional composition and structure were dramatically altered in a deep-sea oil plume resulting from the spill. A variety of metabolic genes involved in both aerobic and anaerobic hydrocarbon degradation were highly enriched in the plume compared to outside the plume, indicating a great potential for intrinsic bioremediation or natural attenuation in the deep-sea. Various other microbial functional genes relevant to carbon, nitrogen, phosphorus, sulfur and iron cycling, metal resistance, and bacteriophage replication were also enriched in the plume. Together, these results suggest that the indigenous marine microbial communities could play a significant role in biodegradation of oil spills in deep-sea environments.

  1. Microbial gene functions enriched in the Deepwater Horizon deep-sea oil plume

    PubMed Central

    Lu, Zhenmei; Deng, Ye; Van Nostrand, Joy D; He, Zhili; Voordeckers, James; Zhou, Aifen; Lee, Yong-Jin; Mason, Olivia U; Dubinsky, Eric A; Chavarria, Krystle L; Tom, Lauren M; Fortney, Julian L; Lamendella, Regina; Jansson, Janet K; D'haeseleer, Patrik; Hazen, Terry C; Zhou, Jizhong

    2012-01-01

    The Deepwater Horizon oil spill in the Gulf of Mexico is the deepest and largest offshore spill in the United State history and its impacts on marine ecosystems are largely unknown. Here, we showed that the microbial community functional composition and structure were dramatically altered in a deep-sea oil plume resulting from the spill. A variety of metabolic genes involved in both aerobic and anaerobic hydrocarbon degradation were highly enriched in the plume compared with outside the plume, indicating a great potential for intrinsic bioremediation or natural attenuation in the deep sea. Various other microbial functional genes that are relevant to carbon, nitrogen, phosphorus, sulfur and iron cycling, metal resistance and bacteriophage replication were also enriched in the plume. Together, these results suggest that the indigenous marine microbial communities could have a significant role in biodegradation of oil spills in deep-sea environments. PMID:21814288

  2. Agrobacterium-mediated transformation leads to improved gene replacement efficiency in Aspergillus awamori.

    PubMed

    Michielse, C B; Arentshorst, M; Ram, A F J; van den Hondel, C A M J J

    2005-01-01

    In this study, the efficiency of gene replacement in Aspergillus awamori between Agrobacterium-mediated transformation and CaCl(2)/PEG-mediated transformation was compared. For the genes, pyrG and gfaA, it was found that the homologous recombination frequencies obtained by Agrobacterium-mediated transformation were 3- to 6-fold higher than the frequencies obtained with CaCl(2)/PEG protoplast transformation. For the pyrG gene, it was found that Agrobacterium-mediated transformation allowed an efficient homologous recombination with shorter DNA flanks than CaCl(2)/PEG protoplast transformation. Finally, the addition of the dominant amdS marker as a second selection marker to the gene replacement cassette led to a further 2-fold enrichment in transformants with gene replacement events, resulting in a gene replacement frequency of 55%. Based on the data it can be concluded that Agrobacterium-mediated transformation is an efficient tool for gene replacement and that the amdS gene can be successfully used as a second selection marker to select transformants with putative gene replacement.

  3. Iron oxides stimulate microbial monochlorobenzene in situ transformation in constructed wetlands and laboratory systems.

    PubMed

    Schmidt, Marie; Wolfram, Diana; Birkigt, Jan; Ahlheim, Jörg; Paschke, Heidrun; Richnow, Hans-Hermann; Nijenhuis, Ivonne

    2014-02-15

    Natural wetlands are transition zones between anoxic ground and oxic surface water which may enhance the (bio)transformation potential for recalcitrant chloro-organic contaminants due to the unique geochemical conditions and gradients. Monochlorobenzene (MCB) is a frequently detected groundwater contaminant which is toxic and was thought to be persistent under anoxic conditions. Furthermore, to date, no degradation pathways for anoxic MCB removal have been proven in the field. Hence, it is important to investigate MCB biodegradation in the environment, as groundwater is an important drinking water source in many European countries. Therefore, two pilot-scale horizontal subsurface-flow constructed wetlands, planted and unplanted, were used to investigate the processes in situ contributing to the biotransformation of MCB in these gradient systems. The wetlands were fed with anoxic MCB-contaminated groundwater from a nearby aquifer in Bitterfeld, Germany. An overall MCB removal was observed in both wetlands, whereas just 10% of the original MCB inflow concentration was detected in the ponds. In particular in the gravel bed of the planted wetland, MCB removal was highest in summer season with 73 ± 9% compared to the unplanted one with 40 ± 5%. Whereas the MCB concentrations rapidly decreased in the transition zone of unplanted gravel to the pond, a significant MCB removal was already determined in the anoxic gravel bed of the planted system. The investigation of hydro-geochemical parameters revealed that iron and sulphate reduction were relevant redox processes in both wetlands. In parallel, the addition of ferric iron or nitrate stimulated the mineralisation of MCB in laboratory microcosms with anoxic groundwater from the same source, indicating that the potential for anaerobic microbial degradation of MCB is present at the field site.

  4. Organic micropollutants in aerobic and anaerobic membrane bioreactors: Changes in microbial communities and gene expression.

    PubMed

    Harb, Moustapha; Wei, Chun-Hai; Wang, Nan; Amy, Gary; Hong, Pei-Ying

    2016-10-01

    Organic micro-pollutants (OMPs) are contaminants of emerging concern in wastewater treatment due to the risk of their proliferation into the environment, but their impact on the biological treatment process is not well understood. The purpose of this study is to examine the effects of the presence of OMPs on the core microbial populations of wastewater treatment. Two nanofiltration-coupled membrane bioreactors (aerobic and anaerobic) were subjected to the same operating conditions while treating synthetic municipal wastewater spiked with OMPs. Microbial community dynamics, gene expression levels, and antibiotic resistance genes were analyzed using molecular-based approaches. Results showed that presence of OMPs in the wastewater feed had a clear effect on keystone bacterial populations in both the aerobic and anaerobic sludge while also significantly impacting biodegradation-associated gene expression levels. Finally, multiple antibiotic-type OMPs were found to have higher removal rates in the anaerobic MBR, while associated antibiotic resistance genes were lower.

  5. Organic micropollutants in aerobic and anaerobic membrane bioreactors: Changes in microbial communities and gene expression.

    PubMed

    Harb, Moustapha; Wei, Chun-Hai; Wang, Nan; Amy, Gary; Hong, Pei-Ying

    2016-10-01

    Organic micro-pollutants (OMPs) are contaminants of emerging concern in wastewater treatment due to the risk of their proliferation into the environment, but their impact on the biological treatment process is not well understood. The purpose of this study is to examine the effects of the presence of OMPs on the core microbial populations of wastewater treatment. Two nanofiltration-coupled membrane bioreactors (aerobic and anaerobic) were subjected to the same operating conditions while treating synthetic municipal wastewater spiked with OMPs. Microbial community dynamics, gene expression levels, and antibiotic resistance genes were analyzed using molecular-based approaches. Results showed that presence of OMPs in the wastewater feed had a clear effect on keystone bacterial populations in both the aerobic and anaerobic sludge while also significantly impacting biodegradation-associated gene expression levels. Finally, multiple antibiotic-type OMPs were found to have higher removal rates in the anaerobic MBR, while associated antibiotic resistance genes were lower. PMID:27441825

  6. The dynamics of gene duplication and transposons in microbial genome evolution

    NASA Astrophysics Data System (ADS)

    Chia, Nicholas; Goldenfeld, Nigel

    2010-03-01

    Evidence indicates that new functional genes emerge from a process of gene duplication coupled with selection for a novel function. Recently, Bergthorsson et al. proposed a model of continuous selection in order to describe this process. Here, we examine their proposed evolutionary scheme, by modeling gene evolution using a stochastic simulation. Our results indicate that this model, and a related one that includes horizontal gene transfer, can account for the distribution of transposons in microbial genomes, and reproduce the observed environmentally-driven spatial dependence of transposon density in marine bacteria.

  7. The PathoChip, a functional gene array for assessing pathogenic properties of diverse microbial communities

    PubMed Central

    Lee, Yong-Jin; van Nostrand, Joy D; Tu, Qichao; Lu, Zhenmei; Cheng, Lei; Yuan, Tong; Deng, Ye; Carter, Michelle Q; He, Zhili; Wu, Liyou; Yang, Fang; Xu, Jian; Zhou, Jizhong

    2013-01-01

    Pathogens present in the environment pose a serious threat to human, plant and animal health as evidenced by recent outbreaks. As many pathogens can survive and proliferate in the environment, it is important to understand their population dynamics and pathogenic potential in the environment. To assess pathogenic potential in diverse habitats, we developed a functional gene array, the PathoChip, constructed with key virulence genes related to major virulence factors, such as adherence, colonization, motility, invasion, toxin, immune evasion and iron uptake. A total of 3715 best probes were selected from 13 virulence factors, covering 7417 coding sequences from 1397 microbial species (2336 strains). The specificity of the PathoChip was computationally verified, and approximately 98% of the probes provided specificity at or below the species level, proving its excellent capability for the detection of target sequences with high discrimination power. We applied this array to community samples from soil, seawater and human saliva to assess the occurrence of virulence genes in natural environments. Both the abundance and diversity of virulence genes increased in stressed conditions compared with their corresponding controls, indicating a possible increase in abundance of pathogenic bacteria under environmental perturbations such as warming or oil spills. Statistical analyses showed that microbial communities harboring virulence genes were responsive to environmental perturbations, which drove changes in abundance and distribution of virulence genes. The PathoChip provides a useful tool to identify virulence genes in microbial populations, examine the dynamics of virulence genes in response to environmental perturbations and determine the pathogenic potential of microbial communities. PMID:23765101

  8. Reductive Transformation of p-chloronitrobenzene in the upflow anaerobic sludge blanket reactor coupled with microbial electrolysis cell: performance and microbial community.

    PubMed

    Xu, Xiangyang; Shao, Junjie; Li, Mengyan; Gao, Kaituo; Jin, Jie; Zhu, Liang

    2016-10-01

    A microbial electrolysis cell (MEC) combined with an upflow anaerobic sludge blanket (UASB) reactor was operated to degrade p-chloronitrobenzenes (p-ClNB) effectively. The results indicated that p-ClNB was transformed to p-chloroaniline (p-ClAn) and then reduced via dechlorination pathways. In the MEC-UASB coupled system, p-ClNB, p-ClAn removal efficiency and dechlorination efficiency reached 99.63±0.37%, 40.39±9.26% and 32.16±8.12%, respectively, which was significantly improved in comparison with the control UASB system. In addition, the coupled system could maintain appropriate pH and promote anaerobic sludge granulation to exert a positive effect on reductive transformation of p-ClNB. PCR-DGGE experiment and 454 pyrophosphate sequencing analysis indicated that applied voltage would significantly influence the succession of microbial community and promote oriented enrichment of the functional bacteria, which could be the underlying reasons for the improved performance. This study demonstrated that MEC-UASB coupled system had a promising application prospect to remove the recalcitrant pollutants effectively. PMID:27455127

  9. Reductive Transformation of p-chloronitrobenzene in the upflow anaerobic sludge blanket reactor coupled with microbial electrolysis cell: performance and microbial community.

    PubMed

    Xu, Xiangyang; Shao, Junjie; Li, Mengyan; Gao, Kaituo; Jin, Jie; Zhu, Liang

    2016-10-01

    A microbial electrolysis cell (MEC) combined with an upflow anaerobic sludge blanket (UASB) reactor was operated to degrade p-chloronitrobenzenes (p-ClNB) effectively. The results indicated that p-ClNB was transformed to p-chloroaniline (p-ClAn) and then reduced via dechlorination pathways. In the MEC-UASB coupled system, p-ClNB, p-ClAn removal efficiency and dechlorination efficiency reached 99.63±0.37%, 40.39±9.26% and 32.16±8.12%, respectively, which was significantly improved in comparison with the control UASB system. In addition, the coupled system could maintain appropriate pH and promote anaerobic sludge granulation to exert a positive effect on reductive transformation of p-ClNB. PCR-DGGE experiment and 454 pyrophosphate sequencing analysis indicated that applied voltage would significantly influence the succession of microbial community and promote oriented enrichment of the functional bacteria, which could be the underlying reasons for the improved performance. This study demonstrated that MEC-UASB coupled system had a promising application prospect to remove the recalcitrant pollutants effectively.

  10. Functional Gene Composition, Diversity and Redundancy in Microbial Stream Biofilm Communities

    PubMed Central

    Dopheide, Andrew; Lear, Gavin; He, Zhili; Zhou, Jizhong; Lewis, Gillian D.

    2015-01-01

    We surveyed the functional gene composition and diversity of microbial biofilm communities in 18 New Zealand streams affected by different types of catchment land use, using a comprehensive functional gene array, GeoChip 3.0. A total of 5,371 nutrient cycling and energy metabolism genes within 65 gene families were detected among all samples (342 to 2,666 genes per stream). Carbon cycling genes were most common, followed by nitrogen cycling genes, with smaller proportions of sulphur, phosphorus cycling and energy metabolism genes. Samples from urban and native forest streams had the most similar functional gene composition, while samples from exotic forest and rural streams exhibited the most variation. There were significant differences between nitrogen and sulphur cycling genes detected in native forest and urban samples compared to exotic forest and rural samples, attributed to contrasting proportions of nitrogen fixation, denitrification, and sulphur reduction genes. Most genes were detected only in one or a few samples, with only a small minority occurring in all samples. Nonetheless, 42 of 65 gene families occurred in every sample and overall proportions of gene families were similar among samples from contrasting streams. This suggests the existence of functional gene redundancy among different stream biofilm communities despite contrasting taxonomic composition. PMID:25849814

  11. Presence and Expression of Microbial Genes Regulating Soil Nitrogen Dynamics Along the Tanana River Successional Sequence

    NASA Astrophysics Data System (ADS)

    Boone, R. D.; Rogers, S. L.

    2004-12-01

    We report on work to assess the functional gene sequences for soil microbiota that control nitrogen cycle pathways along the successional sequence (willow, alder, poplar, white spruce, black spruce) on the Tanana River floodplain, Interior Alaska. Microbial DNA and mRNA were extracted from soils (0-10 cm depth) for amoA (ammonium monooxygenase), nifH (nitrogenase reductase), napA (nitrate reductase), and nirS and nirK (nitrite reductase) genes. Gene presence was determined by amplification of a conserved sequence of each gene employing sequence specific oligonucleotide primers and Polymerase Chain Reaction (PCR). Expression of the genes was measured via nested reverse transcriptase PCR amplification of the extracted mRNA. Amplified PCR products were visualized on agarose electrophoresis gels. All five successional stages show evidence for the presence and expression of microbial genes that regulate N fixation (free-living), nitrification, and nitrate reduction. We detected (1) nifH, napA, and nirK presence and amoA expression (mRNA production) for all five successional stages and (2) nirS and amoA presence and nifH, nirK, and napA expression for early successional stages (willow, alder, poplar). The results highlight that the existing body of previous process-level work has not sufficiently considered the microbial potential for a nitrate economy and free-living N fixation along the complete floodplain successional sequence.

  12. Combining Push Pull Tracer Tests and Microbial DNA and mRNA Analysis to Assess In-Situ Groundwater Nitrate Transformations

    NASA Astrophysics Data System (ADS)

    Henson, W.; Graham, W. D.; Huang, L.; Ogram, A.

    2015-12-01

    Nitrogen transformation mechanisms in the Upper Floridan Aquifer (UFA) are still poorly understood because of karst aquifer complexity and spatiotemporal variability in nitrate and carbon loading. Transformation rates have not been directly measured in the aquifer. This study quantifies nitrate-nitrogen transformation potential in the UFA using single well push-pull tracer injection (PPT) experiments combined with microbial characterization of extracted water via qPCR and RT-qPCR of selected nitrate reduction genes. Tracer tests with chloride and nitrate ± carbon were executed in two wells representing anoxic and oxic geochemical end members in a spring groundwater contributing area. A significant increase in number of microbes with carbon addition suggests stimulated growth. Increases in the activities of denitrification genes (nirK and nirS) as measured by RT-qPCR were not observed. However, only microbes suspended in the tracer were obtained, ignoring effects of aquifer material biofilms. Increases in nrfA mRNA and ammonia concentrations were observed, supporting Dissimilatory Reduction of Nitrate to Ammonia (DNRA) as a reduction mechanism. In the oxic aquifer, zero order nitrate loss rates ranged from 32 to 89 nmol /L*hr with no added carbon and 90 to 240 nmol /L*hr with carbon. In the anoxic aquifer, rates ranged from 18 to 95 nmol /L*hr with no added carbon and 34 to 207 nmol /L*hr with carbon. These loss rates are low; 13 orders of magnitude less than the loads applied in the contributing area each year, however they do indicate that losses can occur in oxic and anoxic aquifers with and without carbon. These rates may include, ammonia adsorption, uptake, or denitrification in aquifer material biofilms. Rates with and without carbon addition for both aquifers were similar, suggesting aquifer redox state and carbon availability alone are insufficient to predict response to nutrient additions without characterization of microbial response. Surprisingly, these

  13. Elevated nitrate enriches microbial functional genes for potential bioremediation of complexly contaminated sediments

    PubMed Central

    Xu, Meiying; Zhang, Qin; Xia, Chunyu; Zhong, Yuming; Sun, Guoping; Guo, Jun; Yuan, Tong; Zhou, Jizhong; He, Zhili

    2014-01-01

    Nitrate is an important nutrient and electron acceptor for microorganisms, having a key role in nitrogen (N) cycling and electron transfer in anoxic sediments. High-nitrate inputs into sediments could have a significant effect on N cycling and its associated microbial processes. However, few studies have been focused on the effect of nitrate addition on the functional diversity, composition, structure and dynamics of sediment microbial communities in contaminated aquatic ecosystems with persistent organic pollutants (POPs). Here we analyzed sediment microbial communities from a field-scale in situ bioremediation site, a creek in Pearl River Delta containing a variety of contaminants including polybrominated diphenyl ethers (PBDEs) and polycyclic aromatic hydrocarbons (PAHs), before and after nitrate injection using a comprehensive functional gene array (GeoChip 4.0). Our results showed that the sediment microbial community functional composition and structure were markedly altered, and that functional genes involved in N-, carbon (C)-, sulfur (S)-and phosphorus (P)- cycling processes were highly enriched after nitrate injection, especially those microorganisms with diverse metabolic capabilities, leading to potential in situ bioremediation of the contaminated sediment, such as PBDE and PAH reduction/degradation. This study provides new insights into our understanding of sediment microbial community responses to nitrate addition, suggesting that indigenous microorganisms could be successfully stimulated for in situ bioremediation of POPs in contaminated sediments with nitrate addition. PMID:24671084

  14. Microbial community gene expression within colonies of the diazotroph, Trichodesmium, from the Southwest Pacific Ocean.

    PubMed

    Hewson, Ian; Poretsky, Rachel S; Dyhrman, Sonya T; Zielinski, Brian; White, Angelicque E; Tripp, H James; Montoya, Joseph P; Zehr, Jonathan P

    2009-11-01

    Trichodesmium are responsible for a large fraction of open ocean nitrogen fixation, and are often found in complex consortia of other microorganisms, including viruses, prokaryotes, microbial eukaryotes and metazoa. We applied a community gene expression (metatranscriptomic) approach to study the patterns of microbial gene utilization within colonies of Trichodesmium collected during a bloom in the Southwest Pacific Ocean in April 2007. The survey generated 5711-day and 5385-night putative mRNA reads. The majority of mRNAs were from the co-occurring microorganisms and not Trichodesmium, including other cyanobacteria, heterotrophic bacteria, eukaryotes and phage. Most transcripts did not share homology with proteins from cultivated microorganisms, but were similar to shotgun sequences and unannotated proteins from open ocean metagenomic surveys. Trichodesmium transcripts were mostly expressed photosynthesis, N(2) fixation and S-metabolism genes, whereas those in the co-occurring microorganisms were mostly involved in genetic information storage and processing. Detection of Trichodesmium genes involved in P uptake and As detoxification suggest that local enrichment of N through N(2) fixation may lead to a P-stress response. Although containing similar dominant transcripts to open ocean metatranscriptomes, the overall pattern of gene expression in Trichodesmium colonies was distinct from free-living pelagic assemblages. The identifiable genes expressed by Trichodesmium and closely associated microorganisms reflect the constraints of life in well-lit and nutrient-poor waters, with biosynthetic investment in nutrient acquisition and cell maintenance, which is in contrast to gene transcription by soil and coastal seawater microbial assemblages. The results provide insight into aggregate microbial communities in contrast to planktonic free-living assemblages that are the focus of other studies.

  15. Soybean seed lectin gene and flanking nonseed protein genes are developmentally regulated in transformed tobacco plants.

    PubMed Central

    Okamuro, J K; Jofuku, K D; Goldberg, R B

    1986-01-01

    We introduced a 17.1-kilobase soybean DNA fragment containing the lectin gene and at least four nonseed protein genes into the tobacco genome. As in soybean plants, lectin mRNA is present in tobacco seeds, accumulates and decays during tobacco seed development, and is translated into a protein that accumulates prior to dormancy. Each soybean nonseed protein mRNA is present in tobacco leaves, roots, stems, and seeds at levels similar to that found in soybean plants. We conclude that a differentially expressed soybean gene cluster is correctly regulated in transformed tobacco plants and that sequences controlling their expression are recognized by regulatory factors present in tobacco cells. Images PMID:3464951

  16. A Multi-omics Approach to Understand the Microbial Transformation of Lignocellulosic Materials in the Digestive System of the Wood-Feeding Beetle Odontotaenius disjunctus

    NASA Astrophysics Data System (ADS)

    Ceja Navarro, J. A.; Karaoz, U.; White, R. A., III; Lipton, M. S.; Adkins, J.; Mayali, X.; Blackwell, M.; Pett-Ridge, J.; Brodie, E.; Hao, Z.

    2015-12-01

    Odontotaenius disjuctus is a wood feeding beetle that processes large amounts of hardwoods and plays an important role in forest carbon cycling. In its gut, plant material is transformed into simple molecules by sequential processing during passage through the insect's digestive system. In this study, we used multiple 'omics approaches to analyze the distribution of microbial communities and their specific functions in lignocellulose deconstruction within the insect's gut. Fosmid clones were selected and sequenced from a pool of clones based on their expression of plant polymer degrading enzymes, allowing the identification of a wide range of carbohydrate degrading enzymes. Comparison of metagenomes of all gut regions demonstrated the distribution of genes across the beetle gut. Cellulose, starch, and xylan degradation genes were particularly abundant in the midgut and posterior hindgut. Genes involved in hydrogenotrophic production of methane and nitrogenases were more abundant in the anterior hindgut. Assembled contigs were binned into 127 putative genomes representing Bacteria, Archaea, Fungi and Nematodes. Eleven complete genomes were reconstructed allowing to identify linked functions/traits, including organisms with cellulosomes, and a combined potential for cellulose, xylan and starch hydrolysis and nitrogen fixation. A metaproteomic study was conducted to test the expression of the pathways identified in the metagenomic study. Preliminary analyses suggest enrichment of pathways related to hemicellulosic degradation. A complete xylan degradation pathway was reconstructed and GC-MS/MS based metabolomics identified xylobiose and xylose as major metabolite pools. To relate microbial identify to function in the beetle gut, Chip-SIP isotope tracing was conducted with RNA extracted from beetles fed 13C-cellulose. Multiple 13C enriched bacterial groups were detected, mainly in the midgut. Our multi-omics approach has allowed us to characterize the contribution of

  17. Using a Handheld Gene Gun for Genetic Transformation of Tetrahymena thermophila.

    PubMed

    Gotesman, Michael; Williams, Selwyn A

    2016-01-01

    This chapter describes protocols for using a handheld gene gun to deliver transformation vectors for overexpression of genes or gene replacement in the macronucleus of Tetrahymena thermophila. The protocols provide helpful information for preparing Tetrahymena for biolistic bombardment, preparation of vector-coated microcarriers, and basic gene gun operating procedures.

  18. Soil microbial respiration (CO2) of natural and anthropogenically-transformed ecosystems in Moscow region, Russia

    NASA Astrophysics Data System (ADS)

    Ivashchenko, Kristina; Ananyeva, Nadezhda; Rogovaya, Sofia; Vasenev, Viacheslav

    2016-04-01

    The CO2 concentration in modern atmosphere is increasing and one of the most reasons of it is land use changing. It is related not only with soil plowing, but also with growing urbanization and, thereby, forming the urban ecosystems. Such conversion of soil cover might be affected by efflux CO2 from soil into atmosphere. The soil CO2 efflux mainly supplies by soil microorganisms respiration (contribution around 70-90%) and plant roots respiration. Soil microbial respiration (MR) is determined in the field (in situ) and laboratory (in vitro) conditions. The measurement of soil MR in situ is labour-consuming, and for district, region and country areas it is difficult carried. We suggest to define the MR of the upper highest active 10 cm mineral soil layer (in vitro) followed by the accounting of area for different ecosystems in large region of Russia. Soils were sampled (autumn, 2011) in natural (forest, meadow) and anthropogenically-transformed (arable, urban) ecosystems of Sergiev-Posad, Taldom, Voskresenk, Shatura, Serpukhov and Serbryanye Prudy districts in Moscow region. In soil samples (total 156) the soil MR (24 h, 22°C, 60% WHC) were measured after preincubation procedure (7 d., 22°C, 55% WHC). The soil MR ranged from 0.13 (urban) to 5.41 μg CO2-C g-1 h-1 (meadow), the difference between these values was 42 times. Then, the soil MR values (per unit soil weight) were calculated per unit soil area (1 m2), the layer thickness of which was 0.1 m (soil volume weight was equaled 1 g cm-3). The high MR values were noted for forests soil (832-1410 g CO2-C m-2 yr-1) of studied districts, and the low MR values were for arable and urban soils (by 1.6-3.2 and 1.3-2.7 times less compared to forests, respectively). The MR rate of urban soil in Voskresenk district was comparable to that of corresponding meadows and it was even higher (in average by 2.3 times) in Serpukhov district. The soil MR rate of studied cities was higher by 20%, than in corresponding arable soils

  19. Characterization of redox-related soil microbial communities along a river floodplain continuum by fatty acid methyl ester (FAME) and 16S rRNA genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Redox states affect substrate availability and energy transformation, and, thus, play a crucial role in regulating soil microbial abundance, diversity, and community structure. We evaluated microbial communities in soils under oxic, intermittent, and anoxic conditions along a river floodplain conti...

  20. Patterns in wetland microbial community composition and functional gene repertoire associated with methane emissions

    DOE PAGESBeta

    He, Shaomei; Malfatti, Stephanie A.; McFarland, Jack W.; Anderson, Frank E.; Pati, Amrita; Huntemann, Marcel; Tremblay, Julien; Glavina del Rio, Tijana; Waldrop, Mark P.; Windham-Myers, Lisamarie; et al

    2015-05-19

    Wetland restoration on peat islands previously drained for agriculture has potential to reverse land subsidence and sequester atmospheric carbon dioxide as peat accretes. However, the emission of methane could potentially offset the greenhouse gas benefits of captured carbon. As microbial communities play a key role in governing wetland greenhouse gas fluxes, we are interested in how microbial community composition and functions are associated with wetland hydrology, biogeochemistry, and methane emission, which is critical to modeling the microbial component in wetland methane fluxes and to managing restoration projects for maximal carbon sequestration. Here, we couple sequence-based methods with biogeochemical and greenhousemore » gas measurements to interrogate microbial communities from a pilot-scale restored wetland in the Sacramento-San Joaquin Delta of California, revealing considerable spatial heterogeneity even within this relatively small site. A number of microbial populations and functions showed strong correlations with electron acceptor availability and methane production; some also showed a preference for association with plant roots. Marker gene phylogenies revealed a diversity of major methane-producing and -consuming populations and suggested novel diversity within methanotrophs. Methanogenic archaea were observed in all samples, as were nitrate-, sulfate-, and metal-reducing bacteria, indicating that no single terminal electron acceptor was preferred despite differences in energetic favorability and suggesting spatial microheterogeneity and microniches. Notably, methanogens were negatively correlated with nitrate-, sulfate-, and metal-reducing bacteria and were most abundant at sampling sites with high peat accretion and low electron acceptor availability, where methane production was highest. Wetlands are the largest nonanthropogenic source of atmospheric methane but also a key global carbon reservoir. Characterizing belowground microbial

  1. Patterns in wetland microbial community composition and functional gene repertoire associated with methane emissions

    SciTech Connect

    He, Shaomei; Malfatti, Stephanie A.; McFarland, Jack W.; Anderson, Frank E.; Pati, Amrita; Huntemann, Marcel; Tremblay, Julien; Glavina del Rio, Tijana; Waldrop, Mark P.; Windham-Myers, Lisamarie; Tringe, Susannah G.

    2015-05-19

    Wetland restoration on peat islands previously drained for agriculture has potential to reverse land subsidence and sequester atmospheric carbon dioxide as peat accretes. However, the emission of methane could potentially offset the greenhouse gas benefits of captured carbon. As microbial communities play a key role in governing wetland greenhouse gas fluxes, we are interested in how microbial community composition and functions are associated with wetland hydrology, biogeochemistry, and methane emission, which is critical to modeling the microbial component in wetland methane fluxes and to managing restoration projects for maximal carbon sequestration. Here, we couple sequence-based methods with biogeochemical and greenhouse gas measurements to interrogate microbial communities from a pilot-scale restored wetland in the Sacramento-San Joaquin Delta of California, revealing considerable spatial heterogeneity even within this relatively small site. A number of microbial populations and functions showed strong correlations with electron acceptor availability and methane production; some also showed a preference for association with plant roots. Marker gene phylogenies revealed a diversity of major methane-producing and -consuming populations and suggested novel diversity within methanotrophs. Methanogenic archaea were observed in all samples, as were nitrate-, sulfate-, and metal-reducing bacteria, indicating that no single terminal electron acceptor was preferred despite differences in energetic favorability and suggesting spatial microheterogeneity and microniches. Notably, methanogens were negatively correlated with nitrate-, sulfate-, and metal-reducing bacteria and were most abundant at sampling sites with high peat accretion and low electron acceptor availability, where methane production was highest. Wetlands are the largest nonanthropogenic source of atmospheric methane but also a key global carbon reservoir. Characterizing belowground microbial communities

  2. Microbial Nitrogen-Cycle Gene Abundance in Soil of Cropland Abandoned for Different Periods.

    PubMed

    Huhe; Borjigin, Shinchilelt; Buhebaoyin; Wu, Yanpei; Li, Minquan; Cheng, Yunxiang

    2016-01-01

    In Inner Mongolia, steppe grasslands face desertification or degradation because of human overuse and abandonment after inappropriate agricultural management. The soils in these abandoned croplands exist in heterogeneous environments characterized by widely fluctuating microbial growth. Quantitative polymerase chain reaction analysis of microbial genes encoding proteins involved in the nitrogen cycle was used to study Azotobacter species, nitrifiers, and denitrifiers in the soils from steppe grasslands and croplands abandoned for 2, 6, and 26 years. Except for nitrifying archaea and nitrous oxide-reducing bacteria, the relative genotypic abundance of microbial communities involved in nitrogen metabolism differed by approximately 2- to 10-fold between abandoned cropland and steppe grassland soils. Although nitrogen-cycle gene abundances varied with abandonment time, the abundance patterns of nitrogen-cycle genes separated distinctly into abandoned cropland versus light-grazing steppe grassland, despite the lack of any cultivation for over a quarter-century. Plant biomass and plant diversity exerted a significant effect on the abundance of microbial communities that mediate the nitrogen cycle (P < 0.002 and P < 0.03, respectively). The present study elucidates the ecology of bacteria that mediate the nitrogen cycle in recently abandoned croplands.

  3. Microbial Nitrogen-Cycle Gene Abundance in Soil of Cropland Abandoned for Different Periods.

    PubMed

    Huhe; Borjigin, Shinchilelt; Buhebaoyin; Wu, Yanpei; Li, Minquan; Cheng, Yunxiang

    2016-01-01

    In Inner Mongolia, steppe grasslands face desertification or degradation because of human overuse and abandonment after inappropriate agricultural management. The soils in these abandoned croplands exist in heterogeneous environments characterized by widely fluctuating microbial growth. Quantitative polymerase chain reaction analysis of microbial genes encoding proteins involved in the nitrogen cycle was used to study Azotobacter species, nitrifiers, and denitrifiers in the soils from steppe grasslands and croplands abandoned for 2, 6, and 26 years. Except for nitrifying archaea and nitrous oxide-reducing bacteria, the relative genotypic abundance of microbial communities involved in nitrogen metabolism differed by approximately 2- to 10-fold between abandoned cropland and steppe grassland soils. Although nitrogen-cycle gene abundances varied with abandonment time, the abundance patterns of nitrogen-cycle genes separated distinctly into abandoned cropland versus light-grazing steppe grassland, despite the lack of any cultivation for over a quarter-century. Plant biomass and plant diversity exerted a significant effect on the abundance of microbial communities that mediate the nitrogen cycle (P < 0.002 and P < 0.03, respectively). The present study elucidates the ecology of bacteria that mediate the nitrogen cycle in recently abandoned croplands. PMID:27140199

  4. Microbial Nitrogen-Cycle Gene Abundance in Soil of Cropland Abandoned for Different Periods

    PubMed Central

    Huhe; Borjigin, Shinchilelt; Buhebaoyin; Wu, Yanpei; Li, Minquan; Cheng, Yunxiang

    2016-01-01

    In Inner Mongolia, steppe grasslands face desertification or degradation because of human overuse and abandonment after inappropriate agricultural management. The soils in these abandoned croplands exist in heterogeneous environments characterized by widely fluctuating microbial growth. Quantitative polymerase chain reaction analysis of microbial genes encoding proteins involved in the nitrogen cycle was used to study Azotobacter species, nitrifiers, and denitrifiers in the soils from steppe grasslands and croplands abandoned for 2, 6, and 26 years. Except for nitrifying archaea and nitrous oxide-reducing bacteria, the relative genotypic abundance of microbial communities involved in nitrogen metabolism differed by approximately 2- to 10-fold between abandoned cropland and steppe grassland soils. Although nitrogen-cycle gene abundances varied with abandonment time, the abundance patterns of nitrogen-cycle genes separated distinctly into abandoned cropland versus light-grazing steppe grassland, despite the lack of any cultivation for over a quarter-century. Plant biomass and plant diversity exerted a significant effect on the abundance of microbial communities that mediate the nitrogen cycle (P < 0.002 and P < 0.03, respectively). The present study elucidates the ecology of bacteria that mediate the nitrogen cycle in recently abandoned croplands. PMID:27140199

  5. Tools and Principles for Microbial Gene Circuit Engineering.

    PubMed

    Bradley, Robert W; Buck, Martin; Wang, Baojun

    2016-02-27

    Synthetic biologists aim to construct novel genetic circuits with useful applications through rational design and forward engineering. Given the complexity of signal processing that occurs in natural biological systems, engineered microbes have the potential to perform a wide range of desirable tasks that require sophisticated computation and control. Realising this goal will require accurate predictive design of complex synthetic gene circuits and accompanying large sets of quality modular and orthogonal genetic parts. Here we present a current overview of the versatile components and tools available for engineering gene circuits in microbes, including recently developed RNA-based tools that possess large dynamic ranges and can be easily programmed. We introduce design principles that enable robust and scalable circuit performance such as insulating a gene circuit against unwanted interactions with its context, and we describe efficient strategies for rapidly identifying and correcting causes of failure and fine-tuning circuit characteristics.

  6. Lateral Gene Transfer in a Heavy Metal-Contaminated-Groundwater Microbial Community

    PubMed Central

    Hemme, Christopher L.; Green, Stefan J.; Rishishwar, Lavanya; Prakash, Om; Pettenato, Angelica; Chakraborty, Romy; Deutschbauer, Adam M.; Van Nostrand, Joy D.; Wu, Liyou; He, Zhili; Jordan, I. King; Arkin, Adam P.; Kostka, Joel E.

    2016-01-01

    ABSTRACT Unraveling the drivers controlling the response and adaptation of biological communities to environmental change, especially anthropogenic activities, is a central but poorly understood issue in ecology and evolution. Comparative genomics studies suggest that lateral gene transfer (LGT) is a major force driving microbial genome evolution, but its role in the evolution of microbial communities remains elusive. To delineate the importance of LGT in mediating the response of a groundwater microbial community to heavy metal contamination, representative Rhodanobacter reference genomes were sequenced and compared to shotgun metagenome sequences. 16S rRNA gene-based amplicon sequence analysis indicated that Rhodanobacter populations were highly abundant in contaminated wells with low pHs and high levels of nitrate and heavy metals but remained rare in the uncontaminated wells. Sequence comparisons revealed that multiple geochemically important genes, including genes encoding Fe2+/Pb2+ permeases, most denitrification enzymes, and cytochrome c553, were native to Rhodanobacter and not subjected to LGT. In contrast, the Rhodanobacter pangenome contained a recombinational hot spot in which numerous metal resistance genes were subjected to LGT and/or duplication. In particular, Co2+/Zn2+/Cd2+ efflux and mercuric resistance operon genes appeared to be highly mobile within Rhodanobacter populations. Evidence of multiple duplications of a mercuric resistance operon common to most Rhodanobacter strains was also observed. Collectively, our analyses indicated the importance of LGT during the evolution of groundwater microbial communities in response to heavy metal contamination, and a conceptual model was developed to display such adaptive evolutionary processes for explaining the extreme dominance of Rhodanobacter populations in the contaminated groundwater microbiome. PMID:27048805

  7. Microbial Community Analysis with Ribosomal Gene Fragments from Shotgun Metagenomes

    PubMed Central

    Guo, Jiarong; Cole, James R.; Zhang, Qingpeng; Brown, C. Titus

    2015-01-01

    Shotgun metagenomic sequencing does not depend on gene-targeted primers or PCR amplification; thus, it is not affected by primer bias or chimeras. However, searching rRNA genes from large shotgun Illumina data sets is computationally expensive, and no approach exists for unsupervised community analysis of small-subunit (SSU) rRNA gene fragments retrieved from shotgun data. We present a pipeline, SSUsearch, to achieve the faster identification of short-subunit rRNA gene fragments and enabled unsupervised community analysis with shotgun data. It also includes classification and copy number correction, and the output can be used by traditional amplicon analysis platforms. Shotgun metagenome data using this pipeline yielded higher diversity estimates than amplicon data but retained the grouping of samples in ordination analyses. We applied this pipeline to soil samples with paired shotgun and amplicon data and confirmed bias against Verrucomicrobia in a commonly used V6-V8 primer set, as well as discovering likely bias against Actinobacteria and for Verrucomicrobia in a commonly used V4 primer set. This pipeline can utilize all variable regions in SSU rRNA and also can be applied to large-subunit (LSU) rRNA genes for confirmation of community structure. The pipeline can scale to handle large amounts of soil metagenomic data (5 Gb memory and 5 central processing unit hours to process 38 Gb [1 lane] of trimmed Illumina HiSeq2500 data) and is freely available at https://github.com/dib-lab/SSUsearch under a BSD license. PMID:26475107

  8. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences

    PubMed Central

    Langille, Morgan G. I.; Zaneveld, Jesse; Caporaso, J. Gregory; McDonald, Daniel; Knights, Dan; Reyes, Joshua A.; Clemente, Jose C.; Burkepile, Deron E.; Vega Thurber, Rebecca L.; Knight, Rob; Beiko, Robert G.; Huttenhower, Curtis

    2013-01-01

    Profiling phylogenetic marker genes, such as the 16S rRNA gene, is a key tool for studies of microbial communities but does not provide direct evidence of a community’s functional capabilities. Here we describe PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States), a computational approach to predict the functional composition of a metagenome using marker gene data and a database of reference genomes. PICRUSt uses an extended ancestral-state reconstruction algorithm to predict which gene families are present and then combines gene families to estimate the composite metagenome. Using 16S information, PICRUSt recaptures key findings from the Human Microbiome Project and accurately predicts the abundance of gene families in host-associated and environmental communities, with quantifiable uncertainty. Our results demonstrate that phylogeny and function are sufficiently linked that this ‘predictive metagenomic’ approach should provide useful insights into the thousands of uncultivated microbial communities for which only marker gene surveys are currently available. PMID:23975157

  9. Transformation of PVP coated silver nanoparticles in a simulated wastewater treatment process and the effect on microbial communities

    PubMed Central

    2013-01-01

    Background Manufactured silver nanoparticles (AgNPs) are one of the most commonly used nanomaterials in consumer goods and consequently their concentrations in wastewater and hence wastewater treatment plants are predicted to increase. We investigated the fate of AgNPs in sludge that was subjected to aerobic and anaerobic treatment and the impact of AgNPs on microbial processes and communities. The initial identification of AgNPs in sludge was carried out using transmission electron microscopy (TEM) with energy dispersive X-ray (EDX) analysis. The solid phase speciation of silver in sludge and wastewater influent was then examined using X-ray absorption spectroscopy (XAS). The effects of transformed AgNPs (mainly Ag-S phases) on nitrification, wastewater microbial populations and, for the first time, methanogenesis was investigated. Results Sequencing batch reactor experiments and anaerobic batch tests, both demonstrated that nitrification rate and methane production were not affected by the addition of AgNPs [at 2.5 mg Ag L-1 (4.9 g L-1 total suspended solids, TSS) and 183.6 mg Ag kg -1 (2.9 g kg-1 total solids, TS), respectively]. The low toxicity is most likely due to AgNP sulfidation. XAS analysis showed that sulfur bonded Ag was the dominant Ag species in both aerobic (activated sludge) and anaerobic sludge. In AgNP and AgNO3 spiked aerobic sludge, metallic Ag was detected (~15%). However, after anaerobic digestion, Ag(0) was not detected by XAS analysis. Dominant wastewater microbial populations were not affected by AgNPs as determined by DNA extraction and pyrotag sequencing. However, there was a shift in niche populations in both aerobic and anaerobic sludge, with a shift in AgNP treated sludge compared with controls. This is the first time that the impact of transformed AgNPs (mainly Ag-S phases) on anaerobic digestion has been reported. Conclusions Silver NPs were transformed to Ag-S phases during activated sludge treatment (prior to anaerobic

  10. Gene expression profiling and candidate gene resequencing identifies pathways and mutations important for malignant transformation caused by leukemogenic fusion genes.

    PubMed

    Novak, Rachel L; Harper, David P; Caudell, David; Slape, Christopher; Beachy, Sarah H; Aplan, Peter D

    2012-12-01

    NUP98-HOXD13 (NHD13) and CALM-AF10 (CA10) are oncogenic fusion proteins produced by recurrent chromosomal translocations in patients with acute myeloid leukemia (AML). Transgenic mice that express these fusions develop AML with a long latency and incomplete penetrance, suggesting that collaborating genetic events are required for leukemic transformation. We employed genetic techniques to identify both preleukemic abnormalities in healthy transgenic mice as well as collaborating events leading to leukemic transformation. Candidate gene resequencing revealed that 6 of 27 (22%) CA10 AMLs spontaneously acquired a Ras pathway mutation and 8 of 27 (30%) acquired an Flt3 mutation. Two CA10 AMLs acquired an Flt3 internal-tandem duplication, demonstrating that these mutations can be acquired in murine as well as human AML. Gene expression profiles revealed a marked upregulation of Hox genes, particularly Hoxa5, Hoxa9, and Hoxa10 in both NHD13 and CA10 mice. Furthermore, mir196b, which is embedded within the Hoxa locus, was overexpressed in both CA10 and NHD13 samples. In contrast, the Hox cofactors Meis1 and Pbx3 were differentially expressed; Meis1 was increased in CA10 AMLs but not NHD13 AMLs, whereas Pbx3 was consistently increased in NHD13 but not CA10 AMLs. Silencing of Pbx3 in NHD13 cells led to decreased proliferation, increased apoptosis, and decreased colony formation in vitro, suggesting a previously unexpected role for Pbx3 in leukemic transformation.

  11. Patterns in Wetland Microbial Community Composition and Functional Gene Repertoire Associated with Methane Emissions

    PubMed Central

    He, Shaomei; Malfatti, Stephanie A.; McFarland, Jack W.; Anderson, Frank E.; Pati, Amrita; Huntemann, Marcel; Tremblay, Julien; Glavina del Rio, Tijana; Waldrop, Mark P.; Windham-Myers, Lisamarie

    2015-01-01

    ABSTRACT Wetland restoration on peat islands previously drained for agriculture has potential to reverse land subsidence and sequester atmospheric carbon dioxide as peat accretes. However, the emission of methane could potentially offset the greenhouse gas benefits of captured carbon. As microbial communities play a key role in governing wetland greenhouse gas fluxes, we are interested in how microbial community composition and functions are associated with wetland hydrology, biogeochemistry, and methane emission, which is critical to modeling the microbial component in wetland methane fluxes and to managing restoration projects for maximal carbon sequestration. Here, we couple sequence-based methods with biogeochemical and greenhouse gas measurements to interrogate microbial communities from a pilot-scale restored wetland in the Sacramento-San Joaquin Delta of California, revealing considerable spatial heterogeneity even within this relatively small site. A number of microbial populations and functions showed strong correlations with electron acceptor availability and methane production; some also showed a preference for association with plant roots. Marker gene phylogenies revealed a diversity of major methane-producing and -consuming populations and suggested novel diversity within methanotrophs. Methanogenic archaea were observed in all samples, as were nitrate-, sulfate-, and metal-reducing bacteria, indicating that no single terminal electron acceptor was preferred despite differences in energetic favorability and suggesting spatial microheterogeneity and microniches. Notably, methanogens were negatively correlated with nitrate-, sulfate-, and metal-reducing bacteria and were most abundant at sampling sites with high peat accretion and low electron acceptor availability, where methane production was highest. PMID:25991679

  12. Microbial population index and community structure in saline-alkaline soil using gene targeted metagenomics.

    PubMed

    Keshri, Jitendra; Mishra, Avinash; Jha, Bhavanath

    2013-03-30

    Population indices of bacteria and archaea were investigated from saline-alkaline soil and a possible microbe-environment pattern was established using gene targeted metagenomics. Clone libraries were constructed using 16S rRNA and functional gene(s) involved in carbon fixation (cbbL), nitrogen fixation (nifH), ammonia oxidation (amoA) and sulfur metabolism (apsA). Molecular phylogeny revealed the dominance of Actinobacteria, Firmicutes and Proteobacteria along with archaeal members of Halobacteraceae. The library consisted of novel bacterial (20%) and archaeal (38%) genera showing ≤95% similarity to previously retrieved sequences. Phylogenetic analysis indicated ability of inhabitant to survive in stress condition. The 16S rRNA gene libraries contained novel gene sequences and were distantly homologous with cultured bacteria. Functional gene libraries were found unique and most of the clones were distantly related to Proteobacteria, while clones of nifH gene library also showed homology with Cyanobacteria and Firmicutes. Quantitative real-time PCR exhibited that bacterial abundance was two orders of magnitude higher than archaeal. The gene(s) quantification indicated the size of the functional guilds harboring relevant key genes. The study provides insights on microbial ecology and different metabolic interactions occurring in saline-alkaline soil, possessing phylogenetically diverse groups of bacteria and archaea, which may be explored further for gene cataloging and metabolic profiling. PMID:23083746

  13. Importance of Mobile Genetic Elements and Conjugal Gene Transfer for Subsurface Microbial Community Adaptation to Biotransformation of Metals

    SciTech Connect

    Sorensen, Soren J.

    2005-06-01

    The overall goal of this project is to investigate the effect of mobile genetic elements and conjugal gene transfer on subsurface microbial community adaptation to mercury and chromium stress and biotransformation. Our studies focus on the interaction between the fate of these metals in the subsurface and the microbial community structure and activity.

  14. Absence of mycoplasmal gene in malignant mammalian cells transformed by chronic persistent infection of mycoplasmas.

    PubMed

    Zhang, B; Tsai, S; Shih, J W; Wear, D J; Lo, S C

    1998-05-01

    Chronic persistent infections by mycoplasmas induced malignant transformation of C3H mouse embryo cells that normally had never been reported to undergo spontaneous transformation. This mycoplasma-mediated oncogenic process had a long latency (more than 7 weeks of continuous mycoplasmal infection) and showed a multistage progression characterized by reversibility (at least up to 11 weeks of mycoplasmal infection) and irreversibility of malignant properties upon removal of the mycoplasma from culture. Further prolonged infections (18 weeks) by Mycoplasma fermentans or M. penetrans resulted in permanent transformation of these C3H cells that no longer required the continued presence of the transformation-inducing mycoplasmas in cultures to retain their malignant properties. Previous studies of viral oncogenesis revealed that virus-transformed cells always had viral gene(s) present. Integration of viral gene(s) apparently played an important role in the process of oncogenesis. In this study, we examined if the continued presence of any mycoplasmal gene(s) in mammalian cells, in whatever form, was also crucial in causing malignant cell transformation. Representational difference analysis (RDA) was a recently developed powerful technique to compare differences between two complex genomes. In the RDA system, subtractive and kinetic enrichment was used to purify and isolate restriction endonuclease gene fragment(s) of mycoplasmal origin, presumably present only in mycoplasma-transformed C3H cells, but not in nonmycoplasma-exposed control C3H cells. After three rounds of subtractive hybridization following PCR enrichment for each of three different restriction enzymes DNA digests, no gene fragment of mycoplasmal origin was amplified or identified in the permanently transformed C3H cells. Differing from tumorigenesis in animal cells induced by most oncogenic viruses or in plant cells induced by Agrobacteria, mycoplasmas evidently did not cause malignant transformation by

  15. Microbially-mediated transformation and mobilization of soil Fe-organic associations

    NASA Astrophysics Data System (ADS)

    Poggenburg, Christine; Mikutta, Robert; Schippers, Axel; Dohrmann, Reiner; Kaufhold, Stephan; Guggenberger, Georg

    2014-05-01

    Soil organic matter (OM) has been proposed to be stabilized in the long term via sorption to iron((oxy)hydr)oxides under aerobic conditions. However, in an anaerobic environment, Fe-organic associations may be subject to microbial reduction and mobilization, which counteract the suggested stabilizing effect of Fe compounds. Desorption of OM can result in its microbial decomposition causing the emission of greenhouse gases (CO2, CH4, N2O) or release of associated contaminants into the soil solution and groundwater. While the reductive dissolution of pure iron((oxy)hydr)oxides by dissimilatory FeIII reducing bacteria is well established, little is known about the influence of natural OM on microbially mediated mobilization of Fe-organic associations. Therefore, this study aims to elucidate the effect of adsorbed OM on microbial FeIII reduction of Fe-organic associations with regard to (i) the composition of OM, (ii) the carbon loading, and (iii) surface coverage and/or pore blockage by adsorbed OM. Mineral-organic associations with varying carbon contents were synthesized using several iron((oxy)hydr)oxides (Goethite, Lepidocrocite, Ferrihydrite, Hematite, Magnetite) and OM of different origin (dissolved OM extracted from the Oa horizon of a Podzol and Oi horizon of a Cambisol, extracellular polymeric substance extracted from Bacillus subtilis). Incubation experiments under anaerobic conditions were conducted for 16 days using two different strains of dissimilatory FeIII reducing bacteria (Shewanella putrefaciens, Geobacter metallireducens). At five sampling points in time the solution phase was analyzed for pH, Fetotal, and FeII. The initial mineral-organic associations and post-incubation phase were characterized by N2 gas adsorption, FTIR, XRD, and XPS. The results indicate that the composition of OM and carbon loading significantly influence the rate and extend of microbial reduction of Fe-organic associations depending on the type of microbial strain and iron

  16. New Dimensions in Microbial Ecology-Functional Genes in Studies to Unravel the Biodiversity and Role of Functional Microbial Groups in the Environment.

    PubMed

    Imhoff, Johannes F

    2016-01-01

    During the past decades, tremendous advances have been made in the possibilities to study the diversity of microbial communities in the environment. The development of methods to study these communities on the basis of 16S rRNA gene sequences analysis was a first step into the molecular analysis of environmental communities and the study of biodiversity in natural habitats. A new dimension in this field was reached with the introduction of functional genes of ecological importance and the establishment of genetic tools to study the diversity of functional microbial groups and their responses to environmental factors. Functional gene approaches are excellent tools to study the diversity of a particular function and to demonstrate changes in the composition of prokaryote communities contributing to this function. The phylogeny of many functional genes largely correlates with that of the 16S rRNA gene, and microbial species may be identified on the basis of functional gene sequences. Functional genes are perfectly suited to link culture-based microbiological work with environmental molecular genetic studies. In this review, the development of functional gene studies in environmental microbiology is highlighted with examples of genes relevant for important ecophysiological functions. Examples are presented for bacterial photosynthesis and two types of anoxygenic phototrophic bacteria, with genes of the Fenna-Matthews-Olson-protein (fmoA) as target for the green sulfur bacteria and of two reaction center proteins (pufLM) for the phototrophic purple bacteria, with genes of adenosine-5'phosphosulfate (APS) reductase (aprA), sulfate thioesterase (soxB) and dissimilatory sulfite reductase (dsrAB) for sulfur oxidizing and sulfate reducing bacteria, with genes of ammonia monooxygenase (amoA) for nitrifying/ammonia-oxidizing bacteria, with genes of particulate nitrate reductase and nitrite reductases (narH/G, nirS, nirK) for denitrifying bacteria and with genes of methane

  17. New Dimensions in Microbial Ecology—Functional Genes in Studies to Unravel the Biodiversity and Role of Functional Microbial Groups in the Environment

    PubMed Central

    Imhoff, Johannes F.

    2016-01-01

    During the past decades, tremendous advances have been made in the possibilities to study the diversity of microbial communities in the environment. The development of methods to study these communities on the basis of 16S rRNA gene sequences analysis was a first step into the molecular analysis of environmental communities and the study of biodiversity in natural habitats. A new dimension in this field was reached with the introduction of functional genes of ecological importance and the establishment of genetic tools to study the diversity of functional microbial groups and their responses to environmental factors. Functional gene approaches are excellent tools to study the diversity of a particular function and to demonstrate changes in the composition of prokaryote communities contributing to this function. The phylogeny of many functional genes largely correlates with that of the 16S rRNA gene, and microbial species may be identified on the basis of functional gene sequences. Functional genes are perfectly suited to link culture-based microbiological work with environmental molecular genetic studies. In this review, the development of functional gene studies in environmental microbiology is highlighted with examples of genes relevant for important ecophysiological functions. Examples are presented for bacterial photosynthesis and two types of anoxygenic phototrophic bacteria, with genes of the Fenna-Matthews-Olson-protein (fmoA) as target for the green sulfur bacteria and of two reaction center proteins (pufLM) for the phototrophic purple bacteria, with genes of adenosine-5′phosphosulfate (APS) reductase (aprA), sulfate thioesterase (soxB) and dissimilatory sulfite reductase (dsrAB) for sulfur oxidizing and sulfate reducing bacteria, with genes of ammonia monooxygenase (amoA) for nitrifying/ammonia-oxidizing bacteria, with genes of particulate nitrate reductase and nitrite reductases (narH/G, nirS, nirK) for denitrifying bacteria and with genes of methane

  18. New Dimensions in Microbial Ecology-Functional Genes in Studies to Unravel the Biodiversity and Role of Functional Microbial Groups in the Environment.

    PubMed

    Imhoff, Johannes F

    2016-01-01

    During the past decades, tremendous advances have been made in the possibilities to study the diversity of microbial communities in the environment. The development of methods to study these communities on the basis of 16S rRNA gene sequences analysis was a first step into the molecular analysis of environmental communities and the study of biodiversity in natural habitats. A new dimension in this field was reached with the introduction of functional genes of ecological importance and the establishment of genetic tools to study the diversity of functional microbial groups and their responses to environmental factors. Functional gene approaches are excellent tools to study the diversity of a particular function and to demonstrate changes in the composition of prokaryote communities contributing to this function. The phylogeny of many functional genes largely correlates with that of the 16S rRNA gene, and microbial species may be identified on the basis of functional gene sequences. Functional genes are perfectly suited to link culture-based microbiological work with environmental molecular genetic studies. In this review, the development of functional gene studies in environmental microbiology is highlighted with examples of genes relevant for important ecophysiological functions. Examples are presented for bacterial photosynthesis and two types of anoxygenic phototrophic bacteria, with genes of the Fenna-Matthews-Olson-protein (fmoA) as target for the green sulfur bacteria and of two reaction center proteins (pufLM) for the phototrophic purple bacteria, with genes of adenosine-5'phosphosulfate (APS) reductase (aprA), sulfate thioesterase (soxB) and dissimilatory sulfite reductase (dsrAB) for sulfur oxidizing and sulfate reducing bacteria, with genes of ammonia monooxygenase (amoA) for nitrifying/ammonia-oxidizing bacteria, with genes of particulate nitrate reductase and nitrite reductases (narH/G, nirS, nirK) for denitrifying bacteria and with genes of methane

  19. New Dimensions in Microbial Ecology—Functional Genes in Studies to Unravel the Biodiversity and Role of Functional Microbial Groups in the Environment

    PubMed Central

    Imhoff, Johannes F.

    2016-01-01

    During the past decades, tremendous advances have been made in the possibilities to study the diversity of microbial communities in the environment. The development of methods to study these communities on the basis of 16S rRNA gene sequences analysis was a first step into the molecular analysis of environmental communities and the study of biodiversity in natural habitats. A new dimension in this field was reached with the introduction of functional genes of ecological importance and the establishment of genetic tools to study the diversity of functional microbial groups and their responses to environmental factors. Functional gene approaches are excellent tools to study the diversity of a particular function and to demonstrate changes in the composition of prokaryote communities contributing to this function. The phylogeny of many functional genes largely correlates with that of the 16S rRNA gene, and microbial species may be identified on the basis of functional gene sequences. Functional genes are perfectly suited to link culture-based microbiological work with environmental molecular genetic studies. In this review, the development of functional gene studies in environmental microbiology is highlighted with examples of genes relevant for important ecophysiological functions. Examples are presented for bacterial photosynthesis and two types of anoxygenic phototrophic bacteria, with genes of the Fenna-Matthews-Olson-protein (fmoA) as target for the green sulfur bacteria and of two reaction center proteins (pufLM) for the phototrophic purple bacteria, with genes of adenosine-5′phosphosulfate (APS) reductase (aprA), sulfate thioesterase (soxB) and dissimilatory sulfite reductase (dsrAB) for sulfur oxidizing and sulfate reducing bacteria, with genes of ammonia monooxygenase (amoA) for nitrifying/ammonia-oxidizing bacteria, with genes of particulate nitrate reductase and nitrite reductases (narH/G, nirS, nirK) for denitrifying bacteria and with genes of methane

  20. Pattern and synchrony of gene expression among sympatric marine microbial populations.

    PubMed

    Ottesen, Elizabeth A; Young, Curtis R; Eppley, John M; Ryan, John P; Chavez, Francisco P; Scholin, Christopher A; DeLong, Edward F

    2013-02-01

    Planktonic marine microbes live in dynamic habitats that demand rapid sensing and response to periodic as well as stochastic environmental change. The kinetics, regularity, and specificity of microbial responses in situ, however, are not well-described. We report here simultaneous multitaxon genome-wide transcriptome profiling in a naturally occurring picoplankton community. An in situ robotic sampler using a Lagrangian sampling strategy enabled continuous tracking and repeated sampling of coherent microbial populations over 2 d. Subsequent RNA sequencing analyses yielded genome-wide transcriptome profiles of eukaryotic (Ostreococcus) and bacterial (Synechococcus) photosynthetic picoplankton as well as proteorhodopsin-containing heterotrophs, including Pelagibacter, SAR86-cluster Gammaproteobacteria, and marine Euryarchaea. The photosynthetic picoplankton exhibited strong diel rhythms over thousands of gene transcripts that were remarkably consistent with diel cycling observed in laboratory pure cultures. In contrast, the heterotrophs did not cycle diurnally. Instead, heterotrophic picoplankton populations exhibited cross-species synchronous, tightly regulated, temporally variable patterns of gene expression for many genes, particularly those genes associated with growth and nutrient acquisition. This multitaxon, population-wide gene regulation seemed to reflect sporadic, short-term, reversible responses to high-frequency environmental variability. Although the timing of the environmental responses among different heterotrophic species seemed synchronous, the specific metabolic genes that were expressed varied from taxon to taxon. In aggregate, these results provide insights into the kinetics, diversity, and functional patterns of microbial community response to environmental change. Our results also suggest a means by which complex multispecies metabolic processes could be coordinated, facilitating the regulation of matter and energy processing in a dynamically

  1. Microbial Gene Abundance and Expression Patterns across a River to Ocean Salinity Gradient.

    PubMed

    Fortunato, Caroline S; Crump, Byron C

    2015-01-01

    Microbial communities mediate the biogeochemical cycles that drive ecosystems, and it is important to understand how these communities are affected by changing environmental conditions, especially in complex coastal zones. As fresh and marine waters mix in estuaries and river plumes, the salinity, temperature, and nutrient gradients that are generated strongly influence bacterioplankton community structure, yet, a parallel change in functional diversity has not been described. Metagenomic and metatranscriptomic analyses were conducted on five water samples spanning the salinity gradient of the Columbia River coastal margin, including river, estuary, plume, and ocean, in August 2010. Samples were pre-filtered through 3 μm filters and collected on 0.2 μm filters, thus results were focused on changes among free-living microbial communities. Results from metagenomic 16S rRNA sequences showed taxonomically distinct bacterial communities in river, estuary, and coastal ocean. Despite the strong salinity gradient observed over sampling locations (0 to 33), the functional gene profiles in the metagenomes were very similar from river to ocean with an average similarity of 82%. The metatranscriptomes, however, had an average similarity of 31%. Although differences were few among the metagenomes, we observed a change from river to ocean in the abundance of genes encoding for catabolic pathways, osmoregulators, and metal transporters. Additionally, genes specifying both bacterial oxygenic and anoxygenic photosynthesis were abundant and expressed in the estuary and plume. Denitrification genes were found throughout the Columbia River coastal margin, and most highly expressed in the estuary. Across a river to ocean gradient, the free-living microbial community followed three different patterns of diversity: 1) the taxonomy of the community changed strongly with salinity, 2) metabolic potential was highly similar across samples, with few differences in functional gene abundance

  2. Microbial Gene Abundance and Expression Patterns across a River to Ocean Salinity Gradient

    PubMed Central

    Fortunato, Caroline S.; Crump, Byron C.

    2015-01-01

    Microbial communities mediate the biogeochemical cycles that drive ecosystems, and it is important to understand how these communities are affected by changing environmental conditions, especially in complex coastal zones. As fresh and marine waters mix in estuaries and river plumes, the salinity, temperature, and nutrient gradients that are generated strongly influence bacterioplankton community structure, yet, a parallel change in functional diversity has not been described. Metagenomic and metatranscriptomic analyses were conducted on five water samples spanning the salinity gradient of the Columbia River coastal margin, including river, estuary, plume, and ocean, in August 2010. Samples were pre-filtered through 3 μm filters and collected on 0.2 μm filters, thus results were focused on changes among free-living microbial communities. Results from metagenomic 16S rRNA sequences showed taxonomically distinct bacterial communities in river, estuary, and coastal ocean. Despite the strong salinity gradient observed over sampling locations (0 to 33), the functional gene profiles in the metagenomes were very similar from river to ocean with an average similarity of 82%. The metatranscriptomes, however, had an average similarity of 31%. Although differences were few among the metagenomes, we observed a change from river to ocean in the abundance of genes encoding for catabolic pathways, osmoregulators, and metal transporters. Additionally, genes specifying both bacterial oxygenic and anoxygenic photosynthesis were abundant and expressed in the estuary and plume. Denitrification genes were found throughout the Columbia River coastal margin, and most highly expressed in the estuary. Across a river to ocean gradient, the free-living microbial community followed three different patterns of diversity: 1) the taxonomy of the community changed strongly with salinity, 2) metabolic potential was highly similar across samples, with few differences in functional gene abundance

  3. Microbial Gene Abundance and Expression Patterns across a River to Ocean Salinity Gradient.

    PubMed

    Fortunato, Caroline S; Crump, Byron C

    2015-01-01

    Microbial communities mediate the biogeochemical cycles that drive ecosystems, and it is important to understand how these communities are affected by changing environmental conditions, especially in complex coastal zones. As fresh and marine waters mix in estuaries and river plumes, the salinity, temperature, and nutrient gradients that are generated strongly influence bacterioplankton community structure, yet, a parallel change in functional diversity has not been described. Metagenomic and metatranscriptomic analyses were conducted on five water samples spanning the salinity gradient of the Columbia River coastal margin, including river, estuary, plume, and ocean, in August 2010. Samples were pre-filtered through 3 μm filters and collected on 0.2 μm filters, thus results were focused on changes among free-living microbial communities. Results from metagenomic 16S rRNA sequences showed taxonomically distinct bacterial communities in river, estuary, and coastal ocean. Despite the strong salinity gradient observed over sampling locations (0 to 33), the functional gene profiles in the metagenomes were very similar from river to ocean with an average similarity of 82%. The metatranscriptomes, however, had an average similarity of 31%. Although differences were few among the metagenomes, we observed a change from river to ocean in the abundance of genes encoding for catabolic pathways, osmoregulators, and metal transporters. Additionally, genes specifying both bacterial oxygenic and anoxygenic photosynthesis were abundant and expressed in the estuary and plume. Denitrification genes were found throughout the Columbia River coastal margin, and most highly expressed in the estuary. Across a river to ocean gradient, the free-living microbial community followed three different patterns of diversity: 1) the taxonomy of the community changed strongly with salinity, 2) metabolic potential was highly similar across samples, with few differences in functional gene abundance

  4. Pattern and synchrony of gene expression among sympatric marine microbial populations

    PubMed Central

    Ottesen, Elizabeth A.; Young, Curtis R.; Eppley, John M.; Ryan, John P.; Chavez, Francisco P.; Scholin, Christopher A.; DeLong, Edward F.

    2013-01-01

    Planktonic marine microbes live in dynamic habitats that demand rapid sensing and response to periodic as well as stochastic environmental change. The kinetics, regularity, and specificity of microbial responses in situ, however, are not well-described. We report here simultaneous multitaxon genome-wide transcriptome profiling in a naturally occurring picoplankton community. An in situ robotic sampler using a Lagrangian sampling strategy enabled continuous tracking and repeated sampling of coherent microbial populations over 2 d. Subsequent RNA sequencing analyses yielded genome-wide transcriptome profiles of eukaryotic (Ostreococcus) and bacterial (Synechococcus) photosynthetic picoplankton as well as proteorhodopsin-containing heterotrophs, including Pelagibacter, SAR86-cluster Gammaproteobacteria, and marine Euryarchaea. The photosynthetic picoplankton exhibited strong diel rhythms over thousands of gene transcripts that were remarkably consistent with diel cycling observed in laboratory pure cultures. In contrast, the heterotrophs did not cycle diurnally. Instead, heterotrophic picoplankton populations exhibited cross-species synchronous, tightly regulated, temporally variable patterns of gene expression for many genes, particularly those genes associated with growth and nutrient acquisition. This multitaxon, population-wide gene regulation seemed to reflect sporadic, short-term, reversible responses to high-frequency environmental variability. Although the timing of the environmental responses among different heterotrophic species seemed synchronous, the specific metabolic genes that were expressed varied from taxon to taxon. In aggregate, these results provide insights into the kinetics, diversity, and functional patterns of microbial community response to environmental change. Our results also suggest a means by which complex multispecies metabolic processes could be coordinated, facilitating the regulation of matter and energy processing in a dynamically

  5. Dynamics of the microbial community and Fe(III)-reducing and dechlorinating microorganisms in response to pentachlorophenol transformation in paddy soil.

    PubMed

    Chen, Manjia; Liu, Chengshuai; Chen, Pengcheng; Tong, Hui; Li, Fangbai; Qiao, Jiangtao; Lan, Qing

    2016-07-15

    Soil microorganisms play crucial roles in the fates of pollutants, and understanding the behaviour of these microorganisms is critical for the bioremediation of PCP-contaminated soil. However, shifts remain unclear in the community structure and Fe(III)-reducing and dechlorinating microorganisms during PCP transformation processes, especially during the stages from the lag to the dechlorination phase and from the dechlorination to the stationary phase. Here, a set of lab-scale experiments was performed to investigate the microbial community dynamics accompanying PCP transformation in paddy soil. 19μM of PCP was biotransformed completely in 10days for all treatments. T-RFLP analysis of the microbial community confirmed that Veillonellaceae and Clostridium sensu stricto were the dominant groups during PCP transformation, and the structures of the microbial communities changed due to the degree of biotransformation and the addition of lactate and AQDS. However, similar temporal dynamics of the microbial communities were obtained among all treatments. Furthermore, as revealed by quantitative PCR, the dynamics of Fe(III)-reducing and dechlorinating microorganisms, including Geobacter sp., Shewanella sp., and Dehalobacter sp., were consistent with the transformation kinetics of PCP, suggesting the critical roles played by these microorganisms in PCP transformation. These findings are valuable for making predictions of and proposing methods for the microbial detoxification of residual organochlorine pesticides in paddy soil. PMID:27017395

  6. Rapid analysis of two food-borne microbial communities at the species level by Fourier-transform infrared microspectroscopy.

    PubMed

    Wenning, Mareike; Theilmann, Vera; Scherer, Siegfried

    2006-05-01

    The species composition of microbial communities in natural habitats may be extremely complex and therefore a quantitative analysis of the fraction each species contributes to the consortium has proven to be difficult. During recent years, the identification of bacterial pure cultures based on their infrared spectra has been established. Fourier-transform infrared microspectroscopy now proceeds a step further and allows identification of microorganisms directly plated from community dilutions. Infrared spectra of microcolonies of 70-250 microm in diameter can be recorded without producing a pure culture of the isolate. We have applied this novel technique for quantitative comparative analysis of two undefined, geographically separated food-borne smear cheese microbial consortia of limited complexity. Due to the high degree of automation, up to 200 microcolonies could be identified in 1 day and, in total, 3170 infrared spectra of microcolonies were recorded. The results obtained have been verified by Fourier-transform infrared macrospectroscopy and 16S rDNA sequencing. Interestingly, although the communities were unrelated, Staphylococcus equorum, Corynebacterium casei, Arthrobacter casei and Brevibacterium linens were found to be part of both consortia, however, with different incidence. In addition, Corynebacterium variabile, Microbacterium gubbeenense, Brachybacterium alimentarium, Enterococcus faecalis and an unknown species were detected in either one of the consortia.

  7. Microbial transformation of 2,4,6-trinitrotoluene in aerobic soil columns

    SciTech Connect

    Bruns-Nagel, D.; Breitung, J.; Loew, E. von

    1996-07-01

    The explosive 2,4,6-trinitrotoluene (TNT) is a common contaminant of soil and groundwater at former muntion plants and their dumping sites. TNT is toxic to numerous organisms. This paper reports on an efficient aerobic circulating percolation reactor system for the microbial detoxification of TNT-contaminated soil. 36 refs., 4 figs., 1 tab.

  8. Measurement of Microbially Induced Transformation of Magnetic Iron Minerals in Soils Allows Localization of Hydrocarbon Contamination

    NASA Astrophysics Data System (ADS)

    Kappler, A.; Porsch, K.; Rijal, M.; Appel, E.

    2007-12-01

    Soil contamination by crude oil and other hydrocarbons represents a severe environmental problem, but often the location and extent of contamination is not known. Hydrocarbons, or their degradation products, can stimulate iron-metabolizing microorganisms, leading to the formation or dissolution of (magnetic) iron minerals and an associated change of soil magnetic properties. Therefore, the screening of soil magnetic properties has the potential to serve as an efficient and inexpensive tool to localize such contaminations. In order to identify the influence of different biogeochemical factors on the microbially influenced changes of magnetic iron minerals after hydrocarbon contamination, oil spills were simulated in laboratory batch experiments. The parameters tested in these experiments included soils with different bedrocks, type and amount of added hydrocarbon, and microbiological parameters (sterile and autochthonous microorganisms). In order to follow the changes of the soil magnetic properties, the magnetic susceptibility of the samples was measured weekly. First results show that changes in the magnetic mineralogy are caused by microbial activity, as sterile samples showed no changes. In the microbially active set-ups, the magnetic susceptibility increased or decreased up to 10% in comparison to the initial magnetic susceptibility within a few weeks. In one iron-rich soil even a decrease of the magnetic susceptibility of ~40% was observed. Although the amount and type of hydrocarbons did not effect the changes in magnetic susceptibility, DGGE fingerprints revealed that they influenced microbial communities. These results show that the magnetic susceptibility changes in the presence of hydrocarbons and that this change is microbially induced. This suggests that the screening of soil magnetic properties can be applied to localize and assess hydrocarbon contamination. In order to understand the biogeochemical processes better, the change of the iron mineralogy

  9. Gene context analysis in the Integrated Microbial Genomes (IMG) data management system

    SciTech Connect

    Mavromatis, Konstantinos; Chu, Ken; Ivanova, Natalia; Hooper, Sean D.; Markowitz, Victor M.; Kyrpides, Nikos C.

    2009-05-01

    Computational methods for determining the function of genes in newly sequenced genomes have been traditionally based on sequence similarity to genes whose function has been identified experimentally. Function prediction methods can be extended using gene context analysis approaches such as examining the conservation of chromosomal gene clusters, gene fusion events and co-occurrence profiles across genomes. Context analysis is based on the observation that functionally related genes are often having similar gene context and relies on the identification of such events across a statistically significant and phylogeneticaly diverse collection of genomes. We have used the data management system of the Integrated Microbial Genomes (IMG) as the framework to implement and explore the power of gene context analysis methods because it provides one of the largest available genome integrations. Visualization and search tools to facilitate and explore gene context analysis have been developed and applied across all publicly available archaeal and bacterial genomes in IMG. These computations are now maintained as part of IMG's regular genome content update cycle. IMG is available at: http://img.jgi.doe.gov.

  10. Tissue-Specific Expression Phenotypes of Hawaiian Drosophila Adh Genes in Drosophila Melanogaster Transformants

    PubMed Central

    Wu, C. Y.; Mote-Jr., J.; Brennan, M. D.

    1990-01-01

    Interspecific differences in the tissue-specific patterns of expression displayed by the alcohol dehydrogenase (Adh) genes within the Hawaiian picture-winged Drosophila represent a rich source of evolutionary variation in gene regulation. Study of the cis-acting elements responsible for regulatory differences between Adh genes from various species is greatly facilitated by analyzing the behavior of the different Adh genes in a homogeneous background. Accordingly, the Adh gene from Drosophila grimshawi was introduced into the germ line of Drosophila melanogaster by means of P element-mediated transformation, and transformants carrying this gene were compared to transformants carrying the Adh genes from Drosophila affinidisjuncta and Drosophila hawaiiensis. The results indicate that the D. affinidisjuncta and D. grimshawi genes have relatively higher levels of expression and broader tissue distribution of expression than the D. hawaiiensis gene in larvae. All three genes are expressed at similar overall levels in adults, with differences in tissue distribution of enzyme activity corresponding to the pattern in the donor species. However, certain systematic differences between Adh gene expression in transformants and in the Hawaiian Drosophila are noted along with tissue-specific position effects in some cases. The implications of these findings for the understanding of evolved regulatory variation are discussed. PMID:2165967

  11. Effect of Phenylurea Herbicides on Soil Microbial Communities Estimated by Analysis of 16S rRNA Gene Fingerprints and Community-Level Physiological Profiles

    PubMed Central

    el Fantroussi, Saïd; Verschuere, Laurent; Verstraete, Willy; Top, Eva M.

    1999-01-01

    The effect of three phenyl urea herbicides (diuron, linuron, and chlorotoluron) on soil microbial communities was studied by using soil samples with a 10-year history of treatment. Denaturing gradient gel electrophoresis (DGGE) was used for the analysis of 16S rRNA genes (16S rDNA). The degree of similarity between the 16S rDNA profiles of the communities was quantified by numerically analysing the DGGE band patterns. Similarity dendrograms showed that the microbial community structures of the herbicide-treated and nontreated soils were significantly different. Moreover, the bacterial diversity seemed to decrease in soils treated with urea herbicides, and sequence determination of several DGGE fragments showed that the most affected species in the soils treated with diuron and linuron belonged to an uncultivated bacterial group. As well as the 16S rDNA fingerprints, the substrate utilization patterns of the microbial communities were compared. Principal-component analysis performed on BIOLOG data showed that the functional abilities of the soil microbial communities were altered by the application of the herbicides. In addition, enrichment cultures of the different soils in medium with the urea herbicides as the sole carbon and nitrogen source showed that there was no difference between treated and nontreated soil in the rate of transformation of diuron and chlorotoluron but that there was a strong difference in the case of linuron. In the enrichment cultures with linuron-treated soil, linuron disappeared completely after 1 week whereas no significant transformation was observed in cultures inoculated with nontreated soil even after 4 weeks. In conclusion, this study showed that both the structure and metabolic potential of soil microbial communities were clearly affected by a long-term application of urea herbicides. PMID:10049851

  12. The gene transformer-2 of Anastrepha fruit flies (Diptera, Tephritidae) and its evolution in insects

    PubMed Central

    2010-01-01

    Background In the tephritids Ceratitis, Bactrocera and Anastrepha, the gene transformer provides the memory device for sex determination via its auto-regulation; only in females is functional Tra protein produced. To date, the isolation and characterisation of the gene transformer-2 in the tephritids has only been undertaken in Ceratitis, and it has been shown that its function is required for the female-specific splicing of doublesex and transformer pre-mRNA. It therefore participates in transformer auto-regulatory function. In this work, the characterisation of this gene in eleven tephritid species belonging to the less extensively analysed genus Anastrepha was undertaken in order to throw light on the evolution of transformer-2. Results The gene transformer-2 produces a protein of 249 amino acids in both sexes, which shows the features of the SR protein family. No significant partially spliced mRNA isoform specific to the male germ line was detected, unlike in Drosophila. It is transcribed in both sexes during development and in adult life, in both the soma and germ line. The injection of Anastrepha transformer-2 dsRNA into Anastrepha embryos caused a change in the splicing pattern of the endogenous transformer and doublesex pre-mRNA of XX females from the female to the male mode. Consequently, these XX females were transformed into pseudomales. The comparison of the eleven Anastrepha Transformer-2 proteins among themselves, and with the Transformer-2 proteins of other insects, suggests the existence of negative selection acting at the protein level to maintain Transformer-2 structural features. Conclusions These results indicate that transformer-2 is required for sex determination in Anastrepha through its participation in the female-specific splicing of transformer and doublesex pre-mRNAs. It is therefore needed for the auto-regulation of the gene transformer. Thus, the transformer/transfomer-2 > doublesex elements at the bottom of the cascade, and their

  13. Abiotic and Microbial Interactions during Anaerobic Transformations of Fe(II) and NOX-

    PubMed Central

    Picardal, Flynn

    2012-01-01

    Microbial Fe(II) oxidation using NO3- as the terminal electron acceptor [nitrate-dependent Fe(II) oxidation, NDFO] has been studied for over 15 years. Although there are reports of autotrophic isolates and stable enrichments, many of the bacteria capable of NDFO are known organotrophic NO3--reducers that require the presence of an organic, primary substrate, e.g., acetate, for significant amounts of Fe(II) oxidation. Although the thermodynamics of Fe(II) oxidation are favorable when coupled to either NO3- or NO2- reduction, the kinetics of abiotic Fe(II) oxidation by NO3- are relatively slow except under special conditions. NDFO is typically studied in batch cultures containing millimolar concentrations of Fe(II), NO3-, and the primary substrate. In such systems, NO2- is often observed to accumulate in culture media during Fe(II) oxidation. Compared to NO3-, abiotic reactions of biogenic NO2- and Fe(II) are relatively rapid. The kinetics and reaction pathways of Fe(II) oxidation by NO2- are strongly affected by medium composition and pH, reactant concentration, and the presence of Fe(II)-sorptive surfaces, e.g., Fe(III) oxyhydroxides and cellular surfaces. In batch cultures, the combination of abiotic and microbial Fe(II) oxidation can alter product distribution and, more importantly, results in the formation of intracellular precipitates and extracellular Fe(III) oxyhydroxide encrustations that apparently limit further cell growth and Fe(II) oxidation. Unless steps are taken to minimize or account for potential abiotic reactions, results of microbial NDFO studies can be obfuscated by artifacts of the chosen experimental conditions, the use of inappropriate analytical methods, and the resulting uncertainties about the relative importance of abiotic and microbial reactions. In this manuscript, abiotic reactions of NO3- and NO2- with aqueous Fe2+, chelated Fe(II), and solid-phase Fe(II) are reviewed along with factors that can influence overall NDFO reaction rates

  14. Transforming DNA uptake gene orthologs do not mediate spontaneous plasmid transformation in Escherichia coli.

    PubMed

    Sun, Dongchang; Zhang, Xuewu; Wang, Lingyu; Prudhomme, Marc; Xie, Zhixiong; Martin, Bernard; Claverys, Jean-Pierre

    2009-02-01

    Spontaneous plasmid transformation of Escherichia coli occurs on nutrient-containing agar plates. E. coli has also been reported to use double-stranded DNA (dsDNA) as a carbon source. The mechanism(s) of entry of exogenous dsDNA that allows plasmid establishment or the use of DNA as a nutrient remain(s) unknown. To further characterize plasmid transformation, we first documented the stimulation of transformation by agar and agarose. We provide evidence that stimulation is not due to agar contributing a supplement of Ca(2+), Fe(2+), Mg(2+), Mn(2+), or Zn(2+). Second, we undertook to inactivate the E. coli orthologues of Haemophilus influenzae components of the transformation machine that allows the uptake of single-stranded DNA (ssDNA) from exogenous dsDNA. The putative outer membrane channel protein (HofQ), transformation pseudopilus component (PpdD), and transmembrane pore (YcaI) are not required for plasmid transformation. We conclude that plasmid DNA does not enter E. coli cells as ssDNA. The finding that purified plasmid monomers transform E. coli with single-hit kinetics supports this conclusion; it establishes that a unique monomer molecule is sufficient to give rise to a transformant, which is not consistent with the reconstitution of an intact replicon through annealing of partially overlapping complementary ssDNA, taken up from two independent monomers. We therefore propose that plasmid transformation involves internalization of intact dsDNA molecules. Our data together, with previous reports that HofQ is required for the use of dsDNA as a carbon source, suggest the existence of two routes for DNA entry, at least across the outer membrane of E. coli. PMID:19011021

  15. Microbially mediated transformations of phosphorus in the sea: new views of an old cycle.

    PubMed

    Karl, David M

    2014-01-01

    Phosphorus (P) is a required element for life. Its various chemical forms are found throughout the lithosphere and hydrosphere, where they are acted on by numerous abiotic and biotic processes collectively referred to as the P cycle. In the sea, microorganisms are primarily responsible for P assimilation and remineralization, including recently discovered P reduction-oxidation bioenergetic processes that add new complexity to the marine microbial P cycle. Human-induced enhancement of the global P cycle via mining of phosphate-bearing rock will likely influence the pace of P-cycle dynamics, especially in coastal marine habitats. The inextricable link between the P cycle and cycles of other bioelements predicts future impacts on, for example, nitrogen fixation and carbon dioxide sequestration. Additional laboratory and field research is required to build a comprehensive understanding of the marine microbial P cycle.

  16. Novel enabling technologies of gene isolation and plant transformation for improved crop protection

    SciTech Connect

    Torok, Tamas

    2013-02-04

    Meeting the needs of agricultural producers requires the continued development of improved transgenic crop protection products. The completed project focused on developing novel enabling technologies of gene discovery and plant transformation to facilitate the generation of such products.

  17. Microbial transformation of the Deepwater Horizon oil spill-past, present, and future perspectives.

    PubMed

    Kimes, Nikole E; Callaghan, Amy V; Suflita, Joseph M; Morris, Pamela J

    2014-01-01

    The Deepwater Horizon blowout, which occurred on April 20, 2010, resulted in an unprecedented oil spill. Despite a complex effort to cap the well, oil and gas spewed from the site until July 15, 2010. Although a large proportion of the hydrocarbons was depleted via natural processes and human intervention, a substantial portion of the oil remained unaccounted for and impacted multiple ecosystems throughout the Gulf of Mexico. The depth, duration and magnitude of this spill were unique, raising many questions and concerns regarding the fate of the hydrocarbons released. One major question was whether or not microbial communities would be capable of metabolizing the hydrocarbons, and if so, by what mechanisms and to what extent? In this review, we summarize the microbial response to the oil spill as described by studies performed during the past four years, providing an overview of the different responses associated with the water column, surface waters, deep-sea sediments, and coastal sands/sediments. Collectively, these studies provide evidence that the microbial response to the Deepwater Horizon oil spill was rapid and robust, displaying common attenuation mechanisms optimized for low molecular weight aliphatic and aromatic hydrocarbons. In contrast, the lack of evidence for the attenuation of more recalcitrant hydrocarbon components suggests that future work should focus on both the environmental impact and metabolic fate of recalcitrant compounds, such as oxygenated oil components.

  18. Microbial transformation of the Deepwater Horizon oil spill—past, present, and future perspectives

    PubMed Central

    Kimes, Nikole E.; Callaghan, Amy V.; Suflita, Joseph M.; Morris, Pamela J.

    2014-01-01

    The Deepwater Horizon blowout, which occurred on April 20, 2010, resulted in an unprecedented oil spill. Despite a complex effort to cap the well, oil and gas spewed from the site until July 15, 2010. Although a large proportion of the hydrocarbons was depleted via natural processes and human intervention, a substantial portion of the oil remained unaccounted for and impacted multiple ecosystems throughout the Gulf of Mexico. The depth, duration and magnitude of this spill were unique, raising many questions and concerns regarding the fate of the hydrocarbons released. One major question was whether or not microbial communities would be capable of metabolizing the hydrocarbons, and if so, by what mechanisms and to what extent? In this review, we summarize the microbial response to the oil spill as described by studies performed during the past four years, providing an overview of the different responses associated with the water column, surface waters, deep-sea sediments, and coastal sands/sediments. Collectively, these studies provide evidence that the microbial response to the Deepwater Horizon oil spill was rapid and robust, displaying common attenuation mechanisms optimized for low molecular weight aliphatic and aromatic hydrocarbons. In contrast, the lack of evidence for the attenuation of more recalcitrant hydrocarbon components suggests that future work should focus on both the environmental impact and metabolic fate of recalcitrant compounds, such as oxygenated oil components. PMID:25477866

  19. Organic amendments enhance microbial diversity and abundance of functional genes in Australian Soils

    NASA Astrophysics Data System (ADS)

    Aldorri, Sind; McMillan, Mary; Pereg, Lily

    2016-04-01

    Food and cash crops play important roles in Australia's economy with black, grey and red clay soil, widely use for growing cotton, wheat, corn and other crops in rotation. While the majority of cotton growers use nitrogen and phosphate fertilizers only in the form of agrochemicals, a few experiment with the addition of manure or composted plant material before planting. We hypothesized that the use of such organic amendments would enhance the soil microbial function through increased microbial diversity and abundance, thus contribute to improved soil sustainability. To test the hypothesis we collected soil samples from two cotton-growing farms in close geographical proximity and with mostly similar production practices other than one grower has been using composted plants as organic amendment and the second farmer uses only agrochemicals. We applied the Biolog Ecoplate system to study the metabolic signature of microbial communities and used qPCR to estimate the abundance of functional genes in the soil. The soil treated with organic amendments clearly showed higher metabolic activity of a more diverse range of carbon sources as well as higher abundance of genes involved in the nitrogen and phosphorous cycles. Since microbes undertake a large number of soil functions, the use of organic amendments can contribute to the sustainability of agricultural soils.

  20. ENANTIOSELECTIVE MICROBIAL TRANSFORMATION OF THE PHENYLPYRAZOLE INSECTICIDE FIPRONIL IN ANOXIC SEDIMENTS

    EPA Science Inventory

    Fipronil, a chiral insecticide, was biotransformed initially to fipronil sulfide in anoxic sediment slurries following a short lag period. Sediment slurries characterized as either sulfidogenic or methanogenic transformed fipronil with half-lives of approximately 35 and 40 days, ...

  1. Microbial mediated retention/transformation of organic and inorganic materials in freshwater and marine ecosystems

    EPA Science Inventory

    Aquatic ecosystems are globally connected by hydrological and biogeochemical cycles. Microorganisms inhabiting aquatic ecosystems form the basis of food webs, mediate essential element cycles, decompose natural organic matter, transform inorganic nutrients and metals, and degrad...

  2. [Effect of afforestation modes on soil microbial community and nitrogen functional genes in Hippophae rhamnoides plantation].

    PubMed

    Yang, Dan; Yu, Xuan; Liu, Xu; Liu, Jin-liana; Zhang, Shun-xiang; Yu, Ze-qun

    2015-12-01

    The study aimed to assess the effect of different afforestation modes on microbial composition and nitrogen functional genes in soil. Soil samples from a pure Hippophae rhamnoides stand (SS) and three mixed stands, namely, H. rhamnoides and Pinus tabuliformis (SY), H. rhamnoides and Platycladus orientalis (SB), H. rhamnoides and Robinia pseucdoacacia (SC) were selected. The results showed that the total PLFA (TPLFA), bacterial PLFA, gram positive bacterial PLFA (G⁺PLFA) were significantly higher in soil samples from other three stands than those of the pure one. However, no significant difference was found for fungal PLFA among them. The abundance of nifH, amoA, nirK and narG genes were higher in SY and SC than in SS. The TPLFA, G⁺PLFA, gram negative bacterial PLFA (G⁻PLFA), and all of the detected gene abundance were significantly and positively correlated with soil pH, total organic carbon, total nitrogen, ammonium nitrogen and available potassium. Afforestation modes affected indirectly soil microbial composition and functional genes through soil properties. Mixing P. tabuliformis or P. orientalis with H. rhamnoides might be suitable afforestation modes, which might improve soil quality. PMID:27111999

  3. [Effect of afforestation modes on soil microbial community and nitrogen functional genes in Hippophae rhamnoides plantation].

    PubMed

    Yang, Dan; Yu, Xuan; Liu, Xu; Liu, Jin-liana; Zhang, Shun-xiang; Yu, Ze-qun

    2015-12-01

    The study aimed to assess the effect of different afforestation modes on microbial composition and nitrogen functional genes in soil. Soil samples from a pure Hippophae rhamnoides stand (SS) and three mixed stands, namely, H. rhamnoides and Pinus tabuliformis (SY), H. rhamnoides and Platycladus orientalis (SB), H. rhamnoides and Robinia pseucdoacacia (SC) were selected. The results showed that the total PLFA (TPLFA), bacterial PLFA, gram positive bacterial PLFA (G⁺PLFA) were significantly higher in soil samples from other three stands than those of the pure one. However, no significant difference was found for fungal PLFA among them. The abundance of nifH, amoA, nirK and narG genes were higher in SY and SC than in SS. The TPLFA, G⁺PLFA, gram negative bacterial PLFA (G⁻PLFA), and all of the detected gene abundance were significantly and positively correlated with soil pH, total organic carbon, total nitrogen, ammonium nitrogen and available potassium. Afforestation modes affected indirectly soil microbial composition and functional genes through soil properties. Mixing P. tabuliformis or P. orientalis with H. rhamnoides might be suitable afforestation modes, which might improve soil quality.

  4. Expression patterns of cotton chloroplast genes during development: implications for development of plastid transformation vectors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to express genes of interest in plastids, transformation vectors must be developed that include appropriate promoters to drive expression at effective levels in both green and non-green tissues. Typically, chloroplasts are transformed with vectors that contain ribosomal RNA promoters for h...

  5. Cloning of the PYR3 gene of Ustilago maydis and its use in DNA transformation.

    PubMed Central

    Banks, G R; Taylor, S Y

    1988-01-01

    The Ustilago maydis PYR3 gene encoding dihydroorotase activity was cloned by direct complementation of Escherichia coli pyrC mutations. PYR3 transformants of E. coli pyrC mutants expressed homologous transcripts of a variety of sizes and regained dihydroorotase activity. PYR3 also complemented Saccharomyces cerevisiae ura4 mutations, and again multiple transcripts were expressed in transformants, and enzyme activity was regained. A 1.25-kilobase poly(rA)+ PYR3 transcript was detected in U. maydis itself. Linear DNA carrying the PYR3 gene transformed a U. maydis pyr3-1 pyrimidine auxotroph to prototrophy. Hybridization analysis revealed that three different types of transformants could be generated, depending on the structure of the transforming DNA used. The first type involved exchange of chromosomal mutant gene sequences with the cloned wild-type plasmid sequences. A second type had integrated linear transforming DNA at the chromosomal PYR3 locus, probably via a single crossover event. The third type had integrated transforming DNA sequences at multiple sites in the U. maydis genome. In the last two types, tandemly reiterated copies of the transforming DNA were found to have been integrated. All three types had lost the sensitivity of the parental pyr3-1 mutant to UV irradiation. They had also regained dihydroorotase activity, although its level did not correlate with the PYR3 gene copy number. Images PMID:2907604

  6. Transient expression of minimum linear gene cassettes in onion epidermal cells via direct transformation.

    PubMed

    Cheng, Yun-Qing; Yang, Jun; Xu, Feng-Ping; An, Li-Jia; Liu, Jian-Feng; Chen, Zhi-Wen

    2009-12-01

    A new method without any special devices for direct transformation of linear gene cassettes was developed. Its feasibility was verified through 5'-fluorescent dye (fluorescein isothiocyanate, FITC)-labeled fluorescent tracing and transient expression of a gus reporter gene. Minimal linear gene cassettes, containing necessary regulation elements and a gus reporter gene, was prepared by polymerase chain reaction and dissolved in transformation buffer solution to 100 ng/mL. The basic transformation solution used was Murashige and Skoog basal salt mixture (MS) liquid medium. Hypertonic pretreatment of explants and transformation cofactors, including Ca(2+), surfactant assistants, Agrobacterium LBA4404 cell culture on transformation efficiency were evaluated. Prior to the incubation of the explants and target linear cassette in each designed transformation solution for 3 h, the onion low epidermal explants were pre-cultured in darkness at 27 degrees C for 48 h and then transferred to MS solid media for 72 h. FITC-labeled linear DNA was used to trace the delivery of DNA entry into the cell and the nuclei. By GUS staining and flow-cytometry-mediated fluorescent detection, a significant increase of the ratios of fluorescent nuclei as well as expression of the gus reporter gene was observed by each designed transformation solution. This potent and feasible method showed prospective applications in plant transgenic research. PMID:19255730

  7. Transient expression of minimum linear gene cassettes in onion epidermal cells via direct transformation.

    PubMed

    Cheng, Yun-Qing; Yang, Jun; Xu, Feng-Ping; An, Li-Jia; Liu, Jian-Feng; Chen, Zhi-Wen

    2009-12-01

    A new method without any special devices for direct transformation of linear gene cassettes was developed. Its feasibility was verified through 5'-fluorescent dye (fluorescein isothiocyanate, FITC)-labeled fluorescent tracing and transient expression of a gus reporter gene. Minimal linear gene cassettes, containing necessary regulation elements and a gus reporter gene, was prepared by polymerase chain reaction and dissolved in transformation buffer solution to 100 ng/mL. The basic transformation solution used was Murashige and Skoog basal salt mixture (MS) liquid medium. Hypertonic pretreatment of explants and transformation cofactors, including Ca(2+), surfactant assistants, Agrobacterium LBA4404 cell culture on transformation efficiency were evaluated. Prior to the incubation of the explants and target linear cassette in each designed transformation solution for 3 h, the onion low epidermal explants were pre-cultured in darkness at 27 degrees C for 48 h and then transferred to MS solid media for 72 h. FITC-labeled linear DNA was used to trace the delivery of DNA entry into the cell and the nuclei. By GUS staining and flow-cytometry-mediated fluorescent detection, a significant increase of the ratios of fluorescent nuclei as well as expression of the gus reporter gene was observed by each designed transformation solution. This potent and feasible method showed prospective applications in plant transgenic research.

  8. Inactivation of conserved genes induces microbial aversion, drug detoxification, and innate immunity in C.elegans

    PubMed Central

    Melo, Justine A.; Ruvkun, Gary

    2012-01-01

    Summary The nematode C. elegans consumes benign bacteria such as E. coli and is repelled by pathogens and toxins. Here we show that RNAi and toxin-mediated disruption of core cellular activities, including translation, respiration, and protein turnover, stimulates behavioral avoidance of attractive E. coli. RNAi of such essential processes also induces expression of detoxification and innate immune response genes in the absence of toxins or pathogens. Disruption of core processes in non-neuronal tissues can stimulate aversion behavior, revealing a neuroendocrine axis of control. Microbial avoidance requires serotonergic and Jnk kinase signaling. We propose that surveillance pathways oversee critical cellular activities to detect pathogens, many of which deploy toxins and virulence factors to disrupt these same host pathways. Variation in cellular surveillance and endocrine pathways controlling behavior, detoxification and immunity selected by past toxin or microbial interactions could underlie aberrant responses to foods, medicines, and microbes. PMID:22500807

  9. Efficient transformation and expression of gfp gene in Valsa mali var. mali.

    PubMed

    Chen, Liang; Sun, Gengwu; Wu, Shujing; Liu, Huixiang; Wang, Hongkai

    2015-01-01

    Valsa mali var. mali, the causal agent of valsa canker of apple, causes great loss of apple production in apple producing regions. The pathogenic mechanism of the pathogen has not been studied extensively, thus a suitable gene marker for pathogenic invasion analysis and a random insertion of T-DNA for mutants are desirable. In this paper, we reported the construction of a binary vector pKO1-HPH containing a positive selective gene hygromycin phosphotransferase (hph), a reporter gene gfp conferring green fluorescent protein, and an efficient protocol for V. mali var. mali transformation mediated by Agrobacterium tumefaciens. A transformation efficiency up to about 75 transformants per 10(5) conidia was achieved when co-cultivation of V. mali var. mali and A. tumefaciens for 48 h in A. tumefaciens inductive medium agar plates. The insertions of hph gene and gfp gene into V. mali var. mali genome verified by polymerase chain reaction and southern blot analysis showed that 10 randomly-selected transformants exhibited a single, unique hybridization pattern. This is the first report of A. tumefaciens-mediated transformation of V. mali var mali carrying a 'reporter' gfp gene that stably and efficiently expressed in the transformed V. mali var. mali species. PMID:25423905

  10. 16S rRNA Gene Survey of Microbial Communities in Winogradsky Columns

    PubMed Central

    Rundell, Ethan A.; Banta, Lois M.; Ward, Doyle V.; Watts, Corey D.; Birren, Bruce; Esteban, David J.

    2014-01-01

    A Winogradsky column is a clear glass or plastic column filled with enriched sediment. Over time, microbial communities in the sediment grow in a stratified ecosystem with an oxic top layer and anoxic sub-surface layers. Winogradsky columns have been used extensively to demonstrate microbial nutrient cycling and metabolic diversity in undergraduate microbiology labs. In this study, we used high-throughput 16s rRNA gene sequencing to investigate the microbial diversity of Winogradsky columns. Specifically, we tested the impact of sediment source, supplemental cellulose source, and depth within the column, on microbial community structure. We found that the Winogradsky columns were highly diverse communities but are dominated by three phyla: Proteobacteria, Bacteroidetes, and Firmicutes. The community is structured by a founding population dependent on the source of sediment used to prepare the columns and is differentiated by depth within the column. Numerous biomarkers were identified distinguishing sample depth, including Cyanobacteria, Alphaproteobacteria, and Betaproteobacteria as biomarkers of the soil-water interface, and Clostridia as a biomarker of the deepest depth. Supplemental cellulose source impacted community structure but less strongly than depth and sediment source. In columns dominated by Firmicutes, the family Peptococcaceae was the most abundant sulfate reducer, while in columns abundant in Proteobacteria, several Deltaproteobacteria families, including Desulfobacteraceae, were found, showing that different taxonomic groups carry out sulfur cycling in different columns. This study brings this historical method for enrichment culture of chemolithotrophs and other soil bacteria into the modern era of microbiology and demonstrates the potential of the Winogradsky column as a model system for investigating the effect of environmental variables on soil microbial communities. PMID:25101630

  11. Linking potential denitrification rates to microbial gene abundances in multiple boreal ecosystems

    NASA Astrophysics Data System (ADS)

    Petersen, D. G.; Blazewicz, S.; Herman, D. J.; Firestone, M. K.; Waldrop, M. P.

    2010-12-01

    The composition and functioning of boreal ecosystems are vulnerable to changes in climate, leading to changes in season length, fire regimes, and soil moisture status. To investigate the influence of vegetation and soil moisture on microbial nitrogen cycling several disparate boreal ecosystems was studied. The two primary objectives were to: (1) determine whether process rates could be predicted solely from soil physical and chemical characteristics and (2) determine if the abundance of functional genes could be an additional explanatory variable. Surface soils were sampled along an elevation-driven hydrologic gradient at the Bonanza Creek LTER that corresponds with five plant communities typical of interior Alaska. The plant communities included a black spruce stand, a deciduous stand, a tussock grassland, an emergent fen, and a rich fen. We examined the chemical composition of the surface organic moss and soil, measured gross N-mineralization, potential rates of nitrification and denitrification (DEA), and abundances of several functional groups of microorganisms from soil cores collected in mid summer. We used quantitative PCR to assess the gene abundances of ammonia oxidizers and denitrifiers based on a functional gene approach. Here, we focus on potential denitrification rates (PDR), and abundance of denitrifyers carrying NirS and NirK genes (nitrate reductase) and NosZ genes (nitrous oxide reductase). PDR increased dramatically with increasing soil moisture along the gradient, from 1 mg N/m2/h at the dry black spruce site to 300 mg N/m2/h in the rich fen, which is very high compared to other poorly drained soil environments. PDR were linearly related to the abundance of functional genes from the microorganisms responsible for this process. Abundances of NirS, NirK and NosZ genes correlated significantly to PDR (r2 = 0.61 p < 0.0001, r2 = 0.45 p < 0.0003, r2 = 0.81 p < 0.0001, respectively). In addition, PDR were better explained by functional gene abundances

  12. Diversity of Nonribosomal Peptide Synthetase Genes in the Microbial Metagenomes of Marine Sponges

    PubMed Central

    Pimentel-Elardo, Sheila Marie; Grozdanov, Lubomir; Proksch, Sebastian; Hentschel, Ute

    2012-01-01

    Genomic mining revealed one major nonribosomal peptide synthetase (NRPS) phylogenetic cluster in 12 marine sponge species, one ascidian, an actinobacterial isolate and seawater. Phylogenetic analysis predicts its taxonomic affiliation to the actinomycetes and hydroxy-phenyl-glycine as a likely substrate. Additionally, a phylogenetically distinct NRPS gene cluster was discovered in the microbial metagenome of the sponge Aplysina aerophoba, which shows highest similarities to NRPS genes that were previously assigned, by ways of single cell genomics, to a Chloroflexi sponge symbiont. Genomic mining studies such as the one presented here for NRPS genes, contribute to on-going efforts to characterize the genomic potential of sponge-associated microbiota for secondary metabolite biosynthesis. PMID:22822366

  13. MICROBIAL TRANSFORMATIONS OF PLUTONIUM AND OTHER ACTINIDES IN TRANSURANIC AND MIXED WASTES.

    SciTech Connect

    FRANCIS,A.J.

    2003-07-06

    The presence of the actinides Th, U, Np, Pu, and Am in transuranic (TRU) and mixed wastes is a major concern because of their potential for migration from the waste repositories and long-term contamination of the environment. The toxicity of the actinide elements and the long half-lives of their isotopes are the primary causes for concern. In addition to the radionuclides the TRU waste consists a variety of organic materials (cellulose, plastic, rubber, chelating agents) and inorganic compounds (nitrate and sulfate). Significant microbial activity is expected in the waste because of the presence of organic compounds and nitrate, which serve as carbon and nitrogen sources and in the absence of oxygen the microbes can use nitrate and sulfate as alternate electron acceptors. Biodegradation of the TRU waste can result in gas generation and pressurization of containment areas, and waste volume reduction and subsidence in the repository. Although the physical, chemical, and geochemical processes affecting dissolution, precipitation, and mobilization of actinides have been investigated, we have only limited information on the effects of microbial processes. Microbial activity could affect the chemical nature of the actinides by altering the speciation, solubility and sorption properties and thus could increase or decrease the concentrations of actinides in solution. Under appropriate conditions, dissolution or immobilization of actinides is brought about by direct enzymatic or indirect non-enzymatic actions of microorganisms. Dissolution of actinides by microorganisms is brought about by changes in the Eh and pH of the medium, by their production of organic acids, such as citric acid, siderophores and extracellular metabolites. Immobilization or precipitation of actinides is due to changes in the Eh of the environment, enzymatic reductive precipitation (reduction from higher to lower oxidation state), biosorption, bioaccumulation, biotransformation of actinides complexed

  14. Analysis of microbial communities in the oil reservoir subjected to CO2-flooding by using functional genes as molecular biomarkers for microbial CO2 sequestration

    PubMed Central

    Liu, Jin-Feng; Sun, Xiao-Bo; Yang, Guang-Chao; Mbadinga, Serge M.; Gu, Ji-Dong; Mu, Bo-Zhong

    2015-01-01

    Sequestration of CO2 in oil reservoirs is considered to be one of the feasible options for mitigating atmospheric CO2 building up and also for the in situ potential bioconversion of stored CO2 to methane. However, the information on these functional microbial communities and the impact of CO2 storage on them is hardly available. In this paper a comprehensive molecular survey was performed on microbial communities in production water samples from oil reservoirs experienced CO2-flooding by analysis of functional genes involved in the process, including cbbM, cbbL, fthfs, [FeFe]-hydrogenase, and mcrA. As a comparison, these functional genes in the production water samples from oil reservoir only experienced water-flooding in areas of the same oil bearing bed were also analyzed. It showed that these functional genes were all of rich diversity in these samples, and the functional microbial communities and their diversity were strongly affected by a long-term exposure to injected CO2. More interestingly, microorganisms affiliated with members of the genera Methanothemobacter, Acetobacterium, and Halothiobacillus as well as hydrogen producers in CO2 injected area either increased or remained unchanged in relative abundance compared to that in water-flooded area, which implied that these microorganisms could adapt to CO2 injection and, if so, demonstrated the potential for microbial fixation and conversion of CO2 into methane in subsurface oil reservoirs. PMID:25873911

  15. Analysis of microbial communities in the oil reservoir subjected to CO2-flooding by using functional genes as molecular biomarkers for microbial CO2 sequestration.

    PubMed

    Liu, Jin-Feng; Sun, Xiao-Bo; Yang, Guang-Chao; Mbadinga, Serge M; Gu, Ji-Dong; Mu, Bo-Zhong

    2015-01-01

    Sequestration of CO2 in oil reservoirs is considered to be one of the feasible options for mitigating atmospheric CO2 building up and also for the in situ potential bioconversion of stored CO2 to methane. However, the information on these functional microbial communities and the impact of CO2 storage on them is hardly available. In this paper a comprehensive molecular survey was performed on microbial communities in production water samples from oil reservoirs experienced CO2-flooding by analysis of functional genes involved in the process, including cbbM, cbbL, fthfs, [FeFe]-hydrogenase, and mcrA. As a comparison, these functional genes in the production water samples from oil reservoir only experienced water-flooding in areas of the same oil bearing bed were also analyzed. It showed that these functional genes were all of rich diversity in these samples, and the functional microbial communities and their diversity were strongly affected by a long-term exposure to injected CO2. More interestingly, microorganisms affiliated with members of the genera Methanothemobacter, Acetobacterium, and Halothiobacillus as well as hydrogen producers in CO2 injected area either increased or remained unchanged in relative abundance compared to that in water-flooded area, which implied that these microorganisms could adapt to CO2 injection and, if so, demonstrated the potential for microbial fixation and conversion of CO2 into methane in subsurface oil reservoirs.

  16. Detection of Biosignatures in Natural and Microbial Cultured Jarosites Using Laser- Desorption Fourier Transform Mass Spectrometry: Implications for Astrobiology

    NASA Astrophysics Data System (ADS)

    Kotler, J.; Hinman, N. W.; Yan, B.; Stoner, D. L.; Scott, J. R.

    2006-12-01

    The jarosite group minerals have received increasing attention since the discovery by the Mars Exploration Rover-Opportunity of jarosite on the Martian surface. The general chemical formula for jarosite is XFe3(SO4)2(OH)6 where the X represents both monovalent and divalent cations that can occupy the axial positions in the crystal structure. Commonly found ions include K+, Na+, H3O+, NH4+, and Pb2+ with reports of other large ions occupying this position in the literature. Modeling efforts have been performed to confirm that jarosite has the ability to incorporate a variety of "foreign" cations. The minerals unique ability to incorporate various large ions in its structure and its association with biological activity in terrestrial environments has lead to investigations regarding its use as an indicator of aqueous and/or biological activity. The use of laser desorption Fourier transform mass spectrometry (LD-FTMS) has revealed the presence of organic matter including the amino acid, glycine, in several jarosite samples from various worldwide locations. Iron precipitates derived from acidophilic microbial cultures were also analyzed. Using attenuated total reflectance infrared spectroscopy (ATR-IR), signals indicative of microbes or microbial exudates were weak and ambiguous. In contrast, LD-FTMS clearly detected bioorganic constituents in some desorption spots. However, the signals were sporadic and required the laser scanning/imaging capability of our laboratory built system to locate the microbial signatures in the heterogeneous samples. The ability to observe these bioorganic signatures in jarosite samples using the instrumental technique employed in this study furthers the goals of planetary geologists to determine whether signs of life (e.g., presence of biomolecules or biomolecule precursors) can be detected in the rock record of terrestrial and extraterrestrial samples.

  17. Fourier transform-infrared spectroscopic methods for microbial ecology: analysis of bacteria, bacteria-polymer mixtures and biofilms

    NASA Technical Reports Server (NTRS)

    Nichols, P. D.; Henson, J. M.; Guckert, J. B.; Nivens, D. E.; White, D. C.

    1985-01-01

    Fourier transform-infrared (FT-IR) spectroscopy has been used to rapidly and nondestructively analyze bacteria, bacteria-polymer mixtures, digester samples and microbial biofilms. Diffuse reflectance FT-IR (DRIFT) analysis of freeze-dried, powdered samples offered a means of obtaining structural information. The bacteria examined were divided into two groups. The first group was characterized by a dominant amide I band and the second group of organisms displayed an additional strong carbonyl stretch at approximately 1740 cm-1. The differences illustrated by the subtraction spectra obtained for microbes of the two groups suggest that FT-IR spectroscopy can be utilized to recognize differences in microbial community structure. Calculation of specific band ratios has enabled the composition of bacteria and extracellular or intracellular storage product polymer mixtures to be determined for bacteria-gum arabic (amide I/carbohydrate C-O approximately 1150 cm-1) and bacteria-poly-beta-hydroxybutyrate (amide I/carbonyl approximately 1740 cm-1). The key band ratios correlate with the compositions of the material and provide useful information for the application of FT-IR spectroscopy to environmental biofilm samples and for distinguishing bacteria grown under differing nutrient conditions. DRIFT spectra have been obtained for biofilms produced by Vibrio natriegens on stainless steel disks. Between 48 and 144 h, an increase in bands at approximately 1440 and 1090 cm-1 was seen in FT-IR spectra of the V. natriegens biofilm. DRIFT spectra of mixed culture effluents of anaerobic digesters show differences induced by shifts in input feedstocks. The use of flow-through attenuated total reflectance has permitted in situ real-time changes in biofilm formation to be monitored and provides a powerful tool for understanding the interactions within adherent microbial consortia.

  18. Molecular cloning and nucleotide sequence of a transforming gene detected by transfection of chicken B-cell lymphoma DNA

    NASA Astrophysics Data System (ADS)

    Goubin, Gerard; Goldman, Debra S.; Luce, Judith; Neiman, Paul E.; Cooper, Geoffrey M.

    1983-03-01

    A transforming gene detected by transfection of chicken B-cell lymphoma DNA has been isolated by molecular cloning. It is homologous to a conserved family of sequences present in normal chicken and human DNAs but is not related to transforming genes of acutely transforming retroviruses. The nucleotide sequence of the cloned transforming gene suggests that it encodes a protein that is partially homologous to the amino terminus of transferrin and related proteins although only about one tenth the size of transferrin.

  19. The use of microbial gene abundance in the development of fuel remediation guidelines in polar soils.

    PubMed

    Richardson, Elizabeth L; King, Catherine K; Powell, Shane M

    2015-04-01

    Terrestrial fuel spills in Antarctica commonly occur on ice-free land around research stations as the result of human activities. Successful spill clean-ups require appropriate targets that confirm contaminated sites are no longer likely to pose environmental risk following remediation. These targets are based on knowledge of the impacts of contaminants on the soil ecosystem and on the response of native biota to contamination. Our work examined the response of soil microbial communities to fuel contamination by measuring the abundance of genes involved in critical soil processes, and assessed the use of this approach as an indicator of soil health in the presence of weathered and fresh fuels. Uncontaminated and contaminated soils were collected from the site of remediation treatment of an aged diesel spill at Casey Station, East Antarctica in December 2012. Uncontaminated soil was spiked with fresh Special Antarctic Blend (SAB) diesel to determine the response of the genes to fresh fuel. Partly remediated soil containing weathered SAB diesel was diluted with uncontaminated soil to simulate a range of concentrations of weathered fuel and used to determine the response of the genes to aged fuel. Quantitative PCR (qPCR) was used to measure the abundance of rpoB, alkB, cat23, and nosZ in soils containing SAB diesel. Differences were observed between the abundance of genes in control soils versus soils containing weathered and fresh fuels. Typical dose-response curves were generated for genes in response to the presence of fresh fuel. In contrast, the response of these genes to the range of weathered fuel appeared to be due to dilution, rather than to the effect of the fuel on the microbial community. Changes in microbial genes in response to fresh contamination have potential as a sensitive measure of soil health and for assessments of the effect of fuel spills in polar soils. This will contribute to the development of remediation guidelines to assist in management

  20. Influence of Oxygen and Nitrate on Fe (Hydr)oxide Mineral Transformation and Soil Microbial Communities during Redox Cycling.

    PubMed

    Mejia, Jacqueline; Roden, Eric E; Ginder-Vogel, Matthew

    2016-04-01

    Oscillations between reducing and oxidizing conditions are observed at the interface of anaerobic/oxic and anaerobic/anoxic environments, and are often stimulated by an alternating flux of electron donors (e.g., organic carbon) and electron acceptors (e.g., O2 and NO3(-)). In iron (Fe) rich soils and sediments, these oscillations may stimulate the growth of both Fe-reducing bacteria (FeRB) and Fe-oxidizing bacteria (FeOB), and their metabolism may induce cycling between Fe(II) and Fe(III), promoting the transformation of Fe (hydr)oxide minerals. Here, we examine the mineralogical evolution of lepidocrocite and ferrihydrite, and the adaptation of a natural microbial community to alternating Fe-reducing (anaerobic with addition of glucose) and Fe-oxidizing (with addition of nitrate or air) conditions. The growth of FeRB (e.g., Geobacter) is stimulated under anaerobic conditions in the presence of glucose. However, the abundance of these organisms depends on the availability of Fe(III) (hydr)oxides. Redox cycling with nitrate results in decreased Fe(II) oxidation thereby decreasing the availability of Fe(III) for FeRB. Additionally, magnetite is detected as the main product of both lepidocrocite and ferrihydrite reduction. In contrast, introduction of air results in increased Fe(II) oxidation, increasing the availability of Fe(III) and the abundance of Geobacter. In the lepidocrocite reactors, Fe(II) oxidation by dissolved O2 promotes the formation of ferrihydrite and lepidocrocite, whereas in the ferrihydrite reactors we observe a decrease in magnetite stoichiometry (e.g., oxidation). Understanding Fe (hydr)oxide transformation under environmentally relevant redox cycling conditions provides insight into nutrient availability and transport, contaminant mobility, and microbial metabolism in soils and sediments. PMID:26949922

  1. Molecular Approaches to Studying Microbial Communities: Targeting the 16S Ribosomal RNA Gene.

    PubMed

    Fukuda, Kazumasa; Ogawa, Midori; Taniguchi, Hatsumi; Saito, Mitsumasa

    2016-09-01

    Culture-independent methods to detect microorganisms have been developed in parallel with traditional culture-based methods ever since the classification of bacteria based on 16S rRNA gene sequences was advocated in the 1970s. The development and the prevalence of culture-independent molecular technologies have provided revolutionary progress in microbial studies. The development of these technologies contributes significantly to the research of microorganisms that cannot be detected by traditional methods such as culture-dependent methods.Many molecular methods targeting the 16S rRNA gene, such as fluorescence in situ hybridization (FISH), quantitative PCR, terminal restriction fragment length polymorphism (T-RFLP), denaturing-gradient gel electrophoresis (DGGE), clone library analysis, and next-generation DNA sequencing (NGS) technologies, have been applied to various microbial studies. Notably, the advent of NGS technologies enabled a large-scale research of the bacterial community. Many recent studies using the NGS technologies have revealed that a larger number of bacteria and taxa than previously thought inhabit various parts of the human body and various places on the earth. The principles and characteristics of each molecular method are different, and each method possesses individual advantages; for example target specificity, comprehensiveness, rapidness, and cost efficiency. Therefore it is important that the methods used in studies are suitable for the objective and materials. Herein, we highlights molecular approaches targeting the 16S rRNA gene in bacterial community analysis, and focuses on the advantages and limitations of each technology. PMID:27627970

  2. Biodiversity of genes encoding anti-microbial traits within plant associated microbes

    PubMed Central

    Mousa, Walaa K.; Raizada, Manish N.

    2015-01-01

    The plant is an attractive versatile home for diverse associated microbes. A subset of these microbes produces a diversity of anti-microbial natural products including polyketides, non-ribosomal peptides, terpenoids, heterocylic nitrogenous compounds, volatile compounds, bacteriocins, and lytic enzymes. In recent years, detailed molecular analysis has led to a better understanding of the underlying genetic mechanisms. New genomic and bioinformatic tools have permitted comparisons of orthologous genes between species, leading to predictions of the associated evolutionary mechanisms responsible for diversification at the genetic and corresponding biochemical levels. The purpose of this review is to describe the biodiversity of biosynthetic genes of plant-associated bacteria and fungi that encode selected examples of antimicrobial natural products. For each compound, the target pathogen and biochemical mode of action are described, in order to draw attention to the complexity of these phenomena. We review recent information of the underlying molecular diversity and draw lessons through comparative genomic analysis of the orthologous coding sequences (CDS). We conclude by discussing emerging themes and gaps, discuss the metabolic pathways in the context of the phylogeny and ecology of their microbial hosts, and discuss potential evolutionary mechanisms that led to the diversification of biosynthetic gene clusters. PMID:25914708

  3. A comparison of strategies for multiple-gene co-transformation via hairy root induction.

    PubMed

    Huang, Yu; Su, Ching-Yueh; Kuo, Han-Jung; Chen, Yi-Hung; Huang, Pung-Ling; Lee, Kung-Ta

    2013-10-01

    Hairy root is a transformed root tissue in which transfer DNA (T-DNA) is inserted in the genome by Agrobacterium rhizogenes. To establish a system for multiple-gene co-transformation in hairy roots, we evaluated four different strategies using A. rhizogenes. The genes gusA and mgfp5 were located in separate plasmids, which were transformed into two different batches of A. rhizogenes (strategy 2AR) or a single batch (strategy 2BV). The two reporter genes were also inserted in one T-DNA (strategy 1TD) or two different T-DNAs (strategy 2TD) in a binary vector. Over 90 % of infected Nicotiana tabacum leaf discs formed hairy roots in all four groups, which was not significantly different from the infection efficiency of wild-type A. rhizogenes. Proportions of co-transformed hairy roots with strategies 2AR, 2BV, 1TD, and 2TD were 65.4, 40.0, 78.6, and 82.1 %, respectively, which indicated that all of the strategies were suitable for co-transformation of multiple genes. High variation in growth rate and heterologous protein expression indicated that further screening is required to identify the clone with the highest productivity. Our results indicated that strategies 1TD and 2TD achieved the highest co-transformation efficiency. Combination with strategy 2AR or 2BV provides additional options for co-transformation of multiple transgenes. PMID:23812331

  4. Experimental study of abiotic and microbial Fe-mineral transformations to understand magnetic enhancement during pedogenesis

    NASA Astrophysics Data System (ADS)

    Till, Jessica; Guyodo, Yohan; Lagroix, France; Bonville, Pierre; Ona-Nguema, Georges; Menguy, Nicolas; Morin, Guillaume

    2013-04-01

    The phenomenon of magnetic enhancement in many soil types has been recognized for several years, but the question of whether the enhancement process is primarily driven by microbial activity or abiotic processes is still unresolved. We present results from an on-going interdisciplinary experimental study of possible pathways of magnetic enhancement during pedogenesis of loess-derived soils. Synthetic nanoparticle preparations of the oxyhydroxides goethite and lepidocrocite were chosen as Fe-rich precursor phases. Abiotic alteration was achieved by heating in a controlled atmosphere, under either oxidizing or reducing conditions. Heating-induced dehydration reactions in lepidocrocite produce superparamagnetic magnetite or maghemite with a characteristic nanoporous structure, while dehydration of nanogoethite produced pseudo-morphed hematite, which converts to magnetite during heating in a reducing atmosphere. The abiotic alteration experiments are compared with preliminary results from bioreduction experiments using the dissimilatory Fe-reducing bacteria Shewanella putrefaciens in both the synthetic minerals and in natural loess, soil and paleosol materials. The magnetic properties, microstructure, and morphology of the reaction products were characterized with a combination of low-temperature magnetic properties, Mössbauer spectroscopy, high-resolution TEM microscopy, and x-ray diffraction. The goal is to identify characteristic properties of the magnetic alteration products that may help elucidate the relative contributions of microbial and abiotic alteration mechanisms to the development of an "enhanced" magnetic signature during pedogenesis.

  5. Microbial communities and transformation of carbon compounds in bog soils of the taiga zone (Tomsk oblast)

    NASA Astrophysics Data System (ADS)

    Grodnitskaya, I. D.; Trusova, M. Yu.

    2009-09-01

    Two types of bogs were studied in Tomsk oblast—Maloe Zhukovskoe (an eutrophic peat low-moor bog) and Ozernoe (an oligotrophic peat high-moor bog). The gram-negative forms of Proteobacteria were found to be dominant and amounted to more than 40% of the total population of the microorganisms investigated. In the peat bogs, the population and diversity of the hydrolytic microbial complex, especially of the number of micromycetes, were lower than those in the mineral soils. The changes in the quantitative indices of the total microbiological activity of the bogs were established. The microbial biomass and the intensity of its respiration differed and were also related to the depth of the sampling. In the Zhukovskoe peat low-moor bog, the maximal biomass of heterotrophic microorganisms (154 μg of C/g of peat) was found in the aerobic zone at a depth of 0 to 10 cm. In the Ozernoe bog, the maximal biomass was determined in the zone of anaerobiosis at a depth of 300 cm (1947 μ g of C/g of peat). The molecular-genetic method was used for the determination of the spectrum of the methanogens. Seven unidentified dominant forms were revealed. The species diversity of the methanogens was higher in the oligotrophic high-moor bog than in the eutrophic low-moor bog.

  6. Functional comparison of three transformer gene introns regulating conditional female lethality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The trasformer gene plays a critical role in the sex determination pathways of many insects. We cloned two transformer gene introns from Anastrepha suspensa, the Caribbean fruit fly. These introns have sequences that putatively have a role in sex-specific splicing patterns that affect sex determinat...

  7. Lox-dependent gene expression in transgenic plants obtained via Agrobacterium-mediated transformation.

    PubMed

    Shcherbak, N; Kishchenko, O; Sakhno, L; Komarnytsky, I; Kuchuk, M

    2013-01-01

    Lox sites of the Cre/lox recombination system from bacteriophage P1 were analyzed for their ability to affect on transgene expression when inserted upstream from a gene coding sequence adjacent to the right border (RB) of T-DNA. Wild and mutated types of lox sites were tested for their effect upon bar gene expression in plants obtained via Agrobacterium-mediated and biolistic transformation methods. Lox-mediated expression of bar gene, recognized by resistance of transgenic plants to PPT, occurred only in plants obtained via Agrobacterium-mediated transformation. RT-PCR analysis confirms that PPT-resistant phenotype of transgenic plants obtained via Agrobacterium-mediated transformation was caused by activation of bar gene. The plasmid with promoterless gus gene together with the lox site adjacent to the RB was constructed and transferred to Nicotiana tabacum as well. Transgenic plants exhibited GUS activity and expression of gus gene was detected in plant leaves. Expression of bar gene from the vectors containing lox site near RB allowed recovery of numerous PPT-resistant transformants of such important crops as Beta vulgaris, Brassica napus, Lactuca sativa and Solanum tuberosum. Our results demonstrate that the lox site sequence adjacent to the RB can be used to control bar gene expression in transgenic plants. PMID:23821951

  8. Lox-dependent gene expression in transgenic plants obtained via Agrobacterium-mediated transformation.

    PubMed

    Shcherbak, N; Kishchenko, O; Sakhno, L; Komarnytsky, I; Kuchuk, M

    2013-01-01

    Lox sites of the Cre/lox recombination system from bacteriophage P1 were analyzed for their ability to affect on transgene expression when inserted upstream from a gene coding sequence adjacent to the right border (RB) of T-DNA. Wild and mutated types of lox sites were tested for their effect upon bar gene expression in plants obtained via Agrobacterium-mediated and biolistic transformation methods. Lox-mediated expression of bar gene, recognized by resistance of transgenic plants to PPT, occurred only in plants obtained via Agrobacterium-mediated transformation. RT-PCR analysis confirms that PPT-resistant phenotype of transgenic plants obtained via Agrobacterium-mediated transformation was caused by activation of bar gene. The plasmid with promoterless gus gene together with the lox site adjacent to the RB was constructed and transferred to Nicotiana tabacum as well. Transgenic plants exhibited GUS activity and expression of gus gene was detected in plant leaves. Expression of bar gene from the vectors containing lox site near RB allowed recovery of numerous PPT-resistant transformants of such important crops as Beta vulgaris, Brassica napus, Lactuca sativa and Solanum tuberosum. Our results demonstrate that the lox site sequence adjacent to the RB can be used to control bar gene expression in transgenic plants.

  9. Codon-optimized antibiotic resistance gene improves efficiency of transient transformation in Frankia.

    PubMed

    Kucho, Ken-Ichi; Kakoi, Kentaro; Yamaura, Masatoshi; Iwashita, Mari; Abe, Mikiko; Uchiumi, Toshiki

    2013-11-01

    Frankia is a unique actinobacterium having abilities to fix atmospheric dinitrogen and to establish endosymbiosis with trees, but molecular bases underlying these interesting characteristics are poorly understood because of a lack of stable transformation system. Extremely high GC content of Frankia genome (more than 70 percent) can be a hindrance to successful transformation. We generated a synthetic gentamicin resistance gene whose codon usage is optimized to Frankia (fgmR) and evaluated its usefulness as a selection marker using a transient transformation system. Success rate of transient transformation and cell growth in selective culture were significantly increased by use of fgmR instead of a native gentamicin resistance gene, suggesting that codon optimization improved translation efficiency of the marker gene and increased antibiotic resistance. Our result shows that similarity in codon usage pattern is an important factor to be taken into account when exogenous transgenes are expressed in Frankia cells. PMID:24287650

  10. Stable transformation of moth bean Vigna aconitifolia via direct gene transfer.

    PubMed

    Köhler, F; Golz, C; Eapen, S; Kohn, H; Schieder, O

    1987-07-01

    Direct gene transfer proved to be an efficient transformation method for Vigna aconitifolia, a member of the legume family. Kanamycin resistant calli and plants were regenerated from heat shocked protoplasts treated with PEG and plasmid DNA containing the coding region for aminoglycoside phosphotransferase gene (NPT II). The plant cultivar used was an important factor in attaining higher transformation frequencies. Transformation was confirmed by Southern blot analysis using a non-radioactive detection system. Attempts to transform mesophyll and suspension cultured cells by this method were unsuccessful. Protoplasts electroporated with the plasmid pCAP212, which codes for chloramphenicol acetyltransferase, exhibited transient expression of this gene two days after treatment while electroporated cells did not show this enzyme activity. It is therefore assumed that the DNA uptake is prevented by the cell wall.

  11. Expression of complete transplantation antigens by mammalian cells transformed with truncated class I genes.

    PubMed

    Goodenow, R S; Stroynowski, I; McMillan, M; Nicolson, M; Eakle, K; Sher, B T; Davidson, N; Hood, L

    1983-02-01

    Mouse L cells transformed with the cloned class I genes of the major histocompatibility complex of the mouse express transplantation antigens with serological determinants of the donor haplotype. However, transformation with the truncated subclones of a BALB/c H-2Ld gene containing the exons encoding the external domains also leads to the production of cells which express complete cell-surface molecules. Moreover, full-length products of the foreign haplotype, as judged by serological and biochemical criteria, are generated independently of the use of carrier DNA in transformation. However, the frequency of productive transformation is substantially less than that obtained with a complete gene. The most plausible explanation for these phenomena involves homologous recombination between host chromosomal and donor class I sequences. PMID:6823314

  12. Overexpression of several Arabidopsis histone genes increases agrobacterium-mediated transformation and transgene expression in plants.

    PubMed

    Tenea, Gabriela N; Spantzel, Joerg; Lee, Lan-Ying; Zhu, Yanmin; Lin, Kui; Johnson, Susan J; Gelvin, Stanton B

    2009-10-01

    The Arabidopsis thaliana histone H2A-1 is important for Agrobacterium tumefaciens-mediated plant transformation. Mutation of HTA1, the gene encoding histone H2A-1, results in decreased T-DNA integration into the genome of Arabidopsis roots, whereas overexpression of HTA1 increases transformation frequency. To understand the mechanism by which HTA1 enhances transformation, we investigated the effects of overexpression of numerous Arabidopsis histones on transformation and transgene expression. Transgenic Arabidopsis containing cDNAs encoding histone H2A (HTA), histone H4 (HFO), and histone H3-11 (HTR11) displayed increased transformation susceptibility, whereas histone H2B (HTB) and most histone H3 (HTR) cDNAs did not increase transformation. A parallel increase in transient gene expression was observed when histone HTA, HFO, or HTR11 overexpression constructs were cotransfected with double- or single-stranded forms of a gusA gene into tobacco (Nicotiana tabacum) protoplasts. However, these cDNAs did not increase expression of a previously integrated transgene. We identified the N-terminal 39 amino acids of H2A-1 as sufficient to increase transient transgene expression in plants. After transfection, transgene DNA accumulates more rapidly in the presence of HTA1 than with a control construction. Our results suggest that certain histones enhance transgene expression, protect incoming transgene DNA during the initial stages of transformation, and subsequently increase the efficiency of Agrobacterium-mediated transformation.

  13. Rhizome of life, catastrophes, sequence exchanges, gene creations, and giant viruses: how microbial genomics challenges Darwin.

    PubMed

    Merhej, Vicky; Raoult, Didier

    2012-01-01

    Darwin's theory about the evolution of species has been the object of considerable dispute. In this review, we have described seven key principles in Darwin's book The Origin of Species and tried to present how genomics challenge each of these concepts and improve our knowledge about evolution. Darwin believed that species evolution consists on a positive directional selection ensuring the "survival of the fittest." The most developed state of the species is characterized by increasing complexity. Darwin proposed the theory of "descent with modification" according to which all species evolve from a single common ancestor through a gradual process of small modification of their vertical inheritance. Finally, the process of evolution can be depicted in the form of a tree. However, microbial genomics showed that evolution is better described as the "biological changes over time." The mode of change is not unidirectional and does not necessarily favors advantageous mutations to increase fitness it is rather subject to random selection as a result of catastrophic stochastic processes. Complexity is not necessarily the completion of development: several complex organisms have gone extinct and many microbes including bacteria with intracellular lifestyle have streamlined highly effective genomes. Genomes evolve through large events of gene deletions, duplications, insertions, and genomes rearrangements rather than a gradual adaptative process. Genomes are dynamic and chimeric entities with gene repertoires that result from vertical and horizontal acquisitions as well as de novo gene creation. The chimeric character of microbial genomes excludes the possibility of finding a single common ancestor for all the genes recorded currently. Genomes are collections of genes with different evolutionary histories that cannot be represented by a single tree of life (TOL). A forest, a network or a rhizome of life may be more accurate to represent evolutionary relationships among

  14. Rhizome of life, catastrophes, sequence exchanges, gene creations, and giant viruses: how microbial genomics challenges Darwin

    PubMed Central

    Merhej, Vicky; Raoult, Didier

    2012-01-01

    Darwin's theory about the evolution of species has been the object of considerable dispute. In this review, we have described seven key principles in Darwin's book The Origin of Species and tried to present how genomics challenge each of these concepts and improve our knowledge about evolution. Darwin believed that species evolution consists on a positive directional selection ensuring the “survival of the fittest.” The most developed state of the species is characterized by increasing complexity. Darwin proposed the theory of “descent with modification” according to which all species evolve from a single common ancestor through a gradual process of small modification of their vertical inheritance. Finally, the process of evolution can be depicted in the form of a tree. However, microbial genomics showed that evolution is better described as the “biological changes over time.” The mode of change is not unidirectional and does not necessarily favors advantageous mutations to increase fitness it is rather subject to random selection as a result of catastrophic stochastic processes. Complexity is not necessarily the completion of development: several complex organisms have gone extinct and many microbes including bacteria with intracellular lifestyle have streamlined highly effective genomes. Genomes evolve through large events of gene deletions, duplications, insertions, and genomes rearrangements rather than a gradual adaptative process. Genomes are dynamic and chimeric entities with gene repertoires that result from vertical and horizontal acquisitions as well as de novo gene creation. The chimeric character of microbial genomes excludes the possibility of finding a single common ancestor for all the genes recorded currently. Genomes are collections of genes with different evolutionary histories that cannot be represented by a single tree of life (TOL). A forest, a network or a rhizome of life may be more accurate to represent evolutionary relationships

  15. Effect of various irradiation treatments of plant protoplasts on the transformation rates after direct gene transfer.

    PubMed

    Köhler, F; Benediktsson, I; Cardon, G; Andreo, C S; Schieder, O

    1990-05-01

    In P. hybrida and B. nigra an enhancement of transformation rates (direct gene transfer) of about six to seven-fold was obtained after irradiation of protoplasts with 12.5 Gy (X-ray). The effect of protoplast irradiation was similar in experiments where protoplasts were irradiated 1h before transformation (X-ray/DNA) or 1h after completion of the transformation procedure (DNA/X-ray). Increased X-ray doses up to 62.5 Gy resulted in further enhancement of percentages of transformed colonies, indicating a correlation between relative transformation frequencies (RTF) and the doses applied. Estimation of degradation rates of plasmid sequences in plant protoplasts yielded a reduction of plasmid concentration to 50% 8-12 h after transformation. In 1-day-old protoplasts, the level of plasmid fragments dropped to 0%-10% compared to 1h after transformation. The results demonstrate that the integration rates of plasmid sequences into the plant genome may in part be governed by DNA repair mechanisms. This could be an explanation for the observed genotypic dependence of transformation rates in different plant species and plant genotypes. Gene copy number reconstructions revealed enhanced integration rates of plasmid sequences in transformed colonies derived from irradiated protoplasts.

  16. Chloroplast transformation of Platymonas (Tetraselmis) subcordiformis with the bar gene as selectable marker.

    PubMed

    Cui, Yulin; Qin, Song; Jiang, Peng

    2014-01-01

    The objective of this research was to establish a chloroplast transformation technique for Platymonas (Tetraselmis) subcordiformis. Employing the gfp gene as a reporter and the bar gene as a selectable marker, transformation vectors of P. subcordiformis chloroplast were constructed with endogenous fragments rrn16S-trnI (left) and trnA-rrn23S (right) as a recombination site of the chloroplast genome. The plasmids were transferred into P. subcordiformis via particle bombardment. Confocal laser scanning microscopy indicated that the green fluorescence protein was localized in the chloroplast of P. subcordiformis, confirming the activity of the Chlamydomonas reinhardtii promoter. Cells transformed with the bar gene were selected using the herbicide Basta. Resistant colonies were analyzed by PCR and Southern blotting, and the results indicated that the bar gene was successfully integrated into the chloroplast genome via homologous recombination. The technique will improve genetic engineering of this alga. PMID:24911932

  17. Analyses of the influencing factors of soil microbial functional gene diversity in tropical rainforest based on GeoChip 5.0.

    PubMed

    Cong, Jing; Liu, Xueduan; Lu, Hui; Xu, Han; Li, Yide; Deng, Ye; Li, Diqiang; Zhang, Yuguang

    2015-09-01

    To examine soil microbial functional gene diversity and causative factors in tropical rainforests, we used a microarray-based metagenomic tool named GeoChip 5.0 to profile it. We found that high microbial functional gene diversity and different soil microbial metabolic potential for biogeochemical processes were considered to exist in tropical rainforest. Soil available nitrogen was the most associated with soil microbial functional gene structure. Here, we mainly describe the experiment design, the data processing, and soil biogeochemical analyses attached to the study in details, which could be published on BMC microbiology Journal in 2015, whose raw data have been deposited in NCBI's Gene Expression Omnibus (accession number GSE69171).

  18. Microbial transformation of 8:2 fluorotelomer acrylate and methacrylate in aerobic soils.

    PubMed

    Royer, Laurel A; Lee, Linda S; Russell, Mark H; Nies, Loring F; Turco, Ronald F

    2015-06-01

    Biotransformation of fluorotelomer (FT) compounds, such as 8:2 FT alcohol (FTOH) is now recognized to be a source of perfluorooctanoic acid (PFOA) as well as other perfluoroalkyl acids. In this study, microbially mediated hydrolysis of FT industrial intermediates 8:2 FT acrylate (8:2 FTAC) and 8:2 FT methacrylate (8:2 FTMAC) was evaluated in aerobic soils for up to 105d. At designated times, triplicate microcosms were sacrificed by sampling the headspace for volatile FTOHs followed by sequential extraction of soil for the parent monomers as well as transient and terminal degradation products. Both FTAC and FTMAC were hydrolyzed at the ester linkage as evidenced by 8:2 FTOH production. 8:2 FTAC and FTMAC degraded rapidly with half-lives ⩽5d and 15d, respectively. Maximum 8:2 FTOH levels were 6-13mol% within 3-6d. Consistent with the known biotransformation pathway of 8:2 FTOH, FT carboxylic acids and perfluoroalkyl carboxylic acids were subsequently generated including up to 10.3mol% of PFOA (105d). A total mass balance (parent plus metabolites) of 50-75mol% was observed on the last sampling day. 7:2 sFTOH, a direct precursor to PFOA, unexpectedly increased throughout the incubation period. The likely, but unconfirmed, concomitant production of acrylic acids was proposed as altering expected degradation patterns. Biotransformation of 8:2 FTAC, 8:2 FTMAC, and previously reported 8:2 FT-stearate for the same soils revealed the effect of the non-fluorinated terminus group linked to the FT chain on the electronic differences that affect microbially-mediated ester cleavage rates.

  19. Synthetic fuel oil effects on microbial activity and nitrogen transformations in soil

    SciTech Connect

    Ward, M.H.; Saylor, G.S.; Luxmoore, R.J.

    1984-12-01

    The effects of a solvent refined coal oil (SRC-II) on microbial processes in a Captina silt loam soil were examined. The soil samples were maintained under environmental conditions favorable for most aerobic microbial activities. Soil was treated with four oil concentrations ranging from 0.2 to 8.6% (wt/wt). Oxygen uptake rates, total viable cell counts, numbers of nitrifying bacteria, and inorganic nitrogen concentrations were monitored before oil addition and at regular intervals for three months thereafter. Organic carbon, total nitrogen, and soil pH were also measured before and after application of the oil. The SRC-II coal oil effected soil processes at all treatment levels. The lowest oil concentration (0.2%) decreased numbers of nitrifying bacteria while increasing total viable cell numbers and net nitrogen mineralization. The higher oil concentrations reduced oxygen uptake rates and total viable cells as well as nitrifier numbers. Soil treated with a 1.7% oil concentration showed significant increases in respiration rates and cell densities after two months, while no significant increases were observed at oil levels of 3.4 and 8.6%. The application of the coal oil to soil samples raised the carbon to nitrogen ratio of the soil. The sum of nitrate and ammonium nitrogen in the oil-treated soils was never significantly lower than the control soil levels, indicating that nitrogen was not limiting to decomposition. However, the toxicity of the oil toward the nitrifying bacteria resulted in an accumulation of ammonium in treated soils. This may affect plant establishment on soils contaminated with a synthetic fuel oil. 104 references, 7 figures, 15 tables.

  20. Microbial transformation of 8:2 fluorotelomer acrylate and methacrylate in aerobic soils.

    PubMed

    Royer, Laurel A; Lee, Linda S; Russell, Mark H; Nies, Loring F; Turco, Ronald F

    2015-06-01

    Biotransformation of fluorotelomer (FT) compounds, such as 8:2 FT alcohol (FTOH) is now recognized to be a source of perfluorooctanoic acid (PFOA) as well as other perfluoroalkyl acids. In this study, microbially mediated hydrolysis of FT industrial intermediates 8:2 FT acrylate (8:2 FTAC) and 8:2 FT methacrylate (8:2 FTMAC) was evaluated in aerobic soils for up to 105d. At designated times, triplicate microcosms were sacrificed by sampling the headspace for volatile FTOHs followed by sequential extraction of soil for the parent monomers as well as transient and terminal degradation products. Both FTAC and FTMAC were hydrolyzed at the ester linkage as evidenced by 8:2 FTOH production. 8:2 FTAC and FTMAC degraded rapidly with half-lives ⩽5d and 15d, respectively. Maximum 8:2 FTOH levels were 6-13mol% within 3-6d. Consistent with the known biotransformation pathway of 8:2 FTOH, FT carboxylic acids and perfluoroalkyl carboxylic acids were subsequently generated including up to 10.3mol% of PFOA (105d). A total mass balance (parent plus metabolites) of 50-75mol% was observed on the last sampling day. 7:2 sFTOH, a direct precursor to PFOA, unexpectedly increased throughout the incubation period. The likely, but unconfirmed, concomitant production of acrylic acids was proposed as altering expected degradation patterns. Biotransformation of 8:2 FTAC, 8:2 FTMAC, and previously reported 8:2 FT-stearate for the same soils revealed the effect of the non-fluorinated terminus group linked to the FT chain on the electronic differences that affect microbially-mediated ester cleavage rates. PMID:25449186

  1. Adenovirus type 12 gene 401 function and temperature sensitivity of cytochalasin B effects on transformed cells.

    PubMed

    Ledinko, N; Bhe, F T

    1980-01-01

    Rat (3Y1) cells transformed by wild-type adenovirus type 12 or the temperature-sensitive mutant ts401 with an active function required for transformation maintenance were exposed at the permissive(36 degrees) or nonpermissive (40 degrees) temperature to cytochalasin B (CB). At 40 degrees, the ts401-transformed cells, but not the wild-type transformants, exhibited, at least partially, the untransformed 3Y1 cell phenotype; most of the cells became bi- and trinucleated and DNA synthesis was inhibited. AT 36 degrees, both groups of cells became highly multinucleated, and there was no apparent inhibition of DNA synthesis by CB. These characteristics were exhibited also by the wild-type transformants at 40 degrees. These findings provide additional evidence that an active 401 gene function is required for maintenance of the adenovirus-transformed cell phenotype. PMID:7251331

  2. Rates of Microbial Transformation of Polycyclic Aromatic Hydrocarbons in Water and Sediments in the Vicinity of a Coal-Coking Wastewater Discharge †

    PubMed Central

    Herbes, Stephen E.

    1981-01-01

    To facilitate predictions of the transport and fate of contaminants at future coal conversion facilities, rates of microbial transformation of polycyclic aromatic hydrocarbons were measured in stream water and sediment samples collected in the vicinity of a coal-coking treated wastewater discharge from November 1977 through August 1979. Six radiolabeled polycyclic aromatic hydrocarbons were incubated with sediment and water samples; 14CO2, cell-bound 14C, and polar transformation products were isolated and quantified. Whereas 14CO2 and bound 14C were major transformation products in sediment assays, soluble polar 14C dominated transformation in water samples. Mean rate constants (measured at 20°C) in sediments collected downstream from the effluent outfall were 7.8 × 10−2 h−1 (naphthalene), 1.6 × 10−2 h−1 (anthracene), and 3.3 × 10−3 h−1 [benz(a)anthracene], which corresponded to turnover times of 13, 62, and 300 h, respectively. No unequivocal evidence for transformation of benzo(a)pyrene or dibenz(a,h)anthracene was obtained. Only naphthalene and anthracene transformations were observed in water samples; rate constants were consistently 5- and 20-fold lower, respectively, than in the corresponding sediment samples. The measured rate constants for anthracene transformation in July 1978 sediment samples were not related to total heterotroph numbers. In late July 1978, the effluent was diverted from the primary study area; however, no differences were observed either in transformation rate constants or in the downstream/upstream sediment rate constant ratio. These results are consistent with the hypothesis that continuous inputs of polycyclic aromatic hydrocarbons result in an increased ability within a microbial community to utilize certain polycyclic aromatic hydrocarbons. However, because transformation rates remained elevated for more than 1 year after removal of the polycyclic aromatic hydrocarbon source, microbial communities may shift only

  3. Millions of reads, thousands of taxa: microbial community structure and associations analyzed via marker genes.

    PubMed

    Bálint, Miklós; Bahram, Mohammad; Eren, A Murat; Faust, Karoline; Fuhrman, Jed A; Lindahl, Björn; O'Hara, Robert B; Öpik, Maarja; Sogin, Mitchell L; Unterseher, Martin; Tedersoo, Leho

    2016-09-01

    With high-throughput sequencing (HTS), we are able to explore the hidden world of microscopic organisms to an unpre-cedented level. The fast development of molecular technology and statistical methods means that microbial ecologists must keep their toolkits updated. Here, we review and evaluate some of the more widely adopted and emerging techniques for analysis of diversity and community composition, and the inference of species interactions from co-occurrence data generated by HTS of marker genes. We emphasize the importance of observational biases and statistical properties of the data and methods. The aim of the review is to critically discuss the advantages and disadvantages of established and emerging statistical methods, and to contribute to the integration of HTS-based marker gene data into community ecology.

  4. Mining of hemicellulose and lignin degrading genes from differentially enriched methane producing microbial community.

    PubMed

    Pandit, Prabhakar D; Gulhane, Madhuri K; Khardenavis, Anshuman A; Purohit, Hemant J

    2016-09-01

    Study creates a scenario for enrichment and selection of ligno-hemicellulose degrading genotypes with anaerobic bioreactor as a model using rice straw, vegetable waste and food waste as substrates. Relative discrimination analysis showed that the hydrolytic pathways and associated microbial communities for ligno-hemicellulose degradation were dominatingly colonized with rice straw as substrate. The dominating bacteria were Caldicellulosiruptor, Fervidobacterium, Cytophaga, Ruminococcus, Thermotoga associated with hemicellulose degradation and Burkholderia, Pandorea, Sphingomonas, Spirochaeta, Pseudomonas for lignocellulose hydrolysis. This was further supported by the abundance of anaerobic aromatic compound degrading genes along with genes for xylanase and xylosidase in rice straw enriched community. The metagenome analysis data was validated by evaluation of the biochemical methane potential for these substrates. Food waste being most amenable substrate yielded 1410mL of biogas/gVS added whereas, biogas yield of 1160mL/gVS and 1080mL/gVS was observed in presence of vegetable waste and rice straw respectively.

  5. Millions of reads, thousands of taxa: microbial community structure and associations analyzed via marker genes.

    PubMed

    Bálint, Miklós; Bahram, Mohammad; Eren, A Murat; Faust, Karoline; Fuhrman, Jed A; Lindahl, Björn; O'Hara, Robert B; Öpik, Maarja; Sogin, Mitchell L; Unterseher, Martin; Tedersoo, Leho

    2016-09-01

    With high-throughput sequencing (HTS), we are able to explore the hidden world of microscopic organisms to an unpre-cedented level. The fast development of molecular technology and statistical methods means that microbial ecologists must keep their toolkits updated. Here, we review and evaluate some of the more widely adopted and emerging techniques for analysis of diversity and community composition, and the inference of species interactions from co-occurrence data generated by HTS of marker genes. We emphasize the importance of observational biases and statistical properties of the data and methods. The aim of the review is to critically discuss the advantages and disadvantages of established and emerging statistical methods, and to contribute to the integration of HTS-based marker gene data into community ecology. PMID:27358393

  6. Lateral gene transfers and the origins of the eukaryote proteome: a view from microbial parasites

    PubMed Central

    Hirt, Robert P; Alsmark, Cecilia; Embley, T Martin

    2015-01-01

    Our knowledge of the extent and functional impact of lateral gene transfer (LGT) from prokaryotes to eukaryotes, outside of endosymbiosis, is still rather limited. Here we review the recent literature, focusing mainly on microbial parasites, indicating that LGT from diverse prokaryotes has played a significant role in the evolution of a number of lineages, and by extension throughout eukaryotic evolution. As might be expected, taxonomic biases for donor prokaryotes indicate that shared habitat is a major factor driving transfers. The LGTs identified predominantly affect enzymes from metabolic pathways, but over a third of LGT are genes for putative proteins of unknown function. Finally, we discuss the difficulties in analysing LGT among eukaryotes and suggest that high-throughput methodologies integrating different approaches are needed to achieve a more global understanding of the importance of LGT in eukaryotic evolution. PMID:25483352

  7. SLC7A5 act as a potential leukemic transformation target gene in myelodysplastic syndrome

    PubMed Central

    Ma, Yan; Song, Jing; Chen, Bobin; Xu, Xiaoping; Lin, Guowei

    2016-01-01

    Objective Myelodysplastic syndromes (MDS) are a heterogenous group of clonal hematopoietic stem cell disorders characterized by increased risk of leukemic transformation. This study identifies microRNAs(miRNA) and miRNA targets that might represent leukemic transformation markers for MDS. Methods Based on our previously established nested case-control study cohort of MDS patients, we chose paired patients to undergo Angilent 8 × 15K human miRNA microarrays. Target prediction analysis was administrated using targetscan 5.1 software. We further investigated the function of target gene in MDS cell line using siRNA method, including cell proliferation, cell apoptosis, cell cycle and electron microscope. Results Finally we screened a subset of 7 miRNAs to be significantly differentially expressed between the case (at the end of follow up with leukemic transformation) and control group (at the end of follow up without leukemic transformation). Target prediction analysis revealed SLC7A5 was the common target gene of these 7 miRNAs. Further study on the function of SLC7A5 gene in SKM-1 cell line showed that downregulation of SLC7A5 inhibited SKM-1 cells proliferation, increased apoptosis and caused cell cycle arrest in the G0/G1 stage. Conclusion Our data indicate that SLC7A5 gene may act as a potential leukemic transformation target gene in MDS. PMID:26657287

  8. ANALYSIS OF ALEXANDRIUM TAMARENSE (DINOPHYCEAE) GENES REVEALS THE COMPLEX EVOLUTIONARY HISTORY OF A MICROBIAL EUKARYOTE().

    PubMed

    Chan, Cheong Xin; Soares, Marcelo B; Bonaldo, Maria F; Wisecaver, Jennifer H; Hackett, Jeremiah D; Anderson, Donald M; Erdner, Deana L; Bhattacharya, Debashish

    2012-10-01

    Microbial eukaryotes may extinguish much of their nuclear phylogenetic history due to endosymbiotic/horizontal gene transfer (E/HGT). We studied E/HGT in 32,110 contigs of expressed sequence tags (ESTs) from the dinoflagellate Alexandrium tamarense (Dinophyceae) using a conservative phylogenomic approach. The vast majority of predicted proteins (86.4%) in this alga are novel or dinoflagellate-specific. We searched for putative homologs of these predicted proteins against a taxonomically broadly sampled protein database that includes all currently available data from algae and protists and reconstructed a phylogeny from each of the putative homologous protein sets. Of the 2,523 resulting phylogenies, 14-17% are potentially impacted by E/HGT involving both prokaryote and eukaryote lineages, with 2-4% showing clear evidence of reticulate evolution. The complex evolutionary histories of the remaining proteins, many of which may also have been affected by E/HGT, cannot be interpreted using our approach with currently available gene data. We present empirical evidence of reticulate genome evolution that combined with inadequate or highly complex phylogenetic signal in many proteins may impede genome-wide approaches to infer the tree of microbial eukaryotes.

  9. Characteristics and Kinetic Analysis of AQS Transformation and Microbial Goethite Reduction:Insight into "Redox mediator-Microbe-Iron oxide" Interaction Process.

    PubMed

    Zhu, Weihuang; Shi, Mengran; Yu, Dan; Liu, Chongxuan; Huang, Tinglin; Wu, Fengchang

    2016-01-01

    The characteristics and kinetics of redox transformation of a redox mediator, anthraquinone-2-sulfonate (AQS), during microbial goethite reduction by Shewanella decolorationis S12, a dissimilatory iron reduction bacterium (DIRB), were investigated to provide insights into "redox mediator-iron oxide" interaction in the presence of DIRB. Two pre-incubation reaction systems of the "strain S12- goethite" and the "strain S12-AQS" were used to investigate the dynamics of goethite reduction and AQS redox transformation. Results show that the concentrations of goethite and redox mediator, and the inoculation cell density all affect the characteristics of microbial goethite reduction, kinetic transformation between oxidized and reduced species of the redox mediator. Both abiotic and biotic reactions and their coupling regulate the kinetic process for "Quinone-Iron" interaction in the presence of DIRB. Our results provide some new insights into the characteristics and mechanisms of interaction among "quinone-DIRB- goethite" under biotic/abiotic driven.

  10. Functional gene array-based analysis of microbial community structure in groundwater with gradient of contaminant levels

    SciTech Connect

    Wu, Liyou; Van Nostrand, Joy; Schadt, Christopher Warren; Watson, David B; Jardine, Philip M; Palumbo, Anthony Vito; Hazen, Terry; Zhou, Jizhong

    2009-04-01

    To understand how contaminants affect microbial community diversity, heterogeneity, and functional structure, six groundwater monitoring wells from the Field Research Center of the U.S. Department of Energy Environmental Remediation Science Program (ERSP; Oak Ridge, TN), with a wide range of pH, nitrate, and heavy metal contamination were investigated. DNA from the groundwater community was analyzed with a functional gene array containing 2006 probes to detect genes involved in metal resistance, sulfate reduction, organic contaminant degradation, and carbon and nitrogen cycling. Microbial diversity decreased in relation to the contamination levels of the wells. Highly contaminated wells had lower gene diversity but greater signal intensity than the pristine well. The microbial composition was heterogeneous, with 17?70% overlap between different wells. Metal-resistant and metal-reducing microorganisms were detected in both contaminated and pristine wells, suggesting the potential for successful bioremediation of metal-contaminated groundwaters. In addition, results of Mantel tests and canonical correspondence analysis indicate that nitrate, sulfate, pH, uranium, and technetium have a significant (p < 0.05) effect on microbial community structure. This study provides an overall picture of microbial community structure in contaminated environments with functional gene arrays by showing that diversity and heterogeneity can vary greatly in relation to contamination.

  11. Functional gene array-based analysis of microbial community structure in groundwaters with a gradient of contaminant levels

    SciTech Connect

    Waldron, P.J.; Wu, L.; Van Nostrand, J.D.; Schadt, C.W.; Watson, D.B.; Jardine, P.M.; Palumbo, A.V.; Hazen, T.C.; Zhou, J.

    2009-06-15

    To understand how contaminants affect microbial community diversity, heterogeneity, and functional structure, six groundwater monitoring wells from the Field Research Center of the U.S. Department of Energy Environmental Remediation Science Program (ERSP; Oak Ridge, TN), with a wide range of pH, nitrate, and heavy metal contamination were investigated. DNA from the groundwater community was analyzed with a functional gene array containing 2006 probes to detect genes involved in metal resistance, sulfate reduction, organic contaminant degradation, and carbon and nitrogen cycling. Microbial diversity decreased in relation to the contamination levels of the wells. Highly contaminated wells had lower gene diversity but greater signal intensity than the pristine well. The microbial composition was heterogeneous, with 17-70% overlap between different wells. Metal-resistant and metal-reducing microorganisms were detected in both contaminated and pristine wells, suggesting the potential for successful bioremediation of metal-contaminated groundwaters. In addition, results of Mantel tests and canonical correspondence analysis indicate that nitrate, sulfate, pH, uranium, and technetium have a significant (p < 0.05) effect on microbial community structure. This study provides an overall picture of microbial community structure in contaminated environments with functional gene arrays by showing that diversity and heterogeneity can vary greatly in relation to contamination.

  12. Functional gene array-based analysis of microbial community structure in groundwaters with a gradient of contaminant levels.

    PubMed

    Waldron, Patricia J; Wu, Liyou; Van Nostrand, Joy D; Schadt, Chris W; He, Zhili; Watson, David B; Jardine, Philip M; Palumbo, Anthony V; Hazen, Terry C; Zhou, Jizhong

    2009-05-15

    To understand how contaminants affect microbial community diversity, heterogeneity, and functional structure, six groundwater monitoring wells from the Field Research Center of the U.S. Department of Energy Environmental Remediation Science Program (ERSP; Oak Ridge, TN), with a wide range of pH, titrate, and heavy metal contamination were investigated. DNA from the groundwater community was analyzed with a functional gene array containing 2006 probes to detect genes involved in metal resistance, sulfate reduction, organic contaminant degradation, and carbon and nitrogen cycling. Microbial diversity decreased in relation to the contamination levels of the wells. Highly contaminated wells had lower gene diversity but greater signal intensity than the pristine well. The microbial composition was heterogeneous, with 17-70% overlap between differentwells. Metal-resistant and metal-reducing microorganisms were detected in both contaminated and pristine wells, suggesting the potential for successful bioremediation of metal-contaminated groundwaters. In addition, results of Mantel tests and canonical correspondence analysis indicate that nitrate, sulfate, pH, uranium, and technetium have a significant (p < 0.05) effect on microbial community structure. This study provides an overall picture of microbial community structure in contaminated environments with functional gene arrays by showing that diversity and heterogeneity can vary greatly in relation to contamination.

  13. Microbial Reductive Transformation of Phyllosilicate Fe(III) and U(VI) in Fluvial Subsurface Sediments

    SciTech Connect

    Lee, Ji-Hoon; Fredrickson, Jim K.; Kukkadapu, Ravi K.; Boyanov, Maxim I.; Kemner, Kenneth M.; Lin, Xueju; Kennedy, David W.; Bjornstad, Bruce N.; Konopka, Allan; Moore, Dean A.; Resch, Charles T.; Phillips, Jerry L.

    2012-03-14

    The microbial reduction of Fe(III) and U(VI) were investigated in shallow aquifer sediments collected from subsurface Pleistocene flood deposits near the Hanford Reach of the Columbia River in Washington State. Increases in 0.5 N HCl-extractable Fe(II) were observed in incubated sediments and 57Fe Mössbauer spectroscopy revealed that Fe(III) associated with phyllosilicates and pyroxene was reduced to Fe(II). Aqueous uranium(VI) concentrations decreased in incubated Hanford sediments with the rate and extent being greater in sediment amended with organic carbon. X-ray absorption spectroscopy of bioreduced sediments indicated that 67-77% of the U signal was U(VI), probably as an adsorbed species associated with a new or modified reactive mineral phase. Phylotypes within the Deltaproteobacteria were more common in Hanford sediments incubated with U(VI) than without and in U(VI)-free incubations, members of the Clostridiales were dominant with sulfate-reducing phylotypes more common in the sulfate-amended sediments. These results demonstrate the potential for anaerobic reduction phyllosilicate Fe(III) and sulfate in Hanford unconfined aquifer sediments and biotransformations involving reduction and adsorption leading to decreased aqueous U concentrations.

  14. Development of a transformation system for gene knock-out in the flavinogenic yeast Pichia guilliermondii.

    PubMed

    Boretsky, Yuriy R; Pynyaha, Yuriy V; Boretsky, Volodymyr Y; Kutsyaba, Vasyl I; Protchenko, Olga V; Philpott, Caroline C; Sibirny, Andriy A

    2007-07-01

    Pichia guilliermondii is a representative of a yeast species, all of which over-synthesize riboflavin in response to iron deprivation. Molecular genetic studies in this yeast species have been hampered by a lack of strain-specific tools for gene manipulation. Stable P. guilliermondii ura3 mutants were selected on the basis of 5'-fluoroorotic acid resistance. Plasmid carrying Saccharomyces cerevisiae URA3 gene transformed the mutant strains to prototrophy with a low efficiency. Substitution of a single leucine codon CUG by another leucine codon CUC in the URA3 gene increased the efficiency of transformation 100 fold. Deletion cassettes for the RIB1 and RIB7 genes, coding for GTP cyclohydrolase and riboflavin synthase, respectively, were constructed using the modified URA3 gene and subsequently introduced into a P. guilliermondii ura3 strain. Site-specific integrants were identified by selection for the Rib(-) Ura(+) phenotype and confirmed by PCR analysis. Transformation of the P. guilliermondii ura3 strain was performed using electroporation, spheroplasting or lithium acetate treatment. Only the lithium acetate transformation procedure provided selection of uracil prototrophic, riboflavin deficient recombinant strains. Depending on the type of cassette, efficiency of site-specific integration was 0.1% and 3-12% in the case of the RIB1 and RIB7 genes, respectively. We suggest that the presence of the ARS element adjacent to the 3' end of the RIB1 gene significantly reduced the frequency of homologous recombination. Efficient gene deletion in P. guilliermondii can be achieved using the modified URA3 gene of S. cerevisiae flanked by 0.8-0.9 kb sequences homologous to the target gene. PMID:17467833

  15. Microbial Transformations of TRU and Mixed Wastes: Actinide Speciation and Waste Volume Reduction

    SciTech Connect

    Halada, Gary P.

    2005-06-01

    Cellosic samples were prepared 1/29/92 at BNL from various sources, including white and brown paper towel, and Kimwipes. The mixed cellulosics were cut into 1 cm x 1 cm squares and transferred to glass serum bottles and various treatments were conducted: unamended (U) samples were filled with nitrogen-purged brine from G-Seep (4.1 M Na+ and 5.1 Cl- with minor amounts of Mg, K, and Ca and 0.3 M sulfate (Brush, 1990)); unamended/inoculated (UI) samples were filled with bacteria-containing surface lake water, sediment, and halite from the underground at the WIPP site; amended/inoculated (AI) samples were inoculated in this fashion and amended with nutrients; and amended/inoculated/excess nitrate (AINO3) samples were inoculated with excess nitrate in the form of KNO3 (5 g L-1 (49.5 mM)). Further information on sample preparation is available. All samples were analyzed by Fourier transform infrared spectroscopy (FTIR) at SBU to identify any transformations in cellulosic material which may have occurred during treatment and storage.

  16. Efficient gene knockout in the maize pathogen Setosphaeria turcica using Agrobacterium tumefaciens-mediated transformation.

    PubMed

    Xue, Chunsheng; Wu, Dongliang; Condon, Bradford J; Bi, Qing; Wang, Weiwei; Turgeon, B Gillian

    2013-06-01

    Setosphaeria turcica, a hemibiotrophic pathogenic dothideomycete, is the causal agent of Northern Leaf Blight of maize, which periodically causes significant yield losses worldwide. To explore molecular mechanisms of fungal pathogenicity and virulence to the host, an efficient targeted gene knockout transformation system using Agrobacterium tumefaciens was established with field collected strains. The starting materials, incubation time, induction medium type, Agrobacterium cell density, and method of co-incubation were optimized for deletion of 1,3,8-trihydroxynaphthalene reductase, a gene in the melanin biosynthesis pathway, as a test case. Four additional genes were deleted in two different S. turcica field isolates to confirm robustness of the method. One of these mutant strains was reduced in virulence compared with the wild-type strain when inoculated on susceptible maize. Transformation efficiency was ≈20 ± 3 transformants per 1× 10(6) germlings and homologous recombination efficiency was 33.3 to 100%. PMID:23384859

  17. Transformation of Aspergillus parasiticus with a homologous gene (pyrG) involved in pyrimidine biosynthesis

    SciTech Connect

    Skory, C.D.; Horng, J.S.; Pestka, J.J.; Linz, J.E. )

    1990-11-01

    The lack of efficient transformation methods for aflatoxigenic Aspergillus parasiticus has been a major constraint for the study of aflatoxin biosynthesis at the genetic level. A transformation system with efficiencies of 30 to 50 stable transformants per {mu}g of DNA was developed for A. parasiticus by using homologous pyrG gene. The pyrG gene from A. parasiticus was isolated by in situ plaque hybridization of a lambda genomic DNA library. Uridine auxotrophs of A. parasiticus ATCC 36537, a mutant blocked in aflatoxin biosynthesis, were isolated by selection on 5-fluoroorotic acid following nitrosoguanidine mutagenesis. Isolates with mutations in the pyrG gene resulting in elimination of orotidine monophosphate (OMP) decarboxylase activity were detected by assaying cell extracts for their ability to convert ({sup 14}C)OMP to ({sup 14}C)UMP. Transformation of A. parasiticus pyrG protoplasts with the homologous pyrG gene restored the fungal cells to prototrophy. Enzymatic analysis of cell extracts of transformant clones demonstrated that these extracts had the ability to convert ({sup 14}C)OMP to ({sup 14}C)UMP. Southern analysis of DNA purified from transformant clones indicated that both pUC19 vector sequences and pyrG sequences were integrated into the genome. The development of this pyrG transformation system should allow cloning of the aflatoxin-biosynthetic genes, which will be useful in studying the regulation of aflatoxin biosynthesis and may ultimately provide a means for controlling aflatoxin production in the field.

  18. Suppression of SOS-inducing activity of chemical mutagens by metabolites from microbial transformation of (+)-longicyclene.

    PubMed

    Sakata, Kazuki; Miyazawa, Mitsuo

    2010-08-25

    In this study, biotransformation of (+)-longicyclene (1) by Aspergillus niger (NBRC 4414) and the suppressive effect on umuC gene expression by chemical mutagens 2-(2-furyl)-3-(5-nitro-2-furyl)acrylamide (furylfuramide) and aflatoxin B1 (AFB1) of the SOS response in Salmonella typhimurium TA1535/pSK1002 were investigated. Initially, compound 1 was converted to three new terpenoids, (-)-(10R)-10-hydroxy-longicyclic acid (2), (+)-(10S)-10-hydroxy-longicyclic acid (3), and (+)-10-oxo-longicyclic acid (4) by A. niger , and their conversion rates were 27, 23, and 30%, respectively. The metabolites suppressed the SOS-inducing activity of furylfuramide and AFB1 in the umu test. Compounds 1-4 were hardly showing a suppressive effect on umu gene expression of the SOS responses in S. typhimurium TA1535/pSK1002 against furylfuramid. However, metabolites showed a suppressive effect against AFB1. Compound 4 had gene expression by chemical mutagen AFB1, was suppressed 53% at <1.0 mM, and was the most effective compound in this experiment. PMID:20662538

  19. Soil-Atmosphere CO Exchanges and Microbial Biogeochemistry of CO Transformations in a Brazilian Agricultural Ecosystem†

    PubMed Central

    King, Gary M.; Hungria, M.

    2002-01-01

    Although anthropogenic land use has major impacts on the exchange of soil and atmosphere gas in general, relatively little is known about its impacts on carbon monoxide. We compared soil-atmosphere CO exchanges as a function of land use, crop type, and tillage treatment on an experimental farm in Parãna, Brazil, that is representative of regionally important agricultural ecosystems. Our results showed that cultivated soils consumed CO at rates between 3 and 6 mg of CO m−2 day−1, with no statistically significant effect of tillage method or crop. However, CO exchange for a pasture soil was near zero, and an unmanaged woodlot emitted CO at a rate of 9 mg of CO m−2 day−1. Neither nitrite, aluminum sulfate, nor methyl fluoride additions affected CO consumption by tilled or untilled soils from soybean plots, indicating that CO oxidation did not depend on ammonia oxidizers and that CO oxidation patterns differed in part from patterns reported for forest soils. The apparent Km for CO uptake, 5 to 11 ppm, was similar to values reported for temperate forest soils; Vmax values, approximately 1 μg of CO g (dry weight)−1 h−1, were comparable for woodlot and cultivated soils in spite of the fact that the latter consumed CO under ambient conditions. Short-term (24-h) exposure to elevated levels of CO (10% CO) partially inhibited uptake at lower concentrations (i.e., 100 ppm), suggesting that the sensitivity to CO of microbial populations that are active in situ differs from that of known carboxydotrophs. Soil-free soybean and corn roots consumed CO when they were incubated with 100-ppm concentrations and produced CO when they were incubated with ambient concentrations. These results document for the first time a role for cultivated plant roots in the dynamics of CO in an agricultural ecosystem. PMID:12200303

  20. Identification and characterization of rhizospheric microbial diversity by 16S ribosomal RNA gene sequencing

    PubMed Central

    Naveed, Muhammad; Mubeen, Samavia; khan, SamiUllah; Ahmed, Iftikhar; Khalid, Nauman; Suleria, Hafiz Ansar Rasul; Bano, Asghari; Mumtaz, Abdul Samad

    2014-01-01

    In the present study, samples of rhizosphere and root nodules were collected from different areas of Pakistan to isolate plant growth promoting rhizobacteria. Identification of bacterial isolates was made by 16S rRNA gene sequence analysis and taxonomical confirmation on EzTaxon Server. The identified bacterial strains were belonged to 5 genera i.e. Ensifer, Bacillus, Pseudomona, Leclercia and Rhizobium. Phylogenetic analysis inferred from 16S rRNA gene sequences showed the evolutionary relationship of bacterial strains with the respective genera. Based on phylogenetic analysis, some candidate novel species were also identified. The bacterial strains were also characterized for morphological, physiological, biochemical tests and glucose dehydrogenase (gdh) gene that involved in the phosphate solublization using cofactor pyrroloquinolone quinone (PQQ). Seven rhizoshperic and 3 root nodulating stains are positive for gdh gene. Furthermore, this study confirms a novel association between microbes and their hosts like field grown crops, leguminous and non-leguminous plants. It was concluded that a diverse group of bacterial population exist in the rhizosphere and root nodules that might be useful in evaluating the mechanisms behind plant microbial interactions and strains QAU-63 and QAU-68 have sequence similarity of 97 and 95% which might be declared as novel after further taxonomic characterization. PMID:25477935

  1. Identification and characterization of rhizospheric microbial diversity by 16S ribosomal RNA gene sequencing.

    PubMed

    Naveed, Muhammad; Mubeen, Samavia; Khan, SamiUllah; Ahmed, Iftikhar; Khalid, Nauman; Suleria, Hafiz Ansar Rasul; Bano, Asghari; Mumtaz, Abdul Samad

    2014-01-01

    In the present study, samples of rhizosphere and root nodules were collected from different areas of Pakistan to isolate plant growth promoting rhizobacteria. Identification of bacterial isolates was made by 16S rRNA gene sequence analysis and taxonomical confirmation on EzTaxon Server. The identified bacterial strains were belonged to 5 genera i.e. Ensifer, Bacillus, Pseudomona, Leclercia and Rhizobium. Phylogenetic analysis inferred from 16S rRNA gene sequences showed the evolutionary relationship of bacterial strains with the respective genera. Based on phylogenetic analysis, some candidate novel species were also identified. The bacterial strains were also characterized for morphological, physiological, biochemical tests and glucose dehydrogenase (gdh) gene that involved in the phosphate solublization using cofactor pyrroloquinolone quinone (PQQ). Seven rhizoshperic and 3 root nodulating stains are positive for gdh gene. Furthermore, this study confirms a novel association between microbes and their hosts like field grown crops, leguminous and non-leguminous plants. It was concluded that a diverse group of bacterial population exist in the rhizosphere and root nodules that might be useful in evaluating the mechanisms behind plant microbial interactions and strains QAU-63 and QAU-68 have sequence similarity of 97 and 95% which might be declared as novel after further taxonomic characterization.

  2. GeoChip 4: a functional gene-array-based high-throughput environmental technology for microbial community analysis.

    PubMed

    Tu, Qichao; Yu, Hao; He, Zhili; Deng, Ye; Wu, Liyou; Van Nostrand, Joy D; Zhou, Aifen; Voordeckers, James; Lee, Yong-Jin; Qin, Yujia; Hemme, Christopher L; Shi, Zhou; Xue, Kai; Yuan, Tong; Wang, Aijie; Zhou, Jizhong

    2014-09-01

    Micro-organisms play critical roles in many important biogeochemical processes in the Earth's biosphere. However, understanding and characterizing the functional capacity of microbial communities are still difficult due to the extremely diverse and often uncultivable nature of most micro-organisms. In this study, we developed a new functional gene array, GeoChip 4, for analysing the functional diversity, composition, structure, metabolic potential/activity and dynamics of microbial communities. GeoChip 4 contained approximately 82 000 probes covering 141 995 coding sequences from 410 functional gene families related to microbial carbon (C), nitrogen (N), sulphur (S), and phosphorus (P) cycling, energy metabolism, antibiotic resistance, metal resistance/reduction, organic remediation, stress responses, bacteriophage and virulence. A total of 173 archaeal, 4138 bacterial, 404 eukaryotic and 252 viral strains were targeted, providing the ability to analyse targeted functional gene families of micro-organisms included in all four domains. Experimental assessment using different amounts of DNA suggested that as little as 500 ng environmental DNA was required for good hybridization, and the signal intensities detected were well correlated with the DNA amount used. GeoChip 4 was then applied to study the effect of long-term warming on soil microbial communities at a Central Oklahoma site, with results indicating that microbial communities respond to long-term warming by enriching carbon degradation, nutrient cycling (nitrogen and phosphorous) and stress response gene families. To the best of our knowledge, GeoChip 4 is the most comprehensive functional gene array for microbial community analysis.

  3. Assessing the microbial community and functional genes in a vertical soil profile with long-term arsenic contamination.

    PubMed

    Xiong, Jinbo; He, Zhili; Van Nostrand, Joy D; Luo, Guosheng; Tu, Shuxin; Zhou, Jizhong; Wang, Gejiao

    2012-01-01

    Arsenic (As) contamination in soil and groundwater has become a serious problem to public health. To examine how microbial communities and functional genes respond to long-term arsenic contamination in vertical soil profile, soil samples were collected from the surface to the depth of 4 m (with an interval of 1 m) after 16-year arsenic downward infiltration. Integrating BioLog and functional gene microarray (GeoChip 3.0) technologies, we showed that microbial metabolic potential and diversity substantially decreased, and community structure was markedly distinct along the depth. Variations in microbial community functional genes, including genes responsible for As resistance, carbon and nitrogen cycling, phosphorus utilization and cytochrome c oxidases were detected. In particular, changes in community structures and activities were correlated with the biogeochemical features along the vertical soil profile when using the rbcL and nifH genes as biomarkers, evident for a gradual transition from aerobic to anaerobic lifestyles. The C/N showed marginally significant correlations with arsenic resistance (p = 0.069) and carbon cycling genes (p = 0.073), and significant correlation with nitrogen fixation genes (p = 0.024). The combination of C/N, NO(3) (-) and P showed the highest correlation (r = 0.779, p = 0.062) with the microbial community structure. Contradict to our hypotheses, a long-term arsenic downward infiltration was not the primary factor, while the spatial isolation and nutrient availability were the key forces in shaping the community structure. This study provides new insights about the heterogeneity of microbial community metabolic potential and future biodiversity preservation for arsenic bioremediation management.

  4. Assessing the Microbial Community and Functional Genes in a Vertical Soil Profile with Long-Term Arsenic Contamination

    PubMed Central

    Xiong, Jinbo; He, Zhili; Van Nostrand, Joy D.; Luo, Guosheng; Tu, Shuxin; Zhou, Jizhong; Wang, Gejiao

    2012-01-01

    Arsenic (As) contamination in soil and groundwater has become a serious problem to public health. To examine how microbial communities and functional genes respond to long-term arsenic contamination in vertical soil profile, soil samples were collected from the surface to the depth of 4 m (with an interval of 1 m) after 16-year arsenic downward infiltration. Integrating BioLog and functional gene microarray (GeoChip 3.0) technologies, we showed that microbial metabolic potential and diversity substantially decreased, and community structure was markedly distinct along the depth. Variations in microbial community functional genes, including genes responsible for As resistance, carbon and nitrogen cycling, phosphorus utilization and cytochrome c oxidases were detected. In particular, changes in community structures and activities were correlated with the biogeochemical features along the vertical soil profile when using the rbcL and nifH genes as biomarkers, evident for a gradual transition from aerobic to anaerobic lifestyles. The C/N showed marginally significant correlations with arsenic resistance (p = 0.069) and carbon cycling genes (p = 0.073), and significant correlation with nitrogen fixation genes (p = 0.024). The combination of C/N, NO3− and P showed the highest correlation (r = 0.779, p = 0.062) with the microbial community structure. Contradict to our hypotheses, a long-term arsenic downward infiltration was not the primary factor, while the spatial isolation and nutrient availability were the key forces in shaping the community structure. This study provides new insights about the heterogeneity of microbial community metabolic potential and future biodiversity preservation for arsenic bioremediation management. PMID:23226297

  5. Metagenomic analysis of stress genes in microbial mat communities from Antarctica and the High Arctic.

    PubMed

    Varin, Thibault; Lovejoy, Connie; Jungblut, Anne D; Vincent, Warwick F; Corbeil, Jacques

    2012-01-01

    Polar and alpine microbial communities experience a variety of environmental stresses, including perennial cold and freezing; however, knowledge of genomic responses to such conditions is still rudimentary. We analyzed the metagenomes of cyanobacterial mats from Arctic and Antarctic ice shelves, using high-throughput pyrosequencing to test the hypotheses that consortia from these extreme polar habitats were similar in terms of major phyla and subphyla and consequently in their potential responses to environmental stresses. Statistical comparisons of the protein-coding genes showed similarities between the mats from the two poles, with the majority of genes derived from Proteobacteria and Cyanobacteria; however, the relative proportions differed, with cyanobacterial genes more prevalent in the Antarctic mat metagenome. Other differences included a higher representation of Actinobacteria and Alphaproteobacteria in the Arctic metagenomes, which may reflect the greater access to diasporas from both adjacent ice-free lands and the open ocean. Genes coding for functional responses to environmental stress (exopolysaccharides, cold shock proteins, and membrane modifications) were found in all of the metagenomes. However, in keeping with the greater exposure of the Arctic to long-range pollutants, sequences assigned to copper homeostasis genes were statistically (30%) more abundant in the Arctic samples. In contrast, more reads matching the sigma B genes were identified in the Antarctic mat, likely reflecting the more severe osmotic stress during freeze-up of the Antarctic ponds. This study underscores the presence of diverse mechanisms of adaptation to cold and other stresses in polar mats, consistent with the proportional representation of major bacterial groups. PMID:22081564

  6. TRANSFORMER

    DOEpatents

    Baker, W.R.

    1959-08-25

    Transformers of a type adapted for use with extreme high power vacuum tubes where current requirements may be of the order of 2,000 to 200,000 amperes are described. The transformer casing has the form of a re-entrant section being extended through an opening in one end of the cylinder to form a coaxial terminal arrangement. A toroidal multi-turn primary winding is disposed within the casing in coaxial relationship therein. In a second embodiment, means are provided for forming the casing as a multi-turn secondary. The transformer is characterized by minimized resistance heating, minimized external magnetic flux, and an economical construction.

  7. Organic matter transformations in the upper mesopelagic zone of the North Pacific: Chemical composition and linkages to microbial community structure

    NASA Astrophysics Data System (ADS)

    Kaiser, Karl; Benner, Ronald

    2012-01-01

    Transformation processes in the euphotic and mesopelagic zones are of crucial importance to the biological pump and global elemental cycles. In this study, elemental stoichiometries and chemical compositions of particulate and dissolved organic matter (DOM) were investigated in the euphotic and upper mesopelagic zones of the North Pacific Subtropical Gyre. The distributions of bacterial biomarkers (D-amino acids, muramic acid) and major biochemicals (amino acids, neutral sugars, amino sugars) indicated a direct link between microbial community structure and the biochemical composition of organic matter. Bacteria were major sources of organic C, N, and P in the upper mesopelagic zone. Heterotrophic bacterial transformations were important in the formation of biorefractory organic matter that is retained in the ocean on timescales of decades to millennia. Net removal rates for dissolved organic carbon (DOC), dissolved organic nitrogen (DON), and major biochemicals were calculated for the upper mesopelagic zone (110-300 m). Dissolved hydrolyzable amino acids, neutral sugars, and amino sugars comprised 5-18% of DOC and 4-5% of DON removed in the upper mesopelagic zone, indicating these biochemicals were important components of semilabile DOM. Net removal rates of neutral sugars were 3-10 times higher than net removal rates of amino acids and amino sugars. This suggested that neutral sugars were the most reactive component among the three classes of biochemicals. Depth-integrated net DOC removal rates indicated that DOC comprised 19-31% of total carbon export flux in the North Pacific gyre and supplied 27-93% of bacterial carbon demand in the upper mesopelagic zone.

  8. A microbial transformation using Bacillus subtilis B7-S to produce natural vanillin from ferulic acid.

    PubMed

    Chen, Peng; Yan, Lei; Wu, Zhengrong; Li, Suyue; Bai, Zhongtian; Yan, Xiaojuan; Wang, Ningbo; Liang, Ning; Li, Hongyu

    2016-01-01

    Bacillus subtilis strain B7-S screened from18 strains is an aerobic, endospore-forming, model organism of Gram-positive bacteria which is capable to form vanillin during ferulic acid bioconversion. The bioconversion of ferulic acid to vanillin by Bacillus subtilis B7-S (B. subtilis B7-S) was investigated. Based on our results, the optimum bioconversion conditions for the production of vanillin by B. subtilis B7-S can be summarized as follows: temperature 35 °C; initial pH 9.0; inoculum volume 5%; ferulic acid concentration 0.6 g/L; volume of culture medium 20%; and shaking speed 200 r/min. Under these conditions, several repeated small-scale batch experiments showed that the maximum conversion efficiency was 63.30% after 3 h of bioconversion. The vanillin products were confirmed by spectral data achieved from UV-vis, inductively coupled plasma atomic emission spectroscope (ICP-AES) and Fourier transform infrared spectrometer (FT-IR) spectra. Scanning electron microscopy (SEM) and transmission electron spectroscopy (TEM) results confirmed that the cell surface of B. subtilis plays a role in the induction of ferulic acid tolerance. These results demonstrate that B. subtilis B7-S has the potential for use in vanillin production through bioconversion of ferulic acid. PMID:26841717

  9. A microbial transformation using Bacillus subtilis B7-S to produce natural vanillin from ferulic acid.

    PubMed

    Chen, Peng; Yan, Lei; Wu, Zhengrong; Li, Suyue; Bai, Zhongtian; Yan, Xiaojuan; Wang, Ningbo; Liang, Ning; Li, Hongyu

    2016-02-04

    Bacillus subtilis strain B7-S screened from18 strains is an aerobic, endospore-forming, model organism of Gram-positive bacteria which is capable to form vanillin during ferulic acid bioconversion. The bioconversion of ferulic acid to vanillin by Bacillus subtilis B7-S (B. subtilis B7-S) was investigated. Based on our results, the optimum bioconversion conditions for the production of vanillin by B. subtilis B7-S can be summarized as follows: temperature 35 °C; initial pH 9.0; inoculum volume 5%; ferulic acid concentration 0.6 g/L; volume of culture medium 20%; and shaking speed 200 r/min. Under these conditions, several repeated small-scale batch experiments showed that the maximum conversion efficiency was 63.30% after 3 h of bioconversion. The vanillin products were confirmed by spectral data achieved from UV-vis, inductively coupled plasma atomic emission spectroscope (ICP-AES) and Fourier transform infrared spectrometer (FT-IR) spectra. Scanning electron microscopy (SEM) and transmission electron spectroscopy (TEM) results confirmed that the cell surface of B. subtilis plays a role in the induction of ferulic acid tolerance. These results demonstrate that B. subtilis B7-S has the potential for use in vanillin production through bioconversion of ferulic acid.

  10. Microbial- and thiosulfate-mediated dissolution of mercury sulfide minerals and transformation to gaseous mercury

    PubMed Central

    Vázquez-Rodríguez, Adiari I.; Hansel, Colleen M.; Zhang, Tong; Lamborg, Carl H.; Santelli, Cara M.; Webb, Samuel M.; Brooks, Scott C.

    2015-01-01

    Mercury (Hg) is a toxic heavy metal that poses significant environmental and human health risks. Soils and sediments, where Hg can exist as the Hg sulfide mineral metacinnabar (β-HgS), represent major Hg reservoirs in aquatic environments. Metacinnabar has historically been considered a sink for Hg in all but severely acidic environments, and thus disregarded as a potential source of Hg back to aqueous or gaseous pools. Here, we conducted a combination of field and laboratory incubations to identify the potential for metacinnabar as a source of dissolved Hg within near neutral pH environments and the underpinning (a)biotic mechanisms at play. We show that the abundant and widespread sulfur-oxidizing bacteria of the genus Thiobacillus extensively colonized metacinnabar chips incubated within aerobic, near neutral pH creek sediments. Laboratory incubations of axenic Thiobacillus thioparus cultures led to the release of metacinnabar-hosted Hg(II) and subsequent volatilization to Hg(0). This dissolution and volatilization was greatly enhanced in the presence of thiosulfate, which served a dual role by enhancing HgS dissolution through Hg complexation and providing an additional metabolic substrate for Thiobacillus. These findings reveal a new coupled abiotic-biotic pathway for the transformation of metacinnabar-bound Hg(II) to Hg(0), while expanding the sulfide substrates available for neutrophilic chemosynthetic bacteria to Hg-laden sulfides. They also point to mineral-hosted Hg as an underappreciated source of gaseous elemental Hg to the environment. PMID:26157421

  11. A microbial transformation using Bacillus subtilis B7-S to produce natural vanillin from ferulic acid

    PubMed Central

    Chen, Peng; Yan, Lei; Wu, Zhengrong; Li, Suyue; Bai, Zhongtian; Yan, Xiaojuan; Wang, Ningbo; Liang, Ning; Li, Hongyu

    2016-01-01

    Bacillus subtilis strain B7-S screened from18 strains is an aerobic, endospore-forming, model organism of Gram-positive bacteria which is capable to form vanillin during ferulic acid bioconversion. The bioconversion of ferulic acid to vanillin by Bacillus subtilis B7-S (B. subtilis B7-S) was investigated. Based on our results, the optimum bioconversion conditions for the production of vanillin by B. subtilis B7-S can be summarized as follows: temperature 35 °C; initial pH 9.0; inoculum volume 5%; ferulic acid concentration 0.6 g/L; volume of culture medium 20%; and shaking speed 200 r/min. Under these conditions, several repeated small-scale batch experiments showed that the maximum conversion efficiency was 63.30% after 3 h of bioconversion. The vanillin products were confirmed by spectral data achieved from UV–vis, inductively coupled plasma atomic emission spectroscope (ICP-AES) and Fourier transform infrared spectrometer (FT-IR) spectra. Scanning electron microscopy (SEM) and transmission electron spectroscopy (TEM) results confirmed that the cell surface of B. subtilis plays a role in the induction of ferulic acid tolerance. These results demonstrate that B. subtilis B7-S has the potential for use in vanillin production through bioconversion of ferulic acid. PMID:26841717

  12. Microbial trophic interactions and mcrA gene expression in monitoring of anaerobic digesters.

    PubMed

    Alvarado, Alejandra; Montañez-Hernández, Lilia E; Palacio-Molina, Sandra L; Oropeza-Navarro, Ricardo; Luévanos-Escareño, Miriam P; Balagurusamy, Nagamani

    2014-01-01

    Anaerobic digestion (AD) is a biological process where different trophic groups of microorganisms break down biodegradable organic materials in the absence of oxygen. A wide range of AD technologies is being used to convert livestock manure, municipal and industrial wastewaters, and solid organic wastes into biogas. AD gains importance not only because of its relevance in waste treatment but also because of the recovery of carbon in the form of methane, which is a renewable energy and is used to generate electricity and heat. Despite the advances on the engineering and design of new bioreactors for AD, the microbiology component always poses challenges. Microbiology of AD processes is complicated as the efficiency of the process depends on the interactions of various trophic groups involved. Due to the complex interdependence of microbial activities for the functionality of the anaerobic bioreactors, the genetic expression of mcrA, which encodes a key enzyme in methane formation, is proposed as a parameter to monitor the process performance in real time. This review evaluates the current knowledge on microbial groups, their interactions, and their relationship to the performance of anaerobic biodigesters with a focus on using mcrA gene expression as a tool to monitor the process. PMID:25429286

  13. Microbial trophic interactions and mcrA gene expression in monitoring of anaerobic digesters

    PubMed Central

    Alvarado, Alejandra; Montañez-Hernández, Lilia E.; Palacio-Molina, Sandra L.; Oropeza-Navarro, Ricardo; Luévanos-Escareño, Miriam P.; Balagurusamy, Nagamani

    2014-01-01

    Anaerobic digestion (AD) is a biological process where different trophic groups of microorganisms break down biodegradable organic materials in the absence of oxygen. A wide range of AD technologies is being used to convert livestock manure, municipal and industrial wastewaters, and solid organic wastes into biogas. AD gains importance not only because of its relevance in waste treatment but also because of the recovery of carbon in the form of methane, which is a renewable energy and is used to generate electricity and heat. Despite the advances on the engineering and design of new bioreactors for AD, the microbiology component always poses challenges. Microbiology of AD processes is complicated as the efficiency of the process depends on the interactions of various trophic groups involved. Due to the complex interdependence of microbial activities for the functionality of the anaerobic bioreactors, the genetic expression of mcrA, which encodes a key enzyme in methane formation, is proposed as a parameter to monitor the process performance in real time. This review evaluates the current knowledge on microbial groups, their interactions, and their relationship to the performance of anaerobic biodigesters with a focus on using mcrA gene expression as a tool to monitor the process. PMID:25429286

  14. Microbial trophic interactions and mcrA gene expression in monitoring of anaerobic digesters.

    PubMed

    Alvarado, Alejandra; Montañez-Hernández, Lilia E; Palacio-Molina, Sandra L; Oropeza-Navarro, Ricardo; Luévanos-Escareño, Miriam P; Balagurusamy, Nagamani

    2014-01-01

    Anaerobic digestion (AD) is a biological process where different trophic groups of microorganisms break down biodegradable organic materials in the absence of oxygen. A wide range of AD technologies is being used to convert livestock manure, municipal and industrial wastewaters, and solid organic wastes into biogas. AD gains importance not only because of its relevance in waste treatment but also because of the recovery of carbon in the form of methane, which is a renewable energy and is used to generate electricity and heat. Despite the advances on the engineering and design of new bioreactors for AD, the microbiology component always poses challenges. Microbiology of AD processes is complicated as the efficiency of the process depends on the interactions of various trophic groups involved. Due to the complex interdependence of microbial activities for the functionality of the anaerobic bioreactors, the genetic expression of mcrA, which encodes a key enzyme in methane formation, is proposed as a parameter to monitor the process performance in real time. This review evaluates the current knowledge on microbial groups, their interactions, and their relationship to the performance of anaerobic biodigesters with a focus on using mcrA gene expression as a tool to monitor the process.

  15. Detection of methoxylated and hydroxylated polychlorinated biphenyls in sewage sludge in China with evidence for their microbial transformation

    PubMed Central

    Sun, Jianteng; Zhu, Lizhong; Pan, Lili; Wei, Zi; Song, Yao; Zhang, Yuduo; Qu, Liping; Zhan, Yu

    2016-01-01

    The concentrations of methoxylated polychlorinated biphenyls (MeO-PCBs) and hydroxylated polychlorinated biphenyls (OH-PCBs) were measured in the sewage sludge samples collected from twelve wastewater treatment plants in China. Two MeO-PCB congeners, including 3′-MeO-CB-65 and 4′-MeO-CB-101, were detected in three sludge with mean concentrations of 0.58 and 0.52 ng/g dry weight, respectively. OH-PCBs were detected in eight sludge samples, with an average total concentration of 4.2 ng/g dry weight. Furthermore, laboratory exposure was conducted to determine the possible source of OH-PCBs and MeO-PCBs in the sewage sludge, and their metabolism by the microbes. Both 4′-OH-CB-101 and 4′-MeO-CB-101 were detected as metabolites of CB-101 at a limited conversion rate after 5 days. Importantly, microbial interconversion between OH-PCBs and MeO-PCBs was observed in sewage sludge. Demethylation of MeO-PCBs was favored over methylation of OH-PCBs. The abundant and diverse microbes in sludge play a key role in the transformation processes of the PCB analogues. To our knowledge, this is the first report on MeO-PCBs in environmental matrices and on OH-PCBs in sewage sludge. The findings are important to understand the environmental fate of PCBs. PMID:27417462

  16. Detection of methoxylated and hydroxylated polychlorinated biphenyls in sewage sludge in China with evidence for their microbial transformation

    NASA Astrophysics Data System (ADS)

    Sun, Jianteng; Zhu, Lizhong; Pan, Lili; Wei, Zi; Song, Yao; Zhang, Yuduo; Qu, Liping; Zhan, Yu

    2016-07-01

    The concentrations of methoxylated polychlorinated biphenyls (MeO-PCBs) and hydroxylated polychlorinated biphenyls (OH-PCBs) were measured in the sewage sludge samples collected from twelve wastewater treatment plants in China. Two MeO-PCB congeners, including 3‧-MeO-CB-65 and 4‧-MeO-CB-101, were detected in three sludge with mean concentrations of 0.58 and 0.52 ng/g dry weight, respectively. OH-PCBs were detected in eight sludge samples, with an average total concentration of 4.2 ng/g dry weight. Furthermore, laboratory exposure was conducted to determine the possible source of OH-PCBs and MeO-PCBs in the sewage sludge, and their metabolism by the microbes. Both 4‧-OH-CB-101 and 4‧-MeO-CB-101 were detected as metabolites of CB-101 at a limited conversion rate after 5 days. Importantly, microbial interconversion between OH-PCBs and MeO-PCBs was observed in sewage sludge. Demethylation of MeO-PCBs was favored over methylation of OH-PCBs. The abundant and diverse microbes in sludge play a key role in the transformation processes of the PCB analogues. To our knowledge, this is the first report on MeO-PCBs in environmental matrices and on OH-PCBs in sewage sludge. The findings are important to understand the environmental fate of PCBs.

  17. Efficient retrovirus-mediated transfer of cell-cycle control genes to transformed cells.

    PubMed

    Strauss, B E; Costanzi-Strauss, E

    1999-07-01

    The use of gene therapy continues to be a promising, yet elusive, alternative for the treatment of cancer. The origins of cancer must be well understood so that the therapeutic gene can be chosen with the highest chance of successful tumor regression. The gene delivery system must be tailored for optimum transfer of the therapeutic gene to the target tissue. In order to accomplish this, we study models of G1 cell-cycle control in both normal and transformed cells in order to understand the reasons for uncontrolled cellular proliferation. We then use this information to choose the gene to be delivered to the cells. We have chosen to study p16, p21, p53 and pRb gene transfer using the pCL-retrovirus. Described here are some general concepts and specific results of our work that indicate continued hope for the development of genetically based cancer treatments.

  18. Transport and transformation of genetic information in the critical zone: The case of antibiotic resistance genes

    NASA Astrophysics Data System (ADS)

    Zhu, Y. G.

    2015-12-01

    In addition to material and energy flows, the dynamics and functions of the Earth's critical zone are intensively mediated by biological actions performed by diverse organisms. These biological actions are modulated by the expression of functional genes and their translation into enzymes that catalyze geochemical reactions, such as nutrient turnover and pollutant biodegradation. Although geobiology, as an interdisciplinary research area, is playing and vital role in linking biological and geochemical processes at different temporal and spatial scales, the distribution and transport of functional genes have rarely been investigated from the Earth's critical zone perspectives. To illustrate the framework of studies on the transport and transformation of genetic information in the critical zone, antibiotic resistance is taken as an example. Antibiotic resistance genes are considered as a group of emerging contaminants, and their emergence and spread within the critical zone on one hand are induced by anthropogenic activities, and on other hand are threatening human health worldwide. The transport and transformation of antibiotic resistance genes are controlled by both horizontal gene transfer between bacterial cells and the movement of bacteria harboring antibiotic resistance genes. In this paper, the fate and behavior of antibiotic resistance genes will be discussed in the following aspects: 1) general overview of environmental antibiotic resistance; 2) high through quantification of the resistome in various environmental media; 3) pathways of resistance gene flow within the critical zone; and 4) potential strategies in mitigating antibiotic resistance, particularly from the critical zone perspectives.

  19. Microbial- and thiosulfate-mediated dissolution of mercury sulfide minerals and transformation to gaseous mercury

    SciTech Connect

    Vázquez-Rodríguez, Adiari I.; Hansel, Colleen M.; Zhang, Tong; Lamborg, Carl H.; Santelli, Cara M.; Webb, Samuel M.; Brooks, Scott C.

    2015-06-23

    Mercury (Hg) is a toxic heavy metal that poses significant environmental and human health risks. Soils and sediments, where Hg can exist as the Hg sulfide mineral metacinnabar (β-HgS), represent major Hg reservoirs in aquatic environments. Metacinnabar has historically been considered a sink for Hg in all but severely acidic environments, and thus disregarded as a potential source of Hg back to aqueous or gaseous pools. In this study, we conducted a combination of field and laboratory incubations to identify the potential for metacinnabar as a source of dissolved Hg within near neutral pH environments and the underpinning (a)biotic mechanisms at play. We show that the abundant and widespread sulfur-oxidizing bacteria of the genus Thiobacillus extensively colonized metacinnabar chips incubated within aerobic, near neutral pH creek sediments. Laboratory incubations of axenic Thiobacillus thioparus cultures led to the release of metacinnabar-hosted Hg(II) and subsequent volatilization to Hg(0). This dissolution and volatilization was greatly enhanced in the presence of thiosulfate, which served a dual role by enhancing HgS dissolution through Hg complexation and providing an additional metabolic substrate for Thiobacillus. These findings reveal a new coupled abiotic-biotic pathway for the transformation of metacinnabar-bound Hg(II) to Hg(0), while expanding the sulfide substrates available for neutrophilic chemosynthetic bacteria to Hg-laden sulfides. Lastly, they also point to mineral-hosted Hg as an underappreciated source of gaseous elemental Hg to the environment.

  20. Microbial- and thiosulfate-mediated dissolution of mercury sulfide minerals and transformation to gaseous mercury

    DOE PAGESBeta

    Vázquez-Rodríguez, Adiari I.; Hansel, Colleen M.; Zhang, Tong; Lamborg, Carl H.; Santelli, Cara M.; Webb, Samuel M.; Brooks, Scott C.

    2015-06-23

    Mercury (Hg) is a toxic heavy metal that poses significant environmental and human health risks. Soils and sediments, where Hg can exist as the Hg sulfide mineral metacinnabar (β-HgS), represent major Hg reservoirs in aquatic environments. Metacinnabar has historically been considered a sink for Hg in all but severely acidic environments, and thus disregarded as a potential source of Hg back to aqueous or gaseous pools. In this study, we conducted a combination of field and laboratory incubations to identify the potential for metacinnabar as a source of dissolved Hg within near neutral pH environments and the underpinning (a)biotic mechanismsmore » at play. We show that the abundant and widespread sulfur-oxidizing bacteria of the genus Thiobacillus extensively colonized metacinnabar chips incubated within aerobic, near neutral pH creek sediments. Laboratory incubations of axenic Thiobacillus thioparus cultures led to the release of metacinnabar-hosted Hg(II) and subsequent volatilization to Hg(0). This dissolution and volatilization was greatly enhanced in the presence of thiosulfate, which served a dual role by enhancing HgS dissolution through Hg complexation and providing an additional metabolic substrate for Thiobacillus. These findings reveal a new coupled abiotic-biotic pathway for the transformation of metacinnabar-bound Hg(II) to Hg(0), while expanding the sulfide substrates available for neutrophilic chemosynthetic bacteria to Hg-laden sulfides. Lastly, they also point to mineral-hosted Hg as an underappreciated source of gaseous elemental Hg to the environment.« less

  1. Novel lipolytic genes from the microbial metagenomic library of the South China Sea marine sediment.

    PubMed

    Hu, Yongfei; Fu, Chengzhang; Huang, Yunpeng; Yin, Yeshi; Cheng, Gong; Lei, Fang; Lu, Na; Li, Jing; Ashforth, Elizabeth Jane; Zhang, Lixin; Zhu, Baoli

    2010-05-01

    Metagenomic cloning is a powerful tool for the discovery of novel genes and biocatalysts from environmental microorganisms. Based on activity screening of a marine sediment microbial metagenomic library, a total of 19 fosmid clones showing lipolytic activity were identified. After subcloning, 15 different lipolytic genes were obtained; their encoded proteins showed 32-68% amino acid identity with proteins in the database. Multiple sequence alignment and phylogenetic tree analysis demonstrated that most of these predicted proteins are new members of known families of bacterial lipolytic enzymes. However, two proteins, FLS18C and FLS18D, could not be assigned to any known family, thus probably representing a novel family of the bacterial lipolytic enzyme. The activity assay results indicated that most of these lipolytic enzymes showed optimum temperature for hydrolysis at 40-50 degrees C with p-nitrophenol butyrate as a substrate. The lipolytic gene fls18D was overexpressed, and the resulting protein FLS18D was characterized as an alkaline esterase. Furthermore, the whole sequence of fosmid pFL18 containing FLS18C and FLS18D was shotgun sequenced, and a total of 26 ORFs on it were analyzed and annotated.

  2. Enhanced accumulation of atropine in Atropa belladonna transformed by Rac GTPase gene isolated from Scoparia dulcis.

    PubMed

    Asano, Kyouhei; Lee, Jung-Bum; Yamamura, Yoshimi; Kurosaki, Fumiya

    2013-12-01

    Leaf tissues of Atropa belladonna were transformed by Sdrac2, a Rac GTPase gene, that is isolated from Scoparia dulcis, and the change in atropine concentration of the transformants was examined. Re-differentiated A. belladonna overexpressing Sdrac2 accumulated considerable concentration of atropine in the leaf tissues, whereas the leaves of plants transformed by an empty vector accumulated only a very low concentration of the compound. A. belladonna transformed by CASdrac2, a modified Sdrac2 of which translate was expected to bind guanosine triphosphate (GTP) permanently, accumulated very high concentrations of atropine (approximately 2.4-fold excess to those found in the wild-type plant in its natural habitat). In sharp contrast, the atropine concentration in transformed A. belladonna prepared with negatively modified Sdrac2, DNSdrac2, expected to bind guanosine diphosphate instead of GTP, was very low. These results suggested that Rac GTPases play an important role in the regulation of secondary metabolism in plant cells and that overexpression of the gene(s) may be capable of enhancing the production of natural products accumulated in higher plant cells. PMID:23852262

  3. Using Position-Specific 13C and 14C Labeling and 13C-PLFA Analysis to Assess Microbial Transformations of Free Versus Sorbed Alanine

    NASA Astrophysics Data System (ADS)

    Apostel, C.; Herschbach, J.; Bore, E. K.; Kuzyakov, Y.; Dippold, M. A.

    2015-12-01

    Sorption of charged or partially charged low molecular weight organic substances (LMWOS) to soil mineral surfaces delays microbial uptake and therefore mineralization of LMWOS to CO2, as well as all other biochemical transformations. We used position-specific labeling, a tool of isotope applications novel to soil sciences, to compare the transformation mechanisms of sorbed and non-sorbed alanine in soil. Alanine as an amino acid links C- and N-cycles in soil and therefore is a model substance for the pool of LMWOS. To assess transformations of sorbed alanine, we added position-specific and uniformly 13C and 14C labeled alanine tracer to soil that had previously been sterilized by γ-radiation. The labeled soil was added to non-sterilized soil from the same site and incubated. Soil labeled with the same tracers without previous sorption was prepared and incubated as well. We captured the respired CO2 and determined its 14C-activity at increasing time intervals. The incorporation of 14C into microbial biomass was determined by chloroform fumigation extraction (CFE), and utilization of individual C positions by distinct microbial groups was evaluated by 13C-phospholipid fatty acid analysis (PLFA). A dual peak in the respired CO2 revealed two sorption mechanisms. To compare the fate of individual C atoms independent of their concentration and pool size in soil, we applied the divergence index (DI). The DI reveals the convergent or divergent behavior of C from individual molecule positions during microbial utilization. Alanine C-1 position was mainly oxidized to CO2, while its C-2 and C-3 were preferentially incorporated in microbial biomass and PLFA. This indicates that sorption by the COOH group does not protect this group from preferential oxidation. Microbial metabolism was determinative for the preferential oxidation of individual molecule positions. The use of position-specific labeling revealed mechanisms and kinetics of microbial utilization of sorbed and non

  4. Transformation of somatic embryos of Prunus incisa ‘February Pink’ with a visible reporter gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An Agrobacterium-mediated transformation system was developed for the ornamental cherry species Prunus incisa. This system uses both an antibiotic resistance gene (NPTII) and a visible selectable marker, the green fluorescent protein (GFP), to select plants. Cells from leaf and root explants were tr...

  5. Alteration of the self-incompatibility phenotype in Brassica by transformation of the antisense SLG gene.

    PubMed

    Shiba, H; Kimura, N; Takayama, S; Hinata, K; Suzuki, A; Isogai, A

    2000-05-01

    Self-incompatible (SI) Brassica rapa (syn. B. campestris) was transformed with an antisense SLG gene by using SLG8 cDNA isolated from the B. campestris S8 homozygote. Two transformed lines were obtained and analyzed. Northern blot and Western blot analyses revealed that endogenous SLG and SRK were greatly reduced of the transcriptional and translational levels in the transformant. Pollination experiments confirmed that their SI phenotype had broken down. In addition, the progeny with the antisense SLG gene, resulting from self- or cross-pollination of the transgenic plant, also showed the self-compatible phenotype. The breakdown of SI in the tranformants was due to the change in property of the stigma and not of the pollen. These results provide strong evidence that SLG and/or SRK is implicated in the pollen-stigma recognition of SI and that they act only as stigmatic factors.

  6. Effect of phenolic glycosides on Agrobacterium tumefaciens virH gene induction and plant transformation.

    PubMed

    Joubert, Philippe; Beaupère, Daniel; Wadouachi, Anne; Chateau, Sophie; Sangwan, Rajbir S; Sangwan-Norreel, Brigitte S

    2004-03-01

    O-Aryl-d-glucoside (4-7) and d-xyloside (8-10) derivatives were synthesized and tested on Agrobacterium virH gene induction and plant transformation. alpha- or beta-Glycosides enhanced vir activity at concentrations above 250 micromicro. The highest vir activity was observed with beta-glucoside derivative 4 at 10 mM. A marked difference between phenol glucoside derivative 4 and the corresponding free phenol on the growth of transformants was observed. The regenerated transgenic tissues, after transformation on medium containing acetosyringyl beta-glucoside 4, grew at twice the rate of those on medium containing only free acetosyringone (AS). Compound 4 was less toxic for tobacco explants compared to the corresponding free phenol. However, the xyloside derivatives tested (8-10) were less effective for gene induction compared with corresponding free phenols. PMID:15043408

  7. Agrobacterium-mediated transformation of tomato with the ICE1 transcription factor gene.

    PubMed

    Juan, J X; Yu, X H; Jiang, X M; Gao, Z; Zhang, Y; Li, W; Duan, Y D; Yang, G

    2015-01-30

    ICE1 genes play a very important role in plants in cold conditions. To improve the cold resistance of tomato, the ICE1 gene of Arabidopsis thaliana was used to construct the plant expression vector p3301-ICE1, and was overexpressed in tomato through Agrobacterium-mediated transformation. Five strains of resistant plants were obtained. PCR and half-quantitative results showed that the ICE1 gene was transferred to tomato; three strains tested positive. After low-temperature stress treatment, praline content and peroxide and catalase activities in the transgenic tomato plants were higher compared with non-transgenic controls, while malondialdehyde content was clearly lower.

  8. Transformation of Chloroplast Ribosomal RNA Genes in Chlamydomonas: Molecular and Genetic Characterization of Integration Events

    PubMed Central

    Newman, S. M.; Boynton, J. E.; Gillham, N. W.; Randolph-Anderson, B. L.; Johnson, A. M.; Harris, E. H.

    1990-01-01

    Transformation of chloroplast ribosomal RNA (rRNA) genes in Chlamydomonas has been achieved by the biolistic process using cloned chloroplast DNA fragments carrying mutations that confer antibiotic resistance. The sites of exchange employed during the integration of the donor DNA into the recipient genome have been localized using a combination of antibiotic resistance mutations in the 16S and 23S rRNA genes and restriction fragment length polymorphisms that flank these genes. Complete or nearly complete replacement of a region of the chloroplast genome in the recipient cell by the corresponding sequence from the donor plasmid was the most common integration event. Exchange events between the homologous donor and recipient sequences occurred preferentially near the vector:insert junctions. Insertion of the donor rRNA genes and flanking sequences into one inverted repeat of the recipient genome was followed by intramolecular copy correction so that both copies of the inverted repeat acquired identical sequences. Increased frequencies of rRNA gene transformants were achieved by reducing the copy number of the chloroplast genome in the recipient cells and by decreasing the heterology between donor and recipient DNA sequences flanking the selectable markers. In addition to producing bona fide chloroplast rRNA transformants, the biolistic process induced mutants resistant to low levels of streptomycin, typical of nuclear mutations in Chlamydomonas. PMID:1981764

  9. Expression of an exogenous eukaryotic DNA methyltransferase gene induces transformation of NIH 3T3 cells.

    PubMed Central

    Wu, J; Issa, J P; Herman, J; Bassett, D E; Nelkin, B D; Baylin, S B

    1993-01-01

    Abnormal regional increases in DNA methylation, which have potential for causing gene inactivation and chromosomal instability, are consistently found in immortalized and tumorigenic cells. Increased DNA methyltransferase activity, which is also a characteristic of such cells, is a candidate to mediate these abnormal DNA methylation patterns. We now show that, in NIH 3T3 mouse fibroblasts, constitutive overexpression of an exogenous mouse DNA methyltransferase gene results in a marked increase in overall DNA methylation which is accompanied by tumorigenic transformation. These transformation changes can also be elicited by dexamethasone-inducible expression of an exogenous DNA methyltransferase gene. Our findings provide strong evidence that the increase in DNA methyltransferase activity associated with tumor progression could be a key step in carcinogenesis and provide a model system that can be used to further study this possibility. Images Fig. 1 Fig. 2 PMID:8415627

  10. Natural Transformation Facilitates Transfer of Transposons, Integrons and Gene Cassettes between Bacterial Species

    PubMed Central

    Domingues, Sara; Harms, Klaus; Fricke, W. Florian; Johnsen, Pål J.; da Silva, Gabriela J.; Nielsen, Kaare Magne

    2012-01-01

    We have investigated to what extent natural transformation acting on free DNA substrates can facilitate transfer of mobile elements including transposons, integrons and/or gene cassettes between bacterial species. Naturally transformable cells of Acinetobacter baylyi were exposed to DNA from integron-carrying strains of the genera Acinetobacter, Citrobacter, Enterobacter, Escherichia, Pseudomonas, and Salmonella to determine the nature and frequency of transfer. Exposure to the various DNA sources resulted in acquisition of antibiotic resistance traits as well as entire integrons and transposons, over a 24 h exposure period. DNA incorporation was not solely dependent on integrase functions or the genetic relatedness between species. DNA sequence analyses revealed that several mechanisms facilitated stable integration in the recipient genome depending on the nature of the donor DNA; homologous or heterologous recombination and various types of transposition (Tn21-like and IS26-like). Both donor strains and transformed isolates were extensively characterized by antimicrobial susceptibility testing, integron- and cassette-specific PCRs, DNA sequencing, pulsed field gel electrophoreses (PFGE), Southern blot hybridizations, and by re-transformation assays. Two transformant strains were also genome-sequenced. Our data demonstrate that natural transformation facilitates interspecies transfer of genetic elements, suggesting that the transient presence of DNA in the cytoplasm may be sufficient for genomic integration to occur. Our study provides a plausible explanation for why sequence-conserved transposons, IS elements and integrons can be found disseminated among bacterial species. Moreover, natural transformation of integron harboring populations of competent bacteria revealed that interspecies exchange of gene cassettes can be highly efficient, and independent on genetic relatedness between donor and recipient. In conclusion, natural transformation provides a much

  11. Plant genetic transformation efficiency of selected Malaysian rice based on selectable marker gene (hptII).

    PubMed

    Htwe, Nwe Nwe; Ling, Ho Chai; Zaman, Faridah Qamaruz; Maziah, Mahmood

    2014-04-01

    Rice is one of the most important cereal crops with great potential for biotechnology progress. In transformation method, antibiotic resistance genes are routinely used as powerful markers for selecting transformed cells from surrounding non-transformed cells. In this study, the toxicity level of hygromycin was optimized for two selected mutant rice lines, MR219 line 4 and line 9. The mature embryos were isolated and cultured on an MS medium with different hygromycin concentrations (0, 20, 40, 60, 80 and 100 mg L(-1)). Evidently, above 60 mg L(-1) was effective for callus formation and observed completely dead. Further there were tested for specific concentration (0-60). Although, 21.28% calli survived on the medium containing 45 mg L(-1) hygromycin, it seemed suitable for the identification of putative transformants. These findings indicated that a system for rice transformation in a relatively high frequency and the transgenes are stably expressed in the transgenic plants. Green shoots were regenerated from the explant under hygromycin stress. RT-PCR using hptII and gus sequence specific primer and Southern blot analysis were used to confirm the presence of the transgene and to determine the transformation efficiency for their stable integration in regenerated plants. This study demonstrated that the hygromycin resistance can be used as an effective marker for rice transformation.

  12. GC and GC-MS characterization of crude oil transformation in sediments and microbial mat samples after the 1991 oil spill in the Saudi Arabian Gulf coast.

    PubMed

    Garcia de Oteyza, T; Grimalt, J O

    2006-02-01

    The massive oil discharge in the Saudi Arabian coast at the end of the 1991 Gulf War is used here as a natural experiment to study the ability of microbial mats to transform oil residues after major spills. The degree of oil transformation has been evaluated from the analysis of the aliphatic and aromatic hydrocarbons by gas chromatography (GC) and GC coupled to mass spectrometry (GC-MS). The oil-polluted microbial mat samples from coastal environments exhibited an intermediate degree of transformation between that observed in superficial and deep sediments. Evaporation, photo-oxidation and water-washing seemed to lead to more effective and rapid elimination of hydrocarbons than cyanobacteria and its associated microorganisms. Furthermore, comparison of some compounds (e.g. regular isoprenoid hydrocarbons or alkylnaphthalenes) in the oil collected in the area after the spill or in the mixtures retained by cyanobacterial growth gave rise to an apparent effect of hydrocarbon preservation in the microbial mat ecosystems. PMID:16095784

  13. A regulatory gene as a novel visible marker for maize transformation

    SciTech Connect

    Ludwig, S.R.; Wessler, S.R. ); Bowen, B.; Beach, L. )

    1990-01-26

    The temporal and spatial patterns of anthocyanin pigmentation in the maize plant are determined by the presence or absence of the R protein product, a presumed transcriptional activator. At least 50 unique patterns of pigmentation, conditioned by members of the R gene family, have been described. In this study, microprojectiles were used to introduce into maize cells a vector containing the transcription unit from one of these genes (Lc) fused to a constitutive promoter. This chimeric gene induces cell autonomous pigmentation in tissues that are not normally pigmented by the Lc gene. As a reporter for gene expression studies in maize, R is unique because it can be quantified in living tissue simply by counting the number of pigmented cells following bombardment. R may also be useful as a visible marker for selecting stably transformed cell lineages that can give rise to transgenic plants.

  14. Microbial communication leading to the activation of silent fungal secondary metabolite gene clusters

    PubMed Central

    Netzker, Tina; Fischer, Juliane; Weber, Jakob; Mattern, Derek J.; König, Claudia C.; Valiante, Vito; Schroeckh, Volker; Brakhage, Axel A.

    2015-01-01

    Microorganisms form diverse multispecies communities in various ecosystems. The high abundance of fungal and bacterial species in these consortia results in specific communication between the microorganisms. A key role in this communication is played by secondary metabolites (SMs), which are also called natural products. Recently, it was shown that interspecies “talk” between microorganisms represents a physiological trigger to activate silent gene clusters leading to the formation of novel SMs by the involved species. This review focuses on mixed microbial cultivation, mainly between bacteria and fungi, with a special emphasis on the induced formation of fungal SMs in co-cultures. In addition, the role of chromatin remodeling in the induction is examined, and methodical perspectives for the analysis of natural products are presented. As an example for an intermicrobial interaction elucidated at the molecular level, we discuss the specific interaction between the filamentous fungi Aspergillus nidulans and Aspergillus fumigatus with the soil bacterium Streptomyces rapamycinicus, which provides an excellent model system to enlighten molecular concepts behind regulatory mechanisms and will pave the way to a novel avenue of drug discovery through targeted activation of silent SM gene clusters through co-cultivations of microorganisms. PMID:25941517

  15. Mining of hemicellulose and lignin degrading genes from differentially enriched methane producing microbial community.

    PubMed

    Pandit, Prabhakar D; Gulhane, Madhuri K; Khardenavis, Anshuman A; Purohit, Hemant J

    2016-09-01

    Study creates a scenario for enrichment and selection of ligno-hemicellulose degrading genotypes with anaerobic bioreactor as a model using rice straw, vegetable waste and food waste as substrates. Relative discrimination analysis showed that the hydrolytic pathways and associated microbial communities for ligno-hemicellulose degradation were dominatingly colonized with rice straw as substrate. The dominating bacteria were Caldicellulosiruptor, Fervidobacterium, Cytophaga, Ruminococcus, Thermotoga associated with hemicellulose degradation and Burkholderia, Pandorea, Sphingomonas, Spirochaeta, Pseudomonas for lignocellulose hydrolysis. This was further supported by the abundance of anaerobic aromatic compound degrading genes along with genes for xylanase and xylosidase in rice straw enriched community. The metagenome analysis data was validated by evaluation of the biochemical methane potential for these substrates. Food waste being most amenable substrate yielded 1410mL of biogas/gVS added whereas, biogas yield of 1160mL/gVS and 1080mL/gVS was observed in presence of vegetable waste and rice straw respectively. PMID:27323244

  16. A vast collection of microbial genes that are toxic to bacteria

    SciTech Connect

    Kimelman, Aya; Levy, Asaf; Sberro, Hila; Kidron, Shahar; Leavitt, Azita; Amitai, Gil; Yoder-Himes, Deborah; Wurtzel, Omri; Zhu, Yiwen; Rubin, Edward M; Sorek, Rotem

    2012-02-02

    In the process of clone-based genome sequencing, initial assemblies frequently contain cloning gaps that can be resolved using cloning-independent methods, but the reason for their occurrence is largely unknown. By analyzing 9,328,693 sequencing clones from 393 microbial genomes we systematically mapped more than 15,000 genes residing in cloning gaps and experimentally showed that their expression products are toxic to the Escherichia coli host. A subset of these toxic sequences was further evaluated through a series of functional assays exploring the mechanisms of their toxicity. Among these genes our assays revealed novel toxins and restriction enzymes, and new classes of small non-coding toxic RNAs that reproducibly inhibit E. coli growth. Further analyses also revealed abundant, short toxic DNA fragments that were predicted to suppress E. coli growth by interacting with the replication initiator dnaA. Our results show that cloning gaps, once considered the result of technical problems, actually serve as a rich source for the discovery of biotechnologically valuable functions, and suggest new modes of antimicrobial interventions.

  17. A vast collection of microbial genes that are toxic to bacteria.

    PubMed

    Kimelman, Aya; Levy, Asaf; Sberro, Hila; Kidron, Shahar; Leavitt, Azita; Amitai, Gil; Yoder-Himes, Deborah R; Wurtzel, Omri; Zhu, Yiwen; Rubin, Edward M; Sorek, Rotem

    2012-04-01

    In the process of clone-based genome sequencing, initial assemblies frequently contain cloning gaps that can be resolved using cloning-independent methods, but the reason for their occurrence is largely unknown. By analyzing 9,328,693 sequencing clones from 393 microbial genomes, we systematically mapped more than 15,000 genes residing in cloning gaps and experimentally showed that their expression products are toxic to the Escherichia coli host. A subset of these toxic sequences was further evaluated through a series of functional assays exploring the mechanisms of their toxicity. Among these genes, our assays revealed novel toxins and restriction enzymes, and new classes of small, non-coding toxic RNAs that reproducibly inhibit E. coli growth. Further analyses also revealed abundant, short, toxic DNA fragments that were predicted to suppress E. coli growth by interacting with the replication initiator DnaA. Our results show that cloning gaps, once considered the result of technical problems, actually serve as a rich source for the discovery of biotechnologically valuable functions, and suggest new modes of antimicrobial interventions.

  18. GeoChip-based analysis of microbial functional gene diversity in a landfill leachate-contaminated aquifer

    USGS Publications Warehouse

    Lu, Zhenmei; He, Zhili; Parisi, Victoria A.; Kang, Sanghoon; Deng, Ye; Van Nostrand, Joy D.; Masoner, Jason R.; Cozzarelli, Isabelle M.; Suflita, Joseph M.; Zhou, Jizhong

    2012-01-01

    The functional gene diversity and structure of microbial communities in a shallow landfill leachate-contaminated aquifer were assessed using a comprehensive functional gene array (GeoChip 3.0). Water samples were obtained from eight wells at the same aquifer depth immediately below a municipal landfill or along the predominant downgradient groundwater flowpath. Functional gene richness and diversity immediately below the landfill and the closest well were considerably lower than those in downgradient wells. Mantel tests and canonical correspondence analysis (CCA) suggested that various geochemical parameters had a significant impact on the subsurface microbial community structure. That is, leachate from the unlined landfill impacted the diversity, composition, structure, and functional potential of groundwater microbial communities as a function of groundwater pH, and concentrations of sulfate, ammonia, and dissolved organic carbon (DOC). Historical geochemical records indicate that all sampled wells chronically received leachate, and the increase in microbial diversity as a function of distance from the landfill is consistent with mitigation of the impact of leachate on the groundwater system by natural attenuation mechanisms.

  19. Phylogenetic distribution and evolutionary dynamics of the sex determination genes doublesex and transformer in insects.

    PubMed

    Geuverink, E; Beukeboom, L W

    2014-01-01

    Sex determination in insects is characterized by a gene cascade that is conserved at the bottom but contains diverse primary signals at the top. The bottom master switch gene doublesex is found in all insects. Its upstream regulator transformer is present in the orders Hymenoptera, Coleoptera and Diptera, but has thus far not been found in Lepidoptera and in the basal lineages of Diptera. transformer is presumed to be ancestral to the holometabolous insects based on its shared domains and conserved features of autoregulation and sex-specific splicing. We interpret that its absence in basal lineages of Diptera and its order-specific conserved domains indicate multiple independent losses or recruitments into the sex determination cascade. Duplications of transformer are found in derived families within the Hymenoptera, characterized by their complementary sex determination mechanism. As duplications are not found in any other insect order, they appear linked to the haplodiploid reproduction of the Hymenoptera. Further phylogenetic analyses combined with functional studies are needed to understand the evolutionary history of the transformer gene among insects.

  20. Transformation of the US bread wheat 'Butte 86' and silencing of omega-5 gliadin genes.

    PubMed

    Altenbach, Susan B; Allen, Paul V

    2011-01-01

    Complex groups of proteins determine the unique functional properties of wheat flour and are sometimes responsible for food intolerances and allergies in individuals that consume wheat products. Transgenic approaches can be used to explore the functions of different flour proteins, but are limited to the few wheat cultivars that can be transformed and also by the lack of detailed information about genes and proteins expressed in grain from those cultivars. The US bread wheat Butte 86 has been extensively characterized and a comprehensive proteome map was developed in which flour proteins were distinguished by mass spectrometry and associated with specific gene sequences. Here, this information has been used to design an RNA interference construct to silence the expression of genes encoding omega gliadins that trigger the food allergy wheat-dependent exercise-induced anaphylaxis (WDEIA). The construct was introduced into immature embryos from Butte 86 using biolistics and bialaphos-resistant plants were regenerated. Stable transformation and inheritance of the transgene were confirmed by PCR. Analysis of proteins in grain from transgenic plants demonstrated that the omega-5 gliadins were either absent or substantially reduced relative to non-transformed controls. The ability to genetically transform Butte 86 makes it possible to alter flour composition in a targeted manner in a commercial US wheat cultivar and should accelerate future research on flour quality and immunogenic potential. PMID:21844700

  1. Microarray-based functional gene analysis of soil microbial communities during ozonation and biodegradation of crude oil.

    PubMed

    Liang, Yuting; Nostrand, Joy D Van; Wang, Jian; Zhang, Xu; Zhou, Jizhong; Li, Guanghe

    2009-04-01

    Ozonation with a subsequent biodegradation treatment was performed to remove recalcitrant organic compounds from long-term weathered crude oil contaminated soil. Samples were analyzed by GC/MS and column chromatography to monitor changes in crude oil composition. A functional gene array was used to examine microbial community dynamics. After a 6h ozonation treatment with a constant concentration of 10mgO(3)L(-1) at a flow rate of 2.0Lmin(-1), an average removal of crude oil was 22%. The concentration of long-chain n-alkanes (C(19)-C(28)) decreased while more biodegradable short-chain alkanes (C(14)-C(16)), n-aldehydes (C(13)-C(20)), and n-monocarboxylic acids (C(9)-C(20)) appeared. In the subsequent direct biodegradation and bioaugmentation, an additional 12-20% of residuals were removed. The total microbial functional gene numbers and overall genetic diversity decreased after ozonation. Also, most of the key functional genes pertaining to carbon, nitrogen, and sulfur cycling and organic contaminant degradation decreased, ranging from 20% to below the detection limit. However, in the subsequent biodegradation treatments, with and without bioaugmentation, the abundance of key genes in most functional groups recovered. This study provided insight into changes in crude oil composition and microbial functional genes responses during ozonation and bioremediation treatments. These changes demonstrate the feasibility of an integrated ozonation and biodegradation treatment to remove recalcitrant soil contaminants.

  2. Agrobacterium-mediated transformation of Guignardia citricarpa: an efficient tool to gene transfer and random mutagenesis.

    PubMed

    Rodrigues, Maria Beatriz Calderan; Fávaro, Léia Cecília de Lima; Pallu, Ana Paula de Souza; Ferreira, Anderson; Sebastianes, Fernanda de Souza; Rodrigues, Maria Juliana Calderan; Spósito, Marcel Bellato; de Araújo, Welington Luiz; Pizzirani-Kleiner, Aline Aparecida

    2013-01-01

    Guignardia citricarpa is the causal agent of Citrus Black Spot (CBS), an important disease in Citriculture. Due to the expressive value of this activity worldwide, especially in Brazil, understanding more about the functioning of this fungus is of utmost relevance, making possible the elucidation of its infection mechanisms, and providing tools to control CBS. This work describes for the first time an efficient and successful methodology for genetic transformation of G. citricarpa mycelia, which generated transformants expressing the gene encoding for the gfp (green fluorescent protein) and also their interaction with citrus plant. Mycelia of G. citricarpa were transformed via Agrobacterium tumefaciens, which carried the plasmid pFAT-gfp, contains the genes for hygromycin resistance (hph) as well as gfp. The optimization of the agrotransformation protocol was performed testing different conditions (type of membrane; inductor agent concentration [acetosyringone - AS] and cocultivation time). Results demonstrated that the best condition occurred with the utilization of cellulose's ester membrane; 200 μM of AS and 96 h as cocultivation time. High mitotic stability (82 %) was displayed by transformants using Polymerase Chain Reaction (PCR) technique to confirm the hph gene insertion. In addition, the presence of gfp was observed inside mycelia by epifluorescence optical microscopy. This technique easy visualization of the behaviour of the pathogen interacting with the plant for the first time, allowing future studies on the pathogenesis of this fungus. The establishment of a transformation method for G. citricarpa opens a range of possibilities and facilitates the study of insertional mutagenesis and genetic knockouts, in order to identify the most important genes involved in the pathogenesis mechanisms and plant-pathogen interaction.

  3. Acquiring transgenic tobacco plants with insect resistance and glyphosate tolerance by fusion gene transformation.

    PubMed

    Sun, He; Lang, Zhihong; Zhu, Li; Huang, Dafang

    2012-10-01

    The advantages of gene 'stacking' or 'pyramiding' are obvious in genetically modified (GM) crops, and several different multi-transgene-stacking methods are available. Using linker peptides for multiple gene transformation is considered to be a good method to meet a variety of needs. In our experiment, the Bt cry1Ah gene, which encodes the insect-resistance protein, and the mG ( 2 ) -epsps gene, which encodes the glyphosate-tolerance protein, were connected by a 2A or LP4/2A linker. Linker 2A is a peptide from the foot-and-mouth disease virus (FMDV) that has self-cleavage activity. LP4 is a peptide from Raphanus sativus seeds that has a recognition site and is cleaved by a protease. LP4/2A is a hybrid peptide that contains the first 9 amino acids of LP4 and 20 amino acids from 2A. We used the linker peptide to construct four coordinated expression vectors: pHAG, pHLAG, pGAH and pGLAH. Two single gene expression vectors, pSAh and pSmG(2), were used as controls. The six expression vectors and the pCAMBIA2301 vector were transferred into tobacco by Agrobacterium tumefaciens-mediated transformation, and 529 transformants were obtained. Molecular detection and bioassay detection data demonstrated that the transgenic tobaccos possessed good pest resistance and glyphosate tolerance. The two genes in the fusion vector were expressed simultaneously. The plants with the genes linked by the LP4/2A peptide showed better pest resistance and glyphosate tolerance than the plants with the genes linked by 2A. The expression level of the two genes linked by LP4/2A was not significantly different from the single gene vector. Key message The expression level of the two genes linked by LP4/2A was higher than those linked by 2A and was not significantly different from the single gene vector.

  4. Effects of gene-augmentation on the formation, characteristics and microbial community of 2,4-dichlorophenoxyacetic acid degrading aerobic microbial granules.

    PubMed

    Quan, Xiang-chun; Ma, Jing-yun; Xiong, Wei-cong; Yang, Zhi-feng

    2011-11-30

    Development of 2,4-dichlorophenoxyacetic acid (2,4-D) degrading aerobic granular sludge was conducted in two sequencing batch reactors (SBR) with one bioaugmented with a plasmid pJP4 donor strain Pseudomonas putida SM1443 and the other as a control. Half-matured aerobic granules pre-grown on glucose were used as the starting seeds and a two-stage operation strategy was applied. Granules capable of utilizing 2,4-D (about 500 mg/L) as the sole carbon source was successfully cultivated in both reactors. Gene-augmentation resulted in the enhancement of 2,4-D degradation rates by the percentage of 65-135% for the granules on Day 18, and 6-24% for the granules on Day 105. Transconjugants receiving plasmid pJP4 were established in the granule microbial community after bioaugmentation and persisted till the end of operation. Compared with the control granules, the granules in the bioaugmented reactor demonstrated a better settling ability, larger size, more abundant microbial diversity and stronger tolerance to 2,4-D. The finally obtained granules in the bioaugmented and control reactor had a granule size of around 600 μm and 500 μm, a Shannon-Weaver diversity index (H) of 0.96 and 0.55, respectively. A shift in microbial community was found during the granulation process.

  5. Transformation of tobacco plants by Yali PPO-GFP fusion gene and observation of subcellular localization.

    PubMed

    Qi, Jing; Li, Gui-Qin; Dong, Zhen; Zhou, Wei

    2016-01-01

    To explore the subcellular localization of Polyphenol oxidase (PPO) from Pyrus bretschneideri, the 1779 bp cDNA of PPO gene excluding the termination codon TAA was cloned and fused with GFP to construct a binary vector pBI121-PPO-GFP. Then, the binary vector was transformed into Nicotiana tabacum by the tumefanciens-mediated method. Using confocal laser scanning microscopy, green fluorescent signals were localized in chloroplasts of the transformed Nicotiana tabacum cell, suggesting that the Polyphenol oxidase from Pyrus bretschneideri was a chloroplast protein. PMID:27158362

  6. Novel cellular genes essential for transformation of endothelial cells by Kaposi's sarcoma-associated herpesvirus.

    PubMed

    Raggo, Camilo; Ruhl, Rebecca; McAllister, Shane; Koon, Henry; Dezube, Bruce J; Früh, Klaus; Moses, Ashlee V

    2005-06-15

    Kaposi's sarcoma-associated herpesvirus (KSHV) is involved in the development of lymphoproliferative diseases and Kaposi's sarcoma. The oncogenicity of this virus is reflected in vitro by its ability to transform B cells and endothelial cells. Infection of dermal microvascular endothelial cells (DMVEC) transforms the cells from a cobblestone-like monolayer to foci-forming spindle cells. This transformation is accompanied by dramatic changes in the cellular transcriptome. Known oncogenes, such as c-Kit, are among the KSHV-induced host genes. We previously showed that c-Kit is an essential cellular component of the KSHV-mediated transformation of DMVEC. Here, we test the hypothesis that the transformation process can be used to discover novel oncogenes. When expression of a panel of KSHV-induced cellular transcripts was inhibited with antisense oligomers, we observed inhibition of DMVEC proliferation and foci formation using antisense molecules to RDC1 and Neuritin. We further showed that transformation of KSHV-infected DMVEC was inhibited by small interfering RNA directed at RDC1 or Neuritin. Ectopic expression of Neuritin in NIH 3T3 cells resulted in changes in cell morphology and anchorage-independent growth, whereas RDC1 ectopic expression significantly increased cell proliferation. In addition, both RDC1- and Neuritin-expressing cells formed tumors in nude mice. RDC1 is an orphan G protein-coupled receptor, whereas Neuritin is a growth-promoting protein known to mediate neurite outgrowth. Neither gene has been previously implicated in tumorigenesis. Our data suggest that KSHV-mediated transformation involves exploitation of the hitherto unrealized oncogenic properties of RDC1 and Neuritin. PMID:15958552

  7. Suppression of leaf feeding and oviposition of phytophagous ladybird beetles (Coleoptera: Coccinellidae) by chitinase gene-transformed phylloplane bacteria and their specific bacteriophages entrapped in alginate gel beads.

    PubMed

    Otsu, Yasunari; Mori, Hirofumi; Komuta, Kenji; Shimizu, Hiroyuki; Nogawa, Souta; Matsuda, Yoshinori; Nonomura, Teruo; Sakuratani, Yasuyuki; Tosa, Yukio; Mayama, Shigeyuki; Toyoda, Hideyoshi

    2003-06-01

    The chitinase gene-transformed strain KPM-007E/chi of Enterobacter cloacae was vitally entrapped in sodium alginate gel beads with its specific virulent bacteriophage EcP-01 to provide a new method for microbially digesting chitinous peritrophic membranes of phytophagous ladybird beetles Epilachna vigintioctopunctata. First, chitinase SH1 from a gram-positive bacterium Kurthia zopfii was overproduced by Escherichia coli cells and purified by affinity column chromatography. The purified enzyme effectively digested peritrophic membranes dissected from the ladybird beetles to expose epithelial tissues beneath the peritrophic membrane, and the beetles that had ingested chitinase after submergence in chitinase solution had considerably reduced their feeding on tomato leaves. KPM-007E/chi, entrapped in the alginate beads, released the chitinase. More chitinase was released when KPM-007E/chi was present with their specific virulent bacteriophage EcP-01 in the beads because of lysis of bacterial cells infected with the bacteriophages. This chitinase release from the microbial beads (containing KPM-007E/chi and EcP-01) was sufficient to digest the peritrophic membrane as well as to suppress feeding of bead-sprayed tomato leaves by the ladybird beetles. A daily supply of tomato leaves treated with the microbial beads considerably suppressed leaf feeding and oviposition by the ladybird beetles, suggesting a possible application of chitinase-secreting bacteria for suppressing herbivorous insect pests.

  8. Screening currency notes for microbial pathogens and antibiotic resistance genes using a shotgun metagenomic approach.

    PubMed

    Jalali, Saakshi; Kohli, Samantha; Latka, Chitra; Bhatia, Sugandha; Vellarikal, Shamsudheen Karuthedath; Sivasubbu, Sridhar; Scaria, Vinod; Ramachandran, Srinivasan

    2015-01-01

    Fomites are a well-known source of microbial infections and previous studies have provided insights into the sojourning microbiome of fomites from various sources. Paper currency notes are one of the most commonly exchanged objects and its potential to transmit pathogenic organisms has been well recognized. Approaches to identify the microbiome associated with paper currency notes have been largely limited to culture dependent approaches. Subsequent studies portrayed the use of 16S ribosomal RNA based approaches which provided insights into the taxonomical distribution of the microbiome. However, recent techniques including shotgun sequencing provides resolution at gene level and enable estimation of their copy numbers in the metagenome. We investigated the microbiome of Indian paper currency notes using a shotgun metagenome sequencing approach. Metagenomic DNA isolated from samples of frequently circulated denominations of Indian currency notes were sequenced using Illumina Hiseq sequencer. Analysis of the data revealed presence of species belonging to both eukaryotic and prokaryotic genera. The taxonomic distribution at kingdom level revealed contigs mapping to eukaryota (70%), bacteria (9%), viruses and archae (~1%). We identified 78 pathogens including Staphylococcus aureus, Corynebacterium glutamicum, Enterococcus faecalis, and 75 cellulose degrading organisms including Acidothermus cellulolyticus, Cellulomonas flavigena and Ruminococcus albus. Additionally, 78 antibiotic resistance genes were identified and 18 of these were found in all the samples. Furthermore, six out of 78 pathogens harbored at least one of the 18 common antibiotic resistance genes. To the best of our knowledge, this is the first report of shotgun metagenome sequence dataset of paper currency notes, which can be useful for future applications including as bio-surveillance of exchangeable fomites for infectious agents.

  9. Screening Currency Notes for Microbial Pathogens and Antibiotic Resistance Genes Using a Shotgun Metagenomic Approach

    PubMed Central

    Jalali, Saakshi; Kohli, Samantha; Latka, Chitra; Bhatia, Sugandha; Vellarikal, Shamsudheen Karuthedath; Sivasubbu, Sridhar; Scaria, Vinod; Ramachandran, Srinivasan

    2015-01-01

    Fomites are a well-known source of microbial infections and previous studies have provided insights into the sojourning microbiome of fomites from various sources. Paper currency notes are one of the most commonly exchanged objects and its potential to transmit pathogenic organisms has been well recognized. Approaches to identify the microbiome associated with paper currency notes have been largely limited to culture dependent approaches. Subsequent studies portrayed the use of 16S ribosomal RNA based approaches which provided insights into the taxonomical distribution of the microbiome. However, recent techniques including shotgun sequencing provides resolution at gene level and enable estimation of their copy numbers in the metagenome. We investigated the microbiome of Indian paper currency notes using a shotgun metagenome sequencing approach. Metagenomic DNA isolated from samples of frequently circulated denominations of Indian currency notes were sequenced using Illumina Hiseq sequencer. Analysis of the data revealed presence of species belonging to both eukaryotic and prokaryotic genera. The taxonomic distribution at kingdom level revealed contigs mapping to eukaryota (70%), bacteria (9%), viruses and archae (~1%). We identified 78 pathogens including Staphylococcus aureus, Corynebacterium glutamicum, Enterococcus faecalis, and 75 cellulose degrading organisms including Acidothermus cellulolyticus, Cellulomonas flavigena and Ruminococcus albus. Additionally, 78 antibiotic resistance genes were identified and 18 of these were found in all the samples. Furthermore, six out of 78 pathogens harbored at least one of the 18 common antibiotic resistance genes. To the best of our knowledge, this is the first report of shotgun metagenome sequence dataset of paper currency notes, which can be useful for future applications including as bio-surveillance of exchangeable fomites for infectious agents. PMID:26035208

  10. Population-Dynamic Modeling of Bacterial Horizontal Gene Transfer by Natural Transformation.

    PubMed

    Mao, Junwen; Lu, Ting

    2016-01-01

    Natural transformation is a major mechanism of horizontal gene transfer (HGT) and plays an essential role in bacterial adaptation, evolution, and speciation. Although its molecular underpinnings have been increasingly revealed, natural transformation is not well characterized in terms of its quantitative ecological roles. Here, by using Neisseria gonorrhoeae as an example, we developed a population-dynamic model for natural transformation and analyzed its dynamic characteristics with nonlinear tools and simulations. Our study showed that bacteria capable of natural transformation can display distinct population behaviors ranging from extinction to coexistence and to bistability, depending on their HGT rate and selection coefficient. With the model, we also illustrated the roles of environmental DNA sources-active secretion and passive release-in impacting population dynamics. Additionally, by constructing and utilizing a stochastic version of the model, we examined how noise shapes the steady and dynamic behaviors of the system. Notably, we found that distinct waiting time statistics for HGT events, namely a power-law distribution, an exponential distribution, and a mix of the both, are associated with the dynamics in the regimes of extinction, coexistence, and bistability accordingly. This work offers a quantitative illustration of natural transformation by revealing its complex population dynamics and associated characteristics, therefore advancing our ecological understanding of natural transformation as well as HGT in general.

  11. Population-Dynamic Modeling of Bacterial Horizontal Gene Transfer by Natural Transformation.

    PubMed

    Mao, Junwen; Lu, Ting

    2016-01-01

    Natural transformation is a major mechanism of horizontal gene transfer (HGT) and plays an essential role in bacterial adaptation, evolution, and speciation. Although its molecular underpinnings have been increasingly revealed, natural transformation is not well characterized in terms of its quantitative ecological roles. Here, by using Neisseria gonorrhoeae as an example, we developed a population-dynamic model for natural transformation and analyzed its dynamic characteristics with nonlinear tools and simulations. Our study showed that bacteria capable of natural transformation can display distinct population behaviors ranging from extinction to coexistence and to bistability, depending on their HGT rate and selection coefficient. With the model, we also illustrated the roles of environmental DNA sources-active secretion and passive release-in impacting population dynamics. Additionally, by constructing and utilizing a stochastic version of the model, we examined how noise shapes the steady and dynamic behaviors of the system. Notably, we found that distinct waiting time statistics for HGT events, namely a power-law distribution, an exponential distribution, and a mix of the both, are associated with the dynamics in the regimes of extinction, coexistence, and bistability accordingly. This work offers a quantitative illustration of natural transformation by revealing its complex population dynamics and associated characteristics, therefore advancing our ecological understanding of natural transformation as well as HGT in general. PMID:26745428

  12. Development and application of in vivo expression technology (IVET) for analysing microbial gene expression in complex environments.

    PubMed

    Jackson, R W; Giddens, S R

    2006-09-01

    Establishing the mechanisms by which microbes interact with their environment, including eukaryotic hosts, is a major challenge that is essential for the economic utilisation of microbes and their products. Techniques for determining global gene expression profiles of microbes, such as microarray analyses, are often hampered by methodological restraints, particularly the recovery of bacterial transcripts (RNA) from complex mixtures and rapid degradation of RNA. A pioneering technology that avoids this problem is In Vivo Expression Technology (IVET). IVET is a 'promoter-trapping' methodology that can be used to capture nearly all bacterial promoters (genes) upregulated during a microbe-environment interaction. IVET is especially useful because there is virtually no limit to the type of environment used (examples to date include soil, oomycete, a host plant or animal) to select for active microbial promoters. Furthermore, IVET provides a powerful method to identify genes that are often overlooked during genomic annotation, and has proven to be a flexible technology that can provide even more information than identification of gene expression profiles. A derivative of IVET, termed resolvase-IVET (RIVET), can be used to provide spatio-temporal information about environment-specific gene expression. More recently, niche-specific genes captured during an IVET screen have been exploited to identify the regulatory mechanisms controlling their expression. Overall, IVET and its various spin-offs have proven to be a valuable and robust set of tools for analysing microbial gene expression in complex environments and providing new targets for biotechnological development.

  13. Diversity and interactions of microbial functional genes under differing environmental conditions: insights from a membrane bioreactor and an oxidation ditch

    PubMed Central

    Xia, Yu; Hu, Man; Wen, Xianghua; Wang, Xiaohui; Yang, Yunfeng; Zhou, Jizhong

    2016-01-01

    The effect of environmental conditions on the diversity and interactions of microbial communities has caused tremendous interest in microbial ecology. Here, we found that with identical influents but differing operational parameters (mainly mixed liquor suspended solid (MLSS) concentrations, solid retention time (SRT) and dissolved oxygen (DO) concentrations), two full-scale municipal wastewater treatment systems applying oxidation ditch (OD) and membrane bioreactor (MBR) processes harbored a majority of shared genes (87.2%) but had different overall functional gene structures as revealed by two datasets of 12-day time-series generated by a functional gene array-GeoChip 4.2. Association networks of core carbon, nitrogen and phosphorus cycling genes in each system based on random matrix theory (RMT) showed different topological properties and the MBR nodes showed an indication of higher connectivity. MLSS and DO were shown to be effective in shaping functional gene structures of the systems by statistical analyses. Higher MLSS concentrations resulting in decreased resource availability of the MBR system were thought to promote positive interactions of important functional genes. Together, these findings show the differences of functional potentials of some bioprocesses caused by differing environmental conditions and suggest that higher stress of resource limitation increased positive gene interactions in the MBR system. PMID:26743465

  14. Diversity and interactions of microbial functional genes under differing environmental conditions: insights from a membrane bioreactor and an oxidation ditch

    NASA Astrophysics Data System (ADS)

    Xia, Yu; Hu, Man; Wen, Xianghua; Wang, Xiaohui; Yang, Yunfeng; Zhou, Jizhong

    2016-01-01

    The effect of environmental conditions on the diversity and interactions of microbial communities has caused tremendous interest in microbial ecology. Here, we found that with identical influents but differing operational parameters (mainly mixed liquor suspended solid (MLSS) concentrations, solid retention time (SRT) and dissolved oxygen (DO) concentrations), two full-scale municipal wastewater treatment systems applying oxidation ditch (OD) and membrane bioreactor (MBR) processes harbored a majority of shared genes (87.2%) but had different overall functional gene structures as revealed by two datasets of 12-day time-series generated by a functional gene array-GeoChip 4.2. Association networks of core carbon, nitrogen and phosphorus cycling genes in each system based on random matrix theory (RMT) showed different topological properties and the MBR nodes showed an indication of higher connectivity. MLSS and DO were shown to be effective in shaping functional gene structures of the systems by statistical analyses. Higher MLSS concentrations resulting in decreased resource availability of the MBR system were thought to promote positive interactions of important functional genes. Together, these findings show the differences of functional potentials of some bioprocesses caused by differing environmental conditions and suggest that higher stress of resource limitation increased positive gene interactions in the MBR system.

  15. Co-transformation of grapevine somatic embryos to produce transgenic plants free of marker genes.

    PubMed

    Dutt, Manjul; Li, Zhijian T; Dhekney, Sadanand A; Gray, Dennis J

    2012-01-01

    A cotransformation system using somatic embryos was developed to produce grapevines free of selectable marker genes. This was achieved by transforming Vitis vinifera L. "Thompson Seedless" somatic embryos with a mixture of two Agrobacterium strains. The first strain contained a binary plasmid with an egfp gene of interest between the T-DNA borders. The second strain harbored the neomycin phosphotransferase (nptII) gene for positive selection and the cytosine deaminase (codA) gene for negative selection, linked together by a bidirectional dual promoter complex. Our technique included a short positive selection phase of cotransformed somatic embryos on liquid medium containing 100 mg/L kanamycin before subjecting cultures to prolonged negative selection on medium containing 250 mg/L 5-fluorocytosine. PMID:22351010

  16. Nitrogen transformations in a Vertisol under long-term tillage and no tillage management in dryland agricultual systems: key genes and potential rates

    NASA Astrophysics Data System (ADS)

    Melero, Sebastiana; Perez de Mora, Alfredo; Murillo, J. Manuel; Buegger, Franz; Kleinedam, Kristina; Kublik, Susanne; Vanderlinden, Karl; Moreno, Felix; Schloter, Michael

    2010-05-01

    The impact of tillage practices on microbial N transformations in semiarid regions is poorly understood and data from long-term field experiments are scarce. In this study, we evaluated the effects of traditional tillage (TT) vs no-tillage (NT) on key processes of the N cycle such as nitrification and denitrification in a long-term field experiment under a rainfed crop rotation system (cereal-sunflower-legumes) on a vertisol (SW Spain). Besides general soil chemical and biological parameters, we quantified the size of the ammonia oxidizing and denitrifying bacterial populations via real-time PCR (amoA, nirS and nosZ genes), and measured potential nitrification and denitrification rates. Soil was sampled at two depths (0-30, till layer; and 30-50 cm), once during the growing period of the crop (wheat) and another time after harvesting. Conservation tillage slightly increased total organic carbon and microbial biomass C content, whereas no effect on nutrient availability (C and N) was observed, likely due to the fertilization regime and the textural characteristics of the soil type (Vertisol). Gene abundance and potential rates were influenced by the interaction between tillage treatment and sampling period, mainly at 0-30 cm depth. In general, ammonia oxidizers and potential nitrification were enhanced under TT, particularly after harvesting. By contrast, higher abundance of denitrifiers, as reflected by both nirS and nosZ gene copy numbers and larger potential denitrification rates were found under NT during the growing period, but not after harvesting. Results also showed that the N2O/N2 ratio was constant throughout the experiment and thus was affected more significantly by environmental parameters such as the availability carbon than by changes in denitrifier abundance. Our results stress the importance of quantifying microbial populations to address the impact of agricultural practices on N transformations in soil. Furthermore, results suggest that the spatial

  17. Effect of a Sinorhizobium meliloti Strain with a Modified putA Gene on the Rhizosphere Microbial Community of Alfalfa

    PubMed Central

    van Dillewijn, Pieter; Villadas, Pablo J.; Toro, Nicolás

    2002-01-01

    The success of a rhizobial inoculant in the soil depends to a large extent on its capacity to compete against indigenous strains. M403, a Sinorhizobium meliloti strain with enhanced competitiveness for nodule occupancy, was recently constructed by introducing a plasmid containing an extra copy of a modified putA (proline dehydrogenase) gene. This strain and M401, a control strain carrying the same plasmid without the modified gene, were used as soil inoculants for alfalfa in a contained field release experiment at León, Spain. In this study, we determined the effects of these two strains on the indigenous microbial community. 16S rRNA genes were obtained from the rhizosphere of alfalfa inoculated with strain M403 or strain M401 or from noninoculated plants by amplification of DNA from soil with bacterial group-specific primers. These genes were analyzed and compared by restriction fragment length polymorphism and temperature gradient gel electrophoresis. The results allowed us to differentiate between alterations in the microbial community apparently caused by inoculation and by the rhizosphere effect and seasonal fluctuations induced by the alfalfa plants and by the environment. Only moderate inoculation-dependent effects could be detected, while the alfalfa plants appeared to have a much stronger influence on the microbial community. PMID:12200266

  18. Microbial transformation of nucleosides

    NASA Technical Reports Server (NTRS)

    Lamba, S. S.

    1979-01-01

    A study involving the use of coulter counter in studying the effects of neomycin on E. coli, S. aureus and A. aerogenes was completed. The purpose of this was to establish proper technique for enumeration of cells per ml. It was found that inhibitory effects on growth of E. coli and A. aerogenes, both gram negative organisms, were directly related to the concentration of neomycin used. However, in case S. aureus, a gram positive organism, a decreased inhibition was noted at higher concentrations. A paper entitled, Use of Coulter Counter in Studying Effect of Drugs on Cells in Culture 1 - Effects of Neomycin on E. coli, S. aureus and A. aerogenes, is attached in the appendix. Laboratory procedures were also established to study the effects of nucleoside antibiotic cordycepin on He La cell grown in suspension cultures.

  19. Genome, Functional Gene Annotation, and Nuclear Transformation of the Heterokont Oleaginous Alga Nannochloropsis oceanica CCMP1779

    PubMed Central

    Tsai, Chia-Hong; Bullard, Blair; Cornish, Adam J.; Harvey, Christopher; Reca, Ida-Barbara; Thornburg, Chelsea; Achawanantakun, Rujira; Buehl, Christopher J.; Campbell, Michael S.; Cavalier, David; Childs, Kevin L.; Clark, Teresa J.; Deshpande, Rahul; Erickson, Erika; Armenia Ferguson, Ann; Handee, Witawas; Kong, Que; Li, Xiaobo; Liu, Bensheng; Lundback, Steven; Peng, Cheng; Roston, Rebecca L.; Sanjaya; Simpson, Jeffrey P.; TerBush, Allan; Warakanont, Jaruswan; Zäuner, Simone; Farre, Eva M.; Hegg, Eric L.; Jiang, Ning; Kuo, Min-Hao; Lu, Yan; Niyogi, Krishna K.; Ohlrogge, John; Osteryoung, Katherine W.; Shachar-Hill, Yair; Sears, Barbara B.; Sun, Yanni; Takahashi, Hideki; Yandell, Mark; Shiu, Shin-Han; Benning, Christoph

    2012-01-01

    Unicellular marine algae have promise for providing sustainable and scalable biofuel feedstocks, although no single species has emerged as a preferred organism. Moreover, adequate molecular and genetic resources prerequisite for the rational engineering of marine algal feedstocks are lacking for most candidate species. Heterokonts of the genus Nannochloropsis naturally have high cellular oil content and are already in use for industrial production of high-value lipid products. First success in applying reverse genetics by targeted gene replacement makes Nannochloropsis oceanica an attractive model to investigate the cell and molecular biology and biochemistry of this fascinating organism group. Here we present the assembly of the 28.7 Mb genome of N. oceanica CCMP1779. RNA sequencing data from nitrogen-replete and nitrogen-depleted growth conditions support a total of 11,973 genes, of which in addition to automatic annotation some were manually inspected to predict the biochemical repertoire for this organism. Among others, more than 100 genes putatively related to lipid metabolism, 114 predicted transcription factors, and 109 transcriptional regulators were annotated. Comparison of the N. oceanica CCMP1779 gene repertoire with the recently published N. gaditana genome identified 2,649 genes likely specific to N. oceanica CCMP1779. Many of these N. oceanica–specific genes have putative orthologs in other species or are supported by transcriptional evidence. However, because similarity-based annotations are limited, functions of most of these species-specific genes remain unknown. Aside from the genome sequence and its analysis, protocols for the transformation of N. oceanica CCMP1779 are provided. The availability of genomic and transcriptomic data for Nannochloropsis oceanica CCMP1779, along with efficient transformation protocols, provides a blueprint for future detailed gene functional analysis and genetic engineering of Nannochloropsis species by a growing

  20. Exogenous Gene Integration for Microalgal Cell Transformation Using a Nanowire-Incorporated Microdevice.

    PubMed

    Bae, Sunwoong; Park, Seunghye; Kim, Jung; Choi, Jong Seob; Kim, Kyung Hoon; Kwon, Donguk; Jin, EonSeon; Park, Inkyu; Kim, Do Hyun; Seo, Tae Seok

    2015-12-16

    Superior green algal cells showing high lipid production and rapid growth rate are considered as an alternative for the next generation green energy resources. To achieve the biomass based energy generation, transformed microalgae with superlative properties should be developed through genetic engineering. Contrary to the normal cells, microalgae have rigid cell walls, so that target gene delivery into cells is challengeable. In this study, we report a ZnO nanowire-incorporated microdevice for a high throughput microalgal transformation. The proposed microdevice was equipped with not only a ZnO nanowire in the microchannel for gene delivery into cells but also a pneumatic polydimethylsiloxane (PDMS) microvalve to modulate the cellular attachment and detachment from the nanowire. As a model, hygromycin B resistance gene cassette (Hyg3) was functionalized on the hydrothermally grown ZnO nanowires through a disulfide bond and released into green algal cells, Chlamydomonas reinhardtii, by reductive cleavage. During Hyg3 gene delivery, a monolithic PDMS membrane was bent down, so that algal cells were pushed down toward ZnO nanowires. The supply of vacuum in the pneumatic line made the PDMS membrane bend up, enabling the gene delivered algal cells to be recovered from the outlet of the microchannel. We successfully confirmed Hyg3 gene integrated in microalgae by amplifying the inserted gene through polymerase chain reaction (PCR) and DNA sequencing. The efficiency of the gene delivery to algal cells using the ZnO nanowire-incorporated microdevice was 6.52 × 10(4)- and 9.66 × 10(4)-fold higher than that of a traditional glass bead beating and electroporation. PMID:26584003

  1. Dissemination of Antimicrobial Resistance in Microbial Ecosystems through Horizontal Gene Transfer

    PubMed Central

    von Wintersdorff, Christian J. H.; Penders, John; van Niekerk, Julius M.; Mills, Nathan D.; Majumder, Snehali; van Alphen, Lieke B.; Savelkoul, Paul H. M.; Wolffs, Petra F. G.

    2016-01-01

    The emergence and spread of antibiotic resistance among pathogenic bacteria has been a rising problem for public health in recent decades. It is becoming increasingly recognized that not only antibiotic resistance genes (ARGs) encountered in clinical pathogens are of relevance, but rather, all pathogenic, commensal as well as environmental bacteria—and also mobile genetic elements and bacteriophages—form a reservoir of ARGs (the resistome) from which pathogenic bacteria can acquire resistance via horizontal gene transfer (HGT). HGT has caused antibiotic resistance to spread from commensal and environmental species to pathogenic ones, as has been shown for some clinically important ARGs. Of the three canonical mechanisms of HGT, conjugation is thought to have the greatest influence on the dissemination of ARGs. While transformation and transduction are deemed less important, recent discoveries suggest their role may be larger than previously thought. Understanding the extent of the resistome and how its mobilization to pathogenic bacteria takes place is essential for efforts to control the dissemination of these genes. Here, we will discuss the concept of the resistome, provide examples of HGT of clinically relevant ARGs and present an overview of the current knowledge of the contributions the various HGT mechanisms make to the spread of antibiotic resistance. PMID:26925045

  2. Statin-induced changes in gene expression in EBV-transformed and native B-cells.

    PubMed

    Bolotin, Eugene; Armendariz, Angela; Kim, Kyungpil; Heo, Seok-Jin; Boffelli, Dario; Tantisira, Kelan; Rotter, Jerome I; Krauss, Ronald M; Medina, Marisa W

    2014-03-01

    Human lymphoblastoid cell lines (LCLs), generated through Epstein-Barr Virus (EBV) transformation of B-lymphocytes (B-cells), are a commonly used model system for identifying genetic influences on human diseases and on drug responses. We have previously used LCLs to examine the cellular effects of genetic variants that modulate the efficacy of statins, the most prescribed class of cholesterol-lowering drugs used for the prevention and treatment of cardiovascular disease. However, statin-induced gene expression differences observed in LCLs may be influenced by their transformation, and thus differ from those observed in native B-cells. To assess this possibility, we prepared LCLs and purified B-cells from the same donors, and compared mRNA profiles after 24 h incubation with simvastatin (2 µm) or sham buffer. Genes involved in cholesterol metabolism were similarly regulated between the two cell types under both the statin and sham-treated conditions, and the statin-induced changes were significantly correlated. Genes whose expression differed between the native and transformed cells were primarily implicated in cell cycle, apoptosis and alternative splicing. We found that ChIP-seq signals for MYC and EBNA2 (an EBV transcriptional co-activator) were significantly enriched in the promoters of genes up-regulated in the LCLs compared with the B-cells, and could be involved in the regulation of cell cycle and alternative splicing. Taken together, the results support the use of LCLs for the study of statin effects on cholesterol metabolism, but suggest that drug effects on cell cycle, apoptosis and alternative splicing may be affected by EBV transformation. This dataset is now uploaded to GEO at the accession number GSE51444.

  3. Proteinase inhibitor gene families: strategies for transformation to improve plant defenses against herbivores.

    PubMed

    Ryan, C A

    1989-01-01

    Recent evidence indicates that the presence of serine proteinase inhibitors in plant leaves can reduce predation by insects. Plants can now be transformed with proteinase inhibitor genes with strong promoters to express the inhibitor proteins in relatively high levels at specific times. Inhibitors having variable specificities against digestive proteinases of insects and pathogens can now be assessed for their possible role(s) in natural plant defense and for their potential usefulness in protecting crop plants against herbivores.

  4. Validation of Reference Genes for Quantitative Real-Time PCR in Bovine PBMCs Transformed and Non-transformed by Theileria annulata

    PubMed Central

    Zhao, Hongxi; Liu, Junlong; Li, Youquan; Yang, Congshan; Zhao, Shuaiyang; Liu, Juan; Liu, Aihong; Liu, Guangyuan; Yin, Hong; Guan, Guiquan; Luo, Jianxun

    2016-01-01

    Theileria annulata is a tick-borne intracellular protozoan parasite that causes tropical theileriosis, a fatal bovine lymphoproliferative disease. The parasite predominantly invades bovine B lymphocytes and macrophages and induces host cell transformation by a mechanism that is not fully comprehended. Analysis of signaling pathways by quantitative real-time PCR (qPCR) could be a highly efficient means to understand this transformation mechanism. However, accurate analysis of qPCR data relies on selection of appropriate reference genes for normalization, yet few papers on T. annulata contain evidence of reference gene validation. We therefore used the geNorm and NormFinder programs to evaluate the stability of 5 candidate reference genes; 18S rRNA, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ACTB (β-actin), PRKG1 (protein kinase cGMP-dependent, type I) and TATA box binding protein (TBP). The results showed that 18S rRNA was the reference gene most stably expressed in bovine PBMCs transformed and non-transformed with T. annulata, followed by GAPDH and TBP. While 18S rRNA and GAPDH were the best combination, these 2 genes were chosen as references to study signaling pathways involved in the transformation mechanism of T. annulata. PMID:26951977

  5. Validation of Reference Genes for Quantitative Real-Time PCR in Bovine PBMCs Transformed and Non-transformed by Theileria annulata.

    PubMed

    Zhao, Hongxi; Liu, Junlong; Li, Youquan; Yang, Congshan; Zhao, Shuaiyang; Liu, Juan; Liu, Aihong; Liu, Guangyuan; Yin, Hong; Guan, Guiquan; Luo, Jianxun

    2016-02-01

    Theileria annulata is a tick-borne intracellular protozoan parasite that causes tropical theileriosis, a fatal bovine lymphoproliferative disease. The parasite predominantly invades bovine B lymphocytes and macrophages and induces host cell transformation by a mechanism that is not fully comprehended. Analysis of signaling pathways by quantitative real-time PCR (qPCR) could be a highly efficient means to understand this transformation mechanism. However, accurate analysis of qPCR data relies on selection of appropriate reference genes for normalization, yet few papers on T. annulata contain evidence of reference gene validation. We therefore used the geNorm and NormFinder programs to evaluate the stability of 5 candidate reference genes; 18S rRNA, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ACTB (β-actin), PRKG1 (protein kinase cGMP-dependent, type I) and TATA box binding protein (TBP). The results showed that 18S rRNA was the reference gene most stably expressed in bovine PBMCs transformed and non-transformed with T. annulata, followed by GAPDH and TBP. While 18S rRNA and GAPDH were the best combination, these 2 genes were chosen as references to study signaling pathways involved in the transformation mechanism of T. annulata. PMID:26951977

  6. [Agrobacterium-mediated transformation of LJAMP2 gene into 'Red Sun' kiwifruit and its molecular identification].

    PubMed

    Zhou, Yue; Zhao, Xupeng; Wu, Xiuhua; Zhang, Yanling; Zhang, Lin; Luo, Keming; Tang, Shaohu

    2014-06-01

    Bacterial canker caused by Pseudomonas syringae pv. Actinidiae is one of the most important diseases of kiwifruit (Actinidia chinensis) and leads to considerable yield losses. In order to obtain transgenic plants with resistance for 'Red Sun' kiwifruit to canker disease, a non-specific lipid transfer protein-like antimicrobial protein gene (LJAMP2) from motherwort (Leonurus japonicus) was introduced into 'Red Sun' kiwifruit through Agrobacterium-mediated transformation. After two days of co-cultivation with A. tumefaciens strain LBA4404 harboring 35S:LJAMP2, the transformed explants were transferred to the selection medium containing 25 mg/L kanamycin+3.0 mg/L BA+1.0 mg/L NAA. The regeneration efficiency of kanamycin-resistant shoots reached to 85%. All (100%) of kanamycin-resistant shoots rooted on half-strength MS medium supplemented with 0.8 mg/L IBA and a total of 40 regenerated plantlets were obtained. PCR and histochemical GUS activity analysis show that 23 of 40 lines (57.50%) were positive, suggesting that the LJAMP2 gene was integrated into the genome of 'Red Sun' kiwifruit. Taken together, we established an efficient genetic transformation method for 'Red Sun' kiwifruit using A. tumefaciens and the transformation frequency reached 5.11%. This protocol will be useful for the genetic breeding of 'Red Sun' kiwifruit for improvement of disease resistance.

  7. Immunofluorescence on avian sarcoma virus-transformed cells: localization of the src gene product.

    PubMed

    Rohrschneider, L R

    1979-01-01

    The localization of the avian sarcoma virus src gene product (termed p60src) was examined by indirect immunofluorescence in cells transformed by the Schmidt-Ruppin strain of Rous sarcoma virus, subgroup D (SR-RSV-D). Antiserum to p60src was obtained from rabbits bearing SR-RSV-D-induced tumors, and immunofluorescence was performed on chicken embryo fibroblasts (CEF) transformed with SR-RSV-D, as well as normal rat kidney (NRK) cells transformed by the same virus (termed SR-RK cells). Both acetone and formaldehyde fixation were used for the immunofluorescence tests. The specificity of the anti-tumor serum was first demonstrated in both cell systems by gel electrophoresis of immunoprecipitates prepared from 35S--methionine-labeled cells. Anti-tumor serum precipitated p60src from SR-RSV-D-transformed CEF but not from CEF infected with a transformation-defective mutant of SR-RSV-D. All viral structural proteins and precursors contained in these immunoprecipitates could be eliminated by competition with unlabeled virus. Similar experiments on SR-RK cells indicated that no viral proteins other than p60src were expressed in these cells, and this observation was supported by immunofluorescence tests using antiserum to whole virus. For immunofluorescence localization of p60src, reactions with viral structural proteins were blocked with unlabeled virus. This presaturation step, obligatory for p60src detection in the SR-RSV-D-transformed CEF, was unnecessary when antitumor serum was tested on SR-RK cells, since p60src was the only viral protein detectable in these cells. With acetone-fixed cells, p60src-specific immunofluorescence revealed a characteristic fluorescence pattern which was similar in both cell systems. The principal pattern was diffuse and situated in the cytoplasm. A clear nuclear fluorescence was never observed. Immunofluorescence on formaldehyde-fixed cells also indicated the cytoplasmic location of p60src and revealed a specific subcytoplasmic concentration

  8. Co-transformation of canola by chimeric chitinase and tlp genes towards improving resistance to Sclerotinia sclerotiorum.

    PubMed

    Aghazadeh, Rustam; Zamani, Mohammadreza; Motallebi, Mostafa; Moradyar, Mehdi; Moghadassi Jahromi, Zahra

    2016-09-01

    Canola (Brassica napus) plants were co-transformed with two pathogenesis-related protein genes expressing a Trichoderma atroviride chitinase with a chitin-binding domain (chimeric chitinase) and a thaumatin-like protein (tlp) from Oryza sativa conferring resistance to phytopatogenic fungi by Agrobacterium-mediated transformation. The putative transgenic plants were confirmed by PCR. After measuring the specific activity of the chimeric chitinase and glucanase activity for tlp genes, transgenic plants with high specific activity were selected for southern blot analysis to confirm the copy number of the genes. In vitro assays, the antifungal activity of crude extracted protein against Sclerotinia sclerotiorum showed that the inhibition percentage in double transgenic plants was between 55 and 62, whereas the inhibition percentage in single-gene transformants (chimeric chitinase) ranged from 35 to 45 percent. Importantly, in greenhouse conditions, the double transgenic plants showed significant resistance than the single-gene transformant and wild type plants. The results in T2 generation using the intact leaf inoculation method showed that the average lesion diameters were 10, 14.7 and 29 mm for the double transformant, single-gene transformant and non-transgenic plants, respectively. Combined expression of chimeric chitinase and tlp in transgenic plants showed significantly enhanced resistance against S. sclerotiorum than the one that express single-gene transformant plants. These results suggest that the co-expression of chimeric chitinase and tlp can confer enhanced disease resistance in canola plant. PMID:27430511

  9. Co-transformation of canola by chimeric chitinase and tlp genes towards improving resistance to Sclerotinia sclerotiorum.

    PubMed

    Aghazadeh, Rustam; Zamani, Mohammadreza; Motallebi, Mostafa; Moradyar, Mehdi; Moghadassi Jahromi, Zahra

    2016-09-01

    Canola (Brassica napus) plants were co-transformed with two pathogenesis-related protein genes expressing a Trichoderma atroviride chitinase with a chitin-binding domain (chimeric chitinase) and a thaumatin-like protein (tlp) from Oryza sativa conferring resistance to phytopatogenic fungi by Agrobacterium-mediated transformation. The putative transgenic plants were confirmed by PCR. After measuring the specific activity of the chimeric chitinase and glucanase activity for tlp genes, transgenic plants with high specific activity were selected for southern blot analysis to confirm the copy number of the genes. In vitro assays, the antifungal activity of crude extracted protein against Sclerotinia sclerotiorum showed that the inhibition percentage in double transgenic plants was between 55 and 62, whereas the inhibition percentage in single-gene transformants (chimeric chitinase) ranged from 35 to 45 percent. Importantly, in greenhouse conditions, the double transgenic plants showed significant resistance than the single-gene transformant and wild type plants. The results in T2 generation using the intact leaf inoculation method showed that the average lesion diameters were 10, 14.7 and 29 mm for the double transformant, single-gene transformant and non-transgenic plants, respectively. Combined expression of chimeric chitinase and tlp in transgenic plants showed significantly enhanced resistance against S. sclerotiorum than the one that express single-gene transformant plants. These results suggest that the co-expression of chimeric chitinase and tlp can confer enhanced disease resistance in canola plant.

  10. Phylogeny and phylogeography of functional genes shared among seven terrestrial subsurface metagenomes reveal N-cycling and microbial evolutionary relationships

    PubMed Central

    Lau, Maggie C. Y.; Cameron, Connor; Magnabosco, Cara; Brown, C. Titus; Schilkey, Faye; Grim, Sharon; Hendrickson, Sarah; Pullin, Michael; Sherwood Lollar, Barbara; van Heerden, Esta; Kieft, Thomas L.; Onstott, Tullis C.

    2014-01-01

    Comparative studies on community phylogenetics and phylogeography of microorganisms living in extreme environments are rare. Terrestrial subsurface habitats are valuable for studying microbial biogeographical patterns due to their isolation and the restricted dispersal mechanisms. Since the taxonomic identity of a microorganism does not always correspond well with its functional role in a particular community, the use of taxonomic assignments or patterns may give limited inference on how microbial functions are affected by historical, geographical and environmental factors. With seven metagenomic libraries generated from fracture water samples collected from five South African mines, this study was carried out to (1) screen for ubiquitous functions or pathways of biogeochemical cycling of CH4, S, and N; (2) to characterize the biodiversity represented by the common functional genes; (3) to investigate the subsurface biogeography as revealed by this subset of genes; and (4) to explore the possibility of using metagenomic data for evolutionary study. The ubiquitous functional genes are NarV, NPD, PAPS reductase, NifH, NifD, NifK, NifE, and NifN genes. Although these eight common functional genes were taxonomically and phylogenetically diverse and distinct from each other, the dissimilarity between samples did not correlate strongly with geographical or environmental parameters or residence time of the water. Por genes homologous to those of Thermodesulfovibrio yellowstonii detected in all metagenomes were deep lineages of Nitrospirae, suggesting that subsurface habitats have preserved ancestral genetic signatures that inform the study of the origin and evolution of prokaryotes. PMID:25400621

  11. RolB gene-induced production of isoflavonoids in transformed Maackia amurensis cells.

    PubMed

    Grishchenko, O V; Kiselev, K V; Tchernoded, G K; Fedoreyev, S A; Veselova, M V; Bulgakov, V P; Zhuravlev, Y N

    2016-09-01

    Maackia amurensis Rupr. et Maxim is a valuable leguminous tree grown in the Russian Far East, in China, and in Korea. Polyphenols from the heartwood of this species (primarily stilbenes and isoflavonoids) possess strong hepatoprotective activity. Callus culture of M. amurensis produced isoflavonoids and their derivatives. In pharmacological experiments, the callus complex was at least as effective, as the plant complex. To increase the yield of isoflavonoids, calli were transformed with the rolB gene of Agrobacterium rhizogenes. Neomycin phosphotransferase (nptII) gene was used for transgenic cell selection. Three rolB transgenic callus lines with different levels of the rolB gene expression were established. Insertion of the rolB gene caused alterations in callus structure, growth, and isoflavonoid production, and stronger alterations were observed with higher expression levels. MB1, MB2, and MB4 cultures accumulated 1.4, 1.5, and 2.1 % of dry weight (DW) isoflavonoids, respectively. In contrast, the empty vector-transformed MV culture accumulated 1.22 % DW. Isoflavonoid productivity of the obtained MB1, MB2, and MB4 cultures was equal to 117, 112, and 199 mg/L of medium, respectively, comparing to 106 mg/L for the MV culture. High level of expression of the rolB gene in MB4 culture led to a 2-fold increase in the isoflavonoid content and productivity and reliably increased dry biomass accumulation. Lower expression levels of the rolB gene in MB1 and MB2 calli did not significantly enhance biomass accumulation and isoflavonoid content, although the rolB gene activated isoflavonoid biosynthesis during the early growth stages and caused the increased content of several distinct compounds. PMID:27063013

  12. Integrative gene transfer in the truffle Tuber borchii by Agrobacterium tumefaciens-mediated transformation

    PubMed Central

    2014-01-01

    Agrobacterium tumefaciens-mediated transformation is a powerful tool for reverse genetics and functional genomic analysis in a wide variety of plants and fungi. Tuber spp. are ecologically important and gastronomically prized fungi (“truffles”) with a cryptic life cycle, a subterranean habitat and a symbiotic, but also facultative saprophytic lifestyle. The genome of a representative member of this group of fungi has recently been sequenced. However, because of their poor genetic tractability, including transformation, truffles have so far eluded in-depth functional genomic investigations. Here we report that A. tumefaciens can infect Tuber borchii mycelia, thereby conveying its transfer DNA with the production of stably integrated transformants. We constructed two new binary plasmids (pABr1 and pABr3) and tested them as improved transformation vectors using the green fluorescent protein as reporter gene and hygromycin phosphotransferase as selection marker. Transformants were stable for at least 12 months of in vitro culture propagation and, as revealed by TAIL- PCR analysis, integration sites appear to be heterogeneous, with a preference for repeat element-containing genome sites. PMID:24949275

  13. Integrative gene transfer in the truffle Tuber borchii by Agrobacterium tumefaciens-mediated transformation.

    PubMed

    Brenna, Andrea; Montanini, Barbara; Muggiano, Eleonora; Proietto, Marco; Filetici, Patrizia; Ottonello, Simone; Ballario, Paola

    2014-01-01

    Agrobacterium tumefaciens-mediated transformation is a powerful tool for reverse genetics and functional genomic analysis in a wide variety of plants and fungi. Tuber spp. are ecologically important and gastronomically prized fungi ("truffles") with a cryptic life cycle, a subterranean habitat and a symbiotic, but also facultative saprophytic lifestyle. The genome of a representative member of this group of fungi has recently been sequenced. However, because of their poor genetic tractability, including transformation, truffles have so far eluded in-depth functional genomic investigations. Here we report that A. tumefaciens can infect Tuber borchii mycelia, thereby conveying its transfer DNA with the production of stably integrated transformants. We constructed two new binary plasmids (pABr1 and pABr3) and tested them as improved transformation vectors using the green fluorescent protein as reporter gene and hygromycin phosphotransferase as selection marker. Transformants were stable for at least 12 months of in vitro culture propagation and, as revealed by TAIL- PCR analysis, integration sites appear to be heterogeneous, with a preference for repeat element-containing genome sites.

  14. ESTIMATION OF MICROBIAL REDUCTIVE TRANSFORMATION RATES FOR CHLORINATED BENZENES AND PHENOLS USING A QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIP APPROACH

    EPA Science Inventory

    A set of literature data was used to derive several quantitative structure-activity relationships (QSARs) to predict the rate constants for the microbial reductive dehalogenation of chlorinated aromatics. Dechlorination rate constants for 25 chloroaromatics were corrected for th...

  15. Blue Genes: An Integrative Laboratory to Differentiate Genetic Transformation from Gene Mutation for Underclassmen

    ERIC Educational Resources Information Center

    Militello, Kevin T.; Chang, Ming-Mei; Simon, Robert D.; Lazatin, Justine C.

    2016-01-01

    The ability of students to understand the relationship between genotype and phenotype, and the mechanisms by which genotypes and phenotypes can change is essential for students studying genetics. To this end, we have developed a four-week laboratory called Blue Genes, which is designed to help novice students discriminate between two mechanisms by…

  16. Enhanced salt tolerance of alfalfa (Medicago sativa) by rstB gene transformation.

    PubMed

    Zhang, Wan-Jun; Wang, Tao

    2015-05-01

    Generating salt tolerance forage plant is essential for use of the land affected by high salinity. A salt tolerance gene rstB was used as a selectable marker gene in Agrobacterium-mediated transformation of tobacco under a selective regime of 170mM NaCl. The transgenic plants showed clear improvement in salt tolerance. To improve salt tolerance of alfalfa (Medicago sativa L.), rstB gene was introduced into alfalfa genome by Agrobacterium-mediated transformation. No abnormal phenotype was observed among the transgenic plants when compared with wild type (wt) plants. Significant enhancement of resistance to salt-shock treatment was noted on the rstB transgenic (T0) plants. Transgenic second-generation (T1) seeds showed improved germination rate and seedling growth under salt-stress condition. Hindered Na(+) accumulation, but enhanced Ca(2+) accumulation was observed on the rstB T1 plants when subjected to salt-stresses. Enhanced calcium accumulation in transgenic plants was also verified by cytohistochemical localization of calcium. Under salt-stress of 50mM NaCl, about 15% of the transgenic plants finished their life-cycle but the wt plants had no flower formation. The results demonstrated that the expression of rstB gene improved salt tolerance in transgenic alfalfa.

  17. Characteristics and Kinetic Analysis of AQS Transformation and Microbial Goethite Reduction:Insight into “Redox mediator-Microbe-Iron oxide” Interaction Process

    NASA Astrophysics Data System (ADS)

    Zhu, Weihuang; Shi, Mengran; Yu, Dan; Liu, Chongxuan; Huang, Tinglin; Wu, Fengchang

    2016-03-01

    The characteristics and kinetics of redox transformation of a redox mediator, anthraquinone-2-sulfonate (AQS), during microbial goethite reduction by Shewanella decolorationis S12, a dissimilatory iron reduction bacterium (DIRB), were investigated to provide insights into “redox mediator-iron oxide” interaction in the presence of DIRB. Two pre-incubation reaction systems of the “strain S12- goethite” and the “strain S12-AQS” were used to investigate the dynamics of goethite reduction and AQS redox transformation. Results show that the concentrations of goethite and redox mediator, and the inoculation cell density all affect the characteristics of microbial goethite reduction, kinetic transformation between oxidized and reduced species of the redox mediator. Both abiotic and biotic reactions and their coupling regulate the kinetic process for “Quinone-Iron” interaction in the presence of DIRB. Our results provide some new insights into the characteristics and mechanisms of interaction among “quinone-DIRB- goethite” under biotic/abiotic driven.

  18. Loss of interactions between p53 and survivin gene in mesenchymal stem cells after spontaneous transformation in vitro.

    PubMed

    He, Liu; Zhao, Fangyu; Zheng, Yong; Wan, Yu; Song, Jian

    2016-06-01

    Mesenchymal stem cells (MSC) from various animals undergo a spontaneous transformation in long-term culture. The transformed MSCs are highly tumorigenic and are likely to be the tumor-initiating cells of sarcoma. To explain why the transformed MSCs become tumorigenic, the present study investigated the characteristics of rat MSCs before and after spontaneous transformation. It was shown that although the transformed MSCs maintained typical surface markers of MSC, they exhibited some cancer stem cell-like characteristics such as loss of contact inhibition and multi-potency to mesenchymal lineages, and acquirement of ability of anchorage-independent growth. The expression of a key senescence regulator p16 almost disappeared, but the other one, p53 abnormally increased in the transformed MSCs. ChIP assay demonstrated that a normal negative regulation of p53 on survivin gene disappeared in the transformed cells due to a lack of p53 binding to the promoter of survivin gene. DNA sequencing revealed that the p53 gene in transformed MSCs was not a wild-type, but a 942C>T mutant with the mutation located in the sequence coding p53 protein's DNA-binding domain. These findings indicate that the transformed MSCs express high levels of a p53 mutant that loses the ability to bind survivin gene, leading to an abnormally upregulated expression of survivin, which is a key reason for the cell's unlimited proliferation.

  19. Seventeen Sxy-Dependent Cyclic AMP Receptor Protein Site-Regulated Genes Are Needed for Natural Transformation in Haemophilus influenzae

    PubMed Central

    Mell, Joshua C.; Redfield, Rosemary J.

    2012-01-01

    Natural competence is the ability of bacteria to actively take up extracellular DNA. This DNA can recombine with the host chromosome, transforming the host cell and altering its genotype. In Haemophilus influenzae, natural competence is induced by energy starvation and the depletion of nucleotide pools. This induces a 26-gene competence regulon (Sxy-dependent cyclic AMP receptor protein [CRP-S] regulon) whose expression is controlled by two regulators, CRP and Sxy. The role of most of the CRP-S genes in DNA uptake and transformation is not known. We have therefore created in-frame deletions of each CRP-S gene and studied their competence phenotypes. All but one gene (ssb) could be deleted. Although none of the remaining CRP-S genes were required for growth in rich medium or survival under starvation conditions, DNA uptake and transformation were abolished or reduced in most of the mutants. Seventeen genes were absolutely required for transformation, with 14 of these genes being specifically required for the assembly and function of the type IV pilus DNA uptake machinery. Only five genes were dispensable for both competence and transformation. This is the first competence regulon for which all genes have been mutationally characterized. PMID:22821979

  20. Expression of heat shock gene construct in transformed fish cell culture (RTG-2) after toxicant exposure

    SciTech Connect

    Rexrode, M.; Gedamu, L.; Chen, T.T.

    1995-12-31

    The authors have developed a transformed fish cell line (RTG-2) that can be used as a noninvasive compliment for the evaluation of toxicants (metals and organometal compounds) in the laboratory. Gene transfer and integration into the cell line was accomplished through the insertion of multiple copies of a heat shock gene that had been fused to the structural gene for firefly luciferase (luc). Transcription of the hsp70-luc transgene was inducible through heat-shock and acute exposure to metals (Cd, Cu) and organometal (TBT) compounds in the laboratory. Induction resulted in a rapid luminescence intensity proportional to the concentration of luciferase activity and presents a novel noninvasive diagnostic tool that produced dose-response curves comparable to conventional trout acute studies.

  1. Transformation of LTP gene into Brassica napus to enhance its resistance to Sclerotinia sclerotiorum.

    PubMed

    Fan, Y; Du, K; Gao, Y; Kong, Y; Chu, C; Sokolov, V; Wang, Y

    2013-04-01

    Rapeseed (Brassica napus L.) is one of the most important economic crops worldwide, and Sclerotinia sclerotiorum is the most dangerous disease that affects its yield greatly. Lipid transfer protein (LTP) has broad-spectrum anti-bacterial and fungal activities. In this study, B. napus was transformed using Agrobacterium tumefaciens harboring the plasmid-containing LTP gene to study its possible capability of increasing plant's resistance. First, we optimized the petiole genetic transformation system by adjusting the days of explants, bacterial concentrations, ratio of hormones, and cultivating condition. Second, we obtained 8 positive plants by PCR analysis of T0 generation. The PCR results of T1 generation were positive, indicating that the LTP gene had been integrated into B. napus. Third, T1 transgenic plants inoculated by detached leaves with mycelia of S. sclerotiorum showed better disease resistance than non-transformants. Oxalic acid belongs to secondary metabolites of S. sclerotiorum, and several studies have demonstrated that the resistance of rapeseed to oxalic acid is significantly consistent with its resistance to S. sclerotiorum. The result from the seed germination assay showed that when T1 seeds were exposed to oxalic acid stress, their germination rate was evidently higher than that of non-transformant seeds. In addition, we measured some physiological changes in T1 plants and control plants under oxalic acid stress. The results showed that T1 transgenic plants had lower malondialdehyde (MDA) content, higher super oxide dismutase (SOD), and peroxidase (POD) activities than non-transformants, whereas disease resistance was related to low MDA content and high SOD and POD activities. PMID:23866620

  2. Differential DNA methylation profile of key genes in malignant prostate epithelial cells transformed by inorganic arsenic or cadmium

    SciTech Connect

    Pelch, Katherine E.; Tokar, Erik J.; Merrick, B. Alex; Waalkes, Michael P.

    2015-08-01

    Previous work shows altered methylation patterns in inorganic arsenic (iAs)- or cadmium (Cd)-transformed epithelial cells. Here, the methylation status near the transcriptional start site was assessed in the normal human prostate epithelial cell line (RWPE-1) that was malignantly transformed by 10 μM Cd for 11 weeks (CTPE) or 5 μM iAs for 29 weeks (CAsE-PE), at which time cells showed multiple markers of acquired cancer phenotype. Next generation sequencing of the transcriptome of CAsE-PE cells identified multiple dysregulated genes. Of the most highly dysregulated genes, five genes that can be relevant to the carcinogenic process (S100P, HYAL1, NTM, NES, ALDH1A1) were chosen for an in-depth analysis of the DNA methylation profile. DNA was isolated, bisulfite converted, and combined bisulfite restriction analysis was used to identify differentially methylated CpG sites, which was confirmed with bisulfite sequencing. Four of the five genes showed differential methylation in transformants relative to control cells that was inversely related to altered gene expression. Increased expression of HYAL1 (> 25-fold) and S100P (> 40-fold) in transformants was correlated with hypomethylation near the transcriptional start site. Decreased expression of NES (> 15-fold) and NTM (> 1000-fold) in transformants was correlated with hypermethylation near the transcriptional start site. ALDH1A1 expression was differentially expressed in transformed cells but was not differentially methylated relative to control. In conclusion, altered gene expression observed in Cd and iAs transformed cells may result from altered DNA methylation status. - Highlights: • Cd and iAs are known human carcinogens, yet neither appears directly mutagenic. • Prior data suggest epigenetic modification plays a role in Cd or iAs induced cancer. • Altered methylation of four misregulated genes was found in Cd or iAs transformants. • The resulting altered gene expression may be relevant to cellular

  3. Linking microbial oxidation of arsenic with detection and phylogenetic analysis of arsenite oxidase genes in diverse geothermal environments.

    PubMed

    Hamamura, N; Macur, R E; Korf, S; Ackerman, G; Taylor, W P; Kozubal, M; Reysenbach, A-L; Inskeep, W P

    2009-02-01

    The identification and characterization of genes involved in the microbial oxidation of arsenite will contribute to our understanding of factors controlling As cycling in natural systems. Towards this goal, we recently characterized the widespread occurrence of aerobic arsenite oxidase genes (aroA-like) from pure-culture bacterial isolates, soils, sediments and geothermal mats, but were unable to detect these genes in all geothermal systems where we have observed microbial arsenite oxidation. Consequently, the objectives of the current study were to measure arsenite-oxidation rates in geochemically diverse thermal habitats in Yellowstone National Park (YNP) ranging in pH from 2.6 to 8, and to identify corresponding 16S rRNA and aroA genotypes associated with these arsenite-oxidizing environments. Geochemical analyses, including measurement of arsenite-oxidation rates within geothermal outflow channels, were combined with 16S rRNA gene and aroA functional gene analysis using newly designed primers to capture previously undescribed aroA-like arsenite oxidase gene diversity. The majority of bacterial 16S rRNA gene sequences found in acidic (pH 2.6-3.6) Fe-oxyhydroxide microbial mats were closely related to Hydrogenobaculum spp. (members of the bacterial order Aquificales), while the predominant sequences from near-neutral (pH 6.2-8) springs were affiliated with other Aquificales including Sulfurihydrogenibium spp., Thermocrinis spp. and Hydrogenobacter spp., as well as members of the Deinococci, Thermodesulfobacteria and beta-Proteobacteria. Modified primers designed around previously characterized and newly identified aroA-like genes successfully amplified new lineages of aroA-like genes associated with members of the Aquificales across all geothermal systems examined. The expression of Aquificales aroA-like genes was also confirmed in situ, and the resultant cDNA sequences were consistent with aroA genotypes identified in the same environments. The aroA sequences

  4. Effects of temperature on microbial transformation of organic matter - comparing stories told by purified enzyme assays, chemostat experiments and soils

    NASA Astrophysics Data System (ADS)

    Lehmeier, C.; Min, K.; Good, H. J.; Billings, S. A.

    2015-12-01

    Temperature (T) is a major determinant of microbial decomposition of soil organic matter (SOM). Quantifying T responses of microbial C fluxes is crucial to improve predictions of SOM dynamics and atmospheric CO2 concentrations, but interpretation of experimental data is complicated by many properties inherent to soils. Comparing such data with complementary, reductionist experiments can help to identify basic mechanisms and interpret soil measurements. We quantified T effects on activity levels (i.e., rates of substrate cleavage) of microbial extracellular enzymes β-glucosidase (BGase) and β-N-acetyl glucosaminidase (NAGase), and on rates of CO2 efflux in soil incubations. We compare the results to those derived from purified enzyme assays, and to measurements of microbial respiration rates in continuous-flow chemostat culture in which a population of the soil bacterium Pseudomonas fluorescens was grown on medium with similar C:N ratio as the incubated SOM (10:1). Activity levels of both BGase and NAGase decreased by 80% between 25 and 5 °C. These T responses were higher than predictions from intrinsic (i.e., maximum) T responses in purified assays of BGase (minus 50%) and NAGase (minus 67%). This suggests that factors like physical access to substrate or reduced microbial production of enzymes constrained substrate decomposition rates in the soils relatively more at low than at high T. In chemostats, (mass-)specific bacterial respiration rate at T 14.5 °C was 50% of the rate observed at 26.5 °C; in contrast, CO2 efflux from the soil incubations decreased by only ~25% from 25 to 15 °C. The reason for this discrepancy can be manifold, including changes in microbial community composition, but results from ongoing measurements of microbial biomass in the soil samples will allow a closer comparison of these respiration rate responses. Our efforts highlight the significance of experimenting across scales and complexity for a better understanding of SOM dynamics.

  5. Pellitorine, a potential anti-cancer lead compound against HL6 and MCT-7 cell lines and microbial transformation of piperine from Piper Nigrum.

    PubMed

    Ee, Gwendoline Cheng Lian; Lim, Chyi Meei; Rahmani, Mawardi; Shaari, Khozirah; Bong, Choon Fah Joseph

    2010-04-05

    Pellitorine (1), which was isolated from the roots of Piper nigrum, showed strong cytotoxic activities against HL60 and MCT-7 cell lines. Microbial transformation of piperine (2) gave a new compound 5-[3,4-(methylenedioxy)phenyl]-pent-2-ene piperidine (3). Two other alkaloids were also found from Piper nigrum. They are (E)-1-[3',4'-(methylenedioxy)cinnamoyl]piperidine (4) and 2,4-tetradecadienoic acid isobutyl amide (5). These compounds were isolated using chromatographic methods and their structures were elucidated using MS, IR and NMR techniques.

  6. Transcriptional modulation of transin gene expression by epidermal growth factor and transforming growth factor beta

    SciTech Connect

    Machida, C.M.; Muldoon, L.L.; Rodland, K.D.; Magun, B.E.

    1988-06-01

    Transin is a transformation-associated gene which is expressed constitutively in rat fibroblasts transformed by a variety of oncogenes and in malignant mouse skin carcinomas but not benign papillomas or normal skin. It has been demonstrated that, in nontransformed Rat-1 cells, transin RNA expression is modulated positively by epidermal growth factor (EGF) and negatively by transforming growth factor beta (TGF-BETA); other peptide growth factors were found to have no effect on transin expression. Results presented here indicate that both protein synthesis and continuous occupancy of the EGF receptor by EGF were required for sustained induction of transin RNA. Treatment with TGF-BETA inhibited the ability of EGF to induce transin, whether assayed at the transcriptional level by nuclear run-on analysis or at the level of transin RNA accumulation by Northern (RNA) blot analysis of cellular RNA. TGF-BETA both blocked initial production of transin transcription by EGF and halted established production of transin transcripts during prolonged treatment. These results suggest that TGF-BETA acts at the transcriptional level to antagonize EGF-mediated induction of transin gene expression.

  7. Cell-cell contact regulates gene expression in CDK4-transformed mouse podocytes

    PubMed Central

    Sakairi, Toru; Abe, Yoshifusa; Jat, Parmijit S.

    2010-01-01

    We transformed mouse podocytes by ectopic expression of cyclin-dependent kinase 4 (CDK4). Compared with podocytes transformed with a thermo-sensitive SV40 large T antigen mutant tsA58U19 (tsT podocytes), podocytes transformed with CDK4 (CDK4 podocytes) exhibited significantly higher expression of nephrin mRNA. Synaptopodin mRNA expression was significantly lower in CDK4 podocytes and in tsT podocytes under growth-permissive conditions (33°C) compared with tsT podocytes under growth-restricted conditions (37°C), which suggests a role for cell cycle arrest in synaptopodin mRNA expression. Confluent CDK4 podocytes showed significantly higher mRNA expression levels for nephrin, synaptopodin, Wilms tumor 1, podocalyxin, and P-cadherin compared with subconfluent cultures. We carried out experiments to clarify roles of various factors in the confluent podocyte cultures; our findings indicate that cell-cell contact promotes expression of five podocyte marker genes studied, that cellular quiescence increases synaptopodin and podocalyxin mRNA expression, and that soluble factors play a role in nephrin mRNA expression. Our findings suggest that CDK4 podocytes are useful tools to study podocyte biology. Furthermore, the role of cell-cell contact in podocyte gene expression may have relevance for podocyte function in vivo. PMID:20668098

  8. [Diversity of the Key Biphenyl Destruction Genes in the Microbial Community of the Anadyr Bay Coastal Sediments].

    PubMed

    Shumkova, E S; Voronina, A O; Kuznetsova, N V; Plotnikova, E G

    2015-07-01

    Biphenyl 2,3-dioxygenase is the key enzyme involved in the bacterial destruction of biphenyl and polychlo- rinated biphenyls (PCBs), which are highly stable toxic compounds. The diversity of bphA1 genes encoding the biphenyl 2,3-dioxygenase a subunit of biphenyl-decomposing bacteria from the microbial community of the Bering Sea coastal sediments (the Anadyr port area) was studied. The enrichment culture was obtained by the incubation of bottom sediments samples with biphenyl as the only carbon source. It was followed by total DNA extraction and PCR analysis with degenerate primers specific to the bacterial biphenyl 2,3-dioxygenase a subunit genes. Subsequent cloning of the PCR products led to the identification of three types of aromatic dioxygenase genes, which appeared to be phylogenetically close to the genes of the biphenyl/toluene dioxygenase and 3-phenylpropionate dioxygenase subfamilies of the Actinomycetales bacteria. PMID:26410940

  9. Microbial ecology, bacterial pathogens, and antibiotic resistant genes in swine manure wastewater as influenced by three swine management systems.

    PubMed

    Brooks, John P; Adeli, Ardeshir; McLaughlin, Michael R

    2014-06-15

    The environmental influence of farm management in concentrated animal feeding operations (CAFO) can yield vast changes to the microbial biota and ecological structure of both the pig and waste manure lagoon wastewater. While some of these changes may not be negative, it is possible that CAFOs can enrich antibiotic resistant bacteria or pathogens based on farm type, thereby influencing the impact imparted by the land application of its respective wastewater. The purpose of this study was to measure the microbial constituents of swine-sow, -nursery, and -finisher farm manure lagoon wastewater and determine the changes induced by farm management. A total of 37 farms were visited in the Mid-South USA and analyzed for the genes 16S rRNA, spaQ (Salmonella spp.), Camp-16S (Campylobacter spp.), tetA, tetB, ermF, ermA, mecA, and intI using quantitative PCR. Additionally, 16S rRNA sequence libraries were created. Overall, it appeared that finisher farms were significantly different from nursery and sow farms in nearly all genes measured and in 16S rRNA clone libraries. Nearly all antibiotic resistance genes were detected in all farms. Interestingly, the mecA resistance gene (e.g. methicillin resistant Staphylococcus aureus) was below detection limits on most farms, and decreased as the pigs aged. Finisher farms generally had fewer antibiotic resistance genes, which corroborated previous phenotypic data; additionally, finisher farms produced a less diverse 16S rRNA sequence library. Comparisons of Camp-16S and spaQ GU (genomic unit) values to previous culture data demonstrated ratios from 10 to 10,000:1 depending on farm type, indicating viable but not cultivatable bacteria were dominant. The current study indicated that swine farm management schemes positively and negatively affect microbial and antibiotic resistant populations in CAFO wastewater which has future "downstream" implications from both an environmental and public health perspective.

  10. Microbial ecology, bacterial pathogens, and antibiotic resistant genes in swine manure wastewater as influenced by three swine management systems.

    PubMed

    Brooks, John P; Adeli, Ardeshir; McLaughlin, Michael R

    2014-06-15

    The environmental influence of farm management in concentrated animal feeding operations (CAFO) can yield vast changes to the microbial biota and ecological structure of both the pig and waste manure lagoon wastewater. While some of these changes may not be negative, it is possible that CAFOs can enrich antibiotic resistant bacteria or pathogens based on farm type, thereby influencing the impact imparted by the land application of its respective wastewater. The purpose of this study was to measure the microbial constituents of swine-sow, -nursery, and -finisher farm manure lagoon wastewater and determine the changes induced by farm management. A total of 37 farms were visited in the Mid-South USA and analyzed for the genes 16S rRNA, spaQ (Salmonella spp.), Camp-16S (Campylobacter spp.), tetA, tetB, ermF, ermA, mecA, and intI using quantitative PCR. Additionally, 16S rRNA sequence libraries were created. Overall, it appeared that finisher farms were significantly different from nursery and sow farms in nearly all genes measured and in 16S rRNA clone libraries. Nearly all antibiotic resistance genes were detected in all farms. Interestingly, the mecA resistance gene (e.g. methicillin resistant Staphylococcus aureus) was below detection limits on most farms, and decreased as the pigs aged. Finisher farms generally had fewer antibiotic resistance genes, which corroborated previous phenotypic data; additionally, finisher farms produced a less diverse 16S rRNA sequence library. Comparisons of Camp-16S and spaQ GU (genomic unit) values to previous culture data demonstrated ratios from 10 to 10,000:1 depending on farm type, indicating viable but not cultivatable bacteria were dominant. The current study indicated that swine farm management schemes positively and negatively affect microbial and antibiotic resistant populations in CAFO wastewater which has future "downstream" implications from both an environmental and public health perspective. PMID:24704907

  11. Virulence-associated and antibiotic resistance genes of microbial populations in cattle feces analyzed using a metagenomic approach.

    PubMed

    Durso, Lisa M; Harhay, Gregory P; Bono, James L; Smith, Timothy P L

    2011-02-01

    The bovine fecal microbiota impacts human food safety as well as animal health. Although the bacteria of cattle feces have been well characterized using culture-based and culture-independent methods, techniques have been lacking to correlate total community composition with community function. We used high throughput sequencing of total DNA extracted from fecal material to characterize general community composition and examine the repertoire of microbial genes present in beef cattle feces, including genes associated with antibiotic resistance and bacterial virulence. Results suggest that traditional 16S sequencing using "universal" primers to generate full-length sequence may under represent Acitinobacteria and Proteobacteria. Over eight percent (8.4%) of the sequences from our beef cattle fecal pool sample could be categorized as virulence genes, including a suite of genes associated with resistance to antibiotic and toxic compounds (RATC). This is a higher proportion of virulence genes found in Sargasso sea, chicken cecum, and cow rumen samples, but comparable to the proportion found in Antarctic marine derived lake, human fecal, and farm soil samples. The quantitative nature of metagenomic data, combined with the large number of RATC classes represented in samples from widely different habitats indicates that metagenomic data can be used to track relative amounts of antibiotic resistance genes in individual animals over time. Consequently, these data can be used to generate sample-specific and temporal antibiotic resistance gene profiles to facilitate an understanding of the ecology of the microbial communities in each habitat as well as the epidemiology of antibiotic resistant gene transport between and among habitats.

  12. Virulence-associated and antibiotic resistance genes of microbial populations in cattle feces analyzed using a metagenomic approach.

    PubMed

    Durso, Lisa M; Harhay, Gregory P; Bono, James L; Smith, Timothy P L

    2011-02-01

    The bovine fecal microbiota impacts human food safety as well as animal health. Although the bacteria of cattle feces have been well characterized using culture-based and culture-independent methods, techniques have been lacking to correlate total community composition with community function. We used high throughput sequencing of total DNA extracted from fecal material to characterize general community composition and examine the repertoire of microbial genes present in beef cattle feces, including genes associated with antibiotic resistance and bacterial virulence. Results suggest that traditional 16S sequencing using "universal" primers to generate full-length sequence may under represent Acitinobacteria and Proteobacteria. Over eight percent (8.4%) of the sequences from our beef cattle fecal pool sample could be categorized as virulence genes, including a suite of genes associated with resistance to antibiotic and toxic compounds (RATC). This is a higher proportion of virulence genes found in Sargasso sea, chicken cecum, and cow rumen samples, but comparable to the proportion found in Antarctic marine derived lake, human fecal, and farm soil samples. The quantitative nature of metagenomic data, combined with the large number of RATC classes represented in samples from widely different habitats indicates that metagenomic data can be used to track relative amounts of antibiotic resistance genes in individual animals over time. Consequently, these data can be used to generate sample-specific and temporal antibiotic resistance gene profiles to facilitate an understanding of the ecology of the microbial communities in each habitat as well as the epidemiology of antibiotic resistant gene transport between and among habitats. PMID:21167876

  13. Fumarase tumor suppressor gene and MET oncogene cooperate in upholding transformation and tumorigenesis.

    PubMed

    Costa, Barbara; Dettori, Daniela; Lorenzato, Annalisa; Bardella, Chiara; Coltella, Nadia; Martino, Cosimo; Cammarata, Cristina; Carmeliet, Peter; Olivero, Martina; Di Renzo, Maria Flavia

    2010-08-01

    Loss of the fumarate hydratase (FH) tumor suppressor gene results in the development of benign tumors that rarely, but regrettably, progress to very aggressive cancers. Using mouse embryo fibroblasts (MEFs) to model transformation, we found that fh knockdown results in increased expression of the met oncogene-encoded tyrosine kinase receptor through hypoxia-inducible factor (hif) stabilization. MET-increased expression was alone able to stabilize hif, thus establishing a feed forward loop that might enforce tumor progression. The fh-defective MEFs showed increased motility and protection from apoptosis. Motility, but not survival, relied on hif-1alpha and was greatly enhanced by MET ligand hepatocyte growth factor. Met cooperated with a weakly oncogenic ras in making MEFs transformed and tumorigenic, as shown by in vitro and in vivo assays. Loss of fh was not equally effective by itself but enhanced the transformed and tumorigenic phenotype induced by ras and MET. Consistently, the rescue of fumarase expression abrogated the motogenic and transformed phenotype of fh-defective MEFs. In conclusion, the data suggest that the progression of tumors where FH is lost might be boosted by activation of the MET oncogene, which is able to drive cell-autonomous tumor progression and is a strong candidate for targeted therapy. PMID:20354140

  14. Genetic transformation of Nannochloropsis oculata with a bacterial phleomycin resistance gene as dominant selective marker

    NASA Astrophysics Data System (ADS)

    Ma, Xiaolei; Pan, Kehou; Zhang, Lin; Zhu, Baohua; Yang, Guanpin; Zhang, Xiangyang

    2016-04-01

    The gene ble from Streptoalloteichus hindustanus is widely used as a selective antibiotic marker. It can control the phleomycin resistance, and significantly increase the tolerance of hosts to zeocin. The unicellular marine microalga Nannochloropsis oculata is extremely sensitive to zeocin. We selected ble as the selective marker for the genetic transformation of N. oculata. After the algal cells at a density of 2×107 cells mL-1 was digested with 4% hemicellulase and 2% driselase for 1 h, the protoplasts accounted for 90% of the total. The ble was placed at the downstream of promoter HSP70A-RUBS2 isolated from Chlamydomonas reinhardtii, yielding a recombinant expression construct pMS188. The construct was transferred into the protoplasts through electroporation (1 kV, 15 μS). The transformed protoplasts were cultured in fresh f/2 liquid medium, and selected on solid f/2 medium supplemented with 500 ng mL-1 zeocin. The PCR result proved that ble existed in the transformants. Three transformants had been cultured for at least 5 generations without losing ble. Southern blotting analysis showed that the ble has been integrated into the genome of N. oculata. The ble will serve as a new dominant selective marker in genetic engineering N. oculata.

  15. Modulation of NADPH-oxidase gene expression in rolB-transformed calli of Arabidopsis thaliana and Rubia cordifolia.

    PubMed

    Veremeichik, Galina; Bulgakov, Victor; Shkryl, Yury

    2016-08-01

    Expression of rol genes from Agrobacterium rhizogenes induces reprogramming of transformed plant cells and provokes pleiotropic effects on primary and secondary metabolism. We have previously established that the rolB and rolC genes impair reactive oxygen species (ROS) generation in transformed cells of Rubia cordifolia and Arabidopsis thaliana. In the present investigation, we tested whether this effect is associated with changes in the expression levels of NADPH oxidases, which are considered to be the primary source of ROS during plant-microbe interactions. We identified two full-length NADPH oxidase genes from R. cordifolia and examined their expression in non-transformed and rolB-transformed calli. In addition, we examined the expression of their homologous genes from A. thaliana in non-transformed and rolB-expressing cells. The expression of Rboh isoforms was 3- to 7-fold higher in both R. cordifolia and A. thaliana rolB-transformed cells compared with non-transformed cells. Our results for the first time show that Agrobacterium rolB gene regulates particular NADPH oxidase isoforms. PMID:27208504

  16. Transposon mutagenesis identifies genes that transform neural stem cells into glioma-initiating cells.

    PubMed

    Koso, Hideto; Takeda, Haruna; Yew, Christopher Chin Kuan; Ward, Jerrold M; Nariai, Naoki; Ueno, Kazuko; Nagasaki, Masao; Watanabe, Sumiko; Rust, Alistair G; Adams, David J; Copeland, Neal G; Jenkins, Nancy A

    2012-10-30

    Neural stem cells (NSCs) are considered to be the cell of origin of glioblastoma multiforme (GBM). However, the genetic alterations that transform NSCs into glioma-initiating cells remain elusive. Using a unique transposon mutagenesis strategy that mutagenizes NSCs in culture, followed by additional rounds of mutagenesis to generate tumors in vivo, we have identified genes and signaling pathways that can transform NSCs into glioma-initiating cells. Mobilization of Sleeping Beauty transposons in NSCs induced the immortalization of astroglial-like cells, which were then able to generate tumors with characteristics of the mesenchymal subtype of GBM on transplantation, consistent with a potential astroglial origin for mesenchymal GBM. Sequence analysis of transposon insertion sites from tumors and immortalized cells identified more than 200 frequently mutated genes, including human GBM-associated genes, such as Met and Nf1, and made it possible to discriminate between genes that function during astroglial immortalization vs. later stages of tumor development. We also functionally validated five GBM candidate genes using a previously undescribed high-throughput method. Finally, we show that even clonally related tumors derived from the same immortalized line have acquired distinct combinations of genetic alterations during tumor development, suggesting that tumor formation in this model system involves competition among genetically variant cells, which is similar to the Darwinian evolutionary processes now thought to generate many human cancers. This mutagenesis strategy is faster and simpler than conventional transposon screens and can potentially be applied to any tissue stem/progenitor cells that can be grown and differentiated in vitro.

  17. Genomes and gene expression across light and productivity gradients in eastern subtropical Pacific microbial communities.

    PubMed

    Dupont, Chris L; McCrow, John P; Valas, Ruben; Moustafa, Ahmed; Walworth, Nathan; Goodenough, Ursula; Roth, Robyn; Hogle, Shane L; Bai, Jing; Johnson, Zackary I; Mann, Elizabeth; Palenik, Brian; Barbeau, Katherine A; Venter, J Craig; Allen, Andrew E

    2015-05-01

    Transitions in community genomic features and biogeochemical processes were examined in surface and subsurface chlorophyll maximum (SCM) microbial communities across a trophic gradient from mesotrophic waters near San Diego, California to the oligotrophic Pacific. Transect end points contrasted in thermocline depth, rates of nitrogen and CO2 uptake, new production and SCM light intensity. Relative to surface waters, bacterial SCM communities displayed greater genetic diversity and enrichment in putative sulfur oxidizers, multiple actinomycetes, low-light-adapted Prochlorococcus and cell-associated viruses. Metagenomic coverage was not correlated with transcriptional activity for several key taxa within Bacteria. Low-light-adapted Prochlorococcus, Synechococcus, and low abundance gamma-proteobacteria enriched in the>3.0-μm size fraction contributed disproportionally to global transcription. The abundance of these groups also correlated with community functions, such as primary production or nitrate uptake. In contrast, many of the most abundant bacterioplankton, including SAR11, SAR86, SAR112 and high-light-adapted Prochlorococcus, exhibited low levels of transcriptional activity and were uncorrelated with rate processes. Eukaryotes such as Haptophytes and non-photosynthetic Aveolates were prevalent in surface samples while Mamielles and Pelagophytes dominated the SCM. Metatranscriptomes generated with ribosomal RNA-depleted mRNA (total mRNA) coupled to in vitro polyadenylation compared with polyA-enriched mRNA revealed a trade-off in detection eukaryotic organelle and eukaryotic nuclear origin transcripts, respectively. Gene expression profiles of SCM eukaryote populations, highly similar in sequence identity to the model pelagophyte Pelagomonas sp. CCMP1756, suggest that pelagophytes are responsible for a majority of nitrate assimilation within the SCM.

  18. Genomes and gene expression across light and productivity gradients in eastern subtropical Pacific microbial communities

    PubMed Central

    Dupont, Chris L; McCrow, John P; Valas, Ruben; Moustafa, Ahmed; Walworth, Nathan; Goodenough, Ursula; Roth, Robyn; Hogle, Shane L; Bai, Jing; Johnson, Zackary I; Mann, Elizabeth; Palenik, Brian; Barbeau, Katherine A; Craig Venter, J; Allen, Andrew E

    2015-01-01

    Transitions in community genomic features and biogeochemical processes were examined in surface and subsurface chlorophyll maximum (SCM) microbial communities across a trophic gradient from mesotrophic waters near San Diego, California to the oligotrophic Pacific. Transect end points contrasted in thermocline depth, rates of nitrogen and CO2 uptake, new production and SCM light intensity. Relative to surface waters, bacterial SCM communities displayed greater genetic diversity and enrichment in putative sulfur oxidizers, multiple actinomycetes, low-light-adapted Prochlorococcus and cell-associated viruses. Metagenomic coverage was not correlated with transcriptional activity for several key taxa within Bacteria. Low-light-adapted Prochlorococcus, Synechococcus, and low abundance gamma-proteobacteria enriched in the>3.0-μm size fraction contributed disproportionally to global transcription. The abundance of these groups also correlated with community functions, such as primary production or nitrate uptake. In contrast, many of the most abundant bacterioplankton, including SAR11, SAR86, SAR112 and high-light-adapted Prochlorococcus, exhibited low levels of transcriptional activity and were uncorrelated with rate processes. Eukaryotes such as Haptophytes and non-photosynthetic Aveolates were prevalent in surface samples while Mamielles and Pelagophytes dominated the SCM. Metatranscriptomes generated with ribosomal RNA-depleted mRNA (total mRNA) coupled to in vitro polyadenylation compared with polyA-enriched mRNA revealed a trade-off in detection eukaryotic organelle and eukaryotic nuclear origin transcripts, respectively. Gene expression profiles of SCM eukaryote populations, highly similar in sequence identity to the model pelagophyte Pelagomonas sp. CCMP1756, suggest that pelagophytes are responsible for a majority of nitrate assimilation within the SCM. PMID:25333462

  19. The rolC gene increases caffeoylquinic acid production in transformed artichoke cells.

    PubMed

    Vereshchagina, Y V; Bulgakov, V P; Grigorchuk, V P; Rybin, V G; Veremeichik, G N; Tchernoded, G K; Gorpenchenko, T Y; Koren, O G; Phan, N H T; Minh, N T; Chau, L T; Zhuravlev, Y N

    2014-09-01

    Caffeoylquinic acids are found in artichokes, and they are currently considered important therapeutic or preventive agents for treating Alzheimer's disease and diabetes. We transformed artichoke [the cultivated cardoon or Cynara cardunculus var. altilis DC (Asteraceae)] with the rolC gene, which is a known inducer of secondary metabolism. High-performance liquid chromatography with UV and high-resolution mass spectrometry (HPLC-UV-HRMS) revealed that the predominant metabolites synthesized in the transgenic calli were 1,5-dicaffeoylquinic acid, 3,4-dicaffeoylquinic acid, and chlorogenic acid. The rolC-transformed calli contained 1.5% caffeoylquinic acids by dry weight. The overall production of these metabolites was three times higher than that of the corresponding control calli. The enhancing effect of rolC remained stable over long-term cultivation. PMID:24938208

  20. The rolC gene increases caffeoylquinic acid production in transformed artichoke cells.

    PubMed

    Vereshchagina, Y V; Bulgakov, V P; Grigorchuk, V P; Rybin, V G; Veremeichik, G N; Tchernoded, G K; Gorpenchenko, T Y; Koren, O G; Phan, N H T; Minh, N T; Chau, L T; Zhuravlev, Y N

    2014-09-01

    Caffeoylquinic acids are found in artichokes, and they are currently considered important therapeutic or preventive agents for treating Alzheimer's disease and diabetes. We transformed artichoke [the cultivated cardoon or Cynara cardunculus var. altilis DC (Asteraceae)] with the rolC gene, which is a known inducer of secondary metabolism. High-performance liquid chromatography with UV and high-resolution mass spectrometry (HPLC-UV-HRMS) revealed that the predominant metabolites synthesized in the transgenic calli were 1,5-dicaffeoylquinic acid, 3,4-dicaffeoylquinic acid, and chlorogenic acid. The rolC-transformed calli contained 1.5% caffeoylquinic acids by dry weight. The overall production of these metabolites was three times higher than that of the corresponding control calli. The enhancing effect of rolC remained stable over long-term cultivation.

  1. Genetic transformation with the gfp gene of Colletotrichum gloeosporioides isolates from coffee with blister spot

    PubMed Central

    Armesto, Cecilia; Maia, Fernanda Gonçalves Martins; de Abreu, Mário Sobral; Figueira, Antonia dos Reis; da Silva, Bruno Marques; Monteiro, Fernando Pereira

    2012-01-01

    Blister spot (Colletotrichum gloeosporioides) is now widespread in most coffee producing states of Brazil, becoming a limiting factor for production. The lack of data relating to the reproduction of typical symptoms (light green, oily patches) leaves a gap within the pathosystem, forcing the search for new methodologies for monitoring the disease. Monitoring of genetically modified organisms has proven to be an effective tool in understanding the host × pathogen interactions. Thus, the present study was carried out to evaluate the effectiveness of two systems of genetic transformation in obtaining mutants using the gfp reporter gene. Using the two transformation systems (PEG and electroporation) revealed the efficiency of both, confirmed by fluorescence microscopy and resistance to the antibiotic hygromycin-B, when incorporated into the culture medium. The fungus maintained its cultural and morphological characteristics when compared to wild strains. When inoculated on coffee seedlings, it was found that the pathogenicity of the processed isolates had not changed. PMID:24031947

  2. [Development of a genetic transformation system for Candida tropicalis based on a reusable selection marker of URA3 gene].

    PubMed

    Xiang, Zheng; Chen, Xianzhong; Zhang, Lihua; Shen, Wei; Fan, You; Lu, Maolin

    2014-10-01

    Candida tropicalis, a diploid asporogenic yeast, is frequently utilized in industrial applications and research studies. However, the low efficiency of genetic transformation limits the strain improvement by metabolic engineering. A reliable transformation and efficient deletion of target gene are prerequisite for molecular improvement of C. tropicalis. In this study, an efficient approach for genetic transformation of C. tropicalis was developed based on the URA3 gene as a reusable selection marker and both of PDC allele genes encoding pyruvate decarboxylase were successfully deleted by this approach. Firstly, an auxotrophic mutant strain of C. tropicalis XZX which is defective in orotidine-5'-phosphate decarboxylase (URA3) was isolated by chemical mutagenesis combined with nystatin enrichment selection and 5-fluoro-orotic acid (5-FOA) resistance selection using C. tropicalis ATCC 20336 as the parent strain. Then, the first PDC deletion cassette PDC1-hisG-URA3-hisG- PDC1 (PHUHP) which contains a 1.6 kb URA3 marker gene, two copies of 1.1 kb Salmonella hisG fragments and homologous arms of target gene was constructed and transformed into C. tropicalis XZX cells. Transformants with a single copy of PDC deleted were isolated and identified by PCR and DNA sequencing, which was designated as C.tropicalis XZX02. The C.tropicalis XZX02 cells were spread on the minimal medium containing 5-FOA to generate mutant C. tropicalis XZX03 in which URA3 marker gene was excised from PHUHP fragment integrated into the PDC gene site. The second PDC gene deletion cassette PDCm-URA3-PDCm (MUM) was constructed and transformed into C. tropicalis XZX03 to generate C.tropicalis XZX04 in which both of PDC allele genes were deleted. All strains were confirmed by PCR and DNA sequencing. This efficient genetic transformation approach laid a foundation for further metabolic engineering of C. tropicalis.

  3. The Gene Transformer of Anastrepha Fruit Flies (Diptera, Tephritidae) and Its Evolution in Insects

    PubMed Central

    Salvemini, Marco; Eirín-López, José María; Perondini, André L. P.; Selivon, Denise; Polito, Catello; Saccone, Giuseppe; Sánchez, Lucas

    2007-01-01

    In the tephritids Ceratitis capitata and Bactrocera oleae, the gene transformer acts as the memory device for sex determination, via an auto-regulatory function; and functional Tra protein is produced only in females. This paper investigates the evolution of the gene tra, which was characterised in twelve tephritid species belonging to the less extensively analysed genus Anastrepha. Our study provided the following major conclusions. Firstly, the memory device mechanism used by this gene in sex determination in tephritids likely existed in the common ancestor of the Ceratitis, Bactrocera and Anastrepha phylogenetic lineages. This mechanism would represent the ancestral state with respect to the extant cascade seen in the more evolved Drosophila lineage. Secondly, Transformer2-specific binding intronic splicing silencer sites were found in the splicing regulatory region of transformer but not in doublesex pre-mRNAs in these tephritids. Thus, these sites probably provide the discriminating feature for the putative dual splicing activity of the Tra-Tra2 complex in tephritids. It acts as a splicing activator in dsx pre-mRNA splicing (its binding to the female-specific exon promotes the inclusion of this exon into the mature mRNA), and as a splicing inhibitor in tra pre-mRNA splicing (its binding to the male-specific exons prevents the inclusion of these exons into the mature mRNA). Further, a highly conserved region was found in the specific amino-terminal region of the tephritid Tra protein that might be involved in Tra auto-regulatory function and hence in its repressive splicing behaviour. Finally, the Tra proteins conserved the SR dipeptides, which are essential for Tra functionality. PMID:18043746

  4. Microbial transformations 59: first kilogram scale asymmetric microbial Baeyer-Villiger oxidation with optimized productivity using a resin-based in situ SFPR strategy.

    PubMed

    Hilker, Iris; Wohlgemuth, Roland; Alphand, Véronique; Furstoss, Roland

    2005-12-20

    This study is demonstrating the scale up of asymmetric microbial Baeyer-Villiger oxidation of racemic bicyclo[3.2.0]hept-2-en-6-one (1) to the kilogram scale using a 50 L bioreactor. The process has been optimized with respect to bottlenecks identified in downscaled experiments. A high productivity was obtained combining a resin-based in situ substrate feeding and product removal methodology (in situ SFPR), a glycerol feed control, and an improved oxygenation device (using a sintered-metal sparger). As expected both regioisomeric lactones [(-)-(1S,5R)-2 and (-)-(1R,5S)-3] were obtained in nearly enantiopure form (ee > 98%) and good yield. This represents the first example of such an asymmetric Baeyer-Villiger biooxidation reaction ever operated at that scale. This novel resin-based in situ SFPR technology therefore clearly opens the way to further (industrial) upscaling of this highly valuable (asymmetric) reaction.

  5. Inhibition of spermidine synthase gene expression by transforming growth factor-beta 1 in hepatoma cells.

    PubMed Central

    Nishikawa, Y; Kar, S; Wiest, L; Pegg, A E; Carr, B I

    1997-01-01

    We screened genes responsive to transforming growth factor-beta (TGF-beta 1) protein in a human hepatoma cell line (Hep3B) using a PCR-mediated differential display technique, in order to investigate the mechanisms involved in TGF-beta-induced growth suppression. We found a gene that was down-regulated by TGF-beta 1 to be completely identical in an approx. 620 bp segment to the gene for the enzyme spermidine synthase, which mediates the conversion of putrescine into spermidine. Both spermidine synthase mRNA expression and its enzyme activity were decreased after TGF-beta 1 treatment of Hep3B cells. The inhibition of spermidine synthase gene expression by TGF-beta 1 protein was also observed in other hepatoma cell lines. The expression of genes for other biosynthetic enzymes in polyamine metabolism (ornithine decarboxylase and S-adenosylmethionine decarboxylase) was also inhibited to the same extent as for spermidine synthase, while the gene expression of spermidine/spermine N1-acetyltransferase, a catabolic enzyme, was relatively resistant to TGF-beta 1. Spermine levels in Hep3B cells were decreased by TGF-beta 1 treatment, although the levels of spermidine and putrescine were unchanged, probably due to compensation by remaining spermidine/spermine N1-acetyltransferase activity. Exogenously added spermidine or spermine, but not putrescine, partially antagonized the growth-inhibitor effects of TGF-beta 1 on Hep3B cells. Our data suggest that down-regulation of gene expression of the enzymes involved in polyamine metabolism, including spermidine synthase, may be associated with the mechanism of TGF-beta-induced growth suppression. PMID:9020892

  6. Rac regulation of transformation, gene expression, and actin organization by multiple, PAK-independent pathways.

    PubMed Central

    Westwick, J K; Lambert, Q T; Clark, G J; Symons, M; Van Aelst, L; Pestell, R G; Der, C J

    1997-01-01

    Rac1 and RhoA are members of the Rho family of Ras-related proteins and function as regulators of actin cytoskeletal organization, gene expression, and cell cycle progression. Constitutive activation of Rac1 and RhoA causes tumorigenic transformation of NIH 3T3 cells, and their functions may be required for full Ras transformation. The effectors by which Rac1 and RhoA mediate these diverse activities, as well as the interrelationship between these events, remain poorly understood. Rac1 is distinct from RhoA in its ability to bind and activate the p65 PAK serine/threonine kinase, to induce lamellipodia and membrane ruffling, and to activate the c-Jun NH2-terminal kinase (JNK). To assess the role of PAK in Rac1 function, we identified effector domain mutants of Rac1 and Rac1-RhoA chimeric proteins that no longer bound PAK. Surprisingly, PAK binding was dispensable for Rac1-induced transformation and lamellipodium formation, as well as activation of JNK, p38, and serum response factor (SRF). However, the ability of Rac1 to bind to and activate PAK correlated with its ability to stimulate transcription from the cyclin D1 promoter. Furthermore, Rac1 activation of JNK or SRF, or induction of lamellipodia, was neither necessary nor sufficient for Rac1 transforming activity. Finally, the signaling pathways that mediate Rac1 activation of SRF or JNK were distinct from those that mediate Rac1 induction of lamellipodia. Taken together, these observations suggest that Rac1 regulates at least four distinct effector-mediated functions and that multiple pathways may contribute to Rac1-induced cellular transformation. PMID:9032259

  7. Microbial diversity of mangrove sediment in Shenzhen Bay and gene cloning, characterization of an isolated phytase-producing strain of SPC09 B. cereus.

    PubMed

    Zhang, Shengpeng; Liao, Shao-An; Yu, Xiaoyuan; Lu, Hongwu; Xian, Jian-An; Guo, Hui; Wang, Anli; Xie, Jian

    2015-06-01

    Phytases hydrolyze phytate to release inorganic phosphate, which decreases the requirement for phosphorus in fertilizers for crops and thus reduces environmental pollutants. This study analyzed microbial communities in rhizosphere sediment, collected in September 2012 from Shenzhen Bay, Guangdong, China, using high-throughput pyrosequencing; the results showed that the dominant taxonomic phyla were Chloroflexi, Firmicutes, and Proteobacteria, and the proportion of the beneficial bacteria, Bacillus, was 4.95 %. Twenty-nine culturable, phytase-producing bacteria were isolated, their phosphorus solubilization capacity was analyzed, and they were taxonomically characterized. Their phylogenetic placement was determined using 16S ribosomal RNA (rRNA) gene sequence analysis. The result shows that most of the isolates are members of the order Bacillales, although seven strains of Enterobacteriales, two strains of Pseudomonadales, and one strain of Oceanospirillales were also identified. The phytase gene was cloned from SPC09, Bacillus cereus, which showed the highest phosphorus solubilizing ability among the isolated strains. The gene encoded a primary translation product of 335 amino acids. A construct including the 1005-nt ORF fragment, Bc-phy, was transformed into Escherichia coli. The recombinant phytase was produced and purified, which revealed the temperature optima at 60 °C and pH optima at 6.5. The assessment by quantitative PCR (qPCR) showed an abundance of bacteria containing the Bc-phy gene; the level was generally higher in the mangrove forest than in the tidal flats and in surface soil compared to bottom soil, and the highest value was obtained in June. Herein, we report on the cloning, characterization, and activity of a novel phytase isolated from a mangrove system. PMID:25646962

  8. [Preparation and primary genetic analysis of Drosophila melanogaster transformants line w'lz(b)/XXywf, containing mini-white genes, integrated in the genome during P-element-dependent transformation].

    PubMed

    Prokhorova, A V; Voloshina, M A; Shostak, N G; Barskiĭ, V E; Golubovskiĭ, M D

    1994-07-01

    Transformation of Drosophila melanogaster using P-element-based vectors yielded 129 sublines, which carried mini-white gene copies in the different genome regions. Dependence of mini-white gene expression on the location, gene dosage, and sex of the transformed individuals was analyzed. The mutation lzb was shown to suppress mini-white gene expression, the degree of suppression depending on the location and dosage of the mini-white gene. PMID:7958802

  9. Excess of Organic Carbon in Mountain Spruce Forest Soils after Bark Beetle Outbreak Altered Microbial N Transformations and Mitigated N-Saturation

    PubMed Central

    Kaňa, Jiří; Tahovská, Karolina; Kopáček, Jiří; Šantrůčková, Hana

    2015-01-01

    Mountain forests in National park Bohemian Forest (Czech Republic) were affected by bark beetle attack and windthrows in 2004–2008, followed by an extensive tree dieback. We evaluated changes in the biochemistry of the uppermost soil horizons with the emphasis on carbon (C) and nitrogen (N) cycling in a near-natural spruce (Picea abies) mountain forest after the forest dieback, and compared it with an undisturbed control plot of similar age, climate, elevation, deposition, N-saturation level, and land use history. We hypothesised that the high litter input after forest dieback at the disturbed plot and its consequent decomposition might influence the availability of C for microorganisms, and consequently, N transformations in the soil. The concentrations of dissolved organic C (DOC) and N (DON) in soil water extracts rapidly increased at the disturbed plot for 3 yeas and then continually decreased. Net ammonification exhibited a similar trend as DOC and DON, indicating elevated mineralization. Despite the high ammonium concentrations found after the forest dieback (an increase from 0.5 mmol kg-1 to 2–3 mmol kg-1), net nitrification was stable and low during these 3 years. After the DOC depletion and decrease in microbial biomass 5 years after the forest dieback, net nitrification started to rise, and nitrate concentrations increased from 0.2–1 mmol kg-1 to 2–3 mmol kg-1. Our results emphasize the key role of the availability of organic C in microbial N transformations, which probably promoted microbial heterotrophic activity at the expense of slow-growing nitrifiers. PMID:26230678

  10. Excess of Organic Carbon in Mountain Spruce Forest Soils after Bark Beetle Outbreak Altered Microbial N Transformations and Mitigated N-Saturation.

    PubMed

    Kaňa, Jiří; Tahovská, Karolina; Kopáček, Jiří; Šantrůčková, Hana

    2015-01-01

    Mountain forests in National park Bohemian Forest (Czech Republic) were affected by bark beetle attack and windthrows in 2004-2008, followed by an extensive tree dieback. We evaluated changes in the biochemistry of the uppermost soil horizons with the emphasis on carbon (C) and nitrogen (N) cycling in a near-natural spruce (Picea abies) mountain forest after the forest dieback, and compared it with an undisturbed control plot of similar age, climate, elevation, deposition, N-saturation level, and land use history. We hypothesised that the high litter input after forest dieback at the disturbed plot and its consequent decomposition might influence the availability of C for microorganisms, and consequently, N transformations in the soil. The concentrations of dissolved organic C (DOC) and N (DON) in soil water extracts rapidly increased at the disturbed plot for 3 yeas and then continually decreased. Net ammonification exhibited a similar trend as DOC and DON, indicating elevated mineralization. Despite the high ammonium concentrations found after the forest dieback (an increase from 0.5 mmol kg-1 to 2-3 mmol kg-1), net nitrification was stable and low during these 3 years. After the DOC depletion and decrease in microbial biomass 5 years after the forest dieback, net nitrification started to rise, and nitrate concentrations increased from 0.2-1 mmol kg-1 to 2-3 mmol kg-1. Our results emphasize the key role of the availability of organic C in microbial N transformations, which probably promoted microbial heterotrophic activity at the expense of slow-growing nitrifiers. PMID:26230678

  11. Cumulative Epigenetic Abnormalities in Host Genes with Viral and Microbial Infection during Initiation and Progression of Malignant Lymphoma/Leukemia

    PubMed Central

    Oka, Takashi; Sato, Hiaki; Ouchida, Mamoru; Utsunomiya, Atae; Yoshino, Tadashi

    2011-01-01

    Although cancers have been thought to be predominantly driven by acquired genetic changes, it is becoming clear that microenvironment-mediated epigenetic alterations play important roles. Aberrant promoter hypermethylation is a prevalent phenomenon in human cancers as well as malignant lymphoma/leukemia. Tumor suppressor genes become frequent targets of aberrant hypermethylation in the course of gene-silencing due to the increased and deregulated DNA methyltransferases (DNMTs). The purpose of this article is to review the current status of knowledge about the contribution of cumulative epigenetic abnormalities of the host genes after microbial and virus infection to the crisis and progression of malignant lymphoma/leukemia. In addition, the relevance of this knowledge to malignant lymphoma/leukemia assessment, prevention and early detection will be discussed. PMID:24212629

  12. Expression of copper-resistance genes in microbial communities under copper stress and oxic/anoxic conditions.

    PubMed

    Besaury, Ludovic; Pawlak, Barbara; Quillet, Laurent

    2016-03-01

    Microorganisms have developed copper-resistance mechanisms in order to survive in contaminated environments. The abundance and expression of the copper-resistance genes cusA and copA, encoding respectively for a Resistance Cell Nodulation protein and for a P-type ATP-ase pump, was assessed along a gradient of copper concentration in microcosms prepared from Seine estuary mudflat sediment. We demonstrated that the abundance of copA and cusA genes decreased with the increase of copper concentration and that cusA gene was up to ten times higher than the copA gene. Only the copA gene was expressed in both oxic and anoxic conditions. The abundance and activity of the microbial community remained constant whatever the concentrations of copper along the gradient. The molecular phylogeny of the two copper-resistance genes was studied and revealed that the increase of copper increased the diversity of copA and cusA gene sequences.

  13. The role of the transformer gene in sex determination and reproduction in the tephritid fruit fly, Bactrocera dorsalis (Hendel)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transformer (tra) is a double-switch gene in the somatic sex-determination hierarchy that regulates sexual dimorphism based on RNA splicing in many insects. In tephritids, a Y-linked male determining gene (M) controls sex in the sex-determination pathway. Here, homologues of Drosophila tra and trans...

  14. Tyrosine dephosphorylation of nuclear proteins mimics transforming growth factor {beta}1 stimulation of {alpha}2(I) collagen gene expression

    SciTech Connect

    Greenwel, P.; Hu, Wei; Ramirez, F.; Kohanski, R.A.

    1995-12-01

    This report describes how the transforming growth factor {beta}1 (TGF-{beta}1) stimulates the transcription of the gene coding for collagen I (COL1A2). The report goes on to correlate tyrosine dephosphorylation, increased binding of a transcriptional complex and TGF-{beta}1 stimulation of gene expression. 33 refs., 8 figs., 1 tab.

  15. Rearrangements of chicken immunoglobulin genes in lymphoid cells transformed by the avian retroviral oncogene v-rel.

    PubMed

    Chen, L; Lim, M Y; Bose, H; Bishop, J M

    1988-01-01

    The retroviral oncogene v-rel transforms poorly characterized lymphoid cells. We have explored the nature of these cells by analyzing the configuration and expression of immunoglobulin genes in chicken hemopoietic cells transformed by v-rel. None of the transformed cells expressed their immunoglobulin genes. The cells fell into three classes: class I cells have their immunoglobulin genes potentially in an embryonic configuration; class II and class III cells have lost one copy of the lambda light chain locus and have one copy of the heavy chain locus rearranged into a configuration that differs from what is found in mature B cells. In class II cells, the other heavy chain locus may be in embryonic configuration, whereas it is deleted in class III cells. The first of these classes may represent the earliest stage of the lymphoid lineage yet encountered among virus-transformed cells, whereas the second and third classes represent an apparently anomalous rearrangement whose origin remains unknown.

  16. Relationship of polypeptide products of the transforming gene of Rous sarcoma virus and the homologous gene of vertebrates.

    PubMed

    Sefton, B M; Hunter, T; Beemon, K

    1980-04-01

    All vertebrate cells have been shown to contain a gene, sarc, that has some homology with the transforming gene of Rous sarcoma virus, src. We have compared the polypeptide products of the sarc gene, p60(sarc), of human, mouse, and chicken cells with the polymorphic polypeptide product of the src gene, p60(src), of several strains of Rous sarcoma virus by two-dimensional peptide mapping. p60(sarc) from chicken cells was clearly related to every viral p60(src). Eleven of its 13 methionine-containing tryptic peptides were present in some viral p60(src). Conversely, the other two peptides were not present in any p60(src) we have examined so far. The 11 peptides from p60(sarc) of chickens that were shared with viral p60(src), however, were not all present in any single viral p60(src). These 11 peptides most closely resemble those in the p60(src)s of B77 virus and the Prague strain of Rous sarcoma virus. These data are consistent with the hypothesis that cellular sarc is the progenitor of viral src. The p60(sarc)s of human, mouse, and chicken cells were so similar in tryptic peptide composition that they were more closely related to each other than were some viral p60(src)s. The two mammalian p60(sarc)s differed from avian p60(sarc) most notably in that they lacked a peptide that chicken p60(sarc) shares with all the viral p60(src)s. The similarity of these maps suggests that the sequence of the p60(sarc) polypeptide has diverged very little during evolution. This may imply that p60(sarc) is an essential cellular component.

  17. [Study on transformation of snowdrop lectin gene to chrysanthemum and aphid resistance of the transgenic plants].

    PubMed

    Wang, Guan-Lin; Liu, Yan-Hong; Guo, Shao-Hua; Wang, Yu; Ji, Yan; Fang, Hong-Jun

    2004-12-01

    Agrobacterium-mediated transformation in chrysanthemum was studied to prevent the insect pest of aphid (Mizus persicae). The gna gene was successfully transferred into chrysanthemum by leaf dish, and 93 transgenic clones were obtained. The highest transformation frequency 11.21% was achieved on the optimization facts, which were medium YEB with pH5.6, bacterial concentration OD600 = 0.4, precultivation for one day, cocultivation for four days, the cocultivation media supplemented with GA3 0.5 mg/L and leaf explants growed for 45 days. The results from PCR and FQ-PCR analysis confirmed that gna gene was integrated into the genome of chrysanthemum plants. The insect bioassay with aphid showed that the aphid resistance of different transgenic plants was difference, and the rate of aphid population inhibition of them were from 10% to 84% with an average rate of 39.4%. The leaf-extracts from different transgenic plants showed varying actinties in red-blood cell bioassay.

  18. Efficient gene targeting in Penicillium chrysogenum using novel Agrobacterium-mediated transformation approaches.

    PubMed

    de Boer, Paulo; Bronkhof, Jurian; Dukiќ, Karolina; Kerkman, Richard; Touw, Hesselien; van den Berg, Marco; Offringa, Remko

    2013-12-01

    The industrial production of β-lactam antibiotics by Penicillium chrysogenum has increased tremendously over the last decades, however, further optimization via classical strain and process improvement has reached its limits. The availability of the genome sequence provides new opportunities for directed strain improvement, but this requires the establishment of an efficient gene targeting (GT) system. Recently, mutations affecting the non-homologous end joining (NHEJ) pathway were shown to increase GT efficiencies following PEG-mediated DNA transfer in P. chrysogenum from 1% to 50%. Apart from direct DNA transfer many fungi can efficiently be transformed using the T-DNA transfer system of the soil bacterium Agrobacterium tumefaciens, however, for P. chrysogenum no robust system for Agrobacterium-mediated transformation was available. We obtained efficient AMT of P. chrysogenum spores with the nourseothricin acetyltransferase gene as selection marker, and using this system we investigated if AMT in a NHEJ mutant background could further enhance GT efficiencies. In general, AMT resulted in higher GT efficiencies than direct DNA transfer, although the final frequencies depended on the Agrobacterium strain and plasmid backbone used. Providing overlapping and complementing fragments on two different plasmid backbones via the same Agrobacterium host was shown to be most effective. This so-called split-marker or bi-partite method resulted in highly efficient GT (>97%) almost exclusively without additional ectopic T-DNA insertions. As this method provides for an efficient GT method independent of protoplasts, it can be applied to other fungi for which no protoplasts can be generated or for which protoplast transformation leads to varying results.

  19. Seeing the forest for the genes: using metagenomics to infer the aggregated traits of microbial communities

    PubMed Central

    Fierer, Noah; Barberán, Albert; Laughlin, Daniel C.

    2014-01-01

    Most environments harbor large numbers of microbial taxa with ecologies that remain poorly described and characterizing the functional capabilities of whole communities remains a key challenge in microbial ecology. Shotgun metagenomic analyses are increasingly recognized as a powerful tool to understand community-level attributes. However, much of this data is under-utilized due, in part, to a lack of conceptual strategies for linking the metagenomic data to the most relevant community-level characteristics. Microbial ecologists could benefit by borrowing the concept of community-aggregated traits (CATs) from plant ecologists to glean more insight from the ever-increasing amount of metagenomic data being generated. CATs can be used to quantify the mean and variance of functional traits found in a given community. A CAT-based strategy will often yield far more useful information for predicting the functional attributes of diverse microbial communities and changes in those attributes than the more commonly used analytical strategies. A more careful consideration of what CATs to measure and how they can be quantified from metagenomic data, will help build a more integrated understanding of complex microbial communities. PMID:25429288

  20. Expression of a Cryptic Secondary Sigma Factor Gene Unveils Natural Competence for DNA Transformation in Staphylococcus aureus

    PubMed Central

    Morikawa, Kazuya; Takemura, Aya J.; Inose, Yumiko; Tsai, Melody; Nguyen Thi, Le Thuy; Ohta, Toshiko; Msadek, Tarek

    2012-01-01

    It has long been a question whether Staphylococcus aureus, a major human pathogen, is able to develop natural competence for transformation by DNA. We previously showed that a novel staphylococcal secondary sigma factor, SigH, was a likely key component for competence development, but the corresponding gene appeared to be cryptic as its expression could not be detected during growth under standard laboratory conditions. Here, we have uncovered two distinct mechanisms allowing activation of SigH production in a minor fraction of the bacterial cell population. The first is a chromosomal gene duplication rearrangement occurring spontaneously at a low frequency [≤10−5], generating expression of a new chimeric sigH gene. The second involves post-transcriptional regulation through an upstream inverted repeat sequence, effectively suppressing expression of the sigH gene. Importantly, we have demonstrated for the first time that S. aureus cells producing active SigH become competent for transformation by plasmid or chromosomal DNA, which requires the expression of SigH-controlled competence genes. Additionally, using DNA from the N315 MRSA strain, we successfully transferred the full length SCCmecII element through natural transformation to a methicillin-sensitive strain, conferring methicillin resistance to the resulting S. aureus transformants. Taken together, we propose a unique model for staphylococcal competence regulation by SigH that could help explain the acquisition of antibiotic resistance genes through horizontal gene transfer in this important pathogen. PMID:23133387

  1. Bovine Host Genetic Variation Influences Rumen Microbial Methane Production with Best Selection Criterion for Low Methane Emitting and Efficiently Feed Converting Hosts Based on Metagenomic Gene Abundance.

    PubMed

    Roehe, Rainer; Dewhurst, Richard J; Duthie, Carol-Anne; Rooke, John A; McKain, Nest; Ross, Dave W; Hyslop, Jimmy J; Waterhouse, Anthony; Freeman, Tom C; Watson, Mick; Wallace, R John

    2016-02-01

    Methane produced by methanogenic archaea in ruminants contributes significantly to anthropogenic greenhouse gas emissions. The host genetic link controlling microbial methane production is unknown and appropriate genetic selection strategies are not developed. We used sire progeny group differences to estimate the host genetic influence on rumen microbial methane production in a factorial experiment consisting of crossbred breed types and diets. Rumen metagenomic profiling was undertaken to investigate links between microbial genes and methane emissions or feed conversion efficiency. Sire progeny groups differed significantly in their methane emissions measured in respiration chambers. Ranking of the sire progeny groups based on methane emissions or relative archaeal abundance was consistent overall and within diet, suggesting that archaeal abundance in ruminal digesta is under host genetic control and can be used to genetically select animals without measuring methane directly. In the metagenomic analysis of rumen contents, we identified 3970 microbial genes of which 20 and 49 genes were significantly associated with methane emissions and feed conversion efficiency respectively. These explained 81% and 86% of the respective variation and were clustered in distinct functional gene networks. Methanogenesis genes (e.g. mcrA and fmdB) were associated with methane emissions, whilst host-microbiome cross talk genes (e.g. TSTA3 and FucI) were associated with feed conversion efficiency. These results strengthen the idea that the host animal controls its own microbiota to a significant extent and open up the implementation of effective breeding strategies using rumen microbial gene abundance as a predictor for difficult-to-measure traits on a large number of hosts. Generally, the results provide a proof of principle to use the relative abundance of microbial genes in the gastrointestinal tract of different species to predict their influence on traits e.g. human metabolism

  2. Bovine Host Genetic Variation Influences Rumen Microbial Methane Production with Best Selection Criterion for Low Methane Emitting and Efficiently Feed Converting Hosts Based on Metagenomic Gene Abundance

    PubMed Central

    Roehe, Rainer; Dewhurst, Richard J.; Duthie, Carol-Anne; Rooke, John A.; McKain, Nest; Ross, Dave W.; Hyslop, Jimmy J.; Waterhouse, Anthony; Freeman, Tom C.

    2016-01-01

    Methane produced by methanogenic archaea in ruminants contributes significantly to anthropogenic greenhouse gas emissions. The host genetic link controlling microbial methane production is unknown and appropriate genetic selection strategies are not developed. We used sire progeny group differences to estimate the host genetic influence on rumen microbial methane production in a factorial experiment consisting of crossbred breed types and diets. Rumen metagenomic profiling was undertaken to investigate links between microbial genes and methane emissions or feed conversion efficiency. Sire progeny groups differed significantly in their methane emissions measured in respiration chambers. Ranking of the sire progeny groups based on methane emissions or relative archaeal abundance was consistent overall and within diet, suggesting that archaeal abundance in ruminal digesta is under host genetic control and can be used to genetically select animals without measuring methane directly. In the metagenomic analysis of rumen contents, we identified 3970 microbial genes of which 20 and 49 genes were significantly associated with methane emissions and feed conversion efficiency respectively. These explained 81% and 86% of the respective variation and were clustered in distinct functional gene networks. Methanogenesis genes (e.g. mcrA and fmdB) were associated with methane emissions, whilst host-microbiome cross talk genes (e.g. TSTA3 and FucI) were associated with feed conversion efficiency. These results strengthen the idea that the host animal controls its own microbiota to a significant extent and open up the implementation of effective breeding strategies using rumen microbial gene abundance as a predictor for difficult-to-measure traits on a large number of hosts. Generally, the results provide a proof of principle to use the relative abundance of microbial genes in the gastrointestinal tract of different species to predict their influence on traits e.g. human metabolism

  3. Bovine Host Genetic Variation Influences Rumen Microbial Methane Production with Best Selection Criterion for Low Methane Emitting and Efficiently Feed Converting Hosts Based on Metagenomic Gene Abundance.

    PubMed

    Roehe, Rainer; Dewhurst, Richard J; Duthie, Carol-Anne; Rooke, John A; McKain, Nest; Ross, Dave W; Hyslop, Jimmy J; Waterhouse, Anthony; Freeman, Tom C; Watson, Mick; Wallace, R John

    2016-02-01

    Methane produced by methanogenic archaea in ruminants contributes significantly to anthropogenic greenhouse gas emissions. The host genetic link controlling microbial methane production is unknown and appropriate genetic selection strategies are not developed. We used sire progeny group differences to estimate the host genetic influence on rumen microbial methane production in a factorial experiment consisting of crossbred breed types and diets. Rumen metagenomic profiling was undertaken to investigate links between microbial genes and methane emissions or feed conversion efficiency. Sire progeny groups differed significantly in their methane emissions measured in respiration chambers. Ranking of the sire progeny groups based on methane emissions or relative archaeal abundance was consistent overall and within diet, suggesting that archaeal abundance in ruminal digesta is under host genetic control and can be used to genetically select animals without measuring methane directly. In the metagenomic analysis of rumen contents, we identified 3970 microbial genes of which 20 and 49 genes were significantly associated with methane emissions and feed conversion efficiency respectively. These explained 81% and 86% of the respective variation and were clustered in distinct functional gene networks. Methanogenesis genes (e.g. mcrA and fmdB) were associated with methane emissions, whilst host-microbiome cross talk genes (e.g. TSTA3 and FucI) were associated with feed conversion efficiency. These results strengthen the idea that the host animal controls its own microbiota to a significant extent and open up the implementation of effective breeding strategies using rumen microbial gene abundance as a predictor for difficult-to-measure traits on a large number of hosts. Generally, the results provide a proof of principle to use the relative abundance of microbial genes in the gastrointestinal tract of different species to predict their influence on traits e.g. human metabolism

  4. Neoplastic transformation of rat thyroid cells requires the junB and fra-1 gene induction which is dependent on the HMGI-C gene product.

    PubMed Central

    Vallone, D; Battista, S; Pierantoni, G M; Fedele, M; Casalino, L; Santoro, M; Viglietto, G; Fusco, A; Verde, P

    1997-01-01

    The expression of the high mobility group I (HMGI)-C chromatin component was shown previously to be essential for the establishment of the neoplastic phenotype in retrovirally transformed thyroid cell lines. To identify possible targets of the HMGI-C gene product, we have analyzed the AP-1 complex in normal, fully transformed and antisense HMGI-C-expressing rat thyroid cells. We show that neoplastic transformation is associated with a drastic increase in AP-1 activity, which reflects multiple compositional changes. The strongest effect is represented by the dramatic junB and fra-1 gene induction, which is prevented in cell lines expressing the antisense HMGI-C. These results indicate that the HMGI-C gene product is essential for the junB and fra-1 transcriptional induction associated with neoplastic transformation. The inhibition of Fra-1 protein synthesis by stable transfection with a fra-1 antisense RNA vector significantly reduces the malignant phenotype of the transformed thyroid cells, indicating a pivotal role for the fra-1 gene product in the process of cellular transformation. PMID:9311991

  5. On the study of microbial transcriptomes using second- and third-generation sequencing technologies.

    PubMed

    Choi, Sang Chul

    2016-08-01

    Second-generation sequencing technologies transformed the study of microbial transcriptomes. They helped reveal the transcription start sites and antisense transcripts of microbial species, improving the microbial genome annotation. Quantification of genome-wide gene expression levels allowed for functional studies of microbial research. Ever-evolving sequencing technologies are reshaping approaches to studying microbial transcriptomes. Recently, Oxford Nanopore Technologies delivered a sequencing platform called MinION, a third-generation sequencing technology, to the research community. We expect it to be the next sequencing technology that enables breakthroughs in life science fields. The studies of microbial transcriptomes will be no exception. In this paper, we review microbial transcriptomics studies using second- generation sequencing technology. We also discuss the prospect of microbial transcriptomics studies with thirdgeneration sequencing. PMID:27480632

  6. Nitrification inhibition by hexavalent chromium Cr(VI)--Microbial ecology, gene expression and off-gas emissions.

    PubMed

    Kim, Young Mo; Park, Hongkeun; Chandran, Kartik

    2016-04-01

    The goal of this study was to investigate the responses in the physiology, microbial ecology and gene expression of nitrifying bacteria to imposition of and recovery from Cr(VI) loading in a lab-scale nitrification bioreactor. Exposure to Cr(VI) in the reactor strongly inhibited nitrification performance resulting in a parallel decrease in nitrate production and ammonia consumption. Cr(VI) exposure also led to an overall decrease in total bacterial concentrations in the reactor. However, the fraction of ammonia oxidizing bacteria (AOB) decreased to a greater extent than the fraction of nitrite oxidizing bacteria (NOB). In terms of functional gene expression, a rapid decrease in the transcript concentrations of amoA gene coding for ammonia oxidation in AOB was observed in response to the Cr(VI) shock. In contrast, transcript concentrations of the nxrA gene coding for nitrite oxidation in NOB were relatively unchanged compared to Cr(VI) pre-exposure levels. Therefore, Cr(VI) exposure selectively and directly inhibited activity of AOB, which indirectly resulted in substrate (nitrite) limitation to NOB. Significantly, trends in amoA expression preceded performance trends both during imposition of and recovery from inhibition. During recovery from the Cr(VI) shock, the high ammonia concentrations in the bioreactor resulted in an irreversible shift towards AOB populations, which are expected to be more competitive in high ammonia environments. An inadvertent impact during recovery was increased emission of nitrous oxide (N2O) and nitric oxide (NO), consistent with recent findings linking AOB activity and the production of these gases. Therefore, Cr(VI) exposure elicited multiple responses on the microbial ecology, gene expression and both aqueous and gaseous nitrogenous conversion in a nitrification process. A complementary interrogation of these multiple responses facilitated an understanding of both direct and indirect inhibitory impacts on nitrification. PMID:26874778

  7. Genetic Transformation of Artemisia carvifolia Buch with rol Genes Enhances Artemisinin Accumulation

    PubMed Central

    Dilshad, Erum; Cusido, Rosa Maria; Estrada, Karla Ramirez; Bonfill, Mercedes; Mirza, Bushra

    2015-01-01

    The potent antimalarial drug artemisinin has a high cost, since its only viable source to date is Artemisia annua (0.01–0.8% DW). There is therefore an urgent need to design new strategies to increase its production or to find alternative sources. In the current study, Artemisia carvifolia Buch was selected with the aim of detecting artemisinin and then enhancing the production of the target compound and its derivatives. These metabolites were determined by LC-MS in the shoots of A. carvifolia wild type plants at the following concentrations: artemisinin (8μg/g), artesunate (2.24μg/g), dihydroartemisinin (13.6μg/g) and artemether (12.8μg/g). Genetic transformation of A. carvifolia was carried out with Agrobacterium tumefaciens GV3101 harboring the rol B and rol C genes. Artemisinin content increased 3-7-fold in transgenics bearing the rol B gene, and 2.3-6-fold in those with the rol C gene. A similar pattern was observed for artemisinin analogues. The dynamics of artemisinin content in transgenics and wild type A.carvifolia was also correlated with the expression of genes involved in its biosynthesis. Real time qPCR analysis revealed the differential expression of genes involved in artemisinin biosynthesis, i.e. those encoding amorpha-4, 11 diene synthase (ADS), cytochrome P450 (CYP71AV1), and aldehyde dehydrogenase 1 (ALDH1), with a relatively higher transcript level found in transgenics than in the wild type plant. Also, the gene related to trichome development and sesquiterpenoid biosynthesis (TFAR1) showed an altered expression in the transgenics compared to wild type A.carvifolia, which was in accordance with the trichome density of the respective plants. The trichome index was significantly higher in the rol B and rol C gene-expressing transgenics with an increased production of artemisinin, thereby demonstrating that the rol genes are effective inducers of plant secondary metabolism. PMID:26444558

  8. Genetic Transformation of Artemisia carvifolia Buch with rol Genes Enhances Artemisinin Accumulation.

    PubMed

    Dilshad, Erum; Cusido, Rosa Maria; Ramirez Estrada, Karla; Bonfill, Mercedes; Mirza, Bushra

    2015-01-01

    The potent antimalarial drug artemisinin has a high cost, since its only viable source to date is Artemisia annua (0.01-0.8% DW). There is therefore an urgent need to design new strategies to increase its production or to find alternative sources. In the current study, Artemisia carvifolia Buch was selected with the aim of detecting artemisinin and then enhancing the production of the target compound and its derivatives. These metabolites were determined by LC-MS in the shoots of A. carvifolia wild type plants at the following concentrations: artemisinin (8μg/g), artesunate (2.24μg/g), dihydroartemisinin (13.6μg/g) and artemether (12.8μg/g). Genetic transformation of A. carvifolia was carried out with Agrobacterium tumefaciens GV3101 harboring the rol B and rol C genes. Artemisinin content increased 3-7-fold in transgenics bearing the rol B gene, and 2.3-6-fold in those with the rol C gene. A similar pattern was observed for artemisinin analogues. The dynamics of artemisinin content in transgenics and wild type A.carvifolia was also correlated with the expression of genes involved in its biosynthesis. Real time qPCR analysis revealed the differential expression of genes involved in artemisinin biosynthesis, i.e. those encoding amorpha-4, 11 diene synthase (ADS), cytochrome P450 (CYP71AV1), and aldehyde dehydrogenase 1 (ALDH1), with a relatively higher transcript level found in transgenics than in the wild type plant. Also, the gene related to trichome development and sesquiterpenoid biosynthesis (TFAR1) showed an altered expression in the transgenics compared to wild type A.carvifolia, which was in accordance with the trichome density of the respective plants. The trichome index was significantly higher in the rol B and rol C gene-expressing transgenics with an increased production of artemisinin, thereby demonstrating that the rol genes are effective inducers of plant secondary metabolism. PMID:26444558

  9. Dynamic Epstein-Barr virus gene expression on the path to B-cell transformation.

    PubMed

    Price, Alexander M; Luftig, Micah A

    2014-01-01

    Epstein-Barr virus (EBV) is an oncogenic human herpesvirus in the γ-herpesvirinae subfamily that contains a 170-180kb double-stranded DNA genome. In vivo, EBV commonly infects B and epithelial cells and persists for the life of the host in a latent state in the memory B-cell compartment of the peripheral blood. EBV can be reactivated from its latent state, leading to increased expression of lytic genes that primarily encode for enzymes necessary to replicate the viral genome and structural components of the virion. Lytic cycle proteins also aid in immune evasion, inhibition of apoptosis, and the modulation of other host responses to infection. In vitro, EBV has the potential to infect primary human B cells and induce cellular proliferation to yield effectively immortalized lymphoblastoid cell lines, or LCLs. EBV immortalization of B cells in vitro serves as a model system for studying EBV-mediated lymphomagenesis. While much is known about the steady-state viral gene expression within EBV-immortalized LCLs and other EBV-positive cell lines, relatively little is known about the early events after primary B-cell infection. It was previously thought that upon latent infection, EBV only expressed the well-characterized latency-associated transcripts found in LCLs. However, recent work has characterized the early, but transient, expression of lytic genes necessary for efficient transformation and delayed responses in the known latency genes. This chapter summarizes these recent findings that show how dynamic and controlled expression of multiple EBV genes can control the activation of B cells, entry into the cell cycle, the inhibition of apoptosis, and innate and adaptive immune responses. PMID:24373315

  10. fcGENE: A Versatile Tool for Processing and Transforming SNP Datasets

    PubMed Central

    Roshyara, Nab Raj; Scholz, Markus

    2014-01-01

    Background Modern analysis of high-dimensional SNP data requires a number of biometrical and statistical methods such as pre-processing, analysis of population structure, association analysis and genotype imputation. Software used for these purposes often rely on specific and incompatible input and output data formats. Therefore extensive data management including multiple format conversions is necessary during analyses. Methods In order to support fast and efficient management and bio-statistical quality control of high-dimensional SNP data, we developed the publically available software fcGENE using C++ object-oriented programming language. This software simplifies and automates the use of different existing analysis packages, especially during the workflow of genotype imputations and corresponding analyses. Results fcGENE transforms SNP data and imputation results into different formats required for a large variety of analysis packages such as PLINK, SNPTEST, HAPLOVIEW, EIGENSOFT, GenABEL and tools used for genotype imputation such as MaCH, IMPUTE, BEAGLE and others. Data Management tasks like merging, splitting, extracting SNP and pedigree information can be performed. fcGENE also supports a number of bio-statistical quality control processes and quality based filtering processes at SNP- and sample-wise level. The tool also generates templates of commands required to run specific software packages, especially those required for genotype imputation. We demonstrate the functionality of fcGENE by example workflows of SNP data analyses and provide a comprehensive manual of commands, options and applications. Conclusions We have developed a user-friendly open-source software fcGENE, which comprehensively supports SNP data management, quality control and analysis workflows. Download statistics and corresponding feedbacks indicate that software is highly recognised and extensively applied by the scientific community. PMID:25050709

  11. Identification of genes associated with asexual reproduction in Phyllosticta citricarpa mutants obtained through Agrobacterium tumefaciens transformation.

    PubMed

    Goulin, Eduardo Henrique; Savi, Daiani Cristina; Petters, Desirrê Alexia Lourenço; Kava, Vanessa; Galli-Terasawa, Lygia; Silva, Geraldo José; Glienke, Chirlei

    2016-11-01

    Phyllosticta citricarpa is the epidemiological agent of Citrus Black Spot (CBS) disease, which is responsible for large economic losses worldwide. CBS is characterized by the presence of spores (pycnidiospores) in dark lesions of fruit, which are also responsible for short distance dispersal of the disease. The identification of genes involved in asexual reproduction of P. citricarpa can be an alternative for directional disease control. We analyzed a library of mutants obtained through Agrobacterium tumefaciens transformation system, looking for alterations in growth and reproductive structure formation. Two mutant strains were found to have lost the ability to form pycnidia. The flanking T-DNA insertion regions were identified on P. citricarpa genome by using blast analysis and further gene prediction. The predicted genes containing the T-DNA insertions were identified as Spindle Poison Sensitivity Scp3, Ion Transport protein, and Cullin Binding proteins. The Ion Transport and Cullin Binding proteins are known to be correlated with sexual and asexual reproduction in fungi; however, the exact mechanism by which these proteins act on spore formation in P. citricarpa needs to be better characterized. The Scp3 proteins are suggested here for the first time as being associated with asexual reproduction in fungus. This protein is associated with microtubule formation, and as microtubules play an essential role as spindle machinery for chromosome segregation and cytokinesis, insertions in this gene can lead to abnormal formations, such as that observed here in P. citricarpa. We suggest these genes as new targets for fungicide development and CBS disease control, by iRNA. PMID:27664732

  12. Identification of genes associated with asexual reproduction in Phyllosticta citricarpa mutants obtained through Agrobacterium tumefaciens transformation.

    PubMed

    Goulin, Eduardo Henrique; Savi, Daiani Cristina; Petters, Desirrê Alexia Lourenço; Kava, Vanessa; Galli-Terasawa, Lygia; Silva, Geraldo José; Glienke, Chirlei

    2016-11-01

    Phyllosticta citricarpa is the epidemiological agent of Citrus Black Spot (CBS) disease, which is responsible for large economic losses worldwide. CBS is characterized by the presence of spores (pycnidiospores) in dark lesions of fruit, which are also responsible for short distance dispersal of the disease. The identification of genes involved in asexual reproduction of P. citricarpa can be an alternative for directional disease control. We analyzed a library of mutants obtained through Agrobacterium tumefaciens transformation system, looking for alterations in growth and reproductive structure formation. Two mutant strains were found to have lost the ability to form pycnidia. The flanking T-DNA insertion regions were identified on P. citricarpa genome by using blast analysis and further gene prediction. The predicted genes containing the T-DNA insertions were identified as Spindle Poison Sensitivity Scp3, Ion Transport protein, and Cullin Binding proteins. The Ion Transport and Cullin Binding proteins are known to be correlated with sexual and asexual reproduction in fungi; however, the exact mechanism by which these proteins act on spore formation in P. citricarpa needs to be better characterized. The Scp3 proteins are suggested here for the first time as being associated with asexual reproduction in fungus. This protein is associated with microtubule formation, and as microtubules play an essential role as spindle machinery for chromosome segregation and cytokinesis, insertions in this gene can lead to abnormal formations, such as that observed here in P. citricarpa. We suggest these genes as new targets for fungicide development and CBS disease control, by iRNA.

  13. Novel recombinant binary vectors harbouring Basta (bar) gene as a plant selectable marker for genetic transformation of plants.

    PubMed

    Nada, Reham M

    2016-04-01

    Genetic transformation is one of the most widely used technique in crop improvement. However, most of the binary vectors used in this technique, especially cloning based, contain antibiotic genes as selection marker that raise serious consumer and environmental concerns; moreover, they could be transferred to non-target hosts with deleterious effects. Therefore, the goal of this study was reconstruction of the widely used pBI121 binary vector by substituting the harmful antibiotic selection marker gene with a less-harmful selection marker, Basta (herbicide resistance gene). The generated vectors were designated as pBI121NB and pBI121CB, in which Basta gene was expressed under the control of Nos or CaMV 35S promoter, respectively. The successful integration of the new inserts into both the vectors was confirmed by PCR, restriction digestion and sequencing. Both these vectors were used in transforming Arabidopsis, Egyptian wheat and barley varieties using LBA4404 and GV3101 Agrobacterium strains. The surfactant Tween-20 resulted in an efficient transformation and the number of Arabidopsis transformants was about 6-9 %. Soaked seeds of wheat and barley were transformed with Agrobacterium to introduce the bacteria to the growing shoot apices. The percentage of transgenic lines was around 16-17 and 14-15 % for wheat and barley, respectively. The quantitative studies presented in this work showed that both LBA4404 and GV3101 strains were suitable for transforming Egyptian wheat and barley. PMID:27436915

  14. Novel recombinant binary vectors harbouring Basta (bar) gene as a plant selectable marker for genetic transformation of plants.

    PubMed

    Nada, Reham M

    2016-04-01

    Genetic transformation is one of the most widely used technique in crop improvement. However, most of the binary vectors used in this technique, especially cloning based, contain antibiotic genes as selection marker that raise serious consumer and environmental concerns; moreover, they could be transferred to non-target hosts with deleterious effects. Therefore, the goal of this study was reconstruction of the widely used pBI121 binary vector by substituting the harmful antibiotic selection marker gene with a less-harmful selection marker, Basta (herbicide resistance gene). The generated vectors were designated as pBI121NB and pBI121CB, in which Basta gene was expressed under the control of Nos or CaMV 35S promoter, respectively. The successful integration of the new inserts into both the vectors was confirmed by PCR, restriction digestion and sequencing. Both these vectors were used in transforming Arabidopsis, Egyptian wheat and barley varieties using LBA4404 and GV3101 Agrobacterium strains. The surfactant Tween-20 resulted in an efficient transformation and the number of Arabidopsis transformants was about 6-9 %. Soaked seeds of wheat and barley were transformed with Agrobacterium to introduce the bacteria to the growing shoot apices. The percentage of transgenic lines was around 16-17 and 14-15 % for wheat and barley, respectively. The quantitative studies presented in this work showed that both LBA4404 and GV3101 strains were suitable for transforming Egyptian wheat and barley.

  15. Distribution of Microbial Arsenic Reduction, Oxidation and Extrusion Genes along a Wide Range of Environmental Arsenic Concentrations

    PubMed Central

    Escudero, Lorena V.; Casamayor, Emilio O.; Chong, Guillermo; Pedrós-Alió, Carles; Demergasso, Cecilia

    2013-01-01

    The presence of the arsenic oxidation, reduction, and extrusion genes arsC, arrA, aioA, and acr3 was explored in a range of natural environments in northern Chile, with arsenic concentrations spanning six orders of magnitude. A combination of primers from the literature and newly designed primers were used to explore the presence of the arsC gene, coding for the reduction of As (V) to As (III) in one of the most common detoxification mechanisms. Enterobacterial related arsC genes appeared only in the environments with the lowest As concentration, while Firmicutes-like genes were present throughout the range of As concentrations. The arrA gene, involved in anaerobic respiration using As (V) as electron acceptor, was found in all the systems studied. The As (III) oxidation gene aioA and the As (III) transport gene acr3 were tracked with two primer sets each and they were also found to be spread through the As concentration gradient. Sediment samples had a higher number of arsenic related genes than water samples. Considering the results of the bacterial community composition available for these samples, the higher microbial phylogenetic diversity of microbes inhabiting the sediments may explain the increased number of genetic resources found to cope with arsenic. Overall, the environmental distribution of arsenic related genes suggests that the occurrence of different ArsC families provides different degrees of protection against arsenic as previously described in laboratory strains, and that the glutaredoxin (Grx)-linked arsenate reductases related to Enterobacteria do not confer enough arsenic resistance to live above certain levels of As concentrations. PMID:24205341

  16. Distribution of microbial arsenic reduction, oxidation and extrusion genes along a wide range of environmental arsenic concentrations.

    PubMed

    Escudero, Lorena V; Casamayor, Emilio O; Chong, Guillermo; Pedrós-Alió, Carles; Demergasso, Cecilia

    2013-01-01

    The presence of the arsenic oxidation, reduction, and extrusion genes arsC, arrA, aioA, and acr3 was explored in a range of natural environments in northern Chile, with arsenic concentrations spanning six orders of magnitude. A combination of primers from the literature and newly designed primers were used to explore the presence of the arsC gene, coding for the reduction of As (V) to As (III) in one of the most common detoxification mechanisms. Enterobacterial related arsC genes appeared only in the environments with the lowest As concentration, while Firmicutes-like genes were present throughout the range of As concentrations. The arrA gene, involved in anaerobic respiration using As (V) as electron acceptor, was found in all the systems studied. The As (III) oxidation gene aioA and the As (III) transport gene acr3 were tracked with two primer sets each and they were also found to be spread through the As concentration gradient. Sediment samples had a higher number of arsenic related genes than water samples. Considering the results of the bacterial community composition available for these samples, the higher microbial phylogenetic diversity of microbes inhabiting the sediments may explain the increased number of genetic resources found to cope with arsenic. Overall, the environmental distribution of arsenic related genes suggests that the occurrence of different ArsC families provides different degrees of protection against arsenic as previously described in laboratory strains, and that the glutaredoxin (Grx)-linked arsenate reductases related to Enterobacteria do not confer enough arsenic resistance to live above certain levels of As concentrations. PMID:24205341

  17. Agrobacterium-mediated genetic transformation of yam (Dioscorea rotundata): an important tool for functional study of genes and crop improvement.

    PubMed

    Nyaboga, Evans; Tripathi, Jaindra N; Manoharan, Rajesh; Tripathi, Leena

    2014-01-01

    Although genetic transformation of clonally propagated crops has been widely studied as a tool for crop improvement and as a vital part of the development of functional genomics resources, there has been no report of any existing Agrobacterium-mediated transformation of yam (Dioscorea spp.) with evidence of stable integration of T-DNA. Yam is an important crop in the tropics and subtropics providing food security and income to over 300 million people. However, yam production remains constrained by increasing levels of field and storage pests and diseases. A major constraint to the development of biotechnological approaches for yam improvement has been the lack of an efficient and robust transformation and regeneration system. In this study, we developed an Agrobacterium-mediated transformation of Dioscorea rotundata using axillary buds as explants. Two cultivars of D. rotundata were transformed using Agrobacterium tumefaciens harboring the binary vectors containing selectable marker and reporter genes. After selection with appropriate concentrations of antibiotic, shoots were developed on shoot induction and elongation medium. The elongated antibiotic-resistant shoots were subsequently rooted on medium supplemented with selection agent. Successful transformation was confirmed by polymerase chain reaction, Southern blot analysis, and reporter genes assay. Expression of gusA gene in transgenic plants was also verified by reverse transcription polymerase chain reaction analysis. Transformation efficiency varied from 9.4 to 18.2% depending on the cultivars, selectable marker genes, and the Agrobacterium strain used for transformation. It took 3-4 months from Agro-infection to regeneration of complete transgenic plant. Here we report an efficient, fast and reproducible protocol for Agrobacterium-mediated transformation of D. rotundata using axillary buds as explants, which provides a useful platform for future genetic engineering studies in this economically important

  18. Agrobacterium-mediated genetic transformation of yam (Dioscorea rotundata): an important tool for functional study of genes and crop improvement

    PubMed Central

    Nyaboga, Evans; Tripathi, Jaindra N.; Manoharan, Rajesh; Tripathi, Leena

    2014-01-01

    Although genetic transformation of clonally propagated crops has been widely studied as a tool for crop improvement and as a vital part of the development of functional genomics resources, there has been no report of any existing Agrobacterium-mediated transformation of yam (Dioscorea spp.) with evidence of stable integration of T-DNA. Yam is an important crop in the tropics and subtropics providing food security and income to over 300 million people. However, yam production remains constrained by increasing levels of field and storage pests and diseases. A major constraint to the development of biotechnological approaches for yam improvement has been the lack of an efficient and robust transformation and regeneration system. In this study, we developed an Agrobacterium-mediated transformation of Dioscorea rotundata using axillary buds as explants. Two cultivars of D. rotundata were transformed using Agrobacterium tumefaciens harboring the binary vectors containing selectable marker and reporter genes. After selection with appropriate concentrations of antibiotic, shoots were developed on shoot induction and elongation medium. The elongated antibiotic-resistant shoots were subsequently rooted on medium supplemented with selection agent. Successful transformation was confirmed by polymerase chain reaction, Southern blot analysis, and reporter genes assay. Expression of gusA gene in transgenic plants was also verified by reverse transcription polymerase chain reaction analysis. Transformation efficiency varied from 9.4 to 18.2% depending on the cultivars, selectable marker genes, and the Agrobacterium strain used for transformation. It took 3–4 months from Agro-infection to regeneration of complete transgenic plant. Here we report an efficient, fast and reproducible protocol for Agrobacterium-mediated transformation of D. rotundata using axillary buds as explants, which provides a useful platform for future genetic engineering studies in this economically important

  19. HIGH FREQUENCY GENETIC TRANSFORMATION OF CICHORIUM INTYBUS L. USING nptII GENE AS A SELECTIVE MARKER.

    PubMed

    Matvieieva, N; Shakhovsky, A; Kvasko, O; Kuchuk, N

    2015-01-01

    Cichorium intybus L. is an important vegetable crop used as salad (leaf form) and for the production of coffee substitutes (root form). At the same time these plants can also be used in biotechnologies for synthesis of pharmaceutical proteins. Here we report the possibility of high frequency Agrobacterium rhizogenes- or A. tumefaciens-mediated transformation of C. intybus L. for construction of transgenic "hairy" roots and plants. The used plasmids contained target human interferonifn-α2b gene, Mycobacterium tuberculosis ESAT6:Ag85B antigene esxA::fbpB(ΔTMD) fused gene and human telomerase reverse transcriptase h Tert gene. Using of nptII gene as a selective one was preferable to the bar gene for chicory. In this case the frequency of transgenic plants or "hairy" roots formation was significantly higher. Cultivation of explants on the medium with Basta in concentration 1-2 mg/l have led to plants death or to significant reduction of number of shoots formed. Frequency of "hairy" roots formation varied from 5.9 to 42.3% after A. rhizogenes-mediated transformation. Frequency of regeneration of transgenic plants varied from 10 to 86% after A. tumefaciens-mediated transformation. Both A. rhizogenes- and A. tumefaciens-mediated transformation frequency depended on the type of explants, roots or cotyledons, and vector used. Usage of A. tumefaciens carrying pCB064 plasmid (target esxA:fbpB(ΔTMD) fused gene and nptII selective gene) resulted in the most effective regeneration of transgenic plants with regeneration frequency up to 86%. In the case of chicory A. rhizogenes-mediated transformation the highest regeneration frequency up to 42.3% was demonstrated using p CB161 vector with ifn-α2b target gene and nptII selective gene. PMID:26419064

  20. Indica rice cultivar IRGA 424, transformed with cry genes of B. thuringiensis, provided high resistance against Spodoptera frugiperda (Lepidoptera: Noctuidae).

    PubMed

    Pinto, Laura Massochin Nunes; Fiuza, Lidia Mariana; Ziegler, Denize; De Oliveira, Jaime Vargas; Menezes, Valmir Gaedke; Bourrié, Isabelle; Meynard, Donaldo; Guiderdoni, Emmanuel; Breitler, Jean-Christophe; Altosaar, Illimar; Gantet, Pascal

    2013-12-01

    Plant expression of the entomopathogenic bacteria Bacillus thuringiensis cry gene has reduced the damage created by insect pests in several economically important cultures. For this study, we have conducted genetic transformation of the indica rice "IRGA 424", via Agrobacterium tumefaciens, using the B. thuringiensis cry1Aa and cry1B genes, with the objective of obtaining rice plants resistant to the insect pests from this culture. The gene constructions harbor the promoters maize proteinase inhibitor and ubiquitin. The results showed that high concentration of the hormone 2,4-dichlorophenoxyacetic acid and agarose as the gelling agent helped the production of embryogenic calli for the analyzed cultivar. More than 80% of the obtained transformed plants revealed the integration, using polymerase chain reaction, of the cry1Aa and cry1B genes. Analysis of the expression of the heterologous protein by Western blotting revealed the expression of the Cry1B delta-endotoxin in IRGA 424 plants transformed with the ubiquitin promoter. Data showed the production and dissemination of a high number of embryogenic calli in addition to obtaining plants transformed with the cry1Aa and cry1B genes until the reproductive phase. The feed bioassays with the transformed plants and Spodoptera frugiperda (JE Smith) larvae indicated high rates of mortality to the insect target. The highest corrected mortality rate achieved under laboratory conditions with Bt-rice plants transformed with the cry1B and cry1Aa genes was 94 and 84%, respectively. Thus, our results demonstrated the great potential of transformed Bt-rice plants in controlling the damage caused by these insect pests in rice paddy fields.

  1. Association of transforming growth-factor alpha gene polymorphisms with nonsyndromic cleft palate only (CPO)

    SciTech Connect

    Shiang, R. ); Lidral, A.C.; Ardinger, H.H.; Murray, J.C.; Romitti, P.A.; Munger, R.G.; Buetow, K.H.

    1993-10-01

    Genetic analysis and tissue-specific expression studies support a role for transforming growth-factor alpha (TGFA) in craniofacial development. Previous studies have confirmed an association of alleles for TGFA with nonsyndromic cleft lip with or without cleft palate (CL/P) in humans. The authors carried out a retrospective association study to determine whether specific allelic variants of the TGFA gene are also associated with cleft palate only (CPO). The PCR products from 12 overlapping sets of primers to the TGFA cDNA were examined by using single-strand conformational polymorphism analysis. Four DNA polymorphic sites for TGFA were identified in the 3[prime] untranslated region of the TGFA gene. These variants, as well as previously identified RFLPs for TGFA, were characterized in case and control populations for CPO by using X[sup 2] analysis. A significant association between alleles of TGFA and CPO was identified which further supports a role for this gene as one of the genetic determinants of craniofacial development. Sequence analysis of the variants disclosed a cluster of three variable sites within 30 bp of each other in the 3[prime] untranslated region previously associated with an antisense transcript. These studies extend the role for TGFA in craniofacial morphogenesis and support an interrelated mechanism underlying nonsyndromic forms of CL/P. 46 refs., 3 figs., 3 tabs.

  2. Transformation of benzoxazinones and derivatives and microbial activity in the test environment of soil ecotoxicological tests on Poecilus cupreus and Folsomia candida.

    PubMed

    Fomsgaard, Inge S; Mortensen, Anne G; Idinger, Jacqueline; Coja, Tamara; Blümel, Sylvia

    2006-02-22

    Benzoxazinones, such as 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) and 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA), and benzoxazolinones, such as 6-methoxy-2-benzoxazolinone (MBOA) and 2-benzoxazolinone (BOA), are biologically active secondary metabolites found in cereals. Because these compounds could be exploited as part of a strategy for reducing the use of synthetic pesticides, ecotoxicological tests were performed recently. In this paper, the transformation of the compounds in the test environment of the ecotoxicological tests was studied. DIMBOA was degraded and partly transformed to MBOA during the period of ecotoxicological testing of the compounds. During testing of MBOA on Poecilus cupreus test media the analysis showed that at the initial concentrations of 2 and 10 mg kg(-1) no MBOA was left after 45 days of testing, but the metabolite 2-amino-phenoxazin-3-one (AMPO) was formed. During testing of BOA on both Folsomia candida and Poecilus cupreus the more biologically active compound 2-amino-phenoxazin-3-one (APO) was formed. Thus, the ecotoxicological test results on MBOA and BOA were partly due to the microbial transformation of the compounds during the time of testing.

  3. Cloning of TPS gene from eelgrass species Zostera marina and its functional identification by genetic transformation in rice.

    PubMed

    Zhao, Feng; Li, Qiuying; Weng, Manli; Wang, Xiuliang; Guo, Baotai; Wang, Li; Wang, Wei; Duan, Delin; Wang, Bin

    2013-12-01

    The full-length cDNA sequence (2613 bp) of the trehalose-6-phosphate synthase (TPS) gene of eelgrass Zostera marina (ZmTPS) was identified and cloned. Z. marina is a kind of seed-plant growing in sea water during its whole life history. The open reading frame (ORF) region of ZmTPS gene encodes a protein of 870 amino acid residues and a stop codon. The corresponding genomic DNA sequence is 3770 bp in length, which contains 3 exons and 2 introns. The ZmTPS gene was transformed into rice variety ZH11 via Agrobacterium-mediated transformation method. After antibiotic screening, molecular characterization, salt-tolerance and trehalose content determinations, two transgenic lines resistant to 150 mM NaCL solutions were screened. Our study results indicated that the ZmTPS gene was integrated into the genomic DNA of the two transgenic rice lines and could be expressed well. Moreover, the detection of the transformed ZmTPS gene in the progenies of the two transgenic lines was performed from T1 to T4 generations; and results suggested that the transformed ZmTPS gene can be transmitted from parent to the progeny in transgenic rice.

  4. Comparative Metagenomics of Gut and Ocean: Identification of Microbial Marker Genes for Complex Environmental Properties(2011 JGI User Meeting)

    ScienceCinema

    Bork, Peer

    2016-07-12

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Peer Bork of the European Molecular Biology Laboratory on "Comparative Metagenomics of Gut and Ocean: Identification of Microbial Marker Genes for Complex Environmental Properties" at the 6th annual Genomics of Energy & Environment Meeting on March 23, 2011

  5. Endosymbiotic and horizontal gene transfer in microbial eukaryotes: Impacts on cell evolution and the tree of life.

    PubMed

    Chan, Cheong Xin; Bhattacharya, Debashish; Reyes-Prieto, Adrian

    2012-03-01

    The evolution of microbial eukaryotes, in particular of photosynthetic lineages, is complicated by multiple instances of endosymbiotic and horizontal gene transfer (E/HGT) resulting from plastid origin(s). Our recent analysis of diatom membrane transporters provides evidence of red and/or green algal origins of 172 of the genes encoding these proteins (ca. 25% of the examined phylogenies), with the majority putatively derived from green algae. These data suggest that E/HGT has been an important driver of evolutionary innovation among diatoms (and likely other stramenopiles), and lend further support to the hypothesis of an ancient, cryptic green algal endosymbiosis in "chromalveolate" lineages. Here, we discuss the implications of our findings on the understanding of eukaryote evolution and inference of the tree of life.

  6. [Composition of the oil-slime microbial community determined by analysis of the 16S rRNA gene].

    PubMed

    Grigor'eva, T V; Laĭkov, A V; Rizvanov, A A; Il'inskaia, O N; Naumova, R P

    2013-01-01

    Analysis of the 16S rRNA genes of the cultured microorganisms of industrial oil-slime revealed predominance (-85-90%) of the Gammaproteobacteria in the community of aerobic heterotrophs and specific oil-slime degraders. Relation of the isolated strains with members of the genera Pseudomonas, Stenotrophomonas, and Enterobacter was established. Analysis of the same gene in the total DNA from the oil-slime revealed greater microbial diversity (-20 operative taxonomic units determined by T-RFLP) than in the cultured part of the community, which included -12 different colony types. Three major restriction fragments were found, with their total area -50%. These results demonstrated the low morphological and phylogenetic diversity of the oil-slime bacterial community.

  7. Effect Of Spaceflight On Microbial Gene Expression And Virulence: Preliminary Results From Microbe Payload Flown On-Board STS-115

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; HonerzuBentrup, K,; Schurr, M. J.; Buchanan, K.; Morici, L.; Hammond, T.; Allen, P.; Baker, C.; Ott, C. M.; Nelman-Gonzalez M.; Schurr, J. R.; Pierson, D. L.; Stodieck, L.; Hing, S.; Hammond, T.; Allen, P.; Baker, C.; Parra, M.; Dumars, P.; Stefanyshyn-Piper, H. M.; Nickerson, C. A.

    2007-01-01

    Human presence in space, whether permanent or temporary, is accompanied by the presence of microbes. However, the extent of microbial changes in response to spaceflight conditions and the corresponding changes to infectious disease risk is unclear. Previous studies have indicated that spaceflight weakens the immune system in humans and animals. In addition, preflight and in-flight monitoring of the International Space Station (ISS) and other spacecraft indicates the presence of opportunistic pathogens and the potential of obligate pathogens. Altered antibiotic resistance of microbes in flight has also been shown. As astronauts and cosmonauts live for longer periods in a closed environment, especially one using recycled water and air, there is an increased risk to crewmembers of infectious disease events occurring in-flight. Therefore, understanding how the space environment affects microorganisms and their disease potential is critically important for spaceflight missions and requires further study. The goal of this flight experiment, operationally called MICROBE, is to utilize three model microbial pathogens, Salmonella typhimurium, Pseudomonas aeruginosa, and Candida albicans to examine the global effects of spaceflight on microbial gene expression and virulence attributes. Specifically, the aims are (1) to perform microarray-mediated gene expression profiling of S. typhimurium, P. aeruginosa, and C. albicans, in response to spaceflight in comparison to ground controls and (2) to determine the effect of spaceflight on the virulence potential of these microorganisms immediately following their return from spaceflight using murine models. The model microorganisms were selected as they have been isolated from preflight or in-flight monitoring, represent different degrees of pathogenic behavior, are well characterized, and have sequenced genomes with available microarrays. In particular, extensive studies of S. typhimurium by the Principal Investigator, Dr. Nickerson

  8. Microbial Origin and Transformation of Dissolved Organic Matter in the Agricultural Willow Slough Watershed, California: Insights From Amino Sugars

    NASA Astrophysics Data System (ADS)

    Journet, S.; Pellerin, B. A.; Bergamaschi, B. A.; Hernes, P. J.

    2007-12-01

    Understanding the fundamental processes and land management practices affecting dissolved organic matter (DOM) cycling in agricultural watersheds is essential for managing drinking water quality and maintaining ecosystem health. Although dissolved organic nitrogen (DON) is increasingly recognized as a key component of DOM in disturbed watersheds, our knowledge of its origin and reactivity are limited due to multiple sources, microbial uptake, and secondary production. In particular, the effect of microbial processes on DON dynamics remains poorly understood at the watershed scale. The seasonal and spatial variations of DON concentrations in the surface waters of the Willow Slough watershed, a 425-km2 agriculturally-dominated catchment in the northern Central Valley of California, USA, were monitored weekly at 8 locations since January 2006. Amino sugars are specific microbial biomarkers and their unique distribution among groups of microorganisms such as bacteria, fungi, and algae allows the distinction between different sources of DOM. Although mean annual DON concentrations were lower at the headwaters (0.18 mg/L) than the outlet (0.45 mg/L), DON constituted up to 90% of the total dissolved nitrogen (TDN) at the headwaters, compared to only 15% of the TDN at the watershed outlet. During winter baseflows, DON concentrations at the outlet were low (0.2 mg/L), while they increased to about 1.2 mg/L during winter storms. Remarkably, DON concentrations increased and remained high at 0.6 mg/L during the summer irrigation season. Preliminary data suggests that winter storm runoff and summer irrigation flows are dominated by DON of terrestrial origin, whereas periods of winter baseflow are mainly composed of algal-derived DON. The concentration of total dissolved amino sugars in the Willow Slough surface waters and the contribution of amino sugars to the DON pool (% DON-AS) will be used to evaluate DON composition and degradation state. In addition, molar ratios of four

  9. Multi-omics data driven analysis establishes reference codon biases for synthetic gene design in microbial and mammalian cells.

    PubMed

    Ang, Kok Siong; Kyriakopoulos, Sarantos; Li, Wei; Lee, Dong-Yup

    2016-06-01

    In this study, we analyzed multi-omics data and subsets thereof to establish reference codon usage biases for codon optimization in synthetic gene design. Specifically, publicly available genomic, transcriptomic, proteomic and translatomic data for microbial and mammalian expression hosts, Escherichia coli, Saccharomyces cerevisiae, Pichia pastoris and Chinese hamster ovary (CHO) cells, were compiled to derive their individual codon and codon pair frequencies. Then, host dependent and -omics specific codon biases were generated and compared by principal component analysis and hierarchical clustering. Interestingly, our results indicated the similar codon bias patterns of the highly expressed transcripts, highly abundant proteins, and efficiently translated mRNA in microbial cells, despite the general lack of correlation between mRNA and protein expression levels. However, for CHO cells, the codon bias patterns among various -omics subsets are not distinguishable, forming one cluster. Thus, we further investigated the effect of different input codon biases on codon optimized sequences using the codon context (CC) and individual codon usage (ICU) design parameters, via in silico case study on the expression of human IFNγ sequence in CHO cells. The results supported that CC is more robust design parameter than ICU for improved heterologous gene design. PMID:26850284

  10. Characterization of microbial community and antibiotic resistance genes in activated sludge under tetracycline and sulfamethoxazole selection pressure.

    PubMed

    Zhang, Yingying; Geng, Jinju; Ma, Haijun; Ren, Hongqiang; Xu, Ke; Ding, Lili

    2016-11-15

    To investigate the microbial community characteristics, antibiotic resistance genes (ARGs), and bioreactor effluent quality change under tetracycline (TC) and sulfamethoxazole (SMX) selection pressure, sequencing batch reactors (SBRs) were used with environmentally relevant concentration and high-level of TC and SMX concentrations (0, 5ppb, 50ppb and 10ppm). Chemical oxygen demand (COD) and ammonia nitrogen (NH4(+)N) removals appeared unchanged (p>0.05) with 5 and 50ppb, but decreased significantly with 10ppm (p<0.05). Extracellular polymeric substances (EPS) concentrations increased significantly with increasing TC or SMX concentrations (p<0.05). High-throughput 16S rRNA gene sequencing results suggested that Proteobacteria, Actinobacteria and Bacteroidetes were the three most abundant phyla in sludge samples. The Actinobacteria percentages increased with increasing TC or SMX concentration, while Proteobacteria and Bacteroidetes decreased. The microbial diversity achieved its maximum at 5ppb and decreased with higher concentrations. The total ARGs abundances in sludge increased with addition of TC or SMX, and the higher relative abundances were in the order of sul1>tetG>sul2>tetA>intI1>tetS>tetC. Pearson correlation analysis showed most ARGs (tetA, tetC, tetG, tetK, tetM, sul1) were significantly correlated with intI1 (p<0.01). PMID:27395074

  11. Chronic exposure to triclosan sustains microbial community shifts and alters antibiotic resistance gene levels in anaerobic digesters.

    PubMed

    Carey, Daniel E; Zitomer, Daniel H; Kappell, Anthony D; Choi, Melinda J; Hristova, Krassimira R; McNamara, Patrick J

    2016-08-10

    Triclosan, an antimicrobial chemical found in consumer personal care products, has been shown to stimulate antibiotic resistance in pathogenic bacteria. Although many studies focus on antibiotic resistance pertinent to medical scenarios, resistance developed in natural and engineered environments is less studied and has become an emerging concern for human health. In this study, the impacts of chronic triclosan (TCS) exposure on antibiotic resistance genes (ARGs) and microbial community structure were assessed in lab-scale anaerobic digesters. TCS concentrations from below detection to 2500 mg kg(-1) dry solids were amended into anaerobic digesters over 110 days and acclimated for >3 solid retention time values. Four steady state TCS concentrations were chosen (30-2500 mg kg(-1)). Relative abundance of mexB, a gene coding for a component of a multidrug efflux pump, was significantly higher in all TCS-amended digesters (30 mg kg(-1) or higher) relative to the control. TCS selected for bacteria carrying tet(L) and against those carrying erm(F) at concentrations which inhibited digester function; the pH decrease associated with digester failure was suspected to cause this selection. Little to no impact of TCS was observed on intI1 relative abundance. Microbial communities were also surveyed by high-throughput 16S rRNA gene sequencing. Compared to the control digesters, significant shifts in community structure towards clades containing commensal and pathogenic bacteria were observed in digesters containing TCS. Based on these results, TCS should be included in studies and risk assessments that attempt to elucidate relationships between chemical stressors (e.g. antibiotics), antibiotic resistance genes, and public health.

  12. Spatial Patterns of bphA Gene Diversity Reveal Local Adaptation of Microbial Communities to PCB and PAH Contaminants.

    PubMed

    Hoostal, Matthew J; Bouzat, Juan L

    2016-10-01

    Biphenyl dioxygenases, encoded by the bphA gene, initiate the oxidation of polychlorinated biphenyls (PCBs) and specify the substrate range of PCB congeners metabolized by bacteria. Increased bphA gene diversity within microbial communities may allow a broader range of PCB congeners to be catabolized, thus resulting in greater PCB degradation. To assess the role of PCBs in modulating bphA gene diversity, 16S ribosomal RNA (rRNA) gene and bphA environmental DNA libraries were generated from bacterial communities in sediments with a steep gradient of PCB contamination. Multiple measures of sequence diversity revealed greater heterogeneity of bphA sequences in polluted compared to unpolluted locations. Codon-based signatures of selection in bphA sequences provided evidence of purifying selection. Unifrac analysis of 16S rRNA sequences revealed independent taxonomic lineages from polluted and unpolluted locations, consistent with the presence of locally adapted bacterial communities. Phylogenetic analysis of bphA sequences indicated that dioxygenases from sediments were closely related to previously characterized dioxygenases that metabolize PCBs and polynuclear aromatic hydrocarbons (PAHs), consistent with high levels of these contaminants within the studied sediments. Structural analyses indicated that the BphA protein of Rhodococcus jostii, capable of metabolizing both PCBs and PAHs, provided a more optimal modeling template for bphA sequences reported in this study than a BphA homologue with more restricted substrate specificity. Results from this study suggest that PCBs and PAHs may drive local adaptation of microbial communities by acting as strong selective agents for biphenyl dioxygenases capable of metabolizing a wide range of congeners.

  13. Chronic exposure to triclosan sustains microbial community shifts and alters antibiotic resistance gene levels in anaerobic digesters.

    PubMed

    Carey, Daniel E; Zitomer, Daniel H; Kappell, Anthony D; Choi, Melinda J; Hristova, Krassimira R; McNamara, Patrick J

    2016-08-10

    Triclosan, an antimicrobial chemical found in consumer personal care products, has been shown to stimulate antibiotic resistance in pathogenic bacteria. Although many studies focus on antibiotic resistance pertinent to medical scenarios, resistance developed in natural and engineered environments is less studied and has become an emerging concern for human health. In this study, the impacts of chronic triclosan (TCS) exposure on antibiotic resistance genes (ARGs) and microbial community structure were assessed in lab-scale anaerobic digesters. TCS concentrations from below detection to 2500 mg kg(-1) dry solids were amended into anaerobic digesters over 110 days and acclimated for >3 solid retention time values. Four steady state TCS concentrations were chosen (30-2500 mg kg(-1)). Relative abundance of mexB, a gene coding for a component of a multidrug efflux pump, was significantly higher in all TCS-amended digesters (30 mg kg(-1) or higher) relative to the control. TCS selected for bacteria carrying tet(L) and against those carrying erm(F) at concentrations which inhibited digester function; the pH decrease associated with digester failure was suspected to cause this selection. Little to no impact of TCS was observed on intI1 relative abundance. Microbial communities were also surveyed by high-throughput 16S rRNA gene sequencing. Compared to the control digesters, significant shifts in community structure towards clades containing commensal and pathogenic bacteria were observed in digesters containing TCS. Based on these results, TCS should be included in studies and risk assessments that attempt to elucidate relationships between chemical stressors (e.g. antibiotics), antibiotic resistance genes, and public health. PMID:27291499

  14. Selective inhibition of growth-related gene expression in murine keratinocytes by transforming growth factor beta.

    PubMed Central

    Coffey, R J; Bascom, C C; Sipes, N J; Graves-Deal, R; Weissman, B E; Moses, H L

    1988-01-01

    Transforming growth factor beta (TGF beta) is a potent inhibitor of epithelial cell proliferation. A nontumorigenic epidermal growth factor (EGF)-dependent epithelial cell line, BALB/MK, is reversibly growth arrested by TGF beta. TGF beta will also abrogate EGF-stimulated mitogenesis of quiescent BALB/MK cells. Increased levels of calcium (greater than 1.0 mM) will induce differentiation in BALB/MK cells; in contrast, TGF beta-mediated growth inhibition does not result in induction of terminal differentiation. In the present study, the effects of TGF beta and calcium on growth factor-inducible gene expression were examined. TGF beta markedly decreased c-myc and KC gene expression in rapidly growing BALB/MK cells and reduced the EGF induction of c-myc and KC in a quiescent population of cells. TGF beta exerted its control over c-myc expression at a posttranscriptional level, and this inhibitory effect was dependent on protein synthesis. TGF beta had no effect on c-fos gene expression, whereas 1.5 mM calcium attenuated EGF-induced c-fos expression in quiescent cells. Expression of beta-actin, however, was slightly increased in both rapidly growing and EGF-restimulated quiescent BALB/MK cells treated with TGF beta. Thus, in this system, TGF beta selectively reduced expression of certain genes associated with cell proliferation (c-myc and KC), and at least part of the TGF beta effect was at a posttranscriptional level. Images PMID:2463471

  15. Efficient transformation and artificial miRNA gene silencing in Lemna minor

    PubMed Central

    Cantó-Pastor, Alex; Mollá-Morales, Almudena; Ernst, Evan; Dahl, William; Zhai, Jixian; Yan, Yiheng; Meyers, Blake; Shanklin, John; Martienssen, Robert

    2015-01-01

    Lack of genetic tools in the Lemnaceae (duckweed) has impeded full implementation of this organism as model for biological research, despite its rapid doubling time, simple architecture and unusual metabolic characteristics. Here we present technologies to facilitate high-throughput genetic studies in duckweed. We developed a fast and efficient method for producing Lemna minor stable transgenic fronds via agrobacterium-mediated transformation and regeneration from tissue culture. Additionally, we engineered an artificial microRNA (amiRNA) gene silencing system. We identified a Lemna gibba endogenous miR166 precursor and used it as a backbone to produce amiRNAs. As a proof of concept we induced the silencing of CH42, a Magnesium Chelatase subunit, using our amiRNA platform. Expression of CH42 in transgenic Lemna minor fronds was significantly reduced, which resulted in reduction of chlorophyll pigmentation. The techniques presented here will enable tackling future challenges in the biology and biotechnology of Lemnaceae. PMID:24989135

  16. Association between shortage of energy supply and nuclear gene mutations leading to carcinomatous transformation

    PubMed Central

    DU, JIANPING

    2016-01-01

    Anaerobic bacteria use glycolysis, an oxygen-independent metabolic pathway, whereas energy metabolism in the evolved eukaryotic cell is performed via oxidative phosphorylation, with all eukaryotic cell activities depending upon high energy consumption. However, in cancer cells evolving from eukaryotic cells, the energy metabolism switches from oxidative phosphorylation to glycolysis. The shortage of energy supply induces cancer cells to acquire specific characteristics. Base pair renewal is the most energy-consuming process in the cell, and shortage of energy supply may lead to errors in this process; the more prominent the shortage in energy supply, the more errors are likely to occur in base pair renewal, resulting in gene mutations and expression of cancer cell characteristics. Thus, shortage of energy supply is associated with carcinomatous transformation. PMID:26835010

  17. A multi-year assessment of the environmental impact of transgenic Eucalyptus trees harboring a bacterial choline oxidase gene on biomass, precinct vegetation and the microbial community.

    PubMed

    Oguchi, Taichi; Kashimura, Yuko; Mimura, Makiko; Yu, Xiang; Matsunaga, Etsuko; Nanto, Kazuya; Shimada, Teruhisa; Kikuchi, Akira; Watanabe, Kazuo N

    2014-10-01

    A 4-year field trial for the salt tolerant Eucalyptus globulus Labill. harboring the choline oxidase (codA) gene derived from the halobacterium Arthrobacter globiformis was conducted to assess the impact of transgenic versus non-transgenic trees on biomass production, the adjacent soil microbial communities and vegetation by monitoring growth parameters, seasonal changes in soil microbes and the allelopathic activity of leaves. Three independently-derived lines of transgenic E. globulus were compared with three independent non-transgenic lines including two elite clones. No significant differences in biomass production were detected between transgenic lines and non-transgenic controls derived from same seed bulk, while differences were seen compared to two elite clones. Significant differences in the number of soil microbes present were also detected at different sampling times but not between transgenic and non-transgenic lines. The allelopathic activity of leaves from both transgenic and non-transgenic lines also varied significantly with sampling time, but the allelopathic activity of leaves from transgenic lines did not differ significantly from those from non-transgenic lines. These results indicate that, for the observed variables, the impact on the environment of codA-transgenic E. globulus did not differ significantly from that of the non-transformed controls on this field trial. PMID:24927812

  18. Discovery of the faithfulness gene: a model of transmission and transformation of scientific information.

    PubMed

    Green, Eva G T; Clémence, Alain

    2008-09-01

    The purpose of this paper is to study the diffusion and transformation of scientific information in everyday discussions. Based on rumour models and social representations theory, the impact of interpersonal communication and pre-existing beliefs on transmission of the content of a scientific discovery was analysed. In three experiments, a communication chain was simulated to investigate how laypeople make sense of a genetic discovery first published in a scientific outlet, then reported in a mainstream newspaper and finally discussed in groups. Study 1 (N=40) demonstrated a transformation of information when the scientific discovery moved along the communication chain. During successive narratives, scientific expert terminology disappeared while scientific information associated with lay terminology persisted. Moreover, the idea of a discovery of a faithfulness gene emerged. Study 2 (N=70) revealed that transmission of the scientific message varied as a function of attitudes towards genetic explanations of behaviour (pro-genetics vs. anti-genetics). Pro-genetics employed more scientific terminology than anti-genetics. Study 3 (N=75) showed that endorsement of genetic explanations was related to descriptive accounts of the scientific information, whereas rejection of genetic explanations was related to evaluative accounts of the information.

  19. Involvement and interaction of microbial communities in the transformation and stabilization of chromium during the composting of tannery effluent treated biomass of Vallisneria spiralis L.

    PubMed

    Shukla, O P; Rai, U N; Dubey, Smita

    2009-04-01

    Tannery effluent treated with aquatic macrophyte Vallisneria spiralis L. for 14 d showed significant improvement in physico-chemical properties and reduction in Cr concentration. Accumulation of Cr was found maximum in roots (358 microg g(-1)dw) as compared to shoot (62 microg g(-1)dw) of the plant. A laboratory scale composter was designed with the objectives to investigate the physico-chemical changes and role of microbes in stabilization and transformation of Cr in the composting material. Results revealed that the composting process was quick within 7-21 d as indicated by peak time for various physico-chemical parameters and drop in C/N ratio up to acceptable limit. The profile of microbial communities indicated that population of anaerobic, aerobic and nitrifying bacteria increased quickly at the initial phase, and reached a peak level of 4.2 x 10(6), 9.78 x 10(8) and 9.32 x 10(9) CFU g(-1), respectively at 21 d; while population of actinomycetes and fungi was found maximum i.e. 3.29 x 10(7) and 9.7 x 10(6) CFU g(-1), respectively, after 35 d of composting. Overall bacterial population dominated over the actinomycetes and fungi during the composting process. Cr((VI)) was transformed to Cr((III)) due to the microbial activity during the process. Sequential extraction of Cr fractionation showed its stabilization via changing into organic matter-bound and residual fractions during the composting. PMID:19081715

  20. Simultaneous determination of diclofenac, its human metabolites and microbial nitration/nitrosation transformation products in wastewaters by liquid chromatography/quadrupole-linear ion trap mass spectrometry.

    PubMed

    Osorio, Victoria; Imbert-Bouchard, Marta; Zonja, Bozo; Abad, José-Luis; Pérez, Sandra; Barceló, Damià

    2014-06-20

    An analytical method was developed and validated for the first determination of five major human metabolites of the non-steroidal anti-inflammatory drug diclofenac as well as two microbial transformation products in wastewater. The method was based on the extraction of diclofenac and the chemically synthetized compounds by solid-phase extraction (SPE), using a hydrophilic-lipophilic balanced polymer followed by liquid chromatography (LC) coupled to hybrid quadrupole-linear ion trap mass spectrometry (QqLIT-MS). Quantitation was performed by the internal standard approach, to correct for matrix effects. The accuracy of the method was generally higher than 40% for raw and treated wastewater with a precision below 12%. In wastewater influent and effluent samples the detection limits for the majority of target compounds were 0.3-2.5ngL(-1) and 0.1-3.1ngL(-1), respectively. The method was applied to the analysis of influent and effluent wastewater samples from urban wastewater treatment plants. Moreover, to obtain an extra tool for confirmation and identification of the studied diclofenac-derived compounds, Information-Dependent Acquisition (IDA) experiments were performed, with selected reaction monitoring (SRM) as the survey scan and an enhanced product ion (EPI) scan as the dependent scan. Diclofenac and its major human metabolite, 4'-hydroxydiclofenac were detected in all samples at concentrations of 331-1150ngL(-1) and 585-6000ngL(-1), respectively. Neither microbial transformation product of diclofenac was detected in any of the influent samples analyzed, but in effluents, their concentrations ranged from 4 to 105ngL(-1).

  1. Microbial transformation of dissolved organic matter from different sources and its influence on disinfection byproduct formation potentials.

    PubMed

    Hur, Jin; Lee, Mi-Hee; Song, Hocheol; Schlatman, Mark A

    2013-06-01

    Biodegradation-induced changes in the characteristics of dissolved organic matter (DOM) and the subsequent effects on disinfection byproduct formation potentials (DBPFPs) were investigated using six different sources of DOM (algae, leaf litter, reed, compost, paddy water, and treated municipal sewage effluent). Microbial incubation of the DOM samples increased the specific ultraviolet absorbance and humic-like fluorescence but decreased the protein/tannin-like fluorescence and relative distribution of smaller-sized DOM components. Comparison of the original versus biodegraded DOM samples using resin fractionation and pyrolysis-gas chromatography/mass spectrometry revealed that the biodegradation-induced changes were highly dependent on DOM sources and exhibited no consistent trends among the different sources. Changes in DBPFPs also differed with DOM source. Vascular plant-derived DOM (leaf litter and reed) demonstrated an enhancement in specific DBPFP after biodegradation, whereas little change or even a slight decrease was observed for the other DOM sources. Correlations that were significant between specific DBPFPs and the aromatic content or humic-like fluorescence for the original DOM samples were no longer significant after microbial degradation. The relative abundance of hydrophobic to hydrophilic structures in DOM is suggested to be a general indicator for the formation potential of trihalomethanes irrespective of DOM source and the state of biodegradation.

  2. Quantitative PCR analysis of functional genes in iron-rich microbial mats at an active hydrothermal vent system (Lō'ihi Seamount, Hawai'i).

    PubMed

    Jesser, Kelsey J; Fullerton, Heather; Hager, Kevin W; Moyer, Craig L

    2015-05-01

    The chemolithotrophic Zetaproteobacteria represent a novel class of Proteobacteria which oxidize Fe(II) to Fe(III) and are the dominant bacterial population in iron-rich microbial mats. Zetaproteobacteria were first discovered at Lō'ihi Seamount, located 35 km southeast off the big island of Hawai'i, which is characterized by low-temperature diffuse hydrothermal venting. Novel nondegenerate quantitative PCR (qPCR) assays for genes associated with microbial nitrogen fixation, denitrification, arsenic detoxification, Calvin-Benson-Bassham (CBB), and reductive tricarboxylic acid (rTCA) cycles were developed using selected microbial mat community-derived metagenomes. Nitrogen fixation genes were not detected, but all other functional genes were present. This suggests that arsenic detoxification and denitrification processes are likely cooccurring in addition to two modes of carbon fixation. Two groups of microbial mat community types were identified by terminal restriction fragment length polymorphism (T-RFLP) and were further described based on qPCR data for zetaproteobacterial abundance and carbon fixation mode preference. qPCR variance was associated with mat morphology but not with temperature or sample site. Geochemistry data were significantly associated with sample site and mat morphology. Together, these qPCR assays constitute a functional gene signature for iron microbial mat communities across a broad array of temperatures, mat types, chemistries, and sampling sites at Lō'ihi Seamount.

  3. Quantitative PCR Analysis of Functional Genes in Iron-Rich Microbial Mats at an Active Hydrothermal Vent System (Lō'ihi Seamount, Hawai'i)

    PubMed Central

    Jesser, Kelsey J.; Fullerton, Heather; Hager, Kevin W.

    2015-01-01

    The chemolithotrophic Zetaproteobacteria represent a novel class of Proteobacteria which oxidize Fe(II) to Fe(III) and are the dominant bacterial population in iron-rich microbial mats. Zetaproteobacteria were first discovered at Lō'ihi Seamount, located 35 km southeast off the big island of Hawai'i, which is characterized by low-temperature diffuse hydrothermal venting. Novel nondegenerate quantitative PCR (qPCR) assays for genes associated with microbial nitrogen fixation, denitrification, arsenic detoxification, Calvin-Benson-Bassham (CBB), and reductive tricarboxylic acid (rTCA) cycles were developed using selected microbial mat community-derived metagenomes. Nitrogen fixation genes were not detected, but all other functional genes were present. This suggests that arsenic detoxification and denitrification processes are likely cooccurring in addition to two modes of carbon fixation. Two groups of microbial mat community types were identified by terminal restriction fragment length polymorphism (T-RFLP) and were further described based on qPCR data for zetaproteobacterial abundance and carbon fixation mode preference. qPCR variance was associated with mat morphology but not with temperature or sample site. Geochemistry data were significantly associated with sample site and mat morphology. Together, these qPCR assays constitute a functional gene signature for iron microbial mat communities across a broad array of temperatures, mat types, chemistries, and sampling sites at Lō'ihi Seamount. PMID:25681182

  4. Genetic transformation and analysis of rice OsAPx2 gene in Medicago sativa.

    PubMed

    Guan, Qingjie; Takano, Tetsuo; Liu, Shenkui

    2012-01-01

    The OsAPx2 gene from rice was cloned to produce PBI121::OsAPx2 dual-expression plants, of which expression level would be increasing under stressful conditions. The enzyme ascorbate peroxidase (APX) in the leaves and roots of the plants increased with increasing exposure time to different sodium chloride (NaCl) and hydrogen peroxide (H(2)O(2))concentrations, as indicated by protein gel blot analysis. The increased enzyme yield improved the ability of the plants to resist the stress treatments. The OsAPx2 gene was localized in the cytoplasm of epidermal onion cells as indicated by the instantaneous expression of green fluorescence. An 80% regeneration rate was observed in Medicago sativa L. plants transformed with the OsAPx2 gene using Agrobacterium tumefaciens, as indicated by specific primer PCR. The OsAPx2 gene was expressed at the mRNA level and the individual M. sativa (T#1,T#2,T#5) were obtained through assaying the generation of positive T2 using RNA gel blot analysis. When the seeds of the wild type (WT) and the T2 (T#1,T#5) were incubated in culture containing MS with NaCl for 7 days, the results as shown of following: the root length of transgenic plant was longer than WT plants, the H(2)O(2) content in roots of WT was more than of transgenic plants, the APX activity under stresses increased by 2.89 times compared with the WT, the malondialdehyde (MDA) content of the WT was higher than the transgenic plants, the leaves of the WT turned yellow, but those of the transgenic plants remained green and remained healthy. The chlorophyll content in the WT leaves was less than in the transgenic plants, after soaking in solutions of H(2)O(2), sodium sulfite (Na(2)SO(3)), and sodium bicarbonate (NaHCO(3)). Therefore, the OsAPx2 gene overexpression in transgenic M. sativa improves the removal of H(2)O(2) and the salt-resistance compared with WT plants. A novel strain of M. sativa carrying a salt-resistance gene was obtained. PMID:22848448

  5. Genetic transformation and analysis of rice OsAPx2 gene in Medicago sativa.

    PubMed

    Guan, Qingjie; Takano, Tetsuo; Liu, Shenkui

    2012-01-01

    The OsAPx2 gene from rice was cloned to produce PBI121::OsAPx2 dual-expression plants, of which expression level would be increasing under stressful conditions. The enzyme ascorbate peroxidase (APX) in the leaves and roots of the plants increased with increasing exposure time to different sodium chloride (NaCl) and hydrogen peroxide (H(2)O(2))concentrations, as indicated by protein gel blot analysis. The increased enzyme yield improved the ability of the plants to resist the stress treatments. The OsAPx2 gene was localized in the cytoplasm of epidermal onion cells as indicated by the instantaneous expression of green fluorescence. An 80% regeneration rate was observed in Medicago sativa L. plants transformed with the OsAPx2 gene using Agrobacterium tumefaciens, as indicated by specific primer PCR. The OsAPx2 gene was expressed at the mRNA level and the individual M. sativa (T#1,T#2,T#5) were obtained through assaying the generation of positive T2 using RNA gel blot analysis. When the seeds of the wild type (WT) and the T2 (T#1,T#5) were incubated in culture containing MS with NaCl for 7 days, the results as shown of following: the root length of transgenic plant was longer than WT plants, the H(2)O(2) content in roots of WT was more than of transgenic plants, the APX activity under stresses increased by 2.89 times compared with the WT, the malondialdehyde (MDA) content of the WT was higher than the transgenic plants, the leaves of the WT turned yellow, but those of the transgenic plants remained green and remained healthy. The chlorophyll content in the WT leaves was less than in the transgenic plants, after soaking in solutions of H(2)O(2), sodium sulfite (Na(2)SO(3)), and sodium bicarbonate (NaHCO(3)). Therefore, the OsAPx2 gene overexpression in transgenic M. sativa improves the removal of H(2)O(2) and the salt-resistance compared with WT plants. A novel strain of M. sativa carrying a salt-resistance gene was obtained.

  6. Genetic Transformation and Analysis of Rice OsAPx2 Gene in Medicago sativa

    PubMed Central

    Guan, Qingjie; Takano, Tetsuo; Liu, Shenkui

    2012-01-01

    The OsAPx2 gene from rice was cloned to produce PBI121::OsAPx2 dual-expression plants, of which expression level would be increasing under stressful conditions. The enzyme ascorbate peroxidase (APX) in the leaves and roots of the plants increased with increasing exposure time to different sodium chloride (NaCl) and hydrogen peroxide (H2O2)concentrations, as indicated by protein gel blot analysis. The increased enzyme yield improved the ability of the plants to resist the stress treatments. The OsAPx2 gene was localized in the cytoplasm of epidermal onion cells as indicated by the instantaneous expression of green fluorescence. An 80% regeneration rate was observed in Medicago sativa L. plants transformed with the OsAPx2 gene using Agrobacterium tumefaciens, as indicated by specific primer PCR. The OsAPx2 gene was expressed at the mRNA level and the individual M. sativa (T#1,T#2,T#5) were obtained through assaying the generation of positive T2 using RNA gel blot analysis. When the seeds of the wild type (WT) and the T2 (T#1,T#5) were incubated in culture containing MS with NaCl for 7 days, the results as shown of following: the root length of transgenic plant was longer than WT plants, the H2O2 content in roots of WT was more than of transgenic plants, the APX activity under stresses increased by 2.89 times compared with the WT, the malondialdehyde (MDA) content of the WT was higher than the transgenic plants, the leaves of the WT turned yellow, but those of the transgenic plants remained green and remained healthy. The chlorophyll content in the WT leaves was less than in the transgenic plants, after soaking in solutions of H2O2, sodium sulfite (Na2SO3), and sodium bicarbonate (NaHCO3). Therefore, the OsAPx2 gene overexpression in transgenic M. sativa improves the removal of H2O2 and the salt-resistance compared with WT plants. A novel strain of M. sativa carrying a salt-resistance gene was obtained. PMID:22848448

  7. A Bayesian Framework for the Classification of Microbial Gene Activity States.

    PubMed

    Disselkoen, Craig; Greco, Brian; Cook, Kaitlyn; Koch, Kristin; Lerebours, Reginald; Viss, Chase; Cape, Joshua; Held, Elizabeth; Ashenafi, Yonatan; Fischer, Karen; Acosta, Allyson; Cunningham, Mark; Best, Aaron A; DeJongh, Matthew; Tintle, Nathan

    2016-01-01

    Numerous methods for classifying gene activity states based on gene expression data have been proposed for use in downstream applications, such as incorporating transcriptomics data into metabolic models in order to improve resulting flux predictions. These methods often attempt to classify gene activity for each gene in each experimental condition as belonging to one of two states: active (the gene product is part of an active cellular mechanism) or inactive (the cellular mechanism is not active). These existing methods of classifying gene activity states suffer from multiple limitations, including enforcing unrealistic constraints on the overall proportions of active and inactive genes, failing to leverage a priori knowledge of gene co-regulation, failing to account for differences between genes, and failing to provide statistically meaningful confidence estimates. We propose a flexible Bayesian approach to classifying gene activity states based on a Gaussian mixture model. The model integrates genome-wide transcriptomics data from multiple conditions and information about gene co-regulation to provide activity state confidence estimates for each gene in each condition. We compare the performance of our novel method to existing methods on both simulated data and real data from 907 E. coli gene expression arrays, as well as a comparison with experimentally measured flux values in 29 conditions, demonstrating that our method provides more consistent and accurate results than existing methods across a variety of metrics. PMID:27555837

  8. A Bayesian Framework for the Classification of Microbial Gene Activity States

    PubMed Central

    Disselkoen, Craig; Greco, Brian; Cook, Kaitlyn; Koch, Kristin; Lerebours, Reginald; Viss, Chase; Cape, Joshua; Held, Elizabeth; Ashenafi, Yonatan; Fischer, Karen; Acosta, Allyson; Cunningham, Mark; Best, Aaron A.; DeJongh, Matthew; Tintle, Nathan

    2016-01-01

    Numerous methods for classifying gene activity states based on gene expression data have been proposed for use in downstream applications, such as incorporating transcriptomics data into metabolic models in order to improve resulting flux predictions. These methods often attempt to classify gene activity for each gene in each experimental condition as belonging to one of two states: active (the gene product is part of an active cellular mechanism) or inactive (the cellular mechanism is not active). These existing methods of classifying gene activity states suffer from multiple limitations, including enforcing unrealistic constraints on the overall proportions of active and inactive genes, failing to leverage a priori knowledge of gene co-regulation, failing to account for differences between genes, and failing to provide statistically meaningful confidence estimates. We propose a flexible Bayesian approach to classifying gene activity states based on a Gaussian mixture model. The model integrates genome-wide transcriptomics data from multiple conditions and information about gene co-regulation to provide activity state confidence estimates for each gene in each condition. We compare the performance of our novel method to existing methods on both simulated data and real data from 907 E. coli gene expression arrays, as well as a comparison with experimentally measured flux values in 29 conditions, demonstrating that our method provides more consistent and accurate results than existing methods across a variety of metrics. PMID:27555837

  9. Ultrafiltration and Microarray for Detection of Microbial Source Tracking Marker and Pathogen Genes in Riverine and Marine Systems.

    PubMed

    Li, Xiang; Harwood, Valerie J; Nayak, Bina; Weidhaas, Jennifer L

    2016-01-04

    Pathogen identification and microbial source tracking (MST) to identify sources of fecal pollution improve evaluation of water quality. They contribute to improved assessment of human health risks and remediation of pollution sources. An MST microarray was used to simultaneously detect genes for multiple pathogens and indicators of fecal pollution in freshwater, marine water, sewage-contaminated freshwater and marine water, and treated wastewater. Dead-end ultrafiltration (DEUF) was used to concentrate organisms from water samples, yielding a recovery efficiency of >95% for Escherichia coli and human polyomavirus. Whole-genome amplification (WGA) increased gene copies from ultrafiltered samples and increased the sensitivity of the microarray. Viruses (adenovirus, bocavirus, hepatitis A virus, and human polyomaviruses) were detected in sewage-contaminated samples. Pathogens such as Legionella pneumophila, Shigella flexneri, and Campylobacter fetus were detected along with genes conferring resistance to aminoglycosides, beta-lactams, and tetracycline. Nonmetric dimensional analysis of MST marker genes grouped sewage-spiked freshwater and marine samples with sewage and apart from other fecal sources. The sensitivity (percent true positives) of the microarray probes for gene targets anticipated in sewage was 51 to 57% and was lower than the specificity (percent true negatives; 79 to 81%). A linear relationship between gene copies determined by quantitative PCR and microarray fluorescence was found, indicating the semiquantitative nature of the MST microarray. These results indicate that ultrafiltration coupled with WGA provides sufficient nucleic acids for detection of viruses, bacteria, protozoa, and antibiotic resistance genes by the microarray in applications ranging from beach monitoring to risk assessment.

  10. Ultrafiltration and Microarray for Detection of Microbial Source Tracking Marker and Pathogen Genes in Riverine and Marine Systems.

    PubMed

    Li, Xiang; Harwood, Valerie J; Nayak, Bina; Weidhaas, Jennifer L

    2016-03-01

    Pathogen identification and microbial source tracking (MST) to identify sources of fecal pollution improve evaluation of water quality. They contribute to improved assessment of human health risks and remediation of pollution sources. An MST microarray was used to simultaneously detect genes for multiple pathogens and indicators of fecal pollution in freshwater, marine water, sewage-contaminated freshwater and marine water, and treated wastewater. Dead-end ultrafiltration (DEUF) was used to concentrate organisms from water samples, yielding a recovery efficiency of >95% for Escherichia coli and human polyomavirus. Whole-genome amplification (WGA) increased gene copies from ultrafiltered samples and increased the sensitivity of the microarray. Viruses (adenovirus, bocavirus, hepatitis A virus, and human polyomaviruses) were detected in sewage-contaminated samples. Pathogens such as Legionella pneumophila, Shigella flexneri, and Campylobacter fetus were detected along with genes conferring resistance to aminoglycosides, beta-lactams, and tetracycline. Nonmetric dimensional analysis of MST marker genes grouped sewage-spiked freshwater and marine samples with sewage and apart from other fecal sources. The sensitivity (percent true positives) of the microarray probes for gene targets anticipated in sewage was 51 to 57% and was lower than the specificity (percent true negatives; 79 to 81%). A linear relationship between gene copies determined by quantitative PCR and microarray fluorescence was found, indicating the semiquantitative nature of the MST microarray. These results indicate that ultrafiltration coupled with WGA provides sufficient nucleic acids for detection of viruses, bacteria, protozoa, and antibiotic resistance genes by the microarray in applications ranging from beach monitoring to risk assessment. PMID:26729716

  11. Ultrafiltration and Microarray for Detection of Microbial Source Tracking Marker and Pathogen Genes in Riverine and Marine Systems

    PubMed Central

    Li, Xiang; Harwood, Valerie J.; Nayak, Bina

    2016-01-01

    Pathogen identification and microbial source tracking (MST) to identify sources of fecal pollution improve evaluation of water quality. They contribute to improved assessment of human health risks and remediation of pollution sources. An MST microarray was used to simultaneously detect genes for multiple pathogens and indicators of fecal pollution in freshwater, marine water, sewage-contaminated freshwater and marine water, and treated wastewater. Dead-end ultrafiltration (DEUF) was used to concentrate organisms from water samples, yielding a recovery efficiency of >95% for Escherichia coli and human polyomavirus. Whole-genome amplification (WGA) increased gene copies from ultrafiltered samples and increased the sensitivity of the microarray. Viruses (adenovirus, bocavirus, hepatitis A virus, and human polyomaviruses) were detected in sewage-contaminated samples. Pathogens such as Legionella pneumophila, Shigella flexneri, and Campylobacter fetus were detected along with genes conferring resistance to aminoglycosides, beta-lactams, and tetracycline. Nonmetric dimensional analysis of MST marker genes grouped sewage-spiked freshwater and marine samples with sewage and apart from other fecal sources. The sensitivity (percent true positives) of the microarray probes for gene targets anticipated in sewage was 51 to 57% and was lower than the specificity (percent true negatives; 79 to 81%). A linear relationship between gene copies determined by quantitative PCR and microarray fluorescence was found, indicating the semiquantitative nature of the MST microarray. These results indicate that ultrafiltration coupled with WGA provides sufficient nucleic acids for detection of viruses, bacteria, protozoa, and antibiotic resistance genes by the microarray in applications ranging from beach monitoring to risk assessment. PMID:26729716

  12. Transformation of carotenoid biosynthetic genes using a micro-cross section method in kiwifruit (Actinidia deliciosa cv. Hayward).

    PubMed

    Kim, Misun; Kim, Seong-Cheol; Song, Kwan Jeong; Kim, Ho Bang; Kim, In-Jung; Song, Eun-Young; Chun, Seung-Jong

    2010-12-01

    Genetic transformation using a micro-cross section (MCS) technique was conducted to improve the carotenoid content in kiwifruit (Actinidia deliciosa cv. Hayward). The introduced carotenoid biosynthetic genes include geranylgeranyl diphosphate synthase (GGPS), phytoene desaturase (PDS), ζ-carotene desaturase (ZDS), β-carotene hydroxylase (CHX), and phytoene synthase (PSY). The transformed explants were selected on half-strength MS medium containing 0.001 mg l(-1) of 2,4-D and 0.1 mg l(-1) of zeatin, either 5 mg l(-1) hygromycin or 25 mg l(-1) kanamycin, and 500 mg l(-1) cefotaxime. The genomic PCR, genomic Southern blot analysis, and RT-PCR were performed to confirm the integration and expression of the transgenes. The transformation efficiencies of either kanamycin- or hygromycin-resistant shoots ranged from 2.9 to 22.1% depending on the target genes, and from 2.9 to 24.2% depending on the reporter genes. The selection efficiencies ranged from 66.7 to 100% for the target genes and from 95.8 to 100% for the reporter genes. Changes of carotenoid content in the several PCR-positive plants were determined by UPLC analysis. As a result, transgenic plants expressing either GGPS or PSY increased about 1.2- to 1.3-fold in lutein or β-carotene content compared to non-transgenic plants. Our results suggest that the Agrobacterium-mediated transformation efficiency of kiwifruit can be greatly increased by this MCS method and that the carotenoid biosynthetic pathway can be modified in kiwifruit by genetic transformation. Our results further suggest that GGPS and PSY genes could be major target genes to increase carotenoid contents in kiwifruit.

  13. Majority of differentially expressed genes are down-regulated during malignant transformation in a four-stage model

    PubMed Central

    Danielsson, Frida; Skogs, Marie; Huss, Mikael; Rexhepaj, Elton; O’Hurley, Gillian; Klevebring, Daniel; Pontén, Fredrik; Gad, Annica K. B.; Uhlén, Mathias; Lundberg, Emma

    2013-01-01

    The transformation of normal cells to malignant, metastatic tumor cells is a multistep process caused by the sequential acquirement of genetic changes. To identify these changes, we compared the transcriptomes and levels and distribution of proteins in a four-stage cell model of isogenically matched normal, immortalized, transformed, and metastatic human cells, using deep transcriptome sequencing and immunofluorescence microscopy. The data show that ∼6% (n = 1,357) of the human protein-coding genes are differentially expressed across the stages in the model. Interestingly, the majority of these genes are down-regulated, linking malignant transformation to dedifferentiation. The up-regulated genes are mainly components that control cellular proliferation, whereas the down-regulated genes consist of proteins exposed on or secreted from the cell surface. As many of the identified gene products control basic cellular functions that are defective in cancers, the data provide candidates for follow-up studies to investigate their functional roles in tumor formation. When we further compared the expression levels of four of the identified proteins in clinical cancer cohorts, similar differences were observed between benign and cancer cells, as in the cell model. This shows that this comprehensive demonstration of the molecular changes underlying malignant transformation is a relevant model to study the process of tumor formation. PMID:23569271

  14. Majority of differentially expressed genes are down-regulated during malignant transformation in a four-stage model.

    PubMed

    Danielsson, Frida; Skogs, Marie; Huss, Mikael; Rexhepaj, Elton; O'Hurley, Gillian; Klevebring, Daniel; Pontén, Fredrik; Gad, Annica K B; Uhlén, Mathias; Lundberg, Emma

    2013-04-23

    The transformation of normal cells to malignant, metastatic tumor cells is a multistep process caused by the sequential acquirement of genetic changes. To identify these changes, we compared the transcriptomes and levels and distribution of proteins in a four-stage cell model of isogenically matched normal, immortalized, transformed, and metastatic human cells, using deep transcriptome sequencing and immunofluorescence microscopy. The data show that ∼6% (n = 1,357) of the human protein-coding genes are differentially expressed across the stages in the model. Interestingly, the majority of these genes are down-regulated, linking malignant transformation to dedifferentiation. The up-regulated genes are mainly components that control cellular proliferation, whereas the down-regulated genes consist of proteins exposed on or secreted from the cell surface. As many of the identified gene products control basic cellular functions that are defective in cancers, the data provide candidates for follow-up studies to investigate their functional roles in tumor formation. When we further compared the expression levels of four of the identified proteins in clinical cancer cohorts, similar differences were observed between benign and cancer cells, as in the cell model. This shows that this comprehensive demonstration of the molecular changes underlying malignant transformation is a relevant model to study the process of tumor formation.

  15. Arsenic(V) Reduction in Relation to Iron(III) Transformation and Molecular Characterization of the Structural and Functional Microbial Community in Sediments of a Basin-Fill Aquifer in Northern Utah

    PubMed Central

    Mirza, Babur S.; Muruganandam, Subathra; Meng, Xianyu; Sorensen, Darwin L.; Dupont, R. Ryan

    2014-01-01

    Basin-fill aquifers of the Southwestern United States are associated with elevated concentrations of arsenic (As) in groundwater. Many private domestic wells in the Cache Valley Basin, UT, have As concentrations in excess of the U.S. EPA drinking water limit. Thirteen sediment cores were collected from the center of the valley at the depth of the shallow groundwater and were sectioned into layers based on redoxmorphic features. Three of the layers, two from redox transition zones and one from a depletion zone, were used to establish microcosms. Microcosms were treated with groundwater (GW) or groundwater plus glucose (GW+G) to investigate the extent of As reduction in relation to iron (Fe) transformation and characterize the microbial community structure and function by sequencing 16S rRNA and arsenate dissimilatory reductase (arrA) genes. Under the carbon-limited conditions of the GW treatment, As reduction was independent of Fe reduction, despite the abundance of sequences related to Geobacter and Shewanella, genera that include a variety of dissimilatory iron-reducing bacteria. The addition of glucose, an electron donor and carbon source, caused substantial shifts toward domination of the bacterial community by Clostridium-related organisms, and As reduction was correlated with Fe reduction for the sediments from the redox transition zone. The arrA gene sequencing from microcosms at day 54 of incubation showed the presence of 14 unique phylotypes, none of which were related to any previously described arrA gene sequence, suggesting a unique community of dissimilatory arsenate-respiring bacteria in the Cache Valley Basin. PMID:24632255

  16. Arsenic(V) reduction in relation to Iron(III) transformation and molecular characterization of the structural and functional microbial community in sediments of a basin-fill aquifer in Northern Utah.

    PubMed

    Mirza, Babur S; Muruganandam, Subathra; Meng, Xianyu; Sorensen, Darwin L; Dupont, R Ryan; McLean, Joan E

    2014-05-01

    Basin-fill aquifers of the Southwestern United States are associated with elevated concentrations of arsenic (As) in groundwater. Many private domestic wells in the Cache Valley Basin, UT, have As concentrations in excess of the U.S. EPA drinking water limit. Thirteen sediment cores were collected from the center of the valley at the depth of the shallow groundwater and were sectioned into layers based on redoxmorphic features. Three of the layers, two from redox transition zones and one from a depletion zone, were used to establish microcosms. Microcosms were treated with groundwater (GW) or groundwater plus glucose (GW+G) to investigate the extent of As reduction in relation to iron (Fe) transformation and characterize the microbial community structure and function by sequencing 16S rRNA and arsenate dissimilatory reductase (arrA) genes. Under the carbon-limited conditions of the GW treatment, As reduction was independent of Fe reduction, despite the abundance of sequences related to Geobacter and Shewanella, genera that include a variety of dissimilatory iron-reducing bacteria. The addition of glucose, an electron donor and carbon source, caused substantial shifts toward domination of the bacterial community by Clostridium-related organisms, and As reduction was correlated with Fe reduction for the sediments from the redox transition zone. The arrA gene sequencing from microcosms at day 54 of incubation showed the presence of 14 unique phylotypes, none of which were related to any previously described arrA gene sequence, suggesting a unique community of dissimilatory arsenate-respiring bacteria in the Cache Valley Basin.

  17. Metabolic changes of Brassica rapa transformed with a bacterial isochorismate synthase gene.

    PubMed

    Simoh, Sanimah; Linthorst, Huub J M; Lefeber, Alfons W M; Erkelens, Cornelis; Kim, Hye Kyong; Choi, Young Hae; Verpoorte, Robert

    2010-12-15

    Metabolome analysis by 1-dimensional proton nuclear magnetic resonance (¹H NMR) coupled with multivariate data analysis was carried out in Brassica rapa plants transformed with a gene encoding bacterial isochorismate synthase (ICS). Partial least square-discrimination analysis (PLS-DA) on selected signals suggested that the resonances that were dominant in the transgenic plants corresponded to a glucosinolate (neoglucobrassicin), phenylpropanoids (sinapoyl malate, feruloyl malate, caffeoyl malate), organic acids (succinic acid and fumaric acid) and sugars (α- and β-glucose). In contrast, amino acids alanine threonine, valine, leucine were dominant in the untransformed controls. In addition, HPLC data showed that the transgenic plant accumulated salicylic acid (SA) at significantly higher levels than the control plants, whereas the phylloquinone levels were not affected. The results suggest that the expression of the bacterial isochorismate synthase gene in B. rapa does not affect fluxes into pathways to other groups of secondary metabolites through competition for the same precursor. On the contrary, the biosynthesis of isochorismate-derived products (SA) seems to induce the competitive pathways via phenylalanine (phenylpropanoids) and tryptophan (IAA and indole glucosinolates).

  18. Global analysis of gene expression dynamics within the marine microbial community during the VAHINE mesocosm experiment in the southwest Pacific

    NASA Astrophysics Data System (ADS)

    Pfreundt, Ulrike; Spungin, Dina; Bonnet, Sophie; Berman-Frank, Ilana; Hess, Wolfgang R.

    2016-07-01

    Microbial gene expression was followed for 23 days within a mesocosm (M1) isolating 50 m3 of seawater and in the surrounding waters in the Nouméa lagoon, New Caledonia, in the southwest Pacific as part of the VAriability of vertical and tropHIc transfer of diazotroph derived N in the south wEst Pacific (VAHINE) experiment. The aim of VAHINE was to examine the fate of diazotroph-derived nitrogen (DDN) in a low-nutrient, low-chlorophyll ecosystem. On day 4 of the experiment, the mesocosm was fertilized with phosphate. In the lagoon, gene expression was dominated by the cyanobacterium Synechococcus, closely followed by Alphaproteobacteria. In contrast, drastic changes in the microbial community composition and transcriptional activity were triggered within the mesocosm within the first 4 days, with transcription bursts from different heterotrophic bacteria in rapid succession. The microbial composition and activity of the surrounding lagoon ecosystem appeared more stable, although following similar temporal trends as in M1. We detected significant gene expression from Chromerida in M1, as well as the Nouméa lagoon, suggesting these photoautotrophic alveolates were present in substantial numbers in the open water. Other groups contributing substantially to the metatranscriptome were affiliated with marine Euryarchaeota Candidatus Thalassoarchaea (inside and outside) and Myoviridae bacteriophages likely infecting Synechococcus, specifically inside M1. High transcript abundances for ammonium transporters and glutamine synthetase in many different taxa (e.g., Pelagibacteraceae, Synechococcus, Prochlorococcus, and Rhodobacteraceae) was consistent with the known preference of most bacteria for this nitrogen source. In contrast, Alteromonadaceae highly expressed urease genes; Rhodobacteraceae and Prochlorococcus showed some urease expression, too. Nitrate reductase transcripts were detected on day 10 very prominently in Synechococcus and in Halomonadaceae. Alkaline

  19. Agrobacterium-mediated transformation of tomato (Solanum lycopersicum L.) using the expansin 10 (CsEXP10) gene.

    PubMed

    Sun, Y D; Luo, W R; Sun, S Y; Ni, L

    2015-12-08

    The cucumber expansin 10 (CsEXP10) gene was previously cloned from young cucumber fruits but its role has not been defined. To determine the role of this gene in plant growth and development, a CsEXP10 gene transformation system was established. The open reading frame of the gene was inserted behind the CaMV35S promoter of vector pCAMBIA1301, and the construct was introduced into tomato plants by Agrobacterium-mediated transformation. In total, 19 kanamycin-positive lines were produced and nine independent transgenic lines were identified by β-glucuronidase and polymerase chain reaction (PCR) analysis. Quantitative real-time PCR analysis showed that levels of the CsEXP10 transcript were higher in transgenic lines than in a non-transgenic line.

  20. The Microbial Surface Components Recognizing Adhesive Matrix Molecules (MSCRAMMs) Genes among Clinical Isolates of Staphylococcus aureus from Hospitalized Children

    PubMed Central

    Ghasemian, Abdolmajid; Najar Peerayeh, Shahin; Bakhshi, Bita; Mirzaee, Mohsen

    2015-01-01

    Background: Isolates of Staphylococcus aureus express a myriad of adhesive surface proteins that play important role in colonization of the bacteria on nasal and skin surfaces, beginning the process of pathogenesis. The aim of this study was to screen several of the Microbial Surface Components Recognizing Adhesive Matrix Molecules (MSCRAMMs) genes among the isolate of S. aureus from hospitalized children. Methods: A total of 22 S. aureus isolates were collected from hospitalized children in Tehran from 2012 to 2013. Detection of the mecA and several adhesive surface proteins genes including clfA, B (encoding clumping factors A, B); fnbA, B (encoding finronectin binding proteins A, B); fib (encoding fibrinogen binding protein); eno (encoding laminin binding protein); cna (encoding collagen binding protein); ebps (encoding elastin binding protein) and bbp (encoding bone sialo-protein binding protein), was performed by PCR. Results: The clfAB genes were detected among all the isolates. The prevalence of fnbA, fnbB, fib, eno, cna, ebps and bbp was 63%, 6%, 50%, 59%, 82%, 63%, 9% and 0%, respectively. Conclusion: The high prevalence of these genes is important for future plans in vaccine designation. MRSA and MSSA isolates similarly can produce adhesive surface proteins for colonization. PMID:26351495

  1. TLM-Quant: An Open-Source Pipeline for Visualization and Quantification of Gene Expression Heterogeneity in Growing Microbial Cells

    PubMed Central

    Piersma, Sjouke; Denham, Emma L.; Drulhe, Samuel; Tonk, Rudi H. J.; Schwikowski, Benno; van Dijl, Jan Maarten

    2013-01-01

    Gene expression heterogeneity is a key driver for microbial adaptation to fluctuating environmental conditions, cell differentiation and the evolution of species. This phenomenon has therefore enormous implications, not only for life in general, but also for biotechnological applications where unwanted subpopulations of non-producing cells can emerge in large-scale fermentations. Only time-lapse fluorescence microscopy allows real-time measurements of gene expression heterogeneity. A major limitation in the analysis of time-lapse microscopy data is the lack of fast, cost-effective, open, simple and adaptable protocols. Here we describe TLM-Quant, a semi-automatic pipeline for the analysis of time-lapse fluorescence microscopy data that enables the user to visualize and quantify gene expression heterogeneity. Importantly, our pipeline builds on the open-source packages ImageJ and R. To validate TLM-Quant, we selected three possible scenarios, namely homogeneous expression, highly ‘noisy’ heterogeneous expression, and bistable heterogeneous expression in the Gram-positive bacterium Bacillus subtilis. This bacterium is both a paradigm for systems-level studies on gene expression and a highly appreciated biotechnological ‘cell factory’. We conclude that the temporal resolution of such analyses with TLM-Quant is only limited by the numbers of recorded images. PMID:23874729

  2. Methods for the isolation of genes encoding novel PHB cycle enzymes from complex microbial communities.

    PubMed

    Nordeste, Ricardo F; Trainer, Maria A; Charles, Trevor C

    2010-01-01

    Development of different PHAs as alternatives to petrochemically derived plastics can be facilitated by mining metagenomic libraries for diverse PHA cycle genes that might be useful for synthesis of bioplastics. The specific phenotypes associated with mutations of the PHA synthesis pathway genes in Sinorhizobium meliloti allows for the use of powerful selection and screening tools to identify complementing novel PHA synthesis genes. Identification of novel genes through their function rather than sequence facilitates finding functional proteins that may otherwise have been excluded through sequence-only screening methodology. We present here methods that we have developed for the isolation of clones expressing novel PHA metabolism genes from metagenomic libraries.

  3. Methods for the isolation of genes encoding novel PHB cycle enzymes from complex microbial communities.

    PubMed

    Nordeste, Ricardo F; Trainer, Maria A; Charles, Trevor C

    2010-01-01

    Development of different PHAs as alternatives to petrochemically derived plastics can be facilitated by mining metagenomic libraries for diverse PHA cycle genes that might be useful for synthesis of bioplastics. The specific phenotypes associated with mutations of the PHA synthesis pathway genes in Sinorhizobium meliloti allows for the use of powerful selection and screening tools to identify complementing novel PHA synthesis genes. Identification of novel genes through their function rather than sequence facilitates finding functional proteins that may otherwise have been excluded through sequence-only screening methodology. We present here methods that we have developed for the isolation of clones expressing novel PHA metabolism genes from metagenomic libraries. PMID:20830568

  4. Oxidative and reductive transformations of arsenic by photosynthetic microbial communities from hot springs on Pahoa Island, Mono Lake, California

    NASA Astrophysics Data System (ADS)

    Kulp, T. R.; Hoeft, S. E.; Miller, L. G.; Culbertson, C. W.; Baesman, S. M.; Oremland, R. S.

    2007-12-01

    The shoreline of Pahoa Island in hypersaline Mono Lake in California is characterized by numerous volcanogenic hot springs that display a wide range of temperatures between 30 and 85 degrees C. A variety of distinctive photosynthetic microbial mats are evident in these hot springs and their spatial distribution appears to be a function of water temperature. The suboxic hydrothermal waters of these seeps typically contain ~100 uM dissolved arsenic, which is rapidly oxidized from arsenite [As(III)] to arsenate [As(V)] as the springs flow over these microbial communities. We conducted experiments with anaerobic cultures of red or green photosynthetic bacteria from these hot springs, which we amended with radio-labeled 73As(III) or 73As(V) and incubated at 42 degrees C to measure arsenite oxidation and arsenate reduction activity. In order to assess the potential for As(III) to serve as an electron donor during anoxygenic photosynthesis, As(III) oxidation incubations were conducted under both light and dark conditions. Both light and dark incubations of these thermophiles rapidly oxidized amendments of 100 uM As(III) within 7 hours of incubation, however no significant difference was observed in the rate of As(III) oxidation for light compared to dark samples. Arsenate reduction was also observed in both light and dark anaerobic cultures after 48 hours incubation. In all cases, As oxidation or reduction activity was eliminated by autoclaving. These results suggest that biological As(III) oxidation by these bacteria is primarily a mechanism of detoxification or chemoautotrophy, however the potential significance of As(III) as a photosynthetic electron acceptor will be discussed.

  5. Effects of microbial transformation on dissolved organic matter in the east Taiwan Strait and implications for carbon and nutrient cycling

    NASA Astrophysics Data System (ADS)

    Yang, Liyang; Chen, Chen-Tung Arthur; Lui, Hon-Kit; Zhuang, Wan-E.; Wang, Bing-Jye

    2016-10-01

    Dissolved inorganic and organic carbons (DIC and DOC) provide two of the largest pools of carbon in the ocean. However, limited information is available concerning the relationship between DIC and different constituents of dissolved organic matter (DOM), such as fluorescent compounds. This study investigates the dynamics of DOM and their implications for carbon and nutrient cycling in the east Taiwan Strait, using DOC, absorption spectroscopy, and fluorescence excitation-emission matrices-parallel factor analysis (EEM-PARAFAC). The study area was dominated by the waters from the South China Sea during the sampling period in summer 2013. The dynamics of DOM were influenced strongly by microbial activities, as indicated by the close correlations (the absolute value of r: 0.75-0.97, p < 0.001) between apparent oxygen utilization (AOU) and DOM parameters, including DOC, the absorption coefficient at 280 nm, the fluorescence intensity of protein-like component C3, and the humification index HIX. The contribution of DOC degradation to the net increase in DIC was approximately 15% and 21% in the north and the south of the east Taiwan Strait, respectively. The DIC was correlated negatively with protein-like fluorescence, revealing the production of DIC by the microbial degradation of labile components. The DIC was correlated positively with humic-like fluorescence and HIX, suggesting that the storage of carbon by produced refractory humic substances could not compensate for the release of DIC in the deeper waters. The correlations of nutrients with DOM parameters were similar to those of DIC, further indicating the profound impacts of the dynamics of labile DOM on nutrient cycling.

  6. Relationships between nitrogen transformation rates and gene abundance in a riparian buffer soil.

    PubMed

    Wu, Lin; Osmond, Deanna L; Graves, Alexandria K; Burchell, Michael R; Duckworth, Owen W

    2012-11-01

    Denitrification is a critical biogeochemical process that results in the conversion of nitrate to volatile products, and thus is a major route of nitrogen loss from terrestrial environments. Riparian buffers are an important management tool that is widely utilized to protect water from non-point source pollution. However, riparian buffers vary in their nitrate removal effectiveness, and thus there is a need for mechanistic studies to explore nitrate dynamics in buffer soils. The objectives of this study were to examine the influence of specific types of soluble organic matter on nitrate loss and nitrous oxide production rates, and to elucidate the relationships between these rates and the abundances of functional genes in a riparian buffer soil. Continuous-flow soil column experiments were performed to investigate the effect of three types of soluble organic matter (citric acid, alginic acid, and Suwannee River dissolved organic carbon) on rates of nitrate loss and nitrous oxide production. We found that nitrate loss rates increased as citric acid concentrations increased; however, rates of nitrate loss were weakly affected or not affected by the addition of the other types of organic matter. In all experiments, rates of nitrous oxide production mirrored nitrate loss rates. In addition, quantitative polymerase chain reaction (qPCR) was utilized to quantify the number of genes known to encode enzymes that catalyze nitrite reduction (i.e., nirS and nirK) in soil that was collected at the conclusion of column experiments. Nitrate loss and nitrous oxide production rates trended with copy numbers of both nir and 16s rDNA genes. The results suggest that low-molecular mass organic species are more effective at promoting nitrogen transformations than large biopolymers or humic substances, and also help to link genetic potential to chemical reactivity. PMID:22996400

  7. Relationships between nitrogen transformation rates and gene abundance in a riparian buffer soil.

    PubMed

    Wu, Lin; Osmond, Deanna L; Graves, Alexandria K; Burchell, Michael R; Duckworth, Owen W

    2012-11-01

    Denitrification is a critical biogeochemical process that results in the conversion of nitrate to volatile products, and thus is a major route of nitrogen loss from terrestrial environments. Riparian buffers are an important management tool that is widely utilized to protect water from non-point source pollution. However, riparian buffers vary in their nitrate removal effectiveness, and thus there is a need for mechanistic studies to explore nitrate dynamics in buffer soils. The objectives of this study were to examine the influence of specific types of soluble organic matter on nitrate loss and nitrous oxide production rates, and to elucidate the relationships between these rates and the abundances of functional genes in a riparian buffer soil. Continuous-flow soil column experiments were performed to investigate the effect of three types of soluble organic matter (citric acid, alginic acid, and Suwannee River dissolved organic carbon) on rates of nitrate loss and nitrous oxide production. We found that nitrate loss rates increased as citric acid concentrations increased; however, rates of nitrate loss were weakly affected or not affected by the addition of the other types of organic matter. In all experiments, rates of nitrous oxide production mirrored nitrate loss rates. In addition, quantitative polymerase chain reaction (qPCR) was utilized to quantify the number of genes known to encode enzymes that catalyze nitrite reduction (i.e., nirS and nirK) in soil that was collected at the conclusion of column experiments. Nitrate loss and nitrous oxide production rates trended with copy numbers of both nir and 16s rDNA genes. The results suggest that low-molecular mass organic species are more effective at promoting nitrogen transformations than large biopolymers or humic substances, and also help to link genetic potential to chemical reactivity.

  8. Detection of transformed cells in crown gall tumors using the GUS reporter gene and correlation of GUS stained cells with T-DNA gene activity

    SciTech Connect

    Black, R.C. ); Labriola, J.; Binns, A.N. )

    1990-05-01

    Crown gall tumors are a mixture of transformed hormone producing cells and normal cells. Until now it has not been possible to directly visualize these cell types in situ. We have constructed strains of Agrobacterium tumefaciens that carry the 35S-{beta}-glucuronidase (GUS) reporter gene in either wild type or mutant Ti plasmids. Using histochemical staining for GUS activity, blue (GUS positive) sectors are observed in tumor sections. In order to demonstrate that the blue sectors actually represent cells expressing other T-DNA genes, we have looked for T-DNA gene encoded enzyme activity in the stained and unstained sectors. The blue sectors accumulate octopine (a product of the octopine synthase gene on the T-DNA) while the white (GUS negative) sectors do not. We conclude that the use of the GUS reporter gene provides a sensitive and reliable method for visualizing transformation events in plant tissues. A comparison of the proportion of transformed and nontransformed cells in wild type tumors vs. tumors deficient in auxin or cytokinin encoding genes will be discussed.

  9. Evaluation of microbial population and functional genes during the bioremediation of petroleum-contaminated soil as an effective monitoring approach.

    PubMed

    Shahi, Aiyoub; Aydin, Sevcan; Ince, Bahar; Ince, Orhan

    2016-03-01

    This study investigated the abundance and diversity of soil n-alkane and polycyclic aromatic hydrocarbon (PAH)-degrading bacterial communities. It also investigated the quantity of the functional genes, the occurrence of horizontal gene transfer (HGT) in the identified bacterial communities and the effect that such HGT can have on biostimulation process. Illumina sequencing was used to detect the microbial diversity of petroleum-polluted soil prior to the biostimulation process, and quantitative real-time PCR was used to determine changes in the bacterial community and functional genes (alkB, phnAc and nah) expressions throughout the biostimulation of petroleum-contaminated soil. The illumine results revealed that γ-proteobacteria, Chloroflexi, Firmicutes, and δ-proteobacteria were the most dominant bacterial phyla in the contaminated site, and that most of the strains were Gram-negative. The results of the gene expression results revealed that gram-negative bacteria and alkB are critical to successful bioremediation. Failure to maintain the stability of hydrocarbon-degrading bacteria and functional gene will reduce the extend to which alkanes and PAHs are degraded. According to the results of the study, the application of a C:N:P ratio of was 100:15:1 in the biodegradation experiment resulted in the highest rate at which petroleum hydrocarbons were biodegraded. The diversity of pollutant-degrading bacteria and the effective transfer of degrading genes among resident microorganisms are essential factors for the successful biostimulation of petroleum hydrocarbons. As such, screening these factors throughout the biostimulation process represents an effective monitoring approach by which the success of the biostimulation can be assessed.

  10. Evaluation of microbial population and functional genes during the bioremediation of petroleum-contaminated soil as an effective monitoring approach.

    PubMed

    Shahi, Aiyoub; Aydin, Sevcan; Ince, Bahar; Ince, Orhan

    2016-03-01

    This study investigated the abundance and diversity of soil n-alkane and polycyclic aromatic hydrocarbon (PAH)-degrading bacterial communities. It also investigated the quantity of the functional genes, the occurrence of horizontal gene transfer (HGT) in the identified bacterial communities and the effect that such HGT can have on biostimulation process. Illumina sequencing was used to detect the microbial diversity of petroleum-polluted soil prior to the biostimulation process, and quantitative real-time PCR was used to determine changes in the bacterial community and functional genes (alkB, phnAc and nah) expressions throughout the biostimulation of petroleum-contaminated soil. The illumine results revealed that γ-proteobacteria, Chloroflexi, Firmicutes, and δ-proteobacteria were the most dominant bacterial phyla in the contaminated site, and that most of the strains were Gram-negative. The results of the gene expression results revealed that gram-negative bacteria and alkB are critical to successful bioremediation. Failure to maintain the stability of hydrocarbon-degrading bacteria and functional gene will reduce the extend to which alkanes and PAHs are degraded. According to the results of the study, the application of a C:N:P ratio of was 100:15:1 in the biodegradation experiment resulted in the highest rate at which petroleum hydrocarbons were biodegraded. The diversity of pollutant-degrading bacteria and the effective transfer of degrading genes among resident microorganisms are essential factors for the successful biostimulation of petroleum hydrocarbons. As such, screening these factors throughout the biostimulation process represents an effective monitoring approach by which the success of the biostimulation can be assessed. PMID:26685788

  11. Distribution and Genetic Diversity of Bacteriocin Gene Clusters in Rumen Microbial Genomes

    PubMed Central

    Azevedo, Analice C.; Bento, Cláudia B. P.; Ruiz, Jeronimo C.; Queiroz, Marisa V.

    2015-01-01

    Some species of ruminal bacteria are known to produce antimicrobial peptides, but the screening procedures have mostly been based on in vitro assays using standardized methods. Recent sequencing efforts have made available the genome sequences of hundreds of ruminal microorganisms. In this work, we performed genome mining of the complete and partial genome sequences of 224 ruminal bacteria and 5 ruminal archaea to determine the distribution and diversity of bacteriocin gene clusters. A total of 46 bacteriocin gene clusters were identified in 33 strains of ruminal bacteria. Twenty gene clusters were related to lanthipeptide biosynthesis, while 11 gene clusters were associated with sactipeptide production, 7 gene clusters were associated with class II bacteriocin production, and 8 gene clusters were associated with class III bacteriocin production. The frequency of strains whose genomes encode putative antimicrobial peptide precursors was 14.4%. Clusters related to the production of sactipeptides were identified for the first time among ruminal bacteria. BLAST analysis indicated that the majority of the gene clusters (88%) encoding putative lanthipeptides contained all the essential genes required for lanthipeptide biosynthesis. Most strains of Streptococcus (66.6%) harbored complete lanthipeptide gene clusters, in addition to an open reading frame encoding a putative class II bacteriocin. Albusin B-like proteins were found in 100% of the Ruminococcus albus strains screened in this study. The in silico analysis provided evidence of novel biosynthetic gene clusters in bacterial species not previously related to bacteriocin production, suggesting that the rumen microbiota represents an underexplored source of antimicrobial peptides. PMID:26253660

  12. Lateral transfer of eukaryotic ribosomal RNA genes: an emerging concern for molecular ecology of microbial eukaryotes.

    PubMed

    Yabuki, Akinori; Toyofuku, Takashi; Takishita, Kiyotaka

    2014-07-01

    Ribosomal RNA (rRNA) genes are widely utilized in depicting organismal diversity and distribution in a wide range of environments. Although a few cases of lateral transfer of rRNA genes between closely related prokaryotes have been reported, it remains to be reported from eukaryotes. Here, we report the first case of lateral transfer of eukaryotic rRNA genes. Two distinct sequences of the 18S rRNA gene were detected from a clonal culture of the stramenopile, Ciliophrys infusionum. One was clearly derived from Ciliophrys, but the other gene originated from a perkinsid alveolate. Genome-walking analyses revealed that this alveolate-type rRNA gene is immediately adjacent to two protein-coding genes (ubc12 and usp39), and the origin of both genes was shown to be a stramenopile (that is, Ciliophrys) in our phylogenetic analyses. These findings indicate that the alveolate-type rRNA gene is encoded on the Ciliophrys genome and that eukaryotic rRNA genes can be transferred laterally.

  13. Distribution and Genetic Diversity of Bacteriocin Gene Clusters in Rumen Microbial Genomes.

    PubMed

    Azevedo, Analice C; Bento, Cláudia B P; Ruiz, Jeronimo C; Queiroz, Marisa V; Mantovani, Hilário C

    2015-10-01

    Some species of ruminal bacteria are known to produce antimicrobial peptides, but the screening procedures have mostly been based on in vitro assays using standardized methods. Recent sequencing efforts have made available the genome sequences of hundreds of ruminal microorganisms. In this work, we performed genome mining of the complete and partial genome sequences of 224 ruminal bacteria and 5 ruminal archaea to determine the distribution and diversity of bacteriocin gene clusters. A total of 46 bacteriocin gene clusters were identified in 33 strains of ruminal bacteria. Twenty gene clusters were related to lanthipeptide biosynthesis, while 11 gene clusters were associated with sactipeptide production, 7 gene clusters were associated with class II bacteriocin production, and 8 gene clusters were associated with class III bacteriocin production. The frequency of strains whose genomes encode putative antimicrobial peptide precursors was 14.4%. Clusters related to the production of sactipeptides were identified for the first time among ruminal bacteria. BLAST analysis indicated that the majority of the gene clusters (88%) encoding putative lanthipeptides contained all the essential genes required for lanthipeptide biosynthesis. Most strains of Streptococcus (66.6%) harbored complete lanthipeptide gene clusters, in addition to an open reading frame encoding a putative class II bacteriocin. Albusin B-like proteins were found in 100% of the Ruminococcus albus strains screened in this study. The in silico analysis provided evidence of novel biosynthetic gene clusters in bacterial species not previously related to bacteriocin production, suggesting that the rumen microbiota represents an underexplored source of antimicrobial peptides.