Science.gov

Sample records for microbial inactivation properties

  1. Microbial inactivation and physicochemical properties of ultrasound processed pomegranate juice.

    PubMed

    Pala, Çiğdem Uysal; Zorba, Nükhet Nilüfer Demirel; Özcan, Gülçin

    2015-03-01

    The effects of ultrasound treatment at various amplitudes (50, 75, and 100%) and times (0, 6, 12, 18, 24, and 30 min) on Escherichia coli ATCC 25922 (a surrogate for E. coli O157:H7) and Saccharomyces cerevisiae ATCC 2366 levels and physicochemical characteristics (monomeric anthocyanins, color values, total phenolics, pH, and soluble solids) were determined in pomegranate juice. More than a 5-log inactivation of E. coli ATCC 25922 and a 1.36-log inactivation of S. cerevisiae ATCC 2366 were achieved after 30 min of ultrasound treatment at 100% amplitude. The log-linear and Weibull models were successfully used to estimate the microbial inactivation as a function of ultrasound treatment time (R(2) > 0.97). No significant changes were observed in total phenolics, pH, and soluble solids of the treated juice (P > 0.05). The ultrasound treatment for up to 30 min resulted in more than 92 and 89% anthocyanin retention at 75 and 100% amplitude, respectively. The redness (a*) of the juice did not change significantly after the ultrasound treatment at amplitudes of 75 and 100% for up to 24 and 12 min, respectively. No significant changes in L* and b* values were observed after ultrasound treatment at all amplitudes and after up to 30 min of treatment for 50 and 75% amplitudes. Small differences in juice color were noted based on total color difference scores. PMID:25719877

  2. Microbial inactivation and physicochemical properties of ultrasound processed pomegranate juice.

    PubMed

    Pala, Çiğdem Uysal; Zorba, Nükhet Nilüfer Demirel; Özcan, Gülçin

    2015-03-01

    The effects of ultrasound treatment at various amplitudes (50, 75, and 100%) and times (0, 6, 12, 18, 24, and 30 min) on Escherichia coli ATCC 25922 (a surrogate for E. coli O157:H7) and Saccharomyces cerevisiae ATCC 2366 levels and physicochemical characteristics (monomeric anthocyanins, color values, total phenolics, pH, and soluble solids) were determined in pomegranate juice. More than a 5-log inactivation of E. coli ATCC 25922 and a 1.36-log inactivation of S. cerevisiae ATCC 2366 were achieved after 30 min of ultrasound treatment at 100% amplitude. The log-linear and Weibull models were successfully used to estimate the microbial inactivation as a function of ultrasound treatment time (R(2) > 0.97). No significant changes were observed in total phenolics, pH, and soluble solids of the treated juice (P > 0.05). The ultrasound treatment for up to 30 min resulted in more than 92 and 89% anthocyanin retention at 75 and 100% amplitude, respectively. The redness (a*) of the juice did not change significantly after the ultrasound treatment at amplitudes of 75 and 100% for up to 24 and 12 min, respectively. No significant changes in L* and b* values were observed after ultrasound treatment at all amplitudes and after up to 30 min of treatment for 50 and 75% amplitudes. Small differences in juice color were noted based on total color difference scores.

  3. Effect of pulsed electric fields on microbial inactivation and physico-chemical properties of whole porcine blood.

    PubMed

    Boulaaba, Annika; Egen, Nathalie; Klein, Günter

    2014-04-01

    The objective of this study was to determine the lethal effectiveness of pulsed electric fields on the inactivation of the porcine blood endogenous microflora. Furthermore, the impact of pulsed electric field application on physico-chemical and sensory properties in this medium should be proved. Blood samples from a commercial abattoir in Germany were processed by a continuous pilot plant-pulsed electric field system at electric field strength of 11 kV/cm for treatment times of 163 and 209 µs. The applied pulse frequencies of 134 and 175 Hz correspond to an energy input of 91 and 114 kJ/kg, respectively. In these conditions, the effectiveness of pulsed electric field processing on microbial inactivation was limited: 1.35 log10 CFU/mL reduction of total aerobic plate count (p < 0.05), 1.0 log10 CFU/mL for Pseudomonas spp. (p < 0.05), 0.97 and 0.66 log10 CFU/mL reduction for Enterobacteriaceae and sulfite-reducing anaerobic bacteria, respectively. However, the storage experiment (14 days at +3 ) showed a significant reduced growth of total aerobic plate count (p < 0.05) and Pseudomonas spp. (p < 0.05) in the pulsed electric field-treated blood samples. Pulsed electric field processing leads to a complete hemolysis of the red blood cells, in addition significant decreased L* (lightness), a* (redness) and b* (yellowness) values (p < 0.0001) were observed. Furthermore, changes in the sensory attributes color (changed from red to dark brown) and odor (changed from fresh to musty and tangy) were noticed. PMID:23751540

  4. Microbial Inactivation by Ultrasound Assisted Supercritical Fluids

    NASA Astrophysics Data System (ADS)

    Benedito, Jose; Ortuño, Carmen; Castillo-Zamudio, Rosa Isela; Mulet, Antonio

    A method combining supercritical carbon dioxide (SC-CO2) and high power ultrasound (HPU) has been developed and tested for microbial/enzyme inactivation purposes, at different process conditions for both liquid and solid matrices. In culture media, using only SC-CO2, the inactivation rate of E. coli and S. cerevisiae increased with pressure and temperature; and the total inactivation (7-8 log-cycles) was attained after 25 and 140 min of SC-CO2 (350 bar, 36 °C) treatment, respectively. Using SC-CO2+HPU, the time for the total inactivation of both microorganisms was reduced to only 1-2 min, at any condition selected. The SC-CO2+HPU inactivation of both microorganisms was slower in juices (avg. 4.9 min) than in culture media (avg. 1.5 min). In solid samples (chicken, turkey ham and dry-cured pork cured ham) treated with SC-CO2 and SC-CO2+HPU, the inactivation rate of E. coli increased with temperature. The application of HPU to the SC-CO2 treatments accelerated the inactivation rate of E. coli and that effect was more pronounced in treatments with isotonic solution surrounding the solid food samples. The application of HPU enhanced the SC-CO2 inactivation mechanisms of microorganisms, generating a vigorous agitation that facilitated the CO2 solubilization and the mass transfer process. The cavitation generated by HPU could damage the cell walls accelerating the extraction of vital constituents and the microbial death. Thus, using the combined technique, reasonable industrial processing times and mild process conditions could be used which could result into a cost reduction and lead to the minimization in the food nutritional and organoleptic changes.

  5. Predicting microbial heat inactivation under nonisothermal treatments.

    PubMed

    Hassani, Mounir; Condón, Santiago; Pagán, Rafael

    2007-06-01

    The aim of this study was to develop an equation that accurately predicts microbial heat inactivation under nonisothermal treatments at constantly rising heating rates (from 0.5 to 5 degrees C/min) in media with different pH values (4.0 or 7.4). The survival curves of all bacteria (Enterococcus faecium, Escherichia coli, Listeria monocytogenes, Salmonella Senftenberg 775W, Salmonella Typhimurium, and Staphylococcus aureus) tested under isothermal treatments were nearly linear. For the most heat-resistant microorganism (E. faecium), the estimated DT-values at pH 7.4 were at least 100 times those of the second most thermotolerant microorganism (Salmonella Senftenberg 775W). The heat resistance of E. faecium was up to 30 times lower at pH 4.0 than at pH 7.4. However, E. faecium was still the most heat-resistant microorganism under nonisothermal treatments at both pH values. Inactivation under nonisothermal conditions was not accurately estimated from heat resistance parameters of isothermal treatments when microbial adaptation or sensibilization occurred during the heating up lag phases. The under-prediction of the number of survivors might be greater than 15 log CFU within the nonisothermal treatment conditions investigated. Therefore, the nonisothermal survival curves of the most heat-resistant microorganisms were fitted with the following equation: log S(t) = -(t/delta)P. This equation accurately described the survival curves of all the bacteria tested. We observed a linear relationship between the log of the scale parameter (delta) and the log of the heating rate. A p value characteristic of each microorganism and pH tested was calculated. Two equations capable of predicting the inactivation rate of all bacteria tested under nonisothermal treatments at pH 7.4, 5.5, or 4.0 were developed. The model was evaluated in skim milk and apple juice. The results of this study could be used to help minimize public health risks and to extend the shelf life of those foods

  6. Microbial inactivation of paprika by a high-temperature short-X time treatment. Influence on color properties.

    PubMed

    Almela, Luis; Nieto-Sandoval, José M; Fernández López, José A

    2002-03-13

    High-temperature short-time (HTST) treatments have been used to destroy the bioburden of paprika. With this in mind, we have designed a device to treat samples of paprika with a gas whose temperature, pressure, and composition can be selected. Temperatures and treatment times ranged from 130 to 170 degrees C and 4 to 6 s, respectively. The survival of the most commonly found microorganisms in paprika and any alteration in extractable and superficial color were examined. Data showed that the optimum HTST conditions were 145 degrees C, 1.5 kg/cm2 of overpressure, 6 s operation time, and a thermal fluid of saturated steam. No microbial growth was detected during storage after thermal treatment. To minimize the color losses, treated (HTST) paprika samples should be kept under refrigeration. PMID:11879016

  7. In situ studies of microbial inactivation during high pressure processing

    NASA Astrophysics Data System (ADS)

    Maldonado, Jose Antonio; Schaffner, Donald W.; Cuitiño, Alberto M.; Karwe, Mukund V.

    2016-01-01

    High pressure processing (HPP) has been shown to reduce microbial concentration in foods. The mechanisms of microbial inactivation by HPP have been associated with damage to cell membranes. The real-time response of bacteria to HPP was measured to elucidate the mechanisms of inactivation, which can aid in designing more effective processes. Different pressure cycling conditions were used to expose Enterobacter aerogenes cells to HPP. Propidium iodide (PI) was used as a probe, which fluoresces after penetrating cells with damaged membranes and binding with nucleic acids. A HPP vessel with sapphire windows was used for measuring fluorescence in situ. Membrane damage was detected during pressurization and hold time, but not during depressurization. The drop in fluorescence was larger than expected after pressure cycles at higher pressure and longer times. This indicated possible reversible disassociation of ribosomes resulting in additional binding of PI to exposed RNA under pressure and its release after depressurization.

  8. Microbial Properties Database Editor Tutorial

    EPA Science Inventory

    A Microbial Properties Database Editor (MPDBE) has been developed to help consolidate microbial-relevant data to populate a microbial database and support a database editor by which an authorized user can modify physico-microbial properties related to microbial indicators and pat...

  9. Development of a log-quadratic model to describe microbial inactivation, illustrated by thermal inactivation of Clostridium botulinum.

    PubMed

    Stone, G; Chapman, B; Lovell, D

    2009-11-01

    In the commercial food industry, demonstration of microbiological safety and thermal process equivalence often involves a mathematical framework that assumes log-linear inactivation kinetics and invokes concepts of decimal reduction time (D(T)), z values, and accumulated lethality. However, many microbes, particularly spores, exhibit inactivation kinetics that are not log linear. This has led to alternative modeling approaches, such as the biphasic and Weibull models, that relax strong log-linear assumptions. Using a statistical framework, we developed a novel log-quadratic model, which approximates the biphasic and Weibull models and provides additional physiological interpretability. As a statistical linear model, the log-quadratic model is relatively simple to fit and straightforwardly provides confidence intervals for its fitted values. It allows a D(T)-like value to be derived, even from data that exhibit obvious "tailing." We also showed how existing models of non-log-linear microbial inactivation, such as the Weibull model, can fit into a statistical linear model framework that dramatically simplifies their solution. We applied the log-quadratic model to thermal inactivation data for the spore-forming bacterium Clostridium botulinum and evaluated its merits compared with those of popular previously described approaches. The log-quadratic model was used as the basis of a secondary model that can capture the dependence of microbial inactivation kinetics on temperature. This model, in turn, was linked to models of spore inactivation of Sapru et al. and Rodriguez et al. that posit different physiological states for spores within a population. We believe that the log-quadratic model provides a useful framework in which to test vitalistic and mechanistic hypotheses of inactivation by thermal and other processes.

  10. Effects of glycinin basic peptide on physicochemical characteristics and microbial inactivation of pasteurized milk.

    PubMed

    Zhao, Guo-Ping; Li, Ying-Qiu; Sun, Gui-Jin; Mo, Hai-Zhen

    2016-07-01

    The effects of glycinin basic peptide (GBP) on physicochemical characteristics and microbial inactivation of pasteurized milk were investigated over 21d of storage at 4°C. Sensory properties, total bacterial count, pH, alcohol levels, lactose content, and protein changes of pasteurized milk differentially treated with GBP were analyzed periodically during refrigerated storage. Compared with the control, reductions for total bacterial count and specific bacterium (Staphylococcus aureus) in pasteurized milk treated with GBP during storage were found. However, sensory scores, pH, lactose, and protein contents of pasteurized milk treated with GBP were much higher than those of the control. A concentration of 0.015% (wt/vol) GBP could effectively inhibit the growth and reproduction of bacteria in pasteurized milk, enhance its sensory and physicochemical properties, and extend its shelf life to 15d. Thus, GBP has good potential to be a natural milk preservative. PMID:27157568

  11. MALDI-TOF mass spectrometry compatible inactivation method for highly pathogenic microbial cells and spores.

    PubMed

    Lasch, Peter; Nattermann, Herbert; Erhard, Marcel; Stämmler, Maren; Grunow, Roland; Bannert, Norbert; Appel, Bernd; Naumann, Dieter

    2008-03-15

    Identification of microorganisms, specifically of vegetative cells and spores, by intact cell mass spectrometry (ICMS) is an emerging new technology. The technique provides specific biomarker profiles which can be employed for bacterial identification at the genus, species, or even at the subspecies level holding the potential to serve as a rapid and sensitive identification technique in clinical or food microbiology and also for sensitive detection of biosafety level (BSL) 3 microorganisms. However, the development of ICMS as an identification technique for BSL-3 level microorganisms is hampered by the fact that no MALDI-TOF (matrix-assisted laser desorption/ionization time-of-flight) compatible inactivation procedure for microorganisms, and particularly for bacterial endospores, has been evaluated so far. In this report we describe a new methodology for effective inactivation of microorganisms which is compatible with the analysis of microbial protein patterns by MALDI-TOF mass spectrometry. The main challenge of this work was to define the conditions that ensure microbial inactivation and permit at the same time comprehensive analysis of microbial protein patterns. Among several physical, chemical, and mechanical inactivation procedures, inactivation by trifluoroacetic acid (TFA) proved to be the best method in terms of bactericidal capacity and information content of the mass spectra. Treatment of vegetative cells by 80% TFA alone for 30 min assured complete inactivation of microbial cells under all conditions tested. For spore inactivation, the "TFA inactivation protocol" was developed which is a combination of TFA treatment with basic laboratory routines such as centrifugation and filtering. This MALDI-TOF/ICMS compatible sample preparation protocol is simple and rapid (30 min) and assures reliable inactivation of vegetative cells and spores of highly pathogenic (BSL-3) microorganisms.

  12. Effects of UV intensity and water turbidity on microbial indicator inactivation.

    PubMed

    Liu, Wen-jun; Zhang, Yong-ji

    2006-01-01

    The effects of UV intensity and turbidity on selected microbial indicator inactivation were investigated. Results showed that UV disinfection was effective in killing all the selected microbial indicators, the resistance order of the microorganisms was as follows: MS-2 coliphage > Bacillus subtilis > E. coli > Staphylococcus aureus and Candida albicans. UV intensity had influence on the inactivation of all the microorganisms, high UV disinfection efficency was obtained with higher UV intensity. Turbidity had impact on the bacteria inactivation rate, but there was no evidence that turbidity had any negative contribution to MS-2 coliphage. Under the same UV dosage, higher UV intensity could overcome the negative influence of turbidity on UV performance, enhanced microorganism inactivation effect in turbidity water. PMID:17078540

  13. Microbial Transport, Retention, and Inactivation in Streams: A Combined Experimental and Stochastic Modeling Approach.

    PubMed

    Drummond, Jennifer D; Davies-Colley, Robert J; Stott, Rebecca; Sukias, James P; Nagels, John W; Sharp, Alice; Packman, Aaron I

    2015-07-01

    Long-term survival of pathogenic microorganisms in streams enables long-distance disease transmission. In order to manage water-borne diseases more effectively we need to better predict how microbes behave in freshwater systems, particularly how they are transported downstream in rivers. Microbes continuously immobilize and resuspend during downstream transport owing to a variety of processes including gravitational settling, attachment to in-stream structures such as submerged macrophytes, and hyporheic exchange and filtration within underlying sediments. We developed a stochastic model to describe these microbial transport and retention processes in rivers that also accounts for microbial inactivation. We used the model to assess the transport, retention, and inactivation of Escherichia coli in a small stream and the underlying streambed sediments as measured from multitracer injection experiments. The results demonstrate that the combination of laboratory experiments on sediment cores, stream reach-scale tracer experiments, and multiscale stochastic modeling improves assessment of microbial transport in streams. This study (1) demonstrates new observations of microbial dynamics in streams with improved data quality than prior studies, (2) advances a stochastic modeling framework to include microbial inactivation processes that we observed to be important in these streams, and (3) synthesizes new and existing data to evaluate seasonal dynamics.

  14. Microbial Inactivation in the Liquid Phase Induced by Multigas Plasma Jet

    PubMed Central

    Takamatsu, Toshihiro; Uehara, Kodai; Sasaki, Yota; Hidekazu, Miyahara; Matsumura, Yuriko; Iwasawa, Atsuo; Ito, Norihiko; Kohno, Masahiro; Azuma, Takeshi; Okino, Akitoshi

    2015-01-01

    Various gas atmospheric nonthermal plasmas were generated using a multigas plasma jet to treat microbial suspensions. Results indicated that carbon dioxide and nitrogen plasma had high sterilization effects. Carbon dioxide plasma, which generated the greatest amount of singlet oxygen than other gas plasmas, killed general bacteria and some fungi. On the other hand, nitrogen plasma, which generated the largest amount of OH radical, killed ≥6 log of 11 species of microorganisms, including general bacteria, fungi, acid-fast bacteria, spores, and viruses in 1–15 min. To identify reactive species responsible for bacterial inactivation, antioxidants were added to bacterial suspensions, which revealed that singlet oxygen and OH radicals had greatest inactivation effects. PMID:26173107

  15. Hydrothermal treatment for inactivating some hygienic microbial indicators from food waste-amended animal feed.

    PubMed

    Jin, Yiying; Chen, Ting; Li, Huan

    2012-07-01

    To achieve the hygienic safety of food waste used as animal feed, a hydrothermal treatment process of 60-110 degrees C for 10-60 min was applied on the separated food waste from a university canteen. Based on the microbial analysis of raw waste, the inactivation of hygienic indicators of Staphylococcus aureus (SA), total coliform (TC), total aerobic plate counts (TPC), and molds and yeast (MY) were analyzed during the hydrothermal process. Results showed that indicators' concentrations were substantially reduced after hydrothermal treatment, with a greater reduction observed when the waste was treated with a higher temperature and pressure and a longer ramping time. The 110 degrees C hydrothermal treatment for 60 min was sufficient to disinfect food waste as animal feed from the viewpoint of hygienic safety. Results obtained so far indicate that hydrothermal treatment can significantly decrease microbial indicators' concentrations but does not lead to complete sterilization, because MY survived even after 60 min treatment at 110 degrees C. The information from the present study will contribute to the microbial risk control of food waste-amended animal feed, to cope with legislation on food or feed safety.

  16. Microbial inactivation and shelf life of apple juice treated with high pressure carbon dioxide

    PubMed Central

    Ferrentino, Giovanna; Bruno, Mariacarmela; Ferrari, Giovanna; Poletto, Massimo; Balaban, Murat O

    2009-01-01

    Apple juice prepared from 'Annurca' apple puree was treated with a HPCD batch system. The pH, °Brix, color parameters and microbial load of the treated apple juice were compared with those of thermally processed juice. Thermal processes were carried out at 35, 50, 65, 85°C and treatment times ranging between 10 and 140 minutes. Microbial inactivation kinetics indicated that 5-log reduction of natural flora in apple juice was achieved at 85°C and 60 minutes of treatment time for conventional thermal process and at 16.0 MPa, 60°C and 40 minutes for HPCD process. Results suggested that temperature played a fundamental role on HPCD treatment efficiency, with inactivation significantly enhanced when it increased from 35 to 60°C. Less significant was the role of the pressure at the tested levels of 7.0, 13.0 and 16.0 MPa. Also, 5-log reduction of natural flora in apple juice was obtained at lower temperatures by cyclic treatments of six compression and decompression steps. There were no significant differences between treated and untreated samples in °Brix (α = 0.05). Significant differences were detected in pH values between the untreated and HPCD treated samples (α = 0.05). There was a significant decrease in 'L*' and 'b*' values and also differences were detected in 'a*' values between the untreated and the HPCD treated samples (α = 0.05). Statistical analysis for °Brix, pH and color data showed no differences between the untreated and HPCD treated samples in the first 2 weeks of storage at 4°C. These results emphasize the potential use of HPCD in industrial applications. PMID:19193225

  17. Relating nanomaterial properties and microbial toxicity

    SciTech Connect

    Suresh, Anil K; Pelletier, Dale A; Doktycz, Mitchel John

    2013-01-01

    Nanomaterials are meeting diverse needs in consumer and industrial products. Metal and metal oxide nanoparticles are among the most commonly used materials and their potential for adversely affecting environmental systems raises concern. Complex microbial consortia underlie environmental processes, and the potential toxicity of nanoparticles to microbial systems, and the consequent impacts on trophic balances, is particularly worrisome. The diverse array of metal and metal oxides, the different sizes and shapes that can be prepared and the variety of possible surface coatings complicate toxicity assessments. Further complicating toxicity interpretations are the diversity of microbial systems and their metabolic capabilities. Here, we review various studies focused on nanoparticle-microbial interactions in an effort to correlate the physical-chemical properties of engineered metal and metal oxide nanoparticles to their biological response. Gaining a predictive understanding of nanoparticle toxicity, based on the physical-chemical properties of the material, will be key to the design and responsible use of nanotechnologies. General conclusions regarding the parent material of the nanoparticle and nanoparticle s size and shape on potential toxicity can be made. However, the surface coating of the material, which can be altered significantly by environmental conditions, can ameliorate or promote microbial toxicity. Understanding nanoparticle transformations and how the nanoparticle surface can be designed to control toxicity represents a key area for further study. Additionally, the vast array of microbial species and their intrinsic metabolic capabilities complicates extrapolations of nanoparticle toxicity. A molecular-based understanding of the various microbial responses to nanoparticle-induced stress is needed. Ultimately, to interpret the effect and eventual fate of engineered materials in the environment, an understanding of the relationship between nanoparticle

  18. Development of surrogate correlation models to predict trace organic contaminant oxidation and microbial inactivation during ozonation.

    PubMed

    Gerrity, Daniel; Gamage, Sujanie; Jones, Darryl; Korshin, Gregory V; Lee, Yunho; Pisarenko, Aleksey; Trenholm, Rebecca A; von Gunten, Urs; Wert, Eric C; Snyder, Shane A

    2012-12-01

    The performance of ozonation in wastewater depends on water quality and the ability to form hydroxyl radicals (·OH) to meet disinfection or contaminant transformation objectives. Since there are no on-line methods to assess ozone and ·OH exposure in wastewater, many agencies are now embracing indicator frameworks and surrogate monitoring for regulatory compliance. Two of the most promising surrogate parameters for ozone-based treatment of secondary and tertiary wastewater effluents are differential UV(254) absorbance (ΔUV(254)) and total fluorescence (ΔTF). In the current study, empirical correlations for ΔUV(254) and ΔTF were developed for the oxidation of 18 trace organic contaminants (TOrCs), including 1,4-dioxane, atenolol, atrazine, bisphenol A, carbamazepine, diclofenac, gemfibrozil, ibuprofen, meprobamate, naproxen, N,N-diethyl-meta-toluamide (DEET), para-chlorobenzoic acid (pCBA), phenytoin, primidone, sulfamethoxazole, triclosan, trimethoprim, and tris-(2-chloroethyl)-phosphate (TCEP) (R(2) = 0.50-0.83) and the inactivation of three microbial surrogates, including Escherichia coli, MS2, and Bacillus subtilis spores (R(2) = 0.46-0.78). Nine wastewaters were tested in laboratory systems, and eight wastewaters were evaluated at pilot- and full-scale. A predictive model for OH exposure based on ΔUV(254) or ΔTF was also proposed.

  19. Relating nanomaterial properties and microbial toxicity

    NASA Astrophysics Data System (ADS)

    Suresh, Anil K.; Pelletier, Dale A.; Doktycz, Mitchel J.

    2012-12-01

    Metal and metal oxide nanoparticles are among the most commonly used nanomaterials and their potential for adversely affecting environmental systems raises concern. Complex microbial consortia underlie environmental processes, and the potential toxicity of nanoparticles to microbial systems, and the consequent impacts on trophic balances, is particularly worrisome. The diverse array of metal and metal oxides, the different sizes and shapes that can be prepared and the variety of possible surface coatings complicate assessments of toxicity. Further muddling biocidal interpretations are the diversity of microbes and their intrinsic tolerances to stresses. Here, we review a range of studies focused on nanoparticle-microbial interactions in an effort to correlate the physical-chemical properties of engineered metal and metal oxide nanoparticles to their biological response. General conclusions regarding the parent material of the nanoparticle and the nanoparticle's size and shape on potential toxicity can be made. However, the surface coating of the material, which can be altered significantly by environmental conditions, can ameliorate or promote microbial toxicity. Understanding nanoparticle transformations and how the nanoparticle surface can be designed to control toxicity represents a key area for further study. Additionally, the vast array of microbial species and the structuring of these species within communities complicate extrapolations of nanoparticle toxicity in real world settings. Ultimately, to interpret the effect and eventual fate of engineered materials in the environment, an understanding of the relationship between nanoparticle properties and responses at the molecular, cellular and community levels will be essential.

  20. High-pressure processing of Turkish white cheese for microbial inactivation.

    PubMed

    Evrendilek, G Akdemir; Koca, N; Harper, J W; Balasubramaniam, V M

    2008-01-01

    High-pressure processing (HPP) of Turkish white cheese and reduction of Listeria monocytogenes, total Enterobacteriaceae, total aerobic mesophilic bacteria, total molds and yeasts, total Lactococcus spp., and total Lactobacillus spp. were investigated. Cheese samples were produced from raw milk and pasteurized milk and were inoculated with L. monocytogenes after brining. Both inoculated (ca. 10(7) to 10(8) CFU/g) and noninoculated samples were subjected to HPP in a high-pressure food processor at 50 to 600 MPa for 5 and 10 min at 25 degrees C. Reductions in L. monocytogenes, total aerobic mesophilic bacteria, Lactococcus spp., and Lactobacillus spp. in both pasteurized- and raw-milk cheese samples and reductions in total molds and yeasts and total Enterobacteriaceae counts in raw-milk cheese samples increased with increased pressure (P < or = 0.05). The maximum reduction of the L. monocytogenes count, ca. 4.9 log CFU/g, was obtained at 600 MPa. Because of the highly inhibitory effect of pasteurization, the total molds and yeasts and total Enterobacteriaceae counts for the cheese samples produced from pasteurized milk were below the detection limit both before and after HPP. There was no significant difference in inactivation of L. monocytogenes, total aerobic mesophilic bacteria, Lactococcus spp., and Lactobacillus spp. under the same treatment conditions for the raw milk and pasteurized milk cheeses and for 5- and 10-min treatment times (P > 0.05). No significant change was detected in pH or water activity of the samples before and after HPP. Our findings suggest that HPP can be used effectively to reduce the microbial load in Turkish white cheese.

  1. Microbial effect on soil hydraulic properties

    NASA Astrophysics Data System (ADS)

    Furman, Alex; Rosenzweig, Ravid; Volk, Elazar; Rosenkranz, Hella; Iden, Sascha; Durner, Wolfgang

    2014-05-01

    Although largely ignored, the soil contains large amount of biofilms (attached microbes) that can affect many processes. While biochemical processes are studied, biophysical processes receive only little attention. Biofilms may occupy some of the pore space, and by that affect the soil hydraulic properties. This effect on unsaturated soils, however, was not intensively studied. In this research we directly measure the hydraulic properties, namely the soil's unsaturated hydraulic conductivity function and retention curve, for soils containing real biofilm. To do that we inoculate soil with biofilm-forming bacteria and incubate it with sufficient amounts of nutrient until biofilm is formed. The hydraulic properties of the incubated soil are then measured using several techniques, including multi-step outflow and evaporation method. The longer measurements (evaporation method) are conducted under refrigeration conditions to minimize microbial activity during the experiment. The results show a clear effect of the biofilm, where the biofilm-affected soil (sandy loam in our case) behaves like a much finer soil. This qualitatively makes sense as the biofilm generates an effective pore size distribution that is characterized by smaller pores. However, the effect is much more complex and needs to be studied carefully considering (for example) dual porosity models. We compare our preliminary results with other experiments, including flow-through column experiments and experiments with biofilm analogues. Clearly a better understanding of the way microbial activity alters the hydraulic properties may help designing more efficient bioremediation, irrigation, and other soil-related processes.

  2. A comparative study on the pulsed UV and the low-pressure UV inactivation of a range of microbial species in water.

    PubMed

    Garvey, Mary; Thokala, Nikhil; Rowan, Neil

    2014-12-01

    Research into alternative methods of disinfecting water and wastewater has proven necessary due to the emergence of chlorine-resistant organisms and the disinfection byproducts associated with chlorine use. The use of UV light to inactivate microbial species has proven effective, however; standard UV lamps have proven to be less effective in their ability to inactivate parasites and bacterial endospores in water treatment settings. Pulsed UV (PUV) light may potentially provide a novel alternative to water and wastewater disinfection. Research outlined in this study assesses the potential of a novel PUV system for the rapid and reproducible inactivation of a range of test species including Bacillus endospores. In comparison to standard low-pressure (LP) UV lamps, this PUV system provided significantly higher levels of inactivation for all test species. Furthermore, there was a remarkable decrease in time needed to obtain significant inactivation rates following treatment with PUV compared to LP-UV. With the PUV system, a 70-second treatment time (7.65 μJ/cm2) resulted in similar inactivation rates of Bacillus endospores to that of the LP-UV inactivation of their vegetative counterpart. Also, at PUV doses exceeding 4.32 J/cm2, there was not a significant difference in the PUV inactivation of Bacillus endospores in the absence or presence of 10 ppm organic matter. However, the presence of organic matter resulted in a significant reduction in microbial inactivation for all treatment doses using the LP-UV system. The findings of this study suggest that PUV technology may provide a rapid effective method for the disinfection of water and wastewater.

  3. Inactivation of conserved genes induces microbial aversion, drug detoxification, and innate immunity in C.elegans

    PubMed Central

    Melo, Justine A.; Ruvkun, Gary

    2012-01-01

    Summary The nematode C. elegans consumes benign bacteria such as E. coli and is repelled by pathogens and toxins. Here we show that RNAi and toxin-mediated disruption of core cellular activities, including translation, respiration, and protein turnover, stimulates behavioral avoidance of attractive E. coli. RNAi of such essential processes also induces expression of detoxification and innate immune response genes in the absence of toxins or pathogens. Disruption of core processes in non-neuronal tissues can stimulate aversion behavior, revealing a neuroendocrine axis of control. Microbial avoidance requires serotonergic and Jnk kinase signaling. We propose that surveillance pathways oversee critical cellular activities to detect pathogens, many of which deploy toxins and virulence factors to disrupt these same host pathways. Variation in cellular surveillance and endocrine pathways controlling behavior, detoxification and immunity selected by past toxin or microbial interactions could underlie aberrant responses to foods, medicines, and microbes. PMID:22500807

  4. Structural model requirements to describe microbial inactivation during a mild heat treatment.

    PubMed

    Geeraerd, A H; Herremans, C H; Van Impe, J F

    2000-09-10

    The classical concept of D and z values, established for sterilisation processes, is unable to deal with the typical non-loglinear behaviour of survivor curves occurring during the mild heat treatment of sous vide or cook-chill food products. Structural model requirements are formulated, eliminating immediately some candidate model types. Promising modelling approaches are thoroughly analysed and, if applicable, adapted to the specific needs: two models developed by Casolari (1988), the inactivation model of Sapru et al. (1992), the model of Whiting (1993), the Baranyi and Roberts growth model (1994), the model of Chiruta et al. (1997), the model of Daughtry et al. (1997) and the model of Xiong et al. (1999). A range of experimental data of Bacillus cereus, Yersinia enterocolitica, Escherichia coli O157:H7, Listeria monocytogenes and Lactobacillus sake are used to illustrate the different models' performances. Moreover, a novel modelling approach is developed, fulfilling all formulated structural model requirements, and based on a careful analysis of literature knowledge of the shoulder and tailing phenomenon. Although a thorough insight in the occurrence of shoulders and tails is still lacking from a biochemical point of view, this newly developed model incorporates the possibility of a straightforward interpretation within this framework. PMID:11020040

  5. Comparison of two radio-frequency plasma sterilization processes using microspot evaluation of microbial inactivation.

    PubMed

    Lassen, Klaus S; Johansen, Jens E; Grün, Reinar

    2006-07-01

    In this study, we evaluated gas plasma surface sterilization methods in a specific sterilizer. We have introduced a new monitoring method using 0.4 microm pore size membranes, which in this study gave the information corresponding to 3000 exposed biological indicators per treatment cycle. This enabled us to compare the fraction of inoculates that showed no growth after exposure for 30 different locations in the chamber, and hereby identify weak and strong spots in the chamber with regard to sporicidal effect. Membranes were also used to expose a broad spectrum of soil bacteria for plasma treatment at four different conditions. The organisms were identified using PCR and sequencing. The test showed that Bacillus stearothermophilus spores were inactivated at the slowest rate among the tested microorganisms. Further alpha-proteobacteria (Gram negative) seemed more sensitive than the rest of the tested organisms. The microspot evaluation approach has been a most useful tool in the assessment of sterilization performance in sterilizers that do not have clear measurable parameters related to the sterilization.

  6. Comparison of two radio-frequency plasma sterilization processes using microspot evaluation of microbial inactivation.

    PubMed

    Lassen, Klaus S; Johansen, Jens E; Grün, Reinar

    2006-07-01

    In this study, we evaluated gas plasma surface sterilization methods in a specific sterilizer. We have introduced a new monitoring method using 0.4 microm pore size membranes, which in this study gave the information corresponding to 3000 exposed biological indicators per treatment cycle. This enabled us to compare the fraction of inoculates that showed no growth after exposure for 30 different locations in the chamber, and hereby identify weak and strong spots in the chamber with regard to sporicidal effect. Membranes were also used to expose a broad spectrum of soil bacteria for plasma treatment at four different conditions. The organisms were identified using PCR and sequencing. The test showed that Bacillus stearothermophilus spores were inactivated at the slowest rate among the tested microorganisms. Further alpha-proteobacteria (Gram negative) seemed more sensitive than the rest of the tested organisms. The microspot evaluation approach has been a most useful tool in the assessment of sterilization performance in sterilizers that do not have clear measurable parameters related to the sterilization. PMID:16362959

  7. Enhancement of microbial quality and inactivation of pathogenic bacteria by gamma irradiation of ready-to-cook Iranian barbecued chicken

    NASA Astrophysics Data System (ADS)

    Fallah, Aziz A.; Siavash Saei-Dehkordi, S.; Rahnama, Mohammad

    2010-10-01

    Ready-to-cook Iranian barbecued chicken consists of cubed chicken breast, lemon juice, salt, red pepper, onion, saffron and vegetable oil with an overall pH value of about 5.5. This product is sometimes consumed under-cooked, hence it may pose health hazards to consumers when contaminated with food-borne pathogens. In this study, the effect of gamma irradiation (0, 1.5, 3 and 4.5 kGy) on the microbial quality of ready-to-cook (RTC) barbecued chicken samples stored at 4 °C for 15 days was investigated. Moreover, the effectiveness of irradiation for inactivating Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella typhimurium inoculated into the samples was also studied. Irradiation of the samples resulted in dose dependent reduction in counts of aerobic mesophilic bacteria, yeasts and molds, Enterobacteriaceae and lactic acid bacteria. Among the microbial flora, yeasts and molds and Enterobacteriaceae were more sensitive to irradiation and got completely eliminated at dose of 3 kGy. D10 values of L. monocytogenes, E. coli O157:H7 and S. typhimurium inoculated into the samples were 0.680, 0.397 and 0.601 kGy, respectively. An irradiation dose of 3 kGy reduced the counts of E. coli O157:H7 to an undetectable level in RTC barbecued chicken but was ineffective on elimination of L. monocytogenes and S. typhimurium. However, none of the food-borne pathogens were detected in the samples irradiated at 4.5 kGy. This study showed that irradiation had no undesirable effects on the initial sensory attributes of barbecued chicken. At the end of the storage period, irradiated samples were more acceptable compared to non-irradiated ones.

  8. Effect of thermal and non-thermal pasteurisation on the microbial inactivation and phenolic degradation in fruit juice: a mini-review.

    PubMed

    Chen, Yougui; Yu, Li Juan; Rupasinghe, H P Vasantha

    2013-03-30

    Fruit juice has been traditionally preserved by thermal pasteurisation. However, the applied heat can cause detrimental effects on health-promoting components such as phenolic compounds. Several non-thermal technologies such as membrane filtration, pulsed electric field (PEF) and ultraviolet (UV) exposure are promising methods developed for liquid food preservation. In particular, the combination of UV and PEF has proven to be more effective for microbial inactivation and maintaining nutritional quality of fruit juice compared with individual applications.

  9. Effects of high pressure homogenisation of raw bovine milk on alkaline phosphatase and microbial inactivation. A comparison with continuous short-time thermal treatments.

    PubMed

    Picart, Laëtitia; Thiebaud, Maryse; René, Malika; Pierre Guiraud, Joseph; Cheftel, Jean Claude; Dumay, Eliane

    2006-11-01

    Raw whole milk of high microbial quality (inactivation of: (i) endogenous alkaline phosphatase (ALP); (ii) endogenous milk flora and (iii) two Gram positive (Listeria innocua and Micrococcus luteus) and one Gram negative (Pseudomonas fluorescens) strains inoculated into milk. Temperatures T1 and T2 measured before and immediately after the HP valve, and fat globule size distributions were also determined. ALP activity slightly decreased after homogenisation above 250 MPa when Tin=4 degrees C (corresponding T2>58 degrees C), but markedly decreased above 200 MPa when Tin=24 degrees C (T2>60 degrees C). In contrast to inactivation induced by continuous short-time thermal treatments, ALP inactivation induced by HP homogenisation was clearly due to mechanical forces (shear, cavitation and/or impact) in the HP valve and not to the short (<1 s) residence time at temperature T2 in the same valve. Inactivation of the three exogenous microorganisms led to similar conclusions. Homogenisation at 250 MPa or 300 MPa (Tin=24 degrees C) induced a 2-3 log cycle reduction of the total endogenous milk flora and a 1.5-1.8 log cycle reduction of inoculated List. innocua. Higher reduction ratios (2-4 log cycles) were obtained for the two other microorganisms. The highest levels of ALP inactivation corresponded to the highest extents of microbial reduction. Running the milk twice or three times through the homogeniser (recycling), keeping temperature T1 approximately 29 degrees C and pressure=200 MPa, increased homogenisation efficiency. PMID:16834813

  10. Pulsed-plasma gas-discharge inactivation of microbial pathogens in chilled poultry wash water.

    PubMed

    Rowan, N J; Espie, S; Harrower, J; Anderson, J G; Marsili, L; MacGregor, S J

    2007-12-01

    A pulsed-plasma gas-discharge (PPGD) system was developed for the novel decontamination of chilled poultry wash water. Treatment of poultry wash water in the plasma generation chamber for up to 24 s at 4 degrees C reduced Escherichia coli NCTC 9001, Campylobacter jejuni ATCC 33560, Campylobacter coli ATCC 33559, Listeria monocytogenes NCTC 9863, Salmonella enterica serovar Enteritidis ATCC 4931, and S. enterica serovar Typhimurium ATCC 14028 populations to non-detectable levels (< or = 8 log CFU/ml). Although similar PPGD treatments at 4 degrees C also produced significant reductions (> or = 3 log CFU/ml) in recalcitrant B. cereus NCTC 11145 endospore numbers within 30 s, the level of endospore reduction was dependent on the nature of the sparged gas used in the plasma treatments. Scanning electron microscopy revealed that significant damage occurred at the cellular level in PPGD-treated test organisms. This electrotechnology delivers energy in intense ultrashort bursts, generating products such as ozone, UV light, acoustic and shock waves, and pulsed electric fields that have multiple bactericidal properties. This technology offers an exciting complementary or alternative approach for treating raw poultry wash water and for preventing cross-contamination in processing environments.

  11. High-pressure processing inactivates Listeria innocua yet compromises Queso Fresco crumbling properties.

    PubMed

    Hnosko, J; San-Martin Gonzalez, M F; Clark, S

    2012-09-01

    The objective of this study was to determine the effectiveness of high-pressure processing to inactivate Listeria innocua (a Listeria monocytogenes surrogate) in Queso Fresco, and to study the effects of the high-pressure treatment on cheese-crumbling properties. Queso Fresco was made with pasteurized, homogenized milk, lactic acid bacterial starter culture, chymosin, and flake salt. Cheeses were pressed (0.1 MPa) for 1h before crumbling and inoculation with a cocktail of 3 strains of L. innocua, and then pressed for 12 h (0.1 MPa). High-pressure processing treatments of sliced cheese rounds included pressure from 400 to 600 MPa for 1 to 25 min. Cheese sample temperatures, initially approximately 21°C, increased during pressurization and decreased gradually during the holding time. The highest temperature increase was to 23.6°C at 600 MPa. Greater than 5-log reductions occurred at set-point pressures of 500, 550, or 600 MPa when held for at least 15, 3, or 1 min, respectively. However, because inactivation was neither complete nor permanent and crumbling properties were not maintained under the conditions tested in this study, high-pressure processing is not recommended for Queso Fresco applications.

  12. Soil microbial properties under different vegetation types on Mountain Han.

    PubMed

    Wang, Miao; Qu, Laiye; Ma, Keming; Yuan, Xiu

    2013-06-01

    This study investigated the influence of broadleaf and conifer vegetation on soil microbial communities in a distinct vertical distribution belt in Northeast China. Soil samples were taken at 0-5, 5-10 and 10-20 cm depths from four vegetation types at different altitudes, which were characterized by poplar (Populus davidiana) (1250-1300 m), poplar (P. davidiana) mixed with birch (Betula platyphylla) (1370-1550 m), birch (B. platyphylla) (1550-1720 m), and larch (Larix principis-rupprechtii) (1840-1890 m). Microbial biomass and community structure were determined using the fumigation-extraction method and phospholipid fatty acid (PLFA) analysis, and soil fungal community level physiological profiles (CLPP) were characterized using Biolog FF Microplates. It was found that soil properties, especially soil organic carbon and water content, contributed significantly to the variations in soil microbes. With increasing soil depth, the soil microbial biomass, fungal biomass, and fungal catabolic ability diminished; however, the ratio of fungi to bacteria increased. The fungal ratio was higher under larch forests compared to that under poplar, birch, and their mixed forests, although the soil microbial biomass was lower. The direct contribution of vegetation types to the soil microbial community variation was 12%. If the indirect contribution through soil organic carbon was included, variations in the vegetation type had substantial influences on soil microbial composition and diversity.

  13. Soil microbial substrate properties and microbial community responses under irrigated organic and reduced-tillage crop and forage production systems.

    PubMed

    Ghimire, Rajan; Norton, Jay B; Stahl, Peter D; Norton, Urszula

    2014-01-01

    Changes in soil microbiotic properties such as microbial biomass and community structure in response to alternative management systems are driven by microbial substrate quality and substrate utilization. We evaluated irrigated crop and forage production in two separate four-year experiments for differences in microbial substrate quality, microbial biomass and community structure, and microbial substrate utilization under conventional, organic, and reduced-tillage management systems. The six different management systems were imposed on fields previously under long-term, intensively tilled maize production. Soils under crop and forage production responded to conversion from monocropping to crop rotation, as well as to the three different management systems, but in different ways. Under crop production, four years of organic management resulted in the highest soil organic C (SOC) and microbial biomass concentrations, while under forage production, reduced-tillage management most effectively increased SOC and microbial biomass. There were significant increases in relative abundance of bacteria, fungi, and protozoa, with two- to 36-fold increases in biomarker phospholipid fatty acids (PLFAs). Under crop production, dissolved organic C (DOC) content was higher under organic management than under reduced-tillage and conventional management. Perennial legume crops and organic soil amendments in the organic crop rotation system apparently favored greater soil microbial substrate availability, as well as more microbial biomass compared with other management systems that had fewer legume crops in rotation and synthetic fertilizer applications. Among the forage production management systems with equivalent crop rotations, reduced-tillage management had higher microbial substrate availability and greater microbial biomass than other management systems. Combined crop rotation, tillage management, soil amendments, and legume crops in rotations considerably influenced soil

  14. Soil Microbial Substrate Properties and Microbial Community Responses under Irrigated Organic and Reduced-Tillage Crop and Forage Production Systems

    PubMed Central

    Ghimire, Rajan; Norton, Jay B.; Stahl, Peter D.; Norton, Urszula

    2014-01-01

    Changes in soil microbiotic properties such as microbial biomass and community structure in response to alternative management systems are driven by microbial substrate quality and substrate utilization. We evaluated irrigated crop and forage production in two separate four-year experiments for differences in microbial substrate quality, microbial biomass and community structure, and microbial substrate utilization under conventional, organic, and reduced-tillage management systems. The six different management systems were imposed on fields previously under long-term, intensively tilled maize production. Soils under crop and forage production responded to conversion from monocropping to crop rotation, as well as to the three different management systems, but in different ways. Under crop production, four years of organic management resulted in the highest soil organic C (SOC) and microbial biomass concentrations, while under forage production, reduced-tillage management most effectively increased SOC and microbial biomass. There were significant increases in relative abundance of bacteria, fungi, and protozoa, with two- to 36-fold increases in biomarker phospholipid fatty acids (PLFAs). Under crop production, dissolved organic C (DOC) content was higher under organic management than under reduced-tillage and conventional management. Perennial legume crops and organic soil amendments in the organic crop rotation system apparently favored greater soil microbial substrate availability, as well as more microbial biomass compared with other management systems that had fewer legume crops in rotation and synthetic fertilizer applications. Among the forage production management systems with equivalent crop rotations, reduced-tillage management had higher microbial substrate availability and greater microbial biomass than other management systems. Combined crop rotation, tillage management, soil amendments, and legume crops in rotations considerably influenced soil

  15. Cardiac Na currents and the inactivating, reopening, and waiting properties of single cardiac Na channels

    PubMed Central

    1985-01-01

    Tetrodotoxin (TTX)-sensitive Na currents were examined in single dissociated ventricular myocytes from neonatal rats. Single channel and whole cell currents were measured using the patch-clamp method. The channel density was calculated as 2/micron 2, which agreed with our usual finding of four channels per membrane patch. At 20 degrees C, the single channel conductance was 20 pS. The open time distributions were fit by a single-exponential function with a mean open time of approximately 1.0 ms at membrane potentials from -60 to -40 mV. Averaged single channel and whole cell currents were similar when scaled and showed both fast and slow rates of inactivation. The inactivation and activation gating shifted quickly to hyperpolarized potentials for channels in cell-attached as well as excised patches, whereas a much slower shift occurred in whole cells. Slowly inactivating currents were present in both whole cell and single channel current measurements at potentials as positive as -40 mV. In whole cell measurements, the potential range could be extended, and slow inactivation was present at potentials as positive as -10 mV. The curves relating steady state activation and inactivation to membrane potential had very little overlap, and slow inactivation occurred at potentials that were positive to the overlap. Slow inactivation is in this way distinguishable from the overlap or window current, and the slowly inactivating current may contribute to the plateau of the rat cardiac action potential. On rare occasions, a second set of Na channels having a smaller unit conductance and briefer duration was observed. However, a separate set of threshold channels, as described by Gilly and Armstrong (1984. Nature [Lond.]. 309:448), was not found. For the commonly observed Na channels, the number of openings in some samples far exceeded the number of channels per patch and the latencies to first opening or waiting times were not sufficiently dispersed to account for the slowly

  16. Enzyme inactivation in food processing using high pressure carbon dioxide technology.

    PubMed

    Hu, Wanfeng; Zhou, Linyan; Xu, Zhenzhen; Zhang, Yan; Liao, Xiaojun

    2013-01-01

    High pressure carbon dioxide (HPCD) is an effective non-thermal processing technique for inactivating deleterious enzymes in liquid and solid food systems. This processing method avoids high temperatures and exerts a minimal impact on the nutritional and sensory properties of foods, but extends shelf life by inhibiting or killing microorganisms and enzymes. Indigenous enzymes in food such as polyphenol oxidase (PPO), pectin methylesterase (PME), and lypoxygenase (LOX) may cause undesirable chemical changes in food attributes, showing the loss in color, texture, and flavor. For more than two decades, HPCD has proved its effectiveness in inactivating these enzymes. The HPCD-induced inactivation of some microbial enzymes responsible for microbial metabolism is also included. This review presents a survey of the published knowledge regarding the use of HPCD for the inactivation of these enzymes, and analyzes the factors controlling the efficiency of HPCD and speculates on the underlying mechanism that leads to enzyme inactivation.

  17. Photo-catalytic inactivation of an Enterococcus biofilm: the anti-microbial effect of sulphated and europium-doped titanium dioxide nanopowders.

    PubMed

    Dworniczek, Ewa; Plesch, Gustav; Seniuk, Alicja; Adamski, Ryszard; Michal, Róbert; Čaplovičová, Mária

    2016-04-01

    The control and prevention of biofilm-related infections is an important public healthcare issue. Given the increasing antibiotic resistance among bacteria and fungi that cause serious infections in humans, promotion of new strategies combating microorganisms has been essential. One attractive approach to inactivate microorganisms is the use of semiconductor photo-catalysis, which has become the subject of extensive research. In this study, the bactericidal properties of four photo-catalysts, TiO₂, TiO₂-S, TiO₂-Eu and TiO₂-Eu-S, were investigated against established 24, 48, 72 and 96 h biofilms of Enterococcus The exposure of biofilms to the catalysts induced the production of superoxide radical anions. The best photo-catalytic inactivation was achieved with the TiO₂-Eu-S and TiO₂-S nanopowders and 24 h biofilms. Transmission electron microscopy images showed significant changes in the structure of the biofilm cells following photo-inactivation. The results suggest that doping with europium and modifying the surface with sulphate groups enhanced the bactericidal activity of the TiO₂ nanoparticles against enterococcal biofilms.

  18. Atmospheric-pressure cold plasma treatment of contaminated fresh fruit and vegetable slices: inactivation and physiochemical properties evaluation

    NASA Astrophysics Data System (ADS)

    Wang, R. X.; Nian, W. F.; Wu, H. Y.; Feng, H. Q.; Zhang, K.; Zhang, J.; Zhu, W. D.; Becker, K. H.; Fang, J.

    2012-10-01

    A direct-current, atmospheric-pressure air cold plasma microjet (PMJ) was applied to disinfect Salmonella directly deposited on fresh fruit and vegetable slices. Effective inactivation was achieved on sliced fruit and vegetables after 1 s plasma treatment. The physiochemical properties of the slices, such as water content, color parameters, and nutritional content were monitored before and after plasma treatment. It was found that the physiochemical properties changes caused by the plasma were within an acceptable range. Reactive oxygen species, which are believed to be the major bactericidal agents in the plasma, were detected by electron spin resonance spectroscopy and optical emission spectroscopy.

  19. Gamma irradiation of sorghum flour: Effects on microbial inactivation, amylase activity, fermentability, viscosity and starch granule structure

    NASA Astrophysics Data System (ADS)

    Mukisa, Ivan M.; Muyanja, Charles M. B. K.; Byaruhanga, Yusuf B.; Schüller, Reidar B.; Langsrud, Thor; Narvhus, Judith A.

    2012-03-01

    Malted and un-malted sorghum ( Sorghum bicolor (L.) Moench) flour was gamma irradiated with a dose of 10 kGy and then re-irradiated with 25 kGy. The effects of irradiation on microbial decontamination, amylase activity, fermentability (using an amylolytic L. plantarum MNC 21 strain), starch granule structure and viscosity were determined. Standard methods were used during determinations. The 10 kGy dose had no effect on microbial load of un-malted flour but reduced that of malted flour by 3 log cycles. Re-irradiation resulted in complete decontamination. Irradiation of malt caused a significant ( p<0.05) reduction in alpha and beta amylase activity (22% and 32%, respectively). Irradiation of un-malted flour increased the rates of utilization of glucose and maltose by 53% and 100%, respectively, during fermentation. However, microbial growth, rate of lactic acid production, final lactic acid concentration and pH were not affected. Starch granules appeared normal externally even after re-irradiation, however, granules ruptured and dissolved easily after hydration and gelatinization. Production of high dry matter density porridge (200 g dry matter/L) with a viscosity of 3500 cP was achieved by irradiation of un-malted flout at 10 kGy. Gamma irradiation can be used to decontaminate flours and could be utilized to produce weaning porridge from sorghum.

  20. Pathogen Inactivating Properties and Increased Sensitivity in Molecular Diagnostics by PAXgene, a Novel Non-Crosslinking Tissue Fixative

    PubMed Central

    Loibner, Martina; Buzina, Walter; Viertler, Christian; Groelz, Daniel; Hausleitner, Anja; Siaulyte, Gintare; Kufferath, Iris; Kölli, Bettina; Zatloukal, Kurt

    2016-01-01

    Background Requirements on tissue fixatives are getting more demanding as molecular analysis becomes increasingly relevant for routine diagnostics. Buffered formaldehyde in pathology laboratories for tissue fixation is known to cause chemical modifications of biomolecules which affect molecular testing. A novel non-crosslinking tissue preservation technology, PAXgene Tissue (PAXgene), was developed to preserve the integrity of nucleic acids in a comparable way to cryopreservation and also to preserve morphological features comparable to those of formalin fixed samples. Methods Because of the excellent preservation of biomolecules by PAXgene we investigated its pathogen inactivation ability and biosafety in comparison to formalin by in-vitro testing of bacteria, human relevant fungi and human cytomegalovirus (CMV). Guidelines for testing disinfectants served as reference for inactivation assays. Furthermore, we tested the properties of PAXgene for detection of pathogens by PCR based assays. Results All microorganisms tested were similarly inactivated by PAXgene and formalin except Clostridium sporogenes, which remained viable in seven out of ten assays after PAXgene treatment and in three out of ten assays after formalin fixation. The findings suggest that similar biosafety measures can be applied for PAXgene and formalin fixed samples. Detection of pathogens in PCR-based diagnostics using two CMV assays resulted in a reduction of four to ten quantification cycles of PAXgene treated samples which is a remarkable increase of sensitivity. Conclusion PAXgene fixation might be superior to formalin fixation when molecular diagnostics and highly sensitive detection of pathogens is required in parallel to morphology assessment. PMID:26974150

  1. Reduced fouling and enhanced microbial inactivation during online sterilization of cheese whey using UV coil reactors in series.

    PubMed

    Singh, J P; Ghaly, A E

    2006-10-01

    The effectiveness of coil UV reactor series for the online sterilization of cheese whey was compared to those of the single conventional and coil reactors at various flow rates (5-70 mL/min). The residence time varied from 168 to 12 min and from 48 to 24 min for the single and the series reactors, respectively. Hundred percent destruction efficiency could not be achieved in the single reactors whereas in the coil reactor series the destruction efficiency reached 100% at the flow rates of 35 and 40 mL/min. The rate of microbial destruction was described by polynomial equation for the single coil reactor and by exponential equations for the single conventional reactor and the coil reactor series. The temperature of the effluent decreased with the increase in flow rate in all the reactors. The maximum effluent temperatures in the single conventional reactor, single coil reactor and coil reactor series were 45.8, 46.1, and 36.4 degrees C (Deltat = 20.8, 21.1, 11.4 degrees C), respectively. The flow in all the reactors was laminar (R ( e ) = 1.39-20.10) and the Dean number was in the range of 1.09-15.41 in the coil reactors. Visual observation revealed less fouling on the UV lamps of coil reactors than on that of the conventional reactor due to the impact of Dean flow. The total operating time during which 100% destruction efficiency is achieved prior to the advent of fouling was 240 min in the coil reactor series compared to only 45 min in the conventional reactor.

  2. The properties of catalytically-inactivated Trichoderma reesei cellobiohydrolase I: Role of the cellulose binding domain

    SciTech Connect

    Woodward, J.; Donner, T.R.; Affholter, K.A.

    1993-12-31

    Cellobiohydrolase I (CBH I) was purified from a crude cellulase by preparative isoelectric focusing. Treatment of CBH I with 1-ethyl-3-3(3-dimethylaminopropyl)-carbodiimide (EDC) resulted in its catalytic inactivation but did not abolish its ability to be absorbed to microcrystalline cellulose (Avicel). CBH I thus modified possessed a pI of between 8.5 and 9.3 and decreased tryptophan fluorescence compared to native CBH I. A comparison of the effect of native and modified CBH I on the morphology of crystalline cotton cellulose fibers was made using scanning electron microscopy.

  3. Chemistry, physiological properties, and microbial production of hydroxycitric acid.

    PubMed

    Yamada, Takashi; Hida, Hiroyuki; Yamada, Yasuhiro

    2007-07-01

    The tropical plants Garcinia cambogia and Hibiscus subdariffa produce hydroxycitric acid (HCA), of which the absolute configurations are (2S,3S) and (2S,3R), respectively. (2S,3S)-HCA is an inhibitor of ATP-citrate lyase, which is involved in fatty acid synthesis. (2S,3R)-HCA inhibits pancreatic alpha-amylase and intestinal alpha-glucosidase, leading to a reduction in carbohydrate metabolism. In this study, we review current knowledge on the structure, biological occurrence, and physiological properties of HCA. The availability of HCA is limited by the restricted habitat of its source plants and the difficulty of stereoselective organic synthesis. Hence, in our recent study, thousands of microbial strains were screened and finally two bacterial strains were, for the first time, found to produce trace amounts of HCA. The HCA variants produced were the Hibiscus-type (2S,3R) enantiomer. Subsequent genome shuffling rapidly generated a mutant population with improved HCA yield relative to the parent strain of bacteria. These bacteria are a potential alternative source of natural HCA. PMID:17476502

  4. Soil degradation and amendment effects on soil properties, microbial communities, and plant growth

    NASA Astrophysics Data System (ADS)

    Gebhardt, M.; Fehmi, J. S.; Rasmussen, C.; Gallery, R. E.

    2015-12-01

    Human activities that disrupt soil properties are fundamentally changing ecosystems. Soil degradation, caused by anthropogenic disturbance can decrease microbial abundance and activity, leading to changes in nutrient availability, soil organic matter, and plant establishment. The addition of amendments to disturbed soils have the potential ameliorate these negative consequences. We studied the effects of soil degradation, via an autoclave heat shock method, and the addition of amendments (biochar and woodchips) on microbial activity, soil carbon and nitrogen availability, microbial biomass carbon and nitrogen content, and plant growth of ten plant species native to the semi-arid southwestern US. Relative to non-degraded soils, microbial activity, measured via extracellular enzyme assays, was significantly lower for all seven substrates assayed. These soils also had significantly lower amounts of carbon assimilated into microbial biomass but no change in microbial biomass nitrogen. Soil degradation had no effect on plant biomass. Amendments caused changes in microbial activity: biochar-amended soils had significant increases in potential activity with five of the seven substrates measured; woodchip amended soils had significant increases with two. Soil carbon increased with both amendments but this was not reflected in a significant change in microbial biomass carbon. Biochar-amended soils had increases in soil nitrogen availability but neither amendment caused changes in microbial biomass nitrogen. Biochar amendments had no significant effect on above- or belowground plant biomass while woodchips significantly decreased aboveground plant biomass. Results show that soil degradation decreases microbial activity and changes nutrient dynamics, but these are not reflected in changes in plant growth. Amendments provide nutrient sources and change soil pore space, which cause microbial activities to fluctuate and may, in the case of woodchips, increase plant drought

  5. Statistical properties predicted by the ball and chain model of channel inactivation.

    PubMed Central

    Liebovitch, L S; Selector, L Y; Kline, R P

    1992-01-01

    It has been proposed that part of a voltage gated channel is a tethered ball and that inactivation occurs when this wandering ball binds to a site in the channel. In order to be able to quantitatively test this model by comparison to experiments we developed analytical solutions and numerical simulations of the distribution of times it takes the ball to reach the binding site when the motion of the ball is random and when it is also influenced by a directed force. If the motion of the ball is one-dimensional, at long times this distribution is a single exponential with a rate constant that is inversely proportional to the square of the length of the chain and does not depend on the starting position of the ball. This dependence on the chain length is not significantly altered if there are short range electrical forces between the ball and its binding site. These predictions suggest that to confirm the validity of this model additional experiments should be done to more precisely determine the form of this distribution and its dependence on the length of the chain. PMID:1283346

  6. Seasonal variation in functional properties of microbial communities in beech forest soil.

    PubMed

    Koranda, Marianne; Kaiser, Christina; Fuchslueger, Lucia; Kitzler, Barbara; Sessitsch, Angela; Zechmeister-Boltenstern, Sophie; Richter, Andreas

    2013-05-01

    Substrate quality and the availability of nutrients are major factors controlling microbial decomposition processes in soils. Seasonal alteration in resource availability, which is driven by plants via belowground C allocation, nutrient uptake and litter fall, also exerts effects on soil microbial community composition. Here we investigate if seasonal and experimentally induced changes in microbial community composition lead to alterations in functional properties of microbial communities and thus microbial processes. Beech forest soils characterized by three distinct microbial communities (winter and summer community, and summer community from a tree girdling plot, in which belowground carbon allocation was interrupted) were incubated with different (13)C-labeled substrates with or without inorganic N supply and analyzed for substrate use and various microbial processes. Our results clearly demonstrate that the three investigated microbial communities differed in their functional response to addition of various substrates. The winter communities revealed a higher capacity for degradation of complex C substrates (cellulose, plant cell walls) than the summer communities, indicated by enhanced cellulase activities and reduced mineralization of soil organic matter. In contrast, utilization of labile C sources (glucose) was lower in winter than in summer, demonstrating that summer and winter community were adapted to the availability of different substrates. The saprotrophic community established in girdled plots exhibited a significantly higher utilization of complex C substrates than the more plant root associated community in control plots if additional nitrogen was provided. In this study we were able to demonstrate experimentally that variation in resource availability as well as seasonality in temperate forest soils cause a seasonal variation in functional properties of soil microorganisms, which is due to shifts in community structure and physiological

  7. Differential slow inactivation and use-dependent inhibition of Nav1.8 channels contribute to distinct firing properties in IB4+ and IB4- DRG neurons.

    PubMed

    Choi, Jin-Sung; Dib-Hajj, Sulayman D; Waxman, Stephen G

    2007-02-01

    Nociceptive dorsal root ganglion (DRG) neurons can be classified into nonpeptidergic IB(4)(+) and peptidergic IB(4)(-) subtypes, which terminate in different layers in dorsal horn and transmit pain along different ascending pathways, and display different firing properties. Voltage-gated, tetrodotoxin-resistant (TTX-R) Na(v)1.8 channels are expressed in both IB(4)(+) and IB(4)(-) cells and produce most of the current underlying the depolarizing phase of action potential (AP). Slow inactivation of TTX-R channels has been shown to regulate repetitive DRG neuron firing behavior. We show in this study that use-dependent reduction of Na(v)1.8 current in IB(4)(+) neurons is significantly stronger than that in IB(4)(-) neurons, although voltage dependency of activation and steady-state inactivation are not different. The time constant for entry of Na(v)1.8 into slow inactivation in IB(4)(+) neurons is significantly faster and more Na(v)1.8 enter the slow inactivation state than in IB(4)(-) neurons. In addition, recovery from slow inactivation of Na(v)1.8 in IB(4)(+) neurons is slower than that in IB(4)(-) neurons. Using current-clamp recording, we demonstrate a significantly higher current threshold for generation of APs and a longer latency to onset of firing in IB(4)(+), compared with those of IB(4)(-) neurons. In response to a ramp stimulus, IB(4)(+) neurons produce fewer APs and display stronger adaptation, with a faster decline of AP peak than IB(4)(-) neurons. Our data suggest that differential use-dependent reduction of Na(v)1.8 current in these two DRG subpopulations, which results from their different rate of entry into and recovery from the slow inactivation state, contributes to functional differences between these two neuronal populations. PMID:17108087

  8. The electronic properties of microbial nanowires: An STM investigation

    NASA Astrophysics Data System (ADS)

    Veazey, Josh; Steidl, Becky; Reguera, Gemma; Tessmer, Stuart

    2009-03-01

    Geobacter species of bacteria present the prospect of an interesting physical system through the expression of pili that act as electrically conductive nanowires. These nanowires serve the biological role of transporting metabolically generated electrons outside the cell body to electron acceptors in the organism's native environment. We have performed scanning tunneling microscopy and spectroscopy on Geobacter sulferreducens in an effort to elucidate the mechanism of conductivity. Understanding this system may lead to the enhancement in the effectiveness of Geobacter species' roles in microbial fuel cells and the bioremediation of hazardous waste, such as uranium and petroleum.

  9. Impact of cold plasma on Citrobacter freundii in apple juice: inactivation kinetics and mechanisms.

    PubMed

    Surowsky, Björn; Fröhling, Antje; Gottschalk, Nathalie; Schlüter, Oliver; Knorr, Dietrich

    2014-03-17

    Various studies have shown that cold plasma is capable of inactivating microorganisms located on a variety of food surfaces, food packaging materials and process equipment under atmospheric pressure conditions; however, less attention has been paid to the impact of cold plasma on microorganisms in liquid foodstuffs. The present study investigates cold plasma's ability to inactivate Citrobacter freundii in apple juice. Optical emission spectroscopy (OES) and temperature measurements were performed to characterise the plasma source. The plasma-related impact on microbial loads was evaluated by traditional plate count methods, while morphological changes were determined using scanning electron microscopy (SEM). Physiological property changes were obtained through flow cytometric measurements (membrane integrity, esterase activity and membrane potential). In addition, mathematical modelling was performed in order to achieve a reliable prediction of microbial inactivation and to establish the basis for possible industrial implementation. C. freundii loads in apple juice were reduced by about 5 log cycles after a plasma exposure of 480s using argon and 0.1% oxygen plus a subsequent storage time of 24h. The results indicate that a direct contact between bacterial cells and plasma is not necessary for achieving successful inactivation. The plasma-generated compounds in the liquid, such as H2O2 and most likely hydroperoxy radicals, are particularly responsible for microbial inactivation.

  10. Mechanisms of endospore inactivation under high pressure.

    PubMed

    Reineke, Kai; Mathys, Alexander; Heinz, Volker; Knorr, Dietrich

    2013-06-01

    It is well known that spore germination and inactivation can be achieved within a broad temperature and pressure range. The existing literature, however, reports contradictory results concerning the effectiveness of different pressure-temperature combinations and the underlying inactivation mechanism(s). Much of the published kinetic data are prone to error as a result of unstable process conditions or an incomplete investigation of the entire inactivation pathway. Here, we review this field of research, and also discuss an inactivation mechanism of at least two steps and propose an inactivation model based on current data. Further, spore resistance properties and matrix interactions are linked to spore inactivation effectiveness.

  11. Conjugated Polyelectrolytes with Imidazolium Solubilizing Groups. Properties and Application to Photodynamic Inactivation of Bacteria.

    PubMed

    Parthasarathy, Anand; Pappas, Harry C; Hill, Eric H; Huang, Yun; Whitten, David G; Schanze, Kirk S

    2015-12-30

    This article reports an investigation of the photophysical properties and the light- and dark-biocidal activity of two poly(phenyleneethynylene) (PPE)-based conjugated polyelectrolytes (CPEs) bearing cationic imidazolium solubilizing groups. The two polymers feature the same PPE-type backbone, but they differ in the frequency of imidazoliums on the chains: PIM-4 features two imidazolium units on every phenylene repeat, whereas PIM-2 contains two imidazolium units on every other phenylene unit. Both polymers are very soluble in water and polar organic solvents, but their propensity to aggregate in water differs with the density of the imidazolium units. The polymers are highly fluorescent, and they exhibit the amplified quenching effect when exposed to a low concentration of anionic electron-acceptor anthraquinone disulfonate. The CPEs are also quenched by a relatively low concentration of pyrophosphate by an aggregation-induced quenching mechanism. The biocidal activity of the cationic imidazolium CPEs was studied against both Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus bacteria in the dark and under blue-light illumination. Both polymers are effective biocides, exhibiting greater than 3 log kill with 30-60 min of light exposure at concentrations of ≤10 μg mL(-1).

  12. Physicochemical properties and oxidative inactivation of soluble lectin from water buffalo (Bubalus bubalis) brain.

    PubMed

    Rizvi, Sabika; Banu, Naheed

    2008-03-01

    Lectins are carbohydrate-binding proteins present in a wide variety of plants and animals, which serve various important physiological functions. A soluble beta-galactoside binding lectin has been isolated and purified to homogeneity from buffalo brain using ammonium sulphate precipitation (40-70%) and gel permeation chromatography on Sephadex G50-80 column. The molecular weight of buffalo brain lectin (BBL) as determined by SDS-PAGE under reducing and non-reducing conditions was 14.2 kDa, however, with gel filtration it was 28.5 kDa, revealing the dimeric form of protein. The neutral sugar content of the soluble lectin was estimated to be 3.3%. The BBL showed highest affinity for lactose and other sugar moieties in glycosidic form, suggesting it to be a beta-galactoside binding lectin. The association constant for lactose binding as evidenced by Scatchard analysis was 6.6 x 10(3) M(-1) showing two carbohydrate binding sites per lectin molecule. A total inhibition of lectin activity was observed by denaturants like guanidine HCl, thiourea and urea at 6 M concentration. The treatment of BBL with oxidizing agent destroyed its agglutination activity, abolished its fluorescence, and shifted its UV absorption maxima from 282 to 250 nm. The effect of H2O2 was greatly prevented by lactose indicating that BBL is more stable in the presence of its specific ligand. The purified lectin was investigated for its brain cell aggregation properties by testing its ability to agglutinate cells isolated from buffalo and goat brains. Rate of aggregation of buffalo brain cells by purified protein was more than the goat brain cells. The data from above study suggests that the isolated lectin may belong to the galectin-1 family but is glycosylated unlike those purified till date.

  13. BIOGEOPHYSICS: THE EFFECTS OF MICROBIAL PROCESSES ON GEOPHYSICAL PROPERTIES OF THE SHALLOW SUBSURFACE

    EPA Science Inventory

    This chapter provides a brief review of how microbial interactions with the geologic media may translate to changes in the bulk physical properties of the subsurface

    which are potentially measurable by geophysical techniques. The results of select pioneering laboratory and...

  14. Effect of land management on soil microbial properties in agricultural terraces of Eastern Spain

    NASA Astrophysics Data System (ADS)

    Morugán-Coronado, Alicia; Cerdà, Artemi; Garcia-Orenes, Fuensanta

    2014-05-01

    Soil quality is important for the sustainable development of terrestrial ecosystems. Agricultural land management is one of most important anthropogenic activities that greatly alters soil characteristics, including physical, chemical, and microbiological properties. The unsuitable land management can lead to a soil fertility loss and to a reduction in the abundance and diversity of soil microorganisms. However, ecological practices and some organic amendments can promote the activities of soil microbial communities, and increase its biodiversity. The microbial soil communities are the most sensitive and rapid indicators of perturbations in land use and soil enzyme activities are sensitive biological indicators of the effects of soil management practices. In this study, a field experiment was performed at clay-loam agricultural soil with an orchard of orange trees in Alcoleja (eastern Spain) to assess the long-term effects of inorganic fertilizers (F), intensive ploughing (P) and sustainable agriculture (S) on the soil microbial biomass carbon (Cmic), enzyme activities (Urease, ß-glucosidase and phosphatase), basal soil repiration (BSR) and the relationship between them, and soil fertility in agro-ecosystems of Spain. Nine soil samples were taken from each agricultural management plot. In all the samples were determined the basal soil respiration, soil microbial biomass carbon, water holding capacity, electrical conductivity, soil organic carbon, nitrogen, available phosphorus, aggregate stability, cation exchange capacity, phosphorous, pH, texture, carbonates, active limestone and as enzimatic activities: Urease, ß-glucosidase and phosphatase. The results showed a substantial level of differentiation in the microbial properties, in terms of management practices, which was highly associated with soil organic matter content. The most marked variation in the different parameters studied appears to be related to sustainable agriculture terrace. The management

  15. The pulsed light inactivation of veterinary relevant microbial biofilms and the use of a RTPCR assay to detect parasite species within biofilm structures.

    PubMed

    Garvey, M; Coughlan, G; Murphy, N; Rowan, N

    2016-01-01

    The presence of pathogenic organisms namely parasite species and bacteria in biofilms in veterinary settings, is a public health concern in relation to human and animal exposure. Veterinary clinics represent a significant risk factor for the transfer of pathogens from housed animals to humans, especially in cases of wound infection and the shedding of faecal matter. This study aims to provide a means of detecting veterinary relevant parasite species in bacterial biofilms, and to provide a means of disinfecting these biofilms. A real time PCR assay was utilized to detect parasite DNA in Bacillus cereus biofilms on stainless steel and PVC surfaces. Results show that both Cryptosporidium and Giardia attach to biofilms in large numbers (100-1000 oo/cysts) in as little as 72 hours. Pulsed light successfully inactivated all test species (Listeria, Salmonella, Bacillus, Escherichia) in planktonic and biofilm form with an increase in inactivation for every increase in UV dose.

  16. The pulsed light inactivation of veterinary relevant microbial biofilms and the use of a RTPCR assay to detect parasite species within biofilm structures

    PubMed Central

    Garvey, M.; Coughlan, G.; Murphy, N.; Rowan, N.

    2016-01-01

    The presence of pathogenic organisms namely parasite species and bacteria in biofilms in veterinary settings, is a public health concern in relation to human and animal exposure. Veterinary clinics represent a significant risk factor for the transfer of pathogens from housed animals to humans, especially in cases of wound infection and the shedding of faecal matter. This study aims to provide a means of detecting veterinary relevant parasite species in bacterial biofilms, and to provide a means of disinfecting these biofilms. A real time PCR assay was utilized to detect parasite DNA in Bacillus cereus biofilms on stainless steel and PVC surfaces. Results show that both Cryptosporidium and Giardia attach to biofilms in large numbers (100-1000 oo/cysts) in as little as 72 hours. Pulsed light successfully inactivated all test species (Listeria, Salmonella, Bacillus, Escherichia) in planktonic and biofilm form with an increase in inactivation for every increase in UV dose. PMID:26862516

  17. Microbial inactivation kinetics and mechanisms of carbon-doped TiO2 (C-TiO2) under visible light.

    PubMed

    Shim, Jaehong; Seo, Young-Seok; Oh, Byung-Taek; Cho, Min

    2016-04-01

    In this study, titanium dioxide nanoparticles doped with carbon (C-TiO2) were synthesized by means of sol-gel methods, and the synthesis was verified by means of X-ray photoelectron spectroscopy. The nanoparticles' photocatalytic disinfection activity of Listeria monocytogenes was tested under UV and visible light. The observed inactivation levels for 150min of visible light exposure with and without UV cutoff filters were 2.10 and 2.45 log, respectively. We also found that traditional reactive oxygen species had insignificant actions on C-TiO2 photocatalysts and that L. monocytogenes inactivation in the C-TiO2 system under visible light was induced in large part by the midgap states (hmid(+)) that was produced photochemically from the visible light response. C-TiO2 was found to accelerate bacterial inactivation (of L. monocytogenes) in the presence of visible light. Our data suggests that the C-TiO2 may be useful in the development of alternative disinfectants for environmental applications.

  18. Spatial and temporal variations of microbial properties at different scales in shallow subsurface sediments

    SciTech Connect

    Zhang, Chuanlun; Pfiffner, S.M.; Phelps, T.J.

    1997-12-31

    Microbial abundance, activity, and community-level physiological profiles (CLPP) were examined at centimeter and meter scales in the subsurface environment at a site near Oyster, VA. At the centimeter scale, variations in aerobic culturable heterotrophs (ACH) and glucose mineralization rates (GMR) were highest in the water table zone, indicating that water availability has a major effect on variations in microbial abundance and activity. At the meter scale, ACH and microaerophiles decreased significantly with depth, whereas anaerobic GMR often increased with depth; this may indicate low redox potentials at depth caused by microbial consumption of oxygen. Data of CUP indicated that the microbial community (MC) in the soybean field exhibited greater capability to utilize multiple carbon sources than MC in the corn field. This difference may reflect nutrient availability associated with different crops (soybean vs corn). By using a regression model, significant spatial and temporal variations were observed for ACH, microaerophiles, anaerobic GMR, and CLPP. Results of this study indicated that water and nutrient availability as well as land use could have a dominant effect on spatial and temporal variations in microbial properties in shallow subsurface environments. 32 refs., 3 figs., 3 tabs.

  19. [Effects of irrigation and fertilization on soil microbial properties in summer maize field].

    PubMed

    Liu, Zhen-xiang; Liu, Peng; Jia, Xu-cun; Cheng, Yi; Dong, Shu-ting; Zhao, Bin; Zhang, Ji-wang; Yang, Jin-sheng

    2015-01-01

    In order to investigate the effects of different irrigation and fertilization on soil microbial properties of summer maize field, we used ZN99 with high nitrogen use efficiency as the test material. The experiment adopted the split plot design which included two irrigation levels (526 mm and 263 mm) as the main plots, three fertilizer types (U, M, UM) and two fertilizer levels (N 100 kg . hm-2 and 200 kg . hm-2) as the subplots. The results showed that the irrigation level affected the regulating effects of fertilizer on soil microbial biomass (carbon and nitrogen) and microbial di- versity. The organic fertilizer application must be under the sufficient irrigation level to increase the soil MBC (14.3%-33.6%), MBN (1.8-2.3 times) and abundance significantly. A moderate rate of irrigation, higher rates of organic fertilizer application or organic manure combined with inorganic fertilizer could increase the nitrogen-fixation species and quantity of Firmicutes, γ-Proteobacteria and α-Proteobacteria in the soil. Under the same N level, there was no significant difference of grain yield between organic manure and inorganic fertilizer treatments. Considering sustainable production, proper organic manure application with moderate irrigation could increase the quantity of the soil microbial biomass and microbial diversity, and improve the capacity of soil to supply water and nutrients.

  20. Relationship between Sublethal Injury and Microbial Inactivation by the Combination of High Hydrostatic Pressure and Citral or tert-Butyl Hydroquinone ▿

    PubMed Central

    Somolinos, Maria; García, Diego; Pagán, Rafael; Mackey, Bernard

    2008-01-01

    The aim was to investigate (i) the occurrence of sublethal injury in Listeria monocytogenes, Escherichia coli, and Saccharomyces cerevisiae after high hydrostatic pressure (HHP) treatment as a function of the treatment medium pH and composition and (ii) the relationship between the occurrence of sublethal injury and the inactivating effect of a combination of HHP and two antimicrobial compounds, tert-butyl hydroquinone (TBHQ) and citral. The three microorganisms showed a high proportion of sublethally injured cells (up to 99.99% of the surviving population) after HHP. In E. coli and L. monocytogenes, the extent of inactivation and sublethal injury depended on the pH and the composition of the treatment medium, whereas in S. cerevisiae, inactivation and sublethal injury were independent of medium pH or composition under the conditions tested. TBHQ alone was not lethal to E. coli or L. monocytogenes but acted synergistically with HHP and 24-h refrigeration, resulting in a viability decrease of >5 log10 cycles of both organisms. The antimicrobial effect of citral depended on the microorganism and the treatment medium pH. Acting alone for 24 h under refrigeration, 1,000 ppm of citral caused a reduction of 5 log10 cycles of E. coli at pH 7.0 and almost 3 log10 cycles of L. monocytogenes at pH 4.0. The combination of citral and HHP also showed a synergistic effect. Our results have confirmed that the detection of sublethal injury after HHP may contribute to the identification of those treatment conditions under which HHP may act synergistically with other preserving processes. PMID:18952869

  1. Effects of combination of ultraviolet light and hydrogen peroxide on inactivation of Escherichia coli O157:H7, native microbial loads, and quality of button mushrooms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mushrooms are prone to microbial spoilage and browning during growing and processing. Ultraviolet light (UV-C) has been used as an alternative technology to chemical sanitizers for food products. Hydrogen peroxide is classified as generally recognized as safe for use in foods as a bleaching and ant...

  2. Effect of UV-C treatment on inactivation of Escherichia coli O157:H7, microbial loads, and quality of button mushrooms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study investigated the effects of ultraviolet-C (UV-C) light applied to both sides of mushrooms on microbial loads and product quality during storage for 21 days at 4 C. Microflora populations, color, antioxidant activity, total phenolics, and ascorbic acid were measured at 1, 7, 14 and 21 days...

  3. Ecology and thermal inactivation of microbes in and on interplanetary space vehicle components. [bibliography

    NASA Technical Reports Server (NTRS)

    Reyes, A. L.; Campbell, J. E.

    1976-01-01

    Almost 600 articles and books published since 1960 about microbial and viral inactivation are listed. This bibliography is presented to facilitate literature reviews on chemical, heat, and radiation inactivation of microorganisms and viral particles.

  4. Function, kinetic properties, crystallization, and regulation of microbial malate dehydrogenase*

    PubMed Central

    Takahashi-Íñiguez, Tóshiko; Aburto-Rodríguez, Nelly; Vilchis-González, Ana Laura; Flores, María Elena

    2016-01-01

    Malate dehydrogenase (MDH) is an enzyme widely distributed among living organisms and is a key protein in the central oxidative pathway. It catalyzes the interconversion between malate and oxaloacetate using NAD+ or NADP+ as a cofactor. Surprisingly, this enzyme has been extensively studied in eukaryotes but there are few reports about this enzyme in prokaryotes. It is necessary to review the relevant information to gain a better understanding of the function of this enzyme. Our review of the data generated from studies in bacteria shows much diversity in their molecular properties, including weight, oligomeric states, cofactor and substrate binding affinities, as well as differences in the direction of the enzymatic reaction. Furthermore, due to the importance of its function, the transcription and activity of this enzyme are rigorously regulated. Crystal structures of MDH from different bacterial sources led to the identification of the regions involved in substrate and cofactor binding and the residues important for the dimer-dimer interface. This structural information allows one to make direct modifications to improve the enzyme catalysis by increasing its activity, cofactor binding capacity, substrate specificity, and thermostability. A comparative analysis of the phylogenetic reconstruction of MDH reveals interesting facts about its evolutionary history, dividing this superfamily of proteins into two principle clades and establishing relationships between MDHs from different cellular compartments from archaea, bacteria, and eukaryotes.

  5. Physicochemical properties influencing denitrification rate and microbial activity in denitrification bioreactors

    NASA Astrophysics Data System (ADS)

    Schmidt, C. A.

    2012-12-01

    The use of N-based fertilizer will need to increase to meet future demands, yet existing applications have been implicated as the main source of coastal eutrophication and hypoxic zones. Producing sufficient crops to feed a growing planet will require efficient production in combination with sustainable treatment solutions. The long-term success of denitrification bioreactors to effectively remove nitrate (NO¬3), indicates this technology is a feasible treatment option. Assessing and quantifying the media properties that affect NO¬3 removal rate and microbial activity can improve predictions on bioreactor performance. It was hypothesized that denitrification rates and microbial biomass would be correlated with total C, NO¬3 concentration, metrics of organic matter quality, media surface area and laboratory measures of potential denitrification rate. NO¬3 removal rates and microbial biomass were evaluated in mesocosms filled with different wood treatments and the unique influence of these predictor variables was determined using a multiple linear regression analysis. NO3 reduction rates were independent of NO¬3 concentration indicating zero order reaction kinetics. Temperature was strongly correlated with denitrification rate (r2=0.87; Q10=4.7), indicating the variability of bioreactor performance in differing climates. Fiber quality, and media surface area were strong (R>0.50), unique predictors of rates and microbial biomass, although C:N ratio and potential denitrification rate did not predict actual denitrification rate or microbial biomass. Utilizing a stepwise multiple linear regression, indicates that the denitrification rate can be effectively (r2=0.56;p<0.0001) predicted if the groundwater temperature, neutral detergent fiber and surface area alone are quantified. These results will assist with the widespread implementation of denitrification bioreactors to achieve significant N load reductions in large watersheds. The nitrate reduction rate as a

  6. Effects of soil organic matter properties and microbial community composition on enzyme activities in cryoturbated arctic soils.

    PubMed

    Schnecker, Jörg; Wild, Birgit; Hofhansl, Florian; Eloy Alves, Ricardo J; Bárta, Jiří; Capek, Petr; Fuchslueger, Lucia; Gentsch, Norman; Gittel, Antje; Guggenberger, Georg; Hofer, Angelika; Kienzl, Sandra; Knoltsch, Anna; Lashchinskiy, Nikolay; Mikutta, Robert; Santrůčková, Hana; Shibistova, Olga; Takriti, Mounir; Urich, Tim; Weltin, Georg; Richter, Andreas

    2014-01-01

    Enzyme-mediated decomposition of soil organic matter (SOM) is controlled, amongst other factors, by organic matter properties and by the microbial decomposer community present. Since microbial community composition and SOM properties are often interrelated and both change with soil depth, the drivers of enzymatic decomposition are hard to dissect. We investigated soils from three regions in the Siberian Arctic, where carbon rich topsoil material has been incorporated into the subsoil (cryoturbation). We took advantage of this subduction to test if SOM properties shape microbial community composition, and to identify controls of both on enzyme activities. We found that microbial community composition (estimated by phospholipid fatty acid analysis), was similar in cryoturbated material and in surrounding subsoil, although carbon and nitrogen contents were similar in cryoturbated material and topsoils. This suggests that the microbial community in cryoturbated material was not well adapted to SOM properties. We also measured three potential enzyme activities (cellobiohydrolase, leucine-amino-peptidase and phenoloxidase) and used structural equation models (SEMs) to identify direct and indirect drivers of the three enzyme activities. The models included microbial community composition, carbon and nitrogen contents, clay content, water content, and pH. Models for regular horizons, excluding cryoturbated material, showed that all enzyme activities were mainly controlled by carbon or nitrogen. Microbial community composition had no effect. In contrast, models for cryoturbated material showed that enzyme activities were also related to microbial community composition. The additional control of microbial community composition could have restrained enzyme activities and furthermore decomposition in general. The functional decoupling of SOM properties and microbial community composition might thus be one of the reasons for low decomposition rates and the persistence of 400 Gt

  7. Effects of soil organic matter properties and microbial community composition on enzyme activities in cryoturbated arctic soils.

    PubMed

    Schnecker, Jörg; Wild, Birgit; Hofhansl, Florian; Eloy Alves, Ricardo J; Bárta, Jiří; Capek, Petr; Fuchslueger, Lucia; Gentsch, Norman; Gittel, Antje; Guggenberger, Georg; Hofer, Angelika; Kienzl, Sandra; Knoltsch, Anna; Lashchinskiy, Nikolay; Mikutta, Robert; Santrůčková, Hana; Shibistova, Olga; Takriti, Mounir; Urich, Tim; Weltin, Georg; Richter, Andreas

    2014-01-01

    Enzyme-mediated decomposition of soil organic matter (SOM) is controlled, amongst other factors, by organic matter properties and by the microbial decomposer community present. Since microbial community composition and SOM properties are often interrelated and both change with soil depth, the drivers of enzymatic decomposition are hard to dissect. We investigated soils from three regions in the Siberian Arctic, where carbon rich topsoil material has been incorporated into the subsoil (cryoturbation). We took advantage of this subduction to test if SOM properties shape microbial community composition, and to identify controls of both on enzyme activities. We found that microbial community composition (estimated by phospholipid fatty acid analysis), was similar in cryoturbated material and in surrounding subsoil, although carbon and nitrogen contents were similar in cryoturbated material and topsoils. This suggests that the microbial community in cryoturbated material was not well adapted to SOM properties. We also measured three potential enzyme activities (cellobiohydrolase, leucine-amino-peptidase and phenoloxidase) and used structural equation models (SEMs) to identify direct and indirect drivers of the three enzyme activities. The models included microbial community composition, carbon and nitrogen contents, clay content, water content, and pH. Models for regular horizons, excluding cryoturbated material, showed that all enzyme activities were mainly controlled by carbon or nitrogen. Microbial community composition had no effect. In contrast, models for cryoturbated material showed that enzyme activities were also related to microbial community composition. The additional control of microbial community composition could have restrained enzyme activities and furthermore decomposition in general. The functional decoupling of SOM properties and microbial community composition might thus be one of the reasons for low decomposition rates and the persistence of 400 Gt

  8. Effects of Soil Organic Matter Properties and Microbial Community Composition on Enzyme Activities in Cryoturbated Arctic Soils

    PubMed Central

    Schnecker, Jörg; Wild, Birgit; Hofhansl, Florian; Eloy Alves, Ricardo J.; Bárta, Jiří; Čapek, Petr; Fuchslueger, Lucia; Gentsch, Norman; Gittel, Antje; Guggenberger, Georg; Hofer, Angelika; Kienzl, Sandra; Knoltsch, Anna; Lashchinskiy, Nikolay; Mikutta, Robert; Šantrůčková, Hana; Shibistova, Olga; Takriti, Mounir; Urich, Tim; Weltin, Georg; Richter, Andreas

    2014-01-01

    Enzyme-mediated decomposition of soil organic matter (SOM) is controlled, amongst other factors, by organic matter properties and by the microbial decomposer community present. Since microbial community composition and SOM properties are often interrelated and both change with soil depth, the drivers of enzymatic decomposition are hard to dissect. We investigated soils from three regions in the Siberian Arctic, where carbon rich topsoil material has been incorporated into the subsoil (cryoturbation). We took advantage of this subduction to test if SOM properties shape microbial community composition, and to identify controls of both on enzyme activities. We found that microbial community composition (estimated by phospholipid fatty acid analysis), was similar in cryoturbated material and in surrounding subsoil, although carbon and nitrogen contents were similar in cryoturbated material and topsoils. This suggests that the microbial community in cryoturbated material was not well adapted to SOM properties. We also measured three potential enzyme activities (cellobiohydrolase, leucine-amino-peptidase and phenoloxidase) and used structural equation models (SEMs) to identify direct and indirect drivers of the three enzyme activities. The models included microbial community composition, carbon and nitrogen contents, clay content, water content, and pH. Models for regular horizons, excluding cryoturbated material, showed that all enzyme activities were mainly controlled by carbon or nitrogen. Microbial community composition had no effect. In contrast, models for cryoturbated material showed that enzyme activities were also related to microbial community composition. The additional control of microbial community composition could have restrained enzyme activities and furthermore decomposition in general. The functional decoupling of SOM properties and microbial community composition might thus be one of the reasons for low decomposition rates and the persistence of 400 Gt

  9. Microbial functional diversity enhances predictive models linking environmental parameters to ecosystem properties.

    PubMed

    Powell, Jeff R; Welsh, Allana; Hallin, Sara

    2015-07-01

    Microorganisms drive biogeochemical processes, but linking these processes to real changes in microbial communities under field conditions is not trivial. Here, we present a model-based approach to estimate independent contributions of microbial community shifts to ecosystem properties. The approach was tested empirically, using denitrification potential as our model process, in a spatial survey of arable land encompassing a range of edaphic conditions and two agricultural production systems. Soil nitrate was the most important single predictor of denitrification potential (the change in Akaike's information criterion, corrected for sample size, ΔAIC(c) = 20.29); however, the inclusion of biotic variables (particularly the evenness and size of denitrifier communities [ΔAIC(c) = 12.02], and the abundance of one denitrifier genotype [ΔAIC(c) = 18.04]) had a substantial effect on model precision, comparable to the inclusion of abiotic variables (biotic R2 = 0.28, abiotic R2 = 0.50, biotic + abiotic R2 = 0.76). This approach provides a valuable tool for explicitly linking microbial communities to ecosystem functioning. By making this link, we have demonstrated that including aspects of microbial community structure and diversity in biogeochemical models can improve predictions of nutrient cycling in ecosystems and enhance our understanding of ecosystem functionality.

  10. [Soil organic pollution characteristics and microbial properties in coal mining areas of Mentougou].

    PubMed

    Jia, Jian-Li; Zhang, Yue; Wang, Chen; Li, Dong; Liu, Bo-Wen; Liu, Ying; Zhao, Le; Yang, Si-Qi

    2011-03-01

    Soil micro-ecosystem including organic pollution characteristics, basic physicochemical parameters, and microbial properties was analyzed which contaminated with organic pollutants in coal mining area. Results showed that the organic pollution level in coal mining area soils distributed from 0.4 to 1.5 mg/g dry soil, which was 1. 5-6 times as much as the background sample. Furthermore, the column chromatography and GC-MS analysis revealed that content of lightly components including saturated and aromatic hydrocarbons exceeded 40%, specifically was alkenes (> C15), hydrocarbon derivatives, and a small amount aromatic hydrocarbons. Totally, the components of organic pollutants extracted in soils were similar to which in coal gangue samples, illustrating the source of soil pollution to a certain extent in coal mining areas. The physicochemical factors such as nutrient level and moisture contents were not conducive to the growth and reproduction of microbe except pH level, which might show inhibition to microbial activities. Microbial density of pollutant soils in coal mining areas was totally low, with specific amount 10(4)-10(5) cell/g dry soil and FDA activity 2.0-2.9 mg/(g x min). Generally, the microbial density and activity were decreased as the enhancing pollution level. However, in-depth analysis was needed urgently because of the complex impact of environmental conditions like pH, moisture, and nutrition.

  11. Statistical Properties of Short Subsequences in Microbial Genomes and Their Link to Pathogen Identification and Evolution

    NASA Astrophysics Data System (ADS)

    Zhang, Meizhuo; Putonti, Catherine; Chumakov, Sergei; Gupta, Adhish; Fox, George E.; Graur, Dan; Fofanov, Yuriy

    2006-09-01

    Numerous sequencing projects have unveiled partial and full microbial genomes. The data produced far exceeds one person's analytical capabilities and thus requires the power of computing. A significant amount of work has focused on the diversity of statistical characteristics along microbial genomic sequences, e.g. codon bias, G+C content, the frequencies of short subsequences (n-mers), etc. Based upon the results of these studies, two observations were made: (1) there exists a correlation between regions of unusual statistical properties, e.g. difference in codon bias, etc., from the rest of the genomic sequence, and evolutionary significant regions, e.g. regions of horizontal gene transfer; and (2) because no two microbial genomes look statistically identical, statistical properties can be used to distinguish between genomic sequences. Recently, we conducted extensive analysis on the presence/absence of n-mers for many microbial genomes as well as several viral and eukaryotic genomes. This analysis revealed that the presence of n-mers in all genomes considered (in the range of n, when the condition M<<4n holds, where M is the genome length) can be treated as a nearly random and independent process. Thus we hypothesize that one may use relatively small sets of randomly picked n-mers for differentiating between different microorganisms. Recently, we analyzed the frequency of appearance of all 8- to 12-mers present in each of the 200+ publicly available microbial genomes. For nearly all of the genomes under consideration, we observed that some n-mers are present much more frequently than expected: from 50 to over a thousand copies. Upon closer inspection of these sequences, we found several cases in which an overrepresented n-mer exhibits a bias towards being located in the coding or being located in the non-coding region. Although the evolutionary reason for the conservation of such sequences remains unclear, in some cases it is plausible to believe that sequences

  12. Chemical, physical and microbial properties and microbial diversity in manufactured soils produced from co-composting green waste and biosolids.

    PubMed

    Belyaeva, O N; Haynes, R J; Sturm, E C

    2012-12-01

    The effects of adding biosolids to a green waste feedstock (100% green waste, 25% v/v biosolids or 50% biosolids) on the properties of composted products were investigated. Following initial composting, 20% soil or 20% fly ash/river sand mix was added to the composts as would be carried out commercially to produce manufactured soil. Temperatures during composting reached 50 °C, or above, for 23 days when biosolids were included as a composting feedstock but temperatures barely reached 40 °C when green waste alone was composted. Addition of biosolids to the feedstock increased total N, EC, extractable NH(4), NO(3) and P but lowered pH, macroporosity, water holding capacity, microbial biomass C and basal respiration in composts. Additions of soil or ash/sand to the composts greatly increased the available water holding capacity of the materials. Principal component analysis (PCA) of PCR-DGGE 16S rDNA amplicons separated bacterial communities according to addition of soil to the compost. For fungal ITS-RNA amplicons, PCA separated communities based on the addition of biosolids. Bacterial species richness and Shannon's diversity index were greatest for composts where soil had been added but for fungal communities these parameters were greatest in the treatments where 50% biosolids had been included. These results were interpreted in relation to soil having an inoculation effect and biosolids having an acidifying effect thereby favouring a fungal community. PMID:22770779

  13. Influence of microbial community structure of seed sludge on the properties of aerobic nitrifying granules.

    PubMed

    Song, Zhiwei; Li, Ting; Wang, Qiuxu; Pan, Yu; Li, Lixin

    2015-09-01

    In order to evaluate the influence of microbial community structure of seed sludge on the properties of aerobic nitrifying granules, these granules were cultivated with different seed sludge, and the variation of microbial community and dominant bacterial groups that impact the nitrogen removal efficiency of the aerobic nitrifying granules were analyzed and identified using 16s rDNA sequence and denaturing gradient gel electrophoresis (DGGE) profiles. The results presented here demonstrated that the influence of the community structure of seed sludge on the properties of aerobic nitrifying granules was remarkable, and the granules cultivated by activated sludge from a beer wastewater treatment plant showed better performance, with a stable sludge volume index (SVI) value of 20mL/g, high extracellular polymeric substance (EPS) content of 183.3mg/L, high NH4(+)-N removal rate of 89.42% and abundant microbial population with 10 dominant bacterial groups. This indicated that activated sludge with abundant communities is suitable for use as seed sludge in culturing aerobic nitrifying granules. PMID:26354703

  14. Maple sap predominant microbial contaminants are correlated with the physicochemical and sensorial properties of maple syrup.

    PubMed

    Filteau, Marie; Lagacé, Luc; Lapointe, Gisèle; Roy, Denis

    2012-03-01

    Maple sap processing and microbial contamination are significant aspects that affect maple syrup quality. In this study, two sample sets from 2005 and 2008 were used to assess the maple syrup quality variation and its relationship to microbial populations, with respect to processing, production site and harvesting period. The abundance of maple sap predominant bacteria (Pseudomonas fluorescens group and two subgroups, Rahnella spp., Janthinobacterium spp., Leuconostoc mesenteroides) and yeast (Mrakia spp., Mrakiella spp.,Guehomyces pullulans) was assessed by quantitative PCR. Maple syrup properties were analyzed by physicochemical and sensorial methods. Results indicate that P. fluorescens, Mrakia spp., Mrakiella spp. G. pullulans and Rahnella spp. are stable contaminants of maple sap, as they were found for every production site throughout the flow period. Multiple factor analysis reports a link between the relative abundance of P. fluorescens group and Mrakia spp. in maple sap with maple and vanilla odor as well as flavor of maple syrup. This evidence supports the contribution of these microorganisms or a consortium of predominant microbial contaminants to the characteristic properties of maple syrup.

  15. Microbial fibrinolytic enzymes: an overview of source, production, properties, and thrombolytic activity in vivo.

    PubMed

    Peng, Yong; Yang, Xiaojuan; Zhang, Yizheng

    2005-11-01

    Accumulation of fibrin in the blood vessels usually results in thrombosis, leading to myocardial infarction and other cardiovascular diseases. For thrombolytic therapy, microbial fibrinolytic enzymes have now attracted much more attention than typical thrombolytic agents because of the expensive prices and the undesirable side effects of the latter. The fibrinolytic enzymes were successively discovered from different microorganisms, the most important among which is the genus Bacillus from traditional fermented foods. The physiochemical properties of these enzymes have been characterized, and their effectiveness in thrombolysis in vivo has been further identified. Therefore, microbial fibrinolytic enzymes, especially those from food-grade microorganisms, have the potential to be developed as functional food additives and drugs to prevent or cure thrombosis and other related diseases.

  16. Soil properties affecting toxicity of zinc to soil microbial properties in laboratory-spiked and field-contaminated soils.

    PubMed

    Smolders, Erik; Buekers, Jurgen; Oliver, Ian; McLaughlin, Mike J

    2004-11-01

    The effects of soil properties and zinc (Zn) availability on the toxicity of Zn to soil microbial processes are poorly understood. Three soil microbial processes--potential nitrification rate (PNR), substrate (glucose)-induced respiration (SIR), and a maize residue respiration (MRR)--were measured in 15 European topsoils (pH 3.0-7.5; total Zn 7-191 mg/kg) that were freshly spiked with ZnCl2. The Zn toxicity thresholds of 20 to 50% effective concentrations (EC20s and EC50s) based on total concentrations of Zn in soil varied between 5- and 26-fold among soils, depending on the assay. The Zn toxicity thresholds based on Zn concentrations in soil solution varied at least 10-fold more than corresponding total metal thresholds. Soil pH had no significant effect on soil total Zn toxicity thresholds, whereas significant positive correlations were found between these thresholds and background Zn for the PNR and SIR test (r = 0.74 and 0.71, respectively; log-log correlations). No such trend was found for the MRR test. Soil solution-based thresholds showed highly significant negative correlations with soil pH for all assays that might be explained by competition of H+ for binding sites, as demonstrated for aquatic species. The microbial assays were also applied to soils collected under galvanized pylons (three sites) where concentrations of total Zn were up to 2,100 to 3,700 mg Zn/kg. Correlations between concentrations of total Zn and microbial responses were insignificant at all sites even though spiking reference samples to equivalent concentrations reduced microbial activities up to more than 10-fold. Differences in response between spiked and field soils are partly but not completely attributed to the large differences in concentrations of Zn in soil solution. We conclude that soil pH has no significant effect on Zn toxicity to soil microbial processes in laboratory-spiked soils, and we suggest that community tolerance takes place at both background and elevated Zn

  17. Bovine liver dihydropyrimidine amidohydrolase: pH dependencies of inactivation by chelators and steady-state kinetic properties.

    PubMed

    Lee, M H; Cowling, R A; Sander, E G; Pettigrew, D W

    1986-07-01

    Dihydropyrimidine amidohydrolase (EC 3.5.2.2) catalyzes the reversible hydrolysis of 5,6-dihydropyrimidines to the corresponding beta-ureido acids. Previous work has shown that incubation of this Zn2+ metalloenzyme with 2,6-dipicolinic acid, 8-hydroxyquinoline-5-sulfonic acid, or o-phenanthroline results in inactivation by Zn2+ removal by a reaction pathway involving formation of a ternary enzyme-Zn2+-chelator complex which subsequently dissociates to yield apoenzyme and the Zn2+-chelate (K. P. Brooks, E. A. Jones, B. D. Kim, and E. G. Sander, (1983) Arch. Biochem. Biophys. 226, 469-483). In the present work, the pH dependence of chelator inactivation is studied. The equilibrium constant for formation of the ternary complex is strongly pH dependent and increases with decreasing pH for all three chelators. There is a positive correlation between the value of the equilibrium constant observed for each chelator and the value of its stability constant for formation of Zn2+-chelate. The affinity of the chelators for the enzyme increases in the order 8-hydroxyquinoline-5-sulfonic acid greater than o-phenanthroline greater than 2,6-dipicolinic acid. The first-order rate constant for breakdown of the ternary complex to yield apoenzyme and Zn2+-chelate is invariant with pH for a given chelator but is different for each chelator, increasing in the reverse order. The pH dependence of the inactivation shows that two ionizable groups on the enzyme are involved in the inactivation. On the other hand, the steady-state kinetic behavior of the enzyme is well-described by ionization of a single group with a pK of 6.0 in the free enzyme. The basic form of the group is required for catalysis; protonation of the group decreases both Vmax and the apparent affinity for substrate. Conversely, binding of substrate decreases the pK of this group to about 5. L-Dihydroorotic acid is shown to be a competitive inhibitor of dihydropyrimidine amidohydrolase. Binding of L-dihydroorotic acid

  18. Microbial properties explain temporal variation in soil respiration in a grassland subjected to nitrogen addition

    PubMed Central

    Li, Yue; Liu, Yinghui; Wu, Shanmei; Niu, Lei; Tian, Yuqiang

    2015-01-01

    The role of soil microbial variables in shaping the temporal variability of soil respiration has been well acknowledged but is poorly understood, particularly under elevated nitrogen (N) deposition conditions. We measured soil respiration along with soil microbial properties during the early, middle, and late growing seasons in temperate grassland plots that had been treated with N additions of 0, 2, 4, 8, 16, or 32 g N m−2 yr−1 for 10 years. Representing the averages over three observation periods, total (Rs) and heterotrophic (Rh) respiration were highest with 4 g N m−2 yr−1, but autotrophic respiration (Ra) was highest with 8 to 16 g N m−2 yr−1. Also, the responses of Rh and Ra were unsynchronized considering the periods separately. N addition had no significant impact on the temperature sensitivity (Q10) for Rs but inhibited the Q10 for Rh. Significant interactions between observation period and N level occurred in soil respiration components, and the temporal variations in soil respiration components were mostly associated with changes in microbial biomass carbon (MBC) and phospholipid fatty acids (PLFAs). Further observation on soil organic carbon and root biomass is needed to reveal the long-term effect of N deposition on soil C sequestration. PMID:26678303

  19. Soil microbial properties after 5 years of consecutive amendment with composted tannery sludge.

    PubMed

    Araujo, Ademir Sérgio Ferreira; Miranda, Ana Roberta Lima; Oliveira, Mara Lucia Jacinto; Santos, Vilma Maria; Nunes, Luís Alfredo Pinheiro Leal; Melo, Wanderley José

    2015-01-01

    Composting has been recognised an alternative method to tannery sludge recycling and afterwards to be used in agriculture. As the tannery sludge contains salts and chromium, the application of composted tannery sludge (CTS) should be performed carefully to minimise negative effects on soil microbial properties. Therefore, this study evaluated the effects of 5-year repeated CTS amendment on soil microbial biomass (SMB) and enzyme activities in a tropical soil. CTS was applied during 5 years at 0, 2.5, 5, 10 and 20 Mg ha(-1), and at the fifth year, the microbial biomass C (MBC) and N (MBN), basal and substrate-induced respiration (SIR), metabolic quotient (qCO₂) and dehydrogenase (DHA) and fluorescein diacetate (FDA) hydrolysis were determined in the soil samples. Soil MBC and MBN showed the highest values with the amendment of 5 Mg ha(-1) CTS. Soil respiration increased with the increase in CTS rates, while SIR showed the highest values with the amendment of 0, 2.5 and 5 Mg ha(-1) CTS. DHA activity showed the highest values with the amendment up to 2.5 Mg ha(-1), while FDA hydrolysis increased up to the rate of 5 Mg ha(-1) CTS. The results show that after 5 years of permanent amendment of CTS, soils amended with 2.5 Mg ha(-1) have SMB and enzymatic activities similar to those in unamended soil.

  20. Microbial properties explain temporal variation in soil respiration in a grassland subjected to nitrogen addition.

    PubMed

    Li, Yue; Liu, Yinghui; Wu, Shanmei; Niu, Lei; Tian, Yuqiang

    2015-12-18

    The role of soil microbial variables in shaping the temporal variability of soil respiration has been well acknowledged but is poorly understood, particularly under elevated nitrogen (N) deposition conditions. We measured soil respiration along with soil microbial properties during the early, middle, and late growing seasons in temperate grassland plots that had been treated with N additions of 0, 2, 4, 8, 16, or 32 g N m(-2) yr(-1) for 10 years. Representing the averages over three observation periods, total (Rs) and heterotrophic (Rh) respiration were highest with 4 g N m(-2) yr(-1), but autotrophic respiration (Ra) was highest with 8 to 16 g N m(-2) yr(-1). Also, the responses of Rh and Ra were unsynchronized considering the periods separately. N addition had no significant impact on the temperature sensitivity (Q10) for Rs but inhibited the Q10 for Rh. Significant interactions between observation period and N level occurred in soil respiration components, and the temporal variations in soil respiration components were mostly associated with changes in microbial biomass carbon (MBC) and phospholipid fatty acids (PLFAs). Further observation on soil organic carbon and root biomass is needed to reveal the long-term effect of N deposition on soil C sequestration.

  1. Microbial properties explain temporal variation in soil respiration in a grassland subjected to nitrogen addition

    NASA Astrophysics Data System (ADS)

    Li, Yue; Liu, Yinghui; Wu, Shanmei; Niu, Lei; Tian, Yuqiang

    2015-12-01

    The role of soil microbial variables in shaping the temporal variability of soil respiration has been well acknowledged but is poorly understood, particularly under elevated nitrogen (N) deposition conditions. We measured soil respiration along with soil microbial properties during the early, middle, and late growing seasons in temperate grassland plots that had been treated with N additions of 0, 2, 4, 8, 16, or 32 g N m-2 yr-1 for 10 years. Representing the averages over three observation periods, total (Rs) and heterotrophic (Rh) respiration were highest with 4 g N m-2 yr-1, but autotrophic respiration (Ra) was highest with 8 to 16 g N m-2 yr-1. Also, the responses of Rh and Ra were unsynchronized considering the periods separately. N addition had no significant impact on the temperature sensitivity (Q10) for Rs but inhibited the Q10 for Rh. Significant interactions between observation period and N level occurred in soil respiration components, and the temporal variations in soil respiration components were mostly associated with changes in microbial biomass carbon (MBC) and phospholipid fatty acids (PLFAs). Further observation on soil organic carbon and root biomass is needed to reveal the long-term effect of N deposition on soil C sequestration.

  2. Impact of Organic and Conventional Systems of Coffee Farming on Soil Properties and Culturable Microbial Diversity.

    PubMed

    Velmourougane, Kulandaivelu

    2016-01-01

    A study was undertaken with an objective of evaluating the long-term impacts of organic (ORG) and conventional (CON) methods of coffee farming on soil physical, chemical, biological, and microbial diversity. Electrical conductivity and bulk density were found to increase by 34% and 21%, respectively, in CON compared to ORG system, while water holding capacity was found decreased in both the systems. Significant increase in organic carbon was observed in ORG system. Major nutrients, nitrogen and potassium, levels showed inclination in both ORG and CON system, but the trend was much more pronounced in CON system. Phosphorus was found to increase in both ORG and CON system, but its availability was found to be more with CON system. In biological attributes, higher soil respiration and fluorescein diacetate activity were recorded in ORG system compared to CON system. Higher soil urease activity was observed in CON system, while dehydrogenase activity does not show significant differences between ORG and CON systems. ORG system was found to have higher macrofauna (31.4%), microbial population (34%), and microbial diversity indices compared to CON system. From the present study, it is accomplished that coffee soil under long-term ORG system has better soil properties compared to CON system.

  3. Impact of Organic and Conventional Systems of Coffee Farming on Soil Properties and Culturable Microbial Diversity

    PubMed Central

    2016-01-01

    A study was undertaken with an objective of evaluating the long-term impacts of organic (ORG) and conventional (CON) methods of coffee farming on soil physical, chemical, biological, and microbial diversity. Electrical conductivity and bulk density were found to increase by 34% and 21%, respectively, in CON compared to ORG system, while water holding capacity was found decreased in both the systems. Significant increase in organic carbon was observed in ORG system. Major nutrients, nitrogen and potassium, levels showed inclination in both ORG and CON system, but the trend was much more pronounced in CON system. Phosphorus was found to increase in both ORG and CON system, but its availability was found to be more with CON system. In biological attributes, higher soil respiration and fluorescein diacetate activity were recorded in ORG system compared to CON system. Higher soil urease activity was observed in CON system, while dehydrogenase activity does not show significant differences between ORG and CON systems. ORG system was found to have higher macrofauna (31.4%), microbial population (34%), and microbial diversity indices compared to CON system. From the present study, it is accomplished that coffee soil under long-term ORG system has better soil properties compared to CON system. PMID:27042378

  4. Potential contribution of microbial communities in technical ceramics for the improvement of rheological properties

    NASA Astrophysics Data System (ADS)

    Moreira, Bernardino; Miller, Ana Z.; Santos, Ricardo; Monteiro, Sílvia; Dias, Diamantino; Neves, Orquídia; Dionísio, Amélia; Saiz-Jimenez, Cesareo

    2014-05-01

    Several bacterial and fungal species naturally occurring in ceramic raw materials used in construction, such as Aspergillus, Penicillium and Aureobasidium, are known to produce exopolysaccharides (EPS). These polymers excreted by the cells are of widespread occurrence and may confer unique and potentially interesting properties with potential industrial uses, such as viscosity control, gelation, and flocculation, during ceramic manufacturing. In this study, the microbial communities present in clay raw materials were identified by both cultural methods and DNA-based molecular techniques in order to appraise their potential contribution to enhance the performance of technical ceramics through the use of EPS. Mineralogical identification by X- Ray Diffraction (XRD) and Fourier Transform Infrared (FTIR) spectroscopy of the clay raw materials, as well as characterization of rheological properties of ceramic slips were also performed. Microbial EPS production and its introduction into ceramic slips will be then carried out in order to evaluate their effects on the rheological properties of the ceramic slips, powders and conformed bodies. Some positive aspects related to the use of EPS are: reduction of the environmental impact caused by synthetic organic additives, reduction of production costs, as well as the costs related with operator protection systems, gaseous effluent treatments, complex landfill, among others.

  5. A new isoquinoline alkaloid with anti-microbial properties from Berberis jaeschkeana Schneid. var. jaeschkeana.

    PubMed

    Alamzeb, Muhammad; Khan, M Rafiullah; Mamoon-Ur-Rashid; Ali, Saqib; Khan, Ashfaq Ahmad

    2015-01-01

    One new isoquinoline alkaloid named berberidione (1) along with four new source alkaloids berberine (2), palmatine (3), jatrorrhizine (4) and chondrofoline (5) and three new source non-alkaloids syringic acid (6), β-sitosterol (7) and stigmasterol (8) was isolated and characterised from different fractions of Berberis jaeschkeana Schneid var. jaeschkeana. All the structures were determined from 1D and 2D spectroscopic data. Crude extract, sub-fractions and isolated compounds showed excellent anti-microbial properties. The toxicity level for the alkaloids was found to be very low on THP-1 cells.

  6. Application of organic amendments to restore degraded soil: effects on soil microbial properties.

    PubMed

    Carlson, Jennifer; Saxena, Jyotisna; Basta, Nicholas; Hundal, Lakhwinder; Busalacchi, Dawn; Dick, Richard P

    2015-03-01

    Topsoil removal, compaction, and other practices in urban and industrial landscapes can degrade soil and soil ecosystem services. There is growing interest to remediate these for recreational and residential purposes, and urban waste materials offers potential to improve degraded soils. Therefore, the objective of this study was to compare the effects of urban waste products on microbial properties of a degraded industrial soil. The soil amendments were vegetative yard waste compost (VC), biosolids (BioS), and a designer mix (DM) containing BioS, biochar (BC), and drinking water treatment residual (WTR). The experiment had a completely randomized design with following treatments initiated in 2009: control soil, VC, BioS-1 (202 Mg ha(-1)), BioS-2 (403 Mg ha(-1)), and DM (202 Mg BioS ha(-1) plus BC and WTR). Soils (0-15-cm depth) were sampled in 2009, 2010, and 2011 and analyzed for enzyme activities (arylsulfatase, β-glucosaminidase, β-glucosidase, acid phosphatase, fluorescein diacetate, and urease) and soil microbial community structure using phospholipid fatty acid analysis (PLFA). In general, all organic amendments increased enzyme activities in 2009 with BioS treatments having the highest activity. However, this was followed by a decline in enzyme activities by 2011 that were still significantly higher than control. The fungal PLFA biomarkers were highest in the BioS treatments, whereas the control soil had the highest levels of the PLFA stress markers (P < 0.10). In conclusion, one-time addition of VC or BioS was most effective on enzyme activities; the BioS treatment significantly increased fungal biomass over the other treatments; addition of BioS to soils decreased microbial stress levels; and microbial measures showed no statistical differences between BioS and VC treatments after 3 years of treatment. PMID:25673270

  7. Effects of Bacterial Inactivation Methods on Downstream Proteomic Analysis

    SciTech Connect

    Lin, Andy; Merkley, Eric D.; Clowers, Brian H.; Hutchison, Janine R.; Kreuzer, Helen W.

    2015-05-01

    Inactivation of pathogenic microbial samples is often necessary for the protection of researchers and to comply with local and federal regulations. By its nature, biological inactivation causes changes to microbial samples, potentially affecting observed experimental results. While inactivation induced damage to materials such as DNA has been evaluated, the effect of various inactivation strategies on proteomic data, to our knowledge, has not been discussed. To this end, we inactivated samples of Yersinia pestis and Escherichia coli by autoclave, ethanol, or irradiation treatment to determine how inactivation changes liquid chromatography tandem mass spectrometry data quality as well as apparent protein content of cells. Proteomic datasets obtained from aliquots of samples inactivated by different methods were highly similar, with Pearson correlation coefficients ranging from 0.822 to 0.985 and 0.816 to 0.985 for E. coli and Y. pestis, respectively, suggesting that inactivation had only slight impacts on the set of proteins identified. In addition, spectral quality metrics such as distributions of various database search algorithm scores remained constant across inactivation methods, indicating that inactivation does not appreciably degrade spectral quality. Though overall changes resulting from inactivation were small, there were detectable trends. For example, one-sided Fischer exact tests determined that periplasmic proteins decrease in observed abundance after sample inactivation by autoclaving (α = 1.71x10-2 for E. coli, α = 4.97x10-4 for Y. pestis) and irradiation (α = 9.43x10-7 for E. coli, α = 1.21x10-5 for Y. pestis) when compared to controls that were not inactivated. Based on our data, if sample inactivation is necessary, we recommend inactivation with ethanol treatment with secondary preference given to irradiation.

  8. Effects of bacterial inactivation methods on downstream proteomic analysis.

    PubMed

    Lin, Andy; Merkley, Eric D; Clowers, Brian H; Hutchison, Janine R; Kreuzer, Helen W

    2015-05-01

    Inactivation of pathogenic microbial samples is often necessary for the protection of researchers and to comply with local and federal regulations. By its nature, biological inactivation causes changes to microbial samples, potentially affecting observed experimental results. While inactivation-induced damage to materials such as DNA has been evaluated, the effect of various inactivation strategies on proteomic data, to our knowledge, has not been discussed. To this end, we inactivated samples of Yersinia pestis and Escherichia coli by autoclave, ethanol, or irradiation treatment to determine how inactivation changes liquid chromatography-tandem mass spectrometry data quality as well as apparent protein content of cells. Proteomic datasets obtained from aliquots of samples inactivated by different methods were highly similar, with Pearson correlation coefficients ranging from 0.822 to 0.985 and 0.816 to 0.985 for E. coli and Y. pestis, respectively, suggesting that inactivation had only slight impacts on the set of proteins identified. In addition, spectral quality metrics such as distributions of various database search algorithm scores remained constant across inactivation methods, indicating that inactivation does not appreciably degrade spectral quality. Though overall changes resulting from inactivation were small, there were detectable trends. For example, one-sided Fischer exact tests determined that periplasmic proteins decrease in observed abundance after sample inactivation by autoclaving (α=1.71×10(-2) for E. coli, α=4.97×10(-4) for Y. pestis) and irradiation (α=9.43×10(-7) for E. coli, α=1.21×10(-5) for Y. pestis) when compared to controls that were not inactivated. Based on our data, if sample inactivation is necessary, we recommend inactivation with ethanol treatment with secondary preference given to irradiation. PMID:25620019

  9. Rabbit haemorrhagic disease: an investigation of some properties of the virus and evaluation of an inactivated vaccine.

    PubMed

    Smíd, B; Valícek, L; Rodák, L; Stĕpánek, J; Jurák, E

    1991-01-01

    An inactivated vaccine against rabbit haemorrhagic disease (RHD), developed and tested in our laboratory, is produced commercially by Bioveta, Ivanovice, Czechoslovakia. Rabbits developed full protection against infection 3 weeks after the administration of a single dose. Antibodies were detectable from day 5 after vaccination. Naturally acquired antibodies were demonstrated in some rabbits kept on commercial farms. The virus survived at least 225 days in an organ suspension kept at 4 degrees C, at least 105 days in the dried state on cloth at room temperature (around 20 degrees C), and at least 2 days at 60 degrees C, both in organ suspension and in the dry state. Experimental infection of rabbits younger than 2 months was successful in some animals. Hares, guinea pigs, white mice, golden and Chinese hamsters, chinchillas and hysterectomy-derived, colostrum-deprived piglets were resistant to infection.

  10. Composition, physicochemical properties and thermal inactivation kinetics of polyphenol oxidase and peroxidase from coconut (Cocos nucifera) water obtained from immature, mature and overly-mature coconut.

    PubMed

    Tan, Thuan-Chew; Cheng, Lai-Hoong; Bhat, Rajeev; Rusul, Gulam; Easa, Azhar Mat

    2014-01-01

    Composition, physicochemical properties and enzyme inactivation kinetics of coconut water were compared between immature (IMC), mature (MC) and overly-mature coconuts (OMC). Among the samples studied, pH, turbidity and mineral contents for OMC water was the highest, whereas water volume, titratable acidity, total soluble solids and total phenolics content for OMC water were the lowest. Maturity was found to affect sugar contents. Sucrose content was found to increase with maturity, and the reverse trend was observed for fructose and glucose. Enzyme activity assessment showed that polyphenol oxidase (PPO) in all samples was more heat resistant than peroxidase (POD). Compared to IMC and MC, PPO and POD from OMC water showed the lowest thermal resistance, with D83.3°C=243.9s (z=27.9°C), and D83.3°C=129.9s (z=19.5°C), respectively.

  11. Visualization of physico-chemical properties and microbial distribution in soil and root microenvironments

    NASA Astrophysics Data System (ADS)

    Eickhorst, Thilo; Schmidt, Hannes

    2016-04-01

    Plant root development is influenced by soil properties and environmental factors. In turn plant roots can also change the physico-chemical conditions in soil resulting in gradients between roots and the root-free bulk soil. By releasing a variety of substances roots facilitate microbial activities in their direct vicinity, the rhizosphere. The related microorganisms are relevant for various ecosystem functions in the root-soil interface such as nutrient cycling. It is therefore important to study the impact and dynamics of microorganisms associated to different compartments in root-soil interfaces on a biologically meaningful micro-scale. The analysis of microorganisms in their habitats requires microscopic observations of the respective microenvironment. This can be obtained by preserving the complex soil structure including the root system by resin impregnation resulting in high quality thin sections. The observation of such sections via fluorescence microscopy, SEM-EDS, and Nano-SIMS will be highlighted in this presentation. In addition, we will discuss the combination of this methodological approach with other imaging techniques such as planar optodes or non-invasive 3D X-ray CT to reveal the entire spatial structure and arrangement of soil particles and roots. When combining the preservation of soil structure via resin impregnation with 16S rRNA targeted fluorescence in situ hybridization (FISH) single microbial cells can be visualized, localized, and quantified in the undisturbed soil matrix including the root-soil interfaces. The simultaneous use of multiple oligonucleotide probes thereby provides information on the spatial distribution of microorganisms belonging to different phylogenetic groups. Results will be shown for paddy soils, where management induced physico-chemical dynamics (flooding and drying) as well as resulting microbial dynamics were visualized via correlative microscopy in resin impregnated samples.

  12. Effects of gamma irradiation on physicochemical properties, antioxidant and microbial activities of sour cherry juice

    NASA Astrophysics Data System (ADS)

    Arjeh, Edris; Barzegar, Mohsen; Ali Sahari, Mohammad

    2015-09-01

    Recently, due to the beneficial effects of bioactive compounds, demand for minimally processed fruits and fruit juices has increased rapidly in the world. In this study, sour cherry juice (SCJ) was exposed to gamma irradiation at 0.0, 0.5, 1.5, 3.0, 4.5, and 6.0 kGy and then stored at 4 °C for 60 days. Total soluble solids (TSS), total acidity (TA), color, total phenolic content (TPC), total monomeric anthocyanin content (TMC), antioxidant activity, organic acid profile, and microbial analysis were evaluated at regular intervals during the storage. Results indicated that irradiation did not have any significant effect on TSS, while level of TA increased significantly at the dose of 6 kGy (p<0.05). Furthermore, irradiation treatment and storage time led to a significant increase in L* and b* values and a decrease in a* values. Total monomeric anthocyanin content of the irradiated SCJ was lower than that of the non-irradiated one (24% at 3.0 kGy) and also changed toward a more negative direction during the storage (63% at 3.0 kGy for 60 days). There was a significant decrease in the antioxidant activity (DPPH radical scavenging and FRAP assay) in both irradiated and stored SCJs. After irradiation (0-6 kGy), the results showed that the concentration of malic and oxalic acid significantly increased; but, the concentration of ascorbic, citric, fumaric, and succinic acids significantly decreased. Gamma irradiation with doses of ≥3 kGy resulted in overall reduction in microbial loads. Based on the results obtained from the changes of physicochemical properties, antioxidant activity, and microbial analysis, irradiation of SCJ at doses of higher than 3.0 kGy is not recommended.

  13. Ultrasound treatment: effect on physicochemical, microbial and antioxidant properties of cherry (Prunus avium).

    PubMed

    Muzaffar, Sabeera; Ahmad, Mudasir; Wani, S M; Gani, Adil; Baba, Waqas N; Shah, Umar; Khan, Asma Ashraf; Masoodi, F A; Gani, Asir; Wani, Touseef Ahmed

    2016-06-01

    The cherry was treated with ultrasonic waves (33 kHz, 60 W) at different time intervals (10, 20, 30, 40, 60 min) and study was carried out to analyze the change in physico-chemical properties (TSS, pH, color, acidity and firmness), antioxidant potential and microbial load of the fruit during the storage period of 15 days at 4 °C. It was observed that ultrasound treatment (US) between 30 and 40 min showed better retention of color of the fruit during the storage period. The antioxidant assays (DPPH, ABTS and TPC) also increased significantly (P ≤ 0.05) up to 40 min, however the firmness of the fruit was affected and it showed a significant decrease beyond 20 min of US treatment. The sample with 40 min US treatment showed significantly less microbial load than other samples. The 20-40 min US treatment time (33 kHz, 60 W) was suggested for preservation of cherry during the storage at 4 °C.

  14. Ultrasound treatment: effect on physicochemical, microbial and antioxidant properties of cherry (Prunus avium).

    PubMed

    Muzaffar, Sabeera; Ahmad, Mudasir; Wani, S M; Gani, Adil; Baba, Waqas N; Shah, Umar; Khan, Asma Ashraf; Masoodi, F A; Gani, Asir; Wani, Touseef Ahmed

    2016-06-01

    The cherry was treated with ultrasonic waves (33 kHz, 60 W) at different time intervals (10, 20, 30, 40, 60 min) and study was carried out to analyze the change in physico-chemical properties (TSS, pH, color, acidity and firmness), antioxidant potential and microbial load of the fruit during the storage period of 15 days at 4 °C. It was observed that ultrasound treatment (US) between 30 and 40 min showed better retention of color of the fruit during the storage period. The antioxidant assays (DPPH, ABTS and TPC) also increased significantly (P ≤ 0.05) up to 40 min, however the firmness of the fruit was affected and it showed a significant decrease beyond 20 min of US treatment. The sample with 40 min US treatment showed significantly less microbial load than other samples. The 20-40 min US treatment time (33 kHz, 60 W) was suggested for preservation of cherry during the storage at 4 °C. PMID:27478231

  15. Non-target effects of pretilachlor on microbial properties in tropical rice soil.

    PubMed

    Sahoo, Subhashree; Adak, Totan; Bagchi, Torit B; Kumar, Upendra; Munda, Sushmita; Saha, Sanjoy; Berliner, J; Jena, Mayabini; Mishra, B B

    2016-04-01

    The use of herbicides has been questioned in recent past for their non-target effects. Therefore, we planned to study the effect of pretilachlor on growth and activities of microbes in tropical rice soil under controlled condition at National Rice Research Institute, Cuttack, India. Three pretilachlor treatments, namely, recommended dose at 600 g a.i. ha(-1) (RD), double the recommended dose at 1200 g a.i. ha(-1) (2RD), and ten times of the recommended dose at 6000 g a.i. ha(-1) (10RD) along with control, were imposed. The initial residue (after 2 h of spray) deposits in soil were 0.174, 0.968, and 3.35 μg g(-1) for recommended, double the recommended, and ten times of the recommended doses, respectively. No residue in soil was detected in RD treatment on day 45. The half life values were 16.90, 17.76, and 36.47 days for RD, 2RD, and 10RD treatments, respectively. Application of pretilachlor at 10RD, in general, had significantly reduced the number of bacteria, actinomycetes, fungi, nitrogen fixers, and microbial biomass carbon. Pretilachlor at RD did not record any significant changes in microbial properties compared to control. The results of the present study thus indicated that pretilachlor at RD can be safely used for controlling grassy weeds in rice fields. PMID:26739987

  16. Non-target effects of pretilachlor on microbial properties in tropical rice soil.

    PubMed

    Sahoo, Subhashree; Adak, Totan; Bagchi, Torit B; Kumar, Upendra; Munda, Sushmita; Saha, Sanjoy; Berliner, J; Jena, Mayabini; Mishra, B B

    2016-04-01

    The use of herbicides has been questioned in recent past for their non-target effects. Therefore, we planned to study the effect of pretilachlor on growth and activities of microbes in tropical rice soil under controlled condition at National Rice Research Institute, Cuttack, India. Three pretilachlor treatments, namely, recommended dose at 600 g a.i. ha(-1) (RD), double the recommended dose at 1200 g a.i. ha(-1) (2RD), and ten times of the recommended dose at 6000 g a.i. ha(-1) (10RD) along with control, were imposed. The initial residue (after 2 h of spray) deposits in soil were 0.174, 0.968, and 3.35 μg g(-1) for recommended, double the recommended, and ten times of the recommended doses, respectively. No residue in soil was detected in RD treatment on day 45. The half life values were 16.90, 17.76, and 36.47 days for RD, 2RD, and 10RD treatments, respectively. Application of pretilachlor at 10RD, in general, had significantly reduced the number of bacteria, actinomycetes, fungi, nitrogen fixers, and microbial biomass carbon. Pretilachlor at RD did not record any significant changes in microbial properties compared to control. The results of the present study thus indicated that pretilachlor at RD can be safely used for controlling grassy weeds in rice fields.

  17. Synthesis, spectroscopic properties and photodynamic activity of porphyrin-fullerene C60 dyads with application in the photodynamic inactivation of Staphylococcus aureus.

    PubMed

    Ballatore, M Belén; Spesia, Mariana B; Milanesio, M Elisa; Durantini, Edgardo N

    2014-08-18

    A covalently linked porphyrin-fullerene C60 dyad 5 was synthesized by 1,3-dipolar cycloaddition using 5-(4-formylphenyl)-10,15,20-tris[3-(N-ethylcarbazoyl)]porphyrin, N-methylglycine and fullerene C60. Methylation of 5 was used to obtain a cationic dyad 6. Spectroscopic properties were compared in toluene, N,N-dimethylformamide (DMF) and toluene/sodium bis(2-ethylhexyl)sulfosuccinate (AOT)/water reverse micelles. Absorption spectra of the dyads were essentially a superposition of the spectra of the porphyrin and fullerene reference compounds, indicating a very weak interaction between the chromophores in the ground state. The fluorescence emission of the porphyrin moiety in the dyads was strongly quenched by the attached fullerene C60 unit. The singlet molecular oxygen, O2((1)Δg), productions (ΦΔ) were strongly dependent on the solvent polarity. Similar ΦΔ values were obtained for 5,10,15,20-tetrakis[3-(N-ethylcarbazoyl)]porphyrin (TCP) in both solvents. Also, dyad 5 showed a high O2((1)Δg) generation in toluene. However, O2((1)Δg) production mediated by 5 considerably diminished in the more polar solvent DMF. Also, a high photodynamic activity involving O2((1)Δg) was found for both dyads in a simple biomimetic system formed by AOT reverse micelles. The photoinactivation ability of these dyads was investigated in Staphylococcus aureus cell suspensions. Photosensitized inactivation of S. aureus by dyad 6 exhibits a 4.5 log decrease of cell survival (99.997% cell inactivation), when the cultures are treated with 5 μM photosensitizer and irradiated with visible light (350-800 nm) for 30 min. Under these conditions, a lower photocytotoxic effect was found for 5 (3.2 log decrease). Furthermore, photoinactivation induced by 6 was higher than those obtained with the separate moieties of the dyad. Therefore, molecular structures formed by porphyrin-fullerene C60 dyads represent interesting photosensitizers to inactivate S. aureus.

  18. Changes in Microbial Community Structure and Soil Biological Properties in Mined Dune Areas During Re-vegetation.

    PubMed

    Escobar, Indra Elena C; Santos, Vilma M; da Silva, Danielle Karla A; Fernandes, Marcelo F; Cavalcante, Uided Maaze T; Maia, Leonor C

    2015-06-01

    The aim of this study was to describe the impact of re-vegetation on the restoration of microbial community structure and soil microbiological properties in sand dunes that had been affected by mining activity. Soil samples were collected during the dry and rainy seasons from a chronosequence (1, 9, 21 years) of re-vegetated dunes using a single preserved dune as a reference. The composition of the fatty acid methyl esters and soil microbial properties were evaluated. The results showed that the changes in microbial community structure were related to seasonal variations: biomarkers of Gram-positive bacteria were higher than Gram-negative bacteria during the dry season, showing that this group of organisms is more tolerant to these stressful conditions. The microbial community structure in the natural dune was less affected by seasonal variation compared to the re-vegetated areas, whereas the opposite was observed for microbiological properties. Thus, in general, the proportion of saprobic fungi was higher in the natural dune, whereas Gram-negative bacteria were proportionally more common in the younger areas. Although over time the re-vegetation allows the recovery of the microbial community and the soil functions, these communities and functions are different from those found in the undisturbed areas.

  19. Changes in Microbial Community Structure and Soil Biological Properties in Mined Dune Areas During Re-vegetation.

    PubMed

    Escobar, Indra Elena C; Santos, Vilma M; da Silva, Danielle Karla A; Fernandes, Marcelo F; Cavalcante, Uided Maaze T; Maia, Leonor C

    2015-06-01

    The aim of this study was to describe the impact of re-vegetation on the restoration of microbial community structure and soil microbiological properties in sand dunes that had been affected by mining activity. Soil samples were collected during the dry and rainy seasons from a chronosequence (1, 9, 21 years) of re-vegetated dunes using a single preserved dune as a reference. The composition of the fatty acid methyl esters and soil microbial properties were evaluated. The results showed that the changes in microbial community structure were related to seasonal variations: biomarkers of Gram-positive bacteria were higher than Gram-negative bacteria during the dry season, showing that this group of organisms is more tolerant to these stressful conditions. The microbial community structure in the natural dune was less affected by seasonal variation compared to the re-vegetated areas, whereas the opposite was observed for microbiological properties. Thus, in general, the proportion of saprobic fungi was higher in the natural dune, whereas Gram-negative bacteria were proportionally more common in the younger areas. Although over time the re-vegetation allows the recovery of the microbial community and the soil functions, these communities and functions are different from those found in the undisturbed areas. PMID:25822889

  20. Changes in Microbial Community Structure and Soil Biological Properties in Mined Dune Areas During Re-vegetation

    NASA Astrophysics Data System (ADS)

    Escobar, Indra Elena C.; Santos, Vilma M.; da Silva, Danielle Karla A.; Fernandes, Marcelo F.; Cavalcante, Uided Maaze T.; Maia, Leonor C.

    2015-06-01

    The aim of this study was to describe the impact of re-vegetation on the restoration of microbial community structure and soil microbiological properties in sand dunes that had been affected by mining activity. Soil samples were collected during the dry and rainy seasons from a chronosequence (1, 9, 21 years) of re-vegetated dunes using a single preserved dune as a reference. The composition of the fatty acid methyl esters and soil microbial properties were evaluated. The results showed that the changes in microbial community structure were related to seasonal variations: biomarkers of Gram-positive bacteria were higher than Gram-negative bacteria during the dry season, showing that this group of organisms is more tolerant to these stressful conditions. The microbial community structure in the natural dune was less affected by seasonal variation compared to the re-vegetated areas, whereas the opposite was observed for microbiological properties. Thus, in general, the proportion of saprobic fungi was higher in the natural dune, whereas Gram-negative bacteria were proportionally more common in the younger areas. Although over time the re-vegetation allows the recovery of the microbial community and the soil functions, these communities and functions are different from those found in the undisturbed areas.

  1. Conjugational hyperrecombination achieved by derepressing the LexA regulon, altering the properties of RecA protein and inactivating mismatch repair in Escherichia coli K-12.

    PubMed Central

    Lanzov, Vladislav A; Bakhlanova, Irina V; Clark, Alvin J

    2003-01-01

    The frequency of recombinational exchanges (FRE) that disrupt co-inheritance of transferred donor markers in Escherichia coli Hfr by F(-) crosses differs by up to a factor of two depending on physiological factors and culture conditions. Under standard conditions we found FRE to be 5.01 +/- 0.43 exchanges per 100-min units of DNA length for wild-type strains of the AB1157 line. Using these conditions we showed a cumulative effect of various mutations on FRE. Constitutive SOS expression by lexA gene inactivation (lexA71::Tn5) and recA gene mutation (recA730) showed, respectively, approximately 4- and 7-fold increases of FRE. The double lexA71 recA730 combination gave an approximately 17-fold increase in FRE. Addition of mutS215::Tn10, inactivating the mismatch repair system, to the double lexA recA mutant increased FRE to approximately 26-fold above wild-type FRE. Finally, we showed that another recA mutation produced as much SOS expression as recA730 but increased FRE only 3-fold. We conclude that three factors contribute to normally low FRE under standard conditions: repression of the LexA regulon, the properties of wild-type RecA protein, and a functioning MutSHL mismatch repair system. We discuss mechanisms by which the lexA, recA, and mutS mutations may elevate FRE cumulatively to obtain hyperrecombination. PMID:12702672

  2. Microbial utilization of low molecular weight organics in soil depends on the substances properties

    NASA Astrophysics Data System (ADS)

    Gunina, Anna

    2016-04-01

    Utilization of low molecular weight organic substances (LMWOS) in soil is regulated by microbial uptake from solution and following incorporation of into specific cell cycles. Various chemical properties of LMWOS, namely oxidation state, number of carbon (C) atoms, number of carboxylic (-COOH) groups, can affect their uptake from soil solution and further microbial utilization. The aim of the study was to trace the initial fate (including the uptake from soil solution and utilization by microorganisms) of three main classes of LMWOS, having contrast properties - sugars, carboxylic and amino acids. Top 10 cm of mineral soil were collected under Silver birch stands within the Bangor DIVERSE experiment, UK. Soil solution was extracted by centrifugation at 4000 rpm during 15 min. Soil was spiked with 14C glucose or fructose; malic, succinic or formic acids; alanine or glycine. No additional non-labeled LMWOS were added. 14C was traced in the dissolved organic matter (DOM), CO2, cytosol and soil organic matter (SOM) during one day. To estimate half-life times (T1 /2)of LMWOS in soil solution and in SOM pools, the single and double first order kinetic equations were fitted to the uptake and mineralization dynamics, respectively. The LMWOS T1 /2in DOM pool varied between 0.6-5 min, with the highest T1 /2for sugars (3.7 min) and the lowest for carboxylic acids (0.6-1.4 min). Thus, initial uptake of LMWOS is not a limiting step of microbial utilization. The T1 /2 of carboxylic and amino acids in DOM were closely related with oxidation state, showing that reduced substances remain in soil solution longer, than oxidized. The initial T1 /2 of LMWOS in SOM ranged between 30-80 min, with the longest T1 /2 for amino acids (50-80 min) and the shortest for carboxylic acids (30-48 min). These T1 /2values were in one-two orders of magnitude higher than LMWOS T1 /2 in soil solution, pointing that LMWOS mineralization occur with a delay after the uptake. Absence of correlations between

  3. Inactivation of internalized and surface contaminated enteric viruses in green onions.

    PubMed

    Hirneisen, Kirsten A; Kniel, Kalmia E

    2013-09-01

    With increasing outbreaks of gastroenteritis associated with produce, it is important to assess interventions to reduce the risk of illness. UV, ozone and high pressure are non-thermal processing technologies that have potential to inactivate human pathogens on produce and allow the retention of fresh-like organoleptic properties. The objective of this study was to determine if UV, ozone, and high pressure are effective technologies compared to traditional chlorine spray on green onions to reduce enteric viral pathogens and to determine the effect of location of the virus (surface or internalized) on the efficacy of these processes. Mature green onion plants were inoculated with murine norovirus (MNV), hepatitis A virus (HAV) and human adenovirus type 41 (Ad41) either on the surface through spot inoculation or through inoculating contaminated hydroponic solution allowing for uptake of the virus into the internal tissues. Inoculated green onions were treated with UV (240 mJ s/cm(2)), ozone (6.25 ppm for 10 min), pressure (500 MPa, for 5 min at 20°C), or sprayed with calcium hypochlorite (150 ppm, 4°C). Viral inactivation was determined by comparing treated and untreated inoculated plants using cell culture infectivity assays. Processing treatments were observed to greatly affect viral inactivation. Viral inactivation for all three viruses was greatest after pressure treatment and the lowest inactivation was observed after chlorine and UV treatment. Both surface inoculated viruses and viruses internalized in green onions were inactivated to some extent by these post-harvest processing treatments. These results suggest that ozone and high pressure processes aimed to reduce the level of microbial contamination of produce have the ability to inactivate viruses if they become localized in the interior portions of produce. PMID:23973828

  4. Inactivation of internalized and surface contaminated enteric viruses in green onions.

    PubMed

    Hirneisen, Kirsten A; Kniel, Kalmia E

    2013-09-01

    With increasing outbreaks of gastroenteritis associated with produce, it is important to assess interventions to reduce the risk of illness. UV, ozone and high pressure are non-thermal processing technologies that have potential to inactivate human pathogens on produce and allow the retention of fresh-like organoleptic properties. The objective of this study was to determine if UV, ozone, and high pressure are effective technologies compared to traditional chlorine spray on green onions to reduce enteric viral pathogens and to determine the effect of location of the virus (surface or internalized) on the efficacy of these processes. Mature green onion plants were inoculated with murine norovirus (MNV), hepatitis A virus (HAV) and human adenovirus type 41 (Ad41) either on the surface through spot inoculation or through inoculating contaminated hydroponic solution allowing for uptake of the virus into the internal tissues. Inoculated green onions were treated with UV (240 mJ s/cm(2)), ozone (6.25 ppm for 10 min), pressure (500 MPa, for 5 min at 20°C), or sprayed with calcium hypochlorite (150 ppm, 4°C). Viral inactivation was determined by comparing treated and untreated inoculated plants using cell culture infectivity assays. Processing treatments were observed to greatly affect viral inactivation. Viral inactivation for all three viruses was greatest after pressure treatment and the lowest inactivation was observed after chlorine and UV treatment. Both surface inoculated viruses and viruses internalized in green onions were inactivated to some extent by these post-harvest processing treatments. These results suggest that ozone and high pressure processes aimed to reduce the level of microbial contamination of produce have the ability to inactivate viruses if they become localized in the interior portions of produce.

  5. Acoustic and Electrical Property Changes Due to Microbial Growth and Biofilm Formation in Porous Media

    EPA Science Inventory

    A laboratory study was conducted to investigate the effect of microbial growth and biofilm formation on compressional waves, and complex conductivity during stimulated microbial growth. Over the 29 day duration of the experiment, compressional wave amplitudes and arrival times f...

  6. Physicochemical, microbial, and sensory properties of yogurt supplemented with nanopowdered chitosan during storage.

    PubMed

    Seo, M H; Lee, S Y; Chang, Y H; Kwak, H S

    2009-12-01

    This study was carried out to determine the possibility of adding nanopowdered chitosan (NPC) into cholesterol-reduced yogurt to improve the functionality of yogurt and the effects of adding NPC on the physicochemical, microbial, and sensory properties of the products during storage. The pH values and mean lactic acid bacteria counts of NPC-added (0.3 to approximately 0.7%, wt/vol) and cholesterol-reduced yogurt ranged from 4.19 to 4.41 and from 4.75 x 10(8) to 9.70 x 10(8) cfu/mL, respectively, when stored at 4 degrees C for 20 d, thereby indicating a possibility of prolonging the shelf life of yogurt. In color, the a* and b* values for cholesterol-reduced yogurt were not significantly influenced by the addition of NPC (0.1 to approximately 0.7%, wt/vol); however, the L* values significantly decreased with the addition of the greatest concentration (0.7%, wt/vol) of NPC at 0-d storage. The sensory test revealed that the astringency scores significantly increased at 0-d storage when the greatest concentration (0.7%, wt/vol) of NPC was added into cholesterol-reduced yogurt. Based on the data obtained from the current study, it is concluded that concentrations (0.3 to ~0.5%, vol/vol) of NPC could be used to produce an NPC-added and cholesterol-reduced yogurt without significantly adverse effects on the physicochemical, microbial, and sensory properties.

  7. Physicochemical, microbial, and sensory properties of nanopowdered eggshell-supplemented yogurt during storage.

    PubMed

    Al Mijan, Mohammad; Choi, Kyung-Hoon; Kwak, Hae-Soo

    2014-01-01

    This study was carried out to investigate the possibility of adding nanopowdered eggshell (NPES) into yogurt to improve the functionality of yogurt and the effects of adding NPES on the physicochemical, microbial, and sensory properties of the products during storage. The pH and mean lactic acid bacteria counts of NPES-added (0.15-0.45%, wt/vol) yogurt ranged from 4.31 to 4.66 and from 6.56 × 10(8) to 8.56 × 10(8)cfu/mL, respectively, whereas these values ranged from 4.13 to 4.44 and 8.46 × 10(8) to 1.39 × 10(9), respectively, for the control samples during storage at 5 °C for 16d, which indicates a prolonged shelf-life with NPES-supplemented yogurt. Color analysis showed that the lightness (L*) and position between red and green (a*) values were not significantly influenced by the addition of NPES. However, the position between yellow and blue (b*) value significantly increased with the addition of the concentration (0.45%, wt/vol) of NPES at d 16 of storage. Sensory evaluation revealed that NPES-added yogurts showed a notably less sourness score and a higher astringency score than the control. An earthy flavor was higher in 0.45% NPES-supplemented yogurt compared with the control. Based on the results obtained from the current study, the concentration (0.15 to 0.30%, wt/vol) of NPES can be used to formulate NPES-supplemented yogurt without any significant adverse effects on the physicochemical, microbial, and sensory properties.

  8. Kinetics of Hydrothermal Inactivation of Endotoxins ▿

    PubMed Central

    Li, Lixiong; Wilbur, Chris L.; Mintz, Kathryn L.

    2011-01-01

    A kinetic model was established for the inactivation of endotoxins in water at temperatures ranging from 210°C to 270°C and a pressure of 6.2 × 106 Pa. Data were generated using a bench scale continuous-flow reactor system to process feed water spiked with endotoxin standard (Escherichia coli O113:H10). Product water samples were collected and quantified by the Limulus amebocyte lysate assay. At 250°C, 5-log endotoxin inactivation was achieved in about 1 s of exposure, followed by a lower inactivation rate. This non-log-linear pattern is similar to reported trends in microbial survival curves. Predictions and parameters of several non-log-linear models are presented. In the fast-reaction zone (3- to 5-log reduction), the Arrhenius rate constant fits well at temperatures ranging from 120°C to 250°C on the basis of data from this work and the literature. Both biphasic and modified Weibull models are comparable to account for both the high and low rates of inactivation in terms of prediction accuracy and the number of parameters used. A unified representation of thermal resistance curves for a 3-log reduction and a 3 D value associated with endotoxin inactivation and microbial survival, respectively, is presented. PMID:21193667

  9. Study of toxic properties of prototypes of photo inactivated vaccines against tularemia and brucellosis by speckle microscopy

    NASA Astrophysics Data System (ADS)

    Ulianova, Onega V.; Ulyanov, Sergey

    2010-10-01

    Testing of prototypes of vaccines against extremely dangerous diseases, such as tularemia and brucellosis has been performed using speckle-microscopy. Changes of microcirculation caused by effect of toxins at applications of suspension of photoinactivated bacteria have been studied. Toxic properties of prototypes of vaccines against tularemia and brucellosis have been analyzed.

  10. Study of toxic properties of prototypes of photo inactivated vaccines against tularemia and brucellosis by speckle microscopy

    NASA Astrophysics Data System (ADS)

    Ulianova, Onega V.; Ulyanov, Sergey

    2011-03-01

    Testing of prototypes of vaccines against extremely dangerous diseases, such as tularemia and brucellosis has been performed using speckle-microscopy. Changes of microcirculation caused by effect of toxins at applications of suspension of photoinactivated bacteria have been studied. Toxic properties of prototypes of vaccines against tularemia and brucellosis have been analyzed.

  11. Inactivation of Caliciviruses

    PubMed Central

    Nims, Raymond; Plavsic, Mark

    2013-01-01

    The Caliciviridae family of viruses contains clinically important human and animal pathogens, as well as vesivirus 2117, a known contaminant of biopharmaceutical manufacturing processes employing Chinese hamster cells. An extensive literature exists for inactivation of various animal caliciviruses, especially feline calicivirus and murine norovirus. The caliciviruses are susceptible to wet heat inactivation at temperatures in excess of 60 °C with contact times of 30 min or greater, to UV-C inactivation at fluence ≥30 mJ/cm2, to high pressure processing >200 MPa for >5 min at 4 °C, and to certain photodynamic inactivation approaches. The enteric caliciviruses (e.g.; noroviruses) display resistance to inactivation by low pH, while the non-enteric species (e.g.; feline calicivirus) are much more susceptible. The caliciviruses are inactivated by a variety of chemicals, including alcohols, oxidizing agents, aldehydes, and β-propiolactone. As with inactivation of viruses in general, inactivation of caliciviruses by the various approaches may be matrix-, temperature-, and/or contact time-dependent. The susceptibilities of the caliciviruses to the various physical and chemical inactivation approaches are generally similar to those displayed by other small, non-enveloped viruses, with the exception that the parvoviruses and circoviruses may require higher temperatures for inactivation, while these families appear to be more susceptible to UV-C inactivation than are the caliciviruses. PMID:24276023

  12. Probing the oxidation reduction properties of terrestrially and microbially derived dissolved organic matter

    NASA Astrophysics Data System (ADS)

    Fimmen, Ryan L.; Cory, Rose M.; Chin, Yu-Ping; Trouts, Tamara D.; McKnight, Diane M.

    2007-06-01

    Dissolved organic matter (DOM) has been shown to be an integral component in biogeochemical electron transfer reactions due to its demonstrated ability to facilitate redox reactions. While the role of DOM as a facilitator of electron transfer processes has been demonstrated, greater knowledge would lead to better understanding of the structural components responsible for redox behavior, such as quinones and nitrogen and sulfur (N/S) functional groups. This investigation uses direct scan voltammetry (DSV) coupled with fluorescence and NMR spectroscopy as well as thermochemolysis gas chromatography mass spectrometry (GC-MS) and X-ray photoelectron spectroscopy (XPS) to elucidate the organic moieties responsible for facilitating electron transfer reactions. We contrast electrochemical properties and structural details of three organic matter isolates from diverse sources; Great Dismal Swamp DOM (terrestrially derived, highly aromatic), Pony Lake DOM (microbially derived, highly aliphatic) and Toolik Lake (terrestrially derived, photochemically and microbially altered) with juglone (a redox-active model quinone). Aromatic and phenolic constituents were detected (by 13C NMR) and recovered (by thermochemolysis GC-MS) from all three fulvic acid samples, highlighting the ubiquity of these compounds and suggesting that the quinone-phenol redox couple is not limited to DOM derived from lignin precursors. The range of hydroxy-benzene and benzoic acid derivatives may explain the lack of a single pair of well-defined oxidation and reduction peaks in the DSV scans. The presence of a wide-range of hydroxylated benzoic acid isomers and other redox-active aromatic residues implies that native DOM possesses overlapping redox potentials analogous to their characteristic range of p Ka values.

  13. Comparison of NOM removal and microbial properties in up-flow/down-flow BAC filter.

    PubMed

    Han, Lineng; Liu, Wenjun; Chen, Mo; Zhang, Minglu; Liu, Shuming; Sun, Ruilin; Fei, Xiangqin

    2013-09-15

    The removal of natural organic matter (NOM) in term of CODMn by up-flow biologically activated carbon filter (UBACF) and down-flow biologically activated carbon filter (DBACF) was investigated in a pilot-scale test. The impacts of the molecular weight distribution of NOM on its degradation by the UBACF and DBACF were evaluated. The relationship between biodegradation and the microbial properties in the UBACF and DBACF were approached as well. The feed water of the UBACF and DBACF were pumped from the effluent of the rapid sand filtration (RSF) of Chengnan Drinking Water Treatment Plant (CDWTP), Huaian, Jiangsu Province, China. When the adsorption was the dominant mechanism of NOM removal at the initial stage of operation, the CODMn removal efficiency by the UBACF was lower than the DBACF. However, with the microbes gradually accumulated and biofilm formed, the removal of CODMn by the UBACF increased correspondingly to 25.3%, at the steady-state operation and was approximately 10% higher than that by the DBACF. Heterotrophy plate count (HPC) in the finished water of the UBACF was observed 30% higher than that of the DBACF. The UBACF effluent had higher concentration of detached bacteria whereas the DBACF harbored more attached biomass. The highest attached biomass concentration of the UBACF was found in the middle of the GAC bed. On the contrary, the highest attached biomass concentration of the DBACF was found on the top of the GAC bed. Furthermore, a total of 9479 reads by pyrosequencing was obtained from samples of the UBACF and DBACF effluents. The UBACF effluent had a more diverse microbial community and more even distribution of species than the DBACF effluent did. Alphaproteobacteria and Betaproteobacteria were the dominant groups in the finished water of the UBACF and DBACF. The higher organic matter removal by the UBACF was attributed to the presence of its higher biologically activity.

  14. Mycobacteria inactivation using Engineered Water Nanostructures (EWNS)

    PubMed Central

    Pyrgiotakis, Georgios; McDevitt, James; Gao, Ya; Branco, Alan; Eleftheriadou, Mary; Lemos, Bernardo; Nardell, Edward; Demokritou, Philip

    2015-01-01

    Airborne transmitted pathogens such as Mycobacterium tuberculosis (Mtb) cause serious, often fatal infectious disease with enormous global health implications. Due to their unique cell wall and slow growth, mycobacteria are among the most resilient microbial forms. Herein we evaluate the ability of an emerging, chemical-free, nanotechnology-based method to inactivate M. parafortuitum (Mtb surrogate). This method is based on the transformation of atmospheric water vapor into engineered water nano-structures (EWNS) via electrospray. We demonstrate that the EWNS can interact with and inactivate airborne mycobacteria, reducing their concentration levels significantly. Additionally, EWNS can inactivate M. parafortuitum on surfaces eight times faster than the control. The mechanism of mycobacteria inactivation was also investigated in this study. It was demonstrated that the EWNS effectively deliver the reactive oxygen species, encapsulated during the electrospray process, to the bacteria oxidizing their cell membrane resulting into inactivation. Overall, this is a method with the potential to become an effective intervention technology in the battle against airborne infections. From the Clinical Editor This study demonstrates the feasibility of mycobacterium inactivation in airborne form or on contact surfaces using electrospray activated water nano-structures. Given that the method is free of toxic chemicals, this might become an important tool in the prevention of mycobacterial infections, which are notoriously hard to treat. PMID:24632246

  15. Spatial heterogeneity of physicochemical properties explains differences in microbial composition in arid soils from Cuatro Cienegas, Mexico.

    PubMed

    Pajares, Silvia; Escalante, Ana E; Noguez, Ana M; García-Oliva, Felipe; Martínez-Piedragil, Celeste; Cram, Silke S; Eguiarte, Luis Enrique; Souza, Valeria

    2016-01-01

    Arid ecosystems are characterized by high spatial heterogeneity, and the variation among vegetation patches is a clear example. Soil biotic and abiotic factors associated with these patches have also been well documented as highly heterogeneous in space. Given the low vegetation cover and little precipitation in arid ecosystems, soil microorganisms are the main drivers of nutrient cycling. Nonetheless, little is known about the spatial distribution of microorganisms and the relationship that their diversity holds with nutrients and other physicochemical gradients in arid soils. In this study, we evaluated the spatial variability of soil microbial diversity and chemical parameters (nutrients and ion content) at local scale (meters) occurring in a gypsum-based desert soil, to gain knowledge on what soil abiotic factors control the distribution of microbes in arid ecosystems. We analyzed 32 soil samples within a 64 m(2) plot and: (a) characterized microbial diversity using T-RFLPs of the bacterial 16S rRNA gene, (b) determined soil chemical parameters, and (c) identified relationships between microbial diversity and chemical properties. Overall, we found a strong correlation between microbial composition heterogeneity and spatial variation of cations (Ca(2), K(+)) and anions (HCO[Formula: see text], Cl(-), SO[Formula: see text]) content in this small plot. Our results could be attributable to spatial differences of soil saline content, favoring the patchy emergence of salt and soil microbial communities.

  16. Spatial heterogeneity of physicochemical properties explains differences in microbial composition in arid soils from Cuatro Cienegas, Mexico.

    PubMed

    Pajares, Silvia; Escalante, Ana E; Noguez, Ana M; García-Oliva, Felipe; Martínez-Piedragil, Celeste; Cram, Silke S; Eguiarte, Luis Enrique; Souza, Valeria

    2016-01-01

    Arid ecosystems are characterized by high spatial heterogeneity, and the variation among vegetation patches is a clear example. Soil biotic and abiotic factors associated with these patches have also been well documented as highly heterogeneous in space. Given the low vegetation cover and little precipitation in arid ecosystems, soil microorganisms are the main drivers of nutrient cycling. Nonetheless, little is known about the spatial distribution of microorganisms and the relationship that their diversity holds with nutrients and other physicochemical gradients in arid soils. In this study, we evaluated the spatial variability of soil microbial diversity and chemical parameters (nutrients and ion content) at local scale (meters) occurring in a gypsum-based desert soil, to gain knowledge on what soil abiotic factors control the distribution of microbes in arid ecosystems. We analyzed 32 soil samples within a 64 m(2) plot and: (a) characterized microbial diversity using T-RFLPs of the bacterial 16S rRNA gene, (b) determined soil chemical parameters, and (c) identified relationships between microbial diversity and chemical properties. Overall, we found a strong correlation between microbial composition heterogeneity and spatial variation of cations (Ca(2), K(+)) and anions (HCO[Formula: see text], Cl(-), SO[Formula: see text]) content in this small plot. Our results could be attributable to spatial differences of soil saline content, favoring the patchy emergence of salt and soil microbial communities. PMID:27652001

  17. Effects of background fluid on the efficiency of inactivating yeast with non-thermal atmospheric pressure plasma.

    PubMed

    Ryu, Young-Hyo; Kim, Yong-Hee; Lee, Jin-Young; Shim, Gun-Bo; Uhm, Han-Sup; Park, Gyungsoon; Choi, Eun Ha

    2013-01-01

    Non-thermal plasma at atmospheric pressure has been actively applied to sterilization. However, its efficiency for inactivating microorganisms often varies depending on microbial species and environments surrounding the microorganisms. We investigated the influence of environmental factors (surrounding media) on the efficiency of microbial inactivation by plasma using an eukaryotic model microbe, Saccharomyces cerevisiae, to elucidate the mechanisms for differential efficiency of sterilization by plasma. Yeast cells treated with plasma in water showed the most severe damage in viability and cell morphology as well as damage to membrane lipids, and genomic DNA. Cells in saline were less damaged compared to those in water, and those in YPD (Yeast extract, Peptone, Dextrose) were least impaired. HOG1 mitogen activated protein kinase was activated in cells exposed to plasma in water and saline. Inactivation of yeast cells in water and saline was due to the acidification of the solutions by plasma, but higher survival of yeast cells treated in saline may have resulted from the additional effect related to salt strength. Levels of hydroxyl radical (OH·) produced by plasma were the highest in water and the lowest in YPD. This may have resulted in differential inactivation of yeast cells in water, saline, and YPD by plasma. Taken together, our data suggest that the surrounding media (environment) can crucially affect the outcomes of yeast cell plasma treatment because plasma modulates vital properties of media, and the toxic nature of plasma can also be altered by the surrounding media.

  18. Inactivation of the Antifungal and Immunomodulatory Properties of Human Cathelicidin LL-37 by Aspartic Proteases Produced by the Pathogenic Yeast Candida albicans

    PubMed Central

    Bochenska, Oliwia; Zawrotniak, Marcin; Wolak, Natalia; Trebacz, Grzegorz; Gogol, Mariusz; Ostrowska, Dominika; Aoki, Wataru; Ueda, Mitsuyoshi; Kozik, Andrzej

    2015-01-01

    Constant cross talk between Candida albicans yeast cells and their human host determines the outcome of fungal colonization and, eventually, the progress of infectious disease (candidiasis). An effective weapon used by C. albicans to cope with the host defense system is the release of 10 distinct secreted aspartic proteases (SAPs). Here, we validate a hypothesis that neutrophils and epithelial cells use the antimicrobial peptide LL-37 to inactivate C. albicans at sites of candidal infection and that C. albicans uses SAPs to effectively degrade LL-37. LL-37 is cleaved into multiple products by SAP1 to -4, SAP8, and SAP9, and this proteolytic processing is correlated with the gradual decrease in the antifungal activity of LL-37. Moreover, a major intermediate of LL-37 cleavage—the LL-25 peptide—is antifungal but devoid of the immunomodulatory properties of LL-37. In contrast to LL-37, LL-25 did not affect the generation of reactive oxygen species by neutrophils upon treatment with phorbol esters. Stimulating neutrophils with LL-25 (rather than LL-37) significantly decreased calcium flux and interleukin-8 production, resulting in lower chemotactic activity of the peptide against neutrophils, which may decrease the recruitment of neutrophils to infection foci. LL-25 also lost the function of LL-37 as an inhibitor of neutrophil apoptosis, thereby reducing the life span of these defense cells. This study indicates that C. albicans can effectively use aspartic proteases to destroy the antimicrobial and immunomodulatory properties of LL-37, thus enabling the pathogen to survive and propagate. PMID:25847962

  19. Physicochemical and Microbial Properties of the Korean Traditional Rice Wine, Makgeolli, Supplemented with Banana during Fermentation.

    PubMed

    Kim, Eunkyung; Chang, Yoon Hyuk; Ko, Jae Youn; Jeong, Yoonhwa

    2013-09-01

    The objective of the present study was to evaluate the physicochemical and microbial properties of the Korean traditional rice wine Makgeolli, supplemented with banana during 6 day fermentation. The alcohol contents of the control and banana Makgeolli were 17.0 and 16.5%, respectively. The pH values decreased while total acidity, total soluble solids, and color values increased throughout the fermentation process. An increase in microorganism counts throughout the 6-day fermentation period was noted in all samples. The major free sugar and organic acid detected in all samples were glucose and succinic acid, respectively. There were 39 volatile compounds detected in the control and banana Makgeolli. The major ester detected was ethyl acetate (20.037 and 22.604% for the control and banana Makgeolli, respectively). The major alcohol compounds detected were 3-methylbutanol (20.933%) and 3-methyl-1-butanol (34.325%) in the control. 2-mtehyl-1-propanol (22.289%) and 3-methyl-1-butanol (39.851%) were the highest alcohol compounds detected in the banana Makgeolli.

  20. Effects of Calcium Source on Biochemical Properties of Microbial CaCO3 Precipitation

    PubMed Central

    Xu, Jing; Du, Yali; Jiang, Zhengwu; She, Anming

    2015-01-01

    The biochemical properties of CaCO3 precipitation induced by Sporosarcina pasteurii, an ureolytic type microorganism, were investigated. Effects of calcium source on the precipitation process were examined, since calcium source plays a key role in microbiologically induced mineralization. Regardless of the calcium source type, three distinct stages in the precipitation process were identified by Ca2+, NH4+, pH and cell density monitoring. Compared with stage 1 and 3, stage 2 was considered as the most critical part since biotic CaCO3 precipitation occurs during this stage. Kinetics studies showed that the microbial CaCO3 precipitation rate for calcium lactate was over twice of that for calcium nitrate, indicating that calcium lactate is more beneficial for the cell activity, which in turn determines urease production and CaCO3 precipitation. X-ray diffraction analysis confirmed the CaCO3 crystal as calcite, although scanning electron microscopy revealed a difference in crystal size and morphology if calcium source was different. The findings of this paper further suggest a promising application of microbiologically induced CaCO3 precipitation in remediation of surface and cracks of porous media, e.g., cement-based composites, particularly by using organic source of calcium lactate. PMID:26696978

  1. Unique Organic Matter and Microbial Properties in the Rhizosphere of a Wetland Soil.

    PubMed

    Kaplan, Daniel I; Xu, Chen; Huang, Shan; Lin, Youmin; Tolić, Nikola; Roscioli-Johnson, Kristyn M; Santschi, Peter H; Jaffé, Peter R

    2016-04-19

    Wetlands attenuate the migration of many contaminants through a wide range of biogeochemical reactions. Recent research has shown that the rhizosphere, the zone near plant roots, in wetlands is especially effective at promoting contaminant attenuation. The objective of this study was to compare the soil organic matter (OM) composition and microbial communities of a rhizosphere soil (primarily an oxidized environment) to that of the bulk wetland soil (primarily a reduced environment). The rhizosphere had elevated C, N, Mn, and Fe concentrations and total bacteria, including Anaeromyxobacter, counts (as identified by qPCR). Furthermore, the rhizosphere contained several organic molecules that were not identified in the nonrhizosphere soil (54% of the >2200 ESI-FTICR-MS identified compounds). The rhizosphere OM molecules generally had (1) greater overall molecular weights, (2) less aromaticity, (3) more carboxylate and N-containing COO functional groups, and (4) a greater hydrophilic character. These latter two OM properties typically promote metal binding. This study showed for the first time that not only the amount but also the molecular characteristics of OM in the rhizosphere may in part be responsible for the enhanced immobilization of contaminants in wetlands. These finding have implications on the stewardship and long-term management of contaminated wetlands.

  2. Some microbial, chemical and sensorial properties of gamma irradiated sesame (Sesamum indicum L.) seeds.

    PubMed

    Al-Bachir, Mahfouz

    2016-04-15

    The effect on microbial, chemical and sensorial properties of sesame seeds was determined after irradiation and storage. The sesame seeds were analyzed before and after irradiation with 3, 6 and 9 kGy of gamma irradiation, and after 6 and 12 months of storage. The results showed that gamma irradiation had no significant (p>0.05) effect on the moisture, ash and fat content on sesame seeds. While, small differences, but sometimes significant (p<0.05), on protein and sugar contents were recorded between irradiated and non-irradiated samples. Total acidity percentage decreased significantly (p<0.05), while total volatile basic nitrogen (TVBN) increased significantly (p<0.05) due to irradiation. During storage, total acidity increased (p<0.05) and TVBN decreased (p<0.05). Gamma irradiation reduced the microorganisms of sesame seeds. Samples treated with 3 kGy or more remained completely free of fungi throughout the storage. While, only the samples treated with 9 kGy remained completely free of bacteria at the end of storage period (after 12 months). The scores for taste, flavor, color and texture of irradiated samples were higher, but not significantly (p>0.05) than those of non-irradiated samples. PMID:26616940

  3. By passing microbial resistance: xylitol controls microorganisms growth by means of its anti-adherence property.

    PubMed

    Ferreira, Aline S; Silva-Paes-Leme, Annelisa F; Raposo, Nádia R B; da Silva, Sílvio S

    2015-01-01

    Xylitol is an important polyalcohol suitable for use in odontological, medical and pharmaceutical products and as an additive in food. The first studies on the efficacy of xylitol in the control and treatment of infections started in the late 1970s and it is still applied for this purpose, with safety and very little contribution to resistance. Xylitol seems to act against microorganisms exerting an anti-adherence effect. Some research studies have demonstrated its action against Gram-positive and Gram-negative bacteria and yeasts. However, a clear explanation of how xylitol is effective has not been completely established yet. Some evidence shows that xylitol acts on gene expression, down-regulating the ones which are involved in the microorganisms' virulence, such as capsule formation. Another possible clarification is that xylitol blocks lectin-like receptors. The most important aspect is that, over time, xylitol bypasses microbial resistance and succeeds in controlling infection, either alone or combined with another compound. In this review, the effect of xylitol in inhibiting the growth of a different microorganism is described, focusing on studies in which such an anti-adherent property was highlighted. This is the first mini-review to describe xylitol as an anti-adherent compound and take into consideration how it exerts such action.

  4. Some microbial, chemical and sensorial properties of gamma irradiated sesame (Sesamum indicum L.) seeds.

    PubMed

    Al-Bachir, Mahfouz

    2016-04-15

    The effect on microbial, chemical and sensorial properties of sesame seeds was determined after irradiation and storage. The sesame seeds were analyzed before and after irradiation with 3, 6 and 9 kGy of gamma irradiation, and after 6 and 12 months of storage. The results showed that gamma irradiation had no significant (p>0.05) effect on the moisture, ash and fat content on sesame seeds. While, small differences, but sometimes significant (p<0.05), on protein and sugar contents were recorded between irradiated and non-irradiated samples. Total acidity percentage decreased significantly (p<0.05), while total volatile basic nitrogen (TVBN) increased significantly (p<0.05) due to irradiation. During storage, total acidity increased (p<0.05) and TVBN decreased (p<0.05). Gamma irradiation reduced the microorganisms of sesame seeds. Samples treated with 3 kGy or more remained completely free of fungi throughout the storage. While, only the samples treated with 9 kGy remained completely free of bacteria at the end of storage period (after 12 months). The scores for taste, flavor, color and texture of irradiated samples were higher, but not significantly (p>0.05) than those of non-irradiated samples.

  5. Effects of Calcium Source on Biochemical Properties of Microbial CaCO3 Precipitation.

    PubMed

    Xu, Jing; Du, Yali; Jiang, Zhengwu; She, Anming

    2015-01-01

    The biochemical properties of CaCO3 precipitation induced by Sporosarcina pasteurii, an ureolytic type microorganism, were investigated. Effects of calcium source on the precipitation process were examined, since calcium source plays a key role in microbiologically induced mineralization. Regardless of the calcium source type, three distinct stages in the precipitation process were identified by Ca(2+), NH4 (+), pH and cell density monitoring. Compared with stage 1 and 3, stage 2 was considered as the most critical part since biotic CaCO3 precipitation occurs during this stage. Kinetics studies showed that the microbial CaCO3 precipitation rate for calcium lactate was over twice of that for calcium nitrate, indicating that calcium lactate is more beneficial for the cell activity, which in turn determines urease production and CaCO3 precipitation. X-ray diffraction analysis confirmed the CaCO3 crystal as calcite, although scanning electron microscopy revealed a difference in crystal size and morphology if calcium source was different. The findings of this paper further suggest a promising application of microbiologically induced CaCO3 precipitation in remediation of surface and cracks of porous media, e.g., cement-based composites, particularly by using organic source of calcium lactate. PMID:26696978

  6. Bacterial adaptation to sublethal antibiotic gradients can change the ecological properties of multitrophic microbial communities

    PubMed Central

    Friman, Ville-Petri; Guzman, Laura Melissa; Reuman, Daniel C.; Bell, Thomas

    2015-01-01

    Antibiotics leak constantly into environments due to widespread use in agriculture and human therapy. Although sublethal concentrations are well known to select for antibiotic-resistant bacteria, little is known about how bacterial evolution cascades through food webs, having indirect effect on species not directly affected by antibiotics (e.g. via population dynamics or pleiotropic effects). Here, we used an experimental evolution approach to test how temporal patterns of antibiotic stress, as well as migration within metapopulations, affect the evolution and ecology of microcosms containing one prey bacterium, one phage and two protist predators. We found that environmental variability, autocorrelation and migration had only subtle effects for population and evolutionary dynamics. However, unexpectedly, bacteria evolved greatest fitness increases to both antibiotics and enemies when the sublethal levels of antibiotics were highest, indicating positive pleiotropy. Crucially, bacterial adaptation cascaded through the food web leading to reduced predator-to-prey abundance ratio, lowered predator community diversity and increased instability of populations. Our results show that the presence of natural enemies can modify and even reverse the effects of antibiotics on bacteria, and that antibiotic selection can change the ecological properties of multitrophic microbial communities by having indirect effects on species not directly affected by antibiotics. PMID:25833854

  7. Bacterial adaptation to sublethal antibiotic gradients can change the ecological properties of multitrophic microbial communities.

    PubMed

    Friman, Ville-Petri; Guzman, Laura Melissa; Reuman, Daniel C; Bell, Thomas

    2015-05-01

    Antibiotics leak constantly into environments due to widespread use in agriculture and human therapy. Although sublethal concentrations are well known to select for antibiotic-resistant bacteria, little is known about how bacterial evolution cascades through food webs, having indirect effect on species not directly affected by antibiotics (e.g. via population dynamics or pleiotropic effects). Here, we used an experimental evolution approach to test how temporal patterns of antibiotic stress, as well as migration within metapopulations, affect the evolution and ecology of microcosms containing one prey bacterium, one phage and two protist predators. We found that environmental variability, autocorrelation and migration had only subtle effects for population and evolutionary dynamics. However, unexpectedly, bacteria evolved greatest fitness increases to both antibiotics and enemies when the sublethal levels of antibiotics were highest, indicating positive pleiotropy. Crucially, bacterial adaptation cascaded through the food web leading to reduced predator-to-prey abundance ratio, lowered predator community diversity and increased instability of populations. Our results show that the presence of natural enemies can modify and even reverse the effects of antibiotics on bacteria, and that antibiotic selection can change the ecological properties of multitrophic microbial communities by having indirect effects on species not directly affected by antibiotics.

  8. Effects of Calcium Source on Biochemical Properties of Microbial CaCO3 Precipitation.

    PubMed

    Xu, Jing; Du, Yali; Jiang, Zhengwu; She, Anming

    2015-01-01

    The biochemical properties of CaCO3 precipitation induced by Sporosarcina pasteurii, an ureolytic type microorganism, were investigated. Effects of calcium source on the precipitation process were examined, since calcium source plays a key role in microbiologically induced mineralization. Regardless of the calcium source type, three distinct stages in the precipitation process were identified by Ca(2+), NH4 (+), pH and cell density monitoring. Compared with stage 1 and 3, stage 2 was considered as the most critical part since biotic CaCO3 precipitation occurs during this stage. Kinetics studies showed that the microbial CaCO3 precipitation rate for calcium lactate was over twice of that for calcium nitrate, indicating that calcium lactate is more beneficial for the cell activity, which in turn determines urease production and CaCO3 precipitation. X-ray diffraction analysis confirmed the CaCO3 crystal as calcite, although scanning electron microscopy revealed a difference in crystal size and morphology if calcium source was different. The findings of this paper further suggest a promising application of microbiologically induced CaCO3 precipitation in remediation of surface and cracks of porous media, e.g., cement-based composites, particularly by using organic source of calcium lactate.

  9. Microbial-Induced Heterogeneity in the Acoustic Properties of Porous Media

    EPA Science Inventory

    Acoustic wave data were acquired over a two-dimensional region of a microbial-stimulated sand column and an unstimulated sand column to assess the spatiotemporal changes in a porous medium caused by microbial growth and biofilm formation. The acoustic signals from the unstimulate...

  10. Long-term reactive nitrogen loading alters soil carbon and microbial community properties in a subalpine forest ecosystem

    USGS Publications Warehouse

    Boot, Claudia M; Hall, Ed K.; Denef, Karolien; Baron, Jill S.

    2016-01-01

    Elevated nitrogen (N) deposition due to increased fossil fuel combustion and agricultural practices has altered global carbon (C) cycling. Additions of reactive N to N-limited environments are typically accompanied by increases in plant biomass. Soil C dynamics, however, have shown a range of different responses to the addition of reactive N that seem to be ecosystem dependent. We evaluated the effect of N amendments on biogeochemical characteristics and microbial responses of subalpine forest organic soils in order to develop a mechanistic understanding of how soils are affected by N amendments in subalpine ecosystems. We measured a suite of responses across three years (2011–2013) during two seasons (spring and fall). Following 17 years of N amendments, fertilized soils were more acidic (control mean 5.09, fertilized mean 4.68), and had lower %C (control mean 33.7% C, fertilized mean 29.8% C) and microbial biomass C by 22% relative to control plots. Shifts in biogeochemical properties in fertilized plots were associated with an altered microbial community driven by reduced arbuscular mycorrhizal (control mean 3.2 mol%, fertilized mean 2.5 mol%) and saprotrophic fungal groups (control mean 17.0 mol%, fertilized mean 15.2 mol%), as well as a decrease in N degrading microbial enzyme activity. Our results suggest that decreases in soil C in subalpine forests were in part driven by increased microbial degradation of soil organic matter and reduced inputs to soil organic matter in the form of microbial biomass.

  11. Inferred effects of cloud deposition on forest floor nutrient cycling and microbial properties along a short elevation gradient.

    PubMed

    Lavoie, M; Bradley, R L

    2003-01-01

    Cloud water deposition often increases with elevation, and it is widely accepted that this cloud water increases acid loading to upland forest ecosystems. A study was undertaken in south-eastern Quebec to determine if a 250 m elevation gradient (i.e. 420-665 m), along a uniform sugar-maple stand on the slope of Mount Orford, corresponded to a pH gradient in the forest floor and to predictable changes in soil nutrient availability and microbial properties. Precipitation data from a nearby study, and a photographic survey, provided presumptive evidence that this elevation gradient corresponded to a strong gradient in cloud water deposition. Forest floor temperature did not differ significantly across elevations. Forest floor moisture content was significantly higher, whereas pH and exchangeable Ca and Mg were significantly lower, at the higher elevations. Average seasonal net nitrification rates, determined by long-term laboratory incubations, did not differ significantly across elevations, whereas average seasonal net ammonification rates were significantly higher at higher elevations. Basal respiration rates and microbial biomass did not differ significantly across elevations, but metabolic quotient was significantly higher at higher elevations indicating possible environmental stress on forest floor microbial communities due to cloud water deposition. Anaerobic N mineralisation rates were significantly higher at higher elevations suggesting that N-limited microbial communities frequently exposed to cloud cover can be important short-term sinks for atmospheric N, thereby contributing to increase the active-N fraction of forest floors. We conclude that, where no significant changes in vegetation or temperature occur, elevation gradients can still be used to understand the spatial variability of nutrient cycles and microbial properties. PMID:12685762

  12. Soil biochemical properties and microbial resilience in agroforestry systems: effects on wheat growth under controlled drought and flooding conditions.

    PubMed

    Rivest, David; Lorente, Miren; Olivier, Alain; Messier, Christian

    2013-10-01

    Agroforestry is increasingly viewed as an effective means of maintaining or even increasing crop and tree productivity under climate change while promoting other ecosystem functions and services. This study focused on soil biochemical properties and resilience following disturbance within agroforestry and conventional agricultural systems and aimed to determine whether soil differences in terms of these biochemical properties and resilience would subsequently affect crop productivity under extreme soil water conditions. Two research sites that had been established on agricultural land were selected for this study. The first site included an 18-year-old windbreak, while the second site consisted in an 8-year-old tree-based intercropping system. In each site, soil samples were used for the determination of soil nutrient availability, microbial dynamics and microbial resilience to different wetting-drying perturbations and for a greenhouse pot experiment with wheat. Drying and flooding were selected as water stress treatments and compared to a control. These treatments were initiated at the beginning of the wheat anthesis period and maintained over 10 days. Trees contributed to increase soil nutrient pools, as evidenced by the higher extractable-P (both sites), and the higher total N and mineralizable N (tree-based intercropping site) found in the agroforestry compared to the conventional agricultural system. Metabolic quotient (qCO2) was lower in the agroforestry than in the conventional agricultural system, suggesting higher microbial substrate use efficiency in agroforestry systems. Microbial resilience was higher in the agroforestry soils compared to soils from the conventional agricultural system (windbreak site only). At the windbreak site, wheat growing in soils from agroforestry system exhibited higher aboveground biomass and number of grains per spike than in conventional agricultural system soils in the three water stress treatments. At the tree

  13. Soil biochemical properties and microbial resilience in agroforestry systems: effects on wheat growth under controlled drought and flooding conditions.

    PubMed

    Rivest, David; Lorente, Miren; Olivier, Alain; Messier, Christian

    2013-10-01

    Agroforestry is increasingly viewed as an effective means of maintaining or even increasing crop and tree productivity under climate change while promoting other ecosystem functions and services. This study focused on soil biochemical properties and resilience following disturbance within agroforestry and conventional agricultural systems and aimed to determine whether soil differences in terms of these biochemical properties and resilience would subsequently affect crop productivity under extreme soil water conditions. Two research sites that had been established on agricultural land were selected for this study. The first site included an 18-year-old windbreak, while the second site consisted in an 8-year-old tree-based intercropping system. In each site, soil samples were used for the determination of soil nutrient availability, microbial dynamics and microbial resilience to different wetting-drying perturbations and for a greenhouse pot experiment with wheat. Drying and flooding were selected as water stress treatments and compared to a control. These treatments were initiated at the beginning of the wheat anthesis period and maintained over 10 days. Trees contributed to increase soil nutrient pools, as evidenced by the higher extractable-P (both sites), and the higher total N and mineralizable N (tree-based intercropping site) found in the agroforestry compared to the conventional agricultural system. Metabolic quotient (qCO2) was lower in the agroforestry than in the conventional agricultural system, suggesting higher microbial substrate use efficiency in agroforestry systems. Microbial resilience was higher in the agroforestry soils compared to soils from the conventional agricultural system (windbreak site only). At the windbreak site, wheat growing in soils from agroforestry system exhibited higher aboveground biomass and number of grains per spike than in conventional agricultural system soils in the three water stress treatments. At the tree

  14. Biotic and abiotic properties mediating plant diversity effects on soil microbial communities in an experimental grassland.

    PubMed

    Lange, Markus; Habekost, Maike; Eisenhauer, Nico; Roscher, Christiane; Bessler, Holger; Engels, Christof; Oelmann, Yvonne; Scheu, Stefan; Wilcke, Wolfgang; Schulze, Ernst-Detlef; Gleixner, Gerd

    2014-01-01

    Plant diversity drives changes in the soil microbial community which may result in alterations in ecosystem functions. However, the governing factors between the composition of soil microbial communities and plant diversity are not well understood. We investigated the impact of plant diversity (plant species richness and functional group richness) and plant functional group identity on soil microbial biomass and soil microbial community structure in experimental grassland ecosystems. Total microbial biomass and community structure were determined by phospholipid fatty acid (PLFA) analysis. The diversity gradient covered 1, 2, 4, 8, 16 and 60 plant species and 1, 2, 3 and 4 plant functional groups (grasses, legumes, small herbs and tall herbs). In May 2007, soil samples were taken from experimental plots and from nearby fields and meadows. Beside soil texture, plant species richness was the main driver of soil microbial biomass. Structural equation modeling revealed that the positive plant diversity effect was mainly mediated by higher leaf area index resulting in higher soil moisture in the top soil layer. The fungal-to-bacterial biomass ratio was positively affected by plant functional group richness and negatively by the presence of legumes. Bacteria were more closely related to abiotic differences caused by plant diversity, while fungi were more affected by plant-derived organic matter inputs. We found diverse plant communities promoted faster transition of soil microbial communities typical for arable land towards grassland communities. Although some mechanisms underlying the plant diversity effect on soil microorganisms could be identified, future studies have to determine plant traits shaping soil microbial community structure. We suspect differences in root traits among different plant communities, such as root turnover rates and chemical composition of root exudates, to structure soil microbial communities.

  15. Biotic and Abiotic Properties Mediating Plant Diversity Effects on Soil Microbial Communities in an Experimental Grassland

    PubMed Central

    Lange, Markus; Habekost, Maike; Eisenhauer, Nico; Roscher, Christiane; Bessler, Holger; Engels, Christof; Oelmann, Yvonne; Scheu, Stefan; Wilcke, Wolfgang; Schulze, Ernst-Detlef; Gleixner, Gerd

    2014-01-01

    Plant diversity drives changes in the soil microbial community which may result in alterations in ecosystem functions. However, the governing factors between the composition of soil microbial communities and plant diversity are not well understood. We investigated the impact of plant diversity (plant species richness and functional group richness) and plant functional group identity on soil microbial biomass and soil microbial community structure in experimental grassland ecosystems. Total microbial biomass and community structure were determined by phospholipid fatty acid (PLFA) analysis. The diversity gradient covered 1, 2, 4, 8, 16 and 60 plant species and 1, 2, 3 and 4 plant functional groups (grasses, legumes, small herbs and tall herbs). In May 2007, soil samples were taken from experimental plots and from nearby fields and meadows. Beside soil texture, plant species richness was the main driver of soil microbial biomass. Structural equation modeling revealed that the positive plant diversity effect was mainly mediated by higher leaf area index resulting in higher soil moisture in the top soil layer. The fungal-to-bacterial biomass ratio was positively affected by plant functional group richness and negatively by the presence of legumes. Bacteria were more closely related to abiotic differences caused by plant diversity, while fungi were more affected by plant-derived organic matter inputs. We found diverse plant communities promoted faster transition of soil microbial communities typical for arable land towards grassland communities. Although some mechanisms underlying the plant diversity effect on soil microorganisms could be identified, future studies have to determine plant traits shaping soil microbial community structure. We suspect differences in root traits among different plant communities, such as root turnover rates and chemical composition of root exudates, to structure soil microbial communities. PMID:24816860

  16. Inactivation of possible microorganism food contaminants on packaging foils using nonthermal plasma and hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Scholtz, V.; Khun, J.; Soušková, H.; Čeřovský, M.

    2015-07-01

    The inactivation effect of nonthermal plasma generated in electric discharge burning in air atmosphere with water or hydrogen peroxide aerosol for the application to the microbial decontamination of packaging foils is studied. The microbial inactivation is studied on two bacterial, two yeasts, and two filamentous micromycete species. The inactivation of all contaminating microorganisms becomes on the area of full 8.5 cm in diameter circular sample after short times of several tens of seconds. Described apparatus may present a possible alternative method of microbial decontamination of food packaging material or other thermolabile materials.

  17. Inactivation of possible microorganism food contaminants on packaging foils using nonthermal plasma and hydrogen peroxide

    SciTech Connect

    Scholtz, V. Khun, J.; Soušková, H.; Čeřovský, M.

    2015-07-15

    The inactivation effect of nonthermal plasma generated in electric discharge burning in air atmosphere with water or hydrogen peroxide aerosol for the application to the microbial decontamination of packaging foils is studied. The microbial inactivation is studied on two bacterial, two yeasts, and two filamentous micromycete species. The inactivation of all contaminating microorganisms becomes on the area of full 8.5 cm in diameter circular sample after short times of several tens of seconds. Described apparatus may present a possible alternative method of microbial decontamination of food packaging material or other thermolabile materials.

  18. Soil microbial properties after long-term swine slurry application to conventional and no-tillage systems in Brazil.

    PubMed

    Balota, Elcio L; Machineski, Oswaldo; Hamid, Karima I A; Yada, Ines F U; Barbosa, Graziela M C; Nakatani, Andre S; Coyne, Mark S

    2014-08-15

    Swine waste can be used as an agricultural fertilizer, but large amounts may accumulate excess nutrients in soil or contaminate the surrounding environment. This study evaluated long-term soil amendment (15 years) with different levels of swine slurry to conventional (plow) tillage (CT) and no tillage (NT) soils. Long-term swine slurry application did not affect soil organic carbon. Some chemical properties, such as calcium, base saturation, and aluminum saturation were significantly different within and between tillages for various application rates. Available P and microbial parameters were significantly affected by slurry addition. Depending on tillage, soil microbial biomass and enzyme activity increased up to 120 m(3) ha(-1) year(-1) in all application rates. The NT system had higher microbial biomass and activity than CT at all application levels. There was an inverse relationship between the metabolic quotient (qCO2) and MBC, and the qCO2 was 53% lower in NT than CT. Swine slurry increased overall acid phosphatase activity, but the phosphatase produced per unit of microbial biomass decreased. A comparison of data obtained in the 3rd and 15th years of swine slurry application indicated that despite slurry application the CT system degraded with time while the NT system had improved values of soil quality indicators. For these Brazilian oxisols, swine slurry amendment was insufficient to maintain soil quality parameters in annual crop production without additional changes in tillage management.

  19. Chlorophyll mediated photodynamic inactivation of blue laser on Streptococcus mutans

    NASA Astrophysics Data System (ADS)

    Astuti, Suryani Dyah; Zaidan, A.; Setiawati, Ernie Maduratna; Suhariningsih

    2016-03-01

    Photodynamic inactivation is an inactivation method in microbial pathogens that utilize light and photosensitizer. This study was conducted to investigate photodynamic inactivation effects of low intensity laser exposure with various dose energy on Streptococcus mutans bacteria. The photodynamic inactivation was achieved with the addition of chlorophyll as photosensitizers. To determine the survival percentage of Streptococcus mutans bacteria after laser exposure, the total plate count method was used. For this study, the wavelength of the laser is 405 nm and variables of energy doses are 1.44, 2.87, 4.31, 5.74, 7.18, and 8.61 in J/cm2. The results show that exposure to laser with energy dose of 7.18 J/cm2 has the best photodynamic inactivation with a decrease of 78% in Streptococcus

  20. Response of Soil Properties and Microbial Communities to Agriculture: Implications for Primary Productivity and Soil Health Indicators.

    PubMed

    Trivedi, Pankaj; Delgado-Baquerizo, Manuel; Anderson, Ian C; Singh, Brajesh K

    2016-01-01

    Agricultural intensification is placing tremendous pressure on the soil's capacity to maintain its functions leading to large-scale ecosystem degradation and loss of productivity in the long term. Therefore, there is an urgent need to find early indicators of soil health degradation in response to agricultural management. In recent years, major advances in soil meta-genomic and spatial studies on microbial communities and community-level molecular characteristics can now be exploited as 'biomarker' indicators of ecosystem processes for monitoring and managing sustainable soil health under global change. However, a continental scale, cross biome approach assessing soil microbial communities and their functional potential to identify the unifying principles governing the susceptibility of soil biodiversity to land conversion is lacking. We conducted a meta-analysis from a dataset generated from 102 peer-reviewed publications as well as unpublished data to explore how properties directly linked to soil nutritional health (total C and N; C:N ratio), primary productivity (NPP) and microbial diversity and composition (relative abundance of major bacterial phyla determined by next generation sequencing techniques) are affected in response to agricultural management across the main biomes of Earth (arid, continental, temperate and tropical). In our analysis, we found strong statistical trends in the relative abundance of several bacterial phyla in agricultural (e.g., Actinobacteria and Chloroflexi) and natural (Acidobacteria, Proteobacteria, and Cyanobacteria) systems across all regions and these trends correlated well with many soil properties. However, main effects of agriculture on soil properties and productivity were biome-dependent. Our meta-analysis provides evidence on the predictable nature of the microbial community responses to vegetation type. This knowledge can be exploited in future for developing a new set of indicators for primary productivity and soil

  1. Response of Soil Properties and Microbial Communities to Agriculture: Implications for Primary Productivity and Soil Health Indicators

    PubMed Central

    Trivedi, Pankaj; Delgado-Baquerizo, Manuel; Anderson, Ian C.; Singh, Brajesh K.

    2016-01-01

    Agricultural intensification is placing tremendous pressure on the soil’s capacity to maintain its functions leading to large-scale ecosystem degradation and loss of productivity in the long term. Therefore, there is an urgent need to find early indicators of soil health degradation in response to agricultural management. In recent years, major advances in soil meta-genomic and spatial studies on microbial communities and community-level molecular characteristics can now be exploited as ‘biomarker’ indicators of ecosystem processes for monitoring and managing sustainable soil health under global change. However, a continental scale, cross biome approach assessing soil microbial communities and their functional potential to identify the unifying principles governing the susceptibility of soil biodiversity to land conversion is lacking. We conducted a meta-analysis from a dataset generated from 102 peer-reviewed publications as well as unpublished data to explore how properties directly linked to soil nutritional health (total C and N; C:N ratio), primary productivity (NPP) and microbial diversity and composition (relative abundance of major bacterial phyla determined by next generation sequencing techniques) are affected in response to agricultural management across the main biomes of Earth (arid, continental, temperate and tropical). In our analysis, we found strong statistical trends in the relative abundance of several bacterial phyla in agricultural (e.g., Actinobacteria and Chloroflexi) and natural (Acidobacteria, Proteobacteria, and Cyanobacteria) systems across all regions and these trends correlated well with many soil properties. However, main effects of agriculture on soil properties and productivity were biome-dependent. Our meta-analysis provides evidence on the predictable nature of the microbial community responses to vegetation type. This knowledge can be exploited in future for developing a new set of indicators for primary productivity and

  2. Microbial oxidation of amines. Spectral and kinetic properties of the primary amine dehydrogenase of Pseudomonas AM 1

    PubMed Central

    Eady, R. R.; Large, P. J.

    1971-01-01

    1. An improved procedure is reported for purification of the amine dehydrogenase from methylamine-grown Pseudomonas AM1 which yielded a product homogeneous by sedimentation and disc-electrophoretic analysis, with molecular weight of 133000. 2. The purified enzyme had absorption maxima at 280 and 430nm. On aging, a third peak appeared at 325nm, and the 430nm peak decreased in intensity. This spectrum was independent of pH. 3. Addition of 2.5mm-semicarbazide, phenylhydrazine, hydrazine or hydroxylamine produced modified spectra with maxima respectively at 400, 440, 395 and 425nm. 4. Aerobic addition of methylamine resulted in a bleaching of the 430nm peak and the appearance of a new one at 325nm. This spectral change was retained after removal of the methylamine by dialysis. The original spectrum could be restored on addition of phenazine methosulphate. 5. Addition of borohydride partially inactivated the enzyme and produced spectral changes similar to those observed with methylamine. Pre-treatment with methylamine prevented the inactivation by borohydride. The degree of inactivation could be increased by alternate phenazine methosulphate and borohydride treatments. 6. The addition of methylamine or borohydride each caused shifts in the fluorescence emission maximum from 348 to 380nm. 7. Lineweaver–Burk plots of reciprocal activity against reciprocal concentration of either of the substrates n-butylamine or phenazine methosulphate were consistent with a mechanism that involves interconversion of two free forms of the enzyme by the two substrates. 8. The enzyme, although spectrally modified, was not inactivated by dialysis against diethyldithiocarbamate, and contained about 0.27 g-atom of copper/mol, with small traces of cobalt, iron and zinc. 9. Conventional methods of resolution did not release the prosthetic group. Heat denaturation after treatment of the enzyme with methylamine liberated a yellow chromophore which did not reactivate resolved aspartate

  3. Soy protein hydrolysis with microbial protease to improve antioxidant and functional properties.

    PubMed

    de Oliveira, Cibele Freitas; Corrêa, Ana Paula Folmer; Coletto, Douglas; Daroit, Daniel Joner; Cladera-Olivera, Florencia; Brandelli, Adriano

    2015-05-01

    Soybean proteins are widely used as nutritional and functional food ingredients. This investigation evaluated through a 2(3) central composite design the effect of three variables (pH, temperature and enzyme/substrate (E/S) ratio) on the production of soy protein isolate (SPI) hydrolysates with a microbial protease. Soluble peptides, antioxidant activity, and foaming and emulsifying capabilities of the hydrolysates were analyzed. All variables, as well as their interactions, were significant for the soluble peptides content of SPI hydrolysates. Optimal conditions for obtaining soluble peptides were around 30-35 °C, pH 6.5-9.5, and E/S ratios of 1,650-6,300 U g(-1). SPI hydrolysates produced at 30-45 °C, pH 8.0-9.5, and E/S ratios of 4,000-8,000 U g(-1) showed higher capacity to scavenge the 2,2'-azino-bis-(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS) radical. Models for soluble peptides and ABTS activity of hydrolysates were obtained. In the range studied, the variables had not significant influence on the ability of hydrolysates to scavenge the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical. SPI hydrolysates also presented reducing power and ability to chelate iron. Hydrolysis temperature was significant for the Fe(2+)-chelating ability of hydrolysates. Temperature of hydrolysis was significant for the foaming capacity of hydrolysates, with higher values observed at 45 °C and 8,000 U g(-1). For emulsifying capacity, only E/S ratio presented a significant effect. Temperature and E/S ratio appeared to be more significant variables influencing the properties of the SPI hydrolysates. The results of this study indicate that specific hydrolysis conditions should be selected to obtain SPI hydrolysates with preferred characteristics.

  4. Electricity producing property and bacterial community structure in microbial fuel cell equipped with membrane electrode assembly.

    PubMed

    Rubaba, Owen; Araki, Yoko; Yamamoto, Shuji; Suzuki, Kei; Sakamoto, Hisatoshi; Matsuda, Atsunori; Futamata, Hiroyuki

    2013-07-01

    It is important for practical use of microbial fuel cells (MFCs) to not only develop electrodes and proton exchange membranes but also to understand the bacterial community structure related to electricity generation. Four lactate fed MFCs equipped with different membrane electrode assemblies (MEAs) were constructed with paddy field soil as inoculum. The MEAs significantly affected the electricity-generating properties of the MFCs. MEA-I was made with Nafion 117 solution and the other MEAs were made with different configurations of three kinds of polymers. MFC-I equipped with MEA-I exhibited the highest performance with a stable current density of 55 ± 3 mA m⁻². MFC-III equipped with MEA-III with the highest platinum concentration, exhibited the lowest performance with a stable current density of 1.7 ± 0.1 mA m⁻². SEM observation revealed that there were cracks on MEA-III. These results demonstrated that it is significantly important to prevent oxygen-intrusion for improved MFC performance. By comparing the data of DGGE and phylogenetic analyzes, it was suggested that the dominant bacterial communities of MFC-I were constructed with lactate-fermenters and Fe(III)-reducers, which consisted of bacteria affiliated with the genera of Enterobacter, Dechlorosoma, Pelobacter, Desulfovibrio, Propioniferax, Pelosinus, and Firmicutes. A bacterium sharing 100% similarity to one of the DGGE bands was isolated from MFC-I. The 16S rRNA gene sequence of the isolate shared 98% similarity to gram-positive Propioniferax sp. P7 and it was confirmed that the isolate produced electricity in an MFC. These results suggested that these bacteria are valuable for constructing the electron transfer network in MFC.

  5. Properties and use of botulinum toxin and other microbial neurotoxins in medicine.

    PubMed Central

    Schantz, E J; Johnson, E A

    1992-01-01

    Crystalline botulinum toxin type A was licensed in December 1989 by the Food and Drug Administration for treatment of certain spasmodic muscle disorders following 10 or more years of experimental treatment on human volunteers. Botulinum toxin exerts its action on a muscle indirectly by blocking the release of the neurotransmitter acetylcholine at the nerve ending, resulting in reduced muscle activity or paralysis. The injection of only nanogram quantities (1 ng = 30 mouse 50% lethal doses [U]) of the toxin into a spastic muscle is required to bring about the desired muscle control. The type A toxin produced in anaerobic culture and purified in crystalline form has a specific toxicity in mice of 3 x 10(7) U/mg. The crystalline toxin is a high-molecular-weight protein of 900,000 Mr and is composed of two molecules of neurotoxin (ca. 150,000 Mr) noncovalently bound to nontoxic proteins that play an important role in the stability of the toxic unit and its effective toxicity. Because the toxin is administered by injection directly into neuromuscular tissue, the methods of culturing and purification are vital. Its chemical, physical, and biological properties as applied to its use in medicine are described. Dilution and drying of the toxin for dispensing causes some detoxification, and the mouse assay is the only means of evaluation for human treatment. Other microbial neurotoxins may have uses in medicine; these include serotypes of botulinum toxins and tetanus toxin. Certain neurotoxins produced by dinoflagellates, including saxitoxin and tetrodotoxin, cause muscle paralysis through their effect on the action potential at the voltage-gated sodium channel. Saxitoxin used with anaesthetics lengthens the effect of the anaesthetic and may enhance the effectiveness of other medical drugs. Combining toxins with drugs could increase their effectiveness in treatment of human disease. PMID:1579114

  6. Microbial activity in forest soil reflects the changes in ecosystem properties between summer and winter.

    PubMed

    Žifčáková, Lucia; Větrovský, Tomáš; Howe, Adina; Baldrian, Petr

    2016-01-01

    Understanding the ecology of coniferous forests is very important because these environments represent globally largest carbon sinks. Metatranscriptomics, microbial community and enzyme analyses were combined to describe the detailed role of microbial taxa in the functioning of the Picea abies-dominated coniferous forest soil in two contrasting seasons. These seasons were the summer, representing the peak of plant photosynthetic activity, and late winter, after an extended period with no photosynthate input. The results show that microbial communities were characterized by a high activity of fungi especially in litter where their contribution to microbial transcription was over 50%. Differences in abundance between summer and winter were recorded for 26-33% of bacterial genera and < 15% of fungal genera, but the transcript profiles of fungi, archaea and most bacterial phyla were significantly different among seasons. Further, the seasonal differences were larger in soil than in litter. Most importantly, fungal contribution to total microbial transcription in soil decreased from 33% in summer to 16% in winter. In particular, the activity of the abundant ectomycorrhizal fungi was reduced in winter, which indicates that plant photosynthetic production was likely one of the major drivers of changes in the functioning of microbial communities in this coniferous forest.

  7. Spatial heterogeneity of physicochemical properties explains differences in microbial composition in arid soils from Cuatro Cienegas, Mexico

    PubMed Central

    Pajares, Silvia; Noguez, Ana M.; García-Oliva, Felipe; Martínez-Piedragil, Celeste; Cram, Silke S.; Eguiarte, Luis Enrique; Souza, Valeria

    2016-01-01

    Arid ecosystems are characterized by high spatial heterogeneity, and the variation among vegetation patches is a clear example. Soil biotic and abiotic factors associated with these patches have also been well documented as highly heterogeneous in space. Given the low vegetation cover and little precipitation in arid ecosystems, soil microorganisms are the main drivers of nutrient cycling. Nonetheless, little is known about the spatial distribution of microorganisms and the relationship that their diversity holds with nutrients and other physicochemical gradients in arid soils. In this study, we evaluated the spatial variability of soil microbial diversity and chemical parameters (nutrients and ion content) at local scale (meters) occurring in a gypsum-based desert soil, to gain knowledge on what soil abiotic factors control the distribution of microbes in arid ecosystems. We analyzed 32 soil samples within a 64 m2 plot and: (a) characterized microbial diversity using T-RFLPs of the bacterial 16S rRNA gene, (b) determined soil chemical parameters, and (c) identified relationships between microbial diversity and chemical properties. Overall, we found a strong correlation between microbial composition heterogeneity and spatial variation of cations (Ca2, K+) and anions (HCO\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${}_{3}^{-}$\\end{document}3−, Cl−, SO\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${}_{4}^{2-}$\\end{document}42−) content in this small plot. Our results could be attributable to spatial differences of soil saline content, favoring the patchy emergence of

  8. Spatial heterogeneity of physicochemical properties explains differences in microbial composition in arid soils from Cuatro Cienegas, Mexico

    PubMed Central

    Pajares, Silvia; Noguez, Ana M.; García-Oliva, Felipe; Martínez-Piedragil, Celeste; Cram, Silke S.; Eguiarte, Luis Enrique; Souza, Valeria

    2016-01-01

    Arid ecosystems are characterized by high spatial heterogeneity, and the variation among vegetation patches is a clear example. Soil biotic and abiotic factors associated with these patches have also been well documented as highly heterogeneous in space. Given the low vegetation cover and little precipitation in arid ecosystems, soil microorganisms are the main drivers of nutrient cycling. Nonetheless, little is known about the spatial distribution of microorganisms and the relationship that their diversity holds with nutrients and other physicochemical gradients in arid soils. In this study, we evaluated the spatial variability of soil microbial diversity and chemical parameters (nutrients and ion content) at local scale (meters) occurring in a gypsum-based desert soil, to gain knowledge on what soil abiotic factors control the distribution of microbes in arid ecosystems. We analyzed 32 soil samples within a 64 m2 plot and: (a) characterized microbial diversity using T-RFLPs of the bacterial 16S rRNA gene, (b) determined soil chemical parameters, and (c) identified relationships between microbial diversity and chemical properties. Overall, we found a strong correlation between microbial composition heterogeneity and spatial variation of cations (Ca2, K+) and anions (HCO\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${}_{3}^{-}$\\end{document}3−, Cl−, SO\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${}_{4}^{2-}$\\end{document}42−) content in this small plot. Our results could be attributable to spatial differences of soil saline content, favoring the patchy emergence of

  9. Effects of UV-C treatment on inactivation of Salmonella and Escherichia coli O157:H7 on tomato surface and steam scars, native microbial loads, and quality of grape tomatoes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study investigated the effectiveness of ultraviolet-C (UV-C) light inactivation as affected by the location of pathogens on the smooth surface and at stem scars of Grape tomatoes. A bacterial cocktail containing three strains of E. coli O157:H7 (C9490, E02128 and F00475) and a three serotypes o...

  10. Computer aided microbial safety design of food processes.

    PubMed

    Schellekens, M; Martens, T; Roberts, T A; Mackey, B M; Nicolaï, B M; Van Impe, J F; De Baerdemaeker, J

    1994-12-01

    To reduce the time required for product development, to avoid expensive experimental tests, and to quantify safety risks for fresh products and the consequence of processing there is a growing interest in computer aided food process design. This paper discusses the application of hybrid object-oriented and rule-based expert system technology to represent the data and knowledge of microbial experts and food engineers. Finite element models for heat transfer calculation routines, microbial growth and inactivation models and texture kinetics are combined with food composition data, thermophysical properties, process steps and expert knowledge on type and quantity of microbial contamination. A prototype system has been developed to evaluate changes in food composition, process steps and process parameters on microbiological safety and textual quality of foods.

  11. Microbial community structures and metabolic profiles response differently to physiochemical properties between three landfill cover soils.

    PubMed

    Long, Xi-En; Wang, Juan; Huang, Ying; Yao, Huaiying

    2016-08-01

    Landfills are always the most important part of solid waste management and bear diverse metabolic activities involved in element biogeochemical cycling. There is an increasing interest in understanding the microbial community and activities in landfill cover soils. To improve our knowledge of landfill ecosystems, we determined the microbial physiological profiles and communities in three landfill cover soils (Ninghai: NH, Xiangshan: XS, and Fenghua: FH) of different ages using the MicroResp(TM), phospholipid fatty acid (PLFA), and high-throughput sequencing techniques. Both total PLFAs and glucose-induced respiration suggested more active microorganisms occurred in intermediate cover soils. Microorganisms in all landfill cover soils favored L-malic acid, ketoglutarate, and citric acid. Gram-negative bacterial PLFAs predominated in all samples with the representation of 16:1ω7, 18:1ω7, and cy19:0 in XS and NH sites. Proteobacteria dominated soil microbial phyla across different sites, soil layers, and season samples. Canonical correspondence analysis showed soil pH, dissolved organic C (DOC), As, and total nitrogen (TN) contents significantly influenced the microbial community but TN affected the microbial physiological activities in both summer and winter landfill cover soils. PMID:27117156

  12. Alteration of microbial properties and community structure in soils exposed to napropamide.

    PubMed

    Guo, Hua; Chen, Guofeng; Lv, Zhaoping; Zhao, Hua; Yang, Hong

    2009-01-01

    The effect of pesticide napropamide (N,N-diethyl-2-(1-naphthalenyloxy) propanamide) on soil microorganisms for long-term (56 d) was assessed by monitoring changes in soil microbial biological responses. Soils were treated with napropamide at 0, 2, 10, 20, 40, and 80 mg/kg soil and sampled at intervals of 1, 3, 7, 14, 28, 42, and 56 d. The average microbial biomass C declined in napropamide-treated soils as compared to control. The same trend was observed on microbial biomass N after napropamide application. We also determined the basal soil respiration (BSR) and observed a high level in soils treated with napropamide during the first 7 d of experiment. But with the passage of incubation time, BSR with napropamide decreased relatively to control. Application of napropamide at 2-80 mg/kg soil had inhibitory effects on the activity of urease and invertase. Activity of catalase was enhanced during the initial 7 d of napropamide application, but soon recovered to the basal level. The depressed enzyme activities might be due to the toxicity of napropamide to the soil microbial populations. To further understand the effect of napropamide on microbial communities, a PCR-DGGE-based experiment and cluster analysis of 16S rDNA community profiles were performed. Our analysis revealed an apparent difference in bacterial-community composition between the napropamide treatments and control. Addition of napropamide apparently increased the number of bands during the 7-14 d of incubation. These results imply that napropamide-induced toxicity was responsible for the disturbance of the microbial populations in soil. PMID:19634425

  13. Microbial community composition and enzyme activities in cryoturbated arctic soils are controlled by environmental parameters rather than by soil organic matter properties

    NASA Astrophysics Data System (ADS)

    Schnecker, Jörg; Wild, Birgit; Hofhansl, Florian; Eloy Alves, Ricardo J.; Bárta, Jiří; Čapek, Petr; Fuchslueger, Lucia; Gentsch, Norman; Gittel, Antje; Guggenberger, Georg; Lashchinskiy, Nikolay; Mikutta, Robert; Šantrůčková, Hana; Shibistova, Olga; Knoltsch, Anna; Takriti, Mounir; Urich, Tim; Richter, Andreas

    2014-05-01

    Enzyme-mediated decomposition of soil organic matter (SOM) is controlled by environmental parameters (i.e. temperature, moisture, pH) and organic matter properties. The role of these factors as well as the role of microbial community composition and therefore the main drivers of enzymatic decomposition of SOM are largely unknown, since all of these factors are often intercorrelated. We investigated soils from three regions in the Siberian Arctic, where carbon rich topsoil material has been incorporated into the subsoil (cryoturbation). We took advantage of this combination of topsoil organic matter and subsoil environmental conditions, to identify controls on microbial community composition and enzyme activities. We found that microbial community composition (estimated by phospholipid fatty acids analysis), was similar in cryoturbated OM and in surrounding subsoil, although C and N content were similar in cryoturbated material and topsoils. These results suggest that physical conditions rather than SOM properties shaped microbial community composition. To identify direct and indirect drivers of extracellular enzyme activities (cellobiohydrolase, leucine-amino-peptidase and phenoloxidase) we included microbial community composition, C, N and clay content, as well as pH in structural equation models. Models for regular horizons (excluding cryoturbated material), showed that enzyme activities were mainly controlled by C or N. Microbial community composition had no effect. In contrast models for cryoturbated OM, where the microbial community was adapted to subsoil environmental conditions, showed that enzyme activities were also related to microbial community composition. This indicates enzyme activities and more general decomposition to be limited by microbial community composition in cryoturbated organic matter, rather than by the availability of the substrates. The controlling cascade of physical parameters over microbial community composition to enzyme activities

  14. Effect of Inoculation of Acacia senegal mature trees with Mycorrhiza and Rhizobia on soil properties and microbial community structure

    NASA Astrophysics Data System (ADS)

    Assigbetsé, K.; Ciss, I.; Bakhoum, N.; Dieng, L.

    2012-04-01

    Inoculation of legume plants with symbiotic microorganisms is widely used to improve their development and productivity. The objective of this study was to investigate the effect of inoculation of Acacia senegal mature trees with rhizobium (Sinorhizobium) and arbuscular mycorrhizal fungus (G. mosseae, G. fasciculatum, G. intraradices) either singly or in combination, on soil properties, activity and the genetic structure of soil microbial communities. The experiment set up in Southern Senegal consisted of 4 randomized blocks of A. senegal mature trees with 4 treatments including inoculated trees with Rhizobium (R), mycorrhizal fungus (M) and with Rhizobium+mycorhizal fungus (RM) and non-inoculated control (CON). Soil were sampled 2 years after the inoculation. Soil pH, C and N and available P contents were measured. The microbial abundance and activity were measured in terms of microbial biomass C (MBC) and basal soil respiration. The community structure of the total bacterial, diazotrophic and denitrifying communities was assessed by denaturing gradient gel electrophoresis of 16S rDNA, nifH and nirK genes respectively. Inoculations with symbiont under field conditions have increased soil pH. The C and N contents were enhanced in the dual-inoculated treatments (RM). The mycorrhized treatment have displayed the lowest available P contents while RM and R treatments exhibited higher contents rates. The microbial biomass C rates were higher in treatments co-inoculated with AM fungi and Rhizobium than in those inoculated singly with AM fungi or Rhizobium strains. The basal soil respiration were positively correlated to MBC, and the highest rates were found in the co-inoculated treatments. Fingerprints of 16S rDNA gene exhibited similar patterns between inoculated treatments and the control showing that the inoculation of mature trees have not impacted the total bacterial community structure. In contrast, the inoculated treatments have displayed individually different

  15. PHYSICOCHEMICAL PROPERTIES AS PREDICTORS OF ORGANIC CHEMICAL EFFECTS ON SOIL MICROBIAL RESPIRATION

    EPA Science Inventory

    Structure-activity analysis was used to evaluate the effects of 19 hazardous organic chemicals on microbial respiration in two slightly acidic soils (a Captina silt loam from Roane County Tennessee, and a McLaurin sandy loam from Stone County, Mississippi), both low in organic ca...

  16. Key Edaphic Properties Largely Explain Temporal and Geographic Variation in Soil Microbial Communities across Four Biomes

    PubMed Central

    Borton, Hannah M.; Espinosa, Noelle; Gebhardt, Martha; Gil-Loaiza, Juliana; Gutknecht, Jessica L. M.; Maes, Patrick W.; Mott, Brendon M.; Parnell, John Jacob; Purdy, Gayle; Rodrigues, Pedro A. P.; Stanish, Lee F.; Walser, Olivia N.

    2015-01-01

    Soil microbial communities play a critical role in nutrient transformation and storage in all ecosystems. Quantifying the seasonal and long-term temporal extent of genetic and functional variation of soil microorganisms in response to biotic and abiotic changes within and across ecosystems will inform our understanding of the effect of climate change on these processes. We examined spatial and seasonal variation in microbial communities based on 16S rRNA gene sequencing and phospholipid fatty acid (PLFA) composition across four biomes: a tropical broadleaf forest (Hawaii), taiga (Alaska), semiarid grassland-shrubland (Utah), and a subtropical coniferous forest (Florida). In this study, we used a team-based instructional approach leveraging the iPlant Collaborative to examine publicly available National Ecological Observatory Network (NEON) 16S gene and PLFA measurements that quantify microbial diversity, composition, and growth. Both profiling techniques revealed that microbial communities grouped strongly by ecosystem and were predominately influenced by three edaphic factors: pH, soil water content, and cation exchange capacity. Temporal variability of microbial communities differed by profiling technique; 16S-based community measurements showed significant temporal variability only in the subtropical coniferous forest communities, specifically through changes within subgroups of Acidobacteria. Conversely, PLFA-based community measurements showed seasonal shifts in taiga and tropical broadleaf forest systems. These differences may be due to the premise that 16S-based measurements are predominantly influenced by large shifts in the abiotic soil environment, while PLFA-based analyses reflect the metabolically active fraction of the microbial community, which is more sensitive to local disturbances and biotic interactions. To address the technical issue of the response of soil microbial communities to sample storage temperature, we compared 16S-based community

  17. Key Edaphic Properties Largely Explain Temporal and Geographic Variation in Soil Microbial Communities across Four Biomes.

    PubMed

    Docherty, Kathryn M; Borton, Hannah M; Espinosa, Noelle; Gebhardt, Martha; Gil-Loaiza, Juliana; Gutknecht, Jessica L M; Maes, Patrick W; Mott, Brendon M; Parnell, John Jacob; Purdy, Gayle; Rodrigues, Pedro A P; Stanish, Lee F; Walser, Olivia N; Gallery, Rachel E

    2015-01-01

    Soil microbial communities play a critical role in nutrient transformation and storage in all ecosystems. Quantifying the seasonal and long-term temporal extent of genetic and functional variation of soil microorganisms in response to biotic and abiotic changes within and across ecosystems will inform our understanding of the effect of climate change on these processes. We examined spatial and seasonal variation in microbial communities based on 16S rRNA gene sequencing and phospholipid fatty acid (PLFA) composition across four biomes: a tropical broadleaf forest (Hawaii), taiga (Alaska), semiarid grassland-shrubland (Utah), and a subtropical coniferous forest (Florida). In this study, we used a team-based instructional approach leveraging the iPlant Collaborative to examine publicly available National Ecological Observatory Network (NEON) 16S gene and PLFA measurements that quantify microbial diversity, composition, and growth. Both profiling techniques revealed that microbial communities grouped strongly by ecosystem and were predominately influenced by three edaphic factors: pH, soil water content, and cation exchange capacity. Temporal variability of microbial communities differed by profiling technique; 16S-based community measurements showed significant temporal variability only in the subtropical coniferous forest communities, specifically through changes within subgroups of Acidobacteria. Conversely, PLFA-based community measurements showed seasonal shifts in taiga and tropical broadleaf forest systems. These differences may be due to the premise that 16S-based measurements are predominantly influenced by large shifts in the abiotic soil environment, while PLFA-based analyses reflect the metabolically active fraction of the microbial community, which is more sensitive to local disturbances and biotic interactions. To address the technical issue of the response of soil microbial communities to sample storage temperature, we compared 16S-based community

  18. Key Edaphic Properties Largely Explain Temporal and Geographic Variation in Soil Microbial Communities across Four Biomes.

    PubMed

    Docherty, Kathryn M; Borton, Hannah M; Espinosa, Noelle; Gebhardt, Martha; Gil-Loaiza, Juliana; Gutknecht, Jessica L M; Maes, Patrick W; Mott, Brendon M; Parnell, John Jacob; Purdy, Gayle; Rodrigues, Pedro A P; Stanish, Lee F; Walser, Olivia N; Gallery, Rachel E

    2015-01-01

    Soil microbial communities play a critical role in nutrient transformation and storage in all ecosystems. Quantifying the seasonal and long-term temporal extent of genetic and functional variation of soil microorganisms in response to biotic and abiotic changes within and across ecosystems will inform our understanding of the effect of climate change on these processes. We examined spatial and seasonal variation in microbial communities based on 16S rRNA gene sequencing and phospholipid fatty acid (PLFA) composition across four biomes: a tropical broadleaf forest (Hawaii), taiga (Alaska), semiarid grassland-shrubland (Utah), and a subtropical coniferous forest (Florida). In this study, we used a team-based instructional approach leveraging the iPlant Collaborative to examine publicly available National Ecological Observatory Network (NEON) 16S gene and PLFA measurements that quantify microbial diversity, composition, and growth. Both profiling techniques revealed that microbial communities grouped strongly by ecosystem and were predominately influenced by three edaphic factors: pH, soil water content, and cation exchange capacity. Temporal variability of microbial communities differed by profiling technique; 16S-based community measurements showed significant temporal variability only in the subtropical coniferous forest communities, specifically through changes within subgroups of Acidobacteria. Conversely, PLFA-based community measurements showed seasonal shifts in taiga and tropical broadleaf forest systems. These differences may be due to the premise that 16S-based measurements are predominantly influenced by large shifts in the abiotic soil environment, while PLFA-based analyses reflect the metabolically active fraction of the microbial community, which is more sensitive to local disturbances and biotic interactions. To address the technical issue of the response of soil microbial communities to sample storage temperature, we compared 16S-based community

  19. Microbial properties of mine spoil materials in the initial stages of soil development

    SciTech Connect

    Machulla, G.; Bruns, M.A.; Scow, K.M.

    2005-08-01

    The early years of soil genesis during mine spoil reclamation are critical for vegetative establishment and may help predict reclamation success. Mine spoils in the Halle-Leipzig region of Germany were analyzed for microbial changes following a hay mulch-seeding treatment without topsoil or fertilizer application. Microbial biomass carbon (C{sub mic}) and dehydrogenase activity (DHA) of spoils were measured each year in the first 3 yr after treatment. In the third year, bacterial community DNA fingerprints were compared with those from a reference soil. Microbial indicators were measured at three depths in the upper 10 cm of spoils at three sites with contrasting parent materials: glacial till (sandy loam), limnic tertiary sediments (high-lignite sandy clay loam), and quaternary sand and gravel (loamy sand). Before reclamation, C{sub mic} means and standard deviations of surface spoils (0-1 cm) were 9{+-}6, 39{+-}11, and 38{+-}16 mg kg{sup -1} for the loamy sand, high-lignite sandy clay loam, and sandy loam spoils, respectively. Within one year, mean C{sub mic} at the surface increased to 148{+-}70, 229{+-}64, and 497{+-}167 mg kg{sup -1}, respectively, and was significantly higher at 0 to 1 cm than at lower depths. Highest DHA and DNA yields were obtained in the 0- to 1-cm depth of the sandy loam spoils. Microbial biomass C values exhibited significant correlations with DHA, DNA yield, and extractable C for all three mine spoils. Soil microbial indices were more responsive than plant measurements to differences in parent materials.

  20. Effects of material properties and speed of compression on microbial survival and tensile strength in diclofenac tablet formulations.

    PubMed

    Ayorinde, J O; Itiola, O A; Odeniyi, M A

    2013-03-01

    A work has been done to study the effects of material properties and compression speed on microbial survival and tensile strength in diclofenac tablet formulations. Tablets were produced from three formulations containing diclofenac and different excipients (DC, DL and DDCP). Two types of machines (Hydraulic hand press and single punch press), which compress the tablets at different speeds, were used. The compression properties of the tablets were analyzed using Heckel and Kawakita equations. A 3-dimensional plot was produced to determine the relationship between the tensile strength, compression speed and percentage survival of Bacillus subtilis in the diclofenac tablets. The mode of consolidation of diclofenac was found to depends on the excipient used in the formulation. DC deformed mainly by plastic flow with the lowest Py and Pk values. DL deformed plastically at the initial stage, followed by fragmentation at the later stage of compression, whereas DDCP deformed mainly by fragmentation with the highest Py and Pk values. The ranking of the percentage survival of B. subtilis in the formulations was DDCP > DL > DC, whereas the ranking of the tensile strength of the tablets was DDCP > DL > DC. Tablets produced on a hydraulic hand press with a lower compression speed had a lower percentage survival of microbial contaminants than those produced on a single punch press, which compressed the tablets at a much higher speed. The mode of consolidation of the materials and the speed at which tablet compression is carried out have effects on both the tensile strength of the tablets and the extent of destruction of microbial contaminants in diclofenac tablet formulations.

  1. The PathoChip, a functional gene array for assessing pathogenic properties of diverse microbial communities

    PubMed Central

    Lee, Yong-Jin; van Nostrand, Joy D; Tu, Qichao; Lu, Zhenmei; Cheng, Lei; Yuan, Tong; Deng, Ye; Carter, Michelle Q; He, Zhili; Wu, Liyou; Yang, Fang; Xu, Jian; Zhou, Jizhong

    2013-01-01

    Pathogens present in the environment pose a serious threat to human, plant and animal health as evidenced by recent outbreaks. As many pathogens can survive and proliferate in the environment, it is important to understand their population dynamics and pathogenic potential in the environment. To assess pathogenic potential in diverse habitats, we developed a functional gene array, the PathoChip, constructed with key virulence genes related to major virulence factors, such as adherence, colonization, motility, invasion, toxin, immune evasion and iron uptake. A total of 3715 best probes were selected from 13 virulence factors, covering 7417 coding sequences from 1397 microbial species (2336 strains). The specificity of the PathoChip was computationally verified, and approximately 98% of the probes provided specificity at or below the species level, proving its excellent capability for the detection of target sequences with high discrimination power. We applied this array to community samples from soil, seawater and human saliva to assess the occurrence of virulence genes in natural environments. Both the abundance and diversity of virulence genes increased in stressed conditions compared with their corresponding controls, indicating a possible increase in abundance of pathogenic bacteria under environmental perturbations such as warming or oil spills. Statistical analyses showed that microbial communities harboring virulence genes were responsive to environmental perturbations, which drove changes in abundance and distribution of virulence genes. The PathoChip provides a useful tool to identify virulence genes in microbial populations, examine the dynamics of virulence genes in response to environmental perturbations and determine the pathogenic potential of microbial communities. PMID:23765101

  2. Estimation of Antimicrobial Properties of Aqueous and Alcoholic Extracts of Salvadora Persica (Miswak) on Oral Microbial Pathogens - An Invitro Study

    PubMed Central

    Siddeeqh, Salman; Jose, Maji; Pai, Vidya

    2016-01-01

    Introduction Twigs of Salvadora persica (Miswak) plant are being used as a means of oral hygiene since ages for brushing teeth. Though clinical research and trials have shown promising results on effectiveness of Miswak, but some reports are conflicting. Aim To evaluate the antimicrobial activity of crude aqueous and alcoholic extracts of Salvadora persica (Miswak) against the common microbial pathogens causing dental caries and periodontitis. Materials and Methods A prospective study of one year duration was conducted in Yenopoya dental and medical college, Mangalore. The twigs of Salvadora persica were collected and alcoholic and aqueous extracts were prepared using standard techniques. The antimicrobial properties of the extracts against common oral pathogens like Streptococcus mutans, Streptococcus mitis, Candida albicans, Lactobacillus acidophilus, Prevotella intermedia, & Peptostreptococcus were performed by agar well diffusion method and two fold broth dilution method. Results No significant results was obtained when water extracts of Salvadora persica was tested except for minimum inhibitory effect against Streptococcus mutans, Prevotella intermedia & Peptostreptococcus and Candida albicans. Relatively significant inhibitory effect was noted with respect to alcoholic extract of Salvadora persica. Conclusion Although comparatively less than chlorhexidine which is a known antimicrobial agent, the alcoholic extracts of Salvadora persica showed antimicrobial effect against the common microbial pathogens causing dental caries and periodontitis indicating a potential beneficial effect of this plant. However, further research with more standardized extraction procedure and advanced techniques is required to find out the exact chemicals responsible for the antimicrobial properties of the plant extract. PMID:27790459

  3. [Metabolic properties of the microbial community in the biofilters using biolog microplates].

    PubMed

    Xi, Jin-Ying; Hu, Hong-Ying; Jiang, Jian; Qian, Yi

    2005-07-01

    It is very important to know the structure and metabolic function of the microbial community in a bioreactor in order to improve its performance. In this study, two biofilters, packed with wood chips and granular activated carbons respectively, were operated for 160 days to treat toluene gas. The metabolic profiles of the microbial communities in the biofilters were monitored using Biolog microplates periodically during the experiments. The metabolic activities of the microorganisms in both biofilters were observed to decrease during long-term operation. According to the results of principle components analysis, the metabolic profiles of the microbial communities did not change much in the former period of the operation, but they changed in the inlet layers on day 103 and changed throughout the filter beds on day 160. The variation of the metabolic profiles in both biofilters showed little difference, which suggested that the packing media had little effect on them during long-term operation. Among the 95 carbon sources in Biolog microplate, carboxylic acids and amino acids were much easier to be utilized by the microorganisms in the biofilters than the other carbon

  4. Modeling of inactivation of surface borne microorganisms occurring on seeds by cold atmospheric plasma (CAP)

    NASA Astrophysics Data System (ADS)

    Mitra, Anindita; Li, Y.-F.; Shimizu, T.; Klämpfl, Tobias; Zimmermann, J. L.; Morfill, G. E.

    2012-10-01

    Cold Atmospheric Plasma (CAP) is a fast, low cost, simple, easy to handle technology for biological application. Our group has developed a number of different CAP devices using the microwave technology and the surface micro discharge (SMD) technology. In this study, FlatPlaSter2.0 at different time intervals (0.5 to 5 min) is used for microbial inactivation. There is a continuous demand for deactivation of microorganisms associated with raw foods/seeds without loosing their properties. This research focuses on the kinetics of CAP induced microbial inactivation of naturally growing surface microorganisms on seeds. The data were assessed for log- linear and non-log-linear models for survivor curves as a function of time. The Weibull model showed the best fitting performance of the data. No shoulder and tail was observed. The models are focused in terms of the number of log cycles reduction rather than on classical D-values with statistical measurements. The viability of seeds was not affected for CAP treatment times up to 3 min with our device. The optimum result was observed at 1 min with increased percentage of germination from 60.83% to 89.16% compared to the control. This result suggests the advantage and promising role of CAP in food industry.

  5. Low-temperature STM studies of electronic properties of microbial nanowires

    NASA Astrophysics Data System (ADS)

    Walsh, Kathy; Lampa-Pastirk, Sanela; Veazey, Joshua; Reguera, Gemma; Tessmer, Stuart

    2013-03-01

    Geobacter sulfurreducens expresses pili that act as electrically conductive nanowires. These microbial nanowires transport metabolically generated electrons outside the cell body to electron acceptors in the organism's environment. We have performed scanning tunneling microscopy and spectroscopy on these pili in an endeavor to elucidate the mechanism of conductivity. In particular, we will discuss spectroscopy curves acquired at a temperature of 77 K. This work supported by the NSF-MCB Grant No. 1021948 and a Strategic Partnership Grant from the Michigan State University Foundation. K.W. acknowledges support from a U.S. Department of Education GAANN fellowship.

  6. [Variation of soil physicochemical and microbial properties in degraded steppes in Hulunbeir of China].

    PubMed

    Lin, Lu; Wu, Yun-Na; Kenji, Tamura; Huo, Guang-Wei; Luo, Wen-Tao; Lü, Jian-Zhou

    2013-12-01

    To investigate the influence of degradation on grassland, we sampled soil and plants at three sites respectively under light, moderate and severe degradation in Hulunbeir Grassland in northern China and analyzed the differences and relationships among soil physicochemical characters, enzyme activity, soil microorganism quantity and aboveground biomass. The results showed that species richness of the moderately degraded site was highest while the aboveground biomass at the lightly degraded site was significantly higher than at the severely degraded site. Soil moisture content, nutrients (organic matter and total nitrogen) concentrations, soil microorganism quantity and enzyme activity were all decreased significantly in the degraded sites, whereas both the soil hardness and bulk density showed an opposite trend. The soil microbial biomass carbon and nitrogen contents ranged from 128 to 185 g x kg(-1) and from 5.6 to 13.6 g x kg(-1), respectively. The soil dehydrogenase and urease activities negatively correlated with soil bulk density but positively correlated with total nitrogen, organic matter, microbial biomass carbon and nitrogen. The aboveground biomass showed significantly positive correlation with the number of soil bacteria and fungi.

  7. [Production and study of the immunogenic properties of a bivalent inactivated vaccine against mucosal disease (bovine viral diarrhea and infectious rhinotracheitis)].

    PubMed

    Tsvetkov, P; Petkova, K; Bachiĭski, L; Kharalambiev, Kh E

    1979-01-01

    Bivalent inactivated vaccine against mucous disease (MD) and infectious rhinotracheitis (IR) in cattle was produced from cell cultural MD and IR virus suspensions. The vaccine was concentrated on aluminium hydroxide, inactivated by ethanol and is without residual virus. Saponine in final 1:1500 dilution is added as supplementary adjuvant. Immunogeneity of the vaccine was tested on 10-month-old calves, which had shown full resistance against experimental infection with virulent strains of both viruses. Testing on calves for harmlessness by use of a five-fold higher vaccine dose indicated complete tolerance of the vaccine. The prophylactic effect of the vaccine applied in practical work to directly threatened with immediate MD and IR infection cows, including pregnant ones, consisted in reduced number of cases of abortion, of inborn malformations, in lower neonatal calf death-rate, etc. No disturbances were observed following two-fold vaccination of the animals, a fact proving its harmlessness. The positive results of the studied vaccine allow its further application in the combined prophylaxis of MD and IR in calf fattening and breeding complexes.

  8. [Production and study of the immunogenic properties of a bivalent inactivated vaccine against mucosal disease (bovine viral diarrhea and infectious rhinotracheitis)].

    PubMed

    Tsvetkov, P; Petkova, K; Bachiĭski, L; Kharalambiev, Kh E

    1979-01-01

    Bivalent inactivated vaccine against mucous disease (MD) and infectious rhinotracheitis (IR) in cattle was produced from cell cultural MD and IR virus suspensions. The vaccine was concentrated on aluminium hydroxide, inactivated by ethanol and is without residual virus. Saponine in final 1:1500 dilution is added as supplementary adjuvant. Immunogeneity of the vaccine was tested on 10-month-old calves, which had shown full resistance against experimental infection with virulent strains of both viruses. Testing on calves for harmlessness by use of a five-fold higher vaccine dose indicated complete tolerance of the vaccine. The prophylactic effect of the vaccine applied in practical work to directly threatened with immediate MD and IR infection cows, including pregnant ones, consisted in reduced number of cases of abortion, of inborn malformations, in lower neonatal calf death-rate, etc. No disturbances were observed following two-fold vaccination of the animals, a fact proving its harmlessness. The positive results of the studied vaccine allow its further application in the combined prophylaxis of MD and IR in calf fattening and breeding complexes. PMID:232586

  9. Changes of microbial spoilage, lipid-protein oxidation and physicochemical properties during post mortem refrigerated storage of goat meat.

    PubMed

    Sabow, Azad Behnan; Sazili, Awis Qurni; Aghwan, Zeiad Amjad; Zulkifli, Idrus; Goh, Yong Meng; Ab Kadir, Mohd Zainal Abidin; Nakyinsige, Khadijah; Kaka, Ubedullah; Adeyemi, Kazeem Dauda

    2016-06-01

    Examined was the effect of post mortem refrigerated storage on microbial spoilage, lipid-protein oxidation and physicochemical traits of goat meat. Seven Boer bucks were slaughtered, eviscerated and aged for 24 h. The Longissimus lumborum (LL) and Semitendinosus (ST) muscles were excised and subjected to 13 days post mortem refrigerated storage. The pH, lipid and protein oxidation, tenderness, color and drip loss were determined in LL while microbiological analysis was performed on ST. Bacterial counts generally increased with increasing aging time and the limit for fresh meat was reached at day 14 post mortem. Significant differences were observed in malondialdehyde (MDA) content at day 7 of storage. The thiol concentration significantly reduced as aging time increased. The band intensities of myosin heavy chain (MHC) and troponin-T significantly decreased as storage progressed, while actin remained relatively stable. After 14 days of aging, tenderness showed significant improvement while muscle pH and drip loss reduced with increase in storage time. Samples aged for 14 days had higher lightness (P < 0.05) and lower (P < 0.05) yellowness and redness. Post mortem refrigerated storage influenced oxidative and microbial stability and physico-chemical properties of goat meat. PMID:26890722

  10. Ribosome-inactivating proteins

    PubMed Central

    Walsh, Matthew J; Dodd, Jennifer E; Hautbergue, Guillaume M

    2013-01-01

    Ribosome-inactivating proteins (RIPs) were first isolated over a century ago and have been shown to be catalytic toxins that irreversibly inactivate protein synthesis. Elucidation of atomic structures and molecular mechanism has revealed these proteins to be a diverse group subdivided into two classes. RIPs have been shown to exhibit RNA N-glycosidase activity and depurinate the 28S rRNA of the eukaryotic 60S ribosomal subunit. In this review, we compare archetypal RIP family members with other potent toxins that abolish protein synthesis: the fungal ribotoxins which directly cleave the 28S rRNA and the newly discovered Burkholderia lethal factor 1 (BLF1). BLF1 presents additional challenges to the current classification system since, like the ribotoxins, it does not possess RNA N-glycosidase activity but does irreversibly inactivate ribosomes. We further discuss whether the RIP classification should be broadened to include toxins achieving irreversible ribosome inactivation with similar turnovers to RIPs, but through different enzymatic mechanisms. PMID:24071927

  11. Inactivation of Escherichia coli, Saccharomyces cerevisiae, and Lactobacillus brevis in Low-fat Milk by Pulsed Electric Field Treatment: A Pilot-scale Study.

    PubMed

    Lee, Gun Joon; Han, Bok Kung; Choi, Hyuk Joon; Kang, Shin Ho; Baick, Seung Chun; Lee, Dong-Un

    2015-01-01

    We investigated the effects of a pulsed electric field (PEF) treatment on microbial inactivation and the physical properties of low-fat milk. Milk inoculated with Escherichia coli, Saccharomyces cerevisiae, or Lactobacillus brevis was supplied to a pilot-scale PEF treatment system at a flow rate of 30 L/h. Pulses with an electric field strength of 10 kV/cm and a pulse width of 30 μs were applied to the milk with total pulse energies of 50-250 kJ/L achieved by varying the pulse frequency. The inactivation curves of the test microorganisms were biphasic with an initial lag phase (or shoulder) followed by a phase of rapid inactivation. PEF treatments with a total pulse energy of 200 kJ/L resulted in a 4.5-log reduction in E. coli, a 4.4-log reduction in L. brevis, and a 6.0-log reduction in S. cerevisiae. Total pulse energies of 200 and 250 kJ/L resulted in greater than 5-log reductions in microbial counts in stored PEF-treated milk, and the growth of surviving microorganisms was slow during storage for 15 d at 4℃. PEF treatment did not change milk physical properties such as pH, color, or particle-size distribution (p<0.05). These results indicate that a relatively low electric-field strength of 10 kV/cm can be used to pasteurize low-fat milk. PMID:26877640

  12. Inactivation of Escherichia coli, Saccharomyces cerevisiae, and Lactobacillus brevis in Low-fat Milk by Pulsed Electric Field Treatment: A Pilot-scale Study

    PubMed Central

    Han, Bok Kung; Choi, Hyuk Joon; Kang, Shin Ho; Baick, Seung Chun

    2015-01-01

    We investigated the effects of a pulsed electric field (PEF) treatment on microbial inactivation and the physical properties of low-fat milk. Milk inoculated with Escherichia coli, Saccharomyces cerevisiae, or Lactobacillus brevis was supplied to a pilot-scale PEF treatment system at a flow rate of 30 L/h. Pulses with an electric field strength of 10 kV/cm and a pulse width of 30 μs were applied to the milk with total pulse energies of 50-250 kJ/L achieved by varying the pulse frequency. The inactivation curves of the test microorganisms were biphasic with an initial lag phase (or shoulder) followed by a phase of rapid inactivation. PEF treatments with a total pulse energy of 200 kJ/L resulted in a 4.5-log reduction in E. coli, a 4.4-log reduction in L. brevis, and a 6.0-log reduction in S. cerevisiae. Total pulse energies of 200 and 250 kJ/L resulted in greater than 5-log reductions in microbial counts in stored PEF-treated milk, and the growth of surviving microorganisms was slow during storage for 15 d at 4℃. PEF treatment did not change milk physical properties such as pH, color, or particle-size distribution (p<0.05). These results indicate that a relatively low electric-field strength of 10 kV/cm can be used to pasteurize low-fat milk. PMID:26877640

  13. Feedback-Based, System-Level Properties of Vertebrate-Microbial Interactions

    PubMed Central

    Rivas, Ariel L.; Jankowski, Mark D.; Piccinini, Renata; Leitner, Gabriel; Schwarz, Daniel; Anderson, Kevin L.; Fair, Jeanne M.; Hoogesteijn, Almira L.; Wolter, Wilfried; Chaffer, Marcelo; Blum, Shlomo; Were, Tom; Konah, Stephen N.; Kempaiah, Prakash; Ong’echa, John M.; Diesterbeck, Ulrike S.; Pilla, Rachel; Czerny, Claus-Peter; Hittner, James B.; Hyman, James M.; Perkins, Douglas J.

    2013-01-01

    Background Improved characterization of infectious disease dynamics is required. To that end, three-dimensional (3D) data analysis of feedback-like processes may be considered. Methods To detect infectious disease data patterns, a systems biology (SB) and evolutionary biology (EB) approach was evaluated, which utilizes leukocyte data structures designed to diminish data variability and enhance discrimination. Using data collected from one avian and two mammalian (human and bovine) species infected with viral, parasite, or bacterial agents (both sensitive and resistant to antimicrobials), four data structures were explored: (i) counts or percentages of a single leukocyte type, such as lymphocytes, neutrophils, or macrophages (the classic approach), and three levels of the SB/EB approach, which assessed (ii) 2D, (iii) 3D, and (iv) multi-dimensional (rotating 3D) host-microbial interactions. Results In all studies, no classic data structure discriminated disease-positive (D+, or observations in which a microbe was isolated) from disease-negative (D–, or microbial-negative) groups: D+ and D– data distributions overlapped. In contrast, multi-dimensional analysis of indicators designed to possess desirable features, such as a single line of observations, displayed a continuous, circular data structure, whose abrupt inflections facilitated partitioning into subsets statistically significantly different from one another. In all studies, the 3D, SB/EB approach distinguished three (steady, positive, and negative) feedback phases, in which D– data characterized the steady state phase, and D+ data were found in the positive and negative phases. In humans, spatial patterns revealed false-negative observations and three malaria-positive data classes. In both humans and bovines, methicillin-resistant Staphylococcus aureus (MRSA) infections were discriminated from non-MRSA infections. Conclusions More information can be extracted, from the same data, provided that data are

  14. Comparative Metagenomics of Gut and Ocean: Identification of Microbial Marker Genes for Complex Environmental Properties(2011 JGI User Meeting)

    ScienceCinema

    Bork, Peer

    2016-07-12

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Peer Bork of the European Molecular Biology Laboratory on "Comparative Metagenomics of Gut and Ocean: Identification of Microbial Marker Genes for Complex Environmental Properties" at the 6th annual Genomics of Energy & Environment Meeting on March 23, 2011

  15. Effects of earthworms on physicochemical properties and microbial profiles during vermicomposting of fresh fruit and vegetable wastes.

    PubMed

    Huang, Kui; Li, Fusheng; Wei, Yongfen; Fu, Xiaoyong; Chen, Xuemin

    2014-10-01

    This study aimed to investigate the effect of earthworms on physicochemical and microbial properties during vermicomposting of fresh fruit and vegetable wastes (FVW) by contrasting two decomposing systems of FVW with and without earthworms for 5weeks. Compared to control treatment (without earthworms), vermicomposting treatment resulted in a rapid decrease of electrical conductivity and losses of total carbon and nitrogen from the 2nd week. Quantitative PCR displayed that earthworms markedly enhanced bacterial and fungal densities, showing the higher values than control, during the whole decomposition process. In addition, denaturing gradient gel electrophoresis combined with sequencing analysis revealed that earthworms pronouncedly modified bacterial and fungal community structures, through broadening the community diversities of Actinobacteria, Bacteroidetes, Proteobacteria, and Ascomycotina. These results suggest that the presence of earthworms promoted the activity and population of bacteria and fungi, and modified their communities, thus altering the decomposition pathway of fresh FVW.

  16. Photo-inactivation of Bacillus endospores: inter-specific variability of inactivation efficiency.

    PubMed

    da Silva, Raquel N; Tomé, Augusto C; Tomé, João P C; Neves, Maria G P M S; Faustino, Maria A F; Cavaleiro, José A S; Oliveira, Anabela; Almeida, Adelaide; Cunha, Ângela

    2012-10-01

    The aims of this work were to (a) evaluate the susceptibility of endospores of Bacillus cereus, B. licheniformis, B. sphaericus and B. subtilis to photodynamic inactivation using a tricationic porphyrin as photosensitizer, (b) assess the efficiency of adsorption of the photosensitizer in endospore material as a determinant of the susceptibility of endospores of different Bacillus species to photo-inactivation, (c) determine the value of B. cereus as a model organism for studies of antimicrobial photodynamic inactivation of bacterial endospores. The results of irradiation experiments with endospores of four species of Bacillus showed that B. cereus was the only species for which efficient endospore photo-inactivation (> 3 log reduction) could be achieved. Endospores of B. licheniformis, B. sphaericus and B. subtilis were virtually resistant to photo-inactivation with tricationic porphyrin. The amount of porphyrin bound to endospore material was not significantly different between species, regardless of the presence of an exosporium or exosporium-like outer layer. The sensitivity of endospores to photodynamic inactivation with a tricationic porphyrin is highly variable among different species of the genus Bacillus. The presence of an exosporium in endospores of B. cereus and B. sphaericus, or an exosporium-like glycoprotein layer in endospores of B. subtilis, did not affect the amount of bound photosensitizer and did not explain the inter-species variability in susceptibility to photodynamic inactivation. The results imply that the use of B. cereus as a more amenable surrogate of the exosporium-producing B. anthracis must be carefully considered when testing new photosensitizers for their antimicrobial photo-inactivation properties.

  17. Characterization of the Cell Surface Properties of Drinking Water Pathogens by Microbial Adhesion to Hydrocarbon and Electrophoretic Mobility Measurements

    EPA Science Inventory

    The surface characteristics of microbial cells directly influence their mobility and behavior within aqueous environments. The cell surface hydrophobicity (CSH) and electrophoretic mobility (EPM) of microbial cells impact a number of interactions and processes including aggregati...

  18. Impact of Enzymatic and Microbial Bioprocessing on Protein Modification and Nutritional Properties of Wheat Bran.

    PubMed

    Arte, Elisa; Rizzello, Carlo G; Verni, Michela; Nordlund, Emilia; Katina, Kati; Coda, Rossana

    2015-10-01

    Besides providing dietary fiber, wheat bran is a recognized source of protein and is considered a very valuable substitute for other protein-rich sources in the food and feed industry. Nonetheless, several factors affect protein bioavailability, including bran's layered structure. This study showed the influence on the release and protein modification of wheat bran of different bioprocessing methods involving the activation of endogenous enzymes of bran, the addition of an enzyme mixture having carbohydrase activity, and microbial fermentation. Bioprocessing in acidic conditions significantly enhanced the solubilization of protein from wheat bran, reaching the highest value in the treatment where the sole endogenous protease activity was activated. Bioprocessing through controlled fermentation allowed a more intense proteolysis and strongly impacted the in vitro digestibility of proteins. The combined use of starter cultures and cell-wall-degrading enzymes was characterized by the highest increase of phytase activity and total phenols. PMID:26365885

  19. Impact of Enzymatic and Microbial Bioprocessing on Protein Modification and Nutritional Properties of Wheat Bran.

    PubMed

    Arte, Elisa; Rizzello, Carlo G; Verni, Michela; Nordlund, Emilia; Katina, Kati; Coda, Rossana

    2015-10-01

    Besides providing dietary fiber, wheat bran is a recognized source of protein and is considered a very valuable substitute for other protein-rich sources in the food and feed industry. Nonetheless, several factors affect protein bioavailability, including bran's layered structure. This study showed the influence on the release and protein modification of wheat bran of different bioprocessing methods involving the activation of endogenous enzymes of bran, the addition of an enzyme mixture having carbohydrase activity, and microbial fermentation. Bioprocessing in acidic conditions significantly enhanced the solubilization of protein from wheat bran, reaching the highest value in the treatment where the sole endogenous protease activity was activated. Bioprocessing through controlled fermentation allowed a more intense proteolysis and strongly impacted the in vitro digestibility of proteins. The combined use of starter cultures and cell-wall-degrading enzymes was characterized by the highest increase of phytase activity and total phenols.

  20. Linking temperature sensitivity of soil CO2 release to substrate, environmental, and microbial properties across alpine ecosystems

    NASA Astrophysics Data System (ADS)

    Ding, Jinzhi; Chen, Leiyi; Zhang, Beibei; Liu, Li; Yang, Guibiao; Fang, Kai; Chen, Yongliang; Li, Fei; Kou, Dan; Ji, Chengjun; Luo, Yiqi; Yang, Yuanhe

    2016-09-01

    Our knowledge of fundamental drivers of the temperature sensitivity (Q10) of soil carbon dioxide (CO2) release is crucial for improving the predictability of soil carbon dynamics in Earth System Models. However, patterns and determinants of Q10 over a broad geographic scale are not fully understood, especially in alpine ecosystems. Here we addressed this issue by incubating surface soils (0-10 cm) obtained from 156 sites across Tibetan alpine grasslands. Q10 was estimated from the dynamics of the soil CO2 release rate under varying temperatures of 5-25°C. Structure equation modeling was performed to evaluate the relative importance of substrate, environmental, and microbial properties in regulating the soil CO2 release rate and Q10. Our results indicated that steppe soils had significantly lower CO2 release rates but higher Q10 than meadow soils. The combination of substrate properties and environmental variables could predict 52% of the variation in soil CO2 release rate across all grassland sites and explained 37% and 58% of the variation in Q10 across the steppe and meadow sites, respectively. Of these, precipitation was the best predictor of soil CO2 release rate. Basal microbial respiration rate (B) was the most important predictor of Q10 in steppe soils, whereas soil pH outweighed B as the major regulator in meadow soils. These results demonstrate that carbon quality and environmental variables coregulate Q10 across alpine ecosystems, implying that modelers can rely on the "carbon-quality temperature" hypothesis for estimating apparent temperature sensitivities, but relevant environmental factors, especially soil pH, should be considered in higher-productivity alpine regions.

  1. Inactivation of template-directed misfolding of infectious prion protein by ozone.

    PubMed

    Ding, Ning; Neumann, Norman F; Price, Luke M; Braithwaite, Shannon L; Balachandran, Aru; Belosevic, Miodrag; El-Din, Mohamed Gamal

    2012-02-01

    Misfolded prions (PrP(Sc)) are well known for their resistance to conventional decontamination processes. The potential risk of contamination of the water environment, as a result of disposal of specified risk materials (SRM), has raised public concerns. Ozone is commonly utilized in the water industry for inactivation of microbial contaminants and was tested in this study for its ability to inactivate prions (263K hamster scrapie = PrP(Sc)). Treatment variables included initial ozone dose (7.6 to 25.7 mg/liter), contact time (5 s and 5 min), temperature (4°C and 20°C), and pH (pH 4.4, 6.0, and 8.0). Exposure of dilute suspensions of the infected 263K hamster brain homogenates (IBH) (0.01%) to ozone resulted in the in vitro destruction of the templating properties of PrP(Sc), as measured by the protein misfolding cyclic amplification (PMCA) assay. The highest levels of prion inactivation (≥4 log(10)) were observed with ozone doses of 13.0 mg/liter, at pH 4.4 and 20°C, resulting in a CT (the product of residual ozone concentration and contact time) value as low as 0.59 mg · liter(-1) min. A comparison of ozone CT requirements among various pathogens suggests that prions are more susceptible to ozone degradation than some model bacteria and protozoa and that ozone treatment may be an effective solution for inactivating prions in water and wastewater.

  2. Purification and properties of a new ribosome-inactivating protein with RNA N-glycosidase activity suitable for immunotoxin preparation from the seeds of Momordica cochinchinensis.

    PubMed

    Bolognesi, A; Barbieri, L; Carnicelli, D; Abbondanza, A; Cenini, P; Falasca, A I; Dinota, A; Stirpe, F

    1989-12-01

    A ribosome-inactivating protein similar to those already known (Stirpe and Barbieri (1986) FEBS Lett. 195, 1-8) was purified from the seeds of Momordica cochinchinensis. This protein, for which the name of momorcochin-S is proposed, is a glycoprotein, has an Mr of approx. 30,000, and an alkaline isoelectric point and can be considered as an iso-form of the previously purified momorcochin from the roots of M. cochinchinensis. Momorcochin-S inhibits protein synthesis by a rabbit-reticulocyte lysate and phenylalanine polymerization by isolated ribosomes, and alters rRNA in a similar manner as the A-chain of ricin and related toxins (Endo et al. (1987) J. Biol. Chem. 262, 5908-5912). Momorcochin-S was linked to a monoclonal antibody (8A) against human plasma cells, and the resulting immunotoxin was selectively toxic to target cells. PMID:2597699

  3. Purification and properties of a new ribosome-inactivating protein with RNA N-glycosidase activity suitable for immunotoxin preparation from the seeds of Momordica cochinchinensis.

    PubMed

    Bolognesi, A; Barbieri, L; Carnicelli, D; Abbondanza, A; Cenini, P; Falasca, A I; Dinota, A; Stirpe, F

    1989-12-01

    A ribosome-inactivating protein similar to those already known (Stirpe and Barbieri (1986) FEBS Lett. 195, 1-8) was purified from the seeds of Momordica cochinchinensis. This protein, for which the name of momorcochin-S is proposed, is a glycoprotein, has an Mr of approx. 30,000, and an alkaline isoelectric point and can be considered as an iso-form of the previously purified momorcochin from the roots of M. cochinchinensis. Momorcochin-S inhibits protein synthesis by a rabbit-reticulocyte lysate and phenylalanine polymerization by isolated ribosomes, and alters rRNA in a similar manner as the A-chain of ricin and related toxins (Endo et al. (1987) J. Biol. Chem. 262, 5908-5912). Momorcochin-S was linked to a monoclonal antibody (8A) against human plasma cells, and the resulting immunotoxin was selectively toxic to target cells.

  4. Phospholipids fatty acids of drinking water reservoir sedimentary microbial community: Structure and function responses to hydrostatic pressure and other physico-chemical properties.

    PubMed

    Chai, Bei-Bei; Huang, Ting-Lin; Zhao, Xiao-Guang; Li, Ya-Jiao

    2015-07-01

    Microbial communities in three drinking water reservoirs, with different depth in Xi'an city, were quantified by phospholipids fatty acids analysis and multivariate statistical analysis was employed to interpret their response to different hydrostatic pressure and other physico-chemical properties of sediment and overlying water. Principle component analyses of sediment characteristics parameters showed that hydrostatic pressure was the most important effect factor to differentiate the overlying water quality from three drinking water reservoirs from each other. NH4+ content in overlying water was positive by related to hydrostatic pressure, while DO in water-sediment interface and sediment OC in sediment were negative by related with it. Three drinking water reservoir sediments were characterized by microbial communities dominated by common and facultative anaerobic Gram-positive bacteria, as well as, by sulfur oxidizing bacteria. Hydrostatic pressure and physico-chemical properties of sediments (such as sediment OC, sediment TN and sediment TP) were important effect factors to microbial community structure, especially hydrostatic pressure. It is also suggested that high hydrostatic pressure and low dissolved oxygen concentration stimulated Gram-positive and sulfate-reducing bacteria (SRB) bacterial population in drinking water reservoir sediment. This research supplied a successful application of phospholipids fatty acids and multivariate analysis to investigate microbial community composition response to different environmental factors. Thus, few physico-chemical factors can be used to estimate composition microbial of community as reflected by phospholipids fatty acids, which is difficult to detect.

  5. Atlantic Salmon (Salmo salar L.) Gastrointestinal Microbial Community Dynamics in Relation to Digesta Properties and Diet.

    PubMed

    Zarkasi, Kamarul Zaman; Taylor, Richard S; Abell, Guy C J; Tamplin, Mark L; Glencross, Brett D; Bowman, John P

    2016-04-01

    To better understand salmon GI tract microbial community dynamics in relation to diet, a feeding trial was performed utilising diets with different proportions of fish meal, protein, lipid and energy levels. Salmon gut dysfunction has been associated with the occurrence of casts, or an empty hind gut. A categorical scoring system describing expressed digesta consistency was evaluated in relation to GI tract community structure. Faster growing fish generally had lower faecal scores while the diet cohorts showed minor differences in faecal score though the overall lowest scores were observed with a low protein, low energy diet. The GI tract bacterial communities were highly dynamic over time with the low protein, low energy diet associated with the most divergent community structure. This included transiently increased abundance of anaerobic (Bacteroidia and Clostridia) during January and February, and facultatively anaerobic (lactic acid bacteria) taxa from February onwards. The digesta had enriched populations of these groups in relation to faecal cast samples. The majority of samples (60-86 %) across all diet cohorts were eventually dominated by the genus Aliivibrio. The results suggest that an interaction between time of sampling and diet is most strongly related to community structure. Digesta categorization revealed microbes involved with metabolism of diet components change progressively over time and could be a useful system to assess feeding responses. PMID:26780099

  6. Improvement of bioelectrochemical property and energy recovery by acylhomoserine lactones (AHLs) in microbial electrolysis cells (MECs)

    NASA Astrophysics Data System (ADS)

    Liu, Wenzong; Cai, Weiwei; Ma, Anzhou; Ren, Ge; Li, Zhiling; Zhuang, Guoqiang; Wang, Aijie

    2015-06-01

    Quorum sensing (QS) has been extensively studied as a cell-cell communication system, where small chemical signal molecules (acylhomoserine lactones, AHLs) can regulate the bacterial communications in bioelectrochemical systems via chemical signaling and electric signaling. In this study, electrochemical activity of bio-anode is substantially promoted by adding two kinds of AHLs with different chain length at the stage of community formation in microbial electrolysis cells (MECs). Hydrogen yield increase is observed by adding of two chain length AHLs, 3-oxo-hexanoyl-homoserine lactone (3OC6-HSL) and 3-oxo-dodecanoyl homoserine lactone (3OC12-HSL). A higher MEC current is acquired with addition of 3OC6-HSL than 3OC12-HSL at a fixed voltage of 0.8 V (vs. SHE). The highest yield is up to 3.8 ± 0.2 mol H2 mol-1 acetate at 10 μM 3OC6-HSL, which is increased 29% over control MECs. Evaluated on applied voltage, energy efficiency is increased to 171.6 ± 21.3% with short chain AHL, however, no significant improvement is performed on energy efficiency and coulombic efficiency with long-chain AHL. The study shows that bioelectrochemical characteristics of MECs varied on the chain length of AHL signal molecules and short-chain AHLs have a more positive effect on electron transfer and energy recovery in MECs.

  7. Controlled Inactivation of Recombinant Viruses with Vitamin B2

    PubMed Central

    Callahan, Shellie M.; Wonganan, Piyanuch; Obenauer-Kutner, Linda J.; Sutjipto, Suganto; Dekker, Joseph D.; Croyle, Maria A.

    2008-01-01

    Inactivated viruses are important tools for vaccine development and gene transfer. 8-methoxypsoralen (8-MOP) and long-wavelength ultraviolet irradiation (LWUVI) inactivates many viruses. Toxicity limits its use in animals and humans. Toxicological and photosensitizing properties of riboflavin make it suitable for virus inactivation in preparations for biological use. Viruses expressing beta-galactosidase were mixed with either 8-MOP (1.5 mM) or riboflavin (50 μM) and exposed to LWUVI (365 nm) for 2 hours. Virus activity was determined by limiting dilution. The half-life of the adenovirus preparation treated with 8-MOP was 8.28 nanoseconds−1 (ns−1) and 36.5 ns−1 after treatment with riboflavin. Despite the difference in half-life, both preparations were completely inactivated within 45 minutes. In contrast, the half-lives for adeno-associated virus (AAV) preparations were similar (63 ns−1 8-MOP vs. 67 ns−1 riboflavin). Each AAV preparation was fully inactivated within 90 minutes. The half-life of lentivirus was 193.4 ns−1 after treatment with 8-MOP and 208 ns−1 after exposure to riboflavin. Virus treated with riboflavin was inactivated within 20 minutes. Virus exposed to 8-MOP was inactivated in 90 minutes. DNA and RNA viruses can be inactivated by riboflavin and LWUVI and used in physiological systems sensitive to other photochemicals. PMID:18160141

  8. Comparison of the chemical, physical and microbial properties of composts produced by conventional composting or vermicomposting using the same feedstocks.

    PubMed

    Haynes, R J; Zhou, Y-F

    2016-06-01

    The chemical, physical and microbial properties of thermophilic composts and vermicomposts were compared using the same municipal green waste-based feedstocks: (i) municipal green waste alone, (ii) 75 % municipal green waste/25 % green garden waste and (iii) 75 % municipal green waste/25 % cattle manure. Temperatures reached 37 °C during composting of municipal green waste alone but when garden waste or cattle manure were added, temperatures reached 47 and 52 °C, respectively. At the end of vermicomposting (using Eisenia fetida), the number of earthworms present was greater than that added for the cattle manure-amended feedstock but much less for both the garden waste and municipal green waste alone treatments. The products formed in all treatments generally fell within suggested maturity indices for composts. Greater organic matter decomposition occurred during composting than vermicomposting resulting in composts having a significantly lower organic C content and a greater content of total N, extractable Mg, K, Na, P, and mineral N, a higher EC and a lower C/N ratio than the vermicomposts. For all three feedstocks, vermicomposts had a lower bulk density and greater total porosity and macroporosity than composts. For the garden waste- and cattle manure-amended feedstocks, vermicomposts had a higher microbial biomass C than the composts and for all three feedstocks, basal respiration and metabolic quotient were greatest for vermicomposts. It was concluded that composting is a robust process suitable for treatment of a range of organic wastes but, because of the nutritional requirements of the earthworms, vermicomposting is a much less robust and was only suitable for the cattle manure-amended feedstock. PMID:26888641

  9. Sulfate-reducing bacteria detection based on the photocatalytic property of microbial synthesized ZnS nanoparticles.

    PubMed

    Qi, Peng; Zhang, Dun; Wan, Yi

    2013-10-24

    This work presented a novel method for specific detection of sulfate-reducing bacteria (SRB) based on the photocatalytic property of ZnS nanoparticles. ZnS semiconductor nanoparticles were synthesized by taking advantage of the characteristic bacterial metabolite, sulfide, and then ZnS nanomaterials were used as photocatalyst for methylene blue (MB) photodegradation. As the amount of ZnS photocatalyst synthesized from microbe metabolized sulfide was affected by initial bacterial concentration before cultivation, the photodegradation ratio of MB was highly related with initial SRB concentration. Under the optimized conditions, a linear relationship between the MB photodegradation ratio and the logarithm of SRB concentration was observed in the range of 1.0×10(3)-1.0×10(8) cfu mL(-1). Besides, this proposed method showed excellent specificity for SRB detection. To the best of our knowledge, this is the first example of using the photocatalytic property of microbial synthesized ZnS for bacterial detection.

  10. Investigation of physico-chemical properties and microbial community during poultry manure co-composting process.

    PubMed

    Farah Nadia, Omar; Xiang, Loo Yu; Lie, Lee Yei; Chairil Anuar, Dzulkornain; Mohd Afandi, Mohammed P; Azhari Baharuddin, Samsu

    2015-02-01

    Co-composting of poultry manure and rubber wood sawdust was performed with the ratio of 2:1 (V/V) for a period of 60 days. An investigation was carried out to study the extracellular enzymatic activities and structural degradation utilizing Fourier transform infrared spectroscopy (FT-IR), thermogravimetry and differential thermal analysis (TG/DTA) and scanning electron microscopy (SEM). The microbial succession was also determined by using denaturing gel gradient electrophoresis (DGGE). The compost was able to reach its highest temperature of 71°C at day 3 and stabilized between 30 and 40°C for 8 weeks. CMCase, FPase and β-glucosidase acted synergistically in order to degrade the cellulosic substrate. The xylanase activities increased gradually during the composting and reached the peak value of 11.637 U/g on day 35, followed by a sharp decline. Both LiP and MnP activities reached their peak values on day 35 with 0.431 and 0.132 U/g respectively. The FT-IR spectra revealed an increase in aromaticity and a decrease in aliphatic compounds such as carbohydrates as decomposition proceeded. TGA/DTG data exhibited significant changes in weight loss in compost samples, indicating degradation of organic matter. SEM micrographs showed higher amounts of parenchyma exposed on the surface of rubber wood sawdust at day 60, showing significant degradation. DGGE and 16S rDNA analyses showed that Burkholderia sp., Pandoraea sp., and Pseudomonas sp. were present throughout the composting process. Ornithinibacillus sp. and Castellaniella ginsengisoli were only found in the initial stage of the composting, while different strains of Burkholderia sp. also occurred in the later stage of composting. PMID:25662242

  11. Changes in microbial properties and nutrient dynamics in bagasse and coir during vermicomposting: quantification of fungal biomass through ergosterol estimation in vermicompost.

    PubMed

    Pramanik, P

    2010-05-01

    In this experiment, different microorganisms viz., Trichoderma viridae, Aspergillus niger and Bacillus megaterium were inoculated in bagasse and coir with the objective to study their effect on nutrient dynamics and microbial properties, specially effect on fungal status in these waste materials. Fungal biomass (FBC) was calculated from the ergosterol content in the vermicompost samples. Inoculation of B. megaterium registered comparatively higher TP content in the final stabilized product. Vermicomposting increased microbial biomass carbon (MBC) and nitrogen (MBN) content in bagasse and coir. Microbial biomass carbon to nitrogen ratio (MBC/ MBN) was comparatively narrower in fungi inoculated vermicomposts and FBC/MBC ratio was increased up to 11.69 from 9.51 of control during vermicomposting.

  12. BK channel inactivation gates daytime excitability in the circadian clock.

    PubMed

    Whitt, Joshua P; Montgomery, Jenna R; Meredith, Andrea L

    2016-03-04

    Inactivation is an intrinsic property of several voltage-dependent ion channels, closing the conduction pathway during membrane depolarization and dynamically regulating neuronal activity. BK K(+) channels undergo N-type inactivation via their β2 subunit, but the physiological significance is not clear. Here, we report that inactivating BK currents predominate during the day in the suprachiasmatic nucleus, the brain's intrinsic clock circuit, reducing steady-state current levels. At night inactivation is diminished, resulting in larger BK currents. Loss of β2 eliminates inactivation, abolishing the diurnal variation in both BK current magnitude and SCN firing, and disrupting behavioural rhythmicity. Selective restoration of inactivation via the β2 N-terminal 'ball-and-chain' domain rescues BK current levels and firing rate, unexpectedly contributing to the subthreshold membrane properties that shift SCN neurons into the daytime 'upstate'. Our study reveals the clock employs inactivation gating as a biophysical switch to set the diurnal variation in suprachiasmatic nucleus excitability that underlies circadian rhythm.

  13. BK channel inactivation gates daytime excitability in the circadian clock

    PubMed Central

    Whitt, Joshua P.; Montgomery, Jenna R.; Meredith, Andrea L.

    2016-01-01

    Inactivation is an intrinsic property of several voltage-dependent ion channels, closing the conduction pathway during membrane depolarization and dynamically regulating neuronal activity. BK K+ channels undergo N-type inactivation via their β2 subunit, but the physiological significance is not clear. Here, we report that inactivating BK currents predominate during the day in the suprachiasmatic nucleus, the brain's intrinsic clock circuit, reducing steady-state current levels. At night inactivation is diminished, resulting in larger BK currents. Loss of β2 eliminates inactivation, abolishing the diurnal variation in both BK current magnitude and SCN firing, and disrupting behavioural rhythmicity. Selective restoration of inactivation via the β2 N-terminal ‘ball-and-chain' domain rescues BK current levels and firing rate, unexpectedly contributing to the subthreshold membrane properties that shift SCN neurons into the daytime ‘upstate'. Our study reveals the clock employs inactivation gating as a biophysical switch to set the diurnal variation in suprachiasmatic nucleus excitability that underlies circadian rhythm. PMID:26940770

  14. Combined ozone and ultraviolet inactivation of Escherichia coli.

    PubMed

    Magbanua, Benjamin S; Savant, Gaurav; Truax, Dennis D

    2006-01-01

    The kinetics of Escherichia coli inactivation using ozone and ultraviolet (UV) radiation, separately and simultaneously, was evaluated at 25 degrees C in buffered (pH 6.0, 7.0 and 8.0), demand-free media. While ozone was found to be a stronger disinfectant than UV radiation, using both simultaneously was more effective than using them individually. Inactivation kinetics was pseudo first-order for the three treatment processes, while the disinfection rate was a linear function of the disinfectant dose. The synergism observed in microbial inactivation when the disinfectant processes were combined was illustrated by estimates of kinetic model parameters. This synergy was attributed to the generation of hydroxyl radicals via ozone photolysis. Subsequently, dosage calculations, as based on disinfectant level and exposure time, indicated that the simultaneous use of UV and ozone could substantially reduce their individual doses.

  15. Inactivation of the biofilm by the air plasma containing water

    NASA Astrophysics Data System (ADS)

    Suganuma, Ryota; Yasuoka, Koichi; Yasuoka Takeuchi lab Team

    2014-10-01

    Biofilms are caused by environmental degradation in food factory and medical facilities. Inactivation of biofilm has the method of making it react to chemicals including chlorine, hydrogen peroxide, and ozone. Although inactivation by chemicals has the problem that hazardous property of a residual substance and hydrogen peroxide have slow reaction velocity. We achieved advanced oxidation process (AOP) with air plasma. Hydrogen peroxide and ozone, which were used for the formation of OH radicals in our experiment, were able to be generated selectively by adjusting the amount of water supplied to the plasma. We inactivated Pseudomonas aeruginosa biofilm in five minutes with OH radicals generated by using hydrogen peroxide and ozone.

  16. Biological activities of ribosome-inactivating proteins and their possible applications as antimicrobial, anticancer, and anti-pest agents and in neuroscience research.

    PubMed

    Akkouh, Ouafae; Ng, Tzi Bun; Cheung, Randy Chi Fai; Wong, Jack Ho; Pan, Wenliang; Ng, Charlene Cheuk Wing; Sha, Ou; Shaw, Pang Chui; Chan, Wai Yee

    2015-12-01

    Ribosome-inactivating proteins (RIPs) are enzymes which depurinate ribosomal RNA (rRNA), thus impeding the process of translation resulting in inhibition of protein synthesis. They are produced by various organisms including plants, fungi and bacteria. RIPs from plants are linked to plant defense due to their antiviral, antifungal, antibacterial, and insecticidal activities in which they can be applied in agriculture to combat microbial pathogens and pests. Their anticancer, antiviral, embryotoxic, and abortifacient properties may find medicinal applications. Besides, conjugation of RIPs with antibodies or other carriers to form immunotoxins has been found useful to research in neuroscience and anticancer therapy.

  17. Effect of addition of Versagel on microbial, chemical, and physical properties of low-fat yogurt.

    PubMed

    Ramchandran, L; Shah, N P

    2008-09-01

    The objective of this study was to examine the effect of Versagel on the growth and proteolytic activity of Streptococcus thermophilus 1275 and Lactobacillus delbrueckii ssp. bulgaricus 1368 and angiotensin-I converting enzyme inhibitory activity of the peptides generated thereby as well as on the physical properties of low-fat yogurt during a storage period of 28 d at 4 degrees C. Three different types of low-fat yogurts, YV0, YV1, and YV2, were prepared using Versagel as a fat replacer. The fermentation time of the low-fat yogurts containing Versagel was less than that of the control yogurt (YV0). The starter cultures maintained their viability (8.68 to 8.81 log CFU/g of S. thermophilus and 8.51 to 8.81 log CFU/g of L. delbrueckii ssp. bulgaricus) in all the yogurts throughout the storage period. There was some decrease in the pH of the yogurts during storage and an increase in the concentration of lactic acid. However, the proteolytic and ACE-inhibitory potential of the starter cultures was suppressed in the presence of Versagel. On the other hand, the addition of Versagel had a positive impact on the physical properties of the low-fat yogurt, namely, spontaneous whey separation, firmness, and pseudoplastic properties.

  18. Detergent-compatible proteases: microbial production, properties, and stain removal analysis.

    PubMed

    Niyonzima, Francois Niyongabo; More, Sunil

    2015-01-01

    Proteases are one of the most important commercial enzymes used in various industrial domains such as detergent and leather industries. The alkaline proteases as well as other detergent-compatible enzymes such as lipases and amylases serve now as the key components in detergent formulations. They break down various stains during fabric washing. The search for detergent-compatible proteases with better properties is a continuous exercise. The current trend is to use detergent-compatible proteases that are stable over a wide temperature range. Although the proteases showing stability at elevated pH have the capacity to be used in detergent formulations, their usage can be significant if they are also stable and compatible with detergent and detergent ingredients, and also able to remove protein stains. Despite the existence of some reviews on alkaline proteases, there is no specification for the use of alkaline proteases as detergent additives. The present review describes the detergent-compatible proteases tested as detergent additives. An overview was provided for screening, optimization, purification, and properties of detergent compatible proteases, with an emphasis on the stability and compatibility of the alkaline proteases with the detergent and detergent compounds, as well as stain removal examination methods.

  19. [Microbial alpha-amylases: physicochemical properties, substrate specificity and domain structure].

    PubMed

    Avdiiuk, K V; Varbanets', L D

    2013-01-01

    The current literature data on producers, physico-chemical properties and substrate specificity of a-amylases produced by microbes from different taxonomic groups such as bacteria, fungi and yeasts are discussed in the survey. Synthesis of alpha-amylase majority is an inducible process which is stimulated in the presence of starch or products of its hydrolysis. It is possible to increase enzymes activity level by optimization of cultivation conditions of strains-producers. alpha-Amylases, isolated from different sources are distinguished in their physico-chemical properties, particularly in their molecular weights, pH- and thermooptimums, inhibitors and activators. The enzymes hydrolyse soluble starch, amylose, amylopectin, glycogen, maltodextrins, alpha- and beta3-cyclodextrins and other carbohydrate substrates. It is well known that alpha-amylases belong to GH-13 family of glycosyl-hydrolases, which contain the catalytic domain A as (beta/alpha)8-barrel. In addition to domain A, alpha-amylases contain two other domains: B and C, which are localized approximately on opposite sides of (beta/alpha)8-barrel. Most of the known alpha-amylases contain calcium ion, which is located on the surface between domains A and B and plays an important role in stability and activity of the enzyme.

  20. Enhanced Microbial, Functional and Sensory Properties of Herbal Yogurt Fermented with Korean Traditional Plant Extracts.

    PubMed

    Joung, Jae Yeon; Lee, Ji Young; Ha, Young Sik; Shin, Yong Kook; Kim, Younghoon; Kim, Sae Hun; Oh, Nam Su

    2016-01-01

    This study evaluated the effects of two Korean traditional plant extracts (Diospyros kaki THUNB. leaf; DK, and Nelumbo nucifera leaf; NN) on the fermentation, functional and sensory properties of herbal yogurts. Compared to control fermentation, all plant extracts increased acidification rate and reduced the time to complete fermentation (pH 4.5). Supplementation of plant extracts and storage time were found to influence the characteristics of the yogurts, contributing to increased viability of starter culture and phenolic compounds. In particular, the increase in the counts of Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus was highest (2.95 and 1.14 Log CFU/mL respectively) in DK yogurt. Furthermore, supplementation of the plant extracts significantly influenced to increase the antioxidant activity and water holding capacity and to produce volatile compounds. The higher antioxidant activity and water holding capacity were observed in NN yogurt than DK yogurt. Moreover, all of the sensory characteristics were altered by the addition of plant extracts. Addition of plant extracts increased the scores related to flavor, taste, and texture from plain yogurt without a plant extract, as a result of volatile compounds analysis. Thus, the overall preference was increased by plant extracts. Consequently, supplementation of DK and NN extracts in yogurt enhanced the antioxidant activity and physical property, moreover increased the acceptability of yogurt. These findings demonstrate the possibility of using plant extracts as a functional ingredient in the manufacture of herbal yogurt. PMID:27499669

  1. Enhanced Microbial, Functional and Sensory Properties of Herbal Yogurt Fermented with Korean Traditional Plant Extracts

    PubMed Central

    Joung, Jae Yeon; Lee, Ji Young; Ha, Young Sik; Shin, Yong Kook; Kim, Younghoon; Kim, Sae Hun; Oh, Nam Su

    2016-01-01

    This study evaluated the effects of two Korean traditional plant extracts (Diospyros kaki THUNB. leaf; DK, and Nelumbo nucifera leaf; NN) on the fermentation, functional and sensory properties of herbal yogurts. Compared to control fermentation, all plant extracts increased acidification rate and reduced the time to complete fermentation (pH 4.5). Supplementation of plant extracts and storage time were found to influence the characteristics of the yogurts, contributing to increased viability of starter culture and phenolic compounds. In particular, the increase in the counts of Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus was highest (2.95 and 1.14 Log CFU/mL respectively) in DK yogurt. Furthermore, supplementation of the plant extracts significantly influenced to increase the antioxidant activity and water holding capacity and to produce volatile compounds. The higher antioxidant activity and water holding capacity were observed in NN yogurt than DK yogurt. Moreover, all of the sensory characteristics were altered by the addition of plant extracts. Addition of plant extracts increased the scores related to flavor, taste, and texture from plain yogurt without a plant extract, as a result of volatile compounds analysis. Thus, the overall preference was increased by plant extracts. Consequently, supplementation of DK and NN extracts in yogurt enhanced the antioxidant activity and physical property, moreover increased the acceptability of yogurt. These findings demonstrate the possibility of using plant extracts as a functional ingredient in the manufacture of herbal yogurt. PMID:27499669

  2. Microbial synthesis of polyhydroxybutyrate from glycerol: gluconeogenesis, molecular weight and material properties of biopolyester.

    PubMed

    Tanadchangsaeng, Nuttapol; Yu, Jian

    2012-11-01

    Glycerol is considered as an ideal feedstock for producing bioplastics via bacterial fermentation due to its ubiquity, low price, and high degree of reduction substrate. In this work, we study the yield and cause of limitation in poly(3-hydroxybutyrate) (PHB) production from glycerol. Compared to glucose-based PHB production, PHB produced by Cupriavidus necator grown on glycerol has a low productivity (0.92 g PHB/L/h) with a comparably low maximum specific growth rate of 0.11 h(-1) . We found that C. necator can synthesize glucose from glycerol and that the lithotrophical utilization of glycerol (non-fermentative substrate) or gluconeogenesis is an essential metabolic pathway for biosynthesis of cellular components. Here, we show that gluconeogenesis affects the reduction of cell mass, the productivity of biopolymer product, and the molecular chain size of intracellular PHB synthesized from glycerol by C. necator. We use NMR spectroscopy to show that the isolated PHB is capped by glycerol. We then characterized the physical properties of the isolated glycerol-based PHB with differential scanning calorimetry and tensile tests. We found that although the final molecular weight of the glycerol-based PHB is lower than those of glucose-based and commercial PHB, the thermal and mechanical properties of the biopolymers are similar. PMID:22566160

  3. A critical review on properties and applications of microbial l-asparaginases.

    PubMed

    Krishnapura, Prajna Rao; Belur, Prasanna D; Subramanya, Sandeep

    2016-09-01

    l-Asparaginase is one of the main drugs used in the treatment of acute lymphoblastic leukemia (ALL), a commonly diagnosed pediatric cancer. Although several microorganisms are found to produce l-asparaginase, only the purified enzymes from E. coli and Erwinia chrysanthemi are employed in the clinical and therapeutic applications in humans. However, their therapeutic response seldom occurs without some evidence of hypersensitivity and other toxic side effects. l-Asparaginase is also of prospective use in food industry to reduce the formation of acrylamide in fried, roasted or baked food products. This review is an attempt to compile information on the properties of l-asparaginases obtained from different microorganisms. The complications involved with the therapeutic use of the currently available l-asparaginases, and the enzyme's potential application as a food processing aid to mitigate acrylamide formation have also been reviewed. Further, avenues for searching alternate sources of l-asparaginase have been discussed, highlighting the prospects of endophytic microorganisms as a possible source of l-asparaginases with varied biochemical and pharmacological properties.

  4. Enhanced Microbial, Functional and Sensory Properties of Herbal Yogurt Fermented with Korean Traditional Plant Extracts.

    PubMed

    Joung, Jae Yeon; Lee, Ji Young; Ha, Young Sik; Shin, Yong Kook; Kim, Younghoon; Kim, Sae Hun; Oh, Nam Su

    2016-01-01

    This study evaluated the effects of two Korean traditional plant extracts (Diospyros kaki THUNB. leaf; DK, and Nelumbo nucifera leaf; NN) on the fermentation, functional and sensory properties of herbal yogurts. Compared to control fermentation, all plant extracts increased acidification rate and reduced the time to complete fermentation (pH 4.5). Supplementation of plant extracts and storage time were found to influence the characteristics of the yogurts, contributing to increased viability of starter culture and phenolic compounds. In particular, the increase in the counts of Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus was highest (2.95 and 1.14 Log CFU/mL respectively) in DK yogurt. Furthermore, supplementation of the plant extracts significantly influenced to increase the antioxidant activity and water holding capacity and to produce volatile compounds. The higher antioxidant activity and water holding capacity were observed in NN yogurt than DK yogurt. Moreover, all of the sensory characteristics were altered by the addition of plant extracts. Addition of plant extracts increased the scores related to flavor, taste, and texture from plain yogurt without a plant extract, as a result of volatile compounds analysis. Thus, the overall preference was increased by plant extracts. Consequently, supplementation of DK and NN extracts in yogurt enhanced the antioxidant activity and physical property, moreover increased the acceptability of yogurt. These findings demonstrate the possibility of using plant extracts as a functional ingredient in the manufacture of herbal yogurt.

  5. In vitro antimicrobial activity on clinical microbial strains and antioxidant properties of Artemisia parviflora

    PubMed Central

    2012-01-01

    Background Artemisia parviflora leaf extracts were evaluated for potential antimicrobial and antioxidant properties. Antimicrobial susceptibility assay was performed against ten standard reference bacterial strains. Antioxidant activity was analyzed using the ferric thiocyanate and 2, 2-Diphenyl-1-Picrylhydrazyl (DPPH) assays. Radical scavenging activity and total phenolic content were compared. Phytochemical analyses were performed to identify the major bioactive constitution of the plant extract. Results Hexane, methanol and ethyl acetate extracts of A. parviflora leaves exhibited good activity against the microorganisms tested. The n-hexane extract of A. parviflora showed high inhibition of the growth of Pseudomonas aeruginosa, Escherichia coli and Shigella flexneri. Methanol extract showed strong radical scavenging and antioxidant activity, other extracts showed moderate antioxidant activity. The major derivatives present in the extracts are of terpenes, steroids, phenols, flavonoids, tannins and volatile oil. Conclusions The results obtained with n-hexane extract were particularly significant as it strongly inhibited the growth of P. aeruginosa, E. coli and S. flexneri. The major constituent of the n-hexane extract was identified as terpenes. Strong antioxidant activity could be observed with all the individual extracts. The antimicrobial and antioxidant property of the extracts were attributed to the secondary metabolites, terpenes and phenolic compounds present in A. parviflora and could be of considerable interest in the development of new drugs. PMID:23171441

  6. Effects of DO levels on surface force, cell membrane properties and microbial community dynamics of activated sludge.

    PubMed

    Ma, Si-Jia; Ding, Li-Li; Huang, Hui; Geng, Jin-Ju; Xu, Ke; Zhang, Yan; Ren, Hong-Qiang

    2016-08-01

    In this paper, we employ atomic force microscopy (AFM), fluorescence recovery after photobleaching (FRAP) technique, phospholipid fatty acids (PLFA) and MiSeq analysis to study the effects of traditional dissolved oxygen (DO) levels (0.71-1.32mg/L, 2.13-3.02mg/L and 4.31-5.16mg/L) on surface force, cell membrane properties and microbial community dynamics of activated sludge. Results showed that low DO level enhanced the surface force and roughness of activated sludge; the medium DO level decreased cell membrane fluidity by reducing the synthesis of branched fatty acids in the cell membrane; high DO level resulted in the highest protein content in the effluent by EEM scanning. Abundance of Micropruina, Zoogloea and Nakamurella increased and Paracoccus and Rudaea decreased with the increase of DO levels. RDA analysis suggested that saturated fatty acids (SFA), anteiso-fatty acids (AFA) and iso-fatty acids (IFA) were closely related to effluent quality as well as some genera. PMID:27187569

  7. Land-use history has a stronger impact on soil microbial community composition than aboveground vegetation and soil properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The response of soil microbial communities following soil disturbances is poorly understood. The development of soil microbial communities in two restoration gradients was studied to investigate the impact of land-management regime at the W. K. Kellogg Biological Station, Michigan. The first restora...

  8. C. botulinum inactivation kinetics implemented in a computational model of a high-pressure sterilization process.

    PubMed

    Juliano, Pablo; Knoerzer, Kai; Fryer, Peter J; Versteeg, Cornelis

    2009-01-01

    High-pressure, high-temperature (HPHT) processing is effective for microbial spore inactivation using mild preheating, followed by rapid volumetric compression heating and cooling on pressure release, enabling much shorter processing times than conventional thermal processing for many food products. A computational thermal fluid dynamic (CTFD) model has been developed to model all processing steps, including the vertical pressure vessel, an internal polymeric carrier, and food packages in an axis-symmetric geometry. Heat transfer and fluid dynamic equations were coupled to four selected kinetic models for the inactivation of C. botulinum; the traditional first-order kinetic model, the Weibull model, an nth-order model, and a combined discrete log-linear nth-order model. The models were solved to compare the resulting microbial inactivation distributions. The initial temperature of the system was set to 90 degrees C and pressure was selected at 600 MPa, holding for 220 s, with a target temperature of 121 degrees C. A representation of the extent of microbial inactivation throughout all processing steps was obtained for each microbial model. Comparison of the models showed that the conventional thermal processing kinetics (not accounting for pressure) required shorter holding times to achieve a 12D reduction of C. botulinum spores than the other models. The temperature distribution inside the vessel resulted in a more uniform inactivation distribution when using a Weibull or an nth-order kinetics model than when using log-linear kinetics. The CTFD platform could illustrate the inactivation extent and uniformity provided by the microbial models. The platform is expected to be useful to evaluate models fitted into new C. botulinum inactivation data at varying conditions of pressure and temperature, as an aid for regulatory filing of the technology as well as in process and equipment design.

  9. Harnessing microbial subsurface metal reduction activities to synthesise nanoscale cobalt ferrite with enhanced magnetic properties

    SciTech Connect

    Coker, Victoria S.; Telling, Neil D.; van der Laan, Gerrit; Pattrick, Richard A.D.; Pearce, Carolyn I.; Arenholz, Elke; Tuna, Floriana; Winpenny, Richard E.P.; Lloyd, Jonathan R.

    2009-03-24

    Nanoscale ferrimagnetic particles have a diverse range of uses from directed cancer therapy and drug delivery systems to magnetic recording media and transducers. Such applications require the production of monodisperse nanoparticles with well-controlled size, composition, and magnetic properties. To fabricate these materials purely using synthetic methods is costly in both environmental and economical terms. However, metal-reducing microorganisms offer an untapped resource to produce these materials. Here, the Fe(III)-reducing bacterium Geobacter sulfurreducens is used to synthesize magnetic iron oxide nanoparticles. A combination of electron microscopy, soft X-ray spectroscopy, and magnetometry techniques was employed to show that this method of biosynthesis results in high yields of crystalline nanoparticles with a narrow size distribution and magnetic properties equal to the best chemically synthesized materials. In particular, it is demonstrated here that cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles with low temperature coercivity approaching 8 kOe and an effective anisotropy constant of {approx} 10{sup 6} erg cm{sup -3} can be manufactured through this biotechnological route. The dramatic enhancement in the magnetic properties of the nanoparticles by the introduction of high quantities of Co into the spinel structure represents a significant advance over previous biomineralization studies in this area using magnetotactic bacteria. The successful production of nanoparticulate ferrites achieved in this study at high yields could open up the way for the scaled-up industrial manufacture of nanoparticles using environmentally benign methodologies. Production of ferromagnetic nanoparticles for pioneering cancer therapy, drug delivery, chemical sensors, catalytic activity, photoconductive materials, as well as more traditional uses in data storage embodies a large area of inorganic synthesis research. In particular, the addition of transition metals other than

  10. Raman Spectroscopy-Compatible Inactivation Method for Pathogenic Endospores▿

    PubMed Central

    Stöckel, S.; Schumacher, W.; Meisel, S.; Elschner, M.; Rösch, P.; Popp, J.

    2010-01-01

    Micro-Raman spectroscopy is a fast and sensitive tool for the detection, classification, and identification of biological organisms. The vibrational spectrum inherently serves as a fingerprint of the biochemical composition of each bacterium and thus makes identification at the species level, or even the subspecies level, possible. Therefore, microorganisms in areas susceptible to bacterial contamination, e.g., clinical environments or food-processing technology, can be sensed. Within the scope of point-of-care-testing also, detection of intentionally released biosafety level 3 (BSL-3) agents, such as Bacillus anthracis endospores, or their products is attainable. However, no Raman spectroscopy-compatible inactivation method for the notoriously resistant Bacillus endospores has been elaborated so far. In this work we present an inactivation protocol for endospores that permits, on the one hand, sufficient microbial inactivation and, on the other hand, the recording of Raman spectroscopic signatures of single endospores, making species-specific identification by means of highly sophisticated chemometrical methods possible. Several physical and chemical inactivation methods were assessed, and eventually treatment with 20% formaldehyde proved to be superior to the other methods in terms of sporicidal capacity and information conservation in the Raman spectra. The latter fact has been verified by successfully using self-learning machines (such as support vector machines or artificial neural networks) to identify inactivated B. anthracis-related endospores with adequate accuracies within the range of the limited model database employed. PMID:20208030

  11. Microbial Decontamination of Dried Alaska Pollock Shreds Using Corona Discharge Plasma Jet: Effects on Physicochemical and Sensory Characteristics.

    PubMed

    Choi, Soee; Puligundla, Pradeep; Mok, Chulkyoon

    2016-04-01

    Nonthermal techniques for microbial decontamination are becoming more common for ensuring food safety. In this study, a corona discharge plasma jet (CDPJ) was used for inactivation of microbial contaminants of dried Alaska pollock shreds. Corona plasma jet was generated at a current strength of 1.5 A, and a span length of 25 mm was maintained between the electrode tip and the sample. Upon the CDPJ treatment (0 to 3 min) of dried shreds, microbial contaminants namely aerobic and marine bacteria, and Staphylococcus aureus were inactivated by 2.5, 1.5, and >1.0 log units, respectively. Also, a one-log reduction of molds and yeasts contaminants was observed. The inactivation patterns are fitted well to the pseudo-first-order kinetics or Singh-Heldman model. The CDPJ treatment did not exert statistically significant (P > 0.05) changes in physicochemical properties, namely color characteristics, volatile basic nitrogen, and peroxide value of dried fish shreds, with some exceptions, as compared to untreated controls. Furthermore, CDPJ treatment had no significant impact on the sensory characteristics of dried fish shreds. PMID:26953810

  12. Microbial production of 1-octanol: A naturally excreted biofuel with diesel-like properties

    PubMed Central

    Akhtar, M. Kalim; Dandapani, Hariharan; Thiel, Kati; Jones, Patrik R.

    2014-01-01

    The development of sustainable, bio-based technologies to convert solar energy and carbon dioxide into fuels is a grand challenge. A core part of this challenge is to produce a fuel that is compatible with the existing transportation infrastructure. This task is further compounded by the commercial desire to separate the fuel from the biotechnological host. Based on its fuel characteristics, 1-octanol was identified as an attractive metabolic target with diesel-like properties. We therefore engineered a synthetic pathway specifically for the biosynthesis of 1-octanol in Escherichia coli BL21(DE3) by over-expression of three enzymes (thioesterase, carboxylic acid reductase and aldehyde reductase) and one maturation factor (phosphopantetheinyl transferase). Induction of this pathway in a shake flask resulted in 4.4 mg 1-octanol L−1 h−1 which exceeded the productivity of previously engineered strains. Furthermore, the majority (73%) of the fatty alcohol was localised within the media without the addition of detergent or solvent overlay. The deletion of acrA reduced the production and excretion of 1-octanol by 3-fold relative to the wild-type, suggesting that the AcrAB–TolC complex may be responsible for the majority of product efflux. This study presents 1-octanol as a potential fuel target that can be synthesised and naturally accumulated within the media using engineered microbes. PMID:27066394

  13. Evaluation of microbial loads, physical characteristics, chemical constituents and biological properties of radiation processed Fagonia arabica

    NASA Astrophysics Data System (ADS)

    Khattak, Khanzadi Fatima

    2012-06-01

    Whole plant of Fagonia arabica with 3 different particle sizes (30, 50 and 70 mesh) were exposed to gamma radiation doses of 1-10 kGy from a Cobalt 60 source. A series of tests was performed in order to check the feasibility of irradiation processing of the plant. The applied radiation doses did not affect (P<0.05) pH and antimicrobial activities of the plant. The total weight of the dry extracts in methanol as well as water was found increased with irradiation. The irradiated samples showed significant increase in phenolic content and free radical scavenging activity using DPPH. Shortly after irradiation (on the day of radiation treatment) high amounts of free radicals were detected in the irradiated plant samples and the chemiluminescence measurements were generally found to be dose dependent. Maximum luminescence intensity was observed in case of samples with mesh size of 30 for all the radiation doses applied. After a period of one month the chemiluminescence signals of the irradiated samples approximated those of the controls. The study suggests that gamma irradiation treatment is effective for quality improvement and enhances certain beneficial biological properties of the treated materials.

  14. Inactivation of Microorganisms

    NASA Astrophysics Data System (ADS)

    Alzamora, Stella Maris; Guerrero, Sandra N.; Schenk, Marcela; Raffellini, Silvia; López-Malo, Aurelio

    Minimal processing techniques for food preservation allow better retention of product flavor, texture, color, and nutrient content than comparable conventional treatments. A wide range of novel alternative physical factors have been intensely investigated in the last two decades. These physical factors can cause inactivation of microorganisms at ambient or sublethal temperatures (e.g., high hydrostatic pressure, pulsed electric fields, ultrasound, pulsed light, and ultraviolet light). These technologies have been reported to reduce microorganism population in foods while avoiding the deleterious effects of severe heating on quality. Among technologies, high-energy ultrasound (i.e., intensities higher than 1 W/cm2, frequencies between 18 and 100 kHz) has attracted considerable interest for food preservation applications (Mason et al., 1996; Povey and Mason, 1998).

  15. Thermal inactivation of microorganisms.

    PubMed

    Smelt, J P P M; Brul, S

    2014-01-01

    This paper serves as an overview of various aspects of thermal processing. Heat processing of foods has a long history and is still one of the most important preservation methods. To guarantee microbiological safety and stability, large safety margins are often applied in traditional heat processes. Because of the need for more fresh like foods, there is a need for milder preservation methods without compromising on safety and stability. The review deals with heat resistance data and mathematical models that describe heat inactivation. The effects of food composition are not yet fully clear and more knowledge of the cell physiology of the target microorganism could be of help in predicting the effects of food constituents. Finally, special attention has been paid to biological time temperature indicators to enable proper process calculations.

  16. Microbial production of methylketones: properties of purified yeast secondary alcohol dehydrogenase

    SciTech Connect

    Patel, R.N.; Hou, C.T.; Laskin, A.I.; Derelanko, P.

    1981-06-01

    Secondary alcohol dehydrogenase (SADH) was purified from extracts of a methanol-grown yeast, Pichia sp. The purified enzyme was homogeneous as judged by ultracentrifugation and by polyacrylamide gel electrophoresis. The purified SADH has a molecular weight of 98,000 as determined by gel filtration and 102,000 as determined by sedimentation equilibrium analysis. The sedimentation constant s/sub 20,w/ was 6.0. The subunit size of the SADH was 48,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, indicating that it consists of two subunits. The purified SADH contained two atoms of zinc per mole of enzyme protein. SADH catalyzed the oxidation of secondary alcohols. Primary alcohols (C/sub 1/ to C/sub 8/ tested) were not oxidized. The purified SADH and extracts of various yeasts and bacteria also catalyzed the reduction of methylketones to the corresponding secondary alcohols in the presence of reduced NAD/sup +/ as an electron donor. Both reactions (oxidation of secondary alcohols in the presence of NAD/sup +/ and reduction of methylketones in the presence of reduced NAD/sup +/) catalyzed by the purified SADH were inhibited by metal-chelating agents, thio reagent, and by antisera prepared against the purified enzyme. The apparent K/sub m/ values for NAD/sup +/, reduced NAD/sup +/, reduced NAD/sup +/, 2-butanol, and 2-butanone are 0.05, 0.1, 0.4, and 1 mM, respectively. The purified enzyme preferentially oxidized (-)-2-butanol and (-)-2-octanol, the rate of oxidation of (+)-2-butanol and (+)-2-octanol was 36% and 13% of that of 100% with (-)-2-butanol and (-)-2-octanol, respectively. The K/sub m/ values for (-)-2-butanol and (+)-2-butanol were 3.0 and 0.75 mM, respectively. Antisera prepared against purified Pichia SADH cross-reacted with the SADH derived from bacteria. This suggests difference in immunological properties between yeast and bacterial SADH.

  17. A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties.

    PubMed

    Dastjerdi, Roya; Montazer, Majid

    2010-08-01

    Textiles can provide a suitable substrate to grow micro-organisms especially at appropriate humidity and temperature in contact to human body. Recently, increasing public concern about hygiene has been driving many investigations for anti-microbial modification of textiles. However, using many anti-microbial agents has been avoided because of their possible harmful or toxic effects. Application of inorganic nano-particles and their nano-composites would be a good alternative. This review paper has focused on the properties and applications of inorganic nano-structured materials with good anti-microbial activity potential for textile modification. The discussed nano-structured anti-microbial agents include TiO(2) nano-particles, metallic and non-metallic TiO(2) nano-composites, titania nanotubes (TNTs), silver nano-particles, silver-based nano-structured materials, gold nano-particles, zinc oxide nano-particles and nano-rods, copper nano-particles, carbon nanotubes (CNTs), nano-clay and its modified forms, gallium, liposomes loaded nano-particles, metallic and inorganic dendrimers nano-composite, nano-capsules and cyclodextrins containing nano-particles. This review is also concerned with the application methods for the modification of textiles using nano-structured materials.

  18. EFFECTS OF PHOTOCHEMICAL, MICROBIAL AND SORPTION PROCESSES ON THE OPTICAL PROPERTIES AND DEGRADATION OF DISSOLVED ORGANIC MATTER FROM COASTAL WETLANDS

    EPA Science Inventory

    The dissolved organic matter (DOM) exported from rivers and intertidal marshes to coastal oceans is rich in light-absorbing, fluorescent constituents, including humic substances and other polyphenolic moieties. Interactions between microbial and photochemical processes have impor...

  19. Effect of microbial transglutaminase on gel properties and film characteristics of gelatin from lizardfish (Saurida spp.) scales.

    PubMed

    Wangtueai, Sutee; Noomhorm, Athapol; Regenstein, Joe M

    2010-01-01

    The addition of microbial transglutaminase (MTGase) generally increased the gel strength of lizardfish (Saurida spp.) scale gelatin gels (P≤0.05) with an increase in gel strength with the addition of MTGase up to 0.5% (w/v). The texture profile analysis compression tests of lizardfish scale gelatin gel with and without MTGase were studied to determine their effects on gel characteristics. MTGase added to the gels decreased the band intensity of the β- and α-components with increasing concentrations of enzyme. Gel microstructures with various concentration of MTGase showed denser strands in the gels with enzyme compared with the looser stands in non-enzyme-treated gel samples. Films cast from lizardfish scale gelatin with and without 0.5% MTGase and bovine gelatin films were transparent and flexible. The lizardfish gelatin films were all slightly yellowish while the bovine gelatin films were clearer. The L value of bovine gelatin films had the highest value (P≤0.05) whereas lizardfish scale gelatin films with and without enzyme were not significantly different (P>0.05) for L, a, and b values and ΔE. The film's mechanical properties included tensile strength (TS) and elongation at break (E) were not significantly different (P > 0.05) for E and the films of lizardfish scale gelatin showed higher TS than the films without enzyme added (P ≤ 0.05). The water vapor permeability of films from lizardfish scale gelatin with and without 0.5% MTGase and bovine gelatin films were 21.0 ± 0.17, 26.3 ± 0.79, and 25.8 ± 0.09 g·mm/m(2)·d·kPa, respectively, while the oxygen transmission rate of all 3 types of films were less than 50 cc O(2)/m(2)·d. PMID:21535584

  20. The efficacy of preservation methods to inactivate foodborne viruses.

    PubMed

    Baert, L; Debevere, J; Uyttendaele, M

    2009-05-31

    During the last decade an increased incidence of infections and outbreaks attributed to foodborne viruses, in particular noroviruses (NoV), was observed world wide. The awareness of the presence of viruses on food emphasized the need to acquire knowledge regarding the effect of preservation methods upon viruses. Most foodborne viruses cannot be cultured in the laboratory, which hinders studies of their stability in food. Cultivable surrogate viruses, genetically related to the human infecting strains, are taken as a substitute to define inactivation rates. The last years, the number of survival and inactivation studies using various surrogate viruses increased. In this review, state-of-the-art information regarding the efficacy of preservation methods to reduce the level of viruses on food is compiled. In the first place, the effect of preservation methods establishing microbial growth inhibition (chilling, freezing, acidification, reduced water activity and modified atmosphere packaging) upon foodborne viruses is described. Secondly, the use of preservation methods establishing microbial inactivation such as heat treatment, high hydrostatic pressure processing and irradiation to eliminate viruses is discussed. In the third place, the efficacy of decontamination methods on fresh produce and purification procedures applied on live bivalve shellfish to reduce the viral load is included. These studies indicate that viruses persist well on chilled, acidified, frozen foods and foods packed under modified atmosphere or in dried conditions. Intervention strategies inducing microbial inactivation are required to achieve a 3 log reduction of the level of viruses. Decontamination of fresh produce reduces viruses with a maximum of 1 to 2 log while purification of live bivalves is not adequate to prevent viral outbreaks. It was noted that the effect of a particular food preservation method is dependent upon the virus tested and type of food.

  1. Microbial communities on glacier surfaces in Svalbard: impact of physical and chemical properties on abundance and structure of cyanobacteria and algae.

    PubMed

    Stibal, Marek; Sabacká, Marie; Kastovská, Klára

    2006-11-01

    Microbial communities occurring in three types of supraglacial habitats--cryoconite holes, medial moraines, and supraglacial kames--at several glaciers in the Arctic archipelago of Svalbard were investigated. Abundance, biovolume, and community structure were evaluated by using epifluorescence microscopy and culturing methods. Particular emphasis was laid on distinctions in the chemical and physical properties of the supraglacial habitats and their relation to the microbial communities, and quantitative multivariate analyses were used to assess potential relationships. Varying pH (4.8 in cryoconite; 8.5 in a moraine) and texture (the proportion of coarse fraction 2% of dry weight in cryoconite; 99% dw in a kame) were found, and rather low concentrations of organic matter (0.3% of dry weight in a kame; 22% dw in cryoconite) and nutrients (nitrogen up to 0.4% dw, phosphorus up to 0.8% dw) were determined in the samples. In cryoconite sediment, the highest numbers of bacteria, cyanobacteria, and algae were found, whereas relatively low microbial abundances were recorded in moraines and kames. Cyanobacterial cells were significantly more abundant than microalgal ones in cryoconite and supraglacial kames. Different species of the cyanobacterial genus Leptolyngbya were by far the most represented in all samples, and cyanobacteria of the genera Phormidium and Nostoc prevailed in cultures isolated from cryoconite samples. These species are considered opportunistic organisms with wide ecological valency and strong colonizing potential rather than glacial specialists. Statistical analyses suggest that fine sediment with higher water content is the most suitable condition for bacteria, cyanobacteria, and algae. Also, a positive impact of lower pH on microbial growth was found. The fate of a microbial cell deposited on the glacier surface seems therefore predetermined by the physical and chemical factors such as texture of sediment and water content rather than spatial factors

  2. Microbial communities on glacier surfaces in Svalbard: impact of physical and chemical properties on abundance and structure of cyanobacteria and algae.

    PubMed

    Stibal, Marek; Sabacká, Marie; Kastovská, Klára

    2006-11-01

    Microbial communities occurring in three types of supraglacial habitats--cryoconite holes, medial moraines, and supraglacial kames--at several glaciers in the Arctic archipelago of Svalbard were investigated. Abundance, biovolume, and community structure were evaluated by using epifluorescence microscopy and culturing methods. Particular emphasis was laid on distinctions in the chemical and physical properties of the supraglacial habitats and their relation to the microbial communities, and quantitative multivariate analyses were used to assess potential relationships. Varying pH (4.8 in cryoconite; 8.5 in a moraine) and texture (the proportion of coarse fraction 2% of dry weight in cryoconite; 99% dw in a kame) were found, and rather low concentrations of organic matter (0.3% of dry weight in a kame; 22% dw in cryoconite) and nutrients (nitrogen up to 0.4% dw, phosphorus up to 0.8% dw) were determined in the samples. In cryoconite sediment, the highest numbers of bacteria, cyanobacteria, and algae were found, whereas relatively low microbial abundances were recorded in moraines and kames. Cyanobacterial cells were significantly more abundant than microalgal ones in cryoconite and supraglacial kames. Different species of the cyanobacterial genus Leptolyngbya were by far the most represented in all samples, and cyanobacteria of the genera Phormidium and Nostoc prevailed in cultures isolated from cryoconite samples. These species are considered opportunistic organisms with wide ecological valency and strong colonizing potential rather than glacial specialists. Statistical analyses suggest that fine sediment with higher water content is the most suitable condition for bacteria, cyanobacteria, and algae. Also, a positive impact of lower pH on microbial growth was found. The fate of a microbial cell deposited on the glacier surface seems therefore predetermined by the physical and chemical factors such as texture of sediment and water content rather than spatial factors

  3. Hyaluronan decreases surfactant inactivation in vitro.

    PubMed

    Lu, Karen W; Goerke, Jon; Clements, John A; Taeusch, H William

    2005-02-01

    Hyaluronan (HA) is an anionic polymer and a constituent of alveolar fluid that can bind proteins, phospholipids, and water. Previous studies have established that nonionic polymers improve the surface activity of pulmonary surfactants by decreasing inactivation of surfactant. In this work, we investigate whether HA can also have beneficial effects when added to surfactants. We used a modified pulsating bubble surfactometer to measure mixtures of several commercially available pulmonary surfactants or native calf surfactant with and without serum inactivation. Surface properties such as equilibrium surface tension, minimum and maximum surface tensions on compression and expansion of a surface film, and degree of surface area reduction required to reach a surface tension of 10 mN/m were measured. In the presence of serum, addition of HA dramatically improved the surface activities of all four surfactants and in some cases in the absence of serum as well. These results indicate that HA reduces inactivation of surfactants caused by serum and add evidence that endogenous HAs may interact with alveolar surfactant under normal and abnormal conditions.

  4. Kinetics of UV inactivation of wastewater bioflocs.

    PubMed

    Azimi, Y; Allen, D G; Farnood, R R

    2012-08-01

    Ultraviolet disinfection is a physical method of disinfecting secondary treated wastewaters. Bioflocs formed during secondary treatment harbor and protect microbes from exposure to ultraviolet (UV) light, and significantly decrease the efficiency of disinfection at high UV doses causing the tailing phenomena. However, the exact mechanism of tailing and the role of biofloc properties and treatment conditions are not widely understood. It is hypothesized that sludge bioflocs are composed of an easily disinfectable loose outer shell, and a physically stronger compact core inside that accounts for the tailing phenomena. Hydrodynamic shear stress was applied to the bioflocs to peel off the looser outer shell to isolate the cores. Biofloc and core samples were fractionated into narrow size distributions by sieving and their UV disinfection kinetics were determined and compared. The results showed that for bioflocs, the tailing level elevates as the biofloc size increases, showing greater resistance to disinfection. However, for the cores larger than 45μm, it was found that the UV inactivation curves overlap, and show very close to identical inactivation kinetics. Comparing bioflocs and cores of similar size fraction, it was found that in all cases cores were harder to disinfect with UV light, and showed a higher tailing level. This study suggests that physical structure of bioflocs plays a significant role in the UV inactivation kinetics. PMID:22608608

  5. Kinetics of UV inactivation of wastewater bioflocs.

    PubMed

    Azimi, Y; Allen, D G; Farnood, R R

    2012-08-01

    Ultraviolet disinfection is a physical method of disinfecting secondary treated wastewaters. Bioflocs formed during secondary treatment harbor and protect microbes from exposure to ultraviolet (UV) light, and significantly decrease the efficiency of disinfection at high UV doses causing the tailing phenomena. However, the exact mechanism of tailing and the role of biofloc properties and treatment conditions are not widely understood. It is hypothesized that sludge bioflocs are composed of an easily disinfectable loose outer shell, and a physically stronger compact core inside that accounts for the tailing phenomena. Hydrodynamic shear stress was applied to the bioflocs to peel off the looser outer shell to isolate the cores. Biofloc and core samples were fractionated into narrow size distributions by sieving and their UV disinfection kinetics were determined and compared. The results showed that for bioflocs, the tailing level elevates as the biofloc size increases, showing greater resistance to disinfection. However, for the cores larger than 45μm, it was found that the UV inactivation curves overlap, and show very close to identical inactivation kinetics. Comparing bioflocs and cores of similar size fraction, it was found that in all cases cores were harder to disinfect with UV light, and showed a higher tailing level. This study suggests that physical structure of bioflocs plays a significant role in the UV inactivation kinetics.

  6. CHLORINE INACTIVATION OF BACILLUS ENDOSPORES

    EPA Science Inventory

    The possibility of a bioterrorism event resulting in the release of Bacillus anthracis endospores into a drinking water distribution system necessitates research into means by which these endospores can be inactivated. This study was designed to determine the chlorine resistance...

  7. Influenza Vaccine, Inactivated or Recombinant

    MedlinePlus

    ... die from flu, and many more are hospitalized.Flu vaccine can:keep you from getting flu, make flu ... inactivated or recombinant influenza vaccine?A dose of flu vaccine is recommended every flu season. Children 6 months ...

  8. Studies on the thermal inactivation of immobilized enzymes

    SciTech Connect

    Ulbrich, R.; Schellenberger, A.; Damerau, W.

    1986-04-01

    The thermal inactivation of a great number of immobilized enzymes shows a biphasic kinetics, which distinctly differs from the first-order inactivation kinetics of the corresponding soluble enzymes. As shown for ..cap alpha..-amylase, chymotrypsin, and trypsin covalently bound to silica, polystyrene, or polyacrylamide, the dependence of the remaining activities on the heating time can be well described by the sum of two exponential terms. To interpret this mathematical model function, the catalytic properties of immobilized enzymes (number of active sites in silica-bound trypsin, Km and Ea values in silica-bound ..cap alpha..-amylase and chymotrypsin) at different stages of inactivation and the influence of various factors (coupling conditions, addition of denaturants or stabilizers, etc.) on the thermal inactivation of silica-bound ..cap alpha..-amylase were studied. Furthermore, conformational alterations in the thermal denaturation of spin-labeled soluble and silica-bound ..beta..-amylase were compared by electron spin resonance (ESR) studies. The results suggest that the biphasic inactivation kinetics reflects two different pathways according to which catalytically identical enzyme molecules are predominantly inactivated. 45 references.

  9. Inactivation of Salmonella enteritidis during boiling of eggs.

    PubMed

    Grijspeerdt, Koen; Herman, Lieve

    2003-01-26

    A series of inactivation curves for Salmonella enteritidis were determined for boiling eggs using different conditions of time and temperature. No significant influence of egg weight could be found on the temperature evolution in the yolk. The inactivation curves consistently showed an initial slow decline in bacterial number at lower temperatures, after which a very rapid inactivation took place. It was not possible to reproduce this behavior using a traditional inactivation model. A pragmatic model existing in two parts was therefore constructed. When the temperature is below a certain threshold, the inactivation follows a second order temperature dependence. Above the temperature threshold, standard Bigelow inactivation kinetics are assumed. This model could describe the data reasonably well, provided that the decimal reduction time in the Bigelow model was assumed to be different for a fast or slow heating process, respectively. The results suggest that the bacteria are more resistant towards a slower heating process, which is confirmed by analyzing the raw data. A fail-safe model can be obtained by using the parameters associated with the slow heating process. The statistical properties of the calibrated model are satisfactory, and a cross-validation shows that it can be used for egg boiling conditions outside its calibration range.

  10. Human PIEZO1: removing inactivation.

    PubMed

    Bae, Chilman; Gottlieb, Philip A; Sachs, Frederick

    2013-08-20

    PIEZO1 is an inactivating eukaryotic cation-selective mechanosensitive ion channel. Two sites have been located in the channel that when individually mutated lead to xerocytotic anemia by slowing inactivation. By introducing mutations at two sites, one associated with xerocytosis and the other artificial, we were able to remove inactivation. The double mutant (DhPIEZO1) has a substitution of arginine for methionine (M2225R) and lysine for arginine (R2456K). The loss of inactivation was accompanied by ∼30-mmHg shift of the activation curve to lower pressures and slower rates of deactivation. The slope sensitivity of gating was the same for wild-type and mutants, indicating that the dimensional changes between the closed and open state are unaffected by the mutations. The unitary channel conductance was unchanged by mutations, so these sites are not associated with pore. DhPIEZO1 was reversibly inhibited by the peptide GsMTx4 that acted as a gating modifier. The channel kinetics were solved using complex stimulus waveforms and the data fit to a three-state loop in detailed balance. The reaction had two pressure-dependent rates, closed to open and inactivated to closed. Pressure sensitivity of the opening rate with no sensitivity of the closing rate means that the energy barrier between them is located near the open state. Mutant cycle analysis of inactivation showed that the two sites interacted strongly, even though they are postulated to be on opposite sides of the membrane. PMID:23972840

  11. Responses of butachlor degradation and microbial properties in a riparian soil to the cultivation of three different plants.

    PubMed

    Yang, Changming; Wang, Mengmeng; Chen, Haiyan; Li, Jianhua

    2011-01-01

    A pot experiment was conducted to investigate the biodegradation dynamics and related microbial ecophysiological responses to butachlor addition in a riparian soil planted with different plants such as Phragmites australis, Zizania aquatica, and Acorus calamus. The results showed that there were significant differences in microbial degradation dynamics of butachlor in the rhizosphere soils among the three riparian plants. A. calamus displays a significantly higher degradation efficiency of butachlor in the rhizosphere soils, as compared with Z. aquatica and P. australis. Half-life time of butachlor degradation in the rhizospheric soils of P. australis, Z. aquatica, and A. calamus were 7.5, 9.8 and 5.4 days, respectively. Residual butachlor concentration in A. calamus rhizosphere soil was 35.2% and 21.7% lower than that in Z. aquatica and P. australis rhizosphere soils, respectively, indicating that A. calamus showed a greater improvement effect on biodegradation of butachlor in rhizosphere soils than the other two riparian plant. In general, microbial biomass and biochemical activities in rhizosphere soils were depressed by butachlor addition, despite the riparian plant types. However, rhizospheric soil microbial ecophysiological responses to butachlor addition significantly (P < 0.05) differed between riparian plant species. Compared to Z. aquatica and P. australis, A. calamus showed significantly larger microbial number, higher enzyme activities and soil respiration rates in the rhizosphere soils. The results indicated that A. calamus have a better alleviative effect on inhibition of microbial growth due to butachlor addition and can be used as a suitable riparian plant for detoxifying and remediating butachlor contamination from agricultural nonpoint pollution.

  12. Microbial metropolis.

    PubMed

    Wimpenny, Julian

    2009-01-01

    Microorganisms can form tightly knit communities such as biofilms. Many others include marine snow, anaerobic digester granules, the ginger beer plant and bacterial colonies. This chapter is devoted to a survey of the main properties of these communities, with an emphasis on biofilms. We start with attachment to surfaces and the nature of adhesion. The growing community then forms within a matrix, generally of organic macromolecules. Inevitably the environment within such a matrix is different from that outside. Organisms respond by forming crowd-detection and response units; these quorum sensing systems act as switches between planktonic life and the dramatically altered conditions found inside microbial aggregates. The community then matures and changes and may even fail and disappear. Antimicrobial resistance is discussed as an example of multicellular behavior. The multicellular lifestyle has been modeled mathematically and responded to powerful molecular biological techniques. Latterly, microbial systems have been used as models for fundamental evolutionary processes, mostly because of their high rates of reproduction and the ease of genetic manipulation. The life of most microbes is a duality between the yin of the community and the yang of planktonic existence. Sadly far less research has been devoted to adaptation to free-living forms than in the opposite direction. PMID:20943124

  13. Inactivation of Salmonella spp. in ground chicken using High Pressure Processing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High pressure processing (HPP) is a safe and effective process for improving the microbial safety and shelf-life of foods. Salmonella is a common contaminant in poultry meat and is frequently responsible for foodborne illness associated with contaminated poultry meat. In this study the inactivation...

  14. [Effects of biochar on CO2 and N2O emissions and microbial properties of tea garden soils].

    PubMed

    Hu, Yun-fei; Li, Rong-lin; Yang, Yi-yang

    2015-07-01

    To clarify the effects of biochar addition (0.5%, 1.5%, 2.5%, 3.5%) on the emission of carbon dioxide (CO2) and nitrous oxide (N2O), pH and microbial communities of the tea garden soil, an indoor incubation experiment was conducted using the acidulated tea-planted soil. Results showed that the emissions of CO2 and N2O and the rate of C, N mineralization were increased in a short term after the addition of biochar compared with the control, while the promoting effect was weakened along with increasing the addition of biochar. The pH, dehydrogenase activity and microbial biomass carbon were increased in the biochar treatments. Phospholi-pid fatty acid (PLFA) with different markers was measured and the most PLFA was detected in the group in the 1.5% biochar treatment with significant differences (P<0.05) compared with the control. In addition, the higher levels of 16:0, 14:0 (bacteria), 18:lω9c (fungi), l0Me18:0 (actinomycetes) groups were observed and there were significant differences (P <0.05) in individual phospholipid fatty acid among the different treatments. Taken together, the acidulated tea-planted soil, soil microbial biomass and microbial number were improved after addition of biochar.

  15. Impact of poplar-based phytomanagement on soil properties and microbial communities in a metal-contaminated site.

    PubMed

    Foulon, Julie; Zappelini, Cyril; Durand, Alexis; Valot, Benoit; Blaudez, Damien; Chalot, Michel

    2016-10-01

    Despite a long history of use in phytomanagement strategies, the impacts of poplar trees on the structure and function of microbial communities that live in the soil remain largely unknown. The current study combined fungal and bacterial community analyses from different management regimes using Illumina-based sequencing with soil analysis. The poplar phytomanagement regimes led to a significant increase in soil fertility and a decreased bioavailability of Zn and Cd, in concert with changes in the microbial communities. The most notable changes in the relative abundance of taxa and operational taxonomic units unsurprisingly indicated that root and soil constitute distinct ecological microbial habitats, as exemplified by the dominance of Laccaria in root samples. The poplar cultivar was also an important driver, explaining 12% and 6% of the variance in the fungal and bacterial data sets, respectively. The overall dominance of saprophytic fungi, e.g. Penicillium canescens, might be related to the decomposition activities needed at the experimental site. Our data further highlighted that the mycorrhizal colonization of poplar cultivars varies greatly between the species and genotypes, which is exemplified by the dominance of Scleroderma under Vesten samples. Further interactions between fungal and bacterial functional groups stressed the potential of high-throughput sequencing technologies in uncovering the microbial ecology of disturbed environments.

  16. Impact of poplar-based phytomanagement on soil properties and microbial communities in a metal-contaminated site.

    PubMed

    Foulon, Julie; Zappelini, Cyril; Durand, Alexis; Valot, Benoit; Blaudez, Damien; Chalot, Michel

    2016-10-01

    Despite a long history of use in phytomanagement strategies, the impacts of poplar trees on the structure and function of microbial communities that live in the soil remain largely unknown. The current study combined fungal and bacterial community analyses from different management regimes using Illumina-based sequencing with soil analysis. The poplar phytomanagement regimes led to a significant increase in soil fertility and a decreased bioavailability of Zn and Cd, in concert with changes in the microbial communities. The most notable changes in the relative abundance of taxa and operational taxonomic units unsurprisingly indicated that root and soil constitute distinct ecological microbial habitats, as exemplified by the dominance of Laccaria in root samples. The poplar cultivar was also an important driver, explaining 12% and 6% of the variance in the fungal and bacterial data sets, respectively. The overall dominance of saprophytic fungi, e.g. Penicillium canescens, might be related to the decomposition activities needed at the experimental site. Our data further highlighted that the mycorrhizal colonization of poplar cultivars varies greatly between the species and genotypes, which is exemplified by the dominance of Scleroderma under Vesten samples. Further interactions between fungal and bacterial functional groups stressed the potential of high-throughput sequencing technologies in uncovering the microbial ecology of disturbed environments. PMID:27481257

  17. Photocatalytic inactivation of biofilms on bioactive dental adhesives.

    PubMed

    Cai, Yanling; Strømme, Maria; Melhus, Asa; Engqvist, Håkan; Welch, Ken

    2014-01-01

    Biofilms are the most prevalent mode of microbial life in nature and are 10-1000 times more resistant to antibiotics than planktonic bacteria. Persistent biofilm growth associated at the margin of a dental restoration often leads to secondary caries, which remains a challenge in restorative dentistry. In this work, we present the first in vitro evaluation of on-demand photocatalytic inactivation of biofilm on a novel dental adhesive containing TiO2 nanoparticles. Streptococcus mutans biofilm was cultured on this photocatalytic surface for 16 h before photocatalytic treatment with ultraviolet-A (UV-A) light. UV-A doses ranging from 3 to 43 J/cm(2) were applied to the surface and the resulting viability of biofilms was evaluated with a metabolic activity assay incorporating phenol red that provided a quantitative measure of the reduction in viability due to the photocatalytic treatments. We show that an UV-A irradiation dose of 8.4 J/cm(2) leads to one order of magnitude reduction in the number of biofilm bacteria on the surface of the dental adhesives while as much as 5-6 orders of magnitude reduction in the corresponding number can be achieved with a dose of 43 J/cm(2). This material maintains its functional properties as an adhesive in restorative dentistry while offering the possibility of a novel dental procedure in the treatment or prevention of bacterial infections via on-demand UV-A irradiation. Similar materials could be developed for the treatment of additional indications such as peri-implantits.

  18. Comparative study of lacosamide and classical sodium channel blocking antiepileptic drugs on sodium channel slow inactivation.

    PubMed

    Niespodziany, Isabelle; Leclère, Nathalie; Vandenplas, Catherine; Foerch, Patrik; Wolff, Christian

    2013-03-01

    Many antiepileptic drugs (AEDs) exert their therapeutic activity by modifying the inactivation properties of voltage-gated sodium (Na(v) ) channels. Lacosamide is unique among AEDs in that it selectively enhances the slow inactivation component. Although numerous studies have investigated the effects of AEDs on Na(v) channel inactivation, a direct comparison of results cannot be made because of varying experimental conditions. In this study, the effects of different AEDs on Na(v) channel steady-state slow inactivation were investigated under identical experimental conditions using whole-cell patch-clamp in N1E-115 mouse neuroblastoma cells. All drugs were tested at 100 μM, and results were compared with those from time-matched control groups. Lacosamide significantly shifted the voltage dependence of Na(v) current (I(Na) ) slow inactivation toward more hyperpolarized potentials (by -33 ± 7 mV), whereas the maximal fraction of slow inactivated channels and the curve slope did not differ significantly. Neither SPM6953 (lacosamide inactive enantiomer), nor carbamazepine, nor zonisamide affected the voltage dependence of I(Na) slow inactivation, the maximal fraction of slow inactivated channels, or the curve slope. Phenytoin significantly increased the maximal fraction of slow inactivated channels (by 28% ± 9%) in a voltage-independent manner but did not affect the curve slope. Lamotrigine slightly increased the fraction of inactivated currents (by 15% ± 4%) and widened the range of the slow inactivation voltage dependence. Lamotrigine and rufinamide induced weak, but significant, shifts of I(Na) slow inactivation toward more depolarized potentials. The effects of lacosamide on Na(v) channel slow inactivation corroborate previous observations that lacosamide has a unique mode of action among AEDs that act on Na(v) channels. PMID:23239147

  19. Modeling-independent elucidation of inactivation pathways in recombinant and native A-type Kv channels.

    PubMed

    Fineberg, Jeffrey D; Ritter, David M; Covarrubias, Manuel

    2012-11-01

    A-type voltage-gated K(+) (Kv) channels self-regulate their activity by inactivating directly from the open state (open-state inactivation [OSI]) or by inactivating before they open (closed-state inactivation [CSI]). To determine the inactivation pathways, it is often necessary to apply several pulse protocols, pore blockers, single-channel recording, and kinetic modeling. However, intrinsic hurdles may preclude the standardized application of these methods. Here, we implemented a simple method inspired by earlier studies of Na(+) channels to analyze macroscopic inactivation and conclusively deduce the pathways of inactivation of recombinant and native A-type Kv channels. We investigated two distinct A-type Kv channels expressed heterologously (Kv3.4 and Kv4.2 with accessory subunits) and their native counterparts in dorsal root ganglion and cerebellar granule neurons. This approach applies two conventional pulse protocols to examine inactivation induced by (a) a simple step (single-pulse inactivation) and (b) a conditioning step (double-pulse inactivation). Consistent with OSI, the rate of Kv3.4 inactivation (i.e., the negative first derivative of double-pulse inactivation) precisely superimposes on the profile of the Kv3.4 current evoked by a single pulse because the channels must open to inactivate. In contrast, the rate of Kv4.2 inactivation is asynchronous, already changing at earlier times relative to the profile of the Kv4.2 current evoked by a single pulse. Thus, Kv4.2 inactivation occurs uncoupled from channel opening, indicating CSI. Furthermore, the inactivation time constant versus voltage relation of Kv3.4 decreases monotonically with depolarization and levels off, whereas that of Kv4.2 exhibits a J-shape profile. We also manipulated the inactivation phenotype by changing the subunit composition and show how CSI and CSI combined with OSI might affect spiking properties in a full computational model of the hippocampal CA1 neuron. This work unambiguously

  20. Effect of thyme/cumin essential oils and butylated hydroxyl anisole/butylated hydroxyl toluene on physicochemical properties and oxidative/microbial stability of chicken patties.

    PubMed

    Sariçoban, Cemalettin; Yilmaz, Mustafa Tahsin

    2014-02-01

    In this study, effects of thyme/cumin essential oils (EO) and butylated hydroxyl anisole (BHA)/butylated hydroxyl toluene (BHT) on physicochemical properties and storage stability of chicken patties were compared in different storage periods (0, 3, 7, 14, 21, and 28 d). It was found that there were significant (P < 0.05) differences between physicochemical properties of patty samples treated with EO and the synthetic antioxidants. The EO showed similar performance to those of BHA and BHT in limiting TBARS values of chicken patty samples. Similarity in performance was also the case for microbial stability (total aerobic mesophilic, psychrotrophic, lactic acid, and coliform bacteria as well as molds and yeasts); namely, their effects were significant (P < 0.05). Effect of thyme EO was significant (P < 0.05) and remarkable, not allowing any coliform bacteria to grow in the samples. Given that EO were obtained from natural sources, the data suggested that the EO might be more useful than their synthetic counterparts, BHA and BHT, as additives for chicken patties to maintain oxidative/microbial stability and increase shelf life.

  1. Effect of salinity tolerant PDH45 transgenic rice on physicochemical properties, enzymatic activities and microbial communities of rhizosphere soils

    PubMed Central

    Sahoo, Ranjan Kumar; Tuteja, Narendra

    2013-01-01

    The effect of genetically modified (GM) plants on environment is now major concern worldwide. The plant roots of rhizosphere soil interact with variety of bacteria which could be influenced by the transgene in GM plants. The antibiotic resistance genes in GM plants may be transferred to soil microbes. In this study we have examined the effect of overexpression of salinity tolerant pea DNA helicase 45 (PDH45) gene on microbes and enzymatic activities in the rhizosphere soil of transgenic rice IR64 in presence and absence of salt stress in two different rhizospheric soils (New Delhi and Odisha, India). The diversity of the microbial community and soil enzymes viz., dehydrogenase, alkaline phosphatase, urease and nitrate reductase was assessed. The results revealed that there was no significant effect of transgene expression on rhizosphere soil of the rice plants. The isolated bacteria were phenotyped both in absence and presence of salt and no significant changes were found in their phenotypic characters as well as in their population. Overall, the overexpression of PDH45 in rice did not cause detectable changes in the microbial population, soil enzymatic activities and functional diversity of the rhizosphere soil microbial community. PMID:23733066

  2. Effect of Chinese medicinal herbal residues on microbial community succession and anti-pathogenic properties during co-composting with food waste.

    PubMed

    Zhou, Ying; Selvam, Ammaiyappan; Wong, Jonathan W C

    2016-10-01

    This study investigated the antimicrobial properties of Chinese medicinal herbal residues (CMHRs) during its co-composting with food waste (FW) in two different ratios along with a control. Inhibition on total microbial population were assessed while the numerically dominant microbes were isolated and their antagonistic effects were assessed. Results indicate that the active ingredients persist in the composting mass did not affect the microbes unspecifically as revealed from almost similar bacterial and fungal populations. Rather specific inhibitory activities against Alternaria solani and Fusarium oxysporum were observed. Apart from the CMHR-born active compounds, CMHR-induced changes in the antagonistic and mycoparasitic abilities of the bacteria and fungi also contribute to the specific inhibition against the tested pathogens. Therefore use of CMHRs during the composting of CMHRs enhances its antipathogenic property resulting in an anti-pathogenic compost. PMID:27039351

  3. Effect of Chinese medicinal herbal residues on microbial community succession and anti-pathogenic properties during co-composting with food waste.

    PubMed

    Zhou, Ying; Selvam, Ammaiyappan; Wong, Jonathan W C

    2016-10-01

    This study investigated the antimicrobial properties of Chinese medicinal herbal residues (CMHRs) during its co-composting with food waste (FW) in two different ratios along with a control. Inhibition on total microbial population were assessed while the numerically dominant microbes were isolated and their antagonistic effects were assessed. Results indicate that the active ingredients persist in the composting mass did not affect the microbes unspecifically as revealed from almost similar bacterial and fungal populations. Rather specific inhibitory activities against Alternaria solani and Fusarium oxysporum were observed. Apart from the CMHR-born active compounds, CMHR-induced changes in the antagonistic and mycoparasitic abilities of the bacteria and fungi also contribute to the specific inhibition against the tested pathogens. Therefore use of CMHRs during the composting of CMHRs enhances its antipathogenic property resulting in an anti-pathogenic compost.

  4. Fast Inactivation of Delayed Rectifier K Conductance in Squid Giant Axon and Its Cell Bodies

    PubMed Central

    Mathes, Chris; Rosenthal, Joshua J.C.; Armstrong, Clay M.; Gilly, William F.

    1997-01-01

    Inactivation of delayed rectifier K conductance (gK) was studied in squid giant axons and in the somata of giant fiber lobe (GFL) neurons. Axon measurements were made with an axial wire voltage clamp by pulsing to VK (∼−10 mV in 50–70 mM external K) for a variable time and then assaying available gK with a strong, brief test pulse. GFL cells were studied with whole-cell patch clamp using the same prepulse procedure as well as with long depolarizations. Under our experimental conditions (12–18°C, 4 mM internal MgATP) a large fraction of gK inactivates within 250 ms at −10 mV in both cell bodies and axons, although inactivation tends to be more complete in cell bodies. Inactivation in both preparations shows two kinetic components. The faster component is more temperature-sensitive and becomes very prominent above 12°C. Contribution of the fast component to inactivation shows a similar voltage dependence to that of gK, suggesting a strong coupling of this inactivation path to the open state. Omission of internal MgATP or application of internal protease reduces the amount of fast inactivation. High external K decreases the amount of rapidly inactivating IK but does not greatly alter inactivation kinetics. Neither external nor internal tetraethylammonium has a marked effect on inactivation kinetics. Squid delayed rectifier K channels in GFL cell bodies and giant axons thus share complex fast inactivation properties that do not closely resemble those associated with either C-type or N-type inactivation of cloned Kv1 channels studied in heterologous expression systems. PMID:9101403

  5. Fast inactivation of delayed rectifier K conductance in squid giant axon and its cell bodies.

    PubMed

    Mathes, C; Rosenthal, J J; Armstrong, G M; Gilly, W F

    1997-04-01

    Inactivation of delayed rectifier K conductance (gk) was studied in squid giant axons and in the somata of giant fiber lobe (GFL) neurons. Axon measurements were made with an axial wire voltage clamp by pulsing to VK (approximately -10 mV in 50-70 mM external K) for a variable time and then assaying available gK with a strong, brief test pulse. GFL cells were studied with whole-cell patch clamp using the same prepulse procedure as well as with long depolarizations. Under our experimental conditions (12-18 degrees C, 4 mM internal MgATP) a large fraction of gK inactivates within 250 ms at -10 mV in both cell bodies and axons, although inactivation tends to be more complete in cell bodies. Inactivation in both preparations shows two kinetic components. The faster component is more temperature-sensitive and becomes very prominent above 12 degrees C. Contribution of the fast component to inactivation shows a similar voltage dependence to that of gK, suggesting a strong coupling of this inactivation path to the open state. Omission of internal MgATP or application of internal protease reduces the amount of fast inactivation. High external K decreases the amount of rapidly inactivating IK but does not greatly alter inactivation kinetics. Neither external nor internal tetraethylammonium has a marked effect on inactivation kinetics. Squid delayed rectifier K channels in GFL cell bodies and giant axons thus share complex fast inactivation properties that do not closely resemble those associated with either C-type or N-type inactivation of cloned Kvl channels studied in heterologous expression systems.

  6. Inactivation of antibiotics and the dissemination of resistance genes.

    PubMed

    Davies, J

    1994-04-15

    The emergence of multidrug-resistant bacteria is a phenomenon of concern to the clinician and the pharmaceutical industry, as it is the major cause of failure in the treatment of infectious diseases. The most common mechanism of resistance in pathogenic bacteria to antibiotics of the aminoglycoside, beta-lactam (penicillins and cephalosporins), and chloramphenicol types involves the enzymic inactivation of the antibiotic by hydrolysis or by formation of inactive derivatives. Such resistance determinants most probably were acquired by pathogenic bacteria from a pool of resistance genes in other microbial genera, including antibiotic-producing organisms. The resistance gene sequences were subsequently integrated by site-specific recombination into several classes of naturally occurring gene expression cassettes (typically "integrons") and disseminated within the microbial population by a variety of gene transfer mechanisms. Although bacterial conjugation once was believed to be restricted in host range, it now appears that this mechanism of transfer permits genetic exchange between many different bacterial genera in nature.

  7. INACTIVATION OF CRYPTOSPORIDIUM PARVUM OOCYSTS WITH OZONE

    EPA Science Inventory

    Ozone inactivation rates for Cryptosporidium parvum (C. parvum) oocysts were determined with an in-vitro excystation method based on excysted sporozoite counts. Results were consistent with published animal infectivity data for the same C. parvum strain. The inactivation kinetics...

  8. Inactivation and reactivation of B. megatherium phage.

    PubMed

    NORTHROP, J H

    1955-11-20

    Preparation of Reversibly Inactivated (R.I.) Phage.- If B. megatherium phage (of any type, or in any stage of purification) is suspended in dilute salt solutions at pH 5-6, it is completely inactivated; i.e., it does not form plaques, or give rise to more phage when mixed with a sensitive organism (Northrop, 1954). The inactivation occurs when the phage is added to the dilute salt solution. If a suspension of the inactive phage in pH 7 peptone is titrated to pH 5 and allowed to stand, the activity gradually returns. The inactivation is therefore reversible. Properties of R.I. Phage.- The R.I. phage is adsorbed by sensitive cells at about the same rate as the active phage. It kills the cells, but no active phage is produced. The R.I. phage therefore has the properties of phage "ghosts" (Herriott, 1951) or of colicines (Gratia, 1925), or phage inactivated by ultraviolet light (Luria, 1947). The R.I. phage is sedimented in the centrifuge at the same rate as active phage. It is therefore about the same size as the active phage. The R.I. phage is most stable in pH 7, 5 per cent peptone, and may be kept in this solution for weeks at 0 degrees C. The rate of digestion of R.I. phage by trypsin, chymotrypsin, or desoxyribonuclease is about the same as that of active phage (Northrop, 1955 a). Effect of Various Substances on the Formation of R.I. Phage.- There is an equilibrium between R.I. phage and active phage. The R.I. form is the stable one in dilute salt solution, pH 5 to 6.5 and at low temperature (<20 degrees C.). At pH >6.5, in dilute salt solution, the R.I. phage changes to the active form. The cycle, active right harpoon over left harpoon inactive phage, may be repeated many times at 0 degrees C. by changing the pH of the solution back and forth between pH 7 and pH 6. Irreversible inactivation is caused by distilled water, some heavy metals, concentrated urea or quanidine solutions, and by l-arginine. Reversible inactivation is prevented by all salts tested (except

  9. CRYPTOSPORIDIUM LOG INACTIVATION CALCULATION METHODS

    EPA Science Inventory

    Appendix O of the Surface Water Treatment Rule (SWTR) Guidance Manual introduces the CeffT10 (i.e., reaction zone outlet C value and T10 time) method for calculating ozone CT value and Giardia and virus log inactivation. The LT2ESWTR Pre-proposal Draft Regulatory Language for St...

  10. CRYPTOSPORIDIUM INACTIVATION AND REMOVAL RESEARCH

    EPA Science Inventory

    Bench- and pilot-scale tests were performed to assess the ability of conventional treatment, ozonation and chlorine dioxide to remove and inactivate Cryptosporidium oocysts. The impacts of coagulant type, coagulant dose, raw water quality, filter loading rates and filter media w...

  11. [A comparative study of the inoculation properties of live recombinant and inactivated influenza vaccines made from strain A/Philippines/2/82 (H3N2) in 8- to 15-year-old children].

    PubMed

    Slepushkin, A N; Obrosova-Serova, N P; Burtseva, E I; Govorkova, E A; Rudenko, L G; Vartanian, R V; Vereshchinskiĭ, A I; Musina, M D; Lonskaia, N I; Zazimko, L A

    1991-01-01

    This study was carried out to compare reactogenicity, immunogenicity, and efficacy of live attenuated and inactivated influenza vaccines prepared from influenza A/Philippines/2/82-like virus strains. Schoolchildren of a boarding school of Moscow were randomly divided into three groups: (1) vaccinated with a live attenuated vaccine, (2) vaccinated with inactivated influenza vaccine, and (3) given placebo. Both vaccines were well tolerated by the children, with practically no severe general or local reactions. The inactivated vaccine was found to be superior to the live one in its capacity to stimulate humoral immunity studied by HI, EIA, and microneutralization tests. In 69.7% of the children given the inactivated vaccine, seroconversion to the vaccine strain was detected by two or three methods of antibody titration used. Only 35.4% seroconversions were demonstrated in children immunized with the live influenza vaccine. Enzyme immunoassay was found to be a more sensitive but less specific method for antibody titration as compared with HI test whereas microneutralization proved to be more specific but less sensitive for titration of antibodies to influenza A (H3N2) viruses.

  12. [Construction and properties of a microbial whole-cell sensor CB10 for the bioavailability detection of Cr6+].

    PubMed

    Hou, Qi-Hui; Ma, An-Zhou; Zhuang, Xu-Liang; Zhuang, Guo-Qiang

    2013-03-01

    A microbial whole-cell biosensor CB10 for the bioavailability assessing of Cr6+ was constructed by molecular biotechnology. The regulatory gene and promoter of CB10 was from the chromium resistance system of plasmid pMOL28 from Cupriavidus metallidurans CH34, and the reporter gene of CB10 was luc which was derived from Photinus pyralis. Finally, its response characteristic was discussed under different incubation conditions e. g. pH and temperature. The results showed that a microbial whole-cell biosensor CB10 had been successfully constructed which could respond to Cr6+ within 30 min, with a LOD for Cr6+ of 2 micromol x L(-1). When the incubation concentration of Cr6+ was between 20 micromol x L(-1) and 200 micromol x L(-1), the luc activity of the CB10 biosensor was in linear correlation with the concentration of Cr6+. When the concentration of heavy metal was in the range of 10-50 micromol x L(-1), the response of CB10 was relatively more specific. Moreover, high concentrations of Pb2+, Mn2+ and Sb2+ could also induce CB10. By analyzing the response characteristic of CB10 biosensor, we could draw the conclusion that 15-30 degrees C and pH 4-7 were appropriate for CB10, and 30 degrees C and pH 7 were the optimal conditions for the incubation of the CB10 biosensor. The microbial whole-cell biosensor CB10 for the detection of Cr6+ was fast-responding, specific, sensitive and stable under various conditions. In prospective, it could be used in the fast detection of Cr6+ in water and assessment of the bioavailability of Cr6+ in soil.

  13. [Construction and properties of a microbial whole-cell sensor CB10 for the bioavailability detection of Cr6+].

    PubMed

    Hou, Qi-Hui; Ma, An-Zhou; Zhuang, Xu-Liang; Zhuang, Guo-Qiang

    2013-03-01

    A microbial whole-cell biosensor CB10 for the bioavailability assessing of Cr6+ was constructed by molecular biotechnology. The regulatory gene and promoter of CB10 was from the chromium resistance system of plasmid pMOL28 from Cupriavidus metallidurans CH34, and the reporter gene of CB10 was luc which was derived from Photinus pyralis. Finally, its response characteristic was discussed under different incubation conditions e. g. pH and temperature. The results showed that a microbial whole-cell biosensor CB10 had been successfully constructed which could respond to Cr6+ within 30 min, with a LOD for Cr6+ of 2 micromol x L(-1). When the incubation concentration of Cr6+ was between 20 micromol x L(-1) and 200 micromol x L(-1), the luc activity of the CB10 biosensor was in linear correlation with the concentration of Cr6+. When the concentration of heavy metal was in the range of 10-50 micromol x L(-1), the response of CB10 was relatively more specific. Moreover, high concentrations of Pb2+, Mn2+ and Sb2+ could also induce CB10. By analyzing the response characteristic of CB10 biosensor, we could draw the conclusion that 15-30 degrees C and pH 4-7 were appropriate for CB10, and 30 degrees C and pH 7 were the optimal conditions for the incubation of the CB10 biosensor. The microbial whole-cell biosensor CB10 for the detection of Cr6+ was fast-responding, specific, sensitive and stable under various conditions. In prospective, it could be used in the fast detection of Cr6+ in water and assessment of the bioavailability of Cr6+ in soil. PMID:23745432

  14. Taxonomic and functional characteristics of microbial communities and their correlation with physicochemical properties of four geothermal springs in Odisha, India

    PubMed Central

    Badhai, Jhasketan; Ghosh, Tarini S.; Das, Subrata K.

    2015-01-01

    This study describes microbial diversity in four tropical hot springs representing moderately thermophilic environments (temperature range: 40–58°C; pH: 7.2–7.4) with discrete geochemistry. Metagenome sequence data showed a dominance of Bacteria over Archaea; the most abundant phyla were Chloroflexi and Proteobacteria, although other phyla were also present, such as Acetothermia, Nitrospirae, Acidobacteria, Firmicutes, Deinococcus-Thermus, Bacteroidetes, Thermotogae, Euryarchaeota, Verrucomicrobia, Ignavibacteriae, Cyanobacteria, Actinobacteria, Planctomycetes, Spirochaetes, Armatimonadetes, Crenarchaeota, and Aquificae. The distribution of major genera and their statistical correlation analyses with the physicochemical parameters predicted that the temperature, aqueous concentrations of ions (such as sodium, chloride, sulfate, and bicarbonate), total hardness, dissolved solids and conductivity were the main environmental variables influencing microbial community composition and diversity. Despite the observed high taxonomic diversity, there were only little variations in the overall functional profiles of the microbial communities in the four springs. Genes involved in the metabolism of carbohydrates and carbon fixation were the most abundant functional class of genes present in these hot springs. The distribution of genes involved in carbon fixation predicted the presence of all the six known autotrophic pathways in the metagenomes. A high prevalence of genes involved in membrane transport, signal transduction, stress response, bacterial chemotaxis, and flagellar assembly were observed along with genes involved in the pathways of xenobiotic degradation and metabolism. The analysis of the metagenomic sequences affiliated to the candidate phylum Acetothermia from spring TB-3 provided new insight into the metabolism and physiology of yet-unknown members of this lineage of bacteria. PMID:26579081

  15. Efflux Pump Inhibitor Potentiates Antimicrobial Photodynamic Inactivation of Enterococcus faecalis Biofilm

    PubMed Central

    Kishen, Anil; Upadya, Megha; Tegos, George P.; Hamblin, Michael R.

    2010-01-01

    Microbial biofilm architecture contains numerous protective features including extracellular polymeric material that render biofilms impermeable to conventional antimicrobial agents. This study evaluated the efficacy of antimicrobial photodynamic inactivation (aPDI) of Enterococcus faecalis biofilms. The ability of a cationic, phenothiazinium photosensitizer, methylene blue (MB) and an anionic, xanthene photosensitizer, rose bengal (RB) to inactivate biofilms of E. faecalis (OGIRF and FA 2-2) and disrupt the biofilm structure was evaluated. Bacterial cells were tested as planktonic suspensions, intact biofilms and biofilm-derived suspensions obtained by the mechanical disruption of biofilms. The role of a specific microbial efflux pump inhibitor (EPI), verapamil hydrochloride in the MB-mediated aPDI of E. faecalis biofilms was also investigated. The results showed that E. faecalis biofilms exhibited significantly higher resistance to aPDI when compared to E. faecalis in suspension (P < 0.001). aPDI with cationic MB produced superior inactivation of E. faecalis strains in a biofilm along with significant destruction of biofilm structure when compared to anionic RB (P < 0.05). The ability to inactivate biofilm bacteria was further enhanced when the EPI was used with M B (P < 0.001). These experiments demonstrated the advantage of a cationic phenothiazinium photosensitizer combined with an EPI to inactivate biofilm bacteria and disrupt biofilm structure. PMID:20860692

  16. Effective Chemical Inactivation of Ebola Virus

    PubMed Central

    Haddock, Elaine; Feldmann, Friederike

    2016-01-01

    Reliable inactivation of specimens before removal from high-level biocontainment is crucial for safe operation. To evaluate efficacy of methods of chemical inactivation, we compared in vitro and in vivo approaches using Ebola virus as a surrogate pathogen. Consequently, we have established parameters and protocols leading to reliable and effective inactivation. PMID:27070504

  17. Effect of single- and two-cycle high hydrostatic pressure treatments on water properties, physicochemical and microbial qualities of minimally processed squids (todarodes pacificus).

    PubMed

    Zhang, Yifeng; Jiao, Shunshan; Lian, Zixuan; Deng, Yun; Zhao, Yanyun

    2015-05-01

    This study investigated the effect of single- and two-cycle high hydrostatic pressure (HHP) treatments on water properties, physicochemical, and microbial qualities of squids (Todarodes pacificus) during 4 °C storage for up to 10 d. Single-cycle treatments were applied at 200, 400, or 600 MPa for 20 min (S-200, S-400, and S-600), and two-cycle treatments consisted of two 10 min cycles at 200, 400, or 600 MPa, respectively (T-200, T-400, and T-600). HHP-treated samples had higher (P < 0.05) content of P2b (immobilized water) and P21 (myofibril water), but lower P22 (free water) than those of control. The single- and two-cycle HHP treatments at the same pressure level caused no significant difference in water state of squids. The two-cycle HHP treatment was more effective in controlling total volatile basic nitrogen, pH, and total plate counts (TPC) of squids during storage, in which TPC of S-600 and T-600 was 2.9 and 1.8 log CFU/g at 10 d, respectively, compared with 7.5 log CFU/g in control. HHP treatments delayed browning discoloration of the squids during storage, and the higher pressure level and two-cycle HHP were more effective. Water properties highly corresponded with color and texture indices of squids. This study demonstrated that the two-cycle HHP treatment was more effective in controlling microbial growth and quality deterioration while having similar impact on the physicochemical and water properties of squids in comparison with the single-cycle treatment, thus more desirable for extending shelf-life of fresh squids.

  18. Cold plasma inactivation of chronic wound bacteria.

    PubMed

    Mohd Nasir, N; Lee, B K; Yap, S S; Thong, K L; Yap, S L

    2016-09-01

    Cold plasma is partly ionized non-thermal plasma generated at atmospheric pressure. It has been recognized as an alternative approach in medicine for sterilization of wounds, promotion of wound healing, topical treatment of skin diseases with microbial involvement and treatment of cancer. Cold plasma used in wound therapy inhibits microbes in chronic wound due to its antiseptic effects, while promoting healing by stimulation of cell proliferation and migration of wound relating skin cells. In this study, two types of plasma systems are employed to generate cold plasma: a parallel plate dielectric barrier discharge and a capillary-guided corona discharge. Parameters such as applied voltage, discharge frequency, treatment time and the flow of the carrier gas influence the cold plasma chemistry and therefore change the composition and concentration of plasma species that react with the target sample. Chronic wound that fails to heal often infected by multidrug resistant organisms makes them recalcitrant to healing. Methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa (Pseudomonas aeruginosa) are two common bacteria in infected and clinically non-infected wounds. The efficacies of the cold plasma generated by the two designs on the inactivation of three different isolates of MRSA and four isolates of P. aeruginosa are reported here.

  19. Inactivation of a subtilisin in colloidal systems.

    PubMed

    Maste, M C; Rinia, H A; Brands, C M; Egmond, M R; Norde, W

    1995-10-25

    The aim of the present study is to establish the relation between the inactivation of the proteolytic enzyme Savinase and its adsorption at different types of solid-liquid interfaces. The loss of activity has been determined both in solution and in the presence of colloidal particles, which provide a surface area for adsorption of 25% of the enzyme population. Analysis of the remaining solution at different periods of incubation of the various systems shows that the intact protein is converted into autolytic degradation products at the expense of biological activity. The different particles, however, deactivate the enzymes to a different extent. Under the experimental conditions the half-life of the enzymatic activity in solution is 3.5 hours. In the presence of particles that have hydrophobic surface properties (teflon- or polystyrene latex) the half-life is reduced to 0.7 hours. On the contrary, hydrophilic silica particles stabilize the enzyme against autolysis as compared to the inactivation in solution. Polystyrene latex particles which are chemically grafted with short poly(ethylene oxide) chains ([EO]8) are, for steric reasons, also mild with respect to the reduction of enzymatic stability. It is thus concluded that the type of surface determines the mode in which the enzyme is adsorbed on a particle which, in turn, affects the autocatalytic rate.

  20. Selection of Bacteria with Favorable Transport Properties Through Porous Rock for the Application of Microbial-Enhanced Oil Recovery

    PubMed Central

    Jang, Long-Kuan; Chang, Philip W.; Findley, John E.; Yen, Teh Fu

    1983-01-01

    This paper presents a bench-scale study on the transport in highly permeable porous rock of three bacterial species—Bacillus subtilis, Pseudomonas putida, and Clostridium acetobutylicum—potentially applicable in microbial-enhanced oil recovery processes. The transport of cells during the injection of bacterial suspension and nutrient medium was simulated by a deep bed filtration model. Deep bed filtration coefficients and the maximum capacity of cells in porous rock were measured. Low to intermediate (∼106/ml) injection concentrations of cellular suspensions are recommended because plugging of inlet surface is less likely to occur. In addition to their resistance to adverse environments, spores of clostridia are strongly recommended for use in microbial-enhanced oil recovery processes since they are easiest among the species tested to push through porous rock. After injection, further transport of bacteria during incubation can occur by growth and mobility through the stagnant nutrient medium which fills the porous rock. We have developed an apparatus to study the migration of bacteria through a Berea sandstone core containing nutrient medium. PMID:16346414

  1. Selection of bacteria with favorable transport properties through porous rock for the application of microbial-enhanced oil recovery.

    PubMed

    Jang, L K; Chang, P W; Findley, J E; Yen, T F

    1983-11-01

    This paper presents a bench-scale study on the transport in highly permeable porous rock of three bacterial species-Bacillus subtilis, Pseudomonas putida, and Clostridium acetobutylicum-potentially applicable in microbial-enhanced oil recovery processes. The transport of cells during the injection of bacterial suspension and nutrient medium was simulated by a deep bed filtration model. Deep bed filtration coefficients and the maximum capacity of cells in porous rock were measured. Low to intermediate ( approximately 10/ml) injection concentrations of cellular suspensions are recommended because plugging of inlet surface is less likely to occur. In addition to their resistance to adverse environments, spores of clostridia are strongly recommended for use in microbial-enhanced oil recovery processes since they are easiest among the species tested to push through porous rock. After injection, further transport of bacteria during incubation can occur by growth and mobility through the stagnant nutrient medium which fills the porous rock. We have developed an apparatus to study the migration of bacteria through a Berea sandstone core containing nutrient medium.

  2. Influence of powdered activated carbon addition on water quality, sludge properties, and microbial characteristics in the biological treatment of commingled industrial wastewater.

    PubMed

    Hu, Qing-Yuan; Li, Meng; Wang, Can; Ji, Min

    2015-09-15

    A powdered activated carbon-activated sludge (PAC-AS) system, a traditional activated sludge (AS) system, and a powdered activated carbon (PAC) system were operated to examine the insights into the influence of PAC addition on biological treatment. The average COD removal efficiencies of the PAC-AS system (39%) were nearly double that of the AS system (20%). Compared with the average efficiencies of the PAC system (7%), COD removal by biodegradation in the PAC-AS system was remarkably higher than that in the AS system. The analysis of the influence of PAC on water quality and sludge properties showed that PAC facilitated the removal of hydrophobic matter and metabolic acidic products, and also enhanced the biomass accumulation, sludge settleability, and specific oxygen uptake rate inside the biological system. The microbial community structures in the PAC-AS and AS systems were monitored. The results showed that the average well color development in the PAC-AS system was higher than that in the AS system. The utilization of various substrates by microorganisms in the two systems did not differ. The dissimilarity index was far less than one; thus, showing that the microbial community structures of the two systems were the same.

  3. Influence of powdered activated carbon addition on water quality, sludge properties, and microbial characteristics in the biological treatment of commingled industrial wastewater.

    PubMed

    Hu, Qing-Yuan; Li, Meng; Wang, Can; Ji, Min

    2015-09-15

    A powdered activated carbon-activated sludge (PAC-AS) system, a traditional activated sludge (AS) system, and a powdered activated carbon (PAC) system were operated to examine the insights into the influence of PAC addition on biological treatment. The average COD removal efficiencies of the PAC-AS system (39%) were nearly double that of the AS system (20%). Compared with the average efficiencies of the PAC system (7%), COD removal by biodegradation in the PAC-AS system was remarkably higher than that in the AS system. The analysis of the influence of PAC on water quality and sludge properties showed that PAC facilitated the removal of hydrophobic matter and metabolic acidic products, and also enhanced the biomass accumulation, sludge settleability, and specific oxygen uptake rate inside the biological system. The microbial community structures in the PAC-AS and AS systems were monitored. The results showed that the average well color development in the PAC-AS system was higher than that in the AS system. The utilization of various substrates by microorganisms in the two systems did not differ. The dissimilarity index was far less than one; thus, showing that the microbial community structures of the two systems were the same. PMID:25863578

  4. High-pressure homogenization as a non-thermal technique for the inactivation of microorganisms.

    PubMed

    Diels, Ann M J; Michiels, Chris W

    2006-01-01

    In the pharmaceutical, cosmetic, chemical, and food industries high-pressure homogenization is used for the preparation or stabilization of emulsions and suspensions, or for creating physical changes, such as viscosity changes, in products. Another well-known application is cell disruption of yeasts or bacteria in order to release intracellular products such as recombinant proteins. The development over the last few years of homogenizing equipment that operates at increasingly higher pressures has also stimulated research into the possible application of high-pressure homogenization as a unit process for microbial load reduction of liquid products. Several studies have indicated that gram-negative bacteria are more sensitive to high-pressure homogenization than gram-positive bacteria supporting the widely held belief that high-pressure homogenization kills vegetative bacteria mainly through mechanical disruption. However, controversy exists in the literature regarding the exact cause(s) of cell disruption by high-pressure homogenization. The causes that have been proposed include spatial pressure and velocity gradients, turbulence, cavitation, impact with solid surfaces, and extensional stress. The purpose of this review is to give an overview of the existing literature about microbial inactivation by high-pressure homogenization. Particular attention will be devoted to the different proposed microbial inactivation mechanisms. Further, the different parameters that influence the microbial inactivation by high-pressure homogenization will be scrutinized.

  5. Inactivation of rabies virus by hydrogen peroxide.

    PubMed

    Abd-Elghaffar, Asmaa A; Ali, Amal E; Boseila, Abeer A; Amin, Magdy A

    2016-02-01

    Development of safe and protective vaccines against infectious pathogens remains a challenge. Inactivation of rabies virus is a critical step in the production of vaccines and other research reagents. Beta-propiolactone (βPL); the currently used inactivating agent for rabies virus is expensive and proved to be carcinogenic in animals. This study aimed to investigate the ability of hydrogen peroxide (H2O2) to irreversibly inactivate rabies virus without affecting its antigenicity and immunogenicity in pursuit of finding safe, effective and inexpensive alternative inactivating agents. H2O2 3% rapidly inactivated a Vero cell adapted fixed rabies virus strain designated as FRV/K within 2h of exposure without affecting its antigenicity or immunogenicity. No residual infectious virus was detected and the H2O2-inactivated vaccine proved to be safe and effective when compared with the same virus harvest inactivated with the classical inactivating agent βPL. Mice immunized with H2O2-inactivated rabies virus produced sufficient level of antibodies and were protected when challenged with lethal CVS virus. These findings reinforce the idea that H2O2 can replace βPL as inactivating agent for rabies virus to reduce time and cost of inactivation process. PMID:26731189

  6. Inactivation of rabies virus by hydrogen peroxide.

    PubMed

    Abd-Elghaffar, Asmaa A; Ali, Amal E; Boseila, Abeer A; Amin, Magdy A

    2016-02-01

    Development of safe and protective vaccines against infectious pathogens remains a challenge. Inactivation of rabies virus is a critical step in the production of vaccines and other research reagents. Beta-propiolactone (βPL); the currently used inactivating agent for rabies virus is expensive and proved to be carcinogenic in animals. This study aimed to investigate the ability of hydrogen peroxide (H2O2) to irreversibly inactivate rabies virus without affecting its antigenicity and immunogenicity in pursuit of finding safe, effective and inexpensive alternative inactivating agents. H2O2 3% rapidly inactivated a Vero cell adapted fixed rabies virus strain designated as FRV/K within 2h of exposure without affecting its antigenicity or immunogenicity. No residual infectious virus was detected and the H2O2-inactivated vaccine proved to be safe and effective when compared with the same virus harvest inactivated with the classical inactivating agent βPL. Mice immunized with H2O2-inactivated rabies virus produced sufficient level of antibodies and were protected when challenged with lethal CVS virus. These findings reinforce the idea that H2O2 can replace βPL as inactivating agent for rabies virus to reduce time and cost of inactivation process.

  7. Short-time effect of salvage harvesting on microbial soil properties in a Mediterranean area affected by a wildfire: preliminary results

    NASA Astrophysics Data System (ADS)

    Moltó, Jorge; Mataix-Solera, Jorge; Arcenegui, Victoria; Morugan, Alicia; Girona, Antonio; Garcia-orenes, Fuensanta

    2014-05-01

    In the Mediterranean region, wildfires are considered one of the main ecological factors, which, in addition to and in relation to changes in soil use, may cause soil loss and degradation, one of the most important environmental problems that humanity must face up to. As is well known, the soil-plant system is one of the key factors determining ecological recovery after the occurrence of a wildfire. Traditionally, a variety of forestry practices have been implemented on spanish sites after the incidence of a wildfire. Among them stands out the complete extraction of the burned wood, which consist in getting rid of the branches and other wooden debris using small controlled bonfires, splintering or mechanical extraction. This set of post-fire management practices is known as salvage logging or salvage harvesting. Despite the remarkable relevance and influence that this conjunction of techniques has on land management after a wildfire, very little experimental research focused on assessing the impact of salvage logging on the vegetal community has been done. Furthermore, even less research inquiring into the mode and grade of incidence that the salvage logging produces on soil properties has taken place. The aim of this research is to assess the effects that the salvage harvesting has on different soil microbial properties and other related properties. The study area is located in the Natural Park of the "Sierra de Mariola" in the province of Alicante, southeastern Spain. This location was affected by a wildfire whose extension reached more than 500 Ha in July 2012. Different post-fire treatments were proposed by the authorities, including salvage harvesting in some areas. Two different treatments were distinguished for the study, "control" (without any kind of burned wood removal) and "harvest" (where salvage logging was carried out), in each area three 4 m2 sampling plots were set up. These two treatments were established on the same slope with the same orography

  8. Effect of jabuticaba peel extract on lipid oxidation, microbial stability and sensory properties of Bologna-type sausages during refrigerated storage.

    PubMed

    de Almeida, Patrícia Leal; de Lima, Silvério Nepomuceno; Costa, Luciene Lacerda; de Oliveira, Cintia Cristina; Damasceno, Karina Aparecida; dos Santos, Bibiana Alves; Campagnol, Paulo Cezar Bastianello

    2015-12-01

    This study investigated the lipid oxidation and the microbiological and sensory quality of Bologna-type sausages produced with the addition of jabuticaba peel extract (JPE). Instrumental parameters of color (L*, a* and b*), pH, thiobarbituric acid reactive substance (TBARS) values, microbiological profile, and sensory properties were determined during 35 days of storage. The addition of JPE had an effect on pH and protected the samples from color changes during storage. However, JPE had no positive effect on microbial stability during storage. Samples produced with 0.5, 0.75, and 1% JPE had significantly lower TBARS values (P<0.05) compared with the control group. The addition of up to 0.5% JPE did not affect sensory quality, but prevented the decrease of sensory acceptance during storage. Therefore, due to its antioxidant effect JPE can be used in Bologna-type sausages in order to improve the oxidative stability during the shelf life. PMID:26156583

  9. Inactivation of allergens and toxins.

    PubMed

    Morandini, Piero

    2010-11-30

    Plants are replete with thousands of proteins and small molecules, many of which are species-specific, poisonous or dangerous. Over time humans have learned to avoid dangerous plants or inactivate many toxic components in food plants, but there is still room for ameliorating food crops (and plants in general) in terms of their allergens and toxins content, especially in their edible parts. Inactivation at the genetic rather than physical or chemical level has many advantages and classical genetic approaches have resulted in significant reduction of toxin content. The capacity, offered by genetic engineering, of turning off (inactivating) specific genes has opened up the possibility of altering the plant content in a far more precise manner than previously available. Different levels of intervention (genes coding for toxins/allergens or for enzymes, transporters or regulators involved in their metabolism) are possible and there are several tools for inactivating genes, both direct (using chemical and physical mutagens, insertion of transposons and other genetic elements) and indirect (antisense RNA, RNA interference, microRNA, eventually leading to gene silencing). Each level/strategy has specific advantages and disadvantages (speed, costs, selectivity, stability, reversibility, frequency of desired genotype and regulatory regime). Paradigmatic examples from classical and transgenic approaches are discussed to emphasize the need to revise the present regulatory process. Reducing the content of natural toxins is a trade-off process: the lesser the content of natural toxins, the higher the susceptibility of a plant to pests and therefore the stronger the need to protect plants. As a consequence, more specific pesticides like Bt are needed to substitute for general pesticides.

  10. Inactivation of microbes using ultrasound: a review.

    PubMed

    Piyasena, P; Mohareb, E; McKellar, R C

    2003-11-01

    Alternative methods for pasteurization and sterilization are gaining importance, due to increased consumer demand for new methods of food processing that have a reduced impact on nutritional content and overall food quality. Ultrasound processing or sonication is one of the alternative technologies that has shown promise in the food industry. Sonication alone is not very effective in killing bacteria in food; however, the use of ultrasound coupled with pressure and/or heat is promising. Thermosonic (heat plus sonication), manosonic (pressure plus sonication), and manothermosonic (heat and pressure plus sonication) treatments are likely the best methods to inactivate microbes, as they are more energy-efficient and effective in killing microorganisms. Ultrasonic processing is still in its infancy and requires a great deal of future research in order to develop the technology on an industrial scale, and to more fully elucidate the effect of ultrasound on the properties of foods.

  11. Hydrazine vapor inactivates Bacillus spores

    NASA Astrophysics Data System (ADS)

    Schubert, Wayne W.; Engler, Diane L.; Beaudet, Robert A.

    2016-05-01

    NASA policy restricts the total number of bacterial spores that can remain on a spacecraft traveling to any planetary body which might harbor life or have evidence of past life. Hydrazine, N2H4, is commonly used as a propellant on spacecraft. Hydrazine as a liquid is known to inactivate bacterial spores. We have now verified that hydrazine vapor also inactivates bacterial spores. After Bacillus atrophaeus ATCC 9372 spores deposited on stainless steel coupons were exposed to saturated hydrazine vapor in closed containers, the spores were recovered from the coupons, serially diluted, pour plated and the surviving bacterial colonies were counted. The exposure times required to reduce the spore population by a factor of ten, known as the D-value, were 4.70 ± 0.50 h at 25 °C and 2.85 ± 0.13 h at 35 °C. These inactivation rates are short enough to ensure that the bioburden of the surfaces and volumes would be negligible after prolonged exposure to hydrazine vapor. Thus, all the propellant tubing and internal tank surfaces exposed to hydrazine vapor do not contribute to the total spore count.

  12. Inactivation of Cephalosporins by Bacteroides

    PubMed Central

    Tally, Francis P.; O'Keefe, J. Paul; Sullivan, N. M.; Gorbach, Sherwood L.

    1979-01-01

    We investigated the relationship between β-lactamases of Bacteroides fragilis organisms and their resistance to cephalosporins. Timed killing curves were used to study the in vitro activity of three cephalosporins, cephalothin, cefazolin, and cefamandole, and a semisynthetic cephamycin, cefoxitin. Measurements of residual antibiotic concentrations in culture supernatants were made, and they were compared with the β-lactamase activity of the microorganism. A cephalosporin-susceptible strain was rapidly killed by cephalothin, cefazolin, cefamandole, and cefoxitin. Four cephalosporin-resistant strains were not killed by cephalothin, cefazolin, or cefamandole but were killed by cefoxitin. An inoculum effect was noted with cefazolin and not with cefoxitin. The resistant strains of Bacteroides inactivated the three cephalosporins, but there was no inactivation of cefoxitin. A constitutive β-lactamase was detected in all the isolates of the B. fragilis group that were resistant to the cephalosporins. There was no distinction of the species based on isoelectric focusing of the enzyme. These data suggest that inactivation by β-lactamase may be the mechanism for resistance of B. fragilis to the cephalosporins and would explain the enhanced in vitro activity of cefoxitin. PMID:525995

  13. Inactivation model equations and their associated parameter values obtained under static acid stress conditions cannot be used directly for predicting inactivation under dynamic conditions.

    PubMed

    Janssen, M; Verhulst, A; Valdramidis, V; Devlieghere, F; Van Impe, J F; Geeraerd, A H

    2008-11-30

    Organic acids (e.g., lactic acid, acetic acid and citric acid) are popular preservatives. In this study, the Listeria innocua inactivation is investigated under dynamic conditions of pH and undissociated lactic acid ([LaH]). A combined primary (Weibull-type) and secondary model developed for the L. innocua inactivation under static conditions [Janssen, M., Geeraerd, A.H., Cappuyns, A., Garcia-Gonzalez, L., Schockaert, G., Van Houteghem, N., Vereecken, K.M., Debevere, J., Devlieghere, F., Van Impe, J.F., 2007. Individual and combined effects of pH and lactic acid concentration on L. innocua inactivation: development of a predictive model and assessment of experimental variability. Applied and Environmental Microbiology 73(5), 1601-1611] was applied to predict the microbial inactivation under dynamic conditions. Because of its non-autonomous character, two approaches were proposed for the application of the Weibull-type model to dynamic conditions. The results quantitatively indicated that the L. innocua cell population was able to develop an induced acid stress resistance under dynamic conditions of pH and [LaH]. From a modeling point of view, it needs to be stressed that (i) inactivation model equations and associated parameter values, derived under static conditions, may not be suitable for use as such under dynamic conditions, and (ii) non-autonomous dynamic models reveal additional technical intricacies in comparison with autonomous models.

  14. Nanoscale structural and mechanical analysis of Bacillus anthracis spores inactivated with rapid dry heating.

    PubMed

    Xing, Yun; Li, Alex; Felker, Daniel L; Burggraf, Larry W

    2014-03-01

    Effective killing of Bacillus anthracis spores is of paramount importance to antibioterrorism, food safety, environmental protection, and the medical device industry. Thus, a deeper understanding of the mechanisms of spore resistance and inactivation is highly desired for developing new strategies or improving the known methods for spore destruction. Previous studies have shown that spore inactivation mechanisms differ considerably depending upon the killing agents, such as heat (wet heat, dry heat), UV, ionizing radiation, and chemicals. It is believed that wet heat kills spores by inactivating critical enzymes, while dry heat kills spores by damaging their DNA. Many studies have focused on the biochemical aspects of spore inactivation by dry heat; few have investigated structural damages and changes in spore mechanical properties. In this study, we have inactivated Bacillus anthracis spores with rapid dry heating and performed nanoscale topographical and mechanical analysis of inactivated spores using atomic force microscopy (AFM). Our results revealed significant changes in spore morphology and nanomechanical properties after heat inactivation. In addition, we also found that these changes were different under different heating conditions that produced similar inactivation probabilities (high temperature for short exposure time versus low temperature for long exposure time). We attributed the differences to the differential thermal and mechanical stresses in the spore. The buildup of internal thermal and mechanical stresses may become prominent only in ultrafast, high-temperature heat inactivation when the experimental timescale is too short for heat-generated vapor to efficiently escape from the spore. Our results thus provide direct, visual evidences of the importance of thermal stresses and heat and mass transfer to spore inactivation by very rapid dry heating. PMID:24375142

  15. Nanoscale structural and mechanical analysis of Bacillus anthracis spores inactivated with rapid dry heating.

    PubMed

    Xing, Yun; Li, Alex; Felker, Daniel L; Burggraf, Larry W

    2014-03-01

    Effective killing of Bacillus anthracis spores is of paramount importance to antibioterrorism, food safety, environmental protection, and the medical device industry. Thus, a deeper understanding of the mechanisms of spore resistance and inactivation is highly desired for developing new strategies or improving the known methods for spore destruction. Previous studies have shown that spore inactivation mechanisms differ considerably depending upon the killing agents, such as heat (wet heat, dry heat), UV, ionizing radiation, and chemicals. It is believed that wet heat kills spores by inactivating critical enzymes, while dry heat kills spores by damaging their DNA. Many studies have focused on the biochemical aspects of spore inactivation by dry heat; few have investigated structural damages and changes in spore mechanical properties. In this study, we have inactivated Bacillus anthracis spores with rapid dry heating and performed nanoscale topographical and mechanical analysis of inactivated spores using atomic force microscopy (AFM). Our results revealed significant changes in spore morphology and nanomechanical properties after heat inactivation. In addition, we also found that these changes were different under different heating conditions that produced similar inactivation probabilities (high temperature for short exposure time versus low temperature for long exposure time). We attributed the differences to the differential thermal and mechanical stresses in the spore. The buildup of internal thermal and mechanical stresses may become prominent only in ultrafast, high-temperature heat inactivation when the experimental timescale is too short for heat-generated vapor to efficiently escape from the spore. Our results thus provide direct, visual evidences of the importance of thermal stresses and heat and mass transfer to spore inactivation by very rapid dry heating.

  16. Calcium-binding parameter of Bacillus amyloliquefaciens alpha-amylase determined by inactivation kinetics.

    PubMed Central

    Tanaka, Atsushi; Hoshino, Eiichi

    2002-01-01

    The irreversible thermal inactivation and the thermodynamics of calcium ion binding of Bacillus amyloliquefaciens alpha-amylase in the absence of substrates were studied. The enzyme inactivation on heating was apparently followed by first-order kinetics. The enzyme was stabilized with an increased concentration of calcium ion and thus the inactivation was highly dependent on the state of calcium binding. The activation parameter for the inactivation suggests an unfolding of the enzyme protein upon heating. Values of both the activation enthalpy and entropy were increased with a higher calcium ion concentration. An inactivation kinetic model is based on the assumption of a two-stage unfolding transition in which the bivalent ion dissociation occurs in the first step followed by the secondary structural unfolding. This simple kinetic model provides both a qualitative and quantitative interpretation of calcium ion binding to the enzyme and its effect on the inactivation properties. The specific approximations of the kinetic model were strictly followed in the analysis to calculate the apparent inactivation rate at each calcium ion concentration in terms of the calcium-binding parameters. The enthalpy and entropy changes for the calcium ion binding were calculated to be -149 kJ/mol and -360 J.mol(-1).K(-1) respectively and these values suggest a strong enthalpic affinity for the bivalent ion binding to the enzyme protein. The thermodynamical interpretation attempts to provide clear relations between the terms of an apparent inactivation rate and the calcium binding. PMID:12049626

  17. Potential application of microbial iron redox cycles in nitrate removal and their effects on clay mineral properties

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Dong, H.; Kukkadapu, R. K.; Briggs, B. R.; Zeng, Q.

    2014-12-01

    Phyllosilicates that are ubiquitous in subsurface can serve as an iron source for microbial respiration. The objective of this research is to determine the ability of the phyllosilicate Fe to remove nitrate in subsurface undergoing microbial-driven redox cycles. In this study, thus, a well-characterized reference clay (NAu-2; nontronite), was subjected to redox cycles in a system containing dissimilatory Fe(III)-reducing bacteria, Shewanella putrefaciens CN32, and nitrate-dependent Fe(II)-oxidizing bacteria, Pseudogulbenkiania sp. Strain 2002. Three redox cycles were conducted in bicarbonate- and PIPES-buffered medium. The extents of Fe(III) reduction, Fe(II) oxidation, nitrate reduction, and its various intermediate products were measured by wet chemical methods. For each cycle, Electron Energy Loss Spectroscopy and Mossbauer spectroscopy confirmed Fe oxidation state. Mineralogical changes were identified by using X-ray diffraction (XRD), 57Fe-Mössbauer spectroscopy, and infrared absorption spectroscopy. For all three cycles, nitrate was completely reduced to nitrogen gas under both bicarbonate- and PIPES- buffered conditions. As redox cycle increased, bio-reduction extents of Fe(III) in NAu-2 decreased by 33% and 48% in PIPES- and bicarbonate-buffered medium, respectively; however, bio-oxidation extents increased by 66% and 55% in the same medium, respectively. Despite the change of OH-stretching vibration band and OH-bending vibration bands in NAu-2 structure along Fe redox cycles, XRD data showed interlayer spacing of NAu-2 to be constant along the same Fe redox cycle. 57Fe-Mössbauer spectroscopy indicated complex reduction and re-oxidation pathways. For example, a distinct Fe(II) doublet and a Fe2.5+ feature due to interfacial Fe(II)-Fe(III) electron transfer on clay mineral are prominent in their RT spectra. Both these Fe(II) are partially oxidized by Fe(II)-oxidizing bacteria. The result of this study shows that Fe in biogenically reduced or oxidized NAu-2

  18. Microbial respiration with chlorine oxyanions: diversity and physiological and biochemical properties of chlorate- and perchlorate-reducing microorganisms.

    PubMed

    Liebensteiner, Martin G; Oosterkamp, Margreet J; Stams, Alfons J M

    2016-02-01

    Chlorine oxyanions are valuable electron acceptors for microorganisms. Recent findings have shed light on the natural formation of chlorine oxyanions in the environment. These suggest a permanent introduction of respective compounds on Earth, long before their anthropogenic manufacture. Microorganisms that are able to grow by the reduction of chlorate and perchlorate are affiliated with phylogenetically diverse lineages, spanning from the Proteobacteria to the Firmicutes and archaeal microorganisms. Microbial reduction of chlorine oxyanions can be found in diverse environments and different environmental conditions (temperature, salinities, pH). It commonly involves the enzymes perchlorate reductase (Pcr) or chlorate reductase (Clr) and chlorite dismutase (Cld). Horizontal gene transfer seems to play an important role for the acquisition of functional genes. Novel and efficient Clds were isolated from microorganisms incapable of growing on chlorine oxyanions. Archaea seem to use a periplasmic Nar-type reductase (pNar) for perchlorate reduction and lack a functional Cld. Chlorite is possibly eliminated by alternative (abiotic) reactions. This was already demonstrated for Archaeoglobus fulgidus, which uses reduced sulfur compounds to detoxify chlorite. A broad biochemical diversity of the trait, its environmental dispersal, and the occurrence of relevant enzymes in diverse lineages may indicate early adaptations of life toward chlorine oxyanions on Earth.

  19. Modeling of the thermal influence of fires on the physicochemical properties and microbial activity of litter in cryogenic soils

    NASA Astrophysics Data System (ADS)

    Masyagina, O. V.; Tokareva, I. V.; Prokushkin, A. S.

    2014-08-01

    Periodic surface fires in the cryolithozone (the northern taiga subzone) are the main factor determining the qualitative and quantitative characteristics of the soil organic matter. The specific features of the changes in the physicochemical parameters and microbial activity of the organic horizons in the cryogenic soils under larch forests of the northern taiga after the impact of high temperatures were revealed. The temperatures of fires of different intensity were simulated in laboratory conditions. The thermal impact on the litter organic matter during the surface fires may increase the CO2 emission from the surface of the soil in the postfire communities due to the destruction of organic compounds only for a short time. After fires of high intensity with strong mineralization of the litters, during a period of more than 1 month, the pyrogenic effect on the organic horizons of the soils under the larch forests of the cryolithozone determined the reduction of the CO2 emissions in the freshly burned areas as compared to the intact stands.

  20. Inactivation of Bacteria in Oil Field Injected Water by a Pulsed Plasma Discharge Process

    NASA Astrophysics Data System (ADS)

    Xin, Qing; Li, Zhongjian; Lei, Lecheng; Yang, Bin

    2016-09-01

    Pulsed plasma discharge was employed to inactivate bacteria in the injection water for an oil field. The effects of water conductivity and initial concentration of bacteria on elimination efficiency were investigated in the batch and continuous flow modes. It was demonstrated that Fe2+ contained in injection water could enhance the elimination efficiency greatly. The addition of reducing agent glutathione (GSH) indicated that active radicals generated by pulsed plasma discharges played an important role in the inactivation of bacteria. Moreover, it was found that the microbial inactivation process for both batch and continuous flow mode well fitted the model based on the Weibull's survival function. supported by Zhejiang Province Welfare Technology Applied Research Project of China (No. 2014C31137), National Natural Science Foundation of China (Nos. 21436007 and U1462201), and the Fundamental Research Funds for the Central Universities of China (No. 2015QNA4032)

  1. Dual effectiveness of sodium chlorite for enzymatic browning inhibition and Escherichia coli inactivation on fresh-cut apples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study investigated the dual effectiveness of sodium chlorite (SC) for browning inhibition and microbial inactivation on fresh-cut apples. The SC treatment exhibited a strong inhibition on browning reaction of fresh-cut Red Delicious apples during cold storage. Test results from examination of t...

  2. Inactivation of bacterial pathogens in yoba mutandabota, a dairy product fermented with the probiotic Lactobacillus rhamnosus yoba.

    PubMed

    Mpofu, Augustine; Linnemann, Anita R; Nout, Martinus J R; Zwietering, Marcel H; Smid, Eddy J; den Besten, Heidy M W

    2016-01-18

    Mutandabota is a dairy product consumed as a major source of proteins and micronutrients in Southern Africa. In this study the microbial safety of traditional and a variant of mutandabota fermented with the probiotic Lactobacillus rhamnosus yoba (yoba mutandabota) was investigated by challenging the products with five important food pathogens: Listeria monocytogenes, Salmonella spp., Campylobacter jejuni, Escherichia coli O157:H7 and Bacillus cereus. Pasteurized full-fat cow's milk was used for producing traditional and yoba mutandabota, and was inoculated with a cocktail of strains of the pathogens at an inoculum level of 5.5 log cfu/mL. Survival of the pathogens was monitored over a potential consumption time of 24h for traditional mutandabota, and over 24h of fermentation followed by 24h of potential consumption time for yoba mutandabota. In traditional mutandabota (pH3.4 ± 0.1) no viable cells of B. cereus and C. jejuni were detected 3h after inoculation, while L. monocytogenes, E. coli O157:H7 and Salmonella spp. significantly declined (P<0.05), but could still be detected (<3.5 log inactivation) at the end of the potential consumption time. This indicated that consumption of traditional mutandabota exposes consumers to the risk of food-borne microbial infections. In yoba mutandabota, L. rhamnosus yoba grew from 5.5 ± 0.1 log cfu/mL to 9.1 ± 0.4 log cfu/mL in the presence of pathogens. The pH of yoba mutandabota dropped from 4.2 ± 0.1 to 3.3 ± 0.1 after 24h of fermentation, mainly due to organic acids produced during fermentation. Only Salmonella spp. was able to grow in yoba mutandabota during the first 9h of fermentation, but then decreased in viable plate count. None of the tested pathogens were detected (>3.5 log inactivation) after 3h into potential consumption time of yoba mutandabota. Inactivation of pathogens in mutandabota is of public health significance because food-borne pathogens endanger public health upon consumption of contaminated food

  3. Inactivation of bacterial pathogens in yoba mutandabota, a dairy product fermented with the probiotic Lactobacillus rhamnosus yoba.

    PubMed

    Mpofu, Augustine; Linnemann, Anita R; Nout, Martinus J R; Zwietering, Marcel H; Smid, Eddy J; den Besten, Heidy M W

    2016-01-18

    Mutandabota is a dairy product consumed as a major source of proteins and micronutrients in Southern Africa. In this study the microbial safety of traditional and a variant of mutandabota fermented with the probiotic Lactobacillus rhamnosus yoba (yoba mutandabota) was investigated by challenging the products with five important food pathogens: Listeria monocytogenes, Salmonella spp., Campylobacter jejuni, Escherichia coli O157:H7 and Bacillus cereus. Pasteurized full-fat cow's milk was used for producing traditional and yoba mutandabota, and was inoculated with a cocktail of strains of the pathogens at an inoculum level of 5.5 log cfu/mL. Survival of the pathogens was monitored over a potential consumption time of 24h for traditional mutandabota, and over 24h of fermentation followed by 24h of potential consumption time for yoba mutandabota. In traditional mutandabota (pH3.4 ± 0.1) no viable cells of B. cereus and C. jejuni were detected 3h after inoculation, while L. monocytogenes, E. coli O157:H7 and Salmonella spp. significantly declined (P<0.05), but could still be detected (<3.5 log inactivation) at the end of the potential consumption time. This indicated that consumption of traditional mutandabota exposes consumers to the risk of food-borne microbial infections. In yoba mutandabota, L. rhamnosus yoba grew from 5.5 ± 0.1 log cfu/mL to 9.1 ± 0.4 log cfu/mL in the presence of pathogens. The pH of yoba mutandabota dropped from 4.2 ± 0.1 to 3.3 ± 0.1 after 24h of fermentation, mainly due to organic acids produced during fermentation. Only Salmonella spp. was able to grow in yoba mutandabota during the first 9h of fermentation, but then decreased in viable plate count. None of the tested pathogens were detected (>3.5 log inactivation) after 3h into potential consumption time of yoba mutandabota. Inactivation of pathogens in mutandabota is of public health significance because food-borne pathogens endanger public health upon consumption of contaminated food

  4. Deep subsurface microbial processes

    USGS Publications Warehouse

    Lovley, D.R.; Chapelle, F.H.

    1995-01-01

    Information on the microbiology of the deep subsurface is necessary in order to understand the factors controlling the rate and extent of the microbially catalyzed redox reactions that influence the geophysical properties of these environments. Furthermore, there is an increasing threat that deep aquifers, an important drinking water resource, may be contaminated by man's activities, and there is a need to predict the extent to which microbial activity may remediate such contamination. Metabolically active microorganisms can be recovered from a diversity of deep subsurface environments. The available evidence suggests that these microorganisms are responsible for catalyzing the oxidation of organic matter coupled to a variety of electron acceptors just as microorganisms do in surface sediments, but at much slower rates. The technical difficulties in aseptically sampling deep subsurface sediments and the fact that microbial processes in laboratory incubations of deep subsurface material often do not mimic in situ processes frequently necessitate that microbial activity in the deep subsurface be inferred through nonmicrobiological analyses of ground water. These approaches include measurements of dissolved H2, which can predict the predominant microbially catalyzed redox reactions in aquifers, as well as geochemical and groundwater flow modeling, which can be used to estimate the rates of microbial processes. Microorganisms recovered from the deep subsurface have the potential to affect the fate of toxic organics and inorganic contaminants in groundwater. Microbial activity also greatly influences 1 the chemistry of many pristine groundwaters and contributes to such phenomena as porosity development in carbonate aquifers, accumulation of undesirably high concentrations of dissolved iron, and production of methane and hydrogen sulfide. Although the last decade has seen a dramatic increase in interest in deep subsurface microbiology, in comparison with the study of

  5. Prawn Shell Chitosan Has Anti-Obesogenic Properties, Influencing Both Nutrient Digestibility and Microbial Populations in a Pig Model.

    PubMed

    Egan, Áine M; Sweeney, Torres; Hayes, Maria; O'Doherty, John V

    2015-01-01

    The potential of natural products to prevent obesity have been investigated, with evidence to suggest that chitosan has anti-obesity effects. The current experiment investigated the anti-obesity potential of prawn shell derived chitosan on a range of variables relevant to obesity in a pig model. The two dietary treatment groups included in this 63 day study were: T1) basal diet and T2) basal diet plus 1000 ppm chitosan (n = 20 gilts per group (70 ± 0.90 kg). The parameter categories which were assessed included: performance, nutrient digestibility, serum leptin concentrations, nutrient transporter and digestive enzyme gene expression and gut microbial populations. Pigs offered chitosan had reduced feed intake and final body weight (P< 0.001), lower ileal digestibility of dry matter (DM), gross energy (GE) (P< 0.05) and reduced coefficient of apparent total tract digestibility (CATTD) of gross energy and nitrogen (P<0.05) when compared to the basal group. Fatty acid binding protein 2 (FABP2) gene expression was down-regulated in pigs offered chitosan (P = 0.05) relative to the basal diet. Serum leptin concentrations increased (P< 0.05) in animals offered the chitosan diet compared to pigs offered the basal diet. Fatness traits, back-fat depth (mm), fat content (kg), were significantly reduced while lean meat (%) was increased (P<0.05) in chitosan supplemented pigs. Pigs offered chitosan had decreased numbers of Firmicutes in the colon (P <0.05), and Lactobacillus spp. in both the caecum (P <0.05) and colon (P <0.001). Bifidobacteria populations were increased in the caecum of animals offered the chitosan diet (P <0.05). In conclusion, these findings suggest that prawn shell chitosan has potent anti-obesity/body weight control effects which are mediated through multiple biological systems in vivo.

  6. Prawn Shell Chitosan Has Anti-Obesogenic Properties, Influencing Both Nutrient Digestibility and Microbial Populations in a Pig Model

    PubMed Central

    Egan, Áine M.; Sweeney, Torres; Hayes, Maria; O’Doherty, John V.

    2015-01-01

    The potential of natural products to prevent obesity have been investigated, with evidence to suggest that chitosan has anti-obesity effects. The current experiment investigated the anti-obesity potential of prawn shell derived chitosan on a range of variables relevant to obesity in a pig model. The two dietary treatment groups included in this 63 day study were: T1) basal diet and T2) basal diet plus 1000 ppm chitosan (n = 20 gilts per group (70 ± 0.90 kg). The parameter categories which were assessed included: performance, nutrient digestibility, serum leptin concentrations, nutrient transporter and digestive enzyme gene expression and gut microbial populations. Pigs offered chitosan had reduced feed intake and final body weight (P< 0.001), lower ileal digestibility of dry matter (DM), gross energy (GE) (P< 0.05) and reduced coefficient of apparent total tract digestibility (CATTD) of gross energy and nitrogen (P<0.05) when compared to the basal group. Fatty acid binding protein 2 (FABP2) gene expression was down-regulated in pigs offered chitosan (P = 0.05) relative to the basal diet. Serum leptin concentrations increased (P< 0.05) in animals offered the chitosan diet compared to pigs offered the basal diet. Fatness traits, back-fat depth (mm), fat content (kg), were significantly reduced while lean meat (%) was increased (P<0.05) in chitosan supplemented pigs. Pigs offered chitosan had decreased numbers of Firmicutes in the colon (P <0.05), and Lactobacillus spp. in both the caecum (P <0.05) and colon (P <0.001). Bifidobacteria populations were increased in the caecum of animals offered the chitosan diet (P <0.05). In conclusion, these findings suggest that prawn shell chitosan has potent anti-obesity/body weight control effects which are mediated through multiple biological systems in vivo. PMID:26636332

  7. Conventional freezing plus high pressure-low temperature treatment: Physical properties, microbial quality and storage stability of beef meat.

    PubMed

    Fernández, Pedro P; Sanz, Pedro D; Molina-García, Antonio D; Otero, Laura; Guignon, Bérengère; Vaudagna, Sergio R

    2007-12-01

    Meat high-hydrostatic pressure treatment causes severe decolouration, preventing its commercialisation due to consumer rejection. Novel procedures involving product freezing plus low-temperature pressure processing are here investigated. Room temperature (20°C) pressurisation (650MPa/10min) and air blast freezing (-30°C) are compared to air blast freezing plus high pressure at subzero temperature (-35°C) in terms of drip loss, expressible moisture, shear force, colour, microbial quality and storage stability of fresh and salt-added beef samples (Longissimus dorsi muscle). The latter treatment induced solid water transitions among ice phases. Fresh beef high pressure treatment (650MPa/20°C/10min) increased significantly expressible moisture while it decreased in pressurised (650MPa/-35°C/10min) frozen beef. Salt addition reduced high pressure-induced water loss. Treatments studied did not change fresh or salt-added samples shear force. Frozen beef pressurised at low temperature showed L, a and b values after thawing close to fresh samples. However, these samples in frozen state, presented chromatic parameters similar to unfrozen beef pressurised at room temperature. Apparently, freezing protects meat against pressure colour deterioration, fresh colour being recovered after thawing. High pressure processing (20°C or -35°C) was very effective reducing aerobic total (2-log(10) cycles) and lactic acid bacteria counts (2.4-log(10) cycles), in fresh and salt-added samples. Frozen+pressurised beef stored at -18°C during 45 days recovered its original colour after thawing, similarly to just-treated samples while their counts remain below detection limits during storage.

  8. Prawn Shell Chitosan Has Anti-Obesogenic Properties, Influencing Both Nutrient Digestibility and Microbial Populations in a Pig Model.

    PubMed

    Egan, Áine M; Sweeney, Torres; Hayes, Maria; O'Doherty, John V

    2015-01-01

    The potential of natural products to prevent obesity have been investigated, with evidence to suggest that chitosan has anti-obesity effects. The current experiment investigated the anti-obesity potential of prawn shell derived chitosan on a range of variables relevant to obesity in a pig model. The two dietary treatment groups included in this 63 day study were: T1) basal diet and T2) basal diet plus 1000 ppm chitosan (n = 20 gilts per group (70 ± 0.90 kg). The parameter categories which were assessed included: performance, nutrient digestibility, serum leptin concentrations, nutrient transporter and digestive enzyme gene expression and gut microbial populations. Pigs offered chitosan had reduced feed intake and final body weight (P< 0.001), lower ileal digestibility of dry matter (DM), gross energy (GE) (P< 0.05) and reduced coefficient of apparent total tract digestibility (CATTD) of gross energy and nitrogen (P<0.05) when compared to the basal group. Fatty acid binding protein 2 (FABP2) gene expression was down-regulated in pigs offered chitosan (P = 0.05) relative to the basal diet. Serum leptin concentrations increased (P< 0.05) in animals offered the chitosan diet compared to pigs offered the basal diet. Fatness traits, back-fat depth (mm), fat content (kg), were significantly reduced while lean meat (%) was increased (P<0.05) in chitosan supplemented pigs. Pigs offered chitosan had decreased numbers of Firmicutes in the colon (P <0.05), and Lactobacillus spp. in both the caecum (P <0.05) and colon (P <0.001). Bifidobacteria populations were increased in the caecum of animals offered the chitosan diet (P <0.05). In conclusion, these findings suggest that prawn shell chitosan has potent anti-obesity/body weight control effects which are mediated through multiple biological systems in vivo. PMID:26636332

  9. Inactivation of Prions and Amyloid Seeds with Hypochlorous Acid

    PubMed Central

    Kraus, Allison; Phillips, Katie; Contreras, Luis; Zanusso, Gianluigi; Caughey, Byron

    2016-01-01

    Hypochlorous acid (HOCl) is produced naturally by neutrophils and other cells to kill conventional microbes in vivo. Synthetic preparations containing HOCl can also be effective as microbial disinfectants. Here we have tested whether HOCl can also inactivate prions and other self-propagating protein amyloid seeds. Prions are deadly pathogens that are notoriously difficult to inactivate, and standard microbial disinfection protocols are often inadequate. Recommended treatments for prion decontamination include strongly basic (pH ≥~12) sodium hypochlorite bleach, ≥1 N sodium hydroxide, and/or prolonged autoclaving. These treatments are damaging and/or unsuitable for many clinical, agricultural and environmental applications. We have tested the anti-prion activity of a weakly acidic aqueous formulation of HOCl (BrioHOCl) that poses no apparent hazard to either users or many surfaces. For example, BrioHOCl can be applied directly to skin and mucous membranes and has been aerosolized to treat entire rooms without apparent deleterious effects. Here, we demonstrate that immersion in BrioHOCl can inactivate not only a range of target microbes, including spores of Bacillus subtilis, but also prions in tissue suspensions and on stainless steel. Real-time quaking-induced conversion (RT-QuIC) assays showed that BrioHOCl treatments eliminated all detectable prion seeding activity of human Creutzfeldt-Jakob disease, bovine spongiform encephalopathy, cervine chronic wasting disease, sheep scrapie and hamster scrapie; these findings indicated reductions of ≥103- to 106-fold. Transgenic mouse bioassays showed that all detectable hamster-adapted scrapie infectivity in brain homogenates or on steel wires was eliminated, representing reductions of ≥~105.75-fold and >104-fold, respectively. Inactivation of RT-QuIC seeding activity correlated with free chlorine concentration and higher order aggregation or destruction of proteins generally, including prion protein. Brio

  10. Infectious Causes of Cholesteatoma and Treatment of Infected Ossicles prior to Reimplantation by Hydrostatic High-Pressure Inactivation

    PubMed Central

    Hinz, Rebecca

    2015-01-01

    Chronic inflammation, which is caused by recurrent infections, is one of the factors contributing to the pathogenesis of cholesteatoma. If reimplantation of autologous ossicles after a surgical intervention is intended, inactivation of planktonic bacteria and biofilms is desirable. High hydrostatic pressure treatment is a procedure, which has been used to inactivate cholesteatoma cells on ossicles. Here we discuss the potential inactivating effect of high hydrostatic pressure on microbial pathogens including biofilms. Recent experimental data suggest an incomplete inactivation at a pressure level, which is tolerable for the bone substance of ossicles and results at least in a considerable reduction of pathogen load. Further studies are necessary to access how far this quantitative reduction of pathogens is sufficient to prevent ongoing chronic infections, for example, due to forming of biofilms. PMID:25705686

  11. Viscoelastic properties of levan-DNA mixtures important in microbial biofilm formation as determined by micro- and macrorheology.

    PubMed

    Stojković, Biljana; Sretenovic, Simon; Dogsa, Iztok; Poberaj, Igor; Stopar, David

    2015-02-01

    We studied the viscoelastic properties of homogeneous and inhomogeneous levan-DNA mixtures using optical tweezers and a rotational rheometer. Levan and DNA are important components of the extracellular matrix of bacterial biofilms. Their viscoelastic properties influence the mechanical as well as molecular-transport properties of biofilm. Both macro- and microrheology measurements in homogeneous levan-DNA mixtures revealed pseudoplastic behavior. When the concentration of DNA reached a critical value, levan started to aggregate, forming clusters of a few microns in size. Microrheology using optical tweezers enabled us to measure local viscoelastic properties within the clusters as well as in the DNA phase surrounding the levan aggregates. In phase-separated levan-DNA mixtures, the results of macro- and microrheology differed significantly. The local viscosity and elasticity of levan increased, whereas the local viscosity of DNA decreased. On the other hand, the results of bulk viscosity measurements suggest that levan clusters do not interact strongly with DNA. Upon treatment with DNase, levan aggregates dispersed. These results demonstrate the advantages of microrheological measurements compared to bulk viscoelastic measurements when the materials under investigation are complex and inhomogeneous, as is often the case in biological samples.

  12. Microbial Communities as Experimental Units.

    PubMed

    Day, Mitch D; Beck, Daniel; Foster, James A

    2011-05-01

    Artificial ecosystem selection is an experimental technique that treats microbial communities as though they were discrete units by applying selection on community-level properties. Highly diverse microbial communities associated with humans and other organisms can have significant impacts on the health of the host. It is difficult to find correlations between microbial community composition and community-associated diseases, in part because it may be impossible to define a universal and robust species concept for microbes. Microbial communities are composed of potentially thousands of unique populations that evolved in intimate contact, so it is appropriate in many situations to view the community as the unit of analysis. This perspective is supported by recent discoveries using metagenomics and pangenomics. Artificial ecosystem selection experiments can be costly, but they bring the logical rigor of biological model systems to the emerging field of microbial community analysis.

  13. Meprin Metalloproteases Inactivate Interleukin 6*

    PubMed Central

    Keiffer, Timothy R.; Bond, Judith S.

    2014-01-01

    Meprins have been implicated in the pathogenesis of several inflammatory diseases, including inflammatory bowel disease, in which the cytokine IL-6 is a prominent effector molecule. Because IL-6 levels are elevated markedly in meprin α and α/β knockout mice in an experimental model of inflammatory bowel disease, the interaction between meprins and IL-6 was studied. The results demonstrate that rodent and human meprin A and B cleave IL-6 to a smaller product and, subsequently, are capable of extensive degradation of the cytokine. Analysis of the limited degradation product formed by meprin A indicated that three to five amino acids are removed from the C terminus of the cytokine. Meprin A and meprin B cleaved IL-6 with micromolar affinities (Km of 4.7 and 12.0 μm, respectively) and with high efficiencies (kcat/Km of 0.2 and 2.5 (m−1/s−1) × 106, respectively). These efficiency constants are among the highest for known meprin substrates. Madin-Darby canine kidney cells transiently transfected with meprin α or meprin β constructs also cleave exogenous IL-6. Both human and murine IL-6 cleaved by meprin A or B are inactivated, as demonstrated by their decreased capability to stimulate proliferation of B9 cells. These results are consistent with the proposition that one function of meprin metalloproteases is to modulate inflammation by inactivating IL-6. PMID:24474695

  14. Contrasting genomic properties of free-living and particle-attached microbial assemblages within a coastal ecosystem

    PubMed Central

    Smith, Maria W.; Zeigler Allen, Lisa; Allen, Andrew E.; Herfort, Lydie; Simon, Holly M.

    2013-01-01

    The Columbia River (CR) is a powerful economic and environmental driver in the US Pacific Northwest. Microbial communities in the water column were analyzed from four diverse habitats: (1) an estuarine turbidity maximum (ETM), (2) a chlorophyll maximum of the river plume, (3) an upwelling-associated hypoxic zone, and (4) the deep ocean bottom. Three size fractions, 0.1–0.8, 0.8–3, and 3–200 μm were collected for each habitat in August 2007, and used for DNA isolation and 454 sequencing, resulting in 12 metagenomes of >5 million reads (>1.6 Gbp). To characterize the dominant microorganisms and metabolisms contributing to coastal biogeochemistry, we used predicted peptide and rRNA data. The 3- and 0.8-μm metagenomes, representing particulate fractions, were taxonomically diverse across habitats. The 3-μm size fractions contained a high abundance of eukaryota with diatoms dominating the hypoxic water and plume, while cryptophytes were more abundant in the ETM. The 0.1-μm metagenomes represented mainly free-living bacteria and archaea. The most abundant archaeal hits were observed in the deep ocean and hypoxic water (19% of prokaryotic peptides in the 0.1-μm metagenomes), and were homologous to Nitrosopumilus maritimus (ammonia-oxidizing Thaumarchaeota). Bacteria dominated metagenomes of all samples. In the euphotic zone (estuary, plume and hypoxic ocean), the most abundant bacterial taxa (≥40% of prokaryotic peptides) represented aerobic photoheterotrophs. In contrast, the low-oxygen, deep water metagenome was enriched with sequences for strict and facultative anaerobes. Interestingly, many of the same anaerobic bacterial families were enriched in the 3-μm size fraction of the ETM (2–10X more abundant relative to the 0.1-μm metagenome), indicating possible formation of anoxic microniches within particles. Results from this study provide a metagenome perspective on ecosystem-scale metabolism in an upwelling-influenced river-dominated coastal margin

  15. Copper-dependent inhibition and oxidative inactivation with affinity cleavage of yeast glutathione reductase.

    PubMed

    Murakami, Keiko; Tsubouchi, Ryoko; Fukayama, Minoru; Yoshino, Masataka

    2014-06-01

    Effects of copper on the activity and oxidative inactivation of yeast glutathione reductase were analyzed. Glutathione reductase from yeast was inhibited by cupric ion and more potently by cuprous ion. Copper ion inhibited the enzyme noncompetitively with respect to the substrate GSSG and NADPH. The Ki values of the enzyme for Cu(2+) and Cu(+) ion were determined to be 1 and 0.35 μM, respectively. Copper-dependent inactivation of glutathione reductase was also analyzed. Hydrogen peroxide and copper/ascorbate also caused an inactivation with the cleavage of peptide bond of the enzyme. The inactivation/fragmentation of the enzyme was prevented by addition of catalase, suggesting that hydroxyl radical produced through the cuprous ion-dependent reduction of oxygen is responsible for the inactivation/fragmentation of the enzyme. SDS-PAGE and TOF-MS analysis confirmed eight fragments, which were further determined to result from the cleavage of the Met17-Ser18, Asn20-Thr21, Glu251-Gly252, Ser420-Pro421, Pro421-Thr422 bonds of the enzyme by amino-terminal sequencing analysis. Based on the kinetic analysis and no protective effect of the substrates, GSSG and NADPH on the copper-mediated inactivation/fragmentation of the enzyme, copper binds to the sites apart from the substrate-sites, causing the peptide cleavage by hydroxyl radical. Copper-dependent oxidative inactivation/fragmentation of glutathione reductase can explain the prooxidant properties of copper under the in vivo conditions.

  16. Copper-dependent inhibition and oxidative inactivation with affinity cleavage of yeast glutathione reductase.

    PubMed

    Murakami, Keiko; Tsubouchi, Ryoko; Fukayama, Minoru; Yoshino, Masataka

    2014-06-01

    Effects of copper on the activity and oxidative inactivation of yeast glutathione reductase were analyzed. Glutathione reductase from yeast was inhibited by cupric ion and more potently by cuprous ion. Copper ion inhibited the enzyme noncompetitively with respect to the substrate GSSG and NADPH. The Ki values of the enzyme for Cu(2+) and Cu(+) ion were determined to be 1 and 0.35 μM, respectively. Copper-dependent inactivation of glutathione reductase was also analyzed. Hydrogen peroxide and copper/ascorbate also caused an inactivation with the cleavage of peptide bond of the enzyme. The inactivation/fragmentation of the enzyme was prevented by addition of catalase, suggesting that hydroxyl radical produced through the cuprous ion-dependent reduction of oxygen is responsible for the inactivation/fragmentation of the enzyme. SDS-PAGE and TOF-MS analysis confirmed eight fragments, which were further determined to result from the cleavage of the Met17-Ser18, Asn20-Thr21, Glu251-Gly252, Ser420-Pro421, Pro421-Thr422 bonds of the enzyme by amino-terminal sequencing analysis. Based on the kinetic analysis and no protective effect of the substrates, GSSG and NADPH on the copper-mediated inactivation/fragmentation of the enzyme, copper binds to the sites apart from the substrate-sites, causing the peptide cleavage by hydroxyl radical. Copper-dependent oxidative inactivation/fragmentation of glutathione reductase can explain the prooxidant properties of copper under the in vivo conditions. PMID:24671306

  17. Quantitative analysis of wet-heat inactivation in bovine spongiform encephalopathy

    SciTech Connect

    Matsuura, Yuichi; Ishikawa, Yukiko; Bo, Xiao; Murayama, Yuichi; Yokoyama, Takashi; Somerville, Robert A.; Kitamoto, Tetsuyuki; Mohri, Shirou

    2013-03-01

    Highlights: ► We quantitatively analyzed wet-heat inactivation of the BSE agent. ► Infectivity of the BSE macerate did not survive 155 °C wet-heat treatment. ► Once the sample was dehydrated, infectivity was observed even at 170 °C. ► A quantitative PMCA assay was used to evaluate the degree of BSE inactivation. - Abstract: The bovine spongiform encephalopathy (BSE) agent is resistant to conventional microbial inactivation procedures and thus threatens the safety of cattle products and by-products. To obtain information necessary to assess BSE inactivation, we performed quantitative analysis of wet-heat inactivation of infectivity in BSE-infected cattle spinal cords. Using a highly sensitive bioassay, we found that infectivity in BSE cattle macerates fell with increase in temperatures from 133 °C to 150 °C and was not detected in the samples subjected to temperatures above 155 °C. In dry cattle tissues, infectivity was detected even at 170 °C. Thus, BSE infectivity reduces with increase in wet-heat temperatures but is less affected when tissues are dehydrated prior to the wet-heat treatment. The results of the quantitative protein misfolding cyclic amplification assay also demonstrated that the level of the protease-resistant prion protein fell below the bioassay detection limit by wet-heat at 155 °C and higher and could help assess BSE inactivation. Our results show that BSE infectivity is strongly resistant to wet-heat inactivation and that it is necessary to pay attention to BSE decontamination in recycled cattle by-products.

  18. Enhanced inactivation of Bacillus subtilis spores during solar photolysis of free available chlorine.

    PubMed

    Forsyth, Jenna E; Zhou, Peiran; Mao, Quanxin; Asato, Shelby S; Meschke, John S; Dodd, Michael C

    2013-11-19

    Aqueous free available chlorine (FAC) can be photolyzed by sunlight and/or artificial UV light to generate various reactive oxygen species, including HO(•) and O((3)P). The influence of this chemistry on inactivation of chlorine-resistant microorganisms was investigated using Bacillus subtilis endospores as model microbial agents and simulated and natural solar radiation as light sources. Irradiation of FAC solutions markedly enhanced inactivation of B. subtilis spores in 10 mM phosphate buffer; increasing inactivation rate constants by as much as 600%, shortening inactivation curve lag phase by up to 73% and lowering CTs required for 2 log10 inactivation by as much as 71% at pH 8.0 and 10 °C. Similar results were observed at pH 7.4 and 10 °C in two drinking water samples with respective DOC concentrations and alkalinities of 0.6 and 1.2 mg C/L and 81.8 and 17.1 mg/L as CaCO3. Solar radiation alone did not inactivate B. subtilis spores under the conditions investigated. A variety of experimental data indicate that the observed enhancements in spore inactivation can be attributed to the concomitant attack of spores by HO(•) and O3, the latter of which was found to accumulate to micromolar concentrations during simulated solar irradiation of 10 mM phosphate buffer (pH 8, 10 °C) containing [FAC]0 = 8 mg/L as Cl2.

  19. Inactivation of Giardia lamblia cysts with ozone.

    PubMed Central

    Wickramanayake, G B; Rubin, A J; Sproul, O J

    1984-01-01

    Giardia lamblia cysts were inactivated in water with ozone at pH 7.0 and 5 and 25 degrees C. The concentration-time products for 99% inactivation were 0.53 and 0.17 mg-min/liter at 5 and 25 degrees C, respectively. These products were significantly lower than those reported for chlorine. PMID:6497374

  20. Sputtered Gum metal thin films showing bacterial inactivation and biocompatibility.

    PubMed

    Achache, S; Alhussein, A; Lamri, S; François, M; Sanchette, F; Pulgarin, C; Kiwi, J; Rtimi, S

    2016-10-01

    Super-elastic Titanium based thin films Ti-23Nb-0.7Ta-2Zr-(O) (TNTZ-O) and Ti-24Nb-(N) (TN-N) (at.%) were deposited by direct current magnetron sputtering (DCMS) in different reactive atmospheres. The effects of oxygen doping (TNTZ-O) and/or nitrogen doping (TN-N) on the microstructure, mechanical properties and biocompatibility of the as-deposited coatings were investigated. Nano-indentation measurements show that, in both cases, 1sccm of reactive gas in the mixture is necessary to reach acceptable values of hardness and Young's modulus. Mechanical properties are considered in relation to the films compactness, the compressive stress and the changes in the grain size. Data on Bacterial inactivation and biocompatibility are reported in this study. The biocompatibility tests showed that O-containing samples led to higher cells proliferation. Bacterial inactivation was concomitant with the observed pH and surface potential changes under light and in the dark. The increased cell fluidity leading to bacterial lysis was followed during the bacterial inactivation time. The increasing cell wall fluidity was attributed to the damage of the bacterial outer cell which losing its capacity to regulate the ions exchange in and out of the bacteria.

  1. Sputtered Gum metal thin films showing bacterial inactivation and biocompatibility.

    PubMed

    Achache, S; Alhussein, A; Lamri, S; François, M; Sanchette, F; Pulgarin, C; Kiwi, J; Rtimi, S

    2016-10-01

    Super-elastic Titanium based thin films Ti-23Nb-0.7Ta-2Zr-(O) (TNTZ-O) and Ti-24Nb-(N) (TN-N) (at.%) were deposited by direct current magnetron sputtering (DCMS) in different reactive atmospheres. The effects of oxygen doping (TNTZ-O) and/or nitrogen doping (TN-N) on the microstructure, mechanical properties and biocompatibility of the as-deposited coatings were investigated. Nano-indentation measurements show that, in both cases, 1sccm of reactive gas in the mixture is necessary to reach acceptable values of hardness and Young's modulus. Mechanical properties are considered in relation to the films compactness, the compressive stress and the changes in the grain size. Data on Bacterial inactivation and biocompatibility are reported in this study. The biocompatibility tests showed that O-containing samples led to higher cells proliferation. Bacterial inactivation was concomitant with the observed pH and surface potential changes under light and in the dark. The increased cell fluidity leading to bacterial lysis was followed during the bacterial inactivation time. The increasing cell wall fluidity was attributed to the damage of the bacterial outer cell which losing its capacity to regulate the ions exchange in and out of the bacteria. PMID:27434155

  2. Effects of pH-treated Fish Sarcoplasmic Proteins on the Functional Properties of Chicken Myofibrillar Protein Gel Mediated by Microbial Transglutaminase

    PubMed Central

    Hemung, Bung-Orn

    2014-01-01

    pH adjustment would be of advantage in improving the water holding capacity of muscle proteins. The objective of this study was to evaluate the addition of fish sarcoplasmic protein (SP) solution, which was adjusted to pH 3.0 or 12.0, neutralized to pH 7.0, and lyophilized to obtain the acid- and alkaline-treated SP samples, on the functional properties of the chicken myofibrillar protein induced by microbial transglutaminase (MTG). The solubility of alkaline-treated SP was higher than that of the acid counterpart; however, those values of the two pH-treated samples were lower than that of normal SP (p<0.05). All SP solutions were mixed with myofibrillar proteins (MP) extracted from chicken breast, and incubated with MTG. The shear stresses of MP with acid- and alkaline-treated SP were higher than that of normal SP. The thermal stability of MP mixture reduced upon adding SP, regardless of the pH treatment. The breaking force of MP gels with acid-treated SP increased more than those of alkaline-treated SP, while normal SP showed the highest value. The MP gel lightness increased, but cooking loss reduced, with the addition of SP. Smooth microstructure of the gel surface was observed. These results indicated that adjusting the pH of SP improved the water holding capacity of chicken myofibrillar proteins induced by MTG. PMID:26761171

  3. Enhanced Oxygen and Hydroxide Transport in a Cathode Interface by Efficient Antibacterial Property of a Silver Nanoparticle-Modified, Activated Carbon Cathode in Microbial Fuel Cells.

    PubMed

    Li, Da; Qu, Youpeng; Liu, Jia; Liu, Guohong; Zhang, Jie; Feng, Yujie

    2016-08-17

    A biofilm growing on an air cathode is responsible for the decreased performance of microbial fuel cells (MFCs). For the undesired biofilm to be minimized, silver nanoparticles were synthesized on activated carbon as the cathodic catalyst (Ag/AC) in MFCs. Ag/AC enhanced maximum power density by 14.6% compared to that of a bare activated carbon cathode (AC) due to the additional silver catalysis. After operating MFCs over five months, protein content on the Ag/AC cathode was only 38.3% of that on the AC cathode, which resulted in a higher oxygen concentration diffusing through the Ag/AC cathode. In addition, a lower pH increment (0.2 units) was obtained near the Ag/AC catalyst surface after biofouling compared to 0.8 units of the AC cathode, indicating that less biofilm on the Ag/AC cathode had a minor resistance on hydroxide transported from the catalyst layer interfaces to the bulk solution. Therefore, less decrements of the Ag/AC activity and MFC performance were obtained. This result indicated that accelerated transport of oxygen and hydroxide, benefitting from the antibacterial property of the cathode, could efficiently maintain higher cathode stability during long-term operation. PMID:27441786

  4. Biogeochemical Processes in Microbial Ecosystems

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.

    2001-01-01

    The hierarchical organization of microbial ecosystems determines process rates that shape Earth's environment, create the biomarker sedimentary and atmospheric signatures of life, and define the stage upon which major evolutionary events occurred. In order to understand how microorganisms have shaped the global environment of Earth and, potentially, other worlds, we must develop an experimental paradigm that links biogeochemical processes with ever-changing temporal and spatial distributions of microbial populations and their metabolic properties. Additional information is contained in the original extended abstract.

  5. Photodynamic Inactivation of Mammalian Viruses and Bacteriophages

    PubMed Central

    Costa, Liliana; Faustino, Maria Amparo F.; Neves, Maria Graça P. M. S.; Cunha, Ângela; Almeida, Adelaide

    2012-01-01

    Photodynamic inactivation (PDI) has been used to inactivate microorganisms through the use of photosensitizers. The inactivation of mammalian viruses and bacteriophages by photosensitization has been applied with success since the first decades of the last century. Due to the fact that mammalian viruses are known to pose a threat to public health and that bacteriophages are frequently used as models of mammalian viruses, it is important to know and understand the mechanisms and photodynamic procedures involved in their photoinactivation. The aim of this review is to (i) summarize the main approaches developed until now for the photodynamic inactivation of bacteriophages and mammalian viruses and, (ii) discuss and compare the present state of the art of mammalian viruses PDI with phage photoinactivation, with special focus on the most relevant mechanisms, molecular targets and factors affecting the viral inactivation process. PMID:22852040

  6. Photodynamic inactivation of mammalian viruses and bacteriophages.

    PubMed

    Costa, Liliana; Faustino, Maria Amparo F; Neves, Maria Graça P M S; Cunha, Angela; Almeida, Adelaide

    2012-07-01

    Photodynamic inactivation (PDI) has been used to inactivate microorganisms through the use of photosensitizers. The inactivation of mammalian viruses and bacteriophages by photosensitization has been applied with success since the first decades of the last century. Due to the fact that mammalian viruses are known to pose a threat to public health and that bacteriophages are frequently used as models of mammalian viruses, it is important to know and understand the mechanisms and photodynamic procedures involved in their photoinactivation. The aim of this review is to (i) summarize the main approaches developed until now for the photodynamic inactivation of bacteriophages and mammalian viruses and, (ii) discuss and compare the present state of the art of mammalian viruses PDI with phage photoinactivation, with special focus on the most relevant mechanisms, molecular targets and factors affecting the viral inactivation process.

  7. Influence of bacterial interactions on the susceptibility to photodynamic inactivation

    NASA Astrophysics Data System (ADS)

    Upadya, M. H.; Tegos, G.; Hamblin, M.; Kishen, A.

    2009-06-01

    Photodynamic therapy has emerged as a possible supplement to the existing protocols for endodontic disinfection. Microbes are known to gain significant ecological advantage when they survive as coaggregates and biofilms in an infected tissue. Such microbial coaggregates and biofilms have been confirmed to play a key role in the pathogenicity of many infections. So far, not many studies have correlated the efficacy of antimicrobial photodynamic inactivation (APDI) to the different modes of bacterial growth. This study aims to evaluate the APDI of 3 strains of Enterococcus faecalis in planktonic phase, in a co-aggregated suspension and in a 4-day old biofilm. The results showed that the biofilm mode of growth offered the greatest resistance to APDI and the inclusion of an efflux pump inhibitor significantly increased the APDI of biofilm bacteria. From this study, we conclude that APDI of bacteria in biofilms is the most challenging and that the use of bacterial efflux pump inhibitors enhances its photodynamic antibiofilm efficacy.

  8. Monolithic Ceramic Foams for Ultrafast Photocatalytic Inactivation of Bacteria

    PubMed Central

    Wu, Pinggui; Xie, Rongcai; Imlay, Kari; Shang, Jian Ku

    2011-01-01

    Palladium-modified nitrogen-doped titanium dioxide (TiON/PdO) foams were synthesized by a sol-gel process on a polyurethane foam template. The TiON/PdO foam was tested for microbial killing using Escherichia coli cells as a target. Under visible-light illumination, the TiON/PdO foam displayed a strong antimicrobial effect on the bacteria cells in water. The antimicrobial effect was found to be dependent on the palladium content and the calcination temperature. In a flow-through dynamic photoreactor, the new photocatalyst efficiently inactivated E. coli within a short contact time (< 1 min), the shortest ever reported for photocatalytic killing of bacteria. The strong antimicrobial functions of the TiON/PdO foam were related to the charge trapping by PdO and to the high contact efficiency of the foam structure. PMID:21423830

  9. Inactivation of Ascaris suum eggs by ammonia.

    PubMed

    Pecson, Brian M; Nelson, Kara L

    2005-10-15

    Uncharged ammonia is known to cause inactivation of a number of wastewater pathogens, but its effect on Ascaris eggs has never been isolated or quantified. The objectives of this research were to determine the conditions under which ammonia inactivates eggs of the swine Ascaris species, Ascaris suum, and to quantify the impact of ammonia on the U.S. EPA's requirements for alkaline treatment to produce Class A sludge. Eggs were incubated in controlled, laboratory solutions such that the effects of ammonia concentration and speciation, pH, and temperature could be separated. With a 24-h incubation, the inactivation at all pH levels (range 7-11) was not statistically different in the absence of ammonia. The presence of ammonia (0-1000 ppm as N) significantly increased Ascaris egg inactivation at pH 9 and 11, and the ovicidal effect was directly related to the concentration of the uncharged NH3 species. Increasing temperatures (32-52 degrees C) caused increased inactivation at all pH levels and ammonia concentrations. The current EPA treatment requirements to produce Class A biosolids by alkaline treatment have temperature, pH, and time requirements, but do not account for the effectof differences in ammonia concentration on inactivation. To illustrate the potential savings in temperature and pH that could be achieved when accounting for ammonia inactivation, the combinations of ammonia concentration, temperature, and pH neededto achieve 99% inactivation after 72 h were determined. The presence of ammonia at concentrations encountered in sludges and feces (up to 8000 ppm as N) allowed for 99% egg inactivation to be achieved at temperatures up to 14 degrees C lower than ammonia-free controls. Thus, environmentally relevant concentrations of ammonia may significantly increase the rate of Ascaris egg inactivation during alkaline stabilization.

  10. GEOELECTRICAL EVIDENCE OF MICROBIAL DEGRADATION OF DIESEL CONTAMINATED SEDIMENTS

    EPA Science Inventory

    The alteration of physical properties by microbial activity in petroleum contaminated sediments was investigated using geophysical techniques in laboratory column experiments. Microbial population growth was determined by the Most Probable Number technique (MPN), community dynami...

  11. Skewed X-chromosome inactivation in women affected by Alzheimer's disease.

    PubMed

    Bajic, Vladan; Mandusic, Vesna; Stefanova, Elka; Bozovic, Ana; Davidovic, Radoslav; Zivkovic, Lada; Cabarkapa, Andrea; Spremo-Potparevic, Biljana

    2015-01-01

    X-chromosome instability has been a long established feature in Alzheimer's disease (AD). Premature centromere division and aneuploidy of the X-chromosome has been found in peripheral blood lymphocytes and neuronal tissue in female AD patients. Interestingly, only one chromosome of the X pair has been affected. These results raised a question, "Is the X-chromosome inactivation pattern altered in peripheral blood lymphocytes of women affected by AD?" To address this question, we analyzed the methylation status of androgen receptor promoter which may show us any deviation from the 50 : 50% X inactivation status in peripheral blood lymphocytes of women with AD. Our results showed skewed inactivation patterns (>90%). These findings suggest that an epigenetic alteration on the inactivation centers of the X-chromosome (or skewing) relates not only to aging, by might be a novel property that could account for the higher incidence of AD in women. PMID:25159673

  12. Ecology, Microbial

    SciTech Connect

    Konopka, Allan

    2009-05-15

    Microbial ecology is a relatively young discipline within the field of microbiology. Its modern history spans just the past 60 years, and the field is defined by its emphasis on understanding the interactions of microbes with their environment, rather than their behavior under artificial laboratory conditions. Because microbes are ubiquitous, microbial ecologists study a broad diversity of habitats that range from aquatic to terrestrial to plant- or animal-associated. This has made it a challenge to identify unifying principles within the field. One approach is to recognize that although the activity of microbes in nature have effects at the macroscale, they interact with their physical, chemical and biological milieu at a scale of micrometers. At this scale, several different microbial ecosystems can be defined, based upon association with particles, the presence of environmental gradients and the continuous availability of water. Principles applicable to microbial ecology reflect not only their population ecology and physiological ecology, but also their broad versatility and quantitative importance in the biosphere as biogeochemical catalysts and capacity for rapid physiological and evolutionary responses.

  13. Ecology, Microbial

    SciTech Connect

    Konopka, Allan

    2009-03-19

    Microbial ecology is a relatively young discipline within the field of microbiology. Its modern history spans just the past 60 years, and the field is defined by its emphasis on understanding the interactions of microbes with their environment, rather than their behavior under artificial laboratory conditions. Because microbes are ubiquitous, microbial ecologists study a broad diversity of habitats that range from aquatic to terrestrial to plant- or animal-associated. This has made it a challenge to identify unifying principles within the field. One approach is to recognize that although the activity of microbes in nature have effects at the macroscale, they interact with their physical, chemical and biological milieu at a scale of micrometers. At this scale, several different microbial ecosystems can be defined, based upon association with particles, the presence of environmental gradients and the continuous availability of water. Principles applicable to microbial ecology reflect not only their population ecology and physiological ecology, but also their broad versatility and quantitative importance in the biosphere as biogeochemical catalysts and capacity for rapid physiological and evolutionary responses.

  14. Polyethylene Films Containing Silver Nanoparticles for Applications in Food Packaging: Characterization of Physico-Chemical and Anti-Microbial Properties.

    PubMed

    Becaro, Aline A; Puti, Fernanda C; Correa, Daniel S; Paris, Elaine C; Marconcini, José M; Ferreira, Marcos D

    2015-03-01

    This paper reports the antibacterial effect and physico-chemical characterization of films containing silver nanoparticles for use as food packaging. Two masterbatches (named PEN and PEC) con- taining silver nanoparticles embedded in distinct carriers (silica and titanium dioxide) were mixed with low-density polyethylene (LDPE) in different compositions and extruded to produce plain films. These films were characterized by Scanning Electron Microscopy (SEM), X-ray diffraction (XRD), Differential Scanning Calorimetry (DSC), Thermogravimetric analysis (TGA) and Fourier Transform Infrared Spectroscopy (FTIR). The morphology of the films showed the formation of agglomerates of nanoparticles in both PEN and PEC composites. X-ray analyses confirmed the presence of SiO2 in PEN samples and TiO2 in PEC samples. Thermal analyses indicated an increase in thermal stability of the PEC compositions. The antimicrobial efficacy was determined by applying the test strain for Escherichia coli and Staphylococcus aureus, according to the Japanese Industrial Standard Method (JIS Z 2801:2000). The films analyzed showed antimicrobial properties against the tested microorganisms, presenting better activity against the S. aureus than E. Coli. These findings suggest that LDPE films with silver nanoparticles are promising to provide a significant contribution to the quality and safety of packaged food. PMID:26413633

  15. Effects of indigenous yeasts on physicochemical and microbial properties of Korean soy sauce prepared by low-salt fermentation.

    PubMed

    Song, Young-Ran; Jeong, Do-Youn; Baik, Sang-Ho

    2015-10-01

    This study deals with understanding the effects of salt reduction on both the physicochemical and microbiological properties of soy sauce fermentation and also the application of indigenous yeast starters to compensate for undesirable changes occurring in salt-reduced processes. Fermentation was tested in situ at a Korean commercial soy sauce processing unit. Salt reduction resulted in higher acidity as well as lower pH and contents of residual sugar and ethanol. Moreover, undesired flavor characteristics, due to a lack of distinctive compounds, was observed. In addition, putrefactive Staphylococcus and Enterococcus spp. were present only during salt-reduced fermentation. To control these adverse effects, a single or mixed culture of two indigenous yeasts, Torulaspora delbrueckii and Pichia guilliermondii, producing high ethanol and 3-methyl-1-butanol, respectively, were tested. Overall, all types of yeast applications inhibited undesirable bacterial growth despite salt reduction. Of the starter cultures tested, the mixed culture resulted in a balance of more complex and richer flavors with an identical flavor profile pattern to that obtained from high salt soy sauce. Hence, this strategy using functional yeast cultures offers a technological option to manufacture salt-reduced soy sauce while preserving its typical sensory characteristics without affecting safety.

  16. Polyethylene Films Containing Silver Nanoparticles for Applications in Food Packaging: Characterization of Physico-Chemical and Anti-Microbial Properties.

    PubMed

    Becaro, Aline A; Puti, Fernanda C; Correa, Daniel S; Paris, Elaine C; Marconcini, José M; Ferreira, Marcos D

    2015-03-01

    This paper reports the antibacterial effect and physico-chemical characterization of films containing silver nanoparticles for use as food packaging. Two masterbatches (named PEN and PEC) con- taining silver nanoparticles embedded in distinct carriers (silica and titanium dioxide) were mixed with low-density polyethylene (LDPE) in different compositions and extruded to produce plain films. These films were characterized by Scanning Electron Microscopy (SEM), X-ray diffraction (XRD), Differential Scanning Calorimetry (DSC), Thermogravimetric analysis (TGA) and Fourier Transform Infrared Spectroscopy (FTIR). The morphology of the films showed the formation of agglomerates of nanoparticles in both PEN and PEC composites. X-ray analyses confirmed the presence of SiO2 in PEN samples and TiO2 in PEC samples. Thermal analyses indicated an increase in thermal stability of the PEC compositions. The antimicrobial efficacy was determined by applying the test strain for Escherichia coli and Staphylococcus aureus, according to the Japanese Industrial Standard Method (JIS Z 2801:2000). The films analyzed showed antimicrobial properties against the tested microorganisms, presenting better activity against the S. aureus than E. Coli. These findings suggest that LDPE films with silver nanoparticles are promising to provide a significant contribution to the quality and safety of packaged food.

  17. Archean Microbial Mat Communities

    NASA Astrophysics Data System (ADS)

    Tice, Michael M.; Thornton, Daniel C. O.; Pope, Michael C.; Olszewski, Thomas D.; Gong, Jian

    2011-05-01

    Much of the Archean record of microbial communities consists of fossil mats and stromatolites. Critical physical emergent properties governing the evolution of large-scale (centimeters to meters) topographic relief on the mat landscape are (a) mat surface roughness relative to the laminar sublayer and (b) cohesion. These properties can be estimated for fossil samples under many circumstances. A preliminary analysis of Archean mat cohesion suggests that mats growing in shallow marine environments from throughout this time had cohesions similar to those of modern shallow marine mats. There may have been a significant increase in mat strength at the end of the Archean.

  18. Cyanide inactivation of hydrogenase from Azotobacter vinelandii

    SciTech Connect

    Seefeldt, L.C.; Arp, D.J. )

    1989-06-01

    The effects of cyanide on membrane-associated and purified hydrogenase from Azotobacter vinelandii were characterized. Inactivation of hydrogenase by cyanide was dependent on the activity (oxidation) state of the enzyme. Active (reduced) hydrogenase showed no inactivation when treated with cyanide over several hours. Treatment of reversibly inactive (oxidized) states of both membrane-associated and purified hydrogenase, however, resulted in a time-dependent, irreversible loss of hydrogenase activity. The rate of cyanide inactivation was dependent on the cyanide concentration and was an apparent first-order process for purified enzyme (bimolecular rate constant, 23.1 M{sup {minus}1} min{sup {minus}1} for CN{sup {minus}}). The rate of inactivation decreased with decreasing pH. ({sup 14}C)cyanide remained associated with cyanide-inactivated hydrogenase after gel filtration chromatography, with a stoichiometry of 1.7 mol of cyanide bound per mol of inactive enzyme. The presence of saturating concentrations of CO had no effect on the rate or extent of cyanide inactivation of hydrogenases. The results indicate that cyanide can cause a time-dependent, irreversible inactivation of hydrogenase in the oxidized, activatable state but has no effect when hydrogenase is in the reduced, active state.

  19. Photothermal inactivation of bacteria on plasmonic nanostructures

    NASA Astrophysics Data System (ADS)

    Santos, Greggy M.; Ibañez de Santi Ferrara, Felipe; Zhao, Fusheng; Rodrigues, Debora F.; Shih, Wei-Chuan

    2016-03-01

    Hospital-acquired bacterial infections are frequently associated with the pathogenic biofilms on surfaces of devices and instruments used in medical procedures. The utilization of thermal plasmonic agents is an innovative approach for sterilizing hospital equipment and for in vivo therapeutic treatment of bacterial infection. A photothermal inactivation technique via array of nanoporous gold disks (NPGDs) has been developed by irradiating near infrared (NIR) light onto deposited bacterial cells (Escherichia coli, Bacillus subtilis, Exiguobacterium AT1B) on the surface of metal nanostructure. The physical and photothermal properties of the NPGD substrate were investigated using topographical scanning electron microscopy (SEM) and thermographic infrared imaging. Bacterial viability studies on NPGD substrates irradiated with and without NIR light were evaluated using a fluorescence-based two-component stain assay. The results show that the heat generated from the NPGD substrate promotes high cell death counts (~100%) at short exposure durations (<25 s) even for thermally-resistant bacterial strains. The photothermal effects on NPGD substrate can lead to point-of-care applications.

  20. Advances in microbial amylases.

    PubMed

    Pandey, A; Nigam, P; Soccol, C R; Soccol, V T; Singh, D; Mohan, R

    2000-04-01

    This review makes a comprehensive survey of microbial amylases, i.e. alpha-amylase, beta-amylase and glucoamylase. Amylases are among the most important enzymes and are of great significance in present-day biotechnology. Although they can be derived from several sources, such as plants, animals and micro-organisms, the enzymes from microbial sources generally meet industrial demands. Microbial amylases could be potentially useful in the pharmaceutical and fine-chemical industries if enzymes with suitable properties could be prepared. With the advent of new frontiers in biotechnology, the spectrum of amylase application has widened in many other fields, such as clinical, medicinal and analytical chemistries, as well as their widespread application in starch saccharification and in the textile, food, brewing and distilling industries. In this review, after a brief description of the sources of amylases, we discuss the molecular biology of amylases, describing structures, cloning, sequences, and protoplast fusion and mutagenesis. This is followed by sections on their production and finally the properties of various amylases.

  1. Nondeterministic computational fluid dynamics modeling of Escherichia coli inactivation by peracetic acid in municipal wastewater contact tanks.

    PubMed

    Santoro, Domenico; Crapulli, Ferdinando; Raisee, Mehrdad; Raspa, Giuseppe; Haas, Charles N

    2015-06-16

    Wastewater disinfection processes are typically designed according to heuristics derived from batch experiments in which the interaction among wastewater quality, reactor hydraulics, and inactivation kinetics is often neglected. In this paper, a computational fluid dynamics (CFD) study was conducted in a nondeterministic (ND) modeling framework to predict the Escherichia coli inactivation by peracetic acid (PAA) in municipal contact tanks fed by secondary settled wastewater effluent. The extent and variability associated with the observed inactivation kinetics were both satisfactorily predicted by the stochastic inactivation model at a 95% confidence level. Moreover, it was found that (a) the process variability induced by reactor hydraulics is negligible when compared to the one caused by inactivation kinetics, (b) the PAA dose required for meeting regulations is dictated equally by the fixed limit of the microbial concentration as well as its probability of occurrence, and (c) neglecting the probability of occurrence during process sizing could lead to an underestimation of the PAA dose required by as much as 100%. Finally, the ND-CFD model was used to generate sizing information in the form of probabilistic disinfection curves relating E. coli inactivation and probability of occurrence with the average PAA dose and PAA residual concentration at the outlet of the contact tank. PMID:25938730

  2. Nondeterministic computational fluid dynamics modeling of Escherichia coli inactivation by peracetic acid in municipal wastewater contact tanks.

    PubMed

    Santoro, Domenico; Crapulli, Ferdinando; Raisee, Mehrdad; Raspa, Giuseppe; Haas, Charles N

    2015-06-16

    Wastewater disinfection processes are typically designed according to heuristics derived from batch experiments in which the interaction among wastewater quality, reactor hydraulics, and inactivation kinetics is often neglected. In this paper, a computational fluid dynamics (CFD) study was conducted in a nondeterministic (ND) modeling framework to predict the Escherichia coli inactivation by peracetic acid (PAA) in municipal contact tanks fed by secondary settled wastewater effluent. The extent and variability associated with the observed inactivation kinetics were both satisfactorily predicted by the stochastic inactivation model at a 95% confidence level. Moreover, it was found that (a) the process variability induced by reactor hydraulics is negligible when compared to the one caused by inactivation kinetics, (b) the PAA dose required for meeting regulations is dictated equally by the fixed limit of the microbial concentration as well as its probability of occurrence, and (c) neglecting the probability of occurrence during process sizing could lead to an underestimation of the PAA dose required by as much as 100%. Finally, the ND-CFD model was used to generate sizing information in the form of probabilistic disinfection curves relating E. coli inactivation and probability of occurrence with the average PAA dose and PAA residual concentration at the outlet of the contact tank.

  3. Microbial xanthophylls.

    PubMed

    Bhosale, Prakash; Bernstein, Paul S

    2005-09-01

    Xanthophylls are oxygenated carotenoids abundant in the human food supply. Lutein, zeaxanthin, and cryptoxanthin are major xanthophyll carotenoids in human plasma. The consumption of these xanthophylls is directly associated with reduction in the risk of cancers, cardiovascular disease, age-related macular degeneration, and cataract formation. Canthaxanthin and astaxanthin also have considerable importance in aquaculture for salmonid and crustacean pigmentation, and are of commercial interest for the pharmaceutical and food industries. Chemical synthesis is a major source for the heavy demand of xanthophylls in the consumer market; however, microbial producers also have potential as commercial sources. In this review, we discuss the biosynthesis, commercial utility, and major microbial sources of xanthophylls. We also present a critical review of current research and technologies involved in promoting microbes as potential commercial sources for mass production.

  4. Probiotic and technological properties of Lactobacillus spp. strains from the human stomach in the search for potential candidates against gastric microbial dysbiosis

    PubMed Central

    Delgado, Susana; Leite, Analy M. O.; Ruas-Madiedo, Patricia; Mayo, Baltasar

    2015-01-01

    This work characterizes a set of lactobacilli strains isolated from the stomach of healthy humans that might serve as probiotic cultures. Ten different strains were recognized by rep-PCR and PFGE fingerprinting among 19 isolates from gastric biopsies and stomach juice samples. These strains belonged to five species, Lactobacillus gasseri (3), Lactobacillus reuteri (2), Lactobacillus vaginalis (2), Lactobacillus fermentum (2) and Lactobacillus casei (1). All ten strains were subjected to a series of in vitro tests to assess their functional and technological properties, including acid resistance, bile tolerance, adhesion to epithelial gastric cells, production of antimicrobial compounds, inhibition of Helicobacter pylori, antioxidative activity, antibiotic resistance, carbohydrate fermentation, glycosidic activities, and ability to grow in milk. As expected, given their origin, all strains showed good resistance to low pH (3.0), with small reductions in counts after 90 min exposition to this pH. Species- and strain-specific differences were detected in terms of the production of antimicrobials, antagonistic effects toward H. pylori, antioxidative activity and adhesion to gastric epithelial cells. None of the strains showed atypical resistance to a series of 16 antibiotics of clinical and veterinary importance. Two L. reuteri strains were deemed as the most appropriate candidates to be used as potential probiotics against microbial gastric disorders; these showed good survival under gastrointestinal conditions reproduced in vitro, along with strong anti-Helicobacter and antioxidative activities. The two L. reuteri strains further displayed appropriated technological traits for their inclusion as adjunct functional cultures in fermented dairy products. PMID:25642213

  5. Identifying and Inactivating Bacterial Spores

    NASA Technical Reports Server (NTRS)

    Newcombe, David; Dekas, Anne; Venkateswaran, Kasthuri

    2009-01-01

    Problems associated with, and new strategies for, inactivating resistant organisms like Bacillus canaveralius (found at Kennedy Space Center during a survey of three NASA cleanrooms) have been defined. Identifying the particular component of the spore that allows its heightened resistance can guide the development of sterilization procedures that are targeted to the specific molecules responsible for resistance, while avoiding using unduly harsh methods that jeopardize equipment. The key element of spore resistance is a multilayered protein shell that encases the spore called the spore coat. The coat of the best-studied spore-forming microbe, B. subtilis, consists of at least 45 proteins, most of which are poorly characterized. Several protective roles for the coat are well characterized including resistance to desiccation, large toxic molecules, ortho-phthalaldehyde, and ultraviolet (UV) radiation. One important long-term specific goal is an improved sterilization procedure that will enable NASA to meet planetary protection requirements without a terminal heat sterilization step. This would support the implementation of planetary protection policies for life-detection missions. Typically, hospitals and government agencies use biological indicators to ensure the quality control of sterilization processes. The spores of B. canaveralius that are more resistant to osmotic stress would serve as a better biological indicator for potential survival than those in use currently.

  6. Ribosome Inactivating Proteins from Rosaceae.

    PubMed

    Shang, Chenjing; Rougé, Pierre; Van Damme, Els J M

    2016-01-01

    Ribosome-inactivating proteins (RIPs) are widespread among higher plants of different taxonomic orders. In this study, we report on the RIP sequences found in the genome/transcriptome of several important Rosaceae species, including many economically important edible fruits such as apple, pear, peach, apricot, and strawberry. All RIP domains from Rosaceae share high sequence similarity with conserved residues in the catalytic site and the carbohydrate binding sites. The genomes of Malus domestica and Pyrus communis contain both type 1 and type 2 RIP sequences, whereas for Prunus mume, Prunus persica, Pyrus bretschneideri, and Pyrus communis a complex set of type 1 RIP sequences was retrieved. Heterologous expression and purification of the type 1 as well as the type 2 RIP from apple allowed to characterize the biological activity of the proteins. Both RIPs from Malus domestica can inhibit protein synthesis. Furthermore, molecular modelling suggests that RIPs from Rosaceae possess three-dimensional structures that are highly similar to the model proteins and can bind to RIP substrates. Screening of the recombinant type 2 RIP from apple on a glycan array revealed that this type 2 RIP interacts with terminal sialic acid residues. Our data suggest that the RIPs from Rosaceae are biologically active proteins. PMID:27556443

  7. Population Dynamics of Viral Inactivation

    NASA Astrophysics Data System (ADS)

    Freeman, Krista; Li, Dong; Behrens, Manja; Streletzky, Kiril; Olsson, Ulf; Evilevitch, Alex

    We have investigated the population dynamics of viral inactivation in vitrousing time-resolved cryo electron microscopy combined with light and X-ray scattering techniques. Using bacteriophage λ as a model system for pressurized double-stranded DNA viruses, we found that virions incubated with their cell receptor eject their genome in a stochastic triggering process. The triggering of DNA ejection occurs in a non synchronized manner after the receptor addition, resulting in an exponential decay of the number of genome-filled viruses with time. We have explored the characteristic time constant of this triggering process at different temperatures, salt conditions, and packaged genome lengths. Furthermore, using the temperature dependence we determined an activation energy for DNA ejections. The dependences of the time constant and activation energy on internal DNA pressure, affected by salt conditions and encapsidated genome length, suggest that the triggering process is directly dependent on the conformational state of the encapsidated DNA. The results of this work provide insight into how the in vivo kinetics of the spread of viral infection are influenced by intra- and extra cellular environmental conditions. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1252522.

  8. Ribosome Inactivating Proteins from Rosaceae.

    PubMed

    Shang, Chenjing; Rougé, Pierre; Van Damme, Els J M

    2016-01-01

    Ribosome-inactivating proteins (RIPs) are widespread among higher plants of different taxonomic orders. In this study, we report on the RIP sequences found in the genome/transcriptome of several important Rosaceae species, including many economically important edible fruits such as apple, pear, peach, apricot, and strawberry. All RIP domains from Rosaceae share high sequence similarity with conserved residues in the catalytic site and the carbohydrate binding sites. The genomes of Malus domestica and Pyrus communis contain both type 1 and type 2 RIP sequences, whereas for Prunus mume, Prunus persica, Pyrus bretschneideri, and Pyrus communis a complex set of type 1 RIP sequences was retrieved. Heterologous expression and purification of the type 1 as well as the type 2 RIP from apple allowed to characterize the biological activity of the proteins. Both RIPs from Malus domestica can inhibit protein synthesis. Furthermore, molecular modelling suggests that RIPs from Rosaceae possess three-dimensional structures that are highly similar to the model proteins and can bind to RIP substrates. Screening of the recombinant type 2 RIP from apple on a glycan array revealed that this type 2 RIP interacts with terminal sialic acid residues. Our data suggest that the RIPs from Rosaceae are biologically active proteins.

  9. Alkyl isocyanates as active site-directed inactivators of guinea pig liver transglutaminase.

    PubMed

    Gross, M; Whetzel, N K; Folk, J E

    1975-10-10

    Alkyl isocyanates are effective inactivators of guinea pig liver transglutaminase. Based on the specificity of the reaction the protection against inactivation by glutamine substrate, and the essential nature of calcium for the inactivation reaction, it is concluded that these reagents act as amide substrate analogs and, thus function in an active site-specific manner. Support for the contention that inactivation results from alkyl thiocarbamate ester formation through the single active site sulfhydryl group of the enzyme is (a) the loss of one free--SH group and the incorporation of 1 mol of reagent/mol of enzyme in the reaction, (b) similarity in chemical properties of the inactive enzyme derivative formed to those previously reported for another alkyl thiocarbamoylenzyme and an alkyl thiocarbamoylcysteine derivative, and (c) the finding that labeled peptides from digests of [methyl-14C]thiocarbamoyltransglutaminase and those from digests of iodoacetamide-inactivated enzyme occupy similar positions on peptide maps. Transglutaminase was found to be inactivated neither by urethan anlogs of its active ester substrates nor by urea analogs of its amide substrates. It is concluded on the basis of these findings that inactive carbamoylenzyme derivatives are formed only by direct addition of the transglutaminase active--SH group to the isocyanate C--N double bond, and not, like several serine active site enzymes, by nucleophilic displacement with urethan analogs of substrate, or by nucleophilic displacement with urea analogs of substrate. PMID:240837

  10. Urease from Helicobacter pylori is inactivated by sulforaphane and other isothiocyanates

    PubMed Central

    Fahey, Jed W.; Stephenson, Katherine K.; Wade, Kristina L.; Talalay, Paul

    2013-01-01

    Infections by Helicobacter pylori are very common, causing gastroduodenal inflammation including peptic ulcers, and increasing the risk of gastric neoplasia. The isothiocyanate (ITC) sulforaphane [SF; 1-isothiocyanato-4-(methylsulfinyl)butane] derived from edible crucifers such as broccoli is potently bactericidal against Helicobacter, including antibiotic-resistant strains, suggesting a possible dietary therapy. Gastric H. pylori infections express high urease activity which generates ammonia, neutralizes gastric acidity, and promotes inflammation. The finding that SF inhibits (inactivates) urease (jack bean and Helicobacter) raised the issue of whether these properties might be functionally related. The rates of inactivation of urease activity depend on enzyme and SF concentrations and show first order kinetics. Treatment with SF results in time-dependent increases in the ultraviolet absorption of partially purified Helicobacter urease in the 280–340 nm region. This provides direct spectroscopic evidence for the formation of dithiocarbamates between the ITC group of SF and cysteine thiols of urease. The potencies of inactivation of Helicobacter urease by isothiocyanates structurally related to SF were surprisingly variable. Natural isothiocyanates closely related to SF, previously shown to be bactericidal (berteroin, hirsutin, phenethyl isothiocyanate, alyssin, and erucin), did not inactivate urease activity. Furthermore, SF is bactericidal against both urease positive and negative H. pylori strains. In contrast, some isothiocyanates such as benzoyl-ITC, are very potent urease inactivators, but are not bactericidal. The bactericidal effects of SF and other ITC against Helicobacter are therefore not obligatorily linked to urease inactivation, but may reduce the inflammatory component of Helicobacter infections. PMID:23583386

  11. Urease from Helicobacter pylori is inactivated by sulforaphane and other isothiocyanates.

    PubMed

    Fahey, Jed W; Stephenson, Katherine K; Wade, Kristina L; Talalay, Paul

    2013-05-24

    Infections by Helicobacter pylori are very common, causing gastroduodenal inflammation including peptic ulcers, and increasing the risk of gastric neoplasia. The isothiocyanate (ITC) sulforaphane [SF; 1-isothiocyanato-4-(methylsulfinyl)butane] derived from edible crucifers such as broccoli is potently bactericidal against Helicobacter, including antibiotic-resistant strains, suggesting a possible dietary therapy. Gastric H. pylori infections express high urease activity which generates ammonia, neutralizes gastric acidity, and promotes inflammation. The finding that SF inhibits (inactivates) urease (jack bean and Helicobacter) raised the issue of whether these properties might be functionally related. The rates of inactivation of urease activity depend on enzyme and SF concentrations and show first order kinetics. Treatment with SF results in time-dependent increases in the ultraviolet absorption of partially purified Helicobacter urease in the 260-320 nm region. This provides direct spectroscopic evidence for the formation of dithiocarbamates between the ITC group of SF and cysteine thiols of urease. The potencies of inactivation of Helicobacter urease by isothiocyanates structurally related to SF were surprisingly variable. Natural isothiocyanates closely related to SF, previously shown to be bactericidal (berteroin, hirsutin, phenethyl isothiocyanate, alyssin, and erucin), did not inactivate urease activity. Furthermore, SF is bactericidal against both urease positive and negative H. pylori strains. In contrast, some isothiocyanates such as benzoyl-ITC, are very potent urease inactivators, but are not bactericidal. The bactericidal effects of SF and other ITC against Helicobacter are therefore not obligatorily linked to urease inactivation, but may reduce the inflammatory component of Helicobacter infections. PMID:23583386

  12. The role and synergistic effect of the light irradiation and H2O2 in photocatalytic inactivation of Escherichia coli.

    PubMed

    Ng, Tsz Wai; An, Taicheng; Li, Guiying; Ho, Wing Kei; Yip, Ho Yin; Zhao, Huijun; Wong, Po Keung

    2015-08-01

    Inactivation of Escherichia coli K-12 was conducted by applying a continuous supplying of commercial H2O2 to mimic the H2O2 production in a photocatalytic system, and the contribution of H2O2 in photocatalytic inactivation was investigated using a modified "partition system" and five E. coli mutants. The concentration of exogenous H2O2 required for complete inactivation of bacterial cells was much higher than that produced in-situ in common photocatalytic system, indicating that H2O2 alone plays a minor role in photocatalytic inactivation. However, the concentration of exogenously produced H2O2 required for effective inactivation of E. coli K-12 was much lower when the light irradiation was applied. To further investigate the possible physiological changes, inactivation of E. coli BW25113 (the parental strain), and its corresponding isogenic single-gene deletion mutants with light pretreatment was compared. The results indicate that light irradiation increases the bacterial intracellular Fe(2+) level and favors hydroxyl radical (OH) production via the catalytic reaction of Fe(2+), leading to increase in DNA damage. Moreover, the results indicate that the properties of light source, such as intensity and major emission wavelength, may alter the physiology of bacterial cells and affect the susceptibility to in-situ resultant H2O2 in the photocatalytic inactivation processes, leading to significant influence on the photocatalytic inactivation efficiencies of E. coli K-12. PMID:26083904

  13. Photodynamic-induced inactivation of Propionibacterium acnes

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten; Teschke, M.; Eick, Stephen G.; Pfister, W.; Meyer, Herbert; Halbhuber, Karl-Juergen

    1998-05-01

    We report on photodynamically induced inactivation of the skin bacterium Propionibacterium acnes (P. acnes) using endogenous as well as exogenous photosensitizers and red light sources. P. acnes is involved in the pathogenesis of the skin disease acne vulgaris. The skin bacterium is able to synthesize the metal-free fluorescent porphyrins protoporphyrin IX (PP) and coproporphyrin (CP) as shown by in situ spectrally-resolved detection of natural autofluorescence of human skin and bacteria colonies. These naturally occurring intracellular porphyrins act as efficient endogenous photosensitizers. Inactivation of P. acnes suspensions was achieved by irradiation with He-Ne laser light in the red spectral region (632.8 nm). We monitored the photodynamically-induced death of single bacteria using a fluorescent viability kit in combination with confocal laser scanning microscopy. In addition, the photo-induced inactivation was calculated by CFU (colony forming units) determination. We found 633 nm-induced inactivation (60 mW, 0.12 cm2 exposure area, 1 hour irradiation) of 72% in the case of non-incubated bacteria based on the destructive effect of singlet oxygen produced by red light excited endogenous porphyrins and subsequent energy transfer to molecular oxygen. In order to achieve a nearly complete inactivation within one exposure procedure, the exogenous photosensitizer Methylene Blue (Mb) was added. Far red exposure of Mb-labeled bacteria using a krypton ion laser at 647 nm and 676 nm resulted in 99% inactivation.

  14. Effectiveness of ultrasound, UV-C, and photocatalysis on inactivation kinetics of Aeromonas hydrophila.

    PubMed

    Kaur, Jasjeet; Karthikeyan, Raghupathy; Pillai, Suresh D

    2015-01-01

    In this study, bactericidal effects of 24 kHz ultrasound, ultraviolet (UV-C) irradiation, and titanium dioxide (TiO2) photocatalyst were studied on inactivation of Aeromonas hydrophila, an emerging pathogen listed on the US Environmental Protection Agency's (US EPA) candidate contaminant list. Metabolic activity (using the AlamarBlue dye) assays were performed to assess the residual activity of the microbial cells after the disinfection treatments along with culture-based methods. A faster inactivation rate of 1.52 log min(-1) and inactivation of 7.62 log10 was observed within 5 min of ultrasound exposure. Ultrasound treated cells repaired by 1.4 log10 in contrast to 5.3 log10 repair for UV-C treated cells. Ultrasound treatment significantly lowered the reactivation of Aeromonas hydrophila in comparison to UV-C- and UV-C-induced photocatalysis. Ultrasound appeared to be an effective means of inactivating Aeromonas hydrophila and could be used as a potential disinfection method for water and wastewater reuse.

  15. Complex regulation of voltage-dependent activation and inactivation properties of retinal voltage-gated Cav1.4 L-type Ca2+ channels by Ca2+-binding protein 4 (CaBP4).

    PubMed

    Shaltiel, Lior; Paparizos, Christos; Fenske, Stefanie; Hassan, Sami; Gruner, Christian; Rötzer, Katrin; Biel, Martin; Wahl-Schott, Christian A

    2012-10-19

    Cav1.4 L-type Ca(2+) channels are crucial for synaptic transmission in retinal photoreceptors and bipolar neurons. Recent studies suggest that the activity of this channel is regulated by the Ca(2+)-binding protein 4 (CaBP4). In the present study, we explored this issue by examining functional effects of CaBP4 on heterologously expressed Cav1.4. We show that CaBP4 dramatically increases Cav1.4 channel availability. This effect crucially depends on the presence of the C-terminal ICDI (inhibitor of Ca(2+)-dependent inactivation) domain of Cav1.4 and is absent in a Cav1.4 mutant lacking the ICDI. Using FRET experiments, we demonstrate that CaBP4 interacts with the IQ motif of Cav1.4 and that it interferes with the binding of the ICDI domain. Based on these findings, we suggest that CaBP4 increases Cav1.4 channel availability by relieving the inhibitory effects of the ICDI domain on voltage-dependent Cav1.4 channel gating. We also functionally characterized two CaBP4 mutants that are associated with a congenital variant of human night blindness and other closely related nonstationary retinal diseases. Although both mutants interact with Cav1.4 channels, the functional effects of CaBP4 mutants are only partially preserved, leading to a reduction of Cav1.4 channel availability and loss of function. In conclusion, our study sheds new light on the functional interaction between CaBP4 and Cav1.4. Moreover, it provides insights into the mechanism by which CaBP4 mutants lead to loss of Cav1.4 function and to retinal disease. PMID:22936811

  16. State-dependent inactivation of the Kv3 potassium channel.

    PubMed Central

    Marom, S; Levitan, I B

    1994-01-01

    Inactivation of Kv3 (Kv1.3) delayed rectifier potassium channels was studied in the Xenopus oocyte expression system. These channels inactivate slowly during a long depolarizing pulse. In addition, inactivation accumulates in response to a series of short depolarizing pulses (cumulative inactivation), although no significant inactivation occurs within each short pulse. The extent of cumulative inactivation does not depend on the voltage during the depolarizing pulse, but it does vary in a biphasic manner as a function of the interpulse duration. Furthermore, the rate of cumulative inactivation is influenced by changing the rate of deactivation. These data are consistent with a model in which Kv3 channel inactivation is a state-dependent and voltage-independent process. Macroscopic and single channel experiments indicate that inactivation can occur from a closed (silent) state before channel opening. That is, channels need not open to inactivate. The transition that leads to the inactivated state from the silent state is, in fact, severalfold faster then the observed inactivation of current during long depolarizing pulses. Long pulse-induced inactivation appears to be slow, because its rate is limited by the probability that channels are in the open state, rather than in the silent state from which they can inactivate. External potassium and external calcium ions alter the rates of cumulative and long pulse-induced inactivation, suggesting that antagonistic potassium and calcium binding steps are involved in the normal gating of the channel. PMID:7948675

  17. Microbial Metabolomics

    PubMed Central

    Tang, Jane

    2011-01-01

    Microbial metabolomics constitutes an integrated component of systems biology. By studying the complete set of metabolites within a microorganism and monitoring the global outcome of interactions between its development processes and the environment, metabolomics can potentially provide a more accurate snap shot of the actual physiological state of the cell. Recent advancement of technologies and post-genomic developments enable the study and analysis of metabolome. This unique contribution resulted in many scientific disciplines incorporating metabolomics as one of their “omics” platforms. This review focuses on metabolomics in microorganisms and utilizes selected topics to illustrate its impact on the understanding of systems microbiology. PMID:22379393

  18. Inactivation of N-type calcium current in chick sensory neurons: calcium and voltage dependence.

    PubMed

    Cox, D H; Dunlap, K

    1994-08-01

    We have studied the inactivation of high-voltage-activated (HVA), omega-conotoxin-sensitive, N-type Ca2+ current in embryonic chick dorsal root ganglion (DRG) neurons. Voltage steps from -80 to 0 mV produced inward Ca2+ currents that inactivated in a biphasic manner and were fit well with the sum of two exponentials (with time constants of approximately 100 ms and > 1 s). As reported previously, upon depolarization of the holding potential to -40 mV, N current amplitude was significantly reduced and the rapid phase of inactivation all but eliminated (Nowycky, M. C., A. P. Fox, and R. W. Tsien. 1985. Nature. 316:440-443; Fox, A. P., M. C. Nowycky, and R. W. Tsien. 1987a. Journal of Physiology. 394:149-172; Swandulla, D., and C. M. Armstrong. 1988. Journal of General Physiology. 92:197-218; Plummer, M. R., D. E. Logothetis, and P. Hess. 1989. Neuron. 2:1453-1463; Regan, L. J., D. W. Sah, and B. P. Bean. 1991. Neuron. 6:269-280; Cox, D. H., and K. Dunlap. 1992. Journal of Neuroscience. 12:906-914). Such kinetic properties might be explained by a model in which N channels inactivate by both fast and slow voltage-dependent processes. Alternatively, kinetic models of Ca-dependent inactivation suggest that the biphasic kinetics and holding-potential-dependence of N current inactivation could be due to a combination of Ca-dependent and slow voltage-dependent inactivation mechanisms. To distinguish between these possibilities we have performed several experiments to test for the presence of Ca-dependent inactivation. Three lines of evidence suggest that N channels inactivate in a Ca-dependent manner. (a) The total extent of inactivation increased 50%, and the ratio of rapid to slow inactivation increased approximately twofold when the concentration of the Ca2+ buffer, EGTA, in the patch pipette was reduced from 10 to 0.1 mM. (b) With low intracellular EGTA concentrations (0.1 mM), the ratio of rapid to slow inactivation was additionally increased when the extracellular Ca2

  19. Inactivation of N-type calcium current in chick sensory neurons: calcium and voltage dependence.

    PubMed

    Cox, D H; Dunlap, K

    1994-08-01

    We have studied the inactivation of high-voltage-activated (HVA), omega-conotoxin-sensitive, N-type Ca2+ current in embryonic chick dorsal root ganglion (DRG) neurons. Voltage steps from -80 to 0 mV produced inward Ca2+ currents that inactivated in a biphasic manner and were fit well with the sum of two exponentials (with time constants of approximately 100 ms and > 1 s). As reported previously, upon depolarization of the holding potential to -40 mV, N current amplitude was significantly reduced and the rapid phase of inactivation all but eliminated (Nowycky, M. C., A. P. Fox, and R. W. Tsien. 1985. Nature. 316:440-443; Fox, A. P., M. C. Nowycky, and R. W. Tsien. 1987a. Journal of Physiology. 394:149-172; Swandulla, D., and C. M. Armstrong. 1988. Journal of General Physiology. 92:197-218; Plummer, M. R., D. E. Logothetis, and P. Hess. 1989. Neuron. 2:1453-1463; Regan, L. J., D. W. Sah, and B. P. Bean. 1991. Neuron. 6:269-280; Cox, D. H., and K. Dunlap. 1992. Journal of Neuroscience. 12:906-914). Such kinetic properties might be explained by a model in which N channels inactivate by both fast and slow voltage-dependent processes. Alternatively, kinetic models of Ca-dependent inactivation suggest that the biphasic kinetics and holding-potential-dependence of N current inactivation could be due to a combination of Ca-dependent and slow voltage-dependent inactivation mechanisms. To distinguish between these possibilities we have performed several experiments to test for the presence of Ca-dependent inactivation. Three lines of evidence suggest that N channels inactivate in a Ca-dependent manner. (a) The total extent of inactivation increased 50%, and the ratio of rapid to slow inactivation increased approximately twofold when the concentration of the Ca2+ buffer, EGTA, in the patch pipette was reduced from 10 to 0.1 mM. (b) With low intracellular EGTA concentrations (0.1 mM), the ratio of rapid to slow inactivation was additionally increased when the extracellular Ca2

  20. Peracetic Acid Treatment Generates Potent Inactivated Oral Vaccines from a Broad Range of Culturable Bacterial Species

    PubMed Central

    Moor, Kathrin; Wotzka, Sandra Y.; Toska, Albulena; Diard, Médéric; Hapfelmeier, Siegfried; Slack, Emma

    2016-01-01

    Our mucosal surfaces are the main sites of non-vector-borne pathogen entry, as well as the main interface with our commensal microbiota. We are still only beginning to understand how mucosal adaptive immunity interacts with commensal and pathogenic microbes to influence factors such as infectivity, phenotypic diversity, and within-host evolution. This is in part due to difficulties in generating specific mucosal adaptive immune responses without disrupting the mucosal microbial ecosystem itself. Here, we present a very simple tool to generate inactivated mucosal vaccines from a broad range of culturable bacteria. Oral gavage of 1010 peracetic acid-inactivated bacteria induces high-titer-specific intestinal IgA in the absence of any measurable inflammation or species invasion. As a proof of principle, we demonstrate that this technique is sufficient to provide fully protective immunity in the murine model of invasive non-typhoidal Salmonellosis, even in the face of severe innate immune deficiency. PMID:26904024

  1. Inactivation of possible micromycete food contaminants using the low-temperature plasma and hydrogen peroxide

    SciTech Connect

    Čeřovský, M.; Khun, J.; Rusová, K.; Scholtz, V.; Soušková, H.

    2013-09-15

    The inhibition effect of hydrogen peroxide aerosol, low-temperature plasma and their combinations has been studied on several micromycetes spores. The low-temperature plasma was generated in corona discharges in the open air apparatus with hydrogen peroxide aerosol. Micromycete spores were inoculated on the surface of agar plates, exposed solely to the hydrogen peroxide aerosol, corona discharge or their combination. After incubation the diameter of inhibition zone was measured. The solely positive corona discharge exhibits no inactivation effect, the solely negative corona discharge and solely hydrogen peroxide aerosol exhibit the inactivation effect, however their combinations exhibit to be much more effective. Low-temperature plasma and hydrogen peroxide aerosol present a possible alternative method of microbial decontamination of food, food packages or other thermolabile materials.

  2. Peracetic Acid Treatment Generates Potent Inactivated Oral Vaccines from a Broad Range of Culturable Bacterial Species.

    PubMed

    Moor, Kathrin; Wotzka, Sandra Y; Toska, Albulena; Diard, Médéric; Hapfelmeier, Siegfried; Slack, Emma

    2016-01-01

    Our mucosal surfaces are the main sites of non-vector-borne pathogen entry, as well as the main interface with our commensal microbiota. We are still only beginning to understand how mucosal adaptive immunity interacts with commensal and pathogenic microbes to influence factors such as infectivity, phenotypic diversity, and within-host evolution. This is in part due to difficulties in generating specific mucosal adaptive immune responses without disrupting the mucosal microbial ecosystem itself. Here, we present a very simple tool to generate inactivated mucosal vaccines from a broad range of culturable bacteria. Oral gavage of 10(10) peracetic acid-inactivated bacteria induces high-titer-specific intestinal IgA in the absence of any measurable inflammation or species invasion. As a proof of principle, we demonstrate that this technique is sufficient to provide fully protective immunity in the murine model of invasive non-typhoidal Salmonellosis, even in the face of severe innate immune deficiency.

  3. Peracetic Acid Treatment Generates Potent Inactivated Oral Vaccines from a Broad Range of Culturable Bacterial Species.

    PubMed

    Moor, Kathrin; Wotzka, Sandra Y; Toska, Albulena; Diard, Médéric; Hapfelmeier, Siegfried; Slack, Emma

    2016-01-01

    Our mucosal surfaces are the main sites of non-vector-borne pathogen entry, as well as the main interface with our commensal microbiota. We are still only beginning to understand how mucosal adaptive immunity interacts with commensal and pathogenic microbes to influence factors such as infectivity, phenotypic diversity, and within-host evolution. This is in part due to difficulties in generating specific mucosal adaptive immune responses without disrupting the mucosal microbial ecosystem itself. Here, we present a very simple tool to generate inactivated mucosal vaccines from a broad range of culturable bacteria. Oral gavage of 10(10) peracetic acid-inactivated bacteria induces high-titer-specific intestinal IgA in the absence of any measurable inflammation or species invasion. As a proof of principle, we demonstrate that this technique is sufficient to provide fully protective immunity in the murine model of invasive non-typhoidal Salmonellosis, even in the face of severe innate immune deficiency. PMID:26904024

  4. Microbial reduction of iodate

    USGS Publications Warehouse

    Councell, T.B.; Landa, E.R.; Lovley, D.R.

    1997-01-01

    The different oxidation species of iodine have markedly different sorption properties. Hence, changes in iodine redox states can greatly affect the mobility of iodine in the environment. Although a major microbial role has been suggested in the past to account for these redox changes, little has been done to elucidate the responsible microorganisms or the mechanisms involved. In the work presented here, direct microbial reduction of iodate was demonstrated with anaerobic cell suspensions of the sulfate reducing bacterium Desulfovibrio desulfuricans which reduced 96% of an initial 100 ??M iodate to iodide at pH 7 in 30 mM NaHCO3 buffer, whereas anaerobic cell suspensions of the dissimilatory Fe(III)-reducing bacterium Shewanella putrefaciens were unable to reduce iodate in 30 mM NaHCO3 buffer (pH 7). Both D. desulfuricans and S. putrefaciens were able to reduce iodate at pH 7 in 10 mM HEPES buffer. Both soluble ferrous iron and sulfide, as well as iron monosulfide (FeS) were shown to abiologically reduce iodate to iodide. These results indicate that ferric iron and/or sulfate reducing bacteria are capable of mediating both direct, enzymatic, as well as abiotic reduction of iodate in natural anaerobic environments. These microbially mediated reactions may be important factors in the fate and transport of 129I in natural systems.

  5. A comparison of the effects of E-beam irradiation and heat treatment on the variability of Bacillus cereus inactivation and lag phase duration of surviving cells.

    PubMed

    Aguirre, Juan S; Ordóñez, Juan A; García de Fernando, Gonzalo D

    2012-02-15

    The effects of electron beam irradiation and heat treatments on the variability of inactivation of Bacillus cereus spores (CECT 131/ATCC 10876) and of the lag phase of single surviving cells have been studied. In general, dispersion in the number of survivors increased as the stress became more intense. A polynomial relationship was derived between the coefficient of variation of the survivor number and the inactivation achieved. Heat treatments caused wider distributions than irradiation for the same substrate and for a similar degree of microbial inactivation. Increasing the intensity of the inactivation treatment lengthened the lag phase of survivors and increased its variability. Comparison of lag phases of heated and irradiated spores did not show any clear relationship. Heating did not affect the specific growth rate of surviving cells, whereas irradiation lowered the maximum specific growth rate in proportion to the dose applied. These results suggest that the shelf life of irradiated foods is longer than that of heated foods.

  6. Physiology and Pathophysiology of Sodium Channel Inactivation.

    PubMed

    Ghovanloo, M-R; Aimar, K; Ghadiry-Tavi, R; Yu, A; Ruben, P C

    2016-01-01

    Voltage-gated sodium channels are present in different tissues within the human body, predominantly nerve, muscle, and heart. The sodium channel is composed of four similar domains, each containing six transmembrane segments. Each domain can be functionally organized into a voltage-sensing region and a pore region. The sodium channel may exist in resting, activated, fast inactivated, or slow inactivated states. Upon depolarization, when the channel opens, the fast inactivation gate is in its open state. Within the time frame of milliseconds, this gate closes and blocks the channel pore from conducting any more sodium ions. Repetitive or continuous stimulations of sodium channels result in a rate-dependent decrease of sodium current. This process may continue until the channel fully shuts down. This collapse is known as slow inactivation. This chapter reviews what is known to date regarding, sodium channel inactivation with a focus on various mutations within each NaV subtype and with clinical implications. PMID:27586293

  7. Chromophore assisted laser inactivation of cellular proteins

    NASA Astrophysics Data System (ADS)

    Jay, Daniel G.; Wang, F. S.; Chang, H. Y.; Sydor, A. M.; Liao, J. C.

    1997-05-01

    A molecular understanding of biology requires that we establish the in situ functions of the proteins in cellular processes. To address this, we developed chromophore- assisted laser inactivation (CALI) for probing the in vivo function of proteins. CALI inactivates specific proteins in living cells by using non-blocking antibodies conjugated with malachite green (MG) dye. MG absorbs 620 nm laser light (which is not absorbed by cells) to generate short lived free radicals with limited range of oxidative damage (15 angstroms) around the dye. This inactivates the bound protein without significantly affecting its neighbors. CALI has been applied to 40 proteins and achieved specific inactivation in almost all those tested. We have developed micro-CALI which uses a focused laser beam (10 micrometers ) to acutely inactivate specific proteins within cells. We have used this to address the molecular mechanisms of neuronal growth cone motility and has implicated a diversity of proteins (e.g. molecular motors, cytoskeletal, and signaling molecules) in discrete steps of growth cone motility. We hope that micro-CALI will be a useful research tool for addressing dynamic processes in biology and medicine.

  8. Ecology and thermal inactivation of microbes in and on interplanetary space vehicle components. [examined with a scanning electron microscope

    NASA Technical Reports Server (NTRS)

    Campbell, J. E.

    1974-01-01

    The uses of scanning electron microscopy in assessing changes that occur in spores exposed to wet and dry heat cycles at elevated temperatures were examined. Several species of Bacillus and other nonspore-forming species of organisms were used for the experiment. Surface morphology of viable and nonviable organisms was clearly detectable by this method, making it a potentially useful technique for investigating microbial inactivation on space vehicle surfaces and components. Micrographs of the spores and bacterial cells are provided.

  9. Inactivation of penicillin G in milk using hydrogen peroxide.

    PubMed

    Hanway, W H; Hansen, A P; Anderson, K L; Lyman, R L; Rushing, J E

    2005-02-01

    Milk antibiotic residues have been a public concern in recent years. The Grade A Pasteurized Milk Ordinance mandates that raw Grade A milk will test negative for beta-lactam antibiotic residues before processing. The purpose of this research was to investigate the ability of various levels of peroxide and heat to inactivate penicillin G in raw milk. Whole milk spiked to a mean of 436 +/- 15.1 (standard error of the mean) ppb of potassium penicillin G was treated with hydrogen peroxide at levels of 0.0, 0.09, 0.17, and 0.34%. Samples at each peroxide level (n = 6 per treatment) were treated as follows: 1) incubated at 54.4 degrees C for 3 h, 2) pasteurized at 62.8 degrees C for 30 min, 3) incubated and pasteurized as in treatments 1 and 2, or 4) received no further treatment. A beta-lactam competitive microbial receptor assay was used for quantification of penicillin G. Concentrations of penicillin in selected samples were determined by HPLC for a comparison of test methods. Treatments were evaluated relative to their ability to reduce milk penicillin G levels to below the safe level of 5 ppb. The 0.09% hydrogen peroxide level was ineffective for all treatments. Hydrogen peroxide at 0.17% lowered the mean penicillin G (+/- SEM) from 436 +/- 15.1 to 6 +/- 1.49 ppb using the incubated and pasteurized heat treatment. The 0.34% concentration of hydrogen peroxide was the most effective, inactivating penicillin G to a level well below the safe level of 5 ppb with the pasteurized heat treatment, with or without incubation.

  10. The effect of Eulaliopsis binata on the physi-chemical properties, microbial biomass, and enzymatic activities in Cd-Pb polluted soil.

    PubMed

    Yu, Hui; Xiang, Yanci; Zou, Dongsheng

    2016-10-01

    Pot culture experiment using mining wasteland soil was carried out to study the effect of Eulaliopsis binata on the heavy-metal polluted soil with the growth of 90, 180, 270, and 360 days. Soil nutritional components, heavy metal, microbial biomass, and enzymatic activities were analyzed in this study, and the control group had no plants. The results showed that heavy metal contents decreased with E. binata growth, extractable Cd and Pb decreased 28 and 15 % after 1 year, but the difference was not significant compared with the control. While soil nutritional components, microbial biomass and enzymatic activities increased significantly as compared with the control. Comparing with pre-experiment, soil organic matter, N, P, K, microbial biomass C, N, P, invertase, urease, acid phosphatase, and catalase increased 0.9, 1.1, 3.0, 1.1, 0.4, 0.3, and 0.5 times, respectively. The indexes of soil nutritional components, microbial biomass, and enzymatic activities are positively correlated to each other, while they are negatively correlated to heavy metal content respectively. E. binata has positive influence on Cd-Pb pollution soil and broad application prospects in remediating heavy-metal polluted soil.

  11. The effect of Eulaliopsis binata on the physi-chemical properties, microbial biomass, and enzymatic activities in Cd-Pb polluted soil.

    PubMed

    Yu, Hui; Xiang, Yanci; Zou, Dongsheng

    2016-10-01

    Pot culture experiment using mining wasteland soil was carried out to study the effect of Eulaliopsis binata on the heavy-metal polluted soil with the growth of 90, 180, 270, and 360 days. Soil nutritional components, heavy metal, microbial biomass, and enzymatic activities were analyzed in this study, and the control group had no plants. The results showed that heavy metal contents decreased with E. binata growth, extractable Cd and Pb decreased 28 and 15 % after 1 year, but the difference was not significant compared with the control. While soil nutritional components, microbial biomass and enzymatic activities increased significantly as compared with the control. Comparing with pre-experiment, soil organic matter, N, P, K, microbial biomass C, N, P, invertase, urease, acid phosphatase, and catalase increased 0.9, 1.1, 3.0, 1.1, 0.4, 0.3, and 0.5 times, respectively. The indexes of soil nutritional components, microbial biomass, and enzymatic activities are positively correlated to each other, while they are negatively correlated to heavy metal content respectively. E. binata has positive influence on Cd-Pb pollution soil and broad application prospects in remediating heavy-metal polluted soil. PMID:27357705

  12. Tuning of EAG K(+) channel inactivation: molecular determinants of amplification by mutations and a small molecule.

    PubMed

    Garg, Vivek; Sachse, Frank B; Sanguinetti, Michael C

    2012-09-01

    Ether-à-go-go (EAG) and EAG-related gene (ERG) K(+) channels are close homologues but differ markedly in their gating properties. ERG1 channels are characterized by rapid and extensive C-type inactivation, whereas mammalian EAG1 channels were previously considered noninactivating. Here, we show that human EAG1 channels exhibit an intrinsic voltage-dependent slow inactivation that is markedly enhanced in rate and extent by 1-10 µM 3-nitro-N-(4-phenoxyphenyl) benzamide, or ICA105574 (ICA). This compound was previously reported to have the opposite effect on ERG1 channels, causing an increase in current magnitude by inhibition of C-type inactivation. The voltage dependence of 2 µM ICA-induced inhibition of EAG1 current was half-maximal at -73 mV, 62 mV negative to the half-point for channel activation. This finding suggests that current inhibition by the drug is mediated by enhanced inactivation and not open-channel block, where the voltage half-points for current inhibition and channel activation are predicted to overlap, as we demonstrate for clofilium and astemizole. The mutation Y464A in the S6 segment also induced inactivation of EAG1, with a time course and voltage dependence similar to that caused by 2 µM ICA. Several Markov models were investigated to describe gating effects induced by multiple concentrations of the drug and the Y464A mutation. Models with the smallest fit error required both closed- and open-state inactivation. Unlike typical C-type inactivation, the rate of Y464A- and ICA-induced inactivation was not decreased by external tetraethylammonium or elevated [K(+)](e). EAG1 channel inactivation introduced by Y464A was prevented by additional mutation of a nearby residue located in the S5 segment (F359A) or pore helix (L434A), suggesting a tripartite molecular model where interactions between single residues in S5, S6, and the pore helix modulate inactivation of EAG1 channels. PMID:22930803

  13. Role of oxyradicals in the inactivation of catalase by ozone

    SciTech Connect

    Whiteside, C.; Hassan, H.M. )

    1988-01-01

    The antioxidant enzymes, catalase and superoxide dismutase, are inactivated upon exposure to ozone. In this study, the mechanism of this inactivation was examined using catalase as a model system. The data show that the inactivation of catalase is dependent on ozone concentration, time of exposure, and pH. Loss of catalase activity is accompanied with loss of the heme spectra. Tiron, desferal-Mn, trolox-c, and pyruvate protect the enzyme against ozone inactivation. SOD is less effective due to its inactivation by ozone. On the other hand, alcohols do not provide significant protection. The data suggest the possible involvement of superoxide radicals in the inactivation of catalase by ozone.

  14. N-bromo-dimethylhydantoin polystyrene resin for water microbial decontamination.

    PubMed

    Aviv, Oren; Farah, Shady; Amir, Nir; Laout, Natalia; Ratner, Stanislav; Domb, Abraham J

    2015-04-13

    N-bromo-dimethylhydantoin polystyrene beads were synthesized and tested as antimicrobial agents for water microbial decontamination. Optimization of synthetic process was thoroughly investigated, including solvents used, ratio of reactants and reaction conditions, kilogram scale production, and detailed spectral analysis. The microbial inactivation efficiency was studied according to the NSF-231 Guide Standard and Protocol for Testing Microbiological Water Purifiers against Escherichia coli and MS2 phage. The tested resins maintained their activity for 550 L. Thus, N-bromo-dimethylhydantoin-polystyrene beads synthesized under optimized conditions at kilogram quantities have a potential use in water purification filters. PMID:25738936

  15. Plasma-Mediated Inactivation of Pseudomonas aeruginosa Biofilms Grown on Borosilicate Surfaces under Continuous Culture System

    PubMed Central

    Vandervoort, Kurt G.; Brelles-Mariño, Graciela

    2014-01-01

    Biofilms are microbial communities attached to a surface and embedded in a matrix composed of exopolysaccharides and excreted nucleic acids. Bacterial biofilms are responsible for undesirable effects such as disease, prostheses colonization, biofouling, equipment damage, and pipe plugging. Biofilms are also more resilient than free-living cells to regular sterilization methods and therefore it is indispensable to develop better ways to control and remove them. The use of gas discharge plasmas is a good alternative since plasmas contain a mixture of reactive agents well-known for their decontamination potential against free microorganisms. We have previously reported that Pseudomonas aeruginosa biofilms were inactivated after a 1-min plasma exposure. We determined that the adhesiveness and the thickness of Pseudomonas biofilms grown on borosilicate were reduced. We also reported sequential morphological changes and loss of viability upon plasma treatment. However, the studies were carried out in batch cultures. The use of a continuous culture results in a more homogenous environment ensuring reproducible biofilm growth. The aim of this work was to study plasma-mediated inactivation of P. aeruginosa biofilms grown on borosilicate in a continuous culture system. In this paper we show that biofilms grown on glass under continuous culture can be inactivated by using gas discharge plasma. Both biofilm architecture and cell culturabilty are impacted by the plasma treatment. The inactivation kinetics is similar to previously described ones and cells go through sequential changes ranging from minimal modification without loss of viability at short plasma exposure times, to major structure and viability loss at longer exposure times. We report that changes in biofilm structure leading to the loss of culturability and viability are related to a decrease of the biofilm matrix adhesiveness. To our knowledge, there has been no attempt to evaluate the inactivation

  16. Plasma-mediated inactivation of Pseudomonas aeruginosa biofilms grown on borosilicate surfaces under continuous culture system.

    PubMed

    Vandervoort, Kurt G; Brelles-Mariño, Graciela

    2014-01-01

    Biofilms are microbial communities attached to a surface and embedded in a matrix composed of exopolysaccharides and excreted nucleic acids. Bacterial biofilms are responsible for undesirable effects such as disease, prostheses colonization, biofouling, equipment damage, and pipe plugging. Biofilms are also more resilient than free-living cells to regular sterilization methods and therefore it is indispensable to develop better ways to control and remove them. The use of gas discharge plasmas is a good alternative since plasmas contain a mixture of reactive agents well-known for their decontamination potential against free microorganisms. We have previously reported that Pseudomonas aeruginosa biofilms were inactivated after a 1-min plasma exposure. We determined that the adhesiveness and the thickness of Pseudomonas biofilms grown on borosilicate were reduced. We also reported sequential morphological changes and loss of viability upon plasma treatment. However, the studies were carried out in batch cultures. The use of a continuous culture results in a more homogenous environment ensuring reproducible biofilm growth. The aim of this work was to study plasma-mediated inactivation of P. aeruginosa biofilms grown on borosilicate in a continuous culture system. In this paper we show that biofilms grown on glass under continuous culture can be inactivated by using gas discharge plasma. Both biofilm architecture and cell culturability are impacted by the plasma treatment. The inactivation kinetics is similar to previously described ones and cells go through sequential changes ranging from minimal modification without loss of viability at short plasma exposure times, to major structure and viability loss at longer exposure times. We report that changes in biofilm structure leading to the loss of culturability and viability are related to a decrease of the biofilm matrix adhesiveness. To our knowledge, there has been no attempt to evaluate the inactivation

  17. High pressure thermal inactivation of Clostridium botulinum type E endospores – kinetic modeling and mechanistic insights

    PubMed Central

    Lenz, Christian A.; Reineke, Kai; Knorr, Dietrich; Vogel, Rudi F.

    2015-01-01

    Cold-tolerant, neurotoxigenic, endospore forming Clostridium (C.) botulinum type E belongs to the non-proteolytic physiological C. botulinum group II, is primarily associated with aquatic environments, and presents a safety risk for seafood. High pressure thermal (HPT) processing exploiting the synergistic effect of pressure and temperature can be used to inactivate bacterial endospores. We investigated the inactivation of C. botulinum type E spores by (near) isothermal HPT treatments at 300–1200 MPa at 30–75°C for 1 s to 10 min. The occurrence of heat and lysozyme susceptible spore fractions after such treatments was determined. The experimental data were modeled to obtain kinetic parameters and represented graphically by isoeffect lines. In contrast to findings for spores of other species and within the range of treatment parameters applied, zones of spore stabilization (lower inactivation than heat treatments alone), large heat susceptible (HPT-induced germinated) or lysozyme-dependently germinable (damaged coat layer) spore fractions were not detected. Inactivation followed first order kinetics. Dipicolinic acid release kinetics allowed for insights into possible inactivation mechanisms suggesting a (poorly effective) physiologic-like (similar to nutrient-induced) germination at ≤450 MPa/≤45°C and non-physiological germination at >500 MPa/>60–70°C. Results of this study support the existence of some commonalities in the HPT inactivation mechanism of C. botulinum type E spores and Bacillus spores although both organisms have significantly different HPT resistance properties. The information presented here contributes to closing the gap in knowledge regarding the HPT inactivation of spore formers relevant to food safety and may help industrial implementation of HPT processing. The markedly lower HPT resistance of C. botulinum type E spores compared with the resistance of spores from other C. botulinum types could allow for the implementation of

  18. High pressure thermal inactivation of Clostridium botulinum type E endospores - kinetic modeling and mechanistic insights.

    PubMed

    Lenz, Christian A; Reineke, Kai; Knorr, Dietrich; Vogel, Rudi F

    2015-01-01

    Cold-tolerant, neurotoxigenic, endospore forming Clostridium (C.) botulinum type E belongs to the non-proteolytic physiological C. botulinum group II, is primarily associated with aquatic environments, and presents a safety risk for seafood. High pressure thermal (HPT) processing exploiting the synergistic effect of pressure and temperature can be used to inactivate bacterial endospores. We investigated the inactivation of C. botulinum type E spores by (near) isothermal HPT treatments at 300-1200 MPa at 30-75°C for 1 s to 10 min. The occurrence of heat and lysozyme susceptible spore fractions after such treatments was determined. The experimental data were modeled to obtain kinetic parameters and represented graphically by isoeffect lines. In contrast to findings for spores of other species and within the range of treatment parameters applied, zones of spore stabilization (lower inactivation than heat treatments alone), large heat susceptible (HPT-induced germinated) or lysozyme-dependently germinable (damaged coat layer) spore fractions were not detected. Inactivation followed first order kinetics. Dipicolinic acid release kinetics allowed for insights into possible inactivation mechanisms suggesting a (poorly effective) physiologic-like (similar to nutrient-induced) germination at ≤450 MPa/≤45°C and non-physiological germination at >500 MPa/>60-70°C. Results of this study support the existence of some commonalities in the HPT inactivation mechanism of C. botulinum type E spores and Bacillus spores although both organisms have significantly different HPT resistance properties. The information presented here contributes to closing the gap in knowledge regarding the HPT inactivation of spore formers relevant to food safety and may help industrial implementation of HPT processing. The markedly lower HPT resistance of C. botulinum type E spores compared with the resistance of spores from other C. botulinum types could allow for the implementation of milder

  19. High pressure thermal inactivation of Clostridium botulinum type E endospores - kinetic modeling and mechanistic insights.

    PubMed

    Lenz, Christian A; Reineke, Kai; Knorr, Dietrich; Vogel, Rudi F

    2015-01-01

    Cold-tolerant, neurotoxigenic, endospore forming Clostridium (C.) botulinum type E belongs to the non-proteolytic physiological C. botulinum group II, is primarily associated with aquatic environments, and presents a safety risk for seafood. High pressure thermal (HPT) processing exploiting the synergistic effect of pressure and temperature can be used to inactivate bacterial endospores. We investigated the inactivation of C. botulinum type E spores by (near) isothermal HPT treatments at 300-1200 MPa at 30-75°C for 1 s to 10 min. The occurrence of heat and lysozyme susceptible spore fractions after such treatments was determined. The experimental data were modeled to obtain kinetic parameters and represented graphically by isoeffect lines. In contrast to findings for spores of other species and within the range of treatment parameters applied, zones of spore stabilization (lower inactivation than heat treatments alone), large heat susceptible (HPT-induced germinated) or lysozyme-dependently germinable (damaged coat layer) spore fractions were not detected. Inactivation followed first order kinetics. Dipicolinic acid release kinetics allowed for insights into possible inactivation mechanisms suggesting a (poorly effective) physiologic-like (similar to nutrient-induced) germination at ≤450 MPa/≤45°C and non-physiological germination at >500 MPa/>60-70°C. Results of this study support the existence of some commonalities in the HPT inactivation mechanism of C. botulinum type E spores and Bacillus spores although both organisms have significantly different HPT resistance properties. The information presented here contributes to closing the gap in knowledge regarding the HPT inactivation of spore formers relevant to food safety and may help industrial implementation of HPT processing. The markedly lower HPT resistance of C. botulinum type E spores compared with the resistance of spores from other C. botulinum types could allow for the implementation of milder

  20. Screening, identification, and characterization of a GH43 family β-xylosidase/α-arabinofuranosidase from a compost microbial metagenome.

    PubMed

    Matsuzawa, Tomohiko; Kaneko, Satoshi; Yaoi, Katsuro

    2015-11-01

    A putative glycoside hydrolase family 43 β-xylosidase/α-arabinofuranosidase (CoXyl43) that promotes plant biomass saccharification was isolated via functional screening of a compost microbial metagenomic library and characterized. CoXyl43 promoted the saccharification of plant biomasses, including xylans (xylan and arabinoxylan), rice straw, and Erianthus, by degrading xylooligosaccharide residues to monosaccharide residues. The recombinant CoXyl43 protein exhibited both β-xylosidase and α-arabinofuranosidase activities for chromogenic substrates, with optimal activity at pH 7.5 and 55 °C. Both of these activities were inactivated by ethanol, dimethylsulfoxide, and zinc and copper ions but were activated by manganese ions. Only the β-xylosidase activity of recombinant CoXyl43 was enhanced in the presence of calcium ions. These results indicate that CoXyl43 exhibits unique enzymatic properties useful for biomass saccharification. PMID:25971196

  1. Electron beam inactivation of Tulane virus on fresh produce, and mechanism of inactivation of human norovirus surrogates by electron beam irradiation.

    PubMed

    Predmore, Ashley; Sanglay, Gabriel C; DiCaprio, Erin; Li, Jianrong; Uribe, R M; Lee, Ken

    2015-04-01

    Ionizing radiation, whether by electron beams or gamma rays, is a non-thermal processing technique used to improve the microbial safety and shelf-life of many different food products. This technology is highly effective against bacterial pathogens, but data on its effect against foodborne viruses is limited. A mechanism of viral inactivation has been proposed with gamma irradiation, but no published study discloses a mechanism for electron beam (e-beam). This study had three distinct goals: 1) evaluate the sensitivity of a human norovirus surrogate, Tulane virus (TV), to e-beam irradiation in foods, 2) compare the difference in sensitivity of TV and murine norovirus (MNV-1) to e-beam irradiation, and 3) determine the mechanism of inactivation of these two viruses by e-beam irradiation. TV was reduced from 7 log10 units to undetectable levels at target doses of 16 kGy or higher in two food matrices (strawberries and lettuce). MNV-1 was more resistant to e-beam treatment than TV. At target doses of 4 kGy, e-beam provided a 1.6 and 1.2 log reduction of MNV-1 in phosphate buffered saline (PBS) and Dulbecco's Modified Eagle Medium (DMEM), compared to a 1.5 and 1.8 log reduction of TV in PBS and Opti-MEM, respectively. Transmission electron microscopy revealed that increased e-beam doses negatively affected the structure of both viruses. Analysis of viral proteins by SDS-PAGE found that irradiation also degraded viral proteins. Using RT-PCR, irradiation was shown to degrade viral genomic RNA. This suggests that the mechanism of inactivation of e-beam was likely the same as gamma irradiation as the damage to viral constituents led to inactivation. PMID:25590261

  2. Oxidative inactivation of glutamine synthetase from the cyanobacterium Anabaena variabilis.

    PubMed Central

    Martin, G; Haehnel, W; Böger, P

    1997-01-01

    In crude extracts of the cyanobacterium Anabaena variabilis, glutamine synthetase (GS) could be effectively inactivated by the addition of NADH. GS inactivation was completed within 30 min. Both the inactivated GS and the active enzyme were isolated. No difference between the two enzyme forms was seen in sodium dodecyl sulfate-gels, and only minor differences were detectable by UV spectra, which excludes modification by a nucleotide. Mass spectrometry revealed that the molecular masses of active and inactive GS are equal. While the Km values of the substrates were unchanged, the Vmax values of the inactive GS were lower, reflecting the inactivation factor in the crude extract. This result indicates that the active site was affected. From the crude extract, a fraction mediating GS inactivation could be enriched by ammonium sulfate precipitation and gel filtration. GS inactivation by this fraction required the presence of NAD(P)H, Fe3+, and oxygen. In the absence of the GS-inactivating fraction, GS could be inactivated by Fe2+ and H2O2. The GS-inactivating fraction produced Fe2+ and H2O2, using NADPH, Fe3+, and oxygen. Accordingly, the inactivating fraction was inhibited by catalase and EDTA. This GS-inactivating system of Anabaena is similar to that described for oxidative GS inactivation in Escherichia coli. We conclude that GS inactivation by NAD(P)H is caused by irreversible oxidative damage and is not due to a regulatory mechanism of nitrogen assimilation. PMID:9006027

  3. Overcoming inactivation of the lung surfactant by serum proteins: a potential role for fluorocarbons?

    PubMed

    Krafft, Marie Pierre

    2015-08-14

    In many pulmonary conditions serum proteins interfere with the normal adsorption of components of the lung surfactant to the surface of the alveoli, resulting in lung surfactant inactivation, with potentially serious untoward consequences. Here, we review the strategies that have recently been designed in order to counteract the biophysical mechanisms of inactivation of the surfactant. One approach includes protein analogues or peptides that mimic the native proteins responsible for innate resistance to inactivation. Another perspective uses water-soluble additives, such as electrolytes and hydrophilic polymers that are prone to enhance adsorption of phospholipids. An alternative, more recent approach consists of using fluorocarbons, that is, highly hydrophobic inert compounds that were investigated for partial liquid ventilation, that modify interfacial properties and can act as carriers of exogenous lung surfactant. The latter approach that allows fluidisation of phospholipid monolayers while maintaining capacity to reach near-zero surface tension definitely warrants further investigation.

  4. Transient inactivation of Rb and ARF yields regenerative cells from postmitotic mammalian muscle.

    PubMed

    Pajcini, Kostandin V; Corbel, Stephane Y; Sage, Julien; Pomerantz, Jason H; Blau, Helen M

    2010-08-01

    An outstanding biological question is why tissue regeneration in mammals is limited, whereas urodele amphibians and teleost fish regenerate major structures, largely by cell cycle reentry. Upon inactivation of Rb, proliferation of postmitotic urodele skeletal muscle is induced, whereas in mammalian muscle this mechanism does not exist. We postulated that a tumor suppressor present in mammals but absent in regenerative vertebrates, the Ink4a product ARF (alternative reading frame), is a regeneration suppressor. Concomitant inactivation of Arf and Rb led to mammalian muscle cell cycle reentry, loss of differentiation properties, and upregulation of cytokinetic machinery. Single postmitotic myocytes were isolated by laser micro-dissection-catapulting, and transient suppression of Arf and Rb yielded myoblast colonies that retained the ability to differentiate and fuse into myofibers upon transplantation in vivo. These results show that differentiation of mammalian cells is reversed by inactivation of Arf and Rb and support the hypothesis that Arf evolved at the expense of regeneration. PMID:20682446

  5. Inactivation of foodborne microorganisms using engineered water nanostructures (EWNS).

    PubMed

    Pyrgiotakis, Georgios; Vasanthakumar, Archana; Gao, Ya; Eleftheriadou, Mary; Toledo, Eduardo; DeAraujo, Alice; McDevitt, James; Han, Taewon; Mainelis, Gediminas; Mitchell, Ralph; Demokritou, Philip

    2015-03-17

    Foodborne diseases caused by the consumption of food contaminated with pathogenic microorganisms or their toxins have very serious economic and public health consequences. Here, we explored the effectiveness of a recently developed intervention method for inactivation of microorganisms on fresh produce, and food production surfaces. This method utilizes Engineered Water Nanostructures (EWNS) produced by electrospraying of water vapor. EWNS possess unique properties; they are 25 nm in diameter, remain airborne in indoor conditions for hours, contain Reactive Oxygen Species (ROS) and have very strong surface charge (on average 10 e/structure). Here, their efficacy in inactivating representative foodborne bacteria such as Escherichia coli, Salmonella enterica, and Listeria innocua, on stainless steel surfaces and on organic tomatoes, was assessed. The inactivation was facilitated using two different exposure approaches in order to optimize the delivery of EWNS to bacteria: (1) EWNS were delivered on the surfaces by diffusion and (2) a "draw through" Electrostatic Precipitator Exposure System (EPES) was developed and characterized for EWNS delivery to surfaces. Using the diffusion approach and an EWNS concentration of 24,000 #/cm3, the bacterial concentrations on the surfaces were reduced, depending on the bacterium and the surface type, by values ranging between 0.7 to 1.8 logs. Using the EPES approach and for an aerosol concentration of 50,000 #/cm3 at 90 min of exposure, results show a 1.4 log reduction for E. coli on organic tomato surfaces, as compared to the control (same conditions in regards to temperature and Relative Humidity). Furthermore, for L. innocua, the dose-response relationship was demonstrated and found to be a 0.7 and 1.2 logs removal at 12,000 and 23,000 #/cm3, respectively. The results presented here indicate that this novel, chemical-free, and environmentally friendly intervention method holds potential for development and application in the

  6. Inactivation of foodborne microorganisms using engineered water nanostructures (EWNS).

    PubMed

    Pyrgiotakis, Georgios; Vasanthakumar, Archana; Gao, Ya; Eleftheriadou, Mary; Toledo, Eduardo; DeAraujo, Alice; McDevitt, James; Han, Taewon; Mainelis, Gediminas; Mitchell, Ralph; Demokritou, Philip

    2015-03-17

    Foodborne diseases caused by the consumption of food contaminated with pathogenic microorganisms or their toxins have very serious economic and public health consequences. Here, we explored the effectiveness of a recently developed intervention method for inactivation of microorganisms on fresh produce, and food production surfaces. This method utilizes Engineered Water Nanostructures (EWNS) produced by electrospraying of water vapor. EWNS possess unique properties; they are 25 nm in diameter, remain airborne in indoor conditions for hours, contain Reactive Oxygen Species (ROS) and have very strong surface charge (on average 10 e/structure). Here, their efficacy in inactivating representative foodborne bacteria such as Escherichia coli, Salmonella enterica, and Listeria innocua, on stainless steel surfaces and on organic tomatoes, was assessed. The inactivation was facilitated using two different exposure approaches in order to optimize the delivery of EWNS to bacteria: (1) EWNS were delivered on the surfaces by diffusion and (2) a "draw through" Electrostatic Precipitator Exposure System (EPES) was developed and characterized for EWNS delivery to surfaces. Using the diffusion approach and an EWNS concentration of 24,000 #/cm3, the bacterial concentrations on the surfaces were reduced, depending on the bacterium and the surface type, by values ranging between 0.7 to 1.8 logs. Using the EPES approach and for an aerosol concentration of 50,000 #/cm3 at 90 min of exposure, results show a 1.4 log reduction for E. coli on organic tomato surfaces, as compared to the control (same conditions in regards to temperature and Relative Humidity). Furthermore, for L. innocua, the dose-response relationship was demonstrated and found to be a 0.7 and 1.2 logs removal at 12,000 and 23,000 #/cm3, respectively. The results presented here indicate that this novel, chemical-free, and environmentally friendly intervention method holds potential for development and application in the

  7. Persistently Active Microbial Molecules Prolong Innate Immune Tolerance In Vivo

    PubMed Central

    Lu, Mingfang; Varley, Alan W.; Munford, Robert S.

    2013-01-01

    Measures that bolster the resolution phase of infectious diseases may offer new opportunities for improving outcome. Here we show that inactivation of microbial lipopolysaccharides (LPS) can be required for animals to recover from the innate immune tolerance that follows exposure to Gram-negative bacteria. When wildtype mice are exposed to small parenteral doses of LPS or Gram-negative bacteria, their macrophages become reprogrammed (tolerant) for a few days before they resume normal function. Mice that are unable to inactivate LPS, in contrast, remain tolerant for several months; during this time they respond sluggishly to Gram-negative bacterial challenge, with high mortality. We show here that prolonged macrophage reprogramming is maintained in vivo by the persistence of stimulatory LPS molecules within the cells' in vivo environment, where naïve cells can acquire LPS via cell-cell contact or from the extracellular fluid. The findings provide strong evidence that inactivation of a stimulatory microbial molecule can be required for animals to regain immune homeostasis following parenteral exposure to bacteria. Measures that disable microbial molecules might enhance resolution of tissue inflammation and help restore innate defenses in individuals recovering from many different infectious diseases. PMID:23675296

  8. Use of microbial transglutaminase and nonmeat proteins to improve functional properties of low NaCl, phosphate-free patties made from channel catfish (Ictalurus punctatus) belly flap meat.

    PubMed

    Min, B; Green, B W

    2008-06-01

    This study was aimed at developing value-added low sodium chloride (NaCl), phosphate-free restructured patties using minced channel catfish (Ictalurus punctatus) belly flap meat. The effect of microbial transglutaminase (MTGase) and nonmeat proteins (isolated soy protein, ISP, and whey protein concentrate, WPC; 1.7%, respectively) alone and in combination were evaluated to improve cooking yield and textural properties in patties with reduced NaCl and no phosphate. The concentration effect of MTGase (0.05% to 0.7%) was also studied. The addition of MTGase increased textural properties such as binding strength, hardness, cohesiveness, chewiness, and springiness, but decreased cooking yield of the patties (P < 0.05). Isolated soy protein increased cooking yield (P < 0.05), but did not affect textural properties. Inclusion of WPC did not increase cooking yield or impact textural properties of patties. The combination of MTGase and ISP significantly increased both the cooking yield and textural properties of patties. As the concentration of MTGase increased at constant ISP, the textural properties of cooked patties significantly increased, but cooking yield decreased (P < 0.05). In conclusion, we suggest that the combination of 0.05% to 0.1% of MTGase with 1.7% ISP is optimal for development of a low NaCl, phosphate-free patty using minced catfish belly flap meat.

  9. Mechanisms of closed-state inactivation in voltage-gated ion channels

    PubMed Central

    Bähring, Robert; Covarrubias, Manuel

    2011-01-01

    Inactivation of voltage-gated ion channels is an intrinsic auto-regulatory process necessary to govern the occurrence and shape of action potentials and establish firing patterns in excitable tissues. Inactivation may occur from the open state (open-state inactivation, OSI) at strongly depolarized membrane potentials, or from pre-open closed states (closed-state inactivation, CSI) at hyperpolarized and modestly depolarized membrane potentials. Voltage-gated Na+, K+, Ca2+ and non-selective cationic channels utilize both OSI and CSI. Whereas there are detailed mechanistic descriptions of OSI, much less is known about the molecular basis of CSI. Here, we review evidence for CSI in voltage-gated cationic channels (VGCCs) and recent findings that shed light on the molecular mechanisms of CSI in voltage-gated K+ (Kv) channels. Particularly, complementary observations suggest that the S4 voltage sensor, the S4S5 linker and the main S6 activation gate are instrumental in the installment of CSI in Kv4 channels. According to this hypothesis, the voltage sensor may adopt a distinct conformation to drive CSI and, depending on the stability of the interactions between the voltage sensor and the pore domain, a closed-inactivated state results from rearrangements in the selectivity filter or failure of the activation gate to open. Kv4 channel CSI may efficiently exploit the dynamics of the subthreshold membrane potential to regulate spiking properties in excitable tissues. PMID:21098008

  10. Batrachotoxin uncouples gating charge immobilization from fast Na inactivation in squid giant axons.

    PubMed Central

    Tanguy, J; Yeh, J Z

    1988-01-01

    The fast inactivation of sodium currents and the immobolization of sodium gating charge are thought to be closely coupled to each other. This notion was tested in the squid axon in which kinetics and steady-state properties of the gating charge movement were compared before and after removal of the Na inactivation by batrachotoxin (BTX), pronase, or chloramine-T. The immobilization of gating charge was determined by measuring the total charge movement (QON) obtained by integrating the ON gating current (Ig,ON) using a double pulse protocol. After removal of the fast inactivation with pronase or chloramine-T, the gating charge movement was no longer immobilized. In contrast, after BTX modification, the channels still exhibited an immobilization of the gating charge (QON) with an onset time course and voltage dependence similar to that for the activation process. These results show that BTX can uncouple the charge immobilization from the fast Na inactivation mechanism, suggesting that the Na gating charge movement can be immobilized independently of the inactivation of the channel. PMID:2852036

  11. Kinetics of inactivation of Pseudomonas aeruginosa in aqueous solutions by ozone aeration.

    PubMed

    Zuma, Favourite N; Lin, Johnson; Jonnalagadda, S B

    2009-08-01

    The effect of ozonation on the disinfection of Gram-negative strain, Pseudomonas aeruginosa was investigated as a function of time. Ozone was generated in situ using corona discharge method, with ozone concentrations ranging from (0.29-9.84) x 10(-5) moles L(-1). The microbial inactivation kinetics followed pseudo-first-order kinetics under excess concentration conditions of ozone. With over all second-order constant, k = (4.02 +/- 0.20) x 10(4) M(-1) min(-1), the reaction rate had first-order dependence both on the microbial count and ozone. The influence of temperature and pH on the ozone initiated disinfection of the microbe was also investigated. Molecular ozone is found more effective in disinfection than hydroxyl radicals. Probable mechanism for antimicrobial power of ozone in water systems is discussed. The ozone aeration decreased the biochemical oxygen demand (BOD) value of natural and microbe spiked waters significantly.

  12. Antimicrobial photodynamic inactivation in nanomedicine: small light strides against bad bugs

    PubMed Central

    Yin, Rui; Agrawal, Tanupriya; Khan, Usman; Gupta, Gaurav K; Rai, Vikrant; Huang, Ying-Ying; Hamblin, Michael R

    2015-01-01

    The relentless advance of drug-resistance among pathogenic microbes, mandates a search for alternative approaches that will not cause resistance. Photodynamic inactivation (PDI) involves the combination of nontoxic dyes with harmless visible light to produce reactive oxygen species that can selectively kill microbial cells. PDI can be broad-spectrum in nature and can also destroy microbial cells in biofilms. Many different kinds of nanoparticles have been studied to potentiate antimicrobial PDI by improving photosensitizer solubility, photochemistry, photophysics and targeting. This review will cover photocatalytic disinfection with titania nanoparticles, carbon nanomaterials (fullerenes, carbon nanotubes and graphene), liposomes and polymeric nanoparticles. Natural polymers (chitosan and cellulose), gold and silver plasmonic nanoparticles, mesoporous silica, magnetic and upconverting nanoparticles have all been used for PDI. PMID:26305189

  13. Inactivation of Escherichia coli ATCC 11775 in fresh produce using atmospheric pressure cold plasma

    NASA Astrophysics Data System (ADS)

    Bermudez-Aguirre, Daniela; Wemlinger, Erik; Barbosa-Canovas, Gustavo; Pedrow, Patrick; Garcia-Perez, Manuel

    2011-10-01

    Food-borne outbreaks are associated with the presence of pathogenic bacteria in food products such as fresh produce. One of the target microorganisms is Escherichia coli which exhibits resistance to being inactivated with conventional disinfection methods for vegetables. Atmospheric pressure cold plasma (APCP) was tested to disinfect three vegetables with challenge surfaces, lettuce, carrots and tomatoes. The produce was inoculated with the bacteria to reach an initial microbial concentration of 107 cfu/g. Vegetables were initially exposed to the APCP discharges from a needle array at 5.7 kV RMS in argon, processing times of 0.5, 3 and 5 min. Initial results indicate that microbial decontamination is effective on the lettuce (1.2 log reduction) when compared with other vegetables. To claim disinfection, a 3 log reduction or more is needed, which makes APCP treatment very promising technology for decontamination of produce. We propose that with method refinements full disinfection can be achieved using APCP.

  14. Microbial resistance to disinfectants: mechanisms and significance

    SciTech Connect

    Hoff, J.C.; Akin, E.W.

    1986-11-01

    Drinking water disinfection provides the final barrier to transmission of a wide variety of potentially waterborne infectious agents including pathogenic bacteria, viruses, and protozoa. These agents differ greatly in their innate resistance to inactivation by disinfectants, ranging from extremely sensitive bacteria to highly resistant protozoan cysts. The close similarity between microorganism inactivation rates and the kinetics of chemical reactions has long been recognized. Ideally, under carefully controlled conditions, microorganism inactivation rates simulate first-order chemical reaction rates, making it possible to predict the effectiveness of disinfection under specific conditions. In practice, changes in relative resistance and deviations from first-order kinetics are caused by a number of factors, including microbial growth conditions, aggregation, and association with particulate materials. The net effect of all these factors is a reduction in the effectiveness and predictability of disinfection processes. To ensure effective pathogen control, disinfectant concentrations and contact times greater than experimentally determined values may be required. Of the factors causing enhanced disinfection resistance, protection by association with particulate matter is the most significant. Therefore, removal of particulate matter is an important step in increasing the effectiveness of disinfection processes.

  15. Inactivation of human interferon by body fluids

    NASA Technical Reports Server (NTRS)

    Cesario, T. C.; Mandell, A.; Tilles, J. G.

    1973-01-01

    Description of the effects of human feces, bile, saliva, serum, and cerebrospinal fluid on interferon activity. It is shown that crude interferon is inactivated by at least 50% more than with the control medium used, when incubated for 4 hr in vitro in the presence of serum, saliva, or cerebrospinal liquid, and by close to 100% when incubated with stool extract or bile.

  16. Inactivation of Bacillus atrophaeus by OH radicals

    NASA Astrophysics Data System (ADS)

    Ono, Ryo; Yonetamari, Kenta; Tokumitsu, Yusuke; Yonemori, Seiya; Yasuda, Hachiro; Mizuno, Akira

    2016-08-01

    The inactivation of Bacillus atrophaeus by OH radicals is measured. This study aims to evaluate the bactericidal effects of OH radicals produced by atmospheric-pressure nonthermal plasma widely used for plasma medicine; however, in this study, OH radicals are produced by vacuum ultraviolet (VUV) photolysis of water vapor instead of plasma to allow the production of OH radicals with almost no other reactive species. A 172 nm VUV light from a Xe2 excimer lamp irradiates a He–H2O mixture flowing in a quartz tube to photodissociate H2O to produce OH, H, O, HO2, H2O2, and O3. The produced reactive oxygen species (ROS) flow out of the quartz tube nozzle to the bacteria on an agar plate and cause inactivation. The inactivation by OH radicals among the six ROS is observed by properly setting the experimental conditions with the help of simulations calculating the ROS densities. A 30 s treatment with approximately 0.1 ppm OH radicals causes visible inactivation.

  17. Inactivation of prion infectivity by ionizing rays

    NASA Astrophysics Data System (ADS)

    Gominet, M.; Vadrot, C.; Austruy, G.; Darbord, J. C.

    2007-11-01

    Inactivation of prion deposits on medical devices or prion contamination in pharmaceutical raw materials is considered as impossible by using gamma irradiation. Early, the guideline WHO/CDS/CSR/APH/2000 has described irradiation as an ineffective process. But, in 2003, S. Miekka et al. noted radiation inactivation of prions in a particular application to purify human albumin, shown by the physical denaturation of the infectious protein (PrP). The aim of our study was to determine the inactivation of prions with a scrapie model (strain C506M3) by irradiating standardised preparations. Results: Gamma irradiation was partially effective, showing a 4-5 log reduction on exposure to 50 kGy. A characteristic effect-dose curve was not observed (25, 50 and 100 kGy), only an increase in the incubation period of the murine disease (229 days with 25 kGy to 290 days with 100 kGy) compared with 170 days without irradiation. Since the inactivation was not a total one, the observed effect is significant. It is proposed that further work be undertaken with the model to investigate the application of gamma radiation known levels of prion contamination.

  18. Temperature Tolerance and Inactivation of Chikungunya Virus.

    PubMed

    Huang, Yan-Jang S; Hsu, Wei-Wen; Higgs, Stephen; Vanlandingham, Dana L

    2015-11-01

    In late 2013, chikungunya virus (CHIKV) was introduced to the New World and large outbreaks occurred in the Caribbean islands causing over a million suspected and over 20,000 laboratory-confirmed cases. Serological analysis is an essential component for the diagnosis of CHIKV infection together with virus isolation and detection of viral nucleic acid. Demonstrating virus neutralizing by serum antibodies in a plaque reduction neutralization test (PRNT) is the gold standard of all serological diagnostic assays. Prior to the testing, heat inactivation of serum at 56°C for 30 min is required for the inactivation of complement activity and adventitious viruses. The presence of adventitious contaminating viruses may interfere with the results by leading to a higher number of plaques on the monolayers and subsequent false-negative results. This procedure is widely accepted for the inactivation of flaviviruses and alphaviruses. In this study, the thermostability of CHIKV was evaluated. Heat inactivation at 56°C for 30 min was demonstrated to be insufficient for the complete removal of infectious CHIKV virions present in the samples. This thermotolerance of CHIKV could compromise the accuracy of serum tests, and therefore longer treatment for greater than 120 min is recommended.

  19. Inactivation of human norovirus using chemical sanitizers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The porcine gastric mucin binding magnetic bead (PGM-MB) assay was used to evaluate the ability of chlorine, chlorine dioxide, peroxyacetic acid, hydrogen peroxide, and trisodium phosphate to inactivate human norovirus within 10 percent stool filtrate. One min free chlorine treatments at concentrat...

  20. Inactivation of Bacillus atrophaeus by OH radicals

    NASA Astrophysics Data System (ADS)

    Ono, Ryo; Yonetamari, Kenta; Tokumitsu, Yusuke; Yonemori, Seiya; Yasuda, Hachiro; Mizuno, Akira

    2016-08-01

    The inactivation of Bacillus atrophaeus by OH radicals is measured. This study aims to evaluate the bactericidal effects of OH radicals produced by atmospheric-pressure nonthermal plasma widely used for plasma medicine; however, in this study, OH radicals are produced by vacuum ultraviolet (VUV) photolysis of water vapor instead of plasma to allow the production of OH radicals with almost no other reactive species. A 172 nm VUV light from a Xe2 excimer lamp irradiates a He-H2O mixture flowing in a quartz tube to photodissociate H2O to produce OH, H, O, HO2, H2O2, and O3. The produced reactive oxygen species (ROS) flow out of the quartz tube nozzle to the bacteria on an agar plate and cause inactivation. The inactivation by OH radicals among the six ROS is observed by properly setting the experimental conditions with the help of simulations calculating the ROS densities. A 30 s treatment with approximately 0.1 ppm OH radicals causes visible inactivation.

  1. Monochloramine inactivation of bacterial select agents.

    PubMed

    Rose, Laura J; Rice, Eugene W; Hodges, Lisa; Peterson, Alicia; Arduino, Matthew J

    2007-05-01

    Seven species of bacterial select agents were tested for susceptibility to monochloramine. Under test conditions, the monochloramine routinely maintained in potable water would reduce six of the species by 2 orders of magnitude within 4.2 h. Bacillus anthracis spores would require up to 3.5 days for the same inactivation with monochloramine.

  2. High Pressure Inactivation of HAV within Mussels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The potential of hepatitis A virus (HAV) to be inactivated within Mediterranean mussels (Mytilus galloprovincialis) and blue mussels (Mytilus edulis) by high pressure processing was evaluated. HAV was bioaccumulated within mussels to approximately 6-log10 PFU by exposure of mussels to HAV-contamina...

  3. Soil amendment with Pseudomonas fluorescens CHA0: lasting effects on soil biological properties in soils low in microbial biomass and activity.

    PubMed

    Fliessbach, Andreas; Winkler, Manuel; Lutz, Matthias P; Oberholzer, Hans-Rudolf; Mäder, Paul

    2009-05-01

    Pseudomonas fluorescens strains are used in agriculture as plant growth-promoting rhizobacteria (PGPR). Nontarget effects of released organisms should be analyzed prior to their large-scale use, and methods should be available to sensitively detect possible changes in the environments the organism is released to. According to ecological theory, microbial communities with a greater diversity should be less susceptible to disturbance by invading organisms. Based on this principle, we laid out a pot experiment with field-derived soils different in their microbial biomass and activity due to long-term management on similar parent geological material (loess). We investigated the survival of P. fluorescens CHA0 that carried a resistance toward rifampicin and the duration of potential changes of the soil microflora caused by the inoculation with the bacterium at the sowing date of spring wheat. Soil microbial biomass (C(mic), N(mic)) basal soil respiration (BR), qCO(2), dehydrogenase activity (DHA), bacterial plate counts, mycorrhiza root colonization, and community level substrate utilization were analyzed after 18 and 60 days. At the initial stage, soils were clearly different with respect to most of the parameters measured, and a time-dependent effect between the first and the second set point were attributable to wheat growth and the influence of roots. The effect of the inoculum was small and merely transient, though significant long-term changes were found in soils with a relatively low level of microbial biomass. Community level substrate utilization as an indicator of changes in microbial community structure was mainly changed by the growth of wheat, while other experimental factors were negligible. The sensitivity of the applied methods to distinguish the experimental soils was in decreasing order N(mic), DHA, C(mic), and qCO(2). Besides the selective enumeration of P. fluorescens CHA0 rif(+), which was only found in amended soils, methods to distinguish the

  4. Functional inactivation of Rb sensitizes cancer cells to TSC2 inactivation induced cell Death

    PubMed Central

    Danos, Arpad M.; Liao, Yang; Li, Xuan; Du, Wei

    2012-01-01

    We showed previously that inactivation of TSC2 induces death in cancer cells lacking the Retinoblastoma (Rb) tumor suppressor under stress conditions, suggesting that inactivation of TSC2 can potentially be used as an approach to specifically kill cancers that have lost WT Rb. As Rb is often inactivated in cancers by overexpression of cyclin D1, loss of p16ink4a cdk inhibitor, or expression of viral oncoproteins, it will be interesting to determine if such functional inactivation of Rb would similarly sensitize cancer cells to TSC2 inactivation induced cell death. In addition, many cancers lack functional Pten, resulting in increased PI3K/Akt signaling that has been shown to modulate E2F-induced cell death. Therefore it will be interesting to test whether loss of Pten will affect TSC2 inactivation induced killing of Rb mutant cancer cells. Here, we show that overexpression of Cyclin D1 or the viral oncogene E1a sensitizes cancer cells to TSC2 knockdown induced cell death and growth inhibition. On the other hand, knockdown of p16ink4a sensitizes cancer cells to TSC2 knockdown induced cell death in a manner that is likely dependant on serum induction of Cyclin D1 to inactivate the Rb function. Additionally, we demonstrate that loss of Pten does not interfere with TSC2 knockdown induced cell death in Rb mutant cancer cells. Together, these results suggest that TSC2 is potentially a useful target for a large spectrum of cancer types with an inactivated Rb pathway. PMID:23022476

  5. Inactivation of dairy bacteriophages by commercial sanitizers and disinfectants.

    PubMed

    Campagna, Céline; Villion, Manuela; Labrie, Simon J; Duchaine, Caroline; Moineau, Sylvain

    2014-02-01

    Many commercial sanitizers and disinfectants have been used over the years to control microbial contamination but their efficacy on phages is often unknown. Here, 23 commercial chemical products, including 21 food-grade sanitizers were tested against virulent dairy phages. These food-grade chemicals included oxidizing agents, halogenated agents, alcohols, quaternary ammonium compounds, anionic acids, iodine-based acids, and an amphoteric chemical. Phage P008 was first exposed to each sanitizer for 2 and 15min at room temperature and at two different concentrations, namely the lowest and highest no-rinse sanitizing concentrations. Organic matter (whey or milk) was also added to the testing solutions. At the end of the exposure period, the test solution was neutralized and the number of infectious phages was determined by plaque assays. The five most efficient sanitizers against phage P008 (<4 log of inactivation) were then tested against virulent lactococcal phages P008, CB13, AF6, P1532 of the 936 group, P001 (c2), Q54, and 1358 as well as Lactobacillus plantarum phage B1 and Streptococcus thermophilus phage 2972 using the same protocol. The oxidizing agents and the quaternary ammonium compounds were the most efficient against all phages although phages CB13 and P1532 were less sensitive to these chemicals than the other phages. This study may help in the selection of appropriate chemicals for controlling phage contamination in industrial factories and research laboratories.

  6. Inactivation of Escherichia coli phage by pulsed electric field treatment and analysis of inactivation mechanism

    NASA Astrophysics Data System (ADS)

    Tanino, Takanori; Yoshida, Tomoki; Sakai, Kazuki; Ohshima, Takayuki

    2013-03-01

    Inactivation of bacteriophage by pulsed electric field (PEF) treatment, one of the effective procedures for bacteria nonthermal inactivation, was studied. Model phage particles Escherichia coli bacteriophages M13mp18 and λ phage, were successfully inactivated by PEF treatment. The survival ratios of both bacteriophages decreased depending on the PEF treatment time when applied peak voltage was 5 or 7 kV, and the survival ratios after 12 min PEF treatment were 10-4 - 10-5. Electrophoresis analyses of biological molecules of inactivated λ phage detected no degradation of total protein and genomic DNA. These results suggested that the factor of phage inactivation by PEF treatment was not based on the degradation of protein or DNA, but on the destruction of phage particle structure. Sensitivity of E. coli phage to PEF treatment was compared with that of E. coli cell. Phage and MV1184 cell were treated with same condition PEF at 5 kV, respectively. After 12 min treatment, the survival ration of λ phage and MV1184 were 4.0 × 10-5 and 1.7 × 10-3, respectively. The survival ratio of phage was lower than that of MV1184. E. coli cell is more tolerant to inactivation with PEF treatment than coli phage.

  7. Effect of electric currents on bacterial detachment and inactivation.

    PubMed

    Hong, Seok Hoon; Jeong, Joonseon; Shim, Soojin; Kang, Heekyoung; Kwon, Sunghoon; Ahn, Kyung Hyun; Yoon, Jeyong

    2008-06-01

    Since biofilms show strong resistance to conventional disinfectants and antimicrobials, control of initial bacterial adhesion is generally accepted as one of the most effective strategies for preventing biofilm formation. Although electrical methods have been widely studied, the specific properties of cathodic, anodic, and block currents that influence the bacterial detachment and inactivation remained largely unclear. This study investigated the specific role of electric currents in the detachment and inactivation of bacteria adhered to an electrode surface. A real-time bacterial adhesion observation and control system was employed that consisted of Pseudomonas aeruginosa PAO1 (PAO1) with green fluorescent protein as the indicator microorganism and a flow cell reactor mounted on a fluorescent microscope. The results suggest that the bacteria that remained on the electrode surface after application of a cathodic current were alive, although the extent of detachment was significant. In contrast, when an anodic current was applied, the bacteria that remained on the surface became inactive with time, although bacterial detachment was not significant. Further, under these conditions, active bacterial motions were observed, which weakened the binding between the electrode surface and bacteria. This phenomenon of bacterial motion on the surface can be used to maximize bacterial detachment by manipulation of the shear rate. These findings specific for each application of a cathodic or anodic electric current could successfully explain the effectiveness of block current application in controlling bacterial adhesion. PMID:18080346

  8. Factor V activation and inactivation by venom proteases.

    PubMed

    Rosing, J; Govers-Riemslag, J W; Yukelson, L; Tans, G

    2001-01-01

    Blood coagulation factor V is a single-chain glycoprotein with M(r) = 330,000 which plays an important role in the procoagulant and anticoagulant pathways. Thrombin activates factor V into factor Va, a two-chain molecule which is composed of a heavy (M(r) = 105,000) and a light chain (M(r) = 71,000/74,000). Factor Va accelerates factor Xa-catalysed prothrombin activation more than 1,000-fold and under physiological conditions the cofactor activity of factor Va in prothrombin activation is down-regulated by activated protein C. Factor V can also be activated by a wide variety of snake venoms (e.g. from Vipera species, Naja naja oxiana, Bothrops atrox) and by proteases present in the bristles of a South American caterpillar (Lonomia achelous). Some venoms, notably of Vipera lebetina turanica and Lonomia achelous, contain proteases that are able to inactivate factor V or factor Va. Venom factor V activators are excellent tools in studying the structure-function relationship of factor V(a) and they are also used in diagnostic tests for quantification of plasma factor V levels and for the screening of defects in the protein C pathway. In this review, the structural and functional properties of animal venom factor V activators and inactivators is described. PMID:11910191

  9. Ultraviolet inactivation kinetics of Escherichia coli and Yersinia pseudotuberculosis in annular reactors.

    PubMed

    Ye, Z; Koutchma, T; Parisi, B; Larkin, J; Forney, L J

    2007-06-01

    Terrorist threats have precipitated the need for information on the ultraviolet (UV) resistance of potential biothreat agents in food processing, such as Yersinia pestis. The objective of this study was to characterize the resistance of the Yersinia species to UV treatment using a single-lamp annular UV reactor. A novel method is proposed to measure the inactivation kinetics of Yersinia pseudotuberculosis, a surrogate of Y. pestis. This proposed method can overcome the disadvantages of the traditional collimated beam approach for liquids with high absorptive properties, such as liquid foods. As a reference, an inactivation rate of Escherichia coli K12 in caramel model solutions was measured first. Both first-order and series-event inactivation models were used to fit UV inactivation data. For the series-event model, an inactivation constant of k(SE)= 0.675 cm(2)/mJ and threshold n= 4 were obtained for E. coli K12 with the coefficient of determination R(2)= 0.987 and the standard deviation of log(10) reductions sigma(y)= 0.133. For Y. pseudotuberculosis, k(SE)= 0.984 cm(2)/mJ and n= 3 were obtained with R(2)= 0.972 and sigma(y)= 0.212. In contrast, for the first-order inactivation model, the first-order inactivation constant k(1)= 0.325 cm(2)/mJ with R(2)= 0.907 and sigma(y)= 0.354 was found for E. coli; and k(1)= 0.557 cm(2)/mJ with R(2)= 0.916 and sigma(y)= 0.402 was obtained for Y. pseudotuberculosis. Based on R(2), sigma(y), and the maximum absolute and relative errors, the series-event inactivation model describes the UV inactivation kinetics of Y. pseudotuberculosis and E. coli better than the first-order model. It is apparent that Y. pseudotuberculosis is less resistant to UV light than E. coli K12.

  10. Effects of Administration of Live or Inactivated Virulent Rhodococccus equi and Age on the Fecal Microbiome of Neonatal Foals

    PubMed Central

    Bordin, Angela I.; Suchodolski, Jan S.; Markel, Melissa E.; Weaver, Kaytee B.; Steiner, Jörg M.; Dowd, Scot E.; Pillai, Suresh; Cohen, Noah D.

    2013-01-01

    Background Rhodococcus equi is an important pathogen of foals. Enteral administration of live, virulent R. equi during early life has been documented to protect against subsequent intrabronchial challenge with R. equi, indicating that enteral mucosal immunization may be protective. Evidence exists that mucosal immune responses develop against both live and inactivated micro-organisms. The extent to which live or inactivated R. equi might alter the intestinal microbiome of foals is unknown. This is an important question because the intestinal microbiome of neonates of other species is known to change over time and to influence host development. To our knowledge, changes in the intestinal microbiome of foals during early life have not been reported. Thus, the purpose of this study was to determine whether age (during the first month of life) or administration of either live virulent R. equi (at a dose reported to protect foals against subsequent intrabronchial challenge, viz., 1×1010 colony forming units [CFU]) or inactivated virulent R. equi (at higher doses, viz., 2×1010 and 1×1011 [CFU]) altered the fecal microbiome of foals. Methodology/Principal Findings Fecal swab samples from 42 healthy foals after vaccination with low-dose inactivated R. equi (n = 9), high-dose inactivated R. equi (n = 10), live R. equi (n = 6), control with cholera toxin B (CTB, n = 9), and control without CTB (n = 8) were evaluated by 454-pyrosequencing of the 16S rRNA gene and by qPCR. No impact of treatment was observed among vaccinated foals; however, marked and significant differences in microbial communities and diversity were observed between foals at 30 days of age relative to 2 days of age. Conclusions The results suggest age-related changes in the fecal microbial population of healthy foals do occur, however, mucosal vaccination does not result in major changes of the fecal microbiome in foals. PMID:23785508

  11. Study of the inactivation of spoilage microorganisms in apple juice by pulsed light and ultrasound.

    PubMed

    Ferrario, Mariana; Alzamora, Stella Maris; Guerrero, Sandra

    2015-04-01

    The aim of this study was to evaluate the effect of ultrasound (US) (600 W, 20 kHz and 95.2 μm wave amplitude; 10 or 30 min at 20, 30 or 44 ± 1 °C) and pulsed light (PL) (Xenon lamp; 3 pulses/s; 0.1 m distance; 2.4 J/cm(2)-71.6 J/cm(2); initial temperature 2, 30, 44 ± 1 °C) on the inactivation of Alicyclobacillus acidoterrestris ATCC 49025 spores and Saccharomyces cerevisiae KE162 inoculated in commercial (pH: 3.5; 12.5 °Brix) and natural squeezed (pH: 3.4; 11.8 °Brix) apple juices. Inactivation depended on treatment time, temperature, microorganism and matrix. Combination of these technologies led up to 3.0 log cycles of spore reduction in commercial apple juice and 2.0 log cycles in natural juice; while for S. cerevisiae, 6.4 and 5.8 log cycles of reduction were achieved in commercial and natural apple juices, respectively. In natural apple juice, the combination of US + 60 s PL at the highest temperature build-up (56 ± 1 °C) was the most effective treatment for both strains. In commercial apple juice, US did not contribute to further inactivation of spores, but significantly reduced yeast population. Certain combinations of US + PL kept on good microbial stability under refrigerated conditions for 15 days. PMID:25475338

  12. Study of the inactivation of spoilage microorganisms in apple juice by pulsed light and ultrasound.

    PubMed

    Ferrario, Mariana; Alzamora, Stella Maris; Guerrero, Sandra

    2015-04-01

    The aim of this study was to evaluate the effect of ultrasound (US) (600 W, 20 kHz and 95.2 μm wave amplitude; 10 or 30 min at 20, 30 or 44 ± 1 °C) and pulsed light (PL) (Xenon lamp; 3 pulses/s; 0.1 m distance; 2.4 J/cm(2)-71.6 J/cm(2); initial temperature 2, 30, 44 ± 1 °C) on the inactivation of Alicyclobacillus acidoterrestris ATCC 49025 spores and Saccharomyces cerevisiae KE162 inoculated in commercial (pH: 3.5; 12.5 °Brix) and natural squeezed (pH: 3.4; 11.8 °Brix) apple juices. Inactivation depended on treatment time, temperature, microorganism and matrix. Combination of these technologies led up to 3.0 log cycles of spore reduction in commercial apple juice and 2.0 log cycles in natural juice; while for S. cerevisiae, 6.4 and 5.8 log cycles of reduction were achieved in commercial and natural apple juices, respectively. In natural apple juice, the combination of US + 60 s PL at the highest temperature build-up (56 ± 1 °C) was the most effective treatment for both strains. In commercial apple juice, US did not contribute to further inactivation of spores, but significantly reduced yeast population. Certain combinations of US + PL kept on good microbial stability under refrigerated conditions for 15 days.

  13. Treatment alternatives of slaughterhouse wastes, and their effect on the inactivation of different pathogens: A review

    PubMed Central

    2013-01-01

    Slaughterhouse wastes are a potential reservoir of bacterial, viral, prion and parasitic pathogens, capable of infecting both animals and humans. A quick, cost effective and safe disposal method is thus essential in order to reduce the risk of disease following animal slaughter. Different methods for the disposal of such wastes exist, including composting, anaerobic digestion (AD), alkaline hydrolysis (AH), rendering, incineration and burning. Composting is a disposal method that allows a recycling of the slaughterhouse waste nutrients back into the earth. The high fat and protein content of slaughterhouse wastes mean however, that such wastes are an excellent substrate for AD processes, resulting in both the disposal of wastes, a recycling of nutrients (soil amendment with sludge), and in methane production. Concerns exist as to whether AD and composting processes can inactivate pathogens. In contrast, AH is capable of the inactivation of almost all known microorganisms. This review was conducted in order to compare three different methods of slaughterhouse waste disposal, as regards to their ability to inactivate various microbial pathogens. The intention was to investigate whether AD could be used for waste disposal (either alone, or in combination with another process) such that both energy can be obtained and potentially hazardous materials be disposed of. PMID:22694189

  14. Inactivation of Escherichia coli, Bacteriophage MS2, and Bacillus Spores under UV/H2O2 and UV/Peroxydisulfate Advanced Disinfection Conditions.

    PubMed

    Sun, Peizhe; Tyree, Corey; Huang, Ching-Hua

    2016-04-19

    Ultraviolet light (UV) combined with peroxy chemicals, such as H2O2 and peroxydisulfate (PDS), have been considered potentially highly effective disinfection processes. This study investigated the inactivation of Escherichia coli, bacteriophage MS2, and Bacillus subtilis spores as surrogates for pathogens under UV/H2O2 and UV/PDS conditions, with the aim to provide further understanding of UV-based advanced disinfection processes (ADPs). Results showed that one additional log of inactivation of E. coli was achieved with 0.3 mM H2O2 or PDS at 5.2 × 10(-5) Einstein·L(-1) photo fluence (at 254 nm) compared with UV irradiation alone. Addition of H2O2 and PDS greatly enhanced the inactivation rate of MS2 by around 15 folds and 3 folds, respectively, whereas the inactivation of B. subtilis spores was slightly enhanced. Reactive species responsible for the inactivation were identified to be •OH, SO4(·-), and CO3(·-) based on manipulation of solution conditions. The CT value of each reactive species was calculated with respect to each microbial surrogate, which showed that the disinfection efficacy ranked as •OH > SO4(·-) > CO3(·-) ≫ O2(·-)/HO2(·). A comprehensive dynamic model was developed and successfully predicted the inactivation of the microbial surrogates in surface water and wastewater matrices. The concepts of UV-efficiency and EE/O were employed to provide a cost-effective evaluation for UV-based ADPs. Overall, the present study suggests that it will be beneficial to upgrade UV disinfection to UV/H2O2 ADP for the inactivation of viral pathogens.

  15. Inactivation of Escherichia coli, Bacteriophage MS2, and Bacillus Spores under UV/H2O2 and UV/Peroxydisulfate Advanced Disinfection Conditions.

    PubMed

    Sun, Peizhe; Tyree, Corey; Huang, Ching-Hua

    2016-04-19

    Ultraviolet light (UV) combined with peroxy chemicals, such as H2O2 and peroxydisulfate (PDS), have been considered potentially highly effective disinfection processes. This study investigated the inactivation of Escherichia coli, bacteriophage MS2, and Bacillus subtilis spores as surrogates for pathogens under UV/H2O2 and UV/PDS conditions, with the aim to provide further understanding of UV-based advanced disinfection processes (ADPs). Results showed that one additional log of inactivation of E. coli was achieved with 0.3 mM H2O2 or PDS at 5.2 × 10(-5) Einstein·L(-1) photo fluence (at 254 nm) compared with UV irradiation alone. Addition of H2O2 and PDS greatly enhanced the inactivation rate of MS2 by around 15 folds and 3 folds, respectively, whereas the inactivation of B. subtilis spores was slightly enhanced. Reactive species responsible for the inactivation were identified to be •OH, SO4(·-), and CO3(·-) based on manipulation of solution conditions. The CT value of each reactive species was calculated with respect to each microbial surrogate, which showed that the disinfection efficacy ranked as •OH > SO4(·-) > CO3(·-) ≫ O2(·-)/HO2(·). A comprehensive dynamic model was developed and successfully predicted the inactivation of the microbial surrogates in surface water and wastewater matrices. The concepts of UV-efficiency and EE/O were employed to provide a cost-effective evaluation for UV-based ADPs. Overall, the present study suggests that it will be beneficial to upgrade UV disinfection to UV/H2O2 ADP for the inactivation of viral pathogens. PMID:27014964

  16. Applicability of photodynamic antimicrobial chemotherapy as an alternative to inactivate fish pathogenic bacteria in aquaculture systems.

    PubMed

    Arrojado, Cátia; Pereira, Carla; Tomé, João P C; Faustino, Maria A F; Neves, Maria G P M S; Tomé, Augusto C; Cavaleiro, José A S; Cunha, Angela; Calado, Ricardo; Gomes, Newton C M; Almeida, Adelaide

    2011-10-01

    Aquaculture activities are increasing worldwide, stimulated by the progressive reduction of natural fish stocks in the oceans. However, these activities also suffer heavy production and financial losses resulting from fish infections caused by microbial pathogens, including multidrug resistant bacteria. Therefore, strategies to control fish infections are urgently needed, in order to make aquaculture industry more sustainable. Antimicrobial photodynamic therapy (aPDT) has emerged as an alternative to treat diseases and prevent the development of antibiotic resistance by pathogenic bacteria. The aim of this work was to evaluate the applicability of aPDT to inactivate pathogenic fish bacteria. To reach this objective a cationic porphyrin Tri-Py(+)-Me-PF was tested against nine pathogenic bacteria isolated from a semi-intensive aquaculture system and against the cultivable bacteria of the aquaculture system. The ecological impact of aPDT in the aquatic environment was also tested on the natural bacterial community, using the overall bacterial community structure and the cultivable bacteria as indicators. Photodynamic inactivation of bacterial isolates and of cultivable bacteria was assessed counting the number of colonies. The impact of aPDT in the overall bacterial community structure of the aquaculture water was evaluated by denaturing gel gradient electrophoresis (DGGE). The results showed that, in the presence of Tri-Py(+)-Me-PF, the growth of bacterial isolates was inhibited, resulting in a decrease of ≈7-8 log after 60-270 min of irradiation. Cultivable bacteria were also considerably affected, showing decreases up to the detection limit (≈2 log decrease on cell survival), but the inactivation rate varied significantly with the sampling period. The DGGE fingerprint analyses revealed changes in the bacterial community structure caused by the combination of aPDT and light. The results indicate that aPDT can be regarded as a new approach to control fish

  17. Rapid inactivation of seven Bacillus spp. under simulated Mars UV irradiation

    NASA Astrophysics Data System (ADS)

    Schuerger, Andrew C.; Richards, Jeff T.; Newcombe, David A.; Venkateswaran, Kasthuri

    2006-03-01

    Seven Bacillus spp. were exposed to simulations of Mars-normal UV fluence rates in order to study the effects of UV irradiation on microbial survival. A UV illumination system was calibrated to deliver 9.78 W m -2 (35.2 kJ m -2 h -1) of UVC + UVB irradiation (200-320 nm) to microbial samples, thus creating a clear-sky simulation (0.5 optical depth) of equatorial Mars. The Bacillus spp. studied were: B. licheniformis KL-196, B. megaterium KL-197, B. nealsonii FO-092, B. pumilus FO-36B, B. pumilus SAFR-032, B. subtilis 42HS1, and B. subtilis HA101. The bacteria were prepared as thin monolayers of endospores on aluminum coupons in order to simulate contaminated spacecraft surfaces. Bacterial monolayers were exposed to Mars UV irradiation for time-steps of 0, 0.25, 0.5, 1, 5, 15, 30, 60, 120, or 180 min. The surviving endospores were then assayed with a Most Probable Numbers (MPN) procedure and with a culture-based assay that utilized a bacillus spore germination medium. Results indicated that B. pumilus SAFR-032 was the most resistant, and B. subtilis 42HS-1 and B. megaterium were the most sensitive of the seven strains exposed to martian UV fluence rates. Bacillus subtilis 42HS1 and B. megaterium were inactivated after 30 min exposure to Mars UV, while B. pumilus SAFR-032 required 180 min for full inactivation in both assays. Spores of B. pumilus SAFR-032 exhibited significantly different inactivation kinetics suggesting that this wild type isolate also was more resistant than the standard dosimetric strain, B. subtilis HA101. Although the various Bacillus spp. exhibited diverse levels of UV resistance, none were immune to UV irradiation, and, thus, all species would be expected to be inactivated on Sun-exposed spacecraft surfaces within a few tens-of-minutes to a few hours on sol 1 under clear-sky conditions on equatorial Mars. The inactivation kinetics of all seven Bacillus spp. support the conclusion that significant levels of bioload reductions are possible on

  18. Neutrophil-Mediated Phagocytic Host Defense Defect in Myeloid Cftr-Inactivated Mice

    PubMed Central

    Ng, Hang Pong; Zhou, Yun; Song, Kejing; Hodges, Craig A.; Drumm, Mitchell L.; Wang, Guoshun

    2014-01-01

    Cystic fibrosis (CF) is a common and deadly inherited disease, caused by mutations in the CFTR gene that encodes a cAMP-activated chloride channel. One outstanding manifestation of the disease is the persistent bacterial infection and inflammation in the lung, which claims over 90% of CF mortality. It has been debated whether neutrophil-mediated phagocytic innate immunity has any intrinsic defect that contributes to the host lung defense failure. Here we compared phagosomal CFTR targeting, hypochlorous acid (HOCl) production, and microbial killing of the neutrophils from myeloid Cftr-inactivated (Myeloid-Cftr−/−) mice and the non-inactivated control (Cftrfl10) mice. We found that the mutant CFTR that lacked Exon-10 failed to target to the neutrophil phagosomes. This dysfunction resulted in impaired intraphagosomal HOCl production and neutrophil microbial killing. In vivo lung infection with a lethal dose of Pseudomonas aeruginosa caused significantly higher mortality in the myeloid CF mice than in the controls. The myeloid-Cftr−/− lungs were deficient in bacterial clearance, and had sustained neutrophilic inflammation and stalled transition from early to late immunity. These manifestations recapitulated the symptoms of human CF lungs. The data altogether suggest that myeloid CFTR expression is critical to normal host lung defense. CFTR dysfunction in neutrophils compromises the phagocytic innate immunity, which may predispose CF lungs to infection. PMID:25184794

  19. Linking watershed terrain and hydrology to soil chemical properties, microbial communities and impacts on soil organic C in a humid mid-latitude forested watershed

    NASA Astrophysics Data System (ADS)

    Watson, D. B.; Brooks, S. C.; Schadt, C. W.; Tang, G.; Collier, N.; Earles, J. E.; Mehlhorn, T. L.; Lowe, K. A.; Brandt, C. C.; koo Yang, Z.; Phillips, D.; Li, P.; Yuan, F.

    2014-12-01

    Understanding the response of humid mid-latitude forests to changes in precipitation, temperature, nutrient cycling, and disturbance is critical to improving our predictive understanding of changes in the surface-subsurface energy balance due to climate change. Mechanistic understanding of the effects of long-term and transient moisture conditions are needed to quantify linkages between changing redox conditions, microbial activity, and soil mineral and nutrient interactions on C cycling and greenhouse gas releases. To illuminate relationships between the soil chemistry, microbial communities and organic C we established transects across hydraulic and topographic gradients in a small watershed with transient moisture conditions. Valley bottoms tend to be more frequently saturated than ridge tops and side slopes which generally are only saturated when shallow storm flow zones are active. Fifty shallow (~36") soil cores were collected during timeframes representative of low CO2, soil winter conditions and high CO2, soil summer conditions. Cores were subdivided into 240 samples based on pedology and analyses of the geochemical (moisture content, metals, pH, Fe species, N, C, CEC, AEC) and microbial (16S rRNA gene amplification with Illumina MiSeq sequencing) characteristics were conducted and correlated to watershed terrain and hydrology. To associate microbial metabolic activity with greenhouse gas emissions we installed 17 soil gas probes, collected gas samples for 16 months and analyzed them for CO2 and other fixed and greenhouse gasses. Parallel to the experimental efforts our data is being used to support hydrobiogeochemical process modeling by coupling the Community Land Model (CLM) with a subsurface process model (PFLOTRAN) to simulate processes and interactions from the molecular to watershed scales. Including above ground processes (biogeophysics, hydrology, and vegetation dynamics), CLM provides mechanistic water, energy, and organic matter inputs to the

  20. Investigating synergism during sequential inactivation of MS-2 phage and Bacillus subtilis spores with UV/H2O2 followed by free chlorine.

    PubMed

    Cho, Min; Gandhi, Varun; Hwang, Tae-Mun; Lee, Sangho; Kim, Jae-Hong

    2011-01-01

    A sequential application of UV as a primary disinfectant with and without H(2)O(2) addition followed by free chlorine as secondary, residual disinfectant was performed to evaluate the synergistic inactivation of selected indicator microorganisms, MS-2 bacteriophage and Bacillus subtilis spores. No synergism was observed when the UV irradiation treatment was followed by free chlorine, i.e., the overall level of inactivation was the same as the sum of the inactivation levels achieved by each disinfection step. With the addition of H(2)O(2) in the primary UV disinfection step, however, enhanced microbial inactivation was observed. The synergism was observed in two folds manners: (1) additional inactivation achieved by hydroxyl radicals generated from the photolysis of H(2)O(2) in the primary UV disinfection step, and (2) damage to microorganisms in the primary step which facilitated the subsequent chlorine inactivation. Addition of H(2)O(2) in the primary disinfection step was also found to be beneficial for the degradation of selected model organic pollutants including bisphenol-A (endocrine disruptor), geosmin (taste and odor causing compound) and 2,4-D (herbicide). The results suggest that the efficiency of UV/free chlorine sequential disinfection processes, which are widely employed in drinking water treatment, could be significantly enhanced by adding H(2)O(2) in the primary step and hence converting the UV process to an advanced oxidation process.

  1. Radiation inactivation analysis of influenza virus reveals different target sizes for fusion, leakage, and neuraminidase activities

    SciTech Connect

    Gibson, S.; Jung, C.Y.; Takahashi, M.; Lenard, J.

    1986-10-07

    The size of the functional units responsible for several activities carried out by the influenza virus envelope glycoproteins was determined by radiation inactivation analysis. Neuraminidase activity, which resides in the glycoprotein NA, was inactivated exponentially with an increasing radiation dose, yielding a target size of 94 +/- 5 kilodaltons (kDa), in reasonable agreement with that of the disulfide-bonded dimer (120 kDa). All the other activities studied are properties of the HA glycoprotein and were normalized to the known molecular weight of the neuraminidase dimer. Virus-induced fusion activity was measured by two phospholipid dilution assays: relief of energy transfer between N-(7-nitro-2,1,3-benzoxadiazol-4-yl)dipalmitoyl-L-alpha- phosphatidylethanolamine (N-NBD-PE) and N-(lissamine rhodamine B sulfonyl)-dioleoyl-L-alpha-phosphatidylethanolamine (N-Rh-PE) in target liposomes and relief of self-quenching of N-Rh-PE in target liposomes. Radiation inactivation of fusion activity proceeded exponentially with radiation dose, yielding normalized target sizes of 68 +/- 6 kDa by assay i and 70 +/- 4 kDa by assay ii. These values are close to the molecular weight of a single disulfide-bonded (HA1 + HA2) unit (75 kDa), the monomer of the HA trimer. A single monomer is thus inactivated by each radiation event, and each monomer (or some part of it) constitutes a minimal functional unit capable of mediating fusion. Virus-induced leakage of calcein from target liposomes and virus-induced leakage of hemoglobin from erythrocytes (hemolysis) both showed more complex inactivation behavior: a pronounced shoulder was present in both inactivation curves, followed by a steep drop in activity at higher radiation levels.

  2. High hydrostatic pressure treatment for the inactivation of Staphylococcus aureus in human blood plasma.

    PubMed

    Rivalain, Nolwennig; Roquain, Jean; Boiron, Jean-Michel; Maurel, Jean-Paul; Largeteau, Alain; Ivanovic, Zoran; Demazeau, Gérard

    2012-02-15

    For the past 30years, pressure inactivation of microorganisms has been developed in biosciences, in particular for foods and more recently for biological products, including pharmaceutical ones. In many past studies, the effect of high hydrostatic pressure (HHP) processes on pathogens focused mainly on the effect of an increase of the pressure value. To assure the safety of pharmaceutical products containing fragile therapeutic components, development of new decontamination processes at the lowest pressure value is needed to maintain their therapeutic properties. The aim of this study was therefore to evaluate the impact of the process parameters characterizing high-pressure treatments [such as the pressurization rate (PR) and the application mode (AM)] on the inactivation of pathogens, in particular to determine how these parameters values could help decrease the pressure value necessary to reach the same inactivation level. The effect of these physical parameters was evaluated on the inactivation of Staphylococcus aureus ATCC 6538 which is an opportunistic pathogen of important relevance in the medical, pharmaceutical and food domains. Human blood plasma was chosen as the suspension medium because of its physiological importance in the transfusion field. It was shown that the optimization of all the selected parameters could lead to a high inactivation level (≈5log(10) decrease of the initial bacterial load) at a pressure level as low as 200MPa, underlining some synergistic effects among these parameters. Complete inactivation of the initial bacterial population was achieved for the following conditions: PR=50MPas(-1), AM=5×2min, T≈-5°C and P=300MPa.

  3. [Inactivation of concentrated biomasses of Rickettsia prowazekii].

    PubMed

    Eremeeva, M E; Ignatovich, V F; Popov, V L; Balaeva, N M

    1989-07-01

    The methods used for the sparing inactivation of highly concentrated R. prowazekii biomass and for the decrease of its infectious activity are described. These methods are recommended for use in experiments in the field of molecular biology, as well as for disinfection of different materials contaminated with rickettsiae. As conditions for complete inactivation, incubation at 50 degrees C for 1 hour without chemical disinfectants, treatment with 0.5% phenol solution at 30 degrees C for 12 hours and with 0.1% formaldehyde solution at 4 degrees C for 24 hours have been selected. Treatment with 0.5% phenol solution at 36 degrees C for 1 hour or incubation at 45 degrees C without the use of disinfectants ensures an essential decrease in the infectivity of the material if the work with viable infective agents is necessary. Ultraviolet irradiation for 1.5 hours and exposure to the action of 0.1-0.5% sodium azide are less effective.

  4. Thermal inactivation of Alkhumra hemorrhagic fever virus.

    PubMed

    Madani, Tariq A; Abuelzein, El-Tayb M E; Azhar, Esam I; Al-Bar, Hussein M S

    2014-10-01

    The physico-chemical and biological characteristics of Alkhumra hemorrhagic fever virus (AHFV) are not yet known. The present study describes the thermal stability of this virus at different temperatures for different periods. The kinetics of thermal inactivation were studied, linear regressions were plotted, the Arrhenius equation was applied, and the activation energy was calculated accordingly. Titers of the residual virus were determined in median tissue culture infective dose (TCID50), and the rate of destruction of infectivity at various temperatures was determined. Infectivity of AHFV was completely lost upon heating for 3 minutes at 60 °C and for 30 min at 56 °C. However, the virus could maintain 33.2 % of its titer after heating for 60 min at 45 °C and 32 % of its titer after heating for 60 min at 50 °C. In conclusion, AHFV is thermo-labile, and its inactivation follows first-order kinetics. PMID:24906524

  5. Ixodes dammini: salivary anaphylatoxin inactivating activity.

    PubMed

    Ribeiro, J M; Spielman, A

    1986-10-01

    Saliva of the tick, Ixodes dammini, antagonizes anaphylatoxin, abolishing both the effects of anaphylatoxin on guinea pig ileum preparations regularly stimulated with histamine and the local edema caused by intradermal injection of anaphylatoxin into guinea pigs. Saliva of these ticks, however, did not modify polymorphonuclear leukocyte aggregation induced by anaphylatoxin. Bradykinin and lysil-bradykinin were inactivated, but angiotensin I, angiotensin II, and substance P were not affected. Amino acids were released rapidly following incubation of saliva with bradykinin, but slowly from des-arg-9-bradykinin. These results suggest the presence of a salivary carboxypeptidase with specificity for terminal basic amino acids. Such activity may inactivate anaphylatoxin and bradykinin at the site of tick attachment. PMID:3743719

  6. Characterization of the microbial community structure and the physicochemical properties of produced water and seawater from the Hibernia oil production platform.

    PubMed

    Yeung, C William; Lee, Kenneth; Cobanli, Susan; King, Tom; Bugden, Jay; Whyte, Lyle G; Greer, Charles W

    2015-11-01

    Hibernia is Canada's largest offshore oil platform. Produced water is the major waste byproduct discharged into the ocean. In order to evaluate different potential disposal methods, a comprehensive study was performed to determine the impact from the discharge. Microorganisms are typically the first organisms to respond to changes in their environment. The objectives were to characterize the microbial communities and the chemical composition in the produced water and to characterize changes in the seawater bacterial community around the platform. The results from chemical, physicochemical, and microbial analyses revealed that the discharge did not have a detectable effect on the surrounding seawater. The seawater bacterial community was relatively stable, spatially. Unique microorganisms like Thermoanaerobacter were found in the produced water. Thermoanaerobacter-specific q-PCR and nested-PCR primers were designed, and both methods demonstrated that Thermoanaerobacter was present in seawater up to 1000 m from the platform. These methods could be used to track the dispersion of produced water into the surrounding ocean. PMID:26154038

  7. Recurrent inactivating RASA2 mutations in melanoma

    PubMed Central

    Arafeh, Rand; Qutob, Nouar; Emmanuel, Rafi; Keren-Paz, Alona; Madore, Jason; Elkahloun, Abdel; Wilmott, James S.; Gartner, Jared J.; Di Pizio, Antonella; Winograd-Katz, Sabina; Sindiri, Sivasish; Rotkopf, Ron; Dutton-Regester, Ken; Johansson, Peter; Pritchard, Antonia; Waddell, Nicola; Hill, Victoria K.; Lin, Jimmy C.; Hevroni, Yael; Rosenberg, Steven A.; Khan, Javed; Ben-Dor, Shifra; Niv, Masha Y.; Ulitsky, Igor; Mann, Graham J; Scolyer, Richard A.; Hayward, Nicholas K.; Samuels, Yardena

    2016-01-01

    Analysis of 501 melanoma exomes revealed RASA2, encoding a RasGAP, as a tumor-suppressor gene mutated in 5% of melanomas. Recurrent loss-of-function mutations in RASA2 were found to increase RAS activation, melanoma cell growth and migration. RASA2 expression was lost in ≥30% of human melanomas and was associated with reduced patient survival. These findings reveal RASA2 inactivation as a melanoma driver and highlight the importance of Ras GAPs in cancer. PMID:26502337

  8. Female meiotic sex chromosome inactivation in chicken.

    PubMed

    Schoenmakers, Sam; Wassenaar, Evelyne; Hoogerbrugge, Jos W; Laven, Joop S E; Grootegoed, J Anton; Baarends, Willy M

    2009-05-01

    During meiotic prophase in male mammals, the heterologous X and Y chromosomes remain largely unsynapsed, and meiotic sex chromosome inactivation (MSCI) leads to formation of the transcriptionally silenced XY body. In birds, the heterogametic sex is female, carrying Z and W chromosomes (ZW), whereas males have the homogametic ZZ constitution. During chicken oogenesis, the heterologous ZW pair reaches a state of complete heterologous synapsis, and this might enable maintenance of transcription of Z- and W chromosomal genes during meiotic prophase. Herein, we show that the ZW pair is transiently silenced, from early pachytene to early diplotene using immunocytochemistry and gene expression analyses. We propose that ZW inactivation is most likely achieved via spreading of heterochromatin from the W on the Z chromosome. Also, persistent meiotic DNA double-strand breaks (DSBs) may contribute to silencing of Z. Surprisingly, gammaH2AX, a marker of DSBs, and also the earliest histone modification that is associated with XY body formation in mammalian and marsupial spermatocytes, does not cover the ZW during the synapsed stage. However, when the ZW pair starts to desynapse, a second wave of gammaH2AX accumulates on the unsynapsed regions of Z, which also show a reappearance of the DSB repair protein RAD51. This indicates that repair of meiotic DSBs on the heterologous part of Z is postponed until late pachytene/diplotene, possibly to avoid recombination with regions on the heterologously synapsed W chromosome. Two days after entering diplotene, the Z looses gammaH2AX and shows reactivation. This is the first report of meiotic sex chromosome inactivation in a species with female heterogamety, providing evidence that this mechanism is not specific to spermatogenesis. It also indicates the presence of an evolutionary force that drives meiotic sex chromosome inactivation independent of the final achievement of synapsis. PMID:19461881

  9. Female Meiotic Sex Chromosome Inactivation in Chicken

    PubMed Central

    Schoenmakers, Sam; Wassenaar, Evelyne; Hoogerbrugge, Jos W.; Laven, Joop S. E.; Grootegoed, J. Anton; Baarends, Willy M.

    2009-01-01

    During meiotic prophase in male mammals, the heterologous X and Y chromosomes remain largely unsynapsed, and meiotic sex chromosome inactivation (MSCI) leads to formation of the transcriptionally silenced XY body. In birds, the heterogametic sex is female, carrying Z and W chromosomes (ZW), whereas males have the homogametic ZZ constitution. During chicken oogenesis, the heterologous ZW pair reaches a state of complete heterologous synapsis, and this might enable maintenance of transcription of Z- and W chromosomal genes during meiotic prophase. Herein, we show that the ZW pair is transiently silenced, from early pachytene to early diplotene using immunocytochemistry and gene expression analyses. We propose that ZW inactivation is most likely achieved via spreading of heterochromatin from the W on the Z chromosome. Also, persistent meiotic DNA double-strand breaks (DSBs) may contribute to silencing of Z. Surprisingly, γH2AX, a marker of DSBs, and also the earliest histone modification that is associated with XY body formation in mammalian and marsupial spermatocytes, does not cover the ZW during the synapsed stage. However, when the ZW pair starts to desynapse, a second wave of γH2AX accumulates on the unsynapsed regions of Z, which also show a reappearance of the DSB repair protein RAD51. This indicates that repair of meiotic DSBs on the heterologous part of Z is postponed until late pachytene/diplotene, possibly to avoid recombination with regions on the heterologously synapsed W chromosome. Two days after entering diplotene, the Z looses γH2AX and shows reactivation. This is the first report of meiotic sex chromosome inactivation in a species with female heterogamety, providing evidence that this mechanism is not specific to spermatogenesis. It also indicates the presence of an evolutionary force that drives meiotic sex chromosome inactivation independent of the final achievement of synapsis. PMID:19461881

  10. Inactivation of Anandamide Signaling: A Continuing Debate

    PubMed Central

    Khairy, Hesham; Houssen, Wael E.

    2010-01-01

    Since the first endocannabinoid anandamide was identified in 1992, extensive research has been conducted to characterize the elements of the tightly controlled endocannabinoid signaling system. While it was established that the activity of endocannabinoids are terminated by a two-step process that includes cellular uptake and degradation, there is still a continuing debate about the mechanistic role of these processes in inactivating anandamide signals.

  11. Relationship between Sublethal Injury and Inactivation of Yeast Cells by the Combination of Sorbic Acid and Pulsed Electric Fields▿

    PubMed Central

    Somolinos, M.; García, D.; Condón, S.; Mañas, P.; Pagán, R.

    2007-01-01

    The objective of this study was to investigate the occurrence of sublethal injury after the pulsed-electric-field (PEF) treatment of two yeasts, Dekkera bruxellensis and Saccharomyces cerevisiae, as well as the relation of sublethal injury to the inactivating effect of the combination of PEF and sorbic acid. PEF caused sublethal injury in both yeasts: more than 90% of surviving D. bruxellensis cells and 99% of surviving S. cerevisiae cells were sublethally injured after 50 pulses at 12 kV/cm in buffer at pHs of both 7.0 and 4.0. The proportion of sublethally injured cells reached a maximum after 50 pulses at 12.0 kV/cm (S. cerevisiae) or 16.5 kV/cm (D. bruxellensis), and it kept constant or progressively decreased at greater electric field strengths and with longer PEF treatments. Sublethally PEF-injured cells showed sensitivity to the presence of sorbic acid at a concentration of 2,000 ppm. A synergistic inactivating effect of the combination of PEF and sorbic acid was observed. Survivors of the PEF treatment were progressively inactivated in the presence of 2,000 ppm of sorbic acid at pH 3.8, with the combined treatments achieving more than log10 5 cycles of dead cells under the conditions investigated. This study has demonstrated the occurrence of sublethal injury after exposure to PEF, so yeast inactivation by PEF is not an all-or-nothing event. The combination of PEF and sorbic acid has proven to be an effective method to achieve a higher level of yeast inactivation. This work contributes to the knowledge of the mechanism of microbial inactivation by PEF, and it may be useful for improving food preservation by PEF technology. PMID:17468278

  12. Rapid inactivation of SARS-like coronaviruses.

    SciTech Connect

    Kapil, Sanjay; Oberst, R. D.; Bieker, Jill Marie; Tucker, Mark David; Souza, Caroline Ann; Williams, Cecelia Victoria

    2004-03-01

    Chemical disinfection and inactivation of viruses is largely understudied, but is very important especially in the case of highly infectious viruses. The purpose of this LDRD was to determine the efficacy of the Sandia National Laboratories developed decontamination formulations against Bovine Coronavirus (BCV) as a surrogate for the coronavirus that causes Severe Acute Respiratory Syndrome (SARS) in humans. The outbreak of SARS in late 2002 resulted from a highly infectious virus that was able to survive and remain infectious for extended periods. For this study, preliminary testing with Escherichia coli MS-2 (MS-2) and Escherichia coli T4 (T4) bacteriophages was conducted to develop virucidal methodology for verifying the inactivation after treatment with the test formulations following AOAC germicidal methodologies. After the determination of various experimental parameters (i.e. exposure, concentration) of the formulations, final testing was conducted on BCV. All experiments were conducted with various organic challenges (horse serum, bovine feces, compost) for results that more accurately represent field use condition. The MS-2 and T4 were slightly more resistant than BCV and required a 2 minute exposure while BCV was completely inactivated after a 1 minute exposure. These results were also consistent for the testing conducted in the presence of the various organic challenges indicating that the test formulations are highly effective for real world application.

  13. Developmental regulation of X-chromosome inactivation.

    PubMed

    Payer, Bernhard

    2016-08-01

    With the emergence of sex-determination by sex chromosomes, which differ in composition and number between males and females, appeared the need to equalize X-chromosomal gene dosage between the sexes. Mammals have devised the strategy of X-chromosome inactivation (XCI), in which one of the two X-chromosomes is rendered transcriptionally silent in females. In the mouse, the best-studied model organism with respect to XCI, this inactivation process occurs in different forms, imprinted and random, interspersed by periods of X-chromosome reactivation (XCR), which is needed to switch between the different modes of XCI. In this review, I describe the recent advances with respect to the developmental control of XCI and XCR and in particular their link to differentiation and pluripotency. Furthermore, I review the mechanisms, which influence the timing and choice, with which one of the two X-chromosomes is chosen for inactivation during random XCI. This has an impact on how females are mosaics with regard to which X-chromosome is active in different cells, which has implications on the severity of diseases caused by X-linked mutations.

  14. Online monitoring of Escherichia coli and Bacillus thuringiensis spore inactivation after advanced oxidation treatment.

    PubMed

    Sherchan, Samendra P; Snyder, Shane A; Gerba, Charles P; Pepper, Ian L

    2014-01-01

    Various studies have shown that advanced oxidation processes (AOPs) such as UV light in combination with hydrogen peroxide is an efficient process for the removal of a large variety of emerging contaminants including microorganisms. The mechanism of destruction in the presence of hydrogen peroxide (H2O2) is the enhanced formation of hydroxyl (·OH) radicals, which have a high oxidation potential. The goal of this study was to utilize in-line advanced oxidation to inactivate microbes, and document the inactivation via an in-line, real-time sensor. Escherichia coli cells and Bacillus thuringiensis spores were exposed to UV/H2O2 treatment in DI water, and the online sensor BioSentry(®) was evaluated for its potential to monitor inactivation in real-time. B. thuringiensis was selected as a non-pathogenic surrogate for B. anthracis, the causative agent of anthrax and a proven biological weapon. UV radiation and UV/H2O2 exposure resulted in a >6 log10 reduction of the viable culturable counts of E. coli vegetative cells, and a 3 log10 reduction of B. thuringiensis spores. Scanning electron microscopy of the treated samples revealed severe damage on the surface of most E. coli cells, yet there was no significant change observed in the morphology of the B. thuringiensis spores. Following AOP exposure, the BioSentry sensor showed an increase in the categories of unknown, rod and spores counts, but overall, did not correspond well with viable count assays. Data from this study show that advanced oxidation processes effectively inactivate E. coli vegetative cells, but not B. thuringiensis spores, which were more resistant to AOP. Further, the BioSentry in-line sensor was not successful in documenting destruction of the microbial cells in real-time.

  15. Modeling the pulsed light inactivation of microorganisms naturally occurring on vegetable substrates.

    PubMed

    Izquier, Adriana; Gómez-López, Vicente M

    2011-09-01

    Pulsed light (PL) is a fast non-thermal method for microbial inactivation. This research studied the kinetics of PL inactivation of microorganisms naturally occurring in some vegetables. Iceberg lettuce, white cabbage and Julienne-style cut carrots were subjected to increasing PL fluences up to 12J/cm(2) in order to study its effect on aerobic mesophilic bacteria determined by plate count. Also, sample temperature increase was determined by infrared thermometry. Survivors' curves were adjusted to several models. No shoulder but tail was observed. The Weibull model showed good fitting performance of data. Results for lettuce were: goodness-of-fit parameter RMSE=0.2289, fluence for the first decimal reduction δ=0.98±0.80J/cm(2) and concavity parameter p=0.33±0.08. Results for cabbage were: RMSE=0.0725, δ=0.81±0.23J/cm(2) and p=0.30±0.02; and for carrot: RMSE=0.1235, δ=0.39±0.24J/cm(2) and p=0.23±0.03. For lettuce, a log-linear and tail model was also suitable. Validation of the Weibull model produced determination coefficients of 0.88-0.96 and slopes of 0.78-0.99. Heating was too low to contribute to inactivation. A single low-energy pulse was enough to achieve one log reduction, with an ultrafast treatment time of 0.5ms. While PL efficacy was found to be limited to high residual counts, the achievable inactivation level may be considered useful for shelf-life extension.

  16. Synergistic and Antagonistic Effects of Combined Subzero Temperature and High Pressure on Inactivation of Escherichia coli

    PubMed Central

    Moussa, Marwen; Perrier-Cornet, Jean-Marie; Gervais, Patrick

    2006-01-01

    The combined effects of subzero temperature and high pressure on the inactivation of Escherichia coli K12TG1 were investigated. Cells of this bacterial strain were exposed to high pressure (50 to 450 MPa, 10-min holding time) at two temperatures (−20°C without freezing and 25°C) and three water activity levels (aw) (0.850, 0.992, and ca. 1.000) achieved with the addition of glycerol. There was a synergistic interaction between subzero temperature and high pressure in their effects on microbial inactivation. Indeed, to achieve the same inactivation rate, the pressures required at −20°C (in the liquid state) were more than 100 MPa less than those required at 25°C, at pressures in the range of 100 to 300 MPa with an aw of 0.992. However, at pressures greater than 300 MPa, this trend was reversed, and subzero temperature counteracted the inactivation effect of pressure. When the amount of water in the bacterial suspension was increased, the synergistic effect was enhanced. Conversely, when the aw was decreased by the addition of solute to the bacterial suspension, the baroprotective effect of subzero temperature increased sharply. These results support the argument that water compression is involved in the antimicrobial effect of high pressure. From a thermodynamic point of view, the mechanical energy transferred to the cell during the pressure treatment can be characterized by the change in volume of the system. The amount of mechanical energy transferred to the cell system is strongly related to cell compressibility, which depends on the water quantity in the cytoplasm. PMID:16391037

  17. Rabies virus inactivation by binary ethylenimine: new method for inactivated vaccine production.

    PubMed Central

    Larghi, O P; Nebel, A E

    1980-01-01

    The inactivation dynamics of rabies virus (PV strain) by binary ethylenimine, and the immunogenic properites and the stability of the vaccines prepared using this agent, were studied. Binary ethylenimine at a final concentration of 0.01 M was prepared wtih 2-bromoethylamine hydrobromide in alkaline solutions, either separately from or in suspensions of rabies virus propagated in BHK cells. The infectivity of virus suspensions containing more than 108 plaque-forming units per 0.1 ml was inactivated in 2 h when the inactivating agent was prepared before its addition to the suspensions, and in3 h when prepared directly in the suspensions. Liquid vaccines prepared in this manner and stored at different temperatures maintained potency for 1 month at 37 degrees C and for 6 months at 4 degrees C and 22 to 25 degrees C. Lyophilized vaccine maintained its potency for 6 months at the three temperatures. The inactivated vaccine mixed with aluminum or oil adjuvant at high dilutions protected guinea pigs against challenge. This safer procedure for rabies virus inactivation offers promise for the production of effective vaccines for the immunization of dogs and cattle. PMID:7358836

  18. Sodium channel inactivation in the crayfish giant axon. Must channels open before inactivating

    SciTech Connect

    Bean, B.P.

    1981-09-01

    Experiments on sodium channel inactivation kinetics were performed on voltage-clamped crayfish giant axons. The primary goals was to investigate whether channels must open before activating. Voltage-clamp artifacts were minimized by the use of low-sodium solutions and full series resistance compensation, and the spatial uniformity of the currents was checked with a closely spaced pair of electrodes used to measure local current densities. For membrane potentials between -40 and +40 mV, sodium currents decay to zero with a single exponential time-course. The time constant for decay is a steep function of membrane potential. The time-course of inactivation measured with the double-pulse method is very similar to the decay of current at the same potential. Steady-state inactivation curves measured with different test pulses are identical. The time-course of doubling pulse inactivation shows a lag that roughly correlates with the opening of sodium channels, but it is not strictly necessary for channels to open before inactivating. Measurements of the potential dependence of the integral of sodium conductance are also inconsistent with the simplest cases of models in which channels must open before activating.

  19. Removal of paper microbial contamination by atmospheric pressure DBD discharge

    NASA Astrophysics Data System (ADS)

    Vrajova, J.; Chalupova, L.; Novotny, O.; Cech, J.; Krcma, F.; Stahel, P.

    2009-08-01

    In this paper the removal of the microbial contamination from paper material using the plasma treatment at atmospheric pressure is investigated. The Aspergillus niger has been chosen as a bio-indicator enabling to evaluate the effect of plasma assisted microbial inactivation. Dielectric barrier discharge (DBD) operated at atmospheric pressure was used for the paper sterilization. The working gas (nitrogen, argon and helium), plasma exposition time and the plasma power density were varied in order to see the effect of the plasma treatment on the fungi removal. After the treatment, the microbial abatement was evaluated by the standard plate count method. This proved a positive effect of the DBD plasma treatment on fungi removal. Morphological and colorimetric changes of paper substrate after plasma treatment were also investigated.

  20. Evaluation of the factors controlling the time-dependent inactivation rate coefficients of bacteriophage MS2 and PRD1

    USGS Publications Warehouse

    Anders, R.; Chrysikopoulos, C.V.

    2006-01-01

    Static and dynamic batch experiments were conducted to study the effects of temperature and the presence of sand on the inactivation of bacteriophage MS2 and PRD1. The experimental data suggested that the inactivation process can be satisfactorily represented by a pseudo-first-order expression with time-dependent rate coefficients. The time-dependent rate coefficients were used to determine pertinent thermodynamic properties required for the analysis of the molecular processes involved in the inactivation of each bacteriophage. A combination of high temperature and the presence of sand appears to produce the greatest disruption to the surrounding protein coat of MS2. However, the lower activation energies for PRD1 indicate a weaker dependence of the inactivation rate on temperature. Instead, the presence of air-liquid and air-solid interfaces appears to produce the greatest damage to specific viral components that are related to infection. These results indicate the importance of using thermodynamic parameters based on the time-dependent inactivation model to better predict the inactivation of viruses in groundwater. ?? 2006 American Chemical Society.

  1. Roscovitine inhibits CaV3.1 (T-type) channels by preferentially affecting closed-state inactivation.

    PubMed

    Yarotskyy, Viktor; Elmslie, Keith S

    2012-02-01

    T-type calcium channels (Ca(V)3) play an important role in many physiological and pathological processes, including cancerogenesis. Ca(V)3 channel blockers have been proposed as potential cancer treatments. Roscovitine, a trisubstituted purine, is a cyclin-dependent kinase (CDK) inhibitor that is currently undergoing phase II clinical trials as an anticancer drug and has been shown to affect calcium and potassium channel activity. Here, we investigate the effect of roscovitine on Ca(V)3.1 channels. Ca(V)3.1 channels were transiently expressed in human embryonic kidney 293 cells, and currents were recorded by using the whole-cell patch-clamp technique. Roscovitine blocks Ca(V)3.1 channels with higher affinity for depolarized cells (EC₅₀ of 10 μM), which is associated with a negative shift in the voltage dependence of closed-state inactivation. Enhanced inactivation is mediated by roscovitine-induced acceleration of closed-state inactivation and slowed recovery from inactivation. Small effects of roscovitine were also observed on T-channel deactivation and open-state inactivation, but neither could explain the inhibitory effect. Roscovitine inhibits Ca(V)3.1 channels within the therapeutic range (10-50 μM) in part by stabilizing the closed-inactivated state. The ability of roscovitine to block multiple mediators of proliferation, including CDKs and Ca(V)3.1 channels, may facilitate its anticancer properties. PMID:22088954

  2. Coupling between fast and slow inactivation revealed by analysis of a point mutation (F1304Q) in mu 1 rat skeletal muscle sodium channels.

    PubMed Central

    Nuss, H B; Balser, J R; Orias, D W; Lawrence, J H; Tomaselli, G F; Marban, E

    1996-01-01

    1. We sought to elucidate the mechanism of the defective inactivation that characterizes sodium channels containing mutations in the cytoplasmic loop between the third and fourth domains (the III-IV linker). Specifically, we measured whole-cell and single-channel currents through wild-type and F1304Q mutant mu 1 rat skeletal muscle Na+ channels expressed in Xenopus laevis oocytes. 2. In wild-type channels, inactivation is complete and the faster of two decay components predominates. In F1304Q, inactivation is incomplete; the slow decay component is larger in amplitude and slower than in wild-type. The fraction of non-inactivating current is substantial (37 +/- 2% of peak current at -20 mV) in F1304Q. 3. Cell-attached patch recordings confirmed the profound kinetic differences and indicated that permeation was not altered by the F1304Q mutation. The F1304Q phenotype must be conferred entirely by changes in gating properties and is not remedied by coexpression with the beta 1-subunit. 4. Recovery from inactivation of F1304Q channels is faster than for wild-type channels and three exponentials are required to describe recovery adequately following long (5 s) depolarizations. Thus, there are three inactivated states even in 'inactivation-deficient' F1304Q channels. 5. The steady-state voltage dependence of F1304Q inactivation is right-shifted by 26 +/- 2 mV. 6. A gating model incorporating three inactivated states, all directly accessible from multiple closed states or the open state, was constrained to fit wild-type and F1304Q inactivation (h infinitive) data and repriming data simultaneously. While it was necessary to alter the rate constants entering and exiting all three inactivated states, the model accounted for the F1304Q-induced rightward shift in steady-state inactivation without imposing voltage dependence on the inactivation rate constants. 7. We conclude that the F1304Q mutation in mu 1 sodium channels modifies several inactivation processes simultaneously

  3. Microfluidics and microbial engineering.

    PubMed

    Kou, Songzi; Cheng, Danhui; Sun, Fei; Hsing, I-Ming

    2016-02-01

    The combination of microbial engineering and microfluidics is synergistic in nature. For example, microfluidics is benefiting from the outcome of microbial engineering and many reported point-of-care microfluidic devices employ engineered microbes as functional parts for the microsystems. In addition, microbial engineering is facilitated by various microfluidic techniques, due to their inherent strength in high-throughput screening and miniaturization. In this review article, we firstly examine the applications of engineered microbes for toxicity detection, biosensing, and motion generation in microfluidic platforms. Secondly, we look into how microfluidic technologies facilitate the upstream and downstream processes of microbial engineering, including DNA recombination, transformation, target microbe selection, mutant characterization, and microbial function analysis. Thirdly, we highlight an emerging concept in microbial engineering, namely, microbial consortium engineering, where the behavior of a multicultural microbial community rather than that of a single cell/species is delineated. Integrating the disciplines of microfluidics and microbial engineering opens up many new opportunities, for example in diagnostics, engineering of microbial motors, development of portable devices for genetics, high throughput characterization of genetic mutants, isolation and identification of rare/unculturable microbial species, single-cell analysis with high spatio-temporal resolution, and exploration of natural microbial communities.

  4. Effects of biochar blends on microbial community composition in two coastal plain soils

    EPA Science Inventory

    The amendment of soil with biochar has been demonstrated to have an effect not only on the soil physicochemical properties, but also on soil microbial community composition and activity. Previous reports have demonstrated significant impacts on soil microbial community structure....

  5. Biogeochemical Processes in Microbial Ecosystems

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    The hierarchical organization of microbial ecosystems determines process rates that shape Earth's environment, create the biomarker sedimentary and atmospheric signatures of life and define the stage upon which major evolutionary events occurred. In order to understand how microorganisms have shaped the global environment of Earth and potentially, other worlds, we must develop an experimental paradigm that links biogeochemical processes with ever-changing temporal and spatial distributions of microbial population, and their metabolic properties. Photosynthetic microbial mats offer an opportunity to define holistic functionality at the millimeter scale. At the same time, their Biogeochemistry contributes to environmental processes on a planetary scale. These mats are possibly direct descendents of the most ancient biological communities; communities in which oxygenic photosynthesis might have been invented. Mats provide one of the best natural systems to study how microbial populations associate to control dynamic biogeochemical gradients. These are self-sustaining, complete ecosystems in which light energy absorbed over a diel (24 hour) cycle drives the synthesis of spatially-organized, diverse biomass. Tightly-coupled microorganisms in the mat have specialized metabolisms that catalyze transformations of carbon, nitrogen. sulfur, and a host of other elements.

  6. Aladapcin, a new microbial metabolite that enhances host resistance against bacterial infection. Production, isolation, physico-chemical properties and biological activities.

    PubMed

    Shiraishi, A; Nakajima, M; Katayama, T; Matsuda, T; Niwa, T; Okazaki, T; Takamatsu, Y; Nagaki, H; Kinoshita, T; Takatsu, T

    1990-06-01

    We have constructed a new screening system for detecting microbial products that enhance host resistance against bacterial infection. It was found that a new compound with such activity is produced by a soil isolate classified as Nocardia sp. SANK 60484. The compound was isolated from the culture filtrate of the organism and named aladapcin after its amino acid composition. Aladapcin was obtained as an amphoteric white amorphous powder with the molecular formula, C13H25N5O5. It consists of 2 mol of D-alanine and 1 mol of meso-diaminopimelic acid. From the analysis of IR, 1H NMR and FAB-MS spectra, the structure was assigned to be a tripeptide. Aladapcin enhanced host resistance against an experimental Escherichia coli infection in mice at doses ranging between 1 and 100 micrograms/kg. PMID:2199420

  7. Anti microbial and anti-oxidant properties of the isolated compounds from the methanolic extract from the leaves of Tectona grandis

    PubMed Central

    Nayeem, Naira; Karvekar, MD

    2011-01-01

    The compounds Gallic acid (GA), rutin(R), quercitin (Q), ellagic acid (EA) and sitosterol(S) were isolated from the methanolic extract of the leaves of Tectona grandis. These compounds were subjected to antimicrobial and antioxidant activity. The zone of inhibition of isolated compounds was evaluated by cup plate method against bacteria i.e. Staphylococcus aureus, Bacillus subtilis, Eschericia coli, Klebsiella pneumoniae and fungi Candida albicans. The anti oxidant activity of the extract and the isolated compounds were evaluated by using 1, 1-Diphenyl-2-picryl-hydrazyl (DPPH). Rutin has shown significant anti microbial activity against both the gram positive and gram negative bacteria when compared to the other compounds. The results of the anti oxidant activity revealed that quercitin showed good activity followed by rutin gallic acid, ellagic acid and sitosterol. The difference in both these activities of the isolated compounds was attributed to the number and position of the phenolic OH groups PMID:24826018

  8. Inactivation of micro-organisms isolated from infected lower limb arthroplasties using high-intensity narrow-spectrum (HINS) light.

    PubMed

    Gupta, S; Maclean, M; Anderson, J G; MacGregor, S J; Meek, R M D; Grant, M H

    2015-02-01

    High-intensity narrow-spectrum (HINS) light is a novel violet-blue light inactivation technology which kills bacteria through a photodynamic process, and has been shown to have bactericidal activity against a wide range of species. Specimens from patients with infected hip and knee arthroplasties were collected over a one-year period (1 May 2009 to 30 April 2010). A range of these microbial isolates were tested for sensitivity to HINS-light. During testing, suspensions of the pathogens were exposed to increasing doses of HINS-light (of 123mW/cm(2) irradiance). Non-light exposed control samples were also used. The samples were then plated onto agar plates and incubated at 37°C for 24 hours before enumeration. Complete inactivation (greater than 4-log10 reduction) was achieved for all of the isolates. The typical inactivation curve showed a slow initial reaction followed by a rapid period of inactivation. The doses of HINS-light required ranged between 118 and 2214 J/cm(2). Gram-positive bacteria were generally found to be more susceptible than Gram-negative. As HINS-light uses visible wavelengths, it can be safely used in the presence of patients and staff. This unique feature could lead to its possible use in the prevention of infection during surgery and post-operative dressing changes. Cite this article: Bone Joint J 2015;97-B:283-8.

  9. The Effects of Fungicide, Soil Fumigant, Bio-Organic Fertilizer and Their Combined Application on Chrysanthemum Fusarium Wilt Controlling, Soil Enzyme Activities and Microbial Properties.

    PubMed

    Zhao, Shuang; Chen, Xi; Deng, Shiping; Dong, Xuena; Song, Aiping; Yao, Jianjun; Fang, Weimin; Chen, Fadi

    2016-01-01

    Sustained monoculture often leads to a decline in soil quality, in particular to the build-up of pathogen populations, a problem that is conventionally addressed by the use of either fungicide and/or soil fumigation. This practice is no longer considered to be either environmentally sustainable or safe. While the application of organic fertilizer is seen as a means of combating declining soil fertility, it has also been suggested as providing some control over certain soil-borne plant pathogens. Here, a greenhouse comparison was made of the Fusarium wilt control efficacy of various treatments given to a soil in which chrysanthemum had been produced continuously for many years. The treatments comprised the fungicide carbendazim (MBC), the soil fumigant dazomet (DAZ), the incorporation of a Paenibacillus polymyxa SQR21 (P. polymyxa SQR21, fungal antagonist) enhanced bio-organic fertilizer (BOF), and applications of BOF combined with either MBC or DAZ. Data suggest that all the treatments evaluated show good control over Fusarium wilt. The MBC and DAZ treatments were effective in suppressing the disease, but led to significant decrease in urease activity and no enhancement of catalase activity in the rhizosphere soils. BOF including treatments showed significant enhancement in soil enzyme activities and microbial communities compared to the MBC and DAZ, evidenced by differences in bacterial/fungi (B/F) ratios, Shannon-Wiener indexes and urease, catalase and sucrase activities in the rhizosphere soil of chrysanthemum. Of all the treatments evaluated, DAZ/BOF application not only greatly suppressed Fusarium wilt and enhanced soil enzyme activities and microbial communities but also promoted the quality of chrysanthemum obviously. Our findings suggest that combined BOF with DAZ could more effectively control Fusarium wilt disease of chrysanthemum. PMID:27110753

  10. Inactivation of the sodium channel. I. Sodium current experiments

    PubMed Central

    Bezanilla, F; Armstrong, CM

    1977-01-01

    Inactivation of sodium conductance has been studied in squid axons with voltage clamp techniques and with the enzyme pronase which selectively destroys inactivation. Comparison of the sodium current before and after pronase treatment shows a lag of several hundred microseconds in the onset of inactivation after depolarization. This lag can of several hundred microseconds in the onset of inactivation after polarization. This lag can also be demonstrated with double-pulse experiments. When the membrane potential is hyperpolarized to -140 mV before depolarization, both activation and inactivation are delayed. These findings suggest that inactivation occurs only after activation are delayed. These findings suggest that inactivation occurs only after activation; i.e. that the channels must open before they can inactivate. The time constant of inactivation measured with two pulses (τ(c)) is the same as the one measured from the decay of the sodium current during a single pulse (τ(h)). For large depolarizations, steady-state inactivation becomes more incomplete as voltage increases; but it is relatively complete and appears independent of voltage when determined with a two- pulse method. This result confirms the existence of a second open state for Na channels, as proposed by Chandler and Meves (1970. J. Physiol. [Lond.]. 211:653-678). The time constant of recovery from inactivation is voltage dependent and decreases as the membrane potential is made more negative. A model for Na channels is presented which has voltage-dependent transitions between the closed and open states, and a voltage-independent transition between the open and the inactivated state. In this model the voltage dependence of inactivation is a consequence of coupling to the activation process. PMID:591911

  11. Impact of Fast Sodium Channel Inactivation on Spike Threshold Dynamics and Synaptic Integration

    PubMed Central

    Platkiewicz, Jonathan; Brette, Romain

    2011-01-01

    Neurons spike when their membrane potential exceeds a threshold value. In central neurons, the spike threshold is not constant but depends on the stimulation. Thus, input-output properties of neurons depend both on the effect of presynaptic spikes on the membrane potential and on the dynamics of the spike threshold. Among the possible mechanisms that may modulate the threshold, one strong candidate is Na channel inactivation, because it specifically impacts spike initiation without affecting the membrane potential. We collected voltage-clamp data from the literature and we found, based on a theoretical criterion, that the properties of Na inactivation could indeed cause substantial threshold variability by itself. By analyzing simple neuron models with fast Na inactivation (one channel subtype), we found that the spike threshold is correlated with the mean membrane potential and negatively correlated with the preceding depolarization slope, consistent with experiments. We then analyzed the impact of threshold dynamics on synaptic integration. The difference between the postsynaptic potential (PSP) and the dynamic threshold in response to a presynaptic spike defines an effective PSP. When the neuron is sufficiently depolarized, this effective PSP is briefer than the PSP. This mechanism regulates the temporal window of synaptic integration in an adaptive way. Finally, we discuss the role of other potential mechanisms. Distal spike initiation, channel noise and Na activation dynamics cannot account for the observed negative slope-threshold relationship, while adaptive conductances (e.g. K+) and Na inactivation can. We conclude that Na inactivation is a metabolically efficient mechanism to control the temporal resolution of synaptic integration. PMID:21573200

  12. Property.

    ERIC Educational Resources Information Center

    Piele, Philip K.

    Several court cases involving acquisition, use, and disposal of property by institutions of higher education are briefly summarized in this chapter. Cases discussed touch on such topics as municipal annexation of university property; repurchase of properties temporarily allocated to faculty members; implications of zoning laws and zoning board…

  13. High-Pressure Inactivation of Rotaviruses: Role of Treatment Temperature and Strain Diversity in Virus Inactivation.

    PubMed

    Araud, Elbashir; DiCaprio, Erin; Yang, Zhihong; Li, Xinhui; Lou, Fangfei; Hughes, John H; Chen, Haiqiang; Li, Jianrong

    2015-10-01

    Rotavirus (RV) is the major etiological agent of acute gastroenteritis in infants worldwide. Although high-pressure processing (HPP) is a popular method to inactivate enteric pathogens in food, the sensitivity of different virus strains within same species and serotype to HPP is variable. This study aimed to compare the barosensitivities of seven RV strains derived from four serotypes (serotype G1, strains Wa, Ku, and K8; serotype G2, strain S2; serotype G3, strains SA-11 and YO; and serotype G4, strain ST3) following high-pressure treatment. RV strains showed various responses to HPP based on the initial temperature and had different inactivation profiles. Ku, K8, S2, SA-11, YO, and ST3 showed enhanced inactivation at 4°C compared to 20°C. In contrast, strain Wa was not significantly impacted by the initial treatment temperature. Within serotype G1, strain Wa was significantly (P < 0.05) more resistant to HPP than strains Ku and K8. Overall, the resistance of the human RV strains to HPP at 4°C can be ranked as Wa > Ku = K8 > S2 > YO > ST3, and in terms of serotype the ranking is G1 > G2 > G3 > G4. In addition, pressure treatment of 400 MPa for 2 min was sufficient to eliminate the Wa strain, the most pressure-resistant RV, from oyster tissues. HPP disrupted virion structure but did not degrade viral protein or RNA, providing insight into the mechanism of viral inactivation by HPP. In conclusion, HPP is capable of inactivating RV at commercially acceptable pressures, and the efficacy of inactivation is strain dependent.

  14. High-Pressure Inactivation of Rotaviruses: Role of Treatment Temperature and Strain Diversity in Virus Inactivation

    PubMed Central

    Araud, Elbashir; DiCaprio, Erin; Yang, Zhihong; Li, Xinhui; Lou, Fangfei; Hughes, John H.; Chen, Haiqiang

    2015-01-01

    Rotavirus (RV) is the major etiological agent of acute gastroenteritis in infants worldwide. Although high-pressure processing (HPP) is a popular method to inactivate enteric pathogens in food, the sensitivity of different virus strains within same species and serotype to HPP is variable. This study aimed to compare the barosensitivities of seven RV strains derived from four serotypes (serotype G1, strains Wa, Ku, and K8; serotype G2, strain S2; serotype G3, strains SA-11 and YO; and serotype G4, strain ST3) following high-pressure treatment. RV strains showed various responses to HPP based on the initial temperature and had different inactivation profiles. Ku, K8, S2, SA-11, YO, and ST3 showed enhanced inactivation at 4°C compared to 20°C. In contrast, strain Wa was not significantly impacted by the initial treatment temperature. Within serotype G1, strain Wa was significantly (P < 0.05) more resistant to HPP than strains Ku and K8. Overall, the resistance of the human RV strains to HPP at 4°C can be ranked as Wa > Ku = K8 > S2 > YO > ST3, and in terms of serotype the ranking is G1 > G2 > G3 > G4. In addition, pressure treatment of 400 MPa for 2 min was sufficient to eliminate the Wa strain, the most pressure-resistant RV, from oyster tissues. HPP disrupted virion structure but did not degrade viral protein or RNA, providing insight into the mechanism of viral inactivation by HPP. In conclusion, HPP is capable of inactivating RV at commercially acceptable pressures, and the efficacy of inactivation is strain dependent. PMID:26187961

  15. Rust preventive oil additives based on microbial fats

    SciTech Connect

    Salenko, V.I.; Fedorov, V.V.; Kazantsev, Yu.E.

    1983-03-01

    This article investigates the composition and lubricating properties of microbial fats obtained from microorganisms grown on various hydrocarbon substrates (n-paraffins, alcohols, natural gas, petroleum distillates, etc.). Focuses on the protective functions of the 4 main fractions (unsaponifiables, free fatty acids, glycerides, and phospholipids) which comprise the microbial fat from a yeast grown on purified liquid n-paraffins. Concludes that neutralized microbial fats can be used as preservative additives; that the principal components of the microbial fats have the properties necessary for oil-soluble corrosion inhibitors; that the phospholipids of the microbial fat can fulfill the functions of not only preservative additives, but also highly effective operational/ preservative additives; and that fats of microbial origin can be used in the development of multipurpose polyfunctional additives.

  16. Susceptibility of representative dental pathogens to inactivation by the PDT with water-soluble photosensitizers

    NASA Astrophysics Data System (ADS)

    Angelov, Ivan; Mantareva, Vanya; Kussovski, Veselin; Worle, Diter; Kisov, Hristo; Belcheva, Marieta; Georgieva, Tzvetelina; Dimitrov, Slavcho

    2011-02-01

    In the recent decade the applications of photodynamic therapy (PDT) rapidly increase in several topics and one of areas where the PDT in the future will be play significant role is dentistry. The different photosensitizing complexes with a good water solubility and with absorption with an intensive maximum in the red region (630-690 nm), which makes them suitable for photodynamic treatments, were investigated. The photochemical properties of complexes for singlet oxygen generation were investigated and were shown relations between uptake levels and light intensity to achieve increase in photodynamic efficacy. Photodynamic efficacy against fungi Candida albicans and bacteria's E. faecalis, MRSA and S. Mutans in planktonic media was evaluated. The high photodynamic efficacy was shown for SiPc at very low concentrations (0.9 μM) and light doses of 50 J cm-2 by intensity of light 60 mW cm-2. The photodynamic response for E. faecalis, MRSA and S. Mutans, after treatments with different photosensitizers show strong dependence on concentrations of photsensitzers and micro organisms. The level of inactivation of the pathogen bacteria's from 1-2 degree of initial concentration up to full inactivation was observed. The studied complexes were compared to the recently studied Methylene blue, Haematoporphyrine and tetra-methylpirydiloxy Zn(II)- phthalocyanines and experimental results show that some of them have a good potential for inactivation of representative pathogenic bacterial strains. Experimental results also indicate that photodynamic therapy appears an effective method for inactivation of oral pathogenic bacterias and fungi.

  17. Susceptibility of representative dental pathogens to inactivation by the PDT with water-soluble photosensitizers

    NASA Astrophysics Data System (ADS)

    Angelov, Ivan; Mantareva, Vanya; Kussovski, Veselin; Worle, Diter; Kisov, Hristo; Belcheva, Marieta; Georgieva, Tzvetelina; Dimitrov, Slavcho

    2010-09-01

    In the recent decade the applications of photodynamic therapy (PDT) rapidly increase in several topics and one of areas where the PDT in the future will be play significant role is dentistry. The different photosensitizing complexes with a good water solubility and with absorption with an intensive maximum in the red region (630-690 nm), which makes them suitable for photodynamic treatments, were investigated. The photochemical properties of complexes for singlet oxygen generation were investigated and were shown relations between uptake levels and light intensity to achieve increase in photodynamic efficacy. Photodynamic efficacy against fungi Candida albicans and bacteria's E. faecalis, MRSA and S. Mutans in planktonic media was evaluated. The high photodynamic efficacy was shown for SiPc at very low concentrations (0.9 μM) and light doses of 50 J cm-2 by intensity of light 60 mW cm-2. The photodynamic response for E. faecalis, MRSA and S. Mutans, after treatments with different photosensitizers show strong dependence on concentrations of photsensitzers and micro organisms. The level of inactivation of the pathogen bacteria's from 1-2 degree of initial concentration up to full inactivation was observed. The studied complexes were compared to the recently studied Methylene blue, Haematoporphyrine and tetra-methylpirydiloxy Zn(II)- phthalocyanines and experimental results show that some of them have a good potential for inactivation of representative pathogenic bacterial strains. Experimental results also indicate that photodynamic therapy appears an effective method for inactivation of oral pathogenic bacterias and fungi.

  18. THE INACTIVATION OF TRYPSIN BY X-RAYS

    PubMed Central

    Clark, Harry; Northrop, John H.

    1925-01-01

    1. The inactivating effect of soft x-rays on trypsin in solutions of various degrees of concentration has been studied. 2. It has been found to run parallel with spontaneous heat inactivation. It is almost, if not entirely, confined to the free or active trypsin. 3. Under radiation of constant intensity, the inactivation follows the simple exponential law which indicates a monomolecular reaction. 4. Estimates have been made of the amount of ionization required to inactivate trypsin to half value in these experiments and in those of Hussey and Thompson, who employed the beta rays from Radium B and C. The close agreement corroborates the idea that the effect is a function of ionization only. 5. The nature of the process of inactivation is discussed; inactivation seems to result from electrical neutralization of the trypsin ion. PMID:19872235

  19. Virus removal and inactivation by iron (hydr)oxide-mediated Fenton-like processes under sunlight and in the dark.

    PubMed

    Nieto-Juarez, Jessica I; Kohn, Tamar

    2013-09-01

    Advanced oxidation processes (AOPs) have emerged as a promising alternative to conventional disinfection methods to control microbial water quality, yet little is known about the fate of viruses in AOPs. In this study, we investigated the fate of MS2 coliphage in AOPs that rely on heterogeneous Fenton-like processes catalyzed by iron (hydr)oxide particles. Both physical removal of viruses from solution via adsorption onto particles as well as true inactivation were considered. Virus fate was studied in batch reactors at circumneutral pH, containing 200 mg L(-1) of four different commercial iron (hydr)oxide particles of similar mesh sizes: hematite (α-Fe2O3), goethite (α-FeOOH), magnetite (Fe3O4) and amorphous iron(iii) hydroxide (Fe(OH)3). The effect of adsorption and sunlight exposure on the survival of MS2 was considered. On a mass basis, all particles exhibited a similar virus adsorption capacity, whereas the rate of adsorption followed the order FeOOH > Fe2O3 > Fe3O4 ≈ Fe(OH)3. This adsorption behavior could not be explained by electrostatic considerations; instead, adsorption must be governed by other factors, such as hydrophobic interactions or van der Waals forces. Adsorption to three of the particles investigated (α-FeOOH, Fe3O4, Fe(OH)3) caused virus inactivation of 7%, 22%, and 14%, respectively. Exposure of particle-adsorbed viruses to sunlight and H2O2 resulted in efficient additional inactivation, whereas inactivation was negligible for suspended viruses. The observed first-order inactivation rate constants were 6.6 × 10(-2), 8.7 × 10(-2), 0.55 and 1.5 min(-1) for α-FeOOH, α-Fe2O3, Fe3O4 and Fe(OH)3 respectively. In the absence of sunlight or H2O2, no inactivation was observed beyond that caused by adsorption alone, except for Fe3O4, which caused virus inactivation via a dark Fenton-like process. Overall our results demonstrate that heterogeneous Fenton-like processes can both physically remove viruses from water as well as inactivate them via

  20. Virus removal and inactivation by iron (hydr)oxide-mediated Fenton-like processes under sunlight and in the dark.

    PubMed

    Nieto-Juarez, Jessica I; Kohn, Tamar

    2013-09-01

    Advanced oxidation processes (AOPs) have emerged as a promising alternative to conventional disinfection methods to control microbial water quality, yet little is known about the fate of viruses in AOPs. In this study, we investigated the fate of MS2 coliphage in AOPs that rely on heterogeneous Fenton-like processes catalyzed by iron (hydr)oxide particles. Both physical removal of viruses from solution via adsorption onto particles as well as true inactivation were considered. Virus fate was studied in batch reactors at circumneutral pH, containing 200 mg L(-1) of four different commercial iron (hydr)oxide particles of similar mesh sizes: hematite (α-Fe2O3), goethite (α-FeOOH), magnetite (Fe3O4) and amorphous iron(iii) hydroxide (Fe(OH)3). The effect of adsorption and sunlight exposure on the survival of MS2 was considered. On a mass basis, all particles exhibited a similar virus adsorption capacity, whereas the rate of adsorption followed the order FeOOH > Fe2O3 > Fe3O4 ≈ Fe(OH)3. This adsorption behavior could not be explained by electrostatic considerations; instead, adsorption must be governed by other factors, such as hydrophobic interactions or van der Waals forces. Adsorption to three of the particles investigated (α-FeOOH, Fe3O4, Fe(OH)3) caused virus inactivation of 7%, 22%, and 14%, respectively. Exposure of particle-adsorbed viruses to sunlight and H2O2 resulted in efficient additional inactivation, whereas inactivation was negligible for suspended viruses. The observed first-order inactivation rate constants were 6.6 × 10(-2), 8.7 × 10(-2), 0.55 and 1.5 min(-1) for α-FeOOH, α-Fe2O3, Fe3O4 and Fe(OH)3 respectively. In the absence of sunlight or H2O2, no inactivation was observed beyond that caused by adsorption alone, except for Fe3O4, which caused virus inactivation via a dark Fenton-like process. Overall our results demonstrate that heterogeneous Fenton-like processes can both physically remove viruses from water as well as inactivate them via

  1. Recurrent inactivating RASA2 mutations in melanoma.

    PubMed

    Arafeh, Rand; Qutob, Nouar; Emmanuel, Rafi; Keren-Paz, Alona; Madore, Jason; Elkahloun, Abdel; Wilmott, James S; Gartner, Jared J; Di Pizio, Antonella; Winograd-Katz, Sabina; Sindiri, Sivasish; Rotkopf, Ron; Dutton-Regester, Ken; Johansson, Peter; Pritchard, Antonia L; Waddell, Nicola; Hill, Victoria K; Lin, Jimmy C; Hevroni, Yael; Rosenberg, Steven A; Khan, Javed; Ben-Dor, Shifra; Niv, Masha Y; Ulitsky, Igor; Mann, Graham J; Scolyer, Richard A; Hayward, Nicholas K; Samuels, Yardena

    2015-12-01

    Analysis of 501 melanoma exomes identified RASA2, encoding a RasGAP, as a tumor-suppressor gene mutated in 5% of melanomas. Recurrent loss-of-function mutations in RASA2 were found to increase RAS activation, melanoma cell growth and migration. RASA2 expression was lost in ≥30% of human melanomas and was associated with reduced patient survival. These findings identify RASA2 inactivation as a melanoma driver and highlight the importance of RasGAPs in cancer. PMID:26502337

  2. Atmospheric plasma inactivation of foodborne pathogens on fresh produce surfaces.

    PubMed

    Critzer, Faith J; Kelly-Wintenberg, Kimberly; South, Suzanne L; Golden, David A

    2007-10-01

    A study was conducted to determine the effect of one atmosphere uniform glow discharge plasma (OAUGDP) on inactivation of Escherichia coli O157:H7, Salmonella, and Listeria monocytogenes on apples, cantaloupe, and lettuce, respectively. A five-strain mixture of cultured test organisms was washed, suspended in phosphate buffer, and spot inoculated onto produce (7 log CFU per sample). Samples were exposed inside a chamber affixed to the OAUGDP blower unit operated at a power of 9 kV and frequency of 6 kHz. This configuration allows the sample to be placed outside of the plasma generation unit while allowing airflow to carry the antimicrobial active species, including ozone and nitric oxide, onto the food sample. Cantaloupe and lettuce samples were exposed for 1, 3, and 5 min, while apple samples were exposed for 30 s, 1 min, and 2 min. After exposure, samples were pummeled in 0.1% peptone water-2% Tween 80, diluted, and plated in duplicate onto selective media and tryptic soy agar and incubated as follows: E. coli O157:H7 (modified eosin methylene blue) and Salmonella (xylose lysine tergitol-4) for 48 h at 37 degrees C, and L. monocytogenes (modified Oxford medium) at 48 h for 32 degrees C. E. coli O157:H7 populations were reduced by >1 log after 30-s and 1-min exposures and >2 log after a 2-min exposure. Salmonella populations were reduced by >2 log after 1 min. Three- and 5-min exposure times resulted in >3-log reduction. L. monocytogenes populations were reduced by 1 log after 1 min of exposure. Three- and 5-min exposure times resulted in >3- and >5-log reductions, respectively. This process has the capability of serving as a novel, nonthermal processing technology to be used for reducing microbial populations on produce surfaces. PMID:17969610

  3. Guiding bioprocess design by microbial ecology.

    PubMed

    Volmer, Jan; Schmid, Andreas; Bühler, Bruno

    2015-06-01

    Industrial bioprocess development is driven by profitability and eco-efficiency. It profits from an early stage definition of process and biocatalyst design objectives. Microbial bioprocess environments can be considered as synthetic technical microbial ecosystems. Natural systems follow Darwinian evolution principles aiming at survival and reproduction. Technical systems objectives are eco-efficiency, productivity, and profitable production. Deciphering technical microbial ecology reveals differences and similarities of natural and technical systems objectives, which are discussed in this review in view of biocatalyst and process design and engineering strategies. Strategies for handling opposing objectives of natural and technical systems and for exploiting and engineering natural properties of microorganisms for technical systems are reviewed based on examples. This illustrates the relevance of considering microbial ecology for bioprocess design and the potential for exploitation by synthetic biology strategies. PMID:25835154

  4. Guiding bioprocess design by microbial ecology.

    PubMed

    Volmer, Jan; Schmid, Andreas; Bühler, Bruno

    2015-06-01

    Industrial bioprocess development is driven by profitability and eco-efficiency. It profits from an early stage definition of process and biocatalyst design objectives. Microbial bioprocess environments can be considered as synthetic technical microbial ecosystems. Natural systems follow Darwinian evolution principles aiming at survival and reproduction. Technical systems objectives are eco-efficiency, productivity, and profitable production. Deciphering technical microbial ecology reveals differences and similarities of natural and technical systems objectives, which are discussed in this review in view of biocatalyst and process design and engineering strategies. Strategies for handling opposing objectives of natural and technical systems and for exploiting and engineering natural properties of microorganisms for technical systems are reviewed based on examples. This illustrates the relevance of considering microbial ecology for bioprocess design and the potential for exploitation by synthetic biology strategies.

  5. Heat inactivation of beta-lactam antibiotics in milk.

    PubMed

    Zorraquino, M A; Roca, M; Fernandez, N; Molina, M P; Althaus, R

    2008-06-01

    The presence of residues of antimicrobial substances in milk is one of the main concerns of the milk industry, as it poses a risk of toxicity to public health, and can seriously influence the technological properties of milk and dairy products. Moreover, the information available on the thermostability characteristics of these residues, particularly regarding the heat treatments used in control laboratories and the dairy industry, is very scarce. The aim of the study was, therefore, to analyze the effect of different heat treatments (40 degrees C for 10 min, 60 degrees C for 30 min, 83 degrees C for 10 min, 120 degrees C for 20 min, and 140 degrees C for 10 s) on milk samples fortified with three concentrations of nine beta-lactam antibiotics (penicillin G: 3, 6, and 12 microg/liter; ampicillin: 4, 8, and 16 microg/liter; amoxicillin: 4, 8, and 16 microg/liter; cloxacillin: 60, 120, and 240 microg/liter; cefoperazone: 55, 110, and 220 microg/liter; cefquinome: 100, 200, and 400 microg/liter; cefuroxime: 65, 130, and 260 microg/liter; cephalexin: 80, 160, and 220 microg/ liter; and cephalonium: 15, 30, and 60 microg/liter). The method used was a bioassay based on the inhibition of Geobacillus stearothermophilus var. calidolactis. The results showed that heating milk samples at 40 degrees C for 10 min hardly produced any heat inactivation at all, while the treatment at 83 degrees C for 10 min caused a 20% loss in penicillin G, 27% in cephalexin, and 35% in cefuroxime. Of the three dairy industry heat treatments studied in this work, low pasteurization (60 degrees C for 30 min) and treatment at 140 degrees C for 10 s only caused a small loss of antimicrobial activity, whereas classic sterilization (120 degrees C for 20 min) showed a high level of heat inactivation of over 65% for penicillins and 90% for cephalosporins. PMID:18592745

  6. Heat inactivation of beta-lactam antibiotics in milk.

    PubMed

    Zorraquino, M A; Roca, M; Fernandez, N; Molina, M P; Althaus, R

    2008-06-01

    The presence of residues of antimicrobial substances in milk is one of the main concerns of the milk industry, as it poses a risk of toxicity to public health, and can seriously influence the technological properties of milk and dairy products. Moreover, the information available on the thermostability characteristics of these residues, particularly regarding the heat treatments used in control laboratories and the dairy industry, is very scarce. The aim of the study was, therefore, to analyze the effect of different heat treatments (40 degrees C for 10 min, 60 degrees C for 30 min, 83 degrees C for 10 min, 120 degrees C for 20 min, and 140 degrees C for 10 s) on milk samples fortified with three concentrations of nine beta-lactam antibiotics (penicillin G: 3, 6, and 12 microg/liter; ampicillin: 4, 8, and 16 microg/liter; amoxicillin: 4, 8, and 16 microg/liter; cloxacillin: 60, 120, and 240 microg/liter; cefoperazone: 55, 110, and 220 microg/liter; cefquinome: 100, 200, and 400 microg/liter; cefuroxime: 65, 130, and 260 microg/liter; cephalexin: 80, 160, and 220 microg/ liter; and cephalonium: 15, 30, and 60 microg/liter). The method used was a bioassay based on the inhibition of Geobacillus stearothermophilus var. calidolactis. The results showed that heating milk samples at 40 degrees C for 10 min hardly produced any heat inactivation at all, while the treatment at 83 degrees C for 10 min caused a 20% loss in penicillin G, 27% in cephalexin, and 35% in cefuroxime. Of the three dairy industry heat treatments studied in this work, low pasteurization (60 degrees C for 30 min) and treatment at 140 degrees C for 10 s only caused a small loss of antimicrobial activity, whereas classic sterilization (120 degrees C for 20 min) showed a high level of heat inactivation of over 65% for penicillins and 90% for cephalosporins.

  7. Phthalocyanine-assisted photodynamic inactivation of pathogenic microorganisms

    NASA Astrophysics Data System (ADS)

    Mantareva, Vanya; Angelov, Ivan; Borissova, Ekaterina; Avramov, Latchezar; Kussovski, Vesselin

    2007-03-01

    The phthalocyanine zinc(II) and aluminum (III) complexes were studied to photoinactivate the bacterial strains, Staphylococcus aureus, methacillin-sensitive and methacillin-resistant, Pseudomonas aeruginosa and one yeast Candida albicans. The binding of phthalocyanines to bacteria and fungi cells was evaluated by the means of laserinduced fluorescence technique. The fluorescent spectra of dyes (650 - 800 nm) after direct excitation (635 nm) were measured as follows: 1. for the aqua supernatants obtained after 10 min cell incubation with the respected phthalocyanines (1.6 μmol.l -1), 2. for the washed from the unbound dye cells, and 3. for the organic extracts from the three times washed cells. Fluorescent intensities at the emission maximum (~690 nm) were compared to the spectra of the phthalocyanines in organic solutions. The phthalocyanines uptake data for bacteria and fungi were determined at different cell densities. Nevertheless the better fluorescence properties of AlPc (fluorescent quantum yield of 0.4 towards 0.3 for ZnPcs) the lower drug accumulation in microorganisms was obtained. PDI results indicated an intensive lowering of the bacterial survival of both strains of S. aureus treated with cationic ZnPcMe followed by the anionic ZnPcS, at irradiance of 100 mW cm -2 and fluence rate of 60 J cm -2. More resistant to phototreatment P. aeruginosa and morphologically complicated yeast C. albicans were successfully inactivated only with cationic ZnPcMe. These data indicate the promising future application of cationic phthalocyanine in photodynamic inactivation of pathogenic microorganisms.

  8. Inactivation of virus in solution by cold atmospheric pressure plasma: identification of chemical inactivation pathways

    NASA Astrophysics Data System (ADS)

    Aboubakr, Hamada A.; Gangal, Urvashi; Youssef, Mohammed M.; Goyal, Sagar M.; Bruggeman, Peter J.

    2016-05-01

    Cold atmospheric pressure plasma (CAP) inactivates bacteria and virus through in situ production of reactive oxygen and nitrogen species (RONS). While the bactericidal and virucidal efficiency of plasmas is well established, there is limited knowledge about the chemistry leading to the pathogen inactivation. This article describes a chemical analysis of the CAP reactive chemistry involved in the inactivation of feline calicivirus. We used a remote radio frequency CAP produced in varying gas mixtures leading to different plasma-induced chemistries. A study of the effects of selected scavengers complemented with positive control measurements of relevant RONS reveal two distinctive pathways based on singlet oxygen and peroxynitrous acid. The first mechanism is favored in the presence of oxygen and the second in the presence of air when a significant pH reduction is induced in the solution by the plasma. Additionally, smaller effects of the H2O2, O3 and \\text{NO}2- produced were also found. Identification of singlet oxygen-mediated 2-imidazolone/2-oxo-His (His  +14 Da)—an oxidative modification of His 262 comprising the capsid protein of feline calicivirus links the plasma induced singlet oxygen chemistry to viral inactivation.

  9. When X-inactivation meets pluripotency: an intimate rendezvous.

    PubMed

    Navarro, Pablo; Avner, Philip

    2009-06-01

    The integration of X-inactivation with development is a crucial aspect of this classical paradigm of epigenetic regulation. During early female mouse development, X-inactivation reprogramming occurs in pluripotent cells of the inner cell mass of the blastocyst and in pluripotent primordial germ cells. Here we discuss the developmental strategies which ensure the coupling of the regulation of X-inactivation to the acquisition of pluripotency through the regulation of the master of X-inactivation, the non-coding Xist gene, by the key factors which support pluripotency Nanog, Oct4 and Sox2.

  10. [Thermal inactivation of alpha-galactosidase from Penicillium canescens].

    PubMed

    Borzova, N V; Varbanets, L D

    2010-01-01

    The kinetics and mechanism of thermal inactivation of Penicillium canescens alpha-galactosidase in the temperature range of 55-65 degrees C have been studied. The kinetic scheme of alpha-galactosidase thermal inactivation was proposed which included the reversible dissociation of active hexamers into associating monomers and irreversible denaturation of monomers. The kinetic constants of thermal inactivation have been determined. The effect of enzyme concentration and purification efficiency has been investigated. A possibility of defence of protein molecule from thermal inactivation in the presence of BSA, glycerol, melibiose, raffinose and stachyose is shown.

  11. Microbial production of lactic acid.

    PubMed

    Eiteman, Mark A; Ramalingam, Subramanian

    2015-05-01

    Lactic acid is an important commodity chemical having a wide range of applications. Microbial production effectively competes with chemical synthesis methods because biochemical synthesis permits the generation of either one of the two enantiomers with high optical purity at high yield and titer, a result which is particularly beneficial for the production of poly(lactic acid) polymers having specific properties. The commercial viability of microbial lactic acid production relies on utilization of inexpensive carbon substrates derived from agricultural or waste resources. Therefore, optimal lactic acid formation requires an understanding and engineering of both the competing pathways involved in carbohydrate metabolism, as well as pathways leading to potential by-products which both affect product yield. Recent research leverages those biochemical pathways, while researchers also continue to seek strains with improved tolerance and ability to perform under desirable industrial conditions, for example, of pH and temperature.

  12. Phenotypic Properties and Microbial Diversity of Methanogenic Granules from a Full-Scale Upflow Anaerobic Sludge Bed Reactor Treating Brewery Wastewater†

    PubMed Central

    Díaz, Emiliano E.; Stams, Alfons J. M.; Amils, Ricardo; Sanz, José L.

    2006-01-01

    Methanogenic granules from an anaerobic bioreactor that treated wastewater of a beer brewery consisted of different morphological types of granules. In this study, the microbial compositions of the different granules were analyzed by molecular microbiological techniques: cloning, denaturing gradient gel electrophoresis and fluorescent in situ hybridization (FISH), and scanning and transmission electron microscopy. We propose here that the different types of granules reflect the different stages in the life cycle of granules. Young granules were small, black, and compact and harbored active cells. Gray granules were the most abundant granules. These granules have a multilayer structure with channels and void areas. The core was composed of dead or starving cells with low activity. The brown granules, which were the largest granules, showed a loose and amorphous structure with big channels that resulted in fractured zones and corresponded to the older granules. Firmicutes (as determined by FISH) and Nitrospira and Deferribacteres (as determined by cloning and sequencing) were the predominant Bacteria. Remarkably, Firmicutes could not be detected in the brown granules. The methanogenic Archaea identified were Methanosaeta concilii (70 to 90% by FISH and cloning), Methanosarcina mazei, and Methanospirillum spp. The phenotypic appearance of the granules reflected the physiological condition of the granules. This may be valuable to easily select appropriate seed sludges to start up other reactors. PMID:16820491

  13. Impact of ultraviolet radiation treatments on the physicochemical properties, antioxidants, enzyme activity and microbial load in freshly prepared hand pressed strawberry juice.

    PubMed

    Bhat, Rajeev; Stamminger, Rainer

    2015-07-01

    Freshly prepared, hand-pressed strawberry fruit juice was exposed to ultraviolet radiation (254 nm) at room temperature (25 ℃ ± 1 ℃) for 15, 30 and 60 min with 0 min serving as control. Results revealed decrease in pH, total soluble solids and titratable acidity, while colour parameters (L*, a* and b* values) and clarity of juice (% transmittance) increased significantly. All the results corresponded to exposure time to ultraviolet radiation. Bioactive compounds (total phenolics, ascorbic acid and anthocyanins) decreased along with a recorded reduction in polyphenol oxidase enzyme and 1,1-diphenyl-2-picryl hydrazyl radical scavenging activities, which were again dependent on exposure time. Results on the microbial studies showed significant reduction by 2-log cycles in aerobic plate count as well as in total yeast and mould counts. Though negative results were observed for certain parameters, this is the first time it was endeavoured to demonstrate the impact of ultraviolet radiation radiation on freshly prepared, hand-pressed strawberries juice.

  14. Overview of differences between microbial feed additives and probiotics for food regarding regulation, growth promotion effects and health properties and consequences for extrapolation of farm animal results to humans.

    PubMed

    Bernardeau, M; Vernoux, J-P

    2013-04-01

    For many years, microbial adjuncts have been used to supplement the diets of farm animals and humans. They have evolved since the 1990s to become known as probiotics, i.e. functional food with health benefits. After the discovery of a possible link between manipulation of gut microflora in mice and obesity, a focus on the use of these beneficial microbes that act on gut microflora in animal farming was undertaken and compared with the use of probiotics for food. Beneficial microbes added to feed are classified at a regulatory level as zootechnical additives, in the category of gut flora stabilizers for healthy animals and are regulated up to strain level in Europe. Intended effects are improvement of performance characteristics, which are strain dependent and growth enhancement is not a prerequisite. In fact, increase of body weight is not commonly reported and its frequency is around 25% of the published data examined here. However, when a Body Weight Gain (BWG) was found in the literature, it was generally moderate (lower than or close to 10%) and this over a reduced period of their short industrial life. When it was higher than 10%, it could be explained as an indirect consequence of the alleviation of the weight losses linked to stressful intensive rearing conditions or health deficiency. However, regulations on feed do not consider the health effects because animals are supposed to be healthy, so there is no requirement for reporting healthy effects in the standard European dossier. The regulations governing the addition of beneficial microorganisms to food are less stringent than for feed and no dossier is required if a species has a Qualified Presumption of Safety status. The microbial strain marketed is not submitted to any regulation and its properties (including BWG) do not need to be studied. Only claims for functional or healthy properties are regulated and again growth effect is not included. However, recent studies on probiotic effects showed that BWG

  15. Property.

    ERIC Educational Resources Information Center

    Piele, Philip K.; Johnson, Margaret M.

    This chapter deals with 1981 cases involving disputes over property. Cases involving the detachment and attachment of land continue to dominate the property chapter with 11 cases reported, the same number summarized in last year's chapter. One case involving school board referenda raised the interesting question of whether or not a state could…

  16. Property.

    ERIC Educational Resources Information Center

    Bickel, Robert D.; Zeller, Trisha A.

    A number of cases related to property issues involving institutions of higher education are examined in this chapter. Cases discussed touch on such topics as funding for property and equipment acquisition; opposition to building construction or demolition; zoning issues; building construction and equipment contracts; and lease agreements. Current…

  17. Pulvinar inactivation disrupts selection of movement plans.

    PubMed

    Wilke, Melanie; Turchi, Janita; Smith, Katy; Mishkin, Mortimer; Leopold, David A

    2010-06-23

    The coordinated movement of the eyes and hands under visual guidance is an essential part of goal-directed behavior. Several cortical areas known to be involved in this process exchange projections with the dorsal aspect of the thalamic pulvinar nucleus, suggesting that this structure may play a central role in visuomotor behavior. Here, we used reversible inactivation to investigate the role of the dorsal pulvinar in the selection and execution of visually guided manual and saccadic eye movements in macaque monkeys. We found that unilateral pulvinar inactivation resulted in a spatial neglect syndrome accompanied by visuomotor deficits including optic ataxia during visually guided limb movements. Monkeys were severely disrupted in their visually guided behavior regarding space contralateral to the side of the injection in several domains, including the following: (1) target selection in both manual and oculomotor tasks, (2) limb usage in a manual retrieval task, and (3) spontaneous visual exploration. In addition, saccades into the ipsilesional field had abnormally short latencies and tended to overshoot their mark. None of the deficits could be explained by a visual field defect or primary motor deficit. These findings highlight the importance of the dorsal aspect of the pulvinar nucleus as a critical hub for spatial attention and selection of visually guided actions. PMID:20573910

  18. Protection against Japanese encephalitis by inactivated vaccines.

    PubMed

    Hoke, C H; Nisalak, A; Sangawhipa, N; Jatanasen, S; Laorakapongse, T; Innis, B L; Kotchasenee, S; Gingrich, J B; Latendresse, J; Fukai, K

    1988-09-01

    Encephalitis caused by Japanese encephalitis virus occurs in annual epidemics throughout Asia, making it the principal cause of epidemic viral encephalitis in the world. No currently available vaccine has demonstrated efficacy in preventing this disease in a controlled trial. We performed a placebo-controlled, blinded, randomized trial in a northern Thai province, with two doses of monovalent (Nakayama strain) or bivalent (Nakayama plus Beijing strains) inactivated, purified Japanese encephalitis vaccine made from whole virus derived from mouse brain. We examined the effect of these vaccines on the incidence and severity of Japanese encephalitis and dengue hemorrhagic fever, a disease caused by a closely related flavivirus. Between November 1984 and March 1985, 65,224 children received two doses of monovalent Japanese encephalitis vaccine (n = 21,628), bivalent Japanese encephalitis vaccine (n = 22,080), or tetanus toxoid placebo (n = 21,516), with only minor side effects. The cumulative attack rate for encephalitis due to Japanese encephalitis virus was 51 per 100,000 in the placebo group and 5 per 100,000 in each vaccine group. The efficacy in both vaccine groups combined was 91 percent (95 percent confidence interval, 70 to 97 percent). Attack rates for dengue hemorrhagic fever declined, but not significantly. The severity of cases of dengue was also reduced. We conclude that two doses of inactivated Japanese encephalitis vaccine, either monovalent or bivalent, protect against encephalitis due to Japanese encephalitis virus and may have a limited beneficial effect on the severity of dengue hemorrhagic fever.

  19. Catalase inactivation following photosensitization with tetrasulfonated metallophthalocyanines.

    PubMed

    Gantchev, T G; van Lier, J E

    1995-07-01

    Catalase (CAT) in solution or incorporated in erythrocytes and K562 leukemic cells is inactivated during photosensitization with tetrasulfonated metallophthalocyanines (MePcS4). The effect of added scavengers and D2O showed that both singlet oxygen and free radical species are involved in this process. Evidence was found that direct interactions of ground or excited-stated photosensitizer with CAT are not responsible for CAT inactivation. Specific techniques to probe early damage to the CAT structure involved optical and EPR spectroscopy, HPLC and polyacrylamide gel electrophoresis analyses. Different primary events of photosensitized protein damage included oxidation of cysteine residues as well as other amino acids, as demonstrated by the formation of carbon-centered free radicals and the loss of absorbance at lambda = 275 nm. In parallel, we detected degradation of the CAT heme groups, accompanied by release of Fe(II) ions in solution. These combined phenomena initiate cross-linkages between CAT subunits and subsequent degradation of the protein with formation of irreversible aggregates in solution. Phthalocyanine-mediated photoinactivation of cell-bound CAT results in loss of protection against accumulating H2O2, providing an additional pathway of phototoxicity. PMID:7638256

  20. X-changing information on X inactivation

    SciTech Connect

    Barakat, Tahsin Stefan; Jonkers, Iris; Monkhorst, Kim; Gribnau, Joost

    2010-03-10

    In female somatic cells of mammalian species one X chromosome is inactivated to ensure dosage equality of X-encoded genes between females and males, during development and adulthood. X chromosome inactivation (XCI) involves various epigenetic mechanisms, including RNA mediated gene silencing in cis, DNA methylation, and changes in chromatin modifications and composition. XCI therefore provides an attractive paradigm to study epigenetic gene regulation in a more general context. The XCI process starts with counting of the number of X chromosomes present in a nucleus, and initiation of XCI follows if this number exceeds one per diploid genome. Recently, X-encoded RNF12 has been identified as a dose-dependent activator of XCI. In addition, other factors, including the pluripotency factors OCT4, SOX2 and Nanog, have been implicated to play a role in suppression of initiation of XCI. In this review, we highlight and explain these new and old findings in the context of a stochastic model for X chromosome counting and XCI initiation.

  1. X Chromosome Inactivation in Opioid Addicted Women

    PubMed Central

    Vousooghi, Nasim; Shirazi, Mitra-Sadat Sadat; Goodarzi, Ali; Abharian, Peyman Hassani; Zarrindast, Mohammad-Reza

    2015-01-01

    Introduction: X chromosome inactivation (XCI) is a process during which one of the two X chromosomes in female human is silenced leading to equal gene expression with males who have only one X chromosome. Here we have investigated XCI ratio in females with opioid addiction to see whether XCI skewness in women could be a risk factor for opioid addiction. Methods: 30 adult females meeting DSM IV criteria for opioid addiction and 30 control females with no known history of addiction were included in the study. Digested and undigested DNA samples which were extracted from blood were analyzed after amplification of the polymorphic androgen receptor (AR) gene located on the X chromosome. XCI skewness was studied in 3 ranges: 50:50–64:36 (random inactivation), 65:35–80:20 (moderately skewed) and >80:20 (highly skewed). Results: XCI from informative females in control group was 63% (N=19) random, 27% (N=8) moderately skewed and 10% (N=3) highly skewed. Addicted women showed 57%, 23% and 20%, respectively. The distribution and frequency of XCI status in women with opioid addiction was not significantly different from control group (P=0.55). Discussion: Our data did not approve our hypothesis of increased XCI skewness among women with opioid addiction or unbalanced (non-random) expression of genes associated with X chromosome in female opioid addicted subjects. PMID:26904175

  2. IL26 gene inactivation in Equidae.

    PubMed

    Shakhsi-Niaei, M; Drögemüller, M; Jagannathan, V; Gerber, V; Leeb, T

    2013-12-01

    Interleukin-26 (IL26) is a member of the IL10 cytokine family. The IL26 gene is located between two other well-known cytokines genes of this family encoding interferon-gamma (IFNG) and IL22 in an evolutionary conserved gene cluster. In contrast to humans and most other mammals, mice lack a functional Il26 gene. We analyzed the genome sequences of other vertebrates for the presence or absence of functional IL26 orthologs and found that the IL26 gene has also become inactivated in several equid species. We detected a one-base pair frameshift deletion in exon 2 of the IL26 gene in the domestic horse (Equus caballus), Przewalski horse (Equus przewalskii) and donkey (Equus asinus). The remnant IL26 gene in the horse is still transcribed and gives rise to at least five alternative transcripts. None of these transcripts share a conserved open reading frame with the human IL26 gene. A comparative analysis across diverse vertebrates revealed that the IL26 gene has also independently been inactivated in a few other mammals, including the African elephant and the European hedgehog. The IL26 gene thus appears to be highly variable, and the conserved open reading frame has been lost several times during mammalian evolution.

  3. Photodynamic inactivation of pathogens causing infectious keratitis

    NASA Astrophysics Data System (ADS)

    Simon, Carole; Wolf, G.; Walther, M.; Winkler, K.; Finke, M.; Hüttenberger, D.; Bischoff, Markus; Seitz, B.; Cullum, J.; Foth, H.-J.

    2014-03-01

    The increasing prevalence of antibiotic resistance requires new approaches also for the treatment of infectious keratitis. Photodynamic Inactivation (PDI) using the photosensitizer (PS) Chlorin e6 (Ce6) was investigated as an alternative to antibiotic treatment. An in-vitro cornea model was established using porcine eyes. The uptake of Ce6 by bacteria and the diffusion of the PS in the individual layers of corneal tissue were investigated by fluorescence. After removal of the cornea's epithelium Ce6-concentrations < 1 mM were sufficient to reach a penetration depth of 500 μm. Liquid cultures of microorganisms were irradiated using a specially constructed illumination chamber made of Spectralon(R) (reflectance: 99 %), which was equipped with high power light emitting diodes (λ = 670 nm). Clinical isolates of Staphylococcus aureus (SA) and Pseudomonas aeruginosa (PA) from keratitis patients were tested in liquid culture against different concentrations of Ce6 (1 - 512 μM) using 10 minutes irradiation (E = 18 J/cm2 ). This demonstrated that a complete inactivation of the pathogen strains were feasible whereby SA was slightly more susceptible than PA. 3909 mutants of the Keio collection of Escherichia coli (E.coli) were screened for potential resistance factors. The sensitive mutants can be grouped into three categories: transport mutants, mutants in lipopolysaccharide synthesis and mutants in the bacterial SOS-response. In conclusion PDI is seen as a promising therapy concept for infectious keratitis.

  4. Intranasal Immunization with Pressure Inactivated Avian Influenza Elicits Cellular and Humoral Responses in Mice

    PubMed Central

    Barroso, Shana P. C.; Nico, Dirlei; Nascimento, Danielle; Santos, Ana Clara V.; Couceiro, José Nelson S. S.; Bozza, Fernando A.; Ferreira, Ana M. A.; Ferreira, Davis F.; Palatnik-de-Sousa, Clarisa B.; Souza, Thiago Moreno L.; Gomes, Andre M. O.; Silva, Jerson L.; Oliveira, Andréa C.

    2015-01-01

    Influenza viruses pose a serious global health threat, particularly in light of newly emerging strains, such as the avian influenza H5N1 and H7N9 viruses. Vaccination remains the primary method for preventing acquiring influenza or for avoiding developing serious complications related to the disease. Vaccinations based on inactivated split virus vaccines or on chemically inactivated whole virus have some important drawbacks, including changes in the immunogenic properties of the virus. To induce a greater mucosal immune response, intranasally administered vaccines are highly desired as they not only prevent disease but can also block the infection at its primary site. To avoid these drawbacks, hydrostatic pressure has been used as a potential method for viral inactivation and vaccine production. In this study, we show that hydrostatic pressure inactivates the avian influenza A H3N8 virus, while still maintaining hemagglutinin and neuraminidase functionalities. Challenged vaccinated animals showed no disease signs (ruffled fur, lethargy, weight loss, and huddling). Similarly, these animals showed less Evans Blue dye leakage and lower cell counts in their bronchoalveolar lavage fluid compared with the challenged non-vaccinated group. We found that the whole inactivated particles were capable of generating a neutralizing antibody response in serum, and IgA was also found in nasal mucosa and feces. After the vaccination and challenge we observed Th1/Th2 cytokine secretion with a prevalence of IFN-γ. Our data indicate that the animals present a satisfactory immune response after vaccination and are protected against infection. Our results may pave the way for the development of a novel pressure-based vaccine against influenza virus. PMID:26056825

  5. Inactivation of calcium current in bull-frog atrial myocytes.

    PubMed Central

    Campbell, D L; Giles, W R; Hume, J R; Shibata, E F

    1988-01-01

    1. A single-microelectrode technique has been used to study the voltage dependence and the kinetics of inactivation and reactivation of a tetrodotoxin-resistant inward current (ICa) in single cells from bull-frog atrium. 2. In most cases the kinetics of both inactivation and reactivation can be well described as a single-exponential process. 3. Several different observations indicate that inactivation of ICa in these cells is controlled by both voltage-dependent and current-dependent processes, as has been demonstrated previously in heart (Kass & Sanguinetti, 1984; Lee, Marban & Tsien, 1985) and in other tissues (Hagiwara & Byerly, 1981; Tsien, 1983; Eckert & Chad, 1984). 4. Evidence in favour of a voltage-dependent inactivation mechanism included: (a) In paired-pulse measurements of steady-state inactivation ('f infinity') a 'conventional' steady-state f infinity vs. membrane potential (Vm) relationship was obtained in the range of membrane potentials from -60 to 0 mV. (b) Increasing [Ca2+]o from 2.5 to 7.5 mM, which resulted in a 2-3-fold increase in ICa, did not produce any significant increase in the amount of inactivation. (c) Using a 'gapped' double-pulse protocol non-monotonic U-shaped inactivation relationships were obtained, i.e. positive to approximately +20 mV some removal of inactivation occurred. However, f never approached a value near 1.00 at very depolarized potentials; it reached a maximum between 0.5 and 0.6. (d) In constant [Ca2+]o and at fixed Vm, the kinetics of ICa inactivation were independent of peak size of ICa. This was demonstrated by: (i) varying the holding potential (-90 to -30 mV), (ii) using paired-pulse 'recovery' protocols, and (iii) partial block by La3+ (1-10 microM) and Cd2+ (0.1 mM). (e) Influx of Ca2+ ions was not an obligatory prerequisite for development of inactivation. In all ionic conditions (Ca2+, Sr2+, Ba2+, Na+-free and Ca2+-free Ringer solutions) currents displayed inactivation phenomena, although the extent and

  6. Why Microbial Communities?

    ScienceCinema

    Fredrickson, Jim (PNNL)

    2016-07-12

    The Microbial Communities Initiative is a 5-year investment by Pacific Northwest National Laboratory that integrates biological/ecological experimentation, analytical chemistry, and simulation modeling. The objective is to create transforming technologies, elucidate mechanistic forces, and develop theoretical frameworks for the analysis and predictive understanding of microbial communities. Dr. Fredrickson introduces the symposium by defining microbial communities and describing their scientific relevance as they relate to solving problems in energy, climate, and sustainability.

  7. Thin-film fixed-bed reactor for solar photocatalytic inactivation of Aeromonas hydrophila: influence of water quality

    PubMed Central

    2012-01-01

    Background Controlling fish disease is one of the major concerns in contemporary aquaculture. The use of antibiotics or chemical disinfection cannot provide a healthy aquaculture system without residual effects. Water quality is also important in determining the success or failure of fish production. Several solar photocatalytic reactors have been used to treat drinking water or waste water without leaving chemical residues. This study has investigated the impact of several key aspects of water quality on the inactivation of the pathogenic bacterium Aeromonas hydrophila using a pilot-scale thin-film fixed-bed reactor (TFFBR) system. Results The level of inactivation of Aeromonas hydrophila ATCC 35654 was determined using a TFFBR with a photocatalytic area of 0.47 m2 under the influence of various water quality variables (pH, conductivity, turbidity and colour) under high solar irradiance conditions (980–1100 W m-2), at a flow rate of 4.8 L h-1 through the reactor. Bacterial enumeration were obtained through conventional plate count using trypticase soy agar media, cultured in conventional aerobic conditions to detect healthy cells and under ROS-neutralised conditions to detect both healthy and sub-lethally injured (oxygen-sensitive) cells. The results showed that turbidity has a major influence on solar photocatalytic inactivation of A. hydrophila. Humic acids appear to decrease TiO2 effectiveness under full sunlight and reduce microbial inactivation. pH in the range 7–9 and salinity both have no major effect on the extent of photoinactivation or sub-lethal injury. Conclusions This study demonstrates the effectiveness of the TFFBR in the inactivation of Aeromonas hydrophila under the influence of several water quality variables at high solar irradiance, providing an opportunity for the application of solar photocatalysis in aquaculture systems, as long as turbidity remains low. PMID:23194331

  8. Our unique microbial identity.

    PubMed

    Gilbert, Jack A

    2015-05-14

    A recent article examines the extent of individual variation in microbial identities and how this might determine disease susceptibility, therapeutic responses and recovery from clinical interventions.

  9. Kombucha tea fermentation: Microbial and biochemical dynamics.

    PubMed

    Chakravorty, Somnath; Bhattacharya, Semantee; Chatzinotas, Antonis; Chakraborty, Writachit; Bhattacharya, Debanjana; Gachhui, Ratan

    2016-03-01

    Kombucha tea, a non-alcoholic beverage, is acquiring significant interest due to its claimed beneficial properties. The microbial community of Kombucha tea consists of bacteria and yeast which thrive in two mutually non-exclusive compartments: the soup or the beverage and the biofilm floating on it. The microbial community and the biochemical properties of the beverage have so far mostly been described in separate studies. This, however, may prevent understanding the causal links between the microbial communities and the beneficial properties of Kombucha tea. Moreover, an extensive study into the microbial and biochemical dynamics has also been missing. In this study, we thus explored the structure and dynamics of the microbial community along with the biochemical properties of Kombucha tea at different time points up to 21 days of fermentation. We hypothesized that several biochemical properties will change during the course of fermentation along with the shifts in the yeast and bacterial communities. The yeast community of the biofilm did not show much variation over time and was dominated by Candida sp. (73.5-83%). The soup however, showed a significant shift in dominance from Candida sp. to Lachancea sp. on the 7th day of fermentation. This is the first report showing Candida as the most dominating yeast genus during Kombucha fermentation. Komagateibacter was identified as the single largest bacterial genus present in both the biofilm and the soup (~50%). The bacterial diversity was higher in the soup than in the biofilm with a peak on the seventh day of fermentation. The biochemical properties changed with the progression of the fermentation, i.e., beneficial properties of the beverage such as the radical scavenging ability increased significantly with a maximum increase at day 7. We further observed a significantly higher D-saccharic acid-1,4-lactone content and caffeine degradation property compared to previously described Kombucha tea fermentations. Our

  10. Kombucha tea fermentation: Microbial and biochemical dynamics.

    PubMed

    Chakravorty, Somnath; Bhattacharya, Semantee; Chatzinotas, Antonis; Chakraborty, Writachit; Bhattacharya, Debanjana; Gachhui, Ratan

    2016-03-01

    Kombucha tea, a non-alcoholic beverage, is acquiring significant interest due to its claimed beneficial properties. The microbial community of Kombucha tea consists of bacteria and yeast which thrive in two mutually non-exclusive compartments: the soup or the beverage and the biofilm floating on it. The microbial community and the biochemical properties of the beverage have so far mostly been described in separate studies. This, however, may prevent understanding the causal links between the microbial communities and